book.tex 618 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835
  1. %\documentclass[]{TimesAPriori_MIT}%%6x9
  2. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  3. %\documentclass[8x10]{TimesAPriori_MIT}%%8x10
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \definecolor{lightgray}{gray}{1}
  17. \newcommand{\black}[1]{{\color{black} #1}}
  18. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  19. \newcommand{\gray}[1]{{\color{gray} #1}}
  20. \def\racketEd{0}
  21. \def\pythonEd{1}
  22. \def\edition{1}
  23. % material that is specific to the Racket edition of the book
  24. \newcommand{\racket}[1]{{\if\edition\racketEd\color{olive}{#1}\fi}}
  25. % would like a command for: \if\edition\racketEd\color{olive}
  26. % and : \fi\color{black}
  27. % material that is specific to the Python edition of the book
  28. \newcommand{\python}[1]{{\if\edition\pythonEd #1\fi}}
  29. %% For multiple indices:
  30. \usepackage{multind}
  31. \makeindex{subject}
  32. \makeindex{authors}
  33. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  34. \if\edition\racketEd
  35. \lstset{%
  36. language=Lisp,
  37. basicstyle=\ttfamily\small,
  38. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  39. deletekeywords={read,mapping,vector},
  40. escapechar=|,
  41. columns=flexible,
  42. moredelim=[is][\color{red}]{~}{~},
  43. showstringspaces=false
  44. }
  45. \fi
  46. \if\edition\pythonEd
  47. \lstset{%
  48. language=Python,
  49. basicstyle=\ttfamily\small,
  50. morekeywords={match,case,bool,int},
  51. deletekeywords={},
  52. escapechar=|,
  53. columns=flexible,
  54. moredelim=[is][\color{red}]{~}{~},
  55. showstringspaces=false
  56. }
  57. \fi
  58. %%% Any shortcut own defined macros place here
  59. %% sample of author macro:
  60. \input{defs}
  61. \newtheorem{exercise}[theorem]{Exercise}
  62. % Adjusted settings
  63. \setlength{\columnsep}{4pt}
  64. %% \begingroup
  65. %% \setlength{\intextsep}{0pt}%
  66. %% \setlength{\columnsep}{0pt}%
  67. %% \begin{wrapfigure}{r}{0.5\textwidth}
  68. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  69. %% \caption{Basic layout}
  70. %% \end{wrapfigure}
  71. %% \lipsum[1]
  72. %% \endgroup
  73. \newbox\oiintbox
  74. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  75. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  76. \def\oiint{\copy\oiintbox}
  77. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  78. %\usepackage{showframe}
  79. \def\ShowFrameLinethickness{0.125pt}
  80. \addbibresource{book.bib}
  81. \begin{document}
  82. \frontmatter
  83. \HalfTitle{Essentials of Compilation, Python Edition}
  84. \halftitlepage
  85. %% \begin{seriespage}
  86. %% \seriestitle{Industrial Economics}
  87. %% \serieseditor{Miriam Smith and Simon Rattle, editors}
  88. %% \title{Engineering and Economics}
  89. %% \author{Samuel Endgrove}
  90. %% \title{Structural Economics: From Beginning to End}
  91. %% \author{Guang Xi}
  92. %% \end{seriespage}
  93. \Title{Essentials of Compilation, Python Edition}
  94. \Booksubtitle{The Incremental, Nano-Pass Approach}
  95. %\edition{First Edition}
  96. \BookAuthor{Jeremy G. Siek}
  97. \imprint{The MIT Press\\
  98. Cambridge, Massachusetts\\
  99. London, England}
  100. \begin{copyrightpage}
  101. \textcopyright\ 2021 Jeremy G. Siek. Available for free viewing
  102. or personal downloading under the
  103. \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  104. license.
  105. Copyright in this monograph has been licensed exclusively to The MIT
  106. Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  107. version to the public in 2022. All inquiries regarding rights should
  108. be addressed to The MIT Press, Rights and Permissions Department.
  109. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  110. %% All rights reserved. No part of this book may be reproduced in any
  111. %% form by any electronic or mechanical means (including photocopying,
  112. %% recording, or information storage and retrieval) without permission in
  113. %% writing from the publisher.
  114. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  115. %% United States of America.
  116. %% Library of Congress Cataloging-in-Publication Data is available.
  117. %% ISBN:
  118. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  119. \end{copyrightpage}
  120. \dedication{This book is dedicated to the programming language wonks
  121. at Indiana University.}
  122. %% \begin{epigraphpage}
  123. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  124. %% \textit{Book Name if any}}
  125. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  126. %% \end{epigraphpage}
  127. \tableofcontents
  128. %\listoffigures
  129. %\listoftables
  130. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  131. \chapter*{Preface}
  132. \addcontentsline{toc}{fmbm}{Preface}
  133. There is a magical moment when a programmer presses the ``run'' button
  134. and the software begins to execute. Somehow a program written in a
  135. high-level language is running on a computer that is only capable of
  136. shuffling bits. Here we reveal the wizardry that makes that moment
  137. possible. Beginning with the groundbreaking work of Backus and
  138. colleagues in the 1950s, computer scientists discovered techniques for
  139. constructing programs, called \emph{compilers}, that automatically
  140. translate high-level programs into machine code.
  141. We take you on a journey by constructing your own compiler for a small
  142. but powerful language. Along the way we explain the essential
  143. concepts, algorithms, and data structures that underlie compilers. We
  144. develop your understanding of how programs are mapped onto computer
  145. hardware, which is helpful when reasoning about properties at the
  146. junction between hardware and software such as execution time,
  147. software errors, and security vulnerabilities. For those interested
  148. in pursuing compiler construction, our goal is to provide a
  149. stepping-stone to advanced topics such as just-in-time compilation,
  150. program analysis, and program optimization. For those interested in
  151. designing and implementing programming languages, we connect
  152. language design choices to their impact on the compiler and the generated
  153. code.
  154. A compiler is typically organized as a sequence of stages that
  155. progressively translate a program to code that runs on hardware. We
  156. take this approach to the extreme by partitioning our compiler into a
  157. large number of \emph{nanopasses}, each of which performs a single
  158. task. This allows us to test the output of each pass in isolation, and
  159. furthermore, allows us to focus our attention which makes the compiler
  160. far easier to understand.
  161. The most familiar approach to describing compilers is with one pass
  162. per chapter. The problem with that approach is it obfuscates how
  163. language features motivate design choices in a compiler. We take an
  164. \emph{incremental} approach in which we build a complete compiler in
  165. each chapter, starting with a small input language that includes only
  166. arithmetic and variables and we add new language features in
  167. subsequent chapters.
  168. Our choice of language features is designed to elicit the fundamental
  169. concepts and algorithms used in compilers.
  170. \begin{itemize}
  171. \item We begin with integer arithmetic and local variables in
  172. Chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  173. the fundamental tools of compiler construction: \emph{abstract
  174. syntax trees} and \emph{recursive functions}.
  175. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  176. \emph{graph coloring} to assign variables to machine registers.
  177. \item Chapter~\ref{ch:Lif} adds \code{if} expressions, which motivates
  178. an elegant recursive algorithm for translating them into conditional
  179. \code{goto}'s.
  180. \item Chapter~\ref{ch:Rwhile} fleshes out support for imperative
  181. programming languages with the addition of loops\racket{ and mutable
  182. variables}. This elicits the need for \emph{dataflow
  183. analysis} in the register allocator.
  184. \item Chapter~\ref{ch:Rvec} adds heap-allocated tuples, motivating
  185. \emph{garbage collection}.
  186. \item Chapter~\ref{ch:Rfun} adds functions that are first-class values
  187. but lack lexical scoping, similar to the C programming
  188. language~\citep{Kernighan:1988nx} except that we generate efficient
  189. tail calls. The reader learns about the procedure call stack,
  190. \emph{calling conventions}, and their interaction with register
  191. allocation and garbage collection.
  192. \item Chapter~\ref{ch:Rlam} adds anonymous functions with lexical
  193. scoping, i.e., \emph{lambda abstraction}. The reader learns about
  194. \emph{closure conversion}, in which lambdas are translated into a
  195. combination of functions and tuples.
  196. % Chapter about classes and objects?
  197. \item Chapter~\ref{ch:Rdyn} adds \emph{dynamic typing}. Prior to this
  198. point the input languages are statically typed. The reader extends
  199. the statically typed language with an \code{Any} type which serves
  200. as a target for compiling the dynamically typed language.
  201. {\if\edition\pythonEd
  202. \item Chapter~\ref{ch:Robject} adds support for \emph{objects} and
  203. \emph{classes}.
  204. \fi}
  205. \item Chapter~\ref{ch:Rgrad} uses the \code{Any} type of
  206. Chapter~\ref{ch:Rdyn} to implement a \emph{gradually typed language}
  207. in which different regions of a program may be static or dynamically
  208. typed. The reader implements runtime support for \emph{proxies} that
  209. allow values to safely move between regions.
  210. \item Chapter~\ref{ch:Rpoly} adds \emph{generics} with autoboxing,
  211. leveraging the \code{Any} type and type casts developed in Chapters
  212. \ref{ch:Rdyn} and \ref{ch:Rgrad}.
  213. \end{itemize}
  214. There are many language features that we do not include. Our choices
  215. balance the incidental complexity of a feature versus the fundamental
  216. concepts that it exposes. For example, we include tuples and not
  217. records because they both elicit the study of heap allocation and
  218. garbage collection but records come with more incidental complexity.
  219. Since 2009 drafts of this book have served as the textbook for 16-week
  220. compiler courses for upper-level undergraduates and first-year
  221. graduate students at the University of Colorado and Indiana
  222. University.
  223. %
  224. Students come into the course having learned the basics of
  225. programmming, data structures and algorithms, and discrete
  226. mathematics.
  227. %
  228. At the beginning of the course, students form groups of 2-4 people.
  229. The groups complete one chapter every two weeks, starting with
  230. Chapter~\ref{ch:Lvar}. Many chapters include a challenge problem that
  231. we assign to the graduate students. The last two weeks of the course
  232. involve a final project in which students design and implement a
  233. compiler extension of their choosing. Chapters~\ref{ch:Rgrad} and
  234. \ref{ch:Rpoly} can be used in support of these projects or they can
  235. replace some of the other chapters. For example, a course with an
  236. emphasis on statically-typed imperative languages could include
  237. Chapter~\ref{ch:Rpoly} but skip Chapter~\ref{ch:Rdyn}. For compiler
  238. courses at univerities on the quarter system, with 10 weeks, we
  239. recommend completing up through Chapter~\ref{ch:Rfun}. (If pressed
  240. for time, one can skip Chapter~\ref{ch:Rvec} but still include
  241. Chapter~\ref{ch:Rfun} by limiting the number of parameters allowed in
  242. functions.) Figure~\ref{fig:chapter-dependences} depicts the
  243. dependencies between chapters.
  244. This book has also been used in compiler courses at California
  245. Polytechnic State University, Portland State University, Rose–Hulman
  246. Institute of Technology, University of Massachusetts Lowell, and the
  247. University of Vermont.
  248. \begin{figure}[tp]
  249. {\if\edition\racketEd
  250. \begin{tikzpicture}[baseline=(current bounding box.center)]
  251. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  252. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  253. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  254. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  255. \node (C5) at (4,0) {\small Ch.~\ref{ch:Rvec} Tuples};
  256. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  257. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Rwhile} Loops};
  258. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  259. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  260. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  261. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  262. \path[->] (C1) edge [above] node {} (C2);
  263. \path[->] (C2) edge [above] node {} (C3);
  264. \path[->] (C3) edge [above] node {} (C4);
  265. \path[->] (C4) edge [above] node {} (C5);
  266. \path[->] (C5) edge [above] node {} (C6);
  267. \path[->] (C6) edge [above] node {} (C7);
  268. \path[->] (C4) edge [above] node {} (C8);
  269. \path[->] (C4) edge [above] node {} (C9);
  270. \path[->] (C8) edge [above] node {} (C10);
  271. \path[->] (C10) edge [above] node {} (C11);
  272. \end{tikzpicture}
  273. \fi}
  274. {\if\edition\pythonEd
  275. \begin{tikzpicture}[baseline=(current bounding box.center)]
  276. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  277. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  278. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  279. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  280. \node (C5) at (4,0) {\small Ch.~\ref{ch:Rvec} Tuples};
  281. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  282. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Rwhile} Loops};
  283. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  284. \node (CO) at (0,-3) {\small Ch.~\ref{ch:Robject} Objects};
  285. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  286. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  287. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  288. \path[->] (C1) edge [above] node {} (C2);
  289. \path[->] (C2) edge [above] node {} (C3);
  290. \path[->] (C3) edge [above] node {} (C4);
  291. \path[->] (C4) edge [above] node {} (C5);
  292. \path[->] (C5) edge [above] node {} (C6);
  293. \path[->] (C6) edge [above] node {} (C7);
  294. \path[->] (C4) edge [above] node {} (C8);
  295. \path[->] (C4) edge [above] node {} (C9);
  296. \path[->] (C8) edge [above] node {} (C10);
  297. \path[->] (C8) edge [above] node {} (CO);
  298. \path[->] (C10) edge [above] node {} (C11);
  299. \end{tikzpicture}
  300. \fi}
  301. \caption{Diagram of chapter dependencies.}
  302. \label{fig:chapter-dependences}
  303. \end{figure}
  304. \racket{
  305. We use the \href{https://racket-lang.org/}{Racket} language both for
  306. the implementation of the compiler and for the input language, so the
  307. reader should be proficient with Racket or Scheme. There are many
  308. excellent resources for learning Scheme and
  309. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  310. }
  311. \python{
  312. This edition of the book uses \href{https://www.python.org/}{Python}
  313. both for the implementation of the compiler and for the input language, so the
  314. reader should be proficient with Python. There are many
  315. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.
  316. }
  317. The support code for this book is in the \code{github} repository at
  318. the following URL:
  319. \if\edition\racketEd
  320. \begin{center}\small
  321. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  322. \end{center}
  323. \fi
  324. \if\edition\pythonEd
  325. \begin{center}\small
  326. \url{https://github.com/IUCompilerCourse/}
  327. \end{center}
  328. \fi
  329. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  330. is helpful but not necessary for the reader to have taken a computer
  331. systems course~\citep{Bryant:2010aa}. This book introduces the parts
  332. of x86-64 assembly language that are needed.
  333. %
  334. We follow the System V calling
  335. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  336. that we generate works with the runtime system (written in C) when it
  337. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  338. operating systems on Intel hardware.
  339. %
  340. On the Windows operating system, \code{gcc} uses the Microsoft x64
  341. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  342. assembly code that we generate does \emph{not} work with the runtime
  343. system on Windows. One workaround is to use a virtual machine with
  344. Linux as the guest operating system.
  345. \section*{Acknowledgments}
  346. The tradition of compiler construction at Indiana University goes back
  347. to research and courses on programming languages by Daniel Friedman in
  348. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  349. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  350. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  351. the compiler course and continued the development of Chez Scheme.
  352. %
  353. The compiler course evolved to incorporate novel pedagogical ideas
  354. while also including elements of real-world compilers. One of
  355. Friedman's ideas was to split the compiler into many small
  356. passes. Another idea, called ``the game'', was to test the code
  357. generated by each pass using interpreters.
  358. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  359. developed infrastructure to support this approach and evolved the
  360. course to use even smaller
  361. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  362. design decisions in this book are inspired by the assignment
  363. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  364. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  365. organization of the course made it difficult for students to
  366. understand the rationale for the compiler design. Ghuloum proposed the
  367. incremental approach~\citep{Ghuloum:2006bh} that this book is based
  368. on.
  369. We thank the many students who served as teaching assistants for the
  370. compiler course at IU and made suggestions for improving the book
  371. including Carl Factora, Ryan Scott, and Cameron Swords. We especially
  372. thank Andre Kuhlenschmidt for his work on the garbage collector,
  373. Michael Vollmer for his work on efficient tail calls, and Michael
  374. Vitousek for his help running the first offering of the incremental
  375. compiler course at IU.
  376. We thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  377. Near, Ryan Newton, Nate Nystrom, Andrew Tolmach, and Michael Wollowski
  378. for teaching courses based on drafts of this book and for their
  379. invaluable feedback.
  380. We thank Ronald Garcia for helping Jeremy survive Dybvig's compiler
  381. course in the early 2000's and especially for finding the bug that
  382. sent our garbage collector on a wild goose chase!
  383. \mbox{}\\
  384. \noindent Jeremy G. Siek \\
  385. Bloomington, Indiana
  386. \mainmatter
  387. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  388. \chapter{Preliminaries}
  389. \label{ch:trees-recur}
  390. In this chapter we review the basic tools that are needed to implement
  391. a compiler. Programs are typically input by a programmer as text,
  392. i.e., a sequence of characters. The program-as-text representation is
  393. called \emph{concrete syntax}. We use concrete syntax to concisely
  394. write down and talk about programs. Inside the compiler, we use
  395. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  396. that efficiently supports the operations that the compiler needs to
  397. perform.\index{subject}{concrete syntax}\index{subject}{abstract syntax}\index{subject}{abstract
  398. syntax tree}\index{subject}{AST}\index{subject}{program}\index{subject}{parse} The translation
  399. from concrete syntax to abstract syntax is a process called
  400. \emph{parsing}~\citep{Aho:1986qf}. We do not cover the theory and
  401. implementation of parsing in this book.
  402. %
  403. \racket{A parser is provided in the support code for translating from
  404. concrete to abstract syntax.}
  405. %
  406. \python{We use Python's \code{ast} module to translate from concrete
  407. to abstract syntax.}
  408. ASTs can be represented in many different ways inside the compiler,
  409. depending on the programming language used to write the compiler.
  410. %
  411. \racket{We use Racket's
  412. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  413. feature to represent ASTs (Section~\ref{sec:ast}).}
  414. %
  415. \python{We use Python classes and objects to represent ASTs, especially the
  416. classes defined in the standard \code{ast} module for the Python
  417. source language.}
  418. %
  419. We use grammars to define the abstract syntax of programming languages
  420. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  421. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  422. recursive functions to construct and deconstruct ASTs
  423. (Section~\ref{sec:recursion}). This chapter provides an brief
  424. introduction to these ideas.
  425. \racket{\index{subject}{struct}}
  426. \python{\index{subject}{class}\index{subject}{object}}
  427. \section{Abstract Syntax Trees}
  428. \label{sec:ast}
  429. Compilers use abstract syntax trees to represent programs because they
  430. often need to ask questions like: for a given part of a program, what
  431. kind of language feature is it? What are its sub-parts? Consider the
  432. program on the left and its AST on the right. This program is an
  433. addition operation and it has two sub-parts, a
  434. \racket{read}\python{input} operation and a negation. The negation has
  435. another sub-part, the integer constant \code{8}. By using a tree to
  436. represent the program, we can easily follow the links to go from one
  437. part of a program to its sub-parts.
  438. \begin{center}
  439. \begin{minipage}{0.4\textwidth}
  440. \if\edition\racketEd
  441. \begin{lstlisting}
  442. (+ (read) (- 8))
  443. \end{lstlisting}
  444. \fi
  445. \if\edition\pythonEd
  446. \begin{lstlisting}
  447. input_int() + -8
  448. \end{lstlisting}
  449. \fi
  450. \end{minipage}
  451. \begin{minipage}{0.4\textwidth}
  452. \begin{equation}
  453. \begin{tikzpicture}
  454. \node[draw] (plus) at (0 , 0) {\key{+}};
  455. \node[draw] (read) at (-1, -1.5) {{\if\edition\racketEd\footnotesize\key{read}\fi\if\edition\pythonEd\key{input\_int()}\fi}};
  456. \node[draw] (minus) at (1 , -1.5) {$\key{-}$};
  457. \node[draw] (8) at (1 , -3) {\key{8}};
  458. \draw[->] (plus) to (read);
  459. \draw[->] (plus) to (minus);
  460. \draw[->] (minus) to (8);
  461. \end{tikzpicture}
  462. \label{eq:arith-prog}
  463. \end{equation}
  464. \end{minipage}
  465. \end{center}
  466. We use the standard terminology for trees to describe ASTs: each
  467. rectangle above is called a \emph{node}. The arrows connect a node to its
  468. \emph{children} (which are also nodes). The top-most node is the
  469. \emph{root}. Every node except for the root has a \emph{parent} (the
  470. node it is the child of). If a node has no children, it is a
  471. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  472. \index{subject}{node}
  473. \index{subject}{children}
  474. \index{subject}{root}
  475. \index{subject}{parent}
  476. \index{subject}{leaf}
  477. \index{subject}{internal node}
  478. %% Recall that an \emph{symbolic expression} (S-expression) is either
  479. %% \begin{enumerate}
  480. %% \item an atom, or
  481. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  482. %% where $e_1$ and $e_2$ are each an S-expression.
  483. %% \end{enumerate}
  484. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  485. %% null value \code{'()}, etc. We can create an S-expression in Racket
  486. %% simply by writing a backquote (called a quasi-quote in Racket)
  487. %% followed by the textual representation of the S-expression. It is
  488. %% quite common to use S-expressions to represent a list, such as $a, b
  489. %% ,c$ in the following way:
  490. %% \begin{lstlisting}
  491. %% `(a . (b . (c . ())))
  492. %% \end{lstlisting}
  493. %% Each element of the list is in the first slot of a pair, and the
  494. %% second slot is either the rest of the list or the null value, to mark
  495. %% the end of the list. Such lists are so common that Racket provides
  496. %% special notation for them that removes the need for the periods
  497. %% and so many parenthesis:
  498. %% \begin{lstlisting}
  499. %% `(a b c)
  500. %% \end{lstlisting}
  501. %% The following expression creates an S-expression that represents AST
  502. %% \eqref{eq:arith-prog}.
  503. %% \begin{lstlisting}
  504. %% `(+ (read) (- 8))
  505. %% \end{lstlisting}
  506. %% When using S-expressions to represent ASTs, the convention is to
  507. %% represent each AST node as a list and to put the operation symbol at
  508. %% the front of the list. The rest of the list contains the children. So
  509. %% in the above case, the root AST node has operation \code{`+} and its
  510. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  511. %% diagram \eqref{eq:arith-prog}.
  512. %% To build larger S-expressions one often needs to splice together
  513. %% several smaller S-expressions. Racket provides the comma operator to
  514. %% splice an S-expression into a larger one. For example, instead of
  515. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  516. %% we could have first created an S-expression for AST
  517. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  518. %% S-expression.
  519. %% \begin{lstlisting}
  520. %% (define ast1.4 `(- 8))
  521. %% (define ast1_1 `(+ (read) ,ast1.4))
  522. %% \end{lstlisting}
  523. %% In general, the Racket expression that follows the comma (splice)
  524. %% can be any expression that produces an S-expression.
  525. {\if\edition\racketEd\color{olive}
  526. We define a Racket \code{struct} for each kind of node. For this
  527. chapter we require just two kinds of nodes: one for integer constants
  528. and one for primitive operations. The following is the \code{struct}
  529. definition for integer constants.
  530. \begin{lstlisting}
  531. (struct Int (value))
  532. \end{lstlisting}
  533. An integer node includes just one thing: the integer value.
  534. To create an AST node for the integer $8$, we write \INT{8}.
  535. \begin{lstlisting}
  536. (define eight (Int 8))
  537. \end{lstlisting}
  538. We say that the value created by \INT{8} is an
  539. \emph{instance} of the
  540. \code{Int} structure.
  541. The following is the \code{struct} definition for primitive operations.
  542. \begin{lstlisting}
  543. (struct Prim (op args))
  544. \end{lstlisting}
  545. A primitive operation node includes an operator symbol \code{op} and a
  546. list of child \code{args}. For example, to create an AST that negates
  547. the number $8$, we write \code{(Prim '- (list eight))}.
  548. \begin{lstlisting}
  549. (define neg-eight (Prim '- (list eight)))
  550. \end{lstlisting}
  551. Primitive operations may have zero or more children. The \code{read}
  552. operator has zero children:
  553. \begin{lstlisting}
  554. (define rd (Prim 'read '()))
  555. \end{lstlisting}
  556. whereas the addition operator has two children:
  557. \begin{lstlisting}
  558. (define ast1_1 (Prim '+ (list rd neg-eight)))
  559. \end{lstlisting}
  560. We have made a design choice regarding the \code{Prim} structure.
  561. Instead of using one structure for many different operations
  562. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  563. structure for each operation, as follows.
  564. \begin{lstlisting}
  565. (struct Read ())
  566. (struct Add (left right))
  567. (struct Neg (value))
  568. \end{lstlisting}
  569. The reason we choose to use just one structure is that in many parts
  570. of the compiler the code for the different primitive operators is the
  571. same, so we might as well just write that code once, which is enabled
  572. by using a single structure.
  573. \fi}
  574. {\if\edition\pythonEd
  575. We use a Python \code{class} for each kind of node.
  576. The following is the class definition for constants.
  577. \begin{lstlisting}
  578. class Constant:
  579. def __init__(self, value):
  580. self.value = value
  581. \end{lstlisting}
  582. An integer constant node includes just one thing: the integer value.
  583. To create an AST node for the integer $8$, we write \INT{8}.
  584. \begin{lstlisting}
  585. eight = Constant(8)
  586. \end{lstlisting}
  587. We say that the value created by \INT{8} is an
  588. \emph{instance} of the \code{Constant} class.
  589. The following is the class definition for unary operators.
  590. \begin{lstlisting}
  591. class UnaryOp:
  592. def __init__(self, op, operand):
  593. self.op = op
  594. self.operand = operand
  595. \end{lstlisting}
  596. The specific operation is specified by the \code{op} parameter. For
  597. example, the class \code{USub} is for unary subtraction. (More unary
  598. operators are introduced in later chapters.) To create an AST that
  599. negates the number $8$, we write the following.
  600. \begin{lstlisting}
  601. neg_eight = UnaryOp(USub(), eight)
  602. \end{lstlisting}
  603. The call to the \code{input\_int} function is represented by the
  604. \code{Call} and \code{Name} classes.
  605. \begin{lstlisting}
  606. class Call:
  607. def __init__(self, func, args):
  608. self.func = func
  609. self.args = args
  610. class Name:
  611. def __init__(self, id):
  612. self.id = id
  613. \end{lstlisting}
  614. To create an AST node that calls \code{input\_int}, we write
  615. \begin{lstlisting}
  616. read = Call(Name('input_int'), [])
  617. \end{lstlisting}
  618. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  619. the \code{BinOp} class for binary operators.
  620. \begin{lstlisting}
  621. class BinOp:
  622. def __init__(self, left, op, right):
  623. self.op = op
  624. self.left = left
  625. self.right = right
  626. \end{lstlisting}
  627. Similar to \code{UnaryOp}, the specific operation is specified by the
  628. \code{op} parameter, which for now is just an instance of the
  629. \code{Add} class. So to create the AST node that adds negative eight
  630. to some user input, we write the following.
  631. \begin{lstlisting}
  632. ast1_1 = BinOp(read, Add(), neg_eight)
  633. \end{lstlisting}
  634. \fi}
  635. When compiling a program such as \eqref{eq:arith-prog}, we need to
  636. know that the operation associated with the root node is addition and
  637. we need to be able to access its two children. \racket{Racket}\python{Python}
  638. provides pattern matching to support these kinds of queries, as we see in
  639. Section~\ref{sec:pattern-matching}.
  640. In this book, we often write down the concrete syntax of a program
  641. even when we really have in mind the AST because the concrete syntax
  642. is more concise. We recommend that, in your mind, you always think of
  643. programs as abstract syntax trees.
  644. \section{Grammars}
  645. \label{sec:grammar}
  646. \index{subject}{integer}
  647. \index{subject}{literal}
  648. \index{subject}{constant}
  649. A programming language can be thought of as a \emph{set} of programs.
  650. The set is typically infinite (one can always create larger and larger
  651. programs), so one cannot simply describe a language by listing all of
  652. the programs in the language. Instead we write down a set of rules, a
  653. \emph{grammar}, for building programs. Grammars are often used to
  654. define the concrete syntax of a language, but they can also be used to
  655. describe the abstract syntax. We write our rules in a variant of
  656. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  657. \index{subject}{Backus-Naur Form}\index{subject}{BNF}
  658. As an example, we describe a small language, named \LangInt{}, that consists of
  659. integers and arithmetic operations.
  660. \index{subject}{grammar}
  661. The first grammar rule for the abstract syntax of \LangInt{} says that an
  662. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  663. \begin{equation}
  664. \Exp ::= \INT{\Int} \label{eq:arith-int}
  665. \end{equation}
  666. %
  667. Each rule has a left-hand-side and a right-hand-side.
  668. If you have an AST node that matches the
  669. right-hand-side, then you can categorize it according to the
  670. left-hand-side.
  671. %
  672. A name such as $\Exp$ that is defined by the grammar rules is a
  673. \emph{non-terminal}. \index{subject}{non-terminal}
  674. %
  675. The name $\Int$ is also a non-terminal, but instead of defining it
  676. with a grammar rule, we define it with the following explanation. An
  677. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  678. $-$ (for negative integers), such that the sequence of decimals
  679. represent an integer in range $-2^{62}$ to $2^{62}-1$. This enables
  680. the representation of integers using 63 bits, which simplifies several
  681. aspects of compilation. \racket{Thus, these integers corresponds to
  682. the Racket \texttt{fixnum} datatype on a 64-bit machine.}
  683. \python{In contrast, integers in Python have unlimited precision, but
  684. the techniques need to handle unlimited precision fall outside the
  685. scope of this book.}
  686. The second grammar rule is the \READOP{} operation that receives an
  687. input integer from the user of the program.
  688. \begin{equation}
  689. \Exp ::= \READ{} \label{eq:arith-read}
  690. \end{equation}
  691. The third rule says that, given an $\Exp$ node, the negation of that
  692. node is also an $\Exp$.
  693. \begin{equation}
  694. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  695. \end{equation}
  696. Symbols in typewriter font are \emph{terminal} symbols and must
  697. literally appear in the program for the rule to be applicable.
  698. \index{subject}{terminal}
  699. We can apply these rules to categorize the ASTs that are in the
  700. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  701. \INT{8} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  702. following AST is an $\Exp$.
  703. \begin{center}
  704. \begin{minipage}{0.5\textwidth}
  705. \NEG{\INT{\code{8}}}
  706. \end{minipage}
  707. \begin{minipage}{0.25\textwidth}
  708. \begin{equation}
  709. \begin{tikzpicture}
  710. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  711. \node[draw, circle] (8) at (0, -1.2) {$8$};
  712. \draw[->] (minus) to (8);
  713. \end{tikzpicture}
  714. \label{eq:arith-neg8}
  715. \end{equation}
  716. \end{minipage}
  717. \end{center}
  718. The next grammar rule is for addition expressions:
  719. \begin{equation}
  720. \Exp ::= \ADD{\Exp}{\Exp} \label{eq:arith-add}
  721. \end{equation}
  722. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  723. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  724. \eqref{eq:arith-read} and we have already categorized
  725. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  726. to show that
  727. \[
  728. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  729. \]
  730. is an $\Exp$ in the \LangInt{} language.
  731. If you have an AST for which the above rules do not apply, then the
  732. AST is not in \LangInt{}. For example, the program \racket{\code{(-
  733. (read) 8)}} \python{\code{input\_int() - 8}} is not in \LangInt{}
  734. because there are no rules for the \key{-} operator with two
  735. arguments. Whenever we define a language with a grammar, the language
  736. only includes those programs that are justified by the grammar rules.
  737. {\if\edition\pythonEd
  738. The language \LangInt{} includes a second non-terminal $\Stmt$ for statements.
  739. There is a statement for printing the value of an expression
  740. \[
  741. \Stmt{} ::= \PRINT{\Exp}
  742. \]
  743. and a statement that evaluates an expression but ignores the result.
  744. \[
  745. \Stmt{} ::= \EXPR{\Exp}
  746. \]
  747. \fi}
  748. {\if\edition\racketEd\color{olive}
  749. The last grammar rule for \LangInt{} states that there is a
  750. \code{Program} node to mark the top of the whole program:
  751. \[
  752. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  753. \]
  754. The \code{Program} structure is defined as follows
  755. \begin{lstlisting}
  756. (struct Program (info body))
  757. \end{lstlisting}
  758. where \code{body} is an expression. In later chapters, the \code{info}
  759. part will be used to store auxiliary information but for now it is
  760. just the empty list.
  761. \fi}
  762. {\if\edition\pythonEd
  763. The last grammar rule for \LangInt{} states that there is a
  764. \code{Module} node to mark the top of the whole program:
  765. \[
  766. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  767. \]
  768. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  769. this case, a list of statements.
  770. %
  771. The \code{Module} class is defined as follows
  772. \begin{lstlisting}
  773. class Module:
  774. def __init__(self, body):
  775. self.body = body
  776. \end{lstlisting}
  777. where \code{body} is a list of statements.
  778. \fi}
  779. It is common to have many grammar rules with the same left-hand side
  780. but different right-hand sides, such as the rules for $\Exp$ in the
  781. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  782. combine several right-hand-sides into a single rule.
  783. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  784. in Figure~\ref{fig:r0-syntax}. The concrete syntax for \LangInt{} is
  785. defined in Figure~\ref{fig:r0-concrete-syntax}.
  786. \racket{The \code{read-program} function provided in
  787. \code{utilities.rkt} of the support code reads a program in from a
  788. file (the sequence of characters in the concrete syntax of Racket)
  789. and parses it into an abstract syntax tree. See the description of
  790. \code{read-program} in Appendix~\ref{appendix:utilities} for more
  791. details.}
  792. \python{The \code{parse} function in Python's \code{ast} module
  793. converts the concrete syntax (represented as a string) into an
  794. abstract syntax tree.}
  795. \begin{figure}[tp]
  796. \fbox{
  797. \begin{minipage}{0.96\textwidth}
  798. {\if\edition\racketEd\color{olive}
  799. \[
  800. \begin{array}{rcl}
  801. \Exp &::=& \Int \MID \LP\key{read}\RP \MID \LP\key{-}\;\Exp\RP \MID \LP\key{+} \; \Exp\;\Exp\RP\\
  802. \LangInt{} &::=& \Exp
  803. \end{array}
  804. \]
  805. \fi}
  806. {\if\edition\pythonEd
  807. \[
  808. \begin{array}{rcl}
  809. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp\\
  810. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp\\
  811. \LangInt{} &::=& \Stmt^{*}
  812. \end{array}
  813. \]
  814. \fi}
  815. \end{minipage}
  816. }
  817. \caption{The concrete syntax of \LangInt{}.}
  818. \label{fig:r0-concrete-syntax}
  819. \end{figure}
  820. \begin{figure}[tp]
  821. \fbox{
  822. \begin{minipage}{0.96\textwidth}
  823. {\if\edition\racketEd\color{olive}
  824. \[
  825. \begin{array}{rcl}
  826. \Exp &::=& \INT{\Int} \MID \READ{} \MID \NEG{\Exp} \\
  827. &\MID& \ADD{\Exp}{\Exp} \\
  828. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  829. \end{array}
  830. \]
  831. \fi}
  832. {\if\edition\pythonEd
  833. \[
  834. \begin{array}{rcl}
  835. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  836. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \\
  837. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  838. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  839. \end{array}
  840. \]
  841. \fi}
  842. \end{minipage}
  843. }
  844. \caption{The abstract syntax of \LangInt{}.}
  845. \label{fig:r0-syntax}
  846. \end{figure}
  847. \section{Pattern Matching}
  848. \label{sec:pattern-matching}
  849. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  850. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python} provides the
  851. \texttt{match} feature to access the parts of a value.
  852. Consider the following example. \index{subject}{match} \index{subject}{pattern matching}
  853. \begin{center}
  854. \begin{minipage}{0.5\textwidth}
  855. {\if\edition\racketEd\color{olive}
  856. \begin{lstlisting}
  857. (match ast1_1
  858. [(Prim op (list child1 child2))
  859. (print op)])
  860. \end{lstlisting}
  861. \fi}
  862. {\if\edition\pythonEd
  863. \begin{lstlisting}
  864. match ast1_1:
  865. case BinOp(child1, op, child2):
  866. print(op)
  867. \end{lstlisting}
  868. \fi}
  869. \end{minipage}
  870. \end{center}
  871. {\if\edition\racketEd\color{olive}
  872. %
  873. In the above example, the \texttt{match} form checks whether the AST
  874. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  875. three pattern variables \texttt{op}, \texttt{child1}, and
  876. \texttt{child2}, and then prints out the operator. In general, a match
  877. clause consists of a \emph{pattern} and a
  878. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  879. to be either a pattern variable, a structure name followed by a
  880. pattern for each of the structure's arguments, or an S-expression
  881. (symbols, lists, etc.). (See Chapter 12 of The Racket
  882. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  883. and Chapter 9 of The Racket
  884. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  885. for a complete description of \code{match}.)
  886. %
  887. The body of a match clause may contain arbitrary Racket code. The
  888. pattern variables can be used in the scope of the body, such as
  889. \code{op} in \code{(print op)}.
  890. %
  891. \fi}
  892. %
  893. %
  894. {\if\edition\pythonEd
  895. %
  896. In the above example, the \texttt{match} form checks whether the AST
  897. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  898. three pattern variables \texttt{child1}, \texttt{op}, and
  899. \texttt{child2}, and then prints out the operator. In general, each
  900. \code{case} consists of a \emph{pattern} and a
  901. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  902. to be either a pattern variable, a class name followed by a pattern
  903. for each of its constructor's arguments, or other literals such as
  904. strings, lists, etc.
  905. %
  906. The body of each \code{case} may contain arbitrary Python code. The
  907. pattern variables can be used in the body, such as \code{op} in
  908. \code{print(op)}.
  909. %
  910. \fi}
  911. A \code{match} form may contain several clauses, as in the following
  912. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  913. the AST. The \code{match} proceeds through the clauses in order,
  914. checking whether the pattern can match the input AST. The body of the
  915. first clause that matches is executed. The output of \code{leaf} for
  916. several ASTs is shown on the right.
  917. \begin{center}
  918. \begin{minipage}{0.6\textwidth}
  919. {\if\edition\racketEd\color{olive}
  920. \begin{lstlisting}
  921. (define (leaf arith)
  922. (match arith
  923. [(Int n) #t]
  924. [(Prim 'read '()) #t]
  925. [(Prim '- (list e1)) #f]
  926. [(Prim '+ (list e1 e2)) #f]))
  927. (leaf (Prim 'read '()))
  928. (leaf (Prim '- (list (Int 8))))
  929. (leaf (Int 8))
  930. \end{lstlisting}
  931. \fi}
  932. {\if\edition\pythonEd
  933. \begin{lstlisting}
  934. def leaf(arith):
  935. match arith:
  936. case Constant(n):
  937. return True
  938. case Call(Name('input_int'), []):
  939. return True
  940. case UnaryOp(USub(), e1):
  941. return False
  942. case BinOp(e1, Add(), e2):
  943. return False
  944. print(leaf(Call(Name('input_int'), [])))
  945. print(leaf(UnaryOp(USub(), eight)))
  946. print(leaf(Constant(8)))
  947. \end{lstlisting}
  948. \fi}
  949. \end{minipage}
  950. \vrule
  951. \begin{minipage}{0.25\textwidth}
  952. {\if\edition\racketEd\color{olive}
  953. \begin{lstlisting}
  954. #t
  955. #f
  956. #t
  957. \end{lstlisting}
  958. \fi}
  959. {\if\edition\pythonEd
  960. \begin{lstlisting}
  961. True
  962. False
  963. True
  964. \end{lstlisting}
  965. \fi}
  966. \end{minipage}
  967. \end{center}
  968. When writing a \code{match}, we refer to the grammar definition to
  969. identify which non-terminal we are expecting to match against, then we
  970. make sure that 1) we have one \racket{clause}\python{case} for each alternative of that
  971. non-terminal and 2) that the pattern in each \racket{clause}\python{case} corresponds to the
  972. corresponding right-hand side of a grammar rule. For the \code{match}
  973. in the \code{leaf} function, we refer to the grammar for \LangInt{} in
  974. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  975. alternatives, so the \code{match} has 4 \racket{clauses}\python{cases}.
  976. The pattern in each \racket{clause}\python{case} corresponds to the right-hand side
  977. of a grammar rule. For example, the pattern \ADD{\code{e1}}{\code{e2}} corresponds to the
  978. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  979. patterns, replace non-terminals such as $\Exp$ with pattern variables
  980. of your choice (e.g. \code{e1} and \code{e2}).
  981. \section{Recursive Functions}
  982. \label{sec:recursion}
  983. \index{subject}{recursive function}
  984. Programs are inherently recursive. For example, an expression is often
  985. made of smaller expressions. Thus, the natural way to process an
  986. entire program is with a recursive function. As a first example of
  987. such a recursive function, we define the function \code{exp} in
  988. Figure~\ref{fig:exp-predicate}, which takes an arbitrary value and
  989. determines whether or not it is an expression in \LangInt{}.
  990. %
  991. We say that a function is defined by \emph{structural recursion} when
  992. it is defined using a sequence of match \racket{clauses}\python{cases}
  993. that correspond to a grammar, and the body of each \racket{clause}\python{case}
  994. makes a recursive call on each
  995. child node.\footnote{This principle of structuring code according to
  996. the data definition is advocated in the book \emph{How to Design
  997. Programs} \url{https://htdp.org/2020-8-1/Book/index.html}.}.
  998. \python{We define a second function, named \code{stmt}, that recognizes
  999. whether a value is a \LangInt{} statement.}
  1000. \python{Finally, }
  1001. Figure~\ref{fig:exp-predicate} \racket{also} defines \code{Lint}, which
  1002. determines whether an AST is a program in \LangInt{}. In general we can
  1003. expect to write one recursive function to handle each non-terminal in
  1004. a grammar.\index{subject}{structural recursion}
  1005. \begin{figure}[tp]
  1006. {\if\edition\racketEd\color{olive}
  1007. \begin{minipage}{0.7\textwidth}
  1008. \begin{lstlisting}
  1009. (define (exp ast)
  1010. (match ast
  1011. [(Int n) #t]
  1012. [(Prim 'read '()) #t]
  1013. [(Prim '- (list e)) (exp e)]
  1014. [(Prim '+ (list e1 e2))
  1015. (and (exp e1) (exp e2))]
  1016. [else #f]))
  1017. (define (Lint ast)
  1018. (match ast
  1019. [(Program '() e) (exp e)]
  1020. [else #f]))
  1021. (Lint (Program '() ast1_1)
  1022. (Lint (Program '()
  1023. (Prim '- (list (Prim 'read '())
  1024. (Prim '+ (list (Num 8)))))))
  1025. \end{lstlisting}
  1026. \end{minipage}
  1027. \vrule
  1028. \begin{minipage}{0.25\textwidth}
  1029. \begin{lstlisting}
  1030. #t
  1031. #f
  1032. \end{lstlisting}
  1033. \end{minipage}
  1034. \fi}
  1035. {\if\edition\pythonEd
  1036. \begin{minipage}{0.7\textwidth}
  1037. \begin{lstlisting}
  1038. def exp(e):
  1039. match e:
  1040. case Constant(n):
  1041. return True
  1042. case Call(Name('input_int'), []):
  1043. return True
  1044. case UnaryOp(USub(), e1):
  1045. return exp(e1)
  1046. case BinOp(e1, Add(), e2):
  1047. return exp(e1) and exp(e2)
  1048. case _:
  1049. return False
  1050. def stmt(s):
  1051. match s:
  1052. case Call(Name('print'), [e]):
  1053. return exp(e)
  1054. case Expr(e):
  1055. return exp(e)
  1056. case _:
  1057. return False
  1058. def P_int(p):
  1059. match p:
  1060. case Module(body):
  1061. return all([stmt(s) for s in body])
  1062. case _:
  1063. return False
  1064. print(P_int(Module([Expr(ast1_1)])))
  1065. print(P_int(Module([Expr(BinOp(read, Sub(),
  1066. UnaryOp(Add(), Constant(8))))])))
  1067. \end{lstlisting}
  1068. \end{minipage}
  1069. \vrule
  1070. \begin{minipage}{0.25\textwidth}
  1071. \begin{lstlisting}
  1072. True
  1073. False
  1074. \end{lstlisting}
  1075. \end{minipage}
  1076. \fi}
  1077. \caption{Example of recursive functions for \LangInt{}. These functions
  1078. recognize whether an AST is in \LangInt{}.}
  1079. \label{fig:exp-predicate}
  1080. \end{figure}
  1081. %% You may be tempted to merge the two functions into one, like this:
  1082. %% \begin{center}
  1083. %% \begin{minipage}{0.5\textwidth}
  1084. %% \begin{lstlisting}
  1085. %% (define (Lint ast)
  1086. %% (match ast
  1087. %% [(Int n) #t]
  1088. %% [(Prim 'read '()) #t]
  1089. %% [(Prim '- (list e)) (Lint e)]
  1090. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1091. %% [(Program '() e) (Lint e)]
  1092. %% [else #f]))
  1093. %% \end{lstlisting}
  1094. %% \end{minipage}
  1095. %% \end{center}
  1096. %% %
  1097. %% Sometimes such a trick will save a few lines of code, especially when
  1098. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1099. %% \emph{not} recommended because it can get you into trouble.
  1100. %% %
  1101. %% For example, the above function is subtly wrong:
  1102. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1103. %% returns true when it should return false.
  1104. \section{Interpreters}
  1105. \label{sec:interp_Lint}
  1106. \index{subject}{interpreter}
  1107. The behavior of a program is defined by the specification of the
  1108. programming language.
  1109. %
  1110. \racket{For example, the Scheme language is defined in the report by
  1111. \cite{SPERBER:2009aa}. The Racket language is defined in its
  1112. reference manual~\citep{plt-tr}.}
  1113. %
  1114. \python{For example, the Python language is defined in the Python
  1115. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1116. %
  1117. In this book we use interpreters
  1118. to specify each language that we consider. An interpreter that is
  1119. designated as the definition of a language is called a
  1120. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  1121. \index{subject}{definitional interpreter} We warm up by creating a
  1122. definitional interpreter for the \LangInt{} language, which serves as
  1123. a second example of structural recursion. The \code{interp\_Lint}
  1124. function is defined in Figure~\ref{fig:interp_Lint}.
  1125. %
  1126. \racket{The body of the function is a match on the input program
  1127. followed by a call to the \lstinline{interp_exp} helper function,
  1128. which in turn has one match clause per grammar rule for \LangInt{}
  1129. expressions.}
  1130. %
  1131. \python{The body of the function matches on the \code{Module} AST node
  1132. and then invokes \code{interp\_stmt} on each statement in the
  1133. module. The \code{interp\_stmt} function includes a case for each
  1134. grammar rule of the \Stmt{} non-terminal and it calls
  1135. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1136. function includes a case for each grammar rule of the \Exp{}
  1137. non-terminal.}
  1138. \begin{figure}[tp]
  1139. {\if\edition\racketEd\color{olive}
  1140. \begin{lstlisting}
  1141. (define (interp_exp e)
  1142. (match e
  1143. [(Int n) n]
  1144. [(Prim 'read '())
  1145. (define r (read))
  1146. (cond [(fixnum? r) r]
  1147. [else (error 'interp_exp "read expected an integer" r)])]
  1148. [(Prim '- (list e))
  1149. (define v (interp_exp e))
  1150. (fx- 0 v)]
  1151. [(Prim '+ (list e1 e2))
  1152. (define v1 (interp_exp e1))
  1153. (define v2 (interp_exp e2))
  1154. (fx+ v1 v2)]))
  1155. (define (interp_Lint p)
  1156. (match p
  1157. [(Program '() e) (interp_exp e)]))
  1158. \end{lstlisting}
  1159. \fi}
  1160. {\if\edition\pythonEd
  1161. \begin{lstlisting}
  1162. def interp_exp(e):
  1163. match e:
  1164. case BinOp(left, Add(), right):
  1165. l = interp_exp(left)
  1166. r = interp_exp(right)
  1167. return l + r
  1168. case UnaryOp(USub(), v):
  1169. return - interp_exp(v)
  1170. case Constant(value):
  1171. return value
  1172. case Call(Name('input_int'), []):
  1173. return int(input())
  1174. def interp_stmt(s):
  1175. match s:
  1176. case Expr(Call(Name('print'), [arg])):
  1177. print(interp_exp(arg))
  1178. case Expr(value):
  1179. interp_exp(value)
  1180. def interp_P_int(p):
  1181. match p:
  1182. case Module(body):
  1183. for s in body:
  1184. interp_stmt(s)
  1185. \end{lstlisting}
  1186. \fi}
  1187. \caption{Interpreter for the \LangInt{} language.}
  1188. \label{fig:interp_Lint}
  1189. \end{figure}
  1190. Let us consider the result of interpreting a few \LangInt{} programs. The
  1191. following program adds two integers.
  1192. {\if\edition\racketEd\color{olive}
  1193. \begin{lstlisting}
  1194. (+ 10 32)
  1195. \end{lstlisting}
  1196. \fi}
  1197. {\if\edition\pythonEd
  1198. \begin{lstlisting}
  1199. print(10 + 32)
  1200. \end{lstlisting}
  1201. \fi}
  1202. The result is \key{42}, the answer to life, the universe, and
  1203. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  1204. Galaxy} by Douglas Adams.}.
  1205. %
  1206. We wrote the above program in concrete syntax whereas the parsed
  1207. abstract syntax is:
  1208. {\if\edition\racketEd\color{olive}
  1209. \begin{lstlisting}
  1210. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1211. \end{lstlisting}
  1212. \fi}
  1213. {\if\edition\pythonEd
  1214. \begin{lstlisting}
  1215. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1216. \end{lstlisting}
  1217. \fi}
  1218. The next example demonstrates that expressions may be nested within
  1219. each other, in this case nesting several additions and negations.
  1220. {\if\edition\racketEd\color{olive}
  1221. \begin{lstlisting}
  1222. (+ 10 (- (+ 12 20)))
  1223. \end{lstlisting}
  1224. \fi}
  1225. {\if\edition\pythonEd
  1226. \begin{lstlisting}
  1227. print(10 + -(12 + 20))
  1228. \end{lstlisting}
  1229. \fi}
  1230. %
  1231. \noindent What is the result of the above program?
  1232. {\if\edition\racketEd\color{olive}
  1233. As mentioned previously, the \LangInt{} language does not support
  1234. arbitrarily-large integers, but only $63$-bit integers, so we
  1235. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1236. in Racket.
  1237. Suppose
  1238. \[
  1239. n = 999999999999999999
  1240. \]
  1241. which indeed fits in $63$-bits. What happens when we run the
  1242. following program in our interpreter?
  1243. \begin{lstlisting}
  1244. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1245. \end{lstlisting}
  1246. It produces an error:
  1247. \begin{lstlisting}
  1248. fx+: result is not a fixnum
  1249. \end{lstlisting}
  1250. We establish the convention that if running the definitional
  1251. interpreter on a program produces an error then the meaning of that
  1252. program is \emph{unspecified}\index{subject}{unspecified behavior}, unless the
  1253. error is a \code{trapped-error}. A compiler for the language is under
  1254. no obligations regarding programs with unspecified behavior; it does
  1255. not have to produce an executable, and if it does, that executable can
  1256. do anything. On the other hand, if the error is a
  1257. \code{trapped-error}, then the compiler must produce an executable and
  1258. it is required to report that an error occurred. To signal an error,
  1259. exit with a return code of \code{255}. The interpreters in chapters
  1260. \ref{ch:Rdyn} and \ref{ch:Rgrad} use
  1261. \code{trapped-error}.
  1262. \fi}
  1263. % TODO: how to deal with too-large integers in the Python interpreter?
  1264. %% This convention applies to the languages defined in this
  1265. %% book, as a way to simplify the student's task of implementing them,
  1266. %% but this convention is not applicable to all programming languages.
  1267. %%
  1268. Moving on to the last feature of the \LangInt{} language, the
  1269. \READOP{} operation prompts the user of the program for an integer.
  1270. Recall that program \eqref{eq:arith-prog} requests an integer input
  1271. and then subtracts \code{8}. So if we run
  1272. {\if\edition\racketEd\color{olive}
  1273. \begin{lstlisting}
  1274. (interp_Lint (Program '() ast1_1))
  1275. \end{lstlisting}
  1276. \fi}
  1277. {\if\edition\pythonEd
  1278. \begin{lstlisting}
  1279. interp_P_int(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1280. \end{lstlisting}
  1281. \fi}
  1282. \noindent and if the input is \code{50}, the result is \code{42}.
  1283. We include the \READOP{} operation in \LangInt{} so a clever student
  1284. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1285. during compilation to obtain the output and then generates the trivial
  1286. code to produce the output.\footnote{Yes, a clever student did this in the
  1287. first instance of this course!}
  1288. The job of a compiler is to translate a program in one language into a
  1289. program in another language so that the output program behaves the
  1290. same way as the input program. This idea is depicted in the
  1291. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1292. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1293. Given a compiler that translates from language $\mathcal{L}_1$ to
  1294. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1295. compiler must translate it into some program $P_2$ such that
  1296. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1297. same input $i$ yields the same output $o$.
  1298. \begin{equation} \label{eq:compile-correct}
  1299. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1300. \node (p1) at (0, 0) {$P_1$};
  1301. \node (p2) at (3, 0) {$P_2$};
  1302. \node (o) at (3, -2.5) {$o$};
  1303. \path[->] (p1) edge [above] node {compile} (p2);
  1304. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1305. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1306. \end{tikzpicture}
  1307. \end{equation}
  1308. In the next section we see our first example of a compiler.
  1309. \section{Example Compiler: a Partial Evaluator}
  1310. \label{sec:partial-evaluation}
  1311. In this section we consider a compiler that translates \LangInt{}
  1312. programs into \LangInt{} programs that may be more efficient. The
  1313. compiler eagerly computes the parts of the program that do not depend
  1314. on any inputs, a process known as \emph{partial
  1315. evaluation}~\citep{Jones:1993uq}. \index{subject}{partial evaluation}
  1316. For example, given the following program
  1317. {\if\edition\racketEd\color{olive}
  1318. \begin{lstlisting}
  1319. (+ (read) (- (+ 5 3)))
  1320. \end{lstlisting}
  1321. \fi}
  1322. {\if\edition\pythonEd
  1323. \begin{lstlisting}
  1324. print(input_int() + -(5 + 3) )
  1325. \end{lstlisting}
  1326. \fi}
  1327. \noindent our compiler translates it into the program
  1328. {\if\edition\racketEd\color{olive}
  1329. \begin{lstlisting}
  1330. (+ (read) -8)
  1331. \end{lstlisting}
  1332. \fi}
  1333. {\if\edition\pythonEd
  1334. \begin{lstlisting}
  1335. print(input_int() + -8)
  1336. \end{lstlisting}
  1337. \fi}
  1338. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1339. evaluator for the \LangInt{} language. The output of the partial evaluator
  1340. is a program in \LangInt{}. In Figure~\ref{fig:pe-arith}, the structural
  1341. recursion over $\Exp$ is captured in the \code{pe\_exp} function
  1342. whereas the code for partially evaluating the negation and addition
  1343. operations is factored into two auxiliary functions:
  1344. \code{pe\_neg} and \code{pe\_add}. The input to these
  1345. functions is the output of partially evaluating the children.
  1346. The \code{pe\_neg} and \code{pe\_add} functions check whether their
  1347. arguments are integers and if they are, perform the appropriate
  1348. arithmetic. Otherwise, they create an AST node for the arithmetic
  1349. operation.
  1350. \begin{figure}[tp]
  1351. {\if\edition\racketEd\color{olive}
  1352. \begin{lstlisting}
  1353. (define (pe_neg r)
  1354. (match r
  1355. [(Int n) (Int (fx- 0 n))]
  1356. [else (Prim '- (list r))]))
  1357. (define (pe_add r1 r2)
  1358. (match* (r1 r2)
  1359. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1360. [(_ _) (Prim '+ (list r1 r2))]))
  1361. (define (pe_exp e)
  1362. (match e
  1363. [(Int n) (Int n)]
  1364. [(Prim 'read '()) (Prim 'read '())]
  1365. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1366. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]))
  1367. (define (pe_Lint p)
  1368. (match p
  1369. [(Program '() e) (Program '() (pe_exp e))]))
  1370. \end{lstlisting}
  1371. \fi}
  1372. {\if\edition\pythonEd
  1373. \begin{lstlisting}
  1374. def pe_neg(r):
  1375. match r:
  1376. case Constant(n):
  1377. return Constant(-n)
  1378. case _:
  1379. return UnaryOp(USub(), r)
  1380. def pe_add(r1, r2):
  1381. match (r1, r2):
  1382. case (Constant(n1), Constant(n2)):
  1383. return Constant(n1 + n2)
  1384. case _:
  1385. return BinOp(r1, Add(), r2)
  1386. def pe_exp(e):
  1387. match e:
  1388. case BinOp(left, Add(), right):
  1389. return pe_add(pe_exp(left), pe_exp(right))
  1390. case UnaryOp(USub(), v):
  1391. return pe_neg(pe_exp(v))
  1392. case Constant(value):
  1393. return e
  1394. case Call(Name('input_int'), []):
  1395. return e
  1396. def pe_stmt(s):
  1397. match s:
  1398. case Expr(Call(Name('print'), [arg])):
  1399. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1400. case Expr(value):
  1401. return Expr(pe_exp(value))
  1402. def pe_P_int(p):
  1403. match p:
  1404. case Module(body):
  1405. new_body = [pe_stmt(s) for s in body]
  1406. return Module(new_body)
  1407. \end{lstlisting}
  1408. \fi}
  1409. \caption{A partial evaluator for \LangInt{}.}
  1410. \label{fig:pe-arith}
  1411. \end{figure}
  1412. To gain some confidence that the partial evaluator is correct, we can
  1413. test whether it produces programs that get the same result as the
  1414. input programs. That is, we can test whether it satisfies Diagram
  1415. \ref{eq:compile-correct}.
  1416. %
  1417. {\if\edition\racketEd\color{olive}
  1418. The following code runs the partial evaluator on several examples and
  1419. tests the output program. The \texttt{parse-program} and
  1420. \texttt{assert} functions are defined in
  1421. Appendix~\ref{appendix:utilities}.\\
  1422. \begin{minipage}{1.0\textwidth}
  1423. \begin{lstlisting}
  1424. (define (test_pe p)
  1425. (assert "testing pe_Lint"
  1426. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1427. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1428. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1429. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1430. \end{lstlisting}
  1431. \end{minipage}
  1432. \fi}
  1433. % TODO: python version of testing the PE
  1434. \begin{exercise}\normalfont
  1435. Create three programs in the \LangInt{} language and test whether
  1436. partially evaluating them with \code{pe\_Lint} and then
  1437. interpreting them with \code{interp\_Lint} gives the same result
  1438. as directly interpreting them with \code{interp\_Lint}.
  1439. \end{exercise}
  1440. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1441. \chapter{Integers and Variables}
  1442. \label{ch:Lvar}
  1443. This chapter is about compiling a subset of
  1444. \racket{Racket}\python{Python} to x86-64 assembly
  1445. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1446. integer arithmetic and local variables. We often refer to x86-64
  1447. simply as x86. The chapter begins with a description of the
  1448. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1449. to x86 assembly (Section~\ref{sec:x86}). The x86 assembly language is
  1450. large so we discuss only the instructions needed for compiling
  1451. \LangVar{}. We introduce more x86 instructions in later chapters.
  1452. After introducing \LangVar{} and x86, we reflect on their differences
  1453. and come up with a plan to break down the translation from \LangVar{}
  1454. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1455. rest of the sections in this chapter give detailed hints regarding
  1456. each step. We hope to give enough hints that the well-prepared
  1457. reader, together with a few friends, can implement a compiler from
  1458. \LangVar{} to x86 in a couple weeks. To give the reader a feeling for
  1459. the scale of this first compiler, the instructor solution for the
  1460. \LangVar{} compiler is approximately \racket{500}\python{300} lines of
  1461. code.
  1462. \section{The \LangVar{} Language}
  1463. \label{sec:s0}
  1464. \index{subject}{variable}
  1465. The \LangVar{} language extends the \LangInt{} language with
  1466. variables. The concrete syntax of the \LangVar{} language is defined
  1467. by the grammar in Figure~\ref{fig:Lvar-concrete-syntax} and the
  1468. abstract syntax is defined in Figure~\ref{fig:Lvar-syntax}. The
  1469. non-terminal \Var{} may be any \racket{Racket}\python{Python} identifier.
  1470. As in \LangInt{}, \READOP{} is a nullary operator, \key{-} is a unary operator, and
  1471. \key{+} is a binary operator. Similar to \LangInt{}, the abstract
  1472. syntax of \LangVar{} includes the \racket{\key{Program}
  1473. struct}\python{\key{Module} instance} to mark the top of the
  1474. program.
  1475. %% The $\itm{info}$
  1476. %% field of the \key{Program} structure contains an \emph{association
  1477. %% list} (a list of key-value pairs) that is used to communicate
  1478. %% auxiliary data from one compiler pass the next.
  1479. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1480. exhibit several compilation techniques.
  1481. \begin{figure}[tp]
  1482. \centering
  1483. \fbox{
  1484. \begin{minipage}{0.96\textwidth}
  1485. {\if\edition\racketEd\color{olive}
  1486. \[
  1487. \begin{array}{rcl}
  1488. \Exp &::=& \Int{} \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}\\
  1489. &\MID& \Var{} \MID \CLET{\Var}{\Exp}{\Exp} \\
  1490. \LangVarM{} &::=& \Exp
  1491. \end{array}
  1492. \]
  1493. \fi}
  1494. {\if\edition\pythonEd
  1495. \[
  1496. \begin{array}{rcl}
  1497. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Var{} \\
  1498. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp \MID \Var\mathop{\key{=}}\Exp\\
  1499. \LangVarM{} &::=& \Stmt^{*}
  1500. \end{array}
  1501. \]
  1502. \fi}
  1503. \end{minipage}
  1504. }
  1505. \caption{The concrete syntax of \LangVar{}.}
  1506. \label{fig:Lvar-concrete-syntax}
  1507. \end{figure}
  1508. \begin{figure}[tp]
  1509. \centering
  1510. \fbox{
  1511. \begin{minipage}{0.96\textwidth}
  1512. {\if\edition\racketEd\color{olive}
  1513. \[
  1514. \begin{array}{rcl}
  1515. \Exp &::=& \INT{\Int} \MID \READ{} \\
  1516. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \\
  1517. &\MID& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  1518. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1519. \end{array}
  1520. \]
  1521. \fi}
  1522. {\if\edition\pythonEd
  1523. \[
  1524. \begin{array}{rcl}
  1525. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  1526. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \VAR{\Var{}} \\
  1527. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  1528. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  1529. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1530. \end{array}
  1531. \]
  1532. \fi}
  1533. \end{minipage}
  1534. }
  1535. \caption{The abstract syntax of \LangVar{}.}
  1536. \label{fig:Lvar-syntax}
  1537. \end{figure}
  1538. {\if\edition\racketEd\color{olive}
  1539. Let us dive further into the syntax and semantics of the \LangVar{}
  1540. language. The \key{let} feature defines a variable for use within its
  1541. body and initializes the variable with the value of an expression.
  1542. The abstract syntax for \key{let} is defined in
  1543. Figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1544. \begin{lstlisting}
  1545. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1546. \end{lstlisting}
  1547. For example, the following program initializes \code{x} to $32$ and then
  1548. evaluates the body \code{(+ 10 x)}, producing $42$.
  1549. \begin{lstlisting}
  1550. (let ([x (+ 12 20)]) (+ 10 x))
  1551. \end{lstlisting}
  1552. \fi}
  1553. %
  1554. {\if\edition\pythonEd
  1555. %
  1556. The \LangVar{} language includes assignment statements, which define a
  1557. variable for use in later statements and initializes the variable with
  1558. the value of an expression. The abstract syntax for assignment is
  1559. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1560. assignment is
  1561. \begin{lstlisting}
  1562. |$\itm{var}$| = |$\itm{exp}$|
  1563. \end{lstlisting}
  1564. For example, the following program initializes the variable \code{x}
  1565. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1566. \begin{lstlisting}
  1567. x = 12 + 20
  1568. print(10 + x)
  1569. \end{lstlisting}
  1570. \fi}
  1571. {\if\edition\racketEd\color{olive}
  1572. %
  1573. When there are multiple \key{let}'s for the same variable, the closest
  1574. enclosing \key{let} is used. That is, variable definitions overshadow
  1575. prior definitions. Consider the following program with two \key{let}'s
  1576. that define variables named \code{x}. Can you figure out the result?
  1577. \begin{lstlisting}
  1578. (let ([x 32]) (+ (let ([x 10]) x) x))
  1579. \end{lstlisting}
  1580. For the purposes of depicting which variable uses correspond to which
  1581. definitions, the following shows the \code{x}'s annotated with
  1582. subscripts to distinguish them. Double check that your answer for the
  1583. above is the same as your answer for this annotated version of the
  1584. program.
  1585. \begin{lstlisting}
  1586. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1587. \end{lstlisting}
  1588. The initializing expression is always evaluated before the body of the
  1589. \key{let}, so in the following, the \key{read} for \code{x} is
  1590. performed before the \key{read} for \code{y}. Given the input
  1591. $52$ then $10$, the following produces $42$ (not $-42$).
  1592. \begin{lstlisting}
  1593. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1594. \end{lstlisting}
  1595. \fi}
  1596. \subsection{Extensible Interpreters via Method Overriding}
  1597. \label{sec:extensible-interp}
  1598. To prepare for discussing the interpreter for \LangVar{}, we
  1599. explain why we to implement the interpreter using
  1600. object-oriented programming, that is, as a collection of methods
  1601. inside of a class. Throughout this book we define many interpreters,
  1602. one for each of the languages that we study. Because each language
  1603. builds on the prior one, there is a lot of commonality between these
  1604. interpreters. We want to write down the common parts just once
  1605. instead of many times. A naive approach would be to have, for example,
  1606. the interpreter for \LangIf{} handle all of the new features in that
  1607. language and then have a default case that dispatches to the
  1608. interpreter for \LangVar{}. The following code sketches this idea.
  1609. \begin{center}
  1610. {\if\edition\racketEd\color{olive}
  1611. \begin{minipage}{0.45\textwidth}
  1612. \begin{lstlisting}
  1613. (define (interp_Lvar_exp e)
  1614. (match e
  1615. [(Prim '- (list e1))
  1616. (fx- 0 (interp_Lvar_exp e1))]
  1617. ...))
  1618. \end{lstlisting}
  1619. \end{minipage}
  1620. \begin{minipage}{0.45\textwidth}
  1621. \begin{lstlisting}
  1622. (define (interp_Lif_exp e)
  1623. (match e
  1624. [(If cnd thn els)
  1625. (match (interp_Lif_exp cnd)
  1626. [#t (interp_Lif_exp thn)]
  1627. [#f (interp_Lif_exp els)])]
  1628. ...
  1629. [else (interp_Lvar_exp e)]))
  1630. \end{lstlisting}
  1631. \end{minipage}
  1632. \fi}
  1633. {\if\edition\pythonEd
  1634. \begin{minipage}{0.45\textwidth}
  1635. \begin{lstlisting}
  1636. def interp_P_var_exp(e):
  1637. match e:
  1638. case UnaryOp(USub(), e1):
  1639. return - interp_P_var_exp(e1)
  1640. ...
  1641. \end{lstlisting}
  1642. \end{minipage}
  1643. \begin{minipage}{0.45\textwidth}
  1644. \begin{lstlisting}
  1645. def interp_P_if_exp(e):
  1646. match e:
  1647. case IfExp(cnd, thn, els):
  1648. match interp_P_if_exp(cnd):
  1649. case True:
  1650. return interp_P_if_exp(thn)
  1651. case False:
  1652. return interp_P_if_exp(els)
  1653. ...
  1654. case _:
  1655. return interp_P_var_exp(e)
  1656. \end{lstlisting}
  1657. \end{minipage}
  1658. \fi}
  1659. \end{center}
  1660. The problem with this approach is that it does not handle situations
  1661. in which an \LangIf{} feature, such as a conditional expression, is
  1662. nested inside an \LangVar{} feature, like the \code{-} operator, as in
  1663. the following program.
  1664. {\if\edition\racketEd\color{olive}
  1665. \begin{lstlisting}
  1666. (Prim '- (list (If (Bool #t) (Int 42) (Int 0))))
  1667. \end{lstlisting}
  1668. \fi}
  1669. {\if\edition\pythonEd
  1670. \begin{lstlisting}
  1671. print(-(42 if True else 0))
  1672. \end{lstlisting}
  1673. \fi}
  1674. %
  1675. If we invoke \code{interp\_Lif\_exp} on this program, it dispatches to
  1676. \code{interp\_Lvar\_exp} to handle the \code{-} operator, but then it
  1677. recurisvely calls \code{interp\_Lvar\_exp} again on the argument of
  1678. \code{-}, which is an \code{If}. But there is no case for \code{If}
  1679. in \code{interp\_Lvar\_exp} so we get an error!
  1680. To make our interpreters extensible we need something called
  1681. \emph{open recursion}\index{subject}{open recursion}, where the tying of the
  1682. recursive knot is delayed to when the functions are
  1683. composed. Object-oriented languages provide open recursion via
  1684. method overriding\index{subject}{method overriding}. The
  1685. following code uses method overriding to interpret \LangVar{} and
  1686. \LangIf{} using
  1687. %
  1688. \racket{the
  1689. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1690. \index{subject}{class} feature of Racket}
  1691. %
  1692. \python{a Python \code{class} definition}.
  1693. %
  1694. We define one class for each language and define a method for
  1695. interpreting expressions inside each class. The class for \LangIf{}
  1696. inherits from the class for \LangVar{} and the method
  1697. \code{interp\_exp} in \LangIf{} overrides the \code{interp\_exp} in
  1698. \LangVar{}. Note that the default case of \code{interp\_exp} in
  1699. \LangIf{} uses \code{super} to invoke \code{interp\_exp}, and because
  1700. \LangIf{} inherits from \LangVar{}, that dispatches to the
  1701. \code{interp\_exp} in \LangVar{}.
  1702. \begin{center}
  1703. {\if\edition\racketEd\color{olive}
  1704. \begin{minipage}{0.45\textwidth}
  1705. \begin{lstlisting}
  1706. (define interp_Lvar_class
  1707. (class object%
  1708. (define/public (interp_exp e)
  1709. (match e
  1710. [(Prim '- (list e))
  1711. (fx- 0 (interp_exp e))]
  1712. ...))
  1713. ...))
  1714. \end{lstlisting}
  1715. \end{minipage}
  1716. \begin{minipage}{0.45\textwidth}
  1717. \begin{lstlisting}
  1718. (define interp_Lif_class
  1719. (class interp_Lvar_class
  1720. (define/override (interp_exp e)
  1721. (match e
  1722. [(If cnd thn els)
  1723. (match (interp_exp cnd)
  1724. [#t (interp_exp thn)]
  1725. [#f (interp_exp els)])]
  1726. ...
  1727. [else (super interp_exp e)]))
  1728. ...
  1729. ))
  1730. \end{lstlisting}
  1731. \end{minipage}
  1732. \fi}
  1733. {\if\edition\pythonEd
  1734. \begin{minipage}{0.45\textwidth}
  1735. \begin{lstlisting}
  1736. class InterpLvar:
  1737. def interp_exp(e):
  1738. match e:
  1739. case UnaryOp(USub(), e1):
  1740. return -self.interp_exp(e1)
  1741. ...
  1742. ...
  1743. \end{lstlisting}
  1744. \end{minipage}
  1745. \begin{minipage}{0.45\textwidth}
  1746. \begin{lstlisting}
  1747. def InterpLif(InterpRVar):
  1748. def interp_exp(e):
  1749. match e:
  1750. case IfExp(cnd, thn, els):
  1751. match self.interp_exp(cnd):
  1752. case True:
  1753. return self.interp_exp(thn)
  1754. case False:
  1755. return self.interp_exp(els)
  1756. ...
  1757. case _:
  1758. return super().interp_exp(e)
  1759. ...
  1760. \end{lstlisting}
  1761. \end{minipage}
  1762. \fi}
  1763. \end{center}
  1764. Getting back to the troublesome example, repeated here:
  1765. {\if\edition\racketEd\color{olive}
  1766. \begin{lstlisting}
  1767. (define e0 (Prim '- (list (If (Bool #t) (Int 42) (Int 0)))))
  1768. \end{lstlisting}
  1769. \fi}
  1770. {\if\edition\pythonEd
  1771. \begin{lstlisting}
  1772. -(42 if True else 0)
  1773. \end{lstlisting}
  1774. \fi}
  1775. \noindent We can invoke the \code{interp\_exp} method for \LangIf{} on this
  1776. expression, call it \code{e0}, by creating an object of the \LangIf{} class
  1777. and calling the \code{interp\_exp} method.
  1778. {\if\edition\racketEd\color{olive}
  1779. \begin{lstlisting}
  1780. (send (new interp_Lif_class) interp_exp e0)
  1781. \end{lstlisting}
  1782. \fi}
  1783. {\if\edition\pythonEd
  1784. \begin{lstlisting}
  1785. InterpPif().interp_exp(e0)
  1786. \end{lstlisting}
  1787. \fi}
  1788. \noindent The default case of \code{interp\_exp} in \LangIf{} handles it by
  1789. dispatching to the \code{interp\_exp} method in \LangVar{}, which
  1790. handles the \code{-} operator. But then for the recursive method call,
  1791. it dispatches back to \code{interp\_exp} in \LangIf{}, where the
  1792. \code{If} is handled correctly. Thus, method overriding gives us the
  1793. open recursion that we need to implement our interpreters in an
  1794. extensible way.
  1795. \subsection{Definitional Interpreter for \LangVar{}}
  1796. {\if\edition\racketEd\color{olive}
  1797. \begin{figure}[tp]
  1798. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  1799. \small
  1800. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1801. An \emph{association list} (alist) is a list of key-value pairs.
  1802. For example, we can map people to their ages with an alist.
  1803. \index{subject}{alist}\index{subject}{association list}
  1804. \begin{lstlisting}[basicstyle=\ttfamily]
  1805. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  1806. \end{lstlisting}
  1807. The \emph{dictionary} interface is for mapping keys to values.
  1808. Every alist implements this interface. \index{subject}{dictionary} The package
  1809. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1810. provides many functions for working with dictionaries. Here
  1811. are a few of them:
  1812. \begin{description}
  1813. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1814. returns the value associated with the given $\itm{key}$.
  1815. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1816. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1817. but otherwise is the same as $\itm{dict}$.
  1818. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1819. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1820. of keys and values in $\itm{dict}$. For example, the following
  1821. creates a new alist in which the ages are incremented.
  1822. \end{description}
  1823. \vspace{-10pt}
  1824. \begin{lstlisting}[basicstyle=\ttfamily]
  1825. (for/list ([(k v) (in-dict ages)])
  1826. (cons k (add1 v)))
  1827. \end{lstlisting}
  1828. \end{tcolorbox}
  1829. %\end{wrapfigure}
  1830. \caption{Association lists implement the dictionary interface.}
  1831. \label{fig:alist}
  1832. \end{figure}
  1833. \fi}
  1834. Having justified the use of classes and methods to implement
  1835. interpreters, we turn to the definitional interpreter for \LangVar{}
  1836. in Figure~\ref{fig:interp-Lvar}. It is similar to the interpreter for
  1837. \LangInt{} but adds two new \key{match} cases for variables and
  1838. \racket{\key{let}}\python{assignment}. For
  1839. \racket{\key{let}}\python{assignment} we need a way to communicate the
  1840. value bound to a variable to all the uses of the variable. To
  1841. accomplish this, we maintain a mapping from variables to
  1842. values. Throughout the compiler we often need to map variables to
  1843. information about them. We refer to these mappings as
  1844. \emph{environments}\index{subject}{environment}.\footnote{Another
  1845. common term for environment in the compiler literature is \emph{symbol
  1846. table}\index{subject}{symbol table}.}
  1847. %
  1848. We use%
  1849. %
  1850. \racket{an association list (alist)}
  1851. %
  1852. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary}}
  1853. to represent the environment.
  1854. %
  1855. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  1856. and the \code{racket/dict} package.}
  1857. %
  1858. The \code{interp\_exp} function takes the current environment,
  1859. \code{env}, as an extra parameter. When the interpreter encounters a
  1860. variable, it looks up the corresponding value in the dictionary.
  1861. %
  1862. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  1863. initializing expression, extends the environment with the result
  1864. value bound to the variable, using \code{dict-set}, then evaluates
  1865. the body of the \key{Let}.}
  1866. %
  1867. \python{When the interpreter encounters an assignment, it evaluates
  1868. the initializing expression and then associates the resulting value
  1869. with the variable in the environment.}
  1870. \begin{figure}[tp]
  1871. {\if\edition\racketEd
  1872. \begin{lstlisting}
  1873. (define interp_Lvar_class
  1874. (class object%
  1875. (super-new)
  1876. (define/public ((interp_exp env) e)
  1877. (match e
  1878. [(Int n) n]
  1879. [(Prim 'read '())
  1880. (define r (read))
  1881. (cond [(fixnum? r) r]
  1882. [else (error 'interp_exp "expected an integer" r)])]
  1883. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  1884. [(Prim '+ (list e1 e2))
  1885. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  1886. [(Var x) (dict-ref env x)]
  1887. [(Let x e body)
  1888. (define new-env (dict-set env x ((interp_exp env) e)))
  1889. ((interp_exp new-env) body)]))
  1890. (define/public (interp_program p)
  1891. (match p
  1892. [(Program '() e) ((interp_exp '()) e)]))
  1893. ))
  1894. (define (interp_Lvar p)
  1895. (send (new interp_Lvar_class) interp_program p))
  1896. \end{lstlisting}
  1897. \fi}
  1898. {\if\edition\pythonEd
  1899. \begin{lstlisting}
  1900. class InterpLvar:
  1901. def interp_exp(self, e, env):
  1902. match e:
  1903. case BinOp(left, Add(), right):
  1904. l = self.interp_exp(left, env)
  1905. r = self.interp_exp(right, env)
  1906. return l + r
  1907. case UnaryOp(USub(), v):
  1908. return - self.interp_exp(v, env)
  1909. case Name(id):
  1910. return env[id]
  1911. case Constant(value):
  1912. return value
  1913. case Call(Name('input_int'), []):
  1914. return int(input())
  1915. def interp_stmts(self, ss, env):
  1916. if len(ss) == 0:
  1917. return
  1918. match ss[0]:
  1919. case Assign([lhs], value):
  1920. env[lhs.id] = self.interp_exp(value, env)
  1921. return self.interp_stmts(ss[1:], env)
  1922. case Expr(Call(Name('print'), [arg])):
  1923. print(self.interp_exp(arg, env), end='')
  1924. return self.interp_stmts(ss[1:], env)
  1925. case Expr(value):
  1926. self.interp_exp(value, env)
  1927. return self.interp_stmts(ss[1:], env)
  1928. def interp_P(self, p):
  1929. match p:
  1930. case Module(body):
  1931. self.interp_stmts(body, {})
  1932. \end{lstlisting}
  1933. \fi}
  1934. \caption{Interpreter for the \LangVar{} language.}
  1935. \label{fig:interp-Lvar}
  1936. \end{figure}
  1937. The goal for this chapter is to implement a compiler that translates
  1938. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  1939. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  1940. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  1941. That is, they output the same integer $n$. We depict this correctness
  1942. criteria in the following diagram.
