book.tex 821 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912229132291422915229162291722918229192292022921229222292322924229252292622927229282292922930229312293222933229342293522936229372293822939229402294122942229432294422945229462294722948229492295022951229522295322954229552295622957229582295922960229612296222963229642296522966229672296822969229702297122972229732297422975229762297722978229792298022981229822298322984229852298622987229882298922990229912299222993229942299522996229972299822999230002300123002230032300423005230062300723008230092301023011230122301323014230152301623017230182301923020230212302223023230242302523026230272302823029230302303123032230332303423035230362303723038230392304023041230422304323044230452304623047230482304923050230512305223053230542305523056230572305823059230602306123062230632306423065230662306723068230692307023071230722307323074230752307623077230782307923080230812308223083230842308523086230872308823089230902309123092230932309423095230962309723098230992310023101231022310323104231052310623107231082310923110231112311223113231142311523116231172311823119231202312123122231232312423125231262312723128231292313023131231322313323134231352313623137231382313923140231412314223143231442314523146231472314823149231502315123152231532315423155231562315723158231592316023161231622316323164231652316623167231682316923170231712317223173231742317523176231772317823179231802318123182231832318423185231862318723188231892319023191231922319323194231952319623197231982319923200232012320223203232042320523206232072320823209232102321123212232132321423215232162321723218232192322023221232222322323224232252322623227232282322923230232312323223233232342323523236232372323823239232402324123242232432324423245232462324723248232492325023251232522325323254232552325623257232582325923260232612326223263232642326523266232672326823269232702327123272232732327423275232762327723278232792328023281232822328323284232852328623287232882328923290232912329223293232942329523296232972329823299233002330123302233032330423305233062330723308233092331023311233122331323314233152331623317233182331923320233212332223323233242332523326233272332823329233302333123332233332333423335233362333723338233392334023341233422334323344233452334623347233482334923350233512335223353233542335523356233572335823359233602336123362233632336423365233662336723368233692337023371233722337323374233752337623377233782337923380233812338223383233842338523386233872338823389233902339123392233932339423395233962339723398233992340023401234022340323404234052340623407234082340923410234112341223413234142341523416234172341823419234202342123422234232342423425234262342723428234292343023431234322343323434234352343623437234382343923440234412344223443234442344523446234472344823449234502345123452234532345423455234562345723458234592346023461234622346323464234652346623467234682346923470234712347223473234742347523476234772347823479234802348123482234832348423485234862348723488234892349023491234922349323494234952349623497234982349923500235012350223503235042350523506235072350823509
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. %
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \usepackage[all]{xy}
  18. \usepackage{url}
  19. \definecolor{lightgray}{gray}{1}
  20. \newcommand{\black}[1]{{\color{black} #1}}
  21. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  22. \newcommand{\gray}[1]{{\color{gray} #1}}
  23. \def\racketEd{0}
  24. \def\pythonEd{1}
  25. \def\edition{0}
  26. % material that is specific to the Racket edition of the book
  27. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  28. % would like a command for: \if\edition\racketEd\color{olive}
  29. % and : \fi\color{black}
  30. %\newcommand{\pythonColor}[0]{\color{purple}}
  31. \newcommand{\pythonColor}[0]{}
  32. % material that is specific to the Python edition of the book
  33. \newcommand{\python}[1]{{\if\edition\pythonEd\pythonColor #1\fi}}
  34. %% For multiple indices:
  35. %\usepackage{multind} moved this to the file TimesAPriori_MIT.cls. -Jeremy
  36. \makeindex{subject}
  37. %\makeindex{authors}
  38. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  39. \if\edition\racketEd
  40. \lstset{%
  41. language=Lisp,
  42. basicstyle=\ttfamily\small,
  43. morekeywords={lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  44. deletekeywords={read,mapping,vector},
  45. escapechar=|,
  46. columns=flexible,
  47. %moredelim=[is][\color{red}]{~}{~},
  48. showstringspaces=false
  49. }
  50. \fi
  51. \if\edition\pythonEd
  52. \lstset{%
  53. language=Python,
  54. basicstyle=\ttfamily\small,
  55. morekeywords={match,case,bool,int,let},
  56. deletekeywords={},
  57. escapechar=|,
  58. columns=flexible,
  59. %moredelim=[is][\color{red}]{~}{~},
  60. showstringspaces=false
  61. }
  62. \fi
  63. %%% Any shortcut own defined macros place here
  64. %% sample of author macro:
  65. \input{defs}
  66. \newtheorem{exercise}[theorem]{Exercise}
  67. \numberwithin{theorem}{chapter}
  68. \numberwithin{definition}{chapter}
  69. \numberwithin{equation}{chapter}
  70. % Adjusted settings
  71. \setlength{\columnsep}{4pt}
  72. %% \begingroup
  73. %% \setlength{\intextsep}{0pt}%
  74. %% \setlength{\columnsep}{0pt}%
  75. %% \begin{wrapfigure}{r}{0.5\textwidth}
  76. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  77. %% \caption{Basic layout}
  78. %% \end{wrapfigure}
  79. %% \lipsum[1]
  80. %% \endgroup
  81. \newbox\oiintbox
  82. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  83. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  84. \def\oiint{\copy\oiintbox}
  85. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  86. %\usepackage{showframe}
  87. \def\ShowFrameLinethickness{0.125pt}
  88. \addbibresource{book.bib}
  89. \if\edition\pythonEd
  90. \addbibresource{python.bib}
  91. \fi
  92. \begin{document}
  93. \frontmatter
  94. %\HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  95. \HalfTitle{Essentials of Compilation}
  96. \halftitlepage
  97. \clearemptydoublepage
  98. \Title{Essentials of Compilation}
  99. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  100. %\edition{First Edition}
  101. \BookAuthor{Jeremy G. Siek}
  102. \imprint{The MIT Press\\
  103. Cambridge, Massachusetts\\
  104. London, England}
  105. \begin{copyrightpage}
  106. \textcopyright\ 2023 Massachusetts Institute of Technology \\[2ex]
  107. This work is subject to a Creative Commons CC-BY-ND-NC license. \\[2ex]
  108. Subject to such license, all rights are reserved. \\[2ex]
  109. \includegraphics{CCBY-logo}
  110. The MIT Press would like to thank the anonymous peer reviewers who
  111. provided comments on drafts of this book. The generous work of
  112. academic experts is essential for establishing the authority and
  113. quality of our publications. We acknowledge with gratitude the
  114. contributions of these otherwise uncredited readers.
  115. This book was set in Times LT Std Roman by the author. Printed and
  116. bound in the United States of America.
  117. Library of Congress Cataloging-in-Publication Data\\
  118. \ \\
  119. Names: Siek, Jeremy, author. \\
  120. Title: Essentials of compilation : an incremental approach in Racket / Jeremy G. Siek. \\
  121. Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes bibliographical references and index. \\
  122. Identifiers: LCCN 2022015399 (print) | LCCN 2022015400 (ebook) | ISBN 9780262047760 (hardcover) | ISBN 9780262373272 (epub) | ISBN 9780262373289 (pdf) \\
  123. Subjects: LCSH: Racket (Computer program language) | Compilers (Computer programs) \\
  124. Classification: LCC QA76.73.R33 S54 2023 (print) | LCC QA76.73.R33 (ebook) | DDC 005.13/3--dc23/eng/20220705 \\
  125. LC record available at https://lccn.loc.gov/2022015399\\
  126. LC ebook record available at https://lccn.loc.gov/2022015400\\
  127. \ \\
  128. 10 9 8 7 6 5 4 3 2 1
  129. %% Jeremy G. Siek. Available for free viewing
  130. %% or personal downloading under the
  131. %% \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  132. %% license.
  133. %% Copyright in this monograph has been licensed exclusively to The MIT
  134. %% Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  135. %% version to the public in 2022. All inquiries regarding rights should
  136. %% be addressed to The MIT Press, Rights and Permissions Department.
  137. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  138. %% All rights reserved. No part of this book may be reproduced in any
  139. %% form by any electronic or mechanical means (including photocopying,
  140. %% recording, or information storage and retrieval) without permission in
  141. %% writing from the publisher.
  142. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  143. %% United States of America.
  144. %% Library of Congress Cataloging-in-Publication Data is available.
  145. %% ISBN:
  146. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  147. \end{copyrightpage}
  148. \dedication{This book is dedicated to Katie, my partner in everything,
  149. my children, who grew up during the writing of this book, and the
  150. programming language students at Indiana University, whose
  151. thoughtful questions made this a better book.}
  152. %% \begin{epigraphpage}
  153. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  154. %% \textit{Book Name if any}}
  155. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  156. %% \end{epigraphpage}
  157. \tableofcontents
  158. %\listoffigures
  159. %\listoftables
  160. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  161. \chapter*{Preface}
  162. \addcontentsline{toc}{fmbm}{Preface}
  163. There is a magical moment when a programmer presses the \emph{run}
  164. button and the software begins to execute. Somehow a program written
  165. in a high-level language is running on a computer that is capable only
  166. of shuffling bits. Here we reveal the wizardry that makes that moment
  167. possible. Beginning with the groundbreaking work of Backus and
  168. colleagues in the 1950s, computer scientists developed techniques for
  169. constructing programs called \emph{compilers} that automatically
  170. translate high-level programs into machine code.
  171. We take you on a journey through constructing your own compiler for a
  172. small but powerful language. Along the way we explain the essential
  173. concepts, algorithms, and data structures that underlie compilers. We
  174. develop your understanding of how programs are mapped onto computer
  175. hardware, which is helpful in reasoning about properties at the
  176. junction of hardware and software, such as execution time, software
  177. errors, and security vulnerabilities. For those interested in
  178. pursuing compiler construction as a career, our goal is to provide a
  179. stepping-stone to advanced topics such as just-in-time compilation,
  180. program analysis, and program optimization. For those interested in
  181. designing and implementing programming languages, we connect language
  182. design choices to their impact on the compiler and the generated code.
  183. A compiler is typically organized as a sequence of stages that
  184. progressively translate a program to the code that runs on
  185. hardware. We take this approach to the extreme by partitioning our
  186. compiler into a large number of \emph{nanopasses}, each of which
  187. performs a single task. This enables the testing of each pass in
  188. isolation and focuses our attention, making the compiler far easier to
  189. understand.
  190. The most familiar approach to describing compilers is to dedicate each
  191. chapter to one pass. The problem with that approach is that it
  192. obfuscates how language features motivate design choices in a
  193. compiler. We instead take an \emph{incremental} approach in which we
  194. build a complete compiler in each chapter, starting with a small input
  195. language that includes only arithmetic and variables. We add new
  196. language features in subsequent chapters, extending the compiler as
  197. necessary.
  198. Our choice of language features is designed to elicit fundamental
  199. concepts and algorithms used in compilers.
  200. \begin{itemize}
  201. \item We begin with integer arithmetic and local variables in
  202. chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  203. the fundamental tools of compiler construction: \emph{abstract
  204. syntax trees} and \emph{recursive functions}.
  205. {\if\edition\pythonEd\pythonColor
  206. \item In Chapter~\ref{ch:parsing} we learn how to use the Lark
  207. parser framework to create a parser for the language of integer
  208. arithmetic and local variables. We learn about the parsing
  209. algorithms inside Lark, including Earley and LALR(1).
  210. %
  211. \fi}
  212. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  213. \emph{graph coloring} to assign variables to machine registers.
  214. \item Chapter~\ref{ch:Lif} adds conditional expressions, which
  215. motivates an elegant recursive algorithm for translating them into
  216. conditional \code{goto} statements.
  217. \item Chapter~\ref{ch:Lwhile} adds loops\racket{ and mutable
  218. variables}. This elicits the need for \emph{dataflow
  219. analysis} in the register allocator.
  220. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  221. \emph{garbage collection}.
  222. \item Chapter~\ref{ch:Lfun} adds functions as first-class values
  223. without lexical scoping, similar to functions in the C programming
  224. language~\citep{Kernighan:1988nx}. The reader learns about the
  225. procedure call stack and \emph{calling conventions} and how they interact
  226. with register allocation and garbage collection. The chapter also
  227. describes how to generate efficient tail calls.
  228. \item Chapter~\ref{ch:Llambda} adds anonymous functions with lexical
  229. scoping, that is, \emph{lambda} expressions. The reader learns about
  230. \emph{closure conversion}, in which lambdas are translated into a
  231. combination of functions and tuples.
  232. % Chapter about classes and objects?
  233. \item Chapter~\ref{ch:Ldyn} adds \emph{dynamic typing}. Prior to this
  234. point the input languages are statically typed. The reader extends
  235. the statically typed language with an \code{Any} type that serves
  236. as a target for compiling the dynamically typed language.
  237. %% {\if\edition\pythonEd\pythonColor
  238. %% \item Chapter~\ref{ch:Lobject} adds support for \emph{objects} and
  239. %% \emph{classes}.
  240. %% \fi}
  241. \item Chapter~\ref{ch:Lgrad} uses the \code{Any} type introduced in
  242. chapter~\ref{ch:Ldyn} to implement a \emph{gradually typed language}
  243. in which different regions of a program may be static or dynamically
  244. typed. The reader implements runtime support for \emph{proxies} that
  245. allow values to safely move between regions.
  246. \item Chapter~\ref{ch:Lpoly} adds \emph{generics} with autoboxing,
  247. leveraging the \code{Any} type and type casts developed in chapters
  248. \ref{ch:Ldyn} and \ref{ch:Lgrad}.
  249. \end{itemize}
  250. There are many language features that we do not include. Our choices
  251. balance the incidental complexity of a feature versus the fundamental
  252. concepts that it exposes. For example, we include tuples and not
  253. records because although they both elicit the study of heap allocation and
  254. garbage collection, records come with more incidental complexity.
  255. Since 2009, drafts of this book have served as the textbook for
  256. sixteen-week compiler courses for upper-level undergraduates and
  257. first-year graduate students at the University of Colorado and Indiana
  258. University.
  259. %
  260. Students come into the course having learned the basics of
  261. programming, data structures and algorithms, and discrete
  262. mathematics.
  263. %
  264. At the beginning of the course, students form groups of two to four
  265. people. The groups complete approximately one chapter every two
  266. weeks, starting with chapter~\ref{ch:Lvar} and including chapters
  267. according to the students interests while respecting the dependencies
  268. between chapters shown in
  269. Figure~\ref{fig:chapter-dependences}. Chapter~\ref{ch:Lfun}
  270. (functions) depends on chapter~\ref{ch:Lvec} (tuples) only in the
  271. implementation of efficient tail calls.
  272. %
  273. The last two weeks of the course involve a final project in which
  274. students design and implement a compiler extension of their choosing.
  275. The last few chapters can be used in support of these projects. Many
  276. chapters include a challenge problem that we assign to the graduate
  277. students.
  278. For compiler courses at universities on the quarter system
  279. (about ten weeks in length), we recommend completing the course
  280. through chapter~\ref{ch:Lvec} or chapter~\ref{ch:Lfun} and providing
  281. some scaffolding code to the students for each compiler pass.
  282. %
  283. The course can be adapted to emphasize functional languages by
  284. skipping chapter~\ref{ch:Lwhile} (loops) and including
  285. chapter~\ref{ch:Llambda} (lambda). The course can be adapted to
  286. dynamically typed languages by including chapter~\ref{ch:Ldyn}.
  287. %
  288. %% \python{A course that emphasizes object-oriented languages would
  289. %% include Chapter~\ref{ch:Lobject}.}
  290. This book has been used in compiler courses at California Polytechnic
  291. State University, Portland State University, Rose–Hulman Institute of
  292. Technology, University of Freiburg, University of Massachusetts
  293. Lowell, and the University of Vermont.
  294. \begin{figure}[tp]
  295. \begin{tcolorbox}[colback=white]
  296. {\if\edition\racketEd
  297. \begin{tikzpicture}[baseline=(current bounding box.center)]
  298. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  299. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  300. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  301. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  302. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  303. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  304. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  305. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  306. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  307. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  308. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  309. \path[->] (C1) edge [above] node {} (C2);
  310. \path[->] (C2) edge [above] node {} (C3);
  311. \path[->] (C3) edge [above] node {} (C4);
  312. \path[->] (C4) edge [above] node {} (C5);
  313. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  314. \path[->] (C5) edge [above] node {} (C7);
  315. \path[->] (C6) edge [above] node {} (C7);
  316. \path[->] (C4) edge [above] node {} (C8);
  317. \path[->] (C4) edge [above] node {} (C9);
  318. \path[->] (C7) edge [above] node {} (C10);
  319. \path[->] (C8) edge [above] node {} (C10);
  320. \path[->] (C10) edge [above] node {} (C11);
  321. \end{tikzpicture}
  322. \fi}
  323. {\if\edition\pythonEd\pythonColor
  324. \begin{tikzpicture}[baseline=(current bounding box.center)]
  325. \node (Prelim) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  326. \node (Var) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  327. \node (Parse) at (8,1.5) {\small Ch.~\ref{ch:parsing} Parsing};
  328. \node (Reg) at (0,0) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  329. \node (Cond) at (4,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  330. \node (Loop) at (8,0) {\small Ch.~\ref{ch:Lwhile} Loops};
  331. \node (Fun) at (0,-1.5) {\small Ch.~\ref{ch:Lfun} Functions};
  332. \node (Tuple) at (4,-1.5) {\small Ch.~\ref{ch:Lvec} Tuples};
  333. \node (Dyn) at (8,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  334. % \node (CO) at (0,-3) {\small Ch.~\ref{ch:Lobject} Objects};
  335. \node (Lam) at (0,-3) {\small Ch.~\ref{ch:Llambda} Lambda};
  336. \node (Gradual) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  337. \node (Generic) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  338. \path[->] (Prelim) edge [above] node {} (Var);
  339. \path[->] (Var) edge [above] node {} (Reg);
  340. \path[->] (Var) edge [above] node {} (Parse);
  341. \path[->] (Reg) edge [above] node {} (Cond);
  342. \path[->] (Cond) edge [above] node {} (Tuple);
  343. \path[->,style=dotted] (Tuple) edge [above] node {} (Fun);
  344. \path[->] (Cond) edge [above] node {} (Fun);
  345. \path[->] (Tuple) edge [above] node {} (Lam);
  346. \path[->] (Fun) edge [above] node {} (Lam);
  347. \path[->] (Cond) edge [above] node {} (Dyn);
  348. \path[->] (Cond) edge [above] node {} (Loop);
  349. \path[->] (Lam) edge [above] node {} (Gradual);
  350. \path[->] (Dyn) edge [above] node {} (Gradual);
  351. % \path[->] (Dyn) edge [above] node {} (CO);
  352. \path[->] (Gradual) edge [above] node {} (Generic);
  353. \end{tikzpicture}
  354. \fi}
  355. \end{tcolorbox}
  356. \caption{Diagram of chapter dependencies.}
  357. \label{fig:chapter-dependences}
  358. \end{figure}
  359. \racket{We use the \href{https://racket-lang.org/}{Racket} language both for
  360. the implementation of the compiler and for the input language, so the
  361. reader should be proficient with Racket or Scheme. There are many
  362. excellent resources for learning Scheme and
  363. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.}
  364. %
  365. \python{This edition of the book uses \href{https://www.python.org/}{Python}
  366. both for the implementation of the compiler and for the input language, so the
  367. reader should be proficient with Python. There are many
  368. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.}%
  369. %
  370. The support code for this book is in the GitHub repository at
  371. the following location:
  372. \begin{center}\small\texttt
  373. https://github.com/IUCompilerCourse/
  374. \end{center}
  375. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  376. is helpful but not necessary for the reader to have taken a computer
  377. systems course~\citep{Bryant:2010aa}. We introduce the parts of x86-64
  378. assembly language that are needed in the compiler.
  379. %
  380. We follow the System V calling
  381. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  382. that we generate works with the runtime system (written in C) when it
  383. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  384. operating systems on Intel hardware.
  385. %
  386. On the Windows operating system, \code{gcc} uses the Microsoft x64
  387. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  388. assembly code that we generate does \emph{not} work with the runtime
  389. system on Windows. One workaround is to use a virtual machine with
  390. Linux as the guest operating system.
  391. \section*{Acknowledgments}
  392. The tradition of compiler construction at Indiana University goes back
  393. to research and courses on programming languages by Daniel Friedman in
  394. the 1970s and 1980s. One of his students, Kent Dybvig, implemented
  395. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  396. compiler for Scheme. Throughout the 1990s and 2000s, Dybvig taught
  397. the compiler course and continued the development of Chez Scheme.
  398. %
  399. The compiler course evolved to incorporate novel pedagogical ideas
  400. while also including elements of real-world compilers. One of
  401. Friedman's ideas was to split the compiler into many small
  402. passes. Another idea, called ``the game,'' was to test the code
  403. generated by each pass using interpreters.
  404. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  405. developed infrastructure to support this approach and evolved the
  406. course to use even smaller
  407. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  408. design decisions in this book are inspired by the assignment
  409. descriptions of \citet{Dybvig:2010aa}. In the mid 2000s, a student of
  410. Dybvig named Abdulaziz Ghuloum observed that the front-to-back
  411. organization of the course made it difficult for students to
  412. understand the rationale for the compiler design. Ghuloum proposed the
  413. incremental approach~\citep{Ghuloum:2006bh} on which this book is
  414. based.
  415. I thank the many students who served as teaching assistants for the
  416. compiler course at IU including Carl Factora, Ryan Scott, Cameron
  417. Swords, and Chris Wailes. I thank Andre Kuhlenschmidt for work on the
  418. garbage collector and x86 interpreter, Michael Vollmer for work on
  419. efficient tail calls, and Michael Vitousek for help with the first
  420. offering of the incremental compiler course at IU.
  421. I thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  422. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  423. Michael Wollowski for teaching courses based on drafts of this book
  424. and for their feedback. I thank the National Science Foundation for
  425. the grants that helped to support this work: Grant Numbers 1518844,
  426. 1763922, and 1814460.
  427. I thank Ronald Garcia for helping me survive Dybvig's compiler
  428. course in the early 2000s and especially for finding the bug that
  429. sent our garbage collector on a wild goose chase!
  430. \mbox{}\\
  431. \noindent Jeremy G. Siek \\
  432. Bloomington, Indiana
  433. \mainmatter
  434. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  435. \chapter{Preliminaries}
  436. \label{ch:trees-recur}
  437. \setcounter{footnote}{0}
  438. In this chapter we review the basic tools needed to implement a
  439. compiler. Programs are typically input by a programmer as text, that
  440. is, a sequence of characters. The program-as-text representation is
  441. called \emph{concrete syntax}. We use concrete syntax to concisely
  442. write down and talk about programs. Inside the compiler, we use
  443. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  444. that efficiently supports the operations that the compiler needs to
  445. perform.\index{subject}{concrete syntax}\index{subject}{abstract
  446. syntax}\index{subject}{abstract syntax
  447. tree}\index{subject}{AST}\index{subject}{program}
  448. The process of translating concrete syntax to abstract syntax is
  449. called \emph{parsing}\index{subject}{parsing}\python{\ and is studied in
  450. chapter~\ref{ch:parsing}}.
  451. \racket{This book does not cover the theory and implementation of parsing.
  452. We refer the readers interested in parsing to the thorough treatment
  453. of parsing by \citet{Aho:2006wb}.}%
  454. %
  455. \racket{A parser is provided in the support code for translating from
  456. concrete to abstract syntax.}%
  457. %
  458. \python{For now we use Python's \code{ast} module to translate from concrete
  459. to abstract syntax.}
  460. ASTs can be represented inside the compiler in many different ways,
  461. depending on the programming language used to write the compiler.
  462. %
  463. \racket{We use Racket's
  464. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  465. feature to represent ASTs (section~\ref{sec:ast}).}
  466. %
  467. \python{We use Python classes and objects to represent ASTs, especially the
  468. classes defined in the standard \code{ast} module for the Python
  469. source language.}%
  470. %
  471. We use grammars to define the abstract syntax of programming languages
  472. (section~\ref{sec:grammar}) and pattern matching to inspect individual
  473. nodes in an AST (section~\ref{sec:pattern-matching}). We use
  474. recursive functions to construct and deconstruct ASTs
  475. (section~\ref{sec:recursion}). This chapter provides a brief
  476. introduction to these components.
  477. \racket{\index{subject}{struct}}
  478. \python{\index{subject}{class}\index{subject}{object}}
  479. \section{Abstract Syntax Trees}
  480. \label{sec:ast}
  481. Compilers use abstract syntax trees to represent programs because they
  482. often need to ask questions such as, for a given part of a program,
  483. what kind of language feature is it? What are its subparts? Consider
  484. the program on the left and the diagram of its AST on the
  485. right~\eqref{eq:arith-prog}. This program is an addition operation
  486. that has two subparts, a \racket{read}\python{input} operation and a
  487. negation. The negation has another subpart, the integer constant
  488. \code{8}. By using a tree to represent the program, we can easily
  489. follow the links to go from one part of a program to its subparts.
  490. \begin{center}
  491. \begin{minipage}{0.4\textwidth}
  492. {\if\edition\racketEd
  493. \begin{lstlisting}
  494. (+ (read) (- 8))
  495. \end{lstlisting}
  496. \fi}
  497. {\if\edition\pythonEd\pythonColor
  498. \begin{lstlisting}
  499. input_int() + -8
  500. \end{lstlisting}
  501. \fi}
  502. \end{minipage}
  503. \begin{minipage}{0.4\textwidth}
  504. \begin{equation}
  505. \begin{tikzpicture}
  506. \node[draw] (plus) at (0 , 0) {\key{+}};
  507. \node[draw] (read) at (-1, -1) {\racket{\footnotesize\key{read}}\python{\key{input\_int()}}};
  508. \node[draw] (minus) at (1 , -1) {$\key{-}$};
  509. \node[draw] (8) at (1 , -2) {\key{8}};
  510. \draw[->] (plus) to (read);
  511. \draw[->] (plus) to (minus);
  512. \draw[->] (minus) to (8);
  513. \end{tikzpicture}
  514. \label{eq:arith-prog}
  515. \end{equation}
  516. \end{minipage}
  517. \end{center}
  518. We use the standard terminology for trees to describe ASTs: each
  519. rectangle above is called a \emph{node}. The arrows connect a node to its
  520. \emph{children}, which are also nodes. The top-most node is the
  521. \emph{root}. Every node except for the root has a \emph{parent} (the
  522. node of which it is the child). If a node has no children, it is a
  523. \emph{leaf} node; otherwise it is an \emph{internal} node.
  524. \index{subject}{node}
  525. \index{subject}{children}
  526. \index{subject}{root}
  527. \index{subject}{parent}
  528. \index{subject}{leaf}
  529. \index{subject}{internal node}
  530. %% Recall that an \emph{symbolic expression} (S-expression) is either
  531. %% \begin{enumerate}
  532. %% \item an atom, or
  533. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  534. %% where $e_1$ and $e_2$ are each an S-expression.
  535. %% \end{enumerate}
  536. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  537. %% null value \code{'()}, etc. We can create an S-expression in Racket
  538. %% simply by writing a backquote (called a quasi-quote in Racket)
  539. %% followed by the textual representation of the S-expression. It is
  540. %% quite common to use S-expressions to represent a list, such as $a, b
  541. %% ,c$ in the following way:
  542. %% \begin{lstlisting}
  543. %% `(a . (b . (c . ())))
  544. %% \end{lstlisting}
  545. %% Each element of the list is in the first slot of a pair, and the
  546. %% second slot is either the rest of the list or the null value, to mark
  547. %% the end of the list. Such lists are so common that Racket provides
  548. %% special notation for them that removes the need for the periods
  549. %% and so many parenthesis:
  550. %% \begin{lstlisting}
  551. %% `(a b c)
  552. %% \end{lstlisting}
  553. %% The following expression creates an S-expression that represents AST
  554. %% \eqref{eq:arith-prog}.
  555. %% \begin{lstlisting}
  556. %% `(+ (read) (- 8))
  557. %% \end{lstlisting}
  558. %% When using S-expressions to represent ASTs, the convention is to
  559. %% represent each AST node as a list and to put the operation symbol at
  560. %% the front of the list. The rest of the list contains the children. So
  561. %% in the above case, the root AST node has operation \code{`+} and its
  562. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  563. %% diagram \eqref{eq:arith-prog}.
  564. %% To build larger S-expressions one often needs to splice together
  565. %% several smaller S-expressions. Racket provides the comma operator to
  566. %% splice an S-expression into a larger one. For example, instead of
  567. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  568. %% we could have first created an S-expression for AST
  569. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  570. %% S-expression.
  571. %% \begin{lstlisting}
  572. %% (define ast1.4 `(- 8))
  573. %% (define ast1_1 `(+ (read) ,ast1.4))
  574. %% \end{lstlisting}
  575. %% In general, the Racket expression that follows the comma (splice)
  576. %% can be any expression that produces an S-expression.
  577. {\if\edition\racketEd
  578. We define a Racket \code{struct} for each kind of node. For this
  579. chapter we require just two kinds of nodes: one for integer constants
  580. (aka literals\index{subject}{literals})
  581. and one for primitive operations. The following is the \code{struct}
  582. definition for integer constants.\footnote{All the AST structures are
  583. defined in the file \code{utilities.rkt} in the support code.}
  584. \begin{lstlisting}
  585. (struct Int (value))
  586. \end{lstlisting}
  587. An integer node contains just one thing: the integer value.
  588. We establish the convention that \code{struct} names, such
  589. as \code{Int}, are capitalized.
  590. To create an AST node for the integer $8$, we write \INT{8}.
  591. \begin{lstlisting}
  592. (define eight (Int 8))
  593. \end{lstlisting}
  594. We say that the value created by \INT{8} is an
  595. \emph{instance} of the
  596. \code{Int} structure.
  597. The following is the \code{struct} definition for primitive operations.
  598. \begin{lstlisting}
  599. (struct Prim (op args))
  600. \end{lstlisting}
  601. A primitive operation node includes an operator symbol \code{op} and a
  602. list of child arguments called \code{args}. For example, to create an
  603. AST that negates the number $8$, we write the following.
  604. \begin{lstlisting}
  605. (define neg-eight (Prim '- (list eight)))
  606. \end{lstlisting}
  607. Primitive operations may have zero or more children. The \code{read}
  608. operator has zero:
  609. \begin{lstlisting}
  610. (define rd (Prim 'read '()))
  611. \end{lstlisting}
  612. The addition operator has two children:
  613. \begin{lstlisting}
  614. (define ast1_1 (Prim '+ (list rd neg-eight)))
  615. \end{lstlisting}
  616. We have made a design choice regarding the \code{Prim} structure.
  617. Instead of using one structure for many different operations
  618. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  619. structure for each operation, as follows:
  620. \begin{lstlisting}
  621. (struct Read ())
  622. (struct Add (left right))
  623. (struct Neg (value))
  624. \end{lstlisting}
  625. The reason that we choose to use just one structure is that many parts
  626. of the compiler can use the same code for the different primitive
  627. operators, so we might as well just write that code once by using a
  628. single structure.
  629. %
  630. \fi}
  631. {\if\edition\pythonEd\pythonColor
  632. We use a Python \code{class} for each kind of node.
  633. The following is the class definition for
  634. constants (aka literals\index{subject}{literals})
  635. from the Python \code{ast} module.
  636. \begin{lstlisting}
  637. class Constant:
  638. def __init__(self, value):
  639. self.value = value
  640. \end{lstlisting}
  641. An integer constant node includes just one thing: the integer value.
  642. To create an AST node for the integer $8$, we write \INT{8}.
  643. \begin{lstlisting}
  644. eight = Constant(8)
  645. \end{lstlisting}
  646. We say that the value created by \INT{8} is an
  647. \emph{instance} of the \code{Constant} class.
  648. The following is the class definition for unary operators.
  649. \begin{lstlisting}
  650. class UnaryOp:
  651. def __init__(self, op, operand):
  652. self.op = op
  653. self.operand = operand
  654. \end{lstlisting}
  655. The specific operation is specified by the \code{op} parameter. For
  656. example, the class \code{USub} is for unary subtraction.
  657. (More unary operators are introduced in later chapters.) To create an AST that
  658. negates the number $8$, we write the following.
  659. \begin{lstlisting}
  660. neg_eight = UnaryOp(USub(), eight)
  661. \end{lstlisting}
  662. The call to the \code{input\_int} function is represented by the
  663. \code{Call} and \code{Name} classes.
  664. \begin{lstlisting}
  665. class Call:
  666. def __init__(self, func, args):
  667. self.func = func
  668. self.args = args
  669. class Name:
  670. def __init__(self, id):
  671. self.id = id
  672. \end{lstlisting}
  673. To create an AST node that calls \code{input\_int}, we write
  674. \begin{lstlisting}
  675. read = Call(Name('input_int'), [])
  676. \end{lstlisting}
  677. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  678. the \code{BinOp} class for binary operators.
  679. \begin{lstlisting}
  680. class BinOp:
  681. def __init__(self, left, op, right):
  682. self.op = op
  683. self.left = left
  684. self.right = right
  685. \end{lstlisting}
  686. Similar to \code{UnaryOp}, the specific operation is specified by the
  687. \code{op} parameter, which for now is just an instance of the
  688. \code{Add} class. So to create the AST
  689. node that adds negative eight to some user input, we write the following.
  690. \begin{lstlisting}
  691. ast1_1 = BinOp(read, Add(), neg_eight)
  692. \end{lstlisting}
  693. \fi}
  694. To compile a program such as \eqref{eq:arith-prog}, we need to know
  695. that the operation associated with the root node is addition and we
  696. need to be able to access its two
  697. children. \racket{Racket}\python{Python} provides pattern matching to
  698. support these kinds of queries, as we see in
  699. section~\ref{sec:pattern-matching}.
  700. We often write down the concrete syntax of a program even when we
  701. actually have in mind the AST, because the concrete syntax is more
  702. concise. We recommend that you always think of programs as abstract
  703. syntax trees.
  704. \section{Grammars}
  705. \label{sec:grammar}
  706. \index{subject}{integer}
  707. %\index{subject}{constant}
  708. A programming language can be thought of as a \emph{set} of programs.
  709. The set is infinite (that is, one can always create larger programs),
  710. so one cannot simply describe a language by listing all the
  711. programs in the language. Instead we write down a set of rules, a
  712. \emph{context-free grammar}, for building programs. Grammars are often used to
  713. define the concrete syntax of a language, but they can also be used to
  714. describe the abstract syntax. We write our rules in a variant of
  715. Backus-Naur form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  716. \index{subject}{Backus-Naur form}\index{subject}{BNF} As an example,
  717. we describe a small language, named \LangInt{}, that consists of
  718. integers and arithmetic operations.\index{subject}{grammar}
  719. \index{subject}{context-free grammar}
  720. The first grammar rule for the abstract syntax of \LangInt{} says that an
  721. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  722. \begin{equation}
  723. \Exp ::= \INT{\Int} \label{eq:arith-int}
  724. \end{equation}
  725. %
  726. Each rule has a left-hand side and a right-hand side.
  727. If you have an AST node that matches the
  728. right-hand side, then you can categorize it according to the
  729. left-hand side.
  730. %
  731. Symbols in typewriter font, such as \racket{\code{Int}}\python{\code{Constant}},
  732. are \emph{terminal} symbols and must literally appear in the program for the
  733. rule to be applicable.\index{subject}{terminal}
  734. %
  735. Our grammars do not mention \emph{white space}, that is, delimiter
  736. characters like spaces, tabs, and new lines. White space may be
  737. inserted between symbols for disambiguation and to improve
  738. readability. \index{subject}{white space}
  739. %
  740. A name such as $\Exp$ that is defined by the grammar rules is a
  741. \emph{nonterminal}. \index{subject}{nonterminal}
  742. %
  743. The name $\Int$ is also a nonterminal, but instead of defining it with
  744. a grammar rule, we define it with the following explanation. An
  745. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  746. $-$ (for negative integers), such that the sequence of decimals
  747. represents an integer in the range $-2^{62}$ to $2^{62}-1$. This
  748. enables the representation of integers using 63 bits, which simplifies
  749. several aspects of compilation.
  750. %
  751. \racket{Thus, these integers correspond to the Racket \texttt{fixnum}
  752. datatype on a 64-bit machine.}
  753. %
  754. \python{In contrast, integers in Python have unlimited precision, but
  755. the techniques needed to handle unlimited precision fall outside the
  756. scope of this book.}
  757. The second grammar rule is the \READOP{} operation, which receives an
  758. input integer from the user of the program.
  759. \begin{equation}
  760. \Exp ::= \READ{} \label{eq:arith-read}
  761. \end{equation}
  762. The third rule categorizes the negation of an $\Exp$ node as an
  763. $\Exp$.
  764. \begin{equation}
  765. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  766. \end{equation}
  767. We can apply these rules to categorize the ASTs that are in the
  768. \LangInt{} language. For example, by rule \eqref{eq:arith-int},
  769. \INT{8} is an $\Exp$, and then by rule \eqref{eq:arith-neg} the
  770. following AST is an $\Exp$.
  771. \begin{center}
  772. \begin{minipage}{0.5\textwidth}
  773. \NEG{\INT{\code{8}}}
  774. \end{minipage}
  775. \begin{minipage}{0.25\textwidth}
  776. \begin{equation}
  777. \begin{tikzpicture}
  778. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  779. \node[draw, circle] (8) at (0, -1.2) {$8$};
  780. \draw[->] (minus) to (8);
  781. \end{tikzpicture}
  782. \label{eq:arith-neg8}
  783. \end{equation}
  784. \end{minipage}
  785. \end{center}
  786. The next two grammar rules are for addition and subtraction expressions:
  787. \begin{align}
  788. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  789. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  790. \end{align}
  791. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  792. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  793. \eqref{eq:arith-read}, and we have already categorized
  794. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  795. to show that
  796. \[
  797. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  798. \]
  799. is an $\Exp$ in the \LangInt{} language.
  800. If you have an AST for which these rules do not apply, then the
  801. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  802. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  803. because there is no rule for the \key{*} operator. Whenever we
  804. define a language with a grammar, the language includes only those
  805. programs that are justified by the grammar rules.
  806. {\if\edition\pythonEd\pythonColor
  807. The language \LangInt{} includes a second nonterminal $\Stmt$ for statements.
  808. There is a statement for printing the value of an expression
  809. \[
  810. \Stmt{} ::= \PRINT{\Exp}
  811. \]
  812. and a statement that evaluates an expression but ignores the result.
  813. \[
  814. \Stmt{} ::= \EXPR{\Exp}
  815. \]
  816. \fi}
  817. {\if\edition\racketEd
  818. The last grammar rule for \LangInt{} states that there is a
  819. \code{Program} node to mark the top of the whole program:
  820. \[
  821. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  822. \]
  823. The \code{Program} structure is defined as follows:
  824. \begin{lstlisting}
  825. (struct Program (info body))
  826. \end{lstlisting}
  827. where \code{body} is an expression. In further chapters, the \code{info}
  828. part is used to store auxiliary information, but for now it is
  829. just the empty list.
  830. \fi}
  831. {\if\edition\pythonEd\pythonColor
  832. The last grammar rule for \LangInt{} states that there is a
  833. \code{Module} node to mark the top of the whole program:
  834. \[
  835. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  836. \]
  837. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  838. this case, a list of statements.
  839. %
  840. The \code{Module} class is defined as follows
  841. \begin{lstlisting}
  842. class Module:
  843. def __init__(self, body):
  844. self.body = body
  845. \end{lstlisting}
  846. where \code{body} is a list of statements.
  847. \fi}
  848. It is common to have many grammar rules with the same left-hand side
  849. but different right-hand sides, such as the rules for $\Exp$ in the
  850. grammar of \LangInt{}. As shorthand, a vertical bar can be used to
  851. combine several right-hand sides into a single rule.
  852. The concrete syntax for \LangInt{} is shown in
  853. figure~\ref{fig:r0-concrete-syntax} and the abstract syntax for
  854. \LangInt{} is shown in figure~\ref{fig:r0-syntax}.%
  855. %
  856. \racket{The \code{read-program} function provided in
  857. \code{utilities.rkt} of the support code reads a program from a file
  858. (the sequence of characters in the concrete syntax of Racket) and
  859. parses it into an abstract syntax tree. Refer to the description of
  860. \code{read-program} in appendix~\ref{appendix:utilities} for more
  861. details.}
  862. %
  863. \python{The \code{parse} function in Python's \code{ast} module
  864. converts the concrete syntax (represented as a string) into an
  865. abstract syntax tree.}
  866. \newcommand{\LintGrammarRacket}{
  867. \begin{array}{rcl}
  868. \Type &::=& \key{Integer} \\
  869. \Exp{} &::=& \Int{} \MID \CREAD \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  870. \MID \CSUB{\Exp}{\Exp}
  871. \end{array}
  872. }
  873. \newcommand{\LintASTRacket}{
  874. \begin{array}{rcl}
  875. \Type &::=& \key{Integer} \\
  876. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  877. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \SUB{\Exp}{\Exp}
  878. \end{array}
  879. }
  880. \newcommand{\LintGrammarPython}{
  881. \begin{array}{rcl}
  882. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  883. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  884. \end{array}
  885. }
  886. \newcommand{\LintASTPython}{
  887. \begin{array}{rcl}
  888. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  889. \itm{unaryop} &::= & \code{USub()} \\
  890. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  891. &\MID& \UNIOP{\itm{unaryop}}{\Exp} \MID \BINOP{\itm{binaryop}}{\Exp}{\Exp} \\
  892. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  893. \end{array}
  894. }
  895. \begin{figure}[tp]
  896. \begin{tcolorbox}[colback=white]
  897. {\if\edition\racketEd
  898. \[
  899. \begin{array}{l}
  900. \LintGrammarRacket \\
  901. \begin{array}{rcl}
  902. \LangInt{} &::=& \Exp
  903. \end{array}
  904. \end{array}
  905. \]
  906. \fi}
  907. {\if\edition\pythonEd\pythonColor
  908. \[
  909. \begin{array}{l}
  910. \LintGrammarPython \\
  911. \begin{array}{rcl}
  912. \LangInt{} &::=& \Stmt^{*}
  913. \end{array}
  914. \end{array}
  915. \]
  916. \fi}
  917. \end{tcolorbox}
  918. \caption{The concrete syntax of \LangInt{}.}
  919. \label{fig:r0-concrete-syntax}
  920. \end{figure}
  921. \begin{figure}[tp]
  922. \begin{tcolorbox}[colback=white]
  923. {\if\edition\racketEd
  924. \[
  925. \begin{array}{l}
  926. \LintASTRacket{} \\
  927. \begin{array}{rcl}
  928. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  929. \end{array}
  930. \end{array}
  931. \]
  932. \fi}
  933. {\if\edition\pythonEd\pythonColor
  934. \[
  935. \begin{array}{l}
  936. \LintASTPython\\
  937. \begin{array}{rcl}
  938. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  939. \end{array}
  940. \end{array}
  941. \]
  942. \fi}
  943. \end{tcolorbox}
  944. \python{
  945. \index{subject}{Constant@\texttt{Constant}}
  946. \index{subject}{UnaryOp@\texttt{UnaryOp}}
  947. \index{subject}{USub@\texttt{USub}}
  948. \index{subject}{inputint@\texttt{input\_int}}
  949. \index{subject}{Call@\texttt{Call}}
  950. \index{subject}{Name@\texttt{Name}}
  951. \index{subject}{BinOp@\texttt{BinOp}}
  952. \index{subject}{Add@\texttt{Add}}
  953. \index{subject}{Sub@\texttt{Sub}}
  954. \index{subject}{print@\texttt{print}}
  955. \index{subject}{Expr@\texttt{Expr}}
  956. \index{subject}{Module@\texttt{Module}}
  957. }
  958. \caption{The abstract syntax of \LangInt{}.}
  959. \label{fig:r0-syntax}
  960. \end{figure}
  961. \section{Pattern Matching}
  962. \label{sec:pattern-matching}
  963. As mentioned in section~\ref{sec:ast}, compilers often need to access
  964. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python}
  965. provides the \texttt{match} feature to access the parts of a value.
  966. Consider the following example: \index{subject}{match} \index{subject}{pattern matching}
  967. \begin{center}
  968. \begin{minipage}{0.5\textwidth}
  969. {\if\edition\racketEd
  970. \begin{lstlisting}
  971. (match ast1_1
  972. [(Prim op (list child1 child2))
  973. (print op)])
  974. \end{lstlisting}
  975. \fi}
  976. {\if\edition\pythonEd\pythonColor
  977. \begin{lstlisting}
  978. match ast1_1:
  979. case BinOp(child1, op, child2):
  980. print(op)
  981. \end{lstlisting}
  982. \fi}
  983. \end{minipage}
  984. \end{center}
  985. {\if\edition\racketEd
  986. %
  987. In this example, the \texttt{match} form checks whether the AST
  988. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  989. three pattern variables \texttt{op}, \texttt{child1}, and
  990. \texttt{child2}. In general, a match clause consists of a
  991. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  992. recursively defined to be a pattern variable, a structure name
  993. followed by a pattern for each of the structure's arguments, or an
  994. S-expression (a symbol, list, etc.). (See chapter 12 of The Racket
  995. Guide\footnote{See \url{https://docs.racket-lang.org/guide/match.html}.}
  996. and chapter 9 of The Racket
  997. Reference\footnote{See \url{https://docs.racket-lang.org/reference/match.html}.}
  998. for complete descriptions of \code{match}.)
  999. %
  1000. The body of a match clause may contain arbitrary Racket code. The
  1001. pattern variables can be used in the scope of the body, such as
  1002. \code{op} in \code{(print op)}.
  1003. %
  1004. \fi}
  1005. %
  1006. %
  1007. {\if\edition\pythonEd\pythonColor
  1008. %
  1009. In the above example, the \texttt{match} form checks whether the AST
  1010. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  1011. three pattern variables \texttt{child1}, \texttt{op}, and
  1012. \texttt{child2}, and then prints out the operator. In general, each
  1013. \code{case} consists of a \emph{pattern} and a
  1014. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  1015. to be either a pattern variable, a class name followed by a pattern
  1016. for each of its constructor's arguments, or other
  1017. literals\index{subject}{literals} such as strings, lists, etc.
  1018. %
  1019. The body of each \code{case} may contain arbitrary Python code. The
  1020. pattern variables can be used in the body, such as \code{op} in
  1021. \code{print(op)}.
  1022. %
  1023. \fi}
  1024. A \code{match} form may contain several clauses, as in the following
  1025. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  1026. the AST. The \code{match} proceeds through the clauses in order,
  1027. checking whether the pattern can match the input AST. The body of the
  1028. first clause that matches is executed. The output of \code{leaf} for
  1029. several ASTs is shown on the right side of the following:
  1030. \begin{center}
  1031. \begin{minipage}{0.6\textwidth}
  1032. {\if\edition\racketEd
  1033. \begin{lstlisting}
  1034. (define (leaf arith)
  1035. (match arith
  1036. [(Int n) #t]
  1037. [(Prim 'read '()) #t]
  1038. [(Prim '- (list e1)) #f]
  1039. [(Prim '+ (list e1 e2)) #f]
  1040. [(Prim '- (list e1 e2)) #f]))
  1041. (leaf (Prim 'read '()))
  1042. (leaf (Prim '- (list (Int 8))))
  1043. (leaf (Int 8))
  1044. \end{lstlisting}
  1045. \fi}
  1046. {\if\edition\pythonEd\pythonColor
  1047. \begin{lstlisting}
  1048. def leaf(arith):
  1049. match arith:
  1050. case Constant(n):
  1051. return True
  1052. case Call(Name('input_int'), []):
  1053. return True
  1054. case UnaryOp(USub(), e1):
  1055. return False
  1056. case BinOp(e1, Add(), e2):
  1057. return False
  1058. case BinOp(e1, Sub(), e2):
  1059. return False
  1060. print(leaf(Call(Name('input_int'), [])))
  1061. print(leaf(UnaryOp(USub(), eight)))
  1062. print(leaf(Constant(8)))
  1063. \end{lstlisting}
  1064. \fi}
  1065. \end{minipage}
  1066. \vrule
  1067. \begin{minipage}{0.25\textwidth}
  1068. {\if\edition\racketEd
  1069. \begin{lstlisting}
  1070. #t
  1071. #f
  1072. #t
  1073. \end{lstlisting}
  1074. \fi}
  1075. {\if\edition\pythonEd\pythonColor
  1076. \begin{lstlisting}
  1077. True
  1078. False
  1079. True
  1080. \end{lstlisting}
  1081. \fi}
  1082. \end{minipage}
  1083. \index{subject}{True@\TRUE{}}
  1084. \index{subject}{False@\FALSE{}}
  1085. \end{center}
  1086. When constructing a \code{match} expression, we refer to the grammar
  1087. definition to identify which nonterminal we are expecting to match
  1088. against, and then we make sure that (1) we have one
  1089. \racket{clause}\python{case} for each alternative of that nonterminal
  1090. and (2) the pattern in each \racket{clause}\python{case}
  1091. corresponds to the corresponding right-hand side of a grammar
  1092. rule. For the \code{match} in the \code{leaf} function, we refer to
  1093. the grammar for \LangInt{} shown in figure~\ref{fig:r0-syntax}. The $\Exp$
  1094. nonterminal has four alternatives, so the \code{match} has four
  1095. \racket{clauses}\python{cases}. The pattern in each
  1096. \racket{clause}\python{case} corresponds to the right-hand side of a
  1097. grammar rule. For example, the pattern \ADDP{\code{e1}}{\code{e2}}
  1098. corresponds to the right-hand side $\ADD{\Exp}{\Exp}$. When
  1099. translating from grammars to patterns, replace nonterminals such as
  1100. $\Exp$ with pattern variables of your choice (for example, \code{e1} and
  1101. \code{e2}).
  1102. \section{Recursive Functions}
  1103. \label{sec:recursion}
  1104. \index{subject}{recursive function}
  1105. Programs are inherently recursive. For example, an expression is often
  1106. made of smaller expressions. Thus, the natural way to process an
  1107. entire program is to use a recursive function. As a first example of
  1108. such a recursive function, we define the function \code{is\_exp} as
  1109. shown in figure~\ref{fig:exp-predicate}, to take an arbitrary
  1110. value and determine whether or not it is an expression in \LangInt{}.
  1111. %
  1112. We say that a function is defined by \emph{structural recursion} if
  1113. it is defined using a sequence of match \racket{clauses}\python{cases}
  1114. that correspond to a grammar and the body of each
  1115. \racket{clause}\python{case} makes a recursive call on each child
  1116. node.\footnote{This principle of structuring code according to the
  1117. data definition is advocated in the book \emph{How to Design
  1118. Programs} by \citet{Felleisen:2001aa}.} \python{We define a
  1119. second function, named \code{stmt}, that recognizes whether a value
  1120. is a \LangInt{} statement.} \python{Finally, }
  1121. Figure~\ref{fig:exp-predicate} \racket{also} contains the definition of
  1122. \code{is\_Lint}, which determines whether an AST is a program in \LangInt{}.
  1123. In general, we can write one recursive function to handle each
  1124. nonterminal in a grammar.\index{subject}{structural recursion} Of the
  1125. two examples at the bottom of the figure, the first is in
  1126. \LangInt{} and the second is not.
  1127. \begin{figure}[tp]
  1128. \begin{tcolorbox}[colback=white]
  1129. {\if\edition\racketEd
  1130. \begin{lstlisting}
  1131. (define (is_exp ast)
  1132. (match ast
  1133. [(Int n) #t]
  1134. [(Prim 'read '()) #t]
  1135. [(Prim '- (list e)) (is_exp e)]
  1136. [(Prim '+ (list e1 e2))
  1137. (and (is_exp e1) (is_exp e2))]
  1138. [(Prim '- (list e1 e2))
  1139. (and (is_exp e1) (is_exp e2))]
  1140. [else #f]))
  1141. (define (is_Lint ast)
  1142. (match ast
  1143. [(Program '() e) (is_exp e)]
  1144. [else #f]))
  1145. (is_Lint (Program '() ast1_1)
  1146. (is_Lint (Program '()
  1147. (Prim '* (list (Prim 'read '())
  1148. (Prim '+ (list (Int 8)))))))
  1149. \end{lstlisting}
  1150. \fi}
  1151. {\if\edition\pythonEd\pythonColor
  1152. \begin{lstlisting}
  1153. def is_exp(e):
  1154. match e:
  1155. case Constant(n):
  1156. return True
  1157. case Call(Name('input_int'), []):
  1158. return True
  1159. case UnaryOp(USub(), e1):
  1160. return is_exp(e1)
  1161. case BinOp(e1, Add(), e2):
  1162. return is_exp(e1) and is_exp(e2)
  1163. case BinOp(e1, Sub(), e2):
  1164. return is_exp(e1) and is_exp(e2)
  1165. case _:
  1166. return False
  1167. def stmt(s):
  1168. match s:
  1169. case Expr(Call(Name('print'), [e])):
  1170. return is_exp(e)
  1171. case Expr(e):
  1172. return is_exp(e)
  1173. case _:
  1174. return False
  1175. def is_Lint(p):
  1176. match p:
  1177. case Module(body):
  1178. return all([stmt(s) for s in body])
  1179. case _:
  1180. return False
  1181. print(is_Lint(Module([Expr(ast1_1)])))
  1182. print(is_Lint(Module([Expr(BinOp(read, Sub(),
  1183. UnaryOp(Add(), Constant(8))))])))
  1184. \end{lstlisting}
  1185. \fi}
  1186. \end{tcolorbox}
  1187. \caption{Example of recursive functions for \LangInt{}. These functions
  1188. recognize whether an AST is in \LangInt{}.}
  1189. \label{fig:exp-predicate}
  1190. \end{figure}
  1191. %% You may be tempted to merge the two functions into one, like this:
  1192. %% \begin{center}
  1193. %% \begin{minipage}{0.5\textwidth}
  1194. %% \begin{lstlisting}
  1195. %% (define (Lint ast)
  1196. %% (match ast
  1197. %% [(Int n) #t]
  1198. %% [(Prim 'read '()) #t]
  1199. %% [(Prim '- (list e)) (Lint e)]
  1200. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1201. %% [(Program '() e) (Lint e)]
  1202. %% [else #f]))
  1203. %% \end{lstlisting}
  1204. %% \end{minipage}
  1205. %% \end{center}
  1206. %% %
  1207. %% Sometimes such a trick will save a few lines of code, especially when
  1208. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1209. %% \emph{not} recommended because it can get you into trouble.
  1210. %% %
  1211. %% For example, the above function is subtly wrong:
  1212. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1213. %% returns true when it should return false.
  1214. \section{Interpreters}
  1215. \label{sec:interp_Lint}
  1216. \index{subject}{interpreter}
  1217. The behavior of a program is defined by the specification of the
  1218. programming language.
  1219. %
  1220. \racket{For example, the Scheme language is defined in the report by
  1221. \citet{SPERBER:2009aa}. The Racket language is defined in its
  1222. reference manual~\citep{plt-tr}.}
  1223. %
  1224. \python{For example, the Python language is defined in the Python
  1225. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1226. %
  1227. In this book we use interpreters to specify each language that we
  1228. consider. An interpreter that is designated as the definition of a
  1229. language is called a \emph{definitional
  1230. interpreter}~\citep{reynolds72:_def_interp}.
  1231. \index{subject}{definitional interpreter} We warm up by creating a
  1232. definitional interpreter for the \LangInt{} language. This interpreter
  1233. serves as a second example of structural recursion. The definition of the
  1234. \code{interp\_Lint} function is shown in
  1235. figure~\ref{fig:interp_Lint}.
  1236. %
  1237. \racket{The body of the function is a match on the input program
  1238. followed by a call to the \lstinline{interp_exp} auxiliary function,
  1239. which in turn has one match clause per grammar rule for \LangInt{}
  1240. expressions.}
  1241. %
  1242. \python{The body of the function matches on the \code{Module} AST node
  1243. and then invokes \code{interp\_stmt} on each statement in the
  1244. module. The \code{interp\_stmt} function includes a case for each
  1245. grammar rule of the \Stmt{} nonterminal and it calls
  1246. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1247. function includes a case for each grammar rule of the \Exp{}
  1248. nonterminal.}
  1249. \begin{figure}[tp]
  1250. \begin{tcolorbox}[colback=white]
  1251. {\if\edition\racketEd
  1252. \begin{lstlisting}
  1253. (define (interp_exp e)
  1254. (match e
  1255. [(Int n) n]
  1256. [(Prim 'read '())
  1257. (define r (read))
  1258. (cond [(fixnum? r) r]
  1259. [else (error 'interp_exp "read expected an integer" r)])]
  1260. [(Prim '- (list e))
  1261. (define v (interp_exp e))
  1262. (fx- 0 v)]
  1263. [(Prim '+ (list e1 e2))
  1264. (define v1 (interp_exp e1))
  1265. (define v2 (interp_exp e2))
  1266. (fx+ v1 v2)]
  1267. [(Prim '- (list e1 e2))
  1268. (define v1 ((interp-exp env) e1))
  1269. (define v2 ((interp-exp env) e2))
  1270. (fx- v1 v2)]))
  1271. (define (interp_Lint p)
  1272. (match p
  1273. [(Program '() e) (interp_exp e)]))
  1274. \end{lstlisting}
  1275. \fi}
  1276. {\if\edition\pythonEd\pythonColor
  1277. \begin{lstlisting}
  1278. def interp_exp(e):
  1279. match e:
  1280. case BinOp(left, Add(), right):
  1281. l = interp_exp(left); r = interp_exp(right)
  1282. return l + r
  1283. case BinOp(left, Sub(), right):
  1284. l = interp_exp(left); r = interp_exp(right)
  1285. return l - r
  1286. case UnaryOp(USub(), v):
  1287. return - interp_exp(v)
  1288. case Constant(value):
  1289. return value
  1290. case Call(Name('input_int'), []):
  1291. return int(input())
  1292. def interp_stmt(s):
  1293. match s:
  1294. case Expr(Call(Name('print'), [arg])):
  1295. print(interp_exp(arg))
  1296. case Expr(value):
  1297. interp_exp(value)
  1298. def interp_Lint(p):
  1299. match p:
  1300. case Module(body):
  1301. for s in body:
  1302. interp_stmt(s)
  1303. \end{lstlisting}
  1304. \fi}
  1305. \end{tcolorbox}
  1306. \caption{Interpreter for the \LangInt{} language.}
  1307. \label{fig:interp_Lint}
  1308. \end{figure}
  1309. Let us consider the result of interpreting a few \LangInt{} programs. The
  1310. following program adds two integers:
  1311. {\if\edition\racketEd
  1312. \begin{lstlisting}
  1313. (+ 10 32)
  1314. \end{lstlisting}
  1315. \fi}
  1316. {\if\edition\pythonEd\pythonColor
  1317. \begin{lstlisting}
  1318. print(10 + 32)
  1319. \end{lstlisting}
  1320. \fi}
  1321. %
  1322. \noindent The result is \key{42}, the answer to life, the universe,
  1323. and everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to
  1324. the Galaxy} by Douglas Adams.}
  1325. %
  1326. We wrote this program in concrete syntax, whereas the parsed
  1327. abstract syntax is
  1328. {\if\edition\racketEd
  1329. \begin{lstlisting}
  1330. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1331. \end{lstlisting}
  1332. \fi}
  1333. {\if\edition\pythonEd\pythonColor
  1334. \begin{lstlisting}
  1335. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1336. \end{lstlisting}
  1337. \fi}
  1338. The following program demonstrates that expressions may be nested within
  1339. each other, in this case nesting several additions and negations.
  1340. {\if\edition\racketEd
  1341. \begin{lstlisting}
  1342. (+ 10 (- (+ 12 20)))
  1343. \end{lstlisting}
  1344. \fi}
  1345. {\if\edition\pythonEd\pythonColor
  1346. \begin{lstlisting}
  1347. print(10 + -(12 + 20))
  1348. \end{lstlisting}
  1349. \fi}
  1350. %
  1351. \noindent What is the result of this program?
  1352. {\if\edition\racketEd
  1353. As mentioned previously, the \LangInt{} language does not support
  1354. arbitrarily large integers but only $63$-bit integers, so we
  1355. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1356. in Racket.
  1357. Suppose that
  1358. \[
  1359. n = 999999999999999999
  1360. \]
  1361. which indeed fits in $63$ bits. What happens when we run the
  1362. following program in our interpreter?
  1363. \begin{lstlisting}
  1364. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1365. \end{lstlisting}
  1366. It produces the following error:
  1367. \begin{lstlisting}
  1368. fx+: result is not a fixnum
  1369. \end{lstlisting}
  1370. We establish the convention that if running the definitional
  1371. interpreter on a program produces an error, then the meaning of that
  1372. program is \emph{unspecified}\index{subject}{unspecified behavior} unless the
  1373. error is a \code{trapped-error}. A compiler for the language is under
  1374. no obligation regarding programs with unspecified behavior; it does
  1375. not have to produce an executable, and if it does, that executable can
  1376. do anything. On the other hand, if the error is a
  1377. \code{trapped-error}, then the compiler must produce an executable and
  1378. it is required to report that an error occurred. To signal an error,
  1379. exit with a return code of \code{255}. The interpreters in chapters
  1380. \ref{ch:Ldyn} and \ref{ch:Lgrad} and in section \ref{sec:arrays} use
  1381. \code{trapped-error}.
  1382. \fi}
  1383. % TODO: how to deal with too-large integers in the Python interpreter?
  1384. %% This convention applies to the languages defined in this
  1385. %% book, as a way to simplify the student's task of implementing them,
  1386. %% but this convention is not applicable to all programming languages.
  1387. %%
  1388. The last feature of the \LangInt{} language, the \READOP{} operation,
  1389. prompts the user of the program for an integer. Recall that program
  1390. \eqref{eq:arith-prog} requests an integer input and then subtracts
  1391. \code{8}. So, if we run {\if\edition\racketEd
  1392. \begin{lstlisting}
  1393. (interp_Lint (Program '() ast1_1))
  1394. \end{lstlisting}
  1395. \fi}
  1396. {\if\edition\pythonEd\pythonColor
  1397. \begin{lstlisting}
  1398. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1399. \end{lstlisting}
  1400. \fi}
  1401. \noindent and if the input is \code{50}, the result is \code{42}.
  1402. We include the \READOP{} operation in \LangInt{} so that a clever
  1403. student cannot implement a compiler for \LangInt{} that simply runs
  1404. the interpreter during compilation to obtain the output and then
  1405. generates the trivial code to produce the output.\footnote{Yes, a
  1406. clever student did this in the first instance of this course!}
  1407. The job of a compiler is to translate a program in one language into a
  1408. program in another language so that the output program behaves the
  1409. same way as the input program. This idea is depicted in the
  1410. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1411. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1412. Given a compiler that translates from language $\mathcal{L}_1$ to
  1413. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1414. compiler must translate it into some program $P_2$ such that
  1415. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1416. same input $i$ yields the same output $o$.
  1417. \begin{equation} \label{eq:compile-correct}
  1418. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1419. \node (p1) at (0, 0) {$P_1$};
  1420. \node (p2) at (3, 0) {$P_2$};
  1421. \node (o) at (3, -2.5) {$o$};
  1422. \path[->] (p1) edge [above] node {compile} (p2);
  1423. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1424. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1425. \end{tikzpicture}
  1426. \end{equation}
  1427. In the next section we see our first example of a compiler.
  1428. \section{Example Compiler: A Partial Evaluator}
  1429. \label{sec:partial-evaluation}
  1430. In this section we consider a compiler that translates \LangInt{}
  1431. programs into \LangInt{} programs that may be more efficient. The
  1432. compiler eagerly computes the parts of the program that do not depend
  1433. on any inputs, a process known as \emph{partial
  1434. evaluation}~\citep{Jones:1993uq}.\index{subject}{partialevaluation@partial evaluation}
  1435. For example, given the following program
  1436. {\if\edition\racketEd
  1437. \begin{lstlisting}
  1438. (+ (read) (- (+ 5 3)))
  1439. \end{lstlisting}
  1440. \fi}
  1441. {\if\edition\pythonEd\pythonColor
  1442. \begin{lstlisting}
  1443. print(input_int() + -(5 + 3) )
  1444. \end{lstlisting}
  1445. \fi}
  1446. \noindent our compiler translates it into the program
  1447. {\if\edition\racketEd
  1448. \begin{lstlisting}
  1449. (+ (read) -8)
  1450. \end{lstlisting}
  1451. \fi}
  1452. {\if\edition\pythonEd\pythonColor
  1453. \begin{lstlisting}
  1454. print(input_int() + -8)
  1455. \end{lstlisting}
  1456. \fi}
  1457. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1458. evaluator for the \LangInt{} language. The output of the partial evaluator
  1459. is a program in \LangInt{}. In figure~\ref{fig:pe-arith}, the structural
  1460. recursion over $\Exp$ is captured in the \code{pe\_exp} function,
  1461. whereas the code for partially evaluating the negation and addition
  1462. operations is factored into three auxiliary functions:
  1463. \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub}. The input to these
  1464. functions is the output of partially evaluating the children.
  1465. The \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub} functions check whether their
  1466. arguments are integers and if they are, perform the appropriate
  1467. arithmetic. Otherwise, they create an AST node for the arithmetic
  1468. operation.
  1469. \begin{figure}[tp]
  1470. \begin{tcolorbox}[colback=white]
  1471. {\if\edition\racketEd
  1472. \begin{lstlisting}
  1473. (define (pe_neg r)
  1474. (match r
  1475. [(Int n) (Int (fx- 0 n))]
  1476. [else (Prim '- (list r))]))
  1477. (define (pe_add r1 r2)
  1478. (match* (r1 r2)
  1479. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1480. [(_ _) (Prim '+ (list r1 r2))]))
  1481. (define (pe_sub r1 r2)
  1482. (match* (r1 r2)
  1483. [((Int n1) (Int n2)) (Int (fx- n1 n2))]
  1484. [(_ _) (Prim '- (list r1 r2))]))
  1485. (define (pe_exp e)
  1486. (match e
  1487. [(Int n) (Int n)]
  1488. [(Prim 'read '()) (Prim 'read '())]
  1489. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1490. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]
  1491. [(Prim '- (list e1 e2)) (pe_sub (pe_exp e1) (pe_exp e2))]))
  1492. (define (pe_Lint p)
  1493. (match p
  1494. [(Program '() e) (Program '() (pe_exp e))]))
  1495. \end{lstlisting}
  1496. \fi}
  1497. {\if\edition\pythonEd\pythonColor
  1498. \begin{lstlisting}
  1499. def pe_neg(r):
  1500. match r:
  1501. case Constant(n):
  1502. return Constant(-n)
  1503. case _:
  1504. return UnaryOp(USub(), r)
  1505. def pe_add(r1, r2):
  1506. match (r1, r2):
  1507. case (Constant(n1), Constant(n2)):
  1508. return Constant(n1 + n2)
  1509. case _:
  1510. return BinOp(r1, Add(), r2)
  1511. def pe_sub(r1, r2):
  1512. match (r1, r2):
  1513. case (Constant(n1), Constant(n2)):
  1514. return Constant(n1 - n2)
  1515. case _:
  1516. return BinOp(r1, Sub(), r2)
  1517. def pe_exp(e):
  1518. match e:
  1519. case BinOp(left, Add(), right):
  1520. return pe_add(pe_exp(left), pe_exp(right))
  1521. case BinOp(left, Sub(), right):
  1522. return pe_sub(pe_exp(left), pe_exp(right))
  1523. case UnaryOp(USub(), v):
  1524. return pe_neg(pe_exp(v))
  1525. case Constant(value):
  1526. return e
  1527. case Call(Name('input_int'), []):
  1528. return e
  1529. def pe_stmt(s):
  1530. match s:
  1531. case Expr(Call(Name('print'), [arg])):
  1532. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1533. case Expr(value):
  1534. return Expr(pe_exp(value))
  1535. def pe_P_int(p):
  1536. match p:
  1537. case Module(body):
  1538. new_body = [pe_stmt(s) for s in body]
  1539. return Module(new_body)
  1540. \end{lstlisting}
  1541. \fi}
  1542. \end{tcolorbox}
  1543. \caption{A partial evaluator for \LangInt{}.}
  1544. \label{fig:pe-arith}
  1545. \end{figure}
  1546. To gain some confidence that the partial evaluator is correct, we can
  1547. test whether it produces programs that produce the same result as the
  1548. input programs. That is, we can test whether it satisfies the diagram
  1549. of \eqref{eq:compile-correct}.
  1550. %
  1551. {\if\edition\racketEd
  1552. The following code runs the partial evaluator on several examples and
  1553. tests the output program. The \texttt{parse-program} and
  1554. \texttt{assert} functions are defined in
  1555. appendix~\ref{appendix:utilities}.\\
  1556. \begin{minipage}{1.0\textwidth}
  1557. \begin{lstlisting}
  1558. (define (test_pe p)
  1559. (assert "testing pe_Lint"
  1560. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1561. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1562. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1563. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1564. \end{lstlisting}
  1565. \end{minipage}
  1566. \fi}
  1567. % TODO: python version of testing the PE
  1568. \begin{exercise}\normalfont\normalsize
  1569. Create three programs in the \LangInt{} language and test whether
  1570. partially evaluating them with \code{pe\_Lint} and then
  1571. interpreting them with \code{interp\_Lint} gives the same result
  1572. as directly interpreting them with \code{interp\_Lint}.
  1573. \end{exercise}
  1574. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1575. \chapter{Integers and Variables}
  1576. \label{ch:Lvar}
  1577. \setcounter{footnote}{0}
  1578. This chapter covers compiling a subset of
  1579. \racket{Racket}\python{Python} to x86-64 assembly
  1580. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1581. integer arithmetic and local variables. We often refer to x86-64
  1582. simply as x86. The chapter first describes the \LangVar{} language
  1583. (section~\ref{sec:s0}) and then introduces x86 assembly
  1584. (section~\ref{sec:x86}). Because x86 assembly language is large, we
  1585. discuss only the instructions needed for compiling \LangVar{}. We
  1586. introduce more x86 instructions in subsequent chapters. After
  1587. introducing \LangVar{} and x86, we reflect on their differences and
  1588. create a plan to break down the translation from \LangVar{} to x86
  1589. into a handful of steps (section~\ref{sec:plan-s0-x86}). The rest of
  1590. the chapter gives detailed hints regarding each step. We aim to give
  1591. enough hints that the well-prepared reader, together with a few
  1592. friends, can implement a compiler from \LangVar{} to x86 in a short
  1593. time. To suggest the scale of this first compiler, we note that the
  1594. instructor solution for the \LangVar{} compiler is approximately
  1595. \racket{500}\python{300} lines of code.
  1596. \section{The \LangVar{} Language}
  1597. \label{sec:s0}
  1598. \index{subject}{variable}
  1599. The \LangVar{} language extends the \LangInt{} language with
  1600. variables. The concrete syntax of the \LangVar{} language is defined
  1601. by the grammar presented in figure~\ref{fig:Lvar-concrete-syntax} and
  1602. the abstract syntax is presented in figure~\ref{fig:Lvar-syntax}. The
  1603. nonterminal \Var{} may be any \racket{Racket}\python{Python}
  1604. identifier. As in \LangInt{}, \READOP{} is a nullary operator,
  1605. \key{-} is a unary operator, and \key{+} is a binary operator.
  1606. Similarly to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1607. \racket{\key{Program} struct}\python{\key{Module} instance} to mark
  1608. the top of the program.
  1609. %% The $\itm{info}$
  1610. %% field of the \key{Program} structure contains an \emph{association
  1611. %% list} (a list of key-value pairs) that is used to communicate
  1612. %% auxiliary data from one compiler pass the next.
  1613. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1614. exhibit several compilation techniques.
  1615. \newcommand{\LvarGrammarRacket}{
  1616. \begin{array}{rcl}
  1617. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1618. \end{array}
  1619. }
  1620. \newcommand{\LvarASTRacket}{
  1621. \begin{array}{rcl}
  1622. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1623. \end{array}
  1624. }
  1625. \newcommand{\LvarGrammarPython}{
  1626. \begin{array}{rcl}
  1627. \Exp &::=& \Var{} \\
  1628. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1629. \end{array}
  1630. }
  1631. \newcommand{\LvarASTPython}{
  1632. \begin{array}{rcl}
  1633. \Exp{} &::=& \VAR{\Var{}} \\
  1634. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1635. \end{array}
  1636. }
  1637. \begin{figure}[tp]
  1638. \centering
  1639. \begin{tcolorbox}[colback=white]
  1640. {\if\edition\racketEd
  1641. \[
  1642. \begin{array}{l}
  1643. \gray{\LintGrammarRacket{}} \\ \hline
  1644. \LvarGrammarRacket{} \\
  1645. \begin{array}{rcl}
  1646. \LangVarM{} &::=& \Exp
  1647. \end{array}
  1648. \end{array}
  1649. \]
  1650. \fi}
  1651. {\if\edition\pythonEd\pythonColor
  1652. \[
  1653. \begin{array}{l}
  1654. \gray{\LintGrammarPython} \\ \hline
  1655. \LvarGrammarPython \\
  1656. \begin{array}{rcl}
  1657. \LangVarM{} &::=& \Stmt^{*}
  1658. \end{array}
  1659. \end{array}
  1660. \]
  1661. \fi}
  1662. \end{tcolorbox}
  1663. \caption{The concrete syntax of \LangVar{}.}
  1664. \label{fig:Lvar-concrete-syntax}
  1665. \end{figure}
  1666. \begin{figure}[tp]
  1667. \centering
  1668. \begin{tcolorbox}[colback=white]
  1669. {\if\edition\racketEd
  1670. \[
  1671. \begin{array}{l}
  1672. \gray{\LintASTRacket{}} \\ \hline
  1673. \LvarASTRacket \\
  1674. \begin{array}{rcl}
  1675. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1676. \end{array}
  1677. \end{array}
  1678. \]
  1679. \fi}
  1680. {\if\edition\pythonEd\pythonColor
  1681. \[
  1682. \begin{array}{l}
  1683. \gray{\LintASTPython}\\ \hline
  1684. \LvarASTPython \\
  1685. \begin{array}{rcl}
  1686. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1687. \end{array}
  1688. \end{array}
  1689. \]
  1690. \fi}
  1691. \end{tcolorbox}
  1692. \caption{The abstract syntax of \LangVar{}.}
  1693. \label{fig:Lvar-syntax}
  1694. \end{figure}
  1695. {\if\edition\racketEd
  1696. Let us dive further into the syntax and semantics of the \LangVar{}
  1697. language. The \key{let} feature defines a variable for use within its
  1698. body and initializes the variable with the value of an expression.
  1699. The abstract syntax for \key{let} is shown in
  1700. figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1701. \begin{lstlisting}
  1702. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1703. \end{lstlisting}
  1704. For example, the following program initializes \code{x} to $32$ and then
  1705. evaluates the body \code{(+ 10 x)}, producing $42$.
  1706. \begin{lstlisting}
  1707. (let ([x (+ 12 20)]) (+ 10 x))
  1708. \end{lstlisting}
  1709. \fi}
  1710. %
  1711. {\if\edition\pythonEd\pythonColor
  1712. %
  1713. The \LangVar{} language includes assignment statements, which define a
  1714. variable for use in later statements and initializes the variable with
  1715. the value of an expression. The abstract syntax for assignment is
  1716. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1717. assignment is \index{subject}{Assign@\texttt{Assign}}
  1718. \begin{lstlisting}
  1719. |$\itm{var}$| = |$\itm{exp}$|
  1720. \end{lstlisting}
  1721. For example, the following program initializes the variable \code{x}
  1722. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1723. \begin{lstlisting}
  1724. x = 12 + 20
  1725. print(10 + x)
  1726. \end{lstlisting}
  1727. \fi}
  1728. {\if\edition\racketEd
  1729. %
  1730. When there are multiple \key{let}s for the same variable, the closest
  1731. enclosing \key{let} is used. That is, variable definitions overshadow
  1732. prior definitions. Consider the following program with two \key{let}s
  1733. that define two variables named \code{x}. Can you figure out the
  1734. result?
  1735. \begin{lstlisting}
  1736. (let ([x 32]) (+ (let ([x 10]) x) x))
  1737. \end{lstlisting}
  1738. For the purposes of depicting which variable occurrences correspond to
  1739. which definitions, the following shows the \code{x}'s annotated with
  1740. subscripts to distinguish them. Double-check that your answer for the
  1741. previous program is the same as your answer for this annotated version
  1742. of the program.
  1743. \begin{lstlisting}
  1744. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1745. \end{lstlisting}
  1746. The initializing expression is always evaluated before the body of the
  1747. \key{let}, so in the following, the \key{read} for \code{x} is
  1748. performed before the \key{read} for \code{y}. Given the input
  1749. $52$ then $10$, the following produces $42$ (not $-42$).
  1750. \begin{lstlisting}
  1751. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1752. \end{lstlisting}
  1753. \fi}
  1754. \subsection{Extensible Interpreters via Method Overriding}
  1755. \label{sec:extensible-interp}
  1756. \index{subject}{method overriding}
  1757. To prepare for discussing the interpreter of \LangVar{}, we explain
  1758. why we implement it in an object-oriented style. Throughout this book
  1759. we define many interpreters, one for each language that we
  1760. study. Because each language builds on the prior one, there is a lot
  1761. of commonality between these interpreters. We want to write down the
  1762. common parts just once instead of many times. A naive interpreter for
  1763. \LangVar{} would handle the \racket{cases for variables and
  1764. \code{let}} \python{case for variables} but dispatch to an
  1765. interpreter for \LangInt{} in the rest of the cases. The following
  1766. code sketches this idea. (We explain the \code{env} parameter in
  1767. section~\ref{sec:interp-Lvar}.)
  1768. \begin{center}
  1769. {\if\edition\racketEd
  1770. \begin{minipage}{0.45\textwidth}
  1771. \begin{lstlisting}
  1772. (define ((interp_Lint env) e)
  1773. (match e
  1774. [(Prim '- (list e1))
  1775. (fx- 0 ((interp_Lint env) e1))]
  1776. ...))
  1777. \end{lstlisting}
  1778. \end{minipage}
  1779. \begin{minipage}{0.45\textwidth}
  1780. \begin{lstlisting}
  1781. (define ((interp_Lvar env) e)
  1782. (match e
  1783. [(Var x)
  1784. (dict-ref env x)]
  1785. [(Let x e body)
  1786. (define v ((interp_exp env) e))
  1787. (define env^ (dict-set env x v))
  1788. ((interp_exp env^) body)]
  1789. [else ((interp_Lint env) e)]))
  1790. \end{lstlisting}
  1791. \end{minipage}
  1792. \fi}
  1793. {\if\edition\pythonEd\pythonColor
  1794. \begin{minipage}{0.45\textwidth}
  1795. \begin{lstlisting}
  1796. def interp_Lint(e, env):
  1797. match e:
  1798. case UnaryOp(USub(), e1):
  1799. return - interp_Lint(e1, env)
  1800. ...
  1801. \end{lstlisting}
  1802. \end{minipage}
  1803. \begin{minipage}{0.45\textwidth}
  1804. \begin{lstlisting}
  1805. def interp_Lvar(e, env):
  1806. match e:
  1807. case Name(id):
  1808. return env[id]
  1809. case _:
  1810. return interp_Lint(e, env)
  1811. \end{lstlisting}
  1812. \end{minipage}
  1813. \fi}
  1814. \end{center}
  1815. The problem with this naive approach is that it does not handle
  1816. situations in which an \LangVar{} feature, such as a variable, is
  1817. nested inside an \LangInt{} feature, such as the \code{-} operator, as
  1818. in the following program.
  1819. {\if\edition\racketEd
  1820. \begin{lstlisting}
  1821. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1822. \end{lstlisting}
  1823. \fi}
  1824. {\if\edition\pythonEd\pythonColor
  1825. \begin{minipage}{0.96\textwidth}
  1826. \begin{lstlisting}
  1827. y = 10
  1828. print(-y)
  1829. \end{lstlisting}
  1830. \end{minipage}
  1831. \fi}
  1832. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1833. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1834. then it recursively calls \code{interp\_Lint} again on its argument.
  1835. Because there is no case for \code{Var} in \code{interp\_Lint}, we get
  1836. an error!
  1837. To make our interpreters extensible we need something called
  1838. \emph{open recursion}\index{subject}{open recursion}, in which the
  1839. tying of the recursive knot is delayed until the functions are
  1840. composed. Object-oriented languages provide open recursion via method
  1841. overriding. The following code uses
  1842. method overriding to interpret \LangInt{} and \LangVar{} using
  1843. %
  1844. \racket{the
  1845. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1846. \index{subject}{class} feature of Racket.}
  1847. %
  1848. \python{a Python \code{class} definition.}
  1849. %
  1850. We define one class for each language and define a method for
  1851. interpreting expressions inside each class. The class for \LangVar{}
  1852. inherits from the class for \LangInt{}, and the method
  1853. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1854. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1855. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1856. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1857. \code{interp\_exp} in \LangInt{}.
  1858. \begin{center}
  1859. \hspace{-20pt}
  1860. {\if\edition\racketEd
  1861. \begin{minipage}{0.45\textwidth}
  1862. \begin{lstlisting}
  1863. (define interp-Lint-class
  1864. (class object%
  1865. (define/public ((interp_exp env) e)
  1866. (match e
  1867. [(Prim '- (list e))
  1868. (fx- 0 ((interp_exp env) e))]
  1869. ...))
  1870. ...))
  1871. \end{lstlisting}
  1872. \end{minipage}
  1873. \begin{minipage}{0.45\textwidth}
  1874. \begin{lstlisting}
  1875. (define interp-Lvar-class
  1876. (class interp-Lint-class
  1877. (define/override ((interp_exp env) e)
  1878. (match e
  1879. [(Var x)
  1880. (dict-ref env x)]
  1881. [(Let x e body)
  1882. (define v ((interp_exp env) e))
  1883. (define env^ (dict-set env x v))
  1884. ((interp_exp env^) body)]
  1885. [else
  1886. (super (interp_exp env) e)]))
  1887. ...
  1888. ))
  1889. \end{lstlisting}
  1890. \end{minipage}
  1891. \fi}
  1892. {\if\edition\pythonEd\pythonColor
  1893. \begin{minipage}{0.45\textwidth}
  1894. \begin{lstlisting}
  1895. class InterpLint:
  1896. def interp_exp(e):
  1897. match e:
  1898. case UnaryOp(USub(), e1):
  1899. return -self.interp_exp(e1)
  1900. ...
  1901. ...
  1902. \end{lstlisting}
  1903. \end{minipage}
  1904. \begin{minipage}{0.45\textwidth}
  1905. \begin{lstlisting}
  1906. def InterpLvar(InterpLint):
  1907. def interp_exp(e):
  1908. match e:
  1909. case Name(id):
  1910. return env[id]
  1911. case _:
  1912. return super().interp_exp(e)
  1913. ...
  1914. \end{lstlisting}
  1915. \end{minipage}
  1916. \fi}
  1917. \end{center}
  1918. Getting back to the troublesome example, repeated here:
  1919. {\if\edition\racketEd
  1920. \begin{lstlisting}
  1921. (Let 'y (Int 10) (Prim '- (Var 'y)))
  1922. \end{lstlisting}
  1923. \fi}
  1924. {\if\edition\pythonEd\pythonColor
  1925. \begin{lstlisting}
  1926. y = 10
  1927. print(-y)
  1928. \end{lstlisting}
  1929. \fi}
  1930. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1931. \racket{on this expression,}
  1932. \python{on the \code{-y} expression,}%
  1933. %
  1934. which we call \code{e0}, by creating an object of the \LangVar{} class
  1935. and calling the \code{interp\_exp} method
  1936. {\if\edition\racketEd
  1937. \begin{lstlisting}
  1938. ((send (new interp-Lvar-class) interp_exp '()) e0)
  1939. \end{lstlisting}
  1940. \fi}
  1941. {\if\edition\pythonEd\pythonColor
  1942. \begin{lstlisting}
  1943. InterpLvar().interp_exp(e0)
  1944. \end{lstlisting}
  1945. \fi}
  1946. \noindent To process the \code{-} operator, the default case of
  1947. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1948. method in \LangInt{}. But then for the recursive method call, it
  1949. dispatches to \code{interp\_exp} in \LangVar{}, where the
  1950. \code{Var} node is handled correctly. Thus, method overriding gives us
  1951. the open recursion that we need to implement our interpreters in an
  1952. extensible way.
  1953. \subsection{Definitional Interpreter for \LangVar{}}
  1954. \label{sec:interp-Lvar}
  1955. Having justified the use of classes and methods to implement
  1956. interpreters, we revisit the definitional interpreter for \LangInt{}
  1957. shown in figure~\ref{fig:interp-Lint-class} and then extend it to
  1958. create an interpreter for \LangVar{}, shown in figure~\ref{fig:interp-Lvar}.
  1959. The interpreter for \LangVar{} adds two new \key{match} cases for
  1960. variables and \racket{\key{let}}\python{assignment}. For
  1961. \racket{\key{let}}\python{assignment}, we need a way to communicate the
  1962. value bound to a variable to all the uses of the variable. To
  1963. accomplish this, we maintain a mapping from variables to values called
  1964. an \emph{environment}\index{subject}{environment}.
  1965. %
  1966. We use
  1967. %
  1968. \racket{an association list (alist) }%
  1969. %
  1970. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary} }%
  1971. %
  1972. to represent the environment.
  1973. %
  1974. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  1975. and the \code{racket/dict} package.}
  1976. %
  1977. The \code{interp\_exp} function takes the current environment,
  1978. \code{env}, as an extra parameter. When the interpreter encounters a
  1979. variable, it looks up the corresponding value in the dictionary.
  1980. %
  1981. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  1982. initializing expression, extends the environment with the result
  1983. value bound to the variable, using \code{dict-set}, then evaluates
  1984. the body of the \key{Let}.}
  1985. %
  1986. \python{When the interpreter encounters an assignment, it evaluates
  1987. the initializing expression and then associates the resulting value
  1988. with the variable in the environment.}
  1989. \begin{figure}[tp]
  1990. \begin{tcolorbox}[colback=white]
  1991. {\if\edition\racketEd
  1992. \begin{lstlisting}
  1993. (define interp-Lint-class
  1994. (class object%
  1995. (super-new)
  1996. (define/public ((interp_exp env) e)
  1997. (match e
  1998. [(Int n) n]
  1999. [(Prim 'read '())
  2000. (define r (read))
  2001. (cond [(fixnum? r) r]
  2002. [else (error 'interp_exp "expected an integer" r)])]
  2003. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  2004. [(Prim '+ (list e1 e2))
  2005. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  2006. [(Prim '- (list e1 e2))
  2007. (fx- ((interp_exp env) e1) ((interp_exp env) e2))]))
  2008. (define/public (interp_program p)
  2009. (match p
  2010. [(Program '() e) ((interp_exp '()) e)]))
  2011. ))
  2012. \end{lstlisting}
  2013. \fi}
  2014. {\if\edition\pythonEd\pythonColor
  2015. \begin{lstlisting}
  2016. class InterpLint:
  2017. def interp_exp(self, e, env):
  2018. match e:
  2019. case BinOp(left, Add(), right):
  2020. return self.interp_exp(left, env) + self.interp_exp(right, env)
  2021. case BinOp(left, Sub(), right):
  2022. return self.interp_exp(left, env) - self.interp_exp(right, env)
  2023. case UnaryOp(USub(), v):
  2024. return - self.interp_exp(v, env)
  2025. case Constant(value):
  2026. return value
  2027. case Call(Name('input_int'), []):
  2028. return int(input())
  2029. def interp_stmts(self, ss, env):
  2030. if len(ss) == 0:
  2031. return
  2032. match ss[0]:
  2033. case Expr(Call(Name('print'), [arg])):
  2034. print(self.interp_exp(arg, env), end='')
  2035. return self.interp_stmts(ss[1:], env)
  2036. case Expr(value):
  2037. self.interp_exp(value, env)
  2038. return self.interp_stmts(ss[1:], env)
  2039. def interp(self, p):
  2040. match p:
  2041. case Module(body):
  2042. self.interp_stmts(body, {})
  2043. def interp_Lint(p):
  2044. return InterpLint().interp(p)
  2045. \end{lstlisting}
  2046. \fi}
  2047. \end{tcolorbox}
  2048. \caption{Interpreter for \LangInt{} as a class.}
  2049. \label{fig:interp-Lint-class}
  2050. \end{figure}
  2051. \begin{figure}[tp]
  2052. \begin{tcolorbox}[colback=white]
  2053. {\if\edition\racketEd
  2054. \begin{lstlisting}
  2055. (define interp-Lvar-class
  2056. (class interp-Lint-class
  2057. (super-new)
  2058. (define/override ((interp_exp env) e)
  2059. (match e
  2060. [(Var x) (dict-ref env x)]
  2061. [(Let x e body)
  2062. (define new-env (dict-set env x ((interp_exp env) e)))
  2063. ((interp_exp new-env) body)]
  2064. [else ((super interp-exp env) e)]))
  2065. ))
  2066. (define (interp_Lvar p)
  2067. (send (new interp-Lvar-class) interp_program p))
  2068. \end{lstlisting}
  2069. \fi}
  2070. {\if\edition\pythonEd\pythonColor
  2071. \begin{lstlisting}
  2072. class InterpLvar(InterpLint):
  2073. def interp_exp(self, e, env):
  2074. match e:
  2075. case Name(id):
  2076. return env[id]
  2077. case _:
  2078. return super().interp_exp(e, env)
  2079. def interp_stmts(self, ss, env):
  2080. if len(ss) == 0:
  2081. return
  2082. match ss[0]:
  2083. case Assign([lhs], value):
  2084. env[lhs.id] = self.interp_exp(value, env)
  2085. return self.interp_stmts(ss[1:], env)
  2086. case _:
  2087. return super().interp_stmts(ss, env)
  2088. def interp_Lvar(p):
  2089. return InterpLvar().interp(p)
  2090. \end{lstlisting}
  2091. \fi}
  2092. \end{tcolorbox}
  2093. \caption{Interpreter for the \LangVar{} language.}
  2094. \label{fig:interp-Lvar}
  2095. \end{figure}
  2096. {\if\edition\racketEd
  2097. \begin{figure}[tp]
  2098. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  2099. \small
  2100. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  2101. An \emph{association list} (called an alist) is a list of key-value pairs.
  2102. For example, we can map people to their ages with an alist
  2103. \index{subject}{alist}\index{subject}{association list}
  2104. \begin{lstlisting}[basicstyle=\ttfamily]
  2105. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  2106. \end{lstlisting}
  2107. The \emph{dictionary} interface is for mapping keys to values.
  2108. Every alist implements this interface. \index{subject}{dictionary}
  2109. The package
  2110. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  2111. provides many functions for working with dictionaries, such as
  2112. \begin{description}
  2113. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  2114. returns the value associated with the given $\itm{key}$.
  2115. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  2116. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  2117. and otherwise is the same as $\itm{dict}$.
  2118. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  2119. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  2120. of keys and values in $\itm{dict}$. For example, the following
  2121. creates a new alist in which the ages are incremented:
  2122. \end{description}
  2123. \vspace{-10pt}
  2124. \begin{lstlisting}[basicstyle=\ttfamily]
  2125. (for/list ([(k v) (in-dict ages)])
  2126. (cons k (add1 v)))
  2127. \end{lstlisting}
  2128. \end{tcolorbox}
  2129. %\end{wrapfigure}
  2130. \caption{Association lists implement the dictionary interface.}
  2131. \label{fig:alist}
  2132. \end{figure}
  2133. \fi}
  2134. The goal for this chapter is to implement a compiler that translates
  2135. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2136. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2137. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2138. That is, they output the same integer $n$. We depict this correctness
  2139. criteria in the following diagram:
  2140. \[
  2141. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2142. \node (p1) at (0, 0) {$P_1$};
  2143. \node (p2) at (4, 0) {$P_2$};
  2144. \node (o) at (4, -2) {$n$};
  2145. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2146. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2147. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2148. \end{tikzpicture}
  2149. \]
  2150. Next we introduce the \LangXInt{} subset of x86 that suffices for
  2151. compiling \LangVar{}.
  2152. \section{The \LangXInt{} Assembly Language}
  2153. \label{sec:x86}
  2154. \index{subject}{x86}
  2155. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2156. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2157. assembler.
  2158. %
  2159. A program begins with a \code{main} label followed by a sequence of
  2160. instructions. The \key{globl} directive makes the \key{main} procedure
  2161. externally visible so that the operating system can call it.
  2162. %
  2163. An x86 program is stored in the computer's memory. For our purposes,
  2164. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2165. values. The computer has a \emph{program counter}
  2166. (PC)\index{subject}{program counter}\index{subject}{PC} stored in the
  2167. \code{rip} register that points to the address of the next instruction
  2168. to be executed. For most instructions, the program counter is
  2169. incremented after the instruction is executed so that it points to the
  2170. next instruction in memory. Most x86 instructions take two operands,
  2171. each of which is an integer constant (called an \emph{immediate
  2172. value}\index{subject}{immediate value}), a
  2173. \emph{register}\index{subject}{register}, or a memory location.
  2174. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2175. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2176. && \key{r8} \MID \key{r9} \MID \key{r10}
  2177. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2178. \MID \key{r14} \MID \key{r15}}
  2179. \newcommand{\GrammarXInt}{
  2180. \begin{array}{rcl}
  2181. \Reg &::=& \allregisters{} \\
  2182. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2183. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2184. \key{subq} \; \Arg\key{,} \Arg \MID
  2185. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2186. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2187. \key{callq} \; \mathit{label} \MID
  2188. \key{retq} \MID
  2189. \key{jmp}\,\itm{label} \MID \\
  2190. && \itm{label}\key{:}\; \Instr
  2191. \end{array}
  2192. }
  2193. \begin{figure}[tp]
  2194. \begin{tcolorbox}[colback=white]
  2195. {\if\edition\racketEd
  2196. \[
  2197. \begin{array}{l}
  2198. \GrammarXInt \\
  2199. \begin{array}{lcl}
  2200. \LangXIntM{} &::= & \key{.globl main}\\
  2201. & & \key{main:} \; \Instr\ldots
  2202. \end{array}
  2203. \end{array}
  2204. \]
  2205. \fi}
  2206. {\if\edition\pythonEd\pythonColor
  2207. \[
  2208. \begin{array}{lcl}
  2209. \Reg &::=& \allregisters{} \\
  2210. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2211. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2212. \key{subq} \; \Arg\key{,} \Arg \MID
  2213. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2214. && \key{callq} \; \mathit{label} \MID
  2215. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2216. \LangXIntM{} &::= & \key{.globl main}\\
  2217. & & \key{main:} \; \Instr^{*}
  2218. \end{array}
  2219. \]
  2220. \fi}
  2221. \end{tcolorbox}
  2222. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2223. \label{fig:x86-int-concrete}
  2224. \end{figure}
  2225. A register is a special kind of variable that holds a 64-bit
  2226. value. There are 16 general-purpose registers in the computer; their
  2227. names are given in figure~\ref{fig:x86-int-concrete}. A register is
  2228. written with a percent sign, \key{\%}, followed by the register name,
  2229. for example \key{\%rax}.
  2230. An immediate value is written using the notation \key{\$}$n$ where $n$
  2231. is an integer.
  2232. %
  2233. %
  2234. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2235. which obtains the address stored in register $r$ and then adds $n$
  2236. bytes to the address. The resulting address is used to load or to store
  2237. to memory depending on whether it occurs as a source or destination
  2238. argument of an instruction.
  2239. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from
  2240. the source $s$ and destination $d$, applies the arithmetic operation,
  2241. and then writes the result to the destination $d$. \index{subject}{instruction}
  2242. %
  2243. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2244. stores the result in $d$.
  2245. %
  2246. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2247. specified by the label, and $\key{retq}$ returns from a procedure to
  2248. its caller.
  2249. %
  2250. We discuss procedure calls in more detail further in this chapter and
  2251. in chapter~\ref{ch:Lfun}.
  2252. %
  2253. The last letter \key{q} indicates that these instructions operate on
  2254. quadwords, which are 64-bit values.
  2255. %
  2256. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2257. counter to the address of the instruction immediately after the
  2258. specified label.}
  2259. Appendix~\ref{sec:x86-quick-reference} contains a quick reference for
  2260. all the x86 instructions used in this book.
  2261. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2262. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2263. \lstinline{movq $10, %rax}
  2264. puts $10$ into register \key{rax}, and then \lstinline{addq $32, %rax}
  2265. adds $32$ to the $10$ in \key{rax} and
  2266. puts the result, $42$, into \key{rax}.
  2267. %
  2268. The last instruction \key{retq} finishes the \key{main} function by
  2269. returning the integer in \key{rax} to the operating system. The
  2270. operating system interprets this integer as the program's exit
  2271. code. By convention, an exit code of 0 indicates that a program has
  2272. completed successfully, and all other exit codes indicate various
  2273. errors.
  2274. %
  2275. \racket{However, in this book we return the result of the program
  2276. as the exit code.}
  2277. \begin{figure}[tbp]
  2278. \begin{minipage}{0.45\textwidth}
  2279. \begin{tcolorbox}[colback=white]
  2280. \begin{lstlisting}
  2281. .globl main
  2282. main:
  2283. movq $10, %rax
  2284. addq $32, %rax
  2285. retq
  2286. \end{lstlisting}
  2287. \end{tcolorbox}
  2288. \end{minipage}
  2289. \caption{An x86 program that computes
  2290. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2291. \label{fig:p0-x86}
  2292. \end{figure}
  2293. We exhibit the use of memory for storing intermediate results in the
  2294. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2295. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2296. uses a region of memory called the \emph{procedure call stack}
  2297. (\emph{stack} for
  2298. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2299. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2300. for each procedure call. The memory layout for an individual frame is
  2301. shown in figure~\ref{fig:frame}. The register \key{rsp} is called the
  2302. \emph{stack pointer}\index{subject}{stack pointer} and contains the
  2303. address of the item at the top of the stack. In general, we use the
  2304. term \emph{pointer}\index{subject}{pointer} for something that
  2305. contains an address. The stack grows downward in memory, so we
  2306. increase the size of the stack by subtracting from the stack pointer.
  2307. In the context of a procedure call, the \emph{return
  2308. address}\index{subject}{return address} is the location of the
  2309. instruction that immediately follows the call instruction on the
  2310. caller side. The function call instruction, \code{callq}, pushes the
  2311. return address onto the stack prior to jumping to the procedure. The
  2312. register \key{rbp} is the \emph{base pointer}\index{subject}{base
  2313. pointer} and is used to access variables that are stored in the
  2314. frame of the current procedure call. The base pointer of the caller
  2315. is stored immediately after the return address.
  2316. Figure~\ref{fig:frame} shows the memory layout of a frame with storage
  2317. for $n$ variables, which are numbered from $1$ to $n$. Variable $1$ is
  2318. stored at address $-8\key{(\%rbp)}$, variable $2$ at
  2319. $-16\key{(\%rbp)}$, and so on.
