Jeremy Siek 9 년 전
부모
커밋
159fb2237e
1개의 변경된 파일4개의 추가작업 그리고 4개의 파일을 삭제
  1. 4 4
      book.tex

+ 4 - 4
book.tex

@@ -1016,15 +1016,15 @@ rest of the integers corresponding to stack locations.
   \centering
 \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
 Algorithm: DSATUR
-Input: the inference graph @$G$@
-Output: an assignment @$\mathrm{color}(v)$@ for each node @$v \in G$@
+Input: a graph @$G$@
+Output: an assignment @$\mathrm{color}[v]$@ for each node @$v \in G$@
 
 @$W \gets \mathit{vertices}(G)$@
 while @$W \neq \emptyset$@ do
     pick a node @$u$@ from @$W$@ with the highest saturation,
         breaking ties randomly
-    find the lowest color @$c$@ that is not in @$\{ \mathrm{color}(v) \;|\; v \in \mathrm{Adj}(v)\}$@
-    @$\mathrm{color}(u) = c$@
+    find the lowest color @$c$@ that is not in @$\{ \mathrm{color}[v] \;|\; v \in \mathrm{Adj}(v)\}$@
+    @$\mathrm{color}[u] \gets c$@
     @$W \gets W - \{u\}$@
 \end{lstlisting}
   \caption{Saturation-based greedy graph coloring algorithm.}