  1943. \[
  1944. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1945. \node (p1) at (0, 0) {$P_1$};
  1946. \node (p2) at (4, 0) {$P_2$};
  1947. \node (o) at (4, -2) {$n$};
  1948. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  1949. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  1950. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  1951. \end{tikzpicture}
  1952. \]
  1953. In the next section we introduce the \LangXInt{} subset of x86 that
  1954. suffices for compiling \LangVar{}.
  1955. \section{The \LangXInt{} Assembly Language}
  1956. \label{sec:x86}
  1957. \index{subject}{x86}
  1958. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  1959. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  1960. assembler.
  1961. %
  1962. A program begins with a \code{main} label followed by a sequence of
  1963. instructions. The \key{globl} directive says that the \key{main}
  1964. procedure is externally visible, which is necessary so that the
  1965. operating system can call it.
  1966. %
  1967. An x86 program is stored in the computer's memory. For our purposes,
  1968. the computer's memory is a mapping of 64-bit addresses to 64-bit
  1969. values. The computer has a \emph{program counter} (PC)\index{subject}{program
  1970. counter}\index{subject}{PC} stored in the \code{rip} register that points to
  1971. the address of the next instruction to be executed. For most
  1972. instructions, the program counter is incremented after the instruction
  1973. is executed, so it points to the next instruction in memory. Most x86
  1974. instructions take two operands, where each operand is either an
  1975. integer constant (called an \emph{immediate value}\index{subject}{immediate
  1976. value}), a \emph{register}\index{subject}{register}, or a memory location.
  1977. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  1978. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  1979. && \key{r8} \MID \key{r9} \MID \key{r10}
  1980. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  1981. \MID \key{r14} \MID \key{r15}}
  1982. \begin{figure}[tp]
  1983. \fbox{
  1984. \begin{minipage}{0.96\textwidth}
  1985. {\if\edition\racketEd
  1986. \[
  1987. \begin{array}{lcl}
  1988. \Reg &::=& \allregisters{} \\
  1989. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  1990. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  1991. \key{subq} \; \Arg\key{,} \Arg \MID
  1992. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  1993. && \key{callq} \; \mathit{label} \MID
  1994. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \key{jmp}\,\itm{label} \\
  1995. && \itm{label}\key{:}\; \Instr \\
  1996. \LangXIntM{} &::= & \key{.globl main}\\
  1997. & & \key{main:} \; \Instr\ldots
  1998. \end{array}
  1999. \]
  2000. \fi}
  2001. {\if\edition\pythonEd
  2002. \[
  2003. \begin{array}{lcl}
  2004. \Reg &::=& \allregisters{} \\
  2005. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2006. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2007. \key{subq} \; \Arg\key{,} \Arg \MID
  2008. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2009. && \key{callq} \; \mathit{label} \MID
  2010. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2011. \LangXIntM{} &::= & \key{.globl main}\\
  2012. & & \key{main:} \; \Instr^{*}
  2013. \end{array}
  2014. \]
  2015. \fi}
  2016. \end{minipage}
  2017. }
  2018. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2019. \label{fig:x86-int-concrete}
  2020. \end{figure}
  2021. A register is a special kind of variable that holds a 64-bit
  2022. value. There are 16 general-purpose registers in the computer and
  2023. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  2024. is written with a \key{\%} followed by the register name, such as
  2025. \key{\%rax}.
  2026. An immediate value is written using the notation \key{\$}$n$ where $n$
  2027. is an integer.
  2028. %
  2029. %
  2030. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2031. which obtains the address stored in register $r$ and then adds $n$
  2032. bytes to the address. The resulting address is used to load or store
  2033. to memory depending on whether it occurs as a source or destination
  2034. argument of an instruction.
  2035. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  2036. source $s$ and destination $d$, applies the arithmetic operation, then
  2037. writes the result back to the destination $d$. \index{subject}{instruction}
  2038. %
  2039. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2040. stores the result in $d$.
  2041. %
  2042. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2043. specified by the label and $\key{retq}$ returns from a procedure to
  2044. its caller.
  2045. %
  2046. We discuss procedure calls in more detail later in this chapter and in
  2047. Chapter~\ref{ch:Rfun}.
  2048. %
  2049. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2050. counter to the address of the instruction after the specified
  2051. label.}
  2052. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  2053. all of the x86 instructions used in this book.
  2054. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2055. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2056. \lstinline{movq $10, %rax}
  2057. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  2058. adds $32$ to the $10$ in \key{rax} and
  2059. puts the result, $42$, back into \key{rax}.
  2060. %
  2061. The last instruction, \key{retq}, finishes the \key{main} function by
  2062. returning the integer in \key{rax} to the operating system. The
  2063. operating system interprets this integer as the program's exit
  2064. code. By convention, an exit code of 0 indicates that a program
  2065. completed successfully, and all other exit codes indicate various
  2066. errors.
  2067. %
  2068. \racket{Nevertheless, in this book we return the result of the program
  2069. as the exit code.}
  2070. \begin{figure}[tbp]
  2071. \begin{lstlisting}
  2072. .globl main
  2073. main:
  2074. movq $10, %rax
  2075. addq $32, %rax
  2076. retq
  2077. \end{lstlisting}
  2078. \caption{An x86 program that computes
  2079. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2080. \label{fig:p0-x86}
  2081. \end{figure}
  2082. We exhibit the use of memory for storing intermediate results in the
  2083. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2084. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2085. uses a region of memory called the \emph{procedure call stack} (or
  2086. \emph{stack} for
  2087. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2088. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2089. for each procedure call. The memory layout for an individual frame is
  2090. shown in Figure~\ref{fig:frame}. The register \key{rsp} is called the
  2091. \emph{stack pointer}\index{subject}{stack pointer} and points to the
  2092. item at the top of the stack. The stack grows downward in memory, so
  2093. we increase the size of the stack by subtracting from the stack
  2094. pointer. In the context of a procedure call, the \emph{return
  2095. address}\index{subject}{return address} is the instruction after the
  2096. call instruction on the caller side. The function call instruction,
  2097. \code{callq}, pushes the return address onto the stack prior to
  2098. jumping to the procedure. The register \key{rbp} is the \emph{base
  2099. pointer}\index{subject}{base pointer} and is used to access variables
  2100. that are stored in the frame of the current procedure call. The base
  2101. pointer of the caller is store after the return address. In
  2102. Figure~\ref{fig:frame} we number the variables from $1$ to
  2103. $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$, variable $2$
  2104. at $-16\key{(\%rbp)}$, etc.
  2105. \begin{figure}[tbp]
  2106. {\if\edition\racketEd
  2107. \begin{lstlisting}
  2108. start:
  2109. movq $10, -8(%rbp)
  2110. negq -8(%rbp)
  2111. movq -8(%rbp), %rax
  2112. addq $52, %rax
  2113. jmp conclusion
  2114. .globl main
  2115. main:
  2116. pushq %rbp
  2117. movq %rsp, %rbp
  2118. subq $16, %rsp
  2119. jmp start
  2120. conclusion:
  2121. addq $16, %rsp
  2122. popq %rbp
  2123. retq
  2124. \end{lstlisting}
  2125. \fi}
  2126. {\if\edition\pythonEd
  2127. \begin{lstlisting}
  2128. .globl main
  2129. main:
  2130. pushq %rbp
  2131. movq %rsp, %rbp
  2132. subq $16, %rsp
  2133. movq $10, -8(%rbp)
  2134. negq -8(%rbp)
  2135. movq -8(%rbp), %rax
  2136. addq $52, %rax
  2137. addq $16, %rsp
  2138. popq %rbp
  2139. retq
  2140. \end{lstlisting}
  2141. \fi}
  2142. \caption{An x86 program that computes
  2143. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2144. \label{fig:p1-x86}
  2145. \end{figure}
  2146. \begin{figure}[tbp]
  2147. \centering
  2148. \begin{tabular}{|r|l|} \hline
  2149. Position & Contents \\ \hline
  2150. 8(\key{\%rbp}) & return address \\
  2151. 0(\key{\%rbp}) & old \key{rbp} \\
  2152. -8(\key{\%rbp}) & variable $1$ \\
  2153. -16(\key{\%rbp}) & variable $2$ \\
  2154. \ldots & \ldots \\
  2155. 0(\key{\%rsp}) & variable $n$\\ \hline
  2156. \end{tabular}
  2157. \caption{Memory layout of a frame.}
  2158. \label{fig:frame}
  2159. \end{figure}
  2160. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  2161. control is transferred from the operating system to the \code{main}
  2162. function. The operating system issues a \code{callq main} instruction
  2163. which pushes its return address on the stack and then jumps to
  2164. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2165. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2166. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  2167. alignment (because the \code{callq} pushed the return address). The
  2168. first three instructions are the typical \emph{prelude}\index{subject}{prelude}
  2169. for a procedure. The instruction \code{pushq \%rbp} saves the base
  2170. pointer for the caller onto the stack and subtracts $8$ from the stack
  2171. pointer. The next instruction \code{movq \%rsp, \%rbp} sets the
  2172. base pointer to the current stack pointer, which is pointing at the location
  2173. of the old base pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  2174. pointer down to make enough room for storing variables. This program
  2175. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  2176. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  2177. functions.
  2178. \racket{The last instruction of the prelude is \code{jmp start},
  2179. which transfers control to the instructions that were generated from
  2180. the expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2181. \racket{The first instruction under the \code{start} label is}
  2182. %
  2183. \python{The first instruction after the prelude is}
  2184. %
  2185. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2186. %
  2187. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  2188. %
  2189. The next instruction moves the $-10$ from variable $1$ into the
  2190. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2191. the value in \code{rax}, updating its contents to $42$.
  2192. \racket{The three instructions under the label \code{conclusion} are the
  2193. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2194. %
  2195. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2196. \code{main} function consists of the last three instructions.}
  2197. %
  2198. The first two restore the \code{rsp} and \code{rbp} registers to the
  2199. state they were in at the beginning of the procedure. In particular,
  2200. \key{addq \$16, \%rsp} moves the stack pointer back to point at the
  2201. old base pointer. Then \key{popq \%rbp} returns the old base pointer
  2202. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2203. \key{retq}, jumps back to the procedure that called this one and adds
  2204. $8$ to the stack pointer.
  2205. Our compiler needs a convenient representation for manipulating x86
  2206. programs, so we define an abstract syntax for x86 in
  2207. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  2208. \LangXInt{}.
  2209. %
  2210. {\if\edition\racketEd\color{olive}
  2211. The main difference compared to the concrete syntax of \LangXInt{}
  2212. (Figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2213. front of every instruction. Instead instructions are grouped into
  2214. \emph{blocks}\index{subject}{block}\index{subject}{basic block} with a
  2215. label associated with every block, which is why the \key{X86Program}
  2216. struct includes an alist mapping labels to blocks. The reason for this
  2217. organization becomes apparent in Chapter~\ref{ch:Lif} when we
  2218. introduce conditional branching. The \code{Block} structure includes
  2219. an $\itm{info}$ field that is not needed for this chapter, but becomes
  2220. useful in Chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2221. $\itm{info}$ field should contain an empty list.
  2222. \fi}
  2223. %
  2224. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2225. node includes an integer for representing the arity of the function,
  2226. i.e., the number of arguments, which is helpful to know during
  2227. register allocation (Chapter~\ref{ch:register-allocation-Lvar}).
  2228. \begin{figure}[tp]
  2229. \fbox{
  2230. \begin{minipage}{0.98\textwidth}
  2231. \small
  2232. {\if\edition\racketEd\color{olive}
  2233. \[
  2234. \begin{array}{lcl}
  2235. \Reg &::=& \allregisters{} \\
  2236. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2237. \MID \DEREF{\Reg}{\Int} \\
  2238. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2239. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2240. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2241. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2242. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  2243. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} \\
  2244. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  2245. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2246. \end{array}
  2247. \]
  2248. \fi}
  2249. {\if\edition\pythonEd
  2250. \[
  2251. \begin{array}{lcl}
  2252. \Reg &::=& \allregisters{} \\
  2253. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2254. \MID \DEREF{\Reg}{\Int} \\
  2255. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2256. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2257. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2258. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2259. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  2260. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} \\
  2261. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2262. \end{array}
  2263. \]
  2264. \fi}
  2265. \end{minipage}
  2266. }
  2267. \caption{The abstract syntax of \LangXInt{} assembly.}
  2268. \label{fig:x86-int-ast}
  2269. \end{figure}
  2270. \section{Planning the trip to x86}
  2271. \label{sec:plan-s0-x86}
  2272. To compile one language to another it helps to focus on the
  2273. differences between the two languages because the compiler will need
  2274. to bridge those differences. What are the differences between \LangVar{}
  2275. and x86 assembly? Here are some of the most important ones:
  2276. \begin{enumerate}
  2277. \item x86 arithmetic instructions typically have two arguments
  2278. and update the second argument in place. In contrast, \LangVar{}
  2279. arithmetic operations take two arguments and produce a new value.
  2280. An x86 instruction may have at most one memory-accessing argument.
  2281. Furthermore, some instructions place special restrictions on their
  2282. arguments.
  2283. \item An argument of an \LangVar{} operator can be a deeply-nested
  2284. expression, whereas x86 instructions restrict their arguments to be
  2285. integer constants, registers, and memory locations.
  2286. {\if\edition\racketEd\color{olive}
  2287. \item[(c)] The order of execution in x86 is explicit in the syntax: a
  2288. sequence of instructions and jumps to labeled positions, whereas in
  2289. \LangVar{} the order of evaluation is a left-to-right depth-first
  2290. traversal of the abstract syntax tree.
  2291. \fi}
  2292. \item A program in \LangVar{} can have any number of variables
  2293. whereas x86 has 16 registers and the procedure call stack.
  2294. {\if\edition\racketEd\color{olive}
  2295. \item Variables in \LangVar{} can shadow other variables with the
  2296. same name. In x86, registers have unique names and memory locations
  2297. have unique addresses.
  2298. \fi}
  2299. \end{enumerate}
  2300. We ease the challenge of compiling from \LangVar{} to x86 by breaking down
  2301. the problem into several steps, dealing with the above differences one
  2302. at a time. Each of these steps is called a \emph{pass} of the
  2303. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2304. %
  2305. This terminology comes from the way each step passes over the AST of
  2306. the program.
  2307. %
  2308. We begin by sketching how we might implement each pass, and give them
  2309. names. We then figure out an ordering of the passes and the
  2310. input/output language for each pass. The very first pass has
  2311. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2312. its output language. In between we can choose whichever language is
  2313. most convenient for expressing the output of each pass, whether that
  2314. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2315. our own design. Finally, to implement each pass we write one
  2316. recursive function per non-terminal in the grammar of the input
  2317. language of the pass. \index{subject}{intermediate language}
  2318. \begin{description}
  2319. {\if\edition\racketEd\color{olive}
  2320. \item[\key{uniquify}] deals with the shadowing of variables by
  2321. renaming every variable to a unique name.
  2322. \fi}
  2323. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2324. of a primitive operation or function call is a variable or integer,
  2325. that is, an \emph{atomic} expression. We refer to non-atomic
  2326. expressions as \emph{complex}. This pass introduces temporary
  2327. variables to hold the results of complex
  2328. subexpressions.\index{subject}{atomic
  2329. expression}\index{subject}{complex expression}%
  2330. {\if\edition\racketEd\color{olive}
  2331. \item[\key{explicate\_control}] makes the execution order of the
  2332. program explicit. It convert the abstract syntax tree representation
  2333. into a control-flow graph in which each node contains a sequence of
  2334. statements and the edges between nodes say which nodes contain jumps
  2335. to other nodes.
  2336. \fi}
  2337. \item[\key{select\_instructions}] handles the difference between
  2338. \LangVar{} operations and x86 instructions. This pass converts each
  2339. \LangVar{} operation to a short sequence of instructions that
  2340. accomplishes the same task.
  2341. \item[\key{assign\_homes}] replaces the variables in \LangVar{} with
  2342. registers or stack locations in x86.
  2343. \end{description}
  2344. The next question is: in what order should we apply these passes? This
  2345. question can be challenging because it is difficult to know ahead of
  2346. time which orderings will be better (easier to implement, produce more
  2347. efficient code, etc.) so oftentimes trial-and-error is
  2348. involved. Nevertheless, we can try to plan ahead and make educated
  2349. choices regarding the ordering.
  2350. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2351. \key{uniquify}? The \key{uniquify} pass should come first because
  2352. \key{explicate\_control} changes all the \key{let}-bound variables to
  2353. become local variables whose scope is the entire program, which would
  2354. confuse variables with the same name.}
  2355. %
  2356. \racket{We place \key{remove\_complex\_opera*} before \key{explicate\_control}
  2357. because the later removes the \key{let} form, but it is convenient to
  2358. use \key{let} in the output of \key{remove\_complex\_opera*}.}
  2359. %
  2360. \racket{The ordering of \key{uniquify} with respect to
  2361. \key{remove\_complex\_opera*} does not matter so we arbitrarily choose
  2362. \key{uniquify} to come first.}
  2363. The \key{select\_instructions} and \key{assign\_homes} passes are
  2364. intertwined.
  2365. %
  2366. In Chapter~\ref{ch:Rfun} we learn that, in x86, registers are used for
  2367. passing arguments to functions and it is preferable to assign
  2368. parameters to their corresponding registers. This suggests that it
  2369. would be better to start with the \key{select\_instructions} pass,
  2370. which generates the instructions for argument passing, before
  2371. performing register allocation.
  2372. %
  2373. On the other hand, by selecting instructions first we may run into a
  2374. dead end in \key{assign\_homes}. Recall that only one argument of an
  2375. x86 instruction may be a memory access but \key{assign\_homes} might
  2376. be forced to assign both arguments to memory locations.
  2377. %
  2378. A sophisticated approach is to iteratively repeat the two passes until
  2379. a solution is found. However, to reduce implementation complexity we
  2380. recommend a simpler approach in which \key{select\_instructions} comes
  2381. first, followed by the \key{assign\_homes}, then a third pass named
  2382. \key{patch\_instructions} that uses a reserved register to fix
  2383. outstanding problems.
  2384. \begin{figure}[tbp]
  2385. {\if\edition\racketEd\color{olive}
  2386. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2387. \node (Lvar) at (0,2) {\large \LangVar{}};
  2388. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2389. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  2390. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2391. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2392. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2393. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2394. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2395. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2396. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2397. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  2398. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-2);
  2399. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  2400. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2401. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  2402. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize print\_x86} (x86-5);
  2403. \end{tikzpicture}
  2404. \fi}
  2405. {\if\edition\pythonEd
  2406. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2407. \node (Lvar) at (0,2) {\large \LangVar{}};
  2408. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2409. \node (x86-1) at (3,0) {\large \LangXVar{}};
  2410. \node (x86-2) at (6,0) {\large \LangXVar{}};
  2411. \node (x86-3) at (9,0) {\large \LangXInt{}};
  2412. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2413. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-2);
  2414. \path[->,bend right=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  2415. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2416. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  2417. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize print\_x86} (x86-4);
  2418. \end{tikzpicture}
  2419. \fi}
  2420. \caption{Diagram of the passes for compiling \LangVar{}. }
  2421. \label{fig:Lvar-passes}
  2422. \end{figure}
  2423. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2424. passes and identifies the input and output language of each pass.
  2425. %
  2426. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2427. language, which extends \LangXInt{} with an unbounded number of
  2428. program-scope variables and removes the restrictions regarding
  2429. instruction arguments.
  2430. %
  2431. The last pass, \key{print\_x86}, converts from the abstract syntax of
  2432. \LangXInt{} to the concrete syntax.
  2433. %
  2434. \racket{In the following section we discuss the \LangCVar{}
  2435. intermediate language.}
  2436. %
  2437. The remainder of this chapter provides guidance on the implementation
  2438. of each of the compiler passes in Figure~\ref{fig:Lvar-passes}.
  2439. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  2440. %% are programs that are still in the \LangVar{} language, though the
  2441. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2442. %% (Section~\ref{sec:remove-complex-opera-Lvar}).
  2443. %% %
  2444. %% The output of \code{explicate\_control} is in an intermediate language
  2445. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2446. %% syntax, which we introduce in the next section. The
  2447. %% \key{select-instruction} pass translates from \LangCVar{} to
  2448. %% \LangXVar{}. The \key{assign-homes} and
  2449. %% \key{patch-instructions}
  2450. %% passes input and output variants of x86 assembly.
  2451. {\if\edition\racketEd\color{olive}
  2452. \subsection{The \LangCVar{} Intermediate Language}
  2453. The output of \code{explicate\_control} is similar to the $C$
  2454. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2455. categories for expressions and statements, so we name it \LangCVar{}. The
  2456. abstract syntax for \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2457. \racket{(The concrete syntax for \LangCVar{} is in the Appendix,
  2458. Figure~\ref{fig:c0-concrete-syntax}.)}
  2459. %
  2460. The \LangCVar{} language supports the same operators as \LangVar{} but
  2461. the arguments of operators are restricted to atomic
  2462. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2463. assignment statements which can be executed in sequence using the
  2464. \key{Seq} form. A sequence of statements always ends with
  2465. \key{Return}, a guarantee that is baked into the grammar rules for
  2466. \itm{tail}. The naming of this non-terminal comes from the term
  2467. \emph{tail position}\index{subject}{tail position}, which refers to an
  2468. expression that is the last one to execute within a function.
  2469. A \LangCVar{} program consists of a control-flow graph represented as
  2470. an alist mapping labels to tails. This is more general than necessary
  2471. for the present chapter, as we do not yet introduce \key{goto} for
  2472. jumping to labels, but it saves us from having to change the syntax in
  2473. Chapter~\ref{ch:Lif}. For now there will be just one label,
  2474. \key{start}, and the whole program is its tail.
  2475. %
  2476. The $\itm{info}$ field of the \key{CProgram} form, after the
  2477. \code{explicate\_control} pass, contains a mapping from the symbol
  2478. \key{locals} to a list of variables, that is, a list of all the
  2479. variables used in the program. At the start of the program, these
  2480. variables are uninitialized; they become initialized on their first
  2481. assignment.
  2482. \begin{figure}[tbp]
  2483. \fbox{
  2484. \begin{minipage}{0.96\textwidth}
  2485. \[
  2486. \begin{array}{lcl}
  2487. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2488. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2489. &\MID& \ADD{\Atm}{\Atm}\\
  2490. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2491. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail} \\
  2492. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2493. \end{array}
  2494. \]
  2495. \end{minipage}
  2496. }
  2497. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2498. \label{fig:c0-syntax}
  2499. \end{figure}
  2500. The definitional interpreter for \LangCVar{} is in the support code,
  2501. in the file \code{interp-Cvar.rkt}.
  2502. \fi}
  2503. {\if\edition\racketEd\color{olive}
  2504. \section{Uniquify Variables}
  2505. \label{sec:uniquify-Lvar}
  2506. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2507. programs in which every \key{let} binds a unique variable name. For
  2508. example, the \code{uniquify} pass should translate the program on the
  2509. left into the program on the right.
  2510. \begin{transformation}
  2511. \begin{lstlisting}
  2512. (let ([x 32])
  2513. (+ (let ([x 10]) x) x))
  2514. \end{lstlisting}
  2515. \compilesto
  2516. \begin{lstlisting}
  2517. (let ([x.1 32])
  2518. (+ (let ([x.2 10]) x.2) x.1))
  2519. \end{lstlisting}
  2520. \end{transformation}
  2521. The following is another example translation, this time of a program
  2522. with a \key{let} nested inside the initializing expression of another
  2523. \key{let}.
  2524. \begin{transformation}
  2525. \begin{lstlisting}
  2526. (let ([x (let ([x 4])
  2527. (+ x 1))])
  2528. (+ x 2))
  2529. \end{lstlisting}
  2530. \compilesto
  2531. \begin{lstlisting}
  2532. (let ([x.2 (let ([x.1 4])
  2533. (+ x.1 1))])
  2534. (+ x.2 2))
  2535. \end{lstlisting}
  2536. \end{transformation}
  2537. We recommend implementing \code{uniquify} by creating a structurally
  2538. recursive function named \code{uniquify-exp} that mostly just copies
  2539. an expression. However, when encountering a \key{let}, it should
  2540. generate a unique name for the variable and associate the old name
  2541. with the new name in an alist.\footnote{The Racket function
  2542. \code{gensym} is handy for generating unique variable names.} The
  2543. \code{uniquify-exp} function needs to access this alist when it gets
  2544. to a variable reference, so we add a parameter to \code{uniquify-exp}
  2545. for the alist.
  2546. The skeleton of the \code{uniquify-exp} function is shown in
  2547. Figure~\ref{fig:uniquify-Lvar}. The function is curried so that it is
  2548. convenient to partially apply it to an alist and then apply it to
  2549. different expressions, as in the last case for primitive operations in
  2550. Figure~\ref{fig:uniquify-Lvar}. The
  2551. %
  2552. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2553. %
  2554. form of Racket is useful for transforming each element of a list to
  2555. produce a new list.\index{subject}{for/list}
  2556. \begin{figure}[tbp]
  2557. \begin{lstlisting}
  2558. (define (uniquify-exp env)
  2559. (lambda (e)
  2560. (match e
  2561. [(Var x) ___]
  2562. [(Int n) (Int n)]
  2563. [(Let x e body) ___]
  2564. [(Prim op es)
  2565. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  2566. (define (uniquify p)
  2567. (match p
  2568. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  2569. \end{lstlisting}
  2570. \caption{Skeleton for the \key{uniquify} pass.}
  2571. \label{fig:uniquify-Lvar}
  2572. \end{figure}
  2573. \begin{exercise}
  2574. \normalfont % I don't like the italics for exercises. -Jeremy
  2575. Complete the \code{uniquify} pass by filling in the blanks in
  2576. Figure~\ref{fig:uniquify-Lvar}, that is, implement the cases for
  2577. variables and for the \key{let} form in the file \code{compiler.rkt}
  2578. in the support code.
  2579. \end{exercise}
  2580. \begin{exercise}
  2581. \normalfont % I don't like the italics for exercises. -Jeremy
  2582. \label{ex:Lvar}
  2583. Create five \LangVar{} programs that exercise the most interesting
  2584. parts of the \key{uniquify} pass, that is, the programs should include
  2585. \key{let} forms, variables, and variables that shadow each other.
  2586. The five programs should be placed in the subdirectory named
  2587. \key{tests} and the file names should start with \code{var\_test\_}
  2588. followed by a unique integer and end with the file extension
  2589. \key{.rkt}.
  2590. %
  2591. The \key{run-tests.rkt} script in the support code checks whether the
  2592. output programs produce the same result as the input programs. The
  2593. script uses the \key{interp-tests} function
  2594. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2595. your \key{uniquify} pass on the example programs. The \code{passes}
  2596. parameter of \key{interp-tests} is a list that should have one entry
  2597. for each pass in your compiler. For now, define \code{passes} to
  2598. contain just one entry for \code{uniquify} as shown below.
  2599. \begin{lstlisting}
  2600. (define passes
  2601. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2602. \end{lstlisting}
  2603. Run the \key{run-tests.rkt} script in the support code to check
  2604. whether the output programs produce the same result as the input
  2605. programs.
  2606. \end{exercise}
  2607. \fi}
  2608. \section{Remove Complex Operands}
  2609. \label{sec:remove-complex-opera-Lvar}
  2610. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2611. into a restricted form in which the arguments of operations are atomic
  2612. expressions. Put another way, this pass removes complex
  2613. operands\index{subject}{complex operand}, such as the expression
  2614. \racket{\code{(- 10)}}\python{\code{-10}}
  2615. in the program below. This is accomplished by introducing a new
  2616. temporary variable, assigning the complex operand to the new
  2617. variable, and then using the new variable in place of the complex
  2618. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2619. right.
  2620. {\if\edition\racketEd\color{olive}
  2621. \begin{transformation}
  2622. % var_test_19.rkt
  2623. \begin{lstlisting}
  2624. (let ([x (+ 42 (- 10))])
  2625. (+ x 10))
  2626. \end{lstlisting}
  2627. \compilesto
  2628. \begin{lstlisting}
  2629. (let ([x (let ([tmp.1 (- 10)])
  2630. (+ 42 tmp.1))])
  2631. (+ x 10))
  2632. \end{lstlisting}
  2633. \end{transformation}
  2634. \fi}
  2635. {\if\edition\pythonEd
  2636. \begin{transformation}
  2637. \begin{lstlisting}
  2638. x = 42 + -10
  2639. print(x + 10)
  2640. \end{lstlisting}
  2641. \compilesto
  2642. \begin{lstlisting}
  2643. tmp_0 = -10
  2644. x = 42 + tmp_0
  2645. tmp_1 = x + 10
  2646. print(tmp_1)
  2647. \end{lstlisting}
  2648. \end{transformation}
  2649. \fi}
  2650. \begin{figure}[tp]
  2651. \centering
  2652. \fbox{
  2653. \begin{minipage}{0.96\textwidth}
  2654. {\if\edition\racketEd\color{olive}
  2655. \[
  2656. \begin{array}{rcl}
  2657. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2658. \Exp &::=& \Atm \MID \READ{} \\
  2659. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2660. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2661. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  2662. \end{array}
  2663. \]
  2664. \fi}
  2665. {\if\edition\pythonEd
  2666. \[
  2667. \begin{array}{rcl}
  2668. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2669. \Exp{} &::=& \Atm \MID \READ{} \\
  2670. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2671. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  2672. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  2673. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  2674. \end{array}
  2675. \]
  2676. \fi}
  2677. \end{minipage}
  2678. }
  2679. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  2680. atomic expressions, like administrative normal form (ANF).}
  2681. \label{fig:Lvar-anf-syntax}
  2682. \end{figure}
  2683. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output of
  2684. this pass, the language \LangVarANF{}. The only difference is that
  2685. operator arguments are restricted to be atomic expressions that are
  2686. defined by the \Atm{} non-terminal. In particular, integer constants
  2687. and variables are atomic. In the literature, restricting arguments to
  2688. be atomic expressions is one of the ideas in \emph{administrative
  2689. normal form}, or ANF for short~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2690. \index{subject}{administrative normal form} \index{subject}{ANF}
  2691. {\if\edition\racketEd\color{olive}
  2692. We recommend implementing this pass with two mutually recursive
  2693. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  2694. \code{rco\_atom} to subexpressions that need to become atomic and to
  2695. apply \code{rco\_exp} to subexpressions that do not. Both functions
  2696. take an \LangVar{} expression as input. The \code{rco\_exp} function
  2697. returns an expression. The \code{rco\_atom} function returns two
  2698. things: an atomic expression and an alist mapping temporary variables to
  2699. complex subexpressions. You can return multiple things from a function
  2700. using Racket's \key{values} form and you can receive multiple things
  2701. from a function call using the \key{define-values} form.
  2702. Also, the
  2703. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  2704. form is useful for applying a function to each element of a list, in
  2705. the case where the function returns multiple values.
  2706. \index{subject}{for/lists}
  2707. \fi}
  2708. %
  2709. {\if\edition\pythonEd
  2710. %
  2711. We recommend implementing this pass with an auxiliary method named
  2712. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  2713. Boolean that specifies whether the expression needs to become atomic
  2714. or not. The \code{rco\_exp} method should return a pair consisting of
  2715. the new expression and a list of pairs, associating new temporary
  2716. variables with their initializing expressions.
  2717. %
  2718. \fi}
  2719. {\if\edition\racketEd\color{olive}
  2720. Returning to the example program with the expression \code{(+ 42 (-
  2721. 10))}, the subexpression \code{(- 10)} should be processed using the
  2722. \code{rco\_atom} function because it is an argument of the \code{+} and
  2723. therefore needs to become atomic. The output of \code{rco\_atom}
  2724. applied to \code{(- 10)} is as follows.
  2725. \begin{transformation}
  2726. \begin{lstlisting}
  2727. (- 10)
  2728. \end{lstlisting}
  2729. \compilesto
  2730. \begin{lstlisting}
  2731. tmp.1
  2732. ((tmp.1 . (- 10)))
  2733. \end{lstlisting}
  2734. \end{transformation}
  2735. \fi}
  2736. %
  2737. {\if\edition\pythonEd
  2738. %
  2739. Returning to the example program with the expression \code{42 + -10},
  2740. the subexpression \code{-10} should be processed using the
  2741. \code{rco\_exp} function with \code{True} as the second argument
  2742. because \code{-10} is an argument of the \code{+} operator and
  2743. therefore needs to become atomic. The output of \code{rco\_exp}
  2744. applied to \code{-10} is as follows.
  2745. \begin{transformation}
  2746. \begin{lstlisting}
  2747. -10
  2748. \end{lstlisting}
  2749. \compilesto
  2750. \begin{lstlisting}
  2751. tmp_1
  2752. [(tmp_1, -10)]
  2753. \end{lstlisting}
  2754. \end{transformation}
  2755. %
  2756. \fi}
  2757. Take special care of programs such as the following that
  2758. %
  2759. \racket{bind a variable to an atomic expression}
  2760. %
  2761. \python{assign an atomic expression to a variable}.
  2762. %
  2763. You should leave such \racket{variable bindings}\python{assignments}
  2764. unchanged, as shown in the program on the right\\
  2765. %
  2766. {\if\edition\racketEd\color{olive}
  2767. \begin{transformation}
  2768. % var_test_20.rkt
  2769. \begin{lstlisting}
  2770. (let ([a 42])
  2771. (let ([b a])
  2772. b))
  2773. \end{lstlisting}
  2774. \compilesto
  2775. \begin{lstlisting}
  2776. (let ([a 42])
  2777. (let ([b a])
  2778. b))
  2779. \end{lstlisting}
  2780. \end{transformation}
  2781. \fi}
  2782. {\if\edition\pythonEd
  2783. \begin{transformation}
  2784. \begin{lstlisting}
  2785. a = 42
  2786. b = a
  2787. print(b)
  2788. \end{lstlisting}
  2789. \compilesto
  2790. \begin{lstlisting}
  2791. a = 42
  2792. b = a
  2793. print(b)
  2794. \end{lstlisting}
  2795. \end{transformation}
  2796. \fi}
  2797. %
  2798. \noindent A careless implementation might produce the following output with
  2799. unnecessary temporary variables.
  2800. \begin{center}
  2801. \begin{minipage}{0.4\textwidth}
  2802. {\if\edition\racketEd\color{olive}
  2803. \begin{lstlisting}
  2804. (let ([tmp.1 42])
  2805. (let ([a tmp.1])
  2806. (let ([tmp.2 a])
  2807. (let ([b tmp.2])
  2808. b))))
  2809. \end{lstlisting}
  2810. \fi}
  2811. {\if\edition\pythonEd
  2812. \begin{lstlisting}
  2813. tmp_1 = 42
  2814. a = tmp_1
  2815. tmp_2 = a
  2816. b = tmp_2
  2817. print(b)
  2818. \end{lstlisting}
  2819. \fi}
  2820. \end{minipage}
  2821. \end{center}
  2822. \begin{exercise}
  2823. \normalfont
  2824. {\if\edition\racketEd\color{olive}
  2825. Implement the \code{remove\_complex\_operands} function in
  2826. \code{compiler.rkt}.
  2827. %
  2828. Create three new \LangVar{} programs that exercise the interesting
  2829. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  2830. regarding file names described in Exercise~\ref{ex:Lvar}.
  2831. %
  2832. In the \code{run-tests.rkt} script, add the following entry to the
  2833. list of \code{passes} and then run the script to test your compiler.
  2834. \begin{lstlisting}
  2835. (list "remove-complex" remove-complex-opera* interp_Lvar type-check-Lvar)
  2836. \end{lstlisting}
  2837. While debugging your compiler, it is often useful to see the
  2838. intermediate programs that are output from each pass. To print the
  2839. intermediate programs, place \lstinline{(debug-level 1)} before the call to
  2840. \code{interp-tests} in \code{run-tests.rkt}.
  2841. \fi}
  2842. %
  2843. {\if\edition\pythonEd
  2844. Implement the \code{remove\_complex\_operands} pass in
  2845. \code{compiler.py}, creating auxiliary functions for each
  2846. non-terminal in the grammar, i.e., \code{rco\_exp}
  2847. and \code{rco\_stmt}.
  2848. \fi}
  2849. \end{exercise}
  2850. {\if\edition\pythonEd
  2851. \begin{exercise}
  2852. \normalfont % I don't like the italics for exercises. -Jeremy
  2853. \label{ex:Lvar}
  2854. Create five \LangVar{} programs that exercise the most interesting
  2855. parts of the \code{remove\_complex\_operands} pass. The five programs
  2856. should be placed in the subdirectory named \key{tests} and the file
  2857. names should start with \code{var\_test\_} followed by a unique
  2858. integer and end with the file extension \key{.py}.
  2859. %% The \key{run-tests.rkt} script in the support code checks whether the
  2860. %% output programs produce the same result as the input programs. The
  2861. %% script uses the \key{interp-tests} function
  2862. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2863. %% your \key{uniquify} pass on the example programs. The \code{passes}
  2864. %% parameter of \key{interp-tests} is a list that should have one entry
  2865. %% for each pass in your compiler. For now, define \code{passes} to
  2866. %% contain just one entry for \code{uniquify} as shown below.
  2867. %% \begin{lstlisting}
  2868. %% (define passes
  2869. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2870. %% \end{lstlisting}
  2871. Run the \key{run-tests.py} script in the support code to check
  2872. whether the output programs produce the same result as the input
  2873. programs.
  2874. \end{exercise}
  2875. \fi}
  2876. {\if\edition\racketEd\color{olive}
  2877. \section{Explicate Control}
  2878. \label{sec:explicate-control-Lvar}
  2879. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  2880. programs that make the order of execution explicit in their
  2881. syntax. For now this amounts to flattening \key{let} constructs into a
  2882. sequence of assignment statements. For example, consider the following
  2883. \LangVar{} program.\\
  2884. % var_test_11.rkt
  2885. \begin{minipage}{0.96\textwidth}
  2886. \begin{lstlisting}
  2887. (let ([y (let ([x 20])
  2888. (+ x (let ([x 22]) x)))])
  2889. y)
  2890. \end{lstlisting}
  2891. \end{minipage}\\
  2892. %
  2893. The output of the previous pass and of \code{explicate\_control} is
  2894. shown below. Recall that the right-hand-side of a \key{let} executes
  2895. before its body, so the order of evaluation for this program is to
  2896. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  2897. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  2898. output of \code{explicate\_control} makes this ordering explicit.
  2899. \begin{transformation}
  2900. \begin{lstlisting}
  2901. (let ([y (let ([x.1 20])
  2902. (let ([x.2 22])
  2903. (+ x.1 x.2)))])
  2904. y)
  2905. \end{lstlisting}
  2906. \compilesto
  2907. \begin{lstlisting}[language=C]
  2908. start:
  2909. x.1 = 20;
  2910. x.2 = 22;
  2911. y = (+ x.1 x.2);
  2912. return y;
  2913. \end{lstlisting}
  2914. \end{transformation}
  2915. \begin{figure}[tbp]
  2916. \begin{lstlisting}
  2917. (define (explicate-tail e)
  2918. (match e
  2919. [(Var x) ___]
  2920. [(Int n) (Return (Int n))]
  2921. [(Let x rhs body) ___]
  2922. [(Prim op es) ___]
  2923. [else (error "explicate-tail unhandled case" e)]))
  2924. (define (explicate-assign e x cont)
  2925. (match e
  2926. [(Var x) ___]
  2927. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  2928. [(Let y rhs body) ___]
  2929. [(Prim op es) ___]
  2930. [else (error "explicate-assign unhandled case" e)]))
  2931. (define (explicate-control p)
  2932. (match p
  2933. [(Program info body) ___]))
  2934. \end{lstlisting}
  2935. \caption{Skeleton for the \code{explicate\_control} pass.}
  2936. \label{fig:explicate-control-Lvar}
  2937. \end{figure}
  2938. The organization of this pass depends on the notion of tail position
  2939. that we have alluded to earlier.
  2940. \begin{definition}
  2941. The following rules define when an expression is in \textbf{\emph{tail
  2942. position}}\index{subject}{tail position} for the language \LangVar{}.
  2943. \begin{enumerate}
  2944. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  2945. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  2946. \end{enumerate}
  2947. \end{definition}
  2948. We recommend implementing \code{explicate\_control} using two mutually
  2949. recursive functions, \code{explicate-tail} and
  2950. \code{explicate-assign}, as suggested in the skeleton code in
  2951. Figure~\ref{fig:explicate-control-Lvar}. The \code{explicate-tail}
  2952. function should be applied to expressions in tail position whereas the
  2953. \code{explicate-assign} should be applied to expressions that occur on
  2954. the right-hand-side of a \key{let}.
  2955. %
  2956. The \code{explicate-tail} function takes an \Exp{} in \LangVar{} as
  2957. input and produces a \Tail{} in \LangCVar{} (see
  2958. Figure~\ref{fig:c0-syntax}).
  2959. %
  2960. The \code{explicate-assign} function takes an \Exp{} in \LangVar{},
  2961. the variable that it is to be assigned to, and a \Tail{} in
  2962. \LangCVar{} for the code that comes after the assignment. The
  2963. \code{explicate-assign} function returns a $\Tail$ in \LangCVar{}.
  2964. The \code{explicate-assign} function is in accumulator-passing style:
  2965. the \code{cont} parameter is used for accumulating the output. This
  2966. accumulator-passing style plays an important role in how we generate
  2967. high-quality code for conditional expressions in Chapter~\ref{ch:Lif}.
  2968. \begin{exercise}\normalfont
  2969. %
  2970. Implement the \code{explicate\_control} function in
  2971. \code{compiler.rkt}. Create three new \LangInt{} programs that
  2972. exercise the code in \code{explicate\_control}.
  2973. %
  2974. In the \code{run-tests.rkt} script, add the following entry to the
  2975. list of \code{passes} and then run the script to test your compiler.
  2976. \begin{lstlisting}
  2977. (list "explicate control" explicate-control interp_Cvar type-check-Cvar)
  2978. \end{lstlisting}
  2979. \end{exercise}
  2980. \fi}
  2981. \section{Select Instructions}
  2982. \label{sec:select-Lvar}
  2983. \index{subject}{instruction selection}
  2984. In the \code{select\_instructions} pass we begin the work of
  2985. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  2986. language of this pass is a variant of x86 that still uses variables,
  2987. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  2988. non-terminal of the \LangXInt{} abstract syntax
  2989. (Figure~\ref{fig:x86-int-ast}).
  2990. \racket{We recommend implementing the
  2991. \code{select\_instructions} with three auxiliary functions, one for
  2992. each of the non-terminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  2993. $\Tail$.}
  2994. \python{We recommend implementing an auxiliary function
  2995. named \code{select\_stmt} for the $\Stmt$ non-terminal.}
  2996. \racket{
  2997. The cases for $\Atm$ are straightforward; variables stay
  2998. the same and integer constants change to immediates:
  2999. $\INT{n}$ changes to $\IMM{n}$.}
  3000. We consider the cases for the $\Stmt$ non-terminal, starting with
  3001. arithmetic operations. For example, consider the addition operation
  3002. below, on the left side. There is an \key{addq} instruction in x86,
  3003. but it performs an in-place update. So we could move $\Arg_1$
  3004. into the left-hand side \itm{var} and then add $\Arg_2$ to
  3005. \itm{var}, where $\Arg_1$ and $\Arg_2$ are the translations of
  3006. $\Atm_1$ and $\Atm_2$ respectively.
  3007. \begin{transformation}
  3008. {\if\edition\racketEd\color{olive}
  3009. \begin{lstlisting}
  3010. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3011. \end{lstlisting}
  3012. \fi}
  3013. {\if\edition\pythonEd
  3014. \begin{lstlisting}
  3015. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3016. \end{lstlisting}
  3017. \fi}
  3018. \compilesto
  3019. \begin{lstlisting}
  3020. movq |$\Arg_1$|, |$\itm{var}$|
  3021. addq |$\Arg_2$|, |$\itm{var}$|
  3022. \end{lstlisting}
  3023. \end{transformation}
  3024. There are also cases that require special care to avoid generating
  3025. needlessly complicated code. For example, if one of the arguments of
  3026. the addition is the same variable as the left-hand side of the
  3027. assignment, as shown below, then there is no need for the extra move
  3028. instruction. The assignment statement can be translated into a single
  3029. \key{addq} instruction as follows.
  3030. \begin{transformation}
  3031. {\if\edition\racketEd\color{olive}
  3032. \begin{lstlisting}
  3033. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3034. \end{lstlisting}
  3035. \fi}
  3036. {\if\edition\pythonEd
  3037. \begin{lstlisting}
  3038. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3039. \end{lstlisting}
  3040. \fi}
  3041. \compilesto
  3042. \begin{lstlisting}
  3043. addq |$\Arg_1$|, |$\itm{var}$|
  3044. \end{lstlisting}
  3045. \end{transformation}
  3046. The \READOP{} operation does not have a direct counterpart in x86
  3047. assembly, so we provide this functionality with the function
  3048. \code{read\_int} in the file \code{runtime.c}, written in
  3049. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  3050. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3051. system}, or simply the \emph{runtime} for short. When compiling your
  3052. generated x86 assembly code, you need to compile \code{runtime.c} to
  3053. \code{runtime.o} (an ``object file'', using \code{gcc} with option
  3054. \code{-c}) and link it into the executable. For our purposes of code
  3055. generation, all you need to do is translate an assignment of
  3056. \READOP{} into a call to the \code{read\_int} function followed by a
  3057. move from \code{rax} to the left-hand-side variable. (Recall that the
  3058. return value of a function goes into \code{rax}.)
  3059. \begin{transformation}
  3060. {\if\edition\racketEd\color{olive}
  3061. \begin{lstlisting}
  3062. |$\itm{var}$| = (read);
  3063. \end{lstlisting}
  3064. \fi}
  3065. {\if\edition\pythonEd
  3066. \begin{lstlisting}
  3067. |$\itm{var}$| = input_int();
  3068. \end{lstlisting}
  3069. \fi}
  3070. \compilesto
  3071. \begin{lstlisting}
  3072. callq read_int
  3073. movq %rax, |$\itm{var}$|
  3074. \end{lstlisting}
  3075. \end{transformation}
  3076. {\if\edition\pythonEd
  3077. %
  3078. Similarly, we translate the \code{print} operation, shown below, into
  3079. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3080. In x86, the first six arguments to functions are passed in registers,
  3081. with the first argument passed in register \code{rdi}. So we move the
  3082. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3083. \code{callq} instruction.
  3084. \begin{transformation}
  3085. \begin{lstlisting}
  3086. print(|$\Atm$|)
  3087. \end{lstlisting}
  3088. \compilesto
  3089. \begin{lstlisting}
  3090. movq |$\Arg$|, %rdi
  3091. callq print_int
  3092. \end{lstlisting}
  3093. \end{transformation}
  3094. %
  3095. \fi}
  3096. {\if\edition\racketEd\color{olive}
  3097. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  3098. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3099. assignment to the \key{rax} register followed by a jump to the
  3100. conclusion of the program (so the conclusion needs to be labeled).
  3101. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3102. recursively and then append the resulting instructions.
  3103. \fi}
  3104. \begin{exercise}
  3105. \normalfont
  3106. {\if\edition\racketEd\color{olive}
  3107. Implement the \key{select-instructions} pass in
  3108. \code{compiler.rkt}. Create three new example programs that are
  3109. designed to exercise all of the interesting cases in this pass.
  3110. %
  3111. In the \code{run-tests.rkt} script, add the following entry to the
  3112. list of \code{passes} and then run the script to test your compiler.
  3113. \begin{lstlisting}
  3114. (list "instruction selection" select-instructions interp_pseudo-x86-0)
  3115. \end{lstlisting}
  3116. \fi}
  3117. {\if\edition\pythonEd
  3118. Implement the \key{select\_instructions} pass in
  3119. \code{compiler.py}. Create three new example programs that are
  3120. designed to exercise all of the interesting cases in this pass.
  3121. Run the \code{run-tests.py} script to to check
  3122. whether the output programs produce the same result as the input
  3123. programs.
  3124. \fi}
  3125. \end{exercise}
  3126. \section{Assign Homes}
  3127. \label{sec:assign-Lvar}
  3128. The \key{assign\_homes} pass compiles \LangXVar{} programs to
  3129. \LangXVar{} programs that no longer use program variables.
  3130. Thus, the \key{assign-homes} pass is responsible for placing all of
  3131. the program variables in registers or on the stack. For runtime
  3132. efficiency, it is better to place variables in registers, but as there
  3133. are only 16 registers, some programs must necessarily resort to
  3134. placing some variables on the stack. In this chapter we focus on the
  3135. mechanics of placing variables on the stack. We study an algorithm for
  3136. placing variables in registers in
  3137. Chapter~\ref{ch:register-allocation-Lvar}.
  3138. Consider again the following \LangVar{} program from
  3139. Section~\ref{sec:remove-complex-opera-Lvar}.
  3140. % var_test_20.rkt
  3141. {\if\edition\racketEd\color{olive}
  3142. \begin{lstlisting}
  3143. (let ([a 42])
  3144. (let ([b a])
  3145. b))
  3146. \end{lstlisting}
  3147. \fi}
  3148. {\if\edition\pythonEd
  3149. \begin{lstlisting}
  3150. a = 42
  3151. b = a
  3152. print(b)
  3153. \end{lstlisting}
  3154. \fi}
  3155. %
  3156. The output of \code{select\_instructions} is shown below, on the left,
  3157. and the output of \code{assign\_homes} is on the right. In this
  3158. example, we assign variable \code{a} to stack location
  3159. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3160. \begin{transformation}
  3161. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3162. movq $42, a
  3163. movq a, b
  3164. movq b, %rax
  3165. \end{lstlisting}
  3166. \compilesto
  3167. %stack-space: 16
  3168. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3169. movq $42, -8(%rbp)
  3170. movq -8(%rbp), -16(%rbp)
  3171. movq -16(%rbp), %rax
  3172. \end{lstlisting}
  3173. \end{transformation}
  3174. \racket{The \code{locals-types} entry in the $\itm{info}$ of the
  3175. \code{X86Program} node is an alist mapping all the variables in the
  3176. program to their types (for now just \code{Integer}). The
  3177. \code{assign\_homes} pass should replace all uses of those variables
  3178. with stack locations. As an aside, the \code{locals-types} entry is
  3179. computed by \code{type-check-Cvar} in the support code, which
  3180. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3181. which should be propagated to the \code{X86Program} node.}
  3182. %
  3183. \python{The \code{assign\_homes} pass should replace all uses of
  3184. variables with stack locations.}
  3185. %
  3186. In the process of assigning variables to stack locations, it is
  3187. convenient for you to compute and store the size of the frame (in
  3188. bytes) in%
  3189. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space}}
  3190. %
  3191. \python{the field \code{stack\_space} of the \key{X86Program} node},
  3192. which is needed later to generate the conclusion of the \code{main}
  3193. procedure. The x86-64 standard requires the frame size to be a
  3194. multiple of 16 bytes.\index{subject}{frame}
  3195. % TODO: store the number of variables instead? -Jeremy
  3196. \begin{exercise}\normalfont
  3197. Implement the \key{assign\_homes} pass in
  3198. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3199. auxiliary functions for each of the non-terminals in the \LangXVar{}
  3200. grammar. We recommend that the auxiliary functions take an extra
  3201. parameter that maps variable names to homes (stack locations for now).
  3202. %
  3203. {\if\edition\racketEd\color{olive}
  3204. In the \code{run-tests.rkt} script, add the following entry to the
  3205. list of \code{passes} and then run the script to test your compiler.
  3206. \begin{lstlisting}
  3207. (list "assign homes" assign-homes interp_x86-0)
  3208. \end{lstlisting}
  3209. \fi}
  3210. {\if\edition\pythonEd
  3211. Run the \code{run-tests.py} script to to check
  3212. whether the output programs produce the same result as the input
  3213. programs.
  3214. \fi}
  3215. \end{exercise}
  3216. \section{Patch Instructions}
  3217. \label{sec:patch-s0}
  3218. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3219. \LangXInt{} by making sure that each instruction adheres to the
  3220. restriction that at most one argument of an instruction may be a
  3221. memory reference.
  3222. We return to the following example.\\
  3223. \begin{minipage}{0.5\textwidth}
  3224. % var_test_20.rkt
  3225. {\if\edition\racketEd\color{olive}
  3226. \begin{lstlisting}
  3227. (let ([a 42])
  3228. (let ([b a])
  3229. b))
  3230. \end{lstlisting}
  3231. \fi}
  3232. {\if\edition\pythonEd
  3233. \begin{lstlisting}
  3234. a = 42
  3235. b = a
  3236. print(b)
  3237. \end{lstlisting}
  3238. \fi}
  3239. \end{minipage}\\
  3240. The \key{assign\_homes} pass produces the following translation. \\
  3241. \begin{minipage}{0.5\textwidth}
  3242. {\if\edition\racketEd\color{olive}
  3243. \begin{lstlisting}
  3244. movq $42, -8(%rbp)
  3245. movq -8(%rbp), -16(%rbp)
  3246. movq -16(%rbp), %rax
  3247. \end{lstlisting}
  3248. \fi}
  3249. {\if\edition\pythonEd
  3250. \begin{lstlisting}
  3251. movq 42, -8(%rbp)
  3252. movq -8(%rbp), -16(%rbp)
  3253. movq -16(%rbp), %rdi
  3254. callq print_int
  3255. \end{lstlisting}
  3256. \fi}
  3257. \end{minipage}\\
  3258. The second \key{movq} instruction is problematic because both
  3259. arguments are stack locations. We suggest fixing this problem by
  3260. moving from the source location to the register \key{rax} and then
  3261. from \key{rax} to the destination location, as follows.
  3262. \begin{lstlisting}
  3263. movq -8(%rbp), %rax
  3264. movq %rax, -16(%rbp)
  3265. \end{lstlisting}
  3266. \begin{exercise}
  3267. \normalfont Implement the \key{patch\_instructions} pass in
  3268. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3269. Create three new example programs that are
  3270. designed to exercise all of the interesting cases in this pass.
  3271. %
  3272. {\if\edition\racketEd\color{olive}
  3273. In the \code{run-tests.rkt} script, add the following entry to the
  3274. list of \code{passes} and then run the script to test your compiler.
  3275. \begin{lstlisting}
  3276. (list "patch instructions" patch-instructions interp_x86-0)
  3277. \end{lstlisting}
  3278. \fi}
  3279. {\if\edition\pythonEd
  3280. Run the \code{run-tests.py} script to to check
  3281. whether the output programs produce the same result as the input
  3282. programs.
  3283. \fi}
  3284. \end{exercise}
  3285. \section{Print x86}
  3286. \label{sec:print-x86}
  3287. The last step of the compiler from \LangVar{} to x86 is to convert the
  3288. \LangXInt{} AST (defined in Figure~\ref{fig:x86-int-ast}) to the
  3289. string representation (defined in
  3290. Figure~\ref{fig:x86-int-concrete}).
  3291. %
  3292. \racket{The Racket \key{format} and \key{string-append} functions are
  3293. useful in this regard.}
  3294. %
  3295. This pass creates the \key{main} function and the standard
  3296. instructions for its prelude and conclusion, as shown in
  3297. Figure~\ref{fig:p1-x86} of Section~\ref{sec:x86}. You will need to
  3298. know the amount of space needed for the stack frame, which you can
  3299. obtain from the
  3300. %
  3301. \racket{\code{stack-space} entry in the $\itm{info}$ field}
  3302. %
  3303. \python{\code{stack\_space} field}
  3304. %
  3305. of the \key{X86Program} node.
  3306. When running on Mac OS X, your compiler should prefix an underscore to
  3307. all labels, e.g., changing \key{main} to \key{\_main}.
  3308. %
  3309. \racket{The Racket call \code{(system-type 'os)} is useful for
  3310. determining which operating system the compiler is running on. It
  3311. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3312. %
  3313. \python{The Python \code{platform} library includes a \code{system()}
  3314. function that returns \code{'Linux'}, \code{'Windows'}, or
  3315. \code{'Darwin'} (for Mac).}
  3316. \begin{exercise}\normalfont
  3317. %
  3318. Implement the \key{print\_x86} pass in \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3319. %
  3320. {\if\edition\racketEd\color{olive}
  3321. In the \code{run-tests.rkt} script, add the following entry to the
  3322. list of \code{passes} and then run the script to test your compiler.
  3323. \begin{lstlisting}
  3324. (list "print x86" print-x86 #f)
  3325. \end{lstlisting}
  3326. %
  3327. Uncomment the call to the \key{compiler-tests} function
  3328. (Appendix~\ref{appendix:utilities}), which tests your complete
  3329. compiler by executing the generated x86 code. Compile the provided
  3330. \key{runtime.c} file to \key{runtime.o} using \key{gcc}. Run the
  3331. script to test your compiler.
  3332. \fi}
  3333. {\if\edition\pythonEd
  3334. Run the \code{run-tests.py} script to to check
  3335. whether the output programs produce the same result as the input
  3336. programs.
  3337. \fi}
  3338. \end{exercise}
  3339. \section{Challenge: Partial Evaluator for \LangVar{}}
  3340. \label{sec:pe-Lvar}
  3341. \index{subject}{partial evaluation}
  3342. This section describes two optional challenge exercises that involve
  3343. adapting and improving the partial evaluator for \LangInt{} that was
  3344. introduced in Section~\ref{sec:partial-evaluation}.
  3345. \begin{exercise}\label{ex:pe-Lvar}
  3346. \normalfont
  3347. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  3348. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3349. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3350. %
  3351. \racket{\key{let} binding}\python{assignment}
  3352. %
  3353. to the \LangInt{} language, so you will need to add cases for them in
  3354. the \code{pe\_exp}
  3355. %
  3356. \racket{function}
  3357. %
  3358. \python{and \code{pe\_stmt} functions}.
  3359. %
  3360. Once complete, add the partial evaluation pass to the front of your
  3361. compiler and make sure that your compiler still passes all of the
  3362. tests.
  3363. \end{exercise}
  3364. \begin{exercise}
  3365. \normalfont
  3366. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3367. \code{pe\_add} auxiliary functions with functions that know more about
  3368. arithmetic. For example, your partial evaluator should translate
  3369. {\if\edition\racketEd\color{olive}
  3370. \[
  3371. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3372. \code{(+ 2 (read))}
  3373. \]
  3374. \fi}
  3375. {\if\edition\pythonEd
  3376. \[
  3377. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3378. \code{2 + input\_int()}
  3379. \]
  3380. \fi}
  3381. To accomplish this, the \code{pe\_exp} function should produce output
  3382. in the form of the $\itm{residual}$ non-terminal of the following
  3383. grammar. The idea is that when processing an addition expression, we
  3384. can always produce either 1) an integer constant, 2) an addition
  3385. expression with an integer constant on the left-hand side but not the
  3386. right-hand side, or 3) or an addition expression in which neither
  3387. subexpression is a constant.
  3388. {\if\edition\racketEd\color{olive}
  3389. \[
  3390. \begin{array}{lcl}
  3391. \itm{inert} &::=& \Var
  3392. \MID \LP\key{read}\RP
  3393. \MID \LP\key{-} ~\Var\RP
  3394. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3395. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3396. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3397. \itm{residual} &::=& \Int
  3398. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3399. \MID \itm{inert}
  3400. \end{array}
  3401. \]
  3402. \fi}
  3403. {\if\edition\pythonEd
  3404. \[
  3405. \begin{array}{lcl}
  3406. \itm{inert} &::=& \Var
  3407. \MID \key{input\_int}\LP\RP
  3408. \MID \key{-} \Var
  3409. \MID \key{-} \key{input\_int}\LP\RP
  3410. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3411. \itm{residual} &::=& \Int
  3412. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3413. \MID \itm{inert}
  3414. \end{array}
  3415. \]
  3416. \fi}
  3417. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3418. inputs are $\itm{residual}$ expressions and they should return
  3419. $\itm{residual}$ expressions. Once the improvements are complete,
  3420. make sure that your compiler still passes all of the tests. After
  3421. all, fast code is useless if it produces incorrect results!
  3422. \end{exercise}
  3423. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3424. \chapter{Register Allocation}
  3425. \label{ch:register-allocation-Lvar}
  3426. \index{subject}{register allocation}
  3427. In Chapter~\ref{ch:Lvar} we learned how to store variables on the
  3428. stack. In this chapter we learn how to improve the performance of the
  3429. generated code by assigning some variables to registers. The CPU can
  3430. access a register in a single cycle, whereas accessing the stack can
  3431. take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
  3432. serves as a running example. The source program is on the left and the
  3433. output of instruction selection is on the right. The program is almost
  3434. in the x86 assembly language but it still uses variables.
  3435. \begin{figure}
  3436. \begin{minipage}{0.45\textwidth}
  3437. Example \LangVar{} program:
  3438. % var_test_28.rkt
  3439. {\if\edition\racketEd\color{olive}
  3440. \begin{lstlisting}
  3441. (let ([v 1])
  3442. (let ([w 42])
  3443. (let ([x (+ v 7)])
  3444. (let ([y x])
  3445. (let ([z (+ x w)])
  3446. (+ z (- y)))))))
  3447. \end{lstlisting}
  3448. \fi}
  3449. {\if\edition\pythonEd
  3450. \begin{lstlisting}
  3451. v = 1
  3452. w = 42
  3453. x = v + 7
  3454. y = x
  3455. z = x + w
  3456. print(z + (- y))
  3457. \end{lstlisting}
  3458. \fi}
  3459. \end{minipage}
  3460. \begin{minipage}{0.45\textwidth}
  3461. After instruction selection:
  3462. {\if\edition\racketEd\color{olive}
  3463. \begin{lstlisting}
  3464. locals-types:
  3465. x : Integer, y : Integer,
  3466. z : Integer, t : Integer,
  3467. v : Integer, w : Integer
  3468. start:
  3469. movq $1, v
  3470. movq $42, w
  3471. movq v, x
  3472. addq $7, x
  3473. movq x, y
  3474. movq x, z
  3475. addq w, z
  3476. movq y, t
  3477. negq t
  3478. movq z, %rax
  3479. addq t, %rax
  3480. jmp conclusion
  3481. \end{lstlisting}
  3482. \fi}
  3483. {\if\edition\pythonEd
  3484. \begin{lstlisting}
  3485. movq $1, v
  3486. movq $42, w
  3487. movq v, x
  3488. addq $7, x
  3489. movq x, y
  3490. movq x, z
  3491. addq w, z
  3492. movq y, tmp_0
  3493. negq tmp_0
  3494. movq z, tmp_1
  3495. addq tmp_0, tmp_1
  3496. movq tmp_1, %rdi
  3497. callq print_int
  3498. \end{lstlisting}
  3499. \fi}
  3500. \end{minipage}
  3501. \caption{A running example for register allocation.}
  3502. \label{fig:reg-eg}
  3503. \end{figure}
  3504. The goal of register allocation is to fit as many variables into
  3505. registers as possible. Some programs have more variables than
  3506. registers so we cannot always map each variable to a different
  3507. register. Fortunately, it is common for different variables to be
  3508. needed during different periods of time during program execution, and
  3509. in such cases several variables can be mapped to the same register.
  3510. Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
  3511. After the variable \code{x} is moved to \code{z} it is no longer
  3512. needed. Variable \code{z}, on the other hand, is used only after this
  3513. point, so \code{x} and \code{z} could share the same register. The
  3514. topic of Section~\ref{sec:liveness-analysis-Lvar} is how to compute
  3515. where a variable is needed. Once we have that information, we compute
  3516. which variables are needed at the same time, i.e., which ones
  3517. \emph{interfere} with each other, and represent this relation as an
  3518. undirected graph whose vertices are variables and edges indicate when
  3519. two variables interfere (Section~\ref{sec:build-interference}). We
  3520. then model register allocation as a graph coloring problem
  3521. (Section~\ref{sec:graph-coloring}).
  3522. If we run out of registers despite these efforts, we place the
  3523. remaining variables on the stack, similar to what we did in
  3524. Chapter~\ref{ch:Lvar}. It is common to use the verb \emph{spill} for
  3525. assigning a variable to a stack location. The decision to spill a
  3526. variable is handled as part of the graph coloring process.
  3527. We make the simplifying assumption that each variable is assigned to
  3528. one location (a register or stack address). A more sophisticated
  3529. approach is to assign a variable to one or more locations in different
  3530. regions of the program. For example, if a variable is used many times
  3531. in short sequence and then only used again after many other
  3532. instructions, it could be more efficient to assign the variable to a
  3533. register during the initial sequence and then move it to the stack for
  3534. the rest of its lifetime. We refer the interested reader to
  3535. \citet{Cooper:2011aa} Chapter 13 for more information about that
  3536. approach.
  3537. % discuss prioritizing variables based on how much they are used.
  3538. \section{Registers and Calling Conventions}
  3539. \label{sec:calling-conventions}
  3540. \index{subject}{calling conventions}
  3541. As we perform register allocation, we need to be aware of the
  3542. \emph{calling conventions} \index{subject}{calling conventions} that govern how
  3543. functions calls are performed in x86.
  3544. %
  3545. Even though \LangVar{} does not include programmer-defined functions,
  3546. our generated code includes a \code{main} function that is called by
  3547. the operating system and our generated code contains calls to the
  3548. \code{read\_int} function.
  3549. Function calls require coordination between two pieces of code that
  3550. may be written by different programmers or generated by different
  3551. compilers. Here we follow the System V calling conventions that are
  3552. used by the GNU C compiler on Linux and
  3553. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3554. %
  3555. The calling conventions include rules about how functions share the
  3556. use of registers. In particular, the caller is responsible for freeing
  3557. up some registers prior to the function call for use by the callee.
  3558. These are called the \emph{caller-saved registers}
  3559. \index{subject}{caller-saved registers}
  3560. and they are
  3561. \begin{lstlisting}
  3562. rax rcx rdx rsi rdi r8 r9 r10 r11
  3563. \end{lstlisting}
  3564. On the other hand, the callee is responsible for preserving the values
  3565. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  3566. which are
  3567. \begin{lstlisting}
  3568. rsp rbp rbx r12 r13 r14 r15
  3569. \end{lstlisting}
  3570. We can think about this caller/callee convention from two points of
  3571. view, the caller view and the callee view:
  3572. \begin{itemize}
  3573. \item The caller should assume that all the caller-saved registers get
  3574. overwritten with arbitrary values by the callee. On the other hand,
  3575. the caller can safely assume that all the callee-saved registers
  3576. contain the same values after the call that they did before the
  3577. call.
  3578. \item The callee can freely use any of the caller-saved registers.
  3579. However, if the callee wants to use a callee-saved register, the
  3580. callee must arrange to put the original value back in the register
  3581. prior to returning to the caller. This can be accomplished by saving
  3582. the value to the stack in the prelude of the function and restoring
  3583. the value in the conclusion of the function.
  3584. \end{itemize}
  3585. In x86, registers are also used for passing arguments to a function
  3586. and for the return value. In particular, the first six arguments to a
  3587. function are passed in the following six registers, in this order.
  3588. \begin{lstlisting}
  3589. rdi rsi rdx rcx r8 r9
  3590. \end{lstlisting}
  3591. If there are more than six arguments, then the convention is to use
  3592. space on the frame of the caller for the rest of the
  3593. arguments. However, in Chapter~\ref{ch:Rfun} we arrange never to
  3594. need more than six arguments.
  3595. %
  3596. \racket{For now, the only function we care about is \code{read\_int}
  3597. and it takes zero arguments.}
  3598. %
  3599. \python{For now, the only functions we care about are \code{read\_int}
  3600. and \code{print\_int}, which take zero and one argument, respectively.}
  3601. %
  3602. The register \code{rax} is used for the return value of a function.
  3603. The next question is how these calling conventions impact register
  3604. allocation. Consider the \LangVar{} program in
  3605. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3606. example from the caller point of view and then from the callee point
  3607. of view.
  3608. The program makes two calls to \READOP{}. Also, the variable \code{x}
  3609. is in use during the second call to \READOP{}, so we need to make sure
  3610. that the value in \code{x} does not get accidentally wiped out by the
  3611. call to \READOP{}. One obvious approach is to save all the values in
  3612. caller-saved registers to the stack prior to each function call, and
  3613. restore them after each call. That way, if the register allocator
  3614. chooses to assign \code{x} to a caller-saved register, its value will
  3615. be preserved across the call to \READOP{}. However, saving and
  3616. restoring to the stack is relatively slow. If \code{x} is not used
  3617. many times, it may be better to assign \code{x} to a stack location in
  3618. the first place. Or better yet, if we can arrange for \code{x} to be
  3619. placed in a callee-saved register, then it won't need to be saved and
  3620. restored during function calls.
  3621. The approach that we recommend for variables that are in use during a
  3622. function call is to either assign them to callee-saved registers or to
  3623. spill them to the stack. On the other hand, for variables that are not
  3624. in use during a function call, we try the following alternatives in
  3625. order 1) look for an available caller-saved register (to leave room
  3626. for other variables in the callee-saved register), 2) look for a
  3627. callee-saved register, and 3) spill the variable to the stack.
  3628. It is straightforward to implement this approach in a graph coloring
  3629. register allocator. First, we know which variables are in use during
  3630. every function call because we compute that information for every
  3631. instruction (Section~\ref{sec:liveness-analysis-Lvar}). Second, when
  3632. we build the interference graph
  3633. (Section~\ref{sec:build-interference}), we can place an edge between
  3634. each of these call-live variables and the caller-saved registers in
  3635. the interference graph. This will prevent the graph coloring algorithm
  3636. from assigning them to caller-saved registers.
  3637. Returning to the example in
  3638. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3639. generated x86 code on the right-hand side. Notice that variable
  3640. \code{x} is assigned to \code{rbx}, a callee-saved register. Thus, it
  3641. is already in a safe place during the second call to
  3642. \code{read\_int}. Next, notice that variable \code{y} is assigned to
  3643. \code{rcx}, a caller-saved register, because there are no function
  3644. calls in the remainder of the block.
  3645. Next we analyze the example from the callee point of view, focusing on
  3646. the prelude and conclusion of the \code{main} function. As usual the
  3647. prelude begins with saving the \code{rbp} register to the stack and
  3648. setting the \code{rbp} to the current stack pointer. We now know why
  3649. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3650. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3651. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3652. (\code{x}). The other callee-saved registers are not saved in the
  3653. prelude because they are not used. The prelude subtracts 8 bytes from
  3654. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  3655. conclusion, we see that \code{rbx} is restored from the stack with a
  3656. \code{popq} instruction.
  3657. \index{subject}{prelude}\index{subject}{conclusion}
  3658. \begin{figure}[tp]
  3659. \begin{minipage}{0.45\textwidth}
  3660. Example \LangVar{} program:
  3661. %var_test_14.rkt
  3662. {\if\edition\racketEd\color{olive}
  3663. \begin{lstlisting}
  3664. (let ([x (read)])
  3665. (let ([y (read)])
  3666. (+ (+ x y) 42)))
  3667. \end{lstlisting}
  3668. \fi}
  3669. {\if\edition\pythonEd
  3670. \begin{lstlisting}
  3671. x = input_int()
  3672. y = input_int()
  3673. print((x + y) + 42)
  3674. \end{lstlisting}
  3675. \fi}
  3676. \end{minipage}
  3677. \begin{minipage}{0.45\textwidth}
  3678. Generated x86 assembly:
  3679. {\if\edition\racketEd\color{olive}
  3680. \begin{lstlisting}
  3681. start:
  3682. callq read_int
  3683. movq %rax, %rbx
  3684. callq read_int
  3685. movq %rax, %rcx
  3686. addq %rcx, %rbx
  3687. movq %rbx, %rax
  3688. addq $42, %rax
  3689. jmp _conclusion
  3690. .globl main
  3691. main:
  3692. pushq %rbp
  3693. movq %rsp, %rbp
  3694. pushq %rbx
  3695. subq $8, %rsp
  3696. jmp start
  3697. conclusion:
  3698. addq $8, %rsp
  3699. popq %rbx
  3700. popq %rbp
  3701. retq
  3702. \end{lstlisting}
  3703. \fi}
  3704. {\if\edition\pythonEd
  3705. \begin{lstlisting}
  3706. .globl main
  3707. main:
  3708. pushq %rbp
  3709. movq %rsp, %rbp
  3710. pushq %rbx
  3711. subq $8, %rsp
  3712. callq read_int
  3713. movq %rax, %rbx
  3714. callq read_int
  3715. movq %rax, %rcx
  3716. movq %rbx, %rdx
  3717. addq %rcx, %rdx
  3718. movq %rdx, %rcx
  3719. addq $42, %rcx
  3720. movq %rcx, %rdi
  3721. callq print_int
  3722. addq $8, %rsp
  3723. popq %rbx
  3724. popq %rbp
  3725. retq
  3726. \end{lstlisting}
  3727. \fi}
  3728. \end{minipage}
  3729. \caption{An example with function calls.}
  3730. \label{fig:example-calling-conventions}
  3731. \end{figure}
  3732. %\clearpage
  3733. \section{Liveness Analysis}
  3734. \label{sec:liveness-analysis-Lvar}
  3735. \index{subject}{liveness analysis}
  3736. The \code{uncover\_live} \racket{pass}\python{function}
  3737. performs \emph{liveness analysis}, that
  3738. is, it discovers which variables are in-use in different regions of a
  3739. program.
  3740. %
  3741. A variable or register is \emph{live} at a program point if its
  3742. current value is used at some later point in the program. We refer to
  3743. variables, stack locations, and registers collectively as
  3744. \emph{locations}.
  3745. %
  3746. Consider the following code fragment in which there are two writes to
  3747. \code{b}. Are \code{a} and \code{b} both live at the same time?
  3748. \begin{center}
  3749. \begin{minipage}{0.96\textwidth}
  3750. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3751. movq $5, a
  3752. movq $30, b
  3753. movq a, c
  3754. movq $10, b
  3755. addq b, c
  3756. \end{lstlisting}
  3757. \end{minipage}
  3758. \end{center}
  3759. The answer is no because \code{a} is live from line 1 to 3 and
  3760. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  3761. line 2 is never used because it is overwritten (line 4) before the
  3762. next read (line 5).
  3763. The live locations can be computed by traversing the instruction
  3764. sequence back to front (i.e., backwards in execution order). Let
  3765. $I_1,\ldots, I_n$ be the instruction sequence. We write
  3766. $L_{\mathsf{after}}(k)$ for the set of live locations after
  3767. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  3768. locations before instruction $I_k$.
  3769. \racket{We recommend representing these
  3770. sets with the Racket \code{set} data structure described in
  3771. Figure~\ref{fig:set}.}
  3772. \python{We recommend representing these sets with the Python
  3773. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  3774. data structure.}
  3775. {\if\edition\racketEd\color{olive}
  3776. \begin{figure}[tp]
  3777. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  3778. \small
  3779. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  3780. A \emph{set} is an unordered collection of elements without duplicates.
  3781. Here are some of the operations defined on sets.
  3782. \index{subject}{set}
  3783. \begin{description}
  3784. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  3785. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  3786. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  3787. difference of the two sets.
  3788. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  3789. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  3790. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  3791. \end{description}
  3792. \end{tcolorbox}
  3793. %\end{wrapfigure}
  3794. \caption{The \code{set} data structure.}
  3795. \label{fig:set}
  3796. \end{figure}
  3797. \fi}
  3798. The live locations after an instruction are always the same as the
  3799. live locations before the next instruction.
  3800. \index{subject}{live-after} \index{subject}{live-before}
  3801. \begin{equation} \label{eq:live-after-before-next}
  3802. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  3803. \end{equation}
  3804. To start things off, there are no live locations after the last
  3805. instruction, so
  3806. \begin{equation}\label{eq:live-last-empty}
  3807. L_{\mathsf{after}}(n) = \emptyset
  3808. \end{equation}
  3809. We then apply the following rule repeatedly, traversing the
  3810. instruction sequence back to front.
  3811. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  3812. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  3813. \end{equation}
  3814. where $W(k)$ are the locations written to by instruction $I_k$ and
  3815. $R(k)$ are the locations read by instruction $I_k$.
  3816. {\if\edition\racketEd\color{olive}
  3817. There is a special case for \code{jmp} instructions. The locations
  3818. that are live before a \code{jmp} should be the locations in
  3819. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  3820. maintaining an alist named \code{label->live} that maps each label to
  3821. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  3822. now the only \code{jmp} in a \LangXVar{} program is the one at the
  3823. end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
  3824. The conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should
  3825. map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  3826. \fi}
  3827. Let us walk through the above example, applying these formulas
  3828. starting with the instruction on line 5. We collect the answers in
  3829. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  3830. \code{addq b, c} instruction is $\emptyset$ because it is the last
  3831. instruction (formula~\ref{eq:live-last-empty}). The
  3832. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  3833. because it reads from variables \code{b} and \code{c}
  3834. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  3835. \[
  3836. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  3837. \]
  3838. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  3839. the live-before set from line 5 to be the live-after set for this
  3840. instruction (formula~\ref{eq:live-after-before-next}).
  3841. \[
  3842. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  3843. \]
  3844. This move instruction writes to \code{b} and does not read from any
  3845. variables, so we have the following live-before set
  3846. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  3847. \[
  3848. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  3849. \]
  3850. The live-before for instruction \code{movq a, c}
  3851. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  3852. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  3853. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  3854. variable that is not live and does not read from a variable.
  3855. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  3856. because it writes to variable \code{a}.
  3857. \begin{figure}[tbp]
  3858. \begin{minipage}{0.45\textwidth}
  3859. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3860. movq $5, a
  3861. movq $30, b
  3862. movq a, c
  3863. movq $10, b
  3864. addq b, c
  3865. \end{lstlisting}
  3866. \end{minipage}
  3867. \vrule\hspace{10pt}
  3868. \begin{minipage}{0.45\textwidth}
  3869. \begin{align*}
  3870. L_{\mathsf{before}}(1)= \emptyset,
  3871. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  3872. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  3873. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  3874. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  3875. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  3876. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  3877. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  3878. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  3879. L_{\mathsf{after}}(5)= \emptyset
  3880. \end{align*}
  3881. \end{minipage}
  3882. \caption{Example output of liveness analysis on a short example.}
  3883. \label{fig:liveness-example-0}
  3884. \end{figure}
  3885. \begin{exercise}\normalfont
  3886. Perform liveness analysis on the running example in
  3887. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  3888. sets for each instruction. Compare your answers to the solution
  3889. shown in Figure~\ref{fig:live-eg}.