  2320. \begin{figure}[tbp]
  2321. \begin{minipage}{0.66\textwidth}
  2322. \begin{tcolorbox}[colback=white]
  2323. {\if\edition\racketEd
  2324. \begin{lstlisting}
  2325. start:
  2326. movq $10, -8(%rbp)
  2327. negq -8(%rbp)
  2328. movq -8(%rbp), %rax
  2329. addq $52, %rax
  2330. jmp conclusion
  2331. .globl main
  2332. main:
  2333. pushq %rbp
  2334. movq %rsp, %rbp
  2335. subq $16, %rsp
  2336. jmp start
  2337. conclusion:
  2338. addq $16, %rsp
  2339. popq %rbp
  2340. retq
  2341. \end{lstlisting}
  2342. \fi}
  2343. {\if\edition\pythonEd\pythonColor
  2344. \begin{lstlisting}
  2345. .globl main
  2346. main:
  2347. pushq %rbp
  2348. movq %rsp, %rbp
  2349. subq $16, %rsp
  2350. movq $10, -8(%rbp)
  2351. negq -8(%rbp)
  2352. movq -8(%rbp), %rax
  2353. addq $52, %rax
  2354. addq $16, %rsp
  2355. popq %rbp
  2356. retq
  2357. \end{lstlisting}
  2358. \fi}
  2359. \end{tcolorbox}
  2360. \end{minipage}
  2361. \caption{An x86 program that computes
  2362. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2363. \label{fig:p1-x86}
  2364. \end{figure}
  2365. \begin{figure}[tbp]
  2366. \begin{minipage}{0.66\textwidth}
  2367. \begin{tcolorbox}[colback=white]
  2368. \centering
  2369. \begin{tabular}{|r|l|} \hline
  2370. Position & Contents \\ \hline
  2371. $8$(\key{\%rbp}) & return address \\
  2372. $0$(\key{\%rbp}) & old \key{rbp} \\
  2373. $-8$(\key{\%rbp}) & variable $1$ \\
  2374. $-16$(\key{\%rbp}) & variable $2$ \\
  2375. \ldots & \ldots \\
  2376. $0$(\key{\%rsp}) & variable $n$\\ \hline
  2377. \end{tabular}
  2378. \end{tcolorbox}
  2379. \end{minipage}
  2380. \caption{Memory layout of a frame.}
  2381. \label{fig:frame}
  2382. \end{figure}
  2383. In the program shown in figure~\ref{fig:p1-x86}, consider how control
  2384. is transferred from the operating system to the \code{main} function.
  2385. The operating system issues a \code{callq main} instruction that
  2386. pushes its return address on the stack and then jumps to
  2387. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2388. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2389. that when control arrives at \code{main}, the \code{rsp} is 8 bytes
  2390. out of alignment (because the \code{callq} pushed the return address).
  2391. The first three instructions are the typical
  2392. \emph{prelude}\index{subject}{prelude} for a procedure. The
  2393. instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2394. pointer \code{rsp} and then saves the base pointer of the caller at
  2395. address \code{rsp} on the stack. The next instruction \code{movq
  2396. \%rsp, \%rbp} sets the base pointer to the current stack pointer,
  2397. which is pointing to the location of the old base pointer. The
  2398. instruction \code{subq \$16, \%rsp} moves the stack pointer down to
  2399. make enough room for storing variables. This program needs one
  2400. variable ($8$ bytes), but we round up to 16 bytes so that \code{rsp} is
  2401. 16-byte-aligned, and then we are ready to make calls to other functions.
  2402. \racket{The last instruction of the prelude is \code{jmp start}, which
  2403. transfers control to the instructions that were generated from the
  2404. expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2405. \racket{The first instruction under the \code{start} label is}
  2406. %
  2407. \python{The first instruction after the prelude is}
  2408. %
  2409. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2410. %
  2411. The instruction \code{negq -8(\%rbp)} changes the contents of variable
  2412. $1$ to $-10$.
  2413. %
  2414. The next instruction moves the $-10$ from variable $1$ into the
  2415. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2416. the value in \code{rax}, updating its contents to $42$.
  2417. \racket{The three instructions under the label \code{conclusion} are the
  2418. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2419. %
  2420. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2421. \code{main} function consists of the last three instructions.}
  2422. %
  2423. The first two restore the \code{rsp} and \code{rbp} registers to their
  2424. states at the beginning of the procedure. In particular,
  2425. \key{addq \$16, \%rsp} moves the stack pointer to point to the
  2426. old base pointer. Then \key{popq \%rbp} restores the old base pointer
  2427. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2428. \key{retq}, jumps back to the procedure that called this one and adds
  2429. $8$ to the stack pointer.
  2430. Our compiler needs a convenient representation for manipulating x86
  2431. programs, so we define an abstract syntax for x86, shown in
  2432. figure~\ref{fig:x86-int-ast}. We refer to this language as
  2433. \LangXInt{}.
  2434. %
  2435. {\if\edition\pythonEd\pythonColor%
  2436. The main difference between this and the concrete syntax of \LangXInt{}
  2437. (figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2438. names, and register names are explicitly represented by strings.
  2439. \fi} %
  2440. {\if\edition\racketEd
  2441. The main difference between this and the concrete syntax of \LangXInt{}
  2442. (figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2443. front of every instruction. Instead instructions are grouped into
  2444. \emph{basic blocks}\index{subject}{basic block} with a
  2445. label associated with every basic block; this is why the \key{X86Program}
  2446. struct includes an alist mapping labels to basic blocks. The reason for this
  2447. organization becomes apparent in chapter~\ref{ch:Lif} when we
  2448. introduce conditional branching. The \code{Block} structure includes
  2449. an $\itm{info}$ field that is not needed in this chapter but becomes
  2450. useful in chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2451. $\itm{info}$ field should contain an empty list.
  2452. \fi}
  2453. %
  2454. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2455. node includes an integer for representing the arity of the function,
  2456. that is, the number of arguments, which is helpful to know during
  2457. register allocation (chapter~\ref{ch:register-allocation-Lvar}).
  2458. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2459. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2460. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2461. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2462. \MID \skey{r14} \MID \skey{r15}}
  2463. \newcommand{\ASTXIntRacket}{
  2464. \begin{array}{lcl}
  2465. \Reg &::=& \allregisters{} \\
  2466. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2467. \MID \DEREF{\Reg}{\Int} \\
  2468. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2469. \MID \BININSTR{\code{subq}}{\Arg}{\Arg}\\
  2470. &\MID& \UNIINSTR{\code{negq}}{\Arg}
  2471. \MID \BININSTR{\code{movq}}{\Arg}{\Arg}\\
  2472. &\MID& \PUSHQ{\Arg}
  2473. \MID \POPQ{\Arg} \\
  2474. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2475. \MID \RETQ{}
  2476. \MID \JMP{\itm{label}} \\
  2477. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}
  2478. \end{array}
  2479. }
  2480. \begin{figure}[tp]
  2481. \begin{tcolorbox}[colback=white]
  2482. \small
  2483. {\if\edition\racketEd
  2484. \[\arraycolsep=3pt
  2485. \begin{array}{l}
  2486. \ASTXIntRacket \\
  2487. \begin{array}{lcl}
  2488. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2489. \end{array}
  2490. \end{array}
  2491. \]
  2492. \fi}
  2493. {\if\edition\pythonEd\pythonColor
  2494. \[
  2495. \begin{array}{lcl}
  2496. \Reg &::=& \allastregisters{} \\
  2497. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2498. \MID \DEREF{\Reg}{\Int} \\
  2499. \Instr &::=& \BININSTR{\scode{addq}}{\Arg}{\Arg}
  2500. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} \\
  2501. &\MID& \BININSTR{\scode{movq}}{\Arg}{\Arg}
  2502. \MID \UNIINSTR{\scode{negq}}{\Arg}\\
  2503. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2504. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{} \MID \JMP{\itm{label}} \\
  2505. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2506. \end{array}
  2507. \]
  2508. \fi}
  2509. \end{tcolorbox}
  2510. \caption{The abstract syntax of \LangXInt{} assembly.}
  2511. \label{fig:x86-int-ast}
  2512. \end{figure}
  2513. \section{Planning the Trip to x86}
  2514. \label{sec:plan-s0-x86}
  2515. To compile one language to another, it helps to focus on the
  2516. differences between the two languages because the compiler will need
  2517. to bridge those differences. What are the differences between \LangVar{}
  2518. and x86 assembly? Here are some of the most important ones:
  2519. \begin{enumerate}
  2520. \item x86 arithmetic instructions typically have two arguments and
  2521. update the second argument in place. In contrast, \LangVar{}
  2522. arithmetic operations take two arguments and produce a new value.
  2523. An x86 instruction may have at most one memory-accessing argument.
  2524. Furthermore, some x86 instructions place special restrictions on
  2525. their arguments.
  2526. \item An argument of an \LangVar{} operator can be a deeply nested
  2527. expression, whereas x86 instructions restrict their arguments to be
  2528. integer constants, registers, and memory locations.
  2529. {\if\edition\racketEd
  2530. \item The order of execution in x86 is explicit in the syntax, which
  2531. is a sequence of instructions and jumps to labeled positions,
  2532. whereas in \LangVar{} the order of evaluation is a left-to-right
  2533. depth-first traversal of the abstract syntax tree. \fi}
  2534. \item A program in \LangVar{} can have any number of variables,
  2535. whereas x86 has 16 registers and the procedure call stack.
  2536. {\if\edition\racketEd
  2537. \item Variables in \LangVar{} can shadow other variables with the
  2538. same name. In x86, registers have unique names, and memory locations
  2539. have unique addresses.
  2540. \fi}
  2541. \end{enumerate}
  2542. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2543. down the problem into several steps, which deal with these differences
  2544. one at a time. Each of these steps is called a \emph{pass} of the
  2545. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2546. %
  2547. This term indicates that each step passes over, or traverses, the AST
  2548. of the program.
  2549. %
  2550. Furthermore, we follow the nanopass approach, which means that we
  2551. strive for each pass to accomplish one clear objective rather than two
  2552. or three at the same time.
  2553. %
  2554. We begin by sketching how we might implement each pass and give each
  2555. pass a name. We then figure out an ordering of the passes and the
  2556. input/output language for each pass. The very first pass has
  2557. \LangVar{} as its input language, and the last pass has \LangXInt{} as
  2558. its output language. In between these two passes, we can choose
  2559. whichever language is most convenient for expressing the output of
  2560. each pass, whether that be \LangVar{}, \LangXInt{}, or a new
  2561. \emph{intermediate language} of our own design. Finally, to
  2562. implement each pass we write one recursive function per nonterminal in
  2563. the grammar of the input language of the pass.
  2564. \index{subject}{intermediate language}
  2565. Our compiler for \LangVar{} consists of the following passes:
  2566. %
  2567. \begin{description}
  2568. {\if\edition\racketEd
  2569. \item[\key{uniquify}] deals with the shadowing of variables by
  2570. renaming every variable to a unique name.
  2571. \fi}
  2572. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2573. of a primitive operation or function call is a variable or integer,
  2574. that is, an \emph{atomic} expression. We refer to nonatomic
  2575. expressions as \emph{complex}. This pass introduces temporary
  2576. variables to hold the results of complex
  2577. subexpressions.\index{subject}{atomic
  2578. expression}\index{subject}{complex expression}%
  2579. {\if\edition\racketEd
  2580. \item[\key{explicate\_control}] makes the execution order of the
  2581. program explicit. It converts the abstract syntax tree
  2582. representation into a graph in which each node is a labeled sequence
  2583. of statements and the edges are \code{goto} statements.
  2584. \fi}
  2585. \item[\key{select\_instructions}]\index{subject}{select instructions}
  2586. handles the difference between
  2587. \LangVar{} operations and x86 instructions. This pass converts each
  2588. \LangVar{} operation to a short sequence of instructions that
  2589. accomplishes the same task.
  2590. \item[\key{assign\_homes}] replaces variables with registers or stack
  2591. locations.
  2592. \end{description}
  2593. %
  2594. {\if\edition\racketEd
  2595. %
  2596. Our treatment of \code{remove\_complex\_operands} and
  2597. \code{explicate\_control} as separate passes is an example of the
  2598. nanopass approach.\footnote{For analogous decompositions of the
  2599. translation into continuation passing style, see the work of
  2600. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.} The traditional
  2601. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2602. %
  2603. \fi}
  2604. The next question is, in what order should we apply these passes? This
  2605. question can be challenging because it is difficult to know ahead of
  2606. time which orderings will be better (that is, will be easier to
  2607. implement, produce more efficient code, and so on), and therefore
  2608. ordering often involves trial and error. Nevertheless, we can plan
  2609. ahead and make educated choices regarding the ordering.
  2610. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2611. \key{uniquify}? The \key{uniquify} pass should come first because
  2612. \key{explicate\_control} changes all the \key{let}-bound variables to
  2613. become local variables whose scope is the entire program, which would
  2614. confuse variables with the same name.}
  2615. %
  2616. \racket{We place \key{remove\_complex\_operands} before \key{explicate\_control}
  2617. because the later removes the \key{let} form, but it is convenient to
  2618. use \key{let} in the output of \key{remove\_complex\_operands}.}
  2619. %
  2620. \racket{The ordering of \key{uniquify} with respect to
  2621. \key{remove\_complex\_operands} does not matter, so we arbitrarily choose
  2622. \key{uniquify} to come first.}
  2623. The \key{select\_instructions} and \key{assign\_homes} passes are
  2624. intertwined.
  2625. %
  2626. In chapter~\ref{ch:Lfun} we learn that in x86, registers are used for
  2627. passing arguments to functions and that it is preferable to assign
  2628. parameters to their corresponding registers. This suggests that it
  2629. would be better to start with the \key{select\_instructions} pass,
  2630. which generates the instructions for argument passing, before
  2631. performing register allocation.
  2632. %
  2633. On the other hand, by selecting instructions first we may run into a
  2634. dead end in \key{assign\_homes}. Recall that only one argument of an
  2635. x86 instruction may be a memory access, but \key{assign\_homes} might
  2636. be forced to assign both arguments to memory locations.
  2637. %
  2638. A sophisticated approach is to repeat the two passes until a solution
  2639. is found. However, to reduce implementation complexity we recommend
  2640. placing \key{select\_instructions} first, followed by the
  2641. \key{assign\_homes}, and then a third pass named \key{patch\_instructions}
  2642. that uses a reserved register to fix outstanding problems.
  2643. \begin{figure}[tbp]
  2644. \begin{tcolorbox}[colback=white]
  2645. {\if\edition\racketEd
  2646. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  2647. \node (Lvar) at (0,2) {\large \LangVar{}};
  2648. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2649. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  2650. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2651. \node (Cvar-2) at (0,0) {\large \LangCVar{}};
  2652. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  2653. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  2654. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  2655. \node (x86-5) at (11,-2) {\large \LangXInt{}};
  2656. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2657. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  2658. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize\ \ explicate\_control} (Cvar-2);
  2659. \path[->,bend right=15] (Cvar-2) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  2660. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2661. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  2662. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  2663. \end{tikzpicture}
  2664. \fi}
  2665. {\if\edition\pythonEd\pythonColor
  2666. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  2667. \node (Lvar) at (0,2) {\large \LangVar{}};
  2668. \node (Lvar-2) at (4,2) {\large \LangVarANF{}};
  2669. \node (x86-1) at (0,0) {\large \LangXVar{}};
  2670. \node (x86-2) at (4,0) {\large \LangXVar{}};
  2671. \node (x86-3) at (8,0) {\large \LangXInt{}};
  2672. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2673. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-2);
  2674. \path[->,bend left=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instructions\ \ } (x86-1);
  2675. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2676. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  2677. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  2678. \end{tikzpicture}
  2679. \fi}
  2680. \end{tcolorbox}
  2681. \caption{Diagram of the passes for compiling \LangVar{}. }
  2682. \label{fig:Lvar-passes}
  2683. \end{figure}
  2684. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2685. passes and identifies the input and output language of each pass.
  2686. %
  2687. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2688. language, which extends \LangXInt{} with an unbounded number of
  2689. program-scope variables and removes the restrictions regarding
  2690. instruction arguments.
  2691. %
  2692. The last pass, \key{prelude\_and\_conclusion}, places the program
  2693. instructions inside a \code{main} function with instructions for the
  2694. prelude and conclusion.
  2695. %
  2696. \racket{In the next section we discuss the \LangCVar{} intermediate
  2697. language that serves as the output of \code{explicate\_control}.}
  2698. %
  2699. The remainder of this chapter provides guidance on the implementation
  2700. of each of the compiler passes represented in
  2701. figure~\ref{fig:Lvar-passes}.
  2702. %% The output of \key{uniquify} and \key{remove-complex-operands}
  2703. %% are programs that are still in the \LangVar{} language, though the
  2704. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2705. %% (section~\ref{sec:remove-complex-opera-Lvar}).
  2706. %% %
  2707. %% The output of \code{explicate\_control} is in an intermediate language
  2708. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2709. %% syntax, which we introduce in the next section. The
  2710. %% \key{select-instruction} pass translates from \LangCVar{} to
  2711. %% \LangXVar{}. The \key{assign-homes} and
  2712. %% \key{patch-instructions}
  2713. %% passes input and output variants of x86 assembly.
  2714. \newcommand{\CvarGrammarRacket}{
  2715. \begin{array}{lcl}
  2716. \Atm &::=& \Int \MID \Var \\
  2717. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2718. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2719. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2720. \end{array}
  2721. }
  2722. \newcommand{\CvarASTRacket}{
  2723. \begin{array}{lcl}
  2724. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2725. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2726. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2727. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2728. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2729. \end{array}
  2730. }
  2731. {\if\edition\racketEd
  2732. \subsection{The \LangCVar{} Intermediate Language}
  2733. The output of \code{explicate\_control} is similar to the C
  2734. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2735. categories for expressions and statements, so we name it \LangCVar{}.
  2736. This style of intermediate language is also known as
  2737. \emph{three-address code}, to emphasize that the typical form of a
  2738. statement such as \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2739. addresses: \code{x}, \code{y}, and \code{z}~\citep{Aho:2006wb}.
  2740. The concrete syntax for \LangCVar{} is shown in
  2741. figure~\ref{fig:c0-concrete-syntax}, and the abstract syntax for
  2742. \LangCVar{} is shown in figure~\ref{fig:c0-syntax}.
  2743. %
  2744. The \LangCVar{} language supports the same operators as \LangVar{} but
  2745. the arguments of operators are restricted to atomic
  2746. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2747. assignment statements that can be executed in sequence using the
  2748. \key{Seq} form. A sequence of statements always ends with
  2749. \key{Return}, a guarantee that is baked into the grammar rules for
  2750. \itm{tail}. The naming of this nonterminal comes from the term
  2751. \emph{tail position}\index{subject}{tail position}, which refers to an
  2752. expression that is the last one to execute within a function or
  2753. program.
  2754. A \LangCVar{} program consists of an alist mapping labels to
  2755. tails. This is more general than necessary for the present chapter, as
  2756. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2757. us from having to change the syntax in chapter~\ref{ch:Lif}. For now
  2758. there is just one label, \key{start}, and the whole program is
  2759. its tail.
  2760. %
  2761. The $\itm{info}$ field of the \key{CProgram} form, after the
  2762. \code{explicate\_control} pass, contains an alist that associates the
  2763. symbol \key{locals} with a list of all the variables used in the
  2764. program. At the start of the program, these variables are
  2765. uninitialized; they become initialized on their first assignment.
  2766. \begin{figure}[tbp]
  2767. \begin{tcolorbox}[colback=white]
  2768. \[
  2769. \begin{array}{l}
  2770. \CvarGrammarRacket \\
  2771. \begin{array}{lcl}
  2772. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2773. \end{array}
  2774. \end{array}
  2775. \]
  2776. \end{tcolorbox}
  2777. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2778. \label{fig:c0-concrete-syntax}
  2779. \end{figure}
  2780. \begin{figure}[tbp]
  2781. \begin{tcolorbox}[colback=white]
  2782. \[
  2783. \begin{array}{l}
  2784. \CvarASTRacket \\
  2785. \begin{array}{lcl}
  2786. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2787. \end{array}
  2788. \end{array}
  2789. \]
  2790. \end{tcolorbox}
  2791. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2792. \label{fig:c0-syntax}
  2793. \end{figure}
  2794. The definitional interpreter for \LangCVar{} is in the support code,
  2795. in the file \code{interp-Cvar.rkt}.
  2796. \fi}
  2797. {\if\edition\racketEd
  2798. \section{Uniquify Variables}
  2799. \label{sec:uniquify-Lvar}
  2800. The \code{uniquify} pass replaces the variable bound by each \key{let}
  2801. with a unique name. Both the input and output of the \code{uniquify}
  2802. pass is the \LangVar{} language. For example, the \code{uniquify} pass
  2803. should translate the program on the left into the program on the
  2804. right.
  2805. \begin{transformation}
  2806. \begin{lstlisting}
  2807. (let ([x 32])
  2808. (+ (let ([x 10]) x) x))
  2809. \end{lstlisting}
  2810. \compilesto
  2811. \begin{lstlisting}
  2812. (let ([x.1 32])
  2813. (+ (let ([x.2 10]) x.2) x.1))
  2814. \end{lstlisting}
  2815. \end{transformation}
  2816. The following is another example translation, this time of a program
  2817. with a \key{let} nested inside the initializing expression of another
  2818. \key{let}.
  2819. \begin{transformation}
  2820. \begin{lstlisting}
  2821. (let ([x (let ([x 4])
  2822. (+ x 1))])
  2823. (+ x 2))
  2824. \end{lstlisting}
  2825. \compilesto
  2826. \begin{lstlisting}
  2827. (let ([x.2 (let ([x.1 4])
  2828. (+ x.1 1))])
  2829. (+ x.2 2))
  2830. \end{lstlisting}
  2831. \end{transformation}
  2832. We recommend implementing \code{uniquify} by creating a structurally
  2833. recursive function named \code{uniquify\_exp} that does little other
  2834. than copy an expression. However, when encountering a \key{let}, it
  2835. should generate a unique name for the variable and associate the old
  2836. name with the new name in an alist.\footnote{The Racket function
  2837. \code{gensym} is handy for generating unique variable names.} The
  2838. \code{uniquify\_exp} function needs to access this alist when it gets
  2839. to a variable reference, so we add a parameter to \code{uniquify\_exp}
  2840. for the alist.
  2841. The skeleton of the \code{uniquify\_exp} function is shown in
  2842. figure~\ref{fig:uniquify-Lvar}.
  2843. %% The function is curried so that it is
  2844. %% convenient to partially apply it to an alist and then apply it to
  2845. %% different expressions, as in the last case for primitive operations in
  2846. %% figure~\ref{fig:uniquify-Lvar}.
  2847. The
  2848. %
  2849. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2850. %
  2851. form of Racket is useful for transforming the element of a list to
  2852. produce a new list.\index{subject}{for/list}
  2853. \begin{figure}[tbp]
  2854. \begin{tcolorbox}[colback=white]
  2855. \begin{lstlisting}
  2856. (define (uniquify_exp env)
  2857. (lambda (e)
  2858. (match e
  2859. [(Var x) ___]
  2860. [(Int n) (Int n)]
  2861. [(Let x e body) ___]
  2862. [(Prim op es)
  2863. (Prim op (for/list ([e es]) ((uniquify_exp env) e)))])))
  2864. (define (uniquify p)
  2865. (match p
  2866. [(Program '() e) (Program '() ((uniquify_exp '()) e))]))
  2867. \end{lstlisting}
  2868. \end{tcolorbox}
  2869. \caption{Skeleton for the \key{uniquify} pass.}
  2870. \label{fig:uniquify-Lvar}
  2871. \end{figure}
  2872. \begin{exercise}
  2873. \normalfont\normalsize % I don't like the italics for exercises. -Jeremy
  2874. Complete the \code{uniquify} pass by filling in the blanks in
  2875. figure~\ref{fig:uniquify-Lvar}; that is, implement the cases for
  2876. variables and for the \key{let} form in the file \code{compiler.rkt}
  2877. in the support code.
  2878. \end{exercise}
  2879. \begin{exercise}
  2880. \normalfont\normalsize
  2881. \label{ex:Lvar}
  2882. Create five \LangVar{} programs that exercise the most interesting
  2883. parts of the \key{uniquify} pass; that is, the programs should include
  2884. \key{let} forms, variables, and variables that shadow each other.
  2885. The five programs should be placed in the subdirectory named
  2886. \key{tests}, and the file names should start with \code{var\_test\_}
  2887. followed by a unique integer and end with the file extension
  2888. \key{.rkt}.
  2889. %
  2890. The \key{run-tests.rkt} script in the support code checks whether the
  2891. output programs produce the same result as the input programs. The
  2892. script uses the \key{interp-tests} function
  2893. (appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2894. your \key{uniquify} pass on the example programs. The \code{passes}
  2895. parameter of \key{interp-tests} is a list that should have one entry
  2896. for each pass in your compiler. For now, define \code{passes} to
  2897. contain just one entry for \code{uniquify} as follows:
  2898. \begin{lstlisting}
  2899. (define passes
  2900. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2901. \end{lstlisting}
  2902. Run the \key{run-tests.rkt} script in the support code to check
  2903. whether the output programs produce the same result as the input
  2904. programs.
  2905. \end{exercise}
  2906. \fi}
  2907. \section{Remove Complex Operands}
  2908. \label{sec:remove-complex-opera-Lvar}
  2909. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2910. into a restricted form in which the arguments of operations are atomic
  2911. expressions. Put another way, this pass removes complex
  2912. operands\index{subject}{complex operand}, such as the expression
  2913. \racket{\code{(- 10)}}\python{\code{-10}}
  2914. in the following program. This is accomplished by introducing a new
  2915. temporary variable, assigning the complex operand to the new
  2916. variable, and then using the new variable in place of the complex
  2917. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2918. right.
  2919. {\if\edition\racketEd
  2920. \begin{transformation}
  2921. % var_test_19.rkt
  2922. \begin{lstlisting}
  2923. (let ([x (+ 42 (- 10))])
  2924. (+ x 10))
  2925. \end{lstlisting}
  2926. \compilesto
  2927. \begin{lstlisting}
  2928. (let ([x (let ([tmp.1 (- 10)])
  2929. (+ 42 tmp.1))])
  2930. (+ x 10))
  2931. \end{lstlisting}
  2932. \end{transformation}
  2933. \fi}
  2934. {\if\edition\pythonEd\pythonColor
  2935. \begin{transformation}
  2936. \begin{lstlisting}
  2937. x = 42 + -10
  2938. print(x + 10)
  2939. \end{lstlisting}
  2940. \compilesto
  2941. \begin{lstlisting}
  2942. tmp_0 = -10
  2943. x = 42 + tmp_0
  2944. tmp_1 = x + 10
  2945. print(tmp_1)
  2946. \end{lstlisting}
  2947. \end{transformation}
  2948. \fi}
  2949. \newcommand{\LvarMonadASTRacket}{
  2950. \begin{array}{rcl}
  2951. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2952. \Exp &::=& \Atm \MID \READ{} \\
  2953. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm} \\
  2954. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2955. \end{array}
  2956. }
  2957. \newcommand{\LvarMonadASTPython}{
  2958. \begin{array}{rcl}
  2959. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2960. \Exp{} &::=& \Atm \MID \READ{} \\
  2961. &\MID& \UNIOP{\itm{unaryop}}{\Atm} \MID \BINOP{\Atm}{\itm{binaryop}}{\Atm} \\
  2962. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  2963. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  2964. \end{array}
  2965. }
  2966. \begin{figure}[tp]
  2967. \centering
  2968. \begin{tcolorbox}[colback=white]
  2969. {\if\edition\racketEd
  2970. \[
  2971. \begin{array}{l}
  2972. \LvarMonadASTRacket \\
  2973. \begin{array}{rcl}
  2974. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  2975. \end{array}
  2976. \end{array}
  2977. \]
  2978. \fi}
  2979. {\if\edition\pythonEd\pythonColor
  2980. \[
  2981. \begin{array}{l}
  2982. \LvarMonadASTPython \\
  2983. \begin{array}{rcl}
  2984. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  2985. \end{array}
  2986. \end{array}
  2987. \]
  2988. \fi}
  2989. \end{tcolorbox}
  2990. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  2991. atomic expressions.}
  2992. \label{fig:Lvar-anf-syntax}
  2993. \end{figure}
  2994. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  2995. of this pass, the language \LangVarANF{}. The only difference is that
  2996. operator arguments are restricted to be atomic expressions that are
  2997. defined by the \Atm{} nonterminal. In particular, integer constants
  2998. and variables are atomic.
  2999. The atomic expressions are pure (they do not cause or depend on side
  3000. effects) whereas complex expressions may have side effects, such as
  3001. \READ{}. A language with this separation between pure expressions
  3002. versus expressions with side effects is said to be in monadic normal
  3003. form~\citep{Moggi:1991in,Danvy:2003fk}, which explains the \textit{mon}
  3004. in the name \LangVarANF{}. An important invariant of the
  3005. \code{remove\_complex\_operands} pass is that the relative ordering
  3006. among complex expressions is not changed, but the relative ordering
  3007. between atomic expressions and complex expressions can change and
  3008. often does. The reason that these changes are behavior preserving is
  3009. that the atomic expressions are pure.
  3010. Another well-known form for intermediate languages is the
  3011. \emph{administrative normal form}
  3012. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  3013. \index{subject}{administrative normal form} \index{subject}{ANF}
  3014. %
  3015. The \LangVarANF{} language is not quite in ANF because it allows the
  3016. right-hand side of a \code{let} to be a complex expression, such as
  3017. another \code{let}. The flattening of nested \code{let} expressions is
  3018. instead one of the responsibilities of the \code{explicate\_control}
  3019. pass.
  3020. {\if\edition\racketEd
  3021. We recommend implementing this pass with two mutually recursive
  3022. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  3023. \code{rco\_atom} to subexpressions that need to become atomic and to
  3024. apply \code{rco\_exp} to subexpressions that do not. Both functions
  3025. take an \LangVar{} expression as input. The \code{rco\_exp} function
  3026. returns an expression. The \code{rco\_atom} function returns two
  3027. things: an atomic expression and an alist mapping temporary variables to
  3028. complex subexpressions. You can return multiple things from a function
  3029. using Racket's \key{values} form, and you can receive multiple things
  3030. from a function call using the \key{define-values} form.
  3031. \fi}
  3032. %
  3033. {\if\edition\pythonEd\pythonColor
  3034. %
  3035. We recommend implementing this pass with an auxiliary method named
  3036. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  3037. Boolean that specifies whether the expression needs to become atomic
  3038. or not. The \code{rco\_exp} method should return a pair consisting of
  3039. the new expression and a list of pairs, associating new temporary
  3040. variables with their initializing expressions.
  3041. %
  3042. \fi}
  3043. {\if\edition\racketEd
  3044. %
  3045. Returning to the example program with the expression \code{(+ 42 (-
  3046. 10))}, the subexpression \code{(- 10)} should be processed using the
  3047. \code{rco\_atom} function because it is an argument of the \code{+}
  3048. operator and therefore needs to become atomic. The output of
  3049. \code{rco\_atom} applied to \code{(- 10)} is as follows:
  3050. \begin{transformation}
  3051. \begin{lstlisting}
  3052. (- 10)
  3053. \end{lstlisting}
  3054. \compilesto
  3055. \begin{lstlisting}
  3056. tmp.1
  3057. ((tmp.1 . (- 10)))
  3058. \end{lstlisting}
  3059. \end{transformation}
  3060. \fi}
  3061. %
  3062. {\if\edition\pythonEd\pythonColor
  3063. %
  3064. Returning to the example program with the expression \code{42 + -10},
  3065. the subexpression \code{-10} should be processed using the
  3066. \code{rco\_exp} function with \code{True} as the second argument
  3067. because \code{-10} is an argument of the \code{+} operator and
  3068. therefore needs to become atomic. The output of \code{rco\_exp}
  3069. applied to \code{-10} is as follows.
  3070. \begin{transformation}
  3071. \begin{lstlisting}
  3072. -10
  3073. \end{lstlisting}
  3074. \compilesto
  3075. \begin{lstlisting}
  3076. tmp_1
  3077. [(tmp_1, -10)]
  3078. \end{lstlisting}
  3079. \end{transformation}
  3080. %
  3081. \fi}
  3082. Take special care of programs, such as the following, that
  3083. %
  3084. \racket{bind a variable to an atomic expression.}
  3085. %
  3086. \python{assign an atomic expression to a variable.}
  3087. %
  3088. You should leave such \racket{variable bindings}\python{assignments}
  3089. unchanged, as shown in the program on the right:\\
  3090. %
  3091. {\if\edition\racketEd
  3092. \begin{transformation}
  3093. % var_test_20.rkt
  3094. \begin{lstlisting}
  3095. (let ([a 42])
  3096. (let ([b a])
  3097. b))
  3098. \end{lstlisting}
  3099. \compilesto
  3100. \begin{lstlisting}
  3101. (let ([a 42])
  3102. (let ([b a])
  3103. b))
  3104. \end{lstlisting}
  3105. \end{transformation}
  3106. \fi}
  3107. {\if\edition\pythonEd\pythonColor
  3108. \begin{transformation}
  3109. \begin{lstlisting}
  3110. a = 42
  3111. b = a
  3112. print(b)
  3113. \end{lstlisting}
  3114. \compilesto
  3115. \begin{lstlisting}
  3116. a = 42
  3117. b = a
  3118. print(b)
  3119. \end{lstlisting}
  3120. \end{transformation}
  3121. \fi}
  3122. %
  3123. \noindent A careless implementation might produce the following output with
  3124. unnecessary temporary variables.
  3125. \begin{center}
  3126. \begin{minipage}{0.4\textwidth}
  3127. {\if\edition\racketEd
  3128. \begin{lstlisting}
  3129. (let ([tmp.1 42])
  3130. (let ([a tmp.1])
  3131. (let ([tmp.2 a])
  3132. (let ([b tmp.2])
  3133. b))))
  3134. \end{lstlisting}
  3135. \fi}
  3136. {\if\edition\pythonEd\pythonColor
  3137. \begin{lstlisting}
  3138. tmp_1 = 42
  3139. a = tmp_1
  3140. tmp_2 = a
  3141. b = tmp_2
  3142. print(b)
  3143. \end{lstlisting}
  3144. \fi}
  3145. \end{minipage}
  3146. \end{center}
  3147. \begin{exercise}
  3148. \normalfont\normalsize
  3149. {\if\edition\racketEd
  3150. Implement the \code{remove\_complex\_operands} function in
  3151. \code{compiler.rkt}.
  3152. %
  3153. Create three new \LangVar{} programs that exercise the interesting
  3154. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  3155. regarding file names described in exercise~\ref{ex:Lvar}.
  3156. %
  3157. In the \code{run-tests.rkt} script, add the following entry to the
  3158. list of \code{passes}, and then run the script to test your compiler.
  3159. \begin{lstlisting}
  3160. (list "remove-complex" remove_complex_operands interp_Lvar type-check-Lvar)
  3161. \end{lstlisting}
  3162. In debugging your compiler, it is often useful to see the intermediate
  3163. programs that are output from each pass. To print the intermediate
  3164. programs, place \lstinline{(debug-level 1)} before the call to
  3165. \code{interp-tests} in \code{run-tests.rkt}. \fi}
  3166. %
  3167. {\if\edition\pythonEd\pythonColor
  3168. Implement the \code{remove\_complex\_operands} pass in
  3169. \code{compiler.py}, creating auxiliary functions for each
  3170. nonterminal in the grammar, i.e., \code{rco\_exp}
  3171. and \code{rco\_stmt}. We recommend you use the function
  3172. \code{utils.generate\_name()} to generate fresh names from a stub string.
  3173. \fi}
  3174. \end{exercise}
  3175. {\if\edition\pythonEd\pythonColor
  3176. \begin{exercise}
  3177. \normalfont\normalsize
  3178. \label{ex:Lvar}
  3179. Create five \LangVar{} programs that exercise the most interesting
  3180. parts of the \code{remove\_complex\_operands} pass. The five programs
  3181. should be placed in the subdirectory named \key{tests}, and the file
  3182. names should start with \code{var\_test\_} followed by a unique
  3183. integer and end with the file extension \key{.py}.
  3184. %% The \key{run-tests.rkt} script in the support code checks whether the
  3185. %% output programs produce the same result as the input programs. The
  3186. %% script uses the \key{interp-tests} function
  3187. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  3188. %% your \key{uniquify} pass on the example programs. The \code{passes}
  3189. %% parameter of \key{interp-tests} is a list that should have one entry
  3190. %% for each pass in your compiler. For now, define \code{passes} to
  3191. %% contain just one entry for \code{uniquify} as shown below.
  3192. %% \begin{lstlisting}
  3193. %% (define passes
  3194. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3195. %% \end{lstlisting}
  3196. Run the \key{run-tests.py} script in the support code to check
  3197. whether the output programs produce the same result as the input
  3198. programs.
  3199. \end{exercise}
  3200. \fi}
  3201. {\if\edition\racketEd
  3202. \section{Explicate Control}
  3203. \label{sec:explicate-control-Lvar}
  3204. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3205. programs that make the order of execution explicit in their
  3206. syntax. For now this amounts to flattening \key{let} constructs into a
  3207. sequence of assignment statements. For example, consider the following
  3208. \LangVar{} program:\\
  3209. % var_test_11.rkt
  3210. \begin{minipage}{0.96\textwidth}
  3211. \begin{lstlisting}
  3212. (let ([y (let ([x 20])
  3213. (+ x (let ([x 22]) x)))])
  3214. y)
  3215. \end{lstlisting}
  3216. \end{minipage}\\
  3217. %
  3218. The output of the previous pass is shown next, on the left, and the
  3219. output of \code{explicate\_control} is on the right. Recall that the
  3220. right-hand side of a \key{let} executes before its body, so that the order
  3221. of evaluation for this program is to assign \code{20} to \code{x.1},
  3222. \code{22} to \code{x.2}, and \code{(+ x.1 x.2)} to \code{y}, and then to
  3223. return \code{y}. Indeed, the output of \code{explicate\_control} makes
  3224. this ordering explicit.
  3225. \begin{transformation}
  3226. \begin{lstlisting}
  3227. (let ([y (let ([x.1 20])
  3228. (let ([x.2 22])
  3229. (+ x.1 x.2)))])
  3230. y)
  3231. \end{lstlisting}
  3232. \compilesto
  3233. \begin{lstlisting}[language=C]
  3234. start:
  3235. x.1 = 20;
  3236. x.2 = 22;
  3237. y = (+ x.1 x.2);
  3238. return y;
  3239. \end{lstlisting}
  3240. \end{transformation}
  3241. \begin{figure}[tbp]
  3242. \begin{tcolorbox}[colback=white]
  3243. \begin{lstlisting}
  3244. (define (explicate_tail e)
  3245. (match e
  3246. [(Var x) ___]
  3247. [(Int n) (Return (Int n))]
  3248. [(Let x rhs body) ___]
  3249. [(Prim op es) ___]
  3250. [else (error "explicate_tail unhandled case" e)]))
  3251. (define (explicate_assign e x cont)
  3252. (match e
  3253. [(Var x) ___]
  3254. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3255. [(Let y rhs body) ___]
  3256. [(Prim op es) ___]
  3257. [else (error "explicate_assign unhandled case" e)]))
  3258. (define (explicate_control p)
  3259. (match p
  3260. [(Program info body) ___]))
  3261. \end{lstlisting}
  3262. \end{tcolorbox}
  3263. \caption{Skeleton for the \code{explicate\_control} pass.}
  3264. \label{fig:explicate-control-Lvar}
  3265. \end{figure}
  3266. The organization of this pass depends on the notion of tail position
  3267. to which we have alluded. Here is the definition.
  3268. \begin{definition}\normalfont
  3269. The following rules define when an expression is in \emph{tail
  3270. position}\index{subject}{tail position} for the language \LangVar{}.
  3271. \begin{enumerate}
  3272. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3273. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3274. \end{enumerate}
  3275. \end{definition}
  3276. We recommend implementing \code{explicate\_control} using two
  3277. recursive functions, \code{explicate\_tail} and
  3278. \code{explicate\_assign}, as suggested in the skeleton code shown in
  3279. figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3280. function should be applied to expressions in tail position, whereas the
  3281. \code{explicate\_assign} should be applied to expressions that occur on
  3282. the right-hand side of a \key{let}.
  3283. %
  3284. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3285. input and produces a \Tail{} in \LangCVar{} (see
  3286. figure~\ref{fig:c0-syntax}).
  3287. %
  3288. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3289. the variable to which it is to be assigned, and a \Tail{} in
  3290. \LangCVar{} for the code that comes after the assignment. The
  3291. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3292. The \code{explicate\_assign} function is in accumulator-passing style:
  3293. the \code{cont} parameter is used for accumulating the output. This
  3294. accumulator-passing style plays an important role in the way that we
  3295. generate high-quality code for conditional expressions in
  3296. chapter~\ref{ch:Lif}. The abbreviation \code{cont} is for
  3297. continuation because it contains the generated code that should come
  3298. after the current assignment. This code organization is also related
  3299. to continuation-passing style, except that \code{cont} is not what
  3300. happens next during compilation but is what happens next in the
  3301. generated code.
  3302. \begin{exercise}\normalfont\normalsize
  3303. %
  3304. Implement the \code{explicate\_control} function in
  3305. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3306. exercise the code in \code{explicate\_control}.
  3307. %
  3308. In the \code{run-tests.rkt} script, add the following entry to the
  3309. list of \code{passes} and then run the script to test your compiler.
  3310. \begin{lstlisting}
  3311. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3312. \end{lstlisting}
  3313. \end{exercise}
  3314. \fi}
  3315. \section{Select Instructions}
  3316. \label{sec:select-Lvar}
  3317. \index{subject}{select instructions}
  3318. In the \code{select\_instructions} pass we begin the work of
  3319. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3320. language of this pass is a variant of x86 that still uses variables,
  3321. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3322. nonterminal of the \LangXInt{} abstract syntax
  3323. (figure~\ref{fig:x86-int-ast}).
  3324. \racket{We recommend implementing the
  3325. \code{select\_instructions} with three auxiliary functions, one for
  3326. each of the nonterminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3327. $\Tail$.}
  3328. \python{We recommend implementing an auxiliary function
  3329. named \code{select\_stmt} for the $\Stmt$ nonterminal.}
  3330. \racket{The cases for $\Atm$ are straightforward; variables stay the
  3331. same and integer constants change to immediates; that is, $\INT{n}$
  3332. changes to $\IMM{n}$.}
  3333. Next consider the cases for the $\Stmt$ nonterminal, starting with
  3334. arithmetic operations. For example, consider the following addition
  3335. operation, on the left side. There is an \key{addq} instruction in
  3336. x86, but it performs an in-place update. So, we could move $\Arg_1$
  3337. into the left-hand \itm{var} and then add $\Arg_2$ to \itm{var},
  3338. where $\Arg_1$ and $\Arg_2$ are the translations of $\Atm_1$ and
  3339. $\Atm_2$, respectively.
  3340. \begin{transformation}
  3341. {\if\edition\racketEd
  3342. \begin{lstlisting}
  3343. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3344. \end{lstlisting}
  3345. \fi}
  3346. {\if\edition\pythonEd\pythonColor
  3347. \begin{lstlisting}
  3348. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3349. \end{lstlisting}
  3350. \fi}
  3351. \compilesto
  3352. \begin{lstlisting}
  3353. movq |$\Arg_1$|, |$\itm{var}$|
  3354. addq |$\Arg_2$|, |$\itm{var}$|
  3355. \end{lstlisting}
  3356. \end{transformation}
  3357. There are also cases that require special care to avoid generating
  3358. needlessly complicated code. For example, if one of the arguments of
  3359. the addition is the same variable as the left-hand side of the
  3360. assignment, as shown next, then there is no need for the extra move
  3361. instruction. The assignment statement can be translated into a single
  3362. \key{addq} instruction, as follows.
  3363. \begin{transformation}
  3364. {\if\edition\racketEd
  3365. \begin{lstlisting}
  3366. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3367. \end{lstlisting}
  3368. \fi}
  3369. {\if\edition\pythonEd\pythonColor
  3370. \begin{lstlisting}
  3371. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3372. \end{lstlisting}
  3373. \fi}
  3374. \compilesto
  3375. \begin{lstlisting}
  3376. addq |$\Arg_1$|, |$\itm{var}$|
  3377. \end{lstlisting}
  3378. \end{transformation}
  3379. The \READOP{} operation does not have a direct counterpart in x86
  3380. assembly, so we provide this functionality with the function
  3381. \code{read\_int} in the file \code{runtime.c}, written in
  3382. C~\citep{Kernighan:1988nx}. In general, we refer to all the
  3383. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3384. system}, or simply the \emph{runtime} for short. When compiling your
  3385. generated x86 assembly code, you need to compile \code{runtime.c} to
  3386. \code{runtime.o} (an \emph{object file}, using \code{gcc} with option
  3387. \code{-c}) and link it into the executable. For our purposes of code
  3388. generation, all you need to do is translate an assignment of
  3389. \READOP{} into a call to the \code{read\_int} function followed by a
  3390. move from \code{rax} to the left-hand side variable. (Recall that the
  3391. return value of a function goes into \code{rax}.)
  3392. \begin{transformation}
  3393. {\if\edition\racketEd
  3394. \begin{lstlisting}
  3395. |$\itm{var}$| = (read);
  3396. \end{lstlisting}
  3397. \fi}
  3398. {\if\edition\pythonEd\pythonColor
  3399. \begin{lstlisting}
  3400. |$\itm{var}$| = input_int();
  3401. \end{lstlisting}
  3402. \fi}
  3403. \compilesto
  3404. \begin{lstlisting}
  3405. callq read_int
  3406. movq %rax, |$\itm{var}$|
  3407. \end{lstlisting}
  3408. \end{transformation}
  3409. {\if\edition\pythonEd\pythonColor
  3410. %
  3411. Similarly, we translate the \code{print} operation, shown below, into
  3412. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3413. In x86, the first six arguments to functions are passed in registers,
  3414. with the first argument passed in register \code{rdi}. So we move the
  3415. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3416. \code{callq} instruction.
  3417. \begin{transformation}
  3418. \begin{lstlisting}
  3419. print(|$\Atm$|)
  3420. \end{lstlisting}
  3421. \compilesto
  3422. \begin{lstlisting}
  3423. movq |$\Arg$|, %rdi
  3424. callq print_int
  3425. \end{lstlisting}
  3426. \end{transformation}
  3427. %
  3428. \fi}
  3429. {\if\edition\racketEd
  3430. There are two cases for the $\Tail$ nonterminal: \key{Return} and
  3431. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3432. assignment to the \key{rax} register followed by a jump to the
  3433. conclusion of the program (so the conclusion needs to be labeled).
  3434. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3435. recursively and then append the resulting instructions.
  3436. \fi}
  3437. {\if\edition\pythonEd\pythonColor
  3438. We recommend that you use the function \code{utils.label\_name()} to
  3439. transform strings into labels, for example, in
  3440. the target of the \code{callq} instruction. This practice makes your
  3441. compiler portable across Linus and Mac OS X, which requires an underscore
  3442. prefixed to all labels.
  3443. \fi}
  3444. \begin{exercise}
  3445. \normalfont\normalsize
  3446. {\if\edition\racketEd
  3447. Implement the \code{select\_instructions} pass in
  3448. \code{compiler.rkt}. Create three new example programs that are
  3449. designed to exercise all the interesting cases in this pass.
  3450. %
  3451. In the \code{run-tests.rkt} script, add the following entry to the
  3452. list of \code{passes} and then run the script to test your compiler.
  3453. \begin{lstlisting}
  3454. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3455. \end{lstlisting}
  3456. \fi}
  3457. {\if\edition\pythonEd\pythonColor
  3458. Implement the \key{select\_instructions} pass in
  3459. \code{compiler.py}. Create three new example programs that are
  3460. designed to exercise all the interesting cases in this pass.
  3461. Run the \code{run-tests.py} script to to check
  3462. whether the output programs produce the same result as the input
  3463. programs.
  3464. \fi}
  3465. \end{exercise}
  3466. \section{Assign Homes}
  3467. \label{sec:assign-Lvar}
  3468. The \code{assign\_homes} pass compiles \LangXVar{} programs to
  3469. \LangXVar{} programs that no longer use program variables. Thus, the
  3470. \code{assign\_homes} pass is responsible for placing all the program
  3471. variables in registers or on the stack. For runtime efficiency, it is
  3472. better to place variables in registers, but because there are only
  3473. sixteen registers, some programs must necessarily resort to placing
  3474. some variables on the stack. In this chapter we focus on the mechanics
  3475. of placing variables on the stack. We study an algorithm for placing
  3476. variables in registers in chapter~\ref{ch:register-allocation-Lvar}.
  3477. Consider again the following \LangVar{} program from
  3478. section~\ref{sec:remove-complex-opera-Lvar}:\\
  3479. % var_test_20.rkt
  3480. \begin{minipage}{0.96\textwidth}
  3481. {\if\edition\racketEd
  3482. \begin{lstlisting}
  3483. (let ([a 42])
  3484. (let ([b a])
  3485. b))
  3486. \end{lstlisting}
  3487. \fi}
  3488. {\if\edition\pythonEd\pythonColor
  3489. \begin{lstlisting}
  3490. a = 42
  3491. b = a
  3492. print(b)
  3493. \end{lstlisting}
  3494. \fi}
  3495. \end{minipage}\\
  3496. %
  3497. The output of \code{select\_instructions} is shown next, on the left,
  3498. and the output of \code{assign\_homes} is on the right. In this
  3499. example, we assign variable \code{a} to stack location
  3500. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3501. \begin{transformation}
  3502. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3503. movq $42, a
  3504. movq a, b
  3505. movq b, %rax
  3506. \end{lstlisting}
  3507. \compilesto
  3508. %stack-space: 16
  3509. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3510. movq $42, -8(%rbp)
  3511. movq -8(%rbp), -16(%rbp)
  3512. movq -16(%rbp), %rax
  3513. \end{lstlisting}
  3514. \end{transformation}
  3515. \racket{
  3516. The \code{assign\_homes} pass should replace all variables
  3517. with stack locations.
  3518. The list of variables can be obtained from
  3519. the \code{locals-types} entry in the $\itm{info}$ of the
  3520. \code{X86Program} node. The \code{locals-types} entry is an alist
  3521. mapping all the variables in the program to their types
  3522. (for now, just \code{Integer}).
  3523. As an aside, the \code{locals-types} entry is
  3524. computed by \code{type-check-Cvar} in the support code, which
  3525. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3526. which you should propagate to the \code{X86Program} node.}
  3527. %
  3528. \python{The \code{assign\_homes} pass should replace all uses of
  3529. variables with stack locations.}
  3530. %
  3531. In the process of assigning variables to stack locations, it is
  3532. convenient for you to compute and store the size of the frame (in
  3533. bytes) in
  3534. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space},}
  3535. %
  3536. \python{the field \code{stack\_space} of the \key{X86Program} node,}
  3537. %
  3538. which is needed later to generate the conclusion of the \code{main}
  3539. procedure. The x86-64 standard requires the frame size to be a
  3540. multiple of 16 bytes.\index{subject}{frame}
  3541. % TODO: store the number of variables instead? -Jeremy
  3542. \begin{exercise}\normalfont\normalsize
  3543. Implement the \code{assign\_homes} pass in
  3544. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3545. auxiliary functions for each of the nonterminals in the \LangXVar{}
  3546. grammar. We recommend that the auxiliary functions take an extra
  3547. parameter that maps variable names to homes (stack locations for now).
  3548. %
  3549. {\if\edition\racketEd
  3550. In the \code{run-tests.rkt} script, add the following entry to the
  3551. list of \code{passes} and then run the script to test your compiler.
  3552. \begin{lstlisting}
  3553. (list "assign homes" assign-homes interp_x86-0)
  3554. \end{lstlisting}
  3555. \fi}
  3556. {\if\edition\pythonEd\pythonColor
  3557. Run the \code{run-tests.py} script to to check
  3558. whether the output programs produce the same result as the input
  3559. programs.
  3560. \fi}
  3561. \end{exercise}
  3562. \section{Patch Instructions}
  3563. \label{sec:patch-s0}
  3564. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3565. \LangXInt{} by making sure that each instruction adheres to the
  3566. restriction that at most one argument of an instruction may be a
  3567. memory reference.
  3568. We return to the following example.\\
  3569. \begin{minipage}{0.5\textwidth}
  3570. % var_test_20.rkt
  3571. {\if\edition\racketEd
  3572. \begin{lstlisting}
  3573. (let ([a 42])
  3574. (let ([b a])
  3575. b))
  3576. \end{lstlisting}
  3577. \fi}
  3578. {\if\edition\pythonEd\pythonColor
  3579. \begin{lstlisting}
  3580. a = 42
  3581. b = a
  3582. print(b)
  3583. \end{lstlisting}
  3584. \fi}
  3585. \end{minipage}\\
  3586. The \code{assign\_homes} pass produces the following translation. \\
  3587. \begin{minipage}{0.5\textwidth}
  3588. {\if\edition\racketEd
  3589. \begin{lstlisting}
  3590. movq $42, -8(%rbp)
  3591. movq -8(%rbp), -16(%rbp)
  3592. movq -16(%rbp), %rax
  3593. \end{lstlisting}
  3594. \fi}
  3595. {\if\edition\pythonEd\pythonColor
  3596. \begin{lstlisting}
  3597. movq 42, -8(%rbp)
  3598. movq -8(%rbp), -16(%rbp)
  3599. movq -16(%rbp), %rdi
  3600. callq print_int
  3601. \end{lstlisting}
  3602. \fi}
  3603. \end{minipage}\\
  3604. The second \key{movq} instruction is problematic because both
  3605. arguments are stack locations. We suggest fixing this problem by
  3606. moving from the source location to the register \key{rax} and then
  3607. from \key{rax} to the destination location, as follows.
  3608. \begin{lstlisting}
  3609. movq -8(%rbp), %rax
  3610. movq %rax, -16(%rbp)
  3611. \end{lstlisting}
  3612. \begin{exercise}
  3613. \normalfont\normalsize Implement the \key{patch\_instructions} pass in
  3614. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3615. Create three new example programs that are
  3616. designed to exercise all the interesting cases in this pass.
  3617. %
  3618. {\if\edition\racketEd
  3619. In the \code{run-tests.rkt} script, add the following entry to the
  3620. list of \code{passes} and then run the script to test your compiler.
  3621. \begin{lstlisting}
  3622. (list "patch instructions" patch_instructions interp_x86-0)
  3623. \end{lstlisting}
  3624. \fi}
  3625. {\if\edition\pythonEd\pythonColor
  3626. Run the \code{run-tests.py} script to to check
  3627. whether the output programs produce the same result as the input
  3628. programs.
  3629. \fi}
  3630. \end{exercise}
  3631. \section{Generate Prelude and Conclusion}
  3632. \label{sec:print-x86}
  3633. \index{subject}{prelude}\index{subject}{conclusion}
  3634. The last step of the compiler from \LangVar{} to x86 is to generate
  3635. the \code{main} function with a prelude and conclusion wrapped around
  3636. the rest of the program, as shown in figure~\ref{fig:p1-x86} and
  3637. discussed in section~\ref{sec:x86}.
  3638. When running on Mac OS X, your compiler should prefix an underscore to
  3639. all labels (for example, changing \key{main} to \key{\_main}).
  3640. %
  3641. \racket{The Racket call \code{(system-type 'os)} is useful for
  3642. determining which operating system the compiler is running on. It
  3643. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3644. %
  3645. \python{The Python \code{platform} library includes a \code{system()}
  3646. function that returns \code{'Linux'}, \code{'Windows'}, or
  3647. \code{'Darwin'} (for Mac).}
  3648. \begin{exercise}\normalfont\normalsize
  3649. %
  3650. Implement the \key{prelude\_and\_conclusion} pass in
  3651. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3652. %
  3653. {\if\edition\racketEd
  3654. In the \code{run-tests.rkt} script, add the following entry to the
  3655. list of \code{passes} and then run the script to test your compiler.
  3656. \begin{lstlisting}
  3657. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3658. \end{lstlisting}
  3659. %
  3660. Uncomment the call to the \key{compiler-tests} function
  3661. (appendix~\ref{appendix:utilities}), which tests your complete
  3662. compiler by executing the generated x86 code. It translates the x86
  3663. AST that you produce into a string by invoking the \code{print-x86}
  3664. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3665. the provided \key{runtime.c} file to \key{runtime.o} using
  3666. \key{gcc}. Run the script to test your compiler.
  3667. %
  3668. \fi}
  3669. {\if\edition\pythonEd\pythonColor
  3670. %
  3671. Run the \code{run-tests.py} script to to check whether the output
  3672. programs produce the same result as the input programs. That script
  3673. translates the x86 AST that you produce into a string by invoking the
  3674. \code{repr} method that is implemented by the x86 AST classes in
  3675. \code{x86\_ast.py}.
  3676. %
  3677. \fi}
  3678. \end{exercise}
  3679. \section{Challenge: Partial Evaluator for \LangVar{}}
  3680. \label{sec:pe-Lvar}
  3681. \index{subject}{partialevaluation@partial evaluation}
  3682. This section describes two optional challenge exercises that involve
  3683. adapting and improving the partial evaluator for \LangInt{} that was
  3684. introduced in section~\ref{sec:partial-evaluation}.
  3685. \begin{exercise}\label{ex:pe-Lvar}
  3686. \normalfont\normalsize
  3687. Adapt the partial evaluator from section~\ref{sec:partial-evaluation}
  3688. (figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3689. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3690. %
  3691. \racket{\key{let} binding}\python{assignment}
  3692. %
  3693. to the \LangInt{} language, so you will need to add cases for them in
  3694. the \code{pe\_exp}
  3695. %
  3696. \racket{function.}
  3697. %
  3698. \python{and \code{pe\_stmt} functions.}
  3699. %
  3700. Once complete, add the partial evaluation pass to the front of your
  3701. compiler, and make sure that your compiler still passes all the
  3702. tests.
  3703. \end{exercise}
  3704. \begin{exercise}
  3705. \normalfont\normalsize
  3706. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3707. \code{pe\_add} auxiliary functions with functions that know more about
  3708. arithmetic. For example, your partial evaluator should translate
  3709. {\if\edition\racketEd
  3710. \[
  3711. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3712. \code{(+ 2 (read))}
  3713. \]
  3714. \fi}
  3715. {\if\edition\pythonEd\pythonColor
  3716. \[
  3717. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3718. \code{2 + input\_int()}
  3719. \]
  3720. \fi}
  3721. %
  3722. To accomplish this, the \code{pe\_exp} function should produce output
  3723. in the form of the $\itm{residual}$ nonterminal of the following
  3724. grammar. The idea is that when processing an addition expression, we
  3725. can always produce one of the following: (1) an integer constant, (2)
  3726. an addition expression with an integer constant on the left-hand side
  3727. but not the right-hand side, or (3) an addition expression in which
  3728. neither subexpression is a constant.
  3729. %
  3730. {\if\edition\racketEd
  3731. \[
  3732. \begin{array}{lcl}
  3733. \itm{inert} &::=& \Var
  3734. \MID \LP\key{read}\RP
  3735. \MID \LP\key{-} ~\Var\RP
  3736. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3737. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3738. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3739. \itm{residual} &::=& \Int
  3740. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3741. \MID \itm{inert}
  3742. \end{array}
  3743. \]
  3744. \fi}
  3745. {\if\edition\pythonEd\pythonColor
  3746. \[
  3747. \begin{array}{lcl}
  3748. \itm{inert} &::=& \Var
  3749. \MID \key{input\_int}\LP\RP
  3750. \MID \key{-} \Var
  3751. \MID \key{-} \key{input\_int}\LP\RP
  3752. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3753. \itm{residual} &::=& \Int
  3754. \MID \Int ~ \key{+} ~ \itm{inert}
  3755. \MID \itm{inert}
  3756. \end{array}
  3757. \]
  3758. \fi}
  3759. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3760. inputs are $\itm{residual}$ expressions and they should return
  3761. $\itm{residual}$ expressions. Once the improvements are complete,
  3762. make sure that your compiler still passes all the tests. After
  3763. all, fast code is useless if it produces incorrect results!
  3764. \end{exercise}
  3765. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3766. {\if\edition\pythonEd\pythonColor
  3767. \chapter{Parsing}
  3768. \label{ch:parsing}
  3769. \setcounter{footnote}{0}
  3770. \index{subject}{parsing}
  3771. In this chapter we learn how to use the Lark parser
  3772. framework~\citep{shinan20:_lark_docs} to translate the concrete syntax
  3773. of \LangInt{} (a sequence of characters) into an abstract syntax tree.
  3774. You will then be asked to use Lark to create a parser for \LangVar{}.
  3775. We also describe the parsing algorithms used inside Lark, studying the
  3776. \citet{Earley:1970ly} and LALR(1) algorithms~\citep{DeRemer69,Anderson73}.
  3777. A parser framework such as Lark takes in a specification of the
  3778. concrete syntax and an input program and produces a parse tree. Even
  3779. though a parser framework does most of the work for us, using one
  3780. properly requires some knowledge. In particular, we must learn about
  3781. its specification languages and we must learn how to deal with
  3782. ambiguity in our language specifications. Also, some algorithms, such
  3783. as LALR(1) place restrictions on the grammars they can handle, in
  3784. which case it helps to know the algorithm when trying to decipher the
  3785. error messages.
  3786. The process of parsing is traditionally subdivided into two phases:
  3787. \emph{lexical analysis} (also called scanning) and \emph{syntax
  3788. analysis} (also called parsing). The lexical analysis phase
  3789. translates the sequence of characters into a sequence of
  3790. \emph{tokens}, that is, words consisting of several characters. The
  3791. parsing phase organizes the tokens into a \emph{parse tree} that
  3792. captures how the tokens were matched by rules in the grammar of the
  3793. language. The reason for the subdivision into two phases is to enable
  3794. the use of a faster but less powerful algorithm for lexical analysis
  3795. and the use of a slower but more powerful algorithm for parsing.
  3796. %
  3797. %% Likewise, parser generators typical come in pairs, with separate
  3798. %% generators for the lexical analyzer (or lexer for short) and for the
  3799. %% parser. A particularly influential pair of generators were
  3800. %% \texttt{lex} and \texttt{yacc}. The \texttt{lex} generator was written
  3801. %% by \citet{Lesk:1975uq} at Bell Labs. The \texttt{yacc} generator was
  3802. %% written by \citet{Johnson:1979qy} at AT\&T and stands for Yet Another
  3803. %% Compiler Compiler.
  3804. %
  3805. The Lark parser framework that we use in this chapter includes both
  3806. lexical analyzers and parsers. The next section discusses lexical
  3807. analysis and the remainder of the chapter discusses parsing.
  3808. \section{Lexical Analysis and Regular Expressions}
  3809. \label{sec:lex}
  3810. The lexical analyzers produced by Lark turn a sequence of characters
  3811. (a string) into a sequence of token objects. For example, a Lark
  3812. generated lexer for \LangInt{} converts the string
  3813. \begin{lstlisting}
  3814. 'print(1 + 3)'
  3815. \end{lstlisting}
  3816. \noindent into the following sequence of token objects
  3817. \begin{center}
  3818. \begin{minipage}{0.95\textwidth}
  3819. \begin{lstlisting}
  3820. Token('PRINT', 'print')
  3821. Token('LPAR', '(')
  3822. Token('INT', '1')
  3823. Token('PLUS', '+')
  3824. Token('INT', '3')
  3825. Token('RPAR', ')')
  3826. Token('NEWLINE', '\n')
  3827. \end{lstlisting}
  3828. \end{minipage}
  3829. \end{center}
  3830. Each token includes a field for its \code{type}, such as \code{'INT'},
  3831. and a field for its \code{value}, such as \code{'1'}.
  3832. Following in the tradition of \code{lex}~\citep{Lesk:1975uq}, the
  3833. specification language for Lark's lexer is one regular expression for
  3834. each type of token. The term \emph{regular} comes from the term
  3835. \emph{regular languages}, which are the languages that can be
  3836. recognized by a finite state machine. A \emph{regular expression} is a
  3837. pattern formed of the following core elements:\index{subject}{regular
  3838. expression}\footnote{Regular expressions traditionally include the
  3839. empty regular expression that matches any zero-length part of a
  3840. string, but Lark does not support the empty regular expression.}
  3841. \begin{itemize}
  3842. \item A single character $c$ is a regular expression and it only
  3843. matches itself. For example, the regular expression \code{a} only
  3844. matches with the string \code{'a'}.
  3845. \item Two regular expressions separated by a vertical bar $R_1 \ttm{|}
  3846. R_2$ form a regular expression that matches any string that matches
  3847. $R_1$ or $R_2$. For example, the regular expression \code{a|c}
  3848. matches the string \code{'a'} and the string \code{'c'}.
  3849. \item Two regular expressions in sequence $R_1 R_2$ form a regular
  3850. expression that matches any string that can be formed by
  3851. concatenating two strings, where the first string matches $R_1$ and
  3852. the second string matches $R_2$. For example, the regular expression
  3853. \code{(a|c)b} matches the strings \code{'ab'} and \code{'cb'}.
  3854. (Parentheses can be used to control the grouping of operators within
  3855. a regular expression.)
  3856. \item A regular expression followed by an asterisks $R\ttm{*}$ (called
  3857. Kleene closure) is a regular expression that matches any string that
  3858. can be formed by concatenating zero or more strings that each match
  3859. the regular expression $R$. For example, the regular expression
  3860. \code{"((a|c)b)*"} matches the strings \code{'abcbab'} but not
  3861. \code{'abc'}.
  3862. \end{itemize}
  3863. For our convenience, Lark also accepts the following extended set of
  3864. regular expressions that are automatically translated into the core
  3865. regular expressions.
  3866. \begin{itemize}
  3867. \item A set of characters enclosed in square brackets $[c_1 c_2 \ldots
  3868. c_n]$ is a regular expression that matches any one of the
  3869. characters. So $[c_1 c_2 \ldots c_n]$ is equivalent to
  3870. the regular expression $c_1\mid c_2\mid \ldots \mid c_n$.
  3871. \item A range of characters enclosed in square brackets $[c_1\ttm{-}c_2]$ is
  3872. a regular expression that matches any character between $c_1$ and
  3873. $c_2$, inclusive. For example, \code{[a-z]} matches any lowercase
  3874. letter in the alphabet.
  3875. \item A regular expression followed by the plus symbol $R\ttm{+}$
  3876. is a regular expression that matches any string that can
  3877. be formed by concatenating one or more strings that each match $R$.
  3878. So $R+$ is equivalent to $R(R*)$. For example, \code{[a-z]+}
  3879. matches \code{'b'} and \code{'bzca'}.
  3880. \item A regular expression followed by a question mark $R\ttm{?}$
  3881. is a regular expression that matches any string that either
  3882. matches $R$ or that is the empty string.
  3883. For example, \code{a?b} matches both \code{'ab'} and \code{'b'}.
  3884. \item A string, such as \code{"hello"}, which matches itself,
  3885. that is, \code{'hello'}.
  3886. \end{itemize}
  3887. In a Lark grammar file, specify a name for each type of token followed
  3888. by a colon and then a regular expression surrounded by \code{/}
  3889. characters. For example, the \code{DIGIT}, \code{INT}, and
  3890. \code{NEWLINE} types of tokens are specified in the following way.
  3891. \begin{center}
  3892. \begin{minipage}{0.95\textwidth}
  3893. \begin{lstlisting}
  3894. DIGIT: /[0-9]/
  3895. INT: "-"? DIGIT+
  3896. NEWLINE: (/\r/? /\n/)+
  3897. \end{lstlisting}
  3898. \end{minipage}
  3899. \end{center}
  3900. \noindent In Lark, the regular expression operators can be used both
  3901. inside a regular expression, that is, between the \code{/} characters,
  3902. and they can be used to combine regular expressions, outside the
  3903. \code{/} characters.
  3904. \section{Grammars and Parse Trees}
  3905. \label{sec:CFG}
  3906. In section~\ref{sec:grammar} we learned how to use grammar rules to
  3907. specify the abstract syntax of a language. We now take a closer look
  3908. at using grammar rules to specify the concrete syntax. Recall that
  3909. each rule has a left-hand side and a right-hand side where the
  3910. left-hand side is a nonterminal and the right-hand side is a pattern
  3911. that defines what can be parsed as that nonterminal.
  3912. For concrete syntax, each right-hand side expresses a pattern for a
  3913. string, instead of a pattern for an abstract syntax tree. In
  3914. particular, each right-hand side is a sequence of
  3915. \emph{symbols}\index{subject}{symbol}, where a symbol is either a
  3916. terminal or nonterminal. A \emph{terminal}\index{subject}{terminal} is
  3917. a string. The nonterminals play the same role as in the abstract
  3918. syntax, defining categories of syntax. The nonterminals of a grammar
  3919. include the tokens defined in the lexer and all the nonterminals
  3920. defined by the grammar rules.
  3921. As an example, let us take a closer look at the concrete syntax of the
  3922. \LangInt{} language, repeated here.
  3923. \[
  3924. \begin{array}{l}
  3925. \LintGrammarPython \\
  3926. \begin{array}{rcl}
  3927. \LangInt{} &::=& \Stmt^{*}
  3928. \end{array}
  3929. \end{array}
  3930. \]
  3931. The Lark syntax for grammar rules differs slightly from the variant of
  3932. BNF that we use in this book. In particular, the notation $::=$ is
  3933. replaced by a single colon and the use of typewriter font for string
  3934. literals is replaced by quotation marks. The following grammar serves
  3935. as a first draft of a Lark grammar for \LangInt{}.
  3936. \begin{center}
  3937. \begin{minipage}{0.95\textwidth}
  3938. \begin{lstlisting}[escapechar=$]
  3939. exp: INT
  3940. | "input_int" "(" ")"
  3941. | "-" exp
  3942. | exp "+" exp
  3943. | exp "-" exp
  3944. | "(" exp ")"
  3945. stmt_list:
  3946. | stmt NEWLINE stmt_list
  3947. lang_int: stmt_list
  3948. \end{lstlisting}
  3949. \end{minipage}
  3950. \end{center}
  3951. Let us begin by discussing the rule \code{exp: INT} which says that if
  3952. the lexer matches a string to \code{INT}, then the parser also
  3953. categorizes the string as an \code{exp}. Recall that in
  3954. Section~\ref{sec:grammar} we defined the corresponding \Int{}
  3955. nonterminal with an English sentence. Here we specify \code{INT} more
  3956. formally using a type of token \code{INT} and its regular expression
  3957. \code{"-"? DIGIT+}.
  3958. The rule \code{exp: exp "+" exp} says that any string that matches
  3959. \code{exp}, followed by the \code{+} character, followed by another
  3960. string that matches \code{exp}, is itself an \code{exp}. For example,
  3961. the string \code{'1+3'} is an \code{exp} because \code{'1'} and
  3962. \code{'3'} are both \code{exp} by the rule \code{exp: INT}, and then
  3963. the rule for addition applies to categorize \code{'1+3'} as an
  3964. \code{exp}. We can visualize the application of grammar rules to parse
  3965. a string using a \emph{parse tree}\index{subject}{parse tree}. Each
  3966. internal node in the tree is an application of a grammar rule and is
  3967. labeled with its left-hand side nonterminal. Each leaf node is a
  3968. substring of the input program. The parse tree for \code{'1+3'} is
  3969. shown in figure~\ref{fig:simple-parse-tree}.
  3970. \begin{figure}[tbp]
  3971. \begin{tcolorbox}[colback=white]
  3972. \centering
  3973. \includegraphics[width=1.9in]{figs/simple-parse-tree}
  3974. \end{tcolorbox}
  3975. \caption{The parse tree for \code{'1+3'}.}
  3976. \label{fig:simple-parse-tree}
  3977. \end{figure}
  3978. The result of parsing \code{'1+3'} with this Lark grammar is the
  3979. following parse tree as represented by \code{Tree} and \code{Token}
  3980. objects.
  3981. \begin{lstlisting}
  3982. Tree('lang_int',
  3983. [Tree('stmt', [Tree('exp', [Tree('exp', [Token('INT', '1')]),
  3984. Tree('exp', [Token('INT', '3')])])]),
  3985. Token('NEWLINE', '\n')])
  3986. \end{lstlisting}
  3987. The nodes that come from the lexer are \code{Token} objects whereas
  3988. the nodes from the parser are \code{Tree} objects. Each \code{Tree}
  3989. object has a \code{data} field containing the name of the nonterminal
  3990. for the grammar rule that was applied. Each \code{Tree} object also
  3991. has a \code{children} field that is a list containing trees and/or
  3992. tokens. Note that Lark does not produce nodes for string literals in
  3993. the grammar. For example, the \code{Tree} node for the addition
  3994. expression has only two children for the two integers but is missing
  3995. its middle child for the \code{"+"} terminal. This would be
  3996. problematic except that Lark provides a mechanism for customizing the
  3997. \code{data} field of each \code{Tree} node based on which rule was
  3998. applied. Next to each alternative in a grammar rule, write \code{->}
  3999. followed by a string that you would like to appear in the \code{data}
  4000. field. The following is a second draft of a Lark grammar for
  4001. \LangInt{}, this time with more specific labels on the \code{Tree}
  4002. nodes.
  4003. \begin{center}
  4004. \begin{minipage}{0.95\textwidth}
  4005. \begin{lstlisting}[escapechar=$]
  4006. exp: INT -> int
  4007. | "input_int" "(" ")" -> input_int
  4008. | "-" exp -> usub
  4009. | exp "+" exp -> add
  4010. | exp "-" exp -> sub
  4011. | "(" exp ")" -> paren
  4012. stmt: "print" "(" exp ")" -> print
  4013. | exp -> expr
  4014. stmt_list: -> empty_stmt
  4015. | stmt NEWLINE stmt_list -> add_stmt
  4016. lang_int: stmt_list -> module
  4017. \end{lstlisting}
  4018. \end{minipage}
  4019. \end{center}
  4020. Here is the resulting parse tree.
  4021. \begin{lstlisting}
  4022. Tree('module',
  4023. [Tree('expr', [Tree('add', [Tree('int', [Token('INT', '1')]),
  4024. Tree('int', [Token('INT', '3')])])]),
  4025. Token('NEWLINE', '\n')])
  4026. \end{lstlisting}
  4027. \section{Ambiguous Grammars}
  4028. A grammar is \emph{ambiguous}\index{subject}{ambiguous} when a string
  4029. can be parsed in more than one way. For example, consider the string
  4030. \code{'1-2+3'}. This string can parsed in two different ways using
  4031. our draft grammar, resulting in the two parse trees shown in
  4032. figure~\ref{fig:ambig-parse-tree}. This example is problematic because
  4033. interpreting the second parse tree would yield \code{-4} even through
  4034. the correct answer is \code{2}.
  4035. \begin{figure}[tbp]
  4036. \begin{tcolorbox}[colback=white]
  4037. \centering
  4038. \includegraphics[width=0.95\textwidth]{figs/ambig-parse-tree}
  4039. \end{tcolorbox}
  4040. \caption{The two parse trees for \code{'1-2+3'}.}
  4041. \label{fig:ambig-parse-tree}
  4042. \end{figure}
  4043. To deal with this problem we can change the grammar by categorizing
  4044. the syntax in a more fine grained fashion. In this case we want to
  4045. disallow the application of the rule \code{exp: exp "-" exp} when the
  4046. child on the right is an addition. To do this we can replace the
  4047. \code{exp} after \code{"-"} with a nonterminal that categorizes all
  4048. the expressions except for addition, as in the following.
  4049. \begin{center}
  4050. \begin{minipage}{0.95\textwidth}
  4051. \begin{lstlisting}[escapechar=$]
  4052. exp: exp "-" exp_no_add -> sub
  4053. | exp "+" exp -> add
  4054. | exp_no_add
  4055. exp_no_add: INT -> int
  4056. | "input_int" "(" ")" -> input_int
  4057. | "-" exp -> usub
  4058. | exp "-" exp_no_add -> sub
  4059. | "(" exp ")" -> paren
  4060. \end{lstlisting}
  4061. \end{minipage}
  4062. \end{center}
  4063. However, there remains some ambiguity in the grammar. For example, the
  4064. string \code{'1-2-3'} can still be parsed in two different ways, as
  4065. \code{'(1-2)-3'} (correct) or \code{'1-(2-3)'} (incorrect). That is
  4066. to say, subtraction is left associative. Likewise, addition in Python
  4067. is left associative. We also need to consider the interaction of unary
  4068. subtraction with both addition and subtraction. How should we parse
  4069. \code{'-1+2'}? Unary subtraction has higher
  4070. \emph{precendence}\index{subject}{precedence} than addition and
  4071. subtraction, so \code{'-1+2'} should parse the same as \code{'(-1)+2'}
  4072. and not \code{'-(1+2)'}. The grammar in
  4073. figure~\ref{fig:Lint-lark-grammar} handles the associativity of
  4074. addition and subtraction by using the nonterminal \code{exp\_hi} for
  4075. all the other expressions, and uses \code{exp\_hi} for the second
  4076. child in the rules for addition and subtraction. Furthermore, unary
  4077. subtraction uses \code{exp\_hi} for its child.
  4078. For languages with more operators and more precedence levels, one must
  4079. refine the \code{exp} nonterminal into several nonterminals, one for
  4080. each precedence level.
  4081. \begin{figure}[tbp]
  4082. \begin{tcolorbox}[colback=white]
  4083. \centering
  4084. \begin{lstlisting}[escapechar=$]
  4085. exp: exp "+" exp_hi -> add
  4086. | exp "-" exp_hi -> sub
  4087. | exp_hi
  4088. exp_hi: INT -> int
  4089. | "input_int" "(" ")" -> input_int
  4090. | "-" exp_hi -> usub
  4091. | "(" exp ")" -> paren
  4092. stmt: "print" "(" exp ")" -> print
  4093. | exp -> expr
  4094. stmt_list: -> empty_stmt
  4095. | stmt NEWLINE stmt_list -> add_stmt
  4096. lang_int: stmt_list -> module
  4097. \end{lstlisting}
  4098. \end{tcolorbox}
  4099. \caption{An unambiguous Lark grammar for \LangInt{}.}
  4100. \label{fig:Lint-lark-grammar}
  4101. \end{figure}
  4102. \section{From Parse Trees to Abstract Syntax Trees}
  4103. As we have seen, the output of a Lark parser is a parse tree, that is,
  4104. a tree consisting of \code{Tree} and \code{Token} nodes. So the next
  4105. step is to convert the parse tree to an abstract syntax tree. This can
  4106. be accomplished with a recursive function that inspects the
  4107. \code{data} field of each node and then constructs the corresponding
  4108. AST node, using recursion to handle its children. The following is an
  4109. excerpt of the \code{parse\_tree\_to\_ast} function for \LangInt{}.
  4110. \begin{center}
  4111. \begin{minipage}{0.95\textwidth}
  4112. \begin{lstlisting}
  4113. def parse_tree_to_ast(e):
  4114. if e.data == 'int':
  4115. return Constant(int(e.children[0].value))
  4116. elif e.data == 'input_int':
  4117. return Call(Name('input_int'), [])
  4118. elif e.data == 'add':
  4119. e1, e2 = e.children
  4120. return BinOp(parse_tree_to_ast(e1), Add(), parse_tree_to_ast(e2))
  4121. ...
  4122. else:
  4123. raise Exception('unhandled parse tree', e)
  4124. \end{lstlisting}
  4125. \end{minipage}
  4126. \end{center}
  4127. \begin{exercise}
  4128. \normalfont\normalsize
  4129. %
  4130. Use Lark to create a lexer and parser for \LangVar{}. Use Lark's
  4131. default parsing algorithm (Earley) with the \code{ambiguity} option
  4132. set to \code{'explicit'} so that if your grammar is ambiguous, the
  4133. output will include multiple parse trees which will indicate to you
  4134. that there is a problem with your grammar. Your parser should ignore
  4135. white space so we recommend using Lark's \code{\%ignore} directive
  4136. as follows.
  4137. \begin{lstlisting}
  4138. WS: /[ \t\f\r\n]/+
  4139. %ignore WS
  4140. \end{lstlisting}
  4141. Change your compiler from chapter~\ref{ch:Lvar} to use your
  4142. Lark parser instead of using the \code{parse} function from
  4143. the \code{ast} module. Test your compiler on all of the \LangVar{}
  4144. programs that you have created and create four additional programs
  4145. that test for ambiguities in your grammar.
  4146. \end{exercise}
  4147. \section{The Earley Algorithm}
  4148. \label{sec:earley}
  4149. In this section we discuss the parsing algorithm of
  4150. \citet{Earley:1970ly}, the default algorithm used by Lark. The
  4151. algorithm is powerful in that it can handle any context-free grammar,
  4152. which makes it easy to use. However, it is not the most efficient
  4153. parsing algorithm: it is $O(n^3)$ for ambiguous grammars and $O(n^2)$
  4154. for unambiguous grammars, where $n$ is the number of tokens in the
  4155. input string~\citep{Hopcroft06:_automata}. In section~\ref{sec:lalr}
  4156. we learn about the LALR(1) algorithm, which is more efficient but
  4157. cannot handle all context-free grammars.
  4158. The Earley algorithm can be viewed as an interpreter; it treats the
  4159. grammar as the program being interpreted and it treats the concrete
  4160. syntax of the program-to-be-parsed as its input. The Earley algorithm
  4161. uses a data structure called a \emph{chart}\index{subject}{chart} to
  4162. keep track of its progress and to memoize its results. The chart is an
  4163. array with one slot for each position in the input string, where
  4164. position $0$ is before the first character and position $n$ is
  4165. immediately after the last character. So the array has length $n+1$
  4166. for an input string of length $n$. Each slot in the chart contains a
  4167. set of \emph{dotted rules}. A dotted rule is simply a grammar rule
  4168. with a period indicating how much of its right-hand side has already
  4169. been parsed. For example, the dotted rule
  4170. \begin{lstlisting}
  4171. exp: exp "+" . exp_hi
  4172. \end{lstlisting}
  4173. represents a partial parse that has matched an \code{exp} followed by
  4174. \code{+}, but has not yet parsed an \code{exp} to the right of
  4175. \code{+}.
  4176. %
  4177. The Earley algorithm starts with an initialization phase, and then
  4178. repeats three actions---prediction, scanning, and completion---for as
  4179. long as opportunities arise. We demonstrate the Earley algorithm on a
  4180. running example, parsing the following program:
  4181. \begin{lstlisting}
  4182. print(1 + 3)
  4183. \end{lstlisting}
  4184. The algorithm's initialization phase creates dotted rules for all the
  4185. grammar rules whose left-hand side is the start symbol and places them
  4186. in slot $0$ of the chart. We also record the starting position of the
  4187. dotted rule in parentheses on the right. For example, given the
  4188. grammar in figure~\ref{fig:Lint-lark-grammar}, we place
  4189. \begin{lstlisting}
  4190. lang_int: . stmt_list (0)
  4191. \end{lstlisting}
  4192. in slot $0$ of the chart. The algorithm then proceeds with
  4193. \emph{prediction} actions in which it adds more dotted rules to the
  4194. chart based on which nonterminals come immediately after a period. In
  4195. the above, the nonterminal \code{stmt\_list} appears after a period,
  4196. so we add all the rules for \code{stmt\_list} to slot $0$, with a
  4197. period at the beginning of their right-hand sides, as follows:
  4198. \begin{lstlisting}
  4199. stmt_list: . (0)
  4200. stmt_list: . stmt NEWLINE stmt_list (0)
  4201. \end{lstlisting}
  4202. We continue to perform prediction actions as more opportunities
  4203. arise. For example, the \code{stmt} nonterminal now appears after a
  4204. period, so we add all the rules for \code{stmt}.
  4205. \begin{lstlisting}
  4206. stmt: . "print" "(" exp ")" (0)
  4207. stmt: . exp (0)
  4208. \end{lstlisting}
  4209. This reveals yet more opportunities for prediction, so we add the grammar
  4210. rules for \code{exp} and \code{exp\_hi} to slot $0$.
  4211. \begin{lstlisting}[escapechar=$]
  4212. exp: . exp "+" exp_hi (0)
  4213. exp: . exp "-" exp_hi (0)
  4214. exp: . exp_hi (0)
  4215. exp_hi: . INT (0)
  4216. exp_hi: . "input_int" "(" ")" (0)
  4217. exp_hi: . "-" exp_hi (0)
  4218. exp_hi: . "(" exp ")" (0)
  4219. \end{lstlisting}
  4220. We have exhausted the opportunities for prediction, so the algorithm
  4221. proceeds to \emph{scanning}, in which we inspect the next input token
  4222. and look for a dotted rule at the current position that has a matching
  4223. terminal immediately following the period. In our running example, the
  4224. first input token is \code{"print"} so we identify the rule in slot
  4225. $0$ of the chart where \code{"print"} follows the period:
  4226. \begin{lstlisting}
  4227. stmt: . "print" "(" exp ")" (0)
  4228. \end{lstlisting}
  4229. We advance the period past \code{"print"} and add the resulting rule
  4230. to slot $1$ of the chart:
  4231. \begin{lstlisting}
  4232. stmt: "print" . "(" exp ")" (0)
  4233. \end{lstlisting}
  4234. If the new dotted rule had a nonterminal after the period, we would
  4235. need to carry out a prediction action, adding more dotted rules into
  4236. slot $1$. That is not the case, so we continue scanning. The next
  4237. input token is \code{"("}, so we add the following to slot $2$ of the
  4238. chart.
  4239. \begin{lstlisting}
  4240. stmt: "print" "(" . exp ")" (0)
  4241. \end{lstlisting}
  4242. Now we have a nonterminal after the period, so we carry out several
  4243. prediction actions, adding dotted rules for \code{exp} and
  4244. \code{exp\_hi} to slot $2$ with a period at the beginning and with
  4245. starting position $2$.
  4246. \begin{lstlisting}[escapechar=$]
  4247. exp: . exp "+" exp_hi (2)
  4248. exp: . exp "-" exp_hi (2)
  4249. exp: . exp_hi (2)
  4250. exp_hi: . INT (2)
  4251. exp_hi: . "input_int" "(" ")" (2)
  4252. exp_hi: . "-" exp_hi (2)
  4253. exp_hi: . "(" exp ")" (2)
  4254. \end{lstlisting}
  4255. With this prediction complete, we return to scanning, noting that the
  4256. next input token is \code{"1"} which the lexer parses as an
  4257. \code{INT}. There is a matching rule in slot $2$:
  4258. \begin{lstlisting}
  4259. exp_hi: . INT (2)
  4260. \end{lstlisting}
  4261. so we advance the period and put the following rule is slot $3$.
  4262. \begin{lstlisting}
  4263. exp_hi: INT . (2)
  4264. \end{lstlisting}
  4265. This brings us to \emph{completion} actions. When the period reaches
  4266. the end of a dotted rule, we recognize that the substring
  4267. has matched the nonterminal on the left-hand side of the rule, in this case
  4268. \code{exp\_hi}. We therefore need to advance the periods in any dotted
  4269. rules in slot $2$ (the starting position for the finished rule) if
  4270. the period is immediately followed by \code{exp\_hi}. So we identify
  4271. \begin{lstlisting}
  4272. exp: . exp_hi (2)
  4273. \end{lstlisting}
  4274. and add the following dotted rule to slot $3$
  4275. \begin{lstlisting}
  4276. exp: exp_hi . (2)
  4277. \end{lstlisting}
  4278. This triggers another completion step for the nonterminal \code{exp},
  4279. adding two more dotted rules to slot $3$.
  4280. \begin{lstlisting}[escapechar=$]
  4281. exp: exp . "+" exp_hi (2)
  4282. exp: exp . "-" exp_hi (2)
  4283. \end{lstlisting}
  4284. Returning to scanning, the next input token is \code{"+"}, so
  4285. we add the following to slot $4$.
  4286. \begin{lstlisting}[escapechar=$]
  4287. exp: exp "+" . exp_hi (2)
  4288. \end{lstlisting}
  4289. The period precedes the nonterminal \code{exp\_hi}, so prediction adds
  4290. the following dotted rules to slot $4$ of the chart.
  4291. \begin{lstlisting}[escapechar=$]
  4292. exp_hi: . INT (4)
  4293. exp_hi: . "input_int" "(" ")" (4)
  4294. exp_hi: . "-" exp_hi (4)
  4295. exp_hi: . "(" exp ")" (4)
  4296. \end{lstlisting}
  4297. The next input token is \code{"3"} which the lexer categorized as an
  4298. \code{INT}, so we advance the period past \code{INT} for the rules in
  4299. slot $4$, of which there is just one, and put the following in slot $5$.
  4300. \begin{lstlisting}[escapechar=$]
  4301. exp_hi: INT . (4)
  4302. \end{lstlisting}
  4303. The period at the end of the rule triggers a completion action for the
  4304. rules in slot $4$, one of which has a period before \code{exp\_hi}.
  4305. So we advance the period and put the following in slot $5$.
  4306. \begin{lstlisting}[escapechar=$]
  4307. exp: exp "+" exp_hi . (2)
  4308. \end{lstlisting}
  4309. This triggers another completion action for the rules in slot $2$ that
  4310. have a period before \code{exp}.
  4311. \begin{lstlisting}[escapechar=$]
  4312. stmt: "print" "(" exp . ")" (0)
  4313. exp: exp . "+" exp_hi (2)
  4314. exp: exp . "-" exp_hi (2)
  4315. \end{lstlisting}
  4316. We scan the next input token \code{")"}, placing the following dotted
  4317. rule in slot $6$.
  4318. \begin{lstlisting}[escapechar=$]
  4319. stmt: "print" "(" exp ")" . (0)
  4320. \end{lstlisting}
  4321. This triggers the completion of \code{stmt} in slot $0$
  4322. \begin{lstlisting}
  4323. stmt_list: stmt . NEWLINE stmt_list (0)
  4324. \end{lstlisting}
  4325. The last input token is a \code{NEWLINE}, so we advance the period
  4326. and place the new dotted rule in slot $7$.
  4327. \begin{lstlisting}
  4328. stmt_list: stmt NEWLINE . stmt_list (0)
  4329. \end{lstlisting}
  4330. We are close to the end of parsing the input!
  4331. The period is before the \code{stmt\_list} nonterminal, so we
  4332. apply prediction for \code{stmt\_list} and then \code{stmt}.
  4333. \begin{lstlisting}
  4334. stmt_list: . (7)
  4335. stmt_list: . stmt NEWLINE stmt_list (7)
  4336. stmt: . "print" "(" exp ")" (7)
  4337. stmt: . exp (7)
  4338. \end{lstlisting}
  4339. There is immediately an opportunity for completion of \code{stmt\_list},
  4340. so we add the following to slot $7$.
  4341. \begin{lstlisting}
  4342. stmt_list: stmt NEWLINE stmt_list . (0)
  4343. \end{lstlisting}
  4344. This triggers another completion action for \code{stmt\_list} in slot $0$
  4345. \begin{lstlisting}
  4346. lang_int: stmt_list . (0)
  4347. \end{lstlisting}
  4348. which in turn completes \code{lang\_int}, the start symbol of the
  4349. grammar, so the parsing of the input is complete.
  4350. For reference, we now give a general description of the Earley
  4351. algorithm.
  4352. \begin{enumerate}
  4353. \item The algorithm begins by initializing slot $0$ of the chart with the
  4354. grammar rule for the start symbol, placing a period at the beginning
  4355. of the right-hand side, and recording its starting position as $0$.
  4356. \item The algorithm repeatedly applies the following three kinds of
  4357. actions for as long as there are opportunities to do so.
  4358. \begin{itemize}
  4359. \item Prediction: if there is a rule in slot $k$ whose period comes
  4360. before a nonterminal, add the rules for that nonterminal into slot
  4361. $k$, placing a period at the beginning of their right-hand sides
  4362. and recording their starting position as $k$.
  4363. \item Scanning: If the token at position $k$ of the input string
  4364. matches the symbol after the period in a dotted rule in slot $k$
  4365. of the chart, advance the period in the dotted rule, adding
  4366. the result to slot $k+1$.
  4367. \item Completion: If a dotted rule in slot $k$ has a period at the
  4368. end, inspect the rules in the slot corresponding to the starting
  4369. position of the completed rule. If any of those rules have a
  4370. nonterminal following their period that matches the left-hand side
  4371. of the completed rule, then advance their period, placing the new
  4372. dotted rule in slot $k$.
  4373. \end{itemize}
  4374. While repeating these three actions, take care to never add
  4375. duplicate dotted rules to the chart.
  4376. \end{enumerate}
  4377. We have described how the Earley algorithm recognizes that an input
  4378. string matches a grammar, but we have not described how it builds a
  4379. parse tree. The basic idea is simple, but building parse trees in an
  4380. efficient way is more complex, requiring a data structure called a
  4381. shared packed parse forest~\citep{Tomita:1985qr}. The simple idea is
  4382. to attach a partial parse tree to every dotted rule in the chart.
  4383. Initially, the tree node associated with a dotted rule has no
  4384. children. As the period moves to the right, the nodes from the
  4385. subparses are added as children to the tree node.
  4386. As mentioned at the beginning of this section, the Earley algorithm is
  4387. $O(n^2)$ for unambiguous grammars, which means that it can parse input
  4388. files that contain thousands of tokens in a reasonable amount of time,
  4389. but not millions.
  4390. %
  4391. In the next section we discuss the LALR(1) parsing algorithm, which is
  4392. efficient enough to use with even the largest of input files.
  4393. \section{The LALR(1) Algorithm}
  4394. \label{sec:lalr}
  4395. The LALR(1) algorithm~\citep{DeRemer69,Anderson73} can be viewed as a
  4396. two phase approach in which it first compiles the grammar into a state
  4397. machine and then runs the state machine to parse an input string. The
  4398. second phase has time complexity $O(n)$ where $n$ is the number of
  4399. tokens in the input, so LALR(1) is the best one could hope for with
  4400. respect to efficiency.
  4401. %
  4402. A particularly influential implementation of LALR(1) is the
  4403. \texttt{yacc} parser generator by \citet{Johnson:1979qy}, which stands
  4404. for Yet Another Compiler Compiler.
  4405. %
  4406. The LALR(1) state machine uses a stack to record its progress in
  4407. parsing the input string. Each element of the stack is a pair: a
  4408. state number and a grammar symbol (a terminal or nonterminal). The
  4409. symbol characterizes the input that has been parsed so-far and the
  4410. state number is used to remember how to proceed once the next
  4411. symbol-worth of input has been parsed. Each state in the machine
  4412. represents where the parser stands in the parsing process with respect
  4413. to certain grammar rules. In particular, each state is associated with
  4414. a set of dotted rules.
  4415. Figure~\ref{fig:shift-reduce} shows an example LALR(1) state machine
  4416. (also called parse table) for the following simple but ambiguous
  4417. grammar:
  4418. \begin{lstlisting}[escapechar=$]
  4419. exp: INT
  4420. | exp "+" exp
  4421. stmt: "print" exp
  4422. start: stmt
  4423. \end{lstlisting}
  4424. Consider state 1 in Figure~\ref{fig:shift-reduce}. The parser has just
  4425. read in a \lstinline{"print"} token, so the top of the stack is
  4426. \lstinline{(1,"print")}. The parser is part of the way through parsing
  4427. the input according to grammar rule 1, which is signified by showing
  4428. rule 1 with a period after the \code{"print"} token and before the
  4429. \code{exp} nonterminal. There are several rules that could apply next,
  4430. both rule 2 and 3, so state 1 also shows those rules with a period at
  4431. the beginning of their right-hand sides. The edges between states
  4432. indicate which transitions the machine should make depending on the
  4433. next input token. So, for example, if the next input token is
  4434. \code{INT} then the parser will push \code{INT} and the target state 4
  4435. on the stack and transition to state 4. Suppose we are now at the end
  4436. of the input. In state 4 it says we should reduce by rule 3, so we pop
  4437. from the stack the same number of items as the number of symbols in
  4438. the right-hand side of the rule, in this case just one. We then
  4439. momentarily jump to the state at the top of the stack (state 1) and
  4440. then follow the goto edge that corresponds to the left-hand side of
  4441. the rule we just reduced by, in this case \code{exp}, so we arrive at
  4442. state 3. (A slightly longer example parse is shown in
  4443. Figure~\ref{fig:shift-reduce}.)
  4444. \begin{figure}[htbp]
  4445. \centering
  4446. \includegraphics[width=5.0in]{figs/shift-reduce-conflict}
  4447. \caption{An LALR(1) parse table and a trace of an example run.}
  4448. \label{fig:shift-reduce}
  4449. \end{figure}
  4450. In general, the algorithm works as follows. Set the current state to
  4451. state $0$. Then repeat the following, looking at the next input token.
  4452. \begin{itemize}
  4453. \item If there there is a shift edge for the input token in the
  4454. current state, push the edge's target state and the input token on
  4455. the stack and proceed to the edge's target state.
  4456. \item If there is a reduce action for the input token in the current
  4457. state, pop $k$ elements from the stack, where $k$ is the number of
  4458. symbols in the right-hand side of the rule being reduced. Jump to
  4459. the state at the top of the stack and then follow the goto edge for
  4460. the nonterminal that matches the left-hand side of the rule that we
  4461. reducing by. Push the edge's target state and the nonterminal on the
  4462. stack.
  4463. \end{itemize}
  4464. Notice that in state 6 of Figure~\ref{fig:shift-reduce} there is both
  4465. a shift and a reduce action for the token \lstinline{PLUS}, so the
  4466. algorithm does not know which action to take in this case. When a
  4467. state has both a shift and a reduce action for the same token, we say
  4468. there is a \emph{shift/reduce conflict}. In this case, the conflict
  4469. will arise, for example, when trying to parse the input
  4470. \lstinline{print 1 + 2 + 3}. After having consumed \lstinline{print 1 + 2}
  4471. the parser will be in state 6, and it will not know whether to
  4472. reduce to form an \code{exp} of \lstinline{1 + 2}, or whether it
  4473. should proceed by shifting the next \lstinline{+} from the input.
  4474. A similar kind of problem, known as a \emph{reduce/reduce} conflict,
  4475. arises when there are two reduce actions in a state for the same
  4476. token. To understand which grammars gives rise to shift/reduce and
  4477. reduce/reduce conflicts, it helps to know how the parse table is
  4478. generated from the grammar, which we discuss next.
  4479. The parse table is generated one state at a time. State 0 represents
  4480. the start of the parser. We add the grammar rule for the start symbol
  4481. to this state with a period at the beginning of the right-hand side,
  4482. similar to the initialization phase of the Earley parser. If the
  4483. period appears immediately before another nonterminal, we add all the
  4484. rules with that nonterminal on the left-hand side. Again, we place a
  4485. period at the beginning of the right-hand side of each the new
  4486. rules. This process, called \emph{state closure}, is continued
  4487. until there are no more rules to add (similar to the prediction
  4488. actions of an Earley parser). We then examine each dotted rule in the
  4489. current state $I$. Suppose a dotted rule has the form $A ::=
  4490. s_1.\,X s_2$, where $A$ and $X$ are symbols and $s_1$ and $s_2$
  4491. are sequences of symbols. We create a new state, call it $J$. If $X$
  4492. is a terminal, we create a shift edge from $I$ to $J$ (analogous to
  4493. scanning in Earley), whereas if $X$ is a nonterminal, we create a
  4494. goto edge from $I$ to $J$. We then need to add some dotted rules to
  4495. state $J$. We start by adding all dotted rules from state $I$ that
  4496. have the form $B ::= s_1.\,Xs_2$ (where $B$ is any nonterminal and
  4497. $s_1$ and $s_2$ are arbitrary sequences of symbols), but with
  4498. the period moved past the $X$. (This is analogous to completion in
  4499. the Earley algorithm.) We then perform state closure on $J$. This
  4500. process repeats until there are no more states or edges to add.
