
State 0
start ::= . statement
statement ::= . PRINT expression

State 1
statement ::= PRINT . expression
expression ::= . expression PLUS expression
expression ::= . INT

PRINT, shift

State 2
start ::= statement .

statement, goto

State 3
statement ::=PRINT expression .
expression ::= expression . PLUS expression

end, reduce by rule 1

State 4
expression ::= INT .

end, reduce by rule 3
PLUS, reduce by rule 3

INT, shift expression, goto

State 5
expression ::= expression PLUS . expression
expression ::= . expression PLUS expression
expression ::= . INT

INT, shift PLUS, shift
State 6
expression ::= expression PLUS expression .
expression ::= expression . PLUS expression

end, reduce by rule 2
PLUS, reduce by rule 2

expression, gotoPLUS, shift

Grammar:
0. start ::= statement
1. statement ::= PRINT expression
2. expression ::= expression PLUS expression
3. expression ::= INT

Example parse of 'print 1 + 2'
Stack
[]
[(1,PRINT)]
[(1,PRINT),(4,INT)]
[(1,PRINT),(3,expression)]
[(1,PRINT),(3,expression),(5,+)]
[(1,PRINT),(3,expression),(5,+),(4,INT)]
[(1,PRINT),(3,expression),(5,+),(6,expression)]
[(1,PRINT),(3,expression)]
[(2,statement)]

Input
'print 1 + 2'
'1 + 2'
'+ 2'
'+ 2'
'2'
''
''
''
''

Action
shift to state 1
shift to state 4
reduce by rule 3 to state 1, goto 3
shift to state 5
shift to state 4
reduce by rule 3 to state 5, goto 6
reduce by rule 2 to state 1, goto 3
reduce by rule 1 to state 0, goto 2
accept