  3890. \end{exercise}
  3891. \begin{figure}[tp]
  3892. \hspace{20pt}
  3893. \begin{minipage}{0.45\textwidth}
  3894. {\if\edition\racketEd\color{olive}
  3895. \begin{lstlisting}
  3896. |$\{\ttm{rsp}\}$|
  3897. movq $1, v
  3898. |$\{\ttm{v},\ttm{rsp}\}$|
  3899. movq $42, w
  3900. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  3901. movq v, x
  3902. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3903. addq $7, x
  3904. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3905. movq x, y
  3906. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  3907. movq x, z
  3908. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3909. addq w, z
  3910. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3911. movq y, t
  3912. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3913. negq t
  3914. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3915. movq z, %rax
  3916. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  3917. addq t, %rax
  3918. |$\{\ttm{rax},\ttm{rsp}\}$|
  3919. jmp conclusion
  3920. \end{lstlisting}
  3921. \fi}
  3922. {\if\edition\pythonEd
  3923. \begin{lstlisting}
  3924. movq $1, v
  3925. |$\{\ttm{v}\}$|
  3926. movq $42, w
  3927. |$\{\ttm{w}, \ttm{v}\}$|
  3928. movq v, x
  3929. |$\{\ttm{w}, \ttm{x}\}$|
  3930. addq $7, x
  3931. |$\{\ttm{w}, \ttm{x}\}$|
  3932. movq x, y
  3933. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  3934. movq x, z
  3935. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  3936. addq w, z
  3937. |$\{\ttm{y}, \ttm{z}\}$|
  3938. movq y, tmp_0
  3939. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  3940. negq tmp_0
  3941. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  3942. movq z, tmp_1
  3943. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  3944. addq tmp_0, tmp_1
  3945. |$\{\ttm{tmp\_1}\}$|
  3946. movq tmp_1, %rdi
  3947. |$\{\ttm{rdi}\}$|
  3948. callq print_int
  3949. |$\{\}$|
  3950. \end{lstlisting}
  3951. \fi}
  3952. \end{minipage}
  3953. \caption{The running example annotated with live-after sets.}
  3954. \label{fig:live-eg}
  3955. \end{figure}
  3956. \begin{exercise}\normalfont
  3957. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  3958. %
  3959. \racket{Store the sequence of live-after sets in the $\itm{info}$
  3960. field of the \code{Block} structure.}
  3961. %
  3962. \python{Return a dictionary that maps each instruction to its
  3963. live-after set.}
  3964. %
  3965. \racket{We recommend creating an auxiliary function that takes a list
  3966. of instructions and an initial live-after set (typically empty) and
  3967. returns the list of live-after sets.}
  3968. %
  3969. We recommend creating auxiliary functions to 1) compute the set
  3970. of locations that appear in an \Arg{}, 2) compute the locations read
  3971. by an instruction (the $R$ function), and 3) the locations written by
  3972. an instruction (the $W$ function). The \code{callq} instruction should
  3973. include all of the caller-saved registers in its write-set $W$ because
  3974. the calling convention says that those registers may be written to
  3975. during the function call. Likewise, the \code{callq} instruction
  3976. should include the appropriate argument-passing registers in its
  3977. read-set $R$, depending on the arity of the function being
  3978. called. (This is why the abstract syntax for \code{callq} includes the
  3979. arity.)
  3980. \end{exercise}
  3981. %\clearpage
  3982. \section{Build the Interference Graph}
  3983. \label{sec:build-interference}
  3984. {\if\edition\racketEd\color{olive}
  3985. \begin{figure}[tp]
  3986. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  3987. \small
  3988. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  3989. A \emph{graph} is a collection of vertices and edges where each
  3990. edge connects two vertices. A graph is \emph{directed} if each
  3991. edge points from a source to a target. Otherwise the graph is
  3992. \emph{undirected}.
  3993. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  3994. \begin{description}
  3995. %% We currently don't use directed graphs. We instead use
  3996. %% directed multi-graphs. -Jeremy
  3997. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  3998. directed graph from a list of edges. Each edge is a list
  3999. containing the source and target vertex.
  4000. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  4001. undirected graph from a list of edges. Each edge is represented by
  4002. a list containing two vertices.
  4003. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  4004. inserts a vertex into the graph.
  4005. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  4006. inserts an edge between the two vertices.
  4007. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  4008. returns a sequence of vertices adjacent to the vertex.
  4009. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  4010. returns a sequence of all vertices in the graph.
  4011. \end{description}
  4012. \end{tcolorbox}
  4013. %\end{wrapfigure}
  4014. \caption{The Racket \code{graph} package.}
  4015. \label{fig:graph}
  4016. \end{figure}
  4017. \fi}
  4018. Based on the liveness analysis, we know where each location is live.
  4019. However, during register allocation, we need to answer questions of
  4020. the specific form: are locations $u$ and $v$ live at the same time?
  4021. (And therefore cannot be assigned to the same register.) To make this
  4022. question more efficient to answer, we create an explicit data
  4023. structure, an \emph{interference graph}\index{subject}{interference
  4024. graph}. An interference graph is an undirected graph that has an
  4025. edge between two locations if they are live at the same time, that is,
  4026. if they interfere with each other.
  4027. %
  4028. \racket{We recommend using the Racket \code{graph} package
  4029. (Figure~\ref{fig:graph}) to represent the interference graph.}
  4030. %
  4031. \python{We provide implementations of directed and undirected graph
  4032. data structures in the file \code{graph.py} of the support code.}
  4033. A straightforward way to compute the interference graph is to look at
  4034. the set of live locations between each instruction and add an edge to
  4035. the graph for every pair of variables in the same set. This approach
  4036. is less than ideal for two reasons. First, it can be expensive because
  4037. it takes $O(n^2)$ time to consider at every pair in a set of $n$ live
  4038. locations. Second, in the special case where two locations hold the
  4039. same value (because one was assigned to the other), they can be live
  4040. at the same time without interfering with each other.
  4041. A better way to compute the interference graph is to focus on
  4042. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  4043. must not overwrite something in a live location. So for each
  4044. instruction, we create an edge between the locations being written to
  4045. and the live locations. (Except that one should not create self
  4046. edges.) Note that for the \key{callq} instruction, we consider all of
  4047. the caller-saved registers as being written to, so an edge is added
  4048. between every live variable and every caller-saved register. Also, for
  4049. \key{movq} there is the above-mentioned special case to deal with. If
  4050. a live variable $v$ is the same as the source of the \key{movq}, then
  4051. there is no need to add an edge between $v$ and the destination,
  4052. because they both hold the same value.
  4053. %
  4054. So we have the following two rules.
  4055. \begin{enumerate}
  4056. \item If instruction $I_k$ is a move instruction, \key{movq} $s$\key{,}
  4057. $d$, then add the edge $(d,v)$ for every $v \in
  4058. L_{\mathsf{after}}(k)$ unless $v = d$ or $v = s$.
  4059. \item For any other instruction $I_k$, for every $d \in W(k)$
  4060. add an edge $(d,v)$ for every $v \in L_{\mathsf{after}}(k)$ unless $v = d$.
  4061. %% \item If instruction $I_k$ is an arithmetic instruction such as
  4062. %% \code{addq} $s$\key{,} $d$, then add the edge $(d,v)$ for every $v \in
  4063. %% L_{\mathsf{after}}(k)$ unless $v = d$.
  4064. %% \item If instruction $I_k$ is of the form \key{callq}
  4065. %% $\mathit{label}$, then add an edge $(r,v)$ for every caller-saved
  4066. %% register $r$ and every variable $v \in L_{\mathsf{after}}(k)$.
  4067. \end{enumerate}
  4068. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  4069. the above rules to each instruction. We highlight a few of the
  4070. instructions. \racket{The first instruction is \lstinline{movq $1, v}
  4071. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  4072. so \code{v} interferes with \code{rsp}.}
  4073. %
  4074. \python{The first instruction is \lstinline{movq $1, v} and the
  4075. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  4076. no interference because $\ttm{v}$ is the destination of the move.}
  4077. %
  4078. \racket{The fourth instruction is \lstinline{addq $7, x} and the
  4079. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  4080. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  4081. %
  4082. \python{The fourth instruction is \lstinline{addq $7, x} and the
  4083. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  4084. $\ttm{x}$ interferes with \ttm{w}.}
  4085. %
  4086. \racket{The next instruction is \lstinline{movq x, y} and the
  4087. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  4088. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  4089. \ttm{x} because \ttm{x} is the source of the move and therefore
  4090. \ttm{x} and \ttm{y} hold the same value.}
  4091. %
  4092. \python{The next instruction is \lstinline{movq x, y} and the
  4093. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  4094. applies, so \ttm{y} interferes with \ttm{w} but not
  4095. \ttm{x} because \ttm{x} is the source of the move and therefore
  4096. \ttm{x} and \ttm{y} hold the same value.}
  4097. %
  4098. Figure~\ref{fig:interference-results} lists the interference results
  4099. for all of the instructions and the resulting interference graph is
  4100. shown in Figure~\ref{fig:interfere}.
  4101. \begin{figure}[tbp]
  4102. \begin{quote}
  4103. {\if\edition\racketEd\color{olive}
  4104. \begin{tabular}{ll}
  4105. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  4106. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  4107. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4108. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4109. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  4110. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  4111. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  4112. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4113. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4114. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  4115. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  4116. \lstinline!jmp conclusion!& no interference.
  4117. \end{tabular}
  4118. \fi}
  4119. {\if\edition\pythonEd
  4120. \begin{tabular}{ll}
  4121. \lstinline!movq $1, v!& no interference\\
  4122. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  4123. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  4124. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  4125. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  4126. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  4127. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  4128. \lstinline!movq y, tmp_0!& \ttm{t} interferes with \ttm{z} \\
  4129. \lstinline!negq tmp_0!& \ttm{t} interferes with \ttm{z} \\
  4130. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  4131. \lstinline!addq tmp_0, tmp_1! & no interference\\
  4132. \lstinline!movq tmp_1, %rdi! & no interference \\
  4133. \lstinline!callq print_int!& no interference.
  4134. \end{tabular}
  4135. \fi}
  4136. \end{quote}
  4137. \caption{Interference results for the running example.}
  4138. \label{fig:interference-results}
  4139. \end{figure}
  4140. \begin{figure}[tbp]
  4141. \large
  4142. {\if\edition\racketEd\color{olive}
  4143. \[
  4144. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4145. \node (rax) at (0,0) {$\ttm{rax}$};
  4146. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4147. \node (t1) at (0,2) {$\ttm{t}$};
  4148. \node (z) at (3,2) {$\ttm{z}$};
  4149. \node (x) at (6,2) {$\ttm{x}$};
  4150. \node (y) at (3,0) {$\ttm{y}$};
  4151. \node (w) at (6,0) {$\ttm{w}$};
  4152. \node (v) at (9,0) {$\ttm{v}$};
  4153. \draw (t1) to (rax);
  4154. \draw (t1) to (z);
  4155. \draw (z) to (y);
  4156. \draw (z) to (w);
  4157. \draw (x) to (w);
  4158. \draw (y) to (w);
  4159. \draw (v) to (w);
  4160. \draw (v) to (rsp);
  4161. \draw (w) to (rsp);
  4162. \draw (x) to (rsp);
  4163. \draw (y) to (rsp);
  4164. \path[-.,bend left=15] (z) edge node {} (rsp);
  4165. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4166. \draw (rax) to (rsp);
  4167. \end{tikzpicture}
  4168. \]
  4169. \fi}
  4170. {\if\edition\pythonEd
  4171. \[
  4172. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4173. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  4174. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  4175. \node (z) at (3,2) {$\ttm{z}$};
  4176. \node (x) at (6,2) {$\ttm{x}$};
  4177. \node (y) at (3,0) {$\ttm{y}$};
  4178. \node (w) at (6,0) {$\ttm{w}$};
  4179. \node (v) at (9,0) {$\ttm{v}$};
  4180. \draw (t0) to (t1);
  4181. \draw (t0) to (z);
  4182. \draw (z) to (y);
  4183. \draw (z) to (w);
  4184. \draw (x) to (w);
  4185. \draw (y) to (w);
  4186. \draw (v) to (w);
  4187. \end{tikzpicture}
  4188. \]
  4189. \fi}
  4190. \caption{The interference graph of the example program.}
  4191. \label{fig:interfere}
  4192. \end{figure}
  4193. %% Our next concern is to choose a data structure for representing the
  4194. %% interference graph. There are many choices for how to represent a
  4195. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  4196. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  4197. %% data structure is to study the algorithm that uses the data structure,
  4198. %% determine what operations need to be performed, and then choose the
  4199. %% data structure that provide the most efficient implementations of
  4200. %% those operations. Often times the choice of data structure can have an
  4201. %% effect on the time complexity of the algorithm, as it does here. If
  4202. %% you skim the next section, you will see that the register allocation
  4203. %% algorithm needs to ask the graph for all of its vertices and, given a
  4204. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  4205. %% correct choice of graph representation is that of an adjacency
  4206. %% list. There are helper functions in \code{utilities.rkt} for
  4207. %% representing graphs using the adjacency list representation:
  4208. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  4209. %% (Appendix~\ref{appendix:utilities}).
  4210. %% %
  4211. %% \margincomment{\footnotesize To do: change to use the
  4212. %% Racket graph library. \\ --Jeremy}
  4213. %% %
  4214. %% In particular, those functions use a hash table to map each vertex to
  4215. %% the set of adjacent vertices, and the sets are represented using
  4216. %% Racket's \key{set}, which is also a hash table.
  4217. \begin{exercise}\normalfont
  4218. \racket{Implement the compiler pass named \code{build\_interference} according
  4219. to the algorithm suggested above. We recommend using the Racket
  4220. \code{graph} package to create and inspect the interference graph.
  4221. The output graph of this pass should be stored in the $\itm{info}$ field of
  4222. the program, under the key \code{conflicts}.}
  4223. %
  4224. \python{Implement a function named \code{build\_interference}
  4225. according to the algorithm suggested above that
  4226. returns the interference graph.}
  4227. \end{exercise}
  4228. \section{Graph Coloring via Sudoku}
  4229. \label{sec:graph-coloring}
  4230. \index{subject}{graph coloring}
  4231. \index{subject}{Sudoku}
  4232. \index{subject}{color}
  4233. We come to the main event, mapping variables to registers and stack
  4234. locations. Variables that interfere with each other must be mapped to
  4235. different locations. In terms of the interference graph, this means
  4236. that adjacent vertices must be mapped to different locations. If we
  4237. think of locations as colors, the register allocation problem becomes
  4238. the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  4239. The reader may be more familiar with the graph coloring problem than he
  4240. or she realizes; the popular game of Sudoku is an instance of the
  4241. graph coloring problem. The following describes how to build a graph
  4242. out of an initial Sudoku board.
  4243. \begin{itemize}
  4244. \item There is one vertex in the graph for each Sudoku square.
  4245. \item There is an edge between two vertices if the corresponding squares
  4246. are in the same row, in the same column, or if the squares are in
  4247. the same $3\times 3$ region.
  4248. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  4249. \item Based on the initial assignment of numbers to squares in the
  4250. Sudoku board, assign the corresponding colors to the corresponding
  4251. vertices in the graph.
  4252. \end{itemize}
  4253. If you can color the remaining vertices in the graph with the nine
  4254. colors, then you have also solved the corresponding game of Sudoku.
  4255. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  4256. the corresponding graph with colored vertices. We map the Sudoku
  4257. number 1 to black, 2 to white, and 3 to gray. We only show edges for a
  4258. sampling of the vertices (the colored ones) because showing edges for
  4259. all of the vertices would make the graph unreadable.
  4260. \begin{figure}[tbp]
  4261. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  4262. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  4263. \caption{A Sudoku game board and the corresponding colored graph.}
  4264. \label{fig:sudoku-graph}
  4265. \end{figure}
  4266. Some techniques for playing Sudoku correspond to heuristics used in
  4267. graph coloring algorithms. For example, one of the basic techniques
  4268. for Sudoku is called Pencil Marks. The idea is to use a process of
  4269. elimination to determine what numbers are no longer available for a
  4270. square and write down those numbers in the square (writing very
  4271. small). For example, if the number $1$ is assigned to a square, then
  4272. write the pencil mark $1$ in all the squares in the same row, column,
  4273. and region to indicate that $1$ is no longer an option for those other
  4274. squares.
  4275. %
  4276. The Pencil Marks technique corresponds to the notion of
  4277. \emph{saturation}\index{subject}{saturation} due to \cite{Brelaz:1979eu}. The
  4278. saturation of a vertex, in Sudoku terms, is the set of numbers that
  4279. are no longer available. In graph terminology, we have the following
  4280. definition:
  4281. \begin{equation*}
  4282. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  4283. \text{ and } \mathrm{color}(v) = c \}
  4284. \end{equation*}
  4285. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  4286. edge with $u$.
  4287. The Pencil Marks technique leads to a simple strategy for filling in
  4288. numbers: if there is a square with only one possible number left, then
  4289. choose that number! But what if there are no squares with only one
  4290. possibility left? One brute-force approach is to try them all: choose
  4291. the first one and if that ultimately leads to a solution, great. If
  4292. not, backtrack and choose the next possibility. One good thing about
  4293. Pencil Marks is that it reduces the degree of branching in the search
  4294. tree. Nevertheless, backtracking can be terribly time consuming. One
  4295. way to reduce the amount of backtracking is to use the
  4296. most-constrained-first heuristic (aka. minimum remaining
  4297. values)~\citep{Russell2003}. That is, when choosing a square, always
  4298. choose one with the fewest possibilities left (the vertex with the
  4299. highest saturation). The idea is that choosing highly constrained
  4300. squares earlier rather than later is better because later on there may
  4301. not be any possibilities left in the highly saturated squares.
  4302. However, register allocation is easier than Sudoku because the
  4303. register allocator can fall back to assigning variables to stack
  4304. locations when the registers run out. Thus, it makes sense to replace
  4305. backtracking with greedy search: make the best choice at the time and
  4306. keep going. We still wish to minimize the number of colors needed, so
  4307. we use the most-constrained-first heuristic in the greedy search.
  4308. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  4309. algorithm for register allocation based on saturation and the
  4310. most-constrained-first heuristic. It is roughly equivalent to the
  4311. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}.
  4312. %,Gebremedhin:1999fk,Omari:2006uq
  4313. Just as in Sudoku, the algorithm represents colors with integers. The
  4314. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  4315. for register allocation. The integers $k$ and larger correspond to
  4316. stack locations. The registers that are not used for register
  4317. allocation, such as \code{rax}, are assigned to negative integers. In
  4318. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  4319. %% One might wonder why we include registers at all in the liveness
  4320. %% analysis and interference graph. For example, we never allocate a
  4321. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  4322. %% leave them out. As we see in Chapter~\ref{ch:Rvec}, when we begin
  4323. %% to use register for passing arguments to functions, it will be
  4324. %% necessary for those registers to appear in the interference graph
  4325. %% because those registers will also be assigned to variables, and we
  4326. %% don't want those two uses to encroach on each other. Regarding
  4327. %% registers such as \code{rax} and \code{rsp} that are not used for
  4328. %% variables, we could omit them from the interference graph but that
  4329. %% would require adding special cases to our algorithm, which would
  4330. %% complicate the logic for little gain.
  4331. \begin{figure}[btp]
  4332. \centering
  4333. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  4334. Algorithm: DSATUR
  4335. Input: a graph |$G$|
  4336. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  4337. |$W \gets \mathrm{vertices}(G)$|
  4338. while |$W \neq \emptyset$| do
  4339. pick a vertex |$u$| from |$W$| with the highest saturation,
  4340. breaking ties randomly
  4341. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  4342. |$\mathrm{color}[u] \gets c$|
  4343. |$W \gets W - \{u\}$|
  4344. \end{lstlisting}
  4345. \caption{The saturation-based greedy graph coloring algorithm.}
  4346. \label{fig:satur-algo}
  4347. \end{figure}
  4348. {\if\edition\racketEd\color{olive}
  4349. With the DSATUR algorithm in hand, let us return to the running
  4350. example and consider how to color the interference graph in
  4351. Figure~\ref{fig:interfere}.
  4352. %
  4353. We start by assigning the register nodes to their own color. For
  4354. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  4355. assigned $-2$. The variables are not yet colored, so they are
  4356. annotated with a dash. We then update the saturation for vertices that
  4357. are adjacent to a register, obtaining the following annotated
  4358. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  4359. it interferes with both \code{rax} and \code{rsp}.
  4360. \[
  4361. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4362. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  4363. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  4364. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  4365. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  4366. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4367. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4368. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4369. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4370. \draw (t1) to (rax);
  4371. \draw (t1) to (z);
  4372. \draw (z) to (y);
  4373. \draw (z) to (w);
  4374. \draw (x) to (w);
  4375. \draw (y) to (w);
  4376. \draw (v) to (w);
  4377. \draw (v) to (rsp);
  4378. \draw (w) to (rsp);
  4379. \draw (x) to (rsp);
  4380. \draw (y) to (rsp);
  4381. \path[-.,bend left=15] (z) edge node {} (rsp);
  4382. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4383. \draw (rax) to (rsp);
  4384. \end{tikzpicture}
  4385. \]
  4386. The algorithm says to select a maximally saturated vertex. So we pick
  4387. $\ttm{t}$ and color it with the first available integer, which is
  4388. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4389. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4390. \[
  4391. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4392. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4393. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4394. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4395. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4396. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4397. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4398. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4399. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4400. \draw (t1) to (rax);
  4401. \draw (t1) to (z);
  4402. \draw (z) to (y);
  4403. \draw (z) to (w);
  4404. \draw (x) to (w);
  4405. \draw (y) to (w);
  4406. \draw (v) to (w);
  4407. \draw (v) to (rsp);
  4408. \draw (w) to (rsp);
  4409. \draw (x) to (rsp);
  4410. \draw (y) to (rsp);
  4411. \path[-.,bend left=15] (z) edge node {} (rsp);
  4412. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4413. \draw (rax) to (rsp);
  4414. \end{tikzpicture}
  4415. \]
  4416. We repeat the process, selecting a maximally saturated vertex,
  4417. choosing is \code{z}, and color it with the first available number, which
  4418. is $1$. We add $1$ to the saturation for the neighboring vertices
  4419. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4420. \[
  4421. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4422. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4423. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4424. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4425. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4426. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4427. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4428. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4429. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4430. \draw (t1) to (rax);
  4431. \draw (t1) to (z);
  4432. \draw (z) to (y);
  4433. \draw (z) to (w);
  4434. \draw (x) to (w);
  4435. \draw (y) to (w);
  4436. \draw (v) to (w);
  4437. \draw (v) to (rsp);
  4438. \draw (w) to (rsp);
  4439. \draw (x) to (rsp);
  4440. \draw (y) to (rsp);
  4441. \path[-.,bend left=15] (z) edge node {} (rsp);
  4442. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4443. \draw (rax) to (rsp);
  4444. \end{tikzpicture}
  4445. \]
  4446. The most saturated vertices are now \code{w} and \code{y}. We color
  4447. \code{w} with the first available color, which is $0$.
  4448. \[
  4449. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4450. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4451. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4452. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4453. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4454. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4455. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4456. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4457. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4458. \draw (t1) to (rax);
  4459. \draw (t1) to (z);
  4460. \draw (z) to (y);
  4461. \draw (z) to (w);
  4462. \draw (x) to (w);
  4463. \draw (y) to (w);
  4464. \draw (v) to (w);
  4465. \draw (v) to (rsp);
  4466. \draw (w) to (rsp);
  4467. \draw (x) to (rsp);
  4468. \draw (y) to (rsp);
  4469. \path[-.,bend left=15] (z) edge node {} (rsp);
  4470. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4471. \draw (rax) to (rsp);
  4472. \end{tikzpicture}
  4473. \]
  4474. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4475. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4476. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4477. and \code{z}, whose colors are $0$ and $1$ respectively.
  4478. \[
  4479. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4480. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4481. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4482. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4483. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4484. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4485. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4486. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4487. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4488. \draw (t1) to (rax);
  4489. \draw (t1) to (z);
  4490. \draw (z) to (y);
  4491. \draw (z) to (w);
  4492. \draw (x) to (w);
  4493. \draw (y) to (w);
  4494. \draw (v) to (w);
  4495. \draw (v) to (rsp);
  4496. \draw (w) to (rsp);
  4497. \draw (x) to (rsp);
  4498. \draw (y) to (rsp);
  4499. \path[-.,bend left=15] (z) edge node {} (rsp);
  4500. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4501. \draw (rax) to (rsp);
  4502. \end{tikzpicture}
  4503. \]
  4504. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4505. \[
  4506. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4507. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4508. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4509. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4510. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4511. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4512. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4513. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4514. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4515. \draw (t1) to (rax);
  4516. \draw (t1) to (z);
  4517. \draw (z) to (y);
  4518. \draw (z) to (w);
  4519. \draw (x) to (w);
  4520. \draw (y) to (w);
  4521. \draw (v) to (w);
  4522. \draw (v) to (rsp);
  4523. \draw (w) to (rsp);
  4524. \draw (x) to (rsp);
  4525. \draw (y) to (rsp);
  4526. \path[-.,bend left=15] (z) edge node {} (rsp);
  4527. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4528. \draw (rax) to (rsp);
  4529. \end{tikzpicture}
  4530. \]
  4531. In the last step of the algorithm, we color \code{x} with $1$.
  4532. \[
  4533. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4534. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4535. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4536. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4537. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4538. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4539. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4540. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4541. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4542. \draw (t1) to (rax);
  4543. \draw (t1) to (z);
  4544. \draw (z) to (y);
  4545. \draw (z) to (w);
  4546. \draw (x) to (w);
  4547. \draw (y) to (w);
  4548. \draw (v) to (w);
  4549. \draw (v) to (rsp);
  4550. \draw (w) to (rsp);
  4551. \draw (x) to (rsp);
  4552. \draw (y) to (rsp);
  4553. \path[-.,bend left=15] (z) edge node {} (rsp);
  4554. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4555. \draw (rax) to (rsp);
  4556. \end{tikzpicture}
  4557. \]
  4558. So we obtain the following coloring:
  4559. \[
  4560. \{
  4561. \ttm{rax} \mapsto -1,
  4562. \ttm{rsp} \mapsto -2,
  4563. \ttm{t} \mapsto 0,
  4564. \ttm{z} \mapsto 1,
  4565. \ttm{x} \mapsto 1,
  4566. \ttm{y} \mapsto 2,
  4567. \ttm{w} \mapsto 0,
  4568. \ttm{v} \mapsto 1
  4569. \}
  4570. \]
  4571. \fi}
  4572. %
  4573. {\if\edition\pythonEd
  4574. %
  4575. With the DSATUR algorithm in hand, let us return to the running
  4576. example and consider how to color the interference graph in
  4577. Figure~\ref{fig:interfere}. We annotate each variable node with a dash
  4578. to indicate that it has not yet been assigned a color. The saturation
  4579. sets are also shown for each node; all of them start as the empty set.
  4580. (We do not include the register nodes in the graph below because there
  4581. were no interference edges involving registers in this program, but in
  4582. general there can be.)
  4583. %
  4584. \[
  4585. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4586. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  4587. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  4588. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  4589. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4590. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4591. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4592. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4593. \draw (t0) to (t1);
  4594. \draw (t0) to (z);
  4595. \draw (z) to (y);
  4596. \draw (z) to (w);
  4597. \draw (x) to (w);
  4598. \draw (y) to (w);
  4599. \draw (v) to (w);
  4600. \end{tikzpicture}
  4601. \]
  4602. The algorithm says to select a maximally saturated vertex, but they
  4603. are alal equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  4604. then color it with the first available integer, which is $0$. We mark
  4605. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  4606. they interfere with $\ttm{tmp\_0}$.
  4607. \[
  4608. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4609. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  4610. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4611. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  4612. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4613. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4614. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4615. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4616. \draw (t0) to (t1);
  4617. \draw (t0) to (z);
  4618. \draw (z) to (y);
  4619. \draw (z) to (w);
  4620. \draw (x) to (w);
  4621. \draw (y) to (w);
  4622. \draw (v) to (w);
  4623. \end{tikzpicture}
  4624. \]
  4625. We repeat the process. The most saturated vertices are \code{z} and
  4626. \code{tmp\_1}, so we choose \code{z} and color it with the first
  4627. available number, which is $1$. We add $1$ to the saturation for the
  4628. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  4629. \[
  4630. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4631. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4632. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4633. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4634. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4635. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  4636. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  4637. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4638. \draw (t0) to (t1);
  4639. \draw (t0) to (z);
  4640. \draw (z) to (y);
  4641. \draw (z) to (w);
  4642. \draw (x) to (w);
  4643. \draw (y) to (w);
  4644. \draw (v) to (w);
  4645. \end{tikzpicture}
  4646. \]
  4647. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  4648. \code{y}. We color \code{w} with the first available color, which
  4649. is $0$.
  4650. \[
  4651. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4652. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4653. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4654. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4655. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4656. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  4657. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  4658. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4659. \draw (t0) to (t1);
  4660. \draw (t0) to (z);
  4661. \draw (z) to (y);
  4662. \draw (z) to (w);
  4663. \draw (x) to (w);
  4664. \draw (y) to (w);
  4665. \draw (v) to (w);
  4666. \end{tikzpicture}
  4667. \]
  4668. Now \code{y} is the most saturated, so we color it with $2$.
  4669. \[
  4670. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4671. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4672. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4673. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4674. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4675. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4676. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4677. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4678. \draw (t0) to (t1);
  4679. \draw (t0) to (z);
  4680. \draw (z) to (y);
  4681. \draw (z) to (w);
  4682. \draw (x) to (w);
  4683. \draw (y) to (w);
  4684. \draw (v) to (w);
  4685. \end{tikzpicture}
  4686. \]
  4687. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  4688. We choose to color \code{v} with $1$.
  4689. \[
  4690. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4691. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4692. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4693. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4694. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4695. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4696. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4697. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4698. \draw (t0) to (t1);
  4699. \draw (t0) to (z);
  4700. \draw (z) to (y);
  4701. \draw (z) to (w);
  4702. \draw (x) to (w);
  4703. \draw (y) to (w);
  4704. \draw (v) to (w);
  4705. \end{tikzpicture}
  4706. \]
  4707. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  4708. \[
  4709. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4710. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4711. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  4712. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4713. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  4714. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4715. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4716. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4717. \draw (t0) to (t1);
  4718. \draw (t0) to (z);
  4719. \draw (z) to (y);
  4720. \draw (z) to (w);
  4721. \draw (x) to (w);
  4722. \draw (y) to (w);
  4723. \draw (v) to (w);
  4724. \end{tikzpicture}
  4725. \]
  4726. So we obtain the following coloring:
  4727. \[
  4728. \{ \ttm{tmp\_0} \mapsto 0,
  4729. \ttm{tmp\_1} \mapsto 1,
  4730. \ttm{z} \mapsto 1,
  4731. \ttm{x} \mapsto 1,
  4732. \ttm{y} \mapsto 2,
  4733. \ttm{w} \mapsto 0,
  4734. \ttm{v} \mapsto 1 \}
  4735. \]
  4736. \fi}
  4737. We recommend creating an auxiliary function named \code{color\_graph}
  4738. that takes an interference graph and a list of all the variables in
  4739. the program. This function should return a mapping of variables to
  4740. their colors (represented as natural numbers). By creating this helper
  4741. function, you will be able to reuse it in Chapter~\ref{ch:Rfun}
  4742. when we add support for functions.
  4743. To prioritize the processing of highly saturated nodes inside the
  4744. \code{color\_graph} function, we recommend using the priority queue
  4745. data structure \racket{described in Figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  4746. addition, you will need to maintain a mapping from variables to their
  4747. ``handles'' in the priority queue so that you can notify the priority
  4748. queue when their saturation changes.}
  4749. {\if\edition\racketEd\color{olive}
  4750. \begin{figure}[tp]
  4751. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  4752. \small
  4753. \begin{tcolorbox}[title=Priority Queue]
  4754. A \emph{priority queue} is a collection of items in which the
  4755. removal of items is governed by priority. In a ``min'' queue,
  4756. lower priority items are removed first. An implementation is in
  4757. \code{priority\_queue.rkt} of the support code. \index{subject}{priority
  4758. queue} \index{subject}{minimum priority queue}
  4759. \begin{description}
  4760. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  4761. priority queue that uses the $\itm{cmp}$ predicate to determine
  4762. whether its first argument has lower or equal priority to its
  4763. second argument.
  4764. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  4765. items in the queue.
  4766. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  4767. the item into the queue and returns a handle for the item in the
  4768. queue.
  4769. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  4770. the lowest priority.
  4771. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  4772. notifies the queue that the priority has decreased for the item
  4773. associated with the given handle.
  4774. \end{description}
  4775. \end{tcolorbox}
  4776. %\end{wrapfigure}
  4777. \caption{The priority queue data structure.}
  4778. \label{fig:priority-queue}
  4779. \end{figure}
  4780. \fi}
  4781. With the coloring complete, we finalize the assignment of variables to
  4782. registers and stack locations. We map the first $k$ colors to the $k$
  4783. registers and the rest of the colors to stack locations. Suppose for
  4784. the moment that we have just one register to use for register
  4785. allocation, \key{rcx}. Then we have the following map from colors to
  4786. locations.
  4787. \[
  4788. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  4789. \]
  4790. Composing this mapping with the coloring, we arrive at the following
  4791. assignment of variables to locations.
  4792. {\if\edition\racketEd\color{olive}
  4793. \begin{gather*}
  4794. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4795. \ttm{w} \mapsto \key{\%rcx}, \,
  4796. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4797. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4798. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4799. \ttm{t} \mapsto \key{\%rcx} \}
  4800. \end{gather*}
  4801. \fi}
  4802. {\if\edition\pythonEd
  4803. \begin{gather*}
  4804. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4805. \ttm{w} \mapsto \key{\%rcx}, \,
  4806. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4807. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4808. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4809. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  4810. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  4811. \end{gather*}
  4812. \fi}
  4813. Adapt the code from the \code{assign\_homes} pass
  4814. (Section~\ref{sec:assign-Lvar}) to replace the variables with their
  4815. assigned location. Applying the above assignment to our running
  4816. example, on the left, yields the program on the right.
  4817. % why frame size of 32? -JGS
  4818. \begin{center}
  4819. {\if\edition\racketEd\color{olive}
  4820. \begin{minipage}{0.3\textwidth}
  4821. \begin{lstlisting}
  4822. movq $1, v
  4823. movq $42, w
  4824. movq v, x
  4825. addq $7, x
  4826. movq x, y
  4827. movq x, z
  4828. addq w, z
  4829. movq y, t
  4830. negq t
  4831. movq z, %rax
  4832. addq t, %rax
  4833. jmp conclusion
  4834. \end{lstlisting}
  4835. \end{minipage}
  4836. $\Rightarrow\qquad$
  4837. \begin{minipage}{0.45\textwidth}
  4838. \begin{lstlisting}
  4839. movq $1, -8(%rbp)
  4840. movq $42, %rcx
  4841. movq -8(%rbp), -8(%rbp)
  4842. addq $7, -8(%rbp)
  4843. movq -8(%rbp), -16(%rbp)
  4844. movq -8(%rbp), -8(%rbp)
  4845. addq %rcx, -8(%rbp)
  4846. movq -16(%rbp), %rcx
  4847. negq %rcx
  4848. movq -8(%rbp), %rax
  4849. addq %rcx, %rax
  4850. jmp conclusion
  4851. \end{lstlisting}
  4852. \end{minipage}
  4853. \fi}
  4854. {\if\edition\pythonEd
  4855. \begin{minipage}{0.3\textwidth}
  4856. \begin{lstlisting}
  4857. movq $1, v
  4858. movq $42, w
  4859. movq v, x
  4860. addq $7, x
  4861. movq x, y
  4862. movq x, z
  4863. addq w, z
  4864. movq y, tmp_0
  4865. negq tmp_0
  4866. movq z, tmp_1
  4867. addq tmp_0, tmp_1
  4868. movq tmp_1, %rdi
  4869. callq print_int
  4870. \end{lstlisting}
  4871. \end{minipage}
  4872. $\Rightarrow\qquad$
  4873. \begin{minipage}{0.45\textwidth}
  4874. \begin{lstlisting}
  4875. movq $1, -8(%rbp)
  4876. movq $42, %rcx
  4877. movq -8(%rbp), -8(%rbp)
  4878. addq $7, -8(%rbp)
  4879. movq -8(%rbp), -16(%rbp)
  4880. movq -8(%rbp), -8(%rbp)
  4881. addq %rcx, -8(%rbp)
  4882. movq -16(%rbp), %rcx
  4883. negq %rcx
  4884. movq -8(%rbp), -8(%rbp)
  4885. addq %rcx, -8(%rbp)
  4886. movq -8(%rbp), %rdi
  4887. callq print_int
  4888. \end{lstlisting}
  4889. \end{minipage}
  4890. \fi}
  4891. \end{center}
  4892. \begin{exercise}\normalfont
  4893. %
  4894. Implement the compiler pass \code{allocate\_registers}.
  4895. %
  4896. Create five programs that exercise all aspects of the register
  4897. allocation algorithm, including spilling variables to the stack.
  4898. %
  4899. \racket{Replace \code{assign\_homes} in the list of \code{passes} in the
  4900. \code{run-tests.rkt} script with the three new passes:
  4901. \code{uncover\_live}, \code{build\_interference}, and
  4902. \code{allocate\_registers}.
  4903. %
  4904. Temporarily remove the \code{print\_x86} pass from the list of passes
  4905. and the call to \code{compiler-tests}.
  4906. Run the script to test the register allocator.
  4907. }
  4908. %
  4909. \python{Run the \code{run-tests.py} script to to check whether the
  4910. output programs produce the same result as the input programs.}
  4911. \end{exercise}
  4912. \section{Patch Instructions}
  4913. \label{sec:patch-instructions}
  4914. The remaining step in the compilation to x86 is to ensure that the
  4915. instructions have at most one argument that is a memory access.
  4916. %
  4917. In the running example, the instruction \code{movq -8(\%rbp),
  4918. -16(\%rbp)} is problematic. Recall from Section~\ref{sec:patch-s0}
  4919. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  4920. then move \code{rax} into \code{-16(\%rbp)}.
  4921. %
  4922. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  4923. problematic, but they can simply be deleted. In general, we recommend
  4924. deleting all the trivial moves whose source and destination are the
  4925. same location.
  4926. %
  4927. The following is the output of \code{patch\_instructions} on the
  4928. running example.
  4929. \begin{center}
  4930. {\if\edition\racketEd\color{olive}
  4931. \begin{minipage}{0.4\textwidth}
  4932. \begin{lstlisting}
  4933. movq $1, -8(%rbp)
  4934. movq $42, %rcx
  4935. movq -8(%rbp), -8(%rbp)
  4936. addq $7, -8(%rbp)
  4937. movq -8(%rbp), -16(%rbp)
  4938. movq -8(%rbp), -8(%rbp)
  4939. addq %rcx, -8(%rbp)
  4940. movq -16(%rbp), %rcx
  4941. negq %rcx
  4942. movq -8(%rbp), %rax
  4943. addq %rcx, %rax
  4944. jmp conclusion
  4945. \end{lstlisting}
  4946. \end{minipage}
  4947. $\Rightarrow\qquad$
  4948. \begin{minipage}{0.45\textwidth}
  4949. \begin{lstlisting}
  4950. movq $1, -8(%rbp)
  4951. movq $42, %rcx
  4952. addq $7, -8(%rbp)
  4953. movq -8(%rbp), %rax
  4954. movq %rax, -16(%rbp)
  4955. addq %rcx, -8(%rbp)
  4956. movq -16(%rbp), %rcx
  4957. negq %rcx
  4958. movq -8(%rbp), %rax
  4959. addq %rcx, %rax
  4960. jmp conclusion
  4961. \end{lstlisting}
  4962. \end{minipage}
  4963. \fi}
  4964. {\if\edition\pythonEd
  4965. \begin{minipage}{0.4\textwidth}
  4966. \begin{lstlisting}
  4967. movq $1, -8(%rbp)
  4968. movq $42, %rcx
  4969. movq -8(%rbp), -8(%rbp)
  4970. addq $7, -8(%rbp)
  4971. movq -8(%rbp), -16(%rbp)
  4972. movq -8(%rbp), -8(%rbp)
  4973. addq %rcx, -8(%rbp)
  4974. movq -16(%rbp), %rcx
  4975. negq %rcx
  4976. movq -8(%rbp), -8(%rbp)
  4977. addq %rcx, -8(%rbp)
  4978. movq -8(%rbp), %rdi
  4979. callq print_int
  4980. \end{lstlisting}
  4981. \end{minipage}
  4982. $\Rightarrow\qquad$
  4983. \begin{minipage}{0.45\textwidth}
  4984. \begin{lstlisting}
  4985. movq $1, -8(%rbp)
  4986. movq $42, %rcx
  4987. addq $7, -8(%rbp)
  4988. movq -8(%rbp), %rax
  4989. movq %rax, -16(%rbp)
  4990. addq %rcx, -8(%rbp)
  4991. movq -16(%rbp), %rcx
  4992. negq %rcx
  4993. addq %rcx, -8(%rbp)
  4994. movq -8(%rbp), %rdi
  4995. callq print_int
  4996. \end{lstlisting}
  4997. \end{minipage}
  4998. \fi}
  4999. \end{center}
  5000. \begin{exercise}\normalfont
  5001. %
  5002. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  5003. %
  5004. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  5005. %in the \code{run-tests.rkt} script.
  5006. %
  5007. Run the script to test the \code{patch\_instructions} pass.
  5008. \end{exercise}
  5009. \section{Print x86}
  5010. \label{sec:print-x86-reg-alloc}
  5011. \index{subject}{calling conventions}
  5012. \index{subject}{prelude}\index{subject}{conclusion}
  5013. Recall that the \code{print\_x86} pass generates the prelude and
  5014. conclusion instructions to satisfy the x86 calling conventions
  5015. (Section~\ref{sec:calling-conventions}). With the addition of the
  5016. register allocator, the callee-saved registers used by the register
  5017. allocator must be saved in the prelude and restored in the conclusion.
  5018. In the \code{allocate\_registers} pass,
  5019. %
  5020. \racket{add an entry to the \itm{info}
  5021. of \code{X86Program} named \code{used\_callee}}
  5022. %
  5023. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  5024. %
  5025. that stores the set of
  5026. callee-saved registers that were assigned to variables. The
  5027. \code{print\_x86} pass can then access this information to decide which
  5028. callee-saved registers need to be saved and restored.
  5029. %
  5030. When calculating the size of the frame to adjust the \code{rsp} in the
  5031. prelude, make sure to take into account the space used for saving the
  5032. callee-saved registers. Also, don't forget that the frame needs to be
  5033. a multiple of 16 bytes!
  5034. \racket{An overview of all of the passes involved in register
  5035. allocation is shown in Figure~\ref{fig:reg-alloc-passes}.}
  5036. {\if\edition\racketEd\color{olive}
  5037. \begin{figure}[tbp]
  5038. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5039. \node (Lvar) at (0,2) {\large \LangVar{}};
  5040. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  5041. \node (Lvar-3) at (6,2) {\large \LangVar{}};
  5042. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  5043. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  5044. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  5045. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  5046. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  5047. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  5048. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  5049. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  5050. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  5051. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-1);
  5052. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  5053. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  5054. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  5055. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  5056. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  5057. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  5058. \end{tikzpicture}
  5059. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  5060. \label{fig:reg-alloc-passes}
  5061. \end{figure}
  5062. \fi}
  5063. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  5064. the running example (Figure~\ref{fig:reg-eg}). To demonstrate both the
  5065. use of registers and the stack, we limit the register allocator for
  5066. this example to use just two registers: \code{rbx} and \code{rcx}. In
  5067. the prelude\index{subject}{prelude} of the \code{main} function, we
  5068. push \code{rbx} onto the stack because it is a callee-saved register
  5069. and it was assigned to variable by the register allocator. We
  5070. subtract \code{8} from the \code{rsp} at the end of the prelude to
  5071. reserve space for the one spilled variable. After that subtraction,
  5072. the \code{rsp} is aligned to 16 bytes.
  5073. Moving on to the program proper, we see how the registers were
  5074. allocated.
  5075. %
  5076. \racket{Variables \code{v}, \code{x}, and \code{y} were assigned to
  5077. \code{rbx} and variable \code{z} was assigned to \code{rcx}.}
  5078. %
  5079. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  5080. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  5081. were assigned to \code{rbx}.}
  5082. %
  5083. Variable \racket{\code{w}}\python{\code{z}} was spilled to the stack
  5084. location \code{-16(\%rbp)}. Recall that the prelude saved the
  5085. callee-save register \code{rbx} onto the stack. The spilled variables
  5086. must be placed lower on the stack than the saved callee-save
  5087. registers, so in this case \racket{\code{w}}\python{z} is placed at
  5088. \code{-16(\%rbp)}.
  5089. In the conclusion\index{subject}{conclusion}, we undo the work that was
  5090. done in the prelude. We move the stack pointer up by \code{8} bytes
  5091. (the room for spilled variables), then we pop the old values of
  5092. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  5093. \code{retq} to return control to the operating system.
  5094. \begin{figure}[tbp]
  5095. % var_test_28.rkt
  5096. % (use-minimal-set-of-registers! #t)
  5097. % and only rbx rcx
  5098. % tmp 0 rbx
  5099. % z 1 rcx
  5100. % y 0 rbx
  5101. % w 2 16(%rbp)
  5102. % v 0 rbx
  5103. % x 0 rbx
  5104. {\if\edition\racketEd\color{olive}
  5105. \begin{lstlisting}
  5106. start:
  5107. movq $1, %rbx
  5108. movq $42, -16(%rbp)
  5109. addq $7, %rbx
  5110. movq %rbx, %rcx
  5111. addq -16(%rbp), %rcx
  5112. negq %rbx
  5113. movq %rcx, %rax
  5114. addq %rbx, %rax
  5115. jmp conclusion
  5116. .globl main
  5117. main:
  5118. pushq %rbp
  5119. movq %rsp, %rbp
  5120. pushq %rbx
  5121. subq $8, %rsp
  5122. jmp start
  5123. conclusion:
  5124. addq $8, %rsp
  5125. popq %rbx
  5126. popq %rbp
  5127. retq
  5128. \end{lstlisting}
  5129. \fi}
  5130. {\if\edition\pythonEd
  5131. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  5132. \begin{lstlisting}
  5133. .globl main
  5134. main:
  5135. pushq %rbp
  5136. movq %rsp, %rbp
  5137. pushq %rbx
  5138. subq $8, %rsp
  5139. movq $1, %rcx
  5140. movq $42, %rbx
  5141. addq $7, %rcx
  5142. movq %rcx, -16(%rbp)
  5143. addq %rbx, -16(%rbp)
  5144. negq %rcx
  5145. movq -16(%rbp), %rbx
  5146. addq %rcx, %rbx
  5147. movq %rbx, %rdi
  5148. callq print_int
  5149. addq $8, %rsp
  5150. popq %rbx
  5151. popq %rbp
  5152. retq
  5153. \end{lstlisting}
  5154. \fi}
  5155. \caption{The x86 output from the running example
  5156. (Figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  5157. and \code{rcx}.}
  5158. \label{fig:running-example-x86}
  5159. \end{figure}
  5160. \begin{exercise}\normalfont
  5161. Update the \code{print\_x86} pass as described in this section.
  5162. %
  5163. \racket{
  5164. In the \code{run-tests.rkt} script, reinstate \code{print\_x86} in the
  5165. list of passes and the call to \code{compiler-tests}.}
  5166. %
  5167. Run the script to test the complete compiler for \LangVar{} that
  5168. performs register allocation.
  5169. \end{exercise}
  5170. \section{Challenge: Move Biasing}
  5171. \label{sec:move-biasing}
  5172. \index{subject}{move biasing}
  5173. This section describes an enhancement to the register allocator,
  5174. called move biasing, for students who are looking for an extra
  5175. challenge.
  5176. {\if\edition\racketEd\color{olive}
  5177. To motivate the need for move biasing we return to the running example
  5178. but this time use all of the general purpose registers. So we have
  5179. the following mapping of color numbers to registers.
  5180. \[
  5181. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
  5182. \]
  5183. Using the same assignment of variables to color numbers that was
  5184. produced by the register allocator described in the last section, we
  5185. get the following program.
  5186. \begin{center}
  5187. \begin{minipage}{0.3\textwidth}
  5188. \begin{lstlisting}
  5189. movq $1, v
  5190. movq $42, w
  5191. movq v, x
  5192. addq $7, x
  5193. movq x, y
  5194. movq x, z
  5195. addq w, z
  5196. movq y, t
  5197. negq t
  5198. movq z, %rax
  5199. addq t, %rax
  5200. jmp conclusion
  5201. \end{lstlisting}
  5202. \end{minipage}
  5203. $\Rightarrow\qquad$
  5204. \begin{minipage}{0.45\textwidth}
  5205. \begin{lstlisting}
  5206. movq $1, %rdx
  5207. movq $42, %rcx
  5208. movq %rdx, %rdx
  5209. addq $7, %rdx
  5210. movq %rdx, %rsi
  5211. movq %rdx, %rdx
  5212. addq %rcx, %rdx
  5213. movq %rsi, %rcx
  5214. negq %rcx
  5215. movq %rdx, %rax
  5216. addq %rcx, %rax
  5217. jmp conclusion
  5218. \end{lstlisting}
  5219. \end{minipage}
  5220. \end{center}
  5221. In the above output code there are two \key{movq} instructions that
  5222. can be removed because their source and target are the same. However,
  5223. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  5224. register, we could instead remove three \key{movq} instructions. We
  5225. can accomplish this by taking into account which variables appear in
  5226. \key{movq} instructions with which other variables.
  5227. \fi}
  5228. {\if\edition\pythonEd
  5229. %
  5230. To motivate the need for move biasing we return to the running example
  5231. and recall that in Section~\ref{sec:patch-instructions} we were able to
  5232. remove three trivial move instructions from the running
  5233. example. However, we could remove another trivial move if we were able
  5234. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  5235. We say that two variables $p$ and $q$ are \emph{move
  5236. related}\index{subject}{move related} if they participate together in
  5237. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  5238. \key{movq} $q$\key{,} $p$. When deciding which variable to color next,
  5239. when there are multiple variables with the same saturation, prefer
  5240. variables that can be assigned to a color that is the same as the
  5241. color of a move related variable. Furthermore, when the register
  5242. allocator chooses a color for a variable, it should prefer a color
  5243. that has already been used for a move-related variable (assuming that
  5244. they do not interfere). Of course, this preference should not override
  5245. the preference for registers over stack locations. So this preference
  5246. should be used as a tie breaker when choosing between registers or
  5247. when choosing between stack locations.
  5248. We recommend representing the move relationships in a graph, similar
  5249. to how we represented interference. The following is the \emph{move
  5250. graph} for our running example.
  5251. {\if\edition\racketEd\color{olive}
  5252. \[
  5253. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5254. \node (rax) at (0,0) {$\ttm{rax}$};
  5255. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5256. \node (t) at (0,2) {$\ttm{t}$};
  5257. \node (z) at (3,2) {$\ttm{z}$};
  5258. \node (x) at (6,2) {$\ttm{x}$};
  5259. \node (y) at (3,0) {$\ttm{y}$};
  5260. \node (w) at (6,0) {$\ttm{w}$};
  5261. \node (v) at (9,0) {$\ttm{v}$};
  5262. \draw (v) to (x);
  5263. \draw (x) to (y);
  5264. \draw (x) to (z);
  5265. \draw (y) to (t);
  5266. \end{tikzpicture}
  5267. \]
  5268. \fi}
  5269. %
  5270. {\if\edition\pythonEd
  5271. \[
  5272. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5273. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5274. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5275. \node (z) at (3,2) {$\ttm{z}$};
  5276. \node (x) at (6,2) {$\ttm{x}$};
  5277. \node (y) at (3,0) {$\ttm{y}$};
  5278. \node (w) at (6,0) {$\ttm{w}$};
  5279. \node (v) at (9,0) {$\ttm{v}$};
  5280. \draw (y) to (t0);
  5281. \draw (z) to (x);
  5282. \draw (z) to (t1);
  5283. \draw (x) to (y);
  5284. \draw (x) to (v);
  5285. \end{tikzpicture}
  5286. \]
  5287. \fi}
  5288. {\if\edition\racketEd\color{olive}
  5289. Now we replay the graph coloring, pausing to see the coloring of
  5290. \code{y}. Recall the following configuration. The most saturated vertices
  5291. were \code{w} and \code{y}.
  5292. \[
  5293. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5294. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5295. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5296. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5297. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5298. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5299. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5300. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5301. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5302. \draw (t1) to (rax);
  5303. \draw (t1) to (z);
  5304. \draw (z) to (y);
  5305. \draw (z) to (w);
  5306. \draw (x) to (w);
  5307. \draw (y) to (w);
  5308. \draw (v) to (w);
  5309. \draw (v) to (rsp);
  5310. \draw (w) to (rsp);
  5311. \draw (x) to (rsp);
  5312. \draw (y) to (rsp);
  5313. \path[-.,bend left=15] (z) edge node {} (rsp);
  5314. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5315. \draw (rax) to (rsp);
  5316. \end{tikzpicture}
  5317. \]
  5318. %
  5319. Last time we chose to color \code{w} with $0$. But this time we see
  5320. that \code{w} is not move related to any vertex, but \code{y} is move
  5321. related to \code{t}. So we choose to color \code{y} the same color as
  5322. \code{t}, $0$.
  5323. \[
  5324. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5325. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5326. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5327. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5328. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5329. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5330. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  5331. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  5332. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5333. \draw (t1) to (rax);
  5334. \draw (t1) to (z);
  5335. \draw (z) to (y);
  5336. \draw (z) to (w);
  5337. \draw (x) to (w);
  5338. \draw (y) to (w);
  5339. \draw (v) to (w);
  5340. \draw (v) to (rsp);
  5341. \draw (w) to (rsp);
  5342. \draw (x) to (rsp);
  5343. \draw (y) to (rsp);
  5344. \path[-.,bend left=15] (z) edge node {} (rsp);
  5345. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5346. \draw (rax) to (rsp);
  5347. \end{tikzpicture}
  5348. \]
  5349. Now \code{w} is the most saturated, so we color it $2$.
  5350. \[
  5351. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5352. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5353. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5354. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5355. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5356. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  5357. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5358. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5359. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  5360. \draw (t1) to (rax);
  5361. \draw (t1) to (z);
  5362. \draw (z) to (y);
  5363. \draw (z) to (w);
  5364. \draw (x) to (w);
  5365. \draw (y) to (w);
  5366. \draw (v) to (w);
  5367. \draw (v) to (rsp);
  5368. \draw (w) to (rsp);
  5369. \draw (x) to (rsp);
  5370. \draw (y) to (rsp);
  5371. \path[-.,bend left=15] (z) edge node {} (rsp);
  5372. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5373. \draw (rax) to (rsp);
  5374. \end{tikzpicture}
  5375. \]
  5376. At this point, vertices \code{x} and \code{v} are most saturated, but
  5377. \code{x} is move related to \code{y} and \code{z}, so we color
  5378. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  5379. \[
  5380. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5381. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5382. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5383. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5384. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5385. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  5386. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5387. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5388. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  5389. \draw (t1) to (rax);
  5390. \draw (t) to (z);
  5391. \draw (z) to (y);
  5392. \draw (z) to (w);
  5393. \draw (x) to (w);
  5394. \draw (y) to (w);
  5395. \draw (v) to (w);
  5396. \draw (v) to (rsp);
  5397. \draw (w) to (rsp);
  5398. \draw (x) to (rsp);
  5399. \draw (y) to (rsp);
  5400. \path[-.,bend left=15] (z) edge node {} (rsp);
  5401. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5402. \draw (rax) to (rsp);
  5403. \end{tikzpicture}
  5404. \]
  5405. \fi}
  5406. %
  5407. {\if\edition\pythonEd
  5408. Now we replay the graph coloring, pausing before the coloring of
  5409. \code{w}. Recall the following configuration. The most saturated vertices
  5410. were \code{tmp\_1}, \code{w}, and \code{y}.
  5411. \[
  5412. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5413. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5414. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5415. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5416. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5417. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5418. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5419. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5420. \draw (t0) to (t1);
  5421. \draw (t0) to (z);
  5422. \draw (z) to (y);
  5423. \draw (z) to (w);
  5424. \draw (x) to (w);
  5425. \draw (y) to (w);
  5426. \draw (v) to (w);
  5427. \end{tikzpicture}
  5428. \]
  5429. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  5430. or \code{y}, but note that \code{w} is not move related to any
  5431. variables, wheras \code{y} and \code{tmp\_1} are move related to
  5432. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  5433. \code{y} and color it $0$, we can delete another move instruction.
  5434. \[
  5435. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5436. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5437. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5438. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5439. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5440. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  5441. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  5442. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5443. \draw (t0) to (t1);
  5444. \draw (t0) to (z);
  5445. \draw (z) to (y);
  5446. \draw (z) to (w);
  5447. \draw (x) to (w);
  5448. \draw (y) to (w);
  5449. \draw (v) to (w);
  5450. \end{tikzpicture}
  5451. \]
  5452. Now \code{w} is the most saturated, so we color it $2$.
  5453. \[
  5454. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5455. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5456. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5457. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5458. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  5459. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5460. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5461. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  5462. \draw (t0) to (t1);
  5463. \draw (t0) to (z);
  5464. \draw (z) to (y);
  5465. \draw (z) to (w);
  5466. \draw (x) to (w);
  5467. \draw (y) to (w);
  5468. \draw (v) to (w);
  5469. \end{tikzpicture}
  5470. \]
  5471. To finish the coloring, \code{x} and \code{v} get $0$ and
  5472. \code{tmp\_1} gets $1$.
  5473. \[
  5474. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5475. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5476. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5477. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5478. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  5479. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5480. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5481. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  5482. \draw (t0) to (t1);
  5483. \draw (t0) to (z);
  5484. \draw (z) to (y);
  5485. \draw (z) to (w);
  5486. \draw (x) to (w);
  5487. \draw (y) to (w);
  5488. \draw (v) to (w);
  5489. \end{tikzpicture}
  5490. \]
  5491. \fi}
  5492. So we have the following assignment of variables to registers.
  5493. {\if\edition\racketEd\color{olive}
  5494. \begin{gather*}
  5495. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5496. \ttm{w} \mapsto \key{\%rsi}, \,
  5497. \ttm{x} \mapsto \key{\%rcx}, \,
  5498. \ttm{y} \mapsto \key{\%rcx}, \,
  5499. \ttm{z} \mapsto \key{\%rdx}, \,
  5500. \ttm{t} \mapsto \key{\%rcx} \}
  5501. \end{gather*}
  5502. \fi}
  5503. {\if\edition\pythonEd
  5504. \begin{gather*}
  5505. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5506. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  5507. \ttm{x} \mapsto \key{\%rcx}, \,
  5508. \ttm{y} \mapsto \key{\%rcx}, \\
  5509. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5510. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5511. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5512. \end{gather*}
  5513. \fi}
  5514. We apply this register assignment to the running example, on the left,
  5515. to obtain the code in the middle. The \code{patch\_instructions} then
  5516. deletes the trivial moves to obtain the code on the right.
  5517. {\if\edition\racketEd\color{olive}
  5518. \begin{minipage}{0.25\textwidth}
  5519. \begin{lstlisting}
  5520. movq $1, v
  5521. movq $42, w
  5522. movq v, x
  5523. addq $7, x
  5524. movq x, y
  5525. movq x, z
  5526. addq w, z
  5527. movq y, t
  5528. negq t
  5529. movq z, %rax
  5530. addq t, %rax
  5531. jmp conclusion
  5532. \end{lstlisting}
  5533. \end{minipage}
  5534. $\Rightarrow\qquad$
  5535. \begin{minipage}{0.25\textwidth}
  5536. \begin{lstlisting}
  5537. movq $1, %rcx
  5538. movq $42, %rsi
  5539. movq %rcx, %rcx
  5540. addq $7, %rcx
  5541. movq %rcx, %rcx
  5542. movq %rcx, %rdx
  5543. addq %rsi, %rdx
  5544. movq %rcx, %rcx
  5545. negq %rcx
  5546. movq %rdx, %rax
  5547. addq %rcx, %rax
  5548. jmp conclusion
  5549. \end{lstlisting}
  5550. \end{minipage}
  5551. $\Rightarrow\qquad$
  5552. \begin{minipage}{0.25\textwidth}
  5553. \begin{lstlisting}
  5554. movq $1, %rcx
  5555. movq $42, %rsi
  5556. addq $7, %rcx
  5557. movq %rcx, %rdx
  5558. addq %rsi, %rdx
  5559. negq %rcx
  5560. movq %rdx, %rax
  5561. addq %rcx, %rax
  5562. jmp conclusion
  5563. \end{lstlisting}
  5564. \end{minipage}
  5565. \fi}
  5566. {\if\edition\pythonEd
  5567. \begin{minipage}{0.20\textwidth}
  5568. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5569. movq $1, v
  5570. movq $42, w
  5571. movq v, x
  5572. addq $7, x
  5573. movq x, y
  5574. movq x, z
  5575. addq w, z
  5576. movq y, tmp_0
  5577. negq tmp_0
  5578. movq z, tmp_1
  5579. addq tmp_0, tmp_1
  5580. movq tmp_1, %rdi
  5581. callq _print_int
  5582. \end{lstlisting}
  5583. \end{minipage}
  5584. ${\Rightarrow\qquad}$
  5585. \begin{minipage}{0.30\textwidth}
  5586. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5587. movq $1, %rcx
  5588. movq $42, -16(%rbp)
  5589. movq %rcx, %rcx
  5590. addq $7, %rcx
  5591. movq %rcx, %rcx
  5592. movq %rcx, -8(%rbp)
  5593. addq -16(%rbp), -8(%rbp)
  5594. movq %rcx, %rcx
  5595. negq %rcx
  5596. movq -8(%rbp), -8(%rbp)
  5597. addq %rcx, -8(%rbp)
  5598. movq -8(%rbp), %rdi
  5599. callq _print_int
  5600. \end{lstlisting}
  5601. \end{minipage}
  5602. ${\Rightarrow\qquad}$
  5603. \begin{minipage}{0.20\textwidth}
  5604. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5605. movq $1, %rcx
  5606. movq $42, -16(%rbp)
  5607. addq $7, %rcx
  5608. movq %rcx, -8(%rbp)
  5609. movq -16(%rbp), %rax
  5610. addq %rax, -8(%rbp)
  5611. negq %rcx
  5612. addq %rcx, -8(%rbp)
  5613. movq -8(%rbp), %rdi
  5614. callq print_int
  5615. \end{lstlisting}
  5616. \end{minipage}
  5617. \fi}
  5618. \begin{exercise}\normalfont
  5619. Change your implementation of \code{allocate\_registers} to take move
  5620. biasing into account. Create two new tests that include at least one
  5621. opportunity for move biasing and visually inspect the output x86
  5622. programs to make sure that your move biasing is working properly. Make
  5623. sure that your compiler still passes all of the tests.
  5624. \end{exercise}
  5625. %To do: another neat challenge would be to do
  5626. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  5627. %% \subsection{Output of the Running Example}
  5628. %% \label{sec:reg-alloc-output}
  5629. % challenge: prioritize variables based on execution frequencies
  5630. % and the number of uses of a variable
  5631. % challenge: enhance the coloring algorithm using Chaitin's
  5632. % approach of prioritizing high-degree variables
  5633. % by removing low-degree variables (coloring them later)
  5634. % from the interference graph
  5635. \section{Further Reading}
  5636. \label{sec:register-allocation-further-reading}
  5637. Early register allocation algorithms were developed for Fortran
  5638. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  5639. of graph coloring began in the late 1970s and early 1980s with the
  5640. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  5641. algorithm is based on the following observation of
  5642. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  5643. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  5644. $v$ removed is also $k$ colorable. To see why, suppose that the
  5645. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  5646. different colors, but since there are less than $k$ neighbors, there
  5647. will be one or more colors left over to use for coloring $v$ in $G$.
  5648. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  5649. less than $k$ from the graph and recursively colors the rest of the
  5650. graph. Upon returning from the recursion, it colors $v$ with one of
  5651. the available colors and returns. \citet{Chaitin:1982vn} augments
  5652. this algorithm to handle spilling as follows. If there are no vertices
  5653. of degree lower than $k$ then pick a vertex at random, spill it,
  5654. remove it from the graph, and proceed recursively to color the rest of
  5655. the graph.
  5656. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  5657. move-related and that don't interfere with each other, a process
  5658. called \emph{coalescing}. While coalescing decreases the number of
  5659. moves, it can make the graph more difficult to
  5660. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  5661. which two variables are merged only if they have fewer than $k$
  5662. neighbors of high degree. \citet{George:1996aa} observe that
  5663. conservative coalescing is sometimes too conservative and make it more
  5664. aggressive by iterating the coalescing with the removal of low-degree
  5665. vertices.
  5666. %
  5667. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  5668. also propose \emph{biased coloring} in which a variable is assigned to
  5669. the same color as another move-related variable if possible, as
  5670. discussed in Section~\ref{sec:move-biasing}.
  5671. %
  5672. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  5673. performs coalescing, graph coloring, and spill code insertion until
  5674. all variables have been assigned a location.
  5675. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  5676. spills variables that don't have to be: a high-degree variable can be
  5677. colorable if many of its neighbors are assigned the same color.
  5678. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  5679. high-degree vertex is not immediately spilled. Instead the decision is
  5680. deferred until after the recursive call, at which point it is apparent
  5681. whether there is actually an available color or not. We observe that
  5682. this algorithm is equivalent to the smallest-last ordering
  5683. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  5684. be registers and the rest to be stack locations.
  5685. %% biased coloring
  5686. Earlier editions of the compiler course at Indiana University
  5687. \citep{Dybvig:2010aa} were based on the algorithm of
  5688. \citet{Briggs:1994kx}.
  5689. The smallest-last ordering algorithm is one of many \emph{greedy}
  5690. coloring algorithms. A greedy coloring algorithm visits all the
  5691. vertices in a particular order and assigns each one the first
  5692. available color. An \emph{offline} greedy algorithm chooses the
  5693. ordering up-front, prior to assigning colors. The algorithm of
  5694. \citet{Chaitin:1981vl} should be considered offline because the vertex
  5695. ordering does not depend on the colors assigned. Other orderings are
  5696. possible. For example, \citet{Chow:1984ys} order variables according
  5697. to an estimate of runtime cost.
  5698. An \emph{online} greedy coloring algorithm uses information about the
  5699. current assignment of colors to influence the order in which the
  5700. remaining vertices are colored. The saturation-based algorithm
  5701. described in this chapter is one such algorithm. We choose to use
  5702. saturation-based coloring because it is fun to introduce graph
  5703. coloring via Sudoku!
  5704. A register allocator may choose to map each variable to just one
  5705. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  5706. variable to one or more locations. The later can be achieved by
  5707. \emph{live range splitting}, where a variable is replaced by several
  5708. variables that each handle part of its live
  5709. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  5710. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  5711. %% replacement algorithm, bottom-up local
  5712. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  5713. %% Cooper: top-down (priority bassed), bottom-up
  5714. %% top-down
  5715. %% order variables by priority (estimated cost)
  5716. %% caveat: split variables into two groups:
  5717. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  5718. %% color the constrained ones first
  5719. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  5720. %% cite J. Cocke for an algorithm that colors variables
  5721. %% in a high-degree first ordering
  5722. %Register Allocation via Usage Counts, Freiburghouse CACM
  5723. \citet{Palsberg:2007si} observe that many of the interference graphs
  5724. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  5725. that is, every cycle with four or more edges has an edge which is not
  5726. part of the cycle but which connects two vertices on the cycle. Such
  5727. graphs can be optimally colored by the greedy algorithm with a vertex
  5728. ordering determined by maximum cardinality search.
  5729. In situations where compile time is of utmost importance, such as in
  5730. just-in-time compilers, graph coloring algorithms can be too expensive
  5731. and the linear scan algorithm of \citet{Poletto:1999uq} may be more
  5732. appropriate.
  5733. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5734. \chapter{Booleans and Conditionals}
  5735. \label{ch:Lif}
  5736. \index{subject}{Boolean}
  5737. \index{subject}{control flow}
  5738. \index{subject}{conditional expression}
  5739. The \LangInt{} and \LangVar{} languages only have a single kind of
  5740. value, integers. In this chapter we add a second kind of value, the
  5741. Booleans, to create the \LangIf{} language. The Boolean values
  5742. \emph{true} and \emph{false} are written \TRUE{} and \FALSE{}
  5743. respectively in \racket{Racket}\python{Python}.
  5744. The \LangIf{} language includes several
  5745. operations that involve Booleans (\key{and}, \key{not}, \racket{\key{eq?}}\python{==}, \key{<}, etc.) and the \key{if} expression \python{and statement}.
  5746. With the addition of \key{if}, programs can have non-trivial control flow which
  5747. \racket{impacts \code{explicate\_control} and liveness analysis}
  5748. \python{impacts liveness analysis and motivates a new pass named
  5749. \code{explicate\_control}}. Also, because
  5750. we now have two kinds of values, we need to handle programs that apply
  5751. an operation to the wrong kind of value, such as
  5752. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5753. There are two language design options for such situations. One option
  5754. is to signal an error and the other is to provide a wider
  5755. interpretation of the operation. \racket{The Racket
  5756. language}\python{Python} uses a mixture of these two options,
  5757. depending on the operation and the kind of value. For example, the
  5758. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  5759. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  5760. treats non-zero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  5761. %
  5762. \racket{On the other hand, \code{(car 1)} results in a run-time error
  5763. in Racket because \code{car} expects a pair.}
  5764. %
  5765. \python{On the other hand, \code{1[0]} results in a run-time error
  5766. in Python because an ``\code{int} object is not subscriptable''.}
  5767. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  5768. design choices as \racket{Racket}\python{Python}, except much of the
  5769. error detection happens at compile time instead of run
  5770. time\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  5771. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  5772. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed
  5773. Racket}\python{MyPy} reports a compile-time error
  5774. %
  5775. \racket{because Racket expects the type of the argument to be of the form
  5776. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  5777. %
  5778. \python{stating that a ``value of type \code{int} is not indexable''.}
  5779. The \LangIf{} language performs type checking during compilation like
  5780. \racket{Typed Racket}\python{MyPy}. In Chapter~\ref{ch:Rdyn} we study the
  5781. alternative choice, that is, a dynamically typed language like
  5782. \racket{Racket}\python{Python}.
  5783. The \LangIf{} language is a subset of \racket{Typed Racket}\python{MyPy};
  5784. for some operations we are more restrictive, for example, rejecting
  5785. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5786. This chapter is organized as follows. We begin by defining the syntax
  5787. and interpreter for the \LangIf{} language
  5788. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  5789. checking and build a type checker for \LangIf{}
  5790. (Section~\ref{sec:type-check-Lif}).
  5791. %
  5792. \racket{To compile \LangIf{} we need to enlarge the intermediate
  5793. language \LangCVar{} into \LangCIf{} (Section~\ref{sec:Cif}) and
  5794. \LangXInt{} into \LangXIf{} (Section~\ref{sec:x86-if}).}
  5795. %
  5796. The remaining sections of this chapter discuss how our compiler passes
  5797. change to accommodate Booleans and conditional control flow. There is
  5798. a new pass, named \code{shrink}, that translates some operators into
  5799. others, thereby reducing the number of operators that need to be
  5800. handled in later passes.
  5801. %
  5802. \racket{The largest changes occur in \code{explicate\_control}, to
  5803. translate \code{if} expressions into control-flow graphs
  5804. (Section~\ref{sec:explicate-control-Lif}).}
  5805. %
  5806. \python{The largest addition is a new pass named
  5807. \code{explicate\_control} that translates \code{if} expressions and
  5808. statements into conditional \code{goto}'s
  5809. (Section~\ref{sec:explicate-control-Lif}).}
  5810. %
  5811. Regarding register allocation, there is the interesting question of
  5812. how to handle conditional \code{goto}'s during liveness analysis.
  5813. \section{The \LangIf{} Language}
  5814. \label{sec:lang-if}
  5815. The concrete syntax of the \LangIf{} language is defined in
  5816. Figure~\ref{fig:Lif-concrete-syntax} and the abstract syntax is defined
  5817. in Figure~\ref{fig:Lif-syntax}. The \LangIf{} language includes all of
  5818. \LangVar{}\racket{(shown in gray)}, the Boolean literals \TRUE{} and
  5819. \FALSE{}, and the \code{if} expression \python{and statement}. We expand the
  5820. operators to include
  5821. \begin{enumerate}
  5822. \item subtraction on integers,
  5823. \item the logical operators \key{and}, \key{or} and \key{not},
  5824. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  5825. for comparing two integers or two Booleans for equality, and
  5826. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  5827. comparing integers.
  5828. \end{enumerate}
  5829. \racket{We reorganize the abstract syntax for the primitive
  5830. operations in Figure~\ref{fig:Lif-syntax}, using only one grammar
  5831. rule for all of them. This means that the grammar no longer checks
  5832. whether the arity of an operators matches the number of
  5833. arguments. That responsibility is moved to the type checker for
  5834. \LangIf{}, which we introduce in Section~\ref{sec:type-check-Lif}.}
  5835. \begin{figure}[tp]
  5836. \centering
  5837. \fbox{
  5838. \begin{minipage}{0.96\textwidth}
  5839. {\if\edition\racketEd\color{olive}
  5840. \[
  5841. \begin{array}{lcl}
  5842. \itm{bool} &::=& \TRUE \MID \FALSE \\
  5843. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  5844. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} } \MID \CSUB{\Exp}{\Exp} \\
  5845. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} } \\
  5846. &\MID& \itm{bool}
  5847. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  5848. \MID (\key{not}\;\Exp) \\
  5849. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} \\
  5850. \LangIfM{} &::=& \Exp
  5851. \end{array}
  5852. \]
  5853. \fi}
  5854. {\if\edition\pythonEd
  5855. \[
  5856. \begin{array}{rcl}
  5857. \itm{binop} &::= & \key{+} \MID \key{-} \MID \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  5858. \itm{uniop} &::= & \key{-} \MID \key{not} \\
  5859. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \itm{uniop}\;\Exp \MID \Exp \; \itm{binop} \; \Exp \MID \Var{} \\
  5860. &\MID& \TRUE \MID \FALSE \MID \Exp\;\key{if}\;\Exp\;\key{else}\;\Exp\\
  5861. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp \MID \Var\mathop{\key{=}}\Exp
  5862. \MID \key{if}\; \Exp \;\key{:}\; \Stmt^{+} \;\key{else:}\; \Stmt^{+}\\
  5863. \LangVarM{} &::=& \Stmt^{*}
  5864. \end{array}
  5865. \]
  5866. \fi}
  5867. \end{minipage}
  5868. }
  5869. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  5870. (Figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  5871. \label{fig:Lif-concrete-syntax}
  5872. \end{figure}
  5873. \begin{figure}[tp]
  5874. \centering
  5875. \fbox{
  5876. \begin{minipage}{0.96\textwidth}
  5877. {\if\edition\racketEd\color{olive}
  5878. \[
  5879. \begin{array}{lcl}
  5880. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  5881. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  5882. \itm{op} &::= & \itm{cmp} \MID \code{read} \MID \code{+} \MID \code{-}
  5883. \MID \code{and} \MID \code{or} \MID \code{not} \\
  5884. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  5885. &\MID& \PRIM{\itm{op}}{\Exp\ldots}\\
  5886. &\MID& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp} \\
  5887. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  5888. \end{array}
  5889. \]
  5890. \fi}
  5891. {\if\edition\pythonEd
  5892. \[
  5893. \begin{array}{lcl}
  5894. \itm{binop} &::=& \code{Add()} \MID \code{Sub()} \\
  5895. \itm{uniop} &::=& \code{USub()} \MID \code{Not()} \\
  5896. \itm{bool} &::=& \code{True} \MID \code{False} \\
  5897. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  5898. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  5899. \Exp &::=& \INT{\Int} \MID \READ{} \MID \VAR{\Var} \\
  5900. &\MID& \BINOP{\Exp}{\itm{binop}}{\Exp}
  5901. \MID \UNIOP{\itm{uniop}}{\Exp}\\
  5902. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp}
  5903. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  5904. &\MID& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp} \\
  5905. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  5906. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}\\
  5907. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  5908. \end{array}
  5909. \]
  5910. \fi}
  5911. \end{minipage}
  5912. }
  5913. \caption{The abstract syntax of \LangIf{}.}
  5914. \label{fig:Lif-syntax}
  5915. \end{figure}
  5916. Figure~\ref{fig:interp-Lif} defines the interpreter for \LangIf{},
  5917. which inherits from the interpreter for \LangVar{}
  5918. (Figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  5919. evaluate to the corresponding Boolean values. The conditional
  5920. expression $\CIF{\itm{cnd}}{\itm{thn}}{\itm{els}}$ evaluates \itm{cnd}
  5921. and then either evaluates \itm{thn} or \itm{els} depending on whether
  5922. \itm{cnd} produced \TRUE{} or \FALSE{}. The logical operations
  5923. \code{and}, \code{or}, and \code{not} behave as you might expect, but
  5924. note that the \code{and} an \code{or} operations are
  5925. short-circuiting.
  5926. %
  5927. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  5928. is not evaluated if $e_1$ evaluates to \FALSE{}.
  5929. %
  5930. Similarly, given the expression $\COR{e_1}{e_2}$, the expression $e_2$
  5931. is not evaluated if $e_1$ evaluates to \TRUE{}.
  5932. \racket{With the increase in the number of primitive operations, the
  5933. interpreter would become repetitive without some care. We refactor
  5934. the case for \code{Prim}, moving the code that differs with each
  5935. operation into the \code{interp\_op} method shown in in
  5936. Figure~\ref{fig:interp-op-Lif}. We handle the \code{and} operation
  5937. separately because of its short-circuiting behavior.}
  5938. \begin{figure}[tbp]
  5939. {\if\edition\racketEd\color{olive}
  5940. \begin{lstlisting}
  5941. (define interp_Lif_class
  5942. (class interp_Lvar_class
  5943. (super-new)
  5944. (define/public (interp_op op) ...)
  5945. (define/override ((interp_exp env) e)
  5946. (define recur (interp_exp env))
  5947. (match e
  5948. [(Bool b) b]
  5949. [(If cnd thn els)
  5950. (match (recur cnd)
  5951. [#t (recur thn)]
  5952. [#f (recur els)])]
  5953. [(Prim 'and (list e1 e2))
  5954. (match (recur e1)
  5955. [#t (match (recur e2) [#t #t] [#f #f])]
  5956. [#f #f])]
  5957. [(Prim op args)
  5958. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  5959. [else ((super interp_exp env) e)]))
  5960. ))
  5961. (define (interp_Lif p)
  5962. (send (new interp_Lif_class) interp_program p))
  5963. \end{lstlisting}
  5964. \fi}
  5965. {\if\edition\pythonEd
  5966. \begin{lstlisting}
  5967. class InterpPif(InterpLvar):
  5968. def interp_exp(self, e, env):
  5969. match e:
  5970. case IfExp(test, body, orelse):
  5971. match self.interp_exp(test, env):
  5972. case True:
  5973. return self.interp_exp(body, env)
  5974. case False:
  5975. return self.interp_exp(orelse, env)
  5976. case BinOp(left, Sub(), right):
  5977. l = self.interp_exp(left, env)
  5978. r = self.interp_exp(right, env)
  5979. return l - r
  5980. case UnaryOp(Not(), v):
  5981. return not self.interp_exp(v, env)
  5982. case BoolOp(And(), values):
  5983. left = values[0]; right = values[1]
  5984. match self.interp_exp(left, env):
  5985. case True:
  5986. return self.interp_exp(right, env)
  5987. case False:
  5988. return False
  5989. case BoolOp(Or(), values):
  5990. left = values[0]; right = values[1]
  5991. match self.interp_exp(left, env):
  5992. case True:
  5993. return True
  5994. case False:
  5995. return self.interp_exp(right, env)
  5996. case Compare(left, [cmp], [right]):
  5997. l = self.interp_exp(left, env)
  5998. r = self.interp_exp(right, env)
  5999. return self.interp_cmp(cmp)(l, r)
  6000. case _:
  6001. return super().interp_exp(e, env)
  6002. def interp_stmts(self, ss, env):
  6003. if len(ss) == 0:
  6004. return
  6005. match ss[0]:
  6006. case If(test, body, orelse):
  6007. match self.interp_exp(test, env):
  6008. case True:
  6009. return self.interp_stmts(body + ss[1:], env)
  6010. case False:
  6011. return self.interp_stmts(orelse + ss[1:], env)
  6012. case _:
  6013. return super().interp_stmts(ss, env)
  6014. ...