  4501. We then mark states as accepting states if they have a dotted rule
  4502. that is the start rule with a period at the end. Also, to add
  4503. in the reduce actions, we look for any state containing a dotted rule
  4504. with a period at the end. Let $n$ be the rule number for this dotted
  4505. rule. We then put a reduce $n$ action into that state for every token
  4506. $Y$. For example, in Figure~\ref{fig:shift-reduce} state 4 has an
  4507. dotted rule with a period at the end. We therefore put a reduce by
  4508. rule 3 action into state 4 for every
  4509. token.
  4510. When inserting reduce actions, take care to spot any shift/reduce or
  4511. reduce/reduce conflicts. If there are any, abort the construction of
  4512. the parse table.
  4513. \begin{exercise}
  4514. \normalfont\normalsize
  4515. %
  4516. On a piece of paper, walk through the parse table generation process
  4517. for the grammar at the top of figure~\ref{fig:shift-reduce} and check
  4518. your results against parse table in figure~\ref{fig:shift-reduce}.
  4519. \end{exercise}
  4520. \begin{exercise}
  4521. \normalfont\normalsize
  4522. %
  4523. Change the parser in your compiler for \LangVar{} to set the
  4524. \code{parser} option of Lark to \code{'lalr'}. Test your compiler on
  4525. all the \LangVar{} programs that you have created. In doing so, Lark
  4526. may signal an error due to shift/reduce or reduce/reduce conflicts
  4527. in your grammar. If so, change your Lark grammar for \LangVar{} to
  4528. remove those conflicts.
  4529. \end{exercise}
  4530. \section{Further Reading}
  4531. In this chapter we have just scratched the surface of the field of
  4532. parsing, with the study of a very general but less efficient algorithm
  4533. (Earley) and with a more limited but highly efficient algorithm
  4534. (LALR). There are many more algorithms, and classes of grammars, that
  4535. fall between these two ends of the spectrum. We recommend the reader
  4536. to \citet{Aho:2006wb} for a thorough treatment of parsing.
  4537. Regarding lexical analysis, we described the specification language,
  4538. the regular expressions, but not the algorithms for recognizing them.
  4539. In short, regular expressions can be translated to nondeterministic
  4540. finite automata, which in turn are translated to finite automata. We
  4541. refer the reader again to \citet{Aho:2006wb} for all the details on
  4542. lexical analysis.
  4543. \fi}
  4544. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4545. \chapter{Register Allocation}
  4546. \label{ch:register-allocation-Lvar}
  4547. \setcounter{footnote}{0}
  4548. \index{subject}{register allocation}
  4549. In chapter~\ref{ch:Lvar} we learned how to compile \LangVar{} to x86,
  4550. storing variables on the procedure call stack. The CPU may require tens
  4551. to hundreds of cycles to access a location on the stack, whereas
  4552. accessing a register takes only a single cycle. In this chapter we
  4553. improve the efficiency of our generated code by storing some variables
  4554. in registers. The goal of register allocation is to fit as many
  4555. variables into registers as possible. Some programs have more
  4556. variables than registers, so we cannot always map each variable to a
  4557. different register. Fortunately, it is common for different variables
  4558. to be in use during different periods of time during program
  4559. execution, and in those cases we can map multiple variables to the
  4560. same register.
  4561. The program shown in figure~\ref{fig:reg-eg} serves as a running
  4562. example. The source program is on the left and the output of
  4563. instruction selection\index{subject}{instruction selection}
  4564. is on the right. The program is almost
  4565. completely in the x86 assembly language, but it still uses variables.
  4566. Consider variables \code{x} and \code{z}. After the variable \code{x}
  4567. has been moved to \code{z}, it is no longer in use. Variable \code{z}, on
  4568. the other hand, is used only after this point, so \code{x} and
  4569. \code{z} could share the same register.
  4570. \begin{figure}
  4571. \begin{tcolorbox}[colback=white]
  4572. \begin{minipage}{0.45\textwidth}
  4573. Example \LangVar{} program:
  4574. % var_test_28.rkt
  4575. {\if\edition\racketEd
  4576. \begin{lstlisting}
  4577. (let ([v 1])
  4578. (let ([w 42])
  4579. (let ([x (+ v 7)])
  4580. (let ([y x])
  4581. (let ([z (+ x w)])
  4582. (+ z (- y)))))))
  4583. \end{lstlisting}
  4584. \fi}
  4585. {\if\edition\pythonEd\pythonColor
  4586. \begin{lstlisting}
  4587. v = 1
  4588. w = 42
  4589. x = v + 7
  4590. y = x
  4591. z = x + w
  4592. print(z + (- y))
  4593. \end{lstlisting}
  4594. \fi}
  4595. \end{minipage}
  4596. \begin{minipage}{0.45\textwidth}
  4597. After instruction selection:
  4598. {\if\edition\racketEd
  4599. \begin{lstlisting}
  4600. locals-types:
  4601. x : Integer, y : Integer,
  4602. z : Integer, t : Integer,
  4603. v : Integer, w : Integer
  4604. start:
  4605. movq $1, v
  4606. movq $42, w
  4607. movq v, x
  4608. addq $7, x
  4609. movq x, y
  4610. movq x, z
  4611. addq w, z
  4612. movq y, t
  4613. negq t
  4614. movq z, %rax
  4615. addq t, %rax
  4616. jmp conclusion
  4617. \end{lstlisting}
  4618. \fi}
  4619. {\if\edition\pythonEd\pythonColor
  4620. \begin{lstlisting}
  4621. movq $1, v
  4622. movq $42, w
  4623. movq v, x
  4624. addq $7, x
  4625. movq x, y
  4626. movq x, z
  4627. addq w, z
  4628. movq y, tmp_0
  4629. negq tmp_0
  4630. movq z, tmp_1
  4631. addq tmp_0, tmp_1
  4632. movq tmp_1, %rdi
  4633. callq print_int
  4634. \end{lstlisting}
  4635. \fi}
  4636. \end{minipage}
  4637. \end{tcolorbox}
  4638. \caption{A running example for register allocation.}
  4639. \label{fig:reg-eg}
  4640. \end{figure}
  4641. The topic of section~\ref{sec:liveness-analysis-Lvar} is how to
  4642. compute where a variable is in use. Once we have that information, we
  4643. compute which variables are in use at the same time, that is, which ones
  4644. \emph{interfere}\index{subject}{interfere} with each other, and
  4645. represent this relation as an undirected graph whose vertices are
  4646. variables and edges indicate when two variables interfere
  4647. (section~\ref{sec:build-interference}). We then model register
  4648. allocation as a graph coloring problem
  4649. (section~\ref{sec:graph-coloring}).
  4650. If we run out of registers despite these efforts, we place the
  4651. remaining variables on the stack, similarly to how we handled
  4652. variables in chapter~\ref{ch:Lvar}. It is common to use the verb
  4653. \emph{spill}\index{subject}{spill} for assigning a variable to a stack
  4654. location. The decision to spill a variable is handled as part of the
  4655. graph coloring process.
  4656. We make the simplifying assumption that each variable is assigned to
  4657. one location (a register or stack address). A more sophisticated
  4658. approach is to assign a variable to one or more locations in different
  4659. regions of the program. For example, if a variable is used many times
  4660. in short sequence and then used again only after many other
  4661. instructions, it could be more efficient to assign the variable to a
  4662. register during the initial sequence and then move it to the stack for
  4663. the rest of its lifetime. We refer the interested reader to
  4664. \citet{Cooper:2011aa} (chapter 13) for more information about that
  4665. approach.
  4666. % discuss prioritizing variables based on how much they are used.
  4667. \section{Registers and Calling Conventions}
  4668. \label{sec:calling-conventions}
  4669. \index{subject}{calling conventions}
  4670. As we perform register allocation, we must be aware of the
  4671. \emph{calling conventions} \index{subject}{calling conventions} that
  4672. govern how function calls are performed in x86.
  4673. %
  4674. Even though \LangVar{} does not include programmer-defined functions,
  4675. our generated code includes a \code{main} function that is called by
  4676. the operating system and our generated code contains calls to the
  4677. \code{read\_int} function.
  4678. Function calls require coordination between two pieces of code that
  4679. may be written by different programmers or generated by different
  4680. compilers. Here we follow the System V calling conventions that are
  4681. used by the GNU C compiler on Linux and
  4682. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  4683. %
  4684. The calling conventions include rules about how functions share the
  4685. use of registers. In particular, the caller is responsible for freeing
  4686. some registers prior to the function call for use by the callee.
  4687. These are called the \emph{caller-saved registers}
  4688. \index{subject}{caller-saved registers}
  4689. and they are
  4690. \begin{lstlisting}
  4691. rax rcx rdx rsi rdi r8 r9 r10 r11
  4692. \end{lstlisting}
  4693. On the other hand, the callee is responsible for preserving the values
  4694. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  4695. which are
  4696. \begin{lstlisting}
  4697. rsp rbp rbx r12 r13 r14 r15
  4698. \end{lstlisting}
  4699. We can think about this caller/callee convention from two points of
  4700. view, the caller view and the callee view, as follows:
  4701. \begin{itemize}
  4702. \item The caller should assume that all the caller-saved registers get
  4703. overwritten with arbitrary values by the callee. On the other hand,
  4704. the caller can safely assume that all the callee-saved registers
  4705. retain their original values.
  4706. \item The callee can freely use any of the caller-saved registers.
  4707. However, if the callee wants to use a callee-saved register, the
  4708. callee must arrange to put the original value back in the register
  4709. prior to returning to the caller. This can be accomplished by saving
  4710. the value to the stack in the prelude of the function and restoring
  4711. the value in the conclusion of the function.
  4712. \end{itemize}
  4713. In x86, registers are also used for passing arguments to a function
  4714. and for the return value. In particular, the first six arguments of a
  4715. function are passed in the following six registers, in this order.
  4716. \begin{lstlisting}
  4717. rdi rsi rdx rcx r8 r9
  4718. \end{lstlisting}
  4719. We refer to these six registers are the argument-passing registers
  4720. \index{subject}{argument-passing registers}.
  4721. If there are more than six arguments, the convention is to use space
  4722. on the frame of the caller for the rest of the arguments. In
  4723. chapter~\ref{ch:Lfun}, we instead pass a tuple containing the sixth
  4724. argument and the rest of the arguments, which simplifies the treatment
  4725. of efficient tail calls.
  4726. %
  4727. \racket{For now, the only function we care about is \code{read\_int},
  4728. which takes zero arguments.}
  4729. %
  4730. \python{For now, the only functions we care about are \code{read\_int}
  4731. and \code{print\_int}, which take zero and one argument, respectively.}
  4732. %
  4733. The register \code{rax} is used for the return value of a function.
  4734. The next question is how these calling conventions impact register
  4735. allocation. Consider the \LangVar{} program presented in
  4736. figure~\ref{fig:example-calling-conventions}. We first analyze this
  4737. example from the caller point of view and then from the callee point
  4738. of view. We refer to a variable that is in use during a function call
  4739. as a \emph{call-live variable}\index{subject}{call-live variable}.
  4740. The program makes two calls to \READOP{}. The variable \code{x} is
  4741. call-live because it is in use during the second call to \READOP{}; we
  4742. must ensure that the value in \code{x} does not get overwritten during
  4743. the call to \READOP{}. One obvious approach is to save all the values
  4744. that reside in caller-saved registers to the stack prior to each
  4745. function call and to restore them after each call. That way, if the
  4746. register allocator chooses to assign \code{x} to a caller-saved
  4747. register, its value will be preserved across the call to \READOP{}.
  4748. However, saving and restoring to the stack is relatively slow. If
  4749. \code{x} is not used many times, it may be better to assign \code{x}
  4750. to a stack location in the first place. Or better yet, if we can
  4751. arrange for \code{x} to be placed in a callee-saved register, then it
  4752. won't need to be saved and restored during function calls.
  4753. We recommend an approach that captures these issues in the
  4754. interference graph, without complicating the graph coloring algorithm.
  4755. During liveness analysis we know which variables are call-live because
  4756. we compute which variables are in use at every instruction
  4757. (section~\ref{sec:liveness-analysis-Lvar}). When we build the
  4758. interference graph (section~\ref{sec:build-interference}), we can
  4759. place an edge in the interference graph between each call-live
  4760. variable and the caller-saved registers. This will prevent the graph
  4761. coloring algorithm from assigning call-live variables to caller-saved
  4762. registers.
  4763. On the other hand, for variables that are not call-live, we prefer
  4764. placing them in caller-saved registers to leave more room for
  4765. call-live variables in the callee-saved registers. This can also be
  4766. implemented without complicating the graph coloring algorithm. We
  4767. recommend that the graph coloring algorithm assign variables to
  4768. natural numbers, choosing the lowest number for which there is no
  4769. interference. After the coloring is complete, we map the numbers to
  4770. registers and stack locations: mapping the lowest numbers to
  4771. caller-saved registers, the next lowest to callee-saved registers, and
  4772. the largest numbers to stack locations. This ordering gives preference
  4773. to registers over stack locations and to caller-saved registers over
  4774. callee-saved registers.
  4775. Returning to the example in
  4776. figure~\ref{fig:example-calling-conventions}, let us analyze the
  4777. generated x86 code on the right-hand side. Variable \code{x} is
  4778. assigned to \code{rbx}, a callee-saved register. Thus, it is already
  4779. in a safe place during the second call to \code{read\_int}. Next,
  4780. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  4781. because \code{y} is not a call-live variable.
  4782. We have completed the analysis from the caller point of view, so now
  4783. we switch to the callee point of view, focusing on the prelude and
  4784. conclusion of the \code{main} function. As usual, the prelude begins
  4785. with saving the \code{rbp} register to the stack and setting the
  4786. \code{rbp} to the current stack pointer. We now know why it is
  4787. necessary to save the \code{rbp}: it is a callee-saved register. The
  4788. prelude then pushes \code{rbx} to the stack because (1) \code{rbx} is
  4789. a callee-saved register and (2) \code{rbx} is assigned to a variable
  4790. (\code{x}). The other callee-saved registers are not saved in the
  4791. prelude because they are not used. The prelude subtracts 8 bytes from
  4792. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  4793. conclusion, we see that \code{rbx} is restored from the stack with a
  4794. \code{popq} instruction.
  4795. \index{subject}{prelude}\index{subject}{conclusion}
  4796. \begin{figure}[tp]
  4797. \begin{tcolorbox}[colback=white]
  4798. \begin{minipage}{0.45\textwidth}
  4799. Example \LangVar{} program:
  4800. %var_test_14.rkt
  4801. {\if\edition\racketEd
  4802. \begin{lstlisting}
  4803. (let ([x (read)])
  4804. (let ([y (read)])
  4805. (+ (+ x y) 42)))
  4806. \end{lstlisting}
  4807. \fi}
  4808. {\if\edition\pythonEd\pythonColor
  4809. \begin{lstlisting}
  4810. x = input_int()
  4811. y = input_int()
  4812. print((x + y) + 42)
  4813. \end{lstlisting}
  4814. \fi}
  4815. \end{minipage}
  4816. \begin{minipage}{0.45\textwidth}
  4817. Generated x86 assembly:
  4818. {\if\edition\racketEd
  4819. \begin{lstlisting}
  4820. start:
  4821. callq read_int
  4822. movq %rax, %rbx
  4823. callq read_int
  4824. movq %rax, %rcx
  4825. addq %rcx, %rbx
  4826. movq %rbx, %rax
  4827. addq $42, %rax
  4828. jmp _conclusion
  4829. .globl main
  4830. main:
  4831. pushq %rbp
  4832. movq %rsp, %rbp
  4833. pushq %rbx
  4834. subq $8, %rsp
  4835. jmp start
  4836. conclusion:
  4837. addq $8, %rsp
  4838. popq %rbx
  4839. popq %rbp
  4840. retq
  4841. \end{lstlisting}
  4842. \fi}
  4843. {\if\edition\pythonEd\pythonColor
  4844. \begin{lstlisting}
  4845. .globl main
  4846. main:
  4847. pushq %rbp
  4848. movq %rsp, %rbp
  4849. pushq %rbx
  4850. subq $8, %rsp
  4851. callq read_int
  4852. movq %rax, %rbx
  4853. callq read_int
  4854. movq %rax, %rcx
  4855. movq %rbx, %rdx
  4856. addq %rcx, %rdx
  4857. movq %rdx, %rcx
  4858. addq $42, %rcx
  4859. movq %rcx, %rdi
  4860. callq print_int
  4861. addq $8, %rsp
  4862. popq %rbx
  4863. popq %rbp
  4864. retq
  4865. \end{lstlisting}
  4866. \fi}
  4867. \end{minipage}
  4868. \end{tcolorbox}
  4869. \caption{An example with function calls.}
  4870. \label{fig:example-calling-conventions}
  4871. \end{figure}
  4872. %\clearpage
  4873. \section{Liveness Analysis}
  4874. \label{sec:liveness-analysis-Lvar}
  4875. \index{subject}{liveness analysis}
  4876. The \code{uncover\_live} \racket{pass}\python{function} performs
  4877. \emph{liveness analysis}; that is, it discovers which variables are
  4878. in use in different regions of a program.
  4879. %
  4880. A variable or register is \emph{live} at a program point if its
  4881. current value is used at some later point in the program. We refer to
  4882. variables, stack locations, and registers collectively as
  4883. \emph{locations}.
  4884. %
  4885. Consider the following code fragment in which there are two writes to
  4886. \code{b}. Are variables \code{a} and \code{b} both live at the same
  4887. time?
  4888. \begin{center}
  4889. \begin{minipage}{0.96\textwidth}
  4890. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4891. movq $5, a
  4892. movq $30, b
  4893. movq a, c
  4894. movq $10, b
  4895. addq b, c
  4896. \end{lstlisting}
  4897. \end{minipage}
  4898. \end{center}
  4899. The answer is no, because \code{a} is live from line 1 to 3 and
  4900. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  4901. line 2 is never used because it is overwritten (line 4) before the
  4902. next read (line 5).
  4903. The live locations for each instruction can be computed by traversing
  4904. the instruction sequence back to front (i.e., backward in execution
  4905. order). Let $I_1,\ldots, I_n$ be the instruction sequence. We write
  4906. $L_{\mathsf{after}}(k)$ for the set of live locations after
  4907. instruction $I_k$ and write $L_{\mathsf{before}}(k)$ for the set of live
  4908. locations before instruction $I_k$. \racket{We recommend representing
  4909. these sets with the Racket \code{set} data structure described in
  4910. figure~\ref{fig:set}.} \python{We recommend representing these sets
  4911. with the Python
  4912. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  4913. data structure.}
  4914. {\if\edition\racketEd
  4915. \begin{figure}[tp]
  4916. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  4917. \small
  4918. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  4919. A \emph{set} is an unordered collection of elements without duplicates.
  4920. Here are some of the operations defined on sets.
  4921. \index{subject}{set}
  4922. \begin{description}
  4923. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  4924. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  4925. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  4926. difference of the two sets.
  4927. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  4928. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  4929. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  4930. \end{description}
  4931. \end{tcolorbox}
  4932. %\end{wrapfigure}
  4933. \caption{The \code{set} data structure.}
  4934. \label{fig:set}
  4935. \end{figure}
  4936. \fi}
  4937. The locations that are live after an instruction are its
  4938. \emph{live-after}\index{subject}{live-after} set, and the locations
  4939. that are live before an instruction are its
  4940. \emph{live-before}\index{subject}{live-before} set. The live-after
  4941. set of an instruction is always the same as the live-before set of the
  4942. next instruction.
  4943. \begin{equation} \label{eq:live-after-before-next}
  4944. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  4945. \end{equation}
  4946. To start things off, there are no live locations after the last
  4947. instruction, so
  4948. \begin{equation}\label{eq:live-last-empty}
  4949. L_{\mathsf{after}}(n) = \emptyset
  4950. \end{equation}
  4951. We then apply the following rule repeatedly, traversing the
  4952. instruction sequence back to front.
  4953. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  4954. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  4955. \end{equation}
  4956. where $W(k)$ are the locations written to by instruction $I_k$, and
  4957. $R(k)$ are the locations read by instruction $I_k$.
  4958. {\if\edition\racketEd
  4959. %
  4960. There is a special case for \code{jmp} instructions. The locations
  4961. that are live before a \code{jmp} should be the locations in
  4962. $L_{\mathsf{before}}$ at the target of the jump. So, we recommend
  4963. maintaining an alist named \code{label->live} that maps each label to
  4964. the $L_{\mathsf{before}}$ for the first instruction in its block. For
  4965. now the only \code{jmp} in a \LangXVar{} program is the jump to the
  4966. conclusion. (For example, see figure~\ref{fig:reg-eg}.) The
  4967. conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should map
  4968. \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  4969. %
  4970. \fi}
  4971. Let us walk through the previous example, applying these formulas
  4972. starting with the instruction on line 5 of the code fragment. We
  4973. collect the answers in figure~\ref{fig:liveness-example-0}. The
  4974. $L_{\mathsf{after}}$ for the \code{addq b, c} instruction is
  4975. $\emptyset$ because it is the last instruction
  4976. (formula~\eqref{eq:live-last-empty}). The $L_{\mathsf{before}}$ for
  4977. this instruction is $\{\ttm{b},\ttm{c}\}$ because it reads from
  4978. variables \code{b} and \code{c}
  4979. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}):
  4980. \[
  4981. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  4982. \]
  4983. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  4984. the live-before set from line 5 to be the live-after set for this
  4985. instruction (formula~\eqref{eq:live-after-before-next}).
  4986. \[
  4987. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  4988. \]
  4989. This move instruction writes to \code{b} and does not read from any
  4990. variables, so we have the following live-before set
  4991. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}).
  4992. \[
  4993. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  4994. \]
  4995. The live-before for instruction \code{movq a, c}
  4996. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  4997. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}). The
  4998. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  4999. variable that is not live and does not read from a variable.
  5000. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  5001. because it writes to variable \code{a}.
  5002. \begin{figure}[tbp]
  5003. \centering
  5004. \begin{tcolorbox}[colback=white]
  5005. \hspace{10pt}
  5006. \begin{minipage}{0.4\textwidth}
  5007. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  5008. movq $5, a
  5009. movq $30, b
  5010. movq a, c
  5011. movq $10, b
  5012. addq b, c
  5013. \end{lstlisting}
  5014. \end{minipage}
  5015. \vrule\hspace{10pt}
  5016. \begin{minipage}{0.45\textwidth}
  5017. \begin{align*}
  5018. L_{\mathsf{before}}(1)= \emptyset,
  5019. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  5020. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  5021. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  5022. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  5023. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  5024. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  5025. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  5026. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  5027. L_{\mathsf{after}}(5)= \emptyset
  5028. \end{align*}
  5029. \end{minipage}
  5030. \end{tcolorbox}
  5031. \caption{Example output of liveness analysis on a short example.}
  5032. \label{fig:liveness-example-0}
  5033. \end{figure}
  5034. \begin{exercise}\normalfont\normalsize
  5035. Perform liveness analysis by hand on the running example in
  5036. figure~\ref{fig:reg-eg}, computing the live-before and live-after
  5037. sets for each instruction. Compare your answers to the solution
  5038. shown in figure~\ref{fig:live-eg}.
  5039. \end{exercise}
  5040. \begin{figure}[tp]
  5041. \hspace{20pt}
  5042. \begin{minipage}{0.55\textwidth}
  5043. \begin{tcolorbox}[colback=white]
  5044. {\if\edition\racketEd
  5045. \begin{lstlisting}
  5046. |$\{\ttm{rsp}\}$|
  5047. movq $1, v
  5048. |$\{\ttm{v},\ttm{rsp}\}$|
  5049. movq $42, w
  5050. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  5051. movq v, x
  5052. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5053. addq $7, x
  5054. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5055. movq x, y
  5056. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  5057. movq x, z
  5058. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5059. addq w, z
  5060. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5061. movq y, t
  5062. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5063. negq t
  5064. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5065. movq z, %rax
  5066. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  5067. addq t, %rax
  5068. |$\{\ttm{rax},\ttm{rsp}\}$|
  5069. jmp conclusion
  5070. \end{lstlisting}
  5071. \fi}
  5072. {\if\edition\pythonEd\pythonColor
  5073. \begin{lstlisting}
  5074. movq $1, v
  5075. |$\{\ttm{v}\}$|
  5076. movq $42, w
  5077. |$\{\ttm{w}, \ttm{v}\}$|
  5078. movq v, x
  5079. |$\{\ttm{w}, \ttm{x}\}$|
  5080. addq $7, x
  5081. |$\{\ttm{w}, \ttm{x}\}$|
  5082. movq x, y
  5083. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  5084. movq x, z
  5085. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  5086. addq w, z
  5087. |$\{\ttm{y}, \ttm{z}\}$|
  5088. movq y, tmp_0
  5089. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5090. negq tmp_0
  5091. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5092. movq z, tmp_1
  5093. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  5094. addq tmp_0, tmp_1
  5095. |$\{\ttm{tmp\_1}\}$|
  5096. movq tmp_1, %rdi
  5097. |$\{\ttm{rdi}\}$|
  5098. callq print_int
  5099. |$\{\}$|
  5100. \end{lstlisting}
  5101. \fi}
  5102. \end{tcolorbox}
  5103. \end{minipage}
  5104. \caption{The running example annotated with live-after sets.}
  5105. \label{fig:live-eg}
  5106. \end{figure}
  5107. \begin{exercise}\normalfont\normalsize
  5108. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  5109. %
  5110. \racket{Store the sequence of live-after sets in the $\itm{info}$
  5111. field of the \code{Block} structure.}
  5112. %
  5113. \python{Return a dictionary that maps each instruction to its
  5114. live-after set.}
  5115. %
  5116. \racket{We recommend creating an auxiliary function that takes a list
  5117. of instructions and an initial live-after set (typically empty) and
  5118. returns the list of live-after sets.}
  5119. %
  5120. We recommend creating auxiliary functions to (1) compute the set
  5121. of locations that appear in an \Arg{}, (2) compute the locations read
  5122. by an instruction (the $R$ function), and (3) the locations written by
  5123. an instruction (the $W$ function). The \code{callq} instruction should
  5124. include all the caller-saved registers in its write set $W$ because
  5125. the calling convention says that those registers may be written to
  5126. during the function call. Likewise, the \code{callq} instruction
  5127. should include the appropriate argument-passing registers in its
  5128. read set $R$, depending on the arity of the function being
  5129. called. (This is why the abstract syntax for \code{callq} includes the
  5130. arity.)
  5131. \end{exercise}
  5132. %\clearpage
  5133. \section{Build the Interference Graph}
  5134. \label{sec:build-interference}
  5135. {\if\edition\racketEd
  5136. \begin{figure}[tp]
  5137. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  5138. \small
  5139. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  5140. A \emph{graph} is a collection of vertices and edges where each
  5141. edge connects two vertices. A graph is \emph{directed} if each
  5142. edge points from a source to a target. Otherwise the graph is
  5143. \emph{undirected}.
  5144. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  5145. \begin{description}
  5146. %% We currently don't use directed graphs. We instead use
  5147. %% directed multi-graphs. -Jeremy
  5148. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  5149. directed graph from a list of edges. Each edge is a list
  5150. containing the source and target vertex.
  5151. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  5152. undirected graph from a list of edges. Each edge is represented by
  5153. a list containing two vertices.
  5154. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  5155. inserts a vertex into the graph.
  5156. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  5157. inserts an edge between the two vertices.
  5158. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  5159. returns a sequence of vertices adjacent to the vertex.
  5160. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  5161. returns a sequence of all vertices in the graph.
  5162. \end{description}
  5163. \end{tcolorbox}
  5164. %\end{wrapfigure}
  5165. \caption{The Racket \code{graph} package.}
  5166. \label{fig:graph}
  5167. \end{figure}
  5168. \fi}
  5169. On the basis of the liveness analysis, we know where each location is
  5170. live. However, during register allocation, we need to answer
  5171. questions of the specific form: are locations $u$ and $v$ live at the
  5172. same time? (If so, they cannot be assigned to the same register.) To
  5173. make this question more efficient to answer, we create an explicit
  5174. data structure, an \emph{interference
  5175. graph}\index{subject}{interference graph}. An interference graph is
  5176. an undirected graph that has a node for every variable and register
  5177. and has an edge between two nodes if they are
  5178. live at the same time, that is, if they interfere with each other.
  5179. %
  5180. \racket{We recommend using the Racket \code{graph} package
  5181. (figure~\ref{fig:graph}) to represent the interference graph.}
  5182. %
  5183. \python{We provide implementations of directed and undirected graph
  5184. data structures in the file \code{graph.py} of the support code.}
  5185. A straightforward way to compute the interference graph is to look at
  5186. the set of live locations between each instruction and add an edge to
  5187. the graph for every pair of variables in the same set. This approach
  5188. is less than ideal for two reasons. First, it can be expensive because
  5189. it takes $O(n^2)$ time to consider every pair in a set of $n$ live
  5190. locations. Second, in the special case in which two locations hold the
  5191. same value (because one was assigned to the other), they can be live
  5192. at the same time without interfering with each other.
  5193. A better way to compute the interference graph is to focus on
  5194. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  5195. must not overwrite something in a live location. So for each
  5196. instruction, we create an edge between the locations being written to
  5197. and the live locations. (However, a location never interferes with
  5198. itself.) For the \key{callq} instruction, we consider all the
  5199. caller-saved registers to have been written to, so an edge is added
  5200. between every live variable and every caller-saved register. Also, for
  5201. \key{movq} there is the special case of two variables holding the same
  5202. value. If a live variable $v$ is the same as the source of the
  5203. \key{movq}, then there is no need to add an edge between $v$ and the
  5204. destination, because they both hold the same value.
  5205. %
  5206. Hence we have the following two rules:
  5207. \begin{enumerate}
  5208. \item If instruction $I_k$ is a move instruction of the form
  5209. \key{movq} $s$\key{,} $d$, then for every $v \in
  5210. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  5211. $(d,v)$.
  5212. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  5213. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  5214. $(d,v)$.
  5215. \end{enumerate}
  5216. Working from the top to bottom of figure~\ref{fig:live-eg}, we apply
  5217. these rules to each instruction. We highlight a few of the
  5218. instructions. \racket{The first instruction is \lstinline{movq $1, v},
  5219. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  5220. so \code{v} interferes with \code{rsp}.}
  5221. %
  5222. \python{The first instruction is \lstinline{movq $1, v}, and the
  5223. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  5224. no interference because $\ttm{v}$ is the destination of the move.}
  5225. %
  5226. \racket{The fourth instruction is \lstinline{addq $7, x}, and the
  5227. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  5228. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  5229. %
  5230. \python{The fourth instruction is \lstinline{addq $7, x}, and the
  5231. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  5232. $\ttm{x}$ interferes with \ttm{w}.}
  5233. %
  5234. \racket{The next instruction is \lstinline{movq x, y}, and the
  5235. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  5236. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  5237. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5238. \ttm{x} and \ttm{y} hold the same value.}
  5239. %
  5240. \python{The next instruction is \lstinline{movq x, y}, and the
  5241. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  5242. applies, so \ttm{y} interferes with \ttm{w} but not
  5243. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5244. \ttm{x} and \ttm{y} hold the same value.}
  5245. %
  5246. Figure~\ref{fig:interference-results} lists the interference results
  5247. for all the instructions, and the resulting interference graph is
  5248. shown in figure~\ref{fig:interfere}. We elide the register nodes from
  5249. the interference graph in figure~\ref{fig:interfere} because there
  5250. were no interference edges involving registers and we did not wish to
  5251. clutter the graph, but in general one needs to include all the
  5252. registers in the interference graph.
  5253. \begin{figure}[tbp]
  5254. \begin{tcolorbox}[colback=white]
  5255. \begin{quote}
  5256. {\if\edition\racketEd
  5257. \begin{tabular}{ll}
  5258. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  5259. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  5260. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5261. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5262. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  5263. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  5264. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  5265. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5266. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5267. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  5268. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  5269. \lstinline!jmp conclusion!& no interference.
  5270. \end{tabular}
  5271. \fi}
  5272. {\if\edition\pythonEd\pythonColor
  5273. \begin{tabular}{ll}
  5274. \lstinline!movq $1, v!& no interference\\
  5275. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  5276. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  5277. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  5278. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  5279. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  5280. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  5281. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5282. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5283. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  5284. \lstinline!addq tmp_0, tmp_1! & no interference\\
  5285. \lstinline!movq tmp_1, %rdi! & no interference \\
  5286. \lstinline!callq print_int!& no interference.
  5287. \end{tabular}
  5288. \fi}
  5289. \end{quote}
  5290. \end{tcolorbox}
  5291. \caption{Interference results for the running example.}
  5292. \label{fig:interference-results}
  5293. \end{figure}
  5294. \begin{figure}[tbp]
  5295. \begin{tcolorbox}[colback=white]
  5296. \large
  5297. {\if\edition\racketEd
  5298. \[
  5299. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5300. \node (rax) at (0,0) {$\ttm{rax}$};
  5301. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5302. \node (t1) at (0,2) {$\ttm{t}$};
  5303. \node (z) at (3,2) {$\ttm{z}$};
  5304. \node (x) at (6,2) {$\ttm{x}$};
  5305. \node (y) at (3,0) {$\ttm{y}$};
  5306. \node (w) at (6,0) {$\ttm{w}$};
  5307. \node (v) at (9,0) {$\ttm{v}$};
  5308. \draw (t1) to (rax);
  5309. \draw (t1) to (z);
  5310. \draw (z) to (y);
  5311. \draw (z) to (w);
  5312. \draw (x) to (w);
  5313. \draw (y) to (w);
  5314. \draw (v) to (w);
  5315. \draw (v) to (rsp);
  5316. \draw (w) to (rsp);
  5317. \draw (x) to (rsp);
  5318. \draw (y) to (rsp);
  5319. \path[-.,bend left=15] (z) edge node {} (rsp);
  5320. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5321. \draw (rax) to (rsp);
  5322. \end{tikzpicture}
  5323. \]
  5324. \fi}
  5325. {\if\edition\pythonEd\pythonColor
  5326. \[
  5327. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5328. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5329. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5330. \node (z) at (3,2) {$\ttm{z}$};
  5331. \node (x) at (6,2) {$\ttm{x}$};
  5332. \node (y) at (3,0) {$\ttm{y}$};
  5333. \node (w) at (6,0) {$\ttm{w}$};
  5334. \node (v) at (9,0) {$\ttm{v}$};
  5335. \draw (t0) to (t1);
  5336. \draw (t0) to (z);
  5337. \draw (z) to (y);
  5338. \draw (z) to (w);
  5339. \draw (x) to (w);
  5340. \draw (y) to (w);
  5341. \draw (v) to (w);
  5342. \end{tikzpicture}
  5343. \]
  5344. \fi}
  5345. \end{tcolorbox}
  5346. \caption{The interference graph of the example program.}
  5347. \label{fig:interfere}
  5348. \end{figure}
  5349. \begin{exercise}\normalfont\normalsize
  5350. \racket{Implement the compiler pass named \code{build\_interference} according
  5351. to the algorithm suggested here. We recommend using the Racket
  5352. \code{graph} package to create and inspect the interference graph.
  5353. The output graph of this pass should be stored in the $\itm{info}$ field of
  5354. the program, under the key \code{conflicts}.}
  5355. %
  5356. \python{Implement a function named \code{build\_interference}
  5357. according to the algorithm suggested above that
  5358. returns the interference graph.}
  5359. \end{exercise}
  5360. \section{Graph Coloring via Sudoku}
  5361. \label{sec:graph-coloring}
  5362. \index{subject}{graph coloring}
  5363. \index{subject}{sudoku}
  5364. \index{subject}{color}
  5365. We come to the main event discussed in this chapter, mapping variables
  5366. to registers and stack locations. Variables that interfere with each
  5367. other must be mapped to different locations. In terms of the
  5368. interference graph, this means that adjacent vertices must be mapped
  5369. to different locations. If we think of locations as colors, the
  5370. register allocation problem becomes the graph coloring
  5371. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  5372. The reader may be more familiar with the graph coloring problem than he
  5373. or she realizes; the popular game of sudoku is an instance of the
  5374. graph coloring problem. The following describes how to build a graph
  5375. out of an initial sudoku board.
  5376. \begin{itemize}
  5377. \item There is one vertex in the graph for each sudoku square.
  5378. \item There is an edge between two vertices if the corresponding squares
  5379. are in the same row, in the same column, or in the same $3\times 3$ region.
  5380. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  5381. \item On the basis of the initial assignment of numbers to squares on the
  5382. sudoku board, assign the corresponding colors to the corresponding
  5383. vertices in the graph.
  5384. \end{itemize}
  5385. If you can color the remaining vertices in the graph with the nine
  5386. colors, then you have also solved the corresponding game of sudoku.
  5387. Figure~\ref{fig:sudoku-graph} shows an initial sudoku game board and
  5388. the corresponding graph with colored vertices. Here we use a
  5389. monochrome representation of colors, mapping the sudoku number 1 to
  5390. black, 2 to white, and 3 to gray. We show edges for only a sampling
  5391. of the vertices (the colored ones) because showing edges for all the
  5392. vertices would make the graph unreadable.
  5393. \begin{figure}[tbp]
  5394. \begin{tcolorbox}[colback=white]
  5395. \includegraphics[width=0.5\textwidth]{figs/sudoku}
  5396. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  5397. \end{tcolorbox}
  5398. \caption{A sudoku game board and the corresponding colored graph.}
  5399. \label{fig:sudoku-graph}
  5400. \end{figure}
  5401. Some techniques for playing sudoku correspond to heuristics used in
  5402. graph coloring algorithms. For example, one of the basic techniques
  5403. for sudoku is called Pencil Marks. The idea is to use a process of
  5404. elimination to determine what numbers are no longer available for a
  5405. square and to write those numbers in the square (writing very
  5406. small). For example, if the number $1$ is assigned to a square, then
  5407. write the pencil mark $1$ in all the squares in the same row, column,
  5408. and region to indicate that $1$ is no longer an option for those other
  5409. squares.
  5410. %
  5411. The Pencil Marks technique corresponds to the notion of
  5412. \emph{saturation}\index{subject}{saturation} due to \citet{Brelaz:1979eu}. The
  5413. saturation of a vertex, in sudoku terms, is the set of numbers that
  5414. are no longer available. In graph terminology, we have the following
  5415. definition:
  5416. \begin{equation*}
  5417. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  5418. \text{ and } \mathrm{color}(v) = c \}
  5419. \end{equation*}
  5420. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  5421. edge with $u$.
  5422. The Pencil Marks technique leads to a simple strategy for filling in
  5423. numbers: if there is a square with only one possible number left, then
  5424. choose that number! But what if there are no squares with only one
  5425. possibility left? One brute-force approach is to try them all: choose
  5426. the first one, and if that ultimately leads to a solution, great. If
  5427. not, backtrack and choose the next possibility. One good thing about
  5428. Pencil Marks is that it reduces the degree of branching in the search
  5429. tree. Nevertheless, backtracking can be terribly time consuming. One
  5430. way to reduce the amount of backtracking is to use the
  5431. most-constrained-first heuristic (aka minimum remaining
  5432. values)~\citep{Russell2003}. That is, in choosing a square, always
  5433. choose one with the fewest possibilities left (the vertex with the
  5434. highest saturation). The idea is that choosing highly constrained
  5435. squares earlier rather than later is better, because later on there may
  5436. not be any possibilities left in the highly saturated squares.
  5437. However, register allocation is easier than sudoku, because the
  5438. register allocator can fall back to assigning variables to stack
  5439. locations when the registers run out. Thus, it makes sense to replace
  5440. backtracking with greedy search: make the best choice at the time and
  5441. keep going. We still wish to minimize the number of colors needed, so
  5442. we use the most-constrained-first heuristic in the greedy search.
  5443. Figure~\ref{fig:satur-algo} gives the pseudocode for a simple greedy
  5444. algorithm for register allocation based on saturation and the
  5445. most-constrained-first heuristic. It is roughly equivalent to the
  5446. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}. Just as in
  5447. sudoku, the algorithm represents colors with integers. The integers
  5448. $0$ through $k-1$ correspond to the $k$ registers that we use for
  5449. register allocation. In particular, we recommend the following
  5450. correspondence, with $k=11$.
  5451. \begin{lstlisting}
  5452. 0: rcx, 1: rdx, 2: rsi, 3: rdi, 4: r8, 5: r9,
  5453. 6: r10, 7: rbx, 8: r12, 9: r13, 10: r14
  5454. \end{lstlisting}
  5455. The integers $k$ and larger correspond to stack locations. The
  5456. registers that are not used for register allocation, such as
  5457. \code{rax}, are assigned to negative integers. In particular, we
  5458. recommend the following correspondence.
  5459. \begin{lstlisting}
  5460. -1: rax, -2: rsp, -3: rbp, -4: r11, -5: r15
  5461. \end{lstlisting}
  5462. %% One might wonder why we include registers at all in the liveness
  5463. %% analysis and interference graph. For example, we never allocate a
  5464. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  5465. %% leave them out. As we see in chapter~\ref{ch:Lvec}, when we begin
  5466. %% to use register for passing arguments to functions, it will be
  5467. %% necessary for those registers to appear in the interference graph
  5468. %% because those registers will also be assigned to variables, and we
  5469. %% don't want those two uses to encroach on each other. Regarding
  5470. %% registers such as \code{rax} and \code{rsp} that are not used for
  5471. %% variables, we could omit them from the interference graph but that
  5472. %% would require adding special cases to our algorithm, which would
  5473. %% complicate the logic for little gain.
  5474. \begin{figure}[btp]
  5475. \begin{tcolorbox}[colback=white]
  5476. \centering
  5477. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  5478. Algorithm: DSATUR
  5479. Input: A graph |$G$|
  5480. Output: An assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  5481. |$W \gets \mathrm{vertices}(G)$|
  5482. while |$W \neq \emptyset$| do
  5483. pick a vertex |$u$| from |$W$| with the highest saturation,
  5484. breaking ties randomly
  5485. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  5486. |$\mathrm{color}[u] \gets c$|
  5487. |$W \gets W - \{u\}$|
  5488. \end{lstlisting}
  5489. \end{tcolorbox}
  5490. \caption{The saturation-based greedy graph coloring algorithm.}
  5491. \label{fig:satur-algo}
  5492. \end{figure}
  5493. {\if\edition\racketEd
  5494. With the DSATUR algorithm in hand, let us return to the running
  5495. example and consider how to color the interference graph shown in
  5496. figure~\ref{fig:interfere}.
  5497. %
  5498. We start by assigning each register node to its own color. For
  5499. example, \code{rax} is assigned the color $-1$, \code{rsp} is assign
  5500. $-2$, \code{rcx} is assigned $0$, and \code{rdx} is assigned $1$.
  5501. (To reduce clutter in the interference graph, we elide nodes
  5502. that do not have interference edges, such as \code{rcx}.)
  5503. The variables are not yet colored, so they are annotated with a dash. We
  5504. then update the saturation for vertices that are adjacent to a
  5505. register, obtaining the following annotated graph. For example, the
  5506. saturation for \code{t} is $\{-1,-2\}$ because it interferes with both
  5507. \code{rax} and \code{rsp}.
  5508. \[
  5509. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5510. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  5511. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  5512. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  5513. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  5514. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5515. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5516. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5517. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5518. \draw (t1) to (rax);
  5519. \draw (t1) to (z);
  5520. \draw (z) to (y);
  5521. \draw (z) to (w);
  5522. \draw (x) to (w);
  5523. \draw (y) to (w);
  5524. \draw (v) to (w);
  5525. \draw (v) to (rsp);
  5526. \draw (w) to (rsp);
  5527. \draw (x) to (rsp);
  5528. \draw (y) to (rsp);
  5529. \path[-.,bend left=15] (z) edge node {} (rsp);
  5530. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5531. \draw (rax) to (rsp);
  5532. \end{tikzpicture}
  5533. \]
  5534. The algorithm says to select a maximally saturated vertex. So, we pick
  5535. $\ttm{t}$ and color it with the first available integer, which is
  5536. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  5537. and \ttm{rsp} because they interfere with $\ttm{t}$.
  5538. \[
  5539. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5540. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5541. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  5542. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  5543. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  5544. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5545. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5546. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5547. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5548. \draw (t1) to (rax);
  5549. \draw (t1) to (z);
  5550. \draw (z) to (y);
  5551. \draw (z) to (w);
  5552. \draw (x) to (w);
  5553. \draw (y) to (w);
  5554. \draw (v) to (w);
  5555. \draw (v) to (rsp);
  5556. \draw (w) to (rsp);
  5557. \draw (x) to (rsp);
  5558. \draw (y) to (rsp);
  5559. \path[-.,bend left=15] (z) edge node {} (rsp);
  5560. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5561. \draw (rax) to (rsp);
  5562. \end{tikzpicture}
  5563. \]
  5564. We repeat the process, selecting a maximally saturated vertex,
  5565. choosing \code{z}, and coloring it with the first available number, which
  5566. is $1$. We add $1$ to the saturation for the neighboring vertices
  5567. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  5568. \[
  5569. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5570. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5571. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5572. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5573. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5574. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5575. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5576. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5577. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5578. \draw (t1) to (rax);
  5579. \draw (t1) to (z);
  5580. \draw (z) to (y);
  5581. \draw (z) to (w);
  5582. \draw (x) to (w);
  5583. \draw (y) to (w);
  5584. \draw (v) to (w);
  5585. \draw (v) to (rsp);
  5586. \draw (w) to (rsp);
  5587. \draw (x) to (rsp);
  5588. \draw (y) to (rsp);
  5589. \path[-.,bend left=15] (z) edge node {} (rsp);
  5590. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5591. \draw (rax) to (rsp);
  5592. \end{tikzpicture}
  5593. \]
  5594. The most saturated vertices are now \code{w} and \code{y}. We color
  5595. \code{w} with the first available color, which is $0$.
  5596. \[
  5597. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5598. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5599. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5600. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5601. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5602. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5603. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  5604. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  5605. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5606. \draw (t1) to (rax);
  5607. \draw (t1) to (z);
  5608. \draw (z) to (y);
  5609. \draw (z) to (w);
  5610. \draw (x) to (w);
  5611. \draw (y) to (w);
  5612. \draw (v) to (w);
  5613. \draw (v) to (rsp);
  5614. \draw (w) to (rsp);
  5615. \draw (x) to (rsp);
  5616. \draw (y) to (rsp);
  5617. \path[-.,bend left=15] (z) edge node {} (rsp);
  5618. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5619. \draw (rax) to (rsp);
  5620. \end{tikzpicture}
  5621. \]
  5622. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  5623. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  5624. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  5625. and \code{z}, whose colors are $0$ and $1$ respectively.
  5626. \[
  5627. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5628. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5629. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5630. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5631. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5632. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5633. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5634. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5635. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5636. \draw (t1) to (rax);
  5637. \draw (t1) to (z);
  5638. \draw (z) to (y);
  5639. \draw (z) to (w);
  5640. \draw (x) to (w);
  5641. \draw (y) to (w);
  5642. \draw (v) to (w);
  5643. \draw (v) to (rsp);
  5644. \draw (w) to (rsp);
  5645. \draw (x) to (rsp);
  5646. \draw (y) to (rsp);
  5647. \path[-.,bend left=15] (z) edge node {} (rsp);
  5648. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5649. \draw (rax) to (rsp);
  5650. \end{tikzpicture}
  5651. \]
  5652. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  5653. \[
  5654. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5655. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5656. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5657. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5658. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5659. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5660. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5661. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5662. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5663. \draw (t1) to (rax);
  5664. \draw (t1) to (z);
  5665. \draw (z) to (y);
  5666. \draw (z) to (w);
  5667. \draw (x) to (w);
  5668. \draw (y) to (w);
  5669. \draw (v) to (w);
  5670. \draw (v) to (rsp);
  5671. \draw (w) to (rsp);
  5672. \draw (x) to (rsp);
  5673. \draw (y) to (rsp);
  5674. \path[-.,bend left=15] (z) edge node {} (rsp);
  5675. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5676. \draw (rax) to (rsp);
  5677. \end{tikzpicture}
  5678. \]
  5679. In the last step of the algorithm, we color \code{x} with $1$.
  5680. \[
  5681. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5682. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5683. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5684. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5685. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5686. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  5687. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5688. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5689. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5690. \draw (t1) to (rax);
  5691. \draw (t1) to (z);
  5692. \draw (z) to (y);
  5693. \draw (z) to (w);
  5694. \draw (x) to (w);
  5695. \draw (y) to (w);
  5696. \draw (v) to (w);
  5697. \draw (v) to (rsp);
  5698. \draw (w) to (rsp);
  5699. \draw (x) to (rsp);
  5700. \draw (y) to (rsp);
  5701. \path[-.,bend left=15] (z) edge node {} (rsp);
  5702. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5703. \draw (rax) to (rsp);
  5704. \end{tikzpicture}
  5705. \]
  5706. So, we obtain the following coloring:
  5707. \[
  5708. \{
  5709. \ttm{rax} \mapsto -1,
  5710. \ttm{rsp} \mapsto -2,
  5711. \ttm{t} \mapsto 0,
  5712. \ttm{z} \mapsto 1,
  5713. \ttm{x} \mapsto 1,
  5714. \ttm{y} \mapsto 2,
  5715. \ttm{w} \mapsto 0,
  5716. \ttm{v} \mapsto 1
  5717. \}
  5718. \]
  5719. \fi}
  5720. %
  5721. {\if\edition\pythonEd\pythonColor
  5722. %
  5723. With the DSATUR algorithm in hand, let us return to the running
  5724. example and consider how to color the interference graph in
  5725. figure~\ref{fig:interfere}. We annotate each variable node with a dash
  5726. to indicate that it has not yet been assigned a color. Each register
  5727. node (not shown) should be assigned the number that the register
  5728. corresponds to, for example, color \code{rcx} with the number \code{0}
  5729. and \code{rdx} with \code{1}. The saturation sets are also shown for
  5730. each node; all of them start as the empty set. We do not show the
  5731. register nodes in the graph below because there were no interference
  5732. edges involving registers in this program, but in general there can
  5733. be.
  5734. %
  5735. \[
  5736. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5737. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  5738. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  5739. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  5740. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5741. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5742. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5743. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5744. \draw (t0) to (t1);
  5745. \draw (t0) to (z);
  5746. \draw (z) to (y);
  5747. \draw (z) to (w);
  5748. \draw (x) to (w);
  5749. \draw (y) to (w);
  5750. \draw (v) to (w);
  5751. \end{tikzpicture}
  5752. \]
  5753. The algorithm says to select a maximally saturated vertex, but they
  5754. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  5755. then color it with the first available integer, which is $0$. We mark
  5756. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  5757. they interfere with $\ttm{tmp\_0}$.
  5758. \[
  5759. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5760. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  5761. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5762. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  5763. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5764. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5765. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5766. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5767. \draw (t0) to (t1);
  5768. \draw (t0) to (z);
  5769. \draw (z) to (y);
  5770. \draw (z) to (w);
  5771. \draw (x) to (w);
  5772. \draw (y) to (w);
  5773. \draw (v) to (w);
  5774. \end{tikzpicture}
  5775. \]
  5776. We repeat the process. The most saturated vertices are \code{z} and
  5777. \code{tmp\_1}, so we choose \code{z} and color it with the first
  5778. available number, which is $1$. We add $1$ to the saturation for the
  5779. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  5780. \[
  5781. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5782. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5783. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5784. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5785. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5786. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5787. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5788. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5789. \draw (t0) to (t1);
  5790. \draw (t0) to (z);
  5791. \draw (z) to (y);
  5792. \draw (z) to (w);
  5793. \draw (x) to (w);
  5794. \draw (y) to (w);
  5795. \draw (v) to (w);
  5796. \end{tikzpicture}
  5797. \]
  5798. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  5799. \code{y}. We color \code{w} with the first available color, which
  5800. is $0$.
  5801. \[
  5802. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5803. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5804. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5805. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5806. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5807. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  5808. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  5809. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5810. \draw (t0) to (t1);
  5811. \draw (t0) to (z);
  5812. \draw (z) to (y);
  5813. \draw (z) to (w);
  5814. \draw (x) to (w);
  5815. \draw (y) to (w);
  5816. \draw (v) to (w);
  5817. \end{tikzpicture}
  5818. \]
  5819. Now \code{y} is the most saturated, so we color it with $2$.
  5820. \[
  5821. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5822. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5823. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5824. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5825. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5826. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5827. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5828. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5829. \draw (t0) to (t1);
  5830. \draw (t0) to (z);
  5831. \draw (z) to (y);
  5832. \draw (z) to (w);
  5833. \draw (x) to (w);
  5834. \draw (y) to (w);
  5835. \draw (v) to (w);
  5836. \end{tikzpicture}
  5837. \]
  5838. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  5839. We choose to color \code{v} with $1$.
  5840. \[
  5841. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5842. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5843. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5844. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5845. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5846. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5847. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5848. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5849. \draw (t0) to (t1);
  5850. \draw (t0) to (z);
  5851. \draw (z) to (y);
  5852. \draw (z) to (w);
  5853. \draw (x) to (w);
  5854. \draw (y) to (w);
  5855. \draw (v) to (w);
  5856. \end{tikzpicture}
  5857. \]
  5858. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  5859. \[
  5860. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5861. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5862. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5863. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5864. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  5865. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5866. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5867. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5868. \draw (t0) to (t1);
  5869. \draw (t0) to (z);
  5870. \draw (z) to (y);
  5871. \draw (z) to (w);
  5872. \draw (x) to (w);
  5873. \draw (y) to (w);
  5874. \draw (v) to (w);
  5875. \end{tikzpicture}
  5876. \]
  5877. So, we obtain the following coloring:
  5878. \[
  5879. \{ \ttm{tmp\_0} \mapsto 0,
  5880. \ttm{tmp\_1} \mapsto 1,
  5881. \ttm{z} \mapsto 1,
  5882. \ttm{x} \mapsto 1,
  5883. \ttm{y} \mapsto 2,
  5884. \ttm{w} \mapsto 0,
  5885. \ttm{v} \mapsto 1 \}
  5886. \]
  5887. \fi}
  5888. We recommend creating an auxiliary function named \code{color\_graph}
  5889. that takes an interference graph and a list of all the variables in
  5890. the program. This function should return a mapping of variables to
  5891. their colors (represented as natural numbers). By creating this helper
  5892. function, you will be able to reuse it in chapter~\ref{ch:Lfun}
  5893. when we add support for functions.
  5894. To prioritize the processing of highly saturated nodes inside the
  5895. \code{color\_graph} function, we recommend using the priority queue
  5896. data structure \racket{described in figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  5897. addition, you will need to maintain a mapping from variables to their
  5898. handles in the priority queue so that you can notify the priority
  5899. queue when their saturation changes.}
  5900. {\if\edition\racketEd
  5901. \begin{figure}[tp]
  5902. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  5903. \small
  5904. \begin{tcolorbox}[title=Priority Queue]
  5905. A \emph{priority queue}\index{subject}{priority queue}
  5906. is a collection of items in which the
  5907. removal of items is governed by priority. In a \emph{min} queue,
  5908. lower priority items are removed first. An implementation is in
  5909. \code{priority\_queue.rkt} of the support code.\index{subject}{min queue}
  5910. \begin{description}
  5911. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  5912. priority queue that uses the $\itm{cmp}$ predicate to determine
  5913. whether its first argument has lower or equal priority to its
  5914. second argument.
  5915. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  5916. items in the queue.
  5917. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  5918. the item into the queue and returns a handle for the item in the
  5919. queue.
  5920. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  5921. the lowest priority.
  5922. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  5923. notifies the queue that the priority has decreased for the item
  5924. associated with the given handle.
  5925. \end{description}
  5926. \end{tcolorbox}
  5927. %\end{wrapfigure}
  5928. \caption{The priority queue data structure.}
  5929. \label{fig:priority-queue}
  5930. \end{figure}
  5931. \fi}
  5932. With the coloring complete, we finalize the assignment of variables to
  5933. registers and stack locations. We map the first $k$ colors to the $k$
  5934. registers and the rest of the colors to stack locations. Suppose for
  5935. the moment that we have just one register to use for register
  5936. allocation, \key{rcx}. Then we have the following map from colors to
  5937. locations.
  5938. \[
  5939. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  5940. \]
  5941. Composing this mapping with the coloring, we arrive at the following
  5942. assignment of variables to locations.
  5943. {\if\edition\racketEd
  5944. \begin{gather*}
  5945. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  5946. \ttm{w} \mapsto \key{\%rcx}, \,
  5947. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  5948. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  5949. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5950. \ttm{t} \mapsto \key{\%rcx} \}
  5951. \end{gather*}
  5952. \fi}
  5953. {\if\edition\pythonEd\pythonColor
  5954. \begin{gather*}
  5955. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  5956. \ttm{w} \mapsto \key{\%rcx}, \,
  5957. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  5958. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  5959. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5960. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5961. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5962. \end{gather*}
  5963. \fi}
  5964. Adapt the code from the \code{assign\_homes} pass
  5965. (section~\ref{sec:assign-Lvar}) to replace the variables with their
  5966. assigned location. Applying this assignment to our running
  5967. example shown next, on the left, yields the program on the right.
  5968. % why frame size of 32? -JGS
  5969. \begin{center}
  5970. {\if\edition\racketEd
  5971. \begin{minipage}{0.35\textwidth}
  5972. \begin{lstlisting}
  5973. movq $1, v
  5974. movq $42, w
  5975. movq v, x
  5976. addq $7, x
  5977. movq x, y
  5978. movq x, z
  5979. addq w, z
  5980. movq y, t
  5981. negq t
  5982. movq z, %rax
  5983. addq t, %rax
  5984. jmp conclusion
  5985. \end{lstlisting}
  5986. \end{minipage}
  5987. $\Rightarrow\qquad$
  5988. \begin{minipage}{0.45\textwidth}
  5989. \begin{lstlisting}
  5990. movq $1, -8(%rbp)
  5991. movq $42, %rcx
  5992. movq -8(%rbp), -8(%rbp)
  5993. addq $7, -8(%rbp)
  5994. movq -8(%rbp), -16(%rbp)
  5995. movq -8(%rbp), -8(%rbp)
  5996. addq %rcx, -8(%rbp)
  5997. movq -16(%rbp), %rcx
  5998. negq %rcx
  5999. movq -8(%rbp), %rax
  6000. addq %rcx, %rax
  6001. jmp conclusion
  6002. \end{lstlisting}
  6003. \end{minipage}
  6004. \fi}
  6005. {\if\edition\pythonEd\pythonColor
  6006. \begin{minipage}{0.35\textwidth}
  6007. \begin{lstlisting}
  6008. movq $1, v
  6009. movq $42, w
  6010. movq v, x
  6011. addq $7, x
  6012. movq x, y
  6013. movq x, z
  6014. addq w, z
  6015. movq y, tmp_0
  6016. negq tmp_0
  6017. movq z, tmp_1
  6018. addq tmp_0, tmp_1
  6019. movq tmp_1, %rdi
  6020. callq print_int
  6021. \end{lstlisting}
  6022. \end{minipage}
  6023. $\Rightarrow\qquad$
  6024. \begin{minipage}{0.45\textwidth}
  6025. \begin{lstlisting}
  6026. movq $1, -8(%rbp)
  6027. movq $42, %rcx
  6028. movq -8(%rbp), -8(%rbp)
  6029. addq $7, -8(%rbp)
  6030. movq -8(%rbp), -16(%rbp)
  6031. movq -8(%rbp), -8(%rbp)
  6032. addq %rcx, -8(%rbp)
  6033. movq -16(%rbp), %rcx
  6034. negq %rcx
  6035. movq -8(%rbp), -8(%rbp)
  6036. addq %rcx, -8(%rbp)
  6037. movq -8(%rbp), %rdi
  6038. callq print_int
  6039. \end{lstlisting}
  6040. \end{minipage}
  6041. \fi}
  6042. \end{center}
  6043. \begin{exercise}\normalfont\normalsize
  6044. Implement the \code{allocate\_registers} pass.
  6045. Create five programs that exercise all aspects of the register
  6046. allocation algorithm, including spilling variables to the stack.
  6047. %
  6048. {\if\edition\racketEd
  6049. Replace \code{assign\_homes} in the list of \code{passes} in the
  6050. \code{run-tests.rkt} script with the three new passes:
  6051. \code{uncover\_live}, \code{build\_interference}, and
  6052. \code{allocate\_registers}.
  6053. Temporarily remove the call to \code{compiler-tests}.
  6054. Run the script to test the register allocator.
  6055. \fi}
  6056. %
  6057. {\if\edition\pythonEd\pythonColor
  6058. Run the \code{run-tests.py} script to to check whether the
  6059. output programs produce the same result as the input programs.
  6060. \fi}
  6061. \end{exercise}
  6062. \section{Patch Instructions}
  6063. \label{sec:patch-instructions}
  6064. The remaining step in the compilation to x86 is to ensure that the
  6065. instructions have at most one argument that is a memory access.
  6066. %
  6067. In the running example, the instruction \code{movq -8(\%rbp),
  6068. -16(\%rbp)} is problematic. Recall from section~\ref{sec:patch-s0}
  6069. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  6070. then move \code{rax} into \code{-16(\%rbp)}.
  6071. %
  6072. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  6073. problematic, but they can simply be deleted. In general, we recommend
  6074. deleting all the trivial moves whose source and destination are the
  6075. same location.
  6076. %
  6077. The following is the output of \code{patch\_instructions} on the
  6078. running example.
  6079. \begin{center}
  6080. {\if\edition\racketEd
  6081. \begin{minipage}{0.35\textwidth}
  6082. \begin{lstlisting}
  6083. movq $1, -8(%rbp)
  6084. movq $42, %rcx
  6085. movq -8(%rbp), -8(%rbp)
  6086. addq $7, -8(%rbp)
  6087. movq -8(%rbp), -16(%rbp)
  6088. movq -8(%rbp), -8(%rbp)
  6089. addq %rcx, -8(%rbp)
  6090. movq -16(%rbp), %rcx
  6091. negq %rcx
  6092. movq -8(%rbp), %rax
  6093. addq %rcx, %rax
  6094. jmp conclusion
  6095. \end{lstlisting}
  6096. \end{minipage}
  6097. $\Rightarrow\qquad$
  6098. \begin{minipage}{0.45\textwidth}
  6099. \begin{lstlisting}
  6100. movq $1, -8(%rbp)
  6101. movq $42, %rcx
  6102. addq $7, -8(%rbp)
  6103. movq -8(%rbp), %rax
  6104. movq %rax, -16(%rbp)
  6105. addq %rcx, -8(%rbp)
  6106. movq -16(%rbp), %rcx
  6107. negq %rcx
  6108. movq -8(%rbp), %rax
  6109. addq %rcx, %rax
  6110. jmp conclusion
  6111. \end{lstlisting}
  6112. \end{minipage}
  6113. \fi}
  6114. {\if\edition\pythonEd\pythonColor
  6115. \begin{minipage}{0.35\textwidth}
  6116. \begin{lstlisting}
  6117. movq $1, -8(%rbp)
  6118. movq $42, %rcx
  6119. movq -8(%rbp), -8(%rbp)
  6120. addq $7, -8(%rbp)
  6121. movq -8(%rbp), -16(%rbp)
  6122. movq -8(%rbp), -8(%rbp)
  6123. addq %rcx, -8(%rbp)
  6124. movq -16(%rbp), %rcx
  6125. negq %rcx
  6126. movq -8(%rbp), -8(%rbp)
  6127. addq %rcx, -8(%rbp)
  6128. movq -8(%rbp), %rdi
  6129. callq print_int
  6130. \end{lstlisting}
  6131. \end{minipage}
  6132. $\Rightarrow\qquad$
  6133. \begin{minipage}{0.45\textwidth}
  6134. \begin{lstlisting}
  6135. movq $1, -8(%rbp)
  6136. movq $42, %rcx
  6137. addq $7, -8(%rbp)
  6138. movq -8(%rbp), %rax
  6139. movq %rax, -16(%rbp)
  6140. addq %rcx, -8(%rbp)
  6141. movq -16(%rbp), %rcx
  6142. negq %rcx
  6143. addq %rcx, -8(%rbp)
  6144. movq -8(%rbp), %rdi
  6145. callq print_int
  6146. \end{lstlisting}
  6147. \end{minipage}
  6148. \fi}
  6149. \end{center}
  6150. \begin{exercise}\normalfont\normalsize
  6151. %
  6152. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  6153. %
  6154. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  6155. %in the \code{run-tests.rkt} script.
  6156. %
  6157. Run the script to test the \code{patch\_instructions} pass.
  6158. \end{exercise}
  6159. \section{Prelude and Conclusion}
  6160. \label{sec:print-x86-reg-alloc}
  6161. \index{subject}{calling conventions}
  6162. \index{subject}{prelude}\index{subject}{conclusion}
  6163. Recall that this pass generates the prelude and conclusion
  6164. instructions to satisfy the x86 calling conventions
  6165. (section~\ref{sec:calling-conventions}). With the addition of the
  6166. register allocator, the callee-saved registers used by the register
  6167. allocator must be saved in the prelude and restored in the conclusion.
  6168. In the \code{allocate\_registers} pass,
  6169. %
  6170. \racket{add an entry to the \itm{info}
  6171. of \code{X86Program} named \code{used\_callee}}
  6172. %
  6173. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  6174. %
  6175. that stores the set of callee-saved registers that were assigned to
  6176. variables. The \code{prelude\_and\_conclusion} pass can then access
  6177. this information to decide which callee-saved registers need to be
  6178. saved and restored.
  6179. %
  6180. When calculating the amount to adjust the \code{rsp} in the prelude,
  6181. make sure to take into account the space used for saving the
  6182. callee-saved registers. Also, remember that the frame needs to be a
  6183. multiple of 16 bytes! We recommend using the following equation for
  6184. the amount $A$ to subtract from the \code{rsp}. Let $S$ be the number
  6185. of stack locations used by spilled variables\footnote{Sometimes two or
  6186. more spilled variables are assigned to the same stack location, so
  6187. $S$ can be less than the number of spilled variables.} and $C$ be
  6188. the number of callee-saved registers that were
  6189. allocated\index{subject}{allocate} to
  6190. variables. The $\itm{align}$ function rounds a number up to the
  6191. nearest 16 bytes.
  6192. \[
  6193. \itm{A} = \itm{align}(8\itm{S} + 8\itm{C}) - 8\itm{C}
  6194. \]
  6195. The reason we subtract $8\itm{C}$ in this equation is that the
  6196. prelude uses \code{pushq} to save each of the callee-saved registers,
  6197. and \code{pushq} subtracts $8$ from the \code{rsp}.
  6198. \racket{An overview of all the passes involved in register
  6199. allocation is shown in figure~\ref{fig:reg-alloc-passes}.}
  6200. {\if\edition\racketEd
  6201. \begin{figure}[tbp]
  6202. \begin{tcolorbox}[colback=white]
  6203. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6204. \node (Lvar) at (0,2) {\large \LangVar{}};
  6205. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  6206. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  6207. \node (Cvar-1) at (0,0) {\large \LangCVar{}};
  6208. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  6209. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  6210. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  6211. \node (x86-5) at (7,-4) {\large \LangXInt{}};
  6212. \node (x86-2-1) at (0,-4) {\large \LangXVar{}};
  6213. \node (x86-2-2) at (3,-4) {\large \LangXVar{}};
  6214. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  6215. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  6216. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (Cvar-1);
  6217. \path[->,bend right=15] (Cvar-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  6218. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  6219. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  6220. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  6221. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  6222. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  6223. \end{tikzpicture}
  6224. \end{tcolorbox}
  6225. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  6226. \label{fig:reg-alloc-passes}
  6227. \end{figure}
  6228. \fi}
  6229. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  6230. the running example (figure~\ref{fig:reg-eg}). To demonstrate both the
  6231. use of registers and the stack, we limit the register allocator for
  6232. this example to use just two registers: \code{rcx} (color $0$) and
  6233. \code{rbx} (color $1$). In the prelude\index{subject}{prelude} of the
  6234. \code{main} function, we push \code{rbx} onto the stack because it is
  6235. a callee-saved register and it was assigned to a variable by the
  6236. register allocator. We subtract \code{8} from the \code{rsp} at the
  6237. end of the prelude to reserve space for the one spilled variable.
  6238. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  6239. Moving on to the program proper, we see how the registers were
  6240. allocated.
  6241. %
  6242. \racket{Variables \code{v}, \code{x}, and \code{z} were assigned to
  6243. \code{rbx}, and variables \code{w} and \code{t} was assigned to \code{rcx}.}
  6244. %
  6245. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  6246. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  6247. were assigned to \code{rbx}.}
  6248. %
  6249. Variable \racket{\code{y}}\python{\code{z}} was spilled to the stack
  6250. location \code{-16(\%rbp)}. Recall that the prelude saved the
  6251. callee-save register \code{rbx} onto the stack. The spilled variables
  6252. must be placed lower on the stack than the saved callee-save
  6253. registers, so in this case \racket{\code{y}}\python{z} is placed at
  6254. \code{-16(\%rbp)}.
  6255. In the conclusion\index{subject}{conclusion}, we undo the work that was
  6256. done in the prelude. We move the stack pointer up by \code{8} bytes
  6257. (the room for spilled variables), then pop the old values of
  6258. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  6259. \code{retq} to return control to the operating system.
  6260. \begin{figure}[tbp]
  6261. \begin{minipage}{0.55\textwidth}
  6262. \begin{tcolorbox}[colback=white]
  6263. % var_test_28.rkt
  6264. % (use-minimal-set-of-registers! #t)
  6265. % 0 -> rcx
  6266. % 1 -> rbx
  6267. %
  6268. % t 0 rcx
  6269. % z 1 rbx
  6270. % w 0 rcx
  6271. % y 2 rbp -16
  6272. % v 1 rbx
  6273. % x 1 rbx
  6274. {\if\edition\racketEd
  6275. \begin{lstlisting}
  6276. start:
  6277. movq $1, %rbx
  6278. movq $42, %rcx
  6279. addq $7, %rbx
  6280. movq %rbx, -16(%rbp)
  6281. addq %rcx, %rbx
  6282. movq -16(%rbp), %rcx
  6283. negq %rcx
  6284. movq %rbx, %rax
  6285. addq %rcx, %rax
  6286. jmp conclusion
  6287. .globl main
  6288. main:
  6289. pushq %rbp
  6290. movq %rsp, %rbp
  6291. pushq %rbx
  6292. subq $8, %rsp
  6293. jmp start
  6294. conclusion:
  6295. addq $8, %rsp
  6296. popq %rbx
  6297. popq %rbp
  6298. retq
  6299. \end{lstlisting}
  6300. \fi}
  6301. {\if\edition\pythonEd\pythonColor
  6302. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  6303. \begin{lstlisting}
  6304. .globl main
  6305. main:
  6306. pushq %rbp
  6307. movq %rsp, %rbp
  6308. pushq %rbx
  6309. subq $8, %rsp
  6310. movq $1, %rcx
  6311. movq $42, %rbx
  6312. addq $7, %rcx
  6313. movq %rcx, -16(%rbp)
  6314. addq %rbx, -16(%rbp)
  6315. negq %rcx
  6316. movq -16(%rbp), %rbx
  6317. addq %rcx, %rbx
  6318. movq %rbx, %rdi
  6319. callq print_int
  6320. addq $8, %rsp
  6321. popq %rbx
  6322. popq %rbp
  6323. retq
  6324. \end{lstlisting}
  6325. \fi}
  6326. \end{tcolorbox}
  6327. \end{minipage}
  6328. \caption{The x86 output from the running example
  6329. (figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  6330. and \code{rcx}.}
  6331. \label{fig:running-example-x86}
  6332. \end{figure}
  6333. \begin{exercise}\normalfont\normalsize
  6334. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  6335. %
  6336. \racket{
  6337. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  6338. list of passes and the call to \code{compiler-tests}.}
  6339. %
  6340. Run the script to test the complete compiler for \LangVar{} that
  6341. performs register allocation.
  6342. \end{exercise}
  6343. \section{Challenge: Move Biasing}
  6344. \label{sec:move-biasing}
  6345. \index{subject}{move biasing}
  6346. This section describes an enhancement to the register allocator,
  6347. called move biasing, for students who are looking for an extra
  6348. challenge.
  6349. {\if\edition\racketEd
  6350. To motivate the need for move biasing we return to the running example,
  6351. but this time we use all the general purpose registers. So, we have
  6352. the following mapping of color numbers to registers.
  6353. \[
  6354. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi}, \ldots \}
  6355. \]
  6356. Using the same assignment of variables to color numbers that was
  6357. produced by the register allocator described in the last section, we
  6358. get the following program.
  6359. \begin{center}
  6360. \begin{minipage}{0.35\textwidth}
  6361. \begin{lstlisting}
  6362. movq $1, v
  6363. movq $42, w
  6364. movq v, x
  6365. addq $7, x
  6366. movq x, y
  6367. movq x, z
  6368. addq w, z
  6369. movq y, t
  6370. negq t
  6371. movq z, %rax
  6372. addq t, %rax
  6373. jmp conclusion
  6374. \end{lstlisting}
  6375. \end{minipage}
  6376. $\Rightarrow\qquad$
  6377. \begin{minipage}{0.45\textwidth}
  6378. \begin{lstlisting}
  6379. movq $1, %rdx
  6380. movq $42, %rcx
  6381. movq %rdx, %rdx
  6382. addq $7, %rdx
  6383. movq %rdx, %rsi
  6384. movq %rdx, %rdx
  6385. addq %rcx, %rdx
  6386. movq %rsi, %rcx
  6387. negq %rcx
  6388. movq %rdx, %rax
  6389. addq %rcx, %rax
  6390. jmp conclusion
  6391. \end{lstlisting}
  6392. \end{minipage}
  6393. \end{center}
  6394. In this output code there are two \key{movq} instructions that
  6395. can be removed because their source and target are the same. However,
  6396. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  6397. register, we could instead remove three \key{movq} instructions. We
  6398. can accomplish this by taking into account which variables appear in
  6399. \key{movq} instructions with which other variables.
  6400. \fi}
  6401. {\if\edition\pythonEd\pythonColor
  6402. %
  6403. To motivate the need for move biasing we return to the running example
  6404. and recall that in section~\ref{sec:patch-instructions} we were able to
  6405. remove three trivial move instructions from the running
  6406. example. However, we could remove another trivial move if we were able
  6407. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  6408. We say that two variables $p$ and $q$ are \emph{move
  6409. related}\index{subject}{move related} if they participate together in
  6410. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  6411. \key{movq} $q$\key{,} $p$.
  6412. %
  6413. Recall that we color variables that are more saturated before coloring
  6414. variables that are less saturated, and in the case of equally
  6415. saturated variables, we choose randomly. Now we break such ties by
  6416. giving preference to variables that have an available color that is
  6417. the same as the color of a move-related variable.
  6418. %
  6419. Furthermore, when the register allocator chooses a color for a
  6420. variable, it should prefer a color that has already been used for a
  6421. move-related variable if one exists (and assuming that they do not
  6422. interfere). This preference should not override the preference for
  6423. registers over stack locations. So, this preference should be used as
  6424. a tie breaker in choosing between two registers or in choosing between
  6425. two stack locations.
  6426. We recommend representing the move relationships in a graph, similarly
  6427. to how we represented interference. The following is the \emph{move
  6428. graph} for our running example.
  6429. {\if\edition\racketEd
  6430. \[
  6431. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6432. \node (rax) at (0,0) {$\ttm{rax}$};
  6433. \node (rsp) at (9,2) {$\ttm{rsp}$};
  6434. \node (t) at (0,2) {$\ttm{t}$};
  6435. \node (z) at (3,2) {$\ttm{z}$};
  6436. \node (x) at (6,2) {$\ttm{x}$};
  6437. \node (y) at (3,0) {$\ttm{y}$};
  6438. \node (w) at (6,0) {$\ttm{w}$};
  6439. \node (v) at (9,0) {$\ttm{v}$};
  6440. \draw (v) to (x);
  6441. \draw (x) to (y);
  6442. \draw (x) to (z);
  6443. \draw (y) to (t);
  6444. \end{tikzpicture}
  6445. \]
  6446. \fi}
  6447. %
  6448. {\if\edition\pythonEd\pythonColor
  6449. \[
  6450. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6451. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  6452. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  6453. \node (z) at (3,2) {$\ttm{z}$};
  6454. \node (x) at (6,2) {$\ttm{x}$};
  6455. \node (y) at (3,0) {$\ttm{y}$};
  6456. \node (w) at (6,0) {$\ttm{w}$};
  6457. \node (v) at (9,0) {$\ttm{v}$};
  6458. \draw (y) to (t0);
  6459. \draw (z) to (x);
  6460. \draw (z) to (t1);
  6461. \draw (x) to (y);
  6462. \draw (x) to (v);
  6463. \end{tikzpicture}
  6464. \]
  6465. \fi}
  6466. {\if\edition\racketEd
  6467. Now we replay the graph coloring, pausing to see the coloring of
  6468. \code{y}. Recall the following configuration. The most saturated vertices
  6469. were \code{w} and \code{y}.
  6470. \[
  6471. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6472. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6473. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6474. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6475. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6476. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6477. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  6478. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  6479. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6480. \draw (t1) to (rax);
  6481. \draw (t1) to (z);
  6482. \draw (z) to (y);
  6483. \draw (z) to (w);
  6484. \draw (x) to (w);
  6485. \draw (y) to (w);
  6486. \draw (v) to (w);
  6487. \draw (v) to (rsp);
  6488. \draw (w) to (rsp);
  6489. \draw (x) to (rsp);
  6490. \draw (y) to (rsp);
  6491. \path[-.,bend left=15] (z) edge node {} (rsp);
  6492. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6493. \draw (rax) to (rsp);
  6494. \end{tikzpicture}
  6495. \]
  6496. %
  6497. The last time, we chose to color \code{w} with $0$. This time, we see
  6498. that \code{w} is not move-related to any vertex, but \code{y} is
  6499. move-related to \code{t}. So we choose to color \code{y} with $0$,
  6500. the same color as \code{t}.
  6501. \[
  6502. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6503. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6504. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6505. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6506. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6507. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6508. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  6509. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  6510. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6511. \draw (t1) to (rax);
  6512. \draw (t1) to (z);
  6513. \draw (z) to (y);
  6514. \draw (z) to (w);
  6515. \draw (x) to (w);
  6516. \draw (y) to (w);
  6517. \draw (v) to (w);
  6518. \draw (v) to (rsp);
  6519. \draw (w) to (rsp);
  6520. \draw (x) to (rsp);
  6521. \draw (y) to (rsp);
  6522. \path[-.,bend left=15] (z) edge node {} (rsp);
  6523. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6524. \draw (rax) to (rsp);
  6525. \end{tikzpicture}
  6526. \]
  6527. Now \code{w} is the most saturated, so we color it $2$.
  6528. \[
  6529. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6530. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6531. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6532. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6533. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6534. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  6535. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6536. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6537. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  6538. \draw (t1) to (rax);
  6539. \draw (t1) to (z);
  6540. \draw (z) to (y);
  6541. \draw (z) to (w);
  6542. \draw (x) to (w);
  6543. \draw (y) to (w);
  6544. \draw (v) to (w);
  6545. \draw (v) to (rsp);
  6546. \draw (w) to (rsp);
  6547. \draw (x) to (rsp);
  6548. \draw (y) to (rsp);
  6549. \path[-.,bend left=15] (z) edge node {} (rsp);
  6550. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6551. \draw (rax) to (rsp);
  6552. \end{tikzpicture}
  6553. \]
  6554. At this point, vertices \code{x} and \code{v} are most saturated, but
  6555. \code{x} is move related to \code{y} and \code{z}, so we color
  6556. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  6557. \[
  6558. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6559. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6560. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6561. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6562. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6563. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  6564. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6565. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6566. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  6567. \draw (t1) to (rax);
  6568. \draw (t) to (z);
  6569. \draw (z) to (y);
  6570. \draw (z) to (w);
  6571. \draw (x) to (w);
  6572. \draw (y) to (w);
  6573. \draw (v) to (w);
  6574. \draw (v) to (rsp);
  6575. \draw (w) to (rsp);
  6576. \draw (x) to (rsp);
  6577. \draw (y) to (rsp);
  6578. \path[-.,bend left=15] (z) edge node {} (rsp);
  6579. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6580. \draw (rax) to (rsp);
  6581. \end{tikzpicture}
  6582. \]
  6583. \fi}
  6584. %
  6585. {\if\edition\pythonEd\pythonColor
  6586. Now we replay the graph coloring, pausing before the coloring of
  6587. \code{w}. Recall the following configuration. The most saturated vertices
  6588. were \code{tmp\_1}, \code{w}, and \code{y}.
  6589. \[
  6590. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6591. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6592. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6593. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6594. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6595. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  6596. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  6597. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6598. \draw (t0) to (t1);
  6599. \draw (t0) to (z);
  6600. \draw (z) to (y);
  6601. \draw (z) to (w);
  6602. \draw (x) to (w);
  6603. \draw (y) to (w);
  6604. \draw (v) to (w);
  6605. \end{tikzpicture}
  6606. \]
  6607. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  6608. or \code{y}, but note that \code{w} is not move related to any
  6609. variables, whereas \code{y} and \code{tmp\_1} are move related to
  6610. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  6611. \code{y} and color it $0$, we can delete another move instruction.
  6612. \[
  6613. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6614. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6615. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6616. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6617. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6618. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  6619. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  6620. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6621. \draw (t0) to (t1);
  6622. \draw (t0) to (z);
  6623. \draw (z) to (y);
  6624. \draw (z) to (w);
  6625. \draw (x) to (w);
  6626. \draw (y) to (w);
  6627. \draw (v) to (w);
  6628. \end{tikzpicture}
  6629. \]
  6630. Now \code{w} is the most saturated, so we color it $2$.
  6631. \[
  6632. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6633. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6634. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6635. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6636. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  6637. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6638. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6639. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  6640. \draw (t0) to (t1);
  6641. \draw (t0) to (z);
  6642. \draw (z) to (y);
  6643. \draw (z) to (w);
  6644. \draw (x) to (w);
  6645. \draw (y) to (w);
  6646. \draw (v) to (w);
  6647. \end{tikzpicture}
  6648. \]
  6649. To finish the coloring, \code{x} and \code{v} get $0$ and
  6650. \code{tmp\_1} gets $1$.
  6651. \[
  6652. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6653. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6654. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  6655. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6656. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  6657. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6658. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6659. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  6660. \draw (t0) to (t1);
  6661. \draw (t0) to (z);
  6662. \draw (z) to (y);
  6663. \draw (z) to (w);
  6664. \draw (x) to (w);
  6665. \draw (y) to (w);
  6666. \draw (v) to (w);
  6667. \end{tikzpicture}
  6668. \]
  6669. \fi}
  6670. So, we have the following assignment of variables to registers.
  6671. {\if\edition\racketEd
  6672. \begin{gather*}
  6673. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6674. \ttm{w} \mapsto \key{\%rsi}, \,
  6675. \ttm{x} \mapsto \key{\%rcx}, \,
  6676. \ttm{y} \mapsto \key{\%rcx}, \,
  6677. \ttm{z} \mapsto \key{\%rdx}, \,
  6678. \ttm{t} \mapsto \key{\%rcx} \}
  6679. \end{gather*}
  6680. \fi}
  6681. {\if\edition\pythonEd\pythonColor
  6682. \begin{gather*}
  6683. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6684. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  6685. \ttm{x} \mapsto \key{\%rcx}, \,
  6686. \ttm{y} \mapsto \key{\%rcx}, \\
  6687. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6688. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6689. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6690. \end{gather*}
  6691. \fi}
  6692. %
  6693. We apply this register assignment to the running example shown next,
  6694. on the left, to obtain the code in the middle. The
  6695. \code{patch\_instructions} then deletes the trivial moves to obtain
  6696. the code on the right.
  6697. {\if\edition\racketEd
  6698. \begin{center}
  6699. \begin{minipage}{0.2\textwidth}
  6700. \begin{lstlisting}
  6701. movq $1, v
  6702. movq $42, w
  6703. movq v, x
  6704. addq $7, x
  6705. movq x, y
  6706. movq x, z
  6707. addq w, z
  6708. movq y, t
  6709. negq t
  6710. movq z, %rax
  6711. addq t, %rax
  6712. jmp conclusion
  6713. \end{lstlisting}
  6714. \end{minipage}
  6715. $\Rightarrow\qquad$
  6716. \begin{minipage}{0.25\textwidth}
  6717. \begin{lstlisting}
  6718. movq $1, %rcx
  6719. movq $42, %rsi
  6720. movq %rcx, %rcx
  6721. addq $7, %rcx
  6722. movq %rcx, %rcx
  6723. movq %rcx, %rdx
  6724. addq %rsi, %rdx
  6725. movq %rcx, %rcx
  6726. negq %rcx
  6727. movq %rdx, %rax
  6728. addq %rcx, %rax
  6729. jmp conclusion
  6730. \end{lstlisting}
  6731. \end{minipage}
  6732. $\Rightarrow\qquad$
  6733. \begin{minipage}{0.23\textwidth}
  6734. \begin{lstlisting}
  6735. movq $1, %rcx
  6736. movq $42, %rsi
  6737. addq $7, %rcx
  6738. movq %rcx, %rdx
  6739. addq %rsi, %rdx
  6740. negq %rcx
  6741. movq %rdx, %rax
  6742. addq %rcx, %rax
  6743. jmp conclusion
  6744. \end{lstlisting}
  6745. \end{minipage}
  6746. \end{center}
  6747. \fi}
  6748. {\if\edition\pythonEd\pythonColor
  6749. \begin{center}
  6750. \begin{minipage}{0.20\textwidth}
  6751. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6752. movq $1, v
  6753. movq $42, w
  6754. movq v, x
  6755. addq $7, x
  6756. movq x, y
  6757. movq x, z
  6758. addq w, z
  6759. movq y, tmp_0
  6760. negq tmp_0
  6761. movq z, tmp_1
  6762. addq tmp_0, tmp_1
  6763. movq tmp_1, %rdi
  6764. callq _print_int
  6765. \end{lstlisting}
  6766. \end{minipage}
  6767. ${\Rightarrow\qquad}$
  6768. \begin{minipage}{0.35\textwidth}
  6769. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6770. movq $1, %rcx
  6771. movq $42, -16(%rbp)
  6772. movq %rcx, %rcx
  6773. addq $7, %rcx
  6774. movq %rcx, %rcx
  6775. movq %rcx, -8(%rbp)
  6776. addq -16(%rbp), -8(%rbp)
  6777. movq %rcx, %rcx
  6778. negq %rcx
  6779. movq -8(%rbp), -8(%rbp)
  6780. addq %rcx, -8(%rbp)
  6781. movq -8(%rbp), %rdi
  6782. callq _print_int
  6783. \end{lstlisting}
  6784. \end{minipage}
  6785. ${\Rightarrow\qquad}$
  6786. \begin{minipage}{0.20\textwidth}
  6787. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6788. movq $1, %rcx
  6789. movq $42, -16(%rbp)
  6790. addq $7, %rcx
  6791. movq %rcx, -8(%rbp)
  6792. movq -16(%rbp), %rax
  6793. addq %rax, -8(%rbp)
  6794. negq %rcx
  6795. addq %rcx, -8(%rbp)
  6796. movq -8(%rbp), %rdi
  6797. callq print_int
  6798. \end{lstlisting}
  6799. \end{minipage}
  6800. \end{center}
  6801. \fi}
  6802. \begin{exercise}\normalfont\normalsize
  6803. Change your implementation of \code{allocate\_registers} to take move
  6804. biasing into account. Create two new tests that include at least one
  6805. opportunity for move biasing, and visually inspect the output x86
  6806. programs to make sure that your move biasing is working properly. Make
  6807. sure that your compiler still passes all the tests.
  6808. \end{exercise}
  6809. %To do: another neat challenge would be to do
  6810. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  6811. %% \subsection{Output of the Running Example}
  6812. %% \label{sec:reg-alloc-output}
  6813. % challenge: prioritize variables based on execution frequencies
  6814. % and the number of uses of a variable
  6815. % challenge: enhance the coloring algorithm using Chaitin's
  6816. % approach of prioritizing high-degree variables
  6817. % by removing low-degree variables (coloring them later)
  6818. % from the interference graph
  6819. \section{Further Reading}
  6820. \label{sec:register-allocation-further-reading}
  6821. Early register allocation algorithms were developed for Fortran
  6822. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  6823. of graph coloring began in the late 1970s and early 1980s with the
  6824. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  6825. algorithm is based on the following observation of
  6826. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  6827. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  6828. $v$ removed is also $k$ colorable. To see why, suppose that the
  6829. subgraph is $k$ colorable. At worst, the neighbors of $v$ are assigned
  6830. different colors, but because there are fewer than $k$ neighbors, there
  6831. will be one or more colors left over to use for coloring $v$ in $G$.
  6832. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  6833. less than $k$ from the graph and recursively colors the rest of the
  6834. graph. Upon returning from the recursion, it colors $v$ with one of
  6835. the available colors and returns. \citet{Chaitin:1982vn} augments
  6836. this algorithm to handle spilling as follows. If there are no vertices
  6837. of degree lower than $k$ then pick a vertex at random, spill it,
  6838. remove it from the graph, and proceed recursively to color the rest of
  6839. the graph.
  6840. Prior to coloring, \citet{Chaitin:1981vl} merged variables that are
  6841. move-related and that don't interfere with each other, in a process
  6842. called \emph{coalescing}. Although coalescing decreases the number of
  6843. moves, it can make the graph more difficult to
  6844. color. \citet{Briggs:1994kx} proposed \emph{conservative coalescing} in
  6845. which two variables are merged only if they have fewer than $k$
  6846. neighbors of high degree. \citet{George:1996aa} observes that
  6847. conservative coalescing is sometimes too conservative and made it more
  6848. aggressive by iterating the coalescing with the removal of low-degree
  6849. vertices.
  6850. %
  6851. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  6852. also proposed \emph{biased coloring}, in which a variable is assigned to
  6853. the same color as another move-related variable if possible, as
  6854. discussed in section~\ref{sec:move-biasing}.
  6855. %
  6856. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  6857. performs coalescing, graph coloring, and spill code insertion until
  6858. all variables have been assigned a location.
  6859. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  6860. spilled variables that don't have to be: a high-degree variable can be
  6861. colorable if many of its neighbors are assigned the same color.
  6862. \citet{Briggs:1994kx} proposed \emph{optimistic coloring}, in which a
  6863. high-degree vertex is not immediately spilled. Instead the decision is
  6864. deferred until after the recursive call, at which point it is apparent
  6865. whether there is actually an available color or not. We observe that
  6866. this algorithm is equivalent to the smallest-last ordering
  6867. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  6868. be registers and the rest to be stack locations.
  6869. %% biased coloring
  6870. Earlier editions of the compiler course at Indiana University
  6871. \citep{Dybvig:2010aa} were based on the algorithm of
  6872. \citet{Briggs:1994kx}.
  6873. The smallest-last ordering algorithm is one of many \emph{greedy}
  6874. coloring algorithms. A greedy coloring algorithm visits all the
  6875. vertices in a particular order and assigns each one the first
  6876. available color. An \emph{offline} greedy algorithm chooses the
  6877. ordering up front, prior to assigning colors. The algorithm of
  6878. \citet{Chaitin:1981vl} should be considered offline because the vertex
  6879. ordering does not depend on the colors assigned. Other orderings are
  6880. possible. For example, \citet{Chow:1984ys} ordered variables according
  6881. to an estimate of runtime cost.
  6882. An \emph{online} greedy coloring algorithm uses information about the
  6883. current assignment of colors to influence the order in which the
  6884. remaining vertices are colored. The saturation-based algorithm
  6885. described in this chapter is one such algorithm. We choose to use
  6886. saturation-based coloring because it is fun to introduce graph
  6887. coloring via sudoku!
  6888. A register allocator may choose to map each variable to just one
  6889. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  6890. variable to one or more locations. The latter can be achieved by
  6891. \emph{live range splitting}, where a variable is replaced by several
  6892. variables that each handle part of its live
  6893. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  6894. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  6895. %% replacement algorithm, bottom-up local
  6896. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  6897. %% Cooper: top-down (priority bassed), bottom-up
  6898. %% top-down
  6899. %% order variables by priority (estimated cost)
  6900. %% caveat: split variables into two groups:
  6901. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  6902. %% color the constrained ones first
  6903. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  6904. %% cite J. Cocke for an algorithm that colors variables
  6905. %% in a high-degree first ordering
  6906. %Register Allocation via Usage Counts, Freiburghouse CACM
  6907. \citet{Palsberg:2007si} observes that many of the interference graphs
  6908. that arise from Java programs in the JoeQ compiler are \emph{chordal};
  6909. that is, every cycle with four or more edges has an edge that is not
  6910. part of the cycle but that connects two vertices on the cycle. Such
  6911. graphs can be optimally colored by the greedy algorithm with a vertex
  6912. ordering determined by maximum cardinality search.
  6913. In situations in which compile time is of utmost importance, such as
  6914. in just-in-time compilers, graph coloring algorithms can be too
  6915. expensive, and the linear scan algorithm of \citet{Poletto:1999uq} may
  6916. be more appropriate.
  6917. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6918. {\if\edition\racketEd
  6919. \addtocontents{toc}{\newpage}
  6920. \fi}
  6921. \chapter{Booleans and Conditionals}
  6922. \label{ch:Lif}
  6923. \setcounter{footnote}{0}
  6924. The \LangVar{} language has only a single kind of value, the
  6925. integers. In this chapter we add a second kind of value, the Booleans,
  6926. to create the \LangIf{} language. In \racket{Racket}\python{Python},
  6927. the Boolean\index{subject}{Boolean} values \emph{true} and \emph{false}
  6928. are written
  6929. \TRUE{}\index{subject}{True@\TRUE{}} and
  6930. \FALSE{}\index{subject}{False@\FALSE{}}, respectively. The \LangIf{}
  6931. language includes several operations that involve Booleans
  6932. (\key{and}\index{subject}{and@\ANDNAME{}},
  6933. \key{or}\index{subject}{or@\ORNAME{}},
  6934. \key{not}\index{subject}{not@\NOTNAME{}},
  6935. \racket{\key{eq?}\index{subject}{equal@\EQNAME{}}}\python{==},
  6936. \key{<}\index{subject}{lessthan@\texttt{<}}, etc.) and the
  6937. \key{if}\index{subject}{IfExp@\IFNAME{}}
  6938. conditional expression\index{subject}{conditional expression}
  6939. \python{ and statement\index{subject}{IfStmt@\IFSTMTNAME{}}}.
  6940. With the addition of \key{if}, programs can have
  6941. nontrivial control flow\index{subject}{control flow} which
  6942. %
  6943. \racket{impacts \code{explicate\_control} and liveness analysis.}
  6944. %
  6945. \python{impacts liveness analysis and motivates a new pass named
  6946. \code{explicate\_control}.}%
  6947. %
  6948. Also, because we now have two kinds of values, we need to handle
  6949. programs that apply an operation to the wrong kind of value, such as
  6950. \racket{\code{(not 1)}}\python{\code{not 1}}.
  6951. There are two language design options for such situations. One option
  6952. is to signal an error and the other is to provide a wider
  6953. interpretation of the operation. \racket{The Racket
  6954. language}\python{Python} uses a mixture of these two options,
  6955. depending on the operation and the kind of value. For example, the
  6956. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  6957. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  6958. treats nonzero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  6959. %
  6960. \racket{On the other hand, \code{(car 1)} results in a runtime error
  6961. in Racket because \code{car} expects a pair.}
  6962. %
  6963. \python{On the other hand, \code{1[0]} results in a runtime error
  6964. in Python because an ``\code{int} object is not subscriptable''.}
  6965. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  6966. design choices as \racket{Racket}\python{Python}, except that much of the
  6967. error detection happens at compile time instead of runtime\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  6968. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  6969. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed Racket}
  6970. \python{MyPy} reports a compile-time error
  6971. %
  6972. \racket{because Racket expects the type of the argument to be of the form
  6973. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  6974. %
  6975. \python{stating that a ``value of type \code{int} is not indexable''.}
  6976. The \LangIf{} language performs type checking during compilation just as
  6977. \racket{Typed Racket}\python{MyPy}. In chapter~\ref{ch:Ldyn} we study
  6978. the alternative choice, that is, a dynamically typed language like
  6979. \racket{Racket}\python{Python}. The \LangIf{} language is a subset of
  6980. \racket{Typed Racket}\python{MyPy}; for some operations we are more
  6981. restrictive, for example, rejecting \racket{\code{(not
  6982. 1)}}\python{\code{not 1}}. We keep the type checker for \LangIf{}
  6983. fairly simple because the focus of this book is on compilation and not
  6984. type systems, about which there are already several excellent
  6985. books~\citep{Pierce:2002hj,Pierce:2004fk,Harper2016,Pierce:SF2}.
  6986. This chapter is organized as follows. We begin by defining the syntax
  6987. and interpreter for the \LangIf{} language
  6988. (section~\ref{sec:lang-if}). We then introduce the idea of type
  6989. checking (aka semantic analysis\index{subject}{semantic analysis})
  6990. and define a type checker for \LangIf{}
  6991. (section~\ref{sec:type-check-Lif}).
  6992. %
  6993. \racket{To compile \LangIf{} we need to enlarge the intermediate
  6994. language \LangCVar{} into \LangCIf{} (section~\ref{sec:Cif}) and
  6995. \LangXInt{} into \LangXIf{} (section~\ref{sec:x86-if}).}
  6996. %
  6997. The remaining sections of this chapter discuss how Booleans and
  6998. conditional control flow require changes to the existing compiler
  6999. passes and the addition of new ones. We introduce the \code{shrink}
  7000. pass to translate some operators into others, thereby reducing the
  7001. number of operators that need to be handled in later passes.
  7002. %
  7003. The main event of this chapter is the \code{explicate\_control} pass
  7004. that is responsible for translating \code{if}s into conditional
  7005. \code{goto}s (section~\ref{sec:explicate-control-Lif}).
  7006. %
  7007. Regarding register allocation, there is the interesting question of
  7008. how to handle conditional \code{goto}s during liveness analysis.
