|
@@ -21704,7 +21704,7 @@ values to be written to the tuple. So, we define the following
|
|
|
abbreviation for the type of a tuple proxy:
|
|
|
\[
|
|
|
\itm{TupleProxy} (T\ldots \Rightarrow T'\ldots)
|
|
|
-= (\ttm{Vector}~\PTUPLETY{T\ldots} ~R~ W) \to \PTUPLETY{T' \ldots})
|
|
|
+= (\ttm{Vector}~\PTUPLETY{T\ldots} ~R~ W)
|
|
|
\]
|
|
|
where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
|
|
|
$W = (\ttm{Vector}~(T'\to T) \ldots)$.
|
|
@@ -21732,18 +21732,18 @@ Next we describe each of the new primitive operations.
|
|
|
tuple.
|
|
|
|
|
|
\item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
|
|
|
- $\to$ \BOOLTY{}]\ \\
|
|
|
+ $\to$ \INTTY{}]\ \\
|
|
|
%
|
|
|
Given a tuple proxy, this operation returns the length of the tuple.
|
|
|
|
|
|
\item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
|
|
|
- $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
|
|
|
+ $\to$ ($i$ : \INTTY{}) $\to$ $T_i$]\ \\
|
|
|
%
|
|
|
Given a tuple proxy, this operation returns the $i$th element of the
|
|
|
tuple.
|
|
|
|
|
|
\item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
|
|
|
- : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\
|
|
|
+ : \INTTY{}) $\to$ $T_i$ $\to$ \key{Void}]\ \\
|
|
|
Given a tuple proxy, this operation writes a value to the $i$th element
|
|
|
of the tuple.
|
|
|
\end{description}
|