  6015. \end{lstlisting}
  6016. \fi}
  6017. \caption{Interpreter for the \LangIf{} language. \racket{(See
  6018. Figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  6019. \python{(See Figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  6020. \label{fig:interp-Lif}
  6021. \end{figure}
  6022. {\if\edition\racketEd\color{olive}
  6023. \begin{figure}[tbp]
  6024. \begin{lstlisting}
  6025. (define/public (interp_op op)
  6026. (match op
  6027. ['+ fx+]
  6028. ['- fx-]
  6029. ['read read-fixnum]
  6030. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  6031. ['or (lambda (v1 v2)
  6032. (cond [(and (boolean? v1) (boolean? v2))
  6033. (or v1 v2)]))]
  6034. ['eq? (lambda (v1 v2)
  6035. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6036. (and (boolean? v1) (boolean? v2))
  6037. (and (vector? v1) (vector? v2)))
  6038. (eq? v1 v2)]))]
  6039. ['< (lambda (v1 v2)
  6040. (cond [(and (fixnum? v1) (fixnum? v2))
  6041. (< v1 v2)]))]
  6042. ['<= (lambda (v1 v2)
  6043. (cond [(and (fixnum? v1) (fixnum? v2))
  6044. (<= v1 v2)]))]
  6045. ['> (lambda (v1 v2)
  6046. (cond [(and (fixnum? v1) (fixnum? v2))
  6047. (> v1 v2)]))]
  6048. ['>= (lambda (v1 v2)
  6049. (cond [(and (fixnum? v1) (fixnum? v2))
  6050. (>= v1 v2)]))]
  6051. [else (error 'interp_op "unknown operator")]))
  6052. \end{lstlisting}
  6053. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  6054. \label{fig:interp-op-Lif}
  6055. \end{figure}
  6056. \fi}
  6057. {\if\edition\pythonEd
  6058. \begin{figure}
  6059. \begin{lstlisting}
  6060. class InterpPif(InterpLvar):
  6061. ...
  6062. def interp_cmp(self, cmp):
  6063. match cmp:
  6064. case Lt():
  6065. return lambda x, y: x < y
  6066. case LtE():
  6067. return lambda x, y: x <= y
  6068. case Gt():
  6069. return lambda x, y: x > y
  6070. case GtE():
  6071. return lambda x, y: x >= y
  6072. case Eq():
  6073. return lambda x, y: x == y
  6074. case NotEq():
  6075. return lambda x, y: x != y
  6076. \end{lstlisting}
  6077. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  6078. \label{fig:interp-cmp-Lif}
  6079. \end{figure}
  6080. \fi}
  6081. \section{Type Checking \LangIf{} Programs}
  6082. \label{sec:type-check-Lif}
  6083. \index{subject}{type checking}
  6084. \index{subject}{semantic analysis}
  6085. It is helpful to think about type checking in two complementary
  6086. ways. A type checker predicts the type of value that will be produced
  6087. by each expression in the program. For \LangIf{}, we have just two types,
  6088. \INTTY{} and \BOOLTY{}. So a type checker should predict that
  6089. {\if\edition\racketEd\color{olive}
  6090. \begin{lstlisting}
  6091. (+ 10 (- (+ 12 20)))
  6092. \end{lstlisting}
  6093. \fi}
  6094. {\if\edition\pythonEd
  6095. \begin{lstlisting}
  6096. 10 + -(12 + 20)
  6097. \end{lstlisting}
  6098. \fi}
  6099. \noindent produces a value of type \INTTY{} while
  6100. {\if\edition\racketEd\color{olive}
  6101. \begin{lstlisting}
  6102. (and (not #f) #t)
  6103. \end{lstlisting}
  6104. \fi}
  6105. {\if\edition\pythonEd
  6106. \begin{lstlisting}
  6107. (not False) and True
  6108. \end{lstlisting}
  6109. \fi}
  6110. \noindent produces a value of type \BOOLTY{}.
  6111. Another way to think about type checking is that it enforces a set of
  6112. rules about which operators can be applied to which kinds of
  6113. values. For example, our type checker for \LangIf{} signals an error
  6114. for the below expression
  6115. {\if\edition\racketEd\color{olive}
  6116. \begin{lstlisting}
  6117. (not (+ 10 (- (+ 12 20))))
  6118. \end{lstlisting}
  6119. \fi}
  6120. {\if\edition\pythonEd
  6121. \begin{lstlisting}
  6122. not (10 + -(12 + 20))
  6123. \end{lstlisting}
  6124. \fi}
  6125. The subexpression
  6126. \racket{\code{(+ 10 (- (+ 12 20)))}}\python{\code{(10 + -(12 + 20))}}
  6127. has type \INTTY{} but the type checker enforces the rule that the argument of
  6128. \code{not} must be an expression of type \BOOLTY{}.
  6129. We implement type checking using classes and methods because they
  6130. provide the open recursion needed to reuse code as we extend the type
  6131. checker in later chapters, analogous to the use of classes and methods
  6132. for the interpreters (Section~\ref{sec:extensible-interp}).
  6133. We separate the type checker for the \LangVar{} fragment into its own
  6134. class, shown in Figure~\ref{fig:type-check-Lvar}. The type checker for
  6135. \LangIf{} is shown in Figure~\ref{fig:type-check-Lif} and it inherits
  6136. from the type checker for \LangVar{}. These type checkers are in the
  6137. files
  6138. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  6139. and
  6140. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Pif.py}}
  6141. of the support code.
  6142. %
  6143. Each type checker is a structurally recursive function over the AST.
  6144. Given an input expression \code{e}, the type checker either signals an
  6145. error or returns an expression and its type (\INTTY{} or
  6146. \BOOLTY{}). It returns an expression because there are situations
  6147. in which we want to change or update the expression.
  6148. Next we discuss the \code{type\_check\_exp} function in
  6149. Figure~\ref{fig:type-check-Lvar}. The type of an integer constant is
  6150. \INTTY{}. To handle variables, the type checker uses the environment
  6151. \code{env} to map variables to types.
  6152. %
  6153. \racket{Consider the case for \key{let}. We type check the
  6154. initializing expression to obtain its type \key{T} and then
  6155. associate type \code{T} with the variable \code{x} in the
  6156. environment used to type check the body of the \key{let}. Thus,
  6157. when the type checker encounters a use of variable \code{x}, it can
  6158. find its type in the environment.}
  6159. %
  6160. \python{Consider the case for assignment. We type check the
  6161. initializing expression to obtain its type \key{t}. If the variable
  6162. \code{lhs.id} is already in the environment because there was a
  6163. prior assignment, we check that this initializer has the same type
  6164. as the prior one. If this is the first assignment to the variable,
  6165. we associate type \code{t} with the variable \code{lhs.id} in the
  6166. environment. Thus, when the type checker encounters a use of
  6167. variable \code{x}, it can find its type in the environment.}
  6168. %
  6169. \racket{Regarding primitive operators, we recursively analyze the
  6170. arguments and then invoke \code{type\_check\_op} to check whether
  6171. the argument types are allowed.}
  6172. %
  6173. \python{Regarding addition and negation, we recursively analyze the
  6174. arguments, check that they have type \INT{}, and return \INT{}.}
  6175. \racket{Several auxiliary methods are used in the type checker. The
  6176. method \code{operator-types} defines a dictionary that maps the
  6177. operator names to their parameter and return types. The
  6178. \code{type-equal?} method determines whether two types are equal,
  6179. which for now simply dispatches to \code{equal?} (deep
  6180. equality). The \code{check-type-equal?} method triggers an error if
  6181. the two types are not equal. The \code{type-check-op} method looks
  6182. up the operator in the \code{operator-types} dictionary and then
  6183. checks whether the argument types are equal to the parameter types.
  6184. The result is the return type of the operator.}
  6185. %
  6186. \python{The auxiliary method \code{check\_type\_equal} method triggers
  6187. an error if the two types are not equal.}
  6188. \begin{figure}[tbp]
  6189. {\if\edition\racketEd\color{olive}
  6190. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6191. (define type-check-Lvar_class
  6192. (class object%
  6193. (super-new)
  6194. (define/public (operator-types)
  6195. '((+ . ((Integer Integer) . Integer))
  6196. (- . ((Integer) . Integer))
  6197. (read . (() . Integer))))
  6198. (define/public (type-equal? t1 t2) (equal? t1 t2))
  6199. (define/public (check-type-equal? t1 t2 e)
  6200. (unless (type-equal? t1 t2)
  6201. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  6202. (define/public (type-check-op op arg-types e)
  6203. (match (dict-ref (operator-types) op)
  6204. [`(,param-types . ,return-type)
  6205. (for ([at arg-types] [pt param-types])
  6206. (check-type-equal? at pt e))
  6207. return-type]
  6208. [else (error 'type-check-op "unrecognized ~a" op)]))
  6209. (define/public (type-check-exp env)
  6210. (lambda (e)
  6211. (match e
  6212. [(Int n) (values (Int n) 'Integer)]
  6213. [(Var x) (values (Var x) (dict-ref env x))]
  6214. [(Let x e body)
  6215. (define-values (e^ Te) ((type-check-exp env) e))
  6216. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  6217. (values (Let x e^ b) Tb)]
  6218. [(Prim op es)
  6219. (define-values (new-es ts)
  6220. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  6221. (values (Prim op new-es) (type-check-op op ts e))]
  6222. [else (error 'type-check-exp "couldn't match" e)])))
  6223. (define/public (type-check-program e)
  6224. (match e
  6225. [(Program info body)
  6226. (define-values (body^ Tb) ((type-check-exp '()) body))
  6227. (check-type-equal? Tb 'Integer body)
  6228. (Program info body^)]
  6229. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  6230. ))
  6231. (define (type-check-Lvar p)
  6232. (send (new type-check-Lvar_class) type-check-program p))
  6233. \end{lstlisting}
  6234. \fi}
  6235. {\if\edition\pythonEd
  6236. \begin{lstlisting}
  6237. class TypeCheckLvar:
  6238. def check_type_equal(self, t1, t2, e):
  6239. if t1 != t2:
  6240. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  6241. raise Exception(msg)
  6242. def type_check_exp(self, e, env):
  6243. match e:
  6244. case BinOp(left, Add(), right):
  6245. l = self.type_check_exp(left, env)
  6246. check_type_equal(l, int, left)
  6247. r = self.type_check_exp(right, env)
  6248. check_type_equal(r, int, right)
  6249. return int
  6250. case UnaryOp(USub(), v):
  6251. t = self.type_check_exp(v, env)
  6252. check_type_equal(t, int, v)
  6253. return int
  6254. case Name(id):
  6255. return env[id]
  6256. case Constant(value) if isinstance(value, int):
  6257. return int
  6258. case Call(Name('input_int'), []):
  6259. return int
  6260. def type_check_stmts(self, ss, env):
  6261. if len(ss) == 0:
  6262. return
  6263. match ss[0]:
  6264. case Assign([lhs], value):
  6265. t = self.type_check_exp(value, env)
  6266. if lhs.id in env:
  6267. check_type_equal(env[lhs.id], t, value)
  6268. else:
  6269. env[lhs.id] = t
  6270. return self.type_check_stmts(ss[1:], env)
  6271. case Expr(Call(Name('print'), [arg])):
  6272. t = self.type_check_exp(arg, env)
  6273. check_type_equal(t, int, arg)
  6274. return self.type_check_stmts(ss[1:], env)
  6275. case Expr(value):
  6276. self.type_check_exp(value, env)
  6277. return self.type_check_stmts(ss[1:], env)
  6278. def type_check_P(self, p):
  6279. match p:
  6280. case Module(body):
  6281. self.type_check_stmts(body, {})
  6282. \end{lstlisting}
  6283. \fi}
  6284. \caption{Type checker for the \LangVar{} language.}
  6285. \label{fig:type-check-Lvar}
  6286. \end{figure}
  6287. \begin{figure}[tbp]
  6288. {\if\edition\racketEd\color{olive}
  6289. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6290. (define type-check-Lif_class
  6291. (class type-check-Lvar_class
  6292. (super-new)
  6293. (inherit check-type-equal?)
  6294. (define/override (operator-types)
  6295. (append '((- . ((Integer Integer) . Integer))
  6296. (and . ((Boolean Boolean) . Boolean))
  6297. (or . ((Boolean Boolean) . Boolean))
  6298. (< . ((Integer Integer) . Boolean))
  6299. (<= . ((Integer Integer) . Boolean))
  6300. (> . ((Integer Integer) . Boolean))
  6301. (>= . ((Integer Integer) . Boolean))
  6302. (not . ((Boolean) . Boolean))
  6303. )
  6304. (super operator-types)))
  6305. (define/override (type-check-exp env)
  6306. (lambda (e)
  6307. (match e
  6308. [(Bool b) (values (Bool b) 'Boolean)]
  6309. [(Prim 'eq? (list e1 e2))
  6310. (define-values (e1^ T1) ((type-check-exp env) e1))
  6311. (define-values (e2^ T2) ((type-check-exp env) e2))
  6312. (check-type-equal? T1 T2 e)
  6313. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  6314. [(If cnd thn els)
  6315. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  6316. (define-values (thn^ Tt) ((type-check-exp env) thn))
  6317. (define-values (els^ Te) ((type-check-exp env) els))
  6318. (check-type-equal? Tc 'Boolean e)
  6319. (check-type-equal? Tt Te e)
  6320. (values (If cnd^ thn^ els^) Te)]
  6321. [else ((super type-check-exp env) e)])))
  6322. ))
  6323. (define (type-check-Lif p)
  6324. (send (new type-check-Lif_class) type-check-program p))
  6325. \end{lstlisting}
  6326. \fi}
  6327. {\if\edition\pythonEd
  6328. \begin{lstlisting}
  6329. class TypeCheckPif(TypeCheckLvar):
  6330. def type_check_exp(self, e, env):
  6331. match e:
  6332. case Constant(value) if isinstance(value, bool):
  6333. return bool
  6334. case BinOp(left, Sub(), right):
  6335. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6336. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6337. return int
  6338. case UnaryOp(Not(), v):
  6339. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  6340. return bool
  6341. case BoolOp(op, values):
  6342. left = values[0] ; right = values[1]
  6343. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  6344. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  6345. return bool
  6346. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  6347. or isinstance(cmp, NotEq):
  6348. l = self.type_check_exp(left, env)
  6349. r = self.type_check_exp(right, env)
  6350. check_type_equal(l, r, e)
  6351. return bool
  6352. case Compare(left, [cmp], [right]):
  6353. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6354. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6355. return bool
  6356. case IfExp(test, body, orelse):
  6357. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6358. b = self.type_check_exp(body, env)
  6359. o = self.type_check_exp(orelse, env)
  6360. check_type_equal(b, o, e)
  6361. return b
  6362. case _:
  6363. return super().type_check_exp(e, env)
  6364. def type_check_stmts(self, ss, env):
  6365. if len(ss) == 0:
  6366. return
  6367. match ss[0]:
  6368. case If(test, body, orelse):
  6369. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6370. b = self.type_check_stmts(body, env)
  6371. o = self.type_check_stmts(orelse, env)
  6372. check_type_equal(b, o, ss[0])
  6373. return self.type_check_stmts(ss[1:], env)
  6374. case _:
  6375. return super().type_check_stmts(ss, env)
  6376. \end{lstlisting}
  6377. \fi}
  6378. \caption{Type checker for the \LangIf{} language.}
  6379. \label{fig:type-check-Lif}
  6380. \end{figure}
  6381. Next we discuss the type checker for \LangIf{} in
  6382. Figure~\ref{fig:type-check-Lif}.
  6383. %
  6384. The type of a Boolean constant is \code{Boolean}.
  6385. %
  6386. \racket{The \code{operator-types} function adds dictionary entries for
  6387. the other new operators.}
  6388. %
  6389. \python{Subtraction requires its arguments to be of type \INTTY{} and produces
  6390. an \INTTY{}. Negation requires its argument to be a \BOOLTY{} and
  6391. produces a \BOOLTY{}. Similarly for logical-and and logical-or. }
  6392. %
  6393. The equality operators requires the two arguments to have the same
  6394. type.
  6395. %
  6396. \python{The other comparisons (less-than, etc.) require their
  6397. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  6398. %
  6399. The condition of an \code{if} must
  6400. be of \BOOLTY{} type and the two branches must have the same type.
  6401. \begin{exercise}\normalfont
  6402. Create 10 new test programs in \LangIf{}. Half of the programs should
  6403. have a type error. For those programs, create an empty file with the
  6404. same base name but with file extension \code{.tyerr}. For example, if
  6405. the test
  6406. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  6407. is expected to error, then create
  6408. an empty file named \code{cond\_test\_14.tyerr}.
  6409. %
  6410. \racket{This indicates to \code{interp-tests} and
  6411. \code{compiler-tests} that a type error is expected. }
  6412. %
  6413. \racket{This indicates to the \code{run-tests.py} scripts that a type
  6414. error is expected.}
  6415. %
  6416. The other half of the test programs should not have type errors.
  6417. %
  6418. \racket{In the \code{run-tests.rkt} script, change the second argument
  6419. of \code{interp-tests} and \code{compiler-tests} to
  6420. \code{type-check-Lif}, which causes the type checker to run prior to
  6421. the compiler passes. Temporarily change the \code{passes} to an
  6422. empty list and run the script, thereby checking that the new test
  6423. programs either type check or not as intended.}
  6424. %
  6425. Run the test script to check that these test programs type check as
  6426. expected.
  6427. \end{exercise}
  6428. \section{The \LangCIf{} Intermediate Language}
  6429. \label{sec:Cif}
  6430. {\if\edition\pythonEd
  6431. The output of \key{explicate\_control} is a language similar to the
  6432. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  6433. \code{goto} statements, so we name it \LangCIf{}. The abstract syntax
  6434. for \LangCIf{} is defined in Figure~\ref{fig:c1-syntax}.
  6435. \racket{(The concrete syntax for \LangCIf{} is in the Appendix,
  6436. Figure~\ref{fig:c1-concrete-syntax}.)}
  6437. %
  6438. The \LangCIf{} language supports the same operators as \LangIf{} but
  6439. the arguments of operators are restricted to atomic expressions. The
  6440. \LangCIf{} language does not include \code{if} expressions but it does
  6441. include a restricted form of \code{if} statment. The condition must be
  6442. a comparison and the two branches may only contain \code{goto}
  6443. statements. These restrictions make it easier to translate \code{if}
  6444. statements to x86.
  6445. %
  6446. Also, a \LangCIf{} program consists of a dictionary mapping labels to
  6447. lists of statements, instead of simply being a list of statements.
  6448. \fi}
  6449. \racket{
  6450. Figure~\ref{fig:c1-syntax} defines the abstract syntax of the
  6451. \LangCIf{} intermediate language. (The concrete syntax is in the
  6452. Appendix, Figure~\ref{fig:c1-concrete-syntax}.) Compared to
  6453. \LangCVar{}, the \LangCIf{} language adds logical and comparison
  6454. operators to the \Exp{} non-terminal and the literals \TRUE{} and
  6455. \FALSE{} to the \Arg{} non-terminal.
  6456. Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
  6457. statements to the \Tail{} non-terminal. The condition of an \code{if}
  6458. statement is a comparison operation and the branches are \code{goto}
  6459. statements, making it straightforward to compile \code{if} statements
  6460. to x86.
  6461. }
  6462. \begin{figure}[tp]
  6463. \fbox{
  6464. \begin{minipage}{0.96\textwidth}
  6465. \small
  6466. {\if\edition\racketEd\color{olive}
  6467. \[
  6468. \begin{array}{lcl}
  6469. \Atm &::=& \gray{\INT{\Int} \MID \VAR{\Var}} \MID \BOOL{\itm{bool}} \\
  6470. \itm{cmp} &::= & \key{eq?} \MID \key{<} \\
  6471. \Exp &::= & \gray{ \Atm \MID \READ{} }\\
  6472. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  6473. &\MID& \UNIOP{\key{'not}}{\Atm}
  6474. \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  6475. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
  6476. \Tail &::= & \gray{\RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail} }
  6477. \MID \GOTO{\itm{label}} \\
  6478. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
  6479. \LangCIfM{} & ::= & \gray{\CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}}
  6480. \end{array}
  6481. \]
  6482. \fi}
  6483. {\if\edition\pythonEd
  6484. \[
  6485. \begin{array}{lcl}
  6486. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  6487. \itm{cmp} &::= & \key{eq?} \MID \key{<} \\
  6488. \Exp &::= & \Atm \MID \READ{} \\
  6489. &\MID& \BINOP{\Atm}{\itm{binop}}{\Atm}
  6490. \MID \UNIOP{\itm{uniop}}{\Atm} \\
  6491. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm}
  6492. \MID \BOOLOP{\itm{boolop}}{\Atm}{\Atm} \\
  6493. \Stmt &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  6494. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  6495. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  6496. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS} \\
  6497. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\,\key{:}\,\Stmt^{+}, \ldots \RC}
  6498. \end{array}
  6499. \]
  6500. \fi}
  6501. \end{minipage}
  6502. }
  6503. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  6504. (Figure~\ref{fig:c0-syntax})}.}
  6505. \label{fig:c1-syntax}
  6506. \end{figure}
  6507. \section{The \LangXIf{} Language}
  6508. \label{sec:x86-if}
  6509. \index{subject}{x86} To implement the new logical operations, the comparison
  6510. operations, and the \key{if} expression, we need to delve further into
  6511. the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
  6512. define the concrete and abstract syntax for the \LangXIf{} subset
  6513. of x86, which includes instructions for logical operations,
  6514. comparisons, and conditional jumps.
  6515. One challenge is that x86 does not provide an instruction that
  6516. directly implements logical negation (\code{not} in \LangIf{} and
  6517. \LangCIf{}). However, the \code{xorq} instruction can be used to
  6518. encode \code{not}. The \key{xorq} instruction takes two arguments,
  6519. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  6520. bit of its arguments, and writes the results into its second argument.
  6521. Recall the truth table for exclusive-or:
  6522. \begin{center}
  6523. \begin{tabular}{l|cc}
  6524. & 0 & 1 \\ \hline
  6525. 0 & 0 & 1 \\
  6526. 1 & 1 & 0
  6527. \end{tabular}
  6528. \end{center}
  6529. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  6530. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  6531. for the bit $1$, the result is the opposite of the second bit. Thus,
  6532. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  6533. the first argument:
  6534. \[
  6535. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Arg}}
  6536. \qquad\Rightarrow\qquad
  6537. \begin{array}{l}
  6538. \key{movq}~ \Arg\key{,} \Var\\
  6539. \key{xorq}~ \key{\$1,} \Var
  6540. \end{array}
  6541. \]
  6542. \begin{figure}[tp]
  6543. \fbox{
  6544. \begin{minipage}{0.96\textwidth}
  6545. \[
  6546. \begin{array}{lcl}
  6547. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6548. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6549. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} } \MID \key{\%}\itm{bytereg}\\
  6550. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6551. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \MID
  6552. \key{subq} \; \Arg\key{,} \Arg \MID
  6553. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID } \\
  6554. && \gray{ \key{callq} \; \itm{label} \MID
  6555. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \racket{\key{jmp}\,\itm{label} \MID} } \python{\key{jmp}\,\itm{label} \MID} \\
  6556. && \racket{\gray{ \itm{label}\key{:}\; \Instr }}\python{\itm{label}\key{:}\; \Instr}
  6557. \MID \key{xorq}~\Arg\key{,}~\Arg
  6558. \MID \key{cmpq}~\Arg\key{,}~\Arg \MID \\
  6559. && \key{set}cc~\Arg
  6560. \MID \key{movzbq}~\Arg\key{,}~\Arg
  6561. \MID \key{j}cc~\itm{label}
  6562. \\
  6563. \LangXIfM{} &::= & \gray{ \key{.globl main} }\\
  6564. & & \gray{ \key{main:} \; \Instr\ldots }
  6565. \end{array}
  6566. \]
  6567. \end{minipage}
  6568. }
  6569. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  6570. \label{fig:x86-1-concrete}
  6571. \end{figure}
  6572. \begin{figure}[tp]
  6573. \fbox{
  6574. \begin{minipage}{0.98\textwidth}
  6575. \small
  6576. {\if\edition\racketEd\color{olive}
  6577. \[
  6578. \begin{array}{lcl}
  6579. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6580. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6581. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6582. \MID \BYTEREG{\itm{bytereg}} \\
  6583. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6584. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6585. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6586. &\MID& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  6587. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6588. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6589. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} } \\
  6590. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6591. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6592. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6593. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6594. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}} \\
  6595. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  6596. \LangXIfM{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  6597. \end{array}
  6598. \]
  6599. \fi}
  6600. %
  6601. {\if\edition\pythonEd
  6602. \[
  6603. \begin{array}{lcl}
  6604. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6605. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6606. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6607. \MID \BYTEREG{\itm{bytereg}} \\
  6608. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6609. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6610. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6611. &\MID& \gray{ \BININSTR{\code{movq}}{\Arg}{\Arg}
  6612. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6613. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6614. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  6615. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6616. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6617. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6618. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6619. &\MID& \JMPIF{\key{'}\itm{cc}\key{'}}{\itm{label}} \\
  6620. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Instr^{+} \key{,} \ldots \RC }
  6621. \end{array}
  6622. \]
  6623. \fi}
  6624. \end{minipage}
  6625. }
  6626. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  6627. \label{fig:x86-1}
  6628. \end{figure}
  6629. Next we consider the x86 instructions that are relevant for compiling
  6630. the comparison operations. The \key{cmpq} instruction compares its two
  6631. arguments to determine whether one argument is less than, equal, or
  6632. greater than the other argument. The \key{cmpq} instruction is unusual
  6633. regarding the order of its arguments and where the result is
  6634. placed. The argument order is backwards: if you want to test whether
  6635. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  6636. \key{cmpq} is placed in the special EFLAGS register. This register
  6637. cannot be accessed directly but it can be queried by a number of
  6638. instructions, including the \key{set} instruction. The instruction
  6639. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  6640. depending on whether the comparison comes out according to the
  6641. condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
  6642. for less-or-equal, \key{g} for greater, \key{ge} for
  6643. greater-or-equal). The \key{set} instruction has an annoying quirk in
  6644. that its destination argument must be single byte register, such as
  6645. \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
  6646. are part of the \code{rax} register. Thankfully, the \key{movzbq}
  6647. instruction can be used to move from a single byte register to a
  6648. normal 64-bit register. The abstract syntax for the \code{set}
  6649. instruction differs from the concrete syntax in that it separates the
  6650. instruction name from the condition code.
  6651. \python{The x86 instructions for jumping are relevant to the
  6652. compilation of \key{if} expressions.}
  6653. %
  6654. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  6655. counter to the address of the instruction after the specified
  6656. label.}
  6657. %
  6658. \racket{The x86 instruction for conditional jump is relevant to the
  6659. compilation of \key{if} expressions.}
  6660. %
  6661. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  6662. counter to point to the instruction after \itm{label} depending on
  6663. whether the result in the EFLAGS register matches the condition code
  6664. \itm{cc}, otherwise the jump instruction falls through to the next
  6665. instruction. Like the abstract syntax for \code{set}, the abstract
  6666. syntax for conditional jump separates the instruction name from the
  6667. condition code. For example, \JMPIF{\key{'le'}}{\key{foo}} corresponds
  6668. to \code{jle foo}. Because the conditional jump instruction relies on
  6669. the EFLAGS register, it is common for it to be immediately preceded by
  6670. a \key{cmpq} instruction to set the EFLAGS register.
  6671. \section{Shrink the \LangIf{} Language}
  6672. \label{sec:shrink-Lif}
  6673. The \LangIf{} language includes several features that are easily
  6674. expressible with other features. For example, \code{and} and \code{or}
  6675. are expressible using \code{if} as follows.
  6676. \begin{align*}
  6677. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  6678. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  6679. \end{align*}
  6680. By performing these translations in the front-end of the compiler, the
  6681. later passes of the compiler do not need to deal with these features,
  6682. making the passes shorter.
  6683. %% For example, subtraction is
  6684. %% expressible using addition and negation.
  6685. %% \[
  6686. %% \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  6687. %% \]
  6688. %% Several of the comparison operations are expressible using less-than
  6689. %% and logical negation.
  6690. %% \[
  6691. %% \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  6692. %% \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  6693. %% \]
  6694. %% The \key{let} is needed in the above translation to ensure that
  6695. %% expression $e_1$ is evaluated before $e_2$.
  6696. On the other hand, sometimes translations reduce the efficiency of the
  6697. generated code by increasing the number of instructions. For example,
  6698. expressing subtraction in terms of negation
  6699. \[
  6700. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  6701. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  6702. \]
  6703. produces code with two x86 instructions (\code{negq} and \code{addq})
  6704. instead of just one (\code{subq}).
  6705. %% However,
  6706. %% these differences typically do not affect the number of accesses to
  6707. %% memory, which is the primary factor that determines execution time on
  6708. %% modern computer architectures.
  6709. \begin{exercise}\normalfont
  6710. %
  6711. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  6712. the language by translating them to other constructs in \LangIf{}.
  6713. %
  6714. Create four test programs that involve these operators.
  6715. %
  6716. {\if\edition\racketEd\color{olive}
  6717. In the \code{run-tests.rkt} script, add the following entry for
  6718. \code{shrink} to the list of passes (it should be the only pass at
  6719. this point).
  6720. \begin{lstlisting}
  6721. (list "shrink" shrink interp_Lif type-check-Lif)
  6722. \end{lstlisting}
  6723. This instructs \code{interp-tests} to run the intepreter
  6724. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  6725. output of \code{shrink}.
  6726. \fi}
  6727. %
  6728. Run the script to test your compiler on all the test programs.
  6729. \end{exercise}
  6730. {\if\edition\racketEd\color{olive}
  6731. \section{Uniquify Variables}
  6732. \label{sec:uniquify-Lif}
  6733. Add cases to \code{uniquify-exp} to handle Boolean constants and
  6734. \code{if} expressions.
  6735. \begin{exercise}\normalfont
  6736. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  6737. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  6738. \begin{lstlisting}
  6739. (list "uniquify" uniquify interp_Lif type_check_Lif)
  6740. \end{lstlisting}
  6741. Run the script to test your compiler.
  6742. \end{exercise}
  6743. \fi}
  6744. \section{Remove Complex Operands}
  6745. \label{sec:remove-complex-opera-Lif}
  6746. The output language for this pass is \LangIfANF{}
  6747. (Figure~\ref{fig:Lif-anf-syntax}), the administrative normal form of
  6748. \LangIf{}. A Boolean constant is an atomic expressions but the
  6749. \code{if} expression is not.
  6750. All three sub-expressions of an
  6751. \code{if} are allowed to be complex expressions but the operands of
  6752. \code{not} and the comparisons must be atomic.
  6753. %
  6754. \python{We add a new language form, the \code{Let} expression, to aid
  6755. in the translation of \code{if} expressions. The
  6756. $\LET{x}{e_1}{e_2}$ form is like an assignment statement, but can be
  6757. used as an expression. It assigns the result of $e_1$ to the
  6758. variable $x$, an then evaluates $e_2$, which may reference $x$.}
  6759. Add cases for Boolean constants, \python{comparisons,} and \code{if}
  6760. expressions to the \code{rco\_exp} and \code{rco\_atom} functions
  6761. according to whether the output needs to be \Exp{} or \Atm{} as
  6762. specified in the grammar for \LangIfANF{}. Regarding \code{if}, it is
  6763. particularly important to \textbf{not} replace its condition with a
  6764. temporary variable because that would interfere with the generation of
  6765. high-quality output in the \code{explicate\_control} pass.
  6766. \begin{figure}[tp]
  6767. \centering
  6768. \fbox{
  6769. \begin{minipage}{0.96\textwidth}
  6770. {\if\edition\racketEd\color{olive}
  6771. \[
  6772. \begin{array}{rcl}
  6773. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} } \MID \BOOL{\itm{bool}}\\
  6774. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  6775. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  6776. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  6777. &\MID& \UNIOP{\key{not}}{\Atm} \\
  6778. &\MID& \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6779. R^{\mathsf{ANF}}_{\mathsf{if}} &::=& \PROGRAM{\code{()}}{\Exp}
  6780. \end{array}
  6781. \]
  6782. \fi}
  6783. {\if\edition\pythonEd
  6784. \[
  6785. \begin{array}{rcl}
  6786. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  6787. \Exp &::=& \Atm \MID \READ{} \\
  6788. &\MID& \BINOP{\itm{binop}}{\Atm}{\Atm} \MID \UNIOP{\key{uniop}}{\Atm} \\
  6789. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6790. &\MID& \LET{\Var}{\Exp}{\Exp}\\
  6791. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  6792. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}\\
  6793. P^{\mathsf{ANF}}_{\mathsf{if}} &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  6794. \end{array}
  6795. \]
  6796. \fi}
  6797. \end{minipage}
  6798. }
  6799. \caption{\LangIfANF{} is \LangIf{} in administrative normal form (ANF).}
  6800. \label{fig:Lif-anf-syntax}
  6801. \end{figure}
  6802. \begin{exercise}\normalfont
  6803. %
  6804. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  6805. and \code{rco\_exp} functions in \code{compiler.rkt}.
  6806. %
  6807. Create three new \LangInt{} programs that exercise the interesting
  6808. code in this pass.
  6809. %
  6810. {\if\edition\racketEd\color{olive}
  6811. In the \code{run-tests.rkt} script, add the following entry to the
  6812. list of \code{passes} and then run the script to test your compiler.
  6813. \begin{lstlisting}
  6814. (list "remove-complex" remove-complex-opera* interp-Lif type-check-Lif)
  6815. \end{lstlisting}
  6816. \fi}
  6817. \end{exercise}
  6818. \section{Explicate Control}
  6819. \label{sec:explicate-control-Lif}
  6820. \racket{Recall that the purpose of \code{explicate\_control} is to
  6821. make the order of evaluation explicit in the syntax of the program.
  6822. With the addition of \key{if} this get more interesting.}
  6823. %
  6824. The main challenge is that the condition of an \key{if} can be an
  6825. arbitrary expression in \LangIf{} whereas in \LangCIf{} the condition
  6826. must be a comparison.
  6827. As a motivating example, consider the following program that has an
  6828. \key{if} expression nested in the condition of another \key{if}.
  6829. % cond_test_41.rkt, if_lt_eq.py
  6830. \begin{center}
  6831. \begin{minipage}{0.96\textwidth}
  6832. {\if\edition\racketEd\color{olive}
  6833. \begin{lstlisting}
  6834. (let ([x (read)])
  6835. (let ([y (read)])
  6836. (if (if (< x 1) (eq? x 0) (eq? x 2))
  6837. (+ y 2)
  6838. (+ y 10))))
  6839. \end{lstlisting}
  6840. \fi}
  6841. {\if\edition\pythonEd
  6842. \begin{lstlisting}
  6843. x = input_int()
  6844. y = input_int()
  6845. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  6846. \end{lstlisting}
  6847. \fi}
  6848. \end{minipage}
  6849. \end{center}
  6850. %
  6851. The naive way to compile \key{if} and the comparison operations would
  6852. be to handle each of them in isolation, regardless of their context.
  6853. Each comparison would be translated into a \key{cmpq} instruction
  6854. followed by a couple instructions to move the result from the EFLAGS
  6855. register into a general purpose register or stack location. Each
  6856. \key{if} would be translated into a \key{cmpq} instruction followed by
  6857. a conditional jump. The generated code for the inner \key{if} in the
  6858. above example would be as follows.
  6859. \begin{center}
  6860. \begin{minipage}{0.96\textwidth}
  6861. \begin{lstlisting}
  6862. cmpq $1, x
  6863. setl %al
  6864. movzbq %al, tmp
  6865. cmpq $1, tmp
  6866. je then_branch_1
  6867. jmp else_branch_1
  6868. \end{lstlisting}
  6869. \end{minipage}
  6870. \end{center}
  6871. However, if we take context into account we can do better and reduce
  6872. the use of \key{cmpq} instructions for accessing the EFLAG register.
  6873. Our goal will be to compile \key{if} expressions so that the relevant
  6874. comparison instruction appears directly before the conditional jump.
  6875. For example, we want to generate the following code for the inner
  6876. \code{if}.
  6877. \begin{center}
  6878. \begin{minipage}{0.96\textwidth}
  6879. \begin{lstlisting}
  6880. cmpq $1, x
  6881. je then_branch_1
  6882. jmp else_branch_1
  6883. \end{lstlisting}
  6884. \end{minipage}
  6885. \end{center}
  6886. One way to achieve this is to reorganize the code at the level of
  6887. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  6888. the following code.
  6889. \begin{center}
  6890. \begin{minipage}{0.96\textwidth}
  6891. {\if\edition\racketEd\color{olive}
  6892. \begin{lstlisting}
  6893. (let ([x (read)])
  6894. (let ([y (read)])
  6895. (if (< x 1)
  6896. (if (eq? x 0)
  6897. (+ y 2)
  6898. (+ y 10))
  6899. (if (eq? x 2)
  6900. (+ y 2)
  6901. (+ y 10)))))
  6902. \end{lstlisting}
  6903. \fi}
  6904. {\if\edition\pythonEd
  6905. \begin{lstlisting}
  6906. x = input_int()
  6907. y = intput_int()
  6908. print(((y + 2) if x == 0 else (y + 10)) \
  6909. if (x < 1) \
  6910. else ((y + 2) if (x == 2) else (y + 10)))
  6911. \end{lstlisting}
  6912. \fi}
  6913. \end{minipage}
  6914. \end{center}
  6915. Unfortunately, this approach duplicates the two branches from the
  6916. outer \code{if} and a compiler must never duplicate code!
  6917. We need a way to perform the above transformation but without
  6918. duplicating code. That is, we need a way for different parts of a
  6919. program to refer to the same piece of code.
  6920. %
  6921. Put another way, we need to move away from abstract syntax
  6922. \emph{trees} and instead use \emph{graphs}.
  6923. %
  6924. At the level of x86 assembly this is straightforward because we can
  6925. label the code for each branch and insert jumps in all the places that
  6926. need to execute the branch.
  6927. %
  6928. Likewise, our language \LangCIf{} provides the ability to label a
  6929. sequence of code and to jump to a label via \code{goto}.
  6930. %
  6931. %% In particular, we use a standard program representation called a
  6932. %% \emph{control flow graph} (CFG), due to Frances Elizabeth
  6933. %% \citet{Allen:1970uq}. \index{subject}{control-flow graph} Each vertex
  6934. %% is a labeled sequence of code, called a \emph{basic block}, and each
  6935. %% edge represents a jump to another block.
  6936. %
  6937. In particular, the \key{CProgram} construct contains \racket{an
  6938. alist}\python{a dictionary} mapping labels to \emph{basic blocks}. Each
  6939. basic block is \racket{represented by the $\Tail$ non-terminal}
  6940. \python{a list of statements}.
  6941. %% The nice thing about the output of \code{explicate\_control} is that
  6942. %% there are no unnecessary comparisons and every comparison is part of a
  6943. %% conditional jump.
  6944. %% The down-side of this output is that it includes
  6945. %% trivial blocks, such as the blocks labeled \code{block92} through
  6946. %% \code{block95}, that only jump to another block. We discuss a solution
  6947. %% to this problem in Section~\ref{sec:opt-jumps}.
  6948. {\if\edition\racketEd\color{olive}
  6949. %
  6950. Recall that in Section~\ref{sec:explicate-control-Lvar} we implement
  6951. \code{explicate\_control} for \LangVar{} using two mutually recursive
  6952. functions, \code{explicate-tail} and \code{explicate-assign}. The
  6953. former function translates expressions in tail position whereas the
  6954. later function translates expressions on the right-hand-side of a
  6955. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  6956. have a new kind of position to deal with: the predicate position of
  6957. the \key{if}. We need another function, \code{explicate-pred}, that
  6958. takes an \LangIf{} expression and two blocks for the then-branch and
  6959. else-branch. The output of \code{explicate-pred} is a block. In the
  6960. following paragraphs we discuss specific cases in the
  6961. \code{explicate\_pred} function as well as additions to the
  6962. \code{explicate\_tail} and \code{explicate\_assign} functions.
  6963. %
  6964. \fi}
  6965. %
  6966. {\if\edition\pythonEd
  6967. %
  6968. We recommend implementing \code{explicate\_control} using four
  6969. auxiliary functions which we discuss in the following paragraphs.
  6970. \begin{description}
  6971. \item[\code{explicate\_effect}] generates code for expressions as
  6972. statements, so their result is ignored and only their side-effects
  6973. matter.
  6974. \item[\code{explicate\_assign}] generates code for expressions
  6975. on the right-hand side of an assignment.
  6976. \item[\code{explicate\_pred}] generates code for an \code{if}
  6977. expression or statement by analyzing the condition expression.
  6978. \item[\code{explicate\_stmt}] generates code for statements.
  6979. \end{description}
  6980. These four functions should incrementally build up the dictionary of
  6981. basic blocks. The following auxiliary function can be used to create a
  6982. new basic block from a list of statements. It returns a \code{goto}
  6983. statement that jumps to the new basic block.
  6984. \begin{center}
  6985. \begin{minipage}{\textwidth}
  6986. \begin{lstlisting}
  6987. def create_block(stmts, basic_blocks):
  6988. label = label_name(generate_name('block'))
  6989. basic_blocks[label] = stmts
  6990. return Goto(label)
  6991. \end{lstlisting}
  6992. \end{minipage}
  6993. \end{center}
  6994. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  6995. \code{explicate\_control} pass.
  6996. The \code{explicate\_effect} function has three parameters: 1) the
  6997. expression to be compiled, 2) the already-compiled code for this
  6998. expression's \emph{continuation}, that is, the list of statements that
  6999. should execute after this expression, and 3) the dictionary of
  7000. generated basic blocks. The output of \code{explicate\_effect} is a
  7001. list of \LangCIf{} statements.
  7002. %
  7003. Let's consider a few of the cases for the expression to be compiled.
  7004. If the expression to be compiled is a constant, then it can be
  7005. discarded because it has no side effects. If it's a \CREAD{}, then
  7006. that's a side-effect and should be preserved. So it should be
  7007. translated into a statment using the \code{Expr} AST class. If the
  7008. expression to be compiled is an \code{if} expression, we translate the
  7009. two branches using \code{explicate\_effect} and then translate the
  7010. condition expression using \code{explicate\_pred}, which generates
  7011. code for the entire \code{if}.
  7012. The \code{explicate\_assign} function has four parameters: 1) the
  7013. right-hand-side of the assignment, 2) the left-hand-side of the
  7014. assignment (the variable), 3) the continuation, and 4) the dictionary
  7015. of basic blocks. The output of \code{explicate\_assign} is a list of
  7016. \LangCIf{} statements.
  7017. When the right-hand-side is an \code{if} expression, there is some
  7018. work to do. In particular, the two branches should be translated using
  7019. \code{explicate\_assign} and the condition expression should be
  7020. translated using \code{explicate\_pred}. Otherwise we can simply
  7021. generate an assignment statement with the given left and right-hand
  7022. sides.
  7023. \begin{figure}[tbp]
  7024. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7025. def explicate_effect(e, cont, basic_blocks):
  7026. match e:
  7027. case IfExp(test, body, orelse):
  7028. ...
  7029. case Call(func, args):
  7030. ...
  7031. case Let(var, rhs, body):
  7032. ...
  7033. case _:
  7034. ...
  7035. def explicate_assign(rhs, lhs, cont, basic_blocks):
  7036. match rhs:
  7037. case IfExp(test, body, orelse):
  7038. ...
  7039. case Let(var, rhs, body):
  7040. ...
  7041. case _:
  7042. return [Assign([lhs], rhs)] + cont
  7043. def explicate_pred(cnd, thn, els, basic_blocks):
  7044. match cnd:
  7045. case Compare(left, [op], [right]):
  7046. goto_thn = create_block(thn, basic_blocks)
  7047. goto_els = create_block(els, basic_blocks)
  7048. return [If(cnd, [goto_thn], [goto_els])]
  7049. case Constant(True):
  7050. return thn;
  7051. case Constant(False):
  7052. return els;
  7053. case UnaryOp(Not(), operand):
  7054. ...
  7055. case IfExp(test, body, orelse):
  7056. ...
  7057. case Let(var, rhs, body):
  7058. ...
  7059. case _:
  7060. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  7061. [create_block(els, basic_blocks)],
  7062. [create_block(thn, basic_blocks)])]
  7063. def explicate_stmt(s, cont, basic_blocks):
  7064. match s:
  7065. case Assign([lhs], rhs):
  7066. return explicate_assign(rhs, lhs, cont, basic_blocks)
  7067. case Expr(value):
  7068. return explicate_effect(value, cont, basic_blocks)
  7069. case If(test, body, orelse):
  7070. ...
  7071. def explicate_control(p):
  7072. match p:
  7073. case Module(body):
  7074. new_body = [Return(Constant(0))]
  7075. basic_blocks = {}
  7076. for s in reversed(body):
  7077. new_body = explicate_stmt(s, new_body, basic_blocks)
  7078. basic_blocks[label_name('start')] = new_body
  7079. return CProgram(basic_blocks)
  7080. \end{lstlisting}
  7081. \caption{Skeleton for the \code{explicate\_control} pass.}
  7082. \label{fig:explicate-control-Lif}
  7083. \end{figure}
  7084. \fi}
  7085. {\if\edition\racketEd\color{olive}
  7086. \begin{figure}[tbp]
  7087. \begin{lstlisting}
  7088. (define (explicate-pred cnd thn els)
  7089. (match cnd
  7090. [(Var x) ___]
  7091. [(Let x rhs body) ___]
  7092. [(Prim 'not (list e)) ___]
  7093. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  7094. (IfStmt (Prim op arg*) (force (block->goto thn))
  7095. (force (block->goto els)))]
  7096. [(Bool b) (if b thn els)]
  7097. [(If cnd^ thn^ els^) ___]
  7098. [else (error "explicate-pred unhandled case" cnd)]))
  7099. \end{lstlisting}
  7100. \caption{Skeleton for the \key{explicate-pred} auxiliary function.}
  7101. \label{fig:explicate-pred}
  7102. \end{figure}
  7103. \fi}
  7104. \racket{The skeleton for the \code{explicate\_pred} function is given
  7105. in Figure~\ref{fig:explicate-pred}. It has a case for every
  7106. expression that can have type \code{Boolean}. We detail a few cases
  7107. here and leave the rest for the reader. The input to this function
  7108. is an expression and two blocks, \code{thn} and \code{els}, for the
  7109. two branches of the enclosing \key{if}.}
  7110. %
  7111. \python{The \code{explicate\_pred} function has four parameters: 1)
  7112. the condition expession, 2) the generated statements for the
  7113. ``then'' branch, 3) the generated statements for the ``else''
  7114. branch, and 4) the dictionary of basic blocks. The output of
  7115. \code{explicate\_pred} is a list of \LangCIf{} statements.}
  7116. %
  7117. Consider the case for comparison operators. We translate the
  7118. comparison to an \code{if} statement whose branches are \code{goto}
  7119. statements created by applying \code{create\_block} to the \code{thn}
  7120. and \code{els} branches.
  7121. %
  7122. Next consider the case for Boolean constants. We perform a kind of
  7123. partial evaluation\index{subject}{partial evaluation} and output
  7124. either the \code{thn} or \code{els} branch depending on whether the
  7125. constant is \TRUE{} or \FALSE{}. This case demonstrates that we
  7126. sometimes discard the \code{thn} or \code{els} blocks that are input
  7127. to \code{explicate\_pred}.
  7128. The case for \key{if} expressions in \code{explicate\_pred} is
  7129. particularly illuminating because it deals with the challenges we
  7130. discussed above regarding nested \key{if} expressions
  7131. (Figure~\ref{fig:explicate-control-s1-38}). The
  7132. \racket{\lstinline{thn^}}\python{\code{body}} and
  7133. \racket{\lstinline{els^}}\python{\code{orlese}} branches of the
  7134. \key{if} inherit their context from the current one, that is,
  7135. predicate context. So you should recursively apply
  7136. \code{explicate\_pred} to the
  7137. \racket{\lstinline{thn^}}\python{\code{body}} and
  7138. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  7139. those recursive calls, pass \code{thn} and \code{els} as the extra
  7140. parameters. Thus, \code{thn} and \code{els} may get used twice, once
  7141. inside each recursive call. As discussed above, to avoid duplicating
  7142. code, we need to add them to the dictionary of basic blocks so that we
  7143. can instead refer to them by name and execute them with a \key{goto}.
  7144. {\if\edition\pythonEd
  7145. %
  7146. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  7147. three parameters: 1) the statement to be compiled, 2) the code for its
  7148. continuation, and 3) the dictionary of basic blocks. The output is a
  7149. list of statements. The cases for assignment and an
  7150. expression-statement are given in full in the skeleton code: they
  7151. simply dispatch to \code{explicate\_assign} and
  7152. \code{explicate\_effect}, respectively. The case for \code{if}
  7153. statements is not given, and is similar to the case for \code{if}
  7154. expressions.
  7155. The \code{explicate\_control} function itself is given in
  7156. Figure~\ref{fig:explicate-control-Lif}. It applies
  7157. \code{explicate\_stmt} to each statement in the program, from back to
  7158. front. Thus, the result so-far, stored in \code{new\_body}, can be
  7159. used as the continuation parameter in the next call to
  7160. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  7161. \code{Return} statment. Once complete, we add the \code{new\_body} to
  7162. the dictionary of basic blocks, labeling it as the ``start'' block.
  7163. %
  7164. \fi}
  7165. %% Getting back to the case for \code{if} in \code{explicate-pred}, we
  7166. %% make the recursive calls to \code{explicate-pred} on the ``then'' and
  7167. %% ``else'' branches with the arguments \code{(block->goto} $B_1$\code{)}
  7168. %% and \code{(block->goto} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  7169. %% results from the two recursive calls. We complete the case for
  7170. %% \code{if} by recursively apply \code{explicate-pred} to the condition
  7171. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  7172. %% the result $B_5$.
  7173. %% \[
  7174. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  7175. %% \quad\Rightarrow\quad
  7176. %% B_5
  7177. %% \]
  7178. \racket{The \code{explicate\_tail} and \code{explicate\_assign}
  7179. functions need additional cases for Boolean constants and \key{if}.
  7180. In the cases for \code{if}, the two branches inherit the current
  7181. context, so in \code{explicate\_tail} they are in tail position and
  7182. in \code{explicate\_assign} they are in assignment position. The
  7183. \code{cont} parameter of \code{explicate\_assign} is used in both
  7184. recursive calls, so make sure to use \code{block->goto} on it.}
  7185. %% In the case for \code{if} in \code{explicate-tail}, the two branches
  7186. %% inherit the current context, so they are in tail position. Thus, the
  7187. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  7188. %% \code{explicate-tail}.
  7189. %% %
  7190. %% We need to pass $B_0$ as the accumulator argument for both of these
  7191. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  7192. %% Thus, we first apply \code{block->goto} to $B_0$ so that it gets added
  7193. %% to the control-flow graph and obtain a promised goto $G_0$.
  7194. %% %
  7195. %% Let $B_1$ be the result of \code{explicate-tail} on the ``then''
  7196. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate-tail}
  7197. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  7198. %% \code{explicate-pred} to the condition of the \key{if}, $B_1$, and
  7199. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  7200. %% \[
  7201. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  7202. %% \]
  7203. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  7204. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  7205. %% should not be confused with the labels for the blocks that appear in
  7206. %% the generated code. We initially construct unlabeled blocks; we only
  7207. %% attach labels to blocks when we add them to the control-flow graph, as
  7208. %% we see in the next case.
  7209. %% Next consider the case for \key{if} in the \code{explicate-assign}
  7210. %% function. The context of the \key{if} is an assignment to some
  7211. %% variable $x$ and then the control continues to some promised block
  7212. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  7213. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  7214. %% apply \code{block->goto} to it and obtain a promised goto $G_1$. The
  7215. %% branches of the \key{if} inherit the current context, so they are in
  7216. %% assignment positions. Let $B_2$ be the result of applying
  7217. %% \code{explicate-assign} to the ``then'' branch, variable $x$, and
  7218. %% $G_1$. Let $B_3$ be the result of applying \code{explicate-assign} to
  7219. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  7220. %% the result of applying \code{explicate-pred} to the predicate
  7221. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  7222. %% translates to the promise $B_4$.
  7223. %% \[
  7224. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  7225. %% \]
  7226. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  7227. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  7228. \code{remove\_complex\_operands} pass and then the
  7229. \code{explicate\_control} pass on the example program. We walk through
  7230. the output program and then discuss the algorithm.
  7231. %
  7232. Following the order of evaluation in the output of
  7233. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  7234. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  7235. in the predicate of the inner \key{if}. In the output of
  7236. \code{explicate\_control}, in the
  7237. block labeled \code{start}, is two assignment statements followed by a
  7238. \code{if} statement that branches to \code{block\_8} or
  7239. \code{block\_9}. The blocks associated with those labels contain the
  7240. translations of the code
  7241. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7242. and
  7243. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  7244. respectively. In particular, we start \code{block\_8} with the
  7245. comparison
  7246. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7247. and then branch to \code{block\_4} or \code{block\_5}.
  7248. Here was see that our algorithm sometimes inserts unnecessary blocks:
  7249. \code{block\_4} consists of just a \code{goto} to \code{block\_2}
  7250. and \code{block\_5} consists of just a \code{goto} to \code{block\_3}.
  7251. It would be better to skip blocks \code{block\_4} and \code{block\_5}
  7252. and go directly to \code{block\_2} and \code{block\_3},
  7253. which we investigate doing in Section~\ref{sec:opt-jumps}.
  7254. But getting back to the example, \code{block\_2} and \code{block\_3},
  7255. corresponds to the two branches of the outer \key{if}, i.e.,
  7256. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  7257. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  7258. %
  7259. The story for \code{block\_9} is similar to that of \code{block\_8}.
  7260. %
  7261. \python{The \code{block\_1} corresponds to the \code{print} statment
  7262. at the end of the program.}
  7263. \begin{figure}[tbp]
  7264. {\if\edition\racketEd\color{olive}
  7265. \begin{tabular}{lll}
  7266. \begin{minipage}{0.4\textwidth}
  7267. % cond_test_41.rkt
  7268. \begin{lstlisting}
  7269. (let ([x (read)])
  7270. (let ([y (read)])
  7271. (if (if (< x 1)
  7272. (eq? x 0)
  7273. (eq? x 2))
  7274. (+ y 2)
  7275. (+ y 10))))
  7276. \end{lstlisting}
  7277. \end{minipage}
  7278. &
  7279. $\Rightarrow$
  7280. &
  7281. \begin{minipage}{0.55\textwidth}
  7282. TODO: replace with non-optimized version. -Jeremy
  7283. \begin{lstlisting}
  7284. start:
  7285. x = (read);
  7286. y = (read);
  7287. if (< x 1) goto block40;
  7288. else goto block41;
  7289. block40:
  7290. if (eq? x 0) goto block38;
  7291. else goto block39;
  7292. block41:
  7293. if (eq? x 2) goto block38;
  7294. else goto block39;
  7295. block38:
  7296. return (+ y 2);
  7297. block39:
  7298. return (+ y 10);
  7299. \end{lstlisting}
  7300. \end{minipage}
  7301. \end{tabular}
  7302. \fi}
  7303. {\if\edition\pythonEd
  7304. \begin{tabular}{lll}
  7305. \begin{minipage}{0.4\textwidth}
  7306. % cond_test_41.rkt
  7307. \begin{lstlisting}
  7308. x = input_int()
  7309. y = input_int()
  7310. print(y + 2 \
  7311. if (x == 0 \
  7312. if x < 1 \
  7313. else x == 2) \
  7314. else y + 10)
  7315. \end{lstlisting}
  7316. \end{minipage}
  7317. &
  7318. $\Rightarrow$
  7319. &
  7320. \begin{minipage}{0.55\textwidth}
  7321. \begin{lstlisting}
  7322. start:
  7323. x = input_int()
  7324. y = input_int()
  7325. if x < 1:
  7326. goto block_8
  7327. else:
  7328. goto block_9
  7329. block_8:
  7330. if x == 0:
  7331. goto block_4
  7332. else:
  7333. goto block_5
  7334. block_9:
  7335. if x == 2:
  7336. goto block_6
  7337. else:
  7338. goto block_7
  7339. block_4:
  7340. goto block_2
  7341. block_5:
  7342. goto block_3
  7343. block_6:
  7344. goto block_2
  7345. block_7:
  7346. goto block_3
  7347. block_2:
  7348. tmp_0 = y + 2
  7349. goto block_1
  7350. block_3:
  7351. tmp_0 = y + 10
  7352. goto block_1
  7353. block_1:
  7354. print(tmp_0)
  7355. return 0
  7356. \end{lstlisting}
  7357. \end{minipage}
  7358. \end{tabular}
  7359. \fi}
  7360. \caption{Translation from \LangIf{} to \LangCIf{}
  7361. via the \code{explicate\_control}.}
  7362. \label{fig:explicate-control-s1-38}
  7363. \end{figure}
  7364. {\if\edition\racketEd\color{olive}
  7365. The way in which the \code{shrink} pass transforms logical operations
  7366. such as \code{and} and \code{or} can impact the quality of code
  7367. generated by \code{explicate\_control}. For example, consider the
  7368. following program.
  7369. % cond_test_21.rkt, and_eq_input.py
  7370. \begin{lstlisting}
  7371. (if (and (eq? (read) 0) (eq? (read) 1))
  7372. 0
  7373. 42)
  7374. \end{lstlisting}
  7375. The \code{and} operation should transform into something that the
  7376. \code{explicate-pred} function can still analyze and descend through to
  7377. reach the underlying \code{eq?} conditions. Ideally, your
  7378. \code{explicate\_control} pass should generate code similar to the
  7379. following for the above program.
  7380. \begin{center}
  7381. \begin{lstlisting}
  7382. start:
  7383. tmp1 = (read);
  7384. if (eq? tmp1 0) goto block40;
  7385. else goto block39;
  7386. block40:
  7387. tmp2 = (read);
  7388. if (eq? tmp2 1) goto block38;
  7389. else goto block39;
  7390. block38:
  7391. return 0;
  7392. block39:
  7393. return 42;
  7394. \end{lstlisting}
  7395. \end{center}
  7396. \fi}
  7397. \begin{exercise}\normalfont
  7398. \racket{
  7399. Implement the pass \code{explicate\_control} by adding the cases for
  7400. Boolean constants and \key{if} to the \code{explicate-tail} and
  7401. \code{explicate-assign}. Implement the auxiliary function
  7402. \code{explicate-pred} for predicate contexts.}
  7403. \python{Implement \code{explicate\_control} pass with its
  7404. four auxiliary functions.}
  7405. %
  7406. Create test cases that exercise all of the new cases in the code for
  7407. this pass.
  7408. %
  7409. {\if\edition\racketEd\color{olive}
  7410. Add the following entry to the list of \code{passes} in
  7411. \code{run-tests.rkt} and then run this script to test your compiler.
  7412. \begin{lstlisting}
  7413. (list "explicate-control" explicate-control interp-Cif type-check-Cif)
  7414. \end{lstlisting}
  7415. \fi}
  7416. \end{exercise}
  7417. \clearpage
  7418. \section{Select Instructions}
  7419. \label{sec:select-Lif}
  7420. \index{subject}{instruction selection}
  7421. The \code{select\_instructions} pass translates \LangCIf{} to
  7422. \LangXIfVar{}.
  7423. %
  7424. \racket{Recall that we implement this pass using three auxiliary
  7425. functions, one for each of the non-terminals $\Atm$, $\Stmt$, and
  7426. $\Tail$.}
  7427. %
  7428. \racket{For $\Atm$, we have new cases for the Booleans.}
  7429. %
  7430. \python{We begin with the Boolean constants.}
  7431. We take the usual approach of encoding them as integers.
  7432. \[
  7433. \TRUE{} \quad\Rightarrow\quad \key{1}
  7434. \qquad
  7435. \FALSE{} \quad\Rightarrow\quad \key{0}
  7436. \]
  7437. For translating statements, we discuss a couple cases. The \code{not}
  7438. operation can be implemented in terms of \code{xorq} as we discussed
  7439. at the beginning of this section. Given an assignment, if the
  7440. left-hand side variable is the same as the argument of \code{not},
  7441. then just the \code{xorq} instruction suffices.
  7442. \[
  7443. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  7444. \quad\Rightarrow\quad
  7445. \key{xorq}~\key{\$}1\key{,}~\Var
  7446. \]
  7447. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  7448. semantics of x86. In the following translation, let $\Arg$ be the
  7449. result of translating $\Atm$ to x86.
  7450. \[
  7451. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  7452. \quad\Rightarrow\quad
  7453. \begin{array}{l}
  7454. \key{movq}~\Arg\key{,}~\Var\\
  7455. \key{xorq}~\key{\$}1\key{,}~\Var
  7456. \end{array}
  7457. \]
  7458. Next consider the cases for equality. Translating this operation to
  7459. x86 is slightly involved due to the unusual nature of the \key{cmpq}
  7460. instruction discussed above. We recommend translating an assignment
  7461. with an equality on the right-hand side into the following sequence of
  7462. three instructions. \\
  7463. \begin{tabular}{lll}
  7464. \begin{minipage}{0.4\textwidth}
  7465. \begin{lstlisting}
  7466. |$\CASSIGN{\Var}{ \CEQ{\Atm_1}{\Atm_2} }$|
  7467. \end{lstlisting}
  7468. \end{minipage}
  7469. &
  7470. $\Rightarrow$
  7471. &
  7472. \begin{minipage}{0.4\textwidth}
  7473. \begin{lstlisting}
  7474. cmpq |$\Arg_2$|, |$\Arg_1$|
  7475. sete %al
  7476. movzbq %al, |$\Var$|
  7477. \end{lstlisting}
  7478. \end{minipage}
  7479. \end{tabular} \\
  7480. The translations for the other comparison operators is similar to the
  7481. above but use different suffixes for the \code{set} instruction.
  7482. \racket{Regarding the $\Tail$ non-terminal, we have two new cases:
  7483. \key{goto} and \key{if} statements. Both are straightforward to
  7484. translate to x86.}
  7485. %
  7486. A \key{goto} statement becomes a jump instruction.
  7487. \[
  7488. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  7489. \]
  7490. %
  7491. An \key{if} statement becomes a compare instruction followed by a
  7492. conditional jump (for the ``then'' branch) and the fall-through is to
  7493. a regular jump (for the ``else'' branch).\\
  7494. \begin{tabular}{lll}
  7495. \begin{minipage}{0.4\textwidth}
  7496. \begin{lstlisting}
  7497. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  7498. goto |$\ell_1$||$\racket{\key{;}}$|
  7499. else|$\python{\key{:}}$|
  7500. goto |$\ell_2$||$\racket{\key{;}}$|
  7501. \end{lstlisting}
  7502. \end{minipage}
  7503. &
  7504. $\Rightarrow$
  7505. &
  7506. \begin{minipage}{0.4\textwidth}
  7507. \begin{lstlisting}
  7508. cmpq |$\Arg_2$|, |$\Arg_1$|
  7509. je |$\ell_1$|
  7510. jmp |$\ell_2$|
  7511. \end{lstlisting}
  7512. \end{minipage}
  7513. \end{tabular} \\
  7514. Again, the translations for the other comparison operators is similar to the
  7515. above but use different suffixes for the conditional jump instruction.
  7516. \begin{exercise}\normalfont
  7517. Expand your \code{select\_instructions} pass to handle the new
  7518. features of the \LangIf{} language.
  7519. %
  7520. {\if\edition\racketEd\color{olive}
  7521. Add the following entry to the list of \code{passes} in
  7522. \code{run-tests.rkt}
  7523. \begin{lstlisting}
  7524. (list "select-instructions" select-instructions interp-pseudo-x86-1)
  7525. \end{lstlisting}
  7526. \fi}
  7527. %
  7528. Run the script to test your compiler on all the test programs.
  7529. \end{exercise}
  7530. \section{Register Allocation}
  7531. \label{sec:register-allocation-Lif}
  7532. \index{subject}{register allocation}
  7533. The changes required for \LangIf{} affect liveness analysis, building the
  7534. interference graph, and assigning homes, but the graph coloring
  7535. algorithm itself does not change.
  7536. \subsection{Liveness Analysis}
  7537. \label{sec:liveness-analysis-Lif}
  7538. \index{subject}{liveness analysis}
  7539. Recall that for \LangVar{} we implemented liveness analysis for a
  7540. single basic block (Section~\ref{sec:liveness-analysis-Lvar}). With
  7541. the addition of \key{if} expressions to \LangIf{},
  7542. \code{explicate\_control} produces many basic blocks.
  7543. %% We recommend that you create a new auxiliary function named
  7544. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  7545. %% control-flow graph.
  7546. The first question we is: what order should we process the basic
  7547. blocks? Recall that to perform liveness analysis on a basic block we
  7548. need to know the live-after set for the last instruction in the
  7549. block. If a basic block has no successors (i.e. contains no jumps to
  7550. other blocks), then it has an empty live-after set and we can
  7551. immediately apply liveness analysis to it. If a basic block has some
  7552. successors, then we need to complete liveness analysis on those blocks
  7553. first. These ordering contraints are the reverse of a
  7554. \emph{topological order}\index{subject}{topological order} on the
  7555. control-flow graph of the program~\citep{Allen:1970uq}. In a
  7556. \emph{control flow graph} (CFG), each node represents a \emph{basic
  7557. block} and each edge represents a jump from one block to another
  7558. \index{subject}{control-flow graph}. It is straightforward to
  7559. generate a CFG from the dictionary of basic blocks. One then needs to
  7560. transpose the CFG and apply the topological sort algorithm.
  7561. %
  7562. %
  7563. \racket{We recommend using the \code{tsort} and \code{transpose}
  7564. functions of the Racket \code{graph} package to accomplish this.}
  7565. %
  7566. \python{We provide implementations of \code{topological\_sort} and
  7567. \code{transpose} in the file \code{graph.py} of the support code.}
  7568. %
  7569. As an aside, a topological ordering is only guaranteed to exist if the
  7570. graph does not contain any cycles. That is indeed the case for the
  7571. control-flow graphs that we generate from \LangIf{} programs.
  7572. However, in Chapter~\ref{ch:Rwhile} we add loops to \LangLoop{} and
  7573. learn how to handle cycles in the control-flow graph.
  7574. \racket{You'll need to construct a directed graph to represent the
  7575. control-flow graph. Do not use the \code{directed-graph} of the
  7576. \code{graph} package because that only allows at most one edge
  7577. between each pair of vertices, but a control-flow graph may have
  7578. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  7579. file in the support code implements a graph representation that
  7580. allows multiple edges between a pair of vertices.}
  7581. {\if\edition\racketEd\color{olive}
  7582. The next question is how to analyze jump instructions. Recall that in
  7583. Section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  7584. \code{label->live} that maps each label to the set of live locations
  7585. at the beginning of its block. We use \code{label->live} to determine
  7586. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  7587. that we have many basic blocks, \code{label->live} needs to be updated
  7588. as we process the blocks. In particular, after performing liveness
  7589. analysis on a block, we take the live-before set of its first
  7590. instruction and associate that with the block's label in the
  7591. \code{label->live}.
  7592. \fi}
  7593. %
  7594. {\if\edition\pythonEd
  7595. %
  7596. The next question is how to analyze jump instructions. The locations
  7597. that are live before a \code{jmp} should be the locations in
  7598. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  7599. maintaining dictionary named \code{live\_before\_block} that maps each
  7600. label to the $L_{\mathtt{before}}$ for the first instruction in its
  7601. block. After performing liveness analysis on each block, we take the
  7602. live-before set of its first instruction and associate that with the
  7603. block's label in the \code{live\_before\_block} dictionary.
  7604. %
  7605. \fi}
  7606. In \LangXIfVar{} we also have the conditional jump
  7607. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  7608. this instruction is particularly interesting because during
  7609. compilation we do not know which way a conditional jump will go. So
  7610. we do not know whether to use the live-before set for the following
  7611. instruction or the live-before set for the block associated with the
  7612. $\itm{label}$. However, there is no harm to the correctness of the
  7613. generated code if we classify more locations as live than the ones
  7614. that are truly live during one particular execution of the
  7615. instruction. Thus, we can take the union of the live-before sets from
  7616. the following instruction and from the mapping for $\itm{label}$ in
  7617. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  7618. The auxiliary functions for computing the variables in an
  7619. instruction's argument and for computing the variables read-from ($R$)
  7620. or written-to ($W$) by an instruction need to be updated to handle the
  7621. new kinds of arguments and instructions in \LangXIfVar{}.
  7622. \begin{exercise}\normalfont
  7623. {\if\edition\racketEd\color{olive}
  7624. %
  7625. Update the \code{uncover\_live} pass and implement the
  7626. \code{uncover-live-CFG} auxiliary function to apply liveness analysis
  7627. to the control-flow graph.
  7628. %
  7629. Add the following entry to the list of \code{passes} in the
  7630. \code{run-tests.rkt} script.
  7631. \begin{lstlisting}
  7632. (list "uncover-live" uncover-live interp-pseudo-x86-1)
  7633. \end{lstlisting}
  7634. \fi}
  7635. {\if\edition\pythonEd
  7636. %
  7637. Update the \code{uncover\_live} function to perform liveness analysis,
  7638. in reverse topological order, on all of the basic blocks in the
  7639. program.
  7640. %
  7641. \fi}
  7642. % Check that the live-after sets that you generate for
  7643. % example X matches the following... -Jeremy
  7644. \end{exercise}
  7645. \subsection{Build the Interference Graph}
  7646. \label{sec:build-interference-Lif}
  7647. Many of the new instructions in \LangXIfVar{} can be handled in the
  7648. same way as the instructions in \LangXVar{}. Thus, if your code was
  7649. already quite general, it will not need to be changed to handle the
  7650. new instructions. If you code is not general enough, we recommend that
  7651. you change your code to be more general. For example, you can factor
  7652. out the computing of the the read and write sets for each kind of
  7653. instruction into auxiliary functions.
  7654. Note that the \key{movzbq} instruction requires some special care,
  7655. similar to the \key{movq} instruction. See rule number 1 in
  7656. Section~\ref{sec:build-interference}.
  7657. \begin{exercise}\normalfont
  7658. Update the \code{build\_interference} pass for \LangXIfVar{}.
  7659. {\if\edition\racketEd\color{olive}
  7660. Add the following entries to the list of \code{passes} in the
  7661. \code{run-tests.rkt} script.
  7662. \begin{lstlisting}
  7663. (list "build-interference" build-interference interp-pseudo-x86-1)
  7664. (list "allocate-registers" allocate-registers interp-x86-1)
  7665. \end{lstlisting}
  7666. \fi}
  7667. % Check that the interference graph that you generate for
  7668. % example X matches the following graph G... -Jeremy
  7669. \end{exercise}
  7670. \section{Patch Instructions}
  7671. The second argument of the \key{cmpq} instruction must not be an
  7672. immediate value (such as an integer). So if you are comparing two
  7673. immediates, we recommend inserting a \key{movq} instruction to put the
  7674. second argument in \key{rax}. Also, recall that instructions may have
  7675. at most one memory reference.
  7676. %
  7677. The second argument of the \key{movzbq} must be a register.
  7678. %
  7679. There are no special restrictions on the jump instructions.
  7680. \begin{exercise}\normalfont
  7681. %
  7682. Update \code{patch-instructions} pass for \LangXIfVar{}.
  7683. %
  7684. {\if\edition\racketEd\color{olive}
  7685. Add the following entry to the list of \code{passes} in
  7686. \code{run-tests.rkt} and then run this script to test your compiler.
  7687. \begin{lstlisting}
  7688. (list "patch-instructions" patch-instructions interp-x86-1)
  7689. \end{lstlisting}
  7690. \fi}
  7691. \end{exercise}
  7692. \begin{figure}[tbp]
  7693. {\if\edition\racketEd\color{olive}
  7694. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7695. \node (Lif) at (0,2) {\large \LangIf{}};
  7696. \node (Lif-2) at (3,2) {\large \LangIf{}};
  7697. \node (Lif-3) at (6,2) {\large \LangIf{}};
  7698. \node (Lif-4) at (9,2) {\large \LangIf{}};
  7699. \node (Lif-5) at (12,2) {\large \LangIf{}};
  7700. \node (C1-1) at (3,0) {\large \LangCIf{}};
  7701. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  7702. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  7703. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  7704. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  7705. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  7706. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  7707. \path[->,bend left=15] (Lif) edge [above] node {\ttfamily\footnotesize type-check} (Lif-2);
  7708. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  7709. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  7710. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Lif-5);
  7711. \path[->,bend left=15] (Lif-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C1-1);
  7712. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select-instructions} (x86-2);
  7713. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  7714. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  7715. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  7716. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  7717. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86 } (x86-5);
  7718. \end{tikzpicture}
  7719. \fi}
  7720. {\if\edition\pythonEd
  7721. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7722. \node (Lif-1) at (0,2) {\large \LangIf{}};
  7723. \node (Lif-2) at (3,2) {\large \LangIf{}};
  7724. \node (Lif-3) at (6,2) {\large \LangIf{}};
  7725. \node (Lif-4) at (9,2) {\large \LangIf{}};
  7726. \node (C-1) at (3,0) {\large \LangCIf{}};
  7727. \node (x86-1) at (3,-2) {\large \LangXIfVar{}};
  7728. \node (x86-2) at (6,-2) {\large \LangXIfVar{}};
  7729. \node (x86-3) at (9,-2) {\large \LangXIf{}};
  7730. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  7731. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize type\_check} (Lif-2);
  7732. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  7733. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-4);
  7734. \path[->,bend left=15] (Lif-4) edge [right] node {\ttfamily\footnotesize explicate\_control} (C-1);
  7735. \path[->,bend right=15] (C-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  7736. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  7737. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  7738. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize print\_x86 } (x86-4);
  7739. \end{tikzpicture}
  7740. \fi}
  7741. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  7742. \label{fig:Lif-passes}
  7743. \end{figure}
  7744. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  7745. compilation of \LangIf{}.
  7746. \section{An Example Translation}
  7747. Figure~\ref{fig:if-example-x86} shows a simple example program in
  7748. \LangIf{} translated to x86, showing the results of
  7749. \code{explicate\_control}, \code{select\_instructions}, and the final
  7750. x86 assembly code.
  7751. \begin{figure}[tbp]
  7752. {\if\edition\racketEd\color{olive}
  7753. \begin{tabular}{lll}
  7754. \begin{minipage}{0.4\textwidth}
  7755. % cond_test_20.rkt, eq_input.py
  7756. \begin{lstlisting}
  7757. (if (eq? (read) 1) 42 0)
  7758. \end{lstlisting}
  7759. $\Downarrow$
  7760. \begin{lstlisting}
  7761. start:
  7762. tmp7951 = (read);
  7763. if (eq? tmp7951 1)
  7764. goto block7952;
  7765. else
  7766. goto block7953;
  7767. block7952:
  7768. return 42;
  7769. block7953:
  7770. return 0;
  7771. \end{lstlisting}
  7772. $\Downarrow$
  7773. \begin{lstlisting}
  7774. start:
  7775. callq read_int
  7776. movq %rax, tmp7951
  7777. cmpq $1, tmp7951
  7778. je block7952
  7779. jmp block7953
  7780. block7953:
  7781. movq $0, %rax
  7782. jmp conclusion
  7783. block7952:
  7784. movq $42, %rax
  7785. jmp conclusion
  7786. \end{lstlisting}
  7787. \end{minipage}
  7788. &
  7789. $\Rightarrow\qquad$
  7790. \begin{minipage}{0.4\textwidth}
  7791. \begin{lstlisting}
  7792. start:
  7793. callq read_int
  7794. movq %rax, %rcx
  7795. cmpq $1, %rcx
  7796. je block7952
  7797. jmp block7953
  7798. block7953:
  7799. movq $0, %rax
  7800. jmp conclusion
  7801. block7952:
  7802. movq $42, %rax
  7803. jmp conclusion
  7804. .globl main
  7805. main:
  7806. pushq %rbp
  7807. movq %rsp, %rbp
  7808. pushq %r13
  7809. pushq %r12
  7810. pushq %rbx
  7811. pushq %r14
  7812. subq $0, %rsp
  7813. jmp start
  7814. conclusion:
  7815. addq $0, %rsp
  7816. popq %r14
  7817. popq %rbx
  7818. popq %r12
  7819. popq %r13
  7820. popq %rbp
  7821. retq
  7822. \end{lstlisting}
  7823. \end{minipage}
  7824. \end{tabular}
  7825. \fi}
  7826. {\if\edition\pythonEd
  7827. \begin{tabular}{lll}
  7828. \begin{minipage}{0.4\textwidth}
  7829. % cond_test_20.rkt, eq_input.py
  7830. \begin{lstlisting}
  7831. print(42 if input_int() == 1 else 0)
  7832. \end{lstlisting}
  7833. $\Downarrow$
  7834. \begin{lstlisting}
  7835. start:
  7836. tmp_0 = input_int()
  7837. if tmp_0 == 1:
  7838. goto block_3
  7839. else:
  7840. goto block_4
  7841. block_3:
  7842. tmp_1 = 42
  7843. goto block_2
  7844. block_4:
  7845. tmp_1 = 0
  7846. goto block_2
  7847. block_2:
  7848. print(tmp_1)
  7849. return 0
  7850. \end{lstlisting}
  7851. $\Downarrow$
  7852. \begin{lstlisting}
  7853. start:
  7854. callq read_int
  7855. movq %rax, tmp_0
  7856. cmpq 1, tmp_0
  7857. je block_3
  7858. jmp block_4
  7859. block_3:
  7860. movq 42, tmp_1
  7861. jmp block_2
  7862. block_4:
  7863. movq 0, tmp_1
  7864. jmp block_2
  7865. block_2:
  7866. movq tmp_1, %rdi
  7867. callq print_int
  7868. movq 0, %rax
  7869. jmp conclusion
  7870. \end{lstlisting}
  7871. \end{minipage}
  7872. &
  7873. $\Rightarrow\qquad$
  7874. \begin{minipage}{0.4\textwidth}
  7875. \begin{lstlisting}
  7876. .globl main
  7877. main:
  7878. pushq %rbp
  7879. movq %rsp, %rbp
  7880. subq $0, %rsp
  7881. jmp start
  7882. start:
  7883. callq read_int
  7884. movq %rax, %rcx
  7885. cmpq $1, %rcx
  7886. je block_3
  7887. jmp block_4
  7888. block_3:
  7889. movq $42, %rcx
  7890. jmp block_2
  7891. block_4:
  7892. movq $0, %rcx
  7893. jmp block_2
  7894. block_2:
  7895. movq %rcx, %rdi
  7896. callq print_int
  7897. movq $0, %rax
  7898. jmp conclusion
  7899. conclusion:
  7900. addq $0, %rsp
  7901. popq %rbp
  7902. retq
  7903. \end{lstlisting}
  7904. \end{minipage}
  7905. \end{tabular}
  7906. \fi}
  7907. \caption{Example compilation of an \key{if} expression to x86, showing
  7908. the results of \code{explicate\_control},
  7909. \code{select\_instructions}, and the final x86 assembly code. }
  7910. \label{fig:if-example-x86}
  7911. \end{figure}
  7912. \section{Challenge: Optimize Blocks and Remove Jumps}
  7913. \label{sec:opt-jumps}
  7914. We discuss two challenges that involve optimizing the control-flow of
  7915. the program.