  7009. \section{The \LangIf{} Language}
  7010. \label{sec:lang-if}
  7011. Definitions of the concrete syntax and abstract syntax of the
  7012. \LangIf{} language are shown in figures~\ref{fig:Lif-concrete-syntax}
  7013. and~\ref{fig:Lif-syntax}, respectively. The \LangIf{} language
  7014. includes all of \LangVar{} {(shown in gray)}, the Boolean
  7015. literals\index{subject}{literals}
  7016. \TRUE{} and \FALSE{}, \racket{and} the \code{if} expression%
  7017. \python{, and the \code{if} statement}. We expand the set of
  7018. operators to include
  7019. \begin{enumerate}
  7020. \item the logical operators \key{and}, \key{or}, and \key{not},
  7021. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  7022. for comparing integers or Booleans for equality, and
  7023. \item the \key{<}, \key{<=}\index{subject}{lessthaneq@\texttt{<=}},
  7024. \key{>}\index{subject}{greaterthan@\texttt{>}}, and
  7025. \key{>=}\index{subject}{greaterthaneq@\texttt{>=}} operations for
  7026. comparing integers.
  7027. \end{enumerate}
  7028. \racket{We reorganize the abstract syntax for the primitive
  7029. operations given in figure~\ref{fig:Lif-syntax}, using only one grammar
  7030. rule for all of them. This means that the grammar no longer checks
  7031. whether the arity of an operator matches the number of
  7032. arguments. That responsibility is moved to the type checker for
  7033. \LangIf{} (section~\ref{sec:type-check-Lif}).}
  7034. \newcommand{\LifGrammarRacket}{
  7035. \begin{array}{lcl}
  7036. \Type &::=& \key{Boolean} \\
  7037. \itm{bool} &::=& \TRUE \MID \FALSE \\
  7038. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7039. \Exp &::=& \itm{bool}
  7040. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  7041. \MID (\key{not}\;\Exp) \\
  7042. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  7043. \end{array}
  7044. }
  7045. \newcommand{\LifASTRacket}{
  7046. \begin{array}{lcl}
  7047. \Type &::=& \key{Boolean} \\
  7048. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  7049. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7050. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  7051. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  7052. \end{array}
  7053. }
  7054. \newcommand{\LintOpAST}{
  7055. \begin{array}{rcl}
  7056. \Type &::=& \key{Integer} \\
  7057. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  7058. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  7059. \end{array}
  7060. }
  7061. \newcommand{\LifGrammarPython}{
  7062. \begin{array}{rcl}
  7063. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7064. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  7065. \MID \key{not}~\Exp \\
  7066. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  7067. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  7068. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  7069. \end{array}
  7070. }
  7071. \newcommand{\LifASTPython}{
  7072. \begin{array}{lcl}
  7073. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  7074. \itm{unaryop} &::=& \code{Not()} \\
  7075. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7076. \itm{bool} &::=& \code{True} \MID \code{False} \\
  7077. \Exp &::=& \BOOL{\itm{bool}}
  7078. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  7079. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  7080. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  7081. \end{array}
  7082. }
  7083. \begin{figure}[tp]
  7084. \centering
  7085. \begin{tcolorbox}[colback=white]
  7086. {\if\edition\racketEd
  7087. \[
  7088. \begin{array}{l}
  7089. \gray{\LintGrammarRacket{}} \\ \hline
  7090. \gray{\LvarGrammarRacket{}} \\ \hline
  7091. \LifGrammarRacket{} \\
  7092. \begin{array}{lcl}
  7093. \LangIfM{} &::=& \Exp
  7094. \end{array}
  7095. \end{array}
  7096. \]
  7097. \fi}
  7098. {\if\edition\pythonEd\pythonColor
  7099. \[
  7100. \begin{array}{l}
  7101. \gray{\LintGrammarPython} \\ \hline
  7102. \gray{\LvarGrammarPython} \\ \hline
  7103. \LifGrammarPython \\
  7104. \begin{array}{rcl}
  7105. \LangIfM{} &::=& \Stmt^{*}
  7106. \end{array}
  7107. \end{array}
  7108. \]
  7109. \fi}
  7110. \end{tcolorbox}
  7111. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  7112. (figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  7113. \label{fig:Lif-concrete-syntax}
  7114. \end{figure}
  7115. \begin{figure}[tp]
  7116. %\begin{minipage}{0.66\textwidth}
  7117. \begin{tcolorbox}[colback=white]
  7118. \centering
  7119. {\if\edition\racketEd
  7120. \[
  7121. \begin{array}{l}
  7122. \gray{\LintOpAST} \\ \hline
  7123. \gray{\LvarASTRacket{}} \\ \hline
  7124. \LifASTRacket{} \\
  7125. \begin{array}{lcl}
  7126. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  7127. \end{array}
  7128. \end{array}
  7129. \]
  7130. \fi}
  7131. {\if\edition\pythonEd\pythonColor
  7132. \[
  7133. \begin{array}{l}
  7134. \gray{\LintASTPython} \\ \hline
  7135. \gray{\LvarASTPython} \\ \hline
  7136. \LifASTPython \\
  7137. \begin{array}{lcl}
  7138. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  7139. \end{array}
  7140. \end{array}
  7141. \]
  7142. \fi}
  7143. \end{tcolorbox}
  7144. %\end{minipage}
  7145. \python{\index{subject}{not equal@\NOTEQNAME{}}}
  7146. \python{
  7147. \index{subject}{BoolOp@\texttt{BoolOp}}
  7148. \index{subject}{Compare@\texttt{Compare}}
  7149. \index{subject}{Lt@\texttt{Lt}}
  7150. \index{subject}{LtE@\texttt{LtE}}
  7151. \index{subject}{Gt@\texttt{Gt}}
  7152. \index{subject}{GtE@\texttt{GtE}}
  7153. }
  7154. \caption{The abstract syntax of \LangIf{}.}
  7155. \label{fig:Lif-syntax}
  7156. \end{figure}
  7157. Figure~\ref{fig:interp-Lif} shows the definition of the interpreter
  7158. for \LangIf{}, which inherits from the interpreter for \LangVar{}
  7159. (figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  7160. evaluate to the corresponding Boolean values. The conditional
  7161. expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates expression $e_1$ and
  7162. then either evaluates $e_2$ or $e_3$, depending on whether $e_1$
  7163. produced \TRUE{} or \FALSE{}. The logical operations \code{and},
  7164. \code{or}, and \code{not} behave according to propositional logic. In
  7165. addition, the \code{and} and \code{or} operations perform
  7166. \emph{short-circuit evaluation}.
  7167. %
  7168. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  7169. is not evaluated if $e_1$ evaluates to \FALSE{}.
  7170. %
  7171. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  7172. evaluated if $e_1$ evaluates to \TRUE{}.
  7173. \racket{With the increase in the number of primitive operations, the
  7174. interpreter would become repetitive without some care. We refactor
  7175. the case for \code{Prim}, moving the code that differs with each
  7176. operation into the \code{interp\_op} method shown in
  7177. figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  7178. \code{or} operations separately because of their short-circuiting
  7179. behavior.}
  7180. \begin{figure}[tbp]
  7181. \begin{tcolorbox}[colback=white]
  7182. {\if\edition\racketEd
  7183. \begin{lstlisting}
  7184. (define interp-Lif-class
  7185. (class interp-Lvar-class
  7186. (super-new)
  7187. (define/public (interp_op op) ...)
  7188. (define/override ((interp_exp env) e)
  7189. (define recur (interp_exp env))
  7190. (match e
  7191. [(Bool b) b]
  7192. [(If cnd thn els)
  7193. (match (recur cnd)
  7194. [#t (recur thn)]
  7195. [#f (recur els)])]
  7196. [(Prim 'and (list e1 e2))
  7197. (match (recur e1)
  7198. [#t (match (recur e2) [#t #t] [#f #f])]
  7199. [#f #f])]
  7200. [(Prim 'or (list e1 e2))
  7201. (define v1 (recur e1))
  7202. (match v1
  7203. [#t #t]
  7204. [#f (match (recur e2) [#t #t] [#f #f])])]
  7205. [(Prim op args)
  7206. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  7207. [else ((super interp_exp env) e)]))
  7208. ))
  7209. (define (interp_Lif p)
  7210. (send (new interp-Lif-class) interp_program p))
  7211. \end{lstlisting}
  7212. \fi}
  7213. {\if\edition\pythonEd\pythonColor
  7214. \begin{lstlisting}
  7215. class InterpLif(InterpLvar):
  7216. def interp_exp(self, e, env):
  7217. match e:
  7218. case IfExp(test, body, orelse):
  7219. if self.interp_exp(test, env):
  7220. return self.interp_exp(body, env)
  7221. else:
  7222. return self.interp_exp(orelse, env)
  7223. case UnaryOp(Not(), v):
  7224. return not self.interp_exp(v, env)
  7225. case BoolOp(And(), values):
  7226. if self.interp_exp(values[0], env):
  7227. return self.interp_exp(values[1], env)
  7228. else:
  7229. return False
  7230. case BoolOp(Or(), values):
  7231. if self.interp_exp(values[0], env):
  7232. return True
  7233. else:
  7234. return self.interp_exp(values[1], env)
  7235. case Compare(left, [cmp], [right]):
  7236. l = self.interp_exp(left, env)
  7237. r = self.interp_exp(right, env)
  7238. return self.interp_cmp(cmp)(l, r)
  7239. case _:
  7240. return super().interp_exp(e, env)
  7241. def interp_stmts(self, ss, env):
  7242. if len(ss) == 0:
  7243. return
  7244. match ss[0]:
  7245. case If(test, body, orelse):
  7246. if self.interp_exp(test, env):
  7247. return self.interp_stmts(body + ss[1:], env)
  7248. else:
  7249. return self.interp_stmts(orelse + ss[1:], env)
  7250. case _:
  7251. return super().interp_stmts(ss, env)
  7252. ...
  7253. \end{lstlisting}
  7254. \fi}
  7255. \end{tcolorbox}
  7256. \caption{Interpreter for the \LangIf{} language. \racket{(See
  7257. figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  7258. \python{(See figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  7259. \label{fig:interp-Lif}
  7260. \end{figure}
  7261. {\if\edition\racketEd
  7262. \begin{figure}[tbp]
  7263. \begin{tcolorbox}[colback=white]
  7264. \begin{lstlisting}
  7265. (define/public (interp_op op)
  7266. (match op
  7267. ['+ fx+]
  7268. ['- fx-]
  7269. ['read read-fixnum]
  7270. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  7271. ['eq? (lambda (v1 v2)
  7272. (cond [(or (and (fixnum? v1) (fixnum? v2))
  7273. (and (boolean? v1) (boolean? v2))
  7274. (and (vector? v1) (vector? v2)))
  7275. (eq? v1 v2)]))]
  7276. ['< (lambda (v1 v2)
  7277. (cond [(and (fixnum? v1) (fixnum? v2))
  7278. (< v1 v2)]))]
  7279. ['<= (lambda (v1 v2)
  7280. (cond [(and (fixnum? v1) (fixnum? v2))
  7281. (<= v1 v2)]))]
  7282. ['> (lambda (v1 v2)
  7283. (cond [(and (fixnum? v1) (fixnum? v2))
  7284. (> v1 v2)]))]
  7285. ['>= (lambda (v1 v2)
  7286. (cond [(and (fixnum? v1) (fixnum? v2))
  7287. (>= v1 v2)]))]
  7288. [else (error 'interp_op "unknown operator")]))
  7289. \end{lstlisting}
  7290. \end{tcolorbox}
  7291. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  7292. \label{fig:interp-op-Lif}
  7293. \end{figure}
  7294. \fi}
  7295. {\if\edition\pythonEd\pythonColor
  7296. \begin{figure}
  7297. \begin{tcolorbox}[colback=white]
  7298. \begin{lstlisting}
  7299. class InterpLif(InterpLvar):
  7300. ...
  7301. def interp_cmp(self, cmp):
  7302. match cmp:
  7303. case Lt():
  7304. return lambda x, y: x < y
  7305. case LtE():
  7306. return lambda x, y: x <= y
  7307. case Gt():
  7308. return lambda x, y: x > y
  7309. case GtE():
  7310. return lambda x, y: x >= y
  7311. case Eq():
  7312. return lambda x, y: x == y
  7313. case NotEq():
  7314. return lambda x, y: x != y
  7315. \end{lstlisting}
  7316. \end{tcolorbox}
  7317. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  7318. \label{fig:interp-cmp-Lif}
  7319. \end{figure}
  7320. \fi}
  7321. \section{Type Checking \LangIf{} Programs}
  7322. \label{sec:type-check-Lif}
  7323. It is helpful to think about type checking\index{subject}{type
  7324. checking} in two complementary ways. A type checker predicts the
  7325. type of value that will be produced by each expression in the program.
  7326. For \LangIf{}, we have just two types, \INTTY{} and \BOOLTY{}. So, a
  7327. type checker should predict that {\if\edition\racketEd
  7328. \begin{lstlisting}
  7329. (+ 10 (- (+ 12 20)))
  7330. \end{lstlisting}
  7331. \fi}
  7332. {\if\edition\pythonEd\pythonColor
  7333. \begin{lstlisting}
  7334. 10 + -(12 + 20)
  7335. \end{lstlisting}
  7336. \fi}
  7337. \noindent produces a value of type \INTTY{}, whereas
  7338. {\if\edition\racketEd
  7339. \begin{lstlisting}
  7340. (and (not #f) #t)
  7341. \end{lstlisting}
  7342. \fi}
  7343. {\if\edition\pythonEd\pythonColor
  7344. \begin{lstlisting}
  7345. (not False) and True
  7346. \end{lstlisting}
  7347. \fi}
  7348. \noindent produces a value of type \BOOLTY{}.
  7349. A second way to think about type checking is that it enforces a set of
  7350. rules about which operators can be applied to which kinds of
  7351. values. For example, our type checker for \LangIf{} signals an error
  7352. for the following expression:
  7353. %
  7354. {\if\edition\racketEd
  7355. \begin{lstlisting}
  7356. (not (+ 10 (- (+ 12 20))))
  7357. \end{lstlisting}
  7358. \fi}
  7359. {\if\edition\pythonEd\pythonColor
  7360. \begin{lstlisting}
  7361. not (10 + -(12 + 20))
  7362. \end{lstlisting}
  7363. \fi}
  7364. \noindent The subexpression
  7365. \racket{\code{(+ 10 (- (+ 12 20)))}}
  7366. \python{\code{(10 + -(12 + 20))}}
  7367. has type \INTTY{}, but the type checker enforces the rule that the
  7368. argument of \code{not} must be an expression of type \BOOLTY{}.
  7369. We implement type checking using classes and methods because they
  7370. provide the open recursion needed to reuse code as we extend the type
  7371. checker in subsequent chapters, analogous to the use of classes and methods
  7372. for the interpreters (section~\ref{sec:extensible-interp}).
  7373. We separate the type checker for the \LangVar{} subset into its own
  7374. class, shown in figure~\ref{fig:type-check-Lvar}. The type checker for
  7375. \LangIf{} is shown in figure~\ref{fig:type-check-Lif}, and it inherits
  7376. from the type checker for \LangVar{}. These type checkers are in the
  7377. files
  7378. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  7379. and
  7380. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  7381. of the support code.
  7382. %
  7383. Each type checker is a structurally recursive function over the AST.
  7384. Given an input expression \code{e}, the type checker either signals an
  7385. error or returns \racket{an expression and} its type.
  7386. %
  7387. \racket{It returns an expression because there are situations in which
  7388. we want to change or update the expression.}
  7389. Next we discuss the \code{type\_check\_exp} function of \LangVar{}
  7390. shown in figure~\ref{fig:type-check-Lvar}. The type of an integer
  7391. constant is \INTTY{}. To handle variables, the type checker uses the
  7392. environment \code{env} to map variables to types.
  7393. %
  7394. \racket{Consider the case for \key{let}. We type check the
  7395. initializing expression to obtain its type \key{T} and then
  7396. associate type \code{T} with the variable \code{x} in the
  7397. environment used to type check the body of the \key{let}. Thus,
  7398. when the type checker encounters a use of variable \code{x}, it can
  7399. find its type in the environment.}
  7400. %
  7401. \python{Consider the case for assignment. We type check the
  7402. initializing expression to obtain its type \key{t}. If the variable
  7403. \code{lhs.id} is already in the environment because there was a
  7404. prior assignment, we check that this initializer has the same type
  7405. as the prior one. If this is the first assignment to the variable,
  7406. we associate type \code{t} with the variable \code{lhs.id} in the
  7407. environment. Thus, when the type checker encounters a use of
  7408. variable \code{x}, it can find its type in the environment.}
  7409. %
  7410. \racket{Regarding primitive operators, we recursively analyze the
  7411. arguments and then invoke \code{type\_check\_op} to check whether
  7412. the argument types are allowed.}
  7413. %
  7414. \python{Regarding addition, subtraction, and negation, we recursively analyze the
  7415. arguments, check that they have type \INTTY{}, and return \INTTY{}.}
  7416. \racket{Several auxiliary methods are used in the type checker. The
  7417. method \code{operator-types} defines a dictionary that maps the
  7418. operator names to their parameter and return types. The
  7419. \code{type-equal?} method determines whether two types are equal,
  7420. which for now simply dispatches to \code{equal?} (deep
  7421. equality). The \code{check-type-equal?} method triggers an error if
  7422. the two types are not equal. The \code{type-check-op} method looks
  7423. up the operator in the \code{operator-types} dictionary and then
  7424. checks whether the argument types are equal to the parameter types.
  7425. The result is the return type of the operator.}
  7426. %
  7427. \python{The auxiliary method \code{check\_type\_equal} triggers
  7428. an error if the two types are not equal.}
  7429. \begin{figure}[tbp]
  7430. \begin{tcolorbox}[colback=white]
  7431. {\if\edition\racketEd
  7432. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7433. (define type-check-Lvar-class
  7434. (class object%
  7435. (super-new)
  7436. (define/public (operator-types)
  7437. '((+ . ((Integer Integer) . Integer))
  7438. (- . ((Integer Integer) . Integer))
  7439. (read . (() . Integer))))
  7440. (define/public (type-equal? t1 t2) (equal? t1 t2))
  7441. (define/public (check-type-equal? t1 t2 e)
  7442. (unless (type-equal? t1 t2)
  7443. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  7444. (define/public (type-check-op op arg-types e)
  7445. (match (dict-ref (operator-types) op)
  7446. [`(,param-types . ,return-type)
  7447. (for ([at arg-types] [pt param-types])
  7448. (check-type-equal? at pt e))
  7449. return-type]
  7450. [else (error 'type-check-op "unrecognized ~a" op)]))
  7451. (define/public (type-check-exp env)
  7452. (lambda (e)
  7453. (match e
  7454. [(Int n) (values (Int n) 'Integer)]
  7455. [(Var x) (values (Var x) (dict-ref env x))]
  7456. [(Let x e body)
  7457. (define-values (e^ Te) ((type-check-exp env) e))
  7458. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  7459. (values (Let x e^ b) Tb)]
  7460. [(Prim op es)
  7461. (define-values (new-es ts)
  7462. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  7463. (values (Prim op new-es) (type-check-op op ts e))]
  7464. [else (error 'type-check-exp "couldn't match" e)])))
  7465. (define/public (type-check-program e)
  7466. (match e
  7467. [(Program info body)
  7468. (define-values (body^ Tb) ((type-check-exp '()) body))
  7469. (check-type-equal? Tb 'Integer body)
  7470. (Program info body^)]
  7471. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  7472. ))
  7473. (define (type-check-Lvar p)
  7474. (send (new type-check-Lvar-class) type-check-program p))
  7475. \end{lstlisting}
  7476. \fi}
  7477. {\if\edition\pythonEd\pythonColor
  7478. \begin{lstlisting}[escapechar=`]
  7479. class TypeCheckLvar:
  7480. def check_type_equal(self, t1, t2, e):
  7481. if t1 != t2:
  7482. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  7483. raise Exception(msg)
  7484. def type_check_exp(self, e, env):
  7485. match e:
  7486. case BinOp(left, (Add() | Sub()), right):
  7487. l = self.type_check_exp(left, env)
  7488. check_type_equal(l, int, left)
  7489. r = self.type_check_exp(right, env)
  7490. check_type_equal(r, int, right)
  7491. return int
  7492. case UnaryOp(USub(), v):
  7493. t = self.type_check_exp(v, env)
  7494. check_type_equal(t, int, v)
  7495. return int
  7496. case Name(id):
  7497. return env[id]
  7498. case Constant(value) if isinstance(value, int):
  7499. return int
  7500. case Call(Name('input_int'), []):
  7501. return int
  7502. def type_check_stmts(self, ss, env):
  7503. if len(ss) == 0:
  7504. return
  7505. match ss[0]:
  7506. case Assign([lhs], value):
  7507. t = self.type_check_exp(value, env)
  7508. if lhs.id in env:
  7509. check_type_equal(env[lhs.id], t, value)
  7510. else:
  7511. env[lhs.id] = t
  7512. return self.type_check_stmts(ss[1:], env)
  7513. case Expr(Call(Name('print'), [arg])):
  7514. t = self.type_check_exp(arg, env)
  7515. check_type_equal(t, int, arg)
  7516. return self.type_check_stmts(ss[1:], env)
  7517. case Expr(value):
  7518. self.type_check_exp(value, env)
  7519. return self.type_check_stmts(ss[1:], env)
  7520. def type_check_P(self, p):
  7521. match p:
  7522. case Module(body):
  7523. self.type_check_stmts(body, {})
  7524. \end{lstlisting}
  7525. \fi}
  7526. \end{tcolorbox}
  7527. \caption{Type checker for the \LangVar{} language.}
  7528. \label{fig:type-check-Lvar}
  7529. \end{figure}
  7530. \begin{figure}[tbp]
  7531. \begin{tcolorbox}[colback=white]
  7532. {\if\edition\racketEd
  7533. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7534. (define type-check-Lif-class
  7535. (class type-check-Lvar-class
  7536. (super-new)
  7537. (inherit check-type-equal?)
  7538. (define/override (operator-types)
  7539. (append '((and . ((Boolean Boolean) . Boolean))
  7540. (or . ((Boolean Boolean) . Boolean))
  7541. (< . ((Integer Integer) . Boolean))
  7542. (<= . ((Integer Integer) . Boolean))
  7543. (> . ((Integer Integer) . Boolean))
  7544. (>= . ((Integer Integer) . Boolean))
  7545. (not . ((Boolean) . Boolean)))
  7546. (super operator-types)))
  7547. (define/override (type-check-exp env)
  7548. (lambda (e)
  7549. (match e
  7550. [(Bool b) (values (Bool b) 'Boolean)]
  7551. [(Prim 'eq? (list e1 e2))
  7552. (define-values (e1^ T1) ((type-check-exp env) e1))
  7553. (define-values (e2^ T2) ((type-check-exp env) e2))
  7554. (check-type-equal? T1 T2 e)
  7555. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  7556. [(If cnd thn els)
  7557. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  7558. (define-values (thn^ Tt) ((type-check-exp env) thn))
  7559. (define-values (els^ Te) ((type-check-exp env) els))
  7560. (check-type-equal? Tc 'Boolean e)
  7561. (check-type-equal? Tt Te e)
  7562. (values (If cnd^ thn^ els^) Te)]
  7563. [else ((super type-check-exp env) e)])))
  7564. ))
  7565. (define (type-check-Lif p)
  7566. (send (new type-check-Lif-class) type-check-program p))
  7567. \end{lstlisting}
  7568. \fi}
  7569. {\if\edition\pythonEd\pythonColor
  7570. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7571. class TypeCheckLif(TypeCheckLvar):
  7572. def type_check_exp(self, e, env):
  7573. match e:
  7574. case Constant(value) if isinstance(value, bool):
  7575. return bool
  7576. case BinOp(left, Sub(), right):
  7577. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7578. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7579. return int
  7580. case UnaryOp(Not(), v):
  7581. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  7582. return bool
  7583. case BoolOp(op, values):
  7584. left = values[0] ; right = values[1]
  7585. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  7586. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  7587. return bool
  7588. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  7589. or isinstance(cmp, NotEq):
  7590. l = self.type_check_exp(left, env)
  7591. r = self.type_check_exp(right, env)
  7592. check_type_equal(l, r, e)
  7593. return bool
  7594. case Compare(left, [cmp], [right]):
  7595. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7596. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7597. return bool
  7598. case IfExp(test, body, orelse):
  7599. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7600. b = self.type_check_exp(body, env)
  7601. o = self.type_check_exp(orelse, env)
  7602. check_type_equal(b, o, e)
  7603. return b
  7604. case _:
  7605. return super().type_check_exp(e, env)
  7606. def type_check_stmts(self, ss, env):
  7607. if len(ss) == 0:
  7608. return
  7609. match ss[0]:
  7610. case If(test, body, orelse):
  7611. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7612. b = self.type_check_stmts(body, env)
  7613. o = self.type_check_stmts(orelse, env)
  7614. check_type_equal(b, o, ss[0])
  7615. return self.type_check_stmts(ss[1:], env)
  7616. case _:
  7617. return super().type_check_stmts(ss, env)
  7618. \end{lstlisting}
  7619. \fi}
  7620. \end{tcolorbox}
  7621. \caption{Type checker for the \LangIf{} language.}
  7622. \label{fig:type-check-Lif}
  7623. \end{figure}
  7624. The definition of the type checker for \LangIf{} is shown in
  7625. figure~\ref{fig:type-check-Lif}.
  7626. %
  7627. The type of a Boolean constant is \BOOLTY{}.
  7628. %
  7629. \racket{The \code{operator-types} function adds dictionary entries for
  7630. the new operators.}
  7631. %
  7632. \python{Logical not requires its argument to be a \BOOLTY{} and
  7633. produces a \BOOLTY{}. Similarly for logical and and logical or. }
  7634. %
  7635. The equality operator requires the two arguments to have the same type,
  7636. and therefore we handle it separately from the other operators.
  7637. %
  7638. \python{The other comparisons (less-than, etc.) require their
  7639. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  7640. %
  7641. The condition of an \code{if} must
  7642. be of \BOOLTY{} type, and the two branches must have the same type.
  7643. \begin{exercise}\normalfont\normalsize
  7644. Create ten new test programs in \LangIf{}. Half the programs should
  7645. have a type error. For those programs, create an empty file with the
  7646. same base name and with file extension \code{.tyerr}. For example, if
  7647. the test
  7648. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  7649. is expected to error, then create
  7650. an empty file named \code{cond\_test\_14.tyerr}.
  7651. %
  7652. \racket{This indicates to \code{interp-tests} and
  7653. \code{compiler-tests} that a type error is expected. }
  7654. %
  7655. The other half of the test programs should not have type errors.
  7656. %
  7657. \racket{In the \code{run-tests.rkt} script, change the second argument
  7658. of \code{interp-tests} and \code{compiler-tests} to
  7659. \code{type-check-Lif}, which causes the type checker to run prior to
  7660. the compiler passes. Temporarily change the \code{passes} to an
  7661. empty list and run the script, thereby checking that the new test
  7662. programs either type check or do not, as intended.}
  7663. %
  7664. Run the test script to check that these test programs type check as
  7665. expected.
  7666. \end{exercise}
  7667. \clearpage
  7668. \section{The \LangCIf{} Intermediate Language}
  7669. \label{sec:Cif}
  7670. {\if\edition\racketEd
  7671. %
  7672. The \LangCIf{} language builds on \LangCVar{} by adding logical and
  7673. comparison operators to the \Exp{} nonterminal and the literals
  7674. \TRUE{} and \FALSE{} to the \Arg{} nonterminal. Regarding control
  7675. flow, \LangCIf{} adds \key{goto} and \code{if} statements to the
  7676. \Tail{} nonterminal. The condition of an \code{if} statement is a
  7677. comparison operation and the branches are \code{goto} statements,
  7678. making it straightforward to compile \code{if} statements to x86. The
  7679. \key{CProgram} construct contains an alist mapping labels to $\Tail$
  7680. expressions. A \code{goto} statement transfers control to the $\Tail$
  7681. expression corresponding to its label.
  7682. %
  7683. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  7684. \LangCIf{} intermediate language, and figure~\ref{fig:c1-syntax}
  7685. defines its abstract syntax.
  7686. %
  7687. \fi}
  7688. %
  7689. {\if\edition\pythonEd\pythonColor
  7690. %
  7691. The output of \key{explicate\_control} is a language similar to the
  7692. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  7693. \code{goto} statements, so we name it \LangCIf{}.
  7694. %
  7695. The \LangCIf{} language supports the same operators as \LangIf{} but
  7696. the arguments of operators are restricted to atomic expressions. The
  7697. \LangCIf{} language does not include \code{if} expressions but it does
  7698. include a restricted form of \code{if} statement. The condition must be
  7699. a comparison and the two branches may only contain \code{goto}
  7700. statements. These restrictions make it easier to translate \code{if}
  7701. statements to x86. The \LangCIf{} language also adds a \code{return}
  7702. statement to finish the program with a specified value.
  7703. %
  7704. The \key{CProgram} construct contains a dictionary mapping labels to
  7705. lists of statements that end with a \code{return} statement, a
  7706. \code{goto}, or a conditional \code{goto}.
  7707. %% Statement lists of this
  7708. %% form are called \emph{basic blocks}\index{subject}{basic block}: there
  7709. %% is a control transfer at the end and control only enters at the
  7710. %% beginning of the list, which is marked by the label.
  7711. %
  7712. A \code{goto} statement transfers control to the sequence of statements
  7713. associated with its label.
  7714. %
  7715. The concrete syntax for \LangCIf{} is defined in
  7716. figure~\ref{fig:c1-concrete-syntax} and the abstract syntax is defined
  7717. in figure~\ref{fig:c1-syntax}.
  7718. %
  7719. \fi}
  7720. %
  7721. \newcommand{\CifGrammarRacket}{
  7722. \begin{array}{lcl}
  7723. \Atm &::=& \itm{bool} \\
  7724. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7725. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  7726. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  7727. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  7728. \end{array}
  7729. }
  7730. \newcommand{\CifASTRacket}{
  7731. \begin{array}{lcl}
  7732. \Atm &::=& \BOOL{\itm{bool}} \\
  7733. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7734. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  7735. \Tail &::= & \GOTO{\itm{label}} \\
  7736. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  7737. \end{array}
  7738. }
  7739. \newcommand{\CifGrammarPython}{
  7740. \begin{array}{lcl}
  7741. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  7742. \Exp &::= & \Atm \MID \CREAD{}
  7743. \MID \CBINOP{\itm{binaryop}}{\Atm}{\Atm}
  7744. \MID \CUNIOP{\itm{unaryop}}{\Atm} \\
  7745. &\MID& \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  7746. \Stmt &::=& \CPRINT{\Atm} \MID \Exp \\
  7747. &\MID& \CASSIGN{\Var}{\Exp}
  7748. \MID \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  7749. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  7750. \end{array}
  7751. }
  7752. \newcommand{\CifASTPython}{
  7753. \begin{array}{lcl}
  7754. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  7755. \Exp &::= & \Atm \MID \READ{} \\
  7756. &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  7757. \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  7758. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  7759. \Stmt &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  7760. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  7761. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  7762. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  7763. \end{array}
  7764. }
  7765. \begin{figure}[tbp]
  7766. \begin{tcolorbox}[colback=white]
  7767. \small
  7768. {\if\edition\racketEd
  7769. \[
  7770. \begin{array}{l}
  7771. \gray{\CvarGrammarRacket} \\ \hline
  7772. \CifGrammarRacket \\
  7773. \begin{array}{lcl}
  7774. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  7775. \end{array}
  7776. \end{array}
  7777. \]
  7778. \fi}
  7779. {\if\edition\pythonEd\pythonColor
  7780. \[
  7781. \begin{array}{l}
  7782. \CifGrammarPython \\
  7783. \begin{array}{lcl}
  7784. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}) \ldots
  7785. \end{array}
  7786. \end{array}
  7787. \]
  7788. \fi}
  7789. \end{tcolorbox}
  7790. \caption{The concrete syntax of the \LangCIf{} intermediate language%
  7791. \racket{, an extension of \LangCVar{} (figure~\ref{fig:c0-concrete-syntax})}.}
  7792. \label{fig:c1-concrete-syntax}
  7793. \end{figure}
  7794. \begin{figure}[tp]
  7795. \begin{tcolorbox}[colback=white]
  7796. \small
  7797. {\if\edition\racketEd
  7798. \[
  7799. \begin{array}{l}
  7800. \gray{\CvarASTRacket} \\ \hline
  7801. \CifASTRacket \\
  7802. \begin{array}{lcl}
  7803. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  7804. \end{array}
  7805. \end{array}
  7806. \]
  7807. \fi}
  7808. {\if\edition\pythonEd\pythonColor
  7809. \[
  7810. \begin{array}{l}
  7811. \CifASTPython \\
  7812. \begin{array}{lcl}
  7813. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  7814. \end{array}
  7815. \end{array}
  7816. \]
  7817. \fi}
  7818. \end{tcolorbox}
  7819. \racket{
  7820. \index{subject}{IfStmt@\IFSTMTNAME{}}
  7821. }
  7822. \index{subject}{Goto@\texttt{Goto}}
  7823. \index{subject}{Return@\texttt{Return}}
  7824. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  7825. (figure~\ref{fig:c0-syntax})}.}
  7826. \label{fig:c1-syntax}
  7827. \end{figure}
  7828. \section{The \LangXIf{} Language}
  7829. \label{sec:x86-if}
  7830. \index{subject}{x86} To implement the new logical operations, the
  7831. comparison operations, and the \key{if} expression\python{ and
  7832. statement}, we delve further into the x86
  7833. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} present
  7834. the definitions of the concrete and abstract syntax for the \LangXIf{}
  7835. subset of x86, which includes instructions for logical operations,
  7836. comparisons, and \racket{conditional} jumps.
  7837. %
  7838. \python{The abstract syntax for an \LangXIf{} program contains a
  7839. dictionary mapping labels to sequences of instructions, each of
  7840. which we refer to as a \emph{basic block}\index{subject}{basic
  7841. block}.}
  7842. One challenge is that x86 does not provide an instruction that
  7843. directly implements logical negation (\code{not} in \LangIf{} and
  7844. \LangCIf{}). However, the \code{xorq} instruction can be used to
  7845. encode \code{not}. The \key{xorq} instruction takes two arguments,
  7846. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  7847. bit of its arguments, and writes the results into its second argument.
  7848. Recall the following truth table for exclusive-or:
  7849. \begin{center}
  7850. \begin{tabular}{l|cc}
  7851. & 0 & 1 \\ \hline
  7852. 0 & 0 & 1 \\
  7853. 1 & 1 & 0
  7854. \end{tabular}
  7855. \end{center}
  7856. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  7857. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  7858. for the bit $1$, the result is the opposite of the second bit. Thus,
  7859. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  7860. the first argument, as follows, where $\Arg$ is the translation of
  7861. $\Atm$ to x86:
  7862. \[
  7863. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  7864. \qquad\Rightarrow\qquad
  7865. \begin{array}{l}
  7866. \key{movq}~ \Arg\key{,} \Var\\
  7867. \key{xorq}~ \key{\$1,} \Var
  7868. \end{array}
  7869. \]
  7870. \newcommand{\GrammarXIf}{
  7871. \begin{array}{lcl}
  7872. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7873. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7874. \Arg &::=& \key{\%}\itm{bytereg}\\
  7875. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7876. \Instr &::=& \key{xorq}~\Arg\key{,}~\Arg
  7877. \MID \key{cmpq}~\Arg\key{,}~\Arg
  7878. \MID \key{set}cc~\Arg
  7879. \MID \key{movzbq}~\Arg\key{,}~\Arg \\
  7880. &\MID& \key{j}cc~\itm{label} \\
  7881. \end{array}
  7882. }
  7883. \begin{figure}[tp]
  7884. \begin{tcolorbox}[colback=white]
  7885. \[
  7886. \begin{array}{l}
  7887. \gray{\GrammarXInt} \\ \hline
  7888. \GrammarXIf \\
  7889. \begin{array}{lcl}
  7890. \LangXIfM{} &::= & \key{.globl main} \\
  7891. & & \key{main:} \; \Instr\ldots
  7892. \end{array}
  7893. \end{array}
  7894. \]
  7895. \end{tcolorbox}
  7896. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of figure~\ref{fig:x86-int-concrete}).}
  7897. \label{fig:x86-1-concrete}
  7898. \end{figure}
  7899. \newcommand{\ASTXIfRacket}{
  7900. \begin{array}{lcl}
  7901. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7902. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7903. \Arg &::=& \BYTEREG{\itm{bytereg}} \\
  7904. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7905. \Instr &::=& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  7906. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  7907. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  7908. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  7909. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}}
  7910. \end{array}
  7911. }
  7912. \begin{figure}[tp]
  7913. \begin{tcolorbox}[colback=white]
  7914. \small
  7915. {\if\edition\racketEd
  7916. \[\arraycolsep=3pt
  7917. \begin{array}{l}
  7918. \gray{\ASTXIntRacket} \\ \hline
  7919. \ASTXIfRacket \\
  7920. \begin{array}{lcl}
  7921. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  7922. \end{array}
  7923. \end{array}
  7924. \]
  7925. \fi}
  7926. %
  7927. {\if\edition\pythonEd\pythonColor
  7928. \[
  7929. \begin{array}{lcl}
  7930. \itm{bytereg} &::=& \skey{ah} \MID \skey{al} \MID \skey{bh} \MID \skey{bl}
  7931. \MID \skey{ch} \MID \skey{cl} \MID \skey{dh} \MID \skey{dl} \\
  7932. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  7933. \MID \BYTEREG{\itm{bytereg}} \\
  7934. \itm{cc} & ::= & \skey{e} \MID \skey{ne} \MID \skey{l} \MID \skey{le} \MID \skey{g} \MID \skey{ge} \\
  7935. \Instr &::=& \gray{ \BININSTR{\scode{addq}}{\Arg}{\Arg}
  7936. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} } \\
  7937. &\MID& \gray{ \BININSTR{\scode{movq}}{\Arg}{\Arg}
  7938. \MID \UNIINSTR{\scode{negq}}{\Arg} } \\
  7939. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  7940. \MID \PUSHQ{\Arg}} \\
  7941. &\MID& \gray{ \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  7942. &\MID& \BININSTR{\scode{xorq}}{\Arg}{\Arg}
  7943. \MID \BININSTR{\scode{cmpq}}{\Arg}{\Arg}\\
  7944. &\MID& \BININSTR{\scode{set}}{\itm{cc}}{\Arg}
  7945. \MID \BININSTR{\scode{movzbq}}{\Arg}{\Arg}\\
  7946. &\MID& \JMPIF{\itm{cc}}{\itm{label}} \\
  7947. \Block &::= & \Instr^{+} \\
  7948. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  7949. \end{array}
  7950. \]
  7951. \fi}
  7952. \end{tcolorbox}
  7953. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} shown in figure~\ref{fig:x86-int-ast}).}
  7954. \label{fig:x86-1}
  7955. \end{figure}
  7956. Next we consider the x86 instructions that are relevant for compiling
  7957. the comparison operations. The \key{cmpq} instruction compares its two
  7958. arguments to determine whether one argument is less than, equal to, or
  7959. greater than the other argument. The \key{cmpq} instruction is unusual
  7960. regarding the order of its arguments and where the result is
  7961. placed. The argument order is backward: if you want to test whether
  7962. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  7963. \key{cmpq} is placed in the special EFLAGS register. This register
  7964. cannot be accessed directly, but it can be queried by a number of
  7965. instructions, including the \key{set} instruction. The instruction
  7966. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$,
  7967. depending on whether the contents of the EFLAGS register matches the
  7968. condition code \itm{cc}: \key{e} for equal, \key{l} for less, \key{le}
  7969. for less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal.
  7970. The \key{set} instruction has a quirk in that its destination argument
  7971. must be a single-byte register, such as \code{al} (\code{l} for lower bits) or
  7972. \code{ah} (\code{h} for higher bits), which are part of the \code{rax}
  7973. register. Thankfully, the \key{movzbq} instruction can be used to
  7974. move from a single-byte register to a normal 64-bit register. The
  7975. abstract syntax for the \code{set} instruction differs from the
  7976. concrete syntax in that it separates the instruction name from the
  7977. condition code.
  7978. \python{The x86 instructions for jumping are relevant to the
  7979. compilation of \key{if} expressions.}
  7980. %
  7981. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  7982. counter to the address of the instruction after the specified
  7983. label.}
  7984. %
  7985. \racket{The x86 instruction for conditional jump is relevant to the
  7986. compilation of \key{if} expressions.}
  7987. %
  7988. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  7989. counter to point to the instruction after \itm{label}, depending on
  7990. whether the result in the EFLAGS register matches the condition code
  7991. \itm{cc}; otherwise, the jump instruction falls through to the next
  7992. instruction. Like the abstract syntax for \code{set}, the abstract
  7993. syntax for conditional jump separates the instruction name from the
  7994. condition code. For example, \JMPIF{\QUOTE{\code{le}}}{\QUOTE{\code{foo}}}
  7995. corresponds to \code{jle foo}. Because the conditional jump instruction
  7996. relies on the EFLAGS register, it is common for it to be immediately preceded by
  7997. a \key{cmpq} instruction to set the EFLAGS register.
  7998. \section{Shrink the \LangIf{} Language}
  7999. \label{sec:shrink-Lif}
  8000. The \LangIf{} language includes several features that are easily
  8001. expressible with other features. For example, \code{and} and \code{or}
  8002. are expressible using \code{if} as follows.
  8003. \begin{align*}
  8004. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  8005. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  8006. \end{align*}
  8007. By performing these translations in the front end of the compiler,
  8008. subsequent passes of the compiler do not need to deal with these features,
  8009. thus making the passes shorter.
  8010. On the other hand, translations sometimes reduce the efficiency of the
  8011. generated code by increasing the number of instructions. For example,
  8012. expressing subtraction in terms of negation
  8013. \[
  8014. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  8015. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  8016. \]
  8017. produces code with two x86 instructions (\code{negq} and \code{addq})
  8018. instead of just one (\code{subq}).
  8019. \begin{exercise}\normalfont\normalsize
  8020. %
  8021. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  8022. the language by translating them to \code{if} expressions in \LangIf{}.
  8023. %
  8024. Create four test programs that involve these operators.
  8025. %
  8026. {\if\edition\racketEd
  8027. In the \code{run-tests.rkt} script, add the following entry for
  8028. \code{shrink} to the list of passes (it should be the only pass at
  8029. this point).
  8030. \begin{lstlisting}
  8031. (list "shrink" shrink interp_Lif type-check-Lif)
  8032. \end{lstlisting}
  8033. This instructs \code{interp-tests} to run the interpreter
  8034. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  8035. output of \code{shrink}.
  8036. \fi}
  8037. %
  8038. Run the script to test your compiler on all the test programs.
  8039. \end{exercise}
  8040. {\if\edition\racketEd
  8041. \section{Uniquify Variables}
  8042. \label{sec:uniquify-Lif}
  8043. Add cases to \code{uniquify\_exp} to handle Boolean constants and
  8044. \code{if} expressions.
  8045. \begin{exercise}\normalfont\normalsize
  8046. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  8047. entry to the list of \code{passes} in the \code{run-tests.rkt} script:
  8048. \begin{lstlisting}
  8049. (list "uniquify" uniquify interp_Lif type_check_Lif)
  8050. \end{lstlisting}
  8051. Run the script to test your compiler.
  8052. \end{exercise}
  8053. \fi}
  8054. \section{Remove Complex Operands}
  8055. \label{sec:remove-complex-opera-Lif}
  8056. The output language of \code{remove\_complex\_operands} is
  8057. \LangIfANF{} (figure~\ref{fig:Lif-anf-syntax}), the monadic
  8058. normal form of \LangIf{}. A Boolean constant is an atomic expression,
  8059. but the \code{if} expression is not. All three subexpressions of an
  8060. \code{if} are allowed to be complex expressions, but the operands of
  8061. the \code{not} operator and comparison operators must be atomic.
  8062. %
  8063. \python{We add a new language form, the \code{Begin} expression, to aid
  8064. in the translation of \code{if} expressions. When we recursively
  8065. process the two branches of the \code{if}, we generate temporary
  8066. variables and their initializing expressions. However, these
  8067. expressions may contain side effects and should only be executed
  8068. when the condition of the \code{if} is true (for the ``then''
  8069. branch) or false (for the ``else'' branch). The \code{Begin} provides
  8070. a way to initialize the temporary variables within the two branches
  8071. of the \code{if} expression. In general, the $\BEGIN{ss}{e}$
  8072. form execute the statements $ss$ and then returns the result of
  8073. expression $e$.}
  8074. Add cases to the \code{rco\_exp} and \code{rco\_atom} functions for
  8075. the new features in \LangIf{}. In recursively processing
  8076. subexpressions, recall that you should invoke \code{rco\_atom} when
  8077. the output needs to be an \Atm{} (as specified in the grammar for
  8078. \LangIfANF{}) and invoke \code{rco\_exp} when the output should be
  8079. \Exp{}. Regarding \code{if}, it is particularly important
  8080. \emph{not} to replace its condition with a temporary variable, because
  8081. that would interfere with the generation of high-quality output in the
  8082. upcoming \code{explicate\_control} pass.
  8083. \newcommand{\LifMonadASTRacket}{
  8084. \begin{array}{rcl}
  8085. \Atm &::=& \BOOL{\itm{bool}}\\
  8086. \Exp &::=& \UNIOP{\key{not}}{\Atm}
  8087. \MID \BINOP{\itm{cmp}}{\Atm}{\Atm}
  8088. \MID \IF{\Exp}{\Exp}{\Exp}
  8089. \end{array}
  8090. }
  8091. \newcommand{\LifMonadASTPython}{
  8092. \begin{array}{rcl}
  8093. %% \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  8094. %% \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  8095. %% \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  8096. %% \itm{bool} &::=& \code{True} \MID \code{False} \\
  8097. \Atm &::=& \BOOL{\itm{bool}}\\
  8098. \Exp &::=& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  8099. &\MID& \BEGIN{\Stmt^{*}}{\Exp}\\
  8100. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}
  8101. \end{array}
  8102. }
  8103. \begin{figure}[tp]
  8104. \centering
  8105. \begin{tcolorbox}[colback=white]
  8106. {\if\edition\racketEd
  8107. \[
  8108. \begin{array}{l}
  8109. \gray{\LvarMonadASTRacket} \\ \hline
  8110. \LifMonadASTRacket \\
  8111. \begin{array}{rcl}
  8112. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  8113. \end{array}
  8114. \end{array}
  8115. \]
  8116. \fi}
  8117. {\if\edition\pythonEd\pythonColor
  8118. \[
  8119. \begin{array}{l}
  8120. \gray{\LvarMonadASTPython} \\ \hline
  8121. \LifMonadASTPython \\
  8122. \begin{array}{rcl}
  8123. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  8124. \end{array}
  8125. \end{array}
  8126. \]
  8127. \fi}
  8128. \end{tcolorbox}
  8129. \python{\index{subject}{Begin@\texttt{Begin}}}
  8130. \caption{\LangIfANF{} is \LangIf{} in monadic normal form
  8131. (extends \LangVarANF in figure~\ref{fig:Lvar-anf-syntax}).}
  8132. \label{fig:Lif-anf-syntax}
  8133. \end{figure}
  8134. \begin{exercise}\normalfont\normalsize
  8135. %
  8136. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  8137. and \code{rco\_exp} functions in \code{compiler.rkt}.
  8138. %
  8139. Create three new \LangIf{} programs that exercise the interesting
  8140. code in this pass.
  8141. %
  8142. {\if\edition\racketEd
  8143. In the \code{run-tests.rkt} script, add the following entry to the
  8144. list of \code{passes} and then run the script to test your compiler.
  8145. \begin{lstlisting}
  8146. (list "remove-complex" remove_complex_operands interp-Lif type-check-Lif)
  8147. \end{lstlisting}
  8148. \fi}
  8149. \end{exercise}
  8150. \section{Explicate Control}
  8151. \label{sec:explicate-control-Lif}
  8152. \racket{Recall that the purpose of \code{explicate\_control} is to
  8153. make the order of evaluation explicit in the syntax of the program.
  8154. With the addition of \key{if}, this becomes more interesting.}
  8155. %
  8156. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  8157. %
  8158. The main challenge to overcome is that the condition of an \key{if}
  8159. can be an arbitrary expression in \LangIf{}, whereas in \LangCIf{} the
  8160. condition must be a comparison.
  8161. As a motivating example, consider the following program that has an
  8162. \key{if} expression nested in the condition of another \key{if}:%
  8163. \python{\footnote{Programmers rarely write nested \code{if}
  8164. expressions, but it is not uncommon for the condition of an
  8165. \code{if} statement to be a call of a function that also contains an
  8166. \code{if} statement. When such a function is inlined, the result is
  8167. a nested \code{if} that requires the techniques discussed in this
  8168. section.}}
  8169. % cond_test_41.rkt, if_lt_eq.py
  8170. \begin{center}
  8171. \begin{minipage}{0.96\textwidth}
  8172. {\if\edition\racketEd
  8173. \begin{lstlisting}
  8174. (let ([x (read)])
  8175. (let ([y (read)])
  8176. (if (if (< x 1) (eq? x 0) (eq? x 2))
  8177. (+ y 2)
  8178. (+ y 10))))
  8179. \end{lstlisting}
  8180. \fi}
  8181. {\if\edition\pythonEd\pythonColor
  8182. \begin{lstlisting}
  8183. x = input_int()
  8184. y = input_int()
  8185. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  8186. \end{lstlisting}
  8187. \fi}
  8188. \end{minipage}
  8189. \end{center}
  8190. %
  8191. The naive way to compile \key{if} and the comparison operations would
  8192. be to handle each of them in isolation, regardless of their context.
  8193. Each comparison would be translated into a \key{cmpq} instruction
  8194. followed by several instructions to move the result from the EFLAGS
  8195. register into a general purpose register or stack location. Each
  8196. \key{if} would be translated into a \key{cmpq} instruction followed by
  8197. a conditional jump. The generated code for the inner \key{if} in this
  8198. example would be as follows:
  8199. \begin{center}
  8200. \begin{minipage}{0.96\textwidth}
  8201. \begin{lstlisting}
  8202. cmpq $1, x
  8203. setl %al
  8204. movzbq %al, tmp
  8205. cmpq $1, tmp
  8206. je then_branch_1
  8207. jmp else_branch_1
  8208. \end{lstlisting}
  8209. \end{minipage}
  8210. \end{center}
  8211. Notice that the three instructions starting with \code{setl} are
  8212. redundant; the conditional jump could come immediately after the first
  8213. \code{cmpq}.
  8214. Our goal is to compile \key{if} expressions so that the relevant
  8215. comparison instruction appears directly before the conditional jump.
  8216. For example, we want to generate the following code for the inner
  8217. \code{if}:
  8218. \begin{center}
  8219. \begin{minipage}{0.96\textwidth}
  8220. \begin{lstlisting}
  8221. cmpq $1, x
  8222. jl then_branch_1
  8223. jmp else_branch_1
  8224. \end{lstlisting}
  8225. \end{minipage}
  8226. \end{center}
  8227. One way to achieve this goal is to reorganize the code at the level of
  8228. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  8229. the following code:
  8230. \begin{center}
  8231. \begin{minipage}{0.96\textwidth}
  8232. {\if\edition\racketEd
  8233. \begin{lstlisting}
  8234. (let ([x (read)])
  8235. (let ([y (read)])
  8236. (if (< x 1)
  8237. (if (eq? x 0)
  8238. (+ y 2)
  8239. (+ y 10))
  8240. (if (eq? x 2)
  8241. (+ y 2)
  8242. (+ y 10)))))
  8243. \end{lstlisting}
  8244. \fi}
  8245. {\if\edition\pythonEd\pythonColor
  8246. \begin{lstlisting}
  8247. x = input_int()
  8248. y = input_int()
  8249. print(((y + 2) if x == 0 else (y + 10)) \
  8250. if (x < 1) \
  8251. else ((y + 2) if (x == 2) else (y + 10)))
  8252. \end{lstlisting}
  8253. \fi}
  8254. \end{minipage}
  8255. \end{center}
  8256. Unfortunately, this approach duplicates the two branches from the
  8257. outer \code{if}, and a compiler must never duplicate code! After all,
  8258. the two branches could be very large expressions.
  8259. How can we apply this transformation without duplicating code? In
  8260. other words, how can two different parts of a program refer to one
  8261. piece of code?
  8262. %
  8263. The answer is that we must move away from abstract syntax \emph{trees}
  8264. and instead use \emph{graphs}.
  8265. %
  8266. At the level of x86 assembly, this is straightforward because we can
  8267. label the code for each branch and insert jumps in all the places that
  8268. need to execute the branch. In this way, jump instructions are edges
  8269. in the graph and the basic blocks are the nodes.
  8270. %
  8271. Likewise, our language \LangCIf{} provides the ability to label a
  8272. sequence of statements and to jump to a label via \code{goto}.
  8273. As a preview of what \code{explicate\_control} will do,
  8274. figure~\ref{fig:explicate-control-s1-38} shows the output of
  8275. \code{explicate\_control} on this example. Note how the condition of
  8276. every \code{if} is a comparison operation and that we have not
  8277. duplicated any code but instead have used labels and \code{goto} to
  8278. enable sharing of code.
  8279. \begin{figure}[tbp]
  8280. \begin{tcolorbox}[colback=white]
  8281. {\if\edition\racketEd
  8282. \begin{tabular}{lll}
  8283. \begin{minipage}{0.4\textwidth}
  8284. % cond_test_41.rkt
  8285. \begin{lstlisting}
  8286. (let ([x (read)])
  8287. (let ([y (read)])
  8288. (if (if (< x 1)
  8289. (eq? x 0)
  8290. (eq? x 2))
  8291. (+ y 2)
  8292. (+ y 10))))
  8293. \end{lstlisting}
  8294. \end{minipage}
  8295. &
  8296. $\Rightarrow$
  8297. &
  8298. \begin{minipage}{0.55\textwidth}
  8299. \begin{lstlisting}
  8300. start:
  8301. x = (read);
  8302. y = (read);
  8303. if (< x 1)
  8304. goto block_4;
  8305. else
  8306. goto block_5;
  8307. block_4:
  8308. if (eq? x 0)
  8309. goto block_2;
  8310. else
  8311. goto block_3;
  8312. block_5:
  8313. if (eq? x 2)
  8314. goto block_2;
  8315. else
  8316. goto block_3;
  8317. block_2:
  8318. return (+ y 2);
  8319. block_3:
  8320. return (+ y 10);
  8321. \end{lstlisting}
  8322. \end{minipage}
  8323. \end{tabular}
  8324. \fi}
  8325. {\if\edition\pythonEd\pythonColor
  8326. \begin{tabular}{lll}
  8327. \begin{minipage}{0.4\textwidth}
  8328. % cond_test_41.rkt
  8329. \begin{lstlisting}
  8330. x = input_int()
  8331. y = input_int()
  8332. print(y + 2 \
  8333. if (x == 0 \
  8334. if x < 1 \
  8335. else x == 2) \
  8336. else y + 10)
  8337. \end{lstlisting}
  8338. \end{minipage}
  8339. &
  8340. $\Rightarrow$
  8341. &
  8342. \begin{minipage}{0.55\textwidth}
  8343. \begin{lstlisting}
  8344. start:
  8345. x = input_int()
  8346. y = input_int()
  8347. if x < 1:
  8348. goto block_8
  8349. else:
  8350. goto block_9
  8351. block_8:
  8352. if x == 0:
  8353. goto block_4
  8354. else:
  8355. goto block_5
  8356. block_9:
  8357. if x == 2:
  8358. goto block_6
  8359. else:
  8360. goto block_7
  8361. block_4:
  8362. goto block_2
  8363. block_5:
  8364. goto block_3
  8365. block_6:
  8366. goto block_2
  8367. block_7:
  8368. goto block_3
  8369. block_2:
  8370. tmp_0 = y + 2
  8371. goto block_1
  8372. block_3:
  8373. tmp_0 = y + 10
  8374. goto block_1
  8375. block_1:
  8376. print(tmp_0)
  8377. return 0
  8378. \end{lstlisting}
  8379. \end{minipage}
  8380. \end{tabular}
  8381. \fi}
  8382. \end{tcolorbox}
  8383. \caption{Translation from \LangIf{} to \LangCIf{}
  8384. via the \code{explicate\_control}.}
  8385. \label{fig:explicate-control-s1-38}
  8386. \end{figure}
  8387. {\if\edition\racketEd
  8388. %
  8389. Recall that in section~\ref{sec:explicate-control-Lvar} we implement
  8390. \code{explicate\_control} for \LangVar{} using two recursive
  8391. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  8392. former function translates expressions in tail position, whereas the
  8393. latter function translates expressions on the right-hand side of a
  8394. \key{let}. With the addition of \key{if} expression to \LangIf{} we
  8395. have a new kind of position to deal with: the predicate position of
  8396. the \key{if}. We need another function, \code{explicate\_pred}, that
  8397. decides how to compile an \key{if} by analyzing its condition. So,
  8398. \code{explicate\_pred} takes an \LangIf{} expression and two
  8399. \LangCIf{} tails for the \emph{then} branch and \emph{else} branch
  8400. and outputs a tail. In the following paragraphs we discuss specific
  8401. cases in the \code{explicate\_tail}, \code{explicate\_assign}, and
  8402. \code{explicate\_pred} functions.
  8403. %
  8404. \fi}
  8405. %
  8406. {\if\edition\pythonEd\pythonColor
  8407. %
  8408. We recommend implementing \code{explicate\_control} using the
  8409. following four auxiliary functions.
  8410. \begin{description}
  8411. \item[\code{explicate\_effect}] generates code for expressions as
  8412. statements, so their result is ignored and only their side effects
  8413. matter.
  8414. \item[\code{explicate\_assign}] generates code for expressions
  8415. on the right-hand side of an assignment.
  8416. \item[\code{explicate\_pred}] generates code for an \code{if}
  8417. expression or statement by analyzing the condition expression.
  8418. \item[\code{explicate\_stmt}] generates code for statements.
  8419. \end{description}
  8420. These four functions should build the dictionary of basic blocks. The
  8421. following auxiliary function can be used to create a new basic block
  8422. from a list of statements. It returns a \code{goto} statement that
  8423. jumps to the new basic block.
  8424. \begin{center}
  8425. \begin{minipage}{\textwidth}
  8426. \begin{lstlisting}
  8427. def create_block(stmts, basic_blocks):
  8428. label = label_name(generate_name('block'))
  8429. basic_blocks[label] = stmts
  8430. return Goto(label)
  8431. \end{lstlisting}
  8432. \end{minipage}
  8433. \end{center}
  8434. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  8435. \code{explicate\_control} pass.
  8436. The \code{explicate\_effect} function has three parameters: 1) the
  8437. expression to be compiled, 2) the already-compiled code for this
  8438. expression's \emph{continuation}, that is, the list of statements that
  8439. should execute after this expression, and 3) the dictionary of
  8440. generated basic blocks. The \code{explicate\_effect} function returns
  8441. a list of \LangCIf{} statements and it may add to the dictionary of
  8442. basic blocks.
  8443. %
  8444. Let's consider a few of the cases for the expression to be compiled.
  8445. If the expression to be compiled is a constant, then it can be
  8446. discarded because it has no side effects. If it's a \CREAD{}, then it
  8447. has a side-effect and should be preserved. So the expression should be
  8448. translated into a statement using the \code{Expr} AST class. If the
  8449. expression to be compiled is an \code{if} expression, we translate the
  8450. two branches using \code{explicate\_effect} and then translate the
  8451. condition expression using \code{explicate\_pred}, which generates
  8452. code for the entire \code{if}.
  8453. The \code{explicate\_assign} function has four parameters: 1) the
  8454. right-hand side of the assignment, 2) the left-hand side of the
  8455. assignment (the variable), 3) the continuation, and 4) the dictionary
  8456. of basic blocks. The \code{explicate\_assign} function returns a list
  8457. of \LangCIf{} statements and it may add to the dictionary of basic
  8458. blocks.
  8459. When the right-hand side is an \code{if} expression, there is some
  8460. work to do. In particular, the two branches should be translated using
  8461. \code{explicate\_assign} and the condition expression should be
  8462. translated using \code{explicate\_pred}. Otherwise we can simply
  8463. generate an assignment statement, with the given left and right-hand
  8464. sides, concatenated with its continuation.
  8465. \begin{figure}[tbp]
  8466. \begin{tcolorbox}[colback=white]
  8467. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8468. def explicate_effect(e, cont, basic_blocks):
  8469. match e:
  8470. case IfExp(test, body, orelse):
  8471. ...
  8472. case Call(func, args):
  8473. ...
  8474. case Begin(body, result):
  8475. ...
  8476. case _:
  8477. ...
  8478. def explicate_assign(rhs, lhs, cont, basic_blocks):
  8479. match rhs:
  8480. case IfExp(test, body, orelse):
  8481. ...
  8482. case Begin(body, result):
  8483. ...
  8484. case _:
  8485. return [Assign([lhs], rhs)] + cont
  8486. def explicate_pred(cnd, thn, els, basic_blocks):
  8487. match cnd:
  8488. case Compare(left, [op], [right]):
  8489. goto_thn = create_block(thn, basic_blocks)
  8490. goto_els = create_block(els, basic_blocks)
  8491. return [If(cnd, [goto_thn], [goto_els])]
  8492. case Constant(True):
  8493. return thn;
  8494. case Constant(False):
  8495. return els;
  8496. case UnaryOp(Not(), operand):
  8497. ...
  8498. case IfExp(test, body, orelse):
  8499. ...
  8500. case Begin(body, result):
  8501. ...
  8502. case _:
  8503. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  8504. [create_block(els, basic_blocks)],
  8505. [create_block(thn, basic_blocks)])]
  8506. def explicate_stmt(s, cont, basic_blocks):
  8507. match s:
  8508. case Assign([lhs], rhs):
  8509. return explicate_assign(rhs, lhs, cont, basic_blocks)
  8510. case Expr(value):
  8511. return explicate_effect(value, cont, basic_blocks)
  8512. case If(test, body, orelse):
  8513. ...
  8514. def explicate_control(p):
  8515. match p:
  8516. case Module(body):
  8517. new_body = [Return(Constant(0))]
  8518. basic_blocks = {}
  8519. for s in reversed(body):
  8520. new_body = explicate_stmt(s, new_body, basic_blocks)
  8521. basic_blocks[label_name('start')] = new_body
  8522. return CProgram(basic_blocks)
  8523. \end{lstlisting}
  8524. \end{tcolorbox}
  8525. \caption{Skeleton for the \code{explicate\_control} pass.}
  8526. \label{fig:explicate-control-Lif}
  8527. \end{figure}
  8528. \fi}
  8529. {\if\edition\racketEd
  8530. \subsection{Explicate Tail and Assign}
  8531. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  8532. additional cases for Boolean constants and \key{if}. The cases for
  8533. \code{if} should recursively compile the two branches using either
  8534. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  8535. cases should then invoke \code{explicate\_pred} on the condition
  8536. expression, passing in the generated code for the two branches. For
  8537. example, consider the following program with an \code{if} in tail
  8538. position.
  8539. % cond_test_6.rkt
  8540. \begin{lstlisting}
  8541. (let ([x (read)])
  8542. (if (eq? x 0) 42 777))
  8543. \end{lstlisting}
  8544. The two branches are recursively compiled to return statements. We
  8545. then delegate to \code{explicate\_pred}, passing the condition
  8546. \code{(eq? x 0)} and the two return statements. We return to this
  8547. example shortly when we discuss \code{explicate\_pred}.
  8548. Next let us consider a program with an \code{if} on the right-hand
  8549. side of a \code{let}.
  8550. \begin{lstlisting}
  8551. (let ([y (read)])
  8552. (let ([x (if (eq? y 0) 40 777)])
  8553. (+ x 2)))
  8554. \end{lstlisting}
  8555. Note that the body of the inner \code{let} will have already been
  8556. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  8557. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  8558. to recursively process both branches of the \code{if}, and we do not
  8559. want to duplicate code, so we generate the following block using an
  8560. auxiliary function named \code{create\_block}, discussed in the next
  8561. section.
  8562. \begin{lstlisting}
  8563. block_6:
  8564. return (+ x 2)
  8565. \end{lstlisting}
  8566. We then use \code{goto block\_6;} as the \code{cont} argument for
  8567. compiling the branches. So the two branches compile to
  8568. \begin{center}
  8569. \begin{minipage}{0.2\textwidth}
  8570. \begin{lstlisting}
  8571. x = 40;
  8572. goto block_6;
  8573. \end{lstlisting}
  8574. \end{minipage}
  8575. \hspace{0.5in} and \hspace{0.5in}
  8576. \begin{minipage}{0.2\textwidth}
  8577. \begin{lstlisting}
  8578. x = 777;
  8579. goto block_6;
  8580. \end{lstlisting}
  8581. \end{minipage}
  8582. \end{center}
  8583. Finally, we delegate to \code{explicate\_pred}, passing the condition
  8584. \code{(eq? y 0)} and the previously presented code for the branches.
  8585. \subsection{Create Block}
  8586. We recommend implementing the \code{create\_block} auxiliary function
  8587. as follows, using a global variable \code{basic-blocks} to store a
  8588. dictionary that maps labels to $\Tail$ expressions. The main idea is
  8589. that \code{create\_block} generates a new label and then associates
  8590. the given \code{tail} with the new label in the \code{basic-blocks}
  8591. dictionary. The result of \code{create\_block} is a \code{Goto} to the
  8592. new label. However, if the given \code{tail} is already a \code{Goto},
  8593. then there is no need to generate a new label and entry in
  8594. \code{basic-blocks}; we can simply return that \code{Goto}.
  8595. %
  8596. \begin{lstlisting}
  8597. (define (create_block tail)
  8598. (match tail
  8599. [(Goto label) (Goto label)]
  8600. [else
  8601. (let ([label (gensym 'block)])
  8602. (set! basic-blocks (cons (cons label tail) basic-blocks))
  8603. (Goto label))]))
  8604. \end{lstlisting}
  8605. \fi}
  8606. {\if\edition\racketEd
  8607. \subsection{Explicate Predicate}
  8608. The skeleton for the \code{explicate\_pred} function is given in
  8609. figure~\ref{fig:explicate-pred}. It takes three parameters: (1)
  8610. \code{cnd}, the condition expression of the \code{if}; (2) \code{thn},
  8611. the code generated by explicate for the \emph{then} branch; and (3)
  8612. \code{els}, the code generated by explicate for the \emph{else}
  8613. branch. The \code{explicate\_pred} function should match on
  8614. \code{cnd} with a case for every kind of expression that can have type
  8615. \BOOLTY{}.
  8616. \begin{figure}[tbp]
  8617. \begin{tcolorbox}[colback=white]
  8618. \begin{lstlisting}
  8619. (define (explicate_pred cnd thn els)
  8620. (match cnd
  8621. [(Var x) ___]
  8622. [(Let x rhs body) ___]
  8623. [(Prim 'not (list e)) ___]
  8624. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  8625. (IfStmt (Prim op es) (create_block thn)
  8626. (create_block els))]
  8627. [(Bool b) (if b thn els)]
  8628. [(If cnd^ thn^ els^) ___]
  8629. [else (error "explicate_pred unhandled case" cnd)]))
  8630. \end{lstlisting}
  8631. \end{tcolorbox}
  8632. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  8633. \label{fig:explicate-pred}
  8634. \end{figure}
  8635. \fi}
  8636. %
  8637. {\if\edition\pythonEd\pythonColor
  8638. The \code{explicate\_pred} function has four parameters: 1) the
  8639. condition expression, 2) the generated statements for the ``then''
  8640. branch, 3) the generated statements for the ``else'' branch, and 4)
  8641. the dictionary of basic blocks. The \code{explicate\_pred} function
  8642. returns a list of \LangCIf{} statements and it may add to the
  8643. dictionary of basic blocks.
  8644. \fi}
  8645. Consider the case for comparison operators. We translate the
  8646. comparison to an \code{if} statement whose branches are \code{goto}
  8647. statements created by applying \code{create\_block} to the code
  8648. generated for the \code{thn} and \code{els} branches. Let us
  8649. illustrate this translation by returning to the program with an
  8650. \code{if} expression in tail position, shown next. We invoke
  8651. \code{explicate\_pred} on its condition
  8652. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}.
  8653. %
  8654. {\if\edition\racketEd
  8655. \begin{lstlisting}
  8656. (let ([x (read)])
  8657. (if (eq? x 0) 42 777))
  8658. \end{lstlisting}
  8659. \fi}
  8660. %
  8661. {\if\edition\pythonEd\pythonColor
  8662. \begin{lstlisting}
  8663. x = input_int()
  8664. 42 if x == 0 else 777
  8665. \end{lstlisting}
  8666. \fi}
  8667. %
  8668. \noindent The two branches \code{42} and \code{777} were already
  8669. compiled to \code{return} statements, from which we now create the
  8670. following blocks:
  8671. %
  8672. \begin{center}
  8673. \begin{minipage}{\textwidth}
  8674. \begin{lstlisting}
  8675. block_1:
  8676. return 42;
  8677. block_2:
  8678. return 777;
  8679. \end{lstlisting}
  8680. \end{minipage}
  8681. \end{center}
  8682. %
  8683. After that, \code{explicate\_pred} compiles the comparison
  8684. \racket{\code{(eq? x 0)}}
  8685. \python{\code{x == 0}}
  8686. to the following \code{if} statement:
  8687. %
  8688. {\if\edition\racketEd
  8689. \begin{center}
  8690. \begin{minipage}{\textwidth}
  8691. \begin{lstlisting}
  8692. if (eq? x 0)
  8693. goto block_1;
  8694. else
  8695. goto block_2;
  8696. \end{lstlisting}
  8697. \end{minipage}
  8698. \end{center}
  8699. \fi}
  8700. {\if\edition\pythonEd\pythonColor
  8701. \begin{center}
  8702. \begin{minipage}{\textwidth}
  8703. \begin{lstlisting}
  8704. if x == 0:
  8705. goto block_1;
  8706. else
  8707. goto block_2;
  8708. \end{lstlisting}
  8709. \end{minipage}
  8710. \end{center}
  8711. \fi}
  8712. Next consider the case for Boolean constants. We perform a kind of
  8713. partial evaluation\index{subject}{partialevaluation@partial evaluation} and output
  8714. either the \code{thn} or \code{els} branch, depending on whether the
  8715. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  8716. following program:
  8717. {\if\edition\racketEd
  8718. \begin{lstlisting}
  8719. (if #t 42 777)
  8720. \end{lstlisting}
  8721. \fi}
  8722. {\if\edition\pythonEd\pythonColor
  8723. \begin{lstlisting}
  8724. 42 if True else 777
  8725. \end{lstlisting}
  8726. \fi}
  8727. %
  8728. \noindent Again, the two branches \code{42} and \code{777} were
  8729. compiled to \code{return} statements, so \code{explicate\_pred}
  8730. compiles the constant \racket{\code{\#t}} \python{\code{True}} to the
  8731. code for the \emph{then} branch.
  8732. \begin{lstlisting}
  8733. return 42;
  8734. \end{lstlisting}
  8735. This case demonstrates that we sometimes discard the \code{thn} or
  8736. \code{els} blocks that are input to \code{explicate\_pred}.
  8737. The case for \key{if} expressions in \code{explicate\_pred} is
  8738. particularly illuminating because it deals with the challenges
  8739. discussed previously regarding nested \key{if} expressions
  8740. (figure~\ref{fig:explicate-control-s1-38}). The
  8741. \racket{\lstinline{thn^}}\python{\code{body}} and
  8742. \racket{\lstinline{els^}}\python{\code{orelse}} branches of the
  8743. \key{if} inherit their context from the current one, that is,
  8744. predicate context. So, you should recursively apply
  8745. \code{explicate\_pred} to the
  8746. \racket{\lstinline{thn^}}\python{\code{body}} and
  8747. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  8748. those recursive calls, pass \code{thn} and \code{els} as the extra
  8749. parameters. Thus, \code{thn} and \code{els} may be used twice, once
  8750. inside each recursive call. As discussed previously, to avoid
  8751. duplicating code, we need to add them to the dictionary of basic
  8752. blocks so that we can instead refer to them by name and execute them
  8753. with a \key{goto}.
  8754. {\if\edition\pythonEd\pythonColor
  8755. %
  8756. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  8757. three parameters: 1) the statement to be compiled, 2) the code for its
  8758. continuation, and 3) the dictionary of basic blocks. The
  8759. \code{explicate\_stmt} returns a list of statements and it may add to
  8760. the dictionary of basic blocks. The cases for assignment and an
  8761. expression-statement are given in full in the skeleton code: they
  8762. simply dispatch to \code{explicate\_assign} and
  8763. \code{explicate\_effect}, respectively. The case for \code{if}
  8764. statements is not given, and is similar to the case for \code{if}
  8765. expressions.
  8766. The \code{explicate\_control} function itself is given in
  8767. figure~\ref{fig:explicate-control-Lif}. It applies
  8768. \code{explicate\_stmt} to each statement in the program, from back to
  8769. front. Thus, the result so-far, stored in \code{new\_body}, can be
  8770. used as the continuation parameter in the next call to
  8771. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  8772. \code{Return} statement. Once complete, we add the \code{new\_body} to
  8773. the dictionary of basic blocks, labeling it as the ``start'' block.
  8774. %
  8775. \fi}
  8776. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  8777. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  8778. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  8779. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  8780. %% results from the two recursive calls. We complete the case for
  8781. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  8782. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  8783. %% the result $B_5$.
  8784. %% \[
  8785. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  8786. %% \quad\Rightarrow\quad
  8787. %% B_5
  8788. %% \]
  8789. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  8790. %% inherit the current context, so they are in tail position. Thus, the
  8791. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  8792. %% \code{explicate\_tail}.
  8793. %% %
  8794. %% We need to pass $B_0$ as the accumulator argument for both of these
  8795. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  8796. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  8797. %% to the control-flow graph and obtain a promised goto $G_0$.
  8798. %% %
  8799. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  8800. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  8801. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  8802. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  8803. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  8804. %% \[
  8805. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  8806. %% \]
  8807. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  8808. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  8809. %% should not be confused with the labels for the blocks that appear in
  8810. %% the generated code. We initially construct unlabeled blocks; we only
  8811. %% attach labels to blocks when we add them to the control-flow graph, as
  8812. %% we see in the next case.
  8813. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  8814. %% function. The context of the \key{if} is an assignment to some
  8815. %% variable $x$ and then the control continues to some promised block
  8816. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  8817. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  8818. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  8819. %% branches of the \key{if} inherit the current context, so they are in
  8820. %% assignment positions. Let $B_2$ be the result of applying
  8821. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  8822. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  8823. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  8824. %% the result of applying \code{explicate\_pred} to the predicate
  8825. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  8826. %% translates to the promise $B_4$.
  8827. %% \[
  8828. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  8829. %% \]
  8830. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  8831. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  8832. \code{remove\_complex\_operands} pass and then the
  8833. \code{explicate\_control} pass on the example program. We walk through
  8834. the output program.
  8835. %
  8836. Following the order of evaluation in the output of
  8837. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  8838. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  8839. in the predicate of the inner \key{if}. In the output of
  8840. \code{explicate\_control}, in the
  8841. block labeled \code{start}, two assignment statements are followed by an
  8842. \code{if} statement that branches to \code{block\_4} or
  8843. \code{block\_5}. The blocks associated with those labels contain the
  8844. translations of the code
  8845. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8846. and
  8847. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  8848. respectively. In particular, we start \code{block\_4} with the
  8849. comparison
  8850. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8851. and then branch to \code{block\_2} or \code{block\_3},
  8852. which correspond to the two branches of the outer \key{if}, that is,
  8853. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  8854. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  8855. %
  8856. The story for \code{block\_5} is similar to that of \code{block\_4}.
  8857. %
  8858. \python{The \code{block\_1} corresponds to the \code{print} statement
  8859. at the end of the program.}
  8860. {\if\edition\racketEd
  8861. \subsection{Interactions between Explicate and Shrink}
  8862. The way in which the \code{shrink} pass transforms logical operations
  8863. such as \code{and} and \code{or} can impact the quality of code
  8864. generated by \code{explicate\_control}. For example, consider the
  8865. following program:
  8866. % cond_test_21.rkt, and_eq_input.py
  8867. \begin{lstlisting}
  8868. (if (and (eq? (read) 0) (eq? (read) 1))
  8869. 0
  8870. 42)
  8871. \end{lstlisting}
  8872. The \code{and} operation should transform into something that the
  8873. \code{explicate\_pred} function can analyze and descend through to
  8874. reach the underlying \code{eq?} conditions. Ideally, for this program
  8875. your \code{explicate\_control} pass should generate code similar to
  8876. the following:
  8877. \begin{center}
  8878. \begin{minipage}{\textwidth}
  8879. \begin{lstlisting}
  8880. start:
  8881. tmp1 = (read);
  8882. if (eq? tmp1 0) goto block40;
  8883. else goto block39;
  8884. block40:
  8885. tmp2 = (read);
  8886. if (eq? tmp2 1) goto block38;
  8887. else goto block39;
  8888. block38:
  8889. return 0;
  8890. block39:
  8891. return 42;
  8892. \end{lstlisting}
  8893. \end{minipage}
  8894. \end{center}
  8895. \fi}
  8896. \begin{exercise}\normalfont\normalsize
  8897. \racket{
  8898. Implement the pass \code{explicate\_control} by adding the cases for
  8899. Boolean constants and \key{if} to the \code{explicate\_tail} and
  8900. \code{explicate\_assign} functions. Implement the auxiliary function
  8901. \code{explicate\_pred} for predicate contexts.}
  8902. \python{Implement \code{explicate\_control} pass with its
  8903. four auxiliary functions.}
  8904. %
  8905. Create test cases that exercise all the new cases in the code for
  8906. this pass.
  8907. %
  8908. {\if\edition\racketEd
  8909. Add the following entry to the list of \code{passes} in
  8910. \code{run-tests.rkt}:
  8911. \begin{lstlisting}
  8912. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  8913. \end{lstlisting}
  8914. and then run \code{run-tests.rkt} to test your compiler.
  8915. \fi}
  8916. \end{exercise}
  8917. \section{Select Instructions}
  8918. \label{sec:select-Lif}
  8919. \index{subject}{select instructions}
  8920. The \code{select\_instructions} pass translates \LangCIf{} to
  8921. \LangXIfVar{}.
  8922. %
  8923. \racket{Recall that we implement this pass using three auxiliary
  8924. functions, one for each of the nonterminals $\Atm$, $\Stmt$, and
  8925. $\Tail$ in \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  8926. %
  8927. \racket{For $\Atm$, we have new cases for the Booleans.}
  8928. %
  8929. \python{We begin with the Boolean constants.}
  8930. We take the usual approach of encoding them as integers.
  8931. \[
  8932. \TRUE{} \quad\Rightarrow\quad \key{1}
  8933. \qquad\qquad
  8934. \FALSE{} \quad\Rightarrow\quad \key{0}
  8935. \]
  8936. For translating statements, we discuss some of the cases. The
  8937. \code{not} operation can be implemented in terms of \code{xorq}, as we
  8938. discussed at the beginning of this section. Given an assignment, if
  8939. the left-hand-side variable is the same as the argument of \code{not},
  8940. then just the \code{xorq} instruction suffices.
  8941. \[
  8942. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  8943. \quad\Rightarrow\quad
  8944. \key{xorq}~\key{\$}1\key{,}~\Var
  8945. \]
  8946. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  8947. semantics of x86. In the following translation, let $\Arg$ be the
  8948. result of translating $\Atm$ to x86.
  8949. \[
  8950. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  8951. \quad\Rightarrow\quad
  8952. \begin{array}{l}
  8953. \key{movq}~\Arg\key{,}~\Var\\
  8954. \key{xorq}~\key{\$}1\key{,}~\Var
  8955. \end{array}
  8956. \]
  8957. Next consider the cases for equality comparisons. Translating this
  8958. operation to x86 is slightly involved due to the unusual nature of the
  8959. \key{cmpq} instruction that we discussed in section~\ref{sec:x86-if}.
  8960. We recommend translating an assignment with an equality on the
  8961. right-hand side into a sequence of three instructions. \\
  8962. \begin{tabular}{lll}
  8963. \begin{minipage}{0.4\textwidth}
  8964. $\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$
  8965. \end{minipage}
  8966. &
  8967. $\Rightarrow$
  8968. &
  8969. \begin{minipage}{0.4\textwidth}
  8970. \begin{lstlisting}
  8971. cmpq |$\Arg_2$|, |$\Arg_1$|
  8972. sete %al
  8973. movzbq %al, |$\Var$|
  8974. \end{lstlisting}
  8975. \end{minipage}
  8976. \end{tabular} \\
  8977. The translations for the other comparison operators are similar to
  8978. this but use different condition codes for the \code{set} instruction.
  8979. \racket{Regarding the $\Tail$ nonterminal, we have two new cases:
  8980. \key{goto} and \key{if} statements. Both are straightforward to
  8981. translate to x86.}
  8982. %
  8983. A \key{goto} statement becomes a jump instruction.
  8984. \[
  8985. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  8986. \]
  8987. %
  8988. An \key{if} statement becomes a compare instruction followed by a
  8989. conditional jump (for the \emph{then} branch), and the fall-through is to
  8990. a regular jump (for the \emph{else} branch).\\
  8991. \begin{tabular}{lll}
  8992. \begin{minipage}{0.4\textwidth}
  8993. \begin{lstlisting}
  8994. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  8995. goto |$\ell_1$||$\racket{\key{;}}$|
  8996. else|$\python{\key{:}}$|
  8997. goto |$\ell_2$||$\racket{\key{;}}$|
  8998. \end{lstlisting}
  8999. \end{minipage}
  9000. &
  9001. $\Rightarrow$
  9002. &
  9003. \begin{minipage}{0.4\textwidth}
  9004. \begin{lstlisting}
  9005. cmpq |$\Arg_2$|, |$\Arg_1$|
  9006. je |$\ell_1$|
  9007. jmp |$\ell_2$|
  9008. \end{lstlisting}
  9009. \end{minipage}
  9010. \end{tabular} \\
  9011. Again, the translations for the other comparison operators are similar to this
  9012. but use different condition codes for the conditional jump instruction.
  9013. \python{Regarding the \key{return} statement, we recommend treating it
  9014. as an assignment to the \key{rax} register followed by a jump to the
  9015. conclusion of the \code{main} function.}
  9016. \begin{exercise}\normalfont\normalsize
  9017. Expand your \code{select\_instructions} pass to handle the new
  9018. features of the \LangCIf{} language.
  9019. %
  9020. {\if\edition\racketEd
  9021. Add the following entry to the list of \code{passes} in
  9022. \code{run-tests.rkt}
  9023. \begin{lstlisting}
  9024. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  9025. \end{lstlisting}
  9026. \fi}
  9027. %
  9028. Run the script to test your compiler on all the test programs.
  9029. \end{exercise}
  9030. \section{Register Allocation}
  9031. \label{sec:register-allocation-Lif}
  9032. \index{subject}{register allocation}
  9033. The changes required for compiling \LangIf{} affect liveness analysis,
  9034. building the interference graph, and assigning homes, but the graph
  9035. coloring algorithm itself does not change.
  9036. \subsection{Liveness Analysis}
  9037. \label{sec:liveness-analysis-Lif}
  9038. \index{subject}{liveness analysis}
  9039. Recall that for \LangVar{} we implemented liveness analysis for a
  9040. single basic block (section~\ref{sec:liveness-analysis-Lvar}). With
  9041. the addition of \key{if} expressions to \LangIf{},
  9042. \code{explicate\_control} produces many basic blocks.
  9043. %% We recommend that you create a new auxiliary function named
  9044. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  9045. %% control-flow graph.
  9046. The first question is, in what order should we process the basic blocks?
  9047. Recall that to perform liveness analysis on a basic block we need to
  9048. know the live-after set for the last instruction in the block. If a
  9049. basic block has no successors (i.e., contains no jumps to other
  9050. blocks), then it has an empty live-after set and we can immediately
  9051. apply liveness analysis to it. If a basic block has some successors,
  9052. then we need to complete liveness analysis on those blocks
  9053. first. These ordering constraints are the reverse of a
  9054. \emph{topological order}\index{subject}{topological order} on a graph
  9055. representation of the program. In particular, the \emph{control flow
  9056. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  9057. of a program has a node for each basic block and an edge for each jump
  9058. from one block to another. It is straightforward to generate a CFG
  9059. from the dictionary of basic blocks. One then transposes the CFG and
  9060. applies the topological sort algorithm.
  9061. %
  9062. %
  9063. \racket{We recommend using the \code{tsort} and \code{transpose}
  9064. functions of the Racket \code{graph} package to accomplish this.}
  9065. %
  9066. \python{We provide implementations of \code{topological\_sort} and
  9067. \code{transpose} in the file \code{graph.py} of the support code.}
  9068. %
  9069. As an aside, a topological ordering is only guaranteed to exist if the
  9070. graph does not contain any cycles. This is the case for the
  9071. control-flow graphs that we generate from \LangIf{} programs.
  9072. However, in chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  9073. and learn how to handle cycles in the control-flow graph.
  9074. \racket{You need to construct a directed graph to represent the
  9075. control-flow graph. Do not use the \code{directed-graph} of the
  9076. \code{graph} package because that allows at most one edge
  9077. between each pair of vertices, whereas a control-flow graph may have
  9078. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  9079. file in the support code implements a graph representation that
  9080. allows multiple edges between a pair of vertices.}
  9081. {\if\edition\racketEd
  9082. The next question is how to analyze jump instructions. Recall that in
  9083. section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  9084. \code{label->live} that maps each label to the set of live locations
  9085. at the beginning of its block. We use \code{label->live} to determine
  9086. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  9087. that we have many basic blocks, \code{label->live} needs to be updated
  9088. as we process the blocks. In particular, after performing liveness
  9089. analysis on a block, we take the live-before set of its first
  9090. instruction and associate that with the block's label in the
  9091. \code{label->live} alist.
  9092. \fi}
  9093. %
  9094. {\if\edition\pythonEd\pythonColor
  9095. %
  9096. The next question is how to analyze jump instructions. The locations
  9097. that are live before a \code{jmp} should be the locations in
  9098. $L_{\mathsf{before}}$ at the target of the jump. So we recommend
  9099. maintaining a dictionary named \code{live\_before\_block} that maps each
  9100. label to the $L_{\mathsf{before}}$ for the first instruction in its
  9101. block. After performing liveness analysis on each block, we take the
  9102. live-before set of its first instruction and associate that with the
  9103. block's label in the \code{live\_before\_block} dictionary.
  9104. %
  9105. \fi}
  9106. In \LangXIfVar{} we also have the conditional jump
  9107. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  9108. this instruction is particularly interesting because during
  9109. compilation, we do not know which way a conditional jump will go. Thus
  9110. we do not know whether to use the live-before set for the block
  9111. associated with the $\itm{label}$ or the live-before set for the
  9112. following instruction. However, there is no harm to the correctness
  9113. of the generated code if we classify more locations as live than the
  9114. ones that are truly live during one particular execution of the
  9115. instruction. Thus, we can take the union of the live-before sets from
  9116. the following instruction and from the mapping for $\itm{label}$ in
  9117. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  9118. The auxiliary functions for computing the variables in an
  9119. instruction's argument and for computing the variables read-from ($R$)
  9120. or written-to ($W$) by an instruction need to be updated to handle the
  9121. new kinds of arguments and instructions in \LangXIfVar{}.
  9122. \begin{exercise}\normalfont\normalsize
  9123. {\if\edition\racketEd
  9124. %
  9125. Update the \code{uncover\_live} pass to apply liveness analysis to
  9126. every basic block in the program.
  9127. %
  9128. Add the following entry to the list of \code{passes} in the
  9129. \code{run-tests.rkt} script:
  9130. \begin{lstlisting}
  9131. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  9132. \end{lstlisting}
  9133. \fi}
  9134. {\if\edition\pythonEd\pythonColor
  9135. %
  9136. Update the \code{uncover\_live} function to perform liveness analysis,
  9137. in reverse topological order, on all the basic blocks in the
  9138. program.
  9139. %
  9140. \fi}
  9141. % Check that the live-after sets that you generate for
  9142. % example X matches the following... -Jeremy
  9143. \end{exercise}
  9144. \subsection{Build the Interference Graph}
  9145. \label{sec:build-interference-Lif}
  9146. Many of the new instructions in \LangXIfVar{} can be handled in the
  9147. same way as the instructions in \LangXVar{}.
  9148. % Thus, if your code was
  9149. % already quite general, it will not need to be changed to handle the
  9150. % new instructions. If your code is not general enough, we recommend that
  9151. % you change your code to be more general. For example, you can factor
  9152. % out the computing of the the read and write sets for each kind of
  9153. % instruction into auxiliary functions.
  9154. %
  9155. Some instructions, such as the \key{movzbq} instruction, require special care,
  9156. similar to the \key{movq} instruction. Refer to rule number 1 in
  9157. section~\ref{sec:build-interference}.
  9158. \begin{exercise}\normalfont\normalsize
  9159. Update the \code{build\_interference} pass for \LangXIfVar{}.
  9160. {\if\edition\racketEd
  9161. Add the following entries to the list of \code{passes} in the
  9162. \code{run-tests.rkt} script:
  9163. \begin{lstlisting}
  9164. (list "build_interference" build_interference interp-pseudo-x86-1)
  9165. (list "allocate_registers" allocate_registers interp-pseudo-x86-1)
  9166. \end{lstlisting}
  9167. \fi}
  9168. % Check that the interference graph that you generate for
  9169. % example X matches the following graph G... -Jeremy
  9170. \end{exercise}
  9171. \section{Patch Instructions}
  9172. The new instructions \key{cmpq} and \key{movzbq} have some special
  9173. restrictions that need to be handled in the \code{patch\_instructions}
  9174. pass.
  9175. %
  9176. The second argument of the \key{cmpq} instruction must not be an
  9177. immediate value (such as an integer). So, if you are comparing two
  9178. immediates, we recommend inserting a \key{movq} instruction to put the
  9179. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  9180. one memory reference.
  9181. %
  9182. The second argument of the \key{movzbq} must be a register.
  9183. \begin{exercise}\normalfont\normalsize
  9184. %
  9185. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  9186. %
  9187. {\if\edition\racketEd
  9188. Add the following entry to the list of \code{passes} in
  9189. \code{run-tests.rkt}, and then run this script to test your compiler.
  9190. \begin{lstlisting}
  9191. (list "patch_instructions" patch_instructions interp-x86-1)
  9192. \end{lstlisting}
  9193. \fi}
  9194. \end{exercise}
  9195. {\if\edition\pythonEd\pythonColor
  9196. \section{Prelude and Conclusion}
  9197. \label{sec:prelude-conclusion-cond}
  9198. The generation of the \code{main} function with its prelude and
  9199. conclusion must change to accommodate how the program now consists of
  9200. one or more basic blocks. After the prelude in \code{main}, jump to
  9201. the \code{start} block. Place the conclusion in a basic block labeled
  9202. with \code{conclusion}.
  9203. \fi}
  9204. Figure~\ref{fig:if-example-x86} shows a simple example program in
  9205. \LangIf{} translated to x86, showing the results of
  9206. \code{explicate\_control}, \code{select\_instructions}, and the final
  9207. x86 assembly.
  9208. \begin{figure}[tbp]
  9209. \begin{tcolorbox}[colback=white]
  9210. {\if\edition\racketEd
  9211. \begin{tabular}{lll}
  9212. \begin{minipage}{0.4\textwidth}
  9213. % cond_test_20.rkt, eq_input.py
  9214. \begin{lstlisting}
  9215. (if (eq? (read) 1) 42 0)
  9216. \end{lstlisting}
  9217. $\Downarrow$
  9218. \begin{lstlisting}
  9219. start:
  9220. tmp7951 = (read);
  9221. if (eq? tmp7951 1)
  9222. goto block7952;
  9223. else
  9224. goto block7953;
  9225. block7952:
  9226. return 42;
  9227. block7953:
  9228. return 0;
  9229. \end{lstlisting}
  9230. $\Downarrow$
  9231. \begin{lstlisting}
  9232. start:
  9233. callq read_int
  9234. movq %rax, tmp7951
  9235. cmpq $1, tmp7951
  9236. je block7952
  9237. jmp block7953
  9238. block7953:
  9239. movq $0, %rax
  9240. jmp conclusion
  9241. block7952:
  9242. movq $42, %rax
  9243. jmp conclusion
  9244. \end{lstlisting}
  9245. \end{minipage}
  9246. &
  9247. $\Rightarrow\qquad$
  9248. \begin{minipage}{0.4\textwidth}
  9249. \begin{lstlisting}
  9250. start:
  9251. callq read_int
  9252. movq %rax, %rcx
  9253. cmpq $1, %rcx
  9254. je block7952
  9255. jmp block7953
  9256. block7953:
  9257. movq $0, %rax
  9258. jmp conclusion
  9259. block7952:
  9260. movq $42, %rax
  9261. jmp conclusion
  9262. .globl main
  9263. main:
  9264. pushq %rbp
  9265. movq %rsp, %rbp
  9266. pushq %r13
  9267. pushq %r12
  9268. pushq %rbx
  9269. pushq %r14
  9270. subq $0, %rsp
  9271. jmp start
  9272. conclusion:
  9273. addq $0, %rsp
  9274. popq %r14
  9275. popq %rbx
  9276. popq %r12
  9277. popq %r13
  9278. popq %rbp
  9279. retq
  9280. \end{lstlisting}
  9281. \end{minipage}
  9282. \end{tabular}
  9283. \fi}
  9284. {\if\edition\pythonEd\pythonColor
  9285. \begin{tabular}{lll}
  9286. \begin{minipage}{0.4\textwidth}
  9287. % cond_test_20.rkt, eq_input.py
  9288. \begin{lstlisting}
  9289. print(42 if input_int() == 1 else 0)
  9290. \end{lstlisting}
  9291. $\Downarrow$
  9292. \begin{lstlisting}
  9293. start:
  9294. tmp_0 = input_int()
  9295. if tmp_0 == 1:
  9296. goto block_3
  9297. else:
  9298. goto block_4
  9299. block_3:
  9300. tmp_1 = 42
  9301. goto block_2
  9302. block_4:
  9303. tmp_1 = 0
  9304. goto block_2
  9305. block_2:
  9306. print(tmp_1)
  9307. return 0
  9308. \end{lstlisting}
  9309. $\Downarrow$
  9310. \begin{lstlisting}
  9311. start:
  9312. callq read_int
  9313. movq %rax, tmp_0
  9314. cmpq 1, tmp_0
  9315. je block_3
  9316. jmp block_4
  9317. block_3:
  9318. movq 42, tmp_1
  9319. jmp block_2
  9320. block_4:
  9321. movq 0, tmp_1
  9322. jmp block_2
  9323. block_2:
  9324. movq tmp_1, %rdi
  9325. callq print_int
  9326. movq 0, %rax
  9327. jmp conclusion
  9328. \end{lstlisting}
  9329. \end{minipage}
  9330. &
  9331. $\Rightarrow\qquad$
  9332. \begin{minipage}{0.4\textwidth}
  9333. \begin{lstlisting}
  9334. .globl main
  9335. main:
  9336. pushq %rbp
  9337. movq %rsp, %rbp
  9338. subq $0, %rsp
  9339. jmp start
  9340. start:
  9341. callq read_int
  9342. movq %rax, %rcx
  9343. cmpq $1, %rcx
  9344. je block_3
  9345. jmp block_4
  9346. block_3:
  9347. movq $42, %rcx
  9348. jmp block_2
  9349. block_4:
  9350. movq $0, %rcx
  9351. jmp block_2
  9352. block_2:
  9353. movq %rcx, %rdi
  9354. callq print_int
  9355. movq $0, %rax
  9356. jmp conclusion
  9357. conclusion:
  9358. addq $0, %rsp
  9359. popq %rbp
  9360. retq
  9361. \end{lstlisting}
  9362. \end{minipage}
  9363. \end{tabular}
  9364. \fi}
  9365. \end{tcolorbox}
  9366. \caption{Example compilation of an \key{if} expression to x86, showing
  9367. the results of \code{explicate\_control},
  9368. \code{select\_instructions}, and the final x86 assembly code. }
  9369. \label{fig:if-example-x86}
  9370. \end{figure}
  9371. \begin{figure}[tbp]
  9372. \begin{tcolorbox}[colback=white]
  9373. {\if\edition\racketEd
  9374. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9375. \node (Lif-2) at (0,2) {\large \LangIf{}};
  9376. \node (Lif-3) at (3,2) {\large \LangIf{}};
  9377. \node (Lif-4) at (6,2) {\large \LangIf{}};
  9378. \node (Lif-5) at (10,2) {\large \LangIfANF{}};
  9379. \node (C1-1) at (0,0) {\large \LangCIf{}};
  9380. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  9381. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  9382. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  9383. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  9384. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  9385. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  9386. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  9387. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  9388. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-5);
  9389. \path[->,bend left=10] (Lif-5) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C1-1);
  9390. \path[->,bend right=15] (C1-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  9391. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9392. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  9393. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  9394. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  9395. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion } (x86-5);
  9396. \end{tikzpicture}
  9397. \fi}
  9398. {\if\edition\pythonEd\pythonColor
  9399. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9400. \node (Lif-1) at (0,2) {\large \LangIf{}};
  9401. \node (Lif-2) at (4,2) {\large \LangIf{}};
  9402. \node (Lif-3) at (8,2) {\large \LangIfANF{}};
  9403. \node (C-1) at (0,0) {\large \LangCIf{}};
  9404. \node (x86-1) at (0,-2) {\large \LangXIfVar{}};
  9405. \node (x86-2) at (4,-2) {\large \LangXIfVar{}};
  9406. \node (x86-3) at (8,-2) {\large \LangXIf{}};
  9407. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  9408. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  9409. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-3);
  9410. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (C-1);
  9411. \path[->,bend right=15] (C-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-1);
  9412. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  9413. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  9414. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  9415. \end{tikzpicture}
  9416. \fi}
  9417. \end{tcolorbox}
  9418. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  9419. \label{fig:Lif-passes}
  9420. \end{figure}
  9421. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  9422. compilation of \LangIf{}.
  9423. \section{Challenge: Optimize Blocks and Remove Jumps}
  9424. \label{sec:opt-jumps}
  9425. We discuss two optional challenges that involve optimizing the
  9426. control-flow of the program.
  9427. \subsection{Optimize Blocks}
  9428. The algorithm for \code{explicate\_control} that we discussed in
  9429. section~\ref{sec:explicate-control-Lif} sometimes generates too many
  9430. blocks. It creates a basic block whenever a continuation \emph{might}
  9431. get used more than once (for example, whenever the \code{cont} parameter is
  9432. passed into two or more recursive calls). However, some continuation
  9433. arguments may not be used at all. For example, consider the case for
  9434. the constant \TRUE{} in \code{explicate\_pred}, in which we discard the
  9435. \code{els} continuation.
  9436. %
  9437. {\if\edition\racketEd
  9438. The following example program falls into this
  9439. case, and it creates two unused blocks.
