|
@@ -2405,7 +2405,7 @@ Output: an assignment |$\mathrm{color}[v]$| for each node |$v \in G$|
|
|
|
while |$W \neq \emptyset$| do
|
|
|
pick a node |$u$| from |$W$| with the highest saturation,
|
|
|
breaking ties randomly
|
|
|
- find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(v)\}$|
|
|
|
+ find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
|
|
|
|$\mathrm{color}[u] \gets c$|
|
|
|
|$W \gets W - \{u\}$|
|
|
|
\end{lstlisting}
|