  7916. \subsection{Optimize Blocks}
  7917. The algorithm for \code{explicate\_control} that we sketched in
  7918. Section~\ref{sec:explicate-control-Lif} sometimes generates too many
  7919. blocks. It does so in two different ways.
  7920. %
  7921. First, recall how in Figure~\ref{fig:explicate-control-s1-38},
  7922. \code{block\_4} consists of just a jump to \code{block\_2}. What's
  7923. going on here is that we created a new basic block from a single
  7924. \code{goto} statement, whereas we could have simply returned the
  7925. \code{goto} statement. We can solve this problem by modifying the
  7926. \code{create\_block} function to recognize this situation.
  7927. %
  7928. Second, \code{explicate\_control} creates a basic block whenever a
  7929. continuation \emph{might} get used more than once (wheneven a
  7930. continuation is passed it into two or more recursive calls). However,
  7931. just because a continuation might get used more than once, doesn't
  7932. mean it will. In fact, some continuation parameters may not be used
  7933. at all because we sometimes ignore them. For example, consider the
  7934. case for the constant \TRUE{} in \code{explicate\_pred}, where we
  7935. discard the \code{els} branch. So the question is how can we decide
  7936. whether to create a basic block?
  7937. The solution to this conundrum is to use \emph{lazy
  7938. evaluation}\index{subject}{lazy evaluation}~\citep{Friedman:1976aa}
  7939. to delay creating a basic block until the point in time where we know
  7940. it will be used.
  7941. %
  7942. {\if\edition\racketEd\color{olive}
  7943. %
  7944. Racket provides support for
  7945. lazy evaluation with the
  7946. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  7947. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  7948. \index{subject}{delay} creates a
  7949. \emph{promise}\index{subject}{promise} in which the evaluation of the
  7950. expressions is postponed. When \key{(force}
  7951. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  7952. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  7953. result of $e_n$ is cached in the promise and returned. If \code{force}
  7954. is applied again to the same promise, then the cached result is
  7955. returned. If \code{force} is applied to an argument that is not a
  7956. promise, \code{force} simply returns the argument.
  7957. %
  7958. \fi}
  7959. %
  7960. {\if\edition\pythonEd
  7961. %
  7962. While Python does not provide direct support for lazy evaluation, it
  7963. is easy to mimic. We can \emph{delay} the evaluation of a computation
  7964. by wrapping it inside a function with no parameters. We can
  7965. \emph{force} its evaluation by calling the function. However, in some
  7966. cases of \code{explicate\_pred}, etc., we will return a list of
  7967. statements and in other cases we will return a function that computes
  7968. a list of statement. We use the term \emph{promise} to refer to either
  7969. a list of statements or a function. To uniformly deal with promises,
  7970. we define the following \code{force} function that checks whether its
  7971. input is a function and then either 1) calls the function, or 2)
  7972. returns the input.
  7973. \begin{lstlisting}
  7974. def force(promise):
  7975. if isinstance(promise, types.FunctionType):
  7976. return promise()
  7977. else:
  7978. return promise
  7979. \end{lstlisting}
  7980. %
  7981. \fi}
  7982. We use promises for the input and output of the functions
  7983. \code{explicate\_pred}, \code{explicate\_assign},
  7984. %
  7985. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  7986. %
  7987. So instead of taking and returning lists of statments, they take and
  7988. return promises. Furthermore, when we come to a situation in which a
  7989. continuation might be used more than once, as in the case for
  7990. \code{if} in \code{explicate\_pred}, we create a delayed computation
  7991. that creates a basic block for the continuations (if there is not
  7992. already one) and then returns a \code{goto} statement to that basic
  7993. block.
  7994. %
  7995. {\if\edition\racketEd\color{olive}
  7996. %
  7997. The following auxiliary function named \code{block->goto} accomplishes
  7998. this task. It begins with \code{delay} to create a promise. When
  7999. forced, this promise will force the original promise. If that returns
  8000. a \code{goto} (because the block was already added to the control-flow
  8001. graph), then we return the \code{goto}. Otherwise we add the block to
  8002. the control-flow graph with another auxiliary function named
  8003. \code{add-node}. That function returns the label for the new block,
  8004. which we use to create a \code{goto}.
  8005. \begin{lstlisting}
  8006. (define (block->goto block)
  8007. (delay
  8008. (define b (force block))
  8009. (match b
  8010. [(Goto label) (Goto label)]
  8011. [else (Goto (add-node b))])))
  8012. \end{lstlisting}
  8013. \fi}
  8014. {\if\edition\pythonEd
  8015. %
  8016. Here's the new version of the \code{create\_block} auxiliary function
  8017. that works on promises and that checks whether the block consists of a
  8018. solitary \code{goto} statement.\\
  8019. \begin{minipage}{\textwidth}
  8020. \begin{lstlisting}
  8021. def create_block(promise, basic_blocks):
  8022. stmts = force(promise)
  8023. match stmts:
  8024. case [Goto(l)]:
  8025. return Goto(l)
  8026. case _:
  8027. label = label_name(generate_name('block'))
  8028. basic_blocks[label] = stmts
  8029. return Goto(label)
  8030. \end{lstlisting}
  8031. \end{minipage}
  8032. \fi}
  8033. Figure~\ref{fig:explicate-control-challenge} shows the output of
  8034. \code{explicate\_control} on the example of the nested \code{if}
  8035. expressions with the two improvements discussed above. As you can
  8036. see, the number of basic blocks has been reduced from 10 blocks (see
  8037. Figure~\ref{fig:explicate-control-s1-38}) down to 6 blocks.
  8038. \begin{figure}[tbp]
  8039. {\if\edition\racketEd\color{olive}
  8040. \begin{tabular}{lll}
  8041. \begin{minipage}{0.4\textwidth}
  8042. % cond_test_41.rkt
  8043. \begin{lstlisting}
  8044. (let ([x (read)])
  8045. (let ([y (read)])
  8046. (if (if (< x 1)
  8047. (eq? x 0)
  8048. (eq? x 2))
  8049. (+ y 2)
  8050. (+ y 10))))
  8051. \end{lstlisting}
  8052. \end{minipage}
  8053. &
  8054. $\Rightarrow$
  8055. &
  8056. \begin{minipage}{0.55\textwidth}
  8057. \begin{lstlisting}
  8058. start:
  8059. x = (read);
  8060. y = (read);
  8061. if (< x 1) goto block40;
  8062. else goto block41;
  8063. block40:
  8064. if (eq? x 0) goto block38;
  8065. else goto block39;
  8066. block41:
  8067. if (eq? x 2) goto block38;
  8068. else goto block39;
  8069. block38:
  8070. return (+ y 2);
  8071. block39:
  8072. return (+ y 10);
  8073. \end{lstlisting}
  8074. \end{minipage}
  8075. \end{tabular}
  8076. \fi}
  8077. {\if\edition\pythonEd
  8078. \begin{tabular}{lll}
  8079. \begin{minipage}{0.4\textwidth}
  8080. % cond_test_41.rkt
  8081. \begin{lstlisting}
  8082. x = input_int()
  8083. y = input_int()
  8084. print(y + 2 \
  8085. if (x == 0 \
  8086. if x < 1 \
  8087. else x == 2) \
  8088. else y + 10)
  8089. \end{lstlisting}
  8090. \end{minipage}
  8091. &
  8092. $\Rightarrow$
  8093. &
  8094. \begin{minipage}{0.55\textwidth}
  8095. \begin{lstlisting}
  8096. start:
  8097. x = input_int()
  8098. y = input_int()
  8099. if x < 1:
  8100. goto block_4
  8101. else:
  8102. goto block_5
  8103. block_4:
  8104. if x == 0:
  8105. goto block_2
  8106. else:
  8107. goto block_3
  8108. block_5:
  8109. if x == 2:
  8110. goto block_2
  8111. else:
  8112. goto block_3
  8113. block_2:
  8114. tmp_0 = y + 2
  8115. goto block_1
  8116. block_3:
  8117. tmp_0 = y + 10
  8118. goto block_1
  8119. block_1:
  8120. print(tmp_0)
  8121. return 0
  8122. \end{lstlisting}
  8123. \end{minipage}
  8124. \end{tabular}
  8125. \fi}
  8126. \caption{Translation from \LangIf{} to \LangCIf{}
  8127. via the improved \code{explicate\_control}.}
  8128. \label{fig:explicate-control-challenge}
  8129. \end{figure}
  8130. %% Recall that in the example output of \code{explicate\_control} in
  8131. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  8132. %% \code{block60} are trivial blocks, they do nothing but jump to another
  8133. %% block. The first goal of this challenge assignment is to remove those
  8134. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  8135. %% \code{explicate\_control} on the left and shows the result of bypassing
  8136. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  8137. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  8138. %% \code{block55}. The optimized code on the right of
  8139. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  8140. %% \code{then} branch jumping directly to \code{block55}. The story is
  8141. %% similar for the \code{else} branch, as well as for the two branches in
  8142. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  8143. %% have been optimized in this way, there are no longer any jumps to
  8144. %% blocks \code{block57} through \code{block60}, so they can be removed.
  8145. %% \begin{figure}[tbp]
  8146. %% \begin{tabular}{lll}
  8147. %% \begin{minipage}{0.4\textwidth}
  8148. %% \begin{lstlisting}
  8149. %% block62:
  8150. %% tmp54 = (read);
  8151. %% if (eq? tmp54 2) then
  8152. %% goto block59;
  8153. %% else
  8154. %% goto block60;
  8155. %% block61:
  8156. %% tmp53 = (read);
  8157. %% if (eq? tmp53 0) then
  8158. %% goto block57;
  8159. %% else
  8160. %% goto block58;
  8161. %% block60:
  8162. %% goto block56;
  8163. %% block59:
  8164. %% goto block55;
  8165. %% block58:
  8166. %% goto block56;
  8167. %% block57:
  8168. %% goto block55;
  8169. %% block56:
  8170. %% return (+ 700 77);
  8171. %% block55:
  8172. %% return (+ 10 32);
  8173. %% start:
  8174. %% tmp52 = (read);
  8175. %% if (eq? tmp52 1) then
  8176. %% goto block61;
  8177. %% else
  8178. %% goto block62;
  8179. %% \end{lstlisting}
  8180. %% \end{minipage}
  8181. %% &
  8182. %% $\Rightarrow$
  8183. %% &
  8184. %% \begin{minipage}{0.55\textwidth}
  8185. %% \begin{lstlisting}
  8186. %% block62:
  8187. %% tmp54 = (read);
  8188. %% if (eq? tmp54 2) then
  8189. %% goto block55;
  8190. %% else
  8191. %% goto block56;
  8192. %% block61:
  8193. %% tmp53 = (read);
  8194. %% if (eq? tmp53 0) then
  8195. %% goto block55;
  8196. %% else
  8197. %% goto block56;
  8198. %% block56:
  8199. %% return (+ 700 77);
  8200. %% block55:
  8201. %% return (+ 10 32);
  8202. %% start:
  8203. %% tmp52 = (read);
  8204. %% if (eq? tmp52 1) then
  8205. %% goto block61;
  8206. %% else
  8207. %% goto block62;
  8208. %% \end{lstlisting}
  8209. %% \end{minipage}
  8210. %% \end{tabular}
  8211. %% \caption{Optimize jumps by removing trivial blocks.}
  8212. %% \label{fig:optimize-jumps}
  8213. %% \end{figure}
  8214. %% The name of this pass is \code{optimize-jumps}. We recommend
  8215. %% implementing this pass in two phases. The first phrase builds a hash
  8216. %% table that maps labels to possibly improved labels. The second phase
  8217. %% changes the target of each \code{goto} to use the improved label. If
  8218. %% the label is for a trivial block, then the hash table should map the
  8219. %% label to the first non-trivial block that can be reached from this
  8220. %% label by jumping through trivial blocks. If the label is for a
  8221. %% non-trivial block, then the hash table should map the label to itself;
  8222. %% we do not want to change jumps to non-trivial blocks.
  8223. %% The first phase can be accomplished by constructing an empty hash
  8224. %% table, call it \code{short-cut}, and then iterating over the control
  8225. %% flow graph. Each time you encouter a block that is just a \code{goto},
  8226. %% then update the hash table, mapping the block's source to the target
  8227. %% of the \code{goto}. Also, the hash table may already have mapped some
  8228. %% labels to the block's source, to you must iterate through the hash
  8229. %% table and update all of those so that they instead map to the target
  8230. %% of the \code{goto}.
  8231. %% For the second phase, we recommend iterating through the $\Tail$ of
  8232. %% each block in the program, updating the target of every \code{goto}
  8233. %% according to the mapping in \code{short-cut}.
  8234. \begin{exercise}\normalfont
  8235. Implement the improvements to the \code{explicate\_control} pass.
  8236. Check that it removes trivial blocks in a few example programs. Then
  8237. check that your compiler still passes all of your tests.
  8238. \end{exercise}
  8239. \subsection{Remove Jumps}
  8240. There is an opportunity for removing jumps that is apparent in the
  8241. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  8242. ends with a jump to \code{block\_4} and there are no other jumps to
  8243. \code{block\_4} in the rest of the program. In this situation we can
  8244. avoid the runtime overhead of this jump by merging \code{block\_4}
  8245. into the preceding block, in this case the \code{start} block.
  8246. Figure~\ref{fig:remove-jumps} shows the output of
  8247. \code{select\_instructions} on the left and the result of this
  8248. optimization on the right.
  8249. \begin{figure}[tbp]
  8250. {\if\edition\racketEd\color{olive}
  8251. \begin{tabular}{lll}
  8252. \begin{minipage}{0.5\textwidth}
  8253. % cond_test_20.rkt
  8254. \begin{lstlisting}
  8255. start:
  8256. callq read_int
  8257. movq %rax, tmp7951
  8258. cmpq $1, tmp7951
  8259. je block7952
  8260. jmp block7953
  8261. block7953:
  8262. movq $0, %rax
  8263. jmp conclusion
  8264. block7952:
  8265. movq $42, %rax
  8266. jmp conclusion
  8267. \end{lstlisting}
  8268. \end{minipage}
  8269. &
  8270. $\Rightarrow\qquad$
  8271. \begin{minipage}{0.4\textwidth}
  8272. \begin{lstlisting}
  8273. start:
  8274. callq read_int
  8275. movq %rax, tmp7951
  8276. cmpq $1, tmp7951
  8277. je block7952
  8278. movq $0, %rax
  8279. jmp conclusion
  8280. block7952:
  8281. movq $42, %rax
  8282. jmp conclusion
  8283. \end{lstlisting}
  8284. \end{minipage}
  8285. \end{tabular}
  8286. \fi}
  8287. {\if\edition\pythonEd
  8288. \begin{tabular}{lll}
  8289. \begin{minipage}{0.5\textwidth}
  8290. % cond_test_20.rkt
  8291. \begin{lstlisting}
  8292. start:
  8293. callq read_int
  8294. movq %rax, tmp_0
  8295. cmpq 1, tmp_0
  8296. je block_3
  8297. jmp block_4
  8298. block_3:
  8299. movq 42, tmp_1
  8300. jmp block_2
  8301. block_4:
  8302. movq 0, tmp_1
  8303. jmp block_2
  8304. block_2:
  8305. movq tmp_1, %rdi
  8306. callq print_int
  8307. movq 0, %rax
  8308. jmp conclusion
  8309. \end{lstlisting}
  8310. \end{minipage}
  8311. &
  8312. $\Rightarrow\qquad$
  8313. \begin{minipage}{0.4\textwidth}
  8314. \begin{lstlisting}
  8315. start:
  8316. callq read_int
  8317. movq %rax, tmp_0
  8318. cmpq 1, tmp_0
  8319. je block_3
  8320. movq 0, tmp_1
  8321. jmp block_2
  8322. block_3:
  8323. movq 42, tmp_1
  8324. jmp block_2
  8325. block_2:
  8326. movq tmp_1, %rdi
  8327. callq print_int
  8328. movq 0, %rax
  8329. jmp conclusion
  8330. \end{lstlisting}
  8331. \end{minipage}
  8332. \end{tabular}
  8333. \fi}
  8334. \caption{Merging basic blocks by removing unnecessary jumps.}
  8335. \label{fig:remove-jumps}
  8336. \end{figure}
  8337. \begin{exercise}\normalfont
  8338. %
  8339. Implement a pass named \code{remove\_jumps} that merges basic blocks
  8340. into their preceding basic block, when there is only one preceding
  8341. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  8342. %
  8343. {\if\edition\racketEd\color{olive}
  8344. In the \code{run-tests.rkt} script, add the following entry to the
  8345. list of \code{passes} between \code{allocate-registers}
  8346. and \code{patch-instructions}.
  8347. \begin{lstlisting}
  8348. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  8349. \end{lstlisting}
  8350. \fi}
  8351. %
  8352. Run the script to test your compiler.
  8353. %
  8354. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  8355. blocks on several test programs.
  8356. \end{exercise}
  8357. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8358. \chapter{Loops and Dataflow Analysis}
  8359. \label{ch:Rwhile}
  8360. % TODO: define R'_8
  8361. % TODO: multi-graph
  8362. \if\edition\racketEd
  8363. In this chapter we study two features that are the hallmarks of
  8364. imperative programming languages: loops and assignments to local
  8365. variables. The following example demonstrates these new features by
  8366. computing the sum of the first five positive integers.
  8367. % similar to loop_test_1.rkt
  8368. \begin{lstlisting}
  8369. (let ([sum 0])
  8370. (let ([i 5])
  8371. (begin
  8372. (while (> i 0)
  8373. (begin
  8374. (set! sum (+ sum i))
  8375. (set! i (- i 1))))
  8376. sum)))
  8377. \end{lstlisting}
  8378. The \code{while} loop consists of a condition and a body.
  8379. %
  8380. The \code{set!} consists of a variable and a right-hand-side expression.
  8381. %
  8382. The primary purpose of both the \code{while} loop and \code{set!} is
  8383. to cause side effects, so it is convenient to also include in a
  8384. language feature for sequencing side effects: the \code{begin}
  8385. expression. It consists of one or more subexpressions that are
  8386. evaluated left-to-right.
  8387. \section{The \LangLoop{} Language}
  8388. \begin{figure}[tp]
  8389. \centering
  8390. \fbox{
  8391. \begin{minipage}{0.96\textwidth}
  8392. \small
  8393. \[
  8394. \begin{array}{lcl}
  8395. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  8396. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  8397. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  8398. &\MID& \gray{\key{\#t} \MID \key{\#f}
  8399. \MID (\key{and}\;\Exp\;\Exp)
  8400. \MID (\key{or}\;\Exp\;\Exp)
  8401. \MID (\key{not}\;\Exp) } \\
  8402. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  8403. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  8404. (\key{vector-ref}\;\Exp\;\Int)} \\
  8405. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  8406. \MID (\Exp \; \Exp\ldots) } \\
  8407. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP
  8408. \MID \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  8409. &\MID& \CSETBANG{\Var}{\Exp}
  8410. \MID \CBEGIN{\Exp\ldots}{\Exp}
  8411. \MID \CWHILE{\Exp}{\Exp} \\
  8412. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  8413. \LangLoopM{} &::=& \gray{\Def\ldots \; \Exp}
  8414. \end{array}
  8415. \]
  8416. \end{minipage}
  8417. }
  8418. \caption{The concrete syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-concrete-syntax}).}
  8419. \label{fig:Rwhile-concrete-syntax}
  8420. \end{figure}
  8421. \begin{figure}[tp]
  8422. \centering
  8423. \fbox{
  8424. \begin{minipage}{0.96\textwidth}
  8425. \small
  8426. \[
  8427. \begin{array}{lcl}
  8428. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  8429. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  8430. &\MID& \gray{ \BOOL{\itm{bool}}
  8431. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  8432. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  8433. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  8434. &\MID& \gray{ \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp} }\\
  8435. &\MID& \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  8436. \MID \WHILE{\Exp}{\Exp} \\
  8437. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  8438. \LangLoopM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  8439. \end{array}
  8440. \]
  8441. \end{minipage}
  8442. }
  8443. \caption{The abstract syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-syntax}).}
  8444. \label{fig:Rwhile-syntax}
  8445. \end{figure}
  8446. The concrete syntax of \LangLoop{} is defined in
  8447. Figure~\ref{fig:Rwhile-concrete-syntax} and its abstract syntax is defined
  8448. in Figure~\ref{fig:Rwhile-syntax}.
  8449. %
  8450. The definitional interpreter for \LangLoop{} is shown in
  8451. Figure~\ref{fig:interp-Rwhile}. We add three new cases for \code{SetBang},
  8452. \code{WhileLoop}, and \code{Begin} and we make changes to the cases
  8453. for \code{Var}, \code{Let}, and \code{Apply} regarding variables. To
  8454. support assignment to variables and to make their lifetimes indefinite
  8455. (see the second example in Section~\ref{sec:assignment-scoping}), we
  8456. box the value that is bound to each variable (in \code{Let}) and
  8457. function parameter (in \code{Apply}). The case for \code{Var} unboxes
  8458. the value.
  8459. %
  8460. Now to discuss the new cases. For \code{SetBang}, we lookup the
  8461. variable in the environment to obtain a boxed value and then we change
  8462. it using \code{set-box!} to the result of evaluating the right-hand
  8463. side. The result value of a \code{SetBang} is \code{void}.
  8464. %
  8465. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  8466. if the result is true, 2) evaluate the body.
  8467. The result value of a \code{while} loop is also \code{void}.
  8468. %
  8469. Finally, the $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  8470. subexpressions \itm{es} for their effects and then evaluates
  8471. and returns the result from \itm{body}.
  8472. \begin{figure}[tbp]
  8473. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8474. (define interp-Rwhile_class
  8475. (class interp-Rany_class
  8476. (super-new)
  8477. (define/override ((interp-exp env) e)
  8478. (define recur (interp-exp env))
  8479. (match e
  8480. [(SetBang x rhs)
  8481. (set-box! (lookup x env) (recur rhs))]
  8482. [(WhileLoop cnd body)
  8483. (define (loop)
  8484. (cond [(recur cnd) (recur body) (loop)]
  8485. [else (void)]))
  8486. (loop)]
  8487. [(Begin es body)
  8488. (for ([e es]) (recur e))
  8489. (recur body)]
  8490. [else ((super interp-exp env) e)]))
  8491. ))
  8492. (define (interp-Rwhile p)
  8493. (send (new interp-Rwhile_class) interp-program p))
  8494. \end{lstlisting}
  8495. \caption{Interpreter for \LangLoop{}.}
  8496. \label{fig:interp-Rwhile}
  8497. \end{figure}
  8498. The type checker for \LangLoop{} is define in
  8499. Figure~\ref{fig:type-check-Rwhile}. For \code{SetBang}, the type of the
  8500. variable and the right-hand-side must agree. The result type is
  8501. \code{Void}. For the \code{WhileLoop}, the condition must be a
  8502. \code{Boolean}. The result type is also \code{Void}. For
  8503. \code{Begin}, the result type is the type of its last subexpression.
  8504. \begin{figure}[tbp]
  8505. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8506. (define type-check-Rwhile_class
  8507. (class type-check-Rany_class
  8508. (super-new)
  8509. (inherit check-type-equal?)
  8510. (define/override (type-check-exp env)
  8511. (lambda (e)
  8512. (define recur (type-check-exp env))
  8513. (match e
  8514. [(SetBang x rhs)
  8515. (define-values (rhs^ rhsT) (recur rhs))
  8516. (define varT (dict-ref env x))
  8517. (check-type-equal? rhsT varT e)
  8518. (values (SetBang x rhs^) 'Void)]
  8519. [(WhileLoop cnd body)
  8520. (define-values (cnd^ Tc) (recur cnd))
  8521. (check-type-equal? Tc 'Boolean e)
  8522. (define-values (body^ Tbody) ((type-check-exp env) body))
  8523. (values (WhileLoop cnd^ body^) 'Void)]
  8524. [(Begin es body)
  8525. (define-values (es^ ts)
  8526. (for/lists (l1 l2) ([e es]) (recur e)))
  8527. (define-values (body^ Tbody) (recur body))
  8528. (values (Begin es^ body^) Tbody)]
  8529. [else ((super type-check-exp env) e)])))
  8530. ))
  8531. (define (type-check-Rwhile p)
  8532. (send (new type-check-Rwhile_class) type-check-program p))
  8533. \end{lstlisting}
  8534. \caption{Type checking \key{SetBang}, \key{WhileLoop},
  8535. and \code{Begin} in \LangLoop{}.}
  8536. \label{fig:type-check-Rwhile}
  8537. \end{figure}
  8538. At first glance, the translation of these language features to x86
  8539. seems straightforward because the \LangCFun{} intermediate language already
  8540. supports all of the ingredients that we need: assignment, \code{goto},
  8541. conditional branching, and sequencing. However, there are two
  8542. complications that arise which we discuss in the next two
  8543. sections. After that we introduce one new compiler pass and the
  8544. changes necessary to the existing passes.
  8545. \section{Assignment and Lexically Scoped Functions}
  8546. \label{sec:assignment-scoping}
  8547. The addition of assignment raises a problem with our approach to
  8548. implementing lexically-scoped functions. Consider the following
  8549. example in which function \code{f} has a free variable \code{x} that
  8550. is changed after \code{f} is created but before the call to \code{f}.
  8551. % loop_test_11.rkt
  8552. \begin{lstlisting}
  8553. (let ([x 0])
  8554. (let ([y 0])
  8555. (let ([z 20])
  8556. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  8557. (begin
  8558. (set! x 10)
  8559. (set! y 12)
  8560. (f y))))))
  8561. \end{lstlisting}
  8562. The correct output for this example is \code{42} because the call to
  8563. \code{f} is required to use the current value of \code{x} (which is
  8564. \code{10}). Unfortunately, the closure conversion pass
  8565. (Section~\ref{sec:closure-conversion}) generates code for the
  8566. \code{lambda} that copies the old value of \code{x} into a
  8567. closure. Thus, if we naively add support for assignment to our current
  8568. compiler, the output of this program would be \code{32}.
  8569. A first attempt at solving this problem would be to save a pointer to
  8570. \code{x} in the closure and change the occurrences of \code{x} inside
  8571. the lambda to dereference the pointer. Of course, this would require
  8572. assigning \code{x} to the stack and not to a register. However, the
  8573. problem goes a bit deeper. Consider the following example in which we
  8574. create a counter abstraction by creating a pair of functions that
  8575. share the free variable \code{x}.
  8576. % similar to loop_test_10.rkt
  8577. \begin{lstlisting}
  8578. (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  8579. (vector
  8580. (lambda: () : Integer x)
  8581. (lambda: () : Void (set! x (+ 1 x)))))
  8582. (let ([counter (f 0)])
  8583. (let ([get (vector-ref counter 0)])
  8584. (let ([inc (vector-ref counter 1)])
  8585. (begin
  8586. (inc)
  8587. (get)))))
  8588. \end{lstlisting}
  8589. In this example, the lifetime of \code{x} extends beyond the lifetime
  8590. of the call to \code{f}. Thus, if we were to store \code{x} on the
  8591. stack frame for the call to \code{f}, it would be gone by the time we
  8592. call \code{inc} and \code{get}, leaving us with dangling pointers for
  8593. \code{x}. This example demonstrates that when a variable occurs free
  8594. inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
  8595. value of the variable needs to live on the heap. The verb ``box'' is
  8596. often used for allocating a single value on the heap, producing a
  8597. pointer, and ``unbox'' for dereferencing the pointer.
  8598. We recommend solving these problems by ``boxing'' the local variables
  8599. that are in the intersection of 1) variables that appear on the
  8600. left-hand-side of a \code{set!} and 2) variables that occur free
  8601. inside a \code{lambda}. We shall introduce a new pass named
  8602. \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
  8603. perform this translation. But before diving into the compiler passes,
  8604. we one more problem to discuss.
  8605. \section{Cyclic Control Flow and Dataflow Analysis}
  8606. \label{sec:dataflow-analysis}
  8607. Up until this point the control-flow graphs generated in
  8608. \code{explicate\_control} were guaranteed to be acyclic. However, each
  8609. \code{while} loop introduces a cycle in the control-flow graph.
  8610. But does that matter?
  8611. %
  8612. Indeed it does. Recall that for register allocation, the compiler
  8613. performs liveness analysis to determine which variables can share the
  8614. same register. In Section~\ref{sec:liveness-analysis-Lif} we analyze
  8615. the control-flow graph in reverse topological order, but topological
  8616. order is only well-defined for acyclic graphs.
  8617. Let us return to the example of computing the sum of the first five
  8618. positive integers. Here is the program after instruction selection but
  8619. before register allocation.
  8620. \begin{center}
  8621. \begin{minipage}{0.45\textwidth}
  8622. \begin{lstlisting}
  8623. (define (main) : Integer
  8624. mainstart:
  8625. movq $0, sum1
  8626. movq $5, i2
  8627. jmp block5
  8628. block5:
  8629. movq i2, tmp3
  8630. cmpq tmp3, $0
  8631. jl block7
  8632. jmp block8
  8633. \end{lstlisting}
  8634. \end{minipage}
  8635. \begin{minipage}{0.45\textwidth}
  8636. \begin{lstlisting}
  8637. block7:
  8638. addq i2, sum1
  8639. movq $1, tmp4
  8640. negq tmp4
  8641. addq tmp4, i2
  8642. jmp block5
  8643. block8:
  8644. movq $27, %rax
  8645. addq sum1, %rax
  8646. jmp mainconclusion
  8647. )
  8648. \end{lstlisting}
  8649. \end{minipage}
  8650. \end{center}
  8651. Recall that liveness analysis works backwards, starting at the end
  8652. of each function. For this example we could start with \code{block8}
  8653. because we know what is live at the beginning of the conclusion,
  8654. just \code{rax} and \code{rsp}. So the live-before set
  8655. for \code{block8} is $\{\ttm{rsp},\ttm{sum1}\}$.
  8656. %
  8657. Next we might try to analyze \code{block5} or \code{block7}, but
  8658. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  8659. we are stuck.
  8660. The way out of this impasse comes from the realization that one can
  8661. perform liveness analysis starting with an empty live-after set to
  8662. compute an under-approximation of the live-before set. By
  8663. \emph{under-approximation}, we mean that the set only contains
  8664. variables that are really live, but it may be missing some. Next, the
  8665. under-approximations for each block can be improved by 1) updating the
  8666. live-after set for each block using the approximate live-before sets
  8667. from the other blocks and 2) perform liveness analysis again on each
  8668. block. In fact, by iterating this process, the under-approximations
  8669. eventually become the correct solutions!
  8670. %
  8671. This approach of iteratively analyzing a control-flow graph is
  8672. applicable to many static analysis problems and goes by the name
  8673. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  8674. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  8675. Washington.
  8676. Let us apply this approach to the above example. We use the empty set
  8677. for the initial live-before set for each block. Let $m_0$ be the
  8678. following mapping from label names to sets of locations (variables and
  8679. registers).
  8680. \begin{center}
  8681. \begin{lstlisting}
  8682. mainstart: {}
  8683. block5: {}
  8684. block7: {}
  8685. block8: {}
  8686. \end{lstlisting}
  8687. \end{center}
  8688. Using the above live-before approximations, we determine the
  8689. live-after for each block and then apply liveness analysis to each
  8690. block. This produces our next approximation $m_1$ of the live-before
  8691. sets.
  8692. \begin{center}
  8693. \begin{lstlisting}
  8694. mainstart: {}
  8695. block5: {i2}
  8696. block7: {i2, sum1}
  8697. block8: {rsp, sum1}
  8698. \end{lstlisting}
  8699. \end{center}
  8700. For the second round, the live-after for \code{mainstart} is the
  8701. current live-before for \code{block5}, which is \code{\{i2\}}. So the
  8702. liveness analysis for \code{mainstart} computes the empty set. The
  8703. live-after for \code{block5} is the union of the live-before sets for
  8704. \code{block7} and \code{block8}, which is \code{\{i2 , rsp, sum1\}}.
  8705. So the liveness analysis for \code{block5} computes \code{\{i2 , rsp,
  8706. sum1\}}. The live-after for \code{block7} is the live-before for
  8707. \code{block5} (from the previous iteration), which is \code{\{i2\}}.
  8708. So the liveness analysis for \code{block7} remains \code{\{i2,
  8709. sum1\}}. Together these yield the following approximation $m_2$ of
  8710. the live-before sets.
  8711. \begin{center}
  8712. \begin{lstlisting}
  8713. mainstart: {}
  8714. block5: {i2, rsp, sum1}
  8715. block7: {i2, sum1}
  8716. block8: {rsp, sum1}
  8717. \end{lstlisting}
  8718. \end{center}
  8719. In the preceding iteration, only \code{block5} changed, so we can
  8720. limit our attention to \code{mainstart} and \code{block7}, the two
  8721. blocks that jump to \code{block5}. As a result, the live-before sets
  8722. for \code{mainstart} and \code{block7} are updated to include
  8723. \code{rsp}, yielding the following approximation $m_3$.
  8724. \begin{center}
  8725. \begin{lstlisting}
  8726. mainstart: {rsp}
  8727. block5: {i2, rsp, sum1}
  8728. block7: {i2, rsp, sum1}
  8729. block8: {rsp, sum1}
  8730. \end{lstlisting}
  8731. \end{center}
  8732. Because \code{block7} changed, we analyze \code{block5} once more, but
  8733. its live-before set remains \code{\{ i2, rsp, sum1 \}}. At this point
  8734. our approximations have converged, so $m_3$ is the solution.
  8735. This iteration process is guaranteed to converge to a solution by the
  8736. Kleene Fixed-Point Theorem, a general theorem about functions on
  8737. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  8738. any collection that comes with a partial ordering $\sqsubseteq$ on its
  8739. elements, a least element $\bot$ (pronounced bottom), and a join
  8740. operator $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{partial
  8741. ordering}\index{subject}{join}\footnote{Technically speaking, we will be
  8742. working with join semi-lattices.} When two elements are ordered $m_i
  8743. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  8744. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  8745. approximation than $m_i$. The bottom element $\bot$ represents the
  8746. complete lack of information, i.e., the worst approximation. The join
  8747. operator takes two lattice elements and combines their information,
  8748. i.e., it produces the least upper bound of the two.\index{subject}{least upper
  8749. bound}
  8750. A dataflow analysis typically involves two lattices: one lattice to
  8751. represent abstract states and another lattice that aggregates the
  8752. abstract states of all the blocks in the control-flow graph. For
  8753. liveness analysis, an abstract state is a set of locations. We form
  8754. the lattice $L$ by taking its elements to be sets of locations, the
  8755. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  8756. set, and the join operator to be set union.
  8757. %
  8758. We form a second lattice $M$ by taking its elements to be mappings
  8759. from the block labels to sets of locations (elements of $L$). We
  8760. order the mappings point-wise, using the ordering of $L$. So given any
  8761. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  8762. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  8763. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  8764. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  8765. We can think of one iteration of liveness analysis as being a function
  8766. $f$ on the lattice $M$. It takes a mapping as input and computes a new
  8767. mapping.
  8768. \[
  8769. f(m_i) = m_{i+1}
  8770. \]
  8771. Next let us think for a moment about what a final solution $m_s$
  8772. should look like. If we perform liveness analysis using the solution
  8773. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  8774. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  8775. \[
  8776. f(m_s) = m_s
  8777. \]
  8778. Furthermore, the solution should only include locations that are
  8779. forced to be there by performing liveness analysis on the program, so
  8780. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  8781. The Kleene Fixed-Point Theorem states that if a function $f$ is
  8782. monotone (better inputs produce better outputs), then the least fixed
  8783. point of $f$ is the least upper bound of the \emph{ascending Kleene
  8784. chain} obtained by starting at $\bot$ and iterating $f$ as
  8785. follows.\index{subject}{Kleene Fixed-Point Theorem}
  8786. \[
  8787. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  8788. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  8789. \]
  8790. When a lattice contains only finitely-long ascending chains, then
  8791. every Kleene chain tops out at some fixed point after a number of
  8792. iterations of $f$. So that fixed point is also a least upper
  8793. bound of the chain.
  8794. \[
  8795. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  8796. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  8797. \]
  8798. The liveness analysis is indeed a monotone function and the lattice
  8799. $M$ only has finitely-long ascending chains because there are only a
  8800. finite number of variables and blocks in the program. Thus we are
  8801. guaranteed that iteratively applying liveness analysis to all blocks
  8802. in the program will eventually produce the least fixed point solution.
  8803. Next let us consider dataflow analysis in general and discuss the
  8804. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  8805. %
  8806. The algorithm has four parameters: the control-flow graph \code{G}, a
  8807. function \code{transfer} that applies the analysis to one block, the
  8808. \code{bottom} and \code{join} operator for the lattice of abstract
  8809. states. The algorithm begins by creating the bottom mapping,
  8810. represented by a hash table. It then pushes all of the nodes in the
  8811. control-flow graph onto the work list (a queue). The algorithm repeats
  8812. the \code{while} loop as long as there are items in the work list. In
  8813. each iteration, a node is popped from the work list and processed. The
  8814. \code{input} for the node is computed by taking the join of the
  8815. abstract states of all the predecessor nodes. The \code{transfer}
  8816. function is then applied to obtain the \code{output} abstract
  8817. state. If the output differs from the previous state for this block,
  8818. the mapping for this block is updated and its successor nodes are
  8819. pushed onto the work list.
  8820. \begin{figure}[tb]
  8821. \begin{lstlisting}
  8822. (define (analyze-dataflow G transfer bottom join)
  8823. (define mapping (make-hash))
  8824. (for ([v (in-vertices G)])
  8825. (dict-set! mapping v bottom))
  8826. (define worklist (make-queue))
  8827. (for ([v (in-vertices G)])
  8828. (enqueue! worklist v))
  8829. (define trans-G (transpose G))
  8830. (while (not (queue-empty? worklist))
  8831. (define node (dequeue! worklist))
  8832. (define input (for/fold ([state bottom])
  8833. ([pred (in-neighbors trans-G node)])
  8834. (join state (dict-ref mapping pred))))
  8835. (define output (transfer node input))
  8836. (cond [(not (equal? output (dict-ref mapping node)))
  8837. (dict-set! mapping node output)
  8838. (for ([v (in-neighbors G node)])
  8839. (enqueue! worklist v))]))
  8840. mapping)
  8841. \end{lstlisting}
  8842. \caption{Generic work list algorithm for dataflow analysis}
  8843. \label{fig:generic-dataflow}
  8844. \end{figure}
  8845. Having discussed the two complications that arise from adding support
  8846. for assignment and loops, we turn to discussing the one new compiler
  8847. pass and the significant changes to existing passes.
  8848. \section{Convert Assignments}
  8849. \label{sec:convert-assignments}
  8850. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  8851. the combination of assignments and lexically-scoped functions requires
  8852. that we box those variables that are both assigned-to and that appear
  8853. free inside a \code{lambda}. The purpose of the
  8854. \code{convert-assignments} pass is to carry out that transformation.
  8855. We recommend placing this pass after \code{uniquify} but before
  8856. \code{reveal-functions}.
  8857. Consider again the first example from
  8858. Section~\ref{sec:assignment-scoping}:
  8859. \begin{lstlisting}
  8860. (let ([x 0])
  8861. (let ([y 0])
  8862. (let ([z 20])
  8863. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  8864. (begin
  8865. (set! x 10)
  8866. (set! y 12)
  8867. (f y))))))
  8868. \end{lstlisting}
  8869. The variables \code{x} and \code{y} are assigned-to. The variables
  8870. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  8871. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  8872. The boxing of \code{x} consists of three transformations: initialize
  8873. \code{x} with a vector, replace reads from \code{x} with
  8874. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  8875. \code{vector-set!}. The output of \code{convert-assignments} for this
  8876. example is as follows.
  8877. \begin{lstlisting}
  8878. (define (main) : Integer
  8879. (let ([x0 (vector 0)])
  8880. (let ([y1 0])
  8881. (let ([z2 20])
  8882. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  8883. (+ a3 (+ (vector-ref x0 0) z2)))])
  8884. (begin
  8885. (vector-set! x0 0 10)
  8886. (set! y1 12)
  8887. (f4 y1)))))))
  8888. \end{lstlisting}
  8889. \paragraph{Assigned \& Free}
  8890. We recommend defining an auxiliary function named
  8891. \code{assigned\&free} that takes an expression and simultaneously
  8892. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  8893. that occur free within lambda's, and 3) a new version of the
  8894. expression that records which bound variables occurred in the
  8895. intersection of $A$ and $F$. You can use the struct
  8896. \code{AssignedFree} to do this. Consider the case for
  8897. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  8898. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  8899. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  8900. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  8901. \begin{lstlisting}
  8902. (Let |$x$| |$rhs$| |$body$|)
  8903. |$\Rightarrow$|
  8904. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  8905. \end{lstlisting}
  8906. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  8907. The set of assigned variables for this \code{Let} is
  8908. $A_r \cup (A_b - \{x\})$
  8909. and the set of variables free in lambda's is
  8910. $F_r \cup (F_b - \{x\})$.
  8911. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  8912. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  8913. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  8914. and $F_r$.
  8915. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  8916. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  8917. recursively processing \itm{body}. Wrap each of parameter that occurs
  8918. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  8919. Let $P$ be the set of parameter names in \itm{params}. The result is
  8920. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  8921. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  8922. variables of an expression (see Chapter~\ref{ch:Rlam}).
  8923. \paragraph{Convert Assignments}
  8924. Next we discuss the \code{convert-assignment} pass with its auxiliary
  8925. functions for expressions and definitions. The function for
  8926. expressions, \code{cnvt-assign-exp}, should take an expression and a
  8927. set of assigned-and-free variables (obtained from the result of
  8928. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  8929. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  8930. \code{vector-ref}.
  8931. \begin{lstlisting}
  8932. (Var |$x$|)
  8933. |$\Rightarrow$|
  8934. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  8935. \end{lstlisting}
  8936. %
  8937. In the case for $\LET{\LP\code{AssignedFree}\,
  8938. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  8939. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  8940. \itm{body'} but with $x$ added to the set of assigned-and-free
  8941. variables. Translate the let-expression as follows to bind $x$ to a
  8942. boxed value.
  8943. \begin{lstlisting}
  8944. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  8945. |$\Rightarrow$|
  8946. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  8947. \end{lstlisting}
  8948. %
  8949. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  8950. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  8951. variables, translate the \code{set!} into a \code{vector-set!}
  8952. as follows.
  8953. \begin{lstlisting}
  8954. (SetBang |$x$| |$\itm{rhs}$|)
  8955. |$\Rightarrow$|
  8956. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  8957. \end{lstlisting}
  8958. %
  8959. The case for \code{Lambda} is non-trivial, but it is similar to the
  8960. case for function definitions, which we discuss next.
  8961. The auxiliary function for definitions, \code{cnvt-assign-def},
  8962. applies assignment conversion to function definitions.
  8963. We translate a function definition as follows.
  8964. \begin{lstlisting}
  8965. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  8966. |$\Rightarrow$|
  8967. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  8968. \end{lstlisting}
  8969. So it remains to explain \itm{params'} and $\itm{body}_4$.
  8970. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  8971. \code{assigned\&free} on $\itm{body_1}$.
  8972. Let $P$ be the parameter names in \itm{params}.
  8973. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  8974. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  8975. as the set of assigned-and-free variables.
  8976. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  8977. in a sequence of let-expressions that box the parameters
  8978. that are in $A_b \cap F_b$.
  8979. %
  8980. Regarding \itm{params'}, change the names of the parameters that are
  8981. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  8982. variables can retain the original names). Recall the second example in
  8983. Section~\ref{sec:assignment-scoping} involving a counter
  8984. abstraction. The following is the output of assignment version for
  8985. function \code{f}.
  8986. \begin{lstlisting}
  8987. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  8988. (vector
  8989. (lambda: () : Integer x1)
  8990. (lambda: () : Void (set! x1 (+ 1 x1)))))
  8991. |$\Rightarrow$|
  8992. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  8993. (let ([x1 (vector param_x1)])
  8994. (vector (lambda: () : Integer (vector-ref x1 0))
  8995. (lambda: () : Void
  8996. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  8997. \end{lstlisting}
  8998. \section{Remove Complex Operands}
  8999. \label{sec:rco-loop}
  9000. The three new language forms, \code{while}, \code{set!}, and
  9001. \code{begin} are all complex expressions and their subexpressions are
  9002. allowed to be complex. Figure~\ref{fig:Rfun-anf-syntax} defines the
  9003. output language \LangFunANF{} of this pass.
  9004. \begin{figure}[tp]
  9005. \centering
  9006. \fbox{
  9007. \begin{minipage}{0.96\textwidth}
  9008. \small
  9009. \[
  9010. \begin{array}{rcl}
  9011. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  9012. \MID \VOID{} } \\
  9013. \Exp &::=& \ldots \MID \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  9014. &\MID& \WHILE{\Exp}{\Exp} \MID \SETBANG{\Var}{\Exp}
  9015. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  9016. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  9017. R^{\dagger}_8 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  9018. \end{array}
  9019. \]
  9020. \end{minipage}
  9021. }
  9022. \caption{\LangLoopANF{} is \LangLoop{} in administrative normal form (ANF).}
  9023. \label{fig:Rwhile-anf-syntax}
  9024. \end{figure}
  9025. As usual, when a complex expression appears in a grammar position that
  9026. needs to be atomic, such as the argument of a primitive operator, we
  9027. must introduce a temporary variable and bind it to the complex
  9028. expression. This approach applies, unchanged, to handle the new
  9029. language forms. For example, in the following code there are two
  9030. \code{begin} expressions appearing as arguments to \code{+}. The
  9031. output of \code{rco-exp} is shown below, in which the \code{begin}
  9032. expressions have been bound to temporary variables. Recall that
  9033. \code{let} expressions in \LangLoopANF{} are allowed to have
  9034. arbitrary expressions in their right-hand-side expression, so it is
  9035. fine to place \code{begin} there.
  9036. \begin{lstlisting}
  9037. (let ([x0 10])
  9038. (let ([y1 0])
  9039. (+ (+ (begin (set! y1 (read)) x0)
  9040. (begin (set! x0 (read)) y1))
  9041. x0)))
  9042. |$\Rightarrow$|
  9043. (let ([x0 10])
  9044. (let ([y1 0])
  9045. (let ([tmp2 (begin (set! y1 (read)) x0)])
  9046. (let ([tmp3 (begin (set! x0 (read)) y1)])
  9047. (let ([tmp4 (+ tmp2 tmp3)])
  9048. (+ tmp4 x0))))))
  9049. \end{lstlisting}
  9050. \section{Explicate Control and \LangCLoop{}}
  9051. \label{sec:explicate-loop}
  9052. Recall that in the \code{explicate\_control} pass we define one helper
  9053. function for each kind of position in the program. For the \LangVar{}
  9054. language of integers and variables we needed kinds of positions:
  9055. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  9056. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  9057. yet another kind of position: effect position. Except for the last
  9058. subexpression, the subexpressions inside a \code{begin} are evaluated
  9059. only for their effect. Their result values are discarded. We can
  9060. generate better code by taking this fact into account.
  9061. The output language of \code{explicate\_control} is \LangCLoop{}
  9062. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  9063. \LangCLam{}. The only syntactic difference is that \code{Call},
  9064. \code{vector-set!}, and \code{read} may also appear as statements.
  9065. The most significant difference between \LangCLam{} and \LangCLoop{}
  9066. is that the control-flow graphs of the later may contain cycles.
  9067. \begin{figure}[tp]
  9068. \fbox{
  9069. \begin{minipage}{0.96\textwidth}
  9070. \small
  9071. \[
  9072. \begin{array}{lcl}
  9073. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  9074. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  9075. &\MID& \CALL{\Atm}{\LP\Atm\ldots\RP} \MID \READ{}\\
  9076. &\MID& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
  9077. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  9078. \LangCLoopM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  9079. \end{array}
  9080. \]
  9081. \end{minipage}
  9082. }
  9083. \caption{The abstract syntax of \LangCLoop{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  9084. \label{fig:c7-syntax}
  9085. \end{figure}
  9086. The new auxiliary function \code{explicate-effect} takes an expression
  9087. (in an effect position) and a promise of a continuation block. The
  9088. function returns a promise for a $\Tail$ that includes the generated
  9089. code for the input expression followed by the continuation block. If
  9090. the expression is obviously pure, that is, never causes side effects,
  9091. then the expression can be removed, so the result is just the
  9092. continuation block.
  9093. %
  9094. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  9095. case. First, you will need a fresh label $\itm{loop}$ for the top of
  9096. the loop. Recursively process the \itm{body} (in effect position)
  9097. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  9098. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  9099. \itm{body'} as the then-branch and the continuation block as the
  9100. else-branch. The result should be added to the control-flow graph with
  9101. the label \itm{loop}. The result for the whole \code{while} loop is a
  9102. \code{goto} to the \itm{loop} label. Note that the loop should only be
  9103. added to the control-flow graph if the loop is indeed used, which can
  9104. be accomplished using \code{delay}.
  9105. The auxiliary functions for tail, assignment, and predicate positions
  9106. need to be updated. The three new language forms, \code{while},
  9107. \code{set!}, and \code{begin}, can appear in assignment and tail
  9108. positions. Only \code{begin} may appear in predicate positions; the
  9109. other two have result type \code{Void}.
  9110. \section{Select Instructions}
  9111. \label{sec:select-instructions-loop}
  9112. Only three small additions are needed in the
  9113. \code{select-instructions} pass to handle the changes to \LangCLoop{}. That
  9114. is, \code{Call}, \code{read}, and \code{vector-set!} may now appear as
  9115. stand-alone statements instead of only appearing on the right-hand
  9116. side of an assignment statement. The code generation is nearly
  9117. identical; just leave off the instruction for moving the result into
  9118. the left-hand side.
  9119. \section{Register Allocation}
  9120. \label{sec:register-allocation-loop}
  9121. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  9122. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  9123. which complicates the liveness analysis needed for register
  9124. allocation.
  9125. \subsection{Liveness Analysis}
  9126. \label{sec:liveness-analysis-r8}
  9127. We recommend using the generic \code{analyze-dataflow} function that
  9128. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  9129. perform liveness analysis, replacing the code in
  9130. \code{uncover-live-CFG} that processed the basic blocks in topological
  9131. order (Section~\ref{sec:liveness-analysis-Lif}).
  9132. The \code{analyze-dataflow} function has four parameters.
  9133. \begin{enumerate}
  9134. \item The first parameter \code{G} should be a directed graph from the
  9135. \code{racket/graph} package (see the sidebar in
  9136. Section~\ref{sec:build-interference}) that represents the
  9137. control-flow graph.
  9138. \item The second parameter \code{transfer} is a function that applies
  9139. liveness analysis to a basic block. It takes two parameters: the
  9140. label for the block to analyze and the live-after set for that
  9141. block. The transfer function should return the live-before set for
  9142. the block. Also, as a side-effect, it should update the block's
  9143. $\itm{info}$ with the liveness information for each instruction. To
  9144. implement the \code{transfer} function, you should be able to reuse
  9145. the code you already have for analyzing basic blocks.
  9146. \item The third and fourth parameters of \code{analyze-dataflow} are
  9147. \code{bottom} and \code{join} for the lattice of abstract states,
  9148. i.e. sets of locations. The bottom of the lattice is the empty set
  9149. \code{(set)} and the join operator is \code{set-union}.
  9150. \end{enumerate}
  9151. \begin{figure}[p]
  9152. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9153. \node (Rfun) at (0,2) {\large \LangLoop{}};
  9154. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  9155. \node (Rfun-3) at (6,2) {\large \LangLoop{}};
  9156. \node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  9157. \node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  9158. \node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  9159. \node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  9160. \node (F1-4) at (3,0) {\large \LangLoopAlloc{}};
  9161. \node (F1-5) at (0,0) {\large \LangLoopAlloc{}};
  9162. \node (C3-2) at (3,-2) {\large \LangCLoop{}};
  9163. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  9164. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  9165. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  9166. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  9167. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  9168. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  9169. %% \path[->,bend left=15] (Rfun) edge [above] node
  9170. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  9171. \path[->,bend left=15] (Rfun) edge [above] node
  9172. {\ttfamily\footnotesize shrink} (Rfun-2);
  9173. \path[->,bend left=15] (Rfun-2) edge [above] node
  9174. {\ttfamily\footnotesize uniquify} (Rfun-3);
  9175. \path[->,bend left=15] (Rfun-3) edge [above] node
  9176. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  9177. \path[->,bend left=15] (Rfun-4) edge [right] node
  9178. {\ttfamily\footnotesize convert-assignments} (F1-1);
  9179. \path[->,bend left=15] (F1-1) edge [below] node
  9180. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  9181. \path[->,bend right=15] (F1-2) edge [above] node
  9182. {\ttfamily\footnotesize limit-fun.} (F1-3);
  9183. \path[->,bend right=15] (F1-3) edge [above] node
  9184. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9185. \path[->,bend right=15] (F1-4) edge [above] node
  9186. {\ttfamily\footnotesize remove-complex.} (F1-5);
  9187. \path[->,bend right=15] (F1-5) edge [right] node
  9188. {\ttfamily\footnotesize explicate-control} (C3-2);
  9189. \path[->,bend left=15] (C3-2) edge [left] node
  9190. {\ttfamily\footnotesize select-instr.} (x86-2);
  9191. \path[->,bend right=15] (x86-2) edge [left] node
  9192. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  9193. \path[->,bend right=15] (x86-2-1) edge [below] node
  9194. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  9195. \path[->,bend right=15] (x86-2-2) edge [left] node
  9196. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  9197. \path[->,bend left=15] (x86-3) edge [above] node
  9198. {\ttfamily\footnotesize patch-instr.} (x86-4);
  9199. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  9200. \end{tikzpicture}
  9201. \caption{Diagram of the passes for \LangLoop{} (loops and assignment).}
  9202. \label{fig:Rwhile-passes}
  9203. \end{figure}
  9204. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  9205. for the compilation of \LangLoop{}.
  9206. \section{Challenge: Arrays}
  9207. \label{sec:arrays}
  9208. In Chapter~\ref{ch:Rvec} we studied tuples, that is, sequences of
  9209. elements whose length is determined at compile-time and where each
  9210. element of a tuple may have a different type (they are
  9211. heterogeous). This challenge is also about sequences, but this time
  9212. the length is determined at run-time and all the elements have the same
  9213. type (they are homogeneous). We use the term ``array'' for this later
  9214. kind of sequence.
  9215. The Racket language does not distinguish between tuples and arrays,
  9216. they are both represented by vectors. However, Typed Racket
  9217. distinguishes between tuples and arrays: the \code{Vector} type is for
  9218. tuples and the \code{Vectorof} type is for arrays.
  9219. %
  9220. Figure~\ref{fig:Rvecof-concrete-syntax} defines the concrete syntax
  9221. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  9222. and the \code{make-vector} primitive operator for creating an array,
  9223. whose arguments are the length of the array and an initial value for
  9224. all the elements in the array. The \code{vector-length},
  9225. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  9226. for tuples become overloaded for use with arrays.
  9227. %
  9228. We also include integer multiplication in \LangArray{}, as it is
  9229. useful in many examples involving arrays such as computing the
  9230. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  9231. \begin{figure}[tp]
  9232. \centering
  9233. \fbox{
  9234. \begin{minipage}{0.96\textwidth}
  9235. \small
  9236. \[
  9237. \begin{array}{lcl}
  9238. \Type &::=& \ldots \MID \LP \key{Vectorof}~\Type \RP \\
  9239. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  9240. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \MID \CMUL{\Exp}{\Exp}\\
  9241. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  9242. &\MID& \gray{\key{\#t} \MID \key{\#f}
  9243. \MID \LP\key{and}\;\Exp\;\Exp\RP
  9244. \MID \LP\key{or}\;\Exp\;\Exp\RP
  9245. \MID \LP\key{not}\;\Exp\RP } \\
  9246. &\MID& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  9247. &\MID& \gray{ \LP\key{vector}\;\Exp\ldots\RP \MID
  9248. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  9249. &\MID& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\MID \LP\key{void}\RP
  9250. \MID \LP\Exp \; \Exp\ldots\RP } \\
  9251. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP
  9252. \MID \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  9253. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  9254. \MID \CBEGIN{\Exp\ldots}{\Exp}
  9255. \MID \CWHILE{\Exp}{\Exp} } \\
  9256. &\MID& \CMAKEVEC{\Exp}{\Exp} \\
  9257. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  9258. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  9259. \end{array}
  9260. \]
  9261. \end{minipage}
  9262. }
  9263. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  9264. \label{fig:Rvecof-concrete-syntax}
  9265. \end{figure}
  9266. \begin{figure}[tp]
  9267. \begin{lstlisting}
  9268. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  9269. [n : Integer]) : Integer
  9270. (let ([i 0])
  9271. (let ([prod 0])
  9272. (begin
  9273. (while (< i n)
  9274. (begin
  9275. (set! prod (+ prod (* (vector-ref A i)
  9276. (vector-ref B i))))
  9277. (set! i (+ i 1))
  9278. ))
  9279. prod))))
  9280. (let ([A (make-vector 2 2)])
  9281. (let ([B (make-vector 2 3)])
  9282. (+ (inner-product A B 2)
  9283. 30)))
  9284. \end{lstlisting}
  9285. \caption{Example program that computes the inner-product.}
  9286. \label{fig:inner-product}
  9287. \end{figure}
  9288. The type checker for \LangArray{} is define in
  9289. Figure~\ref{fig:type-check-Rvecof}. The result type of
  9290. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  9291. of the intializing expression. The length expression is required to
  9292. have type \code{Integer}. The type checking of the operators
  9293. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  9294. updated to handle the situation where the vector has type
  9295. \code{Vectorof}. In these cases we translate the operators to their
  9296. \code{vectorof} form so that later passes can easily distinguish
  9297. between operations on tuples versus arrays. We override the
  9298. \code{operator-types} method to provide the type signature for
  9299. multiplication: it takes two integers and returns an integer. To
  9300. support injection and projection of arrays to the \code{Any} type
  9301. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  9302. predicate.
  9303. \begin{figure}[tbp]
  9304. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9305. (define type-check-Rvecof_class
  9306. (class type-check-Rwhile_class
  9307. (super-new)
  9308. (inherit check-type-equal?)
  9309. (define/override (flat-ty? ty)
  9310. (match ty
  9311. ['(Vectorof Any) #t]
  9312. [else (super flat-ty? ty)]))
  9313. (define/override (operator-types)
  9314. (append '((* . ((Integer Integer) . Integer)))
  9315. (super operator-types)))
  9316. (define/override (type-check-exp env)
  9317. (lambda (e)
  9318. (define recur (type-check-exp env))
  9319. (match e
  9320. [(Prim 'make-vector (list e1 e2))
  9321. (define-values (e1^ t1) (recur e1))
  9322. (define-values (e2^ elt-type) (recur e2))
  9323. (define vec-type `(Vectorof ,elt-type))
  9324. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  9325. vec-type)]
  9326. [(Prim 'vector-ref (list e1 e2))
  9327. (define-values (e1^ t1) (recur e1))
  9328. (define-values (e2^ t2) (recur e2))
  9329. (match* (t1 t2)
  9330. [(`(Vectorof ,elt-type) 'Integer)
  9331. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  9332. [(other wise) ((super type-check-exp env) e)])]
  9333. [(Prim 'vector-set! (list e1 e2 e3) )
  9334. (define-values (e-vec t-vec) (recur e1))
  9335. (define-values (e2^ t2) (recur e2))
  9336. (define-values (e-arg^ t-arg) (recur e3))
  9337. (match t-vec
  9338. [`(Vectorof ,elt-type)
  9339. (check-type-equal? elt-type t-arg e)
  9340. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  9341. [else ((super type-check-exp env) e)])]
  9342. [(Prim 'vector-length (list e1))
  9343. (define-values (e1^ t1) (recur e1))
  9344. (match t1
  9345. [`(Vectorof ,t)
  9346. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  9347. [else ((super type-check-exp env) e)])]
  9348. [else ((super type-check-exp env) e)])))
  9349. ))
  9350. (define (type-check-Rvecof p)
  9351. (send (new type-check-Rvecof_class) type-check-program p))
  9352. \end{lstlisting}
  9353. \caption{Type checker for the \LangArray{} language.}
  9354. \label{fig:type-check-Rvecof}
  9355. \end{figure}
  9356. The interpreter for \LangArray{} is defined in
  9357. Figure~\ref{fig:interp-Rvecof}. The \code{make-vector} operator is
  9358. implemented with Racket's \code{make-vector} function and
  9359. multiplication is \code{fx*}, multiplication for \code{fixnum}
  9360. integers.
  9361. \begin{figure}[tbp]
  9362. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9363. (define interp-Rvecof_class
  9364. (class interp-Rwhile_class
  9365. (super-new)
  9366. (define/override (interp-op op)
  9367. (verbose "Rvecof/interp-op" op)
  9368. (match op
  9369. ['make-vector make-vector]
  9370. ['* fx*]
  9371. [else (super interp-op op)]))
  9372. ))
  9373. (define (interp-Rvecof p)
  9374. (send (new interp-Rvecof_class) interp-program p))
  9375. \end{lstlisting}
  9376. \caption{Interpreter for \LangArray{}.}
  9377. \label{fig:interp-Rvecof}
  9378. \end{figure}
  9379. \subsection{Data Representation}
  9380. \label{sec:array-rep}
  9381. Just like tuples, we store arrays on the heap which means that the
  9382. garbage collector will need to inspect arrays. An immediate thought is
  9383. to use the same representation for arrays that we use for tuples.
  9384. However, we limit tuples to a length of $50$ so that their length and
  9385. pointer mask can fit into the 64-bit tag at the beginning of each
  9386. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  9387. millions of elements, so we need more bits to store the length.
  9388. However, because arrays are homogeneous, we only need $1$ bit for the
  9389. pointer mask instead of one bit per array elements. Finally, the
  9390. garbage collector will need to be able to distinguish between tuples
  9391. and arrays, so we need to reserve $1$ bit for that purpose. So we
  9392. arrive at the following layout for the 64-bit tag at the beginning of
  9393. an array:
  9394. \begin{itemize}
  9395. \item The right-most bit is the forwarding bit, just like in a tuple.
  9396. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  9397. it is not.
  9398. \item The next bit to the left is the pointer mask. A $0$ indicates
  9399. that none of the elements are pointers to the heap and a $1$
  9400. indicates that all of the elements are pointers.
  9401. \item The next $61$ bits store the length of the array.
  9402. \item The left-most bit distinguishes between a tuple ($0$) versus an
  9403. array ($1$).
  9404. \end{itemize}
  9405. Recall that in Chapter~\ref{ch:Rdyn}, we use a $3$-bit tag to
  9406. differentiate the kinds of values that have been injected into the
  9407. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  9408. to indicate that the value is an array.
  9409. In the following subsections we provide hints regarding how to update
  9410. the passes to handle arrays.
  9411. \subsection{Reveal Casts}
  9412. The array-access operators \code{vectorof-ref} and
  9413. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  9414. \code{any-vector-set!} operators of Chapter~\ref{ch:Rdyn} in
  9415. that the type checker cannot tell whether the index will be in bounds,
  9416. so the bounds check must be performed at run time. Recall that the
  9417. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  9418. an \code{If} arround a vector reference for update to check whether
  9419. the index is less than the length. You should do the same for
  9420. \code{vectorof-ref} and \code{vectorof-set!} .
  9421. In addition, the handling of the \code{any-vector} operators in
  9422. \code{reveal-casts} needs to be updated to account for arrays that are
  9423. injected to \code{Any}. For the \code{any-vector-length} operator, the
  9424. generated code should test whether the tag is for tuples (\code{010})
  9425. or arrays (\code{110}) and then dispatch to either
  9426. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  9427. we add a case in \code{select-instructions} to generate the
  9428. appropriate instructions for accessing the array length from the
  9429. header of an array.
  9430. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  9431. the generated code needs to check that the index is less than the
  9432. vector length, so like the code for \code{any-vector-length}, check
  9433. the tag to determine whether to use \code{any-vector-length} or
  9434. \code{any-vectorof-length} for this purpose. Once the bounds checking
  9435. is complete, the generated code can use \code{any-vector-ref} and
  9436. \code{any-vector-set!} for both tuples and arrays because the
  9437. instructions used for those operators do not look at the tag at the
  9438. front of the tuple or array.
  9439. \subsection{Expose Allocation}
  9440. This pass should translate the \code{make-vector} operator into
  9441. lower-level operations. In particular, the new AST node
  9442. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  9443. length specified by the $\Exp$, but does not initialize the elements
  9444. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  9445. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  9446. element type for the array. Regarding the initialization of the array,
  9447. we recommend generated a \code{while} loop that uses
  9448. \code{vector-set!} to put the initializing value into every element of
  9449. the array.
  9450. \subsection{Remove Complex Operands}
  9451. Add cases in the \code{rco-atom} and \code{rco-exp} for
  9452. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  9453. complex and its subexpression must be atomic.
  9454. \subsection{Explicate Control}
  9455. Add cases for \code{AllocateArray} to \code{explicate-tail} and
  9456. \code{explicate-assign}.
  9457. \subsection{Select Instructions}
  9458. Generate instructions for \code{AllocateArray} similar to those for
  9459. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  9460. that the tag at the front of the array should instead use the
  9461. representation discussed in Section~\ref{sec:array-rep}.
  9462. Regarding \code{vectorof-length}, extract the length from the tag
  9463. according to the representation discussed in
  9464. Section~\ref{sec:array-rep}.
  9465. The instructions generated for \code{vectorof-ref} differ from those
  9466. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  9467. that the index is not a constant so the offset must be computed at
  9468. runtime, similar to the instructions generated for
  9469. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). The same is
  9470. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  9471. appear in an assignment and as a stand-alone statement, so make sure
  9472. to handle both situations in this pass.
  9473. Finally, the instructions for \code{any-vectorof-length} should be
  9474. similar to those for \code{vectorof-length}, except that one must
  9475. first project the array by writing zeroes into the $3$-bit tag
  9476. \begin{exercise}\normalfont
  9477. Implement a compiler for the \LangArray{} language by extending your
  9478. compiler for \LangLoop{}. Test your compiler on a half dozen new
  9479. programs, including the one in Figure~\ref{fig:inner-product} and also
  9480. a program that multiplies two matrices. Note that matrices are
  9481. 2-dimensional arrays, but those can be encoded into 1-dimensional
  9482. arrays by laying out each row in the array, one after the next.
  9483. \end{exercise}
  9484. % Further Reading: dataflow analysis
  9485. \fi
  9486. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9487. \chapter{Tuples and Garbage Collection}
  9488. \label{ch:Rvec}
  9489. \index{subject}{tuple}
  9490. \index{subject}{vector}
  9491. \if\edition\racketEd
  9492. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  9493. %% all the IR grammars are spelled out! \\ --Jeremy}
  9494. %% \margincomment{\scriptsize Be more explicit about how to deal with
  9495. %% the root stack. \\ --Jeremy}
  9496. In this chapter we study the implementation of mutable tuples, called
  9497. vectors in Racket. This language feature is the first to use the
  9498. computer's \emph{heap}\index{subject}{heap} because the lifetime of a Racket
  9499. tuple is indefinite, that is, a tuple lives forever from the
  9500. programmer's viewpoint. Of course, from an implementer's viewpoint, it
  9501. is important to reclaim the space associated with a tuple when it is
  9502. no longer needed, which is why we also study \emph{garbage collection}
  9503. \emph{garbage collection} techniques in this chapter.
  9504. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  9505. interpreter and type checker. The \LangVec{} language extends the \LangIf{}
  9506. language of Chapter~\ref{ch:Lif} with vectors and Racket's
  9507. \code{void} value. The reason for including the later is that the
  9508. \code{vector-set!} operation returns a value of type
  9509. \code{Void}\footnote{Racket's \code{Void} type corresponds to what is
  9510. called the \code{Unit} type in the programming languages
  9511. literature. Racket's \code{Void} type is inhabited by a single value
  9512. \code{void} which corresponds to \code{unit} or \code{()} in the
  9513. literature~\citep{Pierce:2002hj}.}.
  9514. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  9515. copying live objects back and forth between two halves of the
  9516. heap. The garbage collector requires coordination with the compiler so
  9517. that it can see all of the \emph{root} pointers, that is, pointers in
  9518. registers or on the procedure call stack.
  9519. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  9520. discuss all the necessary changes and additions to the compiler
  9521. passes, including a new compiler pass named \code{expose-allocation}.
  9522. \section{The \LangVec{} Language}
  9523. \label{sec:r3}
  9524. Figure~\ref{fig:Rvec-concrete-syntax} defines the concrete syntax for
  9525. \LangVec{} and Figure~\ref{fig:Rvec-syntax} defines the abstract syntax. The
  9526. \LangVec{} language includes three new forms: \code{vector} for creating a
  9527. tuple, \code{vector-ref} for reading an element of a tuple, and
  9528. \code{vector-set!} for writing to an element of a tuple. The program
  9529. in Figure~\ref{fig:vector-eg} shows the usage of tuples in Racket. We
  9530. create a 3-tuple \code{t} and a 1-tuple that is stored at index $2$ of
  9531. the 3-tuple, demonstrating that tuples are first-class values. The
  9532. element at index $1$ of \code{t} is \code{\#t}, so the ``then'' branch
  9533. of the \key{if} is taken. The element at index $0$ of \code{t} is
  9534. \code{40}, to which we add \code{2}, the element at index $0$ of the
  9535. 1-tuple. So the result of the program is \code{42}.
  9536. \begin{figure}[tbp]
  9537. \centering
  9538. \fbox{
  9539. \begin{minipage}{0.96\textwidth}
  9540. \[
  9541. \begin{array}{lcl}
  9542. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}}
  9543. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}\\
  9544. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  9545. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  9546. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  9547. \MID \LP\key{and}\;\Exp\;\Exp\RP
  9548. \MID \LP\key{or}\;\Exp\;\Exp\RP
  9549. \MID \LP\key{not}\;\Exp\RP } \\
  9550. &\MID& \gray{ \LP\itm{cmp}\;\Exp\;\Exp\RP
  9551. \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  9552. &\MID& \LP\key{vector}\;\Exp\ldots\RP
  9553. \MID \LP\key{vector-length}\;\Exp\RP \\
  9554. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  9555. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP \\
  9556. &\MID& \LP\key{void}\RP \MID \LP\key{has-type}~\Exp~\Type\RP\\
  9557. \LangVecM{} &::=& \Exp
  9558. \end{array}
  9559. \]
  9560. \end{minipage}
  9561. }
  9562. \caption{The concrete syntax of \LangVec{}, extending \LangIf{}
  9563. (Figure~\ref{fig:Lif-concrete-syntax}).}
  9564. \label{fig:Rvec-concrete-syntax}
  9565. \end{figure}
  9566. \begin{figure}[tbp]
  9567. \begin{lstlisting}
  9568. (let ([t (vector 40 #t (vector 2))])
  9569. (if (vector-ref t 1)
  9570. (+ (vector-ref t 0)
  9571. (vector-ref (vector-ref t 2) 0))
  9572. 44))
  9573. \end{lstlisting}
  9574. \caption{Example program that creates tuples and reads from them.}
  9575. \label{fig:vector-eg}
  9576. \end{figure}
  9577. \begin{figure}[tp]
  9578. \centering
  9579. \fbox{
  9580. \begin{minipage}{0.96\textwidth}
  9581. \[
  9582. \begin{array}{lcl}
  9583. \itm{op} &::=& \ldots \MID \code{vector} \MID \code{vector-length} \\
  9584. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  9585. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots}
  9586. \MID \BOOL{\itm{bool}}
  9587. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  9588. &\MID& \VECREF{\Exp}{\INT{\Int}}\\
  9589. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  9590. &\MID& \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP \\
  9591. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  9592. \end{array}
  9593. \]
  9594. \end{minipage}
  9595. }
  9596. \caption{The abstract syntax of \LangVec{}.}
  9597. \label{fig:Rvec-syntax}
  9598. \end{figure}
  9599. \index{subject}{allocate}
  9600. \index{subject}{heap allocate}
  9601. Tuples are our first encounter with heap-allocated data, which raises
  9602. several interesting issues. First, variable binding performs a
  9603. shallow-copy when dealing with tuples, which means that different
  9604. variables can refer to the same tuple, that is, different variables
  9605. can be \emph{aliases} for the same entity. Consider the following
  9606. example in which both \code{t1} and \code{t2} refer to the same tuple.
  9607. Thus, the mutation through \code{t2} is visible when referencing the
  9608. tuple from \code{t1}, so the result of this program is \code{42}.
  9609. \index{subject}{alias}\index{subject}{mutation}
  9610. \begin{center}
  9611. \begin{minipage}{0.96\textwidth}
  9612. \begin{lstlisting}
  9613. (let ([t1 (vector 3 7)])
  9614. (let ([t2 t1])
  9615. (let ([_ (vector-set! t2 0 42)])
  9616. (vector-ref t1 0))))
  9617. \end{lstlisting}
  9618. \end{minipage}
  9619. \end{center}
  9620. The next issue concerns the lifetime of tuples. Of course, they are
  9621. created by the \code{vector} form, but when does their lifetime end?
  9622. Notice that \LangVec{} does not include an operation for deleting
  9623. tuples. Furthermore, the lifetime of a tuple is not tied to any notion
  9624. of static scoping. For example, the following program returns
  9625. \code{42} even though the variable \code{w} goes out of scope prior to
  9626. the \code{vector-ref} that reads from the vector it was bound to.
  9627. \begin{center}
  9628. \begin{minipage}{0.96\textwidth}
  9629. \begin{lstlisting}
  9630. (let ([v (vector (vector 44))])
  9631. (let ([x (let ([w (vector 42)])
  9632. (let ([_ (vector-set! v 0 w)])
  9633. 0))])
  9634. (+ x (vector-ref (vector-ref v 0) 0))))
  9635. \end{lstlisting}
  9636. \end{minipage}
  9637. \end{center}
  9638. From the perspective of programmer-observable behavior, tuples live
  9639. forever. Of course, if they really lived forever, then many programs
  9640. would run out of memory.\footnote{The \LangVec{} language does not have
  9641. looping or recursive functions, so it is nigh impossible to write a
  9642. program in \LangVec{} that will run out of memory. However, we add
  9643. recursive functions in the next Chapter!} A Racket implementation
  9644. must therefore perform automatic garbage collection.
  9645. Figure~\ref{fig:interp-Rvec} shows the definitional interpreter for the
  9646. \LangVec{} language. We define the \code{vector}, \code{vector-length},
  9647. \code{vector-ref}, and \code{vector-set!} operations for \LangVec{} in
  9648. terms of the corresponding operations in Racket. One subtle point is
  9649. that the \code{vector-set!} operation returns the \code{\#<void>}
  9650. value. The \code{\#<void>} value can be passed around just like other
  9651. values inside an \LangVec{} program and a \code{\#<void>} value can be
  9652. compared for equality with another \code{\#<void>} value. However,
  9653. there are no other operations specific to the the \code{\#<void>}
  9654. value in \LangVec{}. In contrast, Racket defines the \code{void?} predicate
  9655. that returns \code{\#t} when applied to \code{\#<void>} and \code{\#f}
  9656. otherwise.
  9657. \begin{figure}[tbp]
  9658. \begin{lstlisting}
  9659. (define interp-Rvec_class
  9660. (class interp-Lif_class
  9661. (super-new)
  9662. (define/override (interp-op op)
  9663. (match op
  9664. ['eq? (lambda (v1 v2)
  9665. (cond [(or (and (fixnum? v1) (fixnum? v2))
  9666. (and (boolean? v1) (boolean? v2))
  9667. (and (vector? v1) (vector? v2))
  9668. (and (void? v1) (void? v2)))
  9669. (eq? v1 v2)]))]
  9670. ['vector vector]
  9671. ['vector-length vector-length]
  9672. ['vector-ref vector-ref]
  9673. ['vector-set! vector-set!]
  9674. [else (super interp-op op)]
  9675. ))
  9676. (define/override ((interp-exp env) e)
  9677. (define recur (interp-exp env))
  9678. (match e
  9679. [(HasType e t) (recur e)]
  9680. [(Void) (void)]
  9681. [else ((super interp-exp env) e)]
  9682. ))
  9683. ))
  9684. (define (interp-Rvec p)
  9685. (send (new interp-Rvec_class) interp-program p))
  9686. \end{lstlisting}
  9687. \caption{Interpreter for the \LangVec{} language.}
  9688. \label{fig:interp-Rvec}
  9689. \end{figure}
  9690. Figure~\ref{fig:type-check-Rvec} shows the type checker for \LangVec{}, which
  9691. deserves some explanation. When allocating a vector, we need to know
  9692. which elements of the vector are pointers (i.e. are also vectors). We
  9693. can obtain this information during type checking. The type checker in
  9694. Figure~\ref{fig:type-check-Rvec} not only computes the type of an
  9695. expression, it also wraps every \key{vector} creation with the form
  9696. $(\key{HasType}~e~T)$, where $T$ is the vector's type.
  9697. %
  9698. To create the s-expression for the \code{Vector} type in
  9699. Figure~\ref{fig:type-check-Rvec}, we use the
  9700. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  9701. operator} \code{,@} to insert the list \code{t*} without its usual
  9702. start and end parentheses. \index{subject}{unquote-slicing}
  9703. \begin{figure}[tp]
  9704. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  9705. (define type-check-Rvec_class
  9706. (class type-check-Lif_class
  9707. (super-new)
  9708. (inherit check-type-equal?)
  9709. (define/override (type-check-exp env)
  9710. (lambda (e)
  9711. (define recur (type-check-exp env))
  9712. (match e
  9713. [(Void) (values (Void) 'Void)]
  9714. [(Prim 'vector es)
  9715. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  9716. (define t `(Vector ,@t*))
  9717. (values (HasType (Prim 'vector e*) t) t)]
  9718. [(Prim 'vector-ref (list e1 (Int i)))
  9719. (define-values (e1^ t) (recur e1))
  9720. (match t
  9721. [`(Vector ,ts ...)
  9722. (unless (and (0 . <= . i) (i . < . (length ts)))
  9723. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  9724. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  9725. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  9726. [(Prim 'vector-set! (list e1 (Int i) arg) )
  9727. (define-values (e-vec t-vec) (recur e1))
  9728. (define-values (e-arg^ t-arg) (recur arg))
  9729. (match t-vec
  9730. [`(Vector ,ts ...)
  9731. (unless (and (0 . <= . i) (i . < . (length ts)))
  9732. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  9733. (check-type-equal? (list-ref ts i) t-arg e)
  9734. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  9735. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  9736. [(Prim 'vector-length (list e))
  9737. (define-values (e^ t) (recur e))
  9738. (match t
  9739. [`(Vector ,ts ...)