  9440. \begin{center}
  9441. \begin{tabular}{lll}
  9442. \begin{minipage}{0.4\textwidth}
  9443. % cond_test_82.rkt
  9444. \begin{lstlisting}
  9445. (let ([y (if #t
  9446. (read)
  9447. (if (eq? (read) 0)
  9448. 777
  9449. (let ([x (read)])
  9450. (+ 1 x))))])
  9451. (+ y 2))
  9452. \end{lstlisting}
  9453. \end{minipage}
  9454. &
  9455. $\Rightarrow$
  9456. &
  9457. \begin{minipage}{0.55\textwidth}
  9458. \begin{lstlisting}
  9459. start:
  9460. y = (read);
  9461. goto block_5;
  9462. block_5:
  9463. return (+ y 2);
  9464. block_6:
  9465. y = 777;
  9466. goto block_5;
  9467. block_7:
  9468. x = (read);
  9469. y = (+ 1 x2);
  9470. goto block_5;
  9471. \end{lstlisting}
  9472. \end{minipage}
  9473. \end{tabular}
  9474. \end{center}
  9475. \fi}
  9476. The question is, how can we decide whether to create a basic block?
  9477. \emph{Lazy evaluation}\index{subject}{lazy
  9478. evaluation}~\citep{Friedman:1976aa} can solve this conundrum by
  9479. delaying the creation of a basic block until the point in time at which
  9480. we know that it will be used.
  9481. %
  9482. {\if\edition\racketEd
  9483. %
  9484. Racket provides support for
  9485. lazy evaluation with the
  9486. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  9487. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  9488. \index{subject}{delay} creates a
  9489. \emph{promise}\index{subject}{promise} in which the evaluation of the
  9490. expressions is postponed. When \key{(force}
  9491. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  9492. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  9493. result of $e_n$ is cached in the promise and returned. If \code{force}
  9494. is applied again to the same promise, then the cached result is
  9495. returned. If \code{force} is applied to an argument that is not a
  9496. promise, \code{force} simply returns the argument.
  9497. %
  9498. \fi}
  9499. %
  9500. {\if\edition\pythonEd\pythonColor
  9501. %
  9502. While Python does not provide direct support for lazy evaluation, it
  9503. is easy to mimic. We can \emph{delay} the evaluation of a computation
  9504. by wrapping it inside a function with no parameters. We can
  9505. \emph{force} its evaluation by calling the function. However, in some
  9506. cases of \code{explicate\_pred}, etc., we will return a list of
  9507. statements and in other cases we will return a function that computes
  9508. a list of statements. We use the term \emph{promise} to refer to a
  9509. value that may be delayed. To uniformly deal with
  9510. promises, we define the following \code{force} function that checks
  9511. whether its input is delayed (i.e., whether it is a function) and then
  9512. either 1) calls the function, or 2) returns the input.
  9513. \begin{lstlisting}
  9514. def force(promise):
  9515. if isinstance(promise, types.FunctionType):
  9516. return promise()
  9517. else:
  9518. return promise
  9519. \end{lstlisting}
  9520. %
  9521. \fi}
  9522. We use promises for the input and output of the functions
  9523. \code{explicate\_pred}, \code{explicate\_assign},
  9524. %
  9525. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  9526. %
  9527. So, instead of taking and returning \racket{$\Tail$
  9528. expressions}\python{lists of statements}, they take and return
  9529. promises. Furthermore, when we come to a situation in which a
  9530. continuation might be used more than once, as in the case for
  9531. \code{if} in \code{explicate\_pred}, we create a delayed computation
  9532. that creates a basic block for each continuation (if there is not
  9533. already one) and then returns a \code{goto} statement to that basic
  9534. block. When we come to a situation in which we have a promise but need an
  9535. actual piece of code, for example, to create a larger piece of code with a
  9536. constructor such as \code{Seq}, then insert a call to \code{force}.
  9537. %
  9538. {\if\edition\racketEd
  9539. %
  9540. Also, we must modify the \code{create\_block} function to begin with
  9541. \code{delay} to create a promise. When forced, this promise forces the
  9542. original promise. If that returns a \code{Goto} (because the block was
  9543. already added to \code{basic-blocks}), then we return the
  9544. \code{Goto}. Otherwise, we add the block to \code{basic-blocks} and
  9545. return a \code{Goto} to the new label.
  9546. \begin{center}
  9547. \begin{minipage}{\textwidth}
  9548. \begin{lstlisting}
  9549. (define (create_block tail)
  9550. (delay
  9551. (define t (force tail))
  9552. (match t
  9553. [(Goto label) (Goto label)]
  9554. [else
  9555. (let ([label (gensym 'block)])
  9556. (set! basic-blocks (cons (cons label t) basic-blocks))
  9557. (Goto label))])))
  9558. \end{lstlisting}
  9559. \end{minipage}
  9560. \end{center}
  9561. \fi}
  9562. {\if\edition\pythonEd\pythonColor
  9563. %
  9564. Here is the new version of the \code{create\_block} auxiliary function
  9565. that works on promises and that checks whether the block consists of a
  9566. solitary \code{goto} statement.\\
  9567. \begin{minipage}{\textwidth}
  9568. \begin{lstlisting}
  9569. def create_block(promise, basic_blocks):
  9570. stmts = force(promise)
  9571. match stmts:
  9572. case [Goto(l)]:
  9573. return Goto(l)
  9574. case _:
  9575. label = label_name(generate_name('block'))
  9576. basic_blocks[label] = stmts
  9577. return Goto(label)
  9578. \end{lstlisting}
  9579. \end{minipage}
  9580. \fi}
  9581. Figure~\ref{fig:explicate-control-challenge} shows the output of
  9582. improved \code{explicate\_control} on this example. As you can
  9583. see, the number of basic blocks has been reduced from four blocks (see
  9584. figure~\ref{fig:explicate-control-s1-38}) to two blocks.
  9585. \begin{figure}[tbp]
  9586. \begin{tcolorbox}[colback=white]
  9587. {\if\edition\racketEd
  9588. \begin{tabular}{lll}
  9589. \begin{minipage}{0.4\textwidth}
  9590. % cond_test_82.rkt
  9591. \begin{lstlisting}
  9592. (let ([y (if #t
  9593. (read)
  9594. (if (eq? (read) 0)
  9595. 777
  9596. (let ([x (read)])
  9597. (+ 1 x))))])
  9598. (+ y 2))
  9599. \end{lstlisting}
  9600. \end{minipage}
  9601. &
  9602. $\Rightarrow$
  9603. &
  9604. \begin{minipage}{0.55\textwidth}
  9605. \begin{lstlisting}
  9606. start:
  9607. y = (read);
  9608. goto block_5;
  9609. block_5:
  9610. return (+ y 2);
  9611. \end{lstlisting}
  9612. \end{minipage}
  9613. \end{tabular}
  9614. \fi}
  9615. {\if\edition\pythonEd\pythonColor
  9616. \begin{tabular}{lll}
  9617. \begin{minipage}{0.4\textwidth}
  9618. % cond_test_41.rkt
  9619. \begin{lstlisting}
  9620. x = input_int()
  9621. y = input_int()
  9622. print(y + 2 \
  9623. if (x == 0 \
  9624. if x < 1 \
  9625. else x == 2) \
  9626. else y + 10)
  9627. \end{lstlisting}
  9628. \end{minipage}
  9629. &
  9630. $\Rightarrow$
  9631. &
  9632. \begin{minipage}{0.55\textwidth}
  9633. \begin{lstlisting}
  9634. start:
  9635. x = input_int()
  9636. y = input_int()
  9637. if x < 1:
  9638. goto block_4
  9639. else:
  9640. goto block_5
  9641. block_4:
  9642. if x == 0:
  9643. goto block_2
  9644. else:
  9645. goto block_3
  9646. block_5:
  9647. if x == 2:
  9648. goto block_2
  9649. else:
  9650. goto block_3
  9651. block_2:
  9652. tmp_0 = y + 2
  9653. goto block_1
  9654. block_3:
  9655. tmp_0 = y + 10
  9656. goto block_1
  9657. block_1:
  9658. print(tmp_0)
  9659. return 0
  9660. \end{lstlisting}
  9661. \end{minipage}
  9662. \end{tabular}
  9663. \fi}
  9664. \end{tcolorbox}
  9665. \caption{Translation from \LangIf{} to \LangCIf{}
  9666. via the improved \code{explicate\_control}.}
  9667. \label{fig:explicate-control-challenge}
  9668. \end{figure}
  9669. %% Recall that in the example output of \code{explicate\_control} in
  9670. %% figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  9671. %% \code{block60} are trivial blocks, they do nothing but jump to another
  9672. %% block. The first goal of this challenge assignment is to remove those
  9673. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  9674. %% \code{explicate\_control} on the left and shows the result of bypassing
  9675. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  9676. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  9677. %% \code{block55}. The optimized code on the right of
  9678. %% figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  9679. %% \code{then} branch jumping directly to \code{block55}. The story is
  9680. %% similar for the \code{else} branch, as well as for the two branches in
  9681. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  9682. %% have been optimized in this way, there are no longer any jumps to
  9683. %% blocks \code{block57} through \code{block60}, so they can be removed.
  9684. %% \begin{figure}[tbp]
  9685. %% \begin{tabular}{lll}
  9686. %% \begin{minipage}{0.4\textwidth}
  9687. %% \begin{lstlisting}
  9688. %% block62:
  9689. %% tmp54 = (read);
  9690. %% if (eq? tmp54 2) then
  9691. %% goto block59;
  9692. %% else
  9693. %% goto block60;
  9694. %% block61:
  9695. %% tmp53 = (read);
  9696. %% if (eq? tmp53 0) then
  9697. %% goto block57;
  9698. %% else
  9699. %% goto block58;
  9700. %% block60:
  9701. %% goto block56;
  9702. %% block59:
  9703. %% goto block55;
  9704. %% block58:
  9705. %% goto block56;
  9706. %% block57:
  9707. %% goto block55;
  9708. %% block56:
  9709. %% return (+ 700 77);
  9710. %% block55:
  9711. %% return (+ 10 32);
  9712. %% start:
  9713. %% tmp52 = (read);
  9714. %% if (eq? tmp52 1) then
  9715. %% goto block61;
  9716. %% else
  9717. %% goto block62;
  9718. %% \end{lstlisting}
  9719. %% \end{minipage}
  9720. %% &
  9721. %% $\Rightarrow$
  9722. %% &
  9723. %% \begin{minipage}{0.55\textwidth}
  9724. %% \begin{lstlisting}
  9725. %% block62:
  9726. %% tmp54 = (read);
  9727. %% if (eq? tmp54 2) then
  9728. %% goto block55;
  9729. %% else
  9730. %% goto block56;
  9731. %% block61:
  9732. %% tmp53 = (read);
  9733. %% if (eq? tmp53 0) then
  9734. %% goto block55;
  9735. %% else
  9736. %% goto block56;
  9737. %% block56:
  9738. %% return (+ 700 77);
  9739. %% block55:
  9740. %% return (+ 10 32);
  9741. %% start:
  9742. %% tmp52 = (read);
  9743. %% if (eq? tmp52 1) then
  9744. %% goto block61;
  9745. %% else
  9746. %% goto block62;
  9747. %% \end{lstlisting}
  9748. %% \end{minipage}
  9749. %% \end{tabular}
  9750. %% \caption{Optimize jumps by removing trivial blocks.}
  9751. %% \label{fig:optimize-jumps}
  9752. %% \end{figure}
  9753. %% The name of this pass is \code{optimize-jumps}. We recommend
  9754. %% implementing this pass in two phases. The first phrase builds a hash
  9755. %% table that maps labels to possibly improved labels. The second phase
  9756. %% changes the target of each \code{goto} to use the improved label. If
  9757. %% the label is for a trivial block, then the hash table should map the
  9758. %% label to the first non-trivial block that can be reached from this
  9759. %% label by jumping through trivial blocks. If the label is for a
  9760. %% non-trivial block, then the hash table should map the label to itself;
  9761. %% we do not want to change jumps to non-trivial blocks.
  9762. %% The first phase can be accomplished by constructing an empty hash
  9763. %% table, call it \code{short-cut}, and then iterating over the control
  9764. %% flow graph. Each time you encounter a block that is just a \code{goto},
  9765. %% then update the hash table, mapping the block's source to the target
  9766. %% of the \code{goto}. Also, the hash table may already have mapped some
  9767. %% labels to the block's source, to you must iterate through the hash
  9768. %% table and update all of those so that they instead map to the target
  9769. %% of the \code{goto}.
  9770. %% For the second phase, we recommend iterating through the $\Tail$ of
  9771. %% each block in the program, updating the target of every \code{goto}
  9772. %% according to the mapping in \code{short-cut}.
  9773. \begin{exercise}\normalfont\normalsize
  9774. Implement the improvements to the \code{explicate\_control} pass.
  9775. Check that it removes trivial blocks in a few example programs. Then
  9776. check that your compiler still passes all your tests.
  9777. \end{exercise}
  9778. \subsection{Remove Jumps}
  9779. There is an opportunity for removing jumps that is apparent in the
  9780. example of figure~\ref{fig:if-example-x86}. The \code{start} block
  9781. ends with a jump to \code{block\_5}, and there are no other jumps to
  9782. \code{block\_5} in the rest of the program. In this situation we can
  9783. avoid the runtime overhead of this jump by merging \code{block\_5}
  9784. into the preceding block, which in this case is the \code{start} block.
  9785. Figure~\ref{fig:remove-jumps} shows the output of
  9786. \code{allocate\_registers} on the left and the result of this
  9787. optimization on the right.
  9788. \begin{figure}[tbp]
  9789. \begin{tcolorbox}[colback=white]
  9790. {\if\edition\racketEd
  9791. \begin{tabular}{lll}
  9792. \begin{minipage}{0.5\textwidth}
  9793. % cond_test_82.rkt
  9794. \begin{lstlisting}
  9795. start:
  9796. callq read_int
  9797. movq %rax, %rcx
  9798. jmp block_5
  9799. block_5:
  9800. movq %rcx, %rax
  9801. addq $2, %rax
  9802. jmp conclusion
  9803. \end{lstlisting}
  9804. \end{minipage}
  9805. &
  9806. $\Rightarrow\qquad$
  9807. \begin{minipage}{0.4\textwidth}
  9808. \begin{lstlisting}
  9809. start:
  9810. callq read_int
  9811. movq %rax, %rcx
  9812. movq %rcx, %rax
  9813. addq $2, %rax
  9814. jmp conclusion
  9815. \end{lstlisting}
  9816. \end{minipage}
  9817. \end{tabular}
  9818. \fi}
  9819. {\if\edition\pythonEd\pythonColor
  9820. \begin{tabular}{lll}
  9821. \begin{minipage}{0.5\textwidth}
  9822. % cond_test_20.rkt
  9823. \begin{lstlisting}
  9824. start:
  9825. callq read_int
  9826. movq %rax, tmp_0
  9827. cmpq 1, tmp_0
  9828. je block_3
  9829. jmp block_4
  9830. block_3:
  9831. movq 42, tmp_1
  9832. jmp block_2
  9833. block_4:
  9834. movq 0, tmp_1
  9835. jmp block_2
  9836. block_2:
  9837. movq tmp_1, %rdi
  9838. callq print_int
  9839. movq 0, %rax
  9840. jmp conclusion
  9841. \end{lstlisting}
  9842. \end{minipage}
  9843. &
  9844. $\Rightarrow\qquad$
  9845. \begin{minipage}{0.4\textwidth}
  9846. \begin{lstlisting}
  9847. start:
  9848. callq read_int
  9849. movq %rax, tmp_0
  9850. cmpq 1, tmp_0
  9851. je block_3
  9852. movq 0, tmp_1
  9853. jmp block_2
  9854. block_3:
  9855. movq 42, tmp_1
  9856. jmp block_2
  9857. block_2:
  9858. movq tmp_1, %rdi
  9859. callq print_int
  9860. movq 0, %rax
  9861. jmp conclusion
  9862. \end{lstlisting}
  9863. \end{minipage}
  9864. \end{tabular}
  9865. \fi}
  9866. \end{tcolorbox}
  9867. \caption{Merging basic blocks by removing unnecessary jumps.}
  9868. \label{fig:remove-jumps}
  9869. \end{figure}
  9870. \begin{exercise}\normalfont\normalsize
  9871. %
  9872. Implement a pass named \code{remove\_jumps} that merges basic blocks
  9873. into their preceding basic block, when there is only one preceding
  9874. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  9875. %
  9876. {\if\edition\racketEd
  9877. In the \code{run-tests.rkt} script, add the following entry to the
  9878. list of \code{passes} between \code{allocate\_registers}
  9879. and \code{patch\_instructions}:
  9880. \begin{lstlisting}
  9881. (list "remove_jumps" remove_jumps interp-pseudo-x86-1)
  9882. \end{lstlisting}
  9883. \fi}
  9884. %
  9885. Run the script to test your compiler.
  9886. %
  9887. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  9888. blocks on several test programs.
  9889. \end{exercise}
  9890. \section{Further Reading}
  9891. \label{sec:cond-further-reading}
  9892. The algorithm for the \code{explicate\_control} pass is based on the
  9893. \code{expose-basic-blocks} pass in the course notes of
  9894. \citet{Dybvig:2010aa}.
  9895. %
  9896. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  9897. \citet{Appel:2003fk}, and is related to translations into continuation
  9898. passing
  9899. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  9900. %
  9901. The treatment of conditionals in the \code{explicate\_control} pass is
  9902. similar to short-cut Boolean
  9903. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  9904. and the case-of-case transformation~\citep{PeytonJones:1998}.
  9905. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9906. \chapter{Loops and Dataflow Analysis}
  9907. \label{ch:Lwhile}
  9908. \setcounter{footnote}{0}
  9909. % TODO: define R'_8
  9910. % TODO: multi-graph
  9911. {\if\edition\racketEd
  9912. %
  9913. In this chapter we study two features that are the hallmarks of
  9914. imperative programming languages: loops and assignments to local
  9915. variables. The following example demonstrates these new features by
  9916. computing the sum of the first five positive integers:
  9917. % similar to loop_test_1.rkt
  9918. \begin{lstlisting}
  9919. (let ([sum 0])
  9920. (let ([i 5])
  9921. (begin
  9922. (while (> i 0)
  9923. (begin
  9924. (set! sum (+ sum i))
  9925. (set! i (- i 1))))
  9926. sum)))
  9927. \end{lstlisting}
  9928. The \code{while} loop consists of a condition and a
  9929. body.\footnote{The \code{while} loop is not a built-in
  9930. feature of the Racket language, but Racket includes many looping
  9931. constructs and it is straightforward to define \code{while} as a
  9932. macro.} The body is evaluated repeatedly so long as the condition
  9933. remains true.
  9934. %
  9935. The \code{set!} consists of a variable and a right-hand side
  9936. expression. The \code{set!} updates value of the variable to the
  9937. value of the right-hand side.
  9938. %
  9939. The primary purpose of both the \code{while} loop and \code{set!} is
  9940. to cause side effects, so they do not give a meaningful result
  9941. value. Instead, their result is the \code{\#<void>} value. The
  9942. expression \code{(void)} is an explicit way to create the
  9943. \code{\#<void>} value, and it has type \code{Void}. The
  9944. \code{\#<void>} value can be passed around just like other values
  9945. inside an \LangLoop{} program, and it can be compared for equality with
  9946. another \code{\#<void>} value. However, there are no other operations
  9947. specific to the \code{\#<void>} value in \LangLoop{}. In contrast,
  9948. Racket defines the \code{void?} predicate that returns \code{\#t}
  9949. when applied to \code{\#<void>} and \code{\#f} otherwise.%
  9950. %
  9951. \footnote{Racket's \code{Void} type corresponds to what is often
  9952. called the \code{Unit} type. Racket's \code{Void} type is inhabited
  9953. by a single value \code{\#<void>}, which corresponds to \code{unit}
  9954. or \code{()} in the literature~\citep{Pierce:2002hj}.}
  9955. %
  9956. With the addition of side effect-producing features such as
  9957. \code{while} loop and \code{set!}, it is helpful to include a language
  9958. feature for sequencing side effects: the \code{begin} expression. It
  9959. consists of one or more subexpressions that are evaluated
  9960. left to right.
  9961. %
  9962. \fi}
  9963. {\if\edition\pythonEd\pythonColor
  9964. %
  9965. In this chapter we study loops, one of the hallmarks of imperative
  9966. programming languages. The following example demonstrates the
  9967. \code{while} loop by computing the sum of the first five positive
  9968. integers.
  9969. \begin{lstlisting}
  9970. sum = 0
  9971. i = 5
  9972. while i > 0:
  9973. sum = sum + i
  9974. i = i - 1
  9975. print(sum)
  9976. \end{lstlisting}
  9977. The \code{while} loop consists of a condition expression and a body (a
  9978. sequence of statements). The body is evaluated repeatedly so long as
  9979. the condition remains true.
  9980. %
  9981. \fi}
  9982. \section{The \LangLoop{} Language}
  9983. \newcommand{\LwhileGrammarRacket}{
  9984. \begin{array}{lcl}
  9985. \Type &::=& \key{Void}\\
  9986. \Exp &::=& \CSETBANG{\Var}{\Exp}
  9987. \MID \CBEGIN{\Exp^{*}}{\Exp}
  9988. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  9989. \end{array}
  9990. }
  9991. \newcommand{\LwhileASTRacket}{
  9992. \begin{array}{lcl}
  9993. \Type &::=& \key{Void}\\
  9994. \Exp &::=& \SETBANG{\Var}{\Exp}
  9995. \MID \BEGIN{\Exp^{*}}{\Exp}
  9996. \MID \WHILE{\Exp}{\Exp}
  9997. \MID \VOID{}
  9998. \end{array}
  9999. }
  10000. \newcommand{\LwhileGrammarPython}{
  10001. \begin{array}{rcl}
  10002. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  10003. \end{array}
  10004. }
  10005. \newcommand{\LwhileASTPython}{
  10006. \begin{array}{lcl}
  10007. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10008. \end{array}
  10009. }
  10010. \begin{figure}[tp]
  10011. \centering
  10012. \begin{tcolorbox}[colback=white]
  10013. \small
  10014. {\if\edition\racketEd
  10015. \[
  10016. \begin{array}{l}
  10017. \gray{\LintGrammarRacket{}} \\ \hline
  10018. \gray{\LvarGrammarRacket{}} \\ \hline
  10019. \gray{\LifGrammarRacket{}} \\ \hline
  10020. \LwhileGrammarRacket \\
  10021. \begin{array}{lcl}
  10022. \LangLoopM{} &::=& \Exp
  10023. \end{array}
  10024. \end{array}
  10025. \]
  10026. \fi}
  10027. {\if\edition\pythonEd\pythonColor
  10028. \[
  10029. \begin{array}{l}
  10030. \gray{\LintGrammarPython} \\ \hline
  10031. \gray{\LvarGrammarPython} \\ \hline
  10032. \gray{\LifGrammarPython} \\ \hline
  10033. \LwhileGrammarPython \\
  10034. \begin{array}{rcl}
  10035. \LangLoopM{} &::=& \Stmt^{*}
  10036. \end{array}
  10037. \end{array}
  10038. \]
  10039. \fi}
  10040. \end{tcolorbox}
  10041. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-concrete-syntax}).}
  10042. \label{fig:Lwhile-concrete-syntax}
  10043. \end{figure}
  10044. \begin{figure}[tp]
  10045. \centering
  10046. \begin{tcolorbox}[colback=white]
  10047. \small
  10048. {\if\edition\racketEd
  10049. \[
  10050. \begin{array}{l}
  10051. \gray{\LintOpAST} \\ \hline
  10052. \gray{\LvarASTRacket{}} \\ \hline
  10053. \gray{\LifASTRacket{}} \\ \hline
  10054. \LwhileASTRacket{} \\
  10055. \begin{array}{lcl}
  10056. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10057. \end{array}
  10058. \end{array}
  10059. \]
  10060. \fi}
  10061. {\if\edition\pythonEd\pythonColor
  10062. \[
  10063. \begin{array}{l}
  10064. \gray{\LintASTPython} \\ \hline
  10065. \gray{\LvarASTPython} \\ \hline
  10066. \gray{\LifASTPython} \\ \hline
  10067. \LwhileASTPython \\
  10068. \begin{array}{lcl}
  10069. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10070. \end{array}
  10071. \end{array}
  10072. \]
  10073. \fi}
  10074. \end{tcolorbox}
  10075. \python{
  10076. \index{subject}{While@\texttt{While}}
  10077. }
  10078. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-syntax}).}
  10079. \label{fig:Lwhile-syntax}
  10080. \end{figure}
  10081. Figure~\ref{fig:Lwhile-concrete-syntax} shows the definition of the
  10082. concrete syntax of \LangLoop{}, and figure~\ref{fig:Lwhile-syntax}
  10083. shows the definition of its abstract syntax.
  10084. %
  10085. The definitional interpreter for \LangLoop{} is shown in
  10086. figure~\ref{fig:interp-Lwhile}.
  10087. %
  10088. {\if\edition\racketEd
  10089. %
  10090. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  10091. and \code{Void}, and we make changes to the cases for \code{Var} and
  10092. \code{Let} regarding variables. To support assignment to variables and
  10093. to make their lifetimes indefinite (see the second example in
  10094. section~\ref{sec:assignment-scoping}), we box the value that is bound
  10095. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  10096. value.
  10097. %
  10098. Now we discuss the new cases. For \code{SetBang}, we find the
  10099. variable in the environment to obtain a boxed value, and then we change
  10100. it using \code{set-box!} to the result of evaluating the right-hand
  10101. side. The result value of a \code{SetBang} is \code{\#<void>}.
  10102. %
  10103. For the \code{WhileLoop}, we repeatedly (1) evaluate the condition, and
  10104. if the result is true, (2) evaluate the body.
  10105. The result value of a \code{while} loop is also \code{\#<void>}.
  10106. %
  10107. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  10108. subexpressions \itm{es} for their effects and then evaluates
  10109. and returns the result from \itm{body}.
  10110. %
  10111. The $\VOID{}$ expression produces the \code{\#<void>} value.
  10112. %
  10113. \fi}
  10114. {\if\edition\pythonEd\pythonColor
  10115. %
  10116. We add a new case for \code{While} in the \code{interp\_stmts}
  10117. function, where we repeatedly interpret the \code{body} so long as the
  10118. \code{test} expression remains true.
  10119. %
  10120. \fi}
  10121. \begin{figure}[tbp]
  10122. \begin{tcolorbox}[colback=white]
  10123. {\if\edition\racketEd
  10124. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10125. (define interp-Lwhile-class
  10126. (class interp-Lif-class
  10127. (super-new)
  10128. (define/override ((interp-exp env) e)
  10129. (define recur (interp-exp env))
  10130. (match e
  10131. [(Let x e body)
  10132. (define new-env (dict-set env x (box (recur e))))
  10133. ((interp-exp new-env) body)]
  10134. [(Var x) (unbox (dict-ref env x))]
  10135. [(SetBang x rhs)
  10136. (set-box! (dict-ref env x) (recur rhs))]
  10137. [(WhileLoop cnd body)
  10138. (define (loop)
  10139. (cond [(recur cnd) (recur body) (loop)]
  10140. [else (void)]))
  10141. (loop)]
  10142. [(Begin es body)
  10143. (for ([e es]) (recur e))
  10144. (recur body)]
  10145. [(Void) (void)]
  10146. [else ((super interp-exp env) e)]))
  10147. ))
  10148. (define (interp-Lwhile p)
  10149. (send (new interp-Lwhile-class) interp-program p))
  10150. \end{lstlisting}
  10151. \fi}
  10152. {\if\edition\pythonEd\pythonColor
  10153. \begin{lstlisting}
  10154. class InterpLwhile(InterpLif):
  10155. def interp_stmts(self, ss, env):
  10156. if len(ss) == 0:
  10157. return
  10158. match ss[0]:
  10159. case While(test, body, []):
  10160. while self.interp_exp(test, env):
  10161. self.interp_stmts(body, env)
  10162. return self.interp_stmts(ss[1:], env)
  10163. case _:
  10164. return super().interp_stmts(ss, env)
  10165. \end{lstlisting}
  10166. \fi}
  10167. \end{tcolorbox}
  10168. \caption{Interpreter for \LangLoop{}.}
  10169. \label{fig:interp-Lwhile}
  10170. \end{figure}
  10171. The definition of the type checker for \LangLoop{} is shown in
  10172. figure~\ref{fig:type-check-Lwhile}.
  10173. %
  10174. {\if\edition\racketEd
  10175. %
  10176. The type checking of the \code{SetBang} expression requires the type
  10177. of the variable and the right-hand side to agree. The result type is
  10178. \code{Void}. For \code{while}, the condition must be a \BOOLTY{}
  10179. and the result type is \code{Void}. For \code{Begin}, the result type
  10180. is the type of its last subexpression.
  10181. %
  10182. \fi}
  10183. %
  10184. {\if\edition\pythonEd\pythonColor
  10185. %
  10186. A \code{while} loop is well typed if the type of the \code{test}
  10187. expression is \code{bool} and the statements in the \code{body} are
  10188. well typed.
  10189. %
  10190. \fi}
  10191. \begin{figure}[tbp]
  10192. \begin{tcolorbox}[colback=white]
  10193. {\if\edition\racketEd
  10194. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10195. (define type-check-Lwhile-class
  10196. (class type-check-Lif-class
  10197. (super-new)
  10198. (inherit check-type-equal?)
  10199. (define/override (type-check-exp env)
  10200. (lambda (e)
  10201. (define recur (type-check-exp env))
  10202. (match e
  10203. [(SetBang x rhs)
  10204. (define-values (rhs^ rhsT) (recur rhs))
  10205. (define varT (dict-ref env x))
  10206. (check-type-equal? rhsT varT e)
  10207. (values (SetBang x rhs^) 'Void)]
  10208. [(WhileLoop cnd body)
  10209. (define-values (cnd^ Tc) (recur cnd))
  10210. (check-type-equal? Tc 'Boolean e)
  10211. (define-values (body^ Tbody) ((type-check-exp env) body))
  10212. (values (WhileLoop cnd^ body^) 'Void)]
  10213. [(Begin es body)
  10214. (define-values (es^ ts)
  10215. (for/lists (l1 l2) ([e es]) (recur e)))
  10216. (define-values (body^ Tbody) (recur body))
  10217. (values (Begin es^ body^) Tbody)]
  10218. [else ((super type-check-exp env) e)])))
  10219. ))
  10220. (define (type-check-Lwhile p)
  10221. (send (new type-check-Lwhile-class) type-check-program p))
  10222. \end{lstlisting}
  10223. \fi}
  10224. {\if\edition\pythonEd\pythonColor
  10225. \begin{lstlisting}
  10226. class TypeCheckLwhile(TypeCheckLif):
  10227. def type_check_stmts(self, ss, env):
  10228. if len(ss) == 0:
  10229. return
  10230. match ss[0]:
  10231. case While(test, body, []):
  10232. test_t = self.type_check_exp(test, env)
  10233. check_type_equal(bool, test_t, test)
  10234. body_t = self.type_check_stmts(body, env)
  10235. return self.type_check_stmts(ss[1:], env)
  10236. case _:
  10237. return super().type_check_stmts(ss, env)
  10238. \end{lstlisting}
  10239. \fi}
  10240. \end{tcolorbox}
  10241. \caption{Type checker for the \LangLoop{} language.}
  10242. \label{fig:type-check-Lwhile}
  10243. \end{figure}
  10244. {\if\edition\racketEd
  10245. %
  10246. At first glance, the translation of these language features to x86
  10247. seems straightforward because the \LangCIf{} intermediate language
  10248. already supports all the ingredients that we need: assignment,
  10249. \code{goto}, conditional branching, and sequencing. However, there are
  10250. complications that arise, which we discuss in the next section. After
  10251. that we introduce the changes necessary to the existing passes.
  10252. %
  10253. \fi}
  10254. {\if\edition\pythonEd\pythonColor
  10255. %
  10256. At first glance, the translation of \code{while} loops to x86 seems
  10257. straightforward because the \LangCIf{} intermediate language already
  10258. supports \code{goto} and conditional branching. However, there are
  10259. complications that arise which we discuss in the next section. After
  10260. that we introduce the changes necessary to the existing passes.
  10261. %
  10262. \fi}
  10263. \section{Cyclic Control Flow and Dataflow Analysis}
  10264. \label{sec:dataflow-analysis}
  10265. Up until this point, the programs generated in
  10266. \code{explicate\_control} were guaranteed to be acyclic. However, each
  10267. \code{while} loop introduces a cycle. Does that matter?
  10268. %
  10269. Indeed, it does. Recall that for register allocation, the compiler
  10270. performs liveness analysis to determine which variables can share the
  10271. same register. To accomplish this, we analyzed the control-flow graph
  10272. in reverse topological order
  10273. (section~\ref{sec:liveness-analysis-Lif}), but topological order is
  10274. well defined only for acyclic graphs.
  10275. Let us return to the example of computing the sum of the first five
  10276. positive integers. Here is the program after instruction
  10277. selection\index{subject}{instruction selection} but before register
  10278. allocation.
  10279. \begin{center}
  10280. {\if\edition\racketEd
  10281. \begin{minipage}{0.45\textwidth}
  10282. \begin{lstlisting}
  10283. (define (main) : Integer
  10284. mainstart:
  10285. movq $0, sum
  10286. movq $5, i
  10287. jmp block5
  10288. block5:
  10289. movq i, tmp3
  10290. cmpq tmp3, $0
  10291. jl block7
  10292. jmp block8
  10293. \end{lstlisting}
  10294. \end{minipage}
  10295. \begin{minipage}{0.45\textwidth}
  10296. \begin{lstlisting}
  10297. block7:
  10298. addq i, sum
  10299. movq $1, tmp4
  10300. negq tmp4
  10301. addq tmp4, i
  10302. jmp block5
  10303. block8:
  10304. movq $27, %rax
  10305. addq sum, %rax
  10306. jmp mainconclusion)
  10307. \end{lstlisting}
  10308. \end{minipage}
  10309. \fi}
  10310. {\if\edition\pythonEd\pythonColor
  10311. \begin{minipage}{0.45\textwidth}
  10312. \begin{lstlisting}
  10313. mainstart:
  10314. movq $0, sum
  10315. movq $5, i
  10316. jmp block5
  10317. block5:
  10318. cmpq $0, i
  10319. jg block7
  10320. jmp block8
  10321. \end{lstlisting}
  10322. \end{minipage}
  10323. \begin{minipage}{0.45\textwidth}
  10324. \begin{lstlisting}
  10325. block7:
  10326. addq i, sum
  10327. subq $1, i
  10328. jmp block5
  10329. block8:
  10330. movq sum, %rdi
  10331. callq print_int
  10332. movq $0, %rax
  10333. jmp mainconclusion
  10334. \end{lstlisting}
  10335. \end{minipage}
  10336. \fi}
  10337. \end{center}
  10338. Recall that liveness analysis works backward, starting at the end
  10339. of each function. For this example we could start with \code{block8}
  10340. because we know what is live at the beginning of the conclusion:
  10341. only \code{rax} and \code{rsp}. So the live-before set
  10342. for \code{block8} is \code{\{rsp,sum\}}.
  10343. %
  10344. Next we might try to analyze \code{block5} or \code{block7}, but
  10345. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  10346. we are stuck.
  10347. The way out of this impasse is to realize that we can compute an
  10348. underapproximation of each live-before set by starting with empty
  10349. live-after sets. By \emph{underapproximation}, we mean that the set
  10350. contains only variables that are live for some execution of the
  10351. program, but the set may be missing some variables that are live.
  10352. Next, the underapproximations for each block can be improved by (1)
  10353. updating the live-after set for each block using the approximate
  10354. live-before sets from the other blocks, and (2) performing liveness
  10355. analysis again on each block. In fact, by iterating this process, the
  10356. underapproximations eventually become the correct solutions!
  10357. %
  10358. This approach of iteratively analyzing a control-flow graph is
  10359. applicable to many static analysis problems and goes by the name
  10360. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  10361. \citet{Kildall:1973vn} in his PhD thesis at the University of
  10362. Washington.
  10363. Let us apply this approach to the previously presented example. We use
  10364. the empty set for the initial live-before set for each block. Let
  10365. $m_0$ be the following mapping from label names to sets of locations
  10366. (variables and registers):
  10367. \begin{center}
  10368. \begin{lstlisting}
  10369. mainstart: {}, block5: {}, block7: {}, block8: {}
  10370. \end{lstlisting}
  10371. \end{center}
  10372. Using the above live-before approximations, we determine the
  10373. live-after for each block and then apply liveness analysis to each
  10374. block. This produces our next approximation $m_1$ of the live-before
  10375. sets.
  10376. \begin{center}
  10377. \begin{lstlisting}
  10378. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  10379. \end{lstlisting}
  10380. \end{center}
  10381. For the second round, the live-after for \code{mainstart} is the
  10382. current live-before for \code{block5}, which is \code{\{i\}}. Therefore
  10383. the liveness analysis for \code{mainstart} computes the empty set. The
  10384. live-after for \code{block5} is the union of the live-before sets for
  10385. \code{block7} and \code{block8}, which is \code{\{i, rsp, sum\}}.
  10386. So the liveness analysis for \code{block5} computes \code{\{i, rsp,
  10387. sum\}}. The live-after for \code{block7} is the live-before for
  10388. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  10389. So the liveness analysis for \code{block7} remains \code{\{i, sum\}}.
  10390. Together these yield the following approximation $m_2$ of
  10391. the live-before sets:
  10392. \begin{center}
  10393. \begin{lstlisting}
  10394. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  10395. \end{lstlisting}
  10396. \end{center}
  10397. In the preceding iteration, only \code{block5} changed, so we can
  10398. limit our attention to \code{mainstart} and \code{block7}, the two
  10399. blocks that jump to \code{block5}. As a result, the live-before sets
  10400. for \code{mainstart} and \code{block7} are updated to include
  10401. \code{rsp}, yielding the following approximation $m_3$:
  10402. \begin{center}
  10403. \begin{lstlisting}
  10404. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  10405. \end{lstlisting}
  10406. \end{center}
  10407. Because \code{block7} changed, we analyze \code{block5} once more, but
  10408. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  10409. our approximations have converged, so $m_3$ is the solution.
  10410. This iteration process is guaranteed to converge to a solution by the
  10411. Kleene fixed-point theorem, a general theorem about functions on
  10412. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  10413. any collection that comes with a partial ordering\index{subject}{partialordering@partial ordering} $\sqsubseteq$ on its
  10414. elements, a least element $\bot$ (pronounced \emph{bottom}), and a
  10415. join operator
  10416. $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{join}\footnote{Technically speaking, we
  10417. will be working with join semilattices.} When two elements are
  10418. ordered $m_i \sqsubseteq m_j$, it means that $m_j$ contains at least
  10419. as much information as $m_i$, so we can think of $m_j$ as a
  10420. better-than-or-equal-to approximation in relation to $m_i$. The
  10421. bottom element $\bot$ represents the complete lack of information,
  10422. that is, the worst approximation. The join operator takes two lattice
  10423. elements and combines their information; that is, it produces the
  10424. least upper bound of the two.\index{subject}{least upper bound}
  10425. A dataflow analysis typically involves two lattices: one lattice to
  10426. represent abstract states and another lattice that aggregates the
  10427. abstract states of all the blocks in the control-flow graph. For
  10428. liveness analysis, an abstract state is a set of locations. We form
  10429. the lattice $L$ by taking its elements to be sets of locations, the
  10430. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  10431. set, and the join operator to be set union.
  10432. %
  10433. We form a second lattice $M$ by taking its elements to be mappings
  10434. from the block labels to sets of locations (elements of $L$). We
  10435. order the mappings point-wise, using the ordering of $L$. So, given any
  10436. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  10437. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  10438. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  10439. to the empty set; that is, $\bot_M(\ell) = \emptyset$.
  10440. We can think of one iteration of liveness analysis applied to the
  10441. whole program as being a function $f$ on the lattice $M$. It takes a
  10442. mapping as input and computes a new mapping.
  10443. \[
  10444. f(m_i) = m_{i+1}
  10445. \]
  10446. Next let us think for a moment about what a final solution $m_s$
  10447. should look like. If we perform liveness analysis using the solution
  10448. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  10449. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  10450. \[
  10451. f(m_s) = m_s
  10452. \]
  10453. Furthermore, the solution should include only locations that are
  10454. forced to be there by performing liveness analysis on the program, so
  10455. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  10456. The Kleene fixed-point theorem states that if a function $f$ is
  10457. monotone (better inputs produce better outputs), then the least fixed
  10458. point of $f$ is the least upper bound of the \emph{ascending Kleene
  10459. chain} obtained by starting at $\bot$ and iterating $f$, as
  10460. follows:\index{subject}{Kleene fixed-point theorem}
  10461. \[
  10462. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10463. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  10464. \]
  10465. When a lattice contains only finitely long ascending chains, then
  10466. every Kleene chain tops out at some fixed point after some number of
  10467. iterations of $f$.
  10468. \[
  10469. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10470. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  10471. \]
  10472. The liveness analysis is indeed a monotone function and the lattice
  10473. $M$ has finitely long ascending chains because there are only a
  10474. finite number of variables and blocks in the program. Thus we are
  10475. guaranteed that iteratively applying liveness analysis to all blocks
  10476. in the program will eventually produce the least fixed point solution.
  10477. Next let us consider dataflow analysis in general and discuss the
  10478. generic work list algorithm (figure~\ref{fig:generic-dataflow}).
  10479. %
  10480. The algorithm has four parameters: the control-flow graph \code{G}, a
  10481. function \code{transfer} that applies the analysis to one block, and the
  10482. \code{bottom} and \code{join} operators for the lattice of abstract
  10483. states. The \code{analyze\_dataflow} function is formulated as a
  10484. \emph{forward} dataflow analysis; that is, the inputs to the transfer
  10485. function come from the predecessor nodes in the control-flow
  10486. graph. However, liveness analysis is a \emph{backward} dataflow
  10487. analysis, so in that case one must supply the \code{analyze\_dataflow}
  10488. function with the transpose of the control-flow graph.
  10489. The algorithm begins by creating the bottom mapping, represented by a
  10490. hash table. It then pushes all the nodes in the control-flow graph
  10491. onto the work list (a queue). The algorithm repeats the \code{while}
  10492. loop as long as there are items in the work list. In each iteration, a
  10493. node is popped from the work list and processed. The \code{input} for
  10494. the node is computed by taking the join of the abstract states of all
  10495. the predecessor nodes. The \code{transfer} function is then applied to
  10496. obtain the \code{output} abstract state. If the output differs from
  10497. the previous state for this block, the mapping for this block is
  10498. updated and its successor nodes are pushed onto the work list.
  10499. \begin{figure}[tb]
  10500. \begin{tcolorbox}[colback=white]
  10501. {\if\edition\racketEd
  10502. \begin{lstlisting}
  10503. (define (analyze_dataflow G transfer bottom join)
  10504. (define mapping (make-hash))
  10505. (for ([v (in-vertices G)])
  10506. (dict-set! mapping v bottom))
  10507. (define worklist (make-queue))
  10508. (for ([v (in-vertices G)])
  10509. (enqueue! worklist v))
  10510. (define trans-G (transpose G))
  10511. (while (not (queue-empty? worklist))
  10512. (define node (dequeue! worklist))
  10513. (define input (for/fold ([state bottom])
  10514. ([pred (in-neighbors trans-G node)])
  10515. (join state (dict-ref mapping pred))))
  10516. (define output (transfer node input))
  10517. (cond [(not (equal? output (dict-ref mapping node)))
  10518. (dict-set! mapping node output)
  10519. (for ([v (in-neighbors G node)])
  10520. (enqueue! worklist v))]))
  10521. mapping)
  10522. \end{lstlisting}
  10523. \fi}
  10524. {\if\edition\pythonEd\pythonColor
  10525. \begin{lstlisting}
  10526. def analyze_dataflow(G, transfer, bottom, join):
  10527. trans_G = transpose(G)
  10528. mapping = dict((v, bottom) for v in G.vertices())
  10529. worklist = deque(G.vertices)
  10530. while worklist:
  10531. node = worklist.pop()
  10532. inputs = [mapping[v] for v in trans_G.adjacent(node)]
  10533. input = reduce(join, inputs, bottom)
  10534. output = transfer(node, input)
  10535. if output != mapping[node]:
  10536. mapping[node] = output
  10537. worklist.extend(G.adjacent(node))
  10538. \end{lstlisting}
  10539. \fi}
  10540. \end{tcolorbox}
  10541. \caption{Generic work list algorithm for dataflow analysis.}
  10542. \label{fig:generic-dataflow}
  10543. \end{figure}
  10544. {\if\edition\racketEd
  10545. \section{Mutable Variables and Remove Complex Operands}
  10546. There is a subtle interaction between the
  10547. \code{remove\_complex\_operands} pass, the addition of \code{set!},
  10548. and the left-to-right order of evaluation of Racket. Consider the
  10549. following example:
  10550. \begin{lstlisting}
  10551. (let ([x 2])
  10552. (+ x (begin (set! x 40) x)))
  10553. \end{lstlisting}
  10554. The result of this program is \code{42} because the first read from
  10555. \code{x} produces \code{2} and the second produces \code{40}. However,
  10556. if we naively apply the \code{remove\_complex\_operands} pass to this
  10557. example we obtain the following program whose result is \code{80}!
  10558. \begin{lstlisting}
  10559. (let ([x 2])
  10560. (let ([tmp (begin (set! x 40) x)])
  10561. (+ x tmp)))
  10562. \end{lstlisting}
  10563. The problem is that with mutable variables, the ordering between
  10564. reads and writes is important, and the
  10565. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  10566. before the first read of \code{x}.
  10567. We recommend solving this problem by giving special treatment to reads
  10568. from mutable variables, that is, variables that occur on the left-hand
  10569. side of a \code{set!}. We mark each read from a mutable variable with
  10570. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  10571. that the read operation is effectful in that it can produce different
  10572. results at different points in time. Let's apply this idea to the
  10573. following variation that also involves a variable that is not mutated:
  10574. % loop_test_24.rkt
  10575. \begin{lstlisting}
  10576. (let ([x 2])
  10577. (let ([y 0])
  10578. (+ y (+ x (begin (set! x 40) x)))))
  10579. \end{lstlisting}
  10580. We first analyze this program to discover that variable \code{x}
  10581. is mutable but \code{y} is not. We then transform the program as
  10582. follows, replacing each occurrence of \code{x} with \code{(get! x)}:
  10583. \begin{lstlisting}
  10584. (let ([x 2])
  10585. (let ([y 0])
  10586. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  10587. \end{lstlisting}
  10588. Now that we have a clear distinction between reads from mutable and
  10589. immutable variables, we can apply the \code{remove\_complex\_operands}
  10590. pass, where reads from immutable variables are still classified as
  10591. atomic expressions but reads from mutable variables are classified as
  10592. complex. Thus, \code{remove\_complex\_operands} yields the following
  10593. program:\\
  10594. \begin{minipage}{\textwidth}
  10595. \begin{lstlisting}
  10596. (let ([x 2])
  10597. (let ([y 0])
  10598. (+ y (let ([t1 (get! x)])
  10599. (let ([t2 (begin (set! x 40) (get! x))])
  10600. (+ t1 t2))))))
  10601. \end{lstlisting}
  10602. \end{minipage}
  10603. The temporary variable \code{t1} gets the value of \code{x} before the
  10604. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  10605. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  10606. do not generate a temporary variable for the occurrence of \code{y}
  10607. because it's an immutable variable. We want to avoid such unnecessary
  10608. extra temporaries because they would needlessly increase the number of
  10609. variables, making it more likely for some of them to be spilled. The
  10610. result of this program is \code{42}, the same as the result prior to
  10611. \code{remove\_complex\_operands}.
  10612. The approach that we've sketched requires only a small
  10613. modification to \code{remove\_complex\_operands} to handle
  10614. \code{get!}. However, it requires a new pass, called
  10615. \code{uncover-get!}, that we discuss in
  10616. section~\ref{sec:uncover-get-bang}.
  10617. As an aside, this problematic interaction between \code{set!} and the
  10618. pass \code{remove\_complex\_operands} is particular to Racket and not
  10619. its predecessor, the Scheme language. The key difference is that
  10620. Scheme does not specify an order of evaluation for the arguments of an
  10621. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  10622. Scheme is free to choose any ordering: both \code{42} and \code{80}
  10623. would be correct results for the example program. Interestingly,
  10624. Racket is implemented on top of the Chez Scheme
  10625. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  10626. presented in this section (using extra \code{let} bindings to control
  10627. the order of evaluation) is used in the translation from Racket to
  10628. Scheme~\citep{Flatt:2019tb}.
  10629. \fi} % racket
  10630. Having discussed the complications that arise from adding support for
  10631. assignment and loops, we turn to discussing the individual compilation
  10632. passes.
  10633. {\if\edition\racketEd
  10634. \section{Uncover \texttt{get!}}
  10635. \label{sec:uncover-get-bang}
  10636. The goal of this pass is to mark uses of mutable variables so that
  10637. \code{remove\_complex\_operands} can treat them as complex expressions
  10638. and thereby preserve their ordering relative to the side effects in
  10639. other operands. So, the first step is to collect all the mutable
  10640. variables. We recommend creating an auxiliary function for this,
  10641. named \code{collect-set!}, that recursively traverses expressions,
  10642. returning the set of all variables that occur on the left-hand side of a
  10643. \code{set!}. Here's an excerpt of its implementation.
  10644. \begin{center}
  10645. \begin{minipage}{\textwidth}
  10646. \begin{lstlisting}
  10647. (define (collect-set! e)
  10648. (match e
  10649. [(Var x) (set)]
  10650. [(Int n) (set)]
  10651. [(Let x rhs body)
  10652. (set-union (collect-set! rhs) (collect-set! body))]
  10653. [(SetBang var rhs)
  10654. (set-union (set var) (collect-set! rhs))]
  10655. ...))
  10656. \end{lstlisting}
  10657. \end{minipage}
  10658. \end{center}
  10659. By placing this pass after \code{uniquify}, we need not worry about
  10660. variable shadowing, and our logic for \code{Let} can remain simple, as
  10661. in this excerpt.
  10662. The second step is to mark the occurrences of the mutable variables
  10663. with the new \code{GetBang} AST node (\code{get!} in concrete
  10664. syntax). The following is an excerpt of the \code{uncover-get!-exp}
  10665. function, which takes two parameters: the set of mutable variables
  10666. \code{set!-vars} and the expression \code{e} to be processed. The
  10667. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  10668. mutable variable or leaves it alone if not.
  10669. \begin{center}
  10670. \begin{minipage}{\textwidth}
  10671. \begin{lstlisting}
  10672. (define ((uncover-get!-exp set!-vars) e)
  10673. (match e
  10674. [(Var x)
  10675. (if (set-member? set!-vars x)
  10676. (GetBang x)
  10677. (Var x))]
  10678. ...))
  10679. \end{lstlisting}
  10680. \end{minipage}
  10681. \end{center}
  10682. To wrap things up, define the \code{uncover-get!} function for
  10683. processing a whole program, using \code{collect-set!} to obtain the
  10684. set of mutable variables and then \code{uncover-get!-exp} to replace
  10685. their occurrences with \code{GetBang}.
  10686. \fi}
  10687. \section{Remove Complex Operands}
  10688. \label{sec:rco-loop}
  10689. {\if\edition\racketEd
  10690. %
  10691. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  10692. \code{while} are all complex expressions. The subexpressions of
  10693. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  10694. %
  10695. \fi}
  10696. {\if\edition\pythonEd\pythonColor
  10697. %
  10698. The change needed for this pass is to add a case for the \code{while}
  10699. statement. The condition of a \code{while} loop is allowed to be a
  10700. complex expression, just like the condition of the \code{if}
  10701. statement.
  10702. %
  10703. \fi}
  10704. %
  10705. Figure~\ref{fig:Lwhile-anf-syntax} defines the output language
  10706. \LangLoopANF{} of this pass.
  10707. \newcommand{\LwhileMonadASTRacket}{
  10708. \begin{array}{rcl}
  10709. \Atm &::=& \VOID{} \\
  10710. \Exp &::=& \GETBANG{\Var}
  10711. \MID \SETBANG{\Var}{\Exp}
  10712. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  10713. &\MID& \WHILE{\Exp}{\Exp}
  10714. \end{array}
  10715. }
  10716. \newcommand{\LwhileMonadASTPython}{
  10717. \begin{array}{rcl}
  10718. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10719. \end{array}
  10720. }
  10721. \begin{figure}[tp]
  10722. \centering
  10723. \begin{tcolorbox}[colback=white]
  10724. \small
  10725. {\if\edition\racketEd
  10726. \[
  10727. \begin{array}{l}
  10728. \gray{\LvarMonadASTRacket} \\ \hline
  10729. \gray{\LifMonadASTRacket} \\ \hline
  10730. \LwhileMonadASTRacket \\
  10731. \begin{array}{rcl}
  10732. \LangLoopANF &::=& \PROGRAM{\code{'()}}{\Exp}
  10733. \end{array}
  10734. \end{array}
  10735. \]
  10736. \fi}
  10737. {\if\edition\pythonEd\pythonColor
  10738. \[
  10739. \begin{array}{l}
  10740. \gray{\LvarMonadASTPython} \\ \hline
  10741. \gray{\LifMonadASTPython} \\ \hline
  10742. \LwhileMonadASTPython \\
  10743. \begin{array}{rcl}
  10744. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  10745. \end{array}
  10746. \end{array}
  10747. %% \begin{array}{rcl}
  10748. %% \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  10749. %% \Exp &::=& \Atm \MID \READ{} \\
  10750. %% &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm} \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  10751. %% &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  10752. %% % &\MID& \LET{\Var}{\Exp}{\Exp}\\ % Why?
  10753. %% \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  10754. %% &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  10755. %% &\MID& \WHILESTMT{\Exp}{\Stmt^{+}} \\
  10756. %% \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  10757. %% \end{array}
  10758. \]
  10759. \fi}
  10760. \end{tcolorbox}
  10761. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  10762. \label{fig:Lwhile-anf-syntax}
  10763. \end{figure}
  10764. {\if\edition\racketEd
  10765. %
  10766. As usual, when a complex expression appears in a grammar position that
  10767. needs to be atomic, such as the argument of a primitive operator, we
  10768. must introduce a temporary variable and bind it to the complex
  10769. expression. This approach applies, unchanged, to handle the new
  10770. language forms. For example, in the following code there are two
  10771. \code{begin} expressions appearing as arguments to the \code{+}
  10772. operator. The output of \code{rco\_exp} is then shown, in which the
  10773. \code{begin} expressions have been bound to temporary
  10774. variables. Recall that \code{let} expressions in \LangLoopANF{} are
  10775. allowed to have arbitrary expressions in their right-hand side
  10776. expression, so it is fine to place \code{begin} there.
  10777. %
  10778. \begin{center}
  10779. \begin{tabular}{lcl}
  10780. \begin{minipage}{0.4\textwidth}
  10781. \begin{lstlisting}
  10782. (let ([x2 10])
  10783. (let ([y3 0])
  10784. (+ (+ (begin
  10785. (set! y3 (read))
  10786. (get! x2))
  10787. (begin
  10788. (set! x2 (read))
  10789. (get! y3)))
  10790. (get! x2))))
  10791. \end{lstlisting}
  10792. \end{minipage}
  10793. &
  10794. $\Rightarrow$
  10795. &
  10796. \begin{minipage}{0.4\textwidth}
  10797. \begin{lstlisting}
  10798. (let ([x2 10])
  10799. (let ([y3 0])
  10800. (let ([tmp4 (begin
  10801. (set! y3 (read))
  10802. x2)])
  10803. (let ([tmp5 (begin
  10804. (set! x2 (read))
  10805. y3)])
  10806. (let ([tmp6 (+ tmp4 tmp5)])
  10807. (let ([tmp7 x2])
  10808. (+ tmp6 tmp7)))))))
  10809. \end{lstlisting}
  10810. \end{minipage}
  10811. \end{tabular}
  10812. \end{center}
  10813. \fi}
  10814. \section{Explicate Control \racket{and \LangCLoop{}}}
  10815. \label{sec:explicate-loop}
  10816. \newcommand{\CloopASTRacket}{
  10817. \begin{array}{lcl}
  10818. \Atm &::=& \VOID \\
  10819. \Stmt &::=& \READ{}
  10820. \end{array}
  10821. }
  10822. {\if\edition\racketEd
  10823. Recall that in the \code{explicate\_control} pass we define one helper
  10824. function for each kind of position in the program. For the \LangVar{}
  10825. language of integers and variables, we needed assignment and tail
  10826. positions. The \code{if} expressions of \LangIf{} introduced predicate
  10827. positions. For \LangLoop{}, the \code{begin} expression introduces yet
  10828. another kind of position: effect position. Except for the last
  10829. subexpression, the subexpressions inside a \code{begin} are evaluated
  10830. only for their effect. Their result values are discarded. We can
  10831. generate better code by taking this fact into account.
  10832. The output language of \code{explicate\_control} is \LangCLoop{}
  10833. (figure~\ref{fig:c7-syntax}), which is nearly identical to
  10834. \LangCIf{}. The only syntactic differences are the addition of \VOID{}
  10835. and that \code{read} may appear as a statement. The most significant
  10836. difference between the programs generated by \code{explicate\_control}
  10837. in chapter~\ref{ch:Lif} versus \code{explicate\_control} in this
  10838. chapter is that the control-flow graphs of the latter may contain
  10839. cycles.
  10840. \begin{figure}[tp]
  10841. \begin{tcolorbox}[colback=white]
  10842. \small
  10843. \[
  10844. \begin{array}{l}
  10845. \gray{\CvarASTRacket} \\ \hline
  10846. \gray{\CifASTRacket} \\ \hline
  10847. \CloopASTRacket \\
  10848. \begin{array}{lcl}
  10849. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  10850. \end{array}
  10851. \end{array}
  10852. \]
  10853. \end{tcolorbox}
  10854. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  10855. \label{fig:c7-syntax}
  10856. \end{figure}
  10857. The new auxiliary function \code{explicate\_effect} takes an
  10858. expression (in an effect position) and the code for its
  10859. continuation. The function returns a $\Tail$ that includes the
  10860. generated code for the input expression followed by the
  10861. continuation. If the expression is obviously pure, that is, never
  10862. causes side effects, then the expression can be removed, so the result
  10863. is just the continuation.
  10864. %
  10865. The case for $\WHILE{\itm{cnd}}{\itm{body}}$ expressions is
  10866. interesting; the generated code is depicted in the following diagram:
  10867. \begin{center}
  10868. \begin{minipage}{0.3\textwidth}
  10869. \xymatrix{
  10870. *+[F=]{\txt{\code{goto} \itm{loop}}} \ar[r]
  10871. & *+[F]{\txt{\itm{loop}: \\ \itm{cnd'}}} \ar[r]^{else} \ar[d]^{then}
  10872. & *+[F]{\txt{\itm{cont}}} \\
  10873. & *+[F]{\txt{\itm{body'} \\ \code{goto} \itm{loop}}} \ar@/^50pt/[u]
  10874. }
  10875. \end{minipage}
  10876. \end{center}
  10877. We start by creating a fresh label $\itm{loop}$ for the top of the
  10878. loop. Next, recursively process the \itm{body} (in effect position)
  10879. with a \code{goto} to $\itm{loop}$ as the continuation, producing
  10880. \itm{body'}. Process the \itm{cnd} (in predicate position) with
  10881. \itm{body'} as the \emph{then} branch and the continuation block as the
  10882. \emph{else} branch. The result should be added to the dictionary of
  10883. \code{basic-blocks} with the label \itm{loop}. The result for the
  10884. whole \code{while} loop is a \code{goto} to the \itm{loop} label.
  10885. The auxiliary functions for tail, assignment, and predicate positions
  10886. need to be updated. The three new language forms, \code{while},
  10887. \code{set!}, and \code{begin}, can appear in assignment and tail
  10888. positions. Only \code{begin} may appear in predicate positions; the
  10889. other two have result type \code{Void}.
  10890. \fi}
  10891. %
  10892. {\if\edition\pythonEd\pythonColor
  10893. %
  10894. The output of this pass is the language \LangCIf{}. No new language
  10895. features are needed in the output because a \code{while} loop can be
  10896. expressed in terms of \code{goto} and \code{if} statements, which are
  10897. already in \LangCIf{}.
  10898. %
  10899. Add a case for the \code{while} statement to the
  10900. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  10901. the condition expression.
  10902. %
  10903. \fi}
  10904. {\if\edition\racketEd
  10905. \section{Select Instructions}
  10906. \label{sec:select-instructions-loop}
  10907. \index{subject}{select instructions}
  10908. Only two small additions are needed in the \code{select\_instructions}
  10909. pass to handle the changes to \LangCLoop{}. First, to handle the
  10910. addition of \VOID{} we simply translate it to \code{0}. Second,
  10911. \code{read} may appear as a stand-alone statement instead of
  10912. appearing only on the right-hand side of an assignment statement. The code
  10913. generation is nearly identical to the one for assignment; just leave
  10914. off the instruction for moving the result into the left-hand side.
  10915. \fi}
  10916. \section{Register Allocation}
  10917. \label{sec:register-allocation-loop}
  10918. As discussed in section~\ref{sec:dataflow-analysis}, the presence of
  10919. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  10920. which complicates the liveness analysis needed for register
  10921. allocation.
  10922. %
  10923. We recommend using the generic \code{analyze\_dataflow} function that
  10924. was presented at the end of section~\ref{sec:dataflow-analysis} to
  10925. perform liveness analysis, replacing the code in
  10926. \code{uncover\_live} that processed the basic blocks in topological
  10927. order (section~\ref{sec:liveness-analysis-Lif}).
  10928. The \code{analyze\_dataflow} function has the following four parameters.
  10929. \begin{enumerate}
  10930. \item The first parameter \code{G} should be passed the transpose
  10931. of the control-flow graph.
  10932. \item The second parameter \code{transfer} should be passed a function
  10933. that applies liveness analysis to a basic block. It takes two
  10934. parameters: the label for the block to analyze and the live-after
  10935. set for that block. The transfer function should return the
  10936. live-before set for the block.
  10937. %
  10938. \racket{Also, as a side effect, it should update the block's
  10939. $\itm{info}$ with the liveness information for each instruction.}
  10940. %
  10941. \python{Also, as a side-effect, it should update the live-before and
  10942. live-after sets for each instruction.}
  10943. %
  10944. To implement the \code{transfer} function, you should be able to
  10945. reuse the code you already have for analyzing basic blocks.
  10946. \item The third and fourth parameters of \code{analyze\_dataflow} are
  10947. \code{bottom} and \code{join} for the lattice of abstract states,
  10948. that is, sets of locations. For liveness analysis, the bottom of the
  10949. lattice is the empty set, and the join operator is set union.
  10950. \end{enumerate}
  10951. \begin{figure}[p]
  10952. \begin{tcolorbox}[colback=white]
  10953. {\if\edition\racketEd
  10954. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  10955. \node (Lfun) at (0,2) {\large \LangLoop{}};
  10956. \node (Lfun-2) at (3,2) {\large \LangLoop{}};
  10957. \node (F1-4) at (6,2) {\large \LangLoop{}};
  10958. \node (F1-5) at (9,2) {\large \LangLoop{}};
  10959. \node (F1-6) at (9,0) {\large \LangLoopANF{}};
  10960. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  10961. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  10962. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  10963. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  10964. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  10965. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  10966. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  10967. \path[->,bend left=15] (Lfun) edge [above] node
  10968. {\ttfamily\footnotesize shrink} (Lfun-2);
  10969. \path[->,bend left=15] (Lfun-2) edge [above] node
  10970. {\ttfamily\footnotesize uniquify} (F1-4);
  10971. \path[->,bend left=15] (F1-4) edge [above] node
  10972. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  10973. \path[->,bend left=15] (F1-5) edge [left] node
  10974. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  10975. \path[->,bend left=10] (F1-6) edge [above] node
  10976. {\ttfamily\footnotesize explicate\_control} (C3-2);
  10977. \path[->,bend left=15] (C3-2) edge [right] node
  10978. {\ttfamily\footnotesize select\_instructions} (x86-2);
  10979. \path[->,bend right=15] (x86-2) edge [right] node
  10980. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  10981. \path[->,bend right=15] (x86-2-1) edge [below] node
  10982. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  10983. \path[->,bend right=15] (x86-2-2) edge [right] node
  10984. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  10985. \path[->,bend left=15] (x86-3) edge [above] node
  10986. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  10987. \path[->,bend left=15] (x86-4) edge [right] node
  10988. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  10989. \end{tikzpicture}
  10990. \fi}
  10991. {\if\edition\pythonEd\pythonColor
  10992. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  10993. \node (Lfun) at (0,2) {\large \LangLoop{}};
  10994. \node (Lfun-2) at (4,2) {\large \LangLoop{}};
  10995. \node (F1-6) at (8,2) {\large \LangLoopANF{}};
  10996. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  10997. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  10998. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  10999. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11000. \node (x86-5) at (12,-2) {\large \LangXIf{}};
  11001. \path[->,bend left=15] (Lfun) edge [above] node
  11002. {\ttfamily\footnotesize shrink} (Lfun-2);
  11003. \path[->,bend left=15] (Lfun-2) edge [above] node
  11004. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11005. \path[->,bend left=10] (F1-6) edge [right] node
  11006. {\ttfamily\footnotesize \ \ explicate\_control} (C3-2);
  11007. \path[->,bend right=15] (C3-2) edge [right] node
  11008. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11009. \path[->,bend right=15] (x86-2) edge [below] node
  11010. {\ttfamily\footnotesize assign\_homes} (x86-3);
  11011. \path[->,bend left=15] (x86-3) edge [above] node
  11012. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11013. \path[->,bend right=15] (x86-4) edge [below] node
  11014. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11015. \end{tikzpicture}
  11016. \fi}
  11017. \end{tcolorbox}
  11018. \caption{Diagram of the passes for \LangLoop{}.}
  11019. \label{fig:Lwhile-passes}
  11020. \end{figure}
  11021. Figure~\ref{fig:Lwhile-passes} provides an overview of all the passes needed
  11022. for the compilation of \LangLoop{}.
  11023. % Further Reading: dataflow analysis
  11024. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11025. \chapter{Tuples and Garbage Collection}
  11026. \label{ch:Lvec}
  11027. \index{subject}{tuple}
  11028. \index{subject}{vector}
  11029. \setcounter{footnote}{0}
  11030. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  11031. %% all the IR grammars are spelled out! \\ --Jeremy}
  11032. %% \margincomment{\scriptsize Be more explicit about how to deal with
  11033. %% the root stack. \\ --Jeremy}
  11034. In this chapter we study the implementation of tuples\racket{, called
  11035. vectors in Racket}. A tuple is a fixed-length sequence of elements
  11036. in which each element may have a different type.
  11037. %
  11038. This language feature is the first to use the computer's
  11039. \emph{heap}\index{subject}{heap}, because the lifetime of a tuple is
  11040. indefinite; that is, a tuple lives forever from the programmer's
  11041. viewpoint. Of course, from an implementer's viewpoint, it is important
  11042. to reclaim the space associated with a tuple when it is no longer
  11043. needed, which is why we also study \emph{garbage collection}
  11044. \index{subject}{garbage collection} techniques in this chapter.
  11045. Section~\ref{sec:r3} introduces the \LangVec{} language, including its
  11046. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  11047. language (chapter~\ref{ch:Lwhile}) with tuples.
  11048. %
  11049. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  11050. copying live tuples back and forth between two halves of the heap. The
  11051. garbage collector requires coordination with the compiler so that it
  11052. can find all the live tuples.
  11053. %
  11054. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  11055. discuss the necessary changes and additions to the compiler passes,
  11056. including a new compiler pass named \code{expose\_allocation}.
  11057. \section{The \LangVec{} Language}
  11058. \label{sec:r3}
  11059. Figure~\ref{fig:Lvec-concrete-syntax} shows the definition of the
  11060. concrete syntax for \LangVec{}, and figure~\ref{fig:Lvec-syntax} shows
  11061. the definition of the abstract syntax.
  11062. %
  11063. \racket{The \LangVec{} language includes the forms \code{vector} for
  11064. creating a tuple, \code{vector-ref} for reading an element of a
  11065. tuple, \code{vector-set!} for writing to an element of a tuple, and
  11066. \code{vector-length} for obtaining the number of elements of a
  11067. tuple.}
  11068. %
  11069. \python{The \LangVec{} language adds 1) tuple creation via a
  11070. comma-separated list of expressions, 2) accessing an element of a
  11071. tuple with the square bracket notation, i.e., \code{t[n]} returns
  11072. the element at index \code{n} of tuple \code{t}, 3) the \code{is} comparison
  11073. operator, and 4) obtaining the number of elements (the length) of a
  11074. tuple. In this chapter, we restrict access indices to constant
  11075. integers.}
  11076. %
  11077. The following program shows an example use of tuples. It creates a tuple
  11078. \code{t} containing the elements \code{40},
  11079. \racket{\code{\#t}}\python{\code{True}}, and another tuple that
  11080. contains just \code{2}. The element at index $1$ of \code{t} is
  11081. \racket{\code{\#t}}\python{\code{True}}, so the \emph{then} branch of the
  11082. \key{if} is taken. The element at index $0$ of \code{t} is \code{40},
  11083. to which we add \code{2}, the element at index $0$ of the tuple.
  11084. The result of the program is \code{42}.
  11085. %
  11086. {\if\edition\racketEd
  11087. \begin{lstlisting}
  11088. (let ([t (vector 40 #t (vector 2))])
  11089. (if (vector-ref t 1)
  11090. (+ (vector-ref t 0)
  11091. (vector-ref (vector-ref t 2) 0))
  11092. 44))
  11093. \end{lstlisting}
  11094. \fi}
  11095. {\if\edition\pythonEd\pythonColor
  11096. \begin{lstlisting}
  11097. t = 40, True, (2,)
  11098. print( t[0] + t[2][0] if t[1] else 44 )
  11099. \end{lstlisting}
  11100. \fi}
  11101. \newcommand{\LtupGrammarRacket}{
  11102. \begin{array}{lcl}
  11103. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11104. \Exp &::=& \LP\key{vector}\;\Exp^{*}\RP
  11105. \MID \LP\key{vector-length}\;\Exp\RP \\
  11106. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  11107. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  11108. \end{array}
  11109. }
  11110. \newcommand{\LtupASTRacket}{
  11111. \begin{array}{lcl}
  11112. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11113. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  11114. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  11115. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp}
  11116. % &\MID& \LP\key{HasType}~\Exp~\Type \RP
  11117. \end{array}
  11118. }
  11119. \newcommand{\LtupGrammarPython}{
  11120. \begin{array}{rcl}
  11121. \itm{cmp} &::= & \key{is} \\
  11122. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Int} \MID \CLEN{\Exp}
  11123. \end{array}
  11124. }
  11125. \newcommand{\LtupASTPython}{
  11126. \begin{array}{lcl}
  11127. \itm{cmp} &::= & \code{Is()} \\
  11128. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\INT{\Int}} \\
  11129. &\MID& \LEN{\Exp}
  11130. \end{array}
  11131. }
  11132. \begin{figure}[tbp]
  11133. \centering
  11134. \begin{tcolorbox}[colback=white]
  11135. \small
  11136. {\if\edition\racketEd
  11137. \[
  11138. \begin{array}{l}
  11139. \gray{\LintGrammarRacket{}} \\ \hline
  11140. \gray{\LvarGrammarRacket{}} \\ \hline
  11141. \gray{\LifGrammarRacket{}} \\ \hline
  11142. \gray{\LwhileGrammarRacket} \\ \hline
  11143. \LtupGrammarRacket \\
  11144. \begin{array}{lcl}
  11145. \LangVecM{} &::=& \Exp
  11146. \end{array}
  11147. \end{array}
  11148. \]
  11149. \fi}
  11150. {\if\edition\pythonEd\pythonColor
  11151. \[
  11152. \begin{array}{l}
  11153. \gray{\LintGrammarPython{}} \\ \hline
  11154. \gray{\LvarGrammarPython{}} \\ \hline
  11155. \gray{\LifGrammarPython{}} \\ \hline
  11156. \gray{\LwhileGrammarPython} \\ \hline
  11157. \LtupGrammarPython \\
  11158. \begin{array}{rcl}
  11159. \LangVecM{} &::=& \Stmt^{*}
  11160. \end{array}
  11161. \end{array}
  11162. \]
  11163. \fi}
  11164. \end{tcolorbox}
  11165. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  11166. (figure~\ref{fig:Lwhile-concrete-syntax}).}
  11167. \label{fig:Lvec-concrete-syntax}
  11168. \end{figure}
  11169. \begin{figure}[tp]
  11170. \centering
  11171. \begin{tcolorbox}[colback=white]
  11172. \small
  11173. {\if\edition\racketEd
  11174. \[
  11175. \begin{array}{l}
  11176. \gray{\LintOpAST} \\ \hline
  11177. \gray{\LvarASTRacket{}} \\ \hline
  11178. \gray{\LifASTRacket{}} \\ \hline
  11179. \gray{\LwhileASTRacket{}} \\ \hline
  11180. \LtupASTRacket{} \\
  11181. \begin{array}{lcl}
  11182. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  11183. \end{array}
  11184. \end{array}
  11185. \]
  11186. \fi}
  11187. {\if\edition\pythonEd\pythonColor
  11188. \[
  11189. \begin{array}{l}
  11190. \gray{\LintASTPython} \\ \hline
  11191. \gray{\LvarASTPython} \\ \hline
  11192. \gray{\LifASTPython} \\ \hline
  11193. \gray{\LwhileASTPython} \\ \hline
  11194. \LtupASTPython \\
  11195. \begin{array}{lcl}
  11196. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  11197. \end{array}
  11198. \end{array}
  11199. \]
  11200. \fi}
  11201. \end{tcolorbox}
  11202. \caption{The abstract syntax of \LangVec{}.}
  11203. \label{fig:Lvec-syntax}
  11204. \end{figure}
  11205. Tuples raise several interesting new issues. First, variable binding
  11206. performs a shallow copy in dealing with tuples, which means that
  11207. different variables can refer to the same tuple; that is, two
  11208. variables can be \emph{aliases}\index{subject}{alias} for the same
  11209. entity. Consider the following example, in which \code{t1} and
  11210. \code{t2} refer to the same tuple value and \code{t3} refers to a
  11211. different tuple value with equal elements. The result of the
  11212. program is \code{42}.
  11213. \begin{center}
  11214. \begin{minipage}{0.96\textwidth}
  11215. {\if\edition\racketEd
  11216. \begin{lstlisting}
  11217. (let ([t1 (vector 3 7)])
  11218. (let ([t2 t1])
  11219. (let ([t3 (vector 3 7)])
  11220. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  11221. 42
  11222. 0))))
  11223. \end{lstlisting}
  11224. \fi}
  11225. {\if\edition\pythonEd\pythonColor
  11226. \begin{lstlisting}
  11227. t1 = 3, 7
  11228. t2 = t1
  11229. t3 = 3, 7
  11230. print( 42 if (t1 is t2) and not (t1 is t3) else 0 )
  11231. \end{lstlisting}
  11232. \fi}
  11233. \end{minipage}
  11234. \end{center}
  11235. {\if\edition\racketEd
  11236. Whether two variables are aliased or not affects what happens
  11237. when the underlying tuple is mutated\index{subject}{mutation}.
  11238. Consider the following example in which \code{t1} and \code{t2}
  11239. again refer to the same tuple value.
  11240. \begin{center}
  11241. \begin{minipage}{0.96\textwidth}
  11242. \begin{lstlisting}
  11243. (let ([t1 (vector 3 7)])
  11244. (let ([t2 t1])
  11245. (let ([_ (vector-set! t2 0 42)])
  11246. (vector-ref t1 0))))
  11247. \end{lstlisting}
  11248. \end{minipage}
  11249. \end{center}
  11250. The mutation through \code{t2} is visible in referencing the tuple
  11251. from \code{t1}, so the result of this program is \code{42}.
  11252. \fi}
  11253. The next issue concerns the lifetime of tuples. When does a tuple's
  11254. lifetime end? Notice that \LangVec{} does not include an operation
  11255. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  11256. to any notion of static scoping.
  11257. %
  11258. {\if\edition\racketEd
  11259. %
  11260. For example, the following program returns \code{42} even though the
  11261. variable \code{w} goes out of scope prior to the \code{vector-ref}
  11262. that reads from the vector to which it was bound.
  11263. \begin{center}
  11264. \begin{minipage}{0.96\textwidth}
  11265. \begin{lstlisting}
  11266. (let ([v (vector (vector 44))])
  11267. (let ([x (let ([w (vector 42)])
  11268. (let ([_ (vector-set! v 0 w)])
  11269. 0))])
  11270. (+ x (vector-ref (vector-ref v 0) 0))))
  11271. \end{lstlisting}
  11272. \end{minipage}
  11273. \end{center}
  11274. \fi}
  11275. %
  11276. {\if\edition\pythonEd\pythonColor
  11277. %
  11278. For example, the following program returns \code{42} even though the
  11279. variable \code{x} goes out of scope when the function returns, prior
  11280. to reading the tuple element at index zero. (We study the compilation
  11281. of functions in chapter~\ref{ch:Lfun}.)
  11282. %
  11283. \begin{center}
  11284. \begin{minipage}{0.96\textwidth}
  11285. \begin{lstlisting}
  11286. def f():
  11287. x = 42, 43
  11288. return x
  11289. t = f()
  11290. print( t[0] )
  11291. \end{lstlisting}
  11292. \end{minipage}
  11293. \end{center}
  11294. \fi}
  11295. %
  11296. From the perspective of programmer-observable behavior, tuples live
  11297. forever. However, if they really lived forever then many long-running
  11298. programs would run out of memory. To solve this problem, the
  11299. language's runtime system performs automatic garbage collection.
  11300. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  11301. \LangVec{} language.
  11302. %
  11303. \racket{We define the \code{vector}, \code{vector-ref},
  11304. \code{vector-set!}, and \code{vector-length} operations for
  11305. \LangVec{} in terms of the corresponding operations in Racket. One
  11306. subtle point is that the \code{vector-set!} operation returns the
  11307. \code{\#<void>} value.}
  11308. %
  11309. \python{We represent tuples with Python lists in the interpreter
  11310. because we need to write to them
  11311. (section~\ref{sec:expose-allocation}). (Python tuples are
  11312. immutable.) We define element access, the \code{is} operator, and
  11313. the \code{len} operator for \LangVec{} in terms of the corresponding
  11314. operations in Python.}
  11315. \begin{figure}[tbp]
  11316. \begin{tcolorbox}[colback=white]
  11317. {\if\edition\racketEd
  11318. \begin{lstlisting}
  11319. (define interp-Lvec-class
  11320. (class interp-Lwhile-class
  11321. (super-new)
  11322. (define/override (interp-op op)
  11323. (match op
  11324. ['eq? (lambda (v1 v2)
  11325. (cond [(or (and (fixnum? v1) (fixnum? v2))
  11326. (and (boolean? v1) (boolean? v2))
  11327. (and (vector? v1) (vector? v2))
  11328. (and (void? v1) (void? v2)))
  11329. (eq? v1 v2)]))]
  11330. ['vector vector]
  11331. ['vector-length vector-length]
  11332. ['vector-ref vector-ref]
  11333. ['vector-set! vector-set!]
  11334. [else (super interp-op op)]
  11335. ))
  11336. (define/override ((interp-exp env) e)
  11337. (match e
  11338. [(HasType e t) ((interp-exp env) e)]
  11339. [else ((super interp-exp env) e)]
  11340. ))
  11341. ))
  11342. (define (interp-Lvec p)
  11343. (send (new interp-Lvec-class) interp-program p))
  11344. \end{lstlisting}
  11345. \fi}
  11346. %
  11347. {\if\edition\pythonEd\pythonColor
  11348. \begin{lstlisting}
  11349. class InterpLtup(InterpLwhile):
  11350. def interp_cmp(self, cmp):
  11351. match cmp:
  11352. case Is():
  11353. return lambda x, y: x is y
  11354. case _:
  11355. return super().interp_cmp(cmp)
  11356. def interp_exp(self, e, env):
  11357. match e:
  11358. case Tuple(es, Load()):
  11359. return tuple([self.interp_exp(e, env) for e in es])
  11360. case Subscript(tup, index, Load()):
  11361. t = self.interp_exp(tup, env)
  11362. n = self.interp_exp(index, env)
  11363. return t[n]
  11364. case _:
  11365. return super().interp_exp(e, env)
  11366. \end{lstlisting}
  11367. \fi}
  11368. \end{tcolorbox}
  11369. \caption{Interpreter for the \LangVec{} language.}
  11370. \label{fig:interp-Lvec}
  11371. \end{figure}
  11372. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  11373. \LangVec{}.
  11374. %
  11375. The type of a tuple is a
  11376. \racket{\code{Vector}}\python{\code{TupleType}} type that contains a
  11377. type for each of its elements.
  11378. %
  11379. \racket{To create the s-expression for the \code{Vector} type, we use the
  11380. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  11381. operator} \code{,@} to insert the list \code{t*} without its usual
  11382. start and end parentheses. \index{subject}{unquote-splicing}}
  11383. %
  11384. The type of accessing the ith element of a tuple is the ith element
  11385. type of the tuple's type, if there is one. If not, an error is
  11386. signaled. Note that the index \code{i} is required to be a constant
  11387. integer (and not, for example, a call to
  11388. \racket{\code{read}}\python{input\_int}) so that the type checker
  11389. can determine the element's type given the tuple type.
  11390. %
  11391. \racket{
  11392. Regarding writing an element to a tuple, the element's type must
  11393. be equal to the ith element type of the tuple's type.
  11394. The result type is \code{Void}.}
  11395. %% When allocating a tuple,
  11396. %% we need to know which elements of the tuple are themselves tuples for
  11397. %% the purposes of garbage collection. We can obtain this information
  11398. %% during type checking. The type checker shown in
  11399. %% figure~\ref{fig:type-check-Lvec} not only computes the type of an
  11400. %% expression; it also
  11401. %% %
  11402. %% \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  11403. %% where $T$ is the tuple's type.
  11404. %
  11405. %records the type of each tuple expression in a new field named \code{has\_type}.
  11406. \begin{figure}[tp]
  11407. \begin{tcolorbox}[colback=white]
  11408. {\if\edition\racketEd
  11409. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11410. (define type-check-Lvec-class
  11411. (class type-check-Lif-class
  11412. (super-new)
  11413. (inherit check-type-equal?)
  11414. (define/override (type-check-exp env)
  11415. (lambda (e)
  11416. (define recur (type-check-exp env))
  11417. (match e
  11418. [(Prim 'vector es)
  11419. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  11420. (define t `(Vector ,@t*))
  11421. (values (Prim 'vector e*) t)]
  11422. [(Prim 'vector-ref (list e1 (Int i)))
  11423. (define-values (e1^ t) (recur e1))
  11424. (match t
  11425. [`(Vector ,ts ...)
  11426. (unless (and (0 . <= . i) (i . < . (length ts)))
  11427. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11428. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  11429. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11430. [(Prim 'vector-set! (list e1 (Int i) elt) )
  11431. (define-values (e-vec t-vec) (recur e1))
  11432. (define-values (e-elt^ t-elt) (recur elt))
  11433. (match t-vec
  11434. [`(Vector ,ts ...)
  11435. (unless (and (0 . <= . i) (i . < . (length ts)))
  11436. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11437. (check-type-equal? (list-ref ts i) t-elt e)
  11438. (values (Prim 'vector-set! (list e-vec (Int i) e-elt^)) 'Void)]
  11439. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  11440. [(Prim 'vector-length (list e))
  11441. (define-values (e^ t) (recur e))
  11442. (match t
  11443. [`(Vector ,ts ...)
  11444. (values (Prim 'vector-length (list e^)) 'Integer)]
  11445. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11446. [(Prim 'eq? (list arg1 arg2))
  11447. (define-values (e1 t1) (recur arg1))
  11448. (define-values (e2 t2) (recur arg2))
  11449. (match* (t1 t2)
  11450. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  11451. [(other wise) (check-type-equal? t1 t2 e)])
  11452. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  11453. [else ((super type-check-exp env) e)]
  11454. )))
  11455. ))
  11456. (define (type-check-Lvec p)
  11457. (send (new type-check-Lvec-class) type-check-program p))
  11458. \end{lstlisting}
  11459. \fi}
  11460. {\if\edition\pythonEd\pythonColor
  11461. \begin{lstlisting}
  11462. class TypeCheckLtup(TypeCheckLwhile):
  11463. def type_check_exp(self, e, env):
  11464. match e:
  11465. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  11466. l = self.type_check_exp(left, env)
  11467. r = self.type_check_exp(right, env)
  11468. check_type_equal(l, r, e)
  11469. return bool
  11470. case Tuple(es, Load()):
  11471. ts = [self.type_check_exp(e, env) for e in es]
  11472. e.has_type = TupleType(ts)
  11473. return e.has_type
  11474. case Subscript(tup, Constant(i), Load()):
  11475. tup_ty = self.type_check_exp(tup, env)
  11476. i_ty = self.type_check_exp(Constant(i), env)
  11477. check_type_equal(i_ty, int, i)
  11478. match tup_ty:
  11479. case TupleType(ts):
  11480. return ts[i]
  11481. case _:
  11482. raise Exception('error: expected a tuple, not ' + repr(tup_ty))
  11483. case _:
  11484. return super().type_check_exp(e, env)
  11485. \end{lstlisting}
  11486. \fi}
  11487. \end{tcolorbox}
  11488. \caption{Type checker for the \LangVec{} language.}
  11489. \label{fig:type-check-Lvec}
  11490. \end{figure}
  11491. \section{Garbage Collection}
  11492. \label{sec:GC}
  11493. Garbage collection is a runtime technique for reclaiming space on the
  11494. heap that will not be used in the future of the running program. We
  11495. use the term \emph{object}\index{subject}{object} to refer to any
  11496. value that is stored in the heap, which for now includes only
  11497. tuples.%
  11498. %
  11499. \footnote{The term \emph{object} as it is used in the context of
  11500. object-oriented programming has a more specific meaning than the
  11501. way in which we use the term here.}
  11502. %
  11503. Unfortunately, it is impossible to know precisely which objects will
  11504. be accessed in the future and which will not. Instead, garbage
  11505. collectors overapproximate the set of objects that will be accessed by
  11506. identifying which objects can possibly be accessed. The running
  11507. program can directly access objects that are in registers and on the
  11508. procedure call stack. It can also transitively access the elements of
  11509. tuples, starting with a tuple whose address is in a register or on the
  11510. procedure call stack. We define the \emph{root
  11511. set}\index{subject}{root set} to be all the tuple addresses that are
  11512. in registers or on the procedure call stack. We define the \emph{live
  11513. objects}\index{subject}{live objects} to be the objects that are
  11514. reachable from the root set. Garbage collectors reclaim the space that
  11515. is allocated to objects that are no longer live. \index{subject}{allocate}
  11516. That means that some objects may not get reclaimed as soon as they could be,
  11517. but at least
  11518. garbage collectors do not reclaim the space dedicated to objects that
  11519. will be accessed in the future! The programmer can influence which
  11520. objects get reclaimed by causing them to become unreachable.
  11521. So the goal of the garbage collector is twofold:
  11522. \begin{enumerate}
  11523. \item to preserve all the live objects, and
  11524. \item to reclaim the memory of everything else, that is, the \emph{garbage}.
  11525. \end{enumerate}
  11526. \subsection{Two-Space Copying Collector}
  11527. Here we study a relatively simple algorithm for garbage collection
  11528. that is the basis of many state-of-the-art garbage
  11529. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  11530. particular, we describe a two-space copying
  11531. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  11532. perform the copy~\citep{Cheney:1970aa}. \index{subject}{copying
  11533. collector} \index{subject}{two-space copying collector}
  11534. Figure~\ref{fig:copying-collector} gives a coarse-grained depiction of
  11535. what happens in a two-space collector, showing two time steps, prior
  11536. to garbage collection (on the top) and after garbage collection (on
  11537. the bottom). In a two-space collector, the heap is divided into two
  11538. parts named the FromSpace\index{subject}{FromSpace} and the
  11539. ToSpace\index{subject}{ToSpace}. Initially, all allocations go to the
  11540. FromSpace until there is not enough room for the next allocation
  11541. request. At that point, the garbage collector goes to work to make
  11542. room for the next allocation.
  11543. A copying collector makes more room by copying all the live objects
  11544. from the FromSpace into the ToSpace and then performs a sleight of
  11545. hand, treating the ToSpace as the new FromSpace and the old FromSpace
  11546. as the new ToSpace. In the example shown in
  11547. figure~\ref{fig:copying-collector}, the root set consists of three
  11548. pointers, one in a register and two on the stack. All the live
  11549. objects have been copied to the ToSpace (the right-hand side of
  11550. figure~\ref{fig:copying-collector}) in a way that preserves the
  11551. pointer relationships. For example, the pointer in the register still
  11552. points to a tuple that in turn points to two other tuples. There are
  11553. four tuples that are not reachable from the root set and therefore do
  11554. not get copied into the ToSpace.
  11555. The exact situation shown in figure~\ref{fig:copying-collector} cannot be
  11556. created by a well-typed program in \LangVec{} because it contains a
  11557. cycle. However, creating cycles will be possible once we get to
  11558. \LangDyn{} (chapter~\ref{ch:Ldyn}). We design the garbage collector
  11559. to deal with cycles to begin with, so we will not need to revisit this
  11560. issue.
  11561. \begin{figure}[tbp]
  11562. \centering
  11563. \begin{tcolorbox}[colback=white]
  11564. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-1}}
  11565. \python{\includegraphics[width=\textwidth]{figs/copy-collect-1-python}}
  11566. \\[5ex]
  11567. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-2}}
  11568. \python{\includegraphics[width=\textwidth]{figs/copy-collect-2-python}}
  11569. \end{tcolorbox}
  11570. \caption{A copying collector in action.}
  11571. \label{fig:copying-collector}
  11572. \end{figure}
  11573. \subsection{Graph Copying via Cheney's Algorithm}
  11574. \label{sec:cheney}
  11575. \index{subject}{Cheney's algorithm}
  11576. Let us take a closer look at the copying of the live objects. The
  11577. allocated\index{subject}{allocate} objects and pointers can be viewed
  11578. as a graph, and we need to copy the part of the graph that is
  11579. reachable from the root set. To make sure that we copy all the
  11580. reachable vertices in the graph, we need an exhaustive graph traversal
  11581. algorithm, such as depth-first search or breadth-first
  11582. search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that such algorithms
  11583. take into account the possibility of cycles by marking which vertices
  11584. have already been visited, so to ensure termination of the
  11585. algorithm. These search algorithms also use a data structure such as a
  11586. stack or queue as a to-do list to keep track of the vertices that need
  11587. to be visited. We use breadth-first search and a trick due to
  11588. \citet{Cheney:1970aa} for simultaneously representing the queue and
  11589. copying tuples into the ToSpace.
  11590. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  11591. copy progresses. The queue is represented by a chunk of contiguous
  11592. memory at the beginning of the ToSpace, using two pointers to track
  11593. the front and the back of the queue, called the \emph{free pointer}
  11594. and the \emph{scan pointer}, respectively. The algorithm starts by
  11595. copying all tuples that are immediately reachable from the root set
  11596. into the ToSpace to form the initial queue. When we copy a tuple, we
  11597. mark the old tuple to indicate that it has been visited. We discuss
  11598. how this marking is accomplished in section~\ref{sec:data-rep-gc}. Note
  11599. that any pointers inside the copied tuples in the queue still point
  11600. back to the FromSpace. Once the initial queue has been created, the
  11601. algorithm enters a loop in which it repeatedly processes the tuple at
  11602. the front of the queue and pops it off the queue. To process a tuple,
  11603. the algorithm copies all the objects that are directly reachable from it
  11604. to the ToSpace, placing them at the back of the queue. The algorithm
  11605. then updates the pointers in the popped tuple so that they point to the
  11606. newly copied objects.
  11607. \begin{figure}[tbp]
  11608. \centering
  11609. \begin{tcolorbox}[colback=white]
  11610. \racket{\includegraphics[width=0.9\textwidth]{figs/cheney}}
  11611. \python{\includegraphics[width=0.9\textwidth]{figs/cheney-python}}
  11612. \end{tcolorbox}
  11613. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  11614. \label{fig:cheney}
  11615. \end{figure}
  11616. As shown in figure~\ref{fig:cheney}, in the first step we copy the
  11617. tuple whose second element is $42$ to the back of the queue. The other
  11618. pointer goes to a tuple that has already been copied, so we do not
  11619. need to copy it again, but we do need to update the pointer to the new
  11620. location. This can be accomplished by storing a \emph{forwarding
  11621. pointer}\index{subject}{forwarding pointer} to the new location in the
  11622. old tuple, when we initially copied the tuple into the
  11623. ToSpace. This completes one step of the algorithm. The algorithm
  11624. continues in this way until the queue is empty; that is, when the scan
  11625. pointer catches up with the free pointer.
  11626. \subsection{Data Representation}
  11627. \label{sec:data-rep-gc}
  11628. The garbage collector places some requirements on the data
  11629. representations used by our compiler. First, the garbage collector
  11630. needs to distinguish between pointers and other kinds of data such as
  11631. integers. The following are several ways to accomplish this:
  11632. \begin{enumerate}
  11633. \item Attach a tag to each object that identifies what type of
  11634. object it is~\citep{McCarthy:1960dz}.
  11635. \item Store different types of objects in different
  11636. regions~\citep{Steele:1977ab}.
  11637. \item Use type information from the program to either (a) generate
  11638. type-specific code for collecting, or (b) generate tables that
  11639. guide the collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  11640. \end{enumerate}
  11641. Dynamically typed languages, such as \racket{Racket}\python{Python},
  11642. need to tag objects in any case, so option 1 is a natural choice for those
  11643. languages. However, \LangVec{} is a statically typed language, so it
  11644. would be unfortunate to require tags on every object, especially small
  11645. and pervasive objects like integers and Booleans. Option 3 is the
  11646. best-performing choice for statically typed languages, but it comes with
  11647. a relatively high implementation complexity. To keep this chapter
  11648. within a reasonable scope of complexity, we recommend a combination of options
  11649. 1 and 2, using separate strategies for the stack and the heap.
  11650. Regarding the stack, we recommend using a separate stack for pointers,
  11651. which we call the \emph{root stack}\index{subject}{root stack}
  11652. (aka \emph{shadow stack})~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}.
  11653. That is, when a local variable needs to be spilled and is of type
  11654. \racket{\code{Vector}}\python{\code{TupleType}}, we put it on the
  11655. root stack instead of putting it on the procedure call
  11656. stack. Furthermore, we always spill tuple-typed variables if they are
  11657. live during a call to the collector, thereby ensuring that no pointers
  11658. are in registers during a collection. Figure~\ref{fig:shadow-stack}
  11659. reproduces the example shown in figure~\ref{fig:copying-collector} and
  11660. contrasts it with the data layout using a root stack. The root stack
  11661. contains the two pointers from the regular stack and also the pointer
  11662. in the second register.
  11663. \begin{figure}[tbp]
  11664. \centering
  11665. \begin{tcolorbox}[colback=white]
  11666. \racket{\includegraphics[width=0.60\textwidth]{figs/root-stack}}
  11667. \python{\includegraphics[width=0.60\textwidth]{figs/root-stack-python}}
  11668. \end{tcolorbox}
  11669. \caption{Maintaining a root stack to facilitate garbage collection.}
  11670. \label{fig:shadow-stack}
  11671. \end{figure}
  11672. The problem of distinguishing between pointers and other kinds of data
  11673. also arises inside each tuple on the heap. We solve this problem by
  11674. attaching a tag, an extra 64 bits, to each
  11675. tuple. Figure~\ref{fig:tuple-rep} shows a zoomed-in view of the tags for
  11676. two of the tuples in the example given in figure~\ref{fig:copying-collector}.
  11677. Note that we have drawn the bits in a big-endian way, from right to left,
  11678. with bit location 0 (the least significant bit) on the far right,
  11679. which corresponds to the direction of the x86 shifting instructions
  11680. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  11681. is dedicated to specifying which elements of the tuple are pointers,
  11682. the part labeled \emph{pointer mask}. Within the pointer mask, a 1 bit
  11683. indicates that there is a pointer, and a 0 bit indicates some other kind of
  11684. data. The pointer mask starts at bit location 7. We limit tuples to a
  11685. maximum size of fifty elements, so we need 50 bits for the pointer
  11686. mask.%
  11687. %
  11688. \footnote{A production-quality compiler would handle
  11689. arbitrarily sized tuples and use a more complex approach.}
  11690. %
  11691. The tag also contains two other pieces of information. The length of
  11692. the tuple (number of elements) is stored in bits at locations 1 through
  11693. 6. Finally, the bit at location 0 indicates whether the tuple has yet
  11694. to be copied to the ToSpace. If the bit has value 1, then this tuple
  11695. has not yet been copied. If the bit has value 0, then the entire tag
  11696. is a forwarding pointer. (The lower 3 bits of a pointer are always
  11697. zero in any case, because our tuples are 8-byte aligned.)
  11698. \begin{figure}[tbp]
  11699. \centering
  11700. \begin{tcolorbox}[colback=white]
  11701. \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  11702. \end{tcolorbox}
  11703. \caption{Representation of tuples in the heap.}
  11704. \label{fig:tuple-rep}
  11705. \end{figure}
  11706. \subsection{Implementation of the Garbage Collector}
  11707. \label{sec:organize-gz}
  11708. \index{subject}{prelude}
  11709. An implementation of the copying collector is provided in the
  11710. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  11711. interface to the garbage collector that is used by the compiler. The
  11712. \code{initialize} function creates the FromSpace, ToSpace, and root
  11713. stack and should be called in the prelude of the \code{main}
  11714. function. The arguments of \code{initialize} are the root stack size
  11715. and the heap size. Both need to be multiples of sixty-four, and $16,384$ is a
  11716. good choice for both. The \code{initialize} function puts the address
  11717. of the beginning of the FromSpace into the global variable
  11718. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  11719. the address that is one past the last element of the FromSpace. We use
  11720. half-open intervals to represent chunks of
  11721. memory~\citep{Dijkstra:1982aa}. The \code{rootstack\_begin} variable
  11722. points to the first element of the root stack.
  11723. As long as there is room left in the FromSpace, your generated code
  11724. can allocate\index{subject}{allocate} tuples simply by moving the
  11725. \code{free\_ptr} forward.
  11726. %
  11727. The amount of room left in the FromSpace is the difference between the
  11728. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  11729. function should be called when there is not enough room left in the
  11730. FromSpace for the next allocation. The \code{collect} function takes
  11731. a pointer to the current top of the root stack (one past the last item
  11732. that was pushed) and the number of bytes that need to be
  11733. allocated. The \code{collect} function performs the copying collection
  11734. and leaves the heap in a state such that there is enough room for the
  11735. next allocation.
