
State 0
start ::= . stmt
stmt ::= . “print” exp

State 1
stmt ::= "print" . exp
exp ::= . exp "+" exp
exp ::= . INT

"print", shift

State 2
start ::= stmt .

stmt, goto

State 3
stmt ::="print" exp .
exp ::= exp . "+" exp

end, reduce by rule 1

State 4
exp ::= INT .

end, reduce by rule 3
"+", reduce by rule 3

INT, shift exp, goto

State 5
exp ::= exp "+" . exp
exp ::= . exp "+" exp
exp ::= . INT

INT, shift "+", shift
State 6
exp ::= exp "+" exp .
exp ::= exp . "+" exp

end, reduce by rule 2
"+", reduce by rule 2

exp, goto
"+", shift

Grammar:
0. start ::= stmt
1. stmt ::= “print” exp
2. exp ::= exp “+” exp
3. exp ::= INT

Example parse of 'print 1 + 2'
Stack
[]
[(1,"print")]
[(1,"print"),(4,INT)]
[(1,"print"),(3,exp)]
[(1,"print"),(3,exp),(5,+)]
[(1,"print"),(3,exp),(5,+),(4,INT)]
[(1,"print"),(3,exp),(5,+),(6,exp)]
[(1,"print"),(3,exp)]
[(2,stmt)]

Input
'print 1 + 2'
'1 + 2'
'+ 2'
'+ 2'
'2'
''
''
''
''

Action
shift to state 1
shift to state 4
reduce by rule 3 to state 1, goto 3
shift to state 5
shift to state 4
reduce by rule 3 to state 5, goto 6
reduce by rule 2 to state 1, goto 3
reduce by rule 1 to state 0, goto 2
accept