  9740. (values (Prim 'vector-length (list e^)) 'Integer)]
  9741. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  9742. [(Prim 'eq? (list arg1 arg2))
  9743. (define-values (e1 t1) (recur arg1))
  9744. (define-values (e2 t2) (recur arg2))
  9745. (match* (t1 t2)
  9746. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  9747. [(other wise) (check-type-equal? t1 t2 e)])
  9748. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  9749. [(HasType (Prim 'vector es) t)
  9750. ((type-check-exp env) (Prim 'vector es))]
  9751. [(HasType e1 t)
  9752. (define-values (e1^ t^) (recur e1))
  9753. (check-type-equal? t t^ e)
  9754. (values (HasType e1^ t) t)]
  9755. [else ((super type-check-exp env) e)]
  9756. )))
  9757. ))
  9758. (define (type-check-Rvec p)
  9759. (send (new type-check-Rvec_class) type-check-program p))
  9760. \end{lstlisting}
  9761. \caption{Type checker for the \LangVec{} language.}
  9762. \label{fig:type-check-Rvec}
  9763. \end{figure}
  9764. \section{Garbage Collection}
  9765. \label{sec:GC}
  9766. Here we study a relatively simple algorithm for garbage collection
  9767. that is the basis of state-of-the-art garbage
  9768. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  9769. particular, we describe a two-space copying
  9770. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  9771. perform the
  9772. copy~\citep{Cheney:1970aa}.
  9773. \index{subject}{copying collector}
  9774. \index{subject}{two-space copying collector}
  9775. Figure~\ref{fig:copying-collector} gives a
  9776. coarse-grained depiction of what happens in a two-space collector,
  9777. showing two time steps, prior to garbage collection (on the top) and
  9778. after garbage collection (on the bottom). In a two-space collector,
  9779. the heap is divided into two parts named the FromSpace and the
  9780. ToSpace. Initially, all allocations go to the FromSpace until there is
  9781. not enough room for the next allocation request. At that point, the
  9782. garbage collector goes to work to make more room.
  9783. \index{subject}{ToSpace}
  9784. \index{subject}{FromSpace}
  9785. The garbage collector must be careful not to reclaim tuples that will
  9786. be used by the program in the future. Of course, it is impossible in
  9787. general to predict what a program will do, but we can over approximate
  9788. the will-be-used tuples by preserving all tuples that could be
  9789. accessed by \emph{any} program given the current computer state. A
  9790. program could access any tuple whose address is in a register or on
  9791. the procedure call stack. These addresses are called the \emph{root
  9792. set}\index{subject}{root set}. In addition, a program could access any tuple that is
  9793. transitively reachable from the root set. Thus, it is safe for the
  9794. garbage collector to reclaim the tuples that are not reachable in this
  9795. way.
  9796. So the goal of the garbage collector is twofold:
  9797. \begin{enumerate}
  9798. \item preserve all tuple that are reachable from the root set via a
  9799. path of pointers, that is, the \emph{live} tuples, and
  9800. \item reclaim the memory of everything else, that is, the
  9801. \emph{garbage}.
  9802. \end{enumerate}
  9803. A copying collector accomplishes this by copying all of the live
  9804. objects from the FromSpace into the ToSpace and then performs a sleight
  9805. of hand, treating the ToSpace as the new FromSpace and the old
  9806. FromSpace as the new ToSpace. In the example of
  9807. Figure~\ref{fig:copying-collector}, there are three pointers in the
  9808. root set, one in a register and two on the stack. All of the live
  9809. objects have been copied to the ToSpace (the right-hand side of
  9810. Figure~\ref{fig:copying-collector}) in a way that preserves the
  9811. pointer relationships. For example, the pointer in the register still
  9812. points to a 2-tuple whose first element is a 3-tuple and whose second
  9813. element is a 2-tuple. There are four tuples that are not reachable
  9814. from the root set and therefore do not get copied into the ToSpace.
  9815. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  9816. created by a well-typed program in \LangVec{} because it contains a
  9817. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  9818. We design the garbage collector to deal with cycles to begin with so
  9819. we will not need to revisit this issue.
  9820. \begin{figure}[tbp]
  9821. \centering
  9822. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  9823. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  9824. \caption{A copying collector in action.}
  9825. \label{fig:copying-collector}
  9826. \end{figure}
  9827. There are many alternatives to copying collectors (and their bigger
  9828. siblings, the generational collectors) when its comes to garbage
  9829. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  9830. reference counting~\citep{Collins:1960aa}. The strengths of copying
  9831. collectors are that allocation is fast (just a comparison and pointer
  9832. increment), there is no fragmentation, cyclic garbage is collected,
  9833. and the time complexity of collection only depends on the amount of
  9834. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  9835. main disadvantages of a two-space copying collector is that it uses a
  9836. lot of space and takes a long time to perform the copy, though these
  9837. problems are ameliorated in generational collectors. Racket and
  9838. Scheme programs tend to allocate many small objects and generate a lot
  9839. of garbage, so copying and generational collectors are a good fit.
  9840. Garbage collection is an active research topic, especially concurrent
  9841. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  9842. developing new techniques and revisiting old
  9843. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  9844. meet every year at the International Symposium on Memory Management to
  9845. present these findings.
  9846. \subsection{Graph Copying via Cheney's Algorithm}
  9847. \label{sec:cheney}
  9848. \index{subject}{Cheney's algorithm}
  9849. Let us take a closer look at the copying of the live objects. The
  9850. allocated objects and pointers can be viewed as a graph and we need to
  9851. copy the part of the graph that is reachable from the root set. To
  9852. make sure we copy all of the reachable vertices in the graph, we need
  9853. an exhaustive graph traversal algorithm, such as depth-first search or
  9854. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  9855. such algorithms take into account the possibility of cycles by marking
  9856. which vertices have already been visited, so as to ensure termination
  9857. of the algorithm. These search algorithms also use a data structure
  9858. such as a stack or queue as a to-do list to keep track of the vertices
  9859. that need to be visited. We use breadth-first search and a trick
  9860. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  9861. and copying tuples into the ToSpace.
  9862. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  9863. copy progresses. The queue is represented by a chunk of contiguous
  9864. memory at the beginning of the ToSpace, using two pointers to track
  9865. the front and the back of the queue. The algorithm starts by copying
  9866. all tuples that are immediately reachable from the root set into the
  9867. ToSpace to form the initial queue. When we copy a tuple, we mark the
  9868. old tuple to indicate that it has been visited. We discuss how this
  9869. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  9870. pointers inside the copied tuples in the queue still point back to the
  9871. FromSpace. Once the initial queue has been created, the algorithm
  9872. enters a loop in which it repeatedly processes the tuple at the front
  9873. of the queue and pops it off the queue. To process a tuple, the
  9874. algorithm copies all the tuple that are directly reachable from it to
  9875. the ToSpace, placing them at the back of the queue. The algorithm then
  9876. updates the pointers in the popped tuple so they point to the newly
  9877. copied tuples.
  9878. \begin{figure}[tbp]
  9879. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  9880. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  9881. \label{fig:cheney}
  9882. \end{figure}
  9883. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  9884. tuple whose second element is $42$ to the back of the queue. The other
  9885. pointer goes to a tuple that has already been copied, so we do not
  9886. need to copy it again, but we do need to update the pointer to the new
  9887. location. This can be accomplished by storing a \emph{forwarding
  9888. pointer} to the new location in the old tuple, back when we initially
  9889. copied the tuple into the ToSpace. This completes one step of the
  9890. algorithm. The algorithm continues in this way until the front of the
  9891. queue is empty, that is, until the front catches up with the back.
  9892. \subsection{Data Representation}
  9893. \label{sec:data-rep-gc}
  9894. The garbage collector places some requirements on the data
  9895. representations used by our compiler. First, the garbage collector
  9896. needs to distinguish between pointers and other kinds of data. There
  9897. are several ways to accomplish this.
  9898. \begin{enumerate}
  9899. \item Attached a tag to each object that identifies what type of
  9900. object it is~\citep{McCarthy:1960dz}.
  9901. \item Store different types of objects in different
  9902. regions~\citep{Steele:1977ab}.
  9903. \item Use type information from the program to either generate
  9904. type-specific code for collecting or to generate tables that can
  9905. guide the
  9906. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  9907. \end{enumerate}
  9908. Dynamically typed languages, such as Lisp, need to tag objects
  9909. anyways, so option 1 is a natural choice for those languages.
  9910. However, \LangVec{} is a statically typed language, so it would be
  9911. unfortunate to require tags on every object, especially small and
  9912. pervasive objects like integers and Booleans. Option 3 is the
  9913. best-performing choice for statically typed languages, but comes with
  9914. a relatively high implementation complexity. To keep this chapter
  9915. within a 2-week time budget, we recommend a combination of options 1
  9916. and 2, using separate strategies for the stack and the heap.
  9917. Regarding the stack, we recommend using a separate stack for pointers,
  9918. which we call a \emph{root stack}\index{subject}{root stack} (a.k.a. ``shadow
  9919. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  9920. is, when a local variable needs to be spilled and is of type
  9921. \code{(Vector $\Type_1 \ldots \Type_n$)}, then we put it on the root
  9922. stack instead of the normal procedure call stack. Furthermore, we
  9923. always spill vector-typed variables if they are live during a call to
  9924. the collector, thereby ensuring that no pointers are in registers
  9925. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  9926. example from Figure~\ref{fig:copying-collector} and contrasts it with
  9927. the data layout using a root stack. The root stack contains the two
  9928. pointers from the regular stack and also the pointer in the second
  9929. register.
  9930. \begin{figure}[tbp]
  9931. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  9932. \caption{Maintaining a root stack to facilitate garbage collection.}
  9933. \label{fig:shadow-stack}
  9934. \end{figure}
  9935. The problem of distinguishing between pointers and other kinds of data
  9936. also arises inside of each tuple on the heap. We solve this problem by
  9937. attaching a tag, an extra 64-bits, to each
  9938. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  9939. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  9940. that we have drawn the bits in a big-endian way, from right-to-left,
  9941. with bit location 0 (the least significant bit) on the far right,
  9942. which corresponds to the direction of the x86 shifting instructions
  9943. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  9944. is dedicated to specifying which elements of the tuple are pointers,
  9945. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  9946. indicates there is a pointer and a 0 bit indicates some other kind of
  9947. data. The pointer mask starts at bit location 7. We have limited
  9948. tuples to a maximum size of 50 elements, so we just need 50 bits for
  9949. the pointer mask. The tag also contains two other pieces of
  9950. information. The length of the tuple (number of elements) is stored in
  9951. bits location 1 through 6. Finally, the bit at location 0 indicates
  9952. whether the tuple has yet to be copied to the ToSpace. If the bit has
  9953. value 1, then this tuple has not yet been copied. If the bit has
  9954. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  9955. of a pointer are always zero anyways because our tuples are 8-byte
  9956. aligned.)
  9957. \begin{figure}[tbp]
  9958. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  9959. \caption{Representation of tuples in the heap.}
  9960. \label{fig:tuple-rep}
  9961. \end{figure}
  9962. \subsection{Implementation of the Garbage Collector}
  9963. \label{sec:organize-gz}
  9964. \index{subject}{prelude}
  9965. An implementation of the copying collector is provided in the
  9966. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  9967. interface to the garbage collector that is used by the compiler. The
  9968. \code{initialize} function creates the FromSpace, ToSpace, and root
  9969. stack and should be called in the prelude of the \code{main}
  9970. function. The arguments of \code{initialize} are the root stack size
  9971. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  9972. good choice for both. The \code{initialize} function puts the address
  9973. of the beginning of the FromSpace into the global variable
  9974. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  9975. the address that is 1-past the last element of the FromSpace. (We use
  9976. half-open intervals to represent chunks of
  9977. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  9978. points to the first element of the root stack.
  9979. As long as there is room left in the FromSpace, your generated code
  9980. can allocate tuples simply by moving the \code{free\_ptr} forward.
  9981. %
  9982. The amount of room left in FromSpace is the difference between the
  9983. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  9984. function should be called when there is not enough room left in the
  9985. FromSpace for the next allocation. The \code{collect} function takes
  9986. a pointer to the current top of the root stack (one past the last item
  9987. that was pushed) and the number of bytes that need to be
  9988. allocated. The \code{collect} function performs the copying collection
  9989. and leaves the heap in a state such that the next allocation will
  9990. succeed.
  9991. \begin{figure}[tbp]
  9992. \begin{lstlisting}
  9993. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  9994. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  9995. int64_t* free_ptr;
  9996. int64_t* fromspace_begin;
  9997. int64_t* fromspace_end;
  9998. int64_t** rootstack_begin;
  9999. \end{lstlisting}
  10000. \caption{The compiler's interface to the garbage collector.}
  10001. \label{fig:gc-header}
  10002. \end{figure}
  10003. %% \begin{exercise}
  10004. %% In the file \code{runtime.c} you will find the implementation of
  10005. %% \code{initialize} and a partial implementation of \code{collect}.
  10006. %% The \code{collect} function calls another function, \code{cheney},
  10007. %% to perform the actual copy, and that function is left to the reader
  10008. %% to implement. The following is the prototype for \code{cheney}.
  10009. %% \begin{lstlisting}
  10010. %% static void cheney(int64_t** rootstack_ptr);
  10011. %% \end{lstlisting}
  10012. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  10013. %% rootstack (which is an array of pointers). The \code{cheney} function
  10014. %% also communicates with \code{collect} through the global
  10015. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  10016. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  10017. %% the ToSpace:
  10018. %% \begin{lstlisting}
  10019. %% static int64_t* tospace_begin;
  10020. %% static int64_t* tospace_end;
  10021. %% \end{lstlisting}
  10022. %% The job of the \code{cheney} function is to copy all the live
  10023. %% objects (reachable from the root stack) into the ToSpace, update
  10024. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  10025. %% update the root stack so that it points to the objects in the
  10026. %% ToSpace, and finally to swap the global pointers for the FromSpace
  10027. %% and ToSpace.
  10028. %% \end{exercise}
  10029. %% \section{Compiler Passes}
  10030. %% \label{sec:code-generation-gc}
  10031. The introduction of garbage collection has a non-trivial impact on our
  10032. compiler passes. We introduce a new compiler pass named
  10033. \code{expose-allocation}. We make
  10034. significant changes to \code{select-instructions},
  10035. \code{build-interference}, \code{allocate-registers}, and
  10036. \code{print\_x86} and make minor changes in several more passes. The
  10037. following program will serve as our running example. It creates two
  10038. tuples, one nested inside the other. Both tuples have length one. The
  10039. program accesses the element in the inner tuple tuple via two vector
  10040. references.
  10041. % tests/s2_17.rkt
  10042. \begin{lstlisting}
  10043. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  10044. \end{lstlisting}
  10045. \section{Shrink}
  10046. \label{sec:shrink-Rvec}
  10047. Recall that the \code{shrink} pass translates the primitives operators
  10048. into a smaller set of primitives. Because this pass comes after type
  10049. checking, but before the passes that require the type information in
  10050. the \code{HasType} AST nodes, the \code{shrink} pass must be modified
  10051. to wrap \code{HasType} around each AST node that it generates.
  10052. \section{Expose Allocation}
  10053. \label{sec:expose-allocation}
  10054. The pass \code{expose-allocation} lowers the \code{vector} creation
  10055. form into a conditional call to the collector followed by the
  10056. allocation. We choose to place the \code{expose-allocation} pass
  10057. before \code{remove\_complex\_operands} because the code generated by
  10058. \code{expose-allocation} contains complex operands. We also place
  10059. \code{expose-allocation} before \code{explicate\_control} because
  10060. \code{expose-allocation} introduces new variables using \code{let},
  10061. but \code{let} is gone after \code{explicate\_control}.
  10062. The output of \code{expose-allocation} is a language \LangAlloc{} that
  10063. extends \LangVec{} with the three new forms that we use in the translation
  10064. of the \code{vector} form.
  10065. \[
  10066. \begin{array}{lcl}
  10067. \Exp &::=& \cdots
  10068. \MID (\key{collect} \,\itm{int})
  10069. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  10070. \MID (\key{global-value} \,\itm{name})
  10071. \end{array}
  10072. \]
  10073. The $(\key{collect}\,n)$ form runs the garbage collector, requesting
  10074. $n$ bytes. It will become a call to the \code{collect} function in
  10075. \code{runtime.c} in \code{select-instructions}. The
  10076. $(\key{allocate}\,n\,T)$ form creates an tuple of $n$ elements.
  10077. \index{subject}{allocate}
  10078. The $T$ parameter is the type of the tuple: \code{(Vector $\Type_1 \ldots
  10079. \Type_n$)} where $\Type_i$ is the type of the $i$th element in the
  10080. tuple. The $(\key{global-value}\,\itm{name})$ form reads the value of
  10081. a global variable, such as \code{free\_ptr}.
  10082. In the following, we show the transformation for the \code{vector}
  10083. form into 1) a sequence of let-bindings for the initializing
  10084. expressions, 2) a conditional call to \code{collect}, 3) a call to
  10085. \code{allocate}, and 4) the initialization of the vector. In the
  10086. following, \itm{len} refers to the length of the vector and
  10087. \itm{bytes} is how many total bytes need to be allocated for the
  10088. vector, which is 8 for the tag plus \itm{len} times 8.
  10089. \begin{lstlisting}
  10090. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  10091. |$\Longrightarrow$|
  10092. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  10093. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  10094. (global-value fromspace_end))
  10095. (void)
  10096. (collect |\itm{bytes}|))])
  10097. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  10098. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  10099. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  10100. |$v$|) ... )))) ...)
  10101. \end{lstlisting}
  10102. In the above, we suppressed all of the \code{has-type} forms in the
  10103. output for the sake of readability. The placement of the initializing
  10104. expressions $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} and the
  10105. sequence of \code{vector-set!} is important, as those expressions may
  10106. trigger garbage collection and we cannot have an allocated but
  10107. uninitialized tuple on the heap during a collection.
  10108. Figure~\ref{fig:expose-alloc-output} shows the output of the
  10109. \code{expose-allocation} pass on our running example.
  10110. \begin{figure}[tbp]
  10111. % tests/s2_17.rkt
  10112. \begin{lstlisting}
  10113. (vector-ref
  10114. (vector-ref
  10115. (let ([vecinit7976
  10116. (let ([vecinit7972 42])
  10117. (let ([collectret7974
  10118. (if (< (+ (global-value free_ptr) 16)
  10119. (global-value fromspace_end))
  10120. (void)
  10121. (collect 16)
  10122. )])
  10123. (let ([alloc7971 (allocate 1 (Vector Integer))])
  10124. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  10125. alloc7971)
  10126. )
  10127. )
  10128. )
  10129. ])
  10130. (let ([collectret7978
  10131. (if (< (+ (global-value free_ptr) 16)
  10132. (global-value fromspace_end))
  10133. (void)
  10134. (collect 16)
  10135. )])
  10136. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  10137. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  10138. alloc7975)
  10139. )
  10140. )
  10141. )
  10142. 0)
  10143. 0)
  10144. \end{lstlisting}
  10145. \caption{Output of the \code{expose-allocation} pass, minus
  10146. all of the \code{has-type} forms.}
  10147. \label{fig:expose-alloc-output}
  10148. \end{figure}
  10149. \section{Remove Complex Operands}
  10150. \label{sec:remove-complex-opera-Rvec}
  10151. The new forms \code{collect}, \code{allocate}, and \code{global-value}
  10152. should all be treated as complex operands.
  10153. %% A new case for
  10154. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  10155. %% handled carefully to prevent the \code{Prim} node from being separated
  10156. %% from its enclosing \code{HasType}.
  10157. Figure~\ref{fig:Rvec-anf-syntax}
  10158. shows the grammar for the output language \LangVecANF{} of this
  10159. pass, which is \LangVec{} in administrative normal form.
  10160. \begin{figure}[tp]
  10161. \centering
  10162. \fbox{
  10163. \begin{minipage}{0.96\textwidth}
  10164. \small
  10165. \[
  10166. \begin{array}{rcl}
  10167. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }
  10168. \MID \VOID{} \\
  10169. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  10170. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  10171. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  10172. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  10173. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  10174. &\MID& \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  10175. \MID \LP\key{GlobalValue}~\Var\RP\\
  10176. % &\MID& \LP\key{HasType}~\Exp~\Type\RP \\
  10177. \LangVecANFM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10178. \end{array}
  10179. \]
  10180. \end{minipage}
  10181. }
  10182. \caption{\LangVecANF{} is \LangVec{} in administrative normal form (ANF).}
  10183. \label{fig:Rvec-anf-syntax}
  10184. \end{figure}
  10185. \section{Explicate Control and the \LangCVec{} language}
  10186. \label{sec:explicate-control-r3}
  10187. \begin{figure}[tp]
  10188. \fbox{
  10189. \begin{minipage}{0.96\textwidth}
  10190. \small
  10191. \[
  10192. \begin{array}{lcl}
  10193. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  10194. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  10195. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  10196. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  10197. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  10198. &\MID& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  10199. &\MID& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  10200. &\MID& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
  10201. &\MID& \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP\\
  10202. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  10203. \MID \LP\key{Collect} \,\itm{int}\RP \\
  10204. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  10205. \MID \GOTO{\itm{label}} } \\
  10206. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  10207. \LangCVecM{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
  10208. \end{array}
  10209. \]
  10210. \end{minipage}
  10211. }
  10212. \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
  10213. (Figure~\ref{fig:c1-syntax}).}
  10214. \label{fig:c2-syntax}
  10215. \end{figure}
  10216. The output of \code{explicate\_control} is a program in the
  10217. intermediate language \LangCVec{}, whose abstract syntax is defined in
  10218. Figure~\ref{fig:c2-syntax}. (The concrete syntax is defined in
  10219. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.) The new forms
  10220. of \LangCVec{} include the \key{allocate}, \key{vector-ref}, and
  10221. \key{vector-set!}, and \key{global-value} expressions and the
  10222. \code{collect} statement. The \code{explicate\_control} pass can treat
  10223. these new forms much like the other expression forms that we've
  10224. already encoutered.
  10225. \section{Select Instructions and the \LangXGlobal{} Language}
  10226. \label{sec:select-instructions-gc}
  10227. \index{subject}{instruction selection}
  10228. %% void (rep as zero)
  10229. %% allocate
  10230. %% collect (callq collect)
  10231. %% vector-ref
  10232. %% vector-set!
  10233. %% global (postpone)
  10234. In this pass we generate x86 code for most of the new operations that
  10235. were needed to compile tuples, including \code{Allocate},
  10236. \code{Collect}, \code{vector-ref}, \code{vector-set!}, and
  10237. \code{void}. We compile \code{GlobalValue} to \code{Global} because
  10238. the later has a different concrete syntax (see
  10239. Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}).
  10240. \index{subject}{x86}
  10241. The \code{vector-ref} and \code{vector-set!} forms translate into
  10242. \code{movq} instructions. (The plus one in the offset is to get past
  10243. the tag at the beginning of the tuple representation.)
  10244. \begin{lstlisting}
  10245. |$\itm{lhs}$| = (vector-ref |$\itm{vec}$| |$n$|);
  10246. |$\Longrightarrow$|
  10247. movq |$\itm{vec}'$|, %r11
  10248. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  10249. |$\itm{lhs}$| = (vector-set! |$\itm{vec}$| |$n$| |$\itm{arg}$|);
  10250. |$\Longrightarrow$|
  10251. movq |$\itm{vec}'$|, %r11
  10252. movq |$\itm{arg}'$|, |$8(n+1)$|(%r11)
  10253. movq $0, |$\itm{lhs'}$|
  10254. \end{lstlisting}
  10255. The $\itm{lhs}'$, $\itm{vec}'$, and $\itm{arg}'$ are obtained by
  10256. translating $\itm{vec}$ and $\itm{arg}$ to x86. The move of $\itm{vec}'$ to
  10257. register \code{r11} ensures that offset expression
  10258. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  10259. removing \code{r11} from consideration by the register allocating.
  10260. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  10261. \code{rax}. Then the generated code for \code{vector-set!} would be
  10262. \begin{lstlisting}
  10263. movq |$\itm{vec}'$|, %rax
  10264. movq |$\itm{arg}'$|, |$8(n+1)$|(%rax)
  10265. movq $0, |$\itm{lhs}'$|
  10266. \end{lstlisting}
  10267. Next, suppose that $\itm{arg}'$ ends up as a stack location, so
  10268. \code{patch-instructions} would insert a move through \code{rax}
  10269. as follows.
  10270. \begin{lstlisting}
  10271. movq |$\itm{vec}'$|, %rax
  10272. movq |$\itm{arg}'$|, %rax
  10273. movq %rax, |$8(n+1)$|(%rax)
  10274. movq $0, |$\itm{lhs}'$|
  10275. \end{lstlisting}
  10276. But the above sequence of instructions does not work because we're
  10277. trying to use \code{rax} for two different values ($\itm{vec}'$ and
  10278. $\itm{arg}'$) at the same time!
  10279. We compile the \code{allocate} form to operations on the
  10280. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  10281. is the next free address in the FromSpace, so we copy it into
  10282. \code{r11} and then move it forward by enough space for the tuple
  10283. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  10284. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  10285. initialize the \itm{tag} and finally copy the address in \code{r11} to
  10286. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  10287. tag is organized. We recommend using the Racket operations
  10288. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  10289. during compilation. The type annotation in the \code{vector} form is
  10290. used to determine the pointer mask region of the tag.
  10291. \begin{lstlisting}
  10292. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  10293. |$\Longrightarrow$|
  10294. movq free_ptr(%rip), %r11
  10295. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  10296. movq $|$\itm{tag}$|, 0(%r11)
  10297. movq %r11, |$\itm{lhs}'$|
  10298. \end{lstlisting}
  10299. The \code{collect} form is compiled to a call to the \code{collect}
  10300. function in the runtime. The arguments to \code{collect} are 1) the
  10301. top of the root stack and 2) the number of bytes that need to be
  10302. allocated. We use another dedicated register, \code{r15}, to
  10303. store the pointer to the top of the root stack. So \code{r15} is not
  10304. available for use by the register allocator.
  10305. \begin{lstlisting}
  10306. (collect |$\itm{bytes}$|)
  10307. |$\Longrightarrow$|
  10308. movq %r15, %rdi
  10309. movq $|\itm{bytes}|, %rsi
  10310. callq collect
  10311. \end{lstlisting}
  10312. \begin{figure}[tp]
  10313. \fbox{
  10314. \begin{minipage}{0.96\textwidth}
  10315. \[
  10316. \begin{array}{lcl}
  10317. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)} \\
  10318. \LangXGlobalM{} &::= & \gray{ \key{.globl main} }\\
  10319. & & \gray{ \key{main:} \; \Instr\ldots }
  10320. \end{array}
  10321. \]
  10322. \end{minipage}
  10323. }
  10324. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  10325. \label{fig:x86-2-concrete}
  10326. \end{figure}
  10327. \begin{figure}[tp]
  10328. \fbox{
  10329. \begin{minipage}{0.96\textwidth}
  10330. \small
  10331. \[
  10332. \begin{array}{lcl}
  10333. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  10334. \MID \BYTEREG{\Reg}} \\
  10335. &\MID& (\key{Global}~\Var) \\
  10336. \LangXGlobalM{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  10337. \end{array}
  10338. \]
  10339. \end{minipage}
  10340. }
  10341. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  10342. \label{fig:x86-2}
  10343. \end{figure}
  10344. The concrete and abstract syntax of the \LangXGlobal{} language is
  10345. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  10346. differs from \LangXIf{} just in the addition of the form for global
  10347. variables.
  10348. %
  10349. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  10350. \code{select-instructions} pass on the running example.
  10351. \begin{figure}[tbp]
  10352. \centering
  10353. % tests/s2_17.rkt
  10354. \begin{minipage}[t]{0.5\textwidth}
  10355. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10356. block35:
  10357. movq free_ptr(%rip), alloc9024
  10358. addq $16, free_ptr(%rip)
  10359. movq alloc9024, %r11
  10360. movq $131, 0(%r11)
  10361. movq alloc9024, %r11
  10362. movq vecinit9025, 8(%r11)
  10363. movq $0, initret9026
  10364. movq alloc9024, %r11
  10365. movq 8(%r11), tmp9034
  10366. movq tmp9034, %r11
  10367. movq 8(%r11), %rax
  10368. jmp conclusion
  10369. block36:
  10370. movq $0, collectret9027
  10371. jmp block35
  10372. block38:
  10373. movq free_ptr(%rip), alloc9020
  10374. addq $16, free_ptr(%rip)
  10375. movq alloc9020, %r11
  10376. movq $3, 0(%r11)
  10377. movq alloc9020, %r11
  10378. movq vecinit9021, 8(%r11)
  10379. movq $0, initret9022
  10380. movq alloc9020, vecinit9025
  10381. movq free_ptr(%rip), tmp9031
  10382. movq tmp9031, tmp9032
  10383. addq $16, tmp9032
  10384. movq fromspace_end(%rip), tmp9033
  10385. cmpq tmp9033, tmp9032
  10386. jl block36
  10387. jmp block37
  10388. block37:
  10389. movq %r15, %rdi
  10390. movq $16, %rsi
  10391. callq 'collect
  10392. jmp block35
  10393. block39:
  10394. movq $0, collectret9023
  10395. jmp block38
  10396. \end{lstlisting}
  10397. \end{minipage}
  10398. \begin{minipage}[t]{0.45\textwidth}
  10399. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10400. start:
  10401. movq $42, vecinit9021
  10402. movq free_ptr(%rip), tmp9028
  10403. movq tmp9028, tmp9029
  10404. addq $16, tmp9029
  10405. movq fromspace_end(%rip), tmp9030
  10406. cmpq tmp9030, tmp9029
  10407. jl block39
  10408. jmp block40
  10409. block40:
  10410. movq %r15, %rdi
  10411. movq $16, %rsi
  10412. callq 'collect
  10413. jmp block38
  10414. \end{lstlisting}
  10415. \end{minipage}
  10416. \caption{Output of the \code{select-instructions} pass.}
  10417. \label{fig:select-instr-output-gc}
  10418. \end{figure}
  10419. \clearpage
  10420. \section{Register Allocation}
  10421. \label{sec:reg-alloc-gc}
  10422. \index{subject}{register allocation}
  10423. As discussed earlier in this chapter, the garbage collector needs to
  10424. access all the pointers in the root set, that is, all variables that
  10425. are vectors. It will be the responsibility of the register allocator
  10426. to make sure that:
  10427. \begin{enumerate}
  10428. \item the root stack is used for spilling vector-typed variables, and
  10429. \item if a vector-typed variable is live during a call to the
  10430. collector, it must be spilled to ensure it is visible to the
  10431. collector.
  10432. \end{enumerate}
  10433. The later responsibility can be handled during construction of the
  10434. interference graph, by adding interference edges between the call-live
  10435. vector-typed variables and all the callee-saved registers. (They
  10436. already interfere with the caller-saved registers.) The type
  10437. information for variables is in the \code{Program} form, so we
  10438. recommend adding another parameter to the \code{build-interference}
  10439. function to communicate this alist.
  10440. The spilling of vector-typed variables to the root stack can be
  10441. handled after graph coloring, when choosing how to assign the colors
  10442. (integers) to registers and stack locations. The \code{Program} output
  10443. of this pass changes to also record the number of spills to the root
  10444. stack.
  10445. % build-interference
  10446. %
  10447. % callq
  10448. % extra parameter for var->type assoc. list
  10449. % update 'program' and 'if'
  10450. % allocate-registers
  10451. % allocate spilled vectors to the rootstack
  10452. % don't change color-graph
  10453. \section{Print x86}
  10454. \label{sec:print-x86-gc}
  10455. \index{subject}{prelude}\index{subject}{conclusion}
  10456. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  10457. \code{print\_x86} pass on the running example. In the prelude and
  10458. conclusion of the \code{main} function, we treat the root stack very
  10459. much like the regular stack in that we move the root stack pointer
  10460. (\code{r15}) to make room for the spills to the root stack, except
  10461. that the root stack grows up instead of down. For the running
  10462. example, there was just one spill so we increment \code{r15} by 8
  10463. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  10464. One issue that deserves special care is that there may be a call to
  10465. \code{collect} prior to the initializing assignments for all the
  10466. variables in the root stack. We do not want the garbage collector to
  10467. accidentally think that some uninitialized variable is a pointer that
  10468. needs to be followed. Thus, we zero-out all locations on the root
  10469. stack in the prelude of \code{main}. In
  10470. Figure~\ref{fig:print-x86-output-gc}, the instruction
  10471. %
  10472. \lstinline{movq $0, (%r15)}
  10473. %
  10474. accomplishes this task. The garbage collector tests each root to see
  10475. if it is null prior to dereferencing it.
  10476. \begin{figure}[htbp]
  10477. \begin{minipage}[t]{0.5\textwidth}
  10478. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10479. block35:
  10480. movq free_ptr(%rip), %rcx
  10481. addq $16, free_ptr(%rip)
  10482. movq %rcx, %r11
  10483. movq $131, 0(%r11)
  10484. movq %rcx, %r11
  10485. movq -8(%r15), %rax
  10486. movq %rax, 8(%r11)
  10487. movq $0, %rdx
  10488. movq %rcx, %r11
  10489. movq 8(%r11), %rcx
  10490. movq %rcx, %r11
  10491. movq 8(%r11), %rax
  10492. jmp conclusion
  10493. block36:
  10494. movq $0, %rcx
  10495. jmp block35
  10496. block38:
  10497. movq free_ptr(%rip), %rcx
  10498. addq $16, free_ptr(%rip)
  10499. movq %rcx, %r11
  10500. movq $3, 0(%r11)
  10501. movq %rcx, %r11
  10502. movq %rbx, 8(%r11)
  10503. movq $0, %rdx
  10504. movq %rcx, -8(%r15)
  10505. movq free_ptr(%rip), %rcx
  10506. addq $16, %rcx
  10507. movq fromspace_end(%rip), %rdx
  10508. cmpq %rdx, %rcx
  10509. jl block36
  10510. movq %r15, %rdi
  10511. movq $16, %rsi
  10512. callq collect
  10513. jmp block35
  10514. block39:
  10515. movq $0, %rcx
  10516. jmp block38
  10517. \end{lstlisting}
  10518. \end{minipage}
  10519. \begin{minipage}[t]{0.45\textwidth}
  10520. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10521. start:
  10522. movq $42, %rbx
  10523. movq free_ptr(%rip), %rdx
  10524. addq $16, %rdx
  10525. movq fromspace_end(%rip), %rcx
  10526. cmpq %rcx, %rdx
  10527. jl block39
  10528. movq %r15, %rdi
  10529. movq $16, %rsi
  10530. callq collect
  10531. jmp block38
  10532. .globl main
  10533. main:
  10534. pushq %rbp
  10535. movq %rsp, %rbp
  10536. pushq %r13
  10537. pushq %r12
  10538. pushq %rbx
  10539. pushq %r14
  10540. subq $0, %rsp
  10541. movq $16384, %rdi
  10542. movq $16384, %rsi
  10543. callq initialize
  10544. movq rootstack_begin(%rip), %r15
  10545. movq $0, (%r15)
  10546. addq $8, %r15
  10547. jmp start
  10548. conclusion:
  10549. subq $8, %r15
  10550. addq $0, %rsp
  10551. popq %r14
  10552. popq %rbx
  10553. popq %r12
  10554. popq %r13
  10555. popq %rbp
  10556. retq
  10557. \end{lstlisting}
  10558. \end{minipage}
  10559. \caption{Output of the \code{print\_x86} pass.}
  10560. \label{fig:print-x86-output-gc}
  10561. \end{figure}
  10562. \begin{figure}[p]
  10563. \begin{tikzpicture}[baseline=(current bounding box.center)]
  10564. \node (Rvec) at (0,2) {\large \LangVec{}};
  10565. \node (Rvec-2) at (3,2) {\large \LangVec{}};
  10566. \node (Rvec-3) at (6,2) {\large \LangVec{}};
  10567. \node (Rvec-4) at (9,2) {\large \LangVec{}};
  10568. \node (Rvec-5) at (12,2) {\large \LangAlloc{}};
  10569. \node (C2-4) at (3,0) {\large \LangCVec{}};
  10570. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  10571. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  10572. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  10573. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  10574. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  10575. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  10576. %\path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize type-check} (Rvec-2);
  10577. \path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize shrink} (Rvec-2);
  10578. \path[->,bend left=15] (Rvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Rvec-3);
  10579. \path[->,bend left=15] (Rvec-3) edge [above] node {\ttfamily\footnotesize expose-alloc.} (Rvec-4);
  10580. \path[->,bend left=15] (Rvec-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvec-5);
  10581. \path[->,bend left=20] (Rvec-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C2-4);
  10582. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select-instr.} (x86-2);
  10583. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  10584. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  10585. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  10586. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  10587. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  10588. \end{tikzpicture}
  10589. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  10590. \label{fig:Rvec-passes}
  10591. \end{figure}
  10592. Figure~\ref{fig:Rvec-passes} gives an overview of all the passes needed
  10593. for the compilation of \LangVec{}.
  10594. \section{Challenge: Simple Structures}
  10595. \label{sec:simple-structures}
  10596. \index{subject}{struct}
  10597. \index{subject}{structure}
  10598. Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
  10599. \LangStruct{}, which extends \LangVec{} with support for simple structures.
  10600. Recall that a \code{struct} in Typed Racket is a user-defined data
  10601. type that contains named fields and that is heap allocated, similar to
  10602. a vector. The following is an example of a structure definition, in
  10603. this case the definition of a \code{point} type.
  10604. \begin{lstlisting}
  10605. (struct point ([x : Integer] [y : Integer]) #:mutable)
  10606. \end{lstlisting}
  10607. \begin{figure}[tbp]
  10608. \centering
  10609. \fbox{
  10610. \begin{minipage}{0.96\textwidth}
  10611. \[
  10612. \begin{array}{lcl}
  10613. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  10614. \MID (\key{Vector}\;\Type \ldots) \MID \key{Void} } \MID \Var \\
  10615. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} } \\
  10616. \Exp &::=& \gray{ \Int \MID (\key{read}) \MID (\key{-}\;\Exp) \MID (\key{+} \; \Exp\;\Exp) \MID (\key{-}\;\Exp\;\Exp) } \\
  10617. &\MID& \gray{ \Var \MID (\key{let}~([\Var~\Exp])~\Exp) }\\
  10618. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  10619. \MID (\key{and}\;\Exp\;\Exp)
  10620. \MID (\key{or}\;\Exp\;\Exp)
  10621. \MID (\key{not}\;\Exp) } \\
  10622. &\MID& \gray{ (\itm{cmp}\;\Exp\;\Exp)
  10623. \MID (\key{if}~\Exp~\Exp~\Exp) } \\
  10624. &\MID& \gray{ (\key{vector}\;\Exp \ldots)
  10625. \MID (\key{vector-ref}\;\Exp\;\Int) } \\
  10626. &\MID& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
  10627. &\MID& \gray{ (\key{void}) } \MID (\Var\;\Exp \ldots)\\
  10628. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  10629. \LangStruct{} &::=& \Def \ldots \; \Exp
  10630. \end{array}
  10631. \]
  10632. \end{minipage}
  10633. }
  10634. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  10635. (Figure~\ref{fig:Rvec-concrete-syntax}).}
  10636. \label{fig:r3s-concrete-syntax}
  10637. \end{figure}
  10638. An instance of a structure is created using function call syntax, with
  10639. the name of the structure in the function position:
  10640. \begin{lstlisting}
  10641. (point 7 12)
  10642. \end{lstlisting}
  10643. Function-call syntax is also used to read the value in a field of a
  10644. structure. The function name is formed by the structure name, a dash,
  10645. and the field name. The following example uses \code{point-x} and
  10646. \code{point-y} to access the \code{x} and \code{y} fields of two point
  10647. instances.
  10648. \begin{center}
  10649. \begin{lstlisting}
  10650. (let ([pt1 (point 7 12)])
  10651. (let ([pt2 (point 4 3)])
  10652. (+ (- (point-x pt1) (point-x pt2))
  10653. (- (point-y pt1) (point-y pt2)))))
  10654. \end{lstlisting}
  10655. \end{center}
  10656. Similarly, to write to a field of a structure, use its set function,
  10657. whose name starts with \code{set-}, followed by the structure name,
  10658. then a dash, then the field name, and concluded with an exclamation
  10659. mark. The following example uses \code{set-point-x!} to change the
  10660. \code{x} field from \code{7} to \code{42}.
  10661. \begin{center}
  10662. \begin{lstlisting}
  10663. (let ([pt (point 7 12)])
  10664. (let ([_ (set-point-x! pt 42)])
  10665. (point-x pt)))
  10666. \end{lstlisting}
  10667. \end{center}
  10668. \begin{exercise}\normalfont
  10669. Extend your compiler with support for simple structures, compiling
  10670. \LangStruct{} to x86 assembly code. Create five new test cases that use
  10671. structures and test your compiler.
  10672. \end{exercise}
  10673. \section{Challenge: Generational Collection}
  10674. The copying collector described in Section~\ref{sec:GC} can incur
  10675. significant runtime overhead because the call to \code{collect} takes
  10676. time proportional to all of the live data. One way to reduce this
  10677. overhead is to reduce how much data is inspected in each call to
  10678. \code{collect}. In particular, researchers have observed that recently
  10679. allocated data is more likely to become garbage then data that has
  10680. survived one or more previous calls to \code{collect}. This insight
  10681. motivated the creation of \emph{generational garbage collectors}
  10682. \index{subject}{generational garbage collector} that
  10683. 1) segregates data according to its age into two or more generations,
  10684. 2) allocates less space for younger generations, so collecting them is
  10685. faster, and more space for the older generations, and 3) performs
  10686. collection on the younger generations more frequently then for older
  10687. generations~\citep{Wilson:1992fk}.
  10688. For this challenge assignment, the goal is to adapt the copying
  10689. collector implemented in \code{runtime.c} to use two generations, one
  10690. for young data and one for old data. Each generation consists of a
  10691. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  10692. \code{collect} function to use the two generations.
  10693. \begin{enumerate}
  10694. \item Copy the young generation's FromSpace to its ToSpace then switch
  10695. the role of the ToSpace and FromSpace
  10696. \item If there is enough space for the requested number of bytes in
  10697. the young FromSpace, then return from \code{collect}.
  10698. \item If there is not enough space in the young FromSpace for the
  10699. requested bytes, then move the data from the young generation to the
  10700. old one with the following steps:
  10701. \begin{enumerate}
  10702. \item If there is enough room in the old FromSpace, copy the young
  10703. FromSpace to the old FromSpace and then return.
  10704. \item If there is not enough room in the old FromSpace, then collect
  10705. the old generation by copying the old FromSpace to the old ToSpace
  10706. and swap the roles of the old FromSpace and ToSpace.
  10707. \item If there is enough room now, copy the young FromSpace to the
  10708. old FromSpace and return. Otherwise, allocate a larger FromSpace
  10709. and ToSpace for the old generation. Copy the young FromSpace and
  10710. the old FromSpace into the larger FromSpace for the old
  10711. generation and then return.
  10712. \end{enumerate}
  10713. \end{enumerate}
  10714. We recommend that you generalize the \code{cheney} function so that it
  10715. can be used for all the copies mentioned above: between the young
  10716. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  10717. between the young FromSpace and old FromSpace. This can be
  10718. accomplished by adding parameters to \code{cheney} that replace its
  10719. use of the global variables \code{fromspace\_begin},
  10720. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  10721. Note that the collection of the young generation does not traverse the
  10722. old generation. This introduces a potential problem: there may be
  10723. young data that is only reachable through pointers in the old
  10724. generation. If these pointers are not taken into account, the
  10725. collector could throw away young data that is live! One solution,
  10726. called \emph{pointer recording}, is to maintain a set of all the
  10727. pointers from the old generation into the new generation and consider
  10728. this set as part of the root set. To maintain this set, the compiler
  10729. must insert extra instructions around every \code{vector-set!}. If the
  10730. vector being modified is in the old generation, and if the value being
  10731. written is a pointer into the new generation, than that pointer must
  10732. be added to the set. Also, if the value being overwritten was a
  10733. pointer into the new generation, then that pointer should be removed
  10734. from the set.
  10735. \begin{exercise}\normalfont
  10736. Adapt the \code{collect} function in \code{runtime.c} to implement
  10737. generational garbage collection, as outlined in this section.
  10738. Update the code generation for \code{vector-set!} to implement
  10739. pointer recording. Make sure that your new compiler and runtime
  10740. passes your test suite.
  10741. \end{exercise}
  10742. % Further Reading
  10743. \fi % racketEd
  10744. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10745. \chapter{Functions}
  10746. \label{ch:Rfun}
  10747. \index{subject}{function}
  10748. \if\edition\racketEd
  10749. This chapter studies the compilation of functions similar to those
  10750. found in the C language. This corresponds to a subset of Typed Racket
  10751. in which only top-level function definitions are allowed. This kind of
  10752. function is an important stepping stone to implementing
  10753. lexically-scoped functions, that is, \key{lambda} abstractions, which
  10754. is the topic of Chapter~\ref{ch:Rlam}.
  10755. \section{The \LangFun{} Language}
  10756. The concrete and abstract syntax for function definitions and function
  10757. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  10758. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  10759. \LangFun{} begin with zero or more function definitions. The function
  10760. names from these definitions are in-scope for the entire program,
  10761. including all other function definitions (so the ordering of function
  10762. definitions does not matter). The concrete syntax for function
  10763. application\index{subject}{function application} is $(\Exp \; \Exp \ldots)$
  10764. where the first expression must
  10765. evaluate to a function and the rest are the arguments.
  10766. The abstract syntax for function application is
  10767. $\APPLY{\Exp}{\Exp\ldots}$.
  10768. %% The syntax for function application does not include an explicit
  10769. %% keyword, which is error prone when using \code{match}. To alleviate
  10770. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  10771. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  10772. Functions are first-class in the sense that a function pointer
  10773. \index{subject}{function pointer} is data and can be stored in memory or passed
  10774. as a parameter to another function. Thus, we introduce a function
  10775. type, written
  10776. \begin{lstlisting}
  10777. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  10778. \end{lstlisting}
  10779. for a function whose $n$ parameters have the types $\Type_1$ through
  10780. $\Type_n$ and whose return type is $\Type_r$. The main limitation of
  10781. these functions (with respect to Racket functions) is that they are
  10782. not lexically scoped. That is, the only external entities that can be
  10783. referenced from inside a function body are other globally-defined
  10784. functions. The syntax of \LangFun{} prevents functions from being nested
  10785. inside each other.
  10786. \begin{figure}[tp]
  10787. \centering
  10788. \fbox{
  10789. \begin{minipage}{0.96\textwidth}
  10790. \small
  10791. \[
  10792. \begin{array}{lcl}
  10793. \Type &::=& \gray{ \key{Integer} \MID \key{Boolean}
  10794. \MID (\key{Vector}\;\Type\ldots) \MID \key{Void} } \MID (\Type \ldots \; \key{->}\; \Type) \\
  10795. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} } \\
  10796. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  10797. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  10798. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  10799. \MID (\key{and}\;\Exp\;\Exp)
  10800. \MID (\key{or}\;\Exp\;\Exp)
  10801. \MID (\key{not}\;\Exp)} \\
  10802. &\MID& \gray{(\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  10803. &\MID& \gray{(\key{vector}\;\Exp\ldots) \MID
  10804. (\key{vector-ref}\;\Exp\;\Int)} \\
  10805. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  10806. \MID \LP\key{has-type}~\Exp~\Type\RP } \\
  10807. &\MID& \LP\Exp \; \Exp \ldots\RP \\
  10808. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  10809. \LangFunM{} &::=& \Def \ldots \; \Exp
  10810. \end{array}
  10811. \]
  10812. \end{minipage}
  10813. }
  10814. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-concrete-syntax}).}
  10815. \label{fig:Rfun-concrete-syntax}
  10816. \end{figure}
  10817. \begin{figure}[tp]
  10818. \centering
  10819. \fbox{
  10820. \begin{minipage}{0.96\textwidth}
  10821. \small
  10822. \[
  10823. \begin{array}{lcl}
  10824. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  10825. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  10826. &\MID& \gray{ \BOOL{\itm{bool}}
  10827. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  10828. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP }
  10829. \MID \APPLY{\Exp}{\Exp\ldots}\\
  10830. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}\\
  10831. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  10832. \end{array}
  10833. \]
  10834. \end{minipage}
  10835. }
  10836. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-syntax}).}
  10837. \label{fig:Rfun-syntax}
  10838. \end{figure}
  10839. The program in Figure~\ref{fig:Rfun-function-example} is a
  10840. representative example of defining and using functions in \LangFun{}. We
  10841. define a function \code{map-vec} that applies some other function
  10842. \code{f} to both elements of a vector and returns a new
  10843. vector containing the results. We also define a function \code{add1}.
  10844. The program applies
  10845. \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
  10846. \code{(vector 1 42)}, from which we return the \code{42}.
  10847. \begin{figure}[tbp]
  10848. \begin{lstlisting}
  10849. (define (map-vec [f : (Integer -> Integer)]
  10850. [v : (Vector Integer Integer)])
  10851. : (Vector Integer Integer)
  10852. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10853. (define (add1 [x : Integer]) : Integer
  10854. (+ x 1))
  10855. (vector-ref (map-vec add1 (vector 0 41)) 1)
  10856. \end{lstlisting}
  10857. \caption{Example of using functions in \LangFun{}.}
  10858. \label{fig:Rfun-function-example}
  10859. \end{figure}
  10860. The definitional interpreter for \LangFun{} is in
  10861. Figure~\ref{fig:interp-Rfun}. The case for the \code{ProgramDefsExp} form is
  10862. responsible for setting up the mutual recursion between the top-level
  10863. function definitions. We use the classic back-patching \index{subject}{back-patching}
  10864. approach that uses mutable variables and makes two passes over the function
  10865. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  10866. top-level environment using a mutable cons cell for each function
  10867. definition. Note that the \code{lambda} value for each function is
  10868. incomplete; it does not yet include the environment. Once the
  10869. top-level environment is constructed, we then iterate over it and
  10870. update the \code{lambda} values to use the top-level environment.
  10871. \begin{figure}[tp]
  10872. \begin{lstlisting}
  10873. (define interp-Rfun_class
  10874. (class interp-Rvec_class
  10875. (super-new)
  10876. (define/override ((interp-exp env) e)
  10877. (define recur (interp-exp env))
  10878. (match e
  10879. [(Var x) (unbox (dict-ref env x))]
  10880. [(Let x e body)
  10881. (define new-env (dict-set env x (box (recur e))))
  10882. ((interp-exp new-env) body)]
  10883. [(Apply fun args)
  10884. (define fun-val (recur fun))
  10885. (define arg-vals (for/list ([e args]) (recur e)))
  10886. (match fun-val
  10887. [`(function (,xs ...) ,body ,fun-env)
  10888. (define params-args (for/list ([x xs] [arg arg-vals])
  10889. (cons x (box arg))))
  10890. (define new-env (append params-args fun-env))
  10891. ((interp-exp new-env) body)]
  10892. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  10893. [else ((super interp-exp env) e)]
  10894. ))
  10895. (define/public (interp-def d)
  10896. (match d
  10897. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  10898. (cons f (box `(function ,xs ,body ())))]))
  10899. (define/override (interp-program p)
  10900. (match p
  10901. [(ProgramDefsExp info ds body)
  10902. (let ([top-level (for/list ([d ds]) (interp-def d))])
  10903. (for/list ([f (in-dict-values top-level)])
  10904. (set-box! f (match (unbox f)
  10905. [`(function ,xs ,body ())
  10906. `(function ,xs ,body ,top-level)])))
  10907. ((interp-exp top-level) body))]))
  10908. ))
  10909. (define (interp-Rfun p)
  10910. (send (new interp-Rfun_class) interp-program p))
  10911. \end{lstlisting}
  10912. \caption{Interpreter for the \LangFun{} language.}
  10913. \label{fig:interp-Rfun}
  10914. \end{figure}
  10915. %\margincomment{TODO: explain type checker}
  10916. The type checker for \LangFun{} is in Figure~\ref{fig:type-check-Rfun}.
  10917. \begin{figure}[tp]
  10918. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10919. (define type-check-Rfun_class
  10920. (class type-check-Rvec_class
  10921. (super-new)
  10922. (inherit check-type-equal?)
  10923. (define/public (type-check-apply env e es)
  10924. (define-values (e^ ty) ((type-check-exp env) e))
  10925. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  10926. ((type-check-exp env) e)))
  10927. (match ty
  10928. [`(,ty^* ... -> ,rt)
  10929. (for ([arg-ty ty*] [param-ty ty^*])
  10930. (check-type-equal? arg-ty param-ty (Apply e es)))
  10931. (values e^ e* rt)]))
  10932. (define/override (type-check-exp env)
  10933. (lambda (e)
  10934. (match e
  10935. [(FunRef f)
  10936. (values (FunRef f) (dict-ref env f))]
  10937. [(Apply e es)
  10938. (define-values (e^ es^ rt) (type-check-apply env e es))
  10939. (values (Apply e^ es^) rt)]
  10940. [(Call e es)
  10941. (define-values (e^ es^ rt) (type-check-apply env e es))
  10942. (values (Call e^ es^) rt)]
  10943. [else ((super type-check-exp env) e)])))
  10944. (define/public (type-check-def env)
  10945. (lambda (e)
  10946. (match e
  10947. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  10948. (define new-env (append (map cons xs ps) env))
  10949. (define-values (body^ ty^) ((type-check-exp new-env) body))
  10950. (check-type-equal? ty^ rt body)
  10951. (Def f p:t* rt info body^)])))
  10952. (define/public (fun-def-type d)
  10953. (match d
  10954. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  10955. (define/override (type-check-program e)
  10956. (match e
  10957. [(ProgramDefsExp info ds body)
  10958. (define new-env (for/list ([d ds])
  10959. (cons (Def-name d) (fun-def-type d))))
  10960. (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
  10961. (define-values (body^ ty) ((type-check-exp new-env) body))
  10962. (check-type-equal? ty 'Integer body)
  10963. (ProgramDefsExp info ds^ body^)]))))
  10964. (define (type-check-Rfun p)
  10965. (send (new type-check-Rfun_class) type-check-program p))
  10966. \end{lstlisting}
  10967. \caption{Type checker for the \LangFun{} language.}
  10968. \label{fig:type-check-Rfun}
  10969. \end{figure}
  10970. \section{Functions in x86}
  10971. \label{sec:fun-x86}
  10972. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  10973. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  10974. %% \margincomment{\tiny Talk about the return address on the
  10975. %% stack and what callq and retq does.\\ --Jeremy }
  10976. The x86 architecture provides a few features to support the
  10977. implementation of functions. We have already seen that x86 provides
  10978. labels so that one can refer to the location of an instruction, as is
  10979. needed for jump instructions. Labels can also be used to mark the
  10980. beginning of the instructions for a function. Going further, we can
  10981. obtain the address of a label by using the \key{leaq} instruction and
  10982. PC-relative addressing. For example, the following puts the
  10983. address of the \code{add1} label into the \code{rbx} register.
  10984. \begin{lstlisting}
  10985. leaq add1(%rip), %rbx
  10986. \end{lstlisting}
  10987. The instruction pointer register \key{rip} (aka. the program counter
  10988. \index{subject}{program counter}) always points to the next instruction to be
  10989. executed. When combined with an label, as in \code{add1(\%rip)}, the
  10990. linker computes the distance $d$ between the address of \code{add1}
  10991. and where the \code{rip} would be at that moment and then changes
  10992. \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
  10993. the address of \code{add1}.
  10994. In Section~\ref{sec:x86} we used of the \code{callq} instruction to
  10995. jump to a function whose location is given by a label. To support
  10996. function calls in this chapter we instead will be jumping to a
  10997. function whose location is given by an address in a register, that is,
  10998. we need to make an \emph{indirect function call}. The x86 syntax for
  10999. this is a \code{callq} instruction but with an asterisk before the
  11000. register name.\index{subject}{indirect function call}
  11001. \begin{lstlisting}
  11002. callq *%rbx
  11003. \end{lstlisting}
  11004. \subsection{Calling Conventions}
  11005. \index{subject}{calling conventions}
  11006. The \code{callq} instruction provides partial support for implementing
  11007. functions: it pushes the return address on the stack and it jumps to
  11008. the target. However, \code{callq} does not handle
  11009. \begin{enumerate}
  11010. \item parameter passing,
  11011. \item pushing frames on the procedure call stack and popping them off,
  11012. or
  11013. \item determining how registers are shared by different functions.
  11014. \end{enumerate}
  11015. Regarding (1) parameter passing, recall that the following six
  11016. registers are used to pass arguments to a function, in this order.
  11017. \begin{lstlisting}
  11018. rdi rsi rdx rcx r8 r9
  11019. \end{lstlisting}
  11020. If there are
  11021. more than six arguments, then the convention is to use space on the
  11022. frame of the caller for the rest of the arguments. However, to ease
  11023. the implementation of efficient tail calls
  11024. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  11025. arguments.
  11026. %
  11027. Also recall that the register \code{rax} is for the return value of
  11028. the function.
  11029. \index{subject}{prelude}\index{subject}{conclusion}
  11030. Regarding (2) frames \index{subject}{frame} and the procedure call stack,
  11031. \index{subject}{procedure call stack} recall from Section~\ref{sec:x86} that
  11032. the stack grows down, with each function call using a chunk of space
  11033. called a frame. The caller sets the stack pointer, register
  11034. \code{rsp}, to the last data item in its frame. The callee must not
  11035. change anything in the caller's frame, that is, anything that is at or
  11036. above the stack pointer. The callee is free to use locations that are
  11037. below the stack pointer.
  11038. Recall that we are storing variables of vector type on the root stack.
  11039. So the prelude needs to move the root stack pointer \code{r15} up and
  11040. the conclusion needs to move the root stack pointer back down. Also,
  11041. the prelude must initialize to \code{0} this frame's slots in the root
  11042. stack to signal to the garbage collector that those slots do not yet
  11043. contain a pointer to a vector. Otherwise the garbage collector will
  11044. interpret the garbage bits in those slots as memory addresses and try
  11045. to traverse them, causing serious mayhem!
  11046. Regarding (3) the sharing of registers between different functions,
  11047. recall from Section~\ref{sec:calling-conventions} that the registers
  11048. are divided into two groups, the caller-saved registers and the
  11049. callee-saved registers. The caller should assume that all the
  11050. caller-saved registers get overwritten with arbitrary values by the
  11051. callee. That is why we recommend in
  11052. Section~\ref{sec:calling-conventions} that variables that are live
  11053. during a function call should not be assigned to caller-saved
  11054. registers.
  11055. On the flip side, if the callee wants to use a callee-saved register,
  11056. the callee must save the contents of those registers on their stack
  11057. frame and then put them back prior to returning to the caller. That
  11058. is why we recommended in Section~\ref{sec:calling-conventions} that if
  11059. the register allocator assigns a variable to a callee-saved register,
  11060. then the prelude of the \code{main} function must save that register
  11061. to the stack and the conclusion of \code{main} must restore it. This
  11062. recommendation now generalizes to all functions.
  11063. Also recall that the base pointer, register \code{rbp}, is used as a
  11064. point-of-reference within a frame, so that each local variable can be
  11065. accessed at a fixed offset from the base pointer
  11066. (Section~\ref{sec:x86}).
  11067. %
  11068. Figure~\ref{fig:call-frames} shows the general layout of the caller
  11069. and callee frames.
  11070. \begin{figure}[tbp]
  11071. \centering
  11072. \begin{tabular}{r|r|l|l} \hline
  11073. Caller View & Callee View & Contents & Frame \\ \hline
  11074. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  11075. 0(\key{\%rbp}) & & old \key{rbp} \\
  11076. -8(\key{\%rbp}) & & callee-saved $1$ \\
  11077. \ldots & & \ldots \\
  11078. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  11079. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  11080. \ldots & & \ldots \\
  11081. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  11082. %% & & \\
  11083. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  11084. %% & \ldots & \ldots \\
  11085. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  11086. \hline
  11087. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  11088. & 0(\key{\%rbp}) & old \key{rbp} \\
  11089. & -8(\key{\%rbp}) & callee-saved $1$ \\
  11090. & \ldots & \ldots \\
  11091. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  11092. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  11093. & \ldots & \ldots \\
  11094. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  11095. \end{tabular}
  11096. \caption{Memory layout of caller and callee frames.}
  11097. \label{fig:call-frames}
  11098. \end{figure}
  11099. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  11100. %% local variables and for storing the values of callee-saved registers
  11101. %% (we shall refer to all of these collectively as ``locals''), and that
  11102. %% at the beginning of a function we move the stack pointer \code{rsp}
  11103. %% down to make room for them.
  11104. %% We recommend storing the local variables
  11105. %% first and then the callee-saved registers, so that the local variables
  11106. %% can be accessed using \code{rbp} the same as before the addition of
  11107. %% functions.
  11108. %% To make additional room for passing arguments, we shall
  11109. %% move the stack pointer even further down. We count how many stack
  11110. %% arguments are needed for each function call that occurs inside the
  11111. %% body of the function and find their maximum. Adding this number to the
  11112. %% number of locals gives us how much the \code{rsp} should be moved at
  11113. %% the beginning of the function. In preparation for a function call, we
  11114. %% offset from \code{rsp} to set up the stack arguments. We put the first
  11115. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  11116. %% so on.
  11117. %% Upon calling the function, the stack arguments are retrieved by the
  11118. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  11119. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  11120. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  11121. %% the layout of the caller and callee frames. Notice how important it is
  11122. %% that we correctly compute the maximum number of arguments needed for
  11123. %% function calls; if that number is too small then the arguments and
  11124. %% local variables will smash into each other!
  11125. \subsection{Efficient Tail Calls}
  11126. \label{sec:tail-call}
  11127. In general, the amount of stack space used by a program is determined
  11128. by the longest chain of nested function calls. That is, if function
  11129. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
  11130. $f_n$, then the amount of stack space is bounded by $O(n)$. The depth
  11131. $n$ can grow quite large in the case of recursive or mutually
  11132. recursive functions. However, in some cases we can arrange to use only
  11133. constant space, i.e. $O(1)$, instead of $O(n)$.
  11134. If a function call is the last action in a function body, then that
  11135. call is said to be a \emph{tail call}\index{subject}{tail call}.
  11136. For example, in the following
  11137. program, the recursive call to \code{tail-sum} is a tail call.
  11138. \begin{center}
  11139. \begin{lstlisting}
  11140. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  11141. (if (eq? n 0)
  11142. r
  11143. (tail-sum (- n 1) (+ n r))))
  11144. (+ (tail-sum 5 0) 27)
  11145. \end{lstlisting}
  11146. \end{center}
  11147. At a tail call, the frame of the caller is no longer needed, so we
  11148. can pop the caller's frame before making the tail call. With this
  11149. approach, a recursive function that only makes tail calls will only
  11150. use $O(1)$ stack space. Functional languages like Racket typically
  11151. rely heavily on recursive functions, so they typically guarantee that
  11152. all tail calls will be optimized in this way.
  11153. \index{subject}{frame}
  11154. However, some care is needed with regards to argument passing in tail
  11155. calls. As mentioned above, for arguments beyond the sixth, the
  11156. convention is to use space in the caller's frame for passing
  11157. arguments. But for a tail call we pop the caller's frame and can no
  11158. longer use it. Another alternative is to use space in the callee's
  11159. frame for passing arguments. However, this option is also problematic
  11160. because the caller and callee's frame overlap in memory. As we begin
  11161. to copy the arguments from their sources in the caller's frame, the
  11162. target locations in the callee's frame might overlap with the sources
  11163. for later arguments! We solve this problem by using the heap instead
  11164. of the stack for passing more than six arguments, as we describe in
  11165. the Section~\ref{sec:limit-functions-r4}.
  11166. As mentioned above, for a tail call we pop the caller's frame prior to
  11167. making the tail call. The instructions for popping a frame are the
  11168. instructions that we usually place in the conclusion of a
  11169. function. Thus, we also need to place such code immediately before
  11170. each tail call. These instructions include restoring the callee-saved
  11171. registers, so it is good that the argument passing registers are all
  11172. caller-saved registers.
  11173. One last note regarding which instruction to use to make the tail
  11174. call. When the callee is finished, it should not return to the current
  11175. function, but it should return to the function that called the current
  11176. one. Thus, the return address that is already on the stack is the
  11177. right one, and we should not use \key{callq} to make the tail call, as
  11178. that would unnecessarily overwrite the return address. Instead we can
  11179. simply use the \key{jmp} instruction. Like the indirect function call,
  11180. we write an \emph{indirect jump}\index{subject}{indirect jump} with a register
  11181. prefixed with an asterisk. We recommend using \code{rax} to hold the
  11182. jump target because the preceding conclusion overwrites just about
  11183. everything else.
  11184. \begin{lstlisting}
  11185. jmp *%rax
  11186. \end{lstlisting}
  11187. \section{Shrink \LangFun{}}
  11188. \label{sec:shrink-r4}
  11189. The \code{shrink} pass performs a minor modification to ease the
  11190. later passes. This pass introduces an explicit \code{main} function
  11191. and changes the top \code{ProgramDefsExp} form to
  11192. \code{ProgramDefs} as follows.
  11193. \begin{lstlisting}
  11194. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  11195. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  11196. \end{lstlisting}
  11197. where $\itm{mainDef}$ is
  11198. \begin{lstlisting}
  11199. (Def 'main '() 'Integer '() |$\Exp'$|)
  11200. \end{lstlisting}
  11201. \section{Reveal Functions and the \LangFunRef{} language}
  11202. \label{sec:reveal-functions-r4}
  11203. The syntax of \LangFun{} is inconvenient for purposes of compilation in one
  11204. respect: it conflates the use of function names and local
  11205. variables. This is a problem because we need to compile the use of a
  11206. function name differently than the use of a local variable; we need to
  11207. use \code{leaq} to convert the function name (a label in x86) to an
  11208. address in a register. Thus, it is a good idea to create a new pass
  11209. that changes function references from just a symbol $f$ to
  11210. $\FUNREF{f}$. This pass is named \code{reveal-functions} and the
  11211. output language, \LangFunRef{}, is defined in Figure~\ref{fig:f1-syntax}.
  11212. The concrete syntax for a function reference is $\CFUNREF{f}$.
  11213. \begin{figure}[tp]
  11214. \centering
  11215. \fbox{
  11216. \begin{minipage}{0.96\textwidth}
  11217. \[
  11218. \begin{array}{lcl}
  11219. \Exp &::=& \ldots \MID \FUNREF{\Var}\\
  11220. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  11221. \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  11222. \end{array}
  11223. \]
  11224. \end{minipage}
  11225. }
  11226. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  11227. (Figure~\ref{fig:Rfun-syntax}).}
  11228. \label{fig:f1-syntax}
  11229. \end{figure}
  11230. %% Distinguishing between calls in tail position and non-tail position
  11231. %% requires the pass to have some notion of context. We recommend using
  11232. %% two mutually recursive functions, one for processing expressions in
  11233. %% tail position and another for the rest.
  11234. Placing this pass after \code{uniquify} will make sure that there are
  11235. no local variables and functions that share the same name. On the
  11236. other hand, \code{reveal-functions} needs to come before the
  11237. \code{explicate\_control} pass because that pass helps us compile
  11238. \code{FunRef} forms into assignment statements.
  11239. \section{Limit Functions}
  11240. \label{sec:limit-functions-r4}
  11241. Recall that we wish to limit the number of function parameters to six
  11242. so that we do not need to use the stack for argument passing, which
  11243. makes it easier to implement efficient tail calls. However, because
  11244. the input language \LangFun{} supports arbitrary numbers of function
  11245. arguments, we have some work to do!
  11246. This pass transforms functions and function calls that involve more
  11247. than six arguments to pass the first five arguments as usual, but it
  11248. packs the rest of the arguments into a vector and passes it as the
  11249. sixth argument.
  11250. Each function definition with too many parameters is transformed as
  11251. follows.
  11252. \begin{lstlisting}
  11253. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  11254. |$\Rightarrow$|
  11255. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  11256. \end{lstlisting}
  11257. where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
  11258. the occurrences of the later parameters with vector references.
  11259. \begin{lstlisting}
  11260. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
  11261. \end{lstlisting}
  11262. For function calls with too many arguments, the \code{limit-functions}
  11263. pass transforms them in the following way.
  11264. \begin{tabular}{lll}
  11265. \begin{minipage}{0.2\textwidth}
  11266. \begin{lstlisting}
  11267. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  11268. \end{lstlisting}
  11269. \end{minipage}
  11270. &
  11271. $\Rightarrow$
  11272. &
  11273. \begin{minipage}{0.4\textwidth}
  11274. \begin{lstlisting}
  11275. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  11276. \end{lstlisting}
  11277. \end{minipage}
  11278. \end{tabular}
  11279. \section{Remove Complex Operands}
  11280. \label{sec:rco-r4}
  11281. The primary decisions to make for this pass is whether to classify
  11282. \code{FunRef} and \code{Apply} as either atomic or complex
  11283. expressions. Recall that a simple expression will eventually end up as
  11284. just an immediate argument of an x86 instruction. Function
  11285. application will be translated to a sequence of instructions, so
  11286. \code{Apply} must be classified as complex expression.
  11287. On the other hand, the arguments of \code{Apply} should be
  11288. atomic expressions.
  11289. %
  11290. Regarding \code{FunRef}, as discussed above, the function label needs
  11291. to be converted to an address using the \code{leaq} instruction. Thus,
  11292. even though \code{FunRef} seems rather simple, it needs to be
  11293. classified as a complex expression so that we generate an assignment
  11294. statement with a left-hand side that can serve as the target of the
  11295. \code{leaq}. Figure~\ref{fig:Rfun-anf-syntax} defines the
  11296. output language \LangFunANF{} of this pass.
  11297. \begin{figure}[tp]
  11298. \centering
  11299. \fbox{
  11300. \begin{minipage}{0.96\textwidth}
  11301. \small
  11302. \[
  11303. \begin{array}{rcl}
  11304. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  11305. \MID \VOID{} } \\
  11306. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  11307. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  11308. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  11309. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  11310. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  11311. &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  11312. \MID \LP\key{GlobalValue}~\Var\RP }\\
  11313. &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  11314. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  11315. R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  11316. \end{array}
  11317. \]
  11318. \end{minipage}
  11319. }
  11320. \caption{\LangFunANF{} is \LangFun{} in administrative normal form (ANF).}
  11321. \label{fig:Rfun-anf-syntax}
  11322. \end{figure}
  11323. \section{Explicate Control and the \LangCFun{} language}
  11324. \label{sec:explicate-control-r4}
  11325. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  11326. output of \code{explicate\_control}. (The concrete syntax is given in
  11327. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
  11328. functions for assignment and tail contexts should be updated with
  11329. cases for \code{Apply} and \code{FunRef} and the function for
  11330. predicate context should be updated for \code{Apply} but not
  11331. \code{FunRef}. (A \code{FunRef} can't be a Boolean.) In assignment
  11332. and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
  11333. tail position \code{Apply} becomes \code{TailCall}. We recommend
  11334. defining a new auxiliary function for processing function definitions.
  11335. This code is similar to the case for \code{Program} in \LangVec{}. The
  11336. top-level \code{explicate\_control} function that handles the
  11337. \code{ProgramDefs} form of \LangFun{} can then apply this new function to
  11338. all the function definitions.
  11339. \begin{figure}[tp]
  11340. \fbox{
  11341. \begin{minipage}{0.96\textwidth}
  11342. \small
  11343. \[
  11344. \begin{array}{lcl}
  11345. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  11346. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  11347. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  11348. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  11349. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  11350. &\MID& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  11351. &\MID& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  11352. &\MID& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  11353. &\MID& \gray{ \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP }\\
  11354. &\MID& \FUNREF{\itm{label}} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  11355. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  11356. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  11357. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  11358. \MID \GOTO{\itm{label}} } \\
  11359. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  11360. &\MID& \TAILCALL{\Atm}{\Atm\ldots} \\
  11361. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  11362. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  11363. \end{array}
  11364. \]
  11365. \end{minipage}
  11366. }
  11367. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  11368. \label{fig:c3-syntax}
  11369. \end{figure}
  11370. \section{Select Instructions and the \LangXIndCall{} Language}
  11371. \label{sec:select-r4}
  11372. \index{subject}{instruction selection}
  11373. The output of select instructions is a program in the \LangXIndCall{}
  11374. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  11375. \index{subject}{x86}
  11376. \begin{figure}[tp]
  11377. \fbox{
  11378. \begin{minipage}{0.96\textwidth}
  11379. \small
  11380. \[
  11381. \begin{array}{lcl}
  11382. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)}
  11383. \MID \LP\key{fun-ref}\; \itm{label}\RP\\
  11384. \itm{cc} & ::= & \gray{ \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} } \\
  11385. \Instr &::=& \ldots
  11386. \MID \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  11387. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  11388. \Block &::= & \Instr\ldots \\
  11389. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  11390. \LangXIndCallM{} &::= & \Def\ldots
  11391. \end{array}
  11392. \]
  11393. \end{minipage}
  11394. }
  11395. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  11396. \label{fig:x86-3-concrete}
  11397. \end{figure}
  11398. \begin{figure}[tp]
  11399. \fbox{
  11400. \begin{minipage}{0.96\textwidth}
  11401. \small
  11402. \[
  11403. \begin{array}{lcl}
  11404. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  11405. \MID \BYTEREG{\Reg} } \\
  11406. &\MID& \gray{ (\key{Global}~\Var) } \MID \FUNREF{\itm{label}} \\
  11407. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  11408. \MID \TAILJMP{\Arg}{\itm{int}}\\
  11409. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  11410. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  11411. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  11412. \LangXIndCallM{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  11413. \end{array}
  11414. \]
  11415. \end{minipage}
  11416. }
  11417. \caption{The abstract syntax of \LangXIndCall{} (extends
  11418. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  11419. \label{fig:x86-3}
  11420. \end{figure}
  11421. An assignment of a function reference to a variable becomes a
  11422. load-effective-address instruction as follows: \\
  11423. \begin{tabular}{lcl}
  11424. \begin{minipage}{0.35\textwidth}
  11425. \begin{lstlisting}
  11426. |$\itm{lhs}$| = (fun-ref |$f$|);
  11427. \end{lstlisting}
  11428. \end{minipage}
  11429. &
  11430. $\Rightarrow$\qquad\qquad
  11431. &
  11432. \begin{minipage}{0.3\textwidth}
  11433. \begin{lstlisting}
  11434. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  11435. \end{lstlisting}
  11436. \end{minipage}
  11437. \end{tabular} \\
  11438. Regarding function definitions, we need to remove the parameters and
  11439. instead perform parameter passing using the conventions discussed in
  11440. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  11441. registers. We recommend turning the parameters into local variables
  11442. and generating instructions at the beginning of the function to move
  11443. from the argument passing registers to these local variables.
  11444. \begin{lstlisting}
  11445. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
  11446. |$\Rightarrow$|
  11447. (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
  11448. \end{lstlisting}
  11449. The $G'$ control-flow graph is the same as $G$ except that the
  11450. \code{start} block is modified to add the instructions for moving from
  11451. the argument registers to the parameter variables. So the \code{start}
  11452. block of $G$ shown on the left is changed to the code on the right.
  11453. \begin{center}
  11454. \begin{minipage}{0.3\textwidth}
  11455. \begin{lstlisting}
  11456. start:
  11457. |$\itm{instr}_1$|
  11458. |$\vdots$|
  11459. |$\itm{instr}_n$|
  11460. \end{lstlisting}
  11461. \end{minipage}
  11462. $\Rightarrow$
  11463. \begin{minipage}{0.3\textwidth}
  11464. \begin{lstlisting}
  11465. start:
  11466. movq %rdi, |$x_1$|
  11467. movq %rsi, |$x_2$|
  11468. |$\vdots$|
  11469. |$\itm{instr}_1$|
  11470. |$\vdots$|
  11471. |$\itm{instr}_n$|
  11472. \end{lstlisting}
  11473. \end{minipage}
  11474. \end{center}
  11475. By changing the parameters to local variables, we are giving the
  11476. register allocator control over which registers or stack locations to
  11477. use for them. If you implemented the move-biasing challenge
  11478. (Section~\ref{sec:move-biasing}), the register allocator will try to
  11479. assign the parameter variables to the corresponding argument register,
  11480. in which case the \code{patch-instructions} pass will remove the
  11481. \code{movq} instruction. This happens in the example translation in
  11482. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  11483. the \code{add} function.
  11484. %
  11485. Also, note that the register allocator will perform liveness analysis
  11486. on this sequence of move instructions and build the interference
  11487. graph. So, for example, $x_1$ will be marked as interfering with
  11488. \code{rsi} and that will prevent the assignment of $x_1$ to
  11489. \code{rsi}, which is good, because that would overwrite the argument
  11490. that needs to move into $x_2$.
  11491. Next, consider the compilation of function calls. In the mirror image
  11492. of handling the parameters of function definitions, the arguments need
  11493. to be moved to the argument passing registers. The function call
  11494. itself is performed with an indirect function call. The return value
  11495. from the function is stored in \code{rax}, so it needs to be moved
  11496. into the \itm{lhs}.
  11497. \begin{lstlisting}
  11498. |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
  11499. |$\Rightarrow$|
  11500. movq |$\itm{arg}_1$|, %rdi
  11501. movq |$\itm{arg}_2$|, %rsi
  11502. |$\vdots$|
  11503. callq *|\itm{fun}|
  11504. movq %rax, |\itm{lhs}|
  11505. \end{lstlisting}
  11506. The \code{IndirectCallq} AST node includes an integer for the arity of
  11507. the function, i.e., the number of parameters. That information is
  11508. useful in the \code{uncover-live} pass for determining which
  11509. argument-passing registers are potentially read during the call.
  11510. For tail calls, the parameter passing is the same as non-tail calls:
  11511. generate instructions to move the arguments into to the argument
  11512. passing registers. After that we need to pop the frame from the
  11513. procedure call stack. However, we do not yet know how big the frame
  11514. is; that gets determined during register allocation. So instead of
  11515. generating those instructions here, we invent a new instruction that
  11516. means ``pop the frame and then do an indirect jump'', which we name
  11517. \code{TailJmp}. The abstract syntax for this instruction includes an
  11518. argument that specifies where to jump and an integer that represents
  11519. the arity of the function being called.
  11520. Recall that in Section~\ref{sec:explicate-control-Lvar} we recommended
  11521. using the label \code{start} for the initial block of a program, and
  11522. in Section~\ref{sec:select-Lvar} we recommended labeling the conclusion
  11523. of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
  11524. can be compiled to an assignment to \code{rax} followed by a jump to
  11525. \code{conclusion}. With the addition of function definitions, we will
  11526. have a starting block and conclusion for each function, but their
  11527. labels need to be unique. We recommend prepending the function's name
  11528. to \code{start} and \code{conclusion}, respectively, to obtain unique
  11529. labels. (Alternatively, one could \code{gensym} labels for the start
  11530. and conclusion and store them in the $\itm{info}$ field of the
  11531. function definition.)
  11532. \section{Register Allocation}
  11533. \label{sec:register-allocation-r4}
  11534. \subsection{Liveness Analysis}
  11535. \label{sec:liveness-analysis-r4}
  11536. \index{subject}{liveness analysis}
  11537. %% The rest of the passes need only minor modifications to handle the new
  11538. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  11539. %% \code{leaq}.