  11736. \begin{figure}[tbp]
  11737. \begin{tcolorbox}[colback=white]
  11738. \begin{lstlisting}
  11739. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  11740. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  11741. int64_t* free_ptr;
  11742. int64_t* fromspace_begin;
  11743. int64_t* fromspace_end;
  11744. int64_t** rootstack_begin;
  11745. \end{lstlisting}
  11746. \end{tcolorbox}
  11747. \caption{The compiler's interface to the garbage collector.}
  11748. \label{fig:gc-header}
  11749. \end{figure}
  11750. %% \begin{exercise}
  11751. %% In the file \code{runtime.c} you will find the implementation of
  11752. %% \code{initialize} and a partial implementation of \code{collect}.
  11753. %% The \code{collect} function calls another function, \code{cheney},
  11754. %% to perform the actual copy, and that function is left to the reader
  11755. %% to implement. The following is the prototype for \code{cheney}.
  11756. %% \begin{lstlisting}
  11757. %% static void cheney(int64_t** rootstack_ptr);
  11758. %% \end{lstlisting}
  11759. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  11760. %% rootstack (which is an array of pointers). The \code{cheney} function
  11761. %% also communicates with \code{collect} through the global
  11762. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  11763. %% mentioned in figure~\ref{fig:gc-header} as well as the pointers for
  11764. %% the ToSpace:
  11765. %% \begin{lstlisting}
  11766. %% static int64_t* tospace_begin;
  11767. %% static int64_t* tospace_end;
  11768. %% \end{lstlisting}
  11769. %% The job of the \code{cheney} function is to copy all the live
  11770. %% objects (reachable from the root stack) into the ToSpace, update
  11771. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  11772. %% update the root stack so that it points to the objects in the
  11773. %% ToSpace, and finally to swap the global pointers for the FromSpace
  11774. %% and ToSpace.
  11775. %% \end{exercise}
  11776. The introduction of garbage collection has a nontrivial impact on our
  11777. compiler passes. We introduce a new compiler pass named
  11778. \code{expose\_allocation} that elaborates the code for allocating
  11779. tuples. We also make significant changes to
  11780. \code{select\_instructions}, \code{build\_interference},
  11781. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  11782. make minor changes in several more passes.
  11783. The following program serves as our running example. It creates
  11784. two tuples, one nested inside the other. Both tuples have length
  11785. one. The program accesses the element in the inner tuple.
  11786. % tests/vectors_test_17.rkt
  11787. {\if\edition\racketEd
  11788. \begin{lstlisting}
  11789. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  11790. \end{lstlisting}
  11791. \fi}
  11792. {\if\edition\pythonEd\pythonColor
  11793. \begin{lstlisting}
  11794. print( ((42,),)[0][0] )
  11795. \end{lstlisting}
  11796. \fi}
  11797. %% {\if\edition\racketEd
  11798. %% \section{Shrink}
  11799. %% \label{sec:shrink-Lvec}
  11800. %% Recall that the \code{shrink} pass translates the primitives operators
  11801. %% into a smaller set of primitives.
  11802. %% %
  11803. %% This pass comes after type checking, and the type checker adds a
  11804. %% \code{HasType} AST node around each \code{vector} AST node, so you'll
  11805. %% need to add a case for \code{HasType} to the \code{shrink} pass.
  11806. %% \fi}
  11807. \section{Expose Allocation}
  11808. \label{sec:expose-allocation}
  11809. The pass \code{expose\_allocation} lowers tuple creation into making a
  11810. conditional call to the collector followed by allocating the
  11811. appropriate amount of memory and initializing it. We choose to place
  11812. the \code{expose\_allocation} pass before
  11813. \code{remove\_complex\_operands} because it generates
  11814. code that contains complex operands.
  11815. The output of \code{expose\_allocation} is a language \LangAlloc{}
  11816. that replaces tuple creation with new lower-level forms that we use in the
  11817. translation of tuple creation.
  11818. %
  11819. {\if\edition\racketEd
  11820. \[
  11821. \begin{array}{lcl}
  11822. \Exp &::=& \cdots
  11823. \MID (\key{collect} \,\itm{int})
  11824. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  11825. \MID (\key{global-value} \,\itm{name})
  11826. \end{array}
  11827. \]
  11828. \fi}
  11829. {\if\edition\pythonEd\pythonColor
  11830. \[
  11831. \begin{array}{lcl}
  11832. \Exp &::=& \cdots\\
  11833. &\MID& \key{collect}(\itm{int})
  11834. \MID \key{allocate}(\itm{int},\itm{type})
  11835. \MID \key{global\_value}(\itm{name}) \\
  11836. &\MID& \key{begin:} ~ \Stmt^{*} ~ \Exp \\
  11837. \Stmt &::= & \CASSIGN{\CPUT{\Exp}{\itm{int}}}{\Exp}
  11838. \end{array}
  11839. \]
  11840. \fi}
  11841. %
  11842. The \CCOLLECT{$n$} form runs the garbage collector, requesting that it
  11843. make sure that there are $n$ bytes ready to be allocated. During
  11844. instruction selection\index{subject}{instruction selection},
  11845. the \CCOLLECT{$n$} form will become a call to
  11846. the \code{collect} function in \code{runtime.c}.
  11847. %
  11848. The \CALLOCATE{$n$}{$\itm{type}$} form obtains memory for $n$ elements (and
  11849. space at the front for the 64-bit tag), but the elements are not
  11850. initialized. \index{subject}{allocate} The $\itm{type}$ parameter is the type
  11851. of the tuple:
  11852. %
  11853. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  11854. %
  11855. where $\Type_i$ is the type of the $i$th element.
  11856. %
  11857. The \CGLOBALVALUE{\itm{name}} form reads the value of a global
  11858. variable, such as \code{free\_ptr}.
  11859. %
  11860. \python{The \code{begin} form is an expression that executes a
  11861. sequence of statements and then produces the value of the expression
  11862. at the end.}
  11863. \racket{
  11864. The type information that you need for \CALLOCATE{$n$}{$\itm{type}$}
  11865. can be obtained by running the
  11866. \code{type-check-Lvec-has-type} type checker immediately before the
  11867. \code{expose\_allocation} pass. This version of the type checker
  11868. places a special AST node of the form $(\key{HasType}~e~\itm{type})$
  11869. around each tuple creation. The concrete syntax
  11870. for \code{HasType} is \code{has-type}.}
  11871. The following shows the transformation of tuple creation into (1) a
  11872. sequence of temporary variable bindings for the initializing
  11873. expressions, (2) a conditional call to \code{collect}, (3) a call to
  11874. \code{allocate}, and (4) the initialization of the tuple. The
  11875. \itm{len} placeholder refers to the length of the tuple, and
  11876. \itm{bytes} is the total number of bytes that need to be allocated for
  11877. the tuple, which is 8 for the tag plus \itm{len} times 8.
  11878. %
  11879. \python{The \itm{type} needed for the second argument of the
  11880. \code{allocate} form can be obtained from the \code{has\_type} field
  11881. of the tuple AST node, which is stored there by running the type
  11882. checker for \LangVec{} immediately before this pass.}
  11883. %
  11884. \begin{center}
  11885. \begin{minipage}{\textwidth}
  11886. {\if\edition\racketEd
  11887. \begin{lstlisting}
  11888. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  11889. |$\Longrightarrow$|
  11890. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  11891. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  11892. (global-value fromspace_end))
  11893. (void)
  11894. (collect |\itm{bytes}|))])
  11895. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  11896. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  11897. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  11898. |$v$|) ... )))) ...)
  11899. \end{lstlisting}
  11900. \fi}
  11901. {\if\edition\pythonEd\pythonColor
  11902. \begin{lstlisting}
  11903. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  11904. |$\Longrightarrow$|
  11905. begin:
  11906. |$x_0$| = |$e_0$|
  11907. |$\vdots$|
  11908. |$x_{n-1}$| = |$e_{n-1}$|
  11909. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  11910. 0
  11911. else:
  11912. collect(|\itm{bytes}|)
  11913. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  11914. |$v$|[0] = |$x_0$|
  11915. |$\vdots$|
  11916. |$v$|[|$n-1$|] = |$x_{n-1}$|
  11917. |$v$|
  11918. \end{lstlisting}
  11919. \fi}
  11920. \end{minipage}
  11921. \end{center}
  11922. %
  11923. \noindent The sequencing of the initializing expressions
  11924. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important because
  11925. they may trigger garbage collection and we cannot have an allocated
  11926. but uninitialized tuple on the heap during a collection.
  11927. Figure~\ref{fig:expose-alloc-output} shows the output of the
  11928. \code{expose\_allocation} pass on our running example.
  11929. \begin{figure}[tbp]
  11930. \begin{tcolorbox}[colback=white]
  11931. % tests/s2_17.rkt
  11932. {\if\edition\racketEd
  11933. \begin{lstlisting}
  11934. (vector-ref
  11935. (vector-ref
  11936. (let ([vecinit6
  11937. (let ([_4 (if (< (+ (global-value free_ptr) 16)
  11938. (global-value fromspace_end))
  11939. (void)
  11940. (collect 16))])
  11941. (let ([alloc2 (allocate 1 (Vector Integer))])
  11942. (let ([_3 (vector-set! alloc2 0 42)])
  11943. alloc2)))])
  11944. (let ([_8 (if (< (+ (global-value free_ptr) 16)
  11945. (global-value fromspace_end))
  11946. (void)
  11947. (collect 16))])
  11948. (let ([alloc5 (allocate 1 (Vector (Vector Integer)))])
  11949. (let ([_7 (vector-set! alloc5 0 vecinit6)])
  11950. alloc5))))
  11951. 0)
  11952. 0)
  11953. \end{lstlisting}
  11954. \fi}
  11955. {\if\edition\pythonEd\pythonColor
  11956. \begin{lstlisting}
  11957. print( |$T_1$|[0][0] )
  11958. \end{lstlisting}
  11959. where $T_1$ is
  11960. \begin{lstlisting}
  11961. begin:
  11962. tmp.1 = |$T_2$|
  11963. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  11964. 0
  11965. else:
  11966. collect(16)
  11967. tmp.2 = allocate(1, TupleType(TupleType([int])))
  11968. tmp.2[0] = tmp.1
  11969. tmp.2
  11970. \end{lstlisting}
  11971. and $T_2$ is
  11972. \begin{lstlisting}
  11973. begin:
  11974. tmp.3 = 42
  11975. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  11976. 0
  11977. else:
  11978. collect(16)
  11979. tmp.4 = allocate(1, TupleType([int]))
  11980. tmp.4[0] = tmp.3
  11981. tmp.4
  11982. \end{lstlisting}
  11983. \fi}
  11984. \end{tcolorbox}
  11985. \caption{Output of the \code{expose\_allocation} pass.}
  11986. \label{fig:expose-alloc-output}
  11987. \end{figure}
  11988. \section{Remove Complex Operands}
  11989. \label{sec:remove-complex-opera-Lvec}
  11990. {\if\edition\racketEd
  11991. %
  11992. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  11993. should be treated as complex operands.
  11994. %
  11995. \fi}
  11996. %
  11997. {\if\edition\pythonEd\pythonColor
  11998. %
  11999. The expressions \code{allocate}, \code{global\_value}, \code{begin},
  12000. and tuple access should be treated as complex operands. The
  12001. sub-expressions of tuple access must be atomic.
  12002. %
  12003. \fi}
  12004. %% A new case for
  12005. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  12006. %% handled carefully to prevent the \code{Prim} node from being separated
  12007. %% from its enclosing \code{HasType}.
  12008. Figure~\ref{fig:Lvec-anf-syntax}
  12009. shows the grammar for the output language \LangAllocANF{} of this
  12010. pass, which is \LangAlloc{} in monadic normal form.
  12011. \newcommand{\LtupMonadASTRacket}{
  12012. \begin{array}{rcl}
  12013. \Exp &::=& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  12014. \MID \GLOBALVALUE{\Var}
  12015. \end{array}
  12016. }
  12017. \newcommand{\LtupMonadASTPython}{
  12018. \begin{array}{rcl}
  12019. \Exp &::=& \GET{\Atm}{\Atm} \\
  12020. &\MID& \LEN{\Atm}\\
  12021. &\MID& \ALLOCATE{\Int}{\Type}
  12022. \MID \GLOBALVALUE{\Var} \\
  12023. \Stmt{} &::=& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  12024. &\MID& \COLLECT{\Int}
  12025. \end{array}
  12026. }
  12027. \begin{figure}[tp]
  12028. \centering
  12029. \begin{tcolorbox}[colback=white]
  12030. \small
  12031. {\if\edition\racketEd
  12032. \[
  12033. \begin{array}{l}
  12034. \gray{\LvarMonadASTRacket} \\ \hline
  12035. \gray{\LifMonadASTRacket} \\ \hline
  12036. \gray{\LwhileMonadASTRacket} \\ \hline
  12037. \LtupMonadASTRacket \\
  12038. \begin{array}{rcl}
  12039. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  12040. \end{array}
  12041. \end{array}
  12042. \]
  12043. \fi}
  12044. {\if\edition\pythonEd\pythonColor
  12045. \[
  12046. \begin{array}{l}
  12047. \gray{\LvarMonadASTPython} \\ \hline
  12048. \gray{\LifMonadASTPython} \\ \hline
  12049. \gray{\LwhileMonadASTPython} \\ \hline
  12050. \LtupMonadASTPython \\
  12051. \begin{array}{rcl}
  12052. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  12053. \end{array}
  12054. \end{array}
  12055. \]
  12056. \fi}
  12057. \end{tcolorbox}
  12058. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  12059. \label{fig:Lvec-anf-syntax}
  12060. \end{figure}
  12061. \section{Explicate Control and the \LangCVec{} Language}
  12062. \label{sec:explicate-control-r3}
  12063. \newcommand{\CtupASTRacket}{
  12064. \begin{array}{lcl}
  12065. \Exp &::= & \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  12066. &\MID& \VECREF{\Atm}{\INT{\Int}} \\
  12067. &\MID& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12068. &\MID& \VECLEN{\Atm} \\
  12069. &\MID& \GLOBALVALUE{\Var} \\
  12070. \Stmt &::=& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12071. &\MID& \LP\key{Collect} \,\itm{int}\RP
  12072. \end{array}
  12073. }
  12074. \newcommand{\CtupASTPython}{
  12075. \begin{array}{lcl}
  12076. \Exp &::= & \GET{\Atm}{\Atm} \MID \ALLOCATE{\Int}{\Type} \\
  12077. &\MID& \GLOBALVALUE{\Var} \MID \LEN{\Atm} \\
  12078. \Stmt &::=& \COLLECT{\Int} \\
  12079. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  12080. \end{array}
  12081. }
  12082. \begin{figure}[tp]
  12083. \begin{tcolorbox}[colback=white]
  12084. \small
  12085. {\if\edition\racketEd
  12086. \[
  12087. \begin{array}{l}
  12088. \gray{\CvarASTRacket} \\ \hline
  12089. \gray{\CifASTRacket} \\ \hline
  12090. \gray{\CloopASTRacket} \\ \hline
  12091. \CtupASTRacket \\
  12092. \begin{array}{lcl}
  12093. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  12094. \end{array}
  12095. \end{array}
  12096. \]
  12097. \fi}
  12098. {\if\edition\pythonEd\pythonColor
  12099. \[
  12100. \begin{array}{l}
  12101. \gray{\CifASTPython} \\ \hline
  12102. \CtupASTPython \\
  12103. \begin{array}{lcl}
  12104. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  12105. \end{array}
  12106. \end{array}
  12107. \]
  12108. \fi}
  12109. \end{tcolorbox}
  12110. \caption{The abstract syntax of \LangCVec{}, extending
  12111. \racket{\LangCLoop{} (figure~\ref{fig:c7-syntax})}\python{\LangCIf{}
  12112. (figure~\ref{fig:c1-syntax})}.}
  12113. \label{fig:c2-syntax}
  12114. \end{figure}
  12115. The output of \code{explicate\_control} is a program in the
  12116. intermediate language \LangCVec{}, for which figure~\ref{fig:c2-syntax}
  12117. shows the definition of the abstract syntax.
  12118. %
  12119. %% \racket{(The concrete syntax is defined in
  12120. %% figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  12121. %
  12122. The new expressions of \LangCVec{} include \key{allocate},
  12123. %
  12124. \racket{\key{vector-ref}, and \key{vector-set!},}
  12125. %
  12126. \python{accessing tuple elements,}
  12127. %
  12128. and \key{global\_value}.
  12129. %
  12130. \python{\LangCVec{} also includes the \code{collect} statement and
  12131. assignment to a tuple element.}
  12132. %
  12133. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  12134. %
  12135. The \code{explicate\_control} pass can treat these new forms much like
  12136. the other forms that we've already encountered. The output of the
  12137. \code{explicate\_control} pass on the running example is shown on the
  12138. left side of figure~\ref{fig:select-instr-output-gc} in the next
  12139. section.
  12140. \section{Select Instructions and the \LangXGlobal{} Language}
  12141. \label{sec:select-instructions-gc}
  12142. \index{subject}{select instructions}
  12143. %% void (rep as zero)
  12144. %% allocate
  12145. %% collect (callq collect)
  12146. %% vector-ref
  12147. %% vector-set!
  12148. %% vector-length
  12149. %% global (postpone)
  12150. In this pass we generate x86 code for most of the new operations that
  12151. are needed to compile tuples, including \code{Allocate},
  12152. \code{Collect}, and accessing tuple elements.
  12153. %
  12154. We compile \code{GlobalValue} to \code{Global} because the latter has a
  12155. different concrete syntax (see figures~\ref{fig:x86-2-concrete} and
  12156. \ref{fig:x86-2}). \index{subject}{x86}
  12157. The tuple read and write forms translate into \code{movq}
  12158. instructions. (The $+1$ in the offset serves to move past the tag at the
  12159. beginning of the tuple representation.)
  12160. %
  12161. \begin{center}
  12162. \begin{minipage}{\textwidth}
  12163. {\if\edition\racketEd
  12164. \begin{lstlisting}
  12165. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  12166. |$\Longrightarrow$|
  12167. movq |$\itm{tup}'$|, %r11
  12168. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12169. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  12170. |$\Longrightarrow$|
  12171. movq |$\itm{tup}'$|, %r11
  12172. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12173. movq $0, |$\itm{lhs'}$|
  12174. \end{lstlisting}
  12175. \fi}
  12176. {\if\edition\pythonEd\pythonColor
  12177. \begin{lstlisting}
  12178. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  12179. |$\Longrightarrow$|
  12180. movq |$\itm{tup}'$|, %r11
  12181. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12182. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  12183. |$\Longrightarrow$|
  12184. movq |$\itm{tup}'$|, %r11
  12185. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12186. \end{lstlisting}
  12187. \fi}
  12188. \end{minipage}
  12189. \end{center}
  12190. \racket{The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$}
  12191. \python{The $\itm{tup}'$ and $\itm{rhs}'$}
  12192. are obtained by translating from \LangCVec{} to x86.
  12193. %
  12194. The move of $\itm{tup}'$ to
  12195. register \code{r11} ensures that the offset expression
  12196. \code{$8(n+1)$(\%r11)} contains a register operand. This requires
  12197. removing \code{r11} from consideration by the register allocating.
  12198. Why not use \code{rax} instead of \code{r11}? Suppose that we instead used
  12199. \code{rax}. Then the generated code for tuple assignment would be
  12200. \begin{lstlisting}
  12201. movq |$\itm{tup}'$|, %rax
  12202. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  12203. \end{lstlisting}
  12204. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  12205. \code{patch\_instructions} would insert a move through \code{rax}
  12206. as follows:
  12207. \begin{lstlisting}
  12208. movq |$\itm{tup}'$|, %rax
  12209. movq |$\itm{rhs}'$|, %rax
  12210. movq %rax, |$8(n+1)$|(%rax)
  12211. \end{lstlisting}
  12212. However, this sequence of instructions does not work because we're
  12213. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  12214. $\itm{rhs}'$) at the same time!
  12215. The \racket{\code{vector-length}}\python{\code{len}} operation should
  12216. be translated into a sequence of instructions that read the tag of the
  12217. tuple and extract the 6 bits that represent the tuple length, which
  12218. are the bits starting at index 1 and going up to and including bit 6.
  12219. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  12220. (shift right) can be used to accomplish this.
  12221. We compile the \code{allocate} form to operations on the
  12222. \code{free\_ptr}, as shown next. This approach is called
  12223. \emph{inline allocation} because it implements allocation without a
  12224. function call by simply incrementing the allocation pointer. It is much
  12225. more efficient than calling a function for each allocation. The
  12226. address in the \code{free\_ptr} is the next free address in the
  12227. FromSpace, so we copy it into \code{r11} and then move it forward by
  12228. enough space for the tuple being allocated, which is $8(\itm{len}+1)$
  12229. bytes because each element is 8 bytes (64 bits) and we use 8 bytes for
  12230. the tag. We then initialize the \itm{tag} and finally copy the
  12231. address in \code{r11} to the left-hand side. Refer to
  12232. figure~\ref{fig:tuple-rep} to see how the tag is organized.
  12233. %
  12234. \racket{We recommend using the Racket operations
  12235. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  12236. during compilation.}
  12237. %
  12238. \python{We recommend using the bitwise-or operator \code{|} and the
  12239. shift-left operator \code{<<} to compute the tag during
  12240. compilation.}
  12241. %
  12242. The type annotation in the \code{allocate} form is used to determine
  12243. the pointer mask region of the tag.
  12244. %
  12245. The addressing mode \verb!free_ptr(%rip)! essentially stands for the
  12246. address of the \code{free\_ptr} global variable using a special
  12247. instruction-pointer-relative addressing mode of the x86-64 processor.
  12248. In particular, the assembler computes the distance $d$ between the
  12249. address of \code{free\_ptr} and where the \code{rip} would be at that
  12250. moment and then changes the \code{free\_ptr(\%rip)} argument to
  12251. \code{$d$(\%rip)}, which at runtime will compute the address of
  12252. \code{free\_ptr}.
  12253. %
  12254. {\if\edition\racketEd
  12255. \begin{lstlisting}
  12256. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  12257. |$\Longrightarrow$|
  12258. movq free_ptr(%rip), %r11
  12259. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12260. movq $|$\itm{tag}$|, 0(%r11)
  12261. movq %r11, |$\itm{lhs}'$|
  12262. \end{lstlisting}
  12263. \fi}
  12264. {\if\edition\pythonEd\pythonColor
  12265. \begin{lstlisting}
  12266. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  12267. |$\Longrightarrow$|
  12268. movq free_ptr(%rip), %r11
  12269. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12270. movq $|$\itm{tag}$|, 0(%r11)
  12271. movq %r11, |$\itm{lhs}'$|
  12272. \end{lstlisting}
  12273. \fi}
  12274. %
  12275. The \code{collect} form is compiled to a call to the \code{collect}
  12276. function in the runtime. The arguments to \code{collect} are (1) the
  12277. top of the root stack, and (2) the number of bytes that need to be
  12278. allocated. We use another dedicated register, \code{r15}, to store
  12279. the pointer to the top of the root stack. Therefore \code{r15} is not
  12280. available for use by the register allocator.
  12281. %
  12282. {\if\edition\racketEd
  12283. \begin{lstlisting}
  12284. (collect |$\itm{bytes}$|)
  12285. |$\Longrightarrow$|
  12286. movq %r15, %rdi
  12287. movq $|\itm{bytes}|, %rsi
  12288. callq collect
  12289. \end{lstlisting}
  12290. \fi}
  12291. {\if\edition\pythonEd\pythonColor
  12292. \begin{lstlisting}
  12293. collect(|$\itm{bytes}$|)
  12294. |$\Longrightarrow$|
  12295. movq %r15, %rdi
  12296. movq $|\itm{bytes}|, %rsi
  12297. callq collect
  12298. \end{lstlisting}
  12299. \fi}
  12300. \newcommand{\GrammarXGlobal}{
  12301. \begin{array}{lcl}
  12302. \Arg &::=& \itm{label} \key{(\%rip)}
  12303. \end{array}
  12304. }
  12305. \newcommand{\ASTXGlobalRacket}{
  12306. \begin{array}{lcl}
  12307. \Arg &::=& \GLOBAL{\itm{label}}
  12308. \end{array}
  12309. }
  12310. \begin{figure}[tp]
  12311. \begin{tcolorbox}[colback=white]
  12312. \[
  12313. \begin{array}{l}
  12314. \gray{\GrammarXInt} \\ \hline
  12315. \gray{\GrammarXIf} \\ \hline
  12316. \GrammarXGlobal \\
  12317. \begin{array}{lcl}
  12318. \LangXGlobalM{} &::= & \key{.globl main} \\
  12319. & & \key{main:} \; \Instr^{*}
  12320. \end{array}
  12321. \end{array}
  12322. \]
  12323. \end{tcolorbox}
  12324. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1-concrete}).}
  12325. \label{fig:x86-2-concrete}
  12326. \end{figure}
  12327. \begin{figure}[tp]
  12328. \begin{tcolorbox}[colback=white]
  12329. \small
  12330. \[
  12331. \begin{array}{l}
  12332. \gray{\ASTXIntRacket} \\ \hline
  12333. \gray{\ASTXIfRacket} \\ \hline
  12334. \ASTXGlobalRacket \\
  12335. \begin{array}{lcl}
  12336. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  12337. \end{array}
  12338. \end{array}
  12339. \]
  12340. \end{tcolorbox}
  12341. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1}).}
  12342. \label{fig:x86-2}
  12343. \end{figure}
  12344. The definitions of the concrete and abstract syntax of the
  12345. \LangXGlobal{} language are shown in figures~\ref{fig:x86-2-concrete}
  12346. and \ref{fig:x86-2}. It differs from \LangXIf{} only in the addition
  12347. of global variables.
  12348. %
  12349. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  12350. \code{select\_instructions} pass on the running example.
  12351. \begin{figure}[tbp]
  12352. \centering
  12353. \begin{tcolorbox}[colback=white]
  12354. % tests/s2_17.rkt
  12355. \begin{tabular}{lll}
  12356. \begin{minipage}{0.5\textwidth}
  12357. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12358. start:
  12359. tmp9 = (global-value free_ptr);
  12360. tmp0 = (+ tmp9 16);
  12361. tmp1 = (global-value fromspace_end);
  12362. if (< tmp0 tmp1)
  12363. goto block0;
  12364. else
  12365. goto block1;
  12366. block0:
  12367. _4 = (void);
  12368. goto block9;
  12369. block1:
  12370. (collect 16)
  12371. goto block9;
  12372. block9:
  12373. alloc2 = (allocate 1 (Vector Integer));
  12374. _3 = (vector-set! alloc2 0 42);
  12375. vecinit6 = alloc2;
  12376. tmp2 = (global-value free_ptr);
  12377. tmp3 = (+ tmp2 16);
  12378. tmp4 = (global-value fromspace_end);
  12379. if (< tmp3 tmp4)
  12380. goto block7;
  12381. else
  12382. goto block8;
  12383. block7:
  12384. _8 = (void);
  12385. goto block6;
  12386. block8:
  12387. (collect 16)
  12388. goto block6;
  12389. block6:
  12390. alloc5 = (allocate 1 (Vector (Vector Integer)));
  12391. _7 = (vector-set! alloc5 0 vecinit6);
  12392. tmp5 = (vector-ref alloc5 0);
  12393. return (vector-ref tmp5 0);
  12394. \end{lstlisting}
  12395. \end{minipage}
  12396. &$\Rightarrow$&
  12397. \begin{minipage}{0.4\textwidth}
  12398. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12399. start:
  12400. movq free_ptr(%rip), tmp9
  12401. movq tmp9, tmp0
  12402. addq $16, tmp0
  12403. movq fromspace_end(%rip), tmp1
  12404. cmpq tmp1, tmp0
  12405. jl block0
  12406. jmp block1
  12407. block0:
  12408. movq $0, _4
  12409. jmp block9
  12410. block1:
  12411. movq %r15, %rdi
  12412. movq $16, %rsi
  12413. callq collect
  12414. jmp block9
  12415. block9:
  12416. movq free_ptr(%rip), %r11
  12417. addq $16, free_ptr(%rip)
  12418. movq $3, 0(%r11)
  12419. movq %r11, alloc2
  12420. movq alloc2, %r11
  12421. movq $42, 8(%r11)
  12422. movq $0, _3
  12423. movq alloc2, vecinit6
  12424. movq free_ptr(%rip), tmp2
  12425. movq tmp2, tmp3
  12426. addq $16, tmp3
  12427. movq fromspace_end(%rip), tmp4
  12428. cmpq tmp4, tmp3
  12429. jl block7
  12430. jmp block8
  12431. block7:
  12432. movq $0, _8
  12433. jmp block6
  12434. block8:
  12435. movq %r15, %rdi
  12436. movq $16, %rsi
  12437. callq collect
  12438. jmp block6
  12439. block6:
  12440. movq free_ptr(%rip), %r11
  12441. addq $16, free_ptr(%rip)
  12442. movq $131, 0(%r11)
  12443. movq %r11, alloc5
  12444. movq alloc5, %r11
  12445. movq vecinit6, 8(%r11)
  12446. movq $0, _7
  12447. movq alloc5, %r11
  12448. movq 8(%r11), tmp5
  12449. movq tmp5, %r11
  12450. movq 8(%r11), %rax
  12451. jmp conclusion
  12452. \end{lstlisting}
  12453. \end{minipage}
  12454. \end{tabular}
  12455. \end{tcolorbox}
  12456. \caption{Output of the \code{explicate\_control} (\emph{left}) and
  12457. \code{select\_instructions} (\emph{right}) passes on the running
  12458. example.}
  12459. \label{fig:select-instr-output-gc}
  12460. \end{figure}
  12461. \clearpage
  12462. \section{Register Allocation}
  12463. \label{sec:reg-alloc-gc}
  12464. \index{subject}{register allocation}
  12465. As discussed previously in this chapter, the garbage collector needs to
  12466. access all the pointers in the root set, that is, all variables that
  12467. are tuples. It will be the responsibility of the register allocator
  12468. to make sure that
  12469. \begin{enumerate}
  12470. \item the root stack is used for spilling tuple-typed variables, and
  12471. \item if a tuple-typed variable is live during a call to the
  12472. collector, it must be spilled to ensure that it is visible to the
  12473. collector.
  12474. \end{enumerate}
  12475. The latter responsibility can be handled during construction of the
  12476. interference graph, by adding interference edges between the call-live
  12477. tuple-typed variables and all the callee-saved registers. (They
  12478. already interfere with the caller-saved registers.)
  12479. %
  12480. \racket{The type information for variables is in the \code{Program}
  12481. form, so we recommend adding another parameter to the
  12482. \code{build\_interference} function to communicate this alist.}
  12483. %
  12484. \python{The type information for variables is generated by the type
  12485. checker for \LangCVec{}, stored a field named \code{var\_types} in
  12486. the \code{CProgram} AST mode. You'll need to propagate that
  12487. information so that it is available in this pass.}
  12488. The spilling of tuple-typed variables to the root stack can be handled
  12489. after graph coloring, in choosing how to assign the colors
  12490. (integers) to registers and stack locations. The
  12491. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  12492. changes to also record the number of spills to the root stack.
  12493. % build-interference
  12494. %
  12495. % callq
  12496. % extra parameter for var->type assoc. list
  12497. % update 'program' and 'if'
  12498. % allocate-registers
  12499. % allocate spilled vectors to the rootstack
  12500. % don't change color-graph
  12501. % TODO:
  12502. %\section{Patch Instructions}
  12503. %[mention that global variables are memory references]
  12504. \section{Prelude and Conclusion}
  12505. \label{sec:print-x86-gc}
  12506. \label{sec:prelude-conclusion-x86-gc}
  12507. \index{subject}{prelude}\index{subject}{conclusion}
  12508. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  12509. \code{prelude\_and\_conclusion} pass on the running example. In the
  12510. prelude of the \code{main} function, we allocate space
  12511. on the root stack to make room for the spills of tuple-typed
  12512. variables. We do so by incrementing the root stack pointer (\code{r15}),
  12513. taking care that the root stack grows up instead of down. For the
  12514. running example, there was just one spill, so we increment \code{r15}
  12515. by 8 bytes. In the conclusion we subtract 8 bytes from \code{r15}.
  12516. One issue that deserves special care is that there may be a call to
  12517. \code{collect} prior to the initializing assignments for all the
  12518. variables in the root stack. We do not want the garbage collector to
  12519. mistakenly determine that some uninitialized variable is a pointer that
  12520. needs to be followed. Thus, we zero out all locations on the root
  12521. stack in the prelude of \code{main}. In
  12522. figure~\ref{fig:print-x86-output-gc}, the instruction
  12523. %
  12524. \lstinline{movq $0, 0(%r15)}
  12525. %
  12526. is sufficient to accomplish this task because there is only one spill.
  12527. In general, we have to clear as many words as there are spills of
  12528. tuple-typed variables. The garbage collector tests each root to see
  12529. if it is null prior to dereferencing it.
  12530. \begin{figure}[htbp]
  12531. % TODO: Python Version -Jeremy
  12532. \begin{tcolorbox}[colback=white]
  12533. \begin{minipage}[t]{0.5\textwidth}
  12534. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12535. .globl main
  12536. main:
  12537. pushq %rbp
  12538. movq %rsp, %rbp
  12539. subq $0, %rsp
  12540. movq $65536, %rdi
  12541. movq $65536, %rsi
  12542. callq initialize
  12543. movq rootstack_begin(%rip), %r15
  12544. movq $0, 0(%r15)
  12545. addq $8, %r15
  12546. jmp start
  12547. conclusion:
  12548. subq $8, %r15
  12549. addq $0, %rsp
  12550. popq %rbp
  12551. retq
  12552. \end{lstlisting}
  12553. \end{minipage}
  12554. \end{tcolorbox}
  12555. \caption{The prelude and conclusion generated by the \code{prelude\_and\_conclusion} pass for the running example.}
  12556. \label{fig:print-x86-output-gc}
  12557. \end{figure}
  12558. \begin{figure}[tbp]
  12559. \begin{tcolorbox}[colback=white]
  12560. {\if\edition\racketEd
  12561. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  12562. \node (Lvec) at (0,2) {\large \LangVec{}};
  12563. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  12564. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  12565. \node (Lvec-4) at (10,2) {\large \LangAlloc{}};
  12566. \node (Lvec-5) at (10,0) {\large \LangAlloc{}};
  12567. \node (Lvec-6) at (5,0) {\large \LangAllocANF{}};
  12568. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12569. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12570. \node (x86-2-1) at (0,-4) {\large \LangXGlobalVar{}};
  12571. \node (x86-2-2) at (4,-4) {\large \LangXGlobalVar{}};
  12572. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12573. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12574. \node (x86-5) at (8,-4) {\large \LangXGlobal{}};
  12575. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12576. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  12577. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-4);
  12578. \path[->,bend left=15] (Lvec-4) edge [right] node
  12579. {\ttfamily\footnotesize uncover\_get!} (Lvec-5);
  12580. \path[->,bend left=10] (Lvec-5) edge [below] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12581. \path[->,bend right=10] (Lvec-6) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  12582. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12583. \path[->,bend right=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  12584. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  12585. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  12586. \path[->,bend left=10] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12587. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12588. \end{tikzpicture}
  12589. \fi}
  12590. {\if\edition\pythonEd\pythonColor
  12591. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  12592. \node (Lvec) at (0,2) {\large \LangVec{}};
  12593. \node (Lvec-2) at (4,2) {\large \LangVec{}};
  12594. \node (Lvec-5) at (8,2) {\large \LangAlloc{}};
  12595. \node (Lvec-6) at (12,2) {\large \LangAllocANF{}};
  12596. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12597. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12598. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12599. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12600. \node (x86-5) at (12,-2) {\large \LangXGlobal{}};
  12601. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12602. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-5);
  12603. \path[->,bend left=15] (Lvec-5) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12604. \path[->,bend left=10] (Lvec-6) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C2-4);
  12605. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12606. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  12607. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12608. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12609. \end{tikzpicture}
  12610. \fi}
  12611. \end{tcolorbox}
  12612. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  12613. \label{fig:Lvec-passes}
  12614. \end{figure}
  12615. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  12616. for the compilation of \LangVec{}.
  12617. \clearpage
  12618. {\if\edition\racketEd
  12619. \section{Challenge: Simple Structures}
  12620. \label{sec:simple-structures}
  12621. \index{subject}{struct}
  12622. \index{subject}{structure}
  12623. The language \LangStruct{} extends \LangVec{} with support for simple
  12624. structures. The definition of its concrete syntax is shown in
  12625. figure~\ref{fig:Lstruct-concrete-syntax}, and the abstract syntax is
  12626. shown in figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct}
  12627. in Typed Racket is a user-defined data type that contains named fields
  12628. and that is heap allocated\index{subject}{heap allocated},
  12629. similarly to a vector. The following is an
  12630. example of a structure definition, in this case the definition of a
  12631. \code{point} type:
  12632. \begin{lstlisting}
  12633. (struct point ([x : Integer] [y : Integer]) #:mutable)
  12634. \end{lstlisting}
  12635. \newcommand{\LstructGrammarRacket}{
  12636. \begin{array}{lcl}
  12637. \Type &::=& \Var \\
  12638. \Exp &::=& (\Var\;\Exp \ldots)\\
  12639. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  12640. \end{array}
  12641. }
  12642. \newcommand{\LstructASTRacket}{
  12643. \begin{array}{lcl}
  12644. \Type &::=& \VAR{\Var} \\
  12645. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  12646. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  12647. \end{array}
  12648. }
  12649. \begin{figure}[tbp]
  12650. \centering
  12651. \begin{tcolorbox}[colback=white]
  12652. \[
  12653. \begin{array}{l}
  12654. \gray{\LintGrammarRacket{}} \\ \hline
  12655. \gray{\LvarGrammarRacket{}} \\ \hline
  12656. \gray{\LifGrammarRacket{}} \\ \hline
  12657. \gray{\LwhileGrammarRacket} \\ \hline
  12658. \gray{\LtupGrammarRacket} \\ \hline
  12659. \LstructGrammarRacket \\
  12660. \begin{array}{lcl}
  12661. \LangStruct{} &::=& \Def \ldots \; \Exp
  12662. \end{array}
  12663. \end{array}
  12664. \]
  12665. \end{tcolorbox}
  12666. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  12667. (figure~\ref{fig:Lvec-concrete-syntax}).}
  12668. \label{fig:Lstruct-concrete-syntax}
  12669. \end{figure}
  12670. \begin{figure}[tbp]
  12671. \centering
  12672. \begin{tcolorbox}[colback=white]
  12673. \small
  12674. \[
  12675. \begin{array}{l}
  12676. \gray{\LintASTRacket{}} \\ \hline
  12677. \gray{\LvarASTRacket{}} \\ \hline
  12678. \gray{\LifASTRacket{}} \\ \hline
  12679. \gray{\LwhileASTRacket} \\ \hline
  12680. \gray{\LtupASTRacket} \\ \hline
  12681. \LstructASTRacket \\
  12682. \begin{array}{lcl}
  12683. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  12684. \end{array}
  12685. \end{array}
  12686. \]
  12687. \end{tcolorbox}
  12688. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  12689. (figure~\ref{fig:Lvec-syntax}).}
  12690. \label{fig:Lstruct-syntax}
  12691. \end{figure}
  12692. An instance of a structure is created using function-call syntax, with
  12693. the name of the structure in the function position, as follows:
  12694. \begin{lstlisting}
  12695. (point 7 12)
  12696. \end{lstlisting}
  12697. Function-call syntax is also used to read a field of a structure. The
  12698. function name is formed by the structure name, a dash, and the field
  12699. name. The following example uses \code{point-x} and \code{point-y} to
  12700. access the \code{x} and \code{y} fields of two point instances:
  12701. \begin{center}
  12702. \begin{lstlisting}
  12703. (let ([pt1 (point 7 12)])
  12704. (let ([pt2 (point 4 3)])
  12705. (+ (- (point-x pt1) (point-x pt2))
  12706. (- (point-y pt1) (point-y pt2)))))
  12707. \end{lstlisting}
  12708. \end{center}
  12709. Similarly, to write to a field of a structure, use its set function,
  12710. whose name starts with \code{set-}, followed by the structure name,
  12711. then a dash, then the field name, and finally with an exclamation
  12712. mark. The following example uses \code{set-point-x!} to change the
  12713. \code{x} field from \code{7} to \code{42}:
  12714. \begin{center}
  12715. \begin{lstlisting}
  12716. (let ([pt (point 7 12)])
  12717. (let ([_ (set-point-x! pt 42)])
  12718. (point-x pt)))
  12719. \end{lstlisting}
  12720. \end{center}
  12721. \begin{exercise}\normalfont\normalsize
  12722. Create a type checker for \LangStruct{} by extending the type
  12723. checker for \LangVec{}. Extend your compiler with support for simple
  12724. structures, compiling \LangStruct{} to x86 assembly code. Create
  12725. five new test cases that use structures, and test your compiler.
  12726. \end{exercise}
  12727. % TODO: create an interpreter for L_struct
  12728. \clearpage
  12729. \fi}
  12730. \section{Challenge: Arrays}
  12731. \label{sec:arrays}
  12732. % TODO mention trapped-error
  12733. In this chapter we have studied tuples, that is, heterogeneous
  12734. sequences of elements whose length is determined at compile time. This
  12735. challenge is also about sequences, but this time the length is
  12736. determined at runtime and all the elements have the same type (they
  12737. are homogeneous). We use the term \emph{array} for this latter kind of
  12738. sequence.
  12739. %
  12740. \racket{
  12741. The Racket language does not distinguish between tuples and arrays;
  12742. they are both represented by vectors. However, Typed Racket
  12743. distinguishes between tuples and arrays: the \code{Vector} type is for
  12744. tuples, and the \code{Vectorof} type is for arrays.}%
  12745. \python{Arrays correspond to the \code{list} type in Python language.}
  12746. Figure~\ref{fig:Lvecof-concrete-syntax} presents the definition of the
  12747. concrete syntax for \LangArray{}, and figure~\ref{fig:Lvecof-syntax}
  12748. presents the definition of the abstract syntax, extending \LangVec{}
  12749. with the \racket{\code{Vectorof}}\python{\code{list}} type and the
  12750. %
  12751. \racket{\code{make-vector} primitive operator for creating an array,
  12752. whose arguments are the length of the array and an initial value for
  12753. all the elements in the array.}
  12754. \python{bracket notation for creating an array literal.}
  12755. \racket{The \code{vector-length},
  12756. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  12757. for tuples become overloaded for use with arrays.}
  12758. \python{
  12759. The subscript operator becomes overloaded for use with arrays and tuples
  12760. and now may appear on the left-hand side of an assignment.
  12761. Note that the index of the subscript, when applied to an array, may be an
  12762. arbitrary expression and not just a constant integer.
  12763. The \code{len} function is also applicable to arrays.
  12764. }
  12765. %
  12766. We include integer multiplication in \LangArray{} because it is
  12767. useful in many examples involving arrays such as computing the
  12768. inner product of two arrays (figure~\ref{fig:inner_product}).
  12769. \newcommand{\LarrayGrammarRacket}{
  12770. \begin{array}{lcl}
  12771. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  12772. \Exp &::=& \CMUL{\Exp}{\Exp}
  12773. \MID \CMAKEVEC{\Exp}{\Exp}
  12774. \end{array}
  12775. }
  12776. \newcommand{\LarrayASTRacket}{
  12777. \begin{array}{lcl}
  12778. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  12779. \Exp &::=& \MUL{\Exp}{\Exp}
  12780. \MID \MAKEVEC{\Exp}{\Exp}
  12781. \end{array}
  12782. }
  12783. \newcommand{\LarrayGrammarPython}{
  12784. \begin{array}{lcl}
  12785. \Type &::=& \key{list}\LS\Type\RS \\
  12786. \Exp &::=& \CMUL{\Exp}{\Exp}
  12787. \MID \CGET{\Exp}{\Exp}
  12788. \MID \LS \Exp \code{,} \ldots \RS \\
  12789. \Stmt &::= & \CGET{\Exp}{\Exp} \mathop{\key{=}}\Exp
  12790. \end{array}
  12791. }
  12792. \newcommand{\LarrayASTPython}{
  12793. \begin{array}{lcl}
  12794. \Type &::=& \key{ListType}\LP\Type\RP \\
  12795. \Exp &::=& \MUL{\Exp}{\Exp}
  12796. \MID \GET{\Exp}{\Exp} \\
  12797. &\MID& \key{List}\LP \Exp \code{,} \ldots \code{, } \code{Load()} \RP \\
  12798. \Stmt &::= & \ASSIGN{ \PUT{\Exp}{\Exp} }{\Exp}
  12799. \end{array}
  12800. }
  12801. \begin{figure}[tp]
  12802. \centering
  12803. \begin{tcolorbox}[colback=white]
  12804. \small
  12805. {\if\edition\racketEd
  12806. \[
  12807. \begin{array}{l}
  12808. \gray{\LintGrammarRacket{}} \\ \hline
  12809. \gray{\LvarGrammarRacket{}} \\ \hline
  12810. \gray{\LifGrammarRacket{}} \\ \hline
  12811. \gray{\LwhileGrammarRacket} \\ \hline
  12812. \gray{\LtupGrammarRacket} \\ \hline
  12813. \LarrayGrammarRacket \\
  12814. \begin{array}{lcl}
  12815. \LangArray{} &::=& \Exp
  12816. \end{array}
  12817. \end{array}
  12818. \]
  12819. \fi}
  12820. {\if\edition\pythonEd\pythonColor
  12821. \[
  12822. \begin{array}{l}
  12823. \gray{\LintGrammarPython{}} \\ \hline
  12824. \gray{\LvarGrammarPython{}} \\ \hline
  12825. \gray{\LifGrammarPython{}} \\ \hline
  12826. \gray{\LwhileGrammarPython} \\ \hline
  12827. \gray{\LtupGrammarPython} \\ \hline
  12828. \LarrayGrammarPython \\
  12829. \begin{array}{rcl}
  12830. \LangArrayM{} &::=& \Stmt^{*}
  12831. \end{array}
  12832. \end{array}
  12833. \]
  12834. \fi}
  12835. \end{tcolorbox}
  12836. \caption{The concrete syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  12837. \label{fig:Lvecof-concrete-syntax}
  12838. \end{figure}
  12839. \begin{figure}[tp]
  12840. \centering
  12841. \begin{tcolorbox}[colback=white]
  12842. \small
  12843. {\if\edition\racketEd
  12844. \[
  12845. \begin{array}{l}
  12846. \gray{\LintASTRacket{}} \\ \hline
  12847. \gray{\LvarASTRacket{}} \\ \hline
  12848. \gray{\LifASTRacket{}} \\ \hline
  12849. \gray{\LwhileASTRacket} \\ \hline
  12850. \gray{\LtupASTRacket} \\ \hline
  12851. \LarrayASTRacket \\
  12852. \begin{array}{lcl}
  12853. \LangArray{} &::=& \Exp
  12854. \end{array}
  12855. \end{array}
  12856. \]
  12857. \fi}
  12858. {\if\edition\pythonEd\pythonColor
  12859. \[
  12860. \begin{array}{l}
  12861. \gray{\LintASTPython{}} \\ \hline
  12862. \gray{\LvarASTPython{}} \\ \hline
  12863. \gray{\LifASTPython{}} \\ \hline
  12864. \gray{\LwhileASTPython} \\ \hline
  12865. \gray{\LtupASTPython} \\ \hline
  12866. \LarrayASTPython \\
  12867. \begin{array}{rcl}
  12868. \LangArrayM{} &::=& \Stmt^{*}
  12869. \end{array}
  12870. \end{array}
  12871. \]
  12872. \fi}
  12873. \end{tcolorbox}
  12874. \caption{The abstract syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  12875. \label{fig:Lvecof-syntax}
  12876. \end{figure}
  12877. \begin{figure}[tp]
  12878. \begin{tcolorbox}[colback=white]
  12879. {\if\edition\racketEd
  12880. % TODO: remove the function from the following example, like the python version -Jeremy
  12881. \begin{lstlisting}
  12882. (let ([A (make-vector 2 2)])
  12883. (let ([B (make-vector 2 3)])
  12884. (let ([i 0])
  12885. (let ([prod 0])
  12886. (begin
  12887. (while (< i n)
  12888. (begin
  12889. (set! prod (+ prod (* (vector-ref A i)
  12890. (vector-ref B i))))
  12891. (set! i (+ i 1))))
  12892. prod)))))
  12893. \end{lstlisting}
  12894. \fi}
  12895. {\if\edition\pythonEd\pythonColor
  12896. \begin{lstlisting}
  12897. A = [2, 2]
  12898. B = [3, 3]
  12899. i = 0
  12900. prod = 0
  12901. while i != len(A):
  12902. prod = prod + A[i] * B[i]
  12903. i = i + 1
  12904. print( prod )
  12905. \end{lstlisting}
  12906. \fi}
  12907. \end{tcolorbox}
  12908. \caption{Example program that computes the inner product.}
  12909. \label{fig:inner_product}
  12910. \end{figure}
  12911. {\if\edition\racketEd
  12912. %
  12913. Figure~\ref{fig:type-check-Lvecof} shows the definition of the type
  12914. checker for \LangArray{}. The result type of
  12915. \code{make-vector} is \code{(Vectorof T)}, where \code{T} is the type
  12916. of the initializing expression. The length expression is required to
  12917. have type \code{Integer}. The type checking of the operators
  12918. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  12919. updated to handle the situation in which the vector has type
  12920. \code{Vectorof}. In these cases we translate the operators to their
  12921. \code{vectorof} form so that later passes can easily distinguish
  12922. between operations on tuples versus arrays. We override the
  12923. \code{operator-types} method to provide the type signature for
  12924. multiplication: it takes two integers and returns an integer. \fi}
  12925. {\if\edition\pythonEd\pythonColor
  12926. %
  12927. The type checker for \LangArray{} is defined in
  12928. figure~\ref{fig:type-check-Lvecof}. The result type of a list literal
  12929. is \code{list[T]} where \code{T} is the type of the initializing
  12930. expressions. The type checking of the \code{len} function and the
  12931. subscript operator is updated to handle lists. The type checker now
  12932. also handles a subscript on the left-hand side of an assignment.
  12933. Regarding multiplication, it takes two integers and returns an
  12934. integer.
  12935. %
  12936. \fi}
  12937. \begin{figure}[tbp]
  12938. \begin{tcolorbox}[colback=white]
  12939. {\if\edition\racketEd
  12940. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12941. (define type-check-Lvecof-class
  12942. (class type-check-Lvec-class
  12943. (super-new)
  12944. (inherit check-type-equal?)
  12945. (define/override (operator-types)
  12946. (append '((* . ((Integer Integer) . Integer)))
  12947. (super operator-types)))
  12948. (define/override (type-check-exp env)
  12949. (lambda (e)
  12950. (define recur (type-check-exp env))
  12951. (match e
  12952. [(Prim 'make-vector (list e1 e2))
  12953. (define-values (e1^ t1) (recur e1))
  12954. (define-values (e2^ elt-type) (recur e2))
  12955. (define vec-type `(Vectorof ,elt-type))
  12956. (values (Prim 'make-vector (list e1^ e2^)) vec-type)]
  12957. [(Prim 'vector-ref (list e1 e2))
  12958. (define-values (e1^ t1) (recur e1))
  12959. (define-values (e2^ t2) (recur e2))
  12960. (match* (t1 t2)
  12961. [(`(Vectorof ,elt-type) 'Integer)
  12962. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  12963. [(other wise) ((super type-check-exp env) e)])]
  12964. [(Prim 'vector-set! (list e1 e2 e3) )
  12965. (define-values (e-vec t-vec) (recur e1))
  12966. (define-values (e2^ t2) (recur e2))
  12967. (define-values (e-arg^ t-arg) (recur e3))
  12968. (match t-vec
  12969. [`(Vectorof ,elt-type)
  12970. (check-type-equal? elt-type t-arg e)
  12971. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  12972. [else ((super type-check-exp env) e)])]
  12973. [(Prim 'vector-length (list e1))
  12974. (define-values (e1^ t1) (recur e1))
  12975. (match t1
  12976. [`(Vectorof ,t)
  12977. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  12978. [else ((super type-check-exp env) e)])]
  12979. [else ((super type-check-exp env) e)])))
  12980. ))
  12981. (define (type-check-Lvecof p)
  12982. (send (new type-check-Lvecof-class) type-check-program p))
  12983. \end{lstlisting}
  12984. \fi}
  12985. {\if\edition\pythonEd\pythonColor
  12986. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12987. class TypeCheckLarray(TypeCheckLtup):
  12988. def type_check_exp(self, e, env):
  12989. match e:
  12990. case ast.List(es, Load()):
  12991. ts = [self.type_check_exp(e, env) for e in es]
  12992. elt_ty = ts[0]
  12993. for (ty, elt) in zip(ts, es):
  12994. self.check_type_equal(elt_ty, ty, elt)
  12995. e.has_type = ListType(elt_ty)
  12996. return e.has_type
  12997. case Call(Name('len'), [tup]):
  12998. tup_t = self.type_check_exp(tup, env)
  12999. tup.has_type = tup_t
  13000. match tup_t:
  13001. case TupleType(ts):
  13002. return IntType()
  13003. case ListType(ty):
  13004. return IntType()
  13005. case _:
  13006. raise Exception('len expected a tuple, not ' + repr(tup_t))
  13007. case Subscript(tup, index, Load()):
  13008. tup_ty = self.type_check_exp(tup, env)
  13009. index_ty = self.type_check_exp(index, env)
  13010. self.check_type_equal(index_ty, IntType(), index)
  13011. match tup_ty:
  13012. case TupleType(ts):
  13013. match index:
  13014. case Constant(i):
  13015. return ts[i]
  13016. case _:
  13017. raise Exception('subscript required constant integer index')
  13018. case ListType(ty):
  13019. return ty
  13020. case _:
  13021. raise Exception('subscript expected a tuple, not ' + repr(tup_ty))
  13022. case BinOp(left, Mult(), right):
  13023. l = self.type_check_exp(left, env)
  13024. self.check_type_equal(l, IntType(), left)
  13025. r = self.type_check_exp(right, env)
  13026. self.check_type_equal(r, IntType(), right)
  13027. return IntType()
  13028. case _:
  13029. return super().type_check_exp(e, env)
  13030. def type_check_stmts(self, ss, env):
  13031. if len(ss) == 0:
  13032. return VoidType()
  13033. match ss[0]:
  13034. case Assign([Subscript(tup, index, Store())], value):
  13035. tup_t = self.type_check_exp(tup, env)
  13036. value_t = self.type_check_exp(value, env)
  13037. index_ty = self.type_check_exp(index, env)
  13038. self.check_type_equal(index_ty, IntType(), index)
  13039. match tup_t:
  13040. case ListType(ty):
  13041. self.check_type_equal(ty, value_t, ss[0])
  13042. case TupleType(ts):
  13043. return self.type_check_stmts(ss, env)
  13044. case _:
  13045. raise Exception('type_check_stmts: '
  13046. 'expected tuple or list, not ' + repr(tup_t))
  13047. return self.type_check_stmts(ss[1:], env)
  13048. case _:
  13049. return super().type_check_stmts(ss, env)
  13050. \end{lstlisting}
  13051. \fi}
  13052. \end{tcolorbox}
  13053. \caption{Type checker for the \LangArray{} language.}
  13054. \label{fig:type-check-Lvecof}
  13055. \end{figure}
  13056. The definition of the interpreter for \LangArray{} is shown in
  13057. figure~\ref{fig:interp-Lvecof}.
  13058. \racket{The \code{make-vector} operator is
  13059. interpreted using Racket's \code{make-vector} function,
  13060. and multiplication is interpreted using \code{fx*},
  13061. which is multiplication for \code{fixnum} integers.
  13062. In the \code{resolve} pass (section~\ref{sec:array-resolution})
  13063. we translate array access operations
  13064. into \code{vectorof-ref} and \code{vectorof-set!} operations,
  13065. which we interpret using \code{vector} operations with additional
  13066. bounds checks that signal a \code{trapped-error}.
  13067. }
  13068. %
  13069. \python{We implement list creation with a Python list comprehension
  13070. and multiplication is implemented with Python multiplication. We
  13071. add a case to handle a subscript on the left-hand side of
  13072. assignment. Other uses of subscript can be handled by the existing
  13073. code for tuples.}
  13074. \begin{figure}[tbp]
  13075. \begin{tcolorbox}[colback=white]
  13076. {\if\edition\racketEd
  13077. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13078. (define interp-Lvecof-class
  13079. (class interp-Lvec-class
  13080. (super-new)
  13081. (define/override (interp-op op)
  13082. (match op
  13083. ['make-vector make-vector]
  13084. ['vectorof-length vector-length]
  13085. ['vectorof-ref
  13086. (lambda (v i)
  13087. (if (< i (vector-length v))
  13088. (vector-ref v i)
  13089. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13090. ['vectorof-set!
  13091. (lambda (v i e)
  13092. (if (< i (vector-length v))
  13093. (vector-set! v i e)
  13094. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13095. [else (super interp-op op)]))
  13096. ))
  13097. (define (interp-Lvecof p)
  13098. (send (new interp-Lvecof-class) interp-program p))
  13099. \end{lstlisting}
  13100. \fi}
  13101. {\if\edition\pythonEd\pythonColor
  13102. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13103. class InterpLarray(InterpLtup):
  13104. def interp_exp(self, e, env):
  13105. match e:
  13106. case ast.List(es, Load()):
  13107. return [self.interp_exp(e, env) for e in es]
  13108. case BinOp(left, Mult(), right):
  13109. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  13110. return l * r
  13111. case _:
  13112. return super().interp_exp(e, env)
  13113. def interp_stmts(self, ss, env):
  13114. if len(ss) == 0:
  13115. return
  13116. match ss[0]:
  13117. case Assign([Subscript(lst, index)], value):
  13118. lst = self.interp_exp(lst, env)
  13119. index = self.interp_exp(index, env)
  13120. lst[index] = self.interp_exp(value, env)
  13121. return self.interp_stmts(ss[1:], env)
  13122. case _:
  13123. return super().interp_stmts(ss, env)
  13124. \end{lstlisting}
  13125. \fi}
  13126. \end{tcolorbox}
  13127. \caption{Interpreter for \LangArray{}.}
  13128. \label{fig:interp-Lvecof}
  13129. \end{figure}
  13130. \subsection{Data Representation}
  13131. \label{sec:array-rep}
  13132. Just as with tuples, we store arrays on the heap, which means that the
  13133. garbage collector will need to inspect arrays. An immediate thought is
  13134. to use the same representation for arrays that we use for tuples.
  13135. However, we limit tuples to a length of fifty so that their length and
  13136. pointer mask can fit into the 64-bit tag at the beginning of each
  13137. tuple (section~\ref{sec:data-rep-gc}). We intend arrays to allow
  13138. millions of elements, so we need more bits to store the length.
  13139. However, because arrays are homogeneous, we need only 1 bit for the
  13140. pointer mask instead of 1 bit per array element. Finally, the
  13141. garbage collector must be able to distinguish between tuples
  13142. and arrays, so we need to reserve one bit for that purpose. We
  13143. arrive at the following layout for the 64-bit tag at the beginning of
  13144. an array:
  13145. \begin{itemize}
  13146. \item The right-most bit is the forwarding bit, just as in a tuple.
  13147. A $0$ indicates that it is a forwarding pointer, and a $1$ indicates
  13148. that it is not.
  13149. \item The next bit to the left is the pointer mask. A $0$ indicates
  13150. that none of the elements are pointers to the heap, and a $1$
  13151. indicates that all the elements are pointers.
  13152. \item The next $60$ bits store the length of the array.
  13153. \item The bit at position $62$ distinguishes between a tuple ($0$)
  13154. and an array ($1$).
  13155. \item The left-most bit is reserved as explained in
  13156. chapter~\ref{ch:Lgrad}.
  13157. \end{itemize}
  13158. %% Recall that in chapter~\ref{ch:Ldyn}, we use a $3$-bit tag to
  13159. %% differentiate the kinds of values that have been injected into the
  13160. %% \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  13161. %% to indicate that the value is an array.
  13162. In the following subsections we provide hints regarding how to update
  13163. the passes to handle arrays.
  13164. \subsection{Overload Resolution}
  13165. \label{sec:array-resolution}
  13166. As noted previously, with the addition of arrays, several operators
  13167. have become \emph{overloaded}; that is, they can be applied to values
  13168. of more than one type. In this case, the element access and length
  13169. operators can be applied to both tuples and arrays. This kind of
  13170. overloading is quite common in programming languages, so many
  13171. compilers perform \emph{overload resolution}\index{subject}{overload
  13172. resolution} to handle it. The idea is to translate each overloaded
  13173. operator into different operators for the different types.
  13174. Implement a new pass named \code{resolve}.
  13175. Translate the reading of an array element
  13176. into a call to
  13177. \racket{\code{vectorof-ref}}\python{\code{array\_load}}
  13178. and the writing of an array element to
  13179. \racket{\code{vectorof-set!}}\python{\code{array\_store}}
  13180. Translate calls to \racket{\code{vector-length}}\python{\code{len}}
  13181. into \racket{\code{vectorof-length}}\python{\code{array\_len}}.
  13182. When these operators are applied to tuples, leave them as is.
  13183. %
  13184. \python{The type checker for \LangArray{} adds a \code{has\_type}
  13185. field which can be inspected to determine whether the operator
  13186. is applied to a tuple or an array.}
  13187. \subsection{Bounds Checking}
  13188. Recall that the interpreter for \LangArray{} signals a
  13189. \code{trapped-error} when there is an array access that is out of
  13190. bounds. Therefore your compiler is obliged to also catch these errors
  13191. during execution and halt, signaling an error. We recommend inserting
  13192. a new pass named \code{check\_bounds} that inserts code around each
  13193. \racket{\code{vectorof-ref} and \code{vectorof-set!}}
  13194. \python{subscript} operation to ensure that the index is greater than
  13195. or equal to zero and less than the array's length. If not, the program
  13196. should halt, for which we recommend using a new primitive operation
  13197. named \code{exit}.
  13198. %% \subsection{Reveal Casts}
  13199. %% The array-access operators \code{vectorof-ref} and
  13200. %% \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  13201. %% \code{any-vector-set!} operators of chapter~\ref{ch:Ldyn} in
  13202. %% that the type checker cannot tell whether the index will be in bounds,
  13203. %% so the bounds check must be performed at run time. Recall that the
  13204. %% \code{reveal-casts} pass (section~\ref{sec:reveal-casts-Rany}) wraps
  13205. %% an \code{If} around a vector reference for update to check whether
  13206. %% the index is less than the length. You should do the same for
  13207. %% \code{vectorof-ref} and \code{vectorof-set!} .
  13208. %% In addition, the handling of the \code{any-vector} operators in
  13209. %% \code{reveal-casts} needs to be updated to account for arrays that are
  13210. %% injected to \code{Any}. For the \code{any-vector-length} operator, the
  13211. %% generated code should test whether the tag is for tuples (\code{010})
  13212. %% or arrays (\code{110}) and then dispatch to either
  13213. %% \code{any-vector-length} or \code{any-vectorof-length}. For the later
  13214. %% we add a case in \code{select\_instructions} to generate the
  13215. %% appropriate instructions for accessing the array length from the
  13216. %% header of an array.
  13217. %% For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  13218. %% the generated code needs to check that the index is less than the
  13219. %% vector length, so like the code for \code{any-vector-length}, check
  13220. %% the tag to determine whether to use \code{any-vector-length} or
  13221. %% \code{any-vectorof-length} for this purpose. Once the bounds checking
  13222. %% is complete, the generated code can use \code{any-vector-ref} and
  13223. %% \code{any-vector-set!} for both tuples and arrays because the
  13224. %% instructions used for those operators do not look at the tag at the
  13225. %% front of the tuple or array.
  13226. \subsection{Expose Allocation}
  13227. This pass should translate array creation into lower-level
  13228. operations. In particular, the new AST node \ALLOCARRAY{\Exp}{\Type}
  13229. is analogous to the \code{Allocate} AST node for tuples. The $\Type$
  13230. argument must be \ARRAYTY{T}, where $T$ is the element type for the
  13231. array. The \code{AllocateArray} AST node allocates an array of the
  13232. length specified by the $\Exp$ (of type \INTTY), but does not
  13233. initialize the elements of the array. Generate code in this pass to
  13234. initialize the elements analogous to the case for tuples.
  13235. {\if\edition\racketEd
  13236. \section{Uncover \texttt{get!}}
  13237. \label{sec:uncover-get-bang-vecof}
  13238. Add cases for \code{AllocateArray} to \code{collect-set!} and
  13239. \code{uncover-get!-exp}.
  13240. \fi}
  13241. \subsection{Remove Complex Operands}
  13242. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  13243. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  13244. complex, and its subexpression must be atomic.
  13245. \subsection{Explicate Control}
  13246. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  13247. \code{explicate\_assign}.
  13248. \subsection{Select Instructions}
  13249. \index{subject}{select instructions}
  13250. Generate instructions for \code{AllocateArray} similar to those for
  13251. \code{Allocate} given in section~\ref{sec:select-instructions-gc}
  13252. except that the tag at the front of the array should instead use the
  13253. representation discussed in section~\ref{sec:array-rep}.
  13254. Regarding \racket{\code{vectorof-length}}\python{\code{array\_len}},
  13255. extract the length from the tag.
  13256. The instructions generated for accessing an element of an array differ
  13257. from those for a tuple (section~\ref{sec:select-instructions-gc}) in
  13258. that the index is not a constant so you need to generate instructions
  13259. that compute the offset at runtime.
  13260. Compile the \code{exit} primitive into a call to the \code{exit}
  13261. function of the C standard library, with an argument of $255$.
  13262. %% Also, note that assignment to an array element may appear in
  13263. %% as a stand-alone statement, so make sure to handle that situation in
  13264. %% this pass.
  13265. %% Finally, the instructions for \code{any-vectorof-length} should be
  13266. %% similar to those for \code{vectorof-length}, except that one must
  13267. %% first project the array by writing zeroes into the $3$-bit tag
  13268. \begin{exercise}\normalfont\normalsize
  13269. Implement a compiler for the \LangArray{} language by extending your
  13270. compiler for \LangLoop{}. Test your compiler on a half dozen new
  13271. programs, including the one shown in figure~\ref{fig:inner_product}
  13272. and also a program that multiplies two matrices. Note that although
  13273. matrices are two-dimensional arrays, they can be encoded into
  13274. one-dimensional arrays by laying out each row in the array, one after
  13275. the next.
  13276. \end{exercise}
  13277. {\if\edition\racketEd
  13278. \section{Challenge: Generational Collection}
  13279. The copying collector described in section~\ref{sec:GC} can incur
  13280. significant runtime overhead because the call to \code{collect} takes
  13281. time proportional to all the live data. One way to reduce this
  13282. overhead is to reduce how much data is inspected in each call to
  13283. \code{collect}. In particular, researchers have observed that recently
  13284. allocated data is more likely to become garbage then data that has
  13285. survived one or more previous calls to \code{collect}. This insight
  13286. motivated the creation of \emph{generational garbage collectors}
  13287. \index{subject}{generational garbage collector} that
  13288. (1) segregate data according to its age into two or more generations;
  13289. (2) allocate less space for younger generations, so collecting them is
  13290. faster, and more space for the older generations; and (3) perform
  13291. collection on the younger generations more frequently than on older
  13292. generations~\citep{Wilson:1992fk}.
  13293. For this challenge assignment, the goal is to adapt the copying
  13294. collector implemented in \code{runtime.c} to use two generations, one
  13295. for young data and one for old data. Each generation consists of a
  13296. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  13297. \code{collect} function to use the two generations:
  13298. \begin{enumerate}
  13299. \item Copy the young generation's FromSpace to its ToSpace and then
  13300. switch the role of the ToSpace and FromSpace.
  13301. \item If there is enough space for the requested number of bytes in
  13302. the young FromSpace, then return from \code{collect}.
  13303. \item If there is not enough space in the young FromSpace for the
  13304. requested bytes, then move the data from the young generation to the
  13305. old one with the following steps:
  13306. \begin{enumerate}
  13307. \item[a.] If there is enough room in the old FromSpace, copy the young
  13308. FromSpace to the old FromSpace and then return.
  13309. \item[b.] If there is not enough room in the old FromSpace, then collect
  13310. the old generation by copying the old FromSpace to the old ToSpace
  13311. and swap the roles of the old FromSpace and ToSpace.
  13312. \item[c.] If there is enough room now, copy the young FromSpace to the
  13313. old FromSpace and return. Otherwise, allocate a larger FromSpace
  13314. and ToSpace for the old generation. Copy the young FromSpace and
  13315. the old FromSpace into the larger FromSpace for the old
  13316. generation and then return.
  13317. \end{enumerate}
  13318. \end{enumerate}
  13319. We recommend that you generalize the \code{cheney} function so that it
  13320. can be used for all the copies mentioned: between the young FromSpace
  13321. and ToSpace, between the old FromSpace and ToSpace, and between the
  13322. young FromSpace and old FromSpace. This can be accomplished by adding
  13323. parameters to \code{cheney} that replace its use of the global
  13324. variables \code{fromspace\_begin}, \code{fromspace\_end},
  13325. \code{tospace\_begin}, and \code{tospace\_end}.
  13326. Note that the collection of the young generation does not traverse the
  13327. old generation. This introduces a potential problem: there may be
  13328. young data that is reachable only through pointers in the old
  13329. generation. If these pointers are not taken into account, the
  13330. collector could throw away young data that is live! One solution,
  13331. called \emph{pointer recording}, is to maintain a set of all the
  13332. pointers from the old generation into the new generation and consider
  13333. this set as part of the root set. To maintain this set, the compiler
  13334. must insert extra instructions around every \code{vector-set!}. If the
  13335. vector being modified is in the old generation, and if the value being
  13336. written is a pointer into the new generation, then that pointer must
  13337. be added to the set. Also, if the value being overwritten was a
  13338. pointer into the new generation, then that pointer should be removed
  13339. from the set.
  13340. \begin{exercise}\normalfont\normalsize
  13341. Adapt the \code{collect} function in \code{runtime.c} to implement
  13342. generational garbage collection, as outlined in this section.
  13343. Update the code generation for \code{vector-set!} to implement
  13344. pointer recording. Make sure that your new compiler and runtime
  13345. execute without error on your test suite.
  13346. \end{exercise}
  13347. \fi}
  13348. \section{Further Reading}
  13349. \citet{Appel90} describes many data representation approaches
  13350. including the ones used in the compilation of Standard ML.
  13351. There are many alternatives to copying collectors (and their bigger
  13352. siblings, the generational collectors) with regard to garbage
  13353. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  13354. reference counting~\citep{Collins:1960aa}. The strengths of copying
  13355. collectors are that allocation is fast (just a comparison and pointer
  13356. increment), there is no fragmentation, cyclic garbage is collected,
  13357. and the time complexity of collection depends only on the amount of
  13358. live data and not on the amount of garbage~\citep{Wilson:1992fk}. The
  13359. main disadvantages of a two-space copying collector is that it uses a
  13360. lot of extra space and takes a long time to perform the copy, though
  13361. these problems are ameliorated in generational collectors.
  13362. \racket{Racket}\python{Object-oriented} programs tend to allocate many
  13363. small objects and generate a lot of garbage, so copying and
  13364. generational collectors are a good fit\python{~\citep{Dieckmann99}}.
  13365. Garbage collection is an active research topic, especially concurrent
  13366. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  13367. developing new techniques and revisiting old
  13368. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  13369. meet every year at the International Symposium on Memory Management to
  13370. present these findings.
  13371. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13372. \chapter{Functions}
  13373. \label{ch:Lfun}
  13374. \index{subject}{function}
  13375. \setcounter{footnote}{0}
  13376. This chapter studies the compilation of a subset of \racket{Typed
  13377. Racket}\python{Python} in which only top-level function definitions
  13378. are allowed. This kind of function appears in the C programming
  13379. language, and it serves as an important stepping-stone to implementing
  13380. lexically scoped functions in the form of \key{lambda}\index{subject}{lambda}
  13381. abstractions, which is the topic of chapter~\ref{ch:Llambda}.
  13382. \section{The \LangFun{} Language}
  13383. The concrete syntax and abstract syntax for function definitions and
  13384. function application are shown in
  13385. figures~\ref{fig:Lfun-concrete-syntax} and \ref{fig:Lfun-syntax}, with
  13386. which we define the \LangFun{} language. Programs in \LangFun{} begin
  13387. with zero or more function definitions. The function names from these
  13388. definitions are in scope for the entire program, including all the
  13389. function definitions, and therefore the ordering of function
  13390. definitions does not matter.
  13391. %
  13392. \python{The abstract syntax for function parameters in
  13393. figure~\ref{fig:Lfun-syntax} is a list of pairs, where each pair
  13394. consists of a parameter name and its type. This design differs from
  13395. Python's \code{ast} module, which has a more complex structure for
  13396. function parameters to handle keyword parameters,
  13397. defaults, and so on. The type checker in \code{type\_check\_Lfun} converts the
  13398. complex Python abstract syntax into the simpler syntax of
  13399. figure~\ref{fig:Lfun-syntax}. The fourth and sixth parameters of the
  13400. \code{FunctionDef} constructor are for decorators and a type
  13401. comment, neither of which are used by our compiler. We recommend
  13402. replacing them with \code{None} in the \code{shrink} pass.
  13403. }
  13404. %
  13405. The concrete syntax for function application
  13406. \index{subject}{function application}
  13407. is \python{$\CAPPLY{\Exp}{\Exp\code{,} \ldots}$}\racket{$\CAPPLY{\Exp}{\Exp \ldots}$},
  13408. where the first expression
  13409. must evaluate to a function and the remaining expressions are the arguments. The
  13410. abstract syntax for function application is
  13411. $\APPLY{\Exp}{\Exp^*}$.
  13412. %% The syntax for function application does not include an explicit
  13413. %% keyword, which is error prone when using \code{match}. To alleviate
  13414. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  13415. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  13416. Functions are first-class in the sense that a function pointer
  13417. \index{subject}{function pointer} is data and can be stored in memory or passed
  13418. as a parameter to another function. Thus, there is a function
  13419. type, written
  13420. {\if\edition\racketEd
  13421. \begin{lstlisting}
  13422. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  13423. \end{lstlisting}
  13424. \fi}
  13425. {\if\edition\pythonEd\pythonColor
  13426. \begin{lstlisting}
  13427. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_R$|]
  13428. \end{lstlisting}
  13429. \fi}
  13430. %
  13431. \noindent for a function whose $n$ parameters have the types $\Type_1$
  13432. through $\Type_n$ and whose return type is $\Type_R$. The main
  13433. limitation of these functions (with respect to
  13434. \racket{Racket}\python{Python} functions) is that they are not
  13435. lexically scoped. That is, the only external entities that can be
  13436. referenced from inside a function body are other globally defined
  13437. functions. The syntax of \LangFun{} prevents function definitions from
  13438. being nested inside each other.
  13439. \newcommand{\LfunGrammarRacket}{
  13440. \begin{array}{lcl}
  13441. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13442. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  13443. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  13444. \end{array}
  13445. }
  13446. \newcommand{\LfunASTRacket}{
  13447. \begin{array}{lcl}
  13448. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13449. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  13450. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  13451. \end{array}
  13452. }
  13453. \newcommand{\LfunGrammarPython}{
  13454. \begin{array}{lcl}
  13455. \Type &::=& \key{int}
  13456. \MID \key{bool} \MID \key{void}
  13457. \MID \key{tuple}\LS \Type^+ \RS
  13458. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  13459. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  13460. \Stmt &::=& \CRETURN{\Exp} \\
  13461. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  13462. \end{array}
  13463. }
  13464. \newcommand{\LfunASTPython}{
  13465. \begin{array}{lcl}
  13466. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  13467. \MID \key{TupleType}\LS\Type^+\RS\\
  13468. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  13469. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  13470. \Stmt &::=& \RETURN{\Exp} \\
  13471. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  13472. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  13473. \end{array}
  13474. }
  13475. \begin{figure}[tp]
  13476. \centering
  13477. \begin{tcolorbox}[colback=white]
  13478. \small
  13479. {\if\edition\racketEd
  13480. \[
  13481. \begin{array}{l}
  13482. \gray{\LintGrammarRacket{}} \\ \hline
  13483. \gray{\LvarGrammarRacket{}} \\ \hline
  13484. \gray{\LifGrammarRacket{}} \\ \hline
  13485. \gray{\LwhileGrammarRacket} \\ \hline
  13486. \gray{\LtupGrammarRacket} \\ \hline
  13487. \LfunGrammarRacket \\
  13488. \begin{array}{lcl}
  13489. \LangFunM{} &::=& \Def \ldots \; \Exp
  13490. \end{array}
  13491. \end{array}
  13492. \]
  13493. \fi}
  13494. {\if\edition\pythonEd\pythonColor
  13495. \[
  13496. \begin{array}{l}
  13497. \gray{\LintGrammarPython{}} \\ \hline
  13498. \gray{\LvarGrammarPython{}} \\ \hline
  13499. \gray{\LifGrammarPython{}} \\ \hline
  13500. \gray{\LwhileGrammarPython} \\ \hline
  13501. \gray{\LtupGrammarPython} \\ \hline
  13502. \LfunGrammarPython \\
  13503. \begin{array}{rcl}
  13504. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  13505. \end{array}
  13506. \end{array}
  13507. \]
  13508. \fi}
  13509. \end{tcolorbox}
  13510. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  13511. \label{fig:Lfun-concrete-syntax}
  13512. \end{figure}
  13513. \begin{figure}[tp]
  13514. \centering
  13515. \begin{tcolorbox}[colback=white]
  13516. \small
  13517. {\if\edition\racketEd
  13518. \[
  13519. \begin{array}{l}
  13520. \gray{\LintOpAST} \\ \hline
  13521. \gray{\LvarASTRacket{}} \\ \hline
  13522. \gray{\LifASTRacket{}} \\ \hline
  13523. \gray{\LwhileASTRacket{}} \\ \hline
  13524. \gray{\LtupASTRacket{}} \\ \hline
  13525. \LfunASTRacket \\
  13526. \begin{array}{lcl}
  13527. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  13528. \end{array}
  13529. \end{array}
  13530. \]
  13531. \fi}
  13532. {\if\edition\pythonEd\pythonColor
  13533. \[
  13534. \begin{array}{l}
  13535. \gray{\LintASTPython{}} \\ \hline
  13536. \gray{\LvarASTPython{}} \\ \hline
  13537. \gray{\LifASTPython{}} \\ \hline
  13538. \gray{\LwhileASTPython} \\ \hline
  13539. \gray{\LtupASTPython} \\ \hline
  13540. \LfunASTPython \\
  13541. \begin{array}{rcl}
  13542. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  13543. \end{array}
  13544. \end{array}
  13545. \]
  13546. \fi}
  13547. \end{tcolorbox}
  13548. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  13549. \label{fig:Lfun-syntax}
  13550. \end{figure}
  13551. The program shown in figure~\ref{fig:Lfun-function-example} is a
  13552. representative example of defining and using functions in \LangFun{}.
  13553. We define a function \code{map} that applies some other function
  13554. \code{f} to both elements of a tuple and returns a new tuple
  13555. containing the results. We also define a function \code{inc}. The
  13556. program applies \code{map} to \code{inc} and
  13557. %
  13558. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  13559. %
  13560. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  13561. %
  13562. from which we return \code{42}.
  13563. \begin{figure}[tbp]
  13564. \begin{tcolorbox}[colback=white]
  13565. {\if\edition\racketEd
  13566. \begin{lstlisting}
  13567. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  13568. : (Vector Integer Integer)
  13569. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13570. (define (inc [x : Integer]) : Integer
  13571. (+ x 1))
  13572. (vector-ref (map inc (vector 0 41)) 1)
  13573. \end{lstlisting}
  13574. \fi}
  13575. {\if\edition\pythonEd\pythonColor
  13576. \begin{lstlisting}
  13577. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  13578. return f(v[0]), f(v[1])
  13579. def inc(x : int) -> int:
  13580. return x + 1
  13581. print( map(inc, (0, 41))[1] )
  13582. \end{lstlisting}
  13583. \fi}
  13584. \end{tcolorbox}
  13585. \caption{Example of using functions in \LangFun{}.}
  13586. \label{fig:Lfun-function-example}
  13587. \end{figure}
  13588. The definitional interpreter for \LangFun{} is shown in
  13589. figure~\ref{fig:interp-Lfun}. The case for the
  13590. %
  13591. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  13592. %
  13593. AST is responsible for setting up the mutual recursion between the
  13594. top-level function definitions.
  13595. %
  13596. \racket{We use the classic back-patching
  13597. \index{subject}{back-patching} approach that uses mutable variables
  13598. and makes two passes over the function
  13599. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  13600. top-level environment using a mutable cons cell for each function
  13601. definition. Note that the \code{lambda}\index{subject}{lambda} value
  13602. for each function is incomplete; it does not yet include the environment.
  13603. Once the top-level environment has been constructed, we iterate over it and
  13604. update the \code{lambda} values to use the top-level environment.}
  13605. %
  13606. \python{We create a dictionary named \code{env} and fill it in
  13607. by mapping each function name to a new \code{Function} value,
  13608. each of which stores a reference to the \code{env}.
  13609. (We define the class \code{Function} for this purpose.)}
  13610. %
  13611. To interpret a function \racket{application}\python{call}, we match
  13612. the result of the function expression to obtain a function value. We
  13613. then extend the function's environment with the mapping of parameters to
  13614. argument values. Finally, we interpret the body of the function in
  13615. this extended environment.
  13616. \begin{figure}[tp]
  13617. \begin{tcolorbox}[colback=white]
  13618. {\if\edition\racketEd
  13619. \begin{lstlisting}
  13620. (define interp-Lfun-class
  13621. (class interp-Lvec-class
  13622. (super-new)
  13623. (define/override ((interp-exp env) e)
  13624. (define recur (interp-exp env))
  13625. (match e
  13626. [(Apply fun args)
  13627. (define fun-val (recur fun))
  13628. (define arg-vals (for/list ([e args]) (recur e)))
  13629. (match fun-val
  13630. [`(function (,xs ...) ,body ,fun-env)
  13631. (define params-args (for/list ([x xs] [arg arg-vals])
  13632. (cons x (box arg))))
  13633. (define new-env (append params-args fun-env))
  13634. ((interp-exp new-env) body)]
  13635. [else
  13636. (error 'interp-exp "expected function, not ~a" fun-val)])]
  13637. [else ((super interp-exp env) e)]
  13638. ))
  13639. (define/public (interp-def d)
  13640. (match d
  13641. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  13642. (cons f (box `(function ,xs ,body ())))]))
  13643. (define/override (interp-program p)
  13644. (match p
  13645. [(ProgramDefsExp info ds body)
  13646. (let ([top-level (for/list ([d ds]) (interp-def d))])
  13647. (for/list ([f (in-dict-values top-level)])
  13648. (set-box! f (match (unbox f)
  13649. [`(function ,xs ,body ())
  13650. `(function ,xs ,body ,top-level)])))
  13651. ((interp-exp top-level) body))]))
  13652. ))
  13653. (define (interp-Lfun p)
  13654. (send (new interp-Lfun-class) interp-program p))
  13655. \end{lstlisting}
  13656. \fi}
  13657. {\if\edition\pythonEd\pythonColor
  13658. \begin{lstlisting}
  13659. class InterpLfun(InterpLtup):
  13660. def apply_fun(self, fun, args, e):
  13661. match fun:
  13662. case Function(name, xs, body, env):
  13663. new_env = env.copy().update(zip(xs, args))
  13664. return self.interp_stmts(body, new_env)
  13665. case _:
  13666. raise Exception('apply_fun: unexpected: ' + repr(fun))
  13667. def interp_exp(self, e, env):
  13668. match e:
  13669. case Call(Name('input_int'), []):
  13670. return super().interp_exp(e, env)
  13671. case Call(func, args):
  13672. f = self.interp_exp(func, env)
  13673. vs = [self.interp_exp(arg, env) for arg in args]
  13674. return self.apply_fun(f, vs, e)
  13675. case _:
  13676. return super().interp_exp(e, env)
  13677. def interp_stmts(self, ss, env):
  13678. if len(ss) == 0:
  13679. return
  13680. match ss[0]:
  13681. case Return(value):
  13682. return self.interp_exp(value, env)
  13683. case FunctionDef(name, params, bod, dl, returns, comment):
  13684. ps = [x for (x,t) in params]
  13685. env[name] = Function(name, ps, bod, env)
  13686. return self.interp_stmts(ss[1:], env)
  13687. case _:
  13688. return super().interp_stmts(ss, env)
  13689. def interp(self, p):
  13690. match p:
  13691. case Module(ss):
  13692. env = {}
  13693. self.interp_stmts(ss, env)
  13694. if 'main' in env.keys():
  13695. self.apply_fun(env['main'], [], None)
  13696. case _:
  13697. raise Exception('interp: unexpected ' + repr(p))
  13698. \end{lstlisting}
  13699. \fi}
  13700. \end{tcolorbox}
  13701. \caption{Interpreter for the \LangFun{} language.}
  13702. \label{fig:interp-Lfun}
  13703. \end{figure}
  13704. %\margincomment{TODO: explain type checker}
  13705. The type checker for \LangFun{} is shown in
  13706. figure~\ref{fig:type-check-Lfun}.
  13707. %
  13708. \python{(We omit the code that parses function parameters into the
  13709. simpler abstract syntax.)}
  13710. %
  13711. Similarly to the interpreter, the case for the
  13712. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  13713. %
  13714. AST is responsible for setting up the mutual recursion between the
  13715. top-level function definitions. We begin by create a mapping
  13716. \code{env} from every function name to its type. We then type check
  13717. the program using this mapping.
  13718. %
  13719. In the case for function \racket{application}\python{call}, we match
  13720. the type of the function expression to a function type and check that
  13721. the types of the argument expressions are equal to the function's
  13722. parameter types. The type of the \racket{application}\python{call} as
  13723. a whole is the return type from the function type.
  13724. \begin{figure}[tp]
  13725. \begin{tcolorbox}[colback=white]
  13726. {\if\edition\racketEd
  13727. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13728. (define type-check-Lfun-class
  13729. (class type-check-Lvec-class
  13730. (super-new)
  13731. (inherit check-type-equal?)
  13732. (define/public (type-check-apply env e es)
  13733. (define-values (e^ ty) ((type-check-exp env) e))
  13734. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  13735. ((type-check-exp env) e)))
  13736. (match ty
  13737. [`(,ty^* ... -> ,rt)
  13738. (for ([arg-ty ty*] [param-ty ty^*])
  13739. (check-type-equal? arg-ty param-ty (Apply e es)))
  13740. (values e^ e* rt)]))
  13741. (define/override (type-check-exp env)
  13742. (lambda (e)
  13743. (match e
  13744. [(FunRef f n)
  13745. (values (FunRef f n) (dict-ref env f))]
  13746. [(Apply e es)
  13747. (define-values (e^ es^ rt) (type-check-apply env e es))
  13748. (values (Apply e^ es^) rt)]
  13749. [(Call e es)
  13750. (define-values (e^ es^ rt) (type-check-apply env e es))
  13751. (values (Call e^ es^) rt)]
  13752. [else ((super type-check-exp env) e)])))
  13753. (define/public (type-check-def env)
  13754. (lambda (e)
  13755. (match e
  13756. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  13757. (define new-env (append (map cons xs ps) env))
  13758. (define-values (body^ ty^) ((type-check-exp new-env) body))
  13759. (check-type-equal? ty^ rt body)
  13760. (Def f p:t* rt info body^)])))
  13761. (define/public (fun-def-type d)
  13762. (match d
  13763. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  13764. (define/override (type-check-program e)
  13765. (match e
  13766. [(ProgramDefsExp info ds body)
  13767. (define env (for/list ([d ds])
  13768. (cons (Def-name d) (fun-def-type d))))
  13769. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  13770. (define-values (body^ ty) ((type-check-exp env) body))
  13771. (check-type-equal? ty 'Integer body)
  13772. (ProgramDefsExp info ds^ body^)]))))
  13773. (define (type-check-Lfun p)
  13774. (send (new type-check-Lfun-class) type-check-program p))
  13775. \end{lstlisting}
  13776. \fi}
  13777. {\if\edition\pythonEd\pythonColor
  13778. \begin{lstlisting}
  13779. class TypeCheckLfun(TypeCheckLtup):
  13780. def type_check_exp(self, e, env):
  13781. match e:
  13782. case Call(Name('input_int'), []):
  13783. return super().type_check_exp(e, env)
  13784. case Call(func, args):
  13785. func_t = self.type_check_exp(func, env)
  13786. args_t = [self.type_check_exp(arg, env) for arg in args]
  13787. match func_t:
  13788. case FunctionType(params_t, return_t):
  13789. for (arg_t, param_t) in zip(args_t, params_t):
  13790. check_type_equal(param_t, arg_t, e)
  13791. return return_t
  13792. case _:
  13793. raise Exception('type_check_exp: in call, unexpected ' +
  13794. repr(func_t))
  13795. case _:
  13796. return super().type_check_exp(e, env)
  13797. def type_check_stmts(self, ss, env):
  13798. if len(ss) == 0:
  13799. return
  13800. match ss[0]:
  13801. case FunctionDef(name, params, body, dl, returns, comment):
  13802. new_env = env.copy().update(params)
  13803. rt = self.type_check_stmts(body, new_env)
  13804. check_type_equal(returns, rt, ss[0])
  13805. return self.type_check_stmts(ss[1:], env)
  13806. case Return(value):
  13807. return self.type_check_exp(value, env)
  13808. case _:
  13809. return super().type_check_stmts(ss, env)
  13810. def type_check(self, p):
  13811. match p:
  13812. case Module(body):
  13813. env = {}
  13814. for s in body:
  13815. match s:
  13816. case FunctionDef(name, params, bod, dl, returns, comment):
  13817. if name in env:
  13818. raise Exception('type_check: function ' +
  13819. repr(name) + ' defined twice')
  13820. params_t = [t for (x,t) in params]
  13821. env[name] = FunctionType(params_t, returns)
  13822. self.type_check_stmts(body, env)
  13823. case _:
  13824. raise Exception('type_check: unexpected ' + repr(p))
  13825. \end{lstlisting}
  13826. \fi}
  13827. \end{tcolorbox}
  13828. \caption{Type checker for the \LangFun{} language.}
  13829. \label{fig:type-check-Lfun}
  13830. \end{figure}
  13831. \clearpage
  13832. \section{Functions in x86}
  13833. \label{sec:fun-x86}
  13834. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  13835. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  13836. %% \margincomment{\tiny Talk about the return address on the
  13837. %% stack and what callq and retq does.\\ --Jeremy }
  13838. The x86 architecture provides a few features to support the
  13839. implementation of functions. We have already seen that there are
  13840. labels in x86 so that one can refer to the location of an instruction,
  13841. as is needed for jump instructions. Labels can also be used to mark
  13842. the beginning of the instructions for a function. Going further, we
  13843. can obtain the address of a label by using the \key{leaq}
  13844. instruction. For example, the following puts the address of the
  13845. \code{inc} label into the \code{rbx} register:
  13846. \begin{lstlisting}
  13847. leaq inc(%rip), %rbx
  13848. \end{lstlisting}
  13849. Recall from section~\ref{sec:select-instructions-gc} that
  13850. \verb!inc(%rip)! is an example of instruction-pointer-relative
  13851. addressing.
  13852. In section~\ref{sec:x86} we used the \code{callq} instruction to jump
  13853. to functions whose locations were given by a label, such as
  13854. \code{read\_int}. To support function calls in this chapter we instead
  13855. jump to functions whose location are given by an address in
  13856. a register; that is, we use \emph{indirect function calls}. The
  13857. x86 syntax for this is a \code{callq} instruction that requires an asterisk
  13858. before the register name.\index{subject}{indirect function call}
  13859. \begin{lstlisting}
  13860. callq *%rbx
  13861. \end{lstlisting}
  13862. \subsection{Calling Conventions}
  13863. \label{sec:calling-conventions-fun}
  13864. \index{subject}{calling conventions}
  13865. The \code{callq} instruction provides partial support for implementing
  13866. functions: it pushes the return address on the stack and it jumps to
  13867. the target. However, \code{callq} does not handle
  13868. \begin{enumerate}
  13869. \item parameter passing,
  13870. \item pushing frames on the procedure call stack and popping them off,
  13871. or
  13872. \item determining how registers are shared by different functions.
  13873. \end{enumerate}
  13874. Regarding parameter passing, recall that the x86-64 calling
  13875. convention for Unix-based systems uses the following six registers to
  13876. pass arguments to a function, in the given order:
  13877. \begin{lstlisting}
  13878. rdi rsi rdx rcx r8 r9
  13879. \end{lstlisting}
  13880. If there are more than six arguments, then the calling convention
  13881. mandates using space on the frame of the caller for the rest of the
  13882. arguments. However, to ease the implementation of efficient tail calls
  13883. (section~\ref{sec:tail-call}), we arrange never to need more than six
  13884. arguments.
  13885. %
  13886. The return value of the function is stored in register \code{rax}.
  13887. Regarding frames \index{subject}{frame} and the procedure call stack,
  13888. \index{subject}{procedure call stack} recall from
  13889. section~\ref{sec:x86} that the stack grows down and each function call
  13890. uses a chunk of space on the stack called a frame. The caller sets the
  13891. stack pointer, register \code{rsp}, to the last data item in its
  13892. frame. The callee must not change anything in the caller's frame, that
  13893. is, anything that is at or above the stack pointer. The callee is free
  13894. to use locations that are below the stack pointer.
  13895. Recall that we store variables of tuple type on the root stack. So,
  13896. the prelude\index{subject}{prelude} of a function needs to move the
  13897. root stack pointer \code{r15} up according to the number of variables
  13898. of tuple type and the conclusion\index{subject}{conclusion} needs to
  13899. move the root stack pointer back down. Also, the prelude must
  13900. initialize to \code{0} this frame's slots in the root stack to signal
  13901. to the garbage collector that those slots do not yet contain a valid
  13902. pointer. Otherwise the garbage collector will interpret the garbage
  13903. bits in those slots as memory addresses and try to traverse them,
  13904. causing serious mayhem!
  13905. Regarding the sharing of registers between different functions, recall
  13906. from section~\ref{sec:calling-conventions} that the registers are
  13907. divided into two groups, the caller-saved registers and the
  13908. callee-saved registers. The caller should assume that all the
  13909. caller-saved registers are overwritten with arbitrary values by the
  13910. callee. For that reason we recommend in
  13911. section~\ref{sec:calling-conventions} that variables that are live
  13912. during a function call should not be assigned to caller-saved
  13913. registers.
  13914. On the flip side, if the callee wants to use a callee-saved register,
  13915. the callee must save the contents of those registers on their stack
  13916. frame and then put them back prior to returning to the caller. For
  13917. that reason we recommend in section~\ref{sec:calling-conventions} that if
  13918. the register allocator assigns a variable to a callee-saved register,
  13919. then the prelude of the \code{main} function must save that register
  13920. to the stack and the conclusion of \code{main} must restore it. This
  13921. recommendation now generalizes to all functions.
  13922. Recall that the base pointer, register \code{rbp}, is used as a
  13923. point of reference within a frame, so that each local variable can be
  13924. accessed at a fixed offset from the base pointer
  13925. (section~\ref{sec:x86}).
  13926. %
  13927. Figure~\ref{fig:call-frames} shows the general layout of the caller
  13928. and callee frames.
  13929. \begin{figure}[tbp]
  13930. \centering
  13931. \begin{tcolorbox}[colback=white]
  13932. \begin{tabular}{r|r|l|l} \hline
  13933. Caller View & Callee View & Contents & Frame \\ \hline
  13934. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  13935. 0(\key{\%rbp}) & & old \key{rbp} \\
  13936. -8(\key{\%rbp}) & & callee-saved $1$ \\
  13937. \ldots & & \ldots \\
  13938. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  13939. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  13940. \ldots & & \ldots \\
  13941. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  13942. %% & & \\
  13943. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  13944. %% & \ldots & \ldots \\
  13945. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  13946. \hline
  13947. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  13948. & 0(\key{\%rbp}) & old \key{rbp} \\
  13949. & -8(\key{\%rbp}) & callee-saved $1$ \\
  13950. & \ldots & \ldots \\
  13951. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  13952. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  13953. & \ldots & \ldots \\
  13954. & $-8(n+m)$(\key{\%rbp}) & local variable $m$\\ \hline
  13955. \end{tabular}
  13956. \end{tcolorbox}
  13957. \caption{Memory layout of caller and callee frames.}
  13958. \label{fig:call-frames}
  13959. \end{figure}
  13960. %% Recall from section~\ref{sec:x86} that the stack is also used for
  13961. %% local variables and for storing the values of callee-saved registers
  13962. %% (we shall refer to all of these collectively as ``locals''), and that
  13963. %% at the beginning of a function we move the stack pointer \code{rsp}
  13964. %% down to make room for them.
  13965. %% We recommend storing the local variables
  13966. %% first and then the callee-saved registers, so that the local variables
  13967. %% can be accessed using \code{rbp} the same as before the addition of
  13968. %% functions.
  13969. %% To make additional room for passing arguments, we shall
  13970. %% move the stack pointer even further down. We count how many stack
  13971. %% arguments are needed for each function call that occurs inside the
  13972. %% body of the function and find their maximum. Adding this number to the
  13973. %% number of locals gives us how much the \code{rsp} should be moved at
  13974. %% the beginning of the function. In preparation for a function call, we
  13975. %% offset from \code{rsp} to set up the stack arguments. We put the first
  13976. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  13977. %% so on.
  13978. %% Upon calling the function, the stack arguments are retrieved by the
  13979. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  13980. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  13981. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  13982. %% the layout of the caller and callee frames. Notice how important it is
  13983. %% that we correctly compute the maximum number of arguments needed for
  13984. %% function calls; if that number is too small then the arguments and
  13985. %% local variables will smash into each other!
  13986. \subsection{Efficient Tail Calls}
  13987. \label{sec:tail-call}
  13988. In general, the amount of stack space used by a program is determined
  13989. by the longest chain of nested function calls. That is, if function
  13990. $f_1$ calls $f_2$, $f_2$ calls $f_3$, and so on to $f_n$, then the
  13991. amount of stack space is linear in $n$. The depth $n$ can grow quite
  13992. large if functions are recursive. However, in some cases we can
  13993. arrange to use only a constant amount of space for a long chain of
  13994. nested function calls.
