Grammar:
0. start ::= stmt
1. stmt ::= “print” exp

2. exp :=exp “+” exp

3. exp ::=INT
State 0 State 1 S
start ::= . stmt — "print", shift —» Z;r;t.:;: g)r(lgt";"eexxpp
stmt ::=. "print” exp exp = . INT
/ — \
stmt, goto INT, shift €xp, goto
rd
State 2 State 4 State 3
start ::= stmt . exp = INT. stmt ::="print" exp .
exp =exp."+"exp
end, reduce by rule 3
"+" reduce by rule 3 end, reduce by rule 1
TN\T, shift ~t Shift
State 6
exp :=exp "+"exp .
exp = exp . "+" exp State 5
exp =exp"+".exp
end, reduce by rule 2 exp :=.exp "+" exp
"+", reduce by rule 2 exp :=. INT
N\
"+", shift
exp, goto
Example parse of 'print 1 + 2'
Stack Input Action
I 'print 1 +2' shift to state 1
[(1,"print")] 1+2 shift to state 4
[(1,"print"),(4,INT)] '+ 2' reduce by rule 3 to state 1, goto 3
[(1,"print"),(3,exp)] '+ 2 shift to state 5
[(1,"print"),(3,exp),(5,+)] 2! shift to state 4
[(1,"print"),(3,exp),(5,+),(4,INT)] ! reduce by rule 3 to state 5, goto 6
[(1,"print"),(3,exp),(5,+),(6,exp)] ! reduce by rule 2 to state 1, goto 3
[(1,"print"),(3,exp)] ! reduce by rule 1 to state 0, goto 2
[(2,stmt)] " accept