  11540. The \code{IndirectCallq} instruction should be treated like
  11541. \code{Callq} regarding its written locations $W$, in that they should
  11542. include all the caller-saved registers. Recall that the reason for
  11543. that is to force call-live variables to be assigned to callee-saved
  11544. registers or to be spilled to the stack.
  11545. Regarding the set of read locations $R$ the arity field of
  11546. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  11547. argument-passing registers should be considered as read by those
  11548. instructions.
  11549. \subsection{Build Interference Graph}
  11550. \label{sec:build-interference-r4}
  11551. With the addition of function definitions, we compute an interference
  11552. graph for each function (not just one for the whole program).
  11553. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  11554. spill vector-typed variables that are live during a call to the
  11555. \code{collect}. With the addition of functions to our language, we
  11556. need to revisit this issue. Many functions perform allocation and
  11557. therefore have calls to the collector inside of them. Thus, we should
  11558. not only spill a vector-typed variable when it is live during a call
  11559. to \code{collect}, but we should spill the variable if it is live
  11560. during any function call. Thus, in the \code{build-interference} pass,
  11561. we recommend adding interference edges between call-live vector-typed
  11562. variables and the callee-saved registers (in addition to the usual
  11563. addition of edges between call-live variables and the caller-saved
  11564. registers).
  11565. \subsection{Allocate Registers}
  11566. The primary change to the \code{allocate-registers} pass is adding an
  11567. auxiliary function for handling definitions (the \Def{} non-terminal
  11568. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  11569. logic is the same as described in
  11570. Chapter~\ref{ch:register-allocation-Lvar}, except now register
  11571. allocation is performed many times, once for each function definition,
  11572. instead of just once for the whole program.
  11573. \section{Patch Instructions}
  11574. In \code{patch-instructions}, you should deal with the x86
  11575. idiosyncrasy that the destination argument of \code{leaq} must be a
  11576. register. Additionally, you should ensure that the argument of
  11577. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  11578. code generation more convenient, because we trample many registers
  11579. before the tail call (as explained in the next section).
  11580. \section{Print x86}
  11581. For the \code{print\_x86} pass, the cases for \code{FunRef} and
  11582. \code{IndirectCallq} are straightforward: output their concrete
  11583. syntax.
  11584. \begin{lstlisting}
  11585. (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  11586. (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  11587. \end{lstlisting}
  11588. The \code{TailJmp} node requires a bit work. A straightforward
  11589. translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
  11590. before the jump we need to pop the current frame. This sequence of
  11591. instructions is the same as the code for the conclusion of a function,
  11592. except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  11593. Regarding function definitions, you will need to generate a prelude
  11594. and conclusion for each one. This code is similar to the prelude and
  11595. conclusion that you generated for the \code{main} function in
  11596. Chapter~\ref{ch:Rvec}. To review, the prelude of every function
  11597. should carry out the following steps.
  11598. \begin{enumerate}
  11599. \item Start with \code{.global} and \code{.align} directives followed
  11600. by the label for the function. (See Figure~\ref{fig:add-fun} for an
  11601. example.)
  11602. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  11603. pointer.
  11604. \item Push to the stack all of the callee-saved registers that were
  11605. used for register allocation.
  11606. \item Move the stack pointer \code{rsp} down by the size of the stack
  11607. frame for this function, which depends on the number of regular
  11608. spills. (Aligned to 16 bytes.)
  11609. \item Move the root stack pointer \code{r15} up by the size of the
  11610. root-stack frame for this function, which depends on the number of
  11611. spilled vectors. \label{root-stack-init}
  11612. \item Initialize to zero all of the entries in the root-stack frame.
  11613. \item Jump to the start block.
  11614. \end{enumerate}
  11615. The prelude of the \code{main} function has one additional task: call
  11616. the \code{initialize} function to set up the garbage collector and
  11617. move the value of the global \code{rootstack\_begin} in
  11618. \code{r15}. This should happen before step \ref{root-stack-init}
  11619. above, which depends on \code{r15}.
  11620. The conclusion of every function should do the following.
  11621. \begin{enumerate}
  11622. \item Move the stack pointer back up by the size of the stack frame
  11623. for this function.
  11624. \item Restore the callee-saved registers by popping them from the
  11625. stack.
  11626. \item Move the root stack pointer back down by the size of the
  11627. root-stack frame for this function.
  11628. \item Restore \code{rbp} by popping it from the stack.
  11629. \item Return to the caller with the \code{retq} instruction.
  11630. \end{enumerate}
  11631. \begin{exercise}\normalfont
  11632. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  11633. Create 5 new programs that use functions, including examples that pass
  11634. functions and return functions from other functions, recursive
  11635. functions, functions that create vectors, and functions that make tail
  11636. calls. Test your compiler on these new programs and all of your
  11637. previously created test programs.
  11638. \end{exercise}
  11639. \begin{figure}[tbp]
  11640. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11641. \node (Rfun) at (0,2) {\large \LangFun{}};
  11642. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  11643. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  11644. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  11645. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  11646. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  11647. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  11648. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  11649. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  11650. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  11651. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  11652. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  11653. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  11654. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  11655. \path[->,bend left=15] (Rfun) edge [above] node
  11656. {\ttfamily\footnotesize shrink} (Rfun-1);
  11657. \path[->,bend left=15] (Rfun-1) edge [above] node
  11658. {\ttfamily\footnotesize uniquify} (Rfun-2);
  11659. \path[->,bend left=15] (Rfun-2) edge [right] node
  11660. {\ttfamily\footnotesize ~~reveal-functions} (F1-1);
  11661. \path[->,bend left=15] (F1-1) edge [below] node
  11662. {\ttfamily\footnotesize limit-functions} (F1-2);
  11663. \path[->,bend right=15] (F1-2) edge [above] node
  11664. {\ttfamily\footnotesize expose-alloc.} (F1-3);
  11665. \path[->,bend right=15] (F1-3) edge [above] node
  11666. {\ttfamily\footnotesize remove-complex.} (F1-4);
  11667. \path[->,bend left=15] (F1-4) edge [right] node
  11668. {\ttfamily\footnotesize explicate-control} (C3-2);
  11669. \path[->,bend right=15] (C3-2) edge [left] node
  11670. {\ttfamily\footnotesize select-instr.} (x86-2);
  11671. \path[->,bend left=15] (x86-2) edge [left] node
  11672. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  11673. \path[->,bend right=15] (x86-2-1) edge [below] node
  11674. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  11675. \path[->,bend right=15] (x86-2-2) edge [left] node
  11676. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  11677. \path[->,bend left=15] (x86-3) edge [above] node
  11678. {\ttfamily\footnotesize patch-instr.} (x86-4);
  11679. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  11680. \end{tikzpicture}
  11681. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  11682. \label{fig:Rfun-passes}
  11683. \end{figure}
  11684. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  11685. compiling \LangFun{} to x86.
  11686. \section{An Example Translation}
  11687. \label{sec:functions-example}
  11688. Figure~\ref{fig:add-fun} shows an example translation of a simple
  11689. function in \LangFun{} to x86. The figure also includes the results of the
  11690. \code{explicate\_control} and \code{select-instructions} passes.
  11691. \begin{figure}[htbp]
  11692. \begin{tabular}{ll}
  11693. \begin{minipage}{0.5\textwidth}
  11694. % s3_2.rkt
  11695. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11696. (define (add [x : Integer] [y : Integer])
  11697. : Integer
  11698. (+ x y))
  11699. (add 40 2)
  11700. \end{lstlisting}
  11701. $\Downarrow$
  11702. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11703. (define (add86 [x87 : Integer]
  11704. [y88 : Integer]) : Integer
  11705. add86start:
  11706. return (+ x87 y88);
  11707. )
  11708. (define (main) : Integer ()
  11709. mainstart:
  11710. tmp89 = (fun-ref add86);
  11711. (tail-call tmp89 40 2)
  11712. )
  11713. \end{lstlisting}
  11714. \end{minipage}
  11715. &
  11716. $\Rightarrow$
  11717. \begin{minipage}{0.5\textwidth}
  11718. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11719. (define (add86) : Integer
  11720. add86start:
  11721. movq %rdi, x87
  11722. movq %rsi, y88
  11723. movq x87, %rax
  11724. addq y88, %rax
  11725. jmp add11389conclusion
  11726. )
  11727. (define (main) : Integer
  11728. mainstart:
  11729. leaq (fun-ref add86), tmp89
  11730. movq $40, %rdi
  11731. movq $2, %rsi
  11732. tail-jmp tmp89
  11733. )
  11734. \end{lstlisting}
  11735. $\Downarrow$
  11736. \end{minipage}
  11737. \end{tabular}
  11738. \begin{tabular}{ll}
  11739. \begin{minipage}{0.3\textwidth}
  11740. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11741. .globl add86
  11742. .align 16
  11743. add86:
  11744. pushq %rbp
  11745. movq %rsp, %rbp
  11746. jmp add86start
  11747. add86start:
  11748. movq %rdi, %rax
  11749. addq %rsi, %rax
  11750. jmp add86conclusion
  11751. add86conclusion:
  11752. popq %rbp
  11753. retq
  11754. \end{lstlisting}
  11755. \end{minipage}
  11756. &
  11757. \begin{minipage}{0.5\textwidth}
  11758. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11759. .globl main
  11760. .align 16
  11761. main:
  11762. pushq %rbp
  11763. movq %rsp, %rbp
  11764. movq $16384, %rdi
  11765. movq $16384, %rsi
  11766. callq initialize
  11767. movq rootstack_begin(%rip), %r15
  11768. jmp mainstart
  11769. mainstart:
  11770. leaq add86(%rip), %rcx
  11771. movq $40, %rdi
  11772. movq $2, %rsi
  11773. movq %rcx, %rax
  11774. popq %rbp
  11775. jmp *%rax
  11776. mainconclusion:
  11777. popq %rbp
  11778. retq
  11779. \end{lstlisting}
  11780. \end{minipage}
  11781. \end{tabular}
  11782. \caption{Example compilation of a simple function to x86.}
  11783. \label{fig:add-fun}
  11784. \end{figure}
  11785. % Challenge idea: inlining! (simple version)
  11786. % Further Reading
  11787. \fi % racketEd
  11788. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11789. \chapter{Lexically Scoped Functions}
  11790. \label{ch:Rlam}
  11791. \index{subject}{lambda}
  11792. \index{subject}{lexical scoping}
  11793. \if\edition\racketEd
  11794. This chapter studies lexically scoped functions as they appear in
  11795. functional languages such as Racket. By lexical scoping we mean that a
  11796. function's body may refer to variables whose binding site is outside
  11797. of the function, in an enclosing scope.
  11798. %
  11799. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  11800. \LangLam{}, which extends \LangFun{} with anonymous functions using the
  11801. \key{lambda} form. The body of the \key{lambda}, refers to three
  11802. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  11803. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  11804. \code{y} is bound by the enclosing \key{let} and \code{x} is a
  11805. parameter of function \code{f}. The \key{lambda} is returned from the
  11806. function \code{f}. The main expression of the program includes two
  11807. calls to \code{f} with different arguments for \code{x}, first
  11808. \code{5} then \code{3}. The functions returned from \code{f} are bound
  11809. to variables \code{g} and \code{h}. Even though these two functions
  11810. were created by the same \code{lambda}, they are really different
  11811. functions because they use different values for \code{x}. Applying
  11812. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  11813. \code{15} produces \code{22}. The result of this program is \code{42}.
  11814. \begin{figure}[btp]
  11815. % s4_6.rkt
  11816. \begin{lstlisting}
  11817. (define (f [x : Integer]) : (Integer -> Integer)
  11818. (let ([y 4])
  11819. (lambda: ([z : Integer]) : Integer
  11820. (+ x (+ y z)))))
  11821. (let ([g (f 5)])
  11822. (let ([h (f 3)])
  11823. (+ (g 11) (h 15))))
  11824. \end{lstlisting}
  11825. \caption{Example of a lexically scoped function.}
  11826. \label{fig:lexical-scoping}
  11827. \end{figure}
  11828. The approach that we take for implementing lexically scoped
  11829. functions is to compile them into top-level function definitions,
  11830. translating from \LangLam{} into \LangFun{}. However, the compiler will need to
  11831. provide special treatment for variable occurrences such as \code{x}
  11832. and \code{y} in the body of the \code{lambda} of
  11833. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function may not
  11834. refer to variables defined outside of it. To identify such variable
  11835. occurrences, we review the standard notion of free variable.
  11836. \begin{definition}
  11837. A variable is \emph{free in expression} $e$ if the variable occurs
  11838. inside $e$ but does not have an enclosing binding in $e$.\index{subject}{free
  11839. variable}
  11840. \end{definition}
  11841. For example, in the expression \code{(+ x (+ y z))} the variables
  11842. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  11843. only \code{x} and \code{y} are free in the following expression
  11844. because \code{z} is bound by the \code{lambda}.
  11845. \begin{lstlisting}
  11846. (lambda: ([z : Integer]) : Integer
  11847. (+ x (+ y z)))
  11848. \end{lstlisting}
  11849. So the free variables of a \code{lambda} are the ones that will need
  11850. special treatment. We need to arrange for some way to transport, at
  11851. runtime, the values of those variables from the point where the
  11852. \code{lambda} was created to the point where the \code{lambda} is
  11853. applied. An efficient solution to the problem, due to
  11854. \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
  11855. free variables together with the function pointer for the lambda's
  11856. code, an arrangement called a \emph{flat closure} (which we shorten to
  11857. just ``closure''). \index{subject}{closure}\index{subject}{flat closure} Fortunately,
  11858. we have all the ingredients to make closures, Chapter~\ref{ch:Rvec}
  11859. gave us vectors and Chapter~\ref{ch:Rfun} gave us function
  11860. pointers. The function pointer resides at index $0$ and the
  11861. values for the free variables will fill in the rest of the vector.
  11862. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  11863. how closures work. It's a three-step dance. The program first calls
  11864. function \code{f}, which creates a closure for the \code{lambda}. The
  11865. closure is a vector whose first element is a pointer to the top-level
  11866. function that we will generate for the \code{lambda}, the second
  11867. element is the value of \code{x}, which is \code{5}, and the third
  11868. element is \code{4}, the value of \code{y}. The closure does not
  11869. contain an element for \code{z} because \code{z} is not a free
  11870. variable of the \code{lambda}. Creating the closure is step 1 of the
  11871. dance. The closure is returned from \code{f} and bound to \code{g}, as
  11872. shown in Figure~\ref{fig:closures}.
  11873. %
  11874. The second call to \code{f} creates another closure, this time with
  11875. \code{3} in the second slot (for \code{x}). This closure is also
  11876. returned from \code{f} but bound to \code{h}, which is also shown in
  11877. Figure~\ref{fig:closures}.
  11878. \begin{figure}[tbp]
  11879. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  11880. \caption{Example closure representation for the \key{lambda}'s
  11881. in Figure~\ref{fig:lexical-scoping}.}
  11882. \label{fig:closures}
  11883. \end{figure}
  11884. Continuing with the example, consider the application of \code{g} to
  11885. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  11886. obtain the function pointer in the first element of the closure and
  11887. call it, passing in the closure itself and then the regular arguments,
  11888. in this case \code{11}. This technique for applying a closure is step
  11889. 2 of the dance.
  11890. %
  11891. But doesn't this \code{lambda} only take 1 argument, for parameter
  11892. \code{z}? The third and final step of the dance is generating a
  11893. top-level function for a \code{lambda}. We add an additional
  11894. parameter for the closure and we insert a \code{let} at the beginning
  11895. of the function for each free variable, to bind those variables to the
  11896. appropriate elements from the closure parameter.
  11897. %
  11898. This three-step dance is known as \emph{closure conversion}. We
  11899. discuss the details of closure conversion in
  11900. Section~\ref{sec:closure-conversion} and the code generated from the
  11901. example in Section~\ref{sec:example-lambda}. But first we define the
  11902. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  11903. \section{The \LangLam{} Language}
  11904. \label{sec:r5}
  11905. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  11906. functions and lexical scoping, is defined in
  11907. Figures~\ref{fig:Rlam-concrete-syntax} and ~\ref{fig:Rlam-syntax}. It adds
  11908. the \key{lambda} form to the grammar for \LangFun{}, which already has
  11909. syntax for function application.
  11910. \begin{figure}[tp]
  11911. \centering
  11912. \fbox{
  11913. \begin{minipage}{0.96\textwidth}
  11914. \small
  11915. \[
  11916. \begin{array}{lcl}
  11917. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  11918. \MID (\key{Vector}\;\Type\ldots) \MID \key{Void}
  11919. \MID (\Type\ldots \; \key{->}\; \Type)} \\
  11920. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  11921. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  11922. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  11923. &\MID& \gray{\key{\#t} \MID \key{\#f}
  11924. \MID (\key{and}\;\Exp\;\Exp)
  11925. \MID (\key{or}\;\Exp\;\Exp)
  11926. \MID (\key{not}\;\Exp) } \\
  11927. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  11928. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  11929. (\key{vector-ref}\;\Exp\;\Int)} \\
  11930. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  11931. \MID (\Exp \; \Exp\ldots) } \\
  11932. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  11933. &\MID& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  11934. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11935. \LangLamM{} &::=& \gray{\Def\ldots \; \Exp}
  11936. \end{array}
  11937. \]
  11938. \end{minipage}
  11939. }
  11940. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  11941. with \key{lambda}.}
  11942. \label{fig:Rlam-concrete-syntax}
  11943. \end{figure}
  11944. \begin{figure}[tp]
  11945. \centering
  11946. \fbox{
  11947. \begin{minipage}{0.96\textwidth}
  11948. \small
  11949. \[
  11950. \begin{array}{lcl}
  11951. \itm{op} &::=& \ldots \MID \code{procedure-arity} \\
  11952. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  11953. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  11954. &\MID& \gray{ \BOOL{\itm{bool}}
  11955. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  11956. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  11957. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  11958. &\MID& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  11959. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  11960. \LangLamM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11961. \end{array}
  11962. \]
  11963. \end{minipage}
  11964. }
  11965. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  11966. \label{fig:Rlam-syntax}
  11967. \end{figure}
  11968. \index{subject}{interpreter}
  11969. \label{sec:interp-Rlambda}
  11970. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  11971. \LangLam{}. The case for \key{lambda} saves the current environment
  11972. inside the returned \key{lambda}. Then the case for \key{Apply} uses
  11973. the environment from the \key{lambda}, the \code{lam-env}, when
  11974. interpreting the body of the \key{lambda}. The \code{lam-env}
  11975. environment is extended with the mapping of parameters to argument
  11976. values.
  11977. \begin{figure}[tbp]
  11978. \begin{lstlisting}
  11979. (define interp-Rlambda_class
  11980. (class interp-Rfun_class
  11981. (super-new)
  11982. (define/override (interp-op op)
  11983. (match op
  11984. ['procedure-arity
  11985. (lambda (v)
  11986. (match v
  11987. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  11988. [else (error 'interp-op "expected a function, not ~a" v)]))]
  11989. [else (super interp-op op)]))
  11990. (define/override ((interp-exp env) e)
  11991. (define recur (interp-exp env))
  11992. (match e
  11993. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  11994. `(function ,xs ,body ,env)]
  11995. [else ((super interp-exp env) e)]))
  11996. ))
  11997. (define (interp-Rlambda p)
  11998. (send (new interp-Rlambda_class) interp-program p))
  11999. \end{lstlisting}
  12000. \caption{Interpreter for \LangLam{}.}
  12001. \label{fig:interp-Rlambda}
  12002. \end{figure}
  12003. \label{sec:type-check-r5}
  12004. \index{subject}{type checking}
  12005. Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
  12006. \key{lambda} form. The body of the \key{lambda} is checked in an
  12007. environment that includes the current environment (because it is
  12008. lexically scoped) and also includes the \key{lambda}'s parameters. We
  12009. require the body's type to match the declared return type.
  12010. \begin{figure}[tbp]
  12011. \begin{lstlisting}
  12012. (define (type-check-Rlambda env)
  12013. (lambda (e)
  12014. (match e
  12015. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  12016. (define-values (new-body bodyT)
  12017. ((type-check-exp (append (map cons xs Ts) env)) body))
  12018. (define ty `(,@Ts -> ,rT))
  12019. (cond
  12020. [(equal? rT bodyT)
  12021. (values (HasType (Lambda params rT new-body) ty) ty)]
  12022. [else
  12023. (error "mismatch in return type" bodyT rT)])]
  12024. ...
  12025. )))
  12026. \end{lstlisting}
  12027. \caption{Type checking the \key{lambda}'s in \LangLam{}.}
  12028. \label{fig:type-check-Rlambda}
  12029. \end{figure}
  12030. \section{Reveal Functions and the $F_2$ language}
  12031. \label{sec:reveal-functions-r5}
  12032. To support the \code{procedure-arity} operator we need to communicate
  12033. the arity of a function to the point of closure creation. We can
  12034. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  12035. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  12036. output of this pass is the language $F_2$, whose syntax is defined in
  12037. Figure~\ref{fig:f2-syntax}.
  12038. \begin{figure}[tp]
  12039. \centering
  12040. \fbox{
  12041. \begin{minipage}{0.96\textwidth}
  12042. \[
  12043. \begin{array}{lcl}
  12044. \Exp &::=& \ldots \MID \FUNREFARITY{\Var}{\Int}\\
  12045. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12046. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  12047. \end{array}
  12048. \]
  12049. \end{minipage}
  12050. }
  12051. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  12052. (Figure~\ref{fig:Rlam-syntax}).}
  12053. \label{fig:f2-syntax}
  12054. \end{figure}
  12055. \section{Closure Conversion}
  12056. \label{sec:closure-conversion}
  12057. \index{subject}{closure conversion}
  12058. The compiling of lexically-scoped functions into top-level function
  12059. definitions is accomplished in the pass \code{convert-to-closures}
  12060. that comes after \code{reveal-functions} and before
  12061. \code{limit-functions}.
  12062. As usual, we implement the pass as a recursive function over the
  12063. AST. All of the action is in the cases for \key{Lambda} and
  12064. \key{Apply}. We transform a \key{Lambda} expression into an expression
  12065. that creates a closure, that is, a vector whose first element is a
  12066. function pointer and the rest of the elements are the free variables
  12067. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  12068. using \code{vector} so that we can distinguish closures from vectors
  12069. in Section~\ref{sec:optimize-closures} and to record the arity. In
  12070. the generated code below, the \itm{name} is a unique symbol generated
  12071. to identify the function and the \itm{arity} is the number of
  12072. parameters (the length of \itm{ps}).
  12073. \begin{lstlisting}
  12074. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  12075. |$\Rightarrow$|
  12076. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  12077. \end{lstlisting}
  12078. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  12079. create a top-level function definition for each \key{Lambda}, as
  12080. shown below.\\
  12081. \begin{minipage}{0.8\textwidth}
  12082. \begin{lstlisting}
  12083. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  12084. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  12085. ...
  12086. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  12087. |\itm{body'}|)...))
  12088. \end{lstlisting}
  12089. \end{minipage}\\
  12090. The \code{clos} parameter refers to the closure. Translate the type
  12091. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  12092. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  12093. $\itm{fvts}$ are the types of the free variables in the lambda and the
  12094. underscore \code{\_} is a dummy type that we use because it is rather
  12095. difficult to give a type to the function in the closure's
  12096. type.\footnote{To give an accurate type to a closure, we would need to
  12097. add existential types to the type checker~\citep{Minamide:1996ys}.}
  12098. The dummy type is considered to be equal to any other type during type
  12099. checking. The sequence of \key{Let} forms bind the free variables to
  12100. their values obtained from the closure.
  12101. Closure conversion turns functions into vectors, so the type
  12102. annotations in the program must also be translated. We recommend
  12103. defining a auxiliary recursive function for this purpose. Function
  12104. types should be translated as follows.
  12105. \begin{lstlisting}
  12106. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  12107. |$\Rightarrow$|
  12108. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  12109. \end{lstlisting}
  12110. The above type says that the first thing in the vector is a function
  12111. pointer. The first parameter of the function pointer is a vector (a
  12112. closure) and the rest of the parameters are the ones from the original
  12113. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  12114. the closure omits the types of the free variables because 1) those
  12115. types are not available in this context and 2) we do not need them in
  12116. the code that is generated for function application.
  12117. We transform function application into code that retrieves the
  12118. function pointer from the closure and then calls the function, passing
  12119. in the closure as the first argument. We bind $e'$ to a temporary
  12120. variable to avoid code duplication.
  12121. \begin{lstlisting}
  12122. (Apply |$e$| |\itm{es}|)
  12123. |$\Rightarrow$|
  12124. (Let |\itm{tmp}| |$e'$|
  12125. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  12126. \end{lstlisting}
  12127. There is also the question of what to do with references top-level
  12128. function definitions. To maintain a uniform translation of function
  12129. application, we turn function references into closures.
  12130. \begin{tabular}{lll}
  12131. \begin{minipage}{0.3\textwidth}
  12132. \begin{lstlisting}
  12133. (FunRefArity |$f$| |$n$|)
  12134. \end{lstlisting}
  12135. \end{minipage}
  12136. &
  12137. $\Rightarrow$
  12138. &
  12139. \begin{minipage}{0.5\textwidth}
  12140. \begin{lstlisting}
  12141. (Closure |$n$| (FunRef |$f$|) '())
  12142. \end{lstlisting}
  12143. \end{minipage}
  12144. \end{tabular} \\
  12145. %
  12146. The top-level function definitions need to be updated as well to take
  12147. an extra closure parameter.
  12148. \section{An Example Translation}
  12149. \label{sec:example-lambda}
  12150. Figure~\ref{fig:lexical-functions-example} shows the result of
  12151. \code{reveal-functions} and \code{convert-to-closures} for the example
  12152. program demonstrating lexical scoping that we discussed at the
  12153. beginning of this chapter.
  12154. \begin{figure}[tbp]
  12155. \begin{minipage}{0.8\textwidth}
  12156. % tests/lambda_test_6.rkt
  12157. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12158. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  12159. (let ([y8 4])
  12160. (lambda: ([z9 : Integer]) : Integer
  12161. (+ x7 (+ y8 z9)))))
  12162. (define (main) : Integer
  12163. (let ([g0 ((fun-ref-arity f6 1) 5)])
  12164. (let ([h1 ((fun-ref-arity f6 1) 3)])
  12165. (+ (g0 11) (h1 15)))))
  12166. \end{lstlisting}
  12167. $\Rightarrow$
  12168. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12169. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  12170. (let ([y8 4])
  12171. (closure 1 (list (fun-ref lambda2) x7 y8))))
  12172. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  12173. (let ([x7 (vector-ref fvs3 1)])
  12174. (let ([y8 (vector-ref fvs3 2)])
  12175. (+ x7 (+ y8 z9)))))
  12176. (define (main) : Integer
  12177. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  12178. ((vector-ref clos5 0) clos5 5))])
  12179. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  12180. ((vector-ref clos6 0) clos6 3))])
  12181. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  12182. \end{lstlisting}
  12183. \end{minipage}
  12184. \caption{Example of closure conversion.}
  12185. \label{fig:lexical-functions-example}
  12186. \end{figure}
  12187. \begin{exercise}\normalfont
  12188. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  12189. Create 5 new programs that use \key{lambda} functions and make use of
  12190. lexical scoping. Test your compiler on these new programs and all of
  12191. your previously created test programs.
  12192. \end{exercise}
  12193. \section{Expose Allocation}
  12194. \label{sec:expose-allocation-r5}
  12195. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  12196. that allocates and initializes a vector, similar to the translation of
  12197. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  12198. The only difference is replacing the use of
  12199. \ALLOC{\itm{len}}{\itm{type}} with
  12200. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  12201. \section{Explicate Control and \LangCLam{}}
  12202. \label{sec:explicate-r5}
  12203. The output language of \code{explicate\_control} is \LangCLam{} whose
  12204. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  12205. difference with respect to \LangCFun{} is the addition of the
  12206. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  12207. of \code{AllocateClosure} in the \code{explicate\_control} pass is
  12208. similar to the handling of other expressions such as primitive
  12209. operators.
  12210. \begin{figure}[tp]
  12211. \fbox{
  12212. \begin{minipage}{0.96\textwidth}
  12213. \small
  12214. \[
  12215. \begin{array}{lcl}
  12216. \Exp &::= & \ldots
  12217. \MID \ALLOCCLOS{\Int}{\Type}{\Int} \\
  12218. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  12219. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  12220. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  12221. \MID \GOTO{\itm{label}} } \\
  12222. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  12223. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  12224. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  12225. \LangCLamM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  12226. \end{array}
  12227. \]
  12228. \end{minipage}
  12229. }
  12230. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  12231. \label{fig:c4-syntax}
  12232. \end{figure}
  12233. \section{Select Instructions}
  12234. \label{sec:select-instructions-Rlambda}
  12235. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  12236. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  12237. (Section~\ref{sec:select-instructions-gc}). The only difference is
  12238. that you should place the \itm{arity} in the tag that is stored at
  12239. position $0$ of the vector. Recall that in
  12240. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  12241. was not used. We store the arity in the $5$ bits starting at position
  12242. $58$.
  12243. Compile the \code{procedure-arity} operator into a sequence of
  12244. instructions that access the tag from position $0$ of the vector and
  12245. extract the $5$-bits starting at position $58$ from the tag.
  12246. \begin{figure}[p]
  12247. \begin{tikzpicture}[baseline=(current bounding box.center)]
  12248. \node (Rfun) at (0,2) {\large \LangFun{}};
  12249. \node (Rfun-2) at (3,2) {\large \LangFun{}};
  12250. \node (Rfun-3) at (6,2) {\large \LangFun{}};
  12251. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  12252. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  12253. \node (F1-3) at (6,0) {\large $F_1$};
  12254. \node (F1-4) at (3,0) {\large $F_1$};
  12255. \node (F1-5) at (0,0) {\large $F_1$};
  12256. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  12257. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  12258. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  12259. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  12260. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  12261. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  12262. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  12263. \path[->,bend left=15] (Rfun) edge [above] node
  12264. {\ttfamily\footnotesize shrink} (Rfun-2);
  12265. \path[->,bend left=15] (Rfun-2) edge [above] node
  12266. {\ttfamily\footnotesize uniquify} (Rfun-3);
  12267. \path[->,bend left=15] (Rfun-3) edge [right] node
  12268. {\ttfamily\footnotesize reveal-functions} (F1-1);
  12269. \path[->,bend left=15] (F1-1) edge [below] node
  12270. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  12271. \path[->,bend right=15] (F1-2) edge [above] node
  12272. {\ttfamily\footnotesize limit-fun.} (F1-3);
  12273. \path[->,bend right=15] (F1-3) edge [above] node
  12274. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  12275. \path[->,bend right=15] (F1-4) edge [above] node
  12276. {\ttfamily\footnotesize remove-complex.} (F1-5);
  12277. \path[->,bend right=15] (F1-5) edge [right] node
  12278. {\ttfamily\footnotesize explicate-control} (C3-2);
  12279. \path[->,bend left=15] (C3-2) edge [left] node
  12280. {\ttfamily\footnotesize select-instr.} (x86-2);
  12281. \path[->,bend right=15] (x86-2) edge [left] node
  12282. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  12283. \path[->,bend right=15] (x86-2-1) edge [below] node
  12284. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  12285. \path[->,bend right=15] (x86-2-2) edge [left] node
  12286. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  12287. \path[->,bend left=15] (x86-3) edge [above] node
  12288. {\ttfamily\footnotesize patch-instr.} (x86-4);
  12289. \path[->,bend left=15] (x86-4) edge [right] node
  12290. {\ttfamily\footnotesize print-x86} (x86-5);
  12291. \end{tikzpicture}
  12292. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  12293. functions.}
  12294. \label{fig:Rlambda-passes}
  12295. \end{figure}
  12296. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  12297. for the compilation of \LangLam{}.
  12298. \clearpage
  12299. \section{Challenge: Optimize Closures}
  12300. \label{sec:optimize-closures}
  12301. In this chapter we compiled lexically-scoped functions into a
  12302. relatively efficient representation: flat closures. However, even this
  12303. representation comes with some overhead. For example, consider the
  12304. following program with a function \code{tail-sum} that does not have
  12305. any free variables and where all the uses of \code{tail-sum} are in
  12306. applications where we know that only \code{tail-sum} is being applied
  12307. (and not any other functions).
  12308. \begin{center}
  12309. \begin{minipage}{0.95\textwidth}
  12310. \begin{lstlisting}
  12311. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  12312. (if (eq? n 0)
  12313. r
  12314. (tail-sum (- n 1) (+ n r))))
  12315. (+ (tail-sum 5 0) 27)
  12316. \end{lstlisting}
  12317. \end{minipage}
  12318. \end{center}
  12319. As described in this chapter, we uniformly apply closure conversion to
  12320. all functions, obtaining the following output for this program.
  12321. \begin{center}
  12322. \begin{minipage}{0.95\textwidth}
  12323. \begin{lstlisting}
  12324. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  12325. (if (eq? n2 0)
  12326. r3
  12327. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  12328. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  12329. (define (main) : Integer
  12330. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  12331. ((vector-ref clos6 0) clos6 5 0)) 27))
  12332. \end{lstlisting}
  12333. \end{minipage}
  12334. \end{center}
  12335. In the previous Chapter, there would be no allocation in the program
  12336. and the calls to \code{tail-sum} would be direct calls. In contrast,
  12337. the above program allocates memory for each \code{closure} and the
  12338. calls to \code{tail-sum} are indirect. These two differences incur
  12339. considerable overhead in a program such as this one, where the
  12340. allocations and indirect calls occur inside a tight loop.
  12341. One might think that this problem is trivial to solve: can't we just
  12342. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  12343. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  12344. e'_n$)} instead of treating it like a call to a closure? We would
  12345. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  12346. %
  12347. However, this problem is not so trivial because a global function may
  12348. ``escape'' and become involved in applications that also involve
  12349. closures. Consider the following example in which the application
  12350. \code{(f 41)} needs to be compiled into a closure application, because
  12351. the \code{lambda} may get bound to \code{f}, but the \code{add1}
  12352. function might also get bound to \code{f}.
  12353. \begin{lstlisting}
  12354. (define (add1 [x : Integer]) : Integer
  12355. (+ x 1))
  12356. (let ([y (read)])
  12357. (let ([f (if (eq? (read) 0)
  12358. add1
  12359. (lambda: ([x : Integer]) : Integer (- x y)))])
  12360. (f 41)))
  12361. \end{lstlisting}
  12362. If a global function name is used in any way other than as the
  12363. operator in a direct call, then we say that the function
  12364. \emph{escapes}. If a global function does not escape, then we do not
  12365. need to perform closure conversion on the function.
  12366. \begin{exercise}\normalfont
  12367. Implement an auxiliary function for detecting which global
  12368. functions escape. Using that function, implement an improved version
  12369. of closure conversion that does not apply closure conversion to
  12370. global functions that do not escape but instead compiles them as
  12371. regular functions. Create several new test cases that check whether
  12372. you properly detect whether global functions escape or not.
  12373. \end{exercise}
  12374. So far we have reduced the overhead of calling global functions, but
  12375. it would also be nice to reduce the overhead of calling a
  12376. \code{lambda} when we can determine at compile time which
  12377. \code{lambda} will be called. We refer to such calls as \emph{known
  12378. calls}. Consider the following example in which a \code{lambda} is
  12379. bound to \code{f} and then applied.
  12380. \begin{lstlisting}
  12381. (let ([y (read)])
  12382. (let ([f (lambda: ([x : Integer]) : Integer
  12383. (+ x y))])
  12384. (f 21)))
  12385. \end{lstlisting}
  12386. Closure conversion compiles \code{(f 21)} into an indirect call:
  12387. \begin{lstlisting}
  12388. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  12389. (let ([y2 (vector-ref fvs6 1)])
  12390. (+ x3 y2)))
  12391. (define (main) : Integer
  12392. (let ([y2 (read)])
  12393. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  12394. ((vector-ref f4 0) f4 21))))
  12395. \end{lstlisting}
  12396. but we can instead compile the application \code{(f 21)} into a direct call
  12397. to \code{lambda5}:
  12398. \begin{lstlisting}
  12399. (define (main) : Integer
  12400. (let ([y2 (read)])
  12401. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  12402. ((fun-ref lambda5) f4 21))))
  12403. \end{lstlisting}
  12404. The problem of determining which lambda will be called from a
  12405. particular application is quite challenging in general and the topic
  12406. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  12407. following exercise we recommend that you compile an application to a
  12408. direct call when the operator is a variable and the variable is
  12409. \code{let}-bound to a closure. This can be accomplished by maintaining
  12410. an environment mapping \code{let}-bound variables to function names.
  12411. Extend the environment whenever you encounter a closure on the
  12412. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  12413. to the name of the global function for the closure. This pass should
  12414. come after closure conversion.
  12415. \begin{exercise}\normalfont
  12416. Implement a compiler pass, named \code{optimize-known-calls}, that
  12417. compiles known calls into direct calls. Verify that your compiler is
  12418. successful in this regard on several example programs.
  12419. \end{exercise}
  12420. These exercises only scratches the surface of optimizing of
  12421. closures. A good next step for the interested reader is to look at the
  12422. work of \citet{Keep:2012ab}.
  12423. \section{Further Reading}
  12424. The notion of lexically scoped anonymous functions predates modern
  12425. computers by about a decade. They were invented by
  12426. \citet{Church:1932aa}, who proposed the $\lambda$ calculus as a
  12427. foundation for logic. Anonymous functions were included in the
  12428. LISP~\citep{McCarthy:1960dz} programming language but were initially
  12429. dynamically scoped. The Scheme dialect of LISP adopted lexical scoping
  12430. and \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently
  12431. compile Scheme programs. However, environments were represented as
  12432. linked lists, so variable lookup was linear in the size of the
  12433. environment. In this chapter we represent environments using flat
  12434. closures, which were invented by
  12435. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  12436. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  12437. closures, variable lookup is constant time but the time to create a
  12438. closure is proportional to the number of its free variables. Flat
  12439. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  12440. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  12441. \fi
  12442. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12443. \chapter{Dynamic Typing}
  12444. \label{ch:Rdyn}
  12445. \index{subject}{dynamic typing}
  12446. \if\edition\racketEd
  12447. In this chapter we discuss the compilation of \LangDyn{}, a dynamically
  12448. typed language that is a subset of Racket. This is in contrast to the
  12449. previous chapters, which have studied the compilation of Typed
  12450. Racket. In dynamically typed languages such as \LangDyn{}, a given
  12451. expression may produce a value of a different type each time it is
  12452. executed. Consider the following example with a conditional \code{if}
  12453. expression that may return a Boolean or an integer depending on the
  12454. input to the program.
  12455. % part of dynamic_test_25.rkt
  12456. \begin{lstlisting}
  12457. (not (if (eq? (read) 1) #f 0))
  12458. \end{lstlisting}
  12459. Languages that allow expressions to produce different kinds of values
  12460. are called \emph{polymorphic}, a word composed of the Greek roots
  12461. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  12462. are several kinds of polymorphism in programming languages, such as
  12463. subtype polymorphism and parametric
  12464. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  12465. study in this chapter does not have a special name but it is the kind
  12466. that arises in dynamically typed languages.
  12467. Another characteristic of dynamically typed languages is that
  12468. primitive operations, such as \code{not}, are often defined to operate
  12469. on many different types of values. In fact, in Racket, the \code{not}
  12470. operator produces a result for any kind of value: given \code{\#f} it
  12471. returns \code{\#t} and given anything else it returns \code{\#f}.
  12472. Furthermore, even when primitive operations restrict their inputs to
  12473. values of a certain type, this restriction is enforced at runtime
  12474. instead of during compilation. For example, the following vector
  12475. reference results in a run-time contract violation because the index
  12476. must be in integer, not a Boolean such as \code{\#t}.
  12477. \begin{lstlisting}
  12478. (vector-ref (vector 42) #t)
  12479. \end{lstlisting}
  12480. \begin{figure}[tp]
  12481. \centering
  12482. \fbox{
  12483. \begin{minipage}{0.97\textwidth}
  12484. \[
  12485. \begin{array}{rcl}
  12486. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  12487. \Exp &::=& \Int \MID \CREAD{} \MID \CNEG{\Exp}
  12488. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} \\
  12489. &\MID& \Var \MID \CLET{\Var}{\Exp}{\Exp} \\
  12490. &\MID& \key{\#t} \MID \key{\#f}
  12491. \MID \CBINOP{\key{and}}{\Exp}{\Exp}
  12492. \MID \CBINOP{\key{or}}{\Exp}{\Exp}
  12493. \MID \CUNIOP{\key{not}}{\Exp} \\
  12494. &\MID& \LP\itm{cmp}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} \\
  12495. &\MID& \LP\key{vector}\;\Exp\ldots\RP \MID
  12496. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  12497. &\MID& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \MID \LP\key{void}\RP \\
  12498. &\MID& \LP\Exp \; \Exp\ldots\RP
  12499. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  12500. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  12501. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  12502. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  12503. \LangDynM{} &::=& \Def\ldots\; \Exp
  12504. \end{array}
  12505. \]
  12506. \end{minipage}
  12507. }
  12508. \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
  12509. \label{fig:r7-concrete-syntax}
  12510. \end{figure}
  12511. \begin{figure}[tp]
  12512. \centering
  12513. \fbox{
  12514. \begin{minipage}{0.96\textwidth}
  12515. \small
  12516. \[
  12517. \begin{array}{lcl}
  12518. \Exp &::=& \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  12519. &\MID& \PRIM{\itm{op}}{\Exp\ldots} \\
  12520. &\MID& \BOOL{\itm{bool}}
  12521. \MID \IF{\Exp}{\Exp}{\Exp} \\
  12522. &\MID& \VOID{} \MID \APPLY{\Exp}{\Exp\ldots} \\
  12523. &\MID& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  12524. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  12525. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  12526. \end{array}
  12527. \]
  12528. \end{minipage}
  12529. }
  12530. \caption{The abstract syntax of \LangDyn{}.}
  12531. \label{fig:r7-syntax}
  12532. \end{figure}
  12533. The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
  12534. defined in Figures~\ref{fig:r7-concrete-syntax} and
  12535. \ref{fig:r7-syntax}.
  12536. %
  12537. There is no type checker for \LangDyn{} because it is not a statically
  12538. typed language (it's dynamically typed!).
  12539. The definitional interpreter for \LangDyn{} is presented in
  12540. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined i
  12541. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
  12542. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  12543. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}), the
  12544. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  12545. value} that combines an underlying value with a tag that identifies
  12546. what kind of value it is. We define the following struct
  12547. to represented tagged values.
  12548. \begin{lstlisting}
  12549. (struct Tagged (value tag) #:transparent)
  12550. \end{lstlisting}
  12551. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  12552. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  12553. but don't always capture all the information that a type does. For
  12554. example, a vector of type \code{(Vector Any Any)} is tagged with
  12555. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  12556. is tagged with \code{Procedure}.
  12557. Next consider the match case for \code{vector-ref}. The
  12558. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  12559. is used to ensure that the first argument is a vector and the second
  12560. is an integer. If they are not, a \code{trapped-error} is raised.
  12561. Recall from Section~\ref{sec:interp_Lint} that when a definition
  12562. interpreter raises a \code{trapped-error} error, the compiled code
  12563. must also signal an error by exiting with return code \code{255}. A
  12564. \code{trapped-error} is also raised if the index is not less than
  12565. length of the vector.
  12566. \begin{figure}[tbp]
  12567. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12568. (define ((interp-Rdyn-exp env) ast)
  12569. (define recur (interp-Rdyn-exp env))
  12570. (match ast
  12571. [(Var x) (lookup x env)]
  12572. [(Int n) (Tagged n 'Integer)]
  12573. [(Bool b) (Tagged b 'Boolean)]
  12574. [(Lambda xs rt body)
  12575. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  12576. [(Prim 'vector es)
  12577. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  12578. [(Prim 'vector-ref (list e1 e2))
  12579. (define vec (recur e1)) (define i (recur e2))
  12580. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  12581. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  12582. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  12583. (vector-ref (Tagged-value vec) (Tagged-value i))]
  12584. [(Prim 'vector-set! (list e1 e2 e3))
  12585. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  12586. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  12587. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  12588. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  12589. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  12590. (Tagged (void) 'Void)]
  12591. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  12592. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  12593. [(Prim 'or (list e1 e2))
  12594. (define v1 (recur e1))
  12595. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  12596. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  12597. [(Prim op (list e1))
  12598. #:when (set-member? type-predicates op)
  12599. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  12600. [(Prim op es)
  12601. (define args (map recur es))
  12602. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  12603. (unless (for/or ([expected-tags (op-tags op)])
  12604. (equal? expected-tags tags))
  12605. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  12606. (tag-value
  12607. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  12608. [(If q t f)
  12609. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  12610. [(Apply f es)
  12611. (define new-f (recur f)) (define args (map recur es))
  12612. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  12613. (match f-val
  12614. [`(function ,xs ,body ,lam-env)
  12615. (unless (eq? (length xs) (length args))
  12616. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  12617. (define new-env (append (map cons xs args) lam-env))
  12618. ((interp-Rdyn-exp new-env) body)]
  12619. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  12620. \end{lstlisting}
  12621. \caption{Interpreter for the \LangDyn{} language.}
  12622. \label{fig:interp-Rdyn}
  12623. \end{figure}
  12624. \begin{figure}[tbp]
  12625. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12626. (define (interp-op op)
  12627. (match op
  12628. ['+ fx+]
  12629. ['- fx-]
  12630. ['read read-fixnum]
  12631. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  12632. ['< (lambda (v1 v2)
  12633. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  12634. ['<= (lambda (v1 v2)
  12635. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  12636. ['> (lambda (v1 v2)
  12637. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  12638. ['>= (lambda (v1 v2)
  12639. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  12640. ['boolean? boolean?]
  12641. ['integer? fixnum?]
  12642. ['void? void?]
  12643. ['vector? vector?]
  12644. ['vector-length vector-length]
  12645. ['procedure? (match-lambda
  12646. [`(functions ,xs ,body ,env) #t] [else #f])]
  12647. [else (error 'interp-op "unknown operator" op)]))
  12648. (define (op-tags op)
  12649. (match op
  12650. ['+ '((Integer Integer))]
  12651. ['- '((Integer Integer) (Integer))]
  12652. ['read '(())]
  12653. ['not '((Boolean))]
  12654. ['< '((Integer Integer))]
  12655. ['<= '((Integer Integer))]
  12656. ['> '((Integer Integer))]
  12657. ['>= '((Integer Integer))]
  12658. ['vector-length '((Vector))]))
  12659. (define type-predicates
  12660. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  12661. (define (tag-value v)
  12662. (cond [(boolean? v) (Tagged v 'Boolean)]
  12663. [(fixnum? v) (Tagged v 'Integer)]
  12664. [(procedure? v) (Tagged v 'Procedure)]
  12665. [(vector? v) (Tagged v 'Vector)]
  12666. [(void? v) (Tagged v 'Void)]
  12667. [else (error 'tag-value "unidentified value ~a" v)]))
  12668. (define (check-tag val expected ast)
  12669. (define tag (Tagged-tag val))
  12670. (unless (eq? tag expected)
  12671. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  12672. \end{lstlisting}
  12673. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  12674. \label{fig:interp-Rdyn-aux}
  12675. \end{figure}
  12676. \clearpage
  12677. \section{Representation of Tagged Values}
  12678. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  12679. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  12680. values at the bit level. Because almost every operation in \LangDyn{}
  12681. involves manipulating tagged values, the representation must be
  12682. efficient. Recall that all of our values are 64 bits. We shall steal
  12683. the 3 right-most bits to encode the tag. We use $001$ to identify
  12684. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  12685. and $101$ for the void value. We define the following auxiliary
  12686. function for mapping types to tag codes.
  12687. \begin{align*}
  12688. \itm{tagof}(\key{Integer}) &= 001 \\
  12689. \itm{tagof}(\key{Boolean}) &= 100 \\
  12690. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  12691. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  12692. \itm{tagof}(\key{Void}) &= 101
  12693. \end{align*}
  12694. This stealing of 3 bits comes at some price: our integers are reduced
  12695. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  12696. affect vectors and procedures because those values are addresses, and
  12697. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  12698. they are always $000$. Thus, we do not lose information by overwriting
  12699. the rightmost 3 bits with the tag and we can simply zero-out the tag
  12700. to recover the original address.
  12701. To make tagged values into first-class entities, we can give them a
  12702. type, called \code{Any}, and define operations such as \code{Inject}
  12703. and \code{Project} for creating and using them, yielding the \LangAny{}
  12704. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  12705. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  12706. in greater detail.
  12707. \section{The \LangAny{} Language}
  12708. \label{sec:Rany-lang}
  12709. \begin{figure}[tp]
  12710. \centering
  12711. \fbox{
  12712. \begin{minipage}{0.96\textwidth}
  12713. \small
  12714. \[
  12715. \begin{array}{lcl}
  12716. \Type &::= & \ldots \MID \key{Any} \\
  12717. \itm{op} &::= & \ldots \MID \code{any-vector-length}
  12718. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  12719. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  12720. \MID \code{procedure?} \MID \code{void?} \\
  12721. \Exp &::=& \ldots
  12722. \MID \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  12723. &\MID& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  12724. \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  12725. \LangAnyM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  12726. \end{array}
  12727. \]
  12728. \end{minipage}
  12729. }
  12730. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  12731. \label{fig:Rany-syntax}
  12732. \end{figure}
  12733. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  12734. (The concrete syntax of \LangAny{} is in the Appendix,
  12735. Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
  12736. converts the value produced by expression $e$ of type $T$ into a
  12737. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  12738. produced by expression $e$ into a value of type $T$ or else halts the
  12739. program if the type tag is not equivalent to $T$.
  12740. %
  12741. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  12742. restricted to a flat type $\FType$, which simplifies the
  12743. implementation and corresponds with what is needed for compiling \LangDyn{}.
  12744. The \code{any-vector} operators adapt the vector operations so that
  12745. they can be applied to a value of type \code{Any}. They also
  12746. generalize the vector operations in that the index is not restricted
  12747. to be a literal integer in the grammar but is allowed to be any
  12748. expression.
  12749. The type predicates such as \key{boolean?} expect their argument to
  12750. produce a tagged value; they return \key{\#t} if the tag corresponds
  12751. to the predicate and they return \key{\#f} otherwise.
  12752. The type checker for \LangAny{} is shown in
  12753. Figures~\ref{fig:type-check-Rany-part-1} and
  12754. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  12755. Figure~\ref{fig:type-check-Rany-aux}.
  12756. %
  12757. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  12758. auxiliary functions \code{apply-inject} and \code{apply-project} are
  12759. in Figure~\ref{fig:apply-project}.
  12760. \begin{figure}[btp]
  12761. \begin{lstlisting}[basicstyle=\ttfamily\small]
  12762. (define type-check-Rany_class
  12763. (class type-check-Rlambda_class
  12764. (super-new)
  12765. (inherit check-type-equal?)
  12766. (define/override (type-check-exp env)
  12767. (lambda (e)
  12768. (define recur (type-check-exp env))
  12769. (match e
  12770. [(Inject e1 ty)
  12771. (unless (flat-ty? ty)
  12772. (error 'type-check "may only inject from flat type, not ~a" ty))
  12773. (define-values (new-e1 e-ty) (recur e1))
  12774. (check-type-equal? e-ty ty e)
  12775. (values (Inject new-e1 ty) 'Any)]
  12776. [(Project e1 ty)
  12777. (unless (flat-ty? ty)
  12778. (error 'type-check "may only project to flat type, not ~a" ty))
  12779. (define-values (new-e1 e-ty) (recur e1))
  12780. (check-type-equal? e-ty 'Any e)
  12781. (values (Project new-e1 ty) ty)]
  12782. [(Prim 'any-vector-length (list e1))
  12783. (define-values (e1^ t1) (recur e1))
  12784. (check-type-equal? t1 'Any e)
  12785. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  12786. [(Prim 'any-vector-ref (list e1 e2))
  12787. (define-values (e1^ t1) (recur e1))
  12788. (define-values (e2^ t2) (recur e2))
  12789. (check-type-equal? t1 'Any e)
  12790. (check-type-equal? t2 'Integer e)
  12791. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  12792. [(Prim 'any-vector-set! (list e1 e2 e3))
  12793. (define-values (e1^ t1) (recur e1))
  12794. (define-values (e2^ t2) (recur e2))
  12795. (define-values (e3^ t3) (recur e3))
  12796. (check-type-equal? t1 'Any e)
  12797. (check-type-equal? t2 'Integer e)
  12798. (check-type-equal? t3 'Any e)
  12799. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  12800. \end{lstlisting}
  12801. \caption{Type checker for the \LangAny{} language, part 1.}
  12802. \label{fig:type-check-Rany-part-1}
  12803. \end{figure}
  12804. \begin{figure}[btp]
  12805. \begin{lstlisting}[basicstyle=\ttfamily\small]
  12806. [(ValueOf e ty)
  12807. (define-values (new-e e-ty) (recur e))
  12808. (values (ValueOf new-e ty) ty)]
  12809. [(Prim pred (list e1))
  12810. #:when (set-member? (type-predicates) pred)
  12811. (define-values (new-e1 e-ty) (recur e1))
  12812. (check-type-equal? e-ty 'Any e)
  12813. (values (Prim pred (list new-e1)) 'Boolean)]
  12814. [(If cnd thn els)
  12815. (define-values (cnd^ Tc) (recur cnd))
  12816. (define-values (thn^ Tt) (recur thn))
  12817. (define-values (els^ Te) (recur els))
  12818. (check-type-equal? Tc 'Boolean cnd)
  12819. (check-type-equal? Tt Te e)
  12820. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  12821. [(Exit) (values (Exit) '_)]
  12822. [(Prim 'eq? (list arg1 arg2))
  12823. (define-values (e1 t1) (recur arg1))
  12824. (define-values (e2 t2) (recur arg2))
  12825. (match* (t1 t2)
  12826. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  12827. [(other wise) (check-type-equal? t1 t2 e)])
  12828. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  12829. [else ((super type-check-exp env) e)])))
  12830. ))
  12831. \end{lstlisting}
  12832. \caption{Type checker for the \LangAny{} language, part 2.}
  12833. \label{fig:type-check-Rany-part-2}
  12834. \end{figure}
  12835. \begin{figure}[tbp]
  12836. \begin{lstlisting}
  12837. (define/override (operator-types)
  12838. (append
  12839. '((integer? . ((Any) . Boolean))
  12840. (vector? . ((Any) . Boolean))
  12841. (procedure? . ((Any) . Boolean))
  12842. (void? . ((Any) . Boolean))
  12843. (tag-of-any . ((Any) . Integer))
  12844. (make-any . ((_ Integer) . Any))
  12845. )
  12846. (super operator-types)))
  12847. (define/public (type-predicates)
  12848. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  12849. (define/public (combine-types t1 t2)
  12850. (match (list t1 t2)
  12851. [(list '_ t2) t2]
  12852. [(list t1 '_) t1]
  12853. [(list `(Vector ,ts1 ...)
  12854. `(Vector ,ts2 ...))
  12855. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  12856. (combine-types t1 t2)))]
  12857. [(list `(,ts1 ... -> ,rt1)
  12858. `(,ts2 ... -> ,rt2))
  12859. `(,@(for/list ([t1 ts1] [t2 ts2])
  12860. (combine-types t1 t2))
  12861. -> ,(combine-types rt1 rt2))]
  12862. [else t1]))
  12863. (define/public (flat-ty? ty)
  12864. (match ty
  12865. [(or `Integer `Boolean '_ `Void) #t]
  12866. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  12867. [`(,ts ... -> ,rt)
  12868. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  12869. [else #f]))
  12870. \end{lstlisting}
  12871. \caption{Auxiliary methods for type checking \LangAny{}.}
  12872. \label{fig:type-check-Rany-aux}
  12873. \end{figure}
  12874. \begin{figure}[btp]
  12875. \begin{lstlisting}
  12876. (define interp-Rany_class
  12877. (class interp-Rlambda_class
  12878. (super-new)
  12879. (define/override (interp-op op)
  12880. (match op
  12881. ['boolean? (match-lambda
  12882. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  12883. [else #f])]
  12884. ['integer? (match-lambda
  12885. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  12886. [else #f])]
  12887. ['vector? (match-lambda
  12888. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  12889. [else #f])]
  12890. ['procedure? (match-lambda
  12891. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  12892. [else #f])]
  12893. ['eq? (match-lambda*
  12894. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  12895. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  12896. [ls (apply (super interp-op op) ls)])]
  12897. ['any-vector-ref (lambda (v i)
  12898. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  12899. ['any-vector-set! (lambda (v i a)
  12900. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  12901. ['any-vector-length (lambda (v)
  12902. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  12903. [else (super interp-op op)]))
  12904. (define/override ((interp-exp env) e)
  12905. (define recur (interp-exp env))
  12906. (match e
  12907. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  12908. [(Project e ty2) (apply-project (recur e) ty2)]
  12909. [else ((super interp-exp env) e)]))
  12910. ))
  12911. (define (interp-Rany p)
  12912. (send (new interp-Rany_class) interp-program p))
  12913. \end{lstlisting}
  12914. \caption{Interpreter for \LangAny{}.}
  12915. \label{fig:interp-Rany}
  12916. \end{figure}
  12917. \begin{figure}[tbp]
  12918. \begin{lstlisting}
  12919. (define/public (apply-inject v tg) (Tagged v tg))
  12920. (define/public (apply-project v ty2)
  12921. (define tag2 (any-tag ty2))
  12922. (match v
  12923. [(Tagged v1 tag1)
  12924. (cond
  12925. [(eq? tag1 tag2)
  12926. (match ty2
  12927. [`(Vector ,ts ...)
  12928. (define l1 ((interp-op 'vector-length) v1))
  12929. (cond
  12930. [(eq? l1 (length ts)) v1]
  12931. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  12932. l1 (length ts))])]
  12933. [`(,ts ... -> ,rt)
  12934. (match v1
  12935. [`(function ,xs ,body ,env)
  12936. (cond [(eq? (length xs) (length ts)) v1]
  12937. [else
  12938. (error 'apply-project "arity mismatch ~a != ~a"
  12939. (length xs) (length ts))])]
  12940. [else (error 'apply-project "expected function not ~a" v1)])]
  12941. [else v1])]
  12942. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  12943. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  12944. \end{lstlisting}
  12945. \caption{Auxiliary functions for injection and projection.}
  12946. \label{fig:apply-project}
  12947. \end{figure}
  12948. \clearpage
  12949. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  12950. \label{sec:compile-r7}
  12951. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  12952. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  12953. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  12954. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  12955. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  12956. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  12957. the Boolean \code{\#t}, which must be injected to produce an
  12958. expression of type \key{Any}.
  12959. %
  12960. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  12961. addition, is representative of compilation for many primitive
  12962. operations: the arguments have type \key{Any} and must be projected to
  12963. \key{Integer} before the addition can be performed.
  12964. The compilation of \key{lambda} (third row of
  12965. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  12966. produce type annotations: we simply use \key{Any}.
  12967. %
  12968. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  12969. has to account for some differences in behavior between \LangDyn{} and
  12970. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  12971. kind of values can be used in various places. For example, the
  12972. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  12973. the arguments need not be of the same type (in that case the
  12974. result is \code{\#f}).
  12975. \begin{figure}[btp]
  12976. \centering
  12977. \begin{tabular}{|lll|} \hline
  12978. \begin{minipage}{0.27\textwidth}
  12979. \begin{lstlisting}
  12980. #t
  12981. \end{lstlisting}
  12982. \end{minipage}
  12983. &
  12984. $\Rightarrow$
  12985. &
  12986. \begin{minipage}{0.65\textwidth}
  12987. \begin{lstlisting}
  12988. (inject #t Boolean)
  12989. \end{lstlisting}
  12990. \end{minipage}
  12991. \\[2ex]\hline
  12992. \begin{minipage}{0.27\textwidth}
  12993. \begin{lstlisting}
  12994. (+ |$e_1$| |$e_2$|)
  12995. \end{lstlisting}
  12996. \end{minipage}
  12997. &
  12998. $\Rightarrow$
  12999. &
  13000. \begin{minipage}{0.65\textwidth}
  13001. \begin{lstlisting}
  13002. (inject
  13003. (+ (project |$e'_1$| Integer)
  13004. (project |$e'_2$| Integer))
  13005. Integer)
  13006. \end{lstlisting}
  13007. \end{minipage}
  13008. \\[2ex]\hline
  13009. \begin{minipage}{0.27\textwidth}
  13010. \begin{lstlisting}
  13011. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  13012. \end{lstlisting}
  13013. \end{minipage}
  13014. &
  13015. $\Rightarrow$
  13016. &
  13017. \begin{minipage}{0.65\textwidth}
  13018. \begin{lstlisting}
  13019. (inject
  13020. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  13021. (Any|$\ldots$|Any -> Any))
  13022. \end{lstlisting}
  13023. \end{minipage}
  13024. \\[2ex]\hline
  13025. \begin{minipage}{0.27\textwidth}
  13026. \begin{lstlisting}
  13027. (|$e_0$| |$e_1 \ldots e_n$|)
  13028. \end{lstlisting}
  13029. \end{minipage}
  13030. &
  13031. $\Rightarrow$
  13032. &
  13033. \begin{minipage}{0.65\textwidth}
  13034. \begin{lstlisting}
  13035. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  13036. \end{lstlisting}
  13037. \end{minipage}
  13038. \\[2ex]\hline
  13039. \begin{minipage}{0.27\textwidth}
  13040. \begin{lstlisting}
  13041. (vector-ref |$e_1$| |$e_2$|)
  13042. \end{lstlisting}
  13043. \end{minipage}
  13044. &
  13045. $\Rightarrow$
  13046. &
  13047. \begin{minipage}{0.65\textwidth}
  13048. \begin{lstlisting}
  13049. (any-vector-ref |$e_1'$| |$e_2'$|)
  13050. \end{lstlisting}
  13051. \end{minipage}
  13052. \\[2ex]\hline
  13053. \begin{minipage}{0.27\textwidth}
  13054. \begin{lstlisting}
  13055. (if |$e_1$| |$e_2$| |$e_3$|)
  13056. \end{lstlisting}
  13057. \end{minipage}
  13058. &
  13059. $\Rightarrow$
  13060. &
  13061. \begin{minipage}{0.65\textwidth}
  13062. \begin{lstlisting}
  13063. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  13064. \end{lstlisting}
  13065. \end{minipage}
  13066. \\[2ex]\hline
  13067. \begin{minipage}{0.27\textwidth}
  13068. \begin{lstlisting}
  13069. (eq? |$e_1$| |$e_2$|)
  13070. \end{lstlisting}
  13071. \end{minipage}
  13072. &
  13073. $\Rightarrow$
  13074. &
  13075. \begin{minipage}{0.65\textwidth}
  13076. \begin{lstlisting}
  13077. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  13078. \end{lstlisting}
  13079. \end{minipage}
  13080. \\[2ex]\hline
  13081. \begin{minipage}{0.27\textwidth}
  13082. \begin{lstlisting}
  13083. (not |$e_1$|)
  13084. \end{lstlisting}
  13085. \end{minipage}
  13086. &
  13087. $\Rightarrow$
  13088. &
  13089. \begin{minipage}{0.65\textwidth}
  13090. \begin{lstlisting}
  13091. (if (eq? |$e'_1$| (inject #f Boolean))
  13092. (inject #t Boolean) (inject #f Boolean))
  13093. \end{lstlisting}
  13094. \end{minipage}
  13095. \\[2ex]\hline
  13096. \end{tabular}
  13097. \caption{Cast Insertion}
  13098. \label{fig:compile-r7-Rany}
  13099. \end{figure}
  13100. \section{Reveal Casts}
  13101. \label{sec:reveal-casts-Rany}
  13102. % TODO: define R'_6
  13103. In the \code{reveal-casts} pass we recommend compiling \code{project}
  13104. into an \code{if} expression that checks whether the value's tag
  13105. matches the target type; if it does, the value is converted to a value
  13106. of the target type by removing the tag; if it does not, the program
  13107. exits. To perform these actions we need a new primitive operation,
  13108. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  13109. The \code{tag-of-any} operation retrieves the type tag from a tagged
  13110. value of type \code{Any}. The \code{ValueOf} form retrieves the
  13111. underlying value from a tagged value. The \code{ValueOf} form
  13112. includes the type for the underlying value which is used by the type
  13113. checker. Finally, the \code{Exit} form ends the execution of the
  13114. program.
  13115. If the target type of the projection is \code{Boolean} or
  13116. \code{Integer}, then \code{Project} can be translated as follows.
  13117. \begin{center}
  13118. \begin{minipage}{1.0\textwidth}
  13119. \begin{lstlisting}
  13120. (Project |$e$| |$\FType$|)
  13121. |$\Rightarrow$|
  13122. (Let |$\itm{tmp}$| |$e'$|
  13123. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  13124. (Int |$\itm{tagof}(\FType)$|)))
  13125. (ValueOf |$\itm{tmp}$| |$\FType$|)
  13126. (Exit)))
  13127. \end{lstlisting}
  13128. \end{minipage}
  13129. \end{center}
  13130. If the target type of the projection is a vector or function type,
  13131. then there is a bit more work to do. For vectors, check that the
  13132. length of the vector type matches the length of the vector (using the
  13133. \code{vector-length} primitive). For functions, check that the number
  13134. of parameters in the function type matches the function's arity (using
  13135. \code{procedure-arity}).
  13136. Regarding \code{inject}, we recommend compiling it to a slightly
  13137. lower-level primitive operation named \code{make-any}. This operation
  13138. takes a tag instead of a type.
  13139. \begin{center}
  13140. \begin{minipage}{1.0\textwidth}
  13141. \begin{lstlisting}
  13142. (Inject |$e$| |$\FType$|)
  13143. |$\Rightarrow$|
  13144. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  13145. \end{lstlisting}
  13146. \end{minipage}
  13147. \end{center}
  13148. The type predicates (\code{boolean?}, etc.) can be translated into
  13149. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  13150. translation of \code{Project}.
  13151. The \code{any-vector-ref} and \code{any-vector-set!} operations
  13152. combine the projection action with the vector operation. Also, the
  13153. read and write operations allow arbitrary expressions for the index so
  13154. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  13155. cannot guarantee that the index is within bounds. Thus, we insert code
  13156. to perform bounds checking at runtime. The translation for
  13157. \code{any-vector-ref} is as follows and the other two operations are
  13158. translated in a similar way.
  13159. \begin{lstlisting}
  13160. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  13161. |$\Rightarrow$|
  13162. (Let |$v$| |$e'_1$|
  13163. (Let |$i$| |$e'_2$|
  13164. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  13165. (If (Prim '< (list (Var |$i$|)
  13166. (Prim 'any-vector-length (list (Var |$v$|)))))
  13167. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  13168. (Exit))))
  13169. \end{lstlisting}
  13170. \section{Remove Complex Operands}
  13171. \label{sec:rco-Rany}
  13172. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  13173. The subexpression of \code{ValueOf} must be atomic.
  13174. \section{Explicate Control and \LangCAny{}}
  13175. \label{sec:explicate-Rany}
  13176. The output of \code{explicate\_control} is the \LangCAny{} language whose
  13177. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  13178. form that we added to \LangAny{} remains an expression and the \code{Exit}
  13179. expression becomes a $\Tail$. Also, note that the index argument of
  13180. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  13181. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  13182. \begin{figure}[tp]
  13183. \fbox{
  13184. \begin{minipage}{0.96\textwidth}
  13185. \small
  13186. \[
  13187. \begin{array}{lcl}
  13188. \Exp &::= & \ldots
  13189. \MID \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  13190. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  13191. &\MID& \VALUEOF{\Exp}{\FType} \\
  13192. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  13193. \MID \LP\key{Collect} \,\itm{int}\RP }\\
  13194. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  13195. \MID \GOTO{\itm{label}} } \\
  13196. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  13197. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  13198. \MID \LP\key{Exit}\RP \\
  13199. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  13200. \LangCAnyM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  13201. \end{array}
  13202. \]
  13203. \end{minipage}
  13204. }
  13205. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  13206. \label{fig:c5-syntax}
  13207. \end{figure}
  13208. \section{Select Instructions}
  13209. \label{sec:select-Rany}
  13210. In the \code{select-instructions} pass we translate the primitive
  13211. operations on the \code{Any} type to x86 instructions that involve
  13212. manipulating the 3 tag bits of the tagged value.
  13213. \paragraph{Make-any}
  13214. We recommend compiling the \key{make-any} primitive as follows if the
  13215. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  13216. shifts the destination to the left by the number of bits specified its
  13217. source argument (in this case $3$, the length of the tag) and it
  13218. preserves the sign of the integer. We use the \key{orq} instruction to
  13219. combine the tag and the value to form the tagged value. \\
  13220. \begin{lstlisting}
  13221. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  13222. |$\Rightarrow$|
  13223. movq |$e'$|, |\itm{lhs'}|
  13224. salq $3, |\itm{lhs'}|
  13225. orq $|$\itm{tag}$|, |\itm{lhs'}|
  13226. \end{lstlisting}
  13227. The instruction selection for vectors and procedures is different
  13228. because their is no need to shift them to the left. The rightmost 3
  13229. bits are already zeros as described at the beginning of this
  13230. chapter. So we just combine the value and the tag using \key{orq}. \\
  13231. \begin{lstlisting}
  13232. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  13233. |$\Rightarrow$|
  13234. movq |$e'$|, |\itm{lhs'}|
  13235. orq $|$\itm{tag}$|, |\itm{lhs'}|
  13236. \end{lstlisting}
  13237. \paragraph{Tag-of-any}
  13238. Recall that the \code{tag-of-any} operation extracts the type tag from
  13239. a value of type \code{Any}. The type tag is the bottom three bits, so
  13240. we obtain the tag by taking the bitwise-and of the value with $111$
  13241. ($7$ in decimal).
  13242. \begin{lstlisting}
  13243. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  13244. |$\Rightarrow$|
  13245. movq |$e'$|, |\itm{lhs'}|
  13246. andq $7, |\itm{lhs'}|
  13247. \end{lstlisting}
  13248. \paragraph{ValueOf}
  13249. Like \key{make-any}, the instructions for \key{ValueOf} are different
  13250. depending on whether the type $T$ is a pointer (vector or procedure)
  13251. or not (Integer or Boolean). The following shows the instruction
  13252. selection for Integer and Boolean. We produce an untagged value by
  13253. shifting it to the right by 3 bits.
  13254. \begin{lstlisting}
  13255. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  13256. |$\Rightarrow$|
  13257. movq |$e'$|, |\itm{lhs'}|
  13258. sarq $3, |\itm{lhs'}|
  13259. \end{lstlisting}
  13260. %
  13261. In the case for vectors and procedures, there is no need to
  13262. shift. Instead we just need to zero-out the rightmost 3 bits. We
  13263. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  13264. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  13265. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  13266. then apply \code{andq} with the tagged value to get the desired
  13267. result. \\
  13268. \begin{lstlisting}
  13269. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  13270. |$\Rightarrow$|
  13271. movq $|$-8$|, |\itm{lhs'}|
  13272. andq |$e'$|, |\itm{lhs'}|
  13273. \end{lstlisting}
  13274. %% \paragraph{Type Predicates} We leave it to the reader to
  13275. %% devise a sequence of instructions to implement the type predicates
  13276. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  13277. \paragraph{Any-vector-length}
  13278. \begin{lstlisting}
  13279. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  13280. |$\Longrightarrow$|
  13281. movq |$\neg 111$|, %r11
  13282. andq |$a_1'$|, %r11
  13283. movq 0(%r11), %r11
  13284. andq $126, %r11
  13285. sarq $1, %r11
  13286. movq %r11, |$\itm{lhs'}$|
  13287. \end{lstlisting}
  13288. \paragraph{Any-vector-ref}
  13289. The index may be an arbitrary atom so instead of computing the offset
  13290. at compile time, instructions need to be generated to compute the
  13291. offset at runtime as follows. Note the use of the new instruction
  13292. \code{imulq}.
  13293. \begin{center}
  13294. \begin{minipage}{0.96\textwidth}
  13295. \begin{lstlisting}
  13296. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  13297. |$\Longrightarrow$|
  13298. movq |$\neg 111$|, %r11
  13299. andq |$a_1'$|, %r11
  13300. movq |$a_2'$|, %rax
  13301. addq $1, %rax
  13302. imulq $8, %rax
  13303. addq %rax, %r11
  13304. movq 0(%r11) |$\itm{lhs'}$|
  13305. \end{lstlisting}
  13306. \end{minipage}
  13307. \end{center}
  13308. \paragraph{Any-vector-set!}
  13309. The code generation for \code{any-vector-set!} is similar to the other
  13310. \code{any-vector} operations.
  13311. \section{Register Allocation for \LangAny{}}
  13312. \label{sec:register-allocation-Rany}
  13313. \index{subject}{register allocation}
  13314. There is an interesting interaction between tagged values and garbage
  13315. collection that has an impact on register allocation. A variable of
  13316. type \code{Any} might refer to a vector and therefore it might be a
  13317. root that needs to be inspected and copied during garbage
  13318. collection. Thus, we need to treat variables of type \code{Any} in a
  13319. similar way to variables of type \code{Vector} for purposes of
  13320. register allocation. In particular,
  13321. \begin{itemize}
  13322. \item If a variable of type \code{Any} is live during a function call,
  13323. then it must be spilled. This can be accomplished by changing
  13324. \code{build-interference} to mark all variables of type \code{Any}
  13325. that are live after a \code{callq} as interfering with all the
  13326. registers.
  13327. \item If a variable of type \code{Any} is spilled, it must be spilled
  13328. to the root stack instead of the normal procedure call stack.
  13329. \end{itemize}
  13330. Another concern regarding the root stack is that the garbage collector
  13331. needs to differentiate between (1) plain old pointers to tuples, (2) a
  13332. tagged value that points to a tuple, and (3) a tagged value that is
  13333. not a tuple. We enable this differentiation by choosing not to use the
  13334. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  13335. reserved for identifying plain old pointers to tuples. That way, if
  13336. one of the first three bits is set, then we have a tagged value and
  13337. inspecting the tag can differentiation between vectors ($010$) and the
  13338. other kinds of values.
  13339. \begin{exercise}\normalfont
  13340. Expand your compiler to handle \LangAny{} as discussed in the last few
  13341. sections. Create 5 new programs that use the \code{Any} type and the
  13342. new operations (\code{inject}, \code{project}, \code{boolean?},
  13343. etc.). Test your compiler on these new programs and all of your
  13344. previously created test programs.
  13345. \end{exercise}
  13346. \begin{exercise}\normalfont
  13347. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  13348. Create tests for \LangDyn{} by adapting ten of your previous test programs
  13349. by removing type annotations. Add 5 more tests programs that
  13350. specifically rely on the language being dynamically typed. That is,
  13351. they should not be legal programs in a statically typed language, but
  13352. nevertheless, they should be valid \LangDyn{} programs that run to
  13353. completion without error.
  13354. \end{exercise}
  13355. \begin{figure}[p]
  13356. \begin{tikzpicture}[baseline=(current bounding box.center)]
  13357. \node (Rfun) at (0,4) {\large \LangDyn{}};
  13358. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  13359. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  13360. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  13361. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  13362. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  13363. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  13364. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  13365. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  13366. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  13367. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  13368. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  13369. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  13370. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  13371. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  13372. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  13373. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  13374. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  13375. \path[->,bend left=15] (Rfun) edge [above] node
  13376. {\ttfamily\footnotesize shrink} (Rfun-2);
  13377. \path[->,bend left=15] (Rfun-2) edge [above] node
  13378. {\ttfamily\footnotesize uniquify} (Rfun-3);
  13379. \path[->,bend left=15] (Rfun-3) edge [above] node
  13380. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  13381. \path[->,bend right=15] (Rfun-4) edge [left] node
  13382. {\ttfamily\footnotesize cast-insert} (Rfun-5);
  13383. \path[->,bend left=15] (Rfun-5) edge [above] node
  13384. {\ttfamily\footnotesize check-bounds} (Rfun-6);
  13385. \path[->,bend left=15] (Rfun-6) edge [left] node
  13386. {\ttfamily\footnotesize reveal-casts} (Rfun-7);
  13387. \path[->,bend left=15] (Rfun-7) edge [below] node
  13388. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  13389. \path[->,bend right=15] (F1-2) edge [above] node
  13390. {\ttfamily\footnotesize limit-fun.} (F1-3);
  13391. \path[->,bend right=15] (F1-3) edge [above] node
  13392. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  13393. \path[->,bend right=15] (F1-4) edge [above] node
  13394. {\ttfamily\footnotesize remove-complex.} (F1-5);
  13395. \path[->,bend right=15] (F1-5) edge [right] node
  13396. {\ttfamily\footnotesize explicate-control} (C3-2);
  13397. \path[->,bend left=15] (C3-2) edge [left] node
  13398. {\ttfamily\footnotesize select-instr.} (x86-2);
  13399. \path[->,bend right=15] (x86-2) edge [left] node
  13400. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  13401. \path[->,bend right=15] (x86-2-1) edge [below] node
  13402. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  13403. \path[->,bend right=15] (x86-2-2) edge [left] node
  13404. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  13405. \path[->,bend left=15] (x86-3) edge [above] node
  13406. {\ttfamily\footnotesize patch-instr.} (x86-4);
  13407. \path[->,bend left=15] (x86-4) edge [right] node
  13408. {\ttfamily\footnotesize print-x86} (x86-5);
  13409. \end{tikzpicture}
  13410. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  13411. \label{fig:Rdyn-passes}
  13412. \end{figure}
  13413. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  13414. for the compilation of \LangDyn{}.
  13415. % Further Reading
  13416. \fi % racketEd
  13417. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13418. \chapter{Objects}
  13419. \label{ch:Robject}
  13420. \index{subject}{objects}
  13421. \index{subject}{classes}
  13422. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13423. \chapter{Gradual Typing}
  13424. \label{ch:Rgrad}
  13425. \index{subject}{gradual typing}
  13426. \if\edition\racketEd
  13427. This chapter studies a language, \LangGrad{}, in which the programmer
  13428. can choose between static and dynamic type checking in different parts
  13429. of a program, thereby mixing the statically typed \LangLoop{} language
  13430. with the dynamically typed \LangDyn{}. There are several approaches to
  13431. mixing static and dynamic typing, including multi-language
  13432. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  13433. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  13434. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  13435. programmer controls the amount of static versus dynamic checking by
  13436. adding or removing type annotations on parameters and
  13437. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  13438. %
  13439. The concrete syntax of \LangGrad{} is defined in
  13440. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  13441. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  13442. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  13443. non-terminals that make type annotations optional. The return types
  13444. are not optional in the abstract syntax; the parser fills in
  13445. \code{Any} when the return type is not specified in the concrete
  13446. syntax.