  13995. A \emph{tail call}\index{subject}{tail call} is a function call that
  13996. happens as the last action in a function body. For example, in the
  13997. following program, the recursive call to \code{tail\_sum} is a tail
  13998. call:
  13999. \begin{center}
  14000. {\if\edition\racketEd
  14001. \begin{lstlisting}
  14002. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  14003. (if (eq? n 0)
  14004. r
  14005. (tail_sum (- n 1) (+ n r))))
  14006. (+ (tail_sum 3 0) 36)
  14007. \end{lstlisting}
  14008. \fi}
  14009. {\if\edition\pythonEd\pythonColor
  14010. \begin{lstlisting}
  14011. def tail_sum(n : int, r : int) -> int:
  14012. if n == 0:
  14013. return r
  14014. else:
  14015. return tail_sum(n - 1, n + r)
  14016. print( tail_sum(3, 0) + 36)
  14017. \end{lstlisting}
  14018. \fi}
  14019. \end{center}
  14020. At a tail call, the frame of the caller is no longer needed, so we can
  14021. pop the caller's frame before making the tail call. With this
  14022. approach, a recursive function that makes only tail calls ends up
  14023. using a constant amount of stack space. Functional languages like
  14024. Racket rely heavily on recursive functions, so the definition of
  14025. Racket \emph{requires} that all tail calls be optimized in this way.
  14026. \index{subject}{frame}
  14027. Some care is needed with regard to argument passing in tail calls. As
  14028. mentioned, for arguments beyond the sixth, the convention is to use
  14029. space in the caller's frame for passing arguments. However, for a
  14030. tail call we pop the caller's frame and can no longer use it. An
  14031. alternative is to use space in the callee's frame for passing
  14032. arguments. However, this option is also problematic because the caller
  14033. and callee's frames overlap in memory. As we begin to copy the
  14034. arguments from their sources in the caller's frame, the target
  14035. locations in the callee's frame might collide with the sources for
  14036. later arguments! We solve this problem by using the heap instead of
  14037. the stack for passing more than six arguments
  14038. (section~\ref{sec:limit-functions-r4}).
  14039. As mentioned, for a tail call we pop the caller's frame prior to
  14040. making the tail call. The instructions for popping a frame are the
  14041. instructions that we usually place in the conclusion of a
  14042. function. Thus, we also need to place such code immediately before
  14043. each tail call. These instructions include restoring the callee-saved
  14044. registers, so it is fortunate that the argument passing registers are
  14045. all caller-saved registers.
  14046. One note remains regarding which instruction to use to make the tail
  14047. call. When the callee is finished, it should not return to the current
  14048. function but instead return to the function that called the current
  14049. one. Thus, the return address that is already on the stack is the
  14050. right one, and we should not use \key{callq} to make the tail call
  14051. because that would overwrite the return address. Instead we simply use
  14052. the \key{jmp} instruction. As with the indirect function call, we write
  14053. an \emph{indirect jump}\index{subject}{indirect jump} with a register
  14054. prefixed with an asterisk. We recommend using \code{rax} to hold the
  14055. jump target because the conclusion can overwrite just about everything
  14056. else.
  14057. \begin{lstlisting}
  14058. jmp *%rax
  14059. \end{lstlisting}
  14060. \section{Shrink \LangFun{}}
  14061. \label{sec:shrink-r4}
  14062. The \code{shrink} pass performs a minor modification to ease the
  14063. later passes. This pass introduces an explicit \code{main} function
  14064. that gobbles up all the top-level statements of the module.
  14065. %
  14066. \racket{It also changes the top \code{ProgramDefsExp} form to
  14067. \code{ProgramDefs}.}
  14068. {\if\edition\racketEd
  14069. \begin{lstlisting}
  14070. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  14071. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  14072. \end{lstlisting}
  14073. where $\itm{mainDef}$ is
  14074. \begin{lstlisting}
  14075. (Def 'main '() 'Integer '() |$\Exp'$|)
  14076. \end{lstlisting}
  14077. \fi}
  14078. {\if\edition\pythonEd\pythonColor
  14079. \begin{lstlisting}
  14080. Module(|$\Def\ldots\Stmt\ldots$|)
  14081. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  14082. \end{lstlisting}
  14083. where $\itm{mainDef}$ is
  14084. \begin{lstlisting}
  14085. FunctionDef('main', [], int, None, |$\Stmt\ldots$|Return(Constant(0)), None)
  14086. \end{lstlisting}
  14087. \fi}
  14088. \section{Reveal Functions and the \LangFunRef{} Language}
  14089. \label{sec:reveal-functions-r4}
  14090. The syntax of \LangFun{} is inconvenient for purposes of compilation
  14091. in that it conflates the use of function names and local
  14092. variables. This is a problem because we need to compile the use of a
  14093. function name differently from the use of a local variable. In
  14094. particular, we use \code{leaq} to convert the function name (a label
  14095. in x86) to an address in a register. Thus, we create a new pass that
  14096. changes function references from $\VAR{f}$ to $\FUNREF{f}{n}$ where
  14097. $n$ is the arity of the function.\python{\footnote{The arity is not
  14098. needed in this chapter but is used in chapter~\ref{ch:Ldyn}.}}
  14099. This pass is named \code{reveal\_functions} and the output language
  14100. is \LangFunRef{}.
  14101. %is defined in figure~\ref{fig:f1-syntax}.
  14102. %% The concrete syntax for a
  14103. %% function reference is $\CFUNREF{f}$.
  14104. %% \begin{figure}[tp]
  14105. %% \centering
  14106. %% \fbox{
  14107. %% \begin{minipage}{0.96\textwidth}
  14108. %% {\if\edition\racketEd
  14109. %% \[
  14110. %% \begin{array}{lcl}
  14111. %% \Exp &::=& \ldots \MID \FUNREF{\Var}{\Int}\\
  14112. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14113. %% \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  14114. %% \end{array}
  14115. %% \]
  14116. %% \fi}
  14117. %% {\if\edition\pythonEd\pythonColor
  14118. %% \[
  14119. %% \begin{array}{lcl}
  14120. %% \Exp &::=& \FUNREF{\Var}{\Int}\\
  14121. %% \LangFunRefM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  14122. %% \end{array}
  14123. %% \]
  14124. %% \fi}
  14125. %% \end{minipage}
  14126. %% }
  14127. %% \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  14128. %% (figure~\ref{fig:Lfun-syntax}).}
  14129. %% \label{fig:f1-syntax}
  14130. %% \end{figure}
  14131. %% Distinguishing between calls in tail position and non-tail position
  14132. %% requires the pass to have some notion of context. We recommend using
  14133. %% two mutually recursive functions, one for processing expressions in
  14134. %% tail position and another for the rest.
  14135. \racket{Placing this pass after \code{uniquify} will make sure that
  14136. there are no local variables and functions that share the same
  14137. name.}
  14138. %
  14139. The \code{reveal\_functions} pass should come before the
  14140. \code{remove\_complex\_operands} pass because function references
  14141. should be categorized as complex expressions.
  14142. \section{Limit Functions}
  14143. \label{sec:limit-functions-r4}
  14144. Recall that we wish to limit the number of function parameters to six
  14145. so that we do not need to use the stack for argument passing, which
  14146. makes it easier to implement efficient tail calls. However, because
  14147. the input language \LangFun{} supports arbitrary numbers of function
  14148. arguments, we have some work to do! The \code{limit\_functions} pass
  14149. transforms functions and function calls that involve more than six
  14150. arguments to pass the first five arguments as usual, but it packs the
  14151. rest of the arguments into a tuple and passes it as the sixth
  14152. argument.\footnote{The implementation this pass can be postponed to
  14153. last because you can test the rest of the passes on functions with
  14154. six or fewer parameters.}
  14155. Each function definition with seven or more parameters is transformed as
  14156. follows:
  14157. {\if\edition\racketEd
  14158. \begin{lstlisting}
  14159. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  14160. |$\Rightarrow$|
  14161. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  14162. \end{lstlisting}
  14163. \fi}
  14164. {\if\edition\pythonEd\pythonColor
  14165. \begin{lstlisting}
  14166. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, None, |$\itm{body}$|, None)
  14167. |$\Rightarrow$|
  14168. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))],
  14169. |$T_r$|, None, |$\itm{body}'$|, None)
  14170. \end{lstlisting}
  14171. \fi}
  14172. %
  14173. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  14174. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  14175. the $k$th element of the tuple, where $k = i - 6$.
  14176. %
  14177. {\if\edition\racketEd
  14178. \begin{lstlisting}
  14179. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  14180. \end{lstlisting}
  14181. \fi}
  14182. {\if\edition\pythonEd\pythonColor
  14183. \begin{lstlisting}
  14184. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|), Load())
  14185. \end{lstlisting}
  14186. \fi}
  14187. For function calls with too many arguments, the \code{limit\_functions}
  14188. pass transforms them in the following way:
  14189. \begin{tabular}{lll}
  14190. \begin{minipage}{0.3\textwidth}
  14191. {\if\edition\racketEd
  14192. \begin{lstlisting}
  14193. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  14194. \end{lstlisting}
  14195. \fi}
  14196. {\if\edition\pythonEd\pythonColor
  14197. \begin{lstlisting}
  14198. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  14199. \end{lstlisting}
  14200. \fi}
  14201. \end{minipage}
  14202. &
  14203. $\Rightarrow$
  14204. &
  14205. \begin{minipage}{0.5\textwidth}
  14206. {\if\edition\racketEd
  14207. \begin{lstlisting}
  14208. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  14209. \end{lstlisting}
  14210. \fi}
  14211. {\if\edition\pythonEd\pythonColor
  14212. \begin{lstlisting}
  14213. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  14214. \end{lstlisting}
  14215. \fi}
  14216. \end{minipage}
  14217. \end{tabular}
  14218. \section{Remove Complex Operands}
  14219. \label{sec:rco-r4}
  14220. The primary decisions to make for this pass are whether to classify
  14221. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  14222. atomic or complex expressions. Recall that an atomic expression
  14223. ends up as an immediate argument of an x86 instruction. Function
  14224. application translates to a sequence of instructions, so
  14225. \racket{\code{Apply}}\python{\code{Call}} must be classified as
  14226. a complex expression. On the other hand, the arguments of
  14227. \racket{\code{Apply}}\python{\code{Call}} should be atomic
  14228. expressions.
  14229. %
  14230. Regarding \code{FunRef}, as discussed previously, the function label
  14231. needs to be converted to an address using the \code{leaq}
  14232. instruction. Thus, even though \code{FunRef} seems rather simple, it
  14233. needs to be classified as a complex expression so that we generate an
  14234. assignment statement with a left-hand side that can serve as the
  14235. target of the \code{leaq}.
  14236. The output of this pass, \LangFunANF{} (figure~\ref{fig:Lfun-anf-syntax}),
  14237. extends \LangAllocANF{} (figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  14238. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions
  14239. and augments programs to include a list of function definitions.
  14240. %
  14241. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  14242. \newcommand{\LfunMonadASTRacket}{
  14243. \begin{array}{lcl}
  14244. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  14245. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14246. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  14247. \end{array}
  14248. }
  14249. \newcommand{\LfunMonadASTPython}{
  14250. \begin{array}{lcl}
  14251. \Type &::=& \key{IntType()} \MID \key{BoolType()} \key{VoidType()}
  14252. \MID \key{TupleType}\LS\Type^+\RS\\
  14253. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  14254. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}}\\
  14255. \Stmt &::=& \RETURN{\Exp} \\
  14256. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  14257. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  14258. \end{array}
  14259. }
  14260. \begin{figure}[tp]
  14261. \centering
  14262. \begin{tcolorbox}[colback=white]
  14263. \small
  14264. {\if\edition\racketEd
  14265. \[
  14266. \begin{array}{l}
  14267. \gray{\LvarMonadASTRacket} \\ \hline
  14268. \gray{\LifMonadASTRacket} \\ \hline
  14269. \gray{\LwhileMonadASTRacket} \\ \hline
  14270. \gray{\LtupMonadASTRacket} \\ \hline
  14271. \LfunMonadASTRacket \\
  14272. \begin{array}{rcl}
  14273. \LangFunANFM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  14274. \end{array}
  14275. \end{array}
  14276. \]
  14277. \fi}
  14278. {\if\edition\pythonEd\pythonColor
  14279. \[
  14280. \begin{array}{l}
  14281. \gray{\LvarMonadASTPython} \\ \hline
  14282. \gray{\LifMonadASTPython} \\ \hline
  14283. \gray{\LwhileMonadASTPython} \\ \hline
  14284. \gray{\LtupMonadASTPython} \\ \hline
  14285. \LfunMonadASTPython \\
  14286. \begin{array}{rcl}
  14287. \LangFunANFM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  14288. \end{array}
  14289. \end{array}
  14290. \]
  14291. \fi}
  14292. \end{tcolorbox}
  14293. \caption{\LangFunANF{} is \LangFunRef{} in monadic normal form.}
  14294. \label{fig:Lfun-anf-syntax}
  14295. \end{figure}
  14296. %% Figure~\ref{fig:Lfun-anf-syntax} defines the output language
  14297. %% \LangFunANF{} of this pass.
  14298. %% \begin{figure}[tp]
  14299. %% \centering
  14300. %% \fbox{
  14301. %% \begin{minipage}{0.96\textwidth}
  14302. %% \small
  14303. %% \[
  14304. %% \begin{array}{rcl}
  14305. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  14306. %% \MID \VOID{} } \\
  14307. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  14308. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  14309. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  14310. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  14311. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  14312. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  14313. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  14314. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14315. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14316. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  14317. %% \end{array}
  14318. %% \]
  14319. %% \end{minipage}
  14320. %% }
  14321. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  14322. %% \label{fig:Lfun-anf-syntax}
  14323. %% \end{figure}
  14324. \section{Explicate Control and the \LangCFun{} Language}
  14325. \label{sec:explicate-control-r4}
  14326. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  14327. output of \code{explicate\_control}.
  14328. %
  14329. %% \racket{(The concrete syntax is given in
  14330. %% figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  14331. %
  14332. The auxiliary functions for assignment\racket{ and tail contexts} should
  14333. be updated with cases for
  14334. \racket{\code{Apply}}\python{\code{Call}} and \code{FunRef} and the
  14335. function for predicate context should be updated for
  14336. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  14337. \code{FunRef} cannot be a Boolean.) In assignment and predicate
  14338. contexts, \code{Apply} becomes \code{Call}\racket{, whereas in tail position
  14339. \code{Apply} becomes \code{TailCall}}. We recommend defining a new
  14340. auxiliary function for processing function definitions. This code is
  14341. similar to the case for \code{Program} in \LangVec{}. The top-level
  14342. \code{explicate\_control} function that handles the \code{ProgramDefs}
  14343. form of \LangFun{} can then apply this new function to all the
  14344. function definitions.
  14345. {\if\edition\pythonEd\pythonColor
  14346. The translation of \code{Return} statements requires a new auxiliary
  14347. function to handle expressions in tail context, called
  14348. \code{explicate\_tail}. The function should take an expression and the
  14349. dictionary of basic blocks and produce a list of statements in the
  14350. \LangCFun{} language. The \code{explicate\_tail} function should
  14351. include cases for \code{Begin}, \code{IfExp}, \code{Let}, \code{Call},
  14352. and a default case for other kinds of expressions. The default case
  14353. should produce a \code{Return} statement. The case for \code{Call}
  14354. should change it into \code{TailCall}. The other cases should
  14355. recursively process their subexpressions and statements, choosing the
  14356. appropriate explicate functions for the various contexts.
  14357. \fi}
  14358. \newcommand{\CfunASTRacket}{
  14359. \begin{array}{lcl}
  14360. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  14361. \Tail &::= & \TAILCALL{\Atm}{\Atm\ldots} \\
  14362. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  14363. \end{array}
  14364. }
  14365. \newcommand{\CfunASTPython}{
  14366. \begin{array}{lcl}
  14367. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}} \\
  14368. \Stmt &::= & \TAILCALL{\Atm}{\Atm^{*}} \\
  14369. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  14370. \Block &::=& \itm{label}\key{:} \Stmt^{*} \\
  14371. \Blocks &::=& \LC\Block\code{,}\ldots\RC \\
  14372. \Def &::=& \DEF{\itm{label}}{\Params}{\Blocks}{\key{None}}{\Type}{\key{None}}
  14373. \end{array}
  14374. }
  14375. \begin{figure}[tp]
  14376. \begin{tcolorbox}[colback=white]
  14377. \small
  14378. {\if\edition\racketEd
  14379. \[
  14380. \begin{array}{l}
  14381. \gray{\CvarASTRacket} \\ \hline
  14382. \gray{\CifASTRacket} \\ \hline
  14383. \gray{\CloopASTRacket} \\ \hline
  14384. \gray{\CtupASTRacket} \\ \hline
  14385. \CfunASTRacket \\
  14386. \begin{array}{lcl}
  14387. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14388. \end{array}
  14389. \end{array}
  14390. \]
  14391. \fi}
  14392. {\if\edition\pythonEd\pythonColor
  14393. \[
  14394. \begin{array}{l}
  14395. \gray{\CifASTPython} \\ \hline
  14396. \gray{\CtupASTPython} \\ \hline
  14397. \CfunASTPython \\
  14398. \begin{array}{lcl}
  14399. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14400. \end{array}
  14401. \end{array}
  14402. \]
  14403. \fi}
  14404. \end{tcolorbox}
  14405. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  14406. \label{fig:c3-syntax}
  14407. \end{figure}
  14408. \clearpage
  14409. \section{Select Instructions and the \LangXIndCall{} Language}
  14410. \label{sec:select-r4}
  14411. \index{subject}{select instructions}
  14412. The output of select instructions is a program in the \LangXIndCall{}
  14413. language; the definition of its concrete syntax is shown in
  14414. figure~\ref{fig:x86-3-concrete}, and the definition of its abstract
  14415. syntax is shown in figure~\ref{fig:x86-3}. We use the \code{align}
  14416. directive on the labels of function definitions to make sure the
  14417. bottom three bits are zero, which we put to use in
  14418. chapter~\ref{ch:Ldyn}. We discuss the new instructions as needed in
  14419. this section. \index{subject}{x86}
  14420. \newcommand{\GrammarXIndCall}{
  14421. \begin{array}{lcl}
  14422. \Instr &::=& \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  14423. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  14424. \Block &::= & \Instr^{+} \\
  14425. \Def &::= & \code{.globl}\,\code{.align 8}\,\itm{label}\; (\itm{label}\key{:}\, \Block)^{*}
  14426. \end{array}
  14427. }
  14428. \newcommand{\ASTXIndCallRacket}{
  14429. \begin{array}{lcl}
  14430. \Instr &::=& \INDCALLQ{\Arg}{\itm{int}}
  14431. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14432. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  14433. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  14434. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP}
  14435. \end{array}
  14436. }
  14437. \begin{figure}[tp]
  14438. \begin{tcolorbox}[colback=white]
  14439. \small
  14440. \[
  14441. \begin{array}{l}
  14442. \gray{\GrammarXInt} \\ \hline
  14443. \gray{\GrammarXIf} \\ \hline
  14444. \gray{\GrammarXGlobal} \\ \hline
  14445. \GrammarXIndCall \\
  14446. \begin{array}{lcl}
  14447. \LangXIndCallM{} &::= & \Def^{*}
  14448. \end{array}
  14449. \end{array}
  14450. \]
  14451. \end{tcolorbox}
  14452. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of figure~\ref{fig:x86-2-concrete}).}
  14453. \label{fig:x86-3-concrete}
  14454. \end{figure}
  14455. \begin{figure}[tp]
  14456. \begin{tcolorbox}[colback=white]
  14457. \small
  14458. {\if\edition\racketEd
  14459. \[\arraycolsep=3pt
  14460. \begin{array}{l}
  14461. \gray{\ASTXIntRacket} \\ \hline
  14462. \gray{\ASTXIfRacket} \\ \hline
  14463. \gray{\ASTXGlobalRacket} \\ \hline
  14464. \ASTXIndCallRacket \\
  14465. \begin{array}{lcl}
  14466. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14467. \end{array}
  14468. \end{array}
  14469. \]
  14470. \fi}
  14471. {\if\edition\pythonEd\pythonColor
  14472. \[
  14473. \begin{array}{lcl}
  14474. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  14475. \MID \BYTEREG{\Reg} } \\
  14476. &\MID& \gray{ \GLOBAL{\itm{label}} } \MID \FUNREF{\itm{label}}{\Int} \\
  14477. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  14478. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14479. &\MID& \BININSTR{\scode{leaq}}{\Arg}{\REG{\Reg}}\\
  14480. \Block &::=&\itm{label}\key{:}\,\Instr^{*} \\
  14481. \Blocks &::= & \LC\Block\code{,}\ldots\RC\\
  14482. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\Blocks}{\_}{\Type}{\_} \\
  14483. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14484. \end{array}
  14485. \]
  14486. \fi}
  14487. \end{tcolorbox}
  14488. \caption{The abstract syntax of \LangXIndCall{} (extends
  14489. \LangXGlobal{} of figure~\ref{fig:x86-2}).}
  14490. \label{fig:x86-3}
  14491. \end{figure}
  14492. An assignment of a function reference to a variable becomes a
  14493. load-effective-address instruction as follows, where $\itm{lhs}'$ is
  14494. the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{} to \Arg{} in
  14495. \LangXIndCallVar{}. The \code{FunRef} becomes a \code{Global} AST
  14496. node, whose concrete syntax is instruction-pointer-relative
  14497. addressing.
  14498. \begin{center}
  14499. \begin{tabular}{lcl}
  14500. \begin{minipage}{0.35\textwidth}
  14501. {\if\edition\racketEd
  14502. \begin{lstlisting}
  14503. |$\itm{lhs}$| = (fun-ref |$f$| |$n$|);
  14504. \end{lstlisting}
  14505. \fi}
  14506. {\if\edition\pythonEd\pythonColor
  14507. \begin{lstlisting}
  14508. |$\itm{lhs}$| = FunRef(|$f$| |$n$|);
  14509. \end{lstlisting}
  14510. \fi}
  14511. \end{minipage}
  14512. &
  14513. $\Rightarrow$\qquad\qquad
  14514. &
  14515. \begin{minipage}{0.3\textwidth}
  14516. \begin{lstlisting}
  14517. leaq |$f$|(%rip), |$\itm{lhs}'$|
  14518. \end{lstlisting}
  14519. \end{minipage}
  14520. \end{tabular}
  14521. \end{center}
  14522. Regarding function definitions, we need to remove the parameters and
  14523. instead perform parameter passing using the conventions discussed in
  14524. section~\ref{sec:fun-x86}. That is, the arguments are passed in
  14525. registers. We recommend turning the parameters into local variables
  14526. and generating instructions at the beginning of the function to move
  14527. from the argument-passing registers
  14528. (section~\ref{sec:calling-conventions-fun}) to these local variables.
  14529. {\if\edition\racketEd
  14530. \begin{lstlisting}
  14531. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  14532. |$\Rightarrow$|
  14533. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  14534. \end{lstlisting}
  14535. \fi}
  14536. {\if\edition\pythonEd\pythonColor
  14537. \begin{lstlisting}
  14538. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  14539. |$\Rightarrow$|
  14540. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  14541. \end{lstlisting}
  14542. \fi}
  14543. The basic blocks $B'$ are the same as $B$ except that the
  14544. \code{start} block is modified to add the instructions for moving from
  14545. the argument registers to the parameter variables. So the \code{start}
  14546. block of $B$ shown on the left of the following is changed to the code
  14547. on the right:
  14548. \begin{center}
  14549. \begin{minipage}{0.3\textwidth}
  14550. \begin{lstlisting}
  14551. start:
  14552. |$\itm{instr}_1$|
  14553. |$\cdots$|
  14554. |$\itm{instr}_n$|
  14555. \end{lstlisting}
  14556. \end{minipage}
  14557. $\Rightarrow$
  14558. \begin{minipage}{0.3\textwidth}
  14559. \begin{lstlisting}
  14560. |$f$|start:
  14561. movq %rdi, |$x_1$|
  14562. movq %rsi, |$x_2$|
  14563. |$\cdots$|
  14564. |$\itm{instr}_1$|
  14565. |$\cdots$|
  14566. |$\itm{instr}_n$|
  14567. \end{lstlisting}
  14568. \end{minipage}
  14569. \end{center}
  14570. Recall that we use the label \code{start} for the initial block of a
  14571. program, and in section~\ref{sec:select-Lvar} we recommend labeling
  14572. the conclusion of the program with \code{conclusion}, so that
  14573. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  14574. by a jump to \code{conclusion}. With the addition of function
  14575. definitions, there is a start block and conclusion for each function,
  14576. but their labels need to be unique. We recommend prepending the
  14577. function's name to \code{start} and \code{conclusion}, respectively,
  14578. to obtain unique labels.
  14579. \racket{The interpreter for \LangXIndCall{} needs to be given the
  14580. number of parameters the function expects, but the parameters are no
  14581. longer in the syntax of function definitions. Instead, add an entry
  14582. to $\itm{info}$ that maps \code{num-params} to the number of
  14583. parameters to construct $\itm{info}'$.}
  14584. By changing the parameters to local variables, we are giving the
  14585. register allocator control over which registers or stack locations to
  14586. use for them. If you implement the move-biasing challenge
  14587. (section~\ref{sec:move-biasing}), the register allocator will try to
  14588. assign the parameter variables to the corresponding argument register,
  14589. in which case the \code{patch\_instructions} pass will remove the
  14590. \code{movq} instruction. This happens in the example translation given
  14591. in figure~\ref{fig:add-fun} in section~\ref{sec:functions-example}, in
  14592. the \code{add} function.
  14593. %
  14594. Also, note that the register allocator will perform liveness analysis
  14595. on this sequence of move instructions and build the interference
  14596. graph. So, for example, $x_1$ will be marked as interfering with
  14597. \code{rsi}, and that will prevent the mapping of $x_1$ to \code{rsi},
  14598. which is good because otherwise the first \code{movq} would overwrite
  14599. the argument in \code{rsi} that is needed for $x_2$.
  14600. Next, consider the compilation of function calls. In the mirror image
  14601. of the handling of parameters in function definitions, the arguments
  14602. are moved to the argument-passing registers. Note that the function
  14603. is not given as a label, but its address is produced by the argument
  14604. $\itm{arg}_0$. So, we translate the call into an indirect function
  14605. call. The return value from the function is stored in \code{rax}, so
  14606. it needs to be moved into the \itm{lhs}.
  14607. \begin{lstlisting}
  14608. |\itm{lhs}| = |$\CALL{\itm{arg}_0}{\itm{arg}_1~\itm{arg}_2 \ldots}$|
  14609. |$\Rightarrow$|
  14610. movq |$\itm{arg}_1$|, %rdi
  14611. movq |$\itm{arg}_2$|, %rsi
  14612. |$\vdots$|
  14613. callq *|$\itm{arg}_0$|
  14614. movq %rax, |$\itm{lhs}$|
  14615. \end{lstlisting}
  14616. The \code{IndirectCallq} AST node includes an integer for the arity of
  14617. the function, that is, the number of parameters. That information is
  14618. useful in the \code{uncover\_live} pass for determining which
  14619. argument-passing registers are potentially read during the call.
  14620. For tail calls, the parameter passing is the same as non-tail calls:
  14621. generate instructions to move the arguments into the argument-passing
  14622. registers. After that we need to pop the frame from the procedure
  14623. call stack. However, we do not yet know how big the frame is; that
  14624. gets determined during register allocation. So, instead of generating
  14625. those instructions here, we invent a new instruction that means ``pop
  14626. the frame and then do an indirect jump,'' which we name
  14627. \code{TailJmp}. The abstract syntax for this instruction includes an
  14628. argument that specifies where to jump and an integer that represents
  14629. the arity of the function being called.
  14630. \section{Register Allocation}
  14631. \label{sec:register-allocation-r4}
  14632. The addition of functions requires some changes to all three aspects
  14633. of register allocation, which we discuss in the following subsections.
  14634. \subsection{Liveness Analysis}
  14635. \label{sec:liveness-analysis-r4}
  14636. \index{subject}{liveness analysis}
  14637. %% The rest of the passes need only minor modifications to handle the new
  14638. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  14639. %% \code{leaq}.
  14640. The \code{IndirectCallq} instruction should be treated like
  14641. \code{Callq} regarding its written locations $W$, in that they should
  14642. include all the caller-saved registers. Recall that the reason for
  14643. that is to force variables that are live across a function call to be assigned to callee-saved
  14644. registers or to be spilled to the stack.
  14645. Regarding the set of read locations $R$, the arity fields of
  14646. \code{TailJmp} and \code{IndirectCallq} determine how many of the
  14647. argument-passing registers should be considered as read by those
  14648. instructions. Also, the target field of \code{TailJmp} and
  14649. \code{IndirectCallq} should be included in the set of read locations
  14650. $R$.
  14651. \subsection{Build Interference Graph}
  14652. \label{sec:build-interference-r4}
  14653. With the addition of function definitions, we compute a separate interference
  14654. graph for each function (not just one for the whole program).
  14655. Recall that in section~\ref{sec:reg-alloc-gc} we discussed the need to
  14656. spill tuple-typed variables that are live during a call to
  14657. \code{collect}, the garbage collector. With the addition of functions
  14658. to our language, we need to revisit this issue. Functions that perform
  14659. allocation contain calls to the collector. Thus, we should not only
  14660. spill a tuple-typed variable when it is live during a call to
  14661. \code{collect}, but we should spill the variable if it is live during
  14662. a call to any user-defined function. Thus, in the
  14663. \code{build\_interference} pass, we recommend adding interference
  14664. edges between call-live tuple-typed variables and the callee-saved
  14665. registers (in addition to creating edges between
  14666. call-live variables and the caller-saved registers).
  14667. \subsection{Allocate Registers}
  14668. The primary change to the \code{allocate\_registers} pass is adding an
  14669. auxiliary function for handling definitions (the \Def{} nonterminal
  14670. shown in figure~\ref{fig:x86-3}) with one case for function
  14671. definitions. The logic is the same as described in
  14672. chapter~\ref{ch:register-allocation-Lvar} except that now register
  14673. allocation is performed many times, once for each function definition,
  14674. instead of just once for the whole program.
  14675. \section{Patch Instructions}
  14676. In \code{patch\_instructions}, you should deal with the x86
  14677. idiosyncrasy that the destination argument of \code{leaq} must be a
  14678. register. Additionally, you should ensure that the argument of
  14679. \code{TailJmp} is \itm{rax}, our reserved register---because we
  14680. trample many other registers before the tail call, as explained in the
  14681. next section.
  14682. \section{Prelude and Conclusion}
  14683. Now that register allocation is complete, we can translate the
  14684. \code{TailJmp} into a sequence of instructions. A naive translation of
  14685. \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}. However,
  14686. before the jump we need to pop the current frame to achieve efficient
  14687. tail calls. This sequence of instructions is the same as the code for
  14688. the conclusion of a function, except that the \code{retq} is replaced with
  14689. \code{jmp *$\itm{arg}$}.
  14690. Regarding function definitions, we generate a prelude and conclusion
  14691. for each one. This code is similar to the prelude and conclusion
  14692. generated for the \code{main} function presented in
  14693. chapter~\ref{ch:Lvec}. To review, the prelude of every function should
  14694. carry out the following steps:
  14695. % TODO: .align the functions!
  14696. \begin{enumerate}
  14697. %% \item Start with \code{.global} and \code{.align} directives followed
  14698. %% by the label for the function. (See figure~\ref{fig:add-fun} for an
  14699. %% example.)
  14700. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  14701. pointer.
  14702. \item Push to the stack all the callee-saved registers that were
  14703. used for register allocation.
  14704. \item Move the stack pointer \code{rsp} down to make room for the
  14705. regular spills (aligned to 16 bytes).
  14706. \item Move the root stack pointer \code{r15} up by the size of the
  14707. root-stack frame for this function, which depends on the number of
  14708. spilled tuple-typed variables. \label{root-stack-init}
  14709. \item Initialize to zero all new entries in the root-stack frame.
  14710. \item Jump to the start block.
  14711. \end{enumerate}
  14712. The prelude of the \code{main} function has an additional task: call
  14713. the \code{initialize} function to set up the garbage collector, and
  14714. then move the value of the global \code{rootstack\_begin} in
  14715. \code{r15}. This initialization should happen before step
  14716. \ref{root-stack-init}, which depends on \code{r15}.
  14717. The conclusion of every function should do the following:
  14718. \begin{enumerate}
  14719. \item Move the stack pointer back up past the regular spills.
  14720. \item Restore the callee-saved registers by popping them from the
  14721. stack.
  14722. \item Move the root stack pointer back down by the size of the
  14723. root-stack frame for this function.
  14724. \item Restore \code{rbp} by popping it from the stack.
  14725. \item Return to the caller with the \code{retq} instruction.
  14726. \end{enumerate}
  14727. The output of this pass is \LangXIndCallFlat{}, which differs from
  14728. \LangXIndCall{} in that there is no longer an AST node for function
  14729. definitions. Instead, a program is just an association list of basic
  14730. blocks, as in \LangXGlobal{}. So we have the following grammar rule:
  14731. \[
  14732. \LangXIndCallFlatM{} ::= \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  14733. \]
  14734. Figure~\ref{fig:Lfun-passes} gives an overview of the passes for
  14735. compiling \LangFun{} to x86.
  14736. \begin{exercise}\normalfont\normalsize
  14737. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  14738. Create eight new programs that use functions including examples that
  14739. pass functions and return functions from other functions, recursive
  14740. functions, functions that create vectors, and functions that make tail
  14741. calls. Test your compiler on these new programs and all your
  14742. previously created test programs.
  14743. \end{exercise}
  14744. \begin{figure}[tbp]
  14745. \begin{tcolorbox}[colback=white]
  14746. {\if\edition\racketEd
  14747. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  14748. \node (Lfun) at (0,2) {\large \LangFun{}};
  14749. \node (Lfun-1) at (4,2) {\large \LangFun{}};
  14750. \node (Lfun-2) at (7,2) {\large \LangFun{}};
  14751. \node (F1-1) at (11,2) {\large \LangFunRef{}};
  14752. \node (F1-2) at (11,0) {\large \LangFunRef{}};
  14753. \node (F1-3) at (7,0) {\large \LangFunRefAlloc{}};
  14754. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  14755. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  14756. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  14757. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  14758. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  14759. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  14760. \node (x86-5) at (8,-6) {\large \LangXIndCallFlat{}};
  14761. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  14762. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  14763. \path[->,bend left=15] (Lfun) edge [above] node
  14764. {\ttfamily\footnotesize shrink} (Lfun-1);
  14765. \path[->,bend left=15] (Lfun-1) edge [above] node
  14766. {\ttfamily\footnotesize uniquify} (Lfun-2);
  14767. \path[->,bend left=15] (Lfun-2) edge [above] node
  14768. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  14769. \path[->,bend left=15] (F1-1) edge [left] node
  14770. {\ttfamily\footnotesize limit\_functions} (F1-2);
  14771. \path[->,bend left=15] (F1-2) edge [below] node
  14772. {\ttfamily\footnotesize expose\_allocation} (F1-3);
  14773. \path[->,bend left=15] (F1-3) edge [below] node
  14774. {\ttfamily\footnotesize uncover\_get!} (F1-4);
  14775. \path[->,bend right=15] (F1-4) edge [above] node
  14776. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  14777. \path[->,bend right=15] (F1-5) edge [right] node
  14778. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14779. \path[->,bend right=15] (C3-2) edge [right] node
  14780. {\ttfamily\footnotesize select\_instructions} (x86-2);
  14781. \path[->,bend left=15] (x86-2) edge [right] node
  14782. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  14783. \path[->,bend right=15] (x86-2-1) edge [below] node
  14784. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  14785. \path[->,bend right=15] (x86-2-2) edge [right] node
  14786. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  14787. \path[->,bend left=15] (x86-3) edge [above] node
  14788. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  14789. \path[->,bend right=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  14790. \end{tikzpicture}
  14791. \fi}
  14792. {\if\edition\pythonEd\pythonColor
  14793. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  14794. \node (Lfun) at (0,2) {\large \LangFun{}};
  14795. \node (Lfun-2) at (4,2) {\large \LangFun{}};
  14796. \node (F1-1) at (8,2) {\large \LangFunRef{}};
  14797. \node (F1-2) at (12,2) {\large \LangFunRef{}};
  14798. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  14799. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  14800. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  14801. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  14802. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  14803. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  14804. \node (x86-5) at (12,-4) {\large \LangXIndCallFlat{}};
  14805. \path[->,bend left=15] (Lfun) edge [above] node
  14806. {\ttfamily\footnotesize shrink} (Lfun-2);
  14807. \path[->,bend left=15] (Lfun-2) edge [above] node
  14808. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  14809. \path[->,bend left=15] (F1-1) edge [above] node
  14810. {\ttfamily\footnotesize limit\_functions} (F1-2);
  14811. \path[->,bend left=15] (F1-2) edge [right] node
  14812. {\ttfamily\footnotesize \ \ expose\_allocation} (F1-4);
  14813. \path[->,bend right=15] (F1-4) edge [above] node
  14814. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  14815. \path[->,bend right=15] (F1-5) edge [right] node
  14816. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14817. \path[->,bend left=15] (C3-2) edge [right] node
  14818. {\ttfamily\footnotesize select\_instructions} (x86-2);
  14819. \path[->,bend right=15] (x86-2) edge [below] node
  14820. {\ttfamily\footnotesize assign\_homes} (x86-3);
  14821. \path[->,bend left=15] (x86-3) edge [above] node
  14822. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  14823. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  14824. \end{tikzpicture}
  14825. \fi}
  14826. \end{tcolorbox}
  14827. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  14828. \label{fig:Lfun-passes}
  14829. \end{figure}
  14830. \section{An Example Translation}
  14831. \label{sec:functions-example}
  14832. Figure~\ref{fig:add-fun} shows an example translation of a simple
  14833. function in \LangFun{} to x86. The figure also includes the results of the
  14834. \code{explicate\_control} and \code{select\_instructions} passes.
  14835. \begin{figure}[htbp]
  14836. \begin{tcolorbox}[colback=white]
  14837. \begin{tabular}{ll}
  14838. \begin{minipage}{0.4\textwidth}
  14839. % s3_2.rkt
  14840. {\if\edition\racketEd
  14841. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14842. (define (add [x : Integer]
  14843. [y : Integer])
  14844. : Integer
  14845. (+ x y))
  14846. (add 40 2)
  14847. \end{lstlisting}
  14848. \fi}
  14849. {\if\edition\pythonEd\pythonColor
  14850. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14851. def add(x:int, y:int) -> int:
  14852. return x + y
  14853. print(add(40, 2))
  14854. \end{lstlisting}
  14855. \fi}
  14856. $\Downarrow$
  14857. {\if\edition\racketEd
  14858. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14859. (define (add86 [x87 : Integer]
  14860. [y88 : Integer])
  14861. : Integer
  14862. add86start:
  14863. return (+ x87 y88);
  14864. )
  14865. (define (main) : Integer ()
  14866. mainstart:
  14867. tmp89 = (fun-ref add86 2);
  14868. (tail-call tmp89 40 2)
  14869. )
  14870. \end{lstlisting}
  14871. \fi}
  14872. {\if\edition\pythonEd\pythonColor
  14873. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14874. def add(x:int, y:int) -> int:
  14875. addstart:
  14876. return x + y
  14877. def main() -> int:
  14878. mainstart:
  14879. fun.0 = add
  14880. tmp.1 = fun.0(40, 2)
  14881. print(tmp.1)
  14882. return 0
  14883. \end{lstlisting}
  14884. \fi}
  14885. \end{minipage}
  14886. &
  14887. $\Rightarrow$
  14888. \begin{minipage}{0.5\textwidth}
  14889. {\if\edition\racketEd
  14890. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14891. (define (add86) : Integer
  14892. add86start:
  14893. movq %rdi, x87
  14894. movq %rsi, y88
  14895. movq x87, %rax
  14896. addq y88, %rax
  14897. jmp inc1389conclusion
  14898. )
  14899. (define (main) : Integer
  14900. mainstart:
  14901. leaq (fun-ref add86 2), tmp89
  14902. movq $40, %rdi
  14903. movq $2, %rsi
  14904. tail-jmp tmp89
  14905. )
  14906. \end{lstlisting}
  14907. \fi}
  14908. {\if\edition\pythonEd\pythonColor
  14909. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14910. def add() -> int:
  14911. addstart:
  14912. movq %rdi, x
  14913. movq %rsi, y
  14914. movq x, %rax
  14915. addq y, %rax
  14916. jmp addconclusion
  14917. def main() -> int:
  14918. mainstart:
  14919. leaq add, fun.0
  14920. movq $40, %rdi
  14921. movq $2, %rsi
  14922. callq *fun.0
  14923. movq %rax, tmp.1
  14924. movq tmp.1, %rdi
  14925. callq print_int
  14926. movq $0, %rax
  14927. jmp mainconclusion
  14928. \end{lstlisting}
  14929. \fi}
  14930. $\Downarrow$
  14931. \end{minipage}
  14932. \end{tabular}
  14933. \begin{tabular}{ll}
  14934. \begin{minipage}{0.3\textwidth}
  14935. {\if\edition\racketEd
  14936. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14937. .globl add86
  14938. .align 8
  14939. add86:
  14940. pushq %rbp
  14941. movq %rsp, %rbp
  14942. jmp add86start
  14943. add86start:
  14944. movq %rdi, %rax
  14945. addq %rsi, %rax
  14946. jmp add86conclusion
  14947. add86conclusion:
  14948. popq %rbp
  14949. retq
  14950. \end{lstlisting}
  14951. \fi}
  14952. {\if\edition\pythonEd\pythonColor
  14953. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14954. .align 8
  14955. add:
  14956. pushq %rbp
  14957. movq %rsp, %rbp
  14958. subq $0, %rsp
  14959. jmp addstart
  14960. addstart:
  14961. movq %rdi, %rdx
  14962. movq %rsi, %rcx
  14963. movq %rdx, %rax
  14964. addq %rcx, %rax
  14965. jmp addconclusion
  14966. addconclusion:
  14967. subq $0, %r15
  14968. addq $0, %rsp
  14969. popq %rbp
  14970. retq
  14971. \end{lstlisting}
  14972. \fi}
  14973. \end{minipage}
  14974. &
  14975. \begin{minipage}{0.5\textwidth}
  14976. {\if\edition\racketEd
  14977. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14978. .globl main
  14979. .align 8
  14980. main:
  14981. pushq %rbp
  14982. movq %rsp, %rbp
  14983. movq $16384, %rdi
  14984. movq $16384, %rsi
  14985. callq initialize
  14986. movq rootstack_begin(%rip), %r15
  14987. jmp mainstart
  14988. mainstart:
  14989. leaq add86(%rip), %rcx
  14990. movq $40, %rdi
  14991. movq $2, %rsi
  14992. movq %rcx, %rax
  14993. popq %rbp
  14994. jmp *%rax
  14995. mainconclusion:
  14996. popq %rbp
  14997. retq
  14998. \end{lstlisting}
  14999. \fi}
  15000. {\if\edition\pythonEd\pythonColor
  15001. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15002. .globl main
  15003. .align 8
  15004. main:
  15005. pushq %rbp
  15006. movq %rsp, %rbp
  15007. subq $0, %rsp
  15008. movq $65536, %rdi
  15009. movq $65536, %rsi
  15010. callq initialize
  15011. movq rootstack_begin(%rip), %r15
  15012. jmp mainstart
  15013. mainstart:
  15014. leaq add(%rip), %rcx
  15015. movq $40, %rdi
  15016. movq $2, %rsi
  15017. callq *%rcx
  15018. movq %rax, %rcx
  15019. movq %rcx, %rdi
  15020. callq print_int
  15021. movq $0, %rax
  15022. jmp mainconclusion
  15023. mainconclusion:
  15024. subq $0, %r15
  15025. addq $0, %rsp
  15026. popq %rbp
  15027. retq
  15028. \end{lstlisting}
  15029. \fi}
  15030. \end{minipage}
  15031. \end{tabular}
  15032. \end{tcolorbox}
  15033. \caption{Example compilation of a simple function to x86.}
  15034. \label{fig:add-fun}
  15035. \end{figure}
  15036. % Challenge idea: inlining! (simple version)
  15037. % Further Reading
  15038. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15039. \chapter{Lexically Scoped Functions}
  15040. \label{ch:Llambda}
  15041. \setcounter{footnote}{0}
  15042. This chapter studies lexically scoped functions. Lexical
  15043. scoping\index{subject}{lexical scoping} means that a function's body
  15044. may refer to variables whose binding site is outside of the function,
  15045. in an enclosing scope.
  15046. %
  15047. Consider the example shown in figure~\ref{fig:lexical-scoping} written
  15048. in \LangLam{}, which extends \LangFun{} with the
  15049. \key{lambda}\index{subject}{lambda} form for creating lexically scoped
  15050. functions. The body of the \key{lambda} refers to three variables:
  15051. \code{x}, \code{y}, and \code{z}. The binding sites for \code{x} and
  15052. \code{y} are outside of the \key{lambda}. Variable \code{y} is
  15053. \racket{bound by the enclosing \key{let}}\python{a local variable of
  15054. function \code{f}}, and \code{x} is a parameter of function
  15055. \code{f}. Note that function \code{f} returns the \key{lambda} as its
  15056. result value. The main expression of the program includes two calls to
  15057. \code{f} with different arguments for \code{x}: first \code{5} and
  15058. then \code{3}. The functions returned from \code{f} are bound to
  15059. variables \code{g} and \code{h}. Even though these two functions were
  15060. created by the same \code{lambda}, they are really different functions
  15061. because they use different values for \code{x}. Applying \code{g} to
  15062. \code{11} produces \code{20} whereas applying \code{h} to \code{15}
  15063. produces \code{22}, so the result of the program is \code{42}.
  15064. \begin{figure}[btp]
  15065. \begin{tcolorbox}[colback=white]
  15066. {\if\edition\racketEd
  15067. % lambda_test_21.rkt
  15068. \begin{lstlisting}
  15069. (define (f [x : Integer]) : (Integer -> Integer)
  15070. (let ([y 4])
  15071. (lambda: ([z : Integer]) : Integer
  15072. (+ x (+ y z)))))
  15073. (let ([g (f 5)])
  15074. (let ([h (f 3)])
  15075. (+ (g 11) (h 15))))
  15076. \end{lstlisting}
  15077. \fi}
  15078. {\if\edition\pythonEd\pythonColor
  15079. \begin{lstlisting}
  15080. def f(x : int) -> Callable[[int], int]:
  15081. y = 4
  15082. return lambda z: x + y + z
  15083. g = f(5)
  15084. h = f(3)
  15085. print( g(11) + h(15) )
  15086. \end{lstlisting}
  15087. \fi}
  15088. \end{tcolorbox}
  15089. \caption{Example of a lexically scoped function.}
  15090. \label{fig:lexical-scoping}
  15091. \end{figure}
  15092. The approach that we take for implementing lexically scoped functions
  15093. is to compile them into top-level function definitions, translating
  15094. from \LangLam{} into \LangFun{}. However, the compiler must give
  15095. special treatment to variable occurrences such as \code{x} and
  15096. \code{y} in the body of the \code{lambda} shown in
  15097. figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  15098. may not refer to variables defined outside of it. To identify such
  15099. variable occurrences, we review the standard notion of free variable.
  15100. \begin{definition}\normalfont
  15101. A variable is \emph{free in expression} $e$ if the variable occurs
  15102. inside $e$ but does not have an enclosing definition that is also in
  15103. $e$.\index{subject}{free variable}
  15104. \end{definition}
  15105. For example, in the expression
  15106. \racket{\code{(+ x (+ y z))}}\python{\code{x + y + z}}
  15107. the variables \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  15108. only \code{x} and \code{y} are free in the following expression,
  15109. because \code{z} is defined by the \code{lambda}
  15110. {\if\edition\racketEd
  15111. \begin{lstlisting}
  15112. (lambda: ([z : Integer]) : Integer
  15113. (+ x (+ y z)))
  15114. \end{lstlisting}
  15115. \fi}
  15116. {\if\edition\pythonEd\pythonColor
  15117. \begin{lstlisting}
  15118. lambda z: x + y + z
  15119. \end{lstlisting}
  15120. \fi}
  15121. %
  15122. \noindent Thus the free variables of a \code{lambda} are the ones that
  15123. need special treatment. We need to transport at runtime the values
  15124. of those variables from the point where the \code{lambda} was created
  15125. to the point where the \code{lambda} is applied. An efficient solution
  15126. to the problem, due to \citet{Cardelli:1983aa}, is to bundle the
  15127. values of the free variables together with a function pointer into a
  15128. tuple, an arrangement called a \emph{flat closure} (which we shorten
  15129. to just \emph{closure}).\index{subject}{closure}\index{subject}{flat
  15130. closure}
  15131. %
  15132. By design, we have all the ingredients to make closures:
  15133. chapter~\ref{ch:Lvec} gave us tuples, and chapter~\ref{ch:Lfun} gave us
  15134. function pointers. The function pointer resides at index $0$, and the
  15135. values for the free variables fill in the rest of the tuple.
  15136. Let us revisit the example shown in figure~\ref{fig:lexical-scoping}
  15137. to see how closures work. It is a three-step dance. The program calls
  15138. function \code{f}, which creates a closure for the \code{lambda}. The
  15139. closure is a tuple whose first element is a pointer to the top-level
  15140. function that we will generate for the \code{lambda}; the second
  15141. element is the value of \code{x}, which is \code{5}; and the third
  15142. element is \code{4}, the value of \code{y}. The closure does not
  15143. contain an element for \code{z} because \code{z} is not a free
  15144. variable of the \code{lambda}. Creating the closure is step 1 of the
  15145. dance. The closure is returned from \code{f} and bound to \code{g}, as
  15146. shown in figure~\ref{fig:closures}.
  15147. %
  15148. The second call to \code{f} creates another closure, this time with
  15149. \code{3} in the second slot (for \code{x}). This closure is also
  15150. returned from \code{f} but bound to \code{h}, which is also shown in
  15151. figure~\ref{fig:closures}.
  15152. \begin{figure}[tbp]
  15153. \centering
  15154. \begin{minipage}{0.65\textwidth}
  15155. \begin{tcolorbox}[colback=white]
  15156. \includegraphics[width=\textwidth]{figs/closures}
  15157. \end{tcolorbox}
  15158. \end{minipage}
  15159. \caption{Flat closure representations for the two functions
  15160. produced by the \key{lambda} in figure~\ref{fig:lexical-scoping}.}
  15161. \label{fig:closures}
  15162. \end{figure}
  15163. Continuing with the example, consider the application of \code{g} to
  15164. \code{11} shown in figure~\ref{fig:lexical-scoping}. To apply a
  15165. closure, we obtain the function pointer from the first element of the
  15166. closure and call it, passing in the closure itself and then the
  15167. regular arguments, in this case \code{11}. This technique for applying
  15168. a closure is step 2 of the dance.
  15169. %
  15170. But doesn't this \code{lambda} take only one argument, for parameter
  15171. \code{z}? The third and final step of the dance is generating a
  15172. top-level function for a \code{lambda}. We add an additional
  15173. parameter for the closure and insert an initialization at the beginning
  15174. of the function for each free variable, to bind those variables to the
  15175. appropriate elements from the closure parameter.
  15176. %
  15177. This three-step dance is known as \emph{closure
  15178. conversion}\index{subject}{closure conversion}. We discuss the
  15179. details of closure conversion in section~\ref{sec:closure-conversion}
  15180. and show the code generated from the example in
  15181. section~\ref{sec:example-lambda}. First, we define the syntax and
  15182. semantics of \LangLam{} in section~\ref{sec:r5}.
  15183. \section{The \LangLam{} Language}
  15184. \label{sec:r5}
  15185. The definitions of the concrete syntax and abstract syntax for
  15186. \LangLam{}, a language with anonymous functions and lexical scoping,
  15187. are shown in figures~\ref{fig:Llam-concrete-syntax} and
  15188. \ref{fig:Llam-syntax}. They add the \key{lambda} form to the grammar
  15189. for \LangFun{}, which already has syntax for function application.
  15190. %
  15191. \python{The syntax also includes an assignment statement that includes
  15192. a type annotation for the variable on the left-hand side, which
  15193. facilitates the type checking of \code{lambda} expressions that we
  15194. discuss later in this section.}
  15195. %
  15196. \racket{The \code{procedure-arity} operation returns the number of parameters
  15197. of a given function, an operation that we need for the translation
  15198. of dynamic typing in chapter~\ref{ch:Ldyn}.}
  15199. %
  15200. \python{The \code{arity} operation returns the number of parameters of
  15201. a given function, an operation that we need for the translation
  15202. of dynamic typing in chapter~\ref{ch:Ldyn}.
  15203. The \code{arity} operation is not in Python, but the same functionality
  15204. is available in a more complex form. We include \code{arity} in the
  15205. \LangLam{} source language to enable testing.}
  15206. \newcommand{\LlambdaGrammarRacket}{
  15207. \begin{array}{lcl}
  15208. \Exp &::=& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  15209. &\MID& \LP \key{procedure-arity}~\Exp\RP
  15210. \end{array}
  15211. }
  15212. \newcommand{\LlambdaASTRacket}{
  15213. \begin{array}{lcl}
  15214. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  15215. \itm{op} &::=& \code{procedure-arity}
  15216. \end{array}
  15217. }
  15218. \newcommand{\LlambdaGrammarPython}{
  15219. \begin{array}{lcl}
  15220. \Exp &::=& \CLAMBDA{\Var\code{, }\ldots}{\Exp} \MID \CARITY{\Exp} \\
  15221. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp}
  15222. \end{array}
  15223. }
  15224. \newcommand{\LlambdaASTPython}{
  15225. \begin{array}{lcl}
  15226. \Exp &::=& \LAMBDA{\Var^{*}}{\Exp} \MID \ARITY{\Exp} \\
  15227. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  15228. \end{array}
  15229. }
  15230. % include AnnAssign in ASTPython
  15231. \begin{figure}[tp]
  15232. \centering
  15233. \begin{tcolorbox}[colback=white]
  15234. \small
  15235. {\if\edition\racketEd
  15236. \[
  15237. \begin{array}{l}
  15238. \gray{\LintGrammarRacket{}} \\ \hline
  15239. \gray{\LvarGrammarRacket{}} \\ \hline
  15240. \gray{\LifGrammarRacket{}} \\ \hline
  15241. \gray{\LwhileGrammarRacket} \\ \hline
  15242. \gray{\LtupGrammarRacket} \\ \hline
  15243. \gray{\LfunGrammarRacket} \\ \hline
  15244. \LlambdaGrammarRacket \\
  15245. \begin{array}{lcl}
  15246. \LangLamM{} &::=& \Def\ldots \; \Exp
  15247. \end{array}
  15248. \end{array}
  15249. \]
  15250. \fi}
  15251. {\if\edition\pythonEd\pythonColor
  15252. \[
  15253. \begin{array}{l}
  15254. \gray{\LintGrammarPython{}} \\ \hline
  15255. \gray{\LvarGrammarPython{}} \\ \hline
  15256. \gray{\LifGrammarPython{}} \\ \hline
  15257. \gray{\LwhileGrammarPython} \\ \hline
  15258. \gray{\LtupGrammarPython} \\ \hline
  15259. \gray{\LfunGrammarPython} \\ \hline
  15260. \LlambdaGrammarPython \\
  15261. \begin{array}{lcl}
  15262. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  15263. \end{array}
  15264. \end{array}
  15265. \]
  15266. \fi}
  15267. \end{tcolorbox}
  15268. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-concrete-syntax})
  15269. with \key{lambda}.}
  15270. \label{fig:Llam-concrete-syntax}
  15271. \end{figure}
  15272. \begin{figure}[tp]
  15273. \centering
  15274. \begin{tcolorbox}[colback=white]
  15275. \small
  15276. {\if\edition\racketEd
  15277. \[\arraycolsep=3pt
  15278. \begin{array}{l}
  15279. \gray{\LintOpAST} \\ \hline
  15280. \gray{\LvarASTRacket{}} \\ \hline
  15281. \gray{\LifASTRacket{}} \\ \hline
  15282. \gray{\LwhileASTRacket{}} \\ \hline
  15283. \gray{\LtupASTRacket{}} \\ \hline
  15284. \gray{\LfunASTRacket} \\ \hline
  15285. \LlambdaASTRacket \\
  15286. \begin{array}{lcl}
  15287. \LangLamM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15288. \end{array}
  15289. \end{array}
  15290. \]
  15291. \fi}
  15292. {\if\edition\pythonEd\pythonColor
  15293. \[
  15294. \begin{array}{l}
  15295. \gray{\LintASTPython} \\ \hline
  15296. \gray{\LvarASTPython{}} \\ \hline
  15297. \gray{\LifASTPython{}} \\ \hline
  15298. \gray{\LwhileASTPython{}} \\ \hline
  15299. \gray{\LtupASTPython{}} \\ \hline
  15300. \gray{\LfunASTPython} \\ \hline
  15301. \LlambdaASTPython \\
  15302. \begin{array}{lcl}
  15303. \LangLamM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  15304. \end{array}
  15305. \end{array}
  15306. \]
  15307. \fi}
  15308. \end{tcolorbox}
  15309. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-syntax}).}
  15310. \label{fig:Llam-syntax}
  15311. \end{figure}
  15312. Figure~\ref{fig:interp-Llambda} shows the definitional
  15313. interpreter\index{subject}{interpreter} for \LangLam{}. The case for
  15314. \key{Lambda} saves the current environment inside the returned
  15315. function value. Recall that during function application, the
  15316. environment stored in the function value, extended with the mapping of
  15317. parameters to argument values, is used to interpret the body of the
  15318. function.
  15319. \begin{figure}[tbp]
  15320. \begin{tcolorbox}[colback=white]
  15321. {\if\edition\racketEd
  15322. \begin{lstlisting}
  15323. (define interp-Llambda-class
  15324. (class interp-Lfun-class
  15325. (super-new)
  15326. (define/override (interp-op op)
  15327. (match op
  15328. ['procedure-arity
  15329. (lambda (v)
  15330. (match v
  15331. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  15332. [else (error 'interp-op "expected a function, not ~a" v)]))]
  15333. [else (super interp-op op)]))
  15334. (define/override ((interp-exp env) e)
  15335. (define recur (interp-exp env))
  15336. (match e
  15337. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  15338. `(function ,xs ,body ,env)]
  15339. [else ((super interp-exp env) e)]))
  15340. ))
  15341. (define (interp-Llambda p)
  15342. (send (new interp-Llambda-class) interp-program p))
  15343. \end{lstlisting}
  15344. \fi}
  15345. {\if\edition\pythonEd\pythonColor
  15346. \begin{lstlisting}
  15347. class InterpLlambda(InterpLfun):
  15348. def arity(self, v):
  15349. match v:
  15350. case Function(name, params, body, env):
  15351. return len(params)
  15352. case _:
  15353. raise Exception('Llambda arity unexpected ' + repr(v))
  15354. def interp_exp(self, e, env):
  15355. match e:
  15356. case Call(Name('arity'), [fun]):
  15357. f = self.interp_exp(fun, env)
  15358. return self.arity(f)
  15359. case Lambda(params, body):
  15360. return Function('lambda', params, [Return(body)], env)
  15361. case _:
  15362. return super().interp_exp(e, env)
  15363. def interp_stmts(self, ss, env):
  15364. if len(ss) == 0:
  15365. return
  15366. match ss[0]:
  15367. case AnnAssign(lhs, typ, value, simple):
  15368. env[lhs.id] = self.interp_exp(value, env)
  15369. return self.interp_stmts(ss[1:], env)
  15370. case _:
  15371. return super().interp_stmts(ss, env)
  15372. \end{lstlisting}
  15373. \fi}
  15374. \end{tcolorbox}
  15375. \caption{Interpreter for \LangLam{}.}
  15376. \label{fig:interp-Llambda}
  15377. \end{figure}
  15378. {\if\edition\racketEd
  15379. %
  15380. Figure~\ref{fig:type-check-Llambda} shows how to type check the new
  15381. \key{lambda} form. The body of the \key{lambda} is checked in an
  15382. environment that includes the current environment (because it is
  15383. lexically scoped) and also includes the \key{lambda}'s parameters. We
  15384. require the body's type to match the declared return type.
  15385. %
  15386. \fi}
  15387. {\if\edition\pythonEd\pythonColor
  15388. %
  15389. Figures~\ref{fig:type-check-Llambda} and
  15390. \ref{fig:type-check-Llambda-part2} define the type checker for
  15391. \LangLam{}, which is more complex than one might expect. The reason
  15392. for the added complexity is that the syntax of \key{lambda} does not
  15393. include type annotations for the parameters or return type. Instead
  15394. they must be inferred. There are many approaches of type inference to
  15395. choose from of varying degrees of complexity. We choose one of the
  15396. simpler approaches, bidirectional type inference~\citep{Dunfield:2021}
  15397. (aka. local type inference~\citep{Pierce:2000}), because the focus of
  15398. this book is compilation, not type inference.
  15399. The main idea of bidirectional type inference is to add an auxiliary
  15400. function, here named \code{check\_exp}, that takes an expected type
  15401. and checks whether the given expression is of that type. Thus, in
  15402. \code{check\_exp}, type information flows in a top-down manner with
  15403. respect to the AST, in contrast to the regular \code{type\_check\_exp}
  15404. function, where type information flows in a primarily bottom-up
  15405. manner.
  15406. %
  15407. The idea then is to use \code{check\_exp} in all the places where we
  15408. already know what the type of an expression should be, such as in the
  15409. \code{return} statement of a top-level function definition, or on the
  15410. right-hand side of an annotated assignment statement.
  15411. Getting back to \code{lambda}, it is straightforward to check a
  15412. \code{lambda} inside \code{check\_exp} because the expected type
  15413. provides the parameter types and the return type. On the other hand,
  15414. inside \code{type\_check\_exp} we disallow \code{lambda}, which means
  15415. that we do not allow \code{lambda} in contexts where we don't already
  15416. know its type. This restriction does not incur a loss of
  15417. expressiveness for \LangLam{} because it is straightforward to modify
  15418. a program to sidestep the restriction, for example, by using an
  15419. annotated assignment statement to assign the \code{lambda} to a
  15420. temporary variable.
  15421. Note that for the \code{Name} and \code{Lambda} AST nodes, the type
  15422. checker records their type in a \code{has\_type} field. This type
  15423. information is used later in this chapter.
  15424. %
  15425. \fi}
  15426. \begin{figure}[tbp]
  15427. \begin{tcolorbox}[colback=white]
  15428. {\if\edition\racketEd
  15429. \begin{lstlisting}
  15430. (define (type-check-Llambda env)
  15431. (lambda (e)
  15432. (match e
  15433. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  15434. (define-values (new-body bodyT)
  15435. ((type-check-exp (append (map cons xs Ts) env)) body))
  15436. (define ty `(,@Ts -> ,rT))
  15437. (cond
  15438. [(equal? rT bodyT)
  15439. (values (HasType (Lambda params rT new-body) ty) ty)]
  15440. [else
  15441. (error "mismatch in return type" bodyT rT)])]
  15442. ...
  15443. )))
  15444. \end{lstlisting}
  15445. \fi}
  15446. {\if\edition\pythonEd\pythonColor
  15447. \begin{lstlisting}
  15448. class TypeCheckLlambda(TypeCheckLfun):
  15449. def type_check_exp(self, e, env):
  15450. match e:
  15451. case Name(id):
  15452. e.has_type = env[id]
  15453. return env[id]
  15454. case Lambda(params, body):
  15455. raise Exception('cannot synthesize a type for a lambda')
  15456. case Call(Name('arity'), [func]):
  15457. func_t = self.type_check_exp(func, env)
  15458. match func_t:
  15459. case FunctionType(params_t, return_t):
  15460. return IntType()
  15461. case _:
  15462. raise Exception('in arity, unexpected ' + repr(func_t))
  15463. case _:
  15464. return super().type_check_exp(e, env)
  15465. def check_exp(self, e, ty, env):
  15466. match e:
  15467. case Lambda(params, body):
  15468. e.has_type = ty
  15469. match ty:
  15470. case FunctionType(params_t, return_t):
  15471. new_env = env.copy().update(zip(params, params_t))
  15472. self.check_exp(body, return_t, new_env)
  15473. case _:
  15474. raise Exception('lambda does not have type ' + str(ty))
  15475. case Call(func, args):
  15476. func_t = self.type_check_exp(func, env)
  15477. match func_t:
  15478. case FunctionType(params_t, return_t):
  15479. for (arg, param_t) in zip(args, params_t):
  15480. self.check_exp(arg, param_t, env)
  15481. self.check_type_equal(return_t, ty, e)
  15482. case _:
  15483. raise Exception('type_check_exp: in call, unexpected ' + \
  15484. repr(func_t))
  15485. case _:
  15486. t = self.type_check_exp(e, env)
  15487. self.check_type_equal(t, ty, e)
  15488. \end{lstlisting}
  15489. \fi}
  15490. \end{tcolorbox}
  15491. \caption{Type checking \LangLam{}\python{, part 1}.}
  15492. \label{fig:type-check-Llambda}
  15493. \end{figure}
  15494. {\if\edition\pythonEd\pythonColor
  15495. \begin{figure}[tbp]
  15496. \begin{tcolorbox}[colback=white]
  15497. \begin{lstlisting}
  15498. def check_stmts(self, ss, return_ty, env):
  15499. if len(ss) == 0:
  15500. return
  15501. match ss[0]:
  15502. case FunctionDef(name, params, body, dl, returns, comment):
  15503. new_env = env.copy().update(params)
  15504. rt = self.check_stmts(body, returns, new_env)
  15505. self.check_stmts(ss[1:], return_ty, env)
  15506. case Return(value):
  15507. self.check_exp(value, return_ty, env)
  15508. case Assign([Name(id)], value):
  15509. if id in env:
  15510. self.check_exp(value, env[id], env)
  15511. else:
  15512. env[id] = self.type_check_exp(value, env)
  15513. self.check_stmts(ss[1:], return_ty, env)
  15514. case Assign([Subscript(tup, Constant(index), Store())], value):
  15515. tup_t = self.type_check_exp(tup, env)
  15516. match tup_t:
  15517. case TupleType(ts):
  15518. self.check_exp(value, ts[index], env)
  15519. case _:
  15520. raise Exception('expected a tuple, not ' + repr(tup_t))
  15521. self.check_stmts(ss[1:], return_ty, env)
  15522. case AnnAssign(Name(id), ty_annot, value, simple):
  15523. ss[0].annotation = ty_annot
  15524. if id in env:
  15525. self.check_type_equal(env[id], ty_annot)
  15526. else:
  15527. env[id] = ty_annot
  15528. self.check_exp(value, ty_annot, env)
  15529. self.check_stmts(ss[1:], return_ty, env)
  15530. case _:
  15531. self.type_check_stmts(ss, env)
  15532. def type_check(self, p):
  15533. match p:
  15534. case Module(body):
  15535. env = {}
  15536. for s in body:
  15537. match s:
  15538. case FunctionDef(name, params, bod, dl, returns, comment):
  15539. params_t = [t for (x,t) in params]
  15540. env[name] = FunctionType(params_t, returns)
  15541. self.check_stmts(body, int, env)
  15542. \end{lstlisting}
  15543. \end{tcolorbox}
  15544. \caption{Type checking the \key{lambda}'s in \LangLam{}, part 2.}
  15545. \label{fig:type-check-Llambda-part2}
  15546. \end{figure}
  15547. \fi}
  15548. \clearpage
  15549. \section{Assignment and Lexically Scoped Functions}
  15550. \label{sec:assignment-scoping}
  15551. The combination of lexically scoped functions and assignment to
  15552. variables raises a challenge with the flat-closure approach to
  15553. implementing lexically scoped functions. Consider the following
  15554. example in which function \code{f} has a free variable \code{x} that
  15555. is changed after \code{f} is created but before the call to \code{f}.
  15556. % loop_test_11.rkt
  15557. {\if\edition\racketEd
  15558. \begin{lstlisting}
  15559. (let ([x 0])
  15560. (let ([y 0])
  15561. (let ([z 20])
  15562. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  15563. (begin
  15564. (set! x 10)
  15565. (set! y 12)
  15566. (f y))))))
  15567. \end{lstlisting}
  15568. \fi}
  15569. {\if\edition\pythonEd\pythonColor
  15570. % box_free_assign.py
  15571. \begin{lstlisting}
  15572. def g(z : int) -> int:
  15573. x = 0
  15574. y = 0
  15575. f : Callable[[int],int] = lambda a: a + x + z
  15576. x = 10
  15577. y = 12
  15578. return f(y)
  15579. print( g(20) )
  15580. \end{lstlisting}
  15581. \fi} The correct output for this example is \code{42} because the call
  15582. to \code{f} is required to use the current value of \code{x} (which is
  15583. \code{10}). Unfortunately, the closure conversion pass
  15584. (section~\ref{sec:closure-conversion}) generates code for the
  15585. \code{lambda} that copies the old value of \code{x} into a
  15586. closure. Thus, if we naively applied closure conversion, the output of
  15587. this program would be \code{32}.
  15588. A first attempt at solving this problem would be to save a pointer to
  15589. \code{x} in the closure and change the occurrences of \code{x} inside
  15590. the lambda to dereference the pointer. Of course, this would require
  15591. assigning \code{x} to the stack and not to a register. However, the
  15592. problem goes a bit deeper.
  15593. Consider the following example that returns a function that refers to
  15594. a local variable of the enclosing function:
  15595. \begin{center}
  15596. \begin{minipage}{\textwidth}
  15597. {\if\edition\racketEd
  15598. \begin{lstlisting}
  15599. (define (f []) : Integer
  15600. (let ([x 0])
  15601. (let ([g (lambda: () : Integer x)])
  15602. (begin
  15603. (set! x 42)
  15604. g))))
  15605. ((f))
  15606. \end{lstlisting}
  15607. \fi}
  15608. {\if\edition\pythonEd\pythonColor
  15609. % counter.py
  15610. \begin{lstlisting}
  15611. def f():
  15612. x = 0
  15613. g = lambda: x
  15614. x = 42
  15615. return g
  15616. print( f()() )
  15617. \end{lstlisting}
  15618. \fi}
  15619. \end{minipage}
  15620. \end{center}
  15621. In this example, the lifetime of \code{x} extends beyond the lifetime
  15622. of the call to \code{f}. Thus, if we were to store \code{x} on the
  15623. stack frame for the call to \code{f}, it would be gone by the time we
  15624. called \code{g}, leaving us with dangling pointers for
  15625. \code{x}. This example demonstrates that when a variable occurs free
  15626. inside a function, its lifetime becomes indefinite. Thus, the value of
  15627. the variable needs to live on the heap. The verb
  15628. \emph{box}\index{subject}{box} is often used for allocating a single
  15629. value on the heap, producing a pointer, and
  15630. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  15631. %
  15632. We introduce a new pass named \code{convert\_assignments} to address
  15633. this challenge.
  15634. %
  15635. \python{But before diving into that, we have one more
  15636. problem to discuss.}
  15637. {\if\edition\pythonEd\pythonColor
  15638. \section{Uniquify Variables}
  15639. \label{sec:uniquify-lambda}
  15640. With the addition of \code{lambda} we have a complication to deal
  15641. with: name shadowing. Consider the following program with a function
  15642. \code{f} that has a parameter \code{x}. Inside \code{f} there are two
  15643. \code{lambda} expressions. The first \code{lambda} has a parameter
  15644. that is also named \code{x}.
  15645. \begin{lstlisting}
  15646. def f(x:int, y:int) -> Callable[[int], int]:
  15647. g : Callable[[int],int] = (lambda x: x + y)
  15648. h : Callable[[int],int] = (lambda y: x + y)
  15649. x = input_int()
  15650. return g
  15651. print(f(0, 10)(32))
  15652. \end{lstlisting}
  15653. Many of our compiler passes rely on being able to connect variable
  15654. uses with their definitions using just the name of the variable,
  15655. including new passes in this chapter. However, in the above example
  15656. the name of the variable does not uniquely determine its
  15657. definition. To solve this problem we recommend implementing a pass
  15658. named \code{uniquify} that renames every variable in the program to
  15659. make sure they are all unique.
  15660. The following shows the result of \code{uniquify} for the above
  15661. example. The \code{x} parameter of \code{f} is renamed to \code{x\_0}
  15662. and the \code{x} parameter of the \code{lambda} is renamed to
  15663. \code{x\_4}.
  15664. \begin{lstlisting}
  15665. def f(x_0:int, y_1:int) -> Callable[[int], int] :
  15666. g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
  15667. h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
  15668. x_0 = input_int()
  15669. return g_2
  15670. def main() -> int :
  15671. print(f(0, 10)(32))
  15672. return 0
  15673. \end{lstlisting}
  15674. \fi} % pythonEd
  15675. %% \section{Reveal Functions}
  15676. %% \label{sec:reveal-functions-r5}
  15677. %% \racket{To support the \code{procedure-arity} operator we need to
  15678. %% communicate the arity of a function to the point of closure
  15679. %% creation.}
  15680. %% %
  15681. %% \python{In chapter~\ref{ch:Ldyn} we need to access the arity of a
  15682. %% function at runtime. Thus, we need to communicate the arity of a
  15683. %% function to the point of closure creation.}
  15684. %% %
  15685. %% We can accomplish this by replacing the $\FUNREF{\Var}{\Int}$ AST node with
  15686. %% one that has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$.
  15687. %% \[
  15688. %% \begin{array}{lcl}
  15689. %% \Exp &::=& \FUNREFARITY{\Var}{\Int}
  15690. %% \end{array}
  15691. %% \]
  15692. \section{Assignment Conversion}
  15693. \label{sec:convert-assignments}
  15694. The purpose of the \code{convert\_assignments} pass is to address the
  15695. challenge regarding the interaction between variable assignments and
  15696. closure conversion. First we identify which variables need to be
  15697. boxed, and then we transform the program to box those variables. In
  15698. general, boxing introduces runtime overhead that we would like to
  15699. avoid, so we should box as few variables as possible. We recommend
  15700. boxing the variables in the intersection of the following two sets of
  15701. variables:
  15702. \begin{enumerate}
  15703. \item The variables that are free in a \code{lambda}.
  15704. \item The variables that appear on the left-hand side of an
  15705. assignment.
  15706. \end{enumerate}
  15707. The first condition is a must but the second condition is
  15708. conservative. It is possible to develop a more liberal condition using
  15709. static program analysis.
  15710. Consider again the first example from
  15711. section~\ref{sec:assignment-scoping}:
  15712. %
  15713. {\if\edition\racketEd
  15714. \begin{lstlisting}
  15715. (let ([x 0])
  15716. (let ([y 0])
  15717. (let ([z 20])
  15718. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  15719. (begin
  15720. (set! x 10)
  15721. (set! y 12)
  15722. (f y))))))
  15723. \end{lstlisting}
  15724. \fi}
  15725. {\if\edition\pythonEd\pythonColor
  15726. \begin{lstlisting}
  15727. def g(z : int) -> int:
  15728. x = 0
  15729. y = 0
  15730. f : Callable[[int],int] = lambda a: a + x + z
  15731. x = 10
  15732. y = 12
  15733. return f(y)
  15734. print( g(20) )
  15735. \end{lstlisting}
  15736. \fi}
  15737. %
  15738. \noindent The variables \code{x} and \code{y} appear on the left-hand
  15739. side of assignments. The variables \code{x} and \code{z} occur free
  15740. inside the \code{lambda}. Thus, variable \code{x} needs to be boxed
  15741. but not \code{y} or \code{z}. The boxing of \code{x} consists of
  15742. three transformations: initialize \code{x} with a tuple whose elements
  15743. are uninitialized, replace reads from \code{x} with tuple reads, and
  15744. replace each assignment to \code{x} with a tuple write. The output of
  15745. \code{convert\_assignments} for this example is as follows:
  15746. %
  15747. {\if\edition\racketEd
  15748. \begin{lstlisting}
  15749. (define (main) : Integer
  15750. (let ([x0 (vector 0)])
  15751. (let ([y1 0])
  15752. (let ([z2 20])
  15753. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  15754. (+ a3 (+ (vector-ref x0 0) z2)))])
  15755. (begin
  15756. (vector-set! x0 0 10)
  15757. (set! y1 12)
  15758. (f4 y1)))))))
  15759. \end{lstlisting}
  15760. \fi}
  15761. %
  15762. {\if\edition\pythonEd\pythonColor
  15763. \begin{lstlisting}
  15764. def g(z : int)-> int:
  15765. x = (uninitialized(int),)
  15766. x[0] = 0
  15767. y = 0
  15768. f : Callable[[int], int] = (lambda a: a + x[0] + z)
  15769. x[0] = 10
  15770. y = 12
  15771. return f(y)
  15772. def main() -> int:
  15773. print(g(20))
  15774. return 0
  15775. \end{lstlisting}
  15776. \fi}
  15777. To compute the free variables of all the \code{lambda} expressions, we
  15778. recommend defining the following two auxiliary functions:
  15779. \begin{enumerate}
  15780. \item \code{free\_variables} computes the free variables of an expression, and
  15781. \item \code{free\_in\_lambda} collects all the variables that are
  15782. free in any of the \code{lambda} expressions, using
  15783. \code{free\_variables} in the case for each \code{lambda}.
  15784. \end{enumerate}
  15785. {\if\edition\racketEd
  15786. %
  15787. To compute the variables that are assigned to, we recommend updating
  15788. the \code{collect-set!} function that we introduced in
  15789. section~\ref{sec:uncover-get-bang} to include the new AST forms such
  15790. as \code{Lambda}.
  15791. %
  15792. \fi}
  15793. {\if\edition\pythonEd\pythonColor
  15794. %
  15795. To compute the variables that are assigned to, we recommend defining
  15796. an auxiliary function named \code{assigned\_vars\_stmt} that returns
  15797. the set of variables that occur in the left-hand side of an assignment
  15798. statement, and otherwise returns the empty set.
  15799. %
  15800. \fi}
  15801. Let $\mathit{AF}$ be the intersection of the set of variables that are
  15802. free in a \code{lambda} and that are assigned to in the enclosing
  15803. function definition.
  15804. Next we discuss the \code{convert\_assignments} pass. In the case for
  15805. $\VAR{x}$, if $x$ is in $\mathit{AF}$, then unbox it by translating
  15806. $\VAR{x}$ to a tuple read.
  15807. %
  15808. {\if\edition\racketEd
  15809. \begin{lstlisting}
  15810. (Var |$x$|)
  15811. |$\Rightarrow$|
  15812. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  15813. \end{lstlisting}
  15814. \fi}
  15815. %
  15816. {\if\edition\pythonEd\pythonColor
  15817. \begin{lstlisting}
  15818. Name(|$x$|)
  15819. |$\Rightarrow$|
  15820. Subscript(Name(|$x$|), Constant(0), Load())
  15821. \end{lstlisting}
  15822. \fi}
  15823. %
  15824. \noindent In the case for assignment, recursively process the
  15825. right-hand side \itm{rhs} to obtain \itm{rhs'}. If the left-hand side
  15826. $x$ is in $\mathit{AF}$, translate the assignment into a tuple write
  15827. as follows:
  15828. %
  15829. {\if\edition\racketEd
  15830. \begin{lstlisting}
  15831. (SetBang |$x$| |$\itm{rhs}$|)
  15832. |$\Rightarrow$|
  15833. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  15834. \end{lstlisting}
  15835. \fi}
  15836. {\if\edition\pythonEd\pythonColor
  15837. \begin{lstlisting}
  15838. Assign([Name(|$x$|)],|$\itm{rhs}$|)
  15839. |$\Rightarrow$|
  15840. Assign([Subscript(Name(|$x$|), Constant(0), Store())], |$\itm{rhs'}$|)
  15841. \end{lstlisting}
  15842. \fi}
  15843. %
  15844. {\if\edition\racketEd
  15845. The case for \code{Lambda} is nontrivial, but it is similar to the
  15846. case for function definitions, which we discuss next.
  15847. \fi}
  15848. %
  15849. To translate a function definition, we first compute $\mathit{AF}$,
  15850. the intersection of the variables that are free in a \code{lambda} and
  15851. that are assigned to. We then apply assignment conversion to the body
  15852. of the function definition. Finally, we box the parameters of this
  15853. function definition that are in $\mathit{AF}$. For example,
  15854. the parameter \code{x} of the following function \code{g}
  15855. needs to be boxed:
  15856. {\if\edition\racketEd
  15857. \begin{lstlisting}
  15858. (define (g [x : Integer]) : Integer
  15859. (let ([f (lambda: ([a : Integer]) : Integer (+ a x))])
  15860. (begin
  15861. (set! x 10)
  15862. (f 32))))
  15863. \end{lstlisting}
  15864. \fi}
  15865. %
  15866. {\if\edition\pythonEd\pythonColor
  15867. \begin{lstlisting}
  15868. def g(x : int) -> int:
  15869. f : Callable[[int],int] = lambda a: a + x
  15870. x = 10
  15871. return f(32)
  15872. \end{lstlisting}
  15873. \fi}
  15874. %
  15875. \noindent We box parameter \code{x} by creating a local variable named
  15876. \code{x} that is initialized to a tuple whose contents is the value of
  15877. the parameter, which has been renamed to \code{x\_0}.
  15878. %
  15879. {\if\edition\racketEd
  15880. \begin{lstlisting}
  15881. (define (g [x_0 : Integer]) : Integer
  15882. (let ([x (vector x_0)])
  15883. (let ([f (lambda: ([a : Integer]) : Integer
  15884. (+ a (vector-ref x 0)))])
  15885. (begin
  15886. (vector-set! x 0 10)
  15887. (f 32)))))
  15888. \end{lstlisting}
  15889. \fi}
  15890. %
  15891. {\if\edition\pythonEd\pythonColor
  15892. \begin{lstlisting}
  15893. def g(x_0 : int)-> int:
  15894. x = (x_0,)
  15895. f : Callable[[int], int] = (lambda a: a + x[0])
  15896. x[0] = 10
  15897. return f(32)
  15898. \end{lstlisting}
  15899. \fi}
  15900. \section{Closure Conversion}
  15901. \label{sec:closure-conversion}
  15902. \index{subject}{closure conversion}
  15903. The compiling of lexically scoped functions into top-level function
  15904. definitions and flat closures is accomplished in the pass
  15905. \code{convert\_to\_closures} that comes after \code{reveal\_functions}
  15906. and before \code{limit\_functions}.
  15907. As usual, we implement the pass as a recursive function over the
  15908. AST. The interesting cases are for \key{lambda} and function
  15909. application. We transform a \key{lambda} expression into an expression
  15910. that creates a closure, that is, a tuple for which the first element
  15911. is a function pointer and the rest of the elements are the values of
  15912. the free variables of the \key{lambda}.
  15913. %
  15914. However, we use the \code{Closure} AST node instead of using a tuple
  15915. so that we can record the arity.
  15916. %
  15917. In the generated code that follows, \itm{fvs} is the free variables of
  15918. the lambda and \itm{name} is a unique symbol generated to identify the
  15919. lambda.
  15920. %
  15921. \racket{The \itm{arity} is the number of parameters (the length of
  15922. \itm{ps}).}
  15923. %
  15924. {\if\edition\racketEd
  15925. \begin{lstlisting}
  15926. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  15927. |$\Rightarrow$|
  15928. (Closure |\itm{arity}| (cons (FunRef |\itm{name}| |\itm{arity}|) |\itm{fvs}|))
  15929. \end{lstlisting}
  15930. \fi}
  15931. %
  15932. {\if\edition\pythonEd\pythonColor
  15933. \begin{lstlisting}
  15934. Lambda([|$x_1,\ldots,x_n$|], |\itm{body}|)
  15935. |$\Rightarrow$|
  15936. Closure(|$n$|, [FunRef(|\itm{name}|, |$n$|), |\itm{fvs}, \ldots|])
  15937. \end{lstlisting}
  15938. \fi}
  15939. %
  15940. In addition to transforming each \key{Lambda} AST node into a
  15941. tuple, we create a top-level function definition for each
  15942. \key{Lambda}, as shown next.\\
  15943. \begin{minipage}{0.8\textwidth}
  15944. {\if\edition\racketEd
  15945. \begin{lstlisting}
  15946. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  15947. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  15948. ...
  15949. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  15950. |\itm{body'}|)...))
  15951. \end{lstlisting}
  15952. \fi}
  15953. {\if\edition\pythonEd\pythonColor
  15954. \begin{lstlisting}
  15955. def |\itm{name}|(clos : |\itm{closTy}|, |\itm{ps'}, \ldots|) -> |\itm{rt'}|:
  15956. |$\itm{fvs}_1$| = clos[1]
  15957. |$\ldots$|
  15958. |$\itm{fvs}_n$| = clos[|$n$|]
  15959. |\itm{body'}|
  15960. \end{lstlisting}
  15961. \fi}
  15962. \end{minipage}\\
  15963. The \code{clos} parameter refers to the closure. Translate the type
  15964. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  15965. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The type
  15966. \itm{closTy} is a tuple type for which the first element type is
  15967. \python{\code{Bottom()}}\racket{\code{\_} (the dummy type)} and the rest of
  15968. the element types are the types of the free variables in the
  15969. lambda. We use \python{\code{Bottom()}}\racket{\code{\_}} because it
  15970. is nontrivial to give a type to the function in the closure's type.%
  15971. %
  15972. \footnote{To give an accurate type to a closure, we would need to add
  15973. existential types to the type checker~\citep{Minamide:1996ys}.}
  15974. %
  15975. %% The dummy type is considered to be equal to any other type during type
  15976. %% checking.
  15977. The free variables become local variables that are initialized with
  15978. their values in the closure.
  15979. Closure conversion turns every function into a tuple, so the type
  15980. annotations in the program must also be translated. We recommend
  15981. defining an auxiliary recursive function for this purpose. Function
  15982. types should be translated as follows:
  15983. %
  15984. {\if\edition\racketEd
  15985. \begin{lstlisting}
  15986. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  15987. |$\Rightarrow$|
  15988. (Vector ((Vector) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  15989. \end{lstlisting}
  15990. \fi}
  15991. {\if\edition\pythonEd\pythonColor
  15992. \begin{lstlisting}
  15993. FunctionType([|$T_1, \ldots, T_n$|], |$T_r$|)
  15994. |$\Rightarrow$|
  15995. TupleType([FunctionType([TupleType([]), |$T'_1, \ldots, T'_n$|], |$T'_r$|)])
  15996. \end{lstlisting}
  15997. \fi}
  15998. %
  15999. This type indicates that the first thing in the tuple is a
  16000. function. The first parameter of the function is a tuple (a closure)
  16001. and the rest of the parameters are the ones from the original
  16002. function, with types $T'_1, \ldots, T'_n$. The type for the closure
  16003. omits the types of the free variables because (1) those types are not
  16004. available in this context, and (2) we do not need them in the code that
  16005. is generated for function application. So this type describes only the
  16006. first component of the closure tuple. At runtime the tuple may have
  16007. more components, but we ignore them at this point.
  16008. We transform function application into code that retrieves the
  16009. function from the closure and then calls the function, passing the
  16010. closure as the first argument. We place $e'$ in a temporary variable
  16011. to avoid code duplication.
  16012. \begin{center}
  16013. \begin{minipage}{\textwidth}
  16014. {\if\edition\racketEd
  16015. \begin{lstlisting}
  16016. (Apply |$e$| |$\itm{es}$|)
  16017. |$\Rightarrow$|
  16018. (Let |$\itm{tmp}$| |$e'$|
  16019. (Apply (Prim 'vector-ref (list (Var |$\itm{tmp}$|) (Int 0))) (cons (Var |$\itm{tmp}$|) |$\itm{es'}$|)))
  16020. \end{lstlisting}
  16021. \fi}
  16022. %
  16023. {\if\edition\pythonEd\pythonColor
  16024. \begin{lstlisting}
  16025. Call(|$e$|, [|$e_1, \ldots, e_n$|])
  16026. |$\Rightarrow$|
  16027. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  16028. Call(Subscript(Name(|$\itm{tmp}$|), Constant(0)),
  16029. [|$\itm{tmp}$|, |$e'_1, \ldots, e'_n$|]))
  16030. \end{lstlisting}
  16031. \fi}
  16032. \end{minipage}
  16033. \end{center}
  16034. There is also the question of what to do with references to top-level
  16035. function definitions. To maintain a uniform translation of function
  16036. application, we turn function references into closures.
  16037. \begin{tabular}{lll}
  16038. \begin{minipage}{0.2\textwidth}
  16039. {\if\edition\racketEd
  16040. \begin{lstlisting}
  16041. (FunRef |$f$| |$n$|)
  16042. \end{lstlisting}
  16043. \fi}
  16044. {\if\edition\pythonEd\pythonColor
  16045. \begin{lstlisting}
  16046. FunRef(|$f$|, |$n$|)
  16047. \end{lstlisting}
  16048. \fi}
  16049. \end{minipage}
  16050. &
  16051. $\Rightarrow\qquad$
  16052. &
  16053. \begin{minipage}{0.5\textwidth}
  16054. {\if\edition\racketEd
  16055. \begin{lstlisting}
  16056. (Closure |$n$| (FunRef |$f$| |$n$|) '())
  16057. \end{lstlisting}
  16058. \fi}
  16059. {\if\edition\pythonEd\pythonColor
  16060. \begin{lstlisting}
  16061. Closure(|$n$|, [FunRef(|$f$| |$n$|)])
  16062. \end{lstlisting}
  16063. \fi}
  16064. \end{minipage}
  16065. \end{tabular} \\
  16066. We no longer need the annotated assignment statement \code{AnnAssign}
  16067. to support the type checking of \code{lambda} expressions, so we
  16068. translate it to a regular \code{Assign} statement.
  16069. The top-level function definitions need to be updated to take an extra
  16070. closure parameter, but that parameter is ignored in the body of those
  16071. functions.
  16072. \section{An Example Translation}
  16073. \label{sec:example-lambda}
  16074. Figure~\ref{fig:lexical-functions-example} shows the result of
  16075. \code{reveal\_functions} and \code{convert\_to\_closures} for the example
  16076. program demonstrating lexical scoping that we discussed at the
  16077. beginning of this chapter.
  16078. \begin{figure}[tbp]
  16079. \begin{tcolorbox}[colback=white]
  16080. \begin{minipage}{0.8\textwidth}
  16081. {\if\edition\racketEd
  16082. % tests/lambda_test_6.rkt
  16083. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16084. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  16085. (let ([y8 4])
  16086. (lambda: ([z9 : Integer]) : Integer
  16087. (+ x7 (+ y8 z9)))))
  16088. (define (main) : Integer
  16089. (let ([g0 ((fun-ref f6 1) 5)])
  16090. (let ([h1 ((fun-ref f6 1) 3)])
  16091. (+ (g0 11) (h1 15)))))
  16092. \end{lstlisting}
  16093. $\Rightarrow$
  16094. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16095. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  16096. (let ([y8 4])
  16097. (closure 1 (list (fun-ref lambda2 1) x7 y8))))
  16098. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  16099. (let ([x7 (vector-ref fvs3 1)])
  16100. (let ([y8 (vector-ref fvs3 2)])
  16101. (+ x7 (+ y8 z9)))))
  16102. (define (main) : Integer
  16103. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6 1)))])
  16104. ((vector-ref clos5 0) clos5 5))])
  16105. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6 1)))])
  16106. ((vector-ref clos6 0) clos6 3))])
  16107. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  16108. \end{lstlisting}
  16109. \fi}
  16110. %
  16111. {\if\edition\pythonEd\pythonColor
  16112. % free_var.py
  16113. \begin{lstlisting}
  16114. def f(x : int) -> Callable[[int], int]:
  16115. y = 4
  16116. return lambda z: x + y + z
  16117. g = f(5)
  16118. h = f(3)
  16119. print( g(11) + h(15) )
  16120. \end{lstlisting}
  16121. $\Rightarrow$
  16122. \begin{lstlisting}
  16123. def lambda_0(fvs_1:tuple[bot,int,tuple[int]],z:int) -> int:
  16124. x = fvs_1[1]
  16125. y = fvs_1[2]
  16126. return x + y[0] + z
  16127. def f(fvs_2:bot, x:int) -> tuple[Callable[[tuple[],int], int]]
  16128. y = (777,)
  16129. y[0] = 4
  16130. return (lambda_0, x, y)
  16131. def main() -> int:
  16132. g = (let clos_3 = (f,) in clos_3[0](clos_3, 5))
  16133. h = (let clos_4 = (f,) in clos_4[0](clos_4, 3))
  16134. print((let clos_5 = g in clos_5[0](clos_5, 11))
  16135. + (let clos_6 = h in clos_6[0](clos_6, 15)))
  16136. return 0
  16137. \end{lstlisting}
  16138. \fi}
  16139. \end{minipage}
  16140. \end{tcolorbox}
  16141. \caption{Example of closure conversion.}
  16142. \label{fig:lexical-functions-example}
  16143. \end{figure}
  16144. \begin{exercise}\normalfont\normalsize
  16145. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  16146. Create five new programs that use \key{lambda} functions and make use of
  16147. lexical scoping. Test your compiler on these new programs and all
  16148. your previously created test programs.
  16149. \end{exercise}
  16150. \section{Expose Allocation}
  16151. \label{sec:expose-allocation-r5}
  16152. Compile the $\CLOSURE{\itm{arity}}{\Exp^{*}}$ form into code
  16153. that allocates and initializes a tuple, similar to the translation of
  16154. the tuple creation in section~\ref{sec:expose-allocation}.
  16155. The only difference is replacing the use of
  16156. \ALLOC{\itm{len}}{\itm{type}} with
  16157. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  16158. \section{Explicate Control and \LangCLam{}}
  16159. \label{sec:explicate-r5}
  16160. The output language of \code{explicate\_control} is \LangCLam{}; the
  16161. definition of its abstract syntax is shown in
  16162. figure~\ref{fig:Clam-syntax}.
  16163. %
  16164. \racket{The only differences with respect to \LangCFun{} are the
  16165. addition of the \code{AllocateClosure} form to the grammar for
  16166. $\Exp$ and the \code{procedure-arity} operator. The handling of
  16167. \code{AllocateClosure} in the \code{explicate\_control} pass is
  16168. similar to the handling of other expressions such as primitive
  16169. operators.}
  16170. %
  16171. \python{The differences with respect to \LangCFun{} are the
  16172. additions of \code{Uninitialized}, \code{AllocateClosure},
  16173. and \code{arity} to the grammar for $\Exp$. The handling of them in the
  16174. \code{explicate\_control} pass is similar to the handling of other
  16175. expressions such as primitive operators.}
  16176. \newcommand{\ClambdaASTRacket}{
  16177. \begin{array}{lcl}
  16178. \Exp &::= & \ALLOCCLOS{\Int}{\Type}{\Int} \\
  16179. \itm{op} &::= & \code{procedure-arity}
  16180. \end{array}
  16181. }
  16182. \newcommand{\ClambdaASTPython}{
  16183. \begin{array}{lcl}
  16184. \Exp &::=& \key{Uninitialized}\LP \Type \RP
  16185. \MID \key{AllocateClosure}\LP\itm{len},\Type, \itm{arity}\RP \\
  16186. &\MID& \ARITY{\Atm}
  16187. \end{array}
  16188. }
  16189. \begin{figure}[tp]
  16190. \begin{tcolorbox}[colback=white]
  16191. \small
  16192. {\if\edition\racketEd
  16193. \[
  16194. \begin{array}{l}
  16195. \gray{\CvarASTRacket} \\ \hline
  16196. \gray{\CifASTRacket} \\ \hline
  16197. \gray{\CloopASTRacket} \\ \hline
  16198. \gray{\CtupASTRacket} \\ \hline
  16199. \gray{\CfunASTRacket} \\ \hline
  16200. \ClambdaASTRacket \\
  16201. \begin{array}{lcl}
  16202. \LangCLamM{} & ::= & \PROGRAMDEFS{\itm{info}}{\Def^{*}}
  16203. \end{array}
  16204. \end{array}
  16205. \]
  16206. \fi}
  16207. {\if\edition\pythonEd\pythonColor
  16208. \[
  16209. \begin{array}{l}
  16210. \gray{\CifASTPython} \\ \hline
  16211. \gray{\CtupASTPython} \\ \hline
  16212. \gray{\CfunASTPython} \\ \hline
  16213. \ClambdaASTPython \\
  16214. \begin{array}{lcl}
  16215. \LangCLamM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  16216. \end{array}
  16217. \end{array}
  16218. \]
  16219. \fi}
  16220. \end{tcolorbox}
  16221. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (figure~\ref{fig:c3-syntax}).}
  16222. \label{fig:Clam-syntax}
  16223. \end{figure}
  16224. \section{Select Instructions}
  16225. \label{sec:select-instructions-Llambda}
  16226. \index{subject}{select instructions}
  16227. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  16228. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  16229. (section~\ref{sec:select-instructions-gc}). The only difference is
  16230. that you should place the \itm{arity} in the tag that is stored at
  16231. position $0$ of the vector. Recall that in
  16232. section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  16233. was not used. We store the arity in the $5$ bits starting at position
  16234. $58$.
  16235. \racket{Compile the \code{procedure-arity} operator into a sequence of
  16236. instructions that access the tag from position $0$ of the vector and
  16237. extract the $5$ bits starting at position $58$ from the tag.}
  16238. %
  16239. \python{Compile a call to the \code{arity} operator to a sequence of
  16240. instructions that access the tag from position $0$ of the tuple
  16241. (representing a closure) and extract the $5$-bits starting at position
  16242. $58$ from the tag.}
  16243. \begin{figure}[p]
  16244. \begin{tcolorbox}[colback=white]
  16245. {\if\edition\racketEd
  16246. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16247. \node (Lfun) at (0,2) {\large \LangLam{}};
  16248. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16249. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16250. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16251. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16252. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16253. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16254. \node (F1-4) at (0,0) {\large \LangFunRefAlloc{}};
  16255. \node (F1-5) at (0,-2) {\large \LangFunRefAlloc{}};
  16256. \node (F1-6) at (4,-2) {\large \LangFunANF{}};
  16257. \node (C3-2) at (8,-2) {\large \LangCFun{}};
  16258. \node (x86-2) at (0,-5) {\large \LangXIndCallVar{}};
  16259. \node (x86-2-1) at (0,-7) {\large \LangXIndCallVar{}};
  16260. \node (x86-2-2) at (4,-7) {\large \LangXIndCallVar{}};
  16261. \node (x86-3) at (4,-5) {\large \LangXIndCallVar{}};
  16262. \node (x86-4) at (8,-5) {\large \LangXIndCall{}};
  16263. \node (x86-5) at (8,-7) {\large \LangXIndCall{}};
  16264. \path[->,bend left=15] (Lfun) edge [above] node
  16265. {\ttfamily\footnotesize shrink} (Lfun-2);
  16266. \path[->,bend left=15] (Lfun-2) edge [above] node
  16267. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16268. \path[->,bend left=15] (Lfun-3) edge [above] node
  16269. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16270. \path[->,bend left=15] (F1-0) edge [left] node
  16271. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16272. \path[->,bend left=15] (F1-1) edge [below] node
  16273. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16274. \path[->,bend right=15] (F1-2) edge [above] node
  16275. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16276. \path[->,bend right=15] (F1-3) edge [above] node
  16277. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  16278. \path[->,bend left=15] (F1-4) edge [right] node
  16279. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  16280. \path[->,bend right=15] (F1-5) edge [below] node
  16281. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16282. \path[->,bend left=15] (F1-6) edge [above] node
  16283. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16284. \path[->] (C3-2) edge [right] node
  16285. {\ttfamily\footnotesize \ \ select\_instructions} (x86-2);
  16286. \path[->,bend right=15] (x86-2) edge [right] node
  16287. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16288. \path[->,bend right=15] (x86-2-1) edge [below] node
  16289. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  16290. \path[->,bend right=15] (x86-2-2) edge [right] node
  16291. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  16292. \path[->,bend left=15] (x86-3) edge [above] node
  16293. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16294. \path[->,bend left=15] (x86-4) edge [right] node
  16295. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16296. \end{tikzpicture}
  16297. \fi}
  16298. {\if\edition\pythonEd\pythonColor
  16299. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16300. \node (Lfun) at (0,2) {\large \LangLam{}};
  16301. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16302. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16303. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16304. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16305. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16306. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16307. \node (F1-5) at (0,0) {\large \LangFunRefAlloc{}};
  16308. \node (F1-6) at (0,-2) {\large \LangFunANF{}};
  16309. \node (C3-2) at (0,-4) {\large \LangCFun{}};
  16310. \node (x86-2) at (0,-6) {\large \LangXIndCallVar{}};
  16311. \node (x86-3) at (4,-6) {\large \LangXIndCallVar{}};
  16312. \node (x86-4) at (8,-6) {\large \LangXIndCall{}};
  16313. \node (x86-5) at (12,-6) {\large \LangXIndCall{}};
  16314. \path[->,bend left=15] (Lfun) edge [above] node
  16315. {\ttfamily\footnotesize shrink} (Lfun-2);
  16316. \path[->,bend left=15] (Lfun-2) edge [above] node
  16317. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16318. \path[->,bend left=15] (Lfun-3) edge [above] node
  16319. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16320. \path[->,bend left=15] (F1-0) edge [left] node
  16321. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16322. \path[->,bend left=15] (F1-1) edge [below] node
  16323. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16324. \path[->,bend left=15] (F1-2) edge [below] node
  16325. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16326. \path[->,bend right=15] (F1-3) edge [above] node
  16327. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  16328. \path[->,bend right=15] (F1-5) edge [right] node
  16329. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16330. \path[->,bend left=15] (F1-6) edge [right] node
  16331. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16332. \path[->,bend right=15] (C3-2) edge [right] node
  16333. {\ttfamily\footnotesize select\_instructions} (x86-2);
  16334. \path[->,bend right=15] (x86-2) edge [below] node
  16335. {\ttfamily\footnotesize assign\_homes} (x86-3);
  16336. \path[->,bend right=15] (x86-3) edge [below] node
  16337. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16338. \path[->,bend left=15] (x86-4) edge [above] node
  16339. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16340. \end{tikzpicture}
  16341. \fi}
  16342. \end{tcolorbox}
  16343. \caption{Diagram of the passes for \LangLam{}, a language with lexically scoped
  16344. functions.}
  16345. \label{fig:Llambda-passes}
  16346. \end{figure}
  16347. Figure~\ref{fig:Llambda-passes} provides an overview of the passes
  16348. needed for the compilation of \LangLam{}.
