Jeremy Siek 4 vuotta sitten
vanhempi
commit
1cb1cc3238
1 muutettua tiedostoa jossa 11 lisäystä ja 2 poistoa
  1. 11 2
      book.tex

+ 11 - 2
book.tex

@@ -3667,6 +3667,7 @@ to how we represented interference.  The following is the \emph{move
   graph} for our running example.
 \[
 \begin{tikzpicture}[baseline=(current  bounding  box.center)]
+\node (rax) at (0,0) {$\ttm{rax}$};
 \node (t) at (0,2) {$\ttm{t}$};
 \node (z) at (3,2)  {$\ttm{z}$};
 \node (x) at (6,2)  {$\ttm{x}$};
@@ -3686,6 +3687,7 @@ Now we replay the graph coloring, pausing to see the coloring of
 were \code{w} and \code{y}.
 \[
 \begin{tikzpicture}[baseline=(current  bounding  box.center)]
+\node (rax) at (0,0) {$\ttm{rax}:-1,\{0\}$};
 \node (t1) at (0,2) {$\ttm{t}:0,\{1\}$};
 \node (z) at (3,2)  {$\ttm{z}:1,\{0\}$};
 \node (x) at (6,2)  {$\ttm{x}:-,\{\}$};
@@ -3693,6 +3695,7 @@ were \code{w} and \code{y}.
 \node (w) at (6,0)  {$\ttm{w}:-,\{1\}$};
 \node (v) at (9,0)  {$\ttm{v}:-,\{\}$};
 
+\draw (t1) to (rax);
 \draw (t1) to (z);
 \draw (z) to (y);
 \draw (z) to (w);
@@ -3702,12 +3705,13 @@ were \code{w} and \code{y}.
 \end{tikzpicture}
 \]
 %
-Last time we chose to color \code{w} with $0$. But this time we note
-that \code{w} is not move related to any vertex, and \code{y} is move
+Last time we chose to color \code{w} with $0$. But this time we see
+that \code{w} is not move related to any vertex, but \code{y} is move
 related to \code{t}.  So we choose to color \code{y} the same color,
 $0$.
 \[
 \begin{tikzpicture}[baseline=(current  bounding  box.center)]
+\node (rax) at (0,0) {$\ttm{rax}:-1,\{0\}$};
 \node (t1) at (0,2) {$\ttm{t}:0,\{1\}$};
 \node (z) at (3,2)  {$\ttm{z}:1,\{0\}$};
 \node (x) at (6,2)  {$\ttm{x}:-,\{\}$};
@@ -3715,6 +3719,7 @@ $0$.
 \node (w) at (6,0)  {$\ttm{w}:-,\{0,1\}$};
 \node (v) at (9,0)  {$\ttm{v}:-,\{\}$};
 
+\draw (t1) to (rax);
 \draw (t1) to (z);
 \draw (z) to (y);
 \draw (z) to (w);
@@ -3726,6 +3731,7 @@ $0$.
 Now \code{w} is the most saturated, so we color it $2$.
 \[
 \begin{tikzpicture}[baseline=(current  bounding  box.center)]
+\node (rax) at (0,0) {$\ttm{rax}:-1,\{0\}$};
 \node (t1) at (0,2) {$\ttm{t}:0,\{1\}$};
 \node (z) at (3,2)  {$\ttm{z}:1,\{0,2\}$};
 \node (x) at (6,2)  {$\ttm{x}:-,\{2\}$};
@@ -3733,6 +3739,7 @@ Now \code{w} is the most saturated, so we color it $2$.
 \node (w) at (6,0)  {$\ttm{w}:2,\{0,1\}$};
 \node (v) at (9,0)  {$\ttm{v}:-,\{2\}$};
 
+\draw (t1) to (rax);
 \draw (t1) to (z);
 \draw (z) to (y);
 \draw (z) to (w);
@@ -3746,6 +3753,7 @@ At this point, vertices \code{x} and \code{v} are most saturated, but
 \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
 \[
 \begin{tikzpicture}[baseline=(current  bounding  box.center)]
+\node (rax) at (0,0) {$\ttm{rax}:-1,\{0\}$};
 \node (t) at (0,2) {$\ttm{t}:0,\{1\}$};
 \node (z) at (3,2)  {$\ttm{z}:1,\{0,2\}$};
 \node (x) at (6,2)  {$\ttm{x}:0,\{2\}$};
@@ -3753,6 +3761,7 @@ At this point, vertices \code{x} and \code{v} are most saturated, but
 \node (w) at (6,0)  {$\ttm{w}:2,\{0,1\}$};
 \node (v) at (9,0)  {$\ttm{v}:0,\{2\}$};
 
+\draw (t1) to (rax);
 \draw (t) to (z);
 \draw (z) to (y);
 \draw (z) to (w);