  13447. \begin{figure}[tp]
  13448. \centering
  13449. \fbox{
  13450. \begin{minipage}{0.96\textwidth}
  13451. \small
  13452. \[
  13453. \begin{array}{lcl}
  13454. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  13455. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  13456. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  13457. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  13458. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  13459. &\MID& \gray{\key{\#t} \MID \key{\#f}
  13460. \MID (\key{and}\;\Exp\;\Exp)
  13461. \MID (\key{or}\;\Exp\;\Exp)
  13462. \MID (\key{not}\;\Exp) } \\
  13463. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  13464. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  13465. (\key{vector-ref}\;\Exp\;\Int)} \\
  13466. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  13467. \MID (\Exp \; \Exp\ldots) } \\
  13468. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  13469. \MID \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  13470. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  13471. \MID \CBEGIN{\Exp\ldots}{\Exp}
  13472. \MID \CWHILE{\Exp}{\Exp} } \\
  13473. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  13474. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  13475. \end{array}
  13476. \]
  13477. \end{minipage}
  13478. }
  13479. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  13480. \label{fig:Rgrad-concrete-syntax}
  13481. \end{figure}
  13482. \begin{figure}[tp]
  13483. \centering
  13484. \fbox{
  13485. \begin{minipage}{0.96\textwidth}
  13486. \small
  13487. \[
  13488. \begin{array}{lcl}
  13489. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  13490. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  13491. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  13492. &\MID& \gray{ \BOOL{\itm{bool}}
  13493. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  13494. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  13495. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  13496. &\MID& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  13497. &\MID& \gray{ \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  13498. &\MID& \gray{ \WHILE{\Exp}{\Exp} } \\
  13499. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  13500. \LangGradM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  13501. \end{array}
  13502. \]
  13503. \end{minipage}
  13504. }
  13505. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  13506. \label{fig:Rgrad-syntax}
  13507. \end{figure}
  13508. Both the type checker and the interpreter for \LangGrad{} require some
  13509. interesting changes to enable gradual typing, which we discuss in the
  13510. next two sections in the context of the \code{map-vec} example from
  13511. Chapter~\ref{ch:Rfun}. In Figure~\ref{fig:gradual-map-vec} we
  13512. revised the \code{map-vec} example, omitting the type annotations from
  13513. the \code{add1} function.
  13514. \begin{figure}[btp]
  13515. % gradual_test_9.rkt
  13516. \begin{lstlisting}
  13517. (define (map-vec [f : (Integer -> Integer)]
  13518. [v : (Vector Integer Integer)])
  13519. : (Vector Integer Integer)
  13520. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13521. (define (add1 x) (+ x 1))
  13522. (vector-ref (map-vec add1 (vector 0 41)) 1)
  13523. \end{lstlisting}
  13524. \caption{A partially-typed version of the \code{map-vec} example.}
  13525. \label{fig:gradual-map-vec}
  13526. \end{figure}
  13527. \section{Type Checking \LangGrad{} and \LangCast{}}
  13528. \label{sec:gradual-type-check}
  13529. The type checker for \LangGrad{} uses the \code{Any} type for missing
  13530. parameter and return types. For example, the \code{x} parameter of
  13531. \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
  13532. \code{Any} and the return type of \code{add1} is \code{Any}. Next
  13533. consider the \code{+} operator inside \code{add1}. It expects both
  13534. arguments to have type \code{Integer}, but its first argument \code{x}
  13535. has type \code{Any}. In a gradually typed language, such differences
  13536. are allowed so long as the types are \emph{consistent}, that is, they
  13537. are equal except in places where there is an \code{Any} type. The type
  13538. \code{Any} is consistent with every other type.
  13539. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  13540. \begin{figure}[tbp]
  13541. \begin{lstlisting}
  13542. (define/public (consistent? t1 t2)
  13543. (match* (t1 t2)
  13544. [('Integer 'Integer) #t]
  13545. [('Boolean 'Boolean) #t]
  13546. [('Void 'Void) #t]
  13547. [('Any t2) #t]
  13548. [(t1 'Any) #t]
  13549. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  13550. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  13551. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  13552. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  13553. (consistent? rt1 rt2))]
  13554. [(other wise) #f]))
  13555. \end{lstlisting}
  13556. \caption{The consistency predicate on types.}
  13557. \label{fig:consistent}
  13558. \end{figure}
  13559. Returning to the \code{map-vec} example of
  13560. Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
  13561. \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
  13562. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  13563. because the two types are consistent. In particular, \code{->} is
  13564. equal to \code{->} and because \code{Any} is consistent with
  13565. \code{Integer}.
  13566. Next consider a program with an error, such as applying the
  13567. \code{map-vec} to a function that sometimes returns a Boolean, as
  13568. shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
  13569. \LangGrad{} accepts this program because the type of \code{maybe-add1} is
  13570. consistent with the type of parameter \code{f} of \code{map-vec}, that
  13571. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  13572. Integer)}. One might say that a gradual type checker is optimistic
  13573. in that it accepts programs that might execute without a runtime type
  13574. error.
  13575. %
  13576. Unfortunately, running this program with input \code{1} triggers an
  13577. error when the \code{maybe-add1} function returns \code{\#t}. \LangGrad{}
  13578. performs checking at runtime to ensure the integrity of the static
  13579. types, such as the \code{(Integer -> Integer)} annotation on parameter
  13580. \code{f} of \code{map-vec}. This runtime checking is carried out by a
  13581. new \code{Cast} form that is inserted by the type checker. Thus, the
  13582. output of the type checker is a program in the \LangCast{} language, which
  13583. adds \code{Cast} to \LangLoop{}, as shown in
  13584. Figure~\ref{fig:Rgrad-prime-syntax}.
  13585. \begin{figure}[tp]
  13586. \centering
  13587. \fbox{
  13588. \begin{minipage}{0.96\textwidth}
  13589. \small
  13590. \[
  13591. \begin{array}{lcl}
  13592. \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  13593. \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  13594. \end{array}
  13595. \]
  13596. \end{minipage}
  13597. }
  13598. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  13599. \label{fig:Rgrad-prime-syntax}
  13600. \end{figure}
  13601. \begin{figure}[tbp]
  13602. \begin{lstlisting}
  13603. (define (map-vec [f : (Integer -> Integer)]
  13604. [v : (Vector Integer Integer)])
  13605. : (Vector Integer Integer)
  13606. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13607. (define (add1 x) (+ x 1))
  13608. (define (true) #t)
  13609. (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
  13610. (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
  13611. \end{lstlisting}
  13612. \caption{A variant of the \code{map-vec} example with an error.}
  13613. \label{fig:map-vec-maybe-add1}
  13614. \end{figure}
  13615. Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
  13616. \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
  13617. inserted every time the type checker sees two types that are
  13618. consistent but not equal. In the \code{add1} function, \code{x} is
  13619. cast to \code{Integer} and the result of the \code{+} is cast to
  13620. \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
  13621. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  13622. \begin{figure}[btp]
  13623. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13624. (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  13625. : (Vector Integer Integer)
  13626. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13627. (define (add1 [x : Any]) : Any
  13628. (cast (+ (cast x Any Integer) 1) Integer Any))
  13629. (define (true) : Any (cast #t Boolean Any))
  13630. (define (maybe-add1 [x : Any]) : Any
  13631. (if (eq? 0 (read)) (add1 x) (true)))
  13632. (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
  13633. (vector 0 41)) 0)
  13634. \end{lstlisting}
  13635. \caption{Output of type checking \code{map-vec}
  13636. and \code{maybe-add1}.}
  13637. \label{fig:map-vec-cast}
  13638. \end{figure}
  13639. The type checker for \LangGrad{} is defined in
  13640. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  13641. and \ref{fig:type-check-Rgradual-3}.
  13642. \begin{figure}[tbp]
  13643. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13644. (define type-check-gradual_class
  13645. (class type-check-Rwhile_class
  13646. (super-new)
  13647. (inherit operator-types type-predicates)
  13648. (define/override (type-check-exp env)
  13649. (lambda (e)
  13650. (define recur (type-check-exp env))
  13651. (match e
  13652. [(Prim 'vector-length (list e1))
  13653. (define-values (e1^ t) (recur e1))
  13654. (match t
  13655. [`(Vector ,ts ...)
  13656. (values (Prim 'vector-length (list e1^)) 'Integer)]
  13657. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  13658. [(Prim 'vector-ref (list e1 e2))
  13659. (define-values (e1^ t1) (recur e1))
  13660. (define-values (e2^ t2) (recur e2))
  13661. (check-consistent? t2 'Integer e)
  13662. (match t1
  13663. [`(Vector ,ts ...)
  13664. (match e2^
  13665. [(Int i)
  13666. (unless (and (0 . <= . i) (i . < . (length ts)))
  13667. (error 'type-check "invalid index ~a in ~a" i e))
  13668. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  13669. [else (define e1^^ (make-cast e1^ t1 'Any))
  13670. (define e2^^ (make-cast e2^ t2 'Integer))
  13671. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  13672. ['Any
  13673. (define e2^^ (make-cast e2^ t2 'Integer))
  13674. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  13675. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  13676. [(Prim 'vector-set! (list e1 e2 e3) )
  13677. (define-values (e1^ t1) (recur e1))
  13678. (define-values (e2^ t2) (recur e2))
  13679. (define-values (e3^ t3) (recur e3))
  13680. (check-consistent? t2 'Integer e)
  13681. (match t1
  13682. [`(Vector ,ts ...)
  13683. (match e2^
  13684. [(Int i)
  13685. (unless (and (0 . <= . i) (i . < . (length ts)))
  13686. (error 'type-check "invalid index ~a in ~a" i e))
  13687. (check-consistent? (list-ref ts i) t3 e)
  13688. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  13689. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  13690. [else
  13691. (define e1^^ (make-cast e1^ t1 'Any))
  13692. (define e2^^ (make-cast e2^ t2 'Integer))
  13693. (define e3^^ (make-cast e3^ t3 'Any))
  13694. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  13695. ['Any
  13696. (define e2^^ (make-cast e2^ t2 'Integer))
  13697. (define e3^^ (make-cast e3^ t3 'Any))
  13698. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  13699. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  13700. \end{lstlisting}
  13701. \caption{Type checker for the \LangGrad{} language, part 1.}
  13702. \label{fig:type-check-Rgradual-1}
  13703. \end{figure}
  13704. \begin{figure}[tbp]
  13705. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13706. [(Prim 'eq? (list e1 e2))
  13707. (define-values (e1^ t1) (recur e1))
  13708. (define-values (e2^ t2) (recur e2))
  13709. (check-consistent? t1 t2 e)
  13710. (define T (meet t1 t2))
  13711. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  13712. 'Boolean)]
  13713. [(Prim 'not (list e1))
  13714. (define-values (e1^ t1) (recur e1))
  13715. (match t1
  13716. ['Any
  13717. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  13718. (Bool #t) (Bool #f)))]
  13719. [else
  13720. (define-values (t-ret new-es^)
  13721. (type-check-op 'not (list t1) (list e1^) e))
  13722. (values (Prim 'not new-es^) t-ret)])]
  13723. [(Prim 'and (list e1 e2))
  13724. (recur (If e1 e2 (Bool #f)))]
  13725. [(Prim 'or (list e1 e2))
  13726. (define tmp (gensym 'tmp))
  13727. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  13728. [(Prim op es)
  13729. #:when (not (set-member? explicit-prim-ops op))
  13730. (define-values (new-es ts)
  13731. (for/lists (exprs types) ([e es])
  13732. (recur e)))
  13733. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  13734. (values (Prim op new-es^) t-ret)]
  13735. [(If e1 e2 e3)
  13736. (define-values (e1^ T1) (recur e1))
  13737. (define-values (e2^ T2) (recur e2))
  13738. (define-values (e3^ T3) (recur e3))
  13739. (check-consistent? T2 T3 e)
  13740. (match T1
  13741. ['Boolean
  13742. (define Tif (join T2 T3))
  13743. (values (If e1^ (make-cast e2^ T2 Tif)
  13744. (make-cast e3^ T3 Tif)) Tif)]
  13745. ['Any
  13746. (define Tif (meet T2 T3))
  13747. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  13748. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  13749. Tif)]
  13750. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  13751. [(HasType e1 T)
  13752. (define-values (e1^ T1) (recur e1))
  13753. (check-consistent? T1 T)
  13754. (values (make-cast e1^ T1 T) T)]
  13755. [(SetBang x e1)
  13756. (define-values (e1^ T1) (recur e1))
  13757. (define varT (dict-ref env x))
  13758. (check-consistent? T1 varT e)
  13759. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  13760. [(WhileLoop e1 e2)
  13761. (define-values (e1^ T1) (recur e1))
  13762. (check-consistent? T1 'Boolean e)
  13763. (define-values (e2^ T2) ((type-check-exp env) e2))
  13764. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  13765. \end{lstlisting}
  13766. \caption{Type checker for the \LangGrad{} language, part 2.}
  13767. \label{fig:type-check-Rgradual-2}
  13768. \end{figure}
  13769. \begin{figure}[tbp]
  13770. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13771. [(Apply e1 e2s)
  13772. (define-values (e1^ T1) (recur e1))
  13773. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  13774. (match T1
  13775. [`(,T1ps ... -> ,T1rt)
  13776. (for ([T2 T2s] [Tp T1ps])
  13777. (check-consistent? T2 Tp e))
  13778. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  13779. (make-cast e2 src tgt)))
  13780. (values (Apply e1^ e2s^^) T1rt)]
  13781. [`Any
  13782. (define e1^^ (make-cast e1^ 'Any
  13783. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  13784. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  13785. (make-cast e2 src 'Any)))
  13786. (values (Apply e1^^ e2s^^) 'Any)]
  13787. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  13788. [(Lambda params Tr e1)
  13789. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  13790. (match p
  13791. [`[,x : ,T] (values x T)]
  13792. [(? symbol? x) (values x 'Any)])))
  13793. (define-values (e1^ T1)
  13794. ((type-check-exp (append (map cons xs Ts) env)) e1))
  13795. (check-consistent? Tr T1 e)
  13796. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  13797. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  13798. [else ((super type-check-exp env) e)]
  13799. )))
  13800. \end{lstlisting}
  13801. \caption{Type checker for the \LangGrad{} language, part 3.}
  13802. \label{fig:type-check-Rgradual-3}
  13803. \end{figure}
  13804. \begin{figure}[tbp]
  13805. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  13806. (define/public (join t1 t2)
  13807. (match* (t1 t2)
  13808. [('Integer 'Integer) 'Integer]
  13809. [('Boolean 'Boolean) 'Boolean]
  13810. [('Void 'Void) 'Void]
  13811. [('Any t2) t2]
  13812. [(t1 'Any) t1]
  13813. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  13814. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  13815. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  13816. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  13817. -> ,(join rt1 rt2))]))
  13818. (define/public (meet t1 t2)
  13819. (match* (t1 t2)
  13820. [('Integer 'Integer) 'Integer]
  13821. [('Boolean 'Boolean) 'Boolean]
  13822. [('Void 'Void) 'Void]
  13823. [('Any t2) 'Any]
  13824. [(t1 'Any) 'Any]
  13825. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  13826. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  13827. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  13828. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  13829. -> ,(meet rt1 rt2))]))
  13830. (define/public (make-cast e src tgt)
  13831. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  13832. (define/public (check-consistent? t1 t2 e)
  13833. (unless (consistent? t1 t2)
  13834. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  13835. (define/override (type-check-op op arg-types args e)
  13836. (match (dict-ref (operator-types) op)
  13837. [`(,param-types . ,return-type)
  13838. (for ([at arg-types] [pt param-types])
  13839. (check-consistent? at pt e))
  13840. (values return-type
  13841. (for/list ([e args] [s arg-types] [t param-types])
  13842. (make-cast e s t)))]
  13843. [else (error 'type-check-op "unrecognized ~a" op)]))
  13844. (define explicit-prim-ops
  13845. (set-union
  13846. (type-predicates)
  13847. (set 'procedure-arity 'eq?
  13848. 'vector 'vector-length 'vector-ref 'vector-set!
  13849. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  13850. (define/override (fun-def-type d)
  13851. (match d
  13852. [(Def f params rt info body)
  13853. (define ps
  13854. (for/list ([p params])
  13855. (match p
  13856. [`[,x : ,T] T]
  13857. [(? symbol?) 'Any]
  13858. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  13859. `(,@ps -> ,rt)]
  13860. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  13861. \end{lstlisting}
  13862. \caption{Auxiliary functions for type checking \LangGrad{}.}
  13863. \label{fig:type-check-Rgradual-aux}
  13864. \end{figure}
  13865. \clearpage
  13866. \section{Interpreting \LangCast{}}
  13867. \label{sec:interp-casts}
  13868. The runtime behavior of first-order casts is straightforward, that is,
  13869. casts involving simple types such as \code{Integer} and
  13870. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  13871. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  13872. puts the integer into a tagged value
  13873. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  13874. \code{Integer} is accomplished with the \code{Project} operator, that
  13875. is, by checking the value's tag and either retrieving the underlying
  13876. integer or signaling an error if it the tag is not the one for
  13877. integers (Figure~\ref{fig:apply-project}).
  13878. %
  13879. Things get more interesting for higher-order casts, that is, casts
  13880. involving function or vector types.
  13881. Consider the cast of the function \code{maybe-add1} from \code{(Any ->
  13882. Any)} to \code{(Integer -> Integer)}. When a function flows through
  13883. this cast at runtime, we can't know in general whether the function
  13884. will always return an integer.\footnote{Predicting the return value of
  13885. a function is equivalent to the halting problem, which is
  13886. undecidable.} The \LangCast{} interpreter therefore delays the checking
  13887. of the cast until the function is applied. This is accomplished by
  13888. wrapping \code{maybe-add1} in a new function that casts its parameter
  13889. from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
  13890. casts the return value from \code{Any} to \code{Integer}.
  13891. Turning our attention to casts involving vector types, we consider the
  13892. example in Figure~\ref{fig:map-vec-bang} that defines a
  13893. partially-typed version of \code{map-vec} whose parameter \code{v} has
  13894. type \code{(Vector Any Any)} and that updates \code{v} in place
  13895. instead of returning a new vector. So we name this function
  13896. \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
  13897. the type checker inserts a cast from \code{(Vector Integer Integer)}
  13898. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  13899. cast between vector types would be a build a new vector whose elements
  13900. are the result of casting each of the original elements to the
  13901. appropriate target type. However, this approach is only valid for
  13902. immutable vectors; and our vectors are mutable. In the example of
  13903. Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
  13904. the updates inside of \code{map-vec!} would happen to the new vector
  13905. and not the original one.
  13906. \begin{figure}[tbp]
  13907. % gradual_test_11.rkt
  13908. \begin{lstlisting}
  13909. (define (map-vec! [f : (Any -> Any)]
  13910. [v : (Vector Any Any)]) : Void
  13911. (begin
  13912. (vector-set! v 0 (f (vector-ref v 0)))
  13913. (vector-set! v 1 (f (vector-ref v 1)))))
  13914. (define (add1 x) (+ x 1))
  13915. (let ([v (vector 0 41)])
  13916. (begin (map-vec! add1 v) (vector-ref v 1)))
  13917. \end{lstlisting}
  13918. \caption{An example involving casts on vectors.}
  13919. \label{fig:map-vec-bang}
  13920. \end{figure}
  13921. Instead the interpreter needs to create a new kind of value, a
  13922. \emph{vector proxy}, that intercepts every vector operation. On a
  13923. read, the proxy reads from the underlying vector and then applies a
  13924. cast to the resulting value. On a write, the proxy casts the argument
  13925. value and then performs the write to the underlying vector. For the
  13926. first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
  13927. \code{0} from \code{Integer} to \code{Any}. For the first
  13928. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  13929. to \code{Integer}.
  13930. The final category of cast that we need to consider are casts between
  13931. the \code{Any} type and either a function or a vector
  13932. type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
  13933. in which parameter \code{v} does not have a type annotation, so it is
  13934. given type \code{Any}. In the call to \code{map-vec!}, the vector has
  13935. type \code{(Vector Integer Integer)} so the type checker inserts a
  13936. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  13937. thought is to use \code{Inject}, but that doesn't work because
  13938. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  13939. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  13940. to \code{Any}.
  13941. \begin{figure}[tbp]
  13942. \begin{lstlisting}
  13943. (define (map-vec! [f : (Any -> Any)] v) : Void
  13944. (begin
  13945. (vector-set! v 0 (f (vector-ref v 0)))
  13946. (vector-set! v 1 (f (vector-ref v 1)))))
  13947. (define (add1 x) (+ x 1))
  13948. (let ([v (vector 0 41)])
  13949. (begin (map-vec! add1 v) (vector-ref v 1)))
  13950. \end{lstlisting}
  13951. \caption{Casting a vector to \code{Any}.}
  13952. \label{fig:map-vec-any}
  13953. \end{figure}
  13954. The \LangCast{} interpreter uses an auxiliary function named
  13955. \code{apply-cast} to cast a value from a source type to a target type,
  13956. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  13957. of the kinds of casts that we've discussed in this section.
  13958. \begin{figure}[tbp]
  13959. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13960. (define/public (apply-cast v s t)
  13961. (match* (s t)
  13962. [(t1 t2) #:when (equal? t1 t2) v]
  13963. [('Any t2)
  13964. (match t2
  13965. [`(,ts ... -> ,rt)
  13966. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  13967. (define v^ (apply-project v any->any))
  13968. (apply-cast v^ any->any `(,@ts -> ,rt))]
  13969. [`(Vector ,ts ...)
  13970. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  13971. (define v^ (apply-project v vec-any))
  13972. (apply-cast v^ vec-any `(Vector ,@ts))]
  13973. [else (apply-project v t2)])]
  13974. [(t1 'Any)
  13975. (match t1
  13976. [`(,ts ... -> ,rt)
  13977. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  13978. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  13979. (apply-inject v^ (any-tag any->any))]
  13980. [`(Vector ,ts ...)
  13981. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  13982. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  13983. (apply-inject v^ (any-tag vec-any))]
  13984. [else (apply-inject v (any-tag t1))])]
  13985. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  13986. (define x (gensym 'x))
  13987. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  13988. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  13989. (define cast-writes
  13990. (for/list ([t1 ts1] [t2 ts2])
  13991. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  13992. `(vector-proxy ,(vector v (apply vector cast-reads)
  13993. (apply vector cast-writes)))]
  13994. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  13995. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  13996. `(function ,xs ,(Cast
  13997. (Apply (Value v)
  13998. (for/list ([x xs][t1 ts1][t2 ts2])
  13999. (Cast (Var x) t2 t1)))
  14000. rt1 rt2) ())]
  14001. ))
  14002. \end{lstlisting}
  14003. \caption{The \code{apply-cast} auxiliary method.}
  14004. \label{fig:apply-cast}
  14005. \end{figure}
  14006. The interpreter for \LangCast{} is defined in
  14007. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  14008. dispatching to \code{apply-cast}. To handle the addition of vector
  14009. proxies, we update the vector primitives in \code{interp-op} using the
  14010. functions in Figure~\ref{fig:guarded-vector}.
  14011. \begin{figure}[tbp]
  14012. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14013. (define interp-Rcast_class
  14014. (class interp-Rwhile_class
  14015. (super-new)
  14016. (inherit apply-fun apply-inject apply-project)
  14017. (define/override (interp-op op)
  14018. (match op
  14019. ['vector-length guarded-vector-length]
  14020. ['vector-ref guarded-vector-ref]
  14021. ['vector-set! guarded-vector-set!]
  14022. ['any-vector-ref (lambda (v i)
  14023. (match v [`(tagged ,v^ ,tg)
  14024. (guarded-vector-ref v^ i)]))]
  14025. ['any-vector-set! (lambda (v i a)
  14026. (match v [`(tagged ,v^ ,tg)
  14027. (guarded-vector-set! v^ i a)]))]
  14028. ['any-vector-length (lambda (v)
  14029. (match v [`(tagged ,v^ ,tg)
  14030. (guarded-vector-length v^)]))]
  14031. [else (super interp-op op)]
  14032. ))
  14033. (define/override ((interp-exp env) e)
  14034. (define (recur e) ((interp-exp env) e))
  14035. (match e
  14036. [(Value v) v]
  14037. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  14038. [else ((super interp-exp env) e)]))
  14039. ))
  14040. (define (interp-Rcast p)
  14041. (send (new interp-Rcast_class) interp-program p))
  14042. \end{lstlisting}
  14043. \caption{The interpreter for \LangCast{}.}
  14044. \label{fig:interp-Rcast}
  14045. \end{figure}
  14046. \begin{figure}[tbp]
  14047. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14048. (define (guarded-vector-ref vec i)
  14049. (match vec
  14050. [`(vector-proxy ,proxy)
  14051. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  14052. (define rd (vector-ref (vector-ref proxy 1) i))
  14053. (apply-fun rd (list val) 'guarded-vector-ref)]
  14054. [else (vector-ref vec i)]))
  14055. (define (guarded-vector-set! vec i arg)
  14056. (match vec
  14057. [`(vector-proxy ,proxy)
  14058. (define wr (vector-ref (vector-ref proxy 2) i))
  14059. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  14060. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  14061. [else (vector-set! vec i arg)]))
  14062. (define (guarded-vector-length vec)
  14063. (match vec
  14064. [`(vector-proxy ,proxy)
  14065. (guarded-vector-length (vector-ref proxy 0))]
  14066. [else (vector-length vec)]))
  14067. \end{lstlisting}
  14068. \caption{The guarded-vector auxiliary functions.}
  14069. \label{fig:guarded-vector}
  14070. \end{figure}
  14071. \section{Lower Casts}
  14072. \label{sec:lower-casts}
  14073. The next step in the journey towards x86 is the \code{lower-casts}
  14074. pass that translates the casts in \LangCast{} to the lower-level
  14075. \code{Inject} and \code{Project} operators and a new operator for
  14076. creating vector proxies, extending the \LangLoop{} language to create
  14077. \LangProxy{}. We recommend creating an auxiliary function named
  14078. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  14079. and a target type, and translates it to expression in \LangProxy{} that has
  14080. the same behavior as casting the expression from the source to the
  14081. target type in the interpreter.
  14082. The \code{lower-cast} function can follow a code structure similar to
  14083. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  14084. the interpreter for \LangCast{} because it must handle the same cases as
  14085. \code{apply-cast} and it needs to mimic the behavior of
  14086. \code{apply-cast}. The most interesting cases are those concerning the
  14087. casts between two vector types and between two function types.
  14088. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  14089. type to another vector type is accomplished by creating a proxy that
  14090. intercepts the operations on the underlying vector. Here we make the
  14091. creation of the proxy explicit with the \code{vector-proxy} primitive
  14092. operation. It takes three arguments, the first is an expression for
  14093. the vector, the second is a vector of functions for casting an element
  14094. that is being read from the vector, and the third is a vector of
  14095. functions for casting an element that is being written to the vector.
  14096. You can create the functions using \code{Lambda}. Also, as we shall
  14097. see in the next section, we need to differentiate these vectors from
  14098. the user-created ones, so we recommend using a new primitive operator
  14099. named \code{raw-vector} instead of \code{vector} to create these
  14100. vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
  14101. the output of \code{lower-casts} on the example in
  14102. Figure~\ref{fig:map-vec-bang} that involved casting a vector of
  14103. integers to a vector of \code{Any}.
  14104. \begin{figure}[tbp]
  14105. \begin{lstlisting}
  14106. (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  14107. (begin
  14108. (vector-set! v 0 (f (vector-ref v 0)))
  14109. (vector-set! v 1 (f (vector-ref v 1)))))
  14110. (define (add1 [x : Any]) : Any
  14111. (inject (+ (project x Integer) 1) Integer))
  14112. (let ([v (vector 0 41)])
  14113. (begin
  14114. (map-vec! add1 (vector-proxy v
  14115. (raw-vector (lambda: ([x9 : Integer]) : Any
  14116. (inject x9 Integer))
  14117. (lambda: ([x9 : Integer]) : Any
  14118. (inject x9 Integer)))
  14119. (raw-vector (lambda: ([x9 : Any]) : Integer
  14120. (project x9 Integer))
  14121. (lambda: ([x9 : Any]) : Integer
  14122. (project x9 Integer)))))
  14123. (vector-ref v 1)))
  14124. \end{lstlisting}
  14125. \caption{Output of \code{lower-casts} on the example in
  14126. Figure~\ref{fig:map-vec-bang}.}
  14127. \label{fig:map-vec-bang-lower-cast}
  14128. \end{figure}
  14129. A cast from one function type to another function type is accomplished
  14130. by generating a \code{Lambda} whose parameter and return types match
  14131. the target function type. The body of the \code{Lambda} should cast
  14132. the parameters from the target type to the source type (yes,
  14133. backwards! functions are contravariant\index{subject}{contravariant} in the
  14134. parameters), then call the underlying function, and finally cast the
  14135. result from the source return type to the target return type.
  14136. Figure~\ref{fig:map-vec-lower-cast} shows the output of the
  14137. \code{lower-casts} pass on the \code{map-vec} example in
  14138. Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
  14139. in the call to \code{map-vec} is wrapped in a \code{lambda}.
  14140. \begin{figure}[tbp]
  14141. \begin{lstlisting}
  14142. (define (map-vec [f : (Integer -> Integer)]
  14143. [v : (Vector Integer Integer)])
  14144. : (Vector Integer Integer)
  14145. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14146. (define (add1 [x : Any]) : Any
  14147. (inject (+ (project x Integer) 1) Integer))
  14148. (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
  14149. (project (add1 (inject x9 Integer)) Integer))
  14150. (vector 0 41)) 1)
  14151. \end{lstlisting}
  14152. \caption{Output of \code{lower-casts} on the example in
  14153. Figure~\ref{fig:gradual-map-vec}.}
  14154. \label{fig:map-vec-lower-cast}
  14155. \end{figure}
  14156. \section{Differentiate Proxies}
  14157. \label{sec:differentiate-proxies}
  14158. So far the job of differentiating vectors and vector proxies has been
  14159. the job of the interpreter. For example, the interpreter for \LangCast{}
  14160. implements \code{vector-ref} using the \code{guarded-vector-ref}
  14161. function in Figure~\ref{fig:guarded-vector}. In the
  14162. \code{differentiate-proxies} pass we shift this responsibility to the
  14163. generated code.
  14164. We begin by designing the output language $R^p_8$. In
  14165. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  14166. proxies. In $R^p_8$ we return the \code{Vector} type to
  14167. its original meaning, as the type of real vectors, and we introduce a
  14168. new type, \code{PVector}, whose values can be either real vectors or
  14169. vector proxies. This new type comes with a suite of new primitive
  14170. operations for creating and using values of type \code{PVector}. We
  14171. don't need to introduce a new type to represent vector proxies. A
  14172. proxy is represented by a vector containing three things: 1) the
  14173. underlying vector, 2) a vector of functions for casting elements that
  14174. are read from the vector, and 3) a vector of functions for casting
  14175. values to be written to the vector. So we define the following
  14176. abbreviation for the type of a vector proxy:
  14177. \[
  14178. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  14179. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  14180. \to (\key{PVector}~ T' \ldots)
  14181. \]
  14182. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  14183. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  14184. %
  14185. Next we describe each of the new primitive operations.
  14186. \begin{description}
  14187. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  14188. (\key{PVector} $T \ldots$)]\ \\
  14189. %
  14190. This operation brands a vector as a value of the \code{PVector} type.
  14191. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  14192. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  14193. %
  14194. This operation brands a vector proxy as value of the \code{PVector} type.
  14195. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  14196. \code{Boolean}] \ \\
  14197. %
  14198. returns true if the value is a vector proxy and false if it is a
  14199. real vector.
  14200. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  14201. (\key{Vector} $T \ldots$)]\ \\
  14202. %
  14203. Assuming that the input is a vector (and not a proxy), this
  14204. operation returns the vector.
  14205. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  14206. $\to$ \code{Boolean}]\ \\
  14207. %
  14208. Given a vector proxy, this operation returns the length of the
  14209. underlying vector.
  14210. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  14211. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  14212. %
  14213. Given a vector proxy, this operation returns the $i$th element of
  14214. the underlying vector.
  14215. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  14216. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  14217. proxy, this operation writes a value to the $i$th element of the
  14218. underlying vector.
  14219. \end{description}
  14220. Now to discuss the translation that differentiates vectors from
  14221. proxies. First, every type annotation in the program must be
  14222. translated (recursively) to replace \code{Vector} with \code{PVector}.
  14223. Next, we must insert uses of \code{PVector} operations in the
  14224. appropriate places. For example, we wrap every vector creation with an
  14225. \code{inject-vector}.
  14226. \begin{lstlisting}
  14227. (vector |$e_1 \ldots e_n$|)
  14228. |$\Rightarrow$|
  14229. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  14230. \end{lstlisting}
  14231. The \code{raw-vector} operator that we introduced in the previous
  14232. section does not get injected.
  14233. \begin{lstlisting}
  14234. (raw-vector |$e_1 \ldots e_n$|)
  14235. |$\Rightarrow$|
  14236. (vector |$e'_1 \ldots e'_n$|)
  14237. \end{lstlisting}
  14238. The \code{vector-proxy} primitive translates as follows.
  14239. \begin{lstlisting}
  14240. (vector-proxy |$e_1~e_2~e_3$|)
  14241. |$\Rightarrow$|
  14242. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  14243. \end{lstlisting}
  14244. We translate the vector operations into conditional expressions that
  14245. check whether the value is a proxy and then dispatch to either the
  14246. appropriate proxy vector operation or the regular vector operation.
  14247. For example, the following is the translation for \code{vector-ref}.
  14248. \begin{lstlisting}
  14249. (vector-ref |$e_1$| |$i$|)
  14250. |$\Rightarrow$|
  14251. (let ([|$v~e_1$|])
  14252. (if (proxy? |$v$|)
  14253. (proxy-vector-ref |$v$| |$i$|)
  14254. (vector-ref (project-vector |$v$|) |$i$|)
  14255. \end{lstlisting}
  14256. Note in the case of a real vector, we must apply \code{project-vector}
  14257. before the \code{vector-ref}.
  14258. \section{Reveal Casts}
  14259. \label{sec:reveal-casts-gradual}
  14260. Recall that the \code{reveal-casts} pass
  14261. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  14262. \code{Inject} and \code{Project} into lower-level operations. In
  14263. particular, \code{Project} turns into a conditional expression that
  14264. inspects the tag and retrieves the underlying value. Here we need to
  14265. augment the translation of \code{Project} to handle the situation when
  14266. the target type is \code{PVector}. Instead of using
  14267. \code{vector-length} we need to use \code{proxy-vector-length}.
  14268. \begin{lstlisting}
  14269. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  14270. |$\Rightarrow$|
  14271. (let |$\itm{tmp}$| |$e'$|
  14272. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  14273. (let |$\itm{vec}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  14274. (if (eq? (proxy-vector-length |$\itm{vec}$|) |$n$|) |$\itm{vec}$| (exit)))
  14275. (exit)))
  14276. \end{lstlisting}
  14277. \section{Closure Conversion}
  14278. \label{sec:closure-conversion-gradual}
  14279. The closure conversion pass only requires one minor adjustment. The
  14280. auxiliary function that translates type annotations needs to be
  14281. updated to handle the \code{PVector} type.
  14282. \section{Explicate Control}
  14283. \label{sec:explicate-control-gradual}
  14284. Update the \code{explicate\_control} pass to handle the new primitive
  14285. operations on the \code{PVector} type.
  14286. \section{Select Instructions}
  14287. \label{sec:select-instructions-gradual}
  14288. Recall that the \code{select-instructions} pass is responsible for
  14289. lowering the primitive operations into x86 instructions. So we need
  14290. to translate the new \code{PVector} operations to x86. To do so, the
  14291. first question we need to answer is how will we differentiate the two
  14292. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  14293. We need just one bit to accomplish this, and use the bit in position
  14294. $57$ of the 64-bit tag at the front of every vector (see
  14295. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  14296. for \code{inject-vector} we leave it that way.
  14297. \begin{lstlisting}
  14298. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  14299. |$\Rightarrow$|
  14300. movq |$e'_1$|, |$\itm{lhs'}$|
  14301. \end{lstlisting}
  14302. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  14303. \begin{lstlisting}
  14304. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  14305. |$\Rightarrow$|
  14306. movq |$e'_1$|, %r11
  14307. movq |$(1 << 57)$|, %rax
  14308. orq 0(%r11), %rax
  14309. movq %rax, 0(%r11)
  14310. movq %r11, |$\itm{lhs'}$|
  14311. \end{lstlisting}
  14312. The \code{proxy?} operation consumes the information so carefully
  14313. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  14314. isolates the $57$th bit to tell whether the value is a real vector or
  14315. a proxy.
  14316. \begin{lstlisting}
  14317. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  14318. |$\Rightarrow$|
  14319. movq |$e_1'$|, %r11
  14320. movq 0(%r11), %rax
  14321. sarq $57, %rax
  14322. andq $1, %rax
  14323. movq %rax, |$\itm{lhs'}$|
  14324. \end{lstlisting}
  14325. The \code{project-vector} operation is straightforward to translate,
  14326. so we leave it up to the reader.
  14327. Regarding the \code{proxy-vector} operations, the runtime provides
  14328. procedures that implement them (they are recursive functions!) so
  14329. here we simply need to translate these vector operations into the
  14330. appropriate function call. For example, here is the translation for
  14331. \code{proxy-vector-ref}.
  14332. \begin{lstlisting}
  14333. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  14334. |$\Rightarrow$|
  14335. movq |$e_1'$|, %rdi
  14336. movq |$e_2'$|, %rsi
  14337. callq proxy_vector_ref
  14338. movq %rax, |$\itm{lhs'}$|
  14339. \end{lstlisting}
  14340. We have another batch of vector operations to deal with, those for the
  14341. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  14342. \code{any-vector-ref} when there is a \code{vector-ref} on something
  14343. of type \code{Any}, and similarly for \code{any-vector-set!} and
  14344. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  14345. Section~\ref{sec:select-Rany} we selected instructions for these
  14346. operations based on the idea that the underlying value was a real
  14347. vector. But in the current setting, the underlying value is of type
  14348. \code{PVector}. So \code{any-vector-ref} can be translates to
  14349. pseudo-x86 as follows. We begin by projecting the underlying value out
  14350. of the tagged value and then call the \code{proxy\_vector\_ref}
  14351. procedure in the runtime.
  14352. \begin{lstlisting}
  14353. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  14354. movq |$\neg 111$|, %rdi
  14355. andq |$e_1'$|, %rdi
  14356. movq |$e_2'$|, %rsi
  14357. callq proxy_vector_ref
  14358. movq %rax, |$\itm{lhs'}$|
  14359. \end{lstlisting}
  14360. The \code{any-vector-set!} and \code{any-vector-length} operators can
  14361. be translated in a similar way.
  14362. \begin{exercise}\normalfont
  14363. Implement a compiler for the gradually-typed \LangGrad{} language by
  14364. extending and adapting your compiler for \LangLoop{}. Create 10 new
  14365. partially-typed test programs. In addition to testing with these
  14366. new programs, also test your compiler on all the tests for \LangLoop{}
  14367. and tests for \LangDyn{}. Sometimes you may get a type checking error
  14368. on the \LangDyn{} programs but you can adapt them by inserting
  14369. a cast to the \code{Any} type around each subexpression
  14370. causing a type error. While \LangDyn{} doesn't have explicit casts,
  14371. you can induce one by wrapping the subexpression \code{e}
  14372. with a call to an un-annotated identity function, like this:
  14373. \code{((lambda (x) x) e)}.
  14374. \end{exercise}
  14375. \begin{figure}[p]
  14376. \begin{tikzpicture}[baseline=(current bounding box.center)]
  14377. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  14378. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  14379. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  14380. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  14381. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  14382. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  14383. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  14384. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  14385. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  14386. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  14387. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  14388. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  14389. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  14390. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  14391. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  14392. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  14393. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  14394. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  14395. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  14396. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  14397. \path[->,bend right=15] (Rgradual) edge [above] node
  14398. {\ttfamily\footnotesize type-check} (Rgradualp);
  14399. \path[->,bend right=15] (Rgradualp) edge [above] node
  14400. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  14401. \path[->,bend right=15] (Rwhilepp) edge [right] node
  14402. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  14403. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  14404. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  14405. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  14406. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  14407. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  14408. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  14409. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  14410. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  14411. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  14412. {\ttfamily\footnotesize convert-assignments} (F1-1);
  14413. \path[->,bend left=15] (F1-1) edge [below] node
  14414. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  14415. \path[->,bend right=15] (F1-2) edge [above] node
  14416. {\ttfamily\footnotesize limit-fun.} (F1-3);
  14417. \path[->,bend right=15] (F1-3) edge [above] node
  14418. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  14419. \path[->,bend right=15] (F1-4) edge [above] node
  14420. {\ttfamily\footnotesize remove-complex.} (F1-5);
  14421. \path[->,bend right=15] (F1-5) edge [right] node
  14422. {\ttfamily\footnotesize explicate-control} (C3-2);
  14423. \path[->,bend left=15] (C3-2) edge [left] node
  14424. {\ttfamily\footnotesize select-instr.} (x86-2);
  14425. \path[->,bend right=15] (x86-2) edge [left] node
  14426. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  14427. \path[->,bend right=15] (x86-2-1) edge [below] node
  14428. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  14429. \path[->,bend right=15] (x86-2-2) edge [left] node
  14430. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  14431. \path[->,bend left=15] (x86-3) edge [above] node
  14432. {\ttfamily\footnotesize patch-instr.} (x86-4);
  14433. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  14434. \end{tikzpicture}
  14435. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  14436. \label{fig:Rgradual-passes}
  14437. \end{figure}
  14438. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  14439. for the compilation of \LangGrad{}.
  14440. \section{Further Reading}
  14441. This chapter just scratches the surface of gradual typing. The basic
  14442. approach described here is missing two key ingredients that one would
  14443. want in a implementation of gradual typing: blame
  14444. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  14445. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  14446. problem addressed by blame tracking is that when a cast on a
  14447. higher-order value fails, it often does so at a point in the program
  14448. that is far removed from the original cast. Blame tracking is a
  14449. technique for propagating extra information through casts and proxies
  14450. so that when a cast fails, the error message can point back to the
  14451. original location of the cast in the source program.
  14452. The problem addressed by space-efficient casts also relates to
  14453. higher-order casts. It turns out that in partially typed programs, a
  14454. function or vector can flow through very-many casts at runtime. With
  14455. the approach described in this chapter, each cast adds another
  14456. \code{lambda} wrapper or a vector proxy. Not only does this take up
  14457. considerable space, but it also makes the function calls and vector
  14458. operations slow. For example, a partially-typed version of quicksort
  14459. could, in the worst case, build a chain of proxies of length $O(n)$
  14460. around the vector, changing the overall time complexity of the
  14461. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  14462. solution to this problem by representing casts using the coercion
  14463. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  14464. long chains of proxies by compressing them into a concise normal
  14465. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  14466. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  14467. the Grift compiler.
  14468. \begin{center}
  14469. \url{https://github.com/Gradual-Typing/Grift}
  14470. \end{center}
  14471. There are also interesting interactions between gradual typing and
  14472. other language features, such as parametetric polymorphism,
  14473. information-flow types, and type inference, to name a few. We
  14474. recommend the reader to the online gradual typing bibliography:
  14475. \begin{center}
  14476. \url{http://samth.github.io/gradual-typing-bib/}
  14477. \end{center}
  14478. % TODO: challenge problem:
  14479. % type analysis and type specialization?
  14480. % coercions?
  14481. \fi
  14482. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14483. \chapter{Parametric Polymorphism}
  14484. \label{ch:Rpoly}
  14485. \index{subject}{parametric polymorphism}
  14486. \index{subject}{generics}
  14487. \if\edition\racketEd
  14488. This chapter studies the compilation of parametric
  14489. polymorphism\index{subject}{parametric polymorphism}
  14490. (aka. generics\index{subject}{generics}) in the subset \LangPoly{} of Typed
  14491. Racket. Parametric polymorphism enables improved code reuse by
  14492. parameterizing functions and data structures with respect to the types
  14493. that they operate on. For example, Figure~\ref{fig:map-vec-poly}
  14494. revisits the \code{map-vec} example but this time gives it a more
  14495. fitting type. This \code{map-vec} function is parameterized with
  14496. respect to the element type of the vector. The type of \code{map-vec}
  14497. is the following polymorphic type as specified by the \code{All} and
  14498. the type parameter \code{a}.
  14499. \begin{lstlisting}
  14500. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  14501. \end{lstlisting}
  14502. The idea is that \code{map-vec} can be used at \emph{all} choices of a
  14503. type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
  14504. \code{map-vec} to a vector of integers, a choice of \code{Integer} for
  14505. \code{a}, but we could have just as well applied \code{map-vec} to a
  14506. vector of Booleans (and a function on Booleans).
  14507. \begin{figure}[tbp]
  14508. % poly_test_2.rkt
  14509. \begin{lstlisting}
  14510. (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  14511. (define (map-vec f v)
  14512. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14513. (define (add1 [x : Integer]) : Integer (+ x 1))
  14514. (vector-ref (map-vec add1 (vector 0 41)) 1)
  14515. \end{lstlisting}
  14516. \caption{The \code{map-vec} example using parametric polymorphism.}
  14517. \label{fig:map-vec-poly}
  14518. \end{figure}
  14519. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  14520. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  14521. syntax. We add a second form for function definitions in which a type
  14522. declaration comes before the \code{define}. In the abstract syntax,
  14523. the return type in the \code{Def} is \code{Any}, but that should be
  14524. ignored in favor of the return type in the type declaration. (The
  14525. \code{Any} comes from using the same parser as in
  14526. Chapter~\ref{ch:Rdyn}.) The presence of a type declaration
  14527. enables the use of an \code{All} type for a function, thereby making
  14528. it polymorphic. The grammar for types is extended to include
  14529. polymorphic types and type variables.
  14530. \begin{figure}[tp]
  14531. \centering
  14532. \fbox{
  14533. \begin{minipage}{0.96\textwidth}
  14534. \small
  14535. \[
  14536. \begin{array}{lcl}
  14537. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  14538. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  14539. &\MID& \LP\key{:}~\Var~\Type\RP \\
  14540. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  14541. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  14542. \end{array}
  14543. \]
  14544. \end{minipage}
  14545. }
  14546. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  14547. (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  14548. \label{fig:Rpoly-concrete-syntax}
  14549. \end{figure}
  14550. \begin{figure}[tp]
  14551. \centering
  14552. \fbox{
  14553. \begin{minipage}{0.96\textwidth}
  14554. \small
  14555. \[
  14556. \begin{array}{lcl}
  14557. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  14558. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  14559. &\MID& \DECL{\Var}{\Type} \\
  14560. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  14561. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  14562. \end{array}
  14563. \]
  14564. \end{minipage}
  14565. }
  14566. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  14567. (Figure~\ref{fig:Rwhile-syntax}).}
  14568. \label{fig:Rpoly-syntax}
  14569. \end{figure}
  14570. By including polymorphic types in the $\Type$ non-terminal we choose
  14571. to make them first-class which has interesting repercussions on the
  14572. compiler. Many languages with polymorphism, such as
  14573. C++~\citep{stroustrup88:_param_types} and Standard
  14574. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  14575. it is useful to see an example of first-class polymorphism. In
  14576. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  14577. whose parameter is a polymorphic function. The occurrence of a
  14578. polymorphic type underneath a function type is enabled by the normal
  14579. recursive structure of the grammar for $\Type$ and the categorization
  14580. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  14581. applies the polymorphic function to a Boolean and to an integer.
  14582. \begin{figure}[tbp]
  14583. \begin{lstlisting}
  14584. (: apply-twice ((All (b) (b -> b)) -> Integer))
  14585. (define (apply-twice f)
  14586. (if (f #t) (f 42) (f 777)))
  14587. (: id (All (a) (a -> a)))
  14588. (define (id x) x)
  14589. (apply-twice id)
  14590. \end{lstlisting}
  14591. \caption{An example illustrating first-class polymorphism.}
  14592. \label{fig:apply-twice}
  14593. \end{figure}
  14594. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Lvar0} has
  14595. three new responsibilities (compared to \LangLoop{}). The type checking of
  14596. function application is extended to handle the case where the operator
  14597. expression is a polymorphic function. In that case the type arguments
  14598. are deduced by matching the type of the parameters with the types of
  14599. the arguments.
  14600. %
  14601. The \code{match-types} auxiliary function carries out this deduction
  14602. by recursively descending through a parameter type \code{pt} and the
  14603. corresponding argument type \code{at}, making sure that they are equal
  14604. except when there is a type parameter on the left (in the parameter
  14605. type). If it's the first time that the type parameter has been
  14606. encountered, then the algorithm deduces an association of the type
  14607. parameter to the corresponding type on the right (in the argument
  14608. type). If it's not the first time that the type parameter has been
  14609. encountered, the algorithm looks up its deduced type and makes sure
  14610. that it is equal to the type on the right.
  14611. %
  14612. Once the type arguments are deduced, the operator expression is
  14613. wrapped in an \code{Inst} AST node (for instantiate) that records the
  14614. type of the operator, but more importantly, records the deduced type
  14615. arguments. The return type of the application is the return type of
  14616. the polymorphic function, but with the type parameters replaced by the
  14617. deduced type arguments, using the \code{subst-type} function.
  14618. The second responsibility of the type checker is extending the
  14619. function \code{type-equal?} to handle the \code{All} type. This is
  14620. not quite a simple as equal on other types, such as function and
  14621. vector types, because two polymorphic types can be syntactically
  14622. different even though they are equivalent types. For example,
  14623. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  14624. Two polymorphic types should be considered equal if they differ only
  14625. in the choice of the names of the type parameters. The
  14626. \code{type-equal?} function in Figure~\ref{fig:type-check-Lvar0-aux}
  14627. renames the type parameters of the first type to match the type
  14628. parameters of the second type.
  14629. The third responsibility of the type checker is making sure that only
  14630. defined type variables appear in type annotations. The
  14631. \code{check-well-formed} function defined in
  14632. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  14633. sure that each type variable has been defined.
  14634. The output language of the type checker is \LangInst{}, defined in
  14635. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  14636. declaration and polymorphic function into a single definition, using
  14637. the \code{Poly} form, to make polymorphic functions more convenient to
  14638. process in next pass of the compiler.
  14639. \begin{figure}[tp]
  14640. \centering
  14641. \fbox{
  14642. \begin{minipage}{0.96\textwidth}
  14643. \small
  14644. \[
  14645. \begin{array}{lcl}
  14646. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  14647. \Exp &::=& \ldots \MID \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  14648. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  14649. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  14650. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  14651. \end{array}
  14652. \]
  14653. \end{minipage}
  14654. }
  14655. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  14656. (Figure~\ref{fig:Rwhile-syntax}).}
  14657. \label{fig:Rpoly-prime-syntax}
  14658. \end{figure}
  14659. The output of the type checker on the polymorphic \code{map-vec}
  14660. example is listed in Figure~\ref{fig:map-vec-type-check}.
  14661. \begin{figure}[tbp]
  14662. % poly_test_2.rkt
  14663. \begin{lstlisting}
  14664. (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  14665. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  14666. (define (add1 [x : Integer]) : Integer (+ x 1))
  14667. (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  14668. (Integer))
  14669. add1 (vector 0 41)) 1)
  14670. \end{lstlisting}
  14671. \caption{Output of the type checker on the \code{map-vec} example.}
  14672. \label{fig:map-vec-type-check}
  14673. \end{figure}
  14674. \begin{figure}[tbp]
  14675. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14676. (define type-check-poly-class
  14677. (class type-check-Rwhile-class
  14678. (super-new)
  14679. (inherit check-type-equal?)
  14680. (define/override (type-check-apply env e1 es)
  14681. (define-values (e^ ty) ((type-check-exp env) e1))
  14682. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  14683. ((type-check-exp env) e)))
  14684. (match ty
  14685. [`(,ty^* ... -> ,rt)
  14686. (for ([arg-ty ty*] [param-ty ty^*])
  14687. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  14688. (values e^ es^ rt)]
  14689. [`(All ,xs (,tys ... -> ,rt))
  14690. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  14691. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  14692. (match-types env^^ param-ty arg-ty)))
  14693. (define targs
  14694. (for/list ([x xs])
  14695. (match (dict-ref env^^ x (lambda () #f))
  14696. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  14697. x (Apply e1 es))]
  14698. [ty ty])))
  14699. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  14700. [else (error 'type-check "expected a function, not ~a" ty)]))
  14701. (define/override ((type-check-exp env) e)
  14702. (match e
  14703. [(Lambda `([,xs : ,Ts] ...) rT body)
  14704. (for ([T Ts]) ((check-well-formed env) T))
  14705. ((check-well-formed env) rT)
  14706. ((super type-check-exp env) e)]
  14707. [(HasType e1 ty)
  14708. ((check-well-formed env) ty)
  14709. ((super type-check-exp env) e)]
  14710. [else ((super type-check-exp env) e)]))
  14711. (define/override ((type-check-def env) d)
  14712. (verbose 'type-check "poly/def" d)
  14713. (match d
  14714. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  14715. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  14716. (for ([p ps]) ((check-well-formed ts-env) p))
  14717. ((check-well-formed ts-env) rt)
  14718. (define new-env (append ts-env (map cons xs ps) env))
  14719. (define-values (body^ ty^) ((type-check-exp new-env) body))
  14720. (check-type-equal? ty^ rt body)
  14721. (Generic ts (Def f p:t* rt info body^))]
  14722. [else ((super type-check-def env) d)]))
  14723. (define/override (type-check-program p)
  14724. (match p
  14725. [(Program info body)
  14726. (type-check-program (ProgramDefsExp info '() body))]
  14727. [(ProgramDefsExp info ds body)
  14728. (define ds^ (combine-decls-defs ds))
  14729. (define new-env (for/list ([d ds^])
  14730. (cons (def-name d) (fun-def-type d))))
  14731. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  14732. (define-values (body^ ty) ((type-check-exp new-env) body))
  14733. (check-type-equal? ty 'Integer body)
  14734. (ProgramDefsExp info ds^^ body^)]))
  14735. ))
  14736. \end{lstlisting}
  14737. \caption{Type checker for the \LangPoly{} language.}
  14738. \label{fig:type-check-Lvar0}
  14739. \end{figure}
  14740. \begin{figure}[tbp]
  14741. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14742. (define/override (type-equal? t1 t2)
  14743. (match* (t1 t2)
  14744. [(`(All ,xs ,T1) `(All ,ys ,T2))
  14745. (define env (map cons xs ys))
  14746. (type-equal? (subst-type env T1) T2)]
  14747. [(other wise)
  14748. (super type-equal? t1 t2)]))
  14749. (define/public (match-types env pt at)
  14750. (match* (pt at)
  14751. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  14752. [('Void 'Void) env] [('Any 'Any) env]
  14753. [(`(Vector ,pts ...) `(Vector ,ats ...))
  14754. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  14755. (match-types env^ pt1 at1))]
  14756. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  14757. (define env^ (match-types env prt art))
  14758. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  14759. (match-types env^^ pt1 at1))]
  14760. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  14761. (define env^ (append (map cons pxs axs) env))
  14762. (match-types env^ pt1 at1)]
  14763. [((? symbol? x) at)
  14764. (match (dict-ref env x (lambda () #f))
  14765. [#f (error 'type-check "undefined type variable ~a" x)]
  14766. ['Type (cons (cons x at) env)]
  14767. [t^ (check-type-equal? at t^ 'matching) env])]
  14768. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  14769. (define/public (subst-type env pt)
  14770. (match pt
  14771. ['Integer 'Integer] ['Boolean 'Boolean]
  14772. ['Void 'Void] ['Any 'Any]
  14773. [`(Vector ,ts ...)
  14774. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  14775. [`(,ts ... -> ,rt)
  14776. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  14777. [`(All ,xs ,t)
  14778. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  14779. [(? symbol? x) (dict-ref env x)]
  14780. [else (error 'type-check "expected a type not ~a" pt)]))
  14781. (define/public (combine-decls-defs ds)
  14782. (match ds
  14783. ['() '()]
  14784. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  14785. (unless (equal? name f)
  14786. (error 'type-check "name mismatch, ~a != ~a" name f))
  14787. (match type
  14788. [`(All ,xs (,ps ... -> ,rt))
  14789. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  14790. (cons (Generic xs (Def name params^ rt info body))
  14791. (combine-decls-defs ds^))]
  14792. [`(,ps ... -> ,rt)
  14793. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  14794. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  14795. [else (error 'type-check "expected a function type, not ~a" type) ])]
  14796. [`(,(Def f params rt info body) . ,ds^)
  14797. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  14798. \end{lstlisting}
  14799. \caption{Auxiliary functions for type checking \LangPoly{}.}
  14800. \label{fig:type-check-Lvar0-aux}
  14801. \end{figure}
  14802. \begin{figure}[tbp]
  14803. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  14804. (define/public ((check-well-formed env) ty)
  14805. (match ty
  14806. ['Integer (void)]
  14807. ['Boolean (void)]
  14808. ['Void (void)]
  14809. [(? symbol? a)
  14810. (match (dict-ref env a (lambda () #f))
  14811. ['Type (void)]
  14812. [else (error 'type-check "undefined type variable ~a" a)])]
  14813. [`(Vector ,ts ...)
  14814. (for ([t ts]) ((check-well-formed env) t))]
  14815. [`(,ts ... -> ,t)
  14816. (for ([t ts]) ((check-well-formed env) t))
  14817. ((check-well-formed env) t)]
  14818. [`(All ,xs ,t)
  14819. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  14820. ((check-well-formed env^) t)]
  14821. [else (error 'type-check "unrecognized type ~a" ty)]))
  14822. \end{lstlisting}
  14823. \caption{Well-formed types.}
  14824. \label{fig:well-formed-types}
  14825. \end{figure}
  14826. % TODO: interpreter for R'_10
  14827. \section{Compiling Polymorphism}
  14828. \label{sec:compiling-poly}
  14829. Broadly speaking, there are four approaches to compiling parametric
  14830. polymorphism, which we describe below.
  14831. \begin{description}
  14832. \item[Monomorphization] generates a different version of a polymorphic
  14833. function for each set of type arguments that it is used with,
  14834. producing type-specialized code. This approach results in the most
  14835. efficient code but requires whole-program compilation (no separate
  14836. compilation) and increases code size. For our current purposes
  14837. monomorphization is a non-starter because, with first-class
  14838. polymorphism, it is sometimes not possible to determine which
  14839. generic functions are used with which type arguments during
  14840. compilation. (It can be done at runtime, with just-in-time
  14841. compilation.) This approach is used to compile C++
  14842. templates~\citep{stroustrup88:_param_types} and polymorphic
  14843. functions in NESL~\citep{Blelloch:1993aa} and
  14844. ML~\citep{Weeks:2006aa}.
  14845. \item[Uniform representation] generates one version of each
  14846. polymorphic function but requires all values have a common ``boxed''
  14847. format, such as the tagged values of type \code{Any} in
  14848. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  14849. similarly to code in a dynamically typed language (like \LangDyn{}),
  14850. in which primitive operators require their arguments to be projected
  14851. from \code{Any} and their results are injected into \code{Any}. (In
  14852. object-oriented languages, the projection is accomplished via
  14853. virtual method dispatch.) The uniform representation approach is
  14854. compatible with separate compilation and with first-class
  14855. polymorphism. However, it produces the least-efficient code because
  14856. it introduces overhead in the entire program, including
  14857. non-polymorphic code. This approach is used in implementations of
  14858. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  14859. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  14860. Java~\citep{Bracha:1998fk}.
  14861. \item[Mixed representation] generates one version of each polymorphic
  14862. function, using a boxed representation for type
  14863. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  14864. and conversions are performed at the boundaries between monomorphic
  14865. and polymorphic (e.g. when a polymorphic function is instantiated
  14866. and called). This approach is compatible with separate compilation
  14867. and first-class polymorphism and maintains the efficiency of
  14868. monomorphic code. The tradeoff is increased overhead at the boundary
  14869. between monomorphic and polymorphic code. This approach is used in
  14870. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  14871. Java 5 with the addition of autoboxing.
  14872. \item[Type passing] uses the unboxed representation in both
  14873. monomorphic and polymorphic code. Each polymorphic function is
  14874. compiled to a single function with extra parameters that describe
  14875. the type arguments. The type information is used by the generated
  14876. code to know how to access the unboxed values at runtime. This
  14877. approach is used in implementation of the Napier88
  14878. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  14879. passing is compatible with separate compilation and first-class
  14880. polymorphism and maintains the efficiency for monomorphic
  14881. code. There is runtime overhead in polymorphic code from dispatching
  14882. on type information.
  14883. \end{description}
  14884. In this chapter we use the mixed representation approach, partly
  14885. because of its favorable attributes, and partly because it is
  14886. straightforward to implement using the tools that we have already
  14887. built to support gradual typing. To compile polymorphic functions, we
  14888. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  14889. \LangCast{}.
  14890. \section{Erase Types}
  14891. \label{sec:erase-types}
  14892. We use the \code{Any} type from Chapter~\ref{ch:Rdyn} to
  14893. represent type variables. For example, Figure~\ref{fig:map-vec-erase}
  14894. shows the output of the \code{erase-types} pass on the polymorphic
  14895. \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
  14896. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  14897. \code{All} types are removed from the type of \code{map-vec}.
  14898. \begin{figure}[tbp]
  14899. \begin{lstlisting}
  14900. (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
  14901. : (Vector Any Any)
  14902. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14903. (define (add1 [x : Integer]) : Integer (+ x 1))
  14904. (vector-ref ((cast map-vec
  14905. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  14906. ((Integer -> Integer) (Vector Integer Integer)
  14907. -> (Vector Integer Integer)))
  14908. add1 (vector 0 41)) 1)
  14909. \end{lstlisting}
  14910. \caption{The polymorphic \code{map-vec} example after type erasure.}
  14911. \label{fig:map-vec-erase}
  14912. \end{figure}
  14913. This process of type erasure creates a challenge at points of
  14914. instantiation. For example, consider the instantiation of
  14915. \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
  14916. The type of \code{map-vec} is
  14917. \begin{lstlisting}
  14918. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  14919. \end{lstlisting}
  14920. and it is instantiated to
  14921. \begin{lstlisting}
  14922. ((Integer -> Integer) (Vector Integer Integer)
  14923. -> (Vector Integer Integer))
  14924. \end{lstlisting}
  14925. After erasure, the type of \code{map-vec} is
  14926. \begin{lstlisting}
  14927. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  14928. \end{lstlisting}
  14929. but we need to convert it to the instantiated type. This is easy to
  14930. do in the target language \LangCast{} with a single \code{cast}. In
  14931. Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
  14932. has been compiled to a \code{cast} from the type of \code{map-vec} to
  14933. the instantiated type. The source and target type of a cast must be
  14934. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  14935. because both the source and target are obtained from the same
  14936. polymorphic type of \code{map-vec}, replacing the type parameters with
  14937. \code{Any} in the former and with the deduced type arguments in the
  14938. later. (Recall that the \code{Any} type is consistent with any type.)
  14939. To implement the \code{erase-types} pass, we recommend defining a
  14940. recursive auxiliary function named \code{erase-type} that applies the
  14941. following two transformations. It replaces type variables with
  14942. \code{Any}
  14943. \begin{lstlisting}
  14944. |$x$|
  14945. |$\Rightarrow$|
  14946. Any
  14947. \end{lstlisting}
  14948. and it removes the polymorphic \code{All} types.
  14949. \begin{lstlisting}
  14950. (All |$xs$| |$T_1$|)
  14951. |$\Rightarrow$|
  14952. |$T'_1$|
  14953. \end{lstlisting}
  14954. Apply the \code{erase-type} function to all of the type annotations in
  14955. the program.
  14956. Regarding the translation of expressions, the case for \code{Inst} is
  14957. the interesting one. We translate it into a \code{Cast}, as shown
  14958. below. The type of the subexpression $e$ is the polymorphic type
  14959. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  14960. $T$, the type $T'$. The target type $T''$ is the result of
  14961. substituting the arguments types $ts$ for the type parameters $xs$ in
  14962. $T$ followed by doing type erasure.
  14963. \begin{lstlisting}
  14964. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  14965. |$\Rightarrow$|
  14966. (Cast |$e'$| |$T'$| |$T''$|)
  14967. \end{lstlisting}
  14968. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  14969. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  14970. Finally, each polymorphic function is translated to a regular
  14971. functions in which type erasure has been applied to all the type
  14972. annotations and the body.
  14973. \begin{lstlisting}
  14974. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  14975. |$\Rightarrow$|
  14976. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  14977. \end{lstlisting}
  14978. \begin{exercise}\normalfont
  14979. Implement a compiler for the polymorphic language \LangPoly{} by
  14980. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  14981. programs that use polymorphic functions. Some of them should make
  14982. use of first-class polymorphism.
  14983. \end{exercise}
  14984. \begin{figure}[p]
  14985. \begin{tikzpicture}[baseline=(current bounding box.center)]
  14986. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  14987. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  14988. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  14989. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  14990. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  14991. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  14992. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  14993. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  14994. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  14995. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  14996. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  14997. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  14998. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  14999. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  15000. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  15001. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  15002. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  15003. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  15004. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  15005. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  15006. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  15007. \path[->,bend right=15] (Rpoly) edge [above] node
  15008. {\ttfamily\footnotesize type-check} (Rpolyp);
  15009. \path[->,bend right=15] (Rpolyp) edge [above] node
  15010. {\ttfamily\footnotesize erase-types} (Rgradualp);
  15011. \path[->,bend right=15] (Rgradualp) edge [above] node
  15012. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  15013. \path[->,bend right=15] (Rwhilepp) edge [right] node
  15014. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  15015. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  15016. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  15017. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  15018. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  15019. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  15020. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  15021. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  15022. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  15023. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  15024. {\ttfamily\footnotesize convert-assignments} (F1-1);
  15025. \path[->,bend left=15] (F1-1) edge [below] node
  15026. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  15027. \path[->,bend right=15] (F1-2) edge [above] node
  15028. {\ttfamily\footnotesize limit-fun.} (F1-3);
  15029. \path[->,bend right=15] (F1-3) edge [above] node
  15030. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  15031. \path[->,bend right=15] (F1-4) edge [above] node
  15032. {\ttfamily\footnotesize remove-complex.} (F1-5);
  15033. \path[->,bend right=15] (F1-5) edge [right] node
  15034. {\ttfamily\footnotesize explicate-control} (C3-2);
  15035. \path[->,bend left=15] (C3-2) edge [left] node
  15036. {\ttfamily\footnotesize select-instr.} (x86-2);
  15037. \path[->,bend right=15] (x86-2) edge [left] node
  15038. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  15039. \path[->,bend right=15] (x86-2-1) edge [below] node
  15040. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  15041. \path[->,bend right=15] (x86-2-2) edge [left] node
  15042. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  15043. \path[->,bend left=15] (x86-3) edge [above] node
  15044. {\ttfamily\footnotesize patch-instr.} (x86-4);
  15045. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  15046. \end{tikzpicture}
  15047. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  15048. \label{fig:Rpoly-passes}
  15049. \end{figure}
  15050. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  15051. for the compilation of \LangPoly{}.
  15052. % TODO: challenge problem: specialization of instantiations
  15053. % Further Reading
  15054. \fi
  15055. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15056. \clearpage
  15057. \appendix
  15058. \chapter{Appendix}
  15059. \if\edition\racketEd
  15060. \section{Interpreters}
  15061. \label{appendix:interp}
  15062. \index{subject}{interpreter}
  15063. We provide interpreters for each of the source languages \LangInt{},
  15064. \LangVar{}, $\ldots$ in the files \code{interp\_Lint.rkt},
  15065. \code{interp-Lvar.rkt}, etc. The interpreters for the intermediate
  15066. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  15067. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  15068. and x86 are in the \key{interp.rkt} file.
  15069. \section{Utility Functions}
  15070. \label{appendix:utilities}
  15071. The utility functions described in this section are in the
  15072. \key{utilities.rkt} file of the support code.
  15073. \paragraph{\code{interp-tests}}
  15074. The \key{interp-tests} function runs the compiler passes and the
  15075. interpreters on each of the specified tests to check whether each pass
  15076. is correct. The \key{interp-tests} function has the following
  15077. parameters:
  15078. \begin{description}
  15079. \item[name (a string)] a name to identify the compiler,
  15080. \item[typechecker] a function of exactly one argument that either
  15081. raises an error using the \code{error} function when it encounters a
  15082. type error, or returns \code{\#f} when it encounters a type
  15083. error. If there is no type error, the type checker returns the
  15084. program.
  15085. \item[passes] a list with one entry per pass. An entry is a list with
  15086. four things:
  15087. \begin{enumerate}
  15088. \item a string giving the name of the pass,
  15089. \item the function that implements the pass (a translator from AST
  15090. to AST),
  15091. \item a function that implements the interpreter (a function from
  15092. AST to result value) for the output language,
  15093. \item and a type checker for the output language. Type checkers for
  15094. the $R$ and $C$ languages are provided in the support code. For
  15095. example, the type checkers for \LangVar{} and \LangCVar{} are in
  15096. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  15097. type checker entry is optional. The support code does not provide
  15098. type checkers for the x86 languages.
  15099. \end{enumerate}
  15100. \item[source-interp] an interpreter for the source language. The
  15101. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  15102. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  15103. \item[tests] a list of test numbers that specifies which tests to
  15104. run. (see below)
  15105. \end{description}
  15106. %
  15107. The \key{interp-tests} function assumes that the subdirectory
  15108. \key{tests} has a collection of Racket programs whose names all start
  15109. with the family name, followed by an underscore and then the test
  15110. number, ending with the file extension \key{.rkt}. Also, for each test
  15111. program that calls \code{read} one or more times, there is a file with
  15112. the same name except that the file extension is \key{.in} that
  15113. provides the input for the Racket program. If the test program is
  15114. expected to fail type checking, then there should be an empty file of
  15115. the same name but with extension \key{.tyerr}.
  15116. \paragraph{\code{compiler-tests}}
  15117. runs the compiler passes to generate x86 (a \key{.s} file) and then
  15118. runs the GNU C compiler (gcc) to generate machine code. It runs the
  15119. machine code and checks that the output is $42$. The parameters to the
  15120. \code{compiler-tests} function are similar to those of the
  15121. \code{interp-tests} function, and consist of
  15122. \begin{itemize}
  15123. \item a compiler name (a string),
  15124. \item a type checker,
  15125. \item description of the passes,
  15126. \item name of a test-family, and
  15127. \item a list of test numbers.
  15128. \end{itemize}
  15129. \paragraph{\code{compile-file}}
  15130. takes a description of the compiler passes (see the comment for
  15131. \key{interp-tests}) and returns a function that, given a program file
  15132. name (a string ending in \key{.rkt}), applies all of the passes and
  15133. writes the output to a file whose name is the same as the program file
  15134. name but with \key{.rkt} replaced with \key{.s}.
  15135. \paragraph{\code{read-program}}
  15136. takes a file path and parses that file (it must be a Racket program)
  15137. into an abstract syntax tree.
  15138. \paragraph{\code{parse-program}}
  15139. takes an S-expression representation of an abstract syntax tree and converts it into
  15140. the struct-based representation.
  15141. \paragraph{\code{assert}}
  15142. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  15143. and displays the message \key{msg} if the Boolean \key{bool} is false.
  15144. \paragraph{\code{lookup}}
  15145. % remove discussion of lookup? -Jeremy
  15146. takes a key and an alist, and returns the first value that is
  15147. associated with the given key, if there is one. If not, an error is
  15148. triggered. The alist may contain both immutable pairs (built with
  15149. \key{cons}) and mutable pairs (built with \key{mcons}).
  15150. %The \key{map2} function ...
  15151. \fi %\racketEd
  15152. \section{x86 Instruction Set Quick-Reference}
  15153. \label{sec:x86-quick-reference}
  15154. \index{subject}{x86}
  15155. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  15156. do. We write $A \to B$ to mean that the value of $A$ is written into
  15157. location $B$. Address offsets are given in bytes. The instruction
  15158. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  15159. registers (such as \code{\%rax}), or memory references (such as
  15160. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  15161. reference per instruction. Other operands must be immediates or
  15162. registers.
  15163. \begin{table}[tbp]
  15164. \centering
  15165. \begin{tabular}{l|l}
  15166. \textbf{Instruction} & \textbf{Operation} \\ \hline
  15167. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  15168. \texttt{negq} $A$ & $- A \to A$ \\
  15169. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  15170. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  15171. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  15172. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  15173. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  15174. \texttt{retq} & Pops the return address and jumps to it \\
  15175. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  15176. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  15177. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  15178. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  15179. be an immediate) \\
  15180. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  15181. matches the condition code of the instruction, otherwise go to the
  15182. next instructions. The condition codes are \key{e} for ``equal'',
  15183. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  15184. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  15185. \texttt{jl} $L$ & \\
  15186. \texttt{jle} $L$ & \\
  15187. \texttt{jg} $L$ & \\
  15188. \texttt{jge} $L$ & \\
  15189. \texttt{jmp} $L$ & Jump to label $L$ \\
  15190. \texttt{movq} $A$, $B$ & $A \to B$ \\
  15191. \texttt{movzbq} $A$, $B$ &
  15192. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  15193. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  15194. and the extra bytes of $B$ are set to zero.} \\
  15195. & \\
  15196. & \\
  15197. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  15198. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  15199. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  15200. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  15201. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  15202. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  15203. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  15204. description of the condition codes. $A$ must be a single byte register
  15205. (e.g., \texttt{al} or \texttt{cl}).} \\
  15206. \texttt{setl} $A$ & \\
  15207. \texttt{setle} $A$ & \\
  15208. \texttt{setg} $A$ & \\
  15209. \texttt{setge} $A$ &
  15210. \end{tabular}
  15211. \vspace{5pt}
  15212. \caption{Quick-reference for the x86 instructions used in this book.}
  15213. \label{tab:x86-instr}
  15214. \end{table}
  15215. \if\edition\racketEd
  15216. \cleardoublepage
  15217. \section{Concrete Syntax for Intermediate Languages}
  15218. The concrete syntax of \LangAny{} is defined in
  15219. Figure~\ref{fig:Rany-concrete-syntax}.
  15220. \begin{figure}[tp]
  15221. \centering
  15222. \fbox{
  15223. \begin{minipage}{0.97\textwidth}\small
  15224. \[
  15225. \begin{array}{lcl}
  15226. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  15227. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}} \\
  15228. &\MID& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \MID \key{Any} \\
  15229. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  15230. \MID \LP\key{Vector}\; \key{Any}\ldots\RP \\
  15231. &\MID& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  15232. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \MID \CPROJECT{\Exp}{\FType}\\
  15233. &\MID& \LP\key{any-vector-length}\;\Exp\RP
  15234. \MID \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  15235. &\MID& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  15236. &\MID& \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP
  15237. \MID \LP\key{void?}\;\Exp\RP \\
  15238. &\MID& \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \\
  15239. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  15240. \LangAnyM{} &::=& \gray{\Def\ldots \; \Exp}
  15241. \end{array}
  15242. \]
  15243. \end{minipage}
  15244. }
  15245. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  15246. (Figure~\ref{fig:Rlam-syntax}).}
  15247. \label{fig:Rany-concrete-syntax}
  15248. \end{figure}
  15249. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  15250. defined in Figures~\ref{fig:c0-concrete-syntax},
  15251. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  15252. and \ref{fig:c3-concrete-syntax}, respectively.
  15253. \begin{figure}[tbp]
  15254. \fbox{
  15255. \begin{minipage}{0.96\textwidth}
  15256. \[
  15257. \begin{array}{lcl}
  15258. \Atm &::=& \Int \MID \Var \\
  15259. \Exp &::=& \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)}\\
  15260. \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
  15261. \Tail &::= & \key{return}~\Exp\key{;} \MID \Stmt~\Tail \\
  15262. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  15263. \end{array}
  15264. \]
  15265. \end{minipage}
  15266. }
  15267. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  15268. \label{fig:c0-concrete-syntax}
  15269. \end{figure}
  15270. \begin{figure}[tbp]
  15271. \fbox{
  15272. \begin{minipage}{0.96\textwidth}
  15273. \small
  15274. \[
  15275. \begin{array}{lcl}
  15276. \Atm &::=& \gray{ \Int \MID \Var } \MID \itm{bool} \\
  15277. \itm{cmp} &::= & \key{eq?} \MID \key{<} \\
  15278. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  15279. &\MID& \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  15280. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
  15281. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  15282. \MID \key{goto}~\itm{label}\key{;}\\
  15283. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
  15284. \LangCIfM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  15285. \end{array}
  15286. \]
  15287. \end{minipage}
  15288. }
  15289. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  15290. \label{fig:c1-concrete-syntax}
  15291. \end{figure}
  15292. \begin{figure}[tbp]
  15293. \fbox{
  15294. \begin{minipage}{0.96\textwidth}
  15295. \small
  15296. \[
  15297. \begin{array}{lcl}
  15298. \Atm &::=& \gray{ \Int \MID \Var \MID \itm{bool} } \\
  15299. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  15300. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  15301. &\MID& \gray{ \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP } \\
  15302. &\MID& \LP \key{allocate}~\Int~\Type \RP \\
  15303. &\MID& (\key{vector-ref}\;\Atm\;\Int) \MID (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  15304. &\MID& \LP \key{global-value}~\Var \RP \MID \LP \key{void} \RP \\
  15305. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \MID \LP\key{collect}~\Int \RP\\
  15306. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  15307. \MID \gray{ \key{goto}~\itm{label}\key{;} }\\
  15308. &\MID& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  15309. \LangCVecM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  15310. \end{array}
  15311. \]
  15312. \end{minipage}
  15313. }
  15314. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  15315. \label{fig:c2-concrete-syntax}
  15316. \end{figure}
  15317. \begin{figure}[tp]
  15318. \fbox{
  15319. \begin{minipage}{0.96\textwidth}
  15320. \small
  15321. \[
  15322. \begin{array}{lcl}
  15323. \Atm &::=& \gray{ \Int \MID \Var \MID \key{\#t} \MID \key{\#f} }
  15324. \\
  15325. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  15326. \Exp &::= & \gray{ \Atm \MID \LP\key{read}\RP \MID \LP\key{-}\;\Atm\RP \MID \LP\key{+} \; \Atm\;\Atm\RP
  15327. \MID \LP\key{not}\;\Atm\RP \MID \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  15328. &\MID& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  15329. \MID \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  15330. &\MID& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \MID \LP\key{global-value} \,\itm{name}\RP \MID \LP\key{void}\RP } \\
  15331. &\MID& \LP\key{fun-ref}~\itm{label}\RP \MID \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  15332. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \MID \RETURN{\Exp}
  15333. \MID \LP\key{collect} \,\itm{int}\RP }\\
  15334. \Tail &::= & \gray{\RETURN{\Exp} \MID \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  15335. &\MID& \gray{\LP\key{goto}\,\itm{label}\RP
  15336. \MID \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  15337. &\MID& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  15338. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  15339. \LangCFunM{} & ::= & \Def\ldots
  15340. \end{array}
  15341. \]
  15342. \end{minipage}
  15343. }
  15344. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  15345. \label{fig:c3-concrete-syntax}
  15346. \end{figure}
  15347. \fi % racketEd
  15348. \backmatter
  15349. \addtocontents{toc}{\vspace{11pt}}
  15350. %% \addtocontents{toc}{\vspace{11pt}}
  15351. %% \nocite{*} is a way to get all the entries in the .bib file to print in the bibliography:
  15352. \nocite{*}\let\bibname\refname
  15353. \addcontentsline{toc}{fmbm}{\refname}
  15354. \printbibliography
  15355. \printindex{authors}{Author Index}
  15356. \printindex{subject}{Subject Index}
  15357. \end{document}