  16349. \clearpage
  16350. \section{Challenge: Optimize Closures}
  16351. \label{sec:optimize-closures}
  16352. In this chapter we compile lexically scoped functions into a
  16353. relatively efficient representation: flat closures. However, even this
  16354. representation comes with some overhead. For example, consider the
  16355. following program with a function \code{tail\_sum} that does not have
  16356. any free variables and where all the uses of \code{tail\_sum} are in
  16357. applications in which we know that only \code{tail\_sum} is being applied
  16358. (and not any other functions):
  16359. \begin{center}
  16360. \begin{minipage}{0.95\textwidth}
  16361. {\if\edition\racketEd
  16362. \begin{lstlisting}
  16363. (define (tail_sum [n : Integer] [s : Integer]) : Integer
  16364. (if (eq? n 0)
  16365. s
  16366. (tail_sum (- n 1) (+ n s))))
  16367. (+ (tail_sum 3 0) 36)
  16368. \end{lstlisting}
  16369. \fi}
  16370. {\if\edition\pythonEd\pythonColor
  16371. \begin{lstlisting}
  16372. def tail_sum(n : int, s : int) -> int:
  16373. if n == 0:
  16374. return s
  16375. else:
  16376. return tail_sum(n - 1, n + s)
  16377. print( tail_sum(3, 0) + 36)
  16378. \end{lstlisting}
  16379. \fi}
  16380. \end{minipage}
  16381. \end{center}
  16382. As described in this chapter, we uniformly apply closure conversion to
  16383. all functions, obtaining the following output for this program:
  16384. \begin{center}
  16385. \begin{minipage}{0.95\textwidth}
  16386. {\if\edition\racketEd
  16387. \begin{lstlisting}
  16388. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
  16389. (if (eq? n2 0)
  16390. s3
  16391. (let ([clos4 (closure (list (fun-ref tail_sum1 2)))])
  16392. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))
  16393. (define (main) : Integer
  16394. (+ (let ([clos6 (closure (list (fun-ref tail_sum1 2)))])
  16395. ((vector-ref clos6 0) clos6 3 0)) 27))
  16396. \end{lstlisting}
  16397. \fi}
  16398. {\if\edition\pythonEd\pythonColor
  16399. \begin{lstlisting}
  16400. def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
  16401. if n_0 == 0:
  16402. return s_1
  16403. else:
  16404. return (let clos_2 = (tail_sum,)
  16405. in clos_2[0](clos_2, n_0 - 1, n_0 + s_1))
  16406. def main() -> int :
  16407. print((let clos_4 = (tail_sum,)
  16408. in clos_4[0](clos_4, 3, 0)) + 36)
  16409. return 0
  16410. \end{lstlisting}
  16411. \fi}
  16412. \end{minipage}
  16413. \end{center}
  16414. If this program were compiled according to the previous chapter, there
  16415. would be no allocation and the calls to \code{tail\_sum} would be
  16416. direct calls. In contrast, the program presented here allocates memory
  16417. for each closure and the calls to \code{tail\_sum} are indirect. These
  16418. two differences incur considerable overhead in a program such as this,
  16419. in which the allocations and indirect calls occur inside a tight loop.
  16420. One might think that this problem is trivial to solve: can't we just
  16421. recognize calls of the form \APPLY{\FUNREF{$f$}{$n$}}{$\mathit{args}$}
  16422. and compile them to direct calls instead of treating it like a call to
  16423. a closure? We would also drop the new \code{fvs} parameter of
  16424. \code{tail\_sum}.
  16425. %
  16426. However, this problem is not so trivial, because a global function may
  16427. \emph{escape} and become involved in applications that also involve
  16428. closures. Consider the following example in which the application
  16429. \CAPPLY{\code{f}}{\code{41}} needs to be compiled into a closure
  16430. application because the \code{lambda} may flow into \code{f}, but the
  16431. \code{inc} function might also flow into \code{f}:
  16432. \begin{center}
  16433. \begin{minipage}{\textwidth}
  16434. % lambda_test_30.rkt
  16435. {\if\edition\racketEd
  16436. \begin{lstlisting}
  16437. (define (inc [x : Integer]) : Integer
  16438. (+ x 1))
  16439. (let ([y (read)])
  16440. (let ([f (if (eq? (read) 0)
  16441. inc
  16442. (lambda: ([x : Integer]) : Integer (- x y)))])
  16443. (f 41)))
  16444. \end{lstlisting}
  16445. \fi}
  16446. {\if\edition\pythonEd\pythonColor
  16447. \begin{lstlisting}
  16448. def add1(x : int) -> int:
  16449. return x + 1
  16450. y = input_int()
  16451. g : Callable[[int], int] = lambda x: x - y
  16452. f = add1 if input_int() == 0 else g
  16453. print( f(41) )
  16454. \end{lstlisting}
  16455. \fi}
  16456. \end{minipage}
  16457. \end{center}
  16458. If a global function name is used in any way other than as the
  16459. operator in a direct call, then we say that the function
  16460. \emph{escapes}. If a global function does not escape, then we do not
  16461. need to perform closure conversion on the function.
  16462. \begin{exercise}\normalfont\normalsize
  16463. Implement an auxiliary function for detecting which global
  16464. functions escape. Using that function, implement an improved version
  16465. of closure conversion that does not apply closure conversion to
  16466. global functions that do not escape but instead compiles them as
  16467. regular functions. Create several new test cases that check whether
  16468. your compiler properly detects whether global functions escape or not.
  16469. \end{exercise}
  16470. So far we have reduced the overhead of calling global functions, but
  16471. it would also be nice to reduce the overhead of calling a
  16472. \code{lambda} when we can determine at compile time which
  16473. \code{lambda} will be called. We refer to such calls as \emph{known
  16474. calls}. Consider the following example in which a \code{lambda} is
  16475. bound to \code{f} and then applied.
  16476. {\if\edition\racketEd
  16477. % lambda_test_9.rkt
  16478. \begin{lstlisting}
  16479. (let ([y (read)])
  16480. (let ([f (lambda: ([x : Integer]) : Integer
  16481. (+ x y))])
  16482. (f 21)))
  16483. \end{lstlisting}
  16484. \fi}
  16485. {\if\edition\pythonEd\pythonColor
  16486. \begin{lstlisting}
  16487. y = input_int()
  16488. f : Callable[[int],int] = lambda x: x + y
  16489. print( f(21) )
  16490. \end{lstlisting}
  16491. \fi}
  16492. %
  16493. \noindent Closure conversion compiles the application
  16494. \CAPPLY{\code{f}}{\code{21}} into an indirect call, as follows:
  16495. %
  16496. {\if\edition\racketEd
  16497. \begin{lstlisting}
  16498. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  16499. (let ([y2 (vector-ref fvs6 1)])
  16500. (+ x3 y2)))
  16501. (define (main) : Integer
  16502. (let ([y2 (read)])
  16503. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16504. ((vector-ref f4 0) f4 21))))
  16505. \end{lstlisting}
  16506. \fi}
  16507. {\if\edition\pythonEd\pythonColor
  16508. \begin{lstlisting}
  16509. def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
  16510. y_1 = fvs_4[1]
  16511. return x_2 + y_1[0]
  16512. def main() -> int:
  16513. y_1 = (777,)
  16514. y_1[0] = input_int()
  16515. f_0 = (lambda_3, y_1)
  16516. print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
  16517. return 0
  16518. \end{lstlisting}
  16519. \fi}
  16520. %
  16521. \noindent However, we can instead compile the application
  16522. \CAPPLY{\code{f}}{\code{21}} into a direct call, as follows:
  16523. %
  16524. {\if\edition\racketEd
  16525. \begin{lstlisting}
  16526. (define (main) : Integer
  16527. (let ([y2 (read)])
  16528. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16529. ((fun-ref lambda5 1) f4 21))))
  16530. \end{lstlisting}
  16531. \fi}
  16532. {\if\edition\pythonEd\pythonColor
  16533. \begin{lstlisting}
  16534. def main() -> int:
  16535. y_1 = (777,)
  16536. y_1[0] = input_int()
  16537. f_0 = (lambda_3, y_1)
  16538. print(lambda_3(f_0, 21))
  16539. return 0
  16540. \end{lstlisting}
  16541. \fi}
  16542. The problem of determining which \code{lambda} will be called from a
  16543. particular application is quite challenging in general and the topic
  16544. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  16545. following exercise we recommend that you compile an application to a
  16546. direct call when the operator is a variable and \racket{the variable
  16547. is \code{let}-bound to a closure}\python{the previous assignment to
  16548. the variable is a closure}. This can be accomplished by maintaining
  16549. an environment that maps variables to function names. Extend the
  16550. environment whenever you encounter a closure on the right-hand side of
  16551. a \racket{\code{let}}\python{assignment}, mapping the variable to the
  16552. name of the global function for the closure. This pass should come
  16553. after closure conversion.
  16554. \begin{exercise}\normalfont\normalsize
  16555. Implement a compiler pass, named \code{optimize\_known\_calls}, that
  16556. compiles known calls into direct calls. Verify that your compiler is
  16557. successful in this regard on several example programs.
  16558. \end{exercise}
  16559. These exercises only scratch the surface of closure optimization. A
  16560. good next step for the interested reader is to look at the work of
  16561. \citet{Keep:2012ab}.
  16562. \section{Further Reading}
  16563. The notion of lexically scoped functions predates modern computers by
  16564. about a decade. They were invented by \citet{Church:1932aa}, who
  16565. proposed the lambda calculus as a foundation for logic. Anonymous
  16566. functions were included in the LISP~\citep{McCarthy:1960dz}
  16567. programming language but were initially dynamically scoped. The Scheme
  16568. dialect of LISP adopted lexical scoping, and
  16569. \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently compile
  16570. Scheme programs. However, environments were represented as linked
  16571. lists, so variable look-up was linear in the size of the
  16572. environment. \citet{Appel91} gives a detailed description of several
  16573. closure representations. In this chapter we represent environments
  16574. using flat closures, which were invented by
  16575. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purpose of compiling
  16576. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  16577. closures, variable look-up is constant time but the time to create a
  16578. closure is proportional to the number of its free variables. Flat
  16579. closures were reinvented by \citet{Dybvig:1987ab} in his PhD thesis
  16580. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  16581. % todo: related work on assignment conversion (e.g. orbit and rabbit
  16582. % compilers)
  16583. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16584. \chapter{Dynamic Typing}
  16585. \label{ch:Ldyn}
  16586. \index{subject}{dynamic typing}
  16587. \setcounter{footnote}{0}
  16588. In this chapter we learn how to compile \LangDyn{}, a dynamically
  16589. typed language that is a subset of \racket{Racket}\python{Python}. The
  16590. focus on dynamic typing is in contrast to the previous chapters, which
  16591. have studied the compilation of statically typed languages. In
  16592. dynamically typed languages such as \LangDyn{}, a particular
  16593. expression may produce a value of a different type each time it is
  16594. executed. Consider the following example with a conditional \code{if}
  16595. expression that may return a Boolean or an integer depending on the
  16596. input to the program:
  16597. % part of dynamic_test_25.rkt
  16598. {\if\edition\racketEd
  16599. \begin{lstlisting}
  16600. (not (if (eq? (read) 1) #f 0))
  16601. \end{lstlisting}
  16602. \fi}
  16603. {\if\edition\pythonEd\pythonColor
  16604. \begin{lstlisting}
  16605. not (False if input_int() == 1 else 0)
  16606. \end{lstlisting}
  16607. \fi}
  16608. Languages that allow expressions to produce different kinds of values
  16609. are called \emph{polymorphic}, a word composed of the Greek roots
  16610. \emph{poly}, meaning \emph{many}, and \emph{morph}, meaning \emph{form}.
  16611. There are several kinds of polymorphism in programming languages, such as
  16612. subtype polymorphism\index{subject}{subtype polymorphism} and
  16613. parametric polymorphism\index{subject}{parametric polymorphism}
  16614. (aka generics)~\citep{Cardelli:1985kx}. The kind of polymorphism that we
  16615. study in this chapter does not have a special name; it is the kind
  16616. that arises in dynamically typed languages.
  16617. Another characteristic of dynamically typed languages is that
  16618. their primitive operations, such as \code{not}, are often defined to operate
  16619. on many different types of values. In fact, in
  16620. \racket{Racket}\python{Python}, the \code{not} operator produces a
  16621. result for any kind of value: given \FALSE{} it returns \TRUE{}, and
  16622. given anything else it returns \FALSE{}.
  16623. Furthermore, even when primitive operations restrict their inputs to
  16624. values of a certain type, this restriction is enforced at runtime
  16625. instead of during compilation. For example, the tuple read
  16626. operation \racket{\code{(vector-ref \#t 0)}}\python{\code{True[0]}}
  16627. results in a runtime error because the first argument must
  16628. be a tuple, not a Boolean.
  16629. \section{The \LangDyn{} Language}
  16630. \newcommand{\LdynGrammarRacket}{
  16631. \begin{array}{rcl}
  16632. \Exp &::=& \LP\Exp \; \Exp\ldots\RP
  16633. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  16634. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  16635. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  16636. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP
  16637. \end{array}
  16638. }
  16639. \newcommand{\LdynASTRacket}{
  16640. \begin{array}{lcl}
  16641. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  16642. \MID \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  16643. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp}
  16644. \end{array}
  16645. }
  16646. \begin{figure}[tp]
  16647. \centering
  16648. \begin{tcolorbox}[colback=white]
  16649. \small
  16650. {\if\edition\racketEd
  16651. \[
  16652. \begin{array}{l}
  16653. \gray{\LintGrammarRacket{}} \\ \hline
  16654. \gray{\LvarGrammarRacket{}} \\ \hline
  16655. \gray{\LifGrammarRacket{}} \\ \hline
  16656. \gray{\LwhileGrammarRacket} \\ \hline
  16657. \gray{\LtupGrammarRacket} \\ \hline
  16658. \LdynGrammarRacket \\
  16659. \begin{array}{rcl}
  16660. \LangDynM{} &::=& \Def\ldots\; \Exp
  16661. \end{array}
  16662. \end{array}
  16663. \]
  16664. \fi}
  16665. {\if\edition\pythonEd\pythonColor
  16666. \[
  16667. \begin{array}{rcl}
  16668. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \MID \key{is} \\
  16669. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  16670. &\MID& \Var{} \MID \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp}
  16671. \MID \COR{\Exp}{\Exp} \MID \key{not}~\Exp \\
  16672. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  16673. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  16674. &\MID& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp}
  16675. \MID \CLEN{\Exp} \\
  16676. &\MID& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  16677. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}\\
  16678. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  16679. \MID \Var\mathop{\key{=}}\Exp \\
  16680. &\MID& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  16681. \MID \key{while}~ \Exp \key{:}~ \Stmt^{+} \\
  16682. &\MID& \CRETURN{\Exp} \\
  16683. \Def &::=& \CDEFU{\Var}{\Var{,} \ldots}{\Stmt^{+}} \\
  16684. \LangDynM{} &::=& \Def\ldots \Stmt\ldots
  16685. \end{array}
  16686. \]
  16687. \fi}
  16688. \end{tcolorbox}
  16689. \caption{Syntax of \LangDyn{}, an untyped language (a subset of \racket{Racket}\python{Python}).}
  16690. \label{fig:r7-concrete-syntax}
  16691. \end{figure}
  16692. \begin{figure}[tp]
  16693. \centering
  16694. \begin{tcolorbox}[colback=white]
  16695. \small
  16696. {\if\edition\racketEd
  16697. \[
  16698. \begin{array}{l}
  16699. \gray{\LintASTRacket{}} \\ \hline
  16700. \gray{\LvarASTRacket{}} \\ \hline
  16701. \gray{\LifASTRacket{}} \\ \hline
  16702. \gray{\LwhileASTRacket} \\ \hline
  16703. \gray{\LtupASTRacket} \\ \hline
  16704. \LdynASTRacket \\
  16705. \begin{array}{lcl}
  16706. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  16707. \end{array}
  16708. \end{array}
  16709. \]
  16710. \fi}
  16711. {\if\edition\pythonEd\pythonColor
  16712. \[
  16713. \begin{array}{rcl}
  16714. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  16715. \itm{unaryop} &::= & \code{USub()} \MID \code{Not()} \\
  16716. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  16717. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()}
  16718. \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  16719. &\MID & \code{Is()} \\
  16720. \itm{bool} &::=& \code{True} \MID \code{False} \\
  16721. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  16722. &\MID& \UNIOP{\itm{unaryop}}{\Exp}
  16723. \MID \BINOP{\Exp}{\itm{binaryop}}{\Exp}
  16724. \MID \VAR{\Var{}} \\
  16725. &\MID& \BOOL{\itm{bool}}
  16726. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  16727. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  16728. &\MID& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  16729. &\MID& \LEN{\Exp} \\
  16730. &\MID& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp} \\
  16731. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  16732. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  16733. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  16734. \MID \WHILESTMT{\Exp}{\Stmt^{+}}\\
  16735. &\MID& \RETURN{\Exp} \\
  16736. \Params &::=& \LP\Var\key{,}\code{AnyType()}\RP^* \\
  16737. \Def &::=& \FUNDEF{\Var}{\Params}{\code{AnyType()}}{}{\Stmt^{+}} \\
  16738. \LangDynM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  16739. \end{array}
  16740. \]
  16741. \fi}
  16742. \end{tcolorbox}
  16743. \caption{The abstract syntax of \LangDyn{}.}
  16744. \label{fig:r7-syntax}
  16745. \end{figure}
  16746. The definitions of the concrete and abstract syntax of \LangDyn{} are
  16747. shown in figures~\ref{fig:r7-concrete-syntax} and \ref{fig:r7-syntax}.
  16748. %
  16749. There is no type checker for \LangDyn{} because it checks types only
  16750. at runtime.
  16751. The definitional interpreter for \LangDyn{} is presented in
  16752. \racket{figure~\ref{fig:interp-Ldyn}}\python{figures~\ref{fig:interp-Ldyn} and \ref{fig:interp-Ldyn-2}}, and definitions of its auxiliary functions
  16753. are shown in figure~\ref{fig:interp-Ldyn-aux}. Consider the match case for
  16754. \INT{n}. Instead of simply returning the integer \code{n} (as
  16755. in the interpreter for \LangVar{} in figure~\ref{fig:interp-Lvar}), the
  16756. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  16757. value} that combines an underlying value with a tag that identifies
  16758. what kind of value it is. We define the following \racket{struct}\python{class}
  16759. to represent tagged values:
  16760. %
  16761. {\if\edition\racketEd
  16762. \begin{lstlisting}
  16763. (struct Tagged (value tag) #:transparent)
  16764. \end{lstlisting}
  16765. \fi}
  16766. {\if\edition\pythonEd\pythonColor
  16767. \begin{minipage}{\textwidth}
  16768. \begin{lstlisting}
  16769. @dataclass(eq=True)
  16770. class Tagged(Value):
  16771. value : Value
  16772. tag : str
  16773. def __str__(self):
  16774. return str(self.value)
  16775. \end{lstlisting}
  16776. \end{minipage}
  16777. \fi}
  16778. %
  16779. \racket{The tags are \code{Integer}, \BOOLTY{}, \code{Void},
  16780. \code{Vector}, and \code{Procedure}.}
  16781. %
  16782. \python{The tags are \code{'int'}, \code{'bool'}, \code{'none'},
  16783. \code{'tuple'}, and \code{'function'}.}
  16784. %
  16785. Tags are closely related to types but do not always capture all the
  16786. information that a type does.
  16787. %
  16788. \racket{For example, a vector of type \code{(Vector Any Any)} is
  16789. tagged with \code{Vector}, and a procedure of type \code{(Any Any ->
  16790. Any)} is tagged with \code{Procedure}.}
  16791. %
  16792. \python{For example, a tuple of type \code{TupleType([AnyType(),AnyType()])}
  16793. is tagged with \code{'tuple'} and a function of type
  16794. \code{FunctionType([AnyType(), AnyType()], AnyType())}
  16795. is tagged with \code{'function'}.}
  16796. Next consider the match case for accessing the element of a tuple.
  16797. The \racket{\code{check-tag}}\python{\code{untag}} auxiliary function
  16798. (figure~\ref{fig:interp-Ldyn-aux}) is used to ensure that the first
  16799. argument is a tuple and the second is an integer.
  16800. \racket{
  16801. If they are not, a \code{trapped-error} is raised. Recall from
  16802. section~\ref{sec:interp_Lint} that when a definition interpreter
  16803. raises a \code{trapped-error} error, the compiled code must also
  16804. signal an error by exiting with return code \code{255}. A
  16805. \code{trapped-error} is also raised if the index is not less than the
  16806. length of the vector.
  16807. }
  16808. %
  16809. \python{If they are not, an exception is raised. The compiled code
  16810. must also signal an error by exiting with return code \code{255}. A
  16811. exception is also raised if the index is not less than the length of the
  16812. tuple or if it is negative.}
  16813. \begin{figure}[tbp]
  16814. \begin{tcolorbox}[colback=white]
  16815. {\if\edition\racketEd
  16816. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16817. (define ((interp-Ldyn-exp env) ast)
  16818. (define recur (interp-Ldyn-exp env))
  16819. (match ast
  16820. [(Var x) (dict-ref env x)]
  16821. [(Int n) (Tagged n 'Integer)]
  16822. [(Bool b) (Tagged b 'Boolean)]
  16823. [(Lambda xs rt body)
  16824. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  16825. [(Prim 'vector es)
  16826. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  16827. [(Prim 'vector-ref (list e1 e2))
  16828. (define vec (recur e1)) (define i (recur e2))
  16829. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  16830. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  16831. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  16832. (vector-ref (Tagged-value vec) (Tagged-value i))]
  16833. [(Prim 'vector-set! (list e1 e2 e3))
  16834. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  16835. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  16836. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  16837. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  16838. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  16839. (Tagged (void) 'Void)]
  16840. [(Let x e body) ((interp-Ldyn-exp (cons (cons x (recur e)) env)) body)]
  16841. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  16842. [(Prim 'or (list e1 e2))
  16843. (define v1 (recur e1))
  16844. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  16845. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  16846. [(Prim op (list e1))
  16847. #:when (set-member? type-predicates op)
  16848. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  16849. [(Prim op es)
  16850. (define args (map recur es))
  16851. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  16852. (unless (for/or ([expected-tags (op-tags op)])
  16853. (equal? expected-tags tags))
  16854. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  16855. (tag-value
  16856. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  16857. [(If q t f)
  16858. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  16859. [(Apply f es)
  16860. (define new-f (recur f)) (define args (map recur es))
  16861. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  16862. (match f-val
  16863. [`(function ,xs ,body ,lam-env)
  16864. (unless (eq? (length xs) (length args))
  16865. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  16866. (define new-env (append (map cons xs args) lam-env))
  16867. ((interp-Ldyn-exp new-env) body)]
  16868. [else (error "interp-Ldyn-exp, expected function, not" f-val)])]))
  16869. \end{lstlisting}
  16870. \fi}
  16871. {\if\edition\pythonEd\pythonColor
  16872. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16873. class InterpLdyn(InterpLlambda):
  16874. def interp_exp(self, e, env):
  16875. match e:
  16876. case Constant(n):
  16877. return self.tag(super().interp_exp(e, env))
  16878. case Tuple(es, Load()):
  16879. return self.tag(super().interp_exp(e, env))
  16880. case Lambda(params, body):
  16881. return self.tag(super().interp_exp(e, env))
  16882. case Call(Name('input_int'), []):
  16883. return self.tag(super().interp_exp(e, env))
  16884. case BinOp(left, Add(), right):
  16885. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  16886. return self.tag(self.untag(l, 'int', e) + self.untag(r, 'int', e))
  16887. case BinOp(left, Sub(), right):
  16888. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  16889. return self.tag(self.untag(l, 'int', e) - self.untag(r, 'int', e))
  16890. case UnaryOp(USub(), e1):
  16891. v = self.interp_exp(e1, env)
  16892. return self.tag(- self.untag(v, 'int', e))
  16893. case IfExp(test, body, orelse):
  16894. v = self.interp_exp(test, env)
  16895. if self.untag(v, 'bool', e):
  16896. return self.interp_exp(body, env)
  16897. else:
  16898. return self.interp_exp(orelse, env)
  16899. case UnaryOp(Not(), e1):
  16900. v = self.interp_exp(e1, env)
  16901. return self.tag(not self.untag(v, 'bool', e))
  16902. case BoolOp(And(), values):
  16903. left = values[0]; right = values[1]
  16904. l = self.interp_exp(left, env)
  16905. if self.untag(l, 'bool', e):
  16906. return self.interp_exp(right, env)
  16907. else:
  16908. return self.tag(False)
  16909. case BoolOp(Or(), values):
  16910. left = values[0]; right = values[1]
  16911. l = self.interp_exp(left, env)
  16912. if self.untag(l, 'bool', e):
  16913. return self.tag(True)
  16914. else:
  16915. return self.interp_exp(right, env)
  16916. case Compare(left, [cmp], [right]):
  16917. l = self.interp_exp(left, env)
  16918. r = self.interp_exp(right, env)
  16919. if l.tag == r.tag:
  16920. return self.tag(self.interp_cmp(cmp)(l.value, r.value))
  16921. else:
  16922. raise Exception('interp Compare unexpected '
  16923. + repr(l) + ' ' + repr(r))
  16924. case Subscript(tup, index, Load()):
  16925. t = self.interp_exp(tup, env)
  16926. n = self.interp_exp(index, env)
  16927. return self.untag(t, 'tuple', e)[self.untag(n, 'int', e)]
  16928. case Call(Name('len'), [tup]):
  16929. t = self.interp_exp(tup, env)
  16930. return self.tag(len(self.untag(t, 'tuple', e)))
  16931. case _:
  16932. return self.tag(super().interp_exp(e, env))
  16933. \end{lstlisting}
  16934. \fi}
  16935. \end{tcolorbox}
  16936. \caption{Interpreter for the \LangDyn{} language\python{, part 1}.}
  16937. \label{fig:interp-Ldyn}
  16938. \end{figure}
  16939. {\if\edition\pythonEd\pythonColor
  16940. \begin{figure}[tbp]
  16941. \begin{tcolorbox}[colback=white]
  16942. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16943. class InterpLdyn(InterpLlambda):
  16944. def interp_stmts(self, ss, env):
  16945. if len(ss) == 0:
  16946. return
  16947. match ss[0]:
  16948. case If(test, body, orelse):
  16949. v = self.interp_exp(test, env)
  16950. if self.untag(v, 'bool', ss[0]):
  16951. return self.interp_stmts(body + ss[1:], env)
  16952. else:
  16953. return self.interp_stmts(orelse + ss[1:], env)
  16954. case While(test, body, []):
  16955. while self.untag(self.interp_exp(test, env), 'bool', ss[0]):
  16956. self.interp_stmts(body, env)
  16957. return self.interp_stmts(ss[1:], env)
  16958. case Assign([Subscript(tup, index)], value):
  16959. tup = self.interp_exp(tup, env)
  16960. index = self.interp_exp(index, env)
  16961. tup_v = self.untag(tup, 'tuple', ss[0])
  16962. index_v = self.untag(index, 'int', ss[0])
  16963. tup_v[index_v] = self.interp_exp(value, env)
  16964. return self.interp_stmts(ss[1:], env)
  16965. case FunctionDef(name, params, bod, dl, returns, comment):
  16966. ps = [x for (x,t) in params]
  16967. env[name] = self.tag(Function(name, ps, bod, env))
  16968. return self.interp_stmts(ss[1:], env)
  16969. case _:
  16970. return super().interp_stmts(ss, env)
  16971. \end{lstlisting}
  16972. \end{tcolorbox}
  16973. \caption{Interpreter for the \LangDyn{} language\python{, part 2}.}
  16974. \label{fig:interp-Ldyn-2}
  16975. \end{figure}
  16976. \fi}
  16977. \begin{figure}[tbp]
  16978. \begin{tcolorbox}[colback=white]
  16979. {\if\edition\racketEd
  16980. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16981. (define (interp-op op)
  16982. (match op
  16983. ['+ fx+]
  16984. ['- fx-]
  16985. ['read read-fixnum]
  16986. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  16987. ['< (lambda (v1 v2)
  16988. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  16989. ['<= (lambda (v1 v2)
  16990. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  16991. ['> (lambda (v1 v2)
  16992. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  16993. ['>= (lambda (v1 v2)
  16994. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  16995. ['boolean? boolean?]
  16996. ['integer? fixnum?]
  16997. ['void? void?]
  16998. ['vector? vector?]
  16999. ['vector-length vector-length]
  17000. ['procedure? (match-lambda
  17001. [`(functions ,xs ,body ,env) #t] [else #f])]
  17002. [else (error 'interp-op "unknown operator" op)]))
  17003. (define (op-tags op)
  17004. (match op
  17005. ['+ '((Integer Integer))]
  17006. ['- '((Integer Integer) (Integer))]
  17007. ['read '(())]
  17008. ['not '((Boolean))]
  17009. ['< '((Integer Integer))]
  17010. ['<= '((Integer Integer))]
  17011. ['> '((Integer Integer))]
  17012. ['>= '((Integer Integer))]
  17013. ['vector-length '((Vector))]))
  17014. (define type-predicates
  17015. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17016. (define (tag-value v)
  17017. (cond [(boolean? v) (Tagged v 'Boolean)]
  17018. [(fixnum? v) (Tagged v 'Integer)]
  17019. [(procedure? v) (Tagged v 'Procedure)]
  17020. [(vector? v) (Tagged v 'Vector)]
  17021. [(void? v) (Tagged v 'Void)]
  17022. [else (error 'tag-value "unidentified value ~a" v)]))
  17023. (define (check-tag val expected ast)
  17024. (define tag (Tagged-tag val))
  17025. (unless (eq? tag expected)
  17026. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  17027. \end{lstlisting}
  17028. \fi}
  17029. {\if\edition\pythonEd\pythonColor
  17030. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17031. class InterpLdyn(InterpLlambda):
  17032. def tag(self, v):
  17033. if v is True or v is False:
  17034. return Tagged(v, 'bool')
  17035. elif isinstance(v, int):
  17036. return Tagged(v, 'int')
  17037. elif isinstance(v, Function):
  17038. return Tagged(v, 'function')
  17039. elif isinstance(v, tuple):
  17040. return Tagged(v, 'tuple')
  17041. elif isinstance(v, type(None)):
  17042. return Tagged(v, 'none')
  17043. else:
  17044. raise Exception('tag: unexpected ' + repr(v))
  17045. def untag(self, v, expected_tag, ast):
  17046. match v:
  17047. case Tagged(val, tag) if tag == expected_tag:
  17048. return val
  17049. case _:
  17050. raise Exception('expected Tagged value with '
  17051. + expected_tag + ', not ' + ' ' + repr(v))
  17052. def apply_fun(self, fun, args, e):
  17053. f = self.untag(fun, 'function', e)
  17054. return super().apply_fun(f, args, e)
  17055. \end{lstlisting}
  17056. \fi}
  17057. \end{tcolorbox}
  17058. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  17059. \label{fig:interp-Ldyn-aux}
  17060. \end{figure}
  17061. \clearpage
  17062. \section{Representation of Tagged Values}
  17063. The interpreter for \LangDyn{} introduced a new kind of value: the
  17064. tagged value. To compile \LangDyn{} to x86 we must decide how to
  17065. represent tagged values at the bit level. Because almost every
  17066. operation in \LangDyn{} involves manipulating tagged values, the
  17067. representation must be efficient. Recall that all our values are 64
  17068. bits. We shall steal the right-most $3$ bits to encode the tag. We use
  17069. $001$ to identify integers, $100$ for Booleans, $010$ for tuples,
  17070. $011$ for procedures, and $101$ for the void value\python{,
  17071. \key{None}}. We define the following auxiliary function for mapping
  17072. types to tag codes:
  17073. %
  17074. {\if\edition\racketEd
  17075. \begin{align*}
  17076. \itm{tagof}(\key{Integer}) &= 001 \\
  17077. \itm{tagof}(\key{Boolean}) &= 100 \\
  17078. \itm{tagof}(\LP\key{Vector} \ldots\RP) &= 010 \\
  17079. \itm{tagof}(\LP\ldots \key{->} \ldots\RP) &= 011 \\
  17080. \itm{tagof}(\key{Void}) &= 101
  17081. \end{align*}
  17082. \fi}
  17083. {\if\edition\pythonEd\pythonColor
  17084. \begin{align*}
  17085. \itm{tagof}(\key{IntType()}) &= 001 \\
  17086. \itm{tagof}(\key{BoolType()}) &= 100 \\
  17087. \itm{tagof}(\key{TupleType(ts)}) &= 010 \\
  17088. \itm{tagof}(\key{FunctionType(ps, rt)}) &= 011 \\
  17089. \itm{tagof}(\key{type(None)}) &= 101
  17090. \end{align*}
  17091. \fi}
  17092. %
  17093. This stealing of 3 bits comes at some price: integers are now restricted
  17094. to the range $-2^{60}$ to $2^{60}-1$. The stealing does not adversely
  17095. affect tuples and procedures because those values are addresses, and
  17096. our addresses are 8-byte aligned so the rightmost 3 bits are unused;
  17097. they are always $000$. Thus, we do not lose information by overwriting
  17098. the rightmost 3 bits with the tag, and we can simply zero out the tag
  17099. to recover the original address.
  17100. To make tagged values into first-class entities, we can give them a
  17101. type called \racket{\code{Any}}\python{\code{AnyType()}} and define
  17102. operations such as \code{Inject} and \code{Project} for creating and
  17103. using them, yielding the statically typed \LangAny{} intermediate
  17104. language. We describe how to compile \LangDyn{} to \LangAny{} in
  17105. section~\ref{sec:compile-r7}; in the next section we describe the
  17106. \LangAny{} language in greater detail.
  17107. \section{The \LangAny{} Language}
  17108. \label{sec:Rany-lang}
  17109. \newcommand{\LanyASTRacket}{
  17110. \begin{array}{lcl}
  17111. \Type &::= & \ANYTY \\
  17112. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  17113. \MID \LP\key{Vector}\; \ANYTY\ldots\RP
  17114. \MID \LP\ANYTY\ldots \; \key{->}\; \ANYTY\RP\\
  17115. \itm{op} &::= & \code{any-vector-length}
  17116. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  17117. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  17118. \MID \code{procedure?} \MID \code{void?} \\
  17119. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  17120. \end{array}
  17121. }
  17122. \newcommand{\LanyASTPython}{
  17123. \begin{array}{lcl}
  17124. \Type &::= & \key{AnyType()} \\
  17125. \FType &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  17126. \MID \key{TupleType}\LS\key{AnyType()}^+\RS \\
  17127. &\MID& \key{FunctionType}\LP \key{AnyType()}^{*}\key{, }\key{AnyType()}\RP \\
  17128. \Exp & ::= & \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  17129. &\MID& \CALL{\VAR{\key{'any\_tuple\_load'}}}{\LS\Exp\key{, }\Exp\RS}\\
  17130. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS\Exp\RS} \\
  17131. &\MID& \CALL{\VAR{\key{'arity'}}}{\LS\Exp\RS} \\
  17132. &\MID& \CALL{\VAR{\key{'make\_any'}}}{\LS\Exp\key{, }\INT{\Int}\RS}
  17133. %% &\MID& \CALL{\VAR{\key{'is\_int'}}}{\Exp}
  17134. %% \MID \CALL{\VAR{\key{'is\_bool'}}}{\Exp} \\
  17135. %% &\MID& \CALL{\VAR{\key{'is\_none'}}}{\Exp}
  17136. %% \MID \CALL{\VAR{\key{'is\_tuple'}}}{\Exp} \\
  17137. %% &\MID& \CALL{\VAR{\key{'is\_function'}}}{\Exp}
  17138. \end{array}
  17139. }
  17140. \begin{figure}[tp]
  17141. \centering
  17142. \begin{tcolorbox}[colback=white]
  17143. \small
  17144. {\if\edition\racketEd
  17145. \[
  17146. \begin{array}{l}
  17147. \gray{\LintOpAST} \\ \hline
  17148. \gray{\LvarASTRacket{}} \\ \hline
  17149. \gray{\LifASTRacket{}} \\ \hline
  17150. \gray{\LwhileASTRacket{}} \\ \hline
  17151. \gray{\LtupASTRacket{}} \\ \hline
  17152. \gray{\LfunASTRacket} \\ \hline
  17153. \gray{\LlambdaASTRacket} \\ \hline
  17154. \LanyASTRacket \\
  17155. \begin{array}{lcl}
  17156. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17157. \end{array}
  17158. \end{array}
  17159. \]
  17160. \fi}
  17161. {\if\edition\pythonEd\pythonColor
  17162. \[
  17163. \begin{array}{l}
  17164. \gray{\LintASTPython} \\ \hline
  17165. \gray{\LvarASTPython{}} \\ \hline
  17166. \gray{\LifASTPython{}} \\ \hline
  17167. \gray{\LwhileASTPython{}} \\ \hline
  17168. \gray{\LtupASTPython{}} \\ \hline
  17169. \gray{\LfunASTPython} \\ \hline
  17170. \gray{\LlambdaASTPython} \\ \hline
  17171. \LanyASTPython \\
  17172. \begin{array}{lcl}
  17173. \LangAnyM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17174. \end{array}
  17175. \end{array}
  17176. \]
  17177. \fi}
  17178. \end{tcolorbox}
  17179. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (figure~\ref{fig:Llam-syntax}).}
  17180. \label{fig:Lany-syntax}
  17181. \end{figure}
  17182. The definition of the abstract syntax of \LangAny{} is given in
  17183. figure~\ref{fig:Lany-syntax}.
  17184. %% \racket{(The concrete syntax of \LangAny{} is in the Appendix,
  17185. %% figure~\ref{fig:Lany-concrete-syntax}.)}
  17186. The $\INJECT{e}{T}$ form converts the value produced by expression $e$
  17187. of type $T$ into a tagged value. The $\PROJECT{e}{T}$ form either
  17188. converts the tagged value produced by expression $e$ into a value of
  17189. type $T$ or halts the program if the type tag does not match $T$.
  17190. %
  17191. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  17192. restricted to be a flat type (the nonterminal $\FType$) which
  17193. simplifies the implementation and complies with the needs for
  17194. compiling \LangDyn{}.
  17195. The \racket{\code{any-vector}} operators
  17196. \python{\code{any\_tuple\_load} and \code{any\_len}} adapt the tuple
  17197. operations so that they can be applied to a value of type
  17198. \racket{\code{Any}}\python{\code{AnyType}}. They also generalize the
  17199. tuple operations in that the index is not restricted to a literal
  17200. integer in the grammar but is allowed to be any expression.
  17201. \racket{The type predicates such as
  17202. \racket{\key{boolean?}}\python{\key{is\_bool}} expect their argument
  17203. to produce a tagged value; they return {\TRUE} if the tag corresponds to
  17204. the predicate and return {\FALSE} otherwise.}
  17205. The type checker for \LangAny{} is shown in
  17206. figure~\ref{fig:type-check-Lany}
  17207. %
  17208. \racket{ and uses the auxiliary functions presented in
  17209. figure~\ref{fig:type-check-Lany-aux}}.
  17210. %
  17211. The interpreter for \LangAny{} is shown in figure~\ref{fig:interp-Lany} and
  17212. its auxiliary functions are shown in figure~\ref{fig:interp-Lany-aux}.
  17213. \begin{figure}[btp]
  17214. \begin{tcolorbox}[colback=white]
  17215. {\if\edition\racketEd
  17216. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17217. (define type-check-Lany-class
  17218. (class type-check-Llambda-class
  17219. (super-new)
  17220. (inherit check-type-equal?)
  17221. (define/override (type-check-exp env)
  17222. (lambda (e)
  17223. (define recur (type-check-exp env))
  17224. (match e
  17225. [(Inject e1 ty)
  17226. (unless (flat-ty? ty)
  17227. (error 'type-check "may only inject from flat type, not ~a" ty))
  17228. (define-values (new-e1 e-ty) (recur e1))
  17229. (check-type-equal? e-ty ty e)
  17230. (values (Inject new-e1 ty) 'Any)]
  17231. [(Project e1 ty)
  17232. (unless (flat-ty? ty)
  17233. (error 'type-check "may only project to flat type, not ~a" ty))
  17234. (define-values (new-e1 e-ty) (recur e1))
  17235. (check-type-equal? e-ty 'Any e)
  17236. (values (Project new-e1 ty) ty)]
  17237. [(Prim 'any-vector-length (list e1))
  17238. (define-values (e1^ t1) (recur e1))
  17239. (check-type-equal? t1 'Any e)
  17240. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  17241. [(Prim 'any-vector-ref (list e1 e2))
  17242. (define-values (e1^ t1) (recur e1))
  17243. (define-values (e2^ t2) (recur e2))
  17244. (check-type-equal? t1 'Any e)
  17245. (check-type-equal? t2 'Integer e)
  17246. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  17247. [(Prim 'any-vector-set! (list e1 e2 e3))
  17248. (define-values (e1^ t1) (recur e1))
  17249. (define-values (e2^ t2) (recur e2))
  17250. (define-values (e3^ t3) (recur e3))
  17251. (check-type-equal? t1 'Any e)
  17252. (check-type-equal? t2 'Integer e)
  17253. (check-type-equal? t3 'Any e)
  17254. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  17255. [(Prim pred (list e1))
  17256. #:when (set-member? (type-predicates) pred)
  17257. (define-values (new-e1 e-ty) (recur e1))
  17258. (check-type-equal? e-ty 'Any e)
  17259. (values (Prim pred (list new-e1)) 'Boolean)]
  17260. [(Prim 'eq? (list arg1 arg2))
  17261. (define-values (e1 t1) (recur arg1))
  17262. (define-values (e2 t2) (recur arg2))
  17263. (match* (t1 t2)
  17264. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  17265. [(other wise) (check-type-equal? t1 t2 e)])
  17266. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  17267. [else ((super type-check-exp env) e)])))
  17268. ))
  17269. \end{lstlisting}
  17270. \fi}
  17271. {\if\edition\pythonEd\pythonColor
  17272. \begin{lstlisting}
  17273. class TypeCheckLany(TypeCheckLlambda):
  17274. def type_check_exp(self, e, env):
  17275. match e:
  17276. case Inject(value, typ):
  17277. self.check_exp(value, typ, env)
  17278. return AnyType()
  17279. case Project(value, typ):
  17280. self.check_exp(value, AnyType(), env)
  17281. return typ
  17282. case Call(Name('any_tuple_load'), [tup, index]):
  17283. self.check_exp(tup, AnyType(), env)
  17284. self.check_exp(index, IntType(), env)
  17285. return AnyType()
  17286. case Call(Name('any_len'), [tup]):
  17287. self.check_exp(tup, AnyType(), env)
  17288. return IntType()
  17289. case Call(Name('arity'), [fun]):
  17290. ty = self.type_check_exp(fun, env)
  17291. match ty:
  17292. case FunctionType(ps, rt):
  17293. return IntType()
  17294. case TupleType([FunctionType(ps,rs)]):
  17295. return IntType()
  17296. case _:
  17297. raise Exception('type_check_exp arity unexpected ' + repr(ty))
  17298. case Call(Name('make_any'), [value, tag]):
  17299. self.type_check_exp(value, env)
  17300. self.check_exp(tag, IntType(), env)
  17301. return AnyType()
  17302. case AnnLambda(params, returns, body):
  17303. new_env = {x:t for (x,t) in env.items()}
  17304. for (x,t) in params:
  17305. new_env[x] = t
  17306. return_t = self.type_check_exp(body, new_env)
  17307. self.check_type_equal(returns, return_t, e)
  17308. return FunctionType([t for (x,t) in params], return_t)
  17309. case _:
  17310. return super().type_check_exp(e, env)
  17311. \end{lstlisting}
  17312. \fi}
  17313. \end{tcolorbox}
  17314. \caption{Type checker for the \LangAny{} language.}
  17315. \label{fig:type-check-Lany}
  17316. \end{figure}
  17317. {\if\edition\racketEd
  17318. \begin{figure}[tbp]
  17319. \begin{tcolorbox}[colback=white]
  17320. \begin{lstlisting}
  17321. (define/override (operator-types)
  17322. (append
  17323. '((integer? . ((Any) . Boolean))
  17324. (vector? . ((Any) . Boolean))
  17325. (procedure? . ((Any) . Boolean))
  17326. (void? . ((Any) . Boolean)))
  17327. (super operator-types)))
  17328. (define/public (type-predicates)
  17329. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17330. (define/public (flat-ty? ty)
  17331. (match ty
  17332. [(or `Integer `Boolean `Void) #t]
  17333. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  17334. [`(,ts ... -> ,rt)
  17335. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  17336. [else #f]))
  17337. \end{lstlisting}
  17338. \end{tcolorbox}
  17339. \caption{Auxiliary methods for type checking \LangAny{}.}
  17340. \label{fig:type-check-Lany-aux}
  17341. \end{figure}
  17342. \fi}
  17343. \begin{figure}[btp]
  17344. \begin{tcolorbox}[colback=white]
  17345. {\if\edition\racketEd
  17346. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17347. (define interp-Lany-class
  17348. (class interp-Llambda-class
  17349. (super-new)
  17350. (define/override (interp-op op)
  17351. (match op
  17352. ['boolean? (match-lambda
  17353. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  17354. [else #f])]
  17355. ['integer? (match-lambda
  17356. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  17357. [else #f])]
  17358. ['vector? (match-lambda
  17359. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  17360. [else #f])]
  17361. ['procedure? (match-lambda
  17362. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  17363. [else #f])]
  17364. ['eq? (match-lambda*
  17365. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  17366. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  17367. [ls (apply (super interp-op op) ls)])]
  17368. ['any-vector-ref (lambda (v i)
  17369. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  17370. ['any-vector-set! (lambda (v i a)
  17371. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  17372. ['any-vector-length (lambda (v)
  17373. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  17374. [else (super interp-op op)]))
  17375. (define/override ((interp-exp env) e)
  17376. (define recur (interp-exp env))
  17377. (match e
  17378. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  17379. [(Project e ty2) (apply-project (recur e) ty2)]
  17380. [else ((super interp-exp env) e)]))
  17381. ))
  17382. (define (interp-Lany p)
  17383. (send (new interp-Lany-class) interp-program p))
  17384. \end{lstlisting}
  17385. \fi}
  17386. {\if\edition\pythonEd\pythonColor
  17387. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17388. class InterpLany(InterpLlambda):
  17389. def interp_exp(self, e, env):
  17390. match e:
  17391. case Inject(value, typ):
  17392. v = self.interp_exp(value, env)
  17393. return Tagged(v, self.type_to_tag(typ))
  17394. case Project(value, typ):
  17395. v = self.interp_exp(value, env)
  17396. match v:
  17397. case Tagged(val, tag) if self.type_to_tag(typ) == tag:
  17398. return val
  17399. case _:
  17400. raise Exception('interp project to ' + repr(typ)
  17401. + ' unexpected ' + repr(v))
  17402. case Call(Name('any_tuple_load'), [tup, index]):
  17403. tv = self.interp_exp(tup, env)
  17404. n = self.interp_exp(index, env)
  17405. match tv:
  17406. case Tagged(v, tag):
  17407. return v[n]
  17408. case _:
  17409. raise Exception('interp any_tuple_load unexpected ' + repr(tv))
  17410. case Call(Name('any_len'), [value]):
  17411. v = self.interp_exp(value, env)
  17412. match v:
  17413. case Tagged(value, tag):
  17414. return len(value)
  17415. case _:
  17416. raise Exception('interp any_len unexpected ' + repr(v))
  17417. case Call(Name('arity'), [fun]):
  17418. f = self.interp_exp(fun, env)
  17419. return self.arity(f)
  17420. case _:
  17421. return super().interp_exp(e, env)
  17422. \end{lstlisting}
  17423. \fi}
  17424. \end{tcolorbox}
  17425. \caption{Interpreter for \LangAny{}.}
  17426. \label{fig:interp-Lany}
  17427. \end{figure}
  17428. \begin{figure}[tbp]
  17429. \begin{tcolorbox}[colback=white]
  17430. {\if\edition\racketEd
  17431. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17432. (define/public (apply-inject v tg) (Tagged v tg))
  17433. (define/public (apply-project v ty2)
  17434. (define tag2 (any-tag ty2))
  17435. (match v
  17436. [(Tagged v1 tag1)
  17437. (cond
  17438. [(eq? tag1 tag2)
  17439. (match ty2
  17440. [`(Vector ,ts ...)
  17441. (define l1 ((interp-op 'vector-length) v1))
  17442. (cond
  17443. [(eq? l1 (length ts)) v1]
  17444. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  17445. l1 (length ts))])]
  17446. [`(,ts ... -> ,rt)
  17447. (match v1
  17448. [`(function ,xs ,body ,env)
  17449. (cond [(eq? (length xs) (length ts)) v1]
  17450. [else
  17451. (error 'apply-project "arity mismatch ~a != ~a"
  17452. (length xs) (length ts))])]
  17453. [else (error 'apply-project "expected function not ~a" v1)])]
  17454. [else v1])]
  17455. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  17456. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  17457. \end{lstlisting}
  17458. \fi}
  17459. {\if\edition\pythonEd\pythonColor
  17460. \begin{lstlisting}
  17461. class InterpLany(InterpLlambda):
  17462. def type_to_tag(self, typ):
  17463. match typ:
  17464. case FunctionType(params, rt):
  17465. return 'function'
  17466. case TupleType(fields):
  17467. return 'tuple'
  17468. case t if t == int:
  17469. return 'int'
  17470. case t if t == bool:
  17471. return 'bool'
  17472. case IntType():
  17473. return 'int'
  17474. case BoolType():
  17475. return 'int'
  17476. case _:
  17477. raise Exception('type_to_tag unexpected ' + repr(typ))
  17478. def arity(self, v):
  17479. match v:
  17480. case Function(name, params, body, env):
  17481. return len(params)
  17482. case ClosureTuple(args, arity):
  17483. return arity
  17484. case _:
  17485. raise Exception('Lany arity unexpected ' + repr(v))
  17486. \end{lstlisting}
  17487. \fi}
  17488. \end{tcolorbox}
  17489. \caption{Auxiliary functions for interpreting \LangAny{}.}
  17490. \label{fig:interp-Lany-aux}
  17491. \end{figure}
  17492. \clearpage
  17493. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  17494. \label{sec:compile-r7}
  17495. The \code{cast\_insert} pass compiles from \LangDyn{} to \LangAny{}.
  17496. Figure~\ref{fig:compile-r7-Lany} shows the compilation of many of the
  17497. \LangDyn{} forms into \LangAny{}. An important invariant of this pass
  17498. is that given any subexpression $e$ in the \LangDyn{} program, the
  17499. pass will produce an expression $e'$ in \LangAny{} that has type
  17500. \ANYTY{}. For example, the first row in
  17501. figure~\ref{fig:compile-r7-Lany} shows the compilation of the Boolean
  17502. \TRUE{}, which must be injected to produce an expression of type
  17503. \ANYTY{}.
  17504. %
  17505. The compilation of addition is shown in the second row of
  17506. figure~\ref{fig:compile-r7-Lany}. The compilation of addition is
  17507. representative of many primitive operations: the arguments have type
  17508. \ANYTY{} and must be projected to \INTTYPE{} before the addition can
  17509. be performed.
  17510. The compilation of \key{lambda} (third row of
  17511. figure~\ref{fig:compile-r7-Lany}) shows what happens when we need to
  17512. produce type annotations: we simply use \ANYTY{}.
  17513. %
  17514. % TODO:update the following for python, and the tests and interpreter. -Jeremy
  17515. \racket{The compilation of \code{if} and \code{eq?} demonstrate how
  17516. this pass has to account for some differences in behavior between
  17517. \LangDyn{} and \LangAny{}. The \LangDyn{} language is more
  17518. permissive than \LangAny{} regarding what kind of values can be used
  17519. in various places. For example, the condition of an \key{if} does
  17520. not have to be a Boolean. For \key{eq?}, the arguments need not be
  17521. of the same type (in that case the result is \code{\#f}).}
  17522. \begin{figure}[btp]
  17523. \centering
  17524. \begin{tcolorbox}[colback=white]
  17525. {\if\edition\racketEd
  17526. \begin{tabular}{lll}
  17527. \begin{minipage}{0.27\textwidth}
  17528. \begin{lstlisting}
  17529. #t
  17530. \end{lstlisting}
  17531. \end{minipage}
  17532. &
  17533. $\Rightarrow$
  17534. &
  17535. \begin{minipage}{0.65\textwidth}
  17536. \begin{lstlisting}
  17537. (inject #t Boolean)
  17538. \end{lstlisting}
  17539. \end{minipage}
  17540. \\[2ex]\hline
  17541. \begin{minipage}{0.27\textwidth}
  17542. \begin{lstlisting}
  17543. (+ |$e_1$| |$e_2$|)
  17544. \end{lstlisting}
  17545. \end{minipage}
  17546. &
  17547. $\Rightarrow$
  17548. &
  17549. \begin{minipage}{0.65\textwidth}
  17550. \begin{lstlisting}
  17551. (inject
  17552. (+ (project |$e'_1$| Integer)
  17553. (project |$e'_2$| Integer))
  17554. Integer)
  17555. \end{lstlisting}
  17556. \end{minipage}
  17557. \\[2ex]\hline
  17558. \begin{minipage}{0.27\textwidth}
  17559. \begin{lstlisting}
  17560. (lambda (|$x_1 \ldots$|) |$e$|)
  17561. \end{lstlisting}
  17562. \end{minipage}
  17563. &
  17564. $\Rightarrow$
  17565. &
  17566. \begin{minipage}{0.65\textwidth}
  17567. \begin{lstlisting}
  17568. (inject
  17569. (lambda: ([|$x_1$|:Any]|$\ldots$|):Any |$e'$|)
  17570. (Any|$\ldots$|Any -> Any))
  17571. \end{lstlisting}
  17572. \end{minipage}
  17573. \\[2ex]\hline
  17574. \begin{minipage}{0.27\textwidth}
  17575. \begin{lstlisting}
  17576. (|$e_0$| |$e_1 \ldots e_n$|)
  17577. \end{lstlisting}
  17578. \end{minipage}
  17579. &
  17580. $\Rightarrow$
  17581. &
  17582. \begin{minipage}{0.65\textwidth}
  17583. \begin{lstlisting}
  17584. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  17585. \end{lstlisting}
  17586. \end{minipage}
  17587. \\[2ex]\hline
  17588. \begin{minipage}{0.27\textwidth}
  17589. \begin{lstlisting}
  17590. (vector-ref |$e_1$| |$e_2$|)
  17591. \end{lstlisting}
  17592. \end{minipage}
  17593. &
  17594. $\Rightarrow$
  17595. &
  17596. \begin{minipage}{0.65\textwidth}
  17597. \begin{lstlisting}
  17598. (any-vector-ref |$e_1'$| (project |$e'_2$| Integer))
  17599. \end{lstlisting}
  17600. \end{minipage}
  17601. \\[2ex]\hline
  17602. \begin{minipage}{0.27\textwidth}
  17603. \begin{lstlisting}
  17604. (if |$e_1$| |$e_2$| |$e_3$|)
  17605. \end{lstlisting}
  17606. \end{minipage}
  17607. &
  17608. $\Rightarrow$
  17609. &
  17610. \begin{minipage}{0.65\textwidth}
  17611. \begin{lstlisting}
  17612. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  17613. \end{lstlisting}
  17614. \end{minipage}
  17615. \\[2ex]\hline
  17616. \begin{minipage}{0.27\textwidth}
  17617. \begin{lstlisting}
  17618. (eq? |$e_1$| |$e_2$|)
  17619. \end{lstlisting}
  17620. \end{minipage}
  17621. &
  17622. $\Rightarrow$
  17623. &
  17624. \begin{minipage}{0.65\textwidth}
  17625. \begin{lstlisting}
  17626. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  17627. \end{lstlisting}
  17628. \end{minipage}
  17629. \\[2ex]\hline
  17630. \begin{minipage}{0.27\textwidth}
  17631. \begin{lstlisting}
  17632. (not |$e_1$|)
  17633. \end{lstlisting}
  17634. \end{minipage}
  17635. &
  17636. $\Rightarrow$
  17637. &
  17638. \begin{minipage}{0.65\textwidth}
  17639. \begin{lstlisting}
  17640. (if (eq? |$e'_1$| (inject #f Boolean))
  17641. (inject #t Boolean) (inject #f Boolean))
  17642. \end{lstlisting}
  17643. \end{minipage}
  17644. \end{tabular}
  17645. \fi}
  17646. {\if\edition\pythonEd\pythonColor
  17647. \hspace{-0.8em}\begin{tabular}{|lll|} \hline
  17648. \begin{minipage}{0.23\textwidth}
  17649. \begin{lstlisting}
  17650. True
  17651. \end{lstlisting}
  17652. \end{minipage}
  17653. &
  17654. $\Rightarrow$
  17655. &
  17656. \begin{minipage}{0.7\textwidth}
  17657. \begin{lstlisting}
  17658. Inject(True, BoolType())
  17659. \end{lstlisting}
  17660. \end{minipage}
  17661. \\[2ex]\hline
  17662. \begin{minipage}{0.23\textwidth}
  17663. \begin{lstlisting}
  17664. |$e_1$| + |$e_2$|
  17665. \end{lstlisting}
  17666. \end{minipage}
  17667. &
  17668. $\Rightarrow$
  17669. &
  17670. \begin{minipage}{0.7\textwidth}
  17671. \begin{lstlisting}
  17672. Inject(Project(|$e'_1$|, IntType())
  17673. + Project(|$e'_2$|, IntType()),
  17674. IntType())
  17675. \end{lstlisting}
  17676. \end{minipage}
  17677. \\[2ex]\hline
  17678. \begin{minipage}{0.23\textwidth}
  17679. \begin{lstlisting}
  17680. lambda |$x_1 \ldots$|: |$e$|
  17681. \end{lstlisting}
  17682. \end{minipage}
  17683. &
  17684. $\Rightarrow$
  17685. &
  17686. \begin{minipage}{0.7\textwidth}
  17687. \begin{lstlisting}
  17688. Inject(Lambda([(|$x_1$|,AnyType),|$\ldots$|], |$e'$|)
  17689. FunctionType([AnyType(),|$\ldots$|], AnyType()))
  17690. \end{lstlisting}
  17691. \end{minipage}
  17692. \\[2ex]\hline
  17693. \begin{minipage}{0.23\textwidth}
  17694. \begin{lstlisting}
  17695. |$e_0$|(|$e_1 \ldots e_n$|)
  17696. \end{lstlisting}
  17697. \end{minipage}
  17698. &
  17699. $\Rightarrow$
  17700. &
  17701. \begin{minipage}{0.7\textwidth}
  17702. \begin{lstlisting}
  17703. Call(Project(|$e'_0$|, FunctionType([AnyType(),|$\ldots$|],
  17704. AnyType())), |$e'_1, \ldots, e'_n$|)
  17705. \end{lstlisting}
  17706. \end{minipage}
  17707. \\[2ex]\hline
  17708. \begin{minipage}{0.23\textwidth}
  17709. \begin{lstlisting}
  17710. |$e_1$|[|$e_2$|]
  17711. \end{lstlisting}
  17712. \end{minipage}
  17713. &
  17714. $\Rightarrow$
  17715. &
  17716. \begin{minipage}{0.7\textwidth}
  17717. \begin{lstlisting}
  17718. Call(Name('any_tuple_load'),
  17719. [|$e_1'$|, Project(|$e_2'$|, IntType())])
  17720. \end{lstlisting}
  17721. \end{minipage}
  17722. %% \begin{minipage}{0.23\textwidth}
  17723. %% \begin{lstlisting}
  17724. %% |$e_2$| if |$e_1$| else |$e_3$|
  17725. %% \end{lstlisting}
  17726. %% \end{minipage}
  17727. %% &
  17728. %% $\Rightarrow$
  17729. %% &
  17730. %% \begin{minipage}{0.7\textwidth}
  17731. %% \begin{lstlisting}
  17732. %% (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  17733. %% \end{lstlisting}
  17734. %% \end{minipage}
  17735. %% \\[2ex]\hline
  17736. %% \begin{minipage}{0.23\textwidth}
  17737. %% \begin{lstlisting}
  17738. %% (eq? |$e_1$| |$e_2$|)
  17739. %% \end{lstlisting}
  17740. %% \end{minipage}
  17741. %% &
  17742. %% $\Rightarrow$
  17743. %% &
  17744. %% \begin{minipage}{0.7\textwidth}
  17745. %% \begin{lstlisting}
  17746. %% (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  17747. %% \end{lstlisting}
  17748. %% \end{minipage}
  17749. %% \\[2ex]\hline
  17750. %% \begin{minipage}{0.23\textwidth}
  17751. %% \begin{lstlisting}
  17752. %% (not |$e_1$|)
  17753. %% \end{lstlisting}
  17754. %% \end{minipage}
  17755. %% &
  17756. %% $\Rightarrow$
  17757. %% &
  17758. %% \begin{minipage}{0.7\textwidth}
  17759. %% \begin{lstlisting}
  17760. %% (if (eq? |$e'_1$| (inject #f Boolean))
  17761. %% (inject #t Boolean) (inject #f Boolean))
  17762. %% \end{lstlisting}
  17763. %% \end{minipage}
  17764. %% \\[2ex]\hline
  17765. \\\hline
  17766. \end{tabular}
  17767. \fi}
  17768. \end{tcolorbox}
  17769. \caption{Cast insertion.}
  17770. \label{fig:compile-r7-Lany}
  17771. \end{figure}
  17772. \section{Reveal Casts}
  17773. \label{sec:reveal-casts-Lany}
  17774. % TODO: define R'_6
  17775. In the \code{reveal\_casts} pass, we recommend compiling
  17776. \code{Project} into a conditional expression that checks whether the
  17777. value's tag matches the target type; if it does, the value is
  17778. converted to a value of the target type by removing the tag; if it
  17779. does not, the program exits.
  17780. %
  17781. {\if\edition\racketEd
  17782. %
  17783. To perform these actions we need a new primitive operation,
  17784. \code{tag-of-any}, and a new form, \code{ValueOf}.
  17785. The \code{tag-of-any} operation retrieves the type tag from a tagged
  17786. value of type \code{Any}. The \code{ValueOf} form retrieves the
  17787. underlying value from a tagged value. The \code{ValueOf} form
  17788. includes the type for the underlying value that is used by the type
  17789. checker.
  17790. %
  17791. \fi}
  17792. %
  17793. {\if\edition\pythonEd\pythonColor
  17794. %
  17795. To perform these actions we need two new AST classes: \code{TagOf} and
  17796. \code{ValueOf}. The \code{TagOf} operation retrieves the type tag from a
  17797. tagged value of type \ANYTY{}. The \code{ValueOf} operation retrieves
  17798. the underlying value from a tagged value. The \code{ValueOf}
  17799. operation includes the type for the underlying value which is used by
  17800. the type checker.
  17801. %
  17802. \fi}
  17803. If the target type of the projection is \BOOLTY{} or \INTTY{}, then
  17804. \code{Project} can be translated as follows:
  17805. \begin{center}
  17806. \begin{minipage}{1.0\textwidth}
  17807. {\if\edition\racketEd
  17808. \begin{lstlisting}
  17809. (Project |$e$| |$\FType$|)
  17810. |$\Rightarrow$|
  17811. (Let |$\itm{tmp}$| |$e'$|
  17812. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  17813. (Int |$\itm{tagof}(\FType)$|)))
  17814. (ValueOf |$\itm{tmp}$| |$\FType$|)
  17815. (Exit)))
  17816. \end{lstlisting}
  17817. \fi}
  17818. {\if\edition\pythonEd\pythonColor
  17819. \begin{lstlisting}
  17820. Project(|$e$|, |$\FType$|)
  17821. |$\Rightarrow$|
  17822. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  17823. IfExp(Compare(TagOf(|$\itm{tmp}$|),[Eq()],
  17824. [Constant(|$\itm{tagof}(\FType)$|)]),
  17825. ValueOf(|$\itm{tmp}$|, |$\FType$|)
  17826. Call(Name('exit'), [])))
  17827. \end{lstlisting}
  17828. \fi}
  17829. \end{minipage}
  17830. \end{center}
  17831. If the target type of the projection is a tuple or function type, then
  17832. there is a bit more work to do. For tuples, check that the length of
  17833. the tuple type matches the length of the tuple. For functions, check
  17834. that the number of parameters in the function type matches the
  17835. function's arity.
  17836. Regarding \code{Inject}, we recommend compiling it to a slightly
  17837. lower-level primitive operation named \racket{\code{make-any}}\python{\code{make\_any}}. This operation
  17838. takes a tag instead of a type.
  17839. \begin{center}
  17840. \begin{minipage}{1.0\textwidth}
  17841. {\if\edition\racketEd
  17842. \begin{lstlisting}
  17843. (Inject |$e$| |$\FType$|)
  17844. |$\Rightarrow$|
  17845. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  17846. \end{lstlisting}
  17847. \fi}
  17848. {\if\edition\pythonEd\pythonColor
  17849. \begin{lstlisting}
  17850. Inject(|$e$|, |$\FType$|)
  17851. |$\Rightarrow$|
  17852. Call(Name('make_any'), [|$e'$|, Constant(|$\itm{tagof}(\FType)$|)])
  17853. \end{lstlisting}
  17854. \fi}
  17855. \end{minipage}
  17856. \end{center}
  17857. {\if\edition\pythonEd\pythonColor
  17858. %
  17859. The introduction of \code{make\_any} makes it difficult to use
  17860. bidirectional type checking because we no longer have an expected type
  17861. to use for type checking the expression $e'$. Thus, we run into
  17862. difficulty if $e'$ is a \code{Lambda} expression. We recommend
  17863. translating \code{Lambda} to a new AST class \code{AnnLambda} (for
  17864. annotated lambda) whose parameters have type annotations and that
  17865. records the return type.
  17866. %
  17867. \fi}
  17868. \racket{The type predicates (\code{boolean?}, etc.) can be translated into
  17869. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  17870. translation of \code{Project}.}
  17871. {\if\edition\racketEd
  17872. The \code{any-vector-ref} and \code{any-vector-set!} operations
  17873. combine the projection action with the vector operation. Also, the
  17874. read and write operations allow arbitrary expressions for the index, so
  17875. the type checker for \LangAny{} (figure~\ref{fig:type-check-Lany})
  17876. cannot guarantee that the index is within bounds. Thus, we insert code
  17877. to perform bounds checking at runtime. The translation for
  17878. \code{any-vector-ref} is as follows, and the other two operations are
  17879. translated in a similar way:
  17880. \begin{center}
  17881. \begin{minipage}{0.95\textwidth}
  17882. \begin{lstlisting}
  17883. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  17884. |$\Rightarrow$|
  17885. (Let |$v$| |$e'_1$|
  17886. (Let |$i$| |$e'_2$|
  17887. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  17888. (If (Prim '< (list (Var |$i$|) (Prim 'any-vector-length (list (Var |$v$|)))))
  17889. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  17890. (Exit))
  17891. (Exit))))
  17892. \end{lstlisting}
  17893. \end{minipage}
  17894. \end{center}
  17895. \fi}
  17896. %
  17897. {\if\edition\pythonEd\pythonColor
  17898. %
  17899. The \code{any\_tuple\_load} operation combines the projection action
  17900. with the load operation. Also, the load operation allows arbitrary
  17901. expressions for the index so the type checker for \LangAny{}
  17902. (figure~\ref{fig:type-check-Lany}) cannot guarantee that the index is
  17903. within bounds. Thus, we insert code to perform bounds checking at
  17904. runtime. The translation for \code{any\_tuple\_load} is as follows.
  17905. \begin{lstlisting}
  17906. Call(Name('any_tuple_load'), [|$e_1$|,|$e_2$|])
  17907. |$\Rightarrow$|
  17908. Block([Assign([|$t$|], |$e'_1$|), Assign([|$i$|], |$e'_2$|)],
  17909. IfExp(Compare(TagOf(|$t$|), [Eq()], [Constant(2)]),
  17910. IfExp(Compare(|$i$|, [Lt()], [Call(Name('any_len'), [|$t$|])]),
  17911. Call(Name('any_tuple_load_unsafe'), [|$t$|, |$i$|]),
  17912. Call(Name('exit'), [])),
  17913. Call(Name('exit'), [])))
  17914. \end{lstlisting}
  17915. \fi}
  17916. {\if\edition\pythonEd\pythonColor
  17917. \section{Assignment Conversion}
  17918. \label{sec:convert-assignments-Lany}
  17919. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  17920. \code{AnnLambda} AST classes.
  17921. \section{Closure Conversion}
  17922. \label{sec:closure-conversion-Lany}
  17923. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  17924. \code{AnnLambda} AST classes.
  17925. \fi}
  17926. \section{Remove Complex Operands}
  17927. \label{sec:rco-Lany}
  17928. \racket{The \code{ValueOf} and \code{Exit} forms are both complex
  17929. expressions. The subexpression of \code{ValueOf} must be atomic.}
  17930. %
  17931. \python{The \code{ValueOf} and \code{TagOf} operations are both
  17932. complex expressions. Their subexpressions must be atomic.}
  17933. \section{Explicate Control and \LangCAny{}}
  17934. \label{sec:explicate-Lany}
  17935. The output of \code{explicate\_control} is the \LangCAny{} language,
  17936. whose syntax definition is shown in figure~\ref{fig:c5-syntax}.
  17937. %
  17938. \racket{The \code{ValueOf} form that we added to \LangAny{} remains an
  17939. expression and the \code{Exit} expression becomes a $\Tail$. Also,
  17940. note that the index argument of \code{vector-ref} and
  17941. \code{vector-set!} is an $\Atm$, instead of an integer as it was in
  17942. \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  17943. %
  17944. \python{
  17945. Update the auxiliary functions \code{explicate\_tail}, \code{explicate\_effect},
  17946. and \code{explicate\_pred} as appropriately to handle the new expressions
  17947. in \LangCAny{}.
  17948. }
  17949. \newcommand{\CanyASTPython}{
  17950. \begin{array}{lcl}
  17951. \Exp &::=& \CALL{\VAR{\key{'make\_any'}}}{\LS \Atm,\Atm \RS}\\
  17952. &\MID& \key{TagOf}\LP \Atm \RP
  17953. \MID \key{ValueOf}\LP \Atm , \FType \RP \\
  17954. &\MID& \CALL{\VAR{\key{'any\_tuple\_load\_unsafe'}}}{\LS \Atm,\Atm \RS}\\
  17955. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS \Atm \RS} \\
  17956. &\MID& \CALL{\VAR{\key{'exit'}}}{\LS\RS}
  17957. \end{array}
  17958. }
  17959. \newcommand{\CanyASTRacket}{
  17960. \begin{array}{lcl}
  17961. \Exp &::= & \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  17962. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  17963. &\MID& \VALUEOF{\Atm}{\FType} \\
  17964. \Tail &::= & \LP\key{Exit}\RP
  17965. \end{array}
  17966. }
  17967. \begin{figure}[tp]
  17968. \begin{tcolorbox}[colback=white]
  17969. \small
  17970. {\if\edition\racketEd
  17971. \[
  17972. \begin{array}{l}
  17973. \gray{\CvarASTRacket} \\ \hline
  17974. \gray{\CifASTRacket} \\ \hline
  17975. \gray{\CloopASTRacket} \\ \hline
  17976. \gray{\CtupASTRacket} \\ \hline
  17977. \gray{\CfunASTRacket} \\ \hline
  17978. \gray{\ClambdaASTRacket} \\ \hline
  17979. \CanyASTRacket \\
  17980. \begin{array}{lcl}
  17981. \LangCAnyM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  17982. \end{array}
  17983. \end{array}
  17984. \]
  17985. \fi}
  17986. {\if\edition\pythonEd\pythonColor
  17987. \[
  17988. \begin{array}{l}
  17989. \gray{\CifASTPython} \\ \hline
  17990. \gray{\CtupASTPython} \\ \hline
  17991. \gray{\CfunASTPython} \\ \hline
  17992. \gray{\ClambdaASTPython} \\ \hline
  17993. \CanyASTPython \\
  17994. \begin{array}{lcl}
  17995. \LangCAnyM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  17996. \end{array}
  17997. \end{array}
  17998. \]
  17999. \fi}
  18000. \end{tcolorbox}
  18001. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (figure~\ref{fig:Clam-syntax}).}
  18002. \label{fig:c5-syntax}
  18003. \end{figure}
  18004. \section{Select Instructions}
  18005. \label{sec:select-Lany}
  18006. \index{subject}{select instructions}
  18007. In the \code{select\_instructions} pass, we translate the primitive
  18008. operations on the \ANYTY{} type to x86 instructions that manipulate
  18009. the three tag bits of the tagged value. In the following descriptions,
  18010. given an atom $e$ we use a primed variable $e'$ to refer to the result
  18011. of translating $e$ into an x86 argument:
  18012. \paragraph{\racket{\code{make-any}}\python{\code{make\_any}}}
  18013. We recommend compiling the
  18014. \racket{\code{make-any}}\python{\code{make\_any}} operation as follows
  18015. if the tag is for \INTTY{} or \BOOLTY{}. The \key{salq} instruction
  18016. shifts the destination to the left by the number of bits specified by its
  18017. source argument (in this case three, the length of the tag), and it
  18018. preserves the sign of the integer. We use the \key{orq} instruction to
  18019. combine the tag and the value to form the tagged value.
  18020. {\if\edition\racketEd
  18021. \begin{lstlisting}
  18022. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18023. |$\Rightarrow$|
  18024. movq |$e'$|, |\itm{lhs'}|
  18025. salq $3, |\itm{lhs'}|
  18026. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18027. \end{lstlisting}
  18028. \fi}
  18029. %
  18030. {\if\edition\pythonEd\pythonColor
  18031. \begin{lstlisting}
  18032. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18033. |$\Rightarrow$|
  18034. movq |$e'$|, |\itm{lhs'}|
  18035. salq $3, |\itm{lhs'}|
  18036. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18037. \end{lstlisting}
  18038. \fi}
  18039. %
  18040. The instruction selection\index{subject}{instruction selection} for
  18041. tuples and procedures is different because there is no need to shift
  18042. them to the left. The rightmost 3 bits are already zeros, so we simply
  18043. combine the value and the tag using \key{orq}. \\
  18044. %
  18045. {\if\edition\racketEd
  18046. \begin{center}
  18047. \begin{minipage}{\textwidth}
  18048. \begin{lstlisting}
  18049. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18050. |$\Rightarrow$|
  18051. movq |$e'$|, |\itm{lhs'}|
  18052. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18053. \end{lstlisting}
  18054. \end{minipage}
  18055. \end{center}
  18056. \fi}
  18057. %
  18058. {\if\edition\pythonEd\pythonColor
  18059. \begin{lstlisting}
  18060. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18061. |$\Rightarrow$|
  18062. movq |$e'$|, |\itm{lhs'}|
  18063. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18064. \end{lstlisting}
  18065. \fi}
  18066. \paragraph{\racket{\code{tag-of-any}}\python{\code{TagOf}}}
  18067. Recall that the \racket{\code{tag-of-any}}\python{\code{TagOf}}
  18068. operation extracts the type tag from a value of type \ANYTY{}. The
  18069. type tag is the bottom $3$ bits, so we obtain the tag by taking the
  18070. bitwise-and of the value with $111$ ($7$ decimal).
  18071. %
  18072. {\if\edition\racketEd
  18073. \begin{lstlisting}
  18074. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  18075. |$\Rightarrow$|
  18076. movq |$e'$|, |\itm{lhs'}|
  18077. andq $7, |\itm{lhs'}|
  18078. \end{lstlisting}
  18079. \fi}
  18080. %
  18081. {\if\edition\pythonEd\pythonColor
  18082. \begin{lstlisting}
  18083. Assign([|\itm{lhs}|], TagOf(|$e$|))
  18084. |$\Rightarrow$|
  18085. movq |$e'$|, |\itm{lhs'}|
  18086. andq $7, |\itm{lhs'}|
  18087. \end{lstlisting}
  18088. \fi}
  18089. \paragraph{\code{ValueOf}}
  18090. The instructions for \key{ValueOf} also differ, depending on whether
  18091. the type $T$ is a pointer (tuple or function) or not (integer or
  18092. Boolean). The following shows the instruction
  18093. selection for integers and
  18094. Booleans, in which we produce an untagged value by shifting it to the
  18095. right by 3 bits:
  18096. %
  18097. {\if\edition\racketEd
  18098. \begin{lstlisting}
  18099. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18100. |$\Rightarrow$|
  18101. movq |$e'$|, |\itm{lhs'}|
  18102. sarq $3, |\itm{lhs'}|
  18103. \end{lstlisting}
  18104. \fi}
  18105. %
  18106. {\if\edition\pythonEd\pythonColor
  18107. \begin{lstlisting}
  18108. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18109. |$\Rightarrow$|
  18110. movq |$e'$|, |\itm{lhs'}|
  18111. sarq $3, |\itm{lhs'}|
  18112. \end{lstlisting}
  18113. \fi}
  18114. %
  18115. In the case for tuples and procedures, we zero out the rightmost 3
  18116. bits. We accomplish this by creating the bit pattern $\ldots 0111$
  18117. ($7$ decimal) and apply bitwise-not to obtain $\ldots 11111000$ (-8
  18118. decimal), which we \code{movq} into the destination $\itm{lhs'}$.
  18119. Finally, we apply \code{andq} with the tagged value to get the desired
  18120. result.
  18121. %
  18122. {\if\edition\racketEd
  18123. \begin{lstlisting}
  18124. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18125. |$\Rightarrow$|
  18126. movq $|$-8$|, |\itm{lhs'}|
  18127. andq |$e'$|, |\itm{lhs'}|
  18128. \end{lstlisting}
  18129. \fi}
  18130. %
  18131. {\if\edition\pythonEd\pythonColor
  18132. \begin{lstlisting}
  18133. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18134. |$\Rightarrow$|
  18135. movq $|$-8$|, |\itm{lhs'}|
  18136. andq |$e'$|, |\itm{lhs'}|
  18137. \end{lstlisting}
  18138. \fi}
  18139. %% \paragraph{Type Predicates} We leave it to the reader to
  18140. %% devise a sequence of instructions to implement the type predicates
  18141. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  18142. \paragraph{\racket{\code{any-vector-length}}\python{\code{any\_len}}}
  18143. The \racket{\code{any-vector-length}}\python{\code{any\_len}}
  18144. operation combines the effect of \code{ValueOf} with accessing the
  18145. length of a tuple from the tag stored at the zero index of the tuple.
  18146. {\if\edition\racketEd
  18147. \begin{lstlisting}
  18148. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$e_1$|)))
  18149. |$\Longrightarrow$|
  18150. movq $|$-8$|, %r11
  18151. andq |$e_1'$|, %r11
  18152. movq 0(%r11), %r11
  18153. andq $126, %r11
  18154. sarq $1, %r11
  18155. movq %r11, |$\itm{lhs'}$|
  18156. \end{lstlisting}
  18157. \fi}
  18158. {\if\edition\pythonEd\pythonColor
  18159. \begin{lstlisting}
  18160. Assign([|$\itm{lhs}$|], Call(Name('any_len'), [|$e_1$|]))
  18161. |$\Longrightarrow$|
  18162. movq $|$-8$|, %r11
  18163. andq |$e_1'$|, %r11
  18164. movq 0(%r11), %r11
  18165. andq $126, %r11
  18166. sarq $1, %r11
  18167. movq %r11, |$\itm{lhs'}$|
  18168. \end{lstlisting}
  18169. \fi}
  18170. \paragraph{\racket{\code{any-vector-ref}}\python{\code{\code{any\_tuple\_load\_unsafe}}}}
  18171. This operation combines the effect of \code{ValueOf} with reading an
  18172. element of the tuple (see
  18173. section~\ref{sec:select-instructions-gc}). However, the index may be
  18174. an arbitrary atom, so instead of computing the offset at compile time,
  18175. we must generate instructions to compute the offset at runtime as
  18176. follows. Note the use of the new instruction \code{imulq}.
  18177. \begin{center}
  18178. \begin{minipage}{0.96\textwidth}
  18179. {\if\edition\racketEd
  18180. \begin{lstlisting}
  18181. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  18182. |$\Longrightarrow$|
  18183. movq |$\neg 111$|, %r11
  18184. andq |$e_1'$|, %r11
  18185. movq |$e_2'$|, %rax
  18186. addq $1, %rax
  18187. imulq $8, %rax
  18188. addq %rax, %r11
  18189. movq 0(%r11) |$\itm{lhs'}$|
  18190. \end{lstlisting}
  18191. \fi}
  18192. %
  18193. {\if\edition\pythonEd\pythonColor
  18194. \begin{lstlisting}
  18195. Assign([|$\itm{lhs}$|], Call(Name('any_tuple_load_unsafe'), [|$e_1$|,|$e_2$|]))
  18196. |$\Longrightarrow$|
  18197. movq $|$-8$|, %r11
  18198. andq |$e_1'$|, %r11
  18199. movq |$e_2'$|, %rax
  18200. addq $1, %rax
  18201. imulq $8, %rax
  18202. addq %rax, %r11
  18203. movq 0(%r11) |$\itm{lhs'}$|
  18204. \end{lstlisting}
  18205. \fi}
  18206. \end{minipage}
  18207. \end{center}
  18208. % $ pacify font lock
  18209. %% \paragraph{\racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}}}
  18210. %% The code generation for
  18211. %% \racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}} is
  18212. %% analogous to the above translation for reading from a tuple.
  18213. \section{Register Allocation for \LangAny{}}
  18214. \label{sec:register-allocation-Lany}
  18215. \index{subject}{register allocation}
  18216. There is an interesting interaction between tagged values and garbage
  18217. collection that has an impact on register allocation. A variable of
  18218. type \ANYTY{} might refer to a tuple, and therefore it might be a root
  18219. that needs to be inspected and copied during garbage collection. Thus,
  18220. we need to treat variables of type \ANYTY{} in a similar way to
  18221. variables of tuple type for purposes of register allocation,
  18222. with particular attention to the following:
  18223. \begin{itemize}
  18224. \item If a variable of type \ANYTY{} is live during a function call,
  18225. then it must be spilled. This can be accomplished by changing
  18226. \code{build\_interference} to mark all variables of type \ANYTY{}
  18227. that are live after a \code{callq} to be interfering with all the
  18228. registers.
  18229. \item If a variable of type \ANYTY{} is spilled, it must be spilled to
  18230. the root stack instead of the normal procedure call stack.
  18231. \end{itemize}
  18232. Another concern regarding the root stack is that the garbage collector
  18233. needs to differentiate among (1) plain old pointers to tuples, (2) a
  18234. tagged value that points to a tuple, and (3) a tagged value that is
  18235. not a tuple. We enable this differentiation by choosing not to use the
  18236. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  18237. reserved for identifying plain old pointers to tuples. That way, if
  18238. one of the first three bits is set, then we have a tagged value and
  18239. inspecting the tag can differentiate between tuples ($010$) and the
  18240. other kinds of values.
  18241. %% \begin{exercise}\normalfont
  18242. %% Expand your compiler to handle \LangAny{} as discussed in the last few
  18243. %% sections. Create 5 new programs that use the \ANYTY{} type and the
  18244. %% new operations (\code{Inject}, \code{Project}, etc.). Test your
  18245. %% compiler on these new programs and all of your previously created test
  18246. %% programs.
  18247. %% \end{exercise}
  18248. \begin{exercise}\normalfont\normalsize
  18249. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  18250. Create tests for \LangDyn{} by adapting ten of your previous test programs
  18251. by removing type annotations. Add five more test programs that
  18252. specifically rely on the language being dynamically typed. That is,
  18253. they should not be legal programs in a statically typed language, but
  18254. nevertheless they should be valid \LangDyn{} programs that run to
  18255. completion without error.
  18256. \end{exercise}
  18257. \begin{figure}[p]
  18258. \begin{tcolorbox}[colback=white]
  18259. {\if\edition\racketEd
  18260. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18261. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18262. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18263. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18264. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18265. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18266. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18267. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18268. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18269. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18270. \node (F1-4) at (4,0) {\large \LangAnyAlloc{}};
  18271. \node (F1-5) at (8,0) {\large \LangAnyAlloc{}};
  18272. \node (F1-6) at (12,0) {\large \LangAnyAlloc{}};
  18273. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18274. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18275. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  18276. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  18277. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18278. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18279. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  18280. \path[->,bend left=15] (Lfun) edge [above] node
  18281. {\ttfamily\footnotesize shrink} (Lfun-2);
  18282. \path[->,bend left=15] (Lfun-2) edge [above] node
  18283. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18284. \path[->,bend left=15] (Lfun-3) edge [above] node
  18285. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18286. \path[->,bend left=15] (Lfun-4) edge [left] node
  18287. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18288. \path[->,bend left=15] (Lfun-5) edge [below] node
  18289. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18290. \path[->,bend left=15] (Lfun-6) edge [below] node
  18291. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18292. \path[->,bend right=15] (Lfun-7) edge [above] node
  18293. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18294. \path[->,bend right=15] (F1-2) edge [right] node
  18295. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18296. \path[->,bend right=15] (F1-3) edge [below] node
  18297. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  18298. \path[->,bend right=15] (F1-4) edge [below] node
  18299. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  18300. \path[->,bend left=15] (F1-5) edge [above] node
  18301. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18302. \path[->,bend left=10] (F1-6) edge [below] node
  18303. {\ttfamily\footnotesize \ \ \ \ \ explicate\_control} (C3-2);
  18304. \path[->,bend left=15] (C3-2) edge [right] node
  18305. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18306. \path[->,bend right=15] (x86-2) edge [right] node
  18307. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  18308. \path[->,bend right=15] (x86-2-1) edge [below] node
  18309. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  18310. \path[->,bend right=15] (x86-2-2) edge [right] node
  18311. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  18312. \path[->,bend left=15] (x86-3) edge [above] node
  18313. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18314. \path[->,bend left=15] (x86-4) edge [right] node
  18315. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18316. \end{tikzpicture}
  18317. \fi}
  18318. {\if\edition\pythonEd\pythonColor
  18319. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18320. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18321. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18322. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18323. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18324. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18325. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18326. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18327. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18328. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18329. \node (F1-5) at (4,0) {\large \LangAnyAlloc{}};
  18330. \node (F1-6) at (8,0) {\large \LangAnyAlloc{}};
  18331. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18332. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18333. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18334. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18335. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  18336. \path[->,bend left=15] (Lfun) edge [above] node
  18337. {\ttfamily\footnotesize shrink} (Lfun-2);
  18338. \path[->,bend left=15] (Lfun-2) edge [above] node
  18339. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18340. \path[->,bend left=15] (Lfun-3) edge [above] node
  18341. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18342. \path[->,bend left=15] (Lfun-4) edge [left] node
  18343. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18344. \path[->,bend left=15] (Lfun-5) edge [below] node
  18345. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18346. \path[->,bend right=15] (Lfun-6) edge [above] node
  18347. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18348. \path[->,bend right=15] (Lfun-7) edge [above] node
  18349. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18350. \path[->,bend right=15] (F1-2) edge [right] node
  18351. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18352. \path[->,bend right=15] (F1-3) edge [below] node
  18353. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  18354. \path[->,bend left=15] (F1-5) edge [above] node
  18355. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18356. \path[->,bend left=10] (F1-6) edge [below] node
  18357. {\ttfamily\footnotesize \ \ \ \ \ \ \ \ explicate\_control} (C3-2);
  18358. \path[->,bend right=15] (C3-2) edge [right] node
  18359. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18360. \path[->,bend right=15] (x86-2) edge [below] node
  18361. {\ttfamily\footnotesize assign\_homes} (x86-3);
  18362. \path[->,bend right=15] (x86-3) edge [below] node
  18363. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18364. \path[->,bend left=15] (x86-4) edge [above] node
  18365. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18366. \end{tikzpicture}
  18367. \fi}
  18368. \end{tcolorbox}
  18369. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  18370. \label{fig:Ldyn-passes}
  18371. \end{figure}
  18372. Figure~\ref{fig:Ldyn-passes} provides an overview of the passes needed
  18373. for the compilation of \LangDyn{}.
  18374. % Further Reading
  18375. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18376. %% {\if\edition\pythonEd\pythonColor
  18377. %% \chapter{Objects}
  18378. %% \label{ch:Lobject}
  18379. %% \index{subject}{objects}
  18380. %% \index{subject}{classes}
  18381. %% \setcounter{footnote}{0}
  18382. %% \fi}
  18383. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18384. \chapter{Gradual Typing}
  18385. \label{ch:Lgrad}
  18386. \index{subject}{gradual typing}
  18387. \setcounter{footnote}{0}
  18388. This chapter studies the language \LangGrad{}, in which the programmer
  18389. can choose between static and dynamic type checking in different parts
  18390. of a program, thereby mixing the statically typed \LangLam{} language
  18391. with the dynamically typed \LangDyn{}. There are several approaches to
  18392. mixing static and dynamic typing, including multilanguage
  18393. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  18394. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  18395. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  18396. programmer controls the amount of static versus dynamic checking by
  18397. adding or removing type annotations on parameters and
  18398. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  18399. The definition of the concrete syntax of \LangGrad{} is shown in
  18400. figure~\ref{fig:Lgrad-concrete-syntax}, and the definition of its
  18401. abstract syntax is shown in figure~\ref{fig:Lgrad-syntax}. The main
  18402. syntactic difference between \LangLam{} and \LangGrad{} is that type
  18403. annotations are optional, which is specified in the grammar using the
  18404. \Param{} and \itm{ret} nonterminals. In the abstract syntax, type
  18405. annotations are not optional, but we use the \CANYTY{} type when a type
  18406. annotation is absent.
  18407. %
  18408. Both the type checker and the interpreter for \LangGrad{} require some
  18409. interesting changes to enable gradual typing, which we discuss in the
  18410. next two sections.
  18411. \newcommand{\LgradGrammarRacket}{
  18412. \begin{array}{lcl}
  18413. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18414. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18415. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  18416. \Exp &::=& \LP\Exp \; \Exp \ldots\RP
  18417. \MID \CGLAMBDA{\LP\Param\ldots\RP}{\itm{ret}}{\Exp} \\
  18418. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  18419. \Def &::=& \CGDEF{\Var}{\Param\ldots}{\itm{ret}}{\Exp}
  18420. \end{array}
  18421. }
  18422. \newcommand{\LgradASTRacket}{
  18423. \begin{array}{lcl}
  18424. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18425. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18426. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  18427. \MID \LAMBDA{\LP\Param\ldots\RP}{\Type}{\Exp} \\
  18428. \itm{op} &::=& \code{procedure-arity} \\
  18429. \Def &::=& \FUNDEF{\Var}{\LP\Param\ldots\RP}{\Type}{\code{'()}}{\Exp}
  18430. \end{array}
  18431. }
  18432. \newcommand{\LgradGrammarPython}{
  18433. \begin{array}{lcl}
  18434. \Type &::=& \key{Any}
  18435. \MID \key{int}
  18436. \MID \key{bool}
  18437. \MID \key{tuple}\LS \Type \code{, } \ldots \RS
  18438. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  18439. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  18440. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}
  18441. \MID \CARITY{\Exp} \\
  18442. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp} \MID \CRETURN{\Exp} \\
  18443. \Param &::=& \Var \MID \Var \key{:} \Type \\
  18444. \itm{ret} &::=& \epsilon \MID \key{->}~\Type \\
  18445. \Def &::=& \CGDEF{\Var}{\Param\key{, }\ldots}{\itm{ret}}{\Stmt^{+}}
  18446. \end{array}
  18447. }
  18448. \newcommand{\LgradASTPython}{
  18449. \begin{array}{lcl}
  18450. \Type &::=& \key{AnyType()} \MID \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}\\
  18451. &\MID& \key{TupleType}\LP\Type^{*}\RP
  18452. \MID \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  18453. \Exp &::=& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp}\\
  18454. &\MID& \ARITY{\Exp} \\
  18455. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  18456. \MID \RETURN{\Exp} \\
  18457. \Param &::=& \LP\Var\key{,}\Type\RP \\
  18458. \Def &::=& \FUNDEF{\Var}{\Param^{*}}{\Type}{}{\Stmt^{+}}
  18459. \end{array}
  18460. }
  18461. \begin{figure}[tp]
  18462. \centering
  18463. \begin{tcolorbox}[colback=white]
  18464. \small
  18465. {\if\edition\racketEd
  18466. \[
  18467. \begin{array}{l}
  18468. \gray{\LintGrammarRacket{}} \\ \hline
  18469. \gray{\LvarGrammarRacket{}} \\ \hline
  18470. \gray{\LifGrammarRacket{}} \\ \hline
  18471. \gray{\LwhileGrammarRacket} \\ \hline
  18472. \gray{\LtupGrammarRacket} \\ \hline
  18473. \LgradGrammarRacket \\
  18474. \begin{array}{lcl}
  18475. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  18476. \end{array}
  18477. \end{array}
  18478. \]
  18479. \fi}
  18480. {\if\edition\pythonEd\pythonColor
  18481. \[
  18482. \begin{array}{l}
  18483. \gray{\LintGrammarPython{}} \\ \hline
  18484. \gray{\LvarGrammarPython{}} \\ \hline
  18485. \gray{\LifGrammarPython{}} \\ \hline
  18486. \gray{\LwhileGrammarPython} \\ \hline
  18487. \gray{\LtupGrammarPython} \\ \hline
  18488. \LgradGrammarPython \\
  18489. \begin{array}{lcl}
  18490. \LangGradM{} &::=& \Def\ldots \Stmt\ldots
  18491. \end{array}
  18492. \end{array}
  18493. \]
  18494. \fi}
  18495. \end{tcolorbox}
  18496. \caption{The concrete syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  18497. \label{fig:Lgrad-concrete-syntax}
  18498. \end{figure}
  18499. \begin{figure}[tp]
  18500. \centering
  18501. \begin{tcolorbox}[colback=white]
  18502. \small
  18503. {\if\edition\racketEd
  18504. \[
  18505. \begin{array}{l}
  18506. \gray{\LintOpAST} \\ \hline
  18507. \gray{\LvarASTRacket{}} \\ \hline
  18508. \gray{\LifASTRacket{}} \\ \hline
  18509. \gray{\LwhileASTRacket{}} \\ \hline
  18510. \gray{\LtupASTRacket{}} \\ \hline
  18511. \LgradASTRacket \\
  18512. \begin{array}{lcl}
  18513. \LangGradM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  18514. \end{array}
  18515. \end{array}
  18516. \]
  18517. \fi}
  18518. {\if\edition\pythonEd\pythonColor
  18519. \[
  18520. \begin{array}{l}
  18521. \gray{\LintASTPython{}} \\ \hline
  18522. \gray{\LvarASTPython{}} \\ \hline
  18523. \gray{\LifASTPython{}} \\ \hline
  18524. \gray{\LwhileASTPython} \\ \hline
  18525. \gray{\LtupASTPython} \\ \hline
  18526. \LgradASTPython \\
  18527. \begin{array}{lcl}
  18528. \LangGradM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  18529. \end{array}
  18530. \end{array}
  18531. \]
  18532. \fi}
  18533. \end{tcolorbox}
  18534. \caption{The abstract syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  18535. \label{fig:Lgrad-syntax}
  18536. \end{figure}
  18537. % TODO: more road map -Jeremy
  18538. %\clearpage
  18539. \section{Type Checking \LangGrad{}}
  18540. \label{sec:gradual-type-check}
  18541. We begin by discussing the type checking of a partially typed variant
  18542. of the \code{map} example from chapter~\ref{ch:Lfun}, shown in
  18543. figure~\ref{fig:gradual-map}. The \code{map} function itself is
  18544. statically typed, so there is nothing special happening there with
  18545. respect to type checking. On the other hand, the \code{inc} function
  18546. does not have type annotations, so the type checker assigns the type
  18547. \CANYTY{} to parameter \code{x} and the return type. Now consider the
  18548. \code{+} operator inside \code{inc}. It expects both arguments to have
  18549. type \INTTY{}, but its first argument \code{x} has type \CANYTY{}. In
  18550. a gradually typed language, such differences are allowed so long as
  18551. the types are \emph{consistent}; that is, they are equal except in
  18552. places where there is an \CANYTY{} type. That is, the type \CANYTY{}
  18553. is consistent with every other type. Figure~\ref{fig:consistent}
  18554. shows the definition of the
  18555. \racket{\code{consistent?}}\python{\code{consistent}} method.
  18556. %
  18557. So the type checker allows the \code{+} operator to be applied
  18558. to \code{x} because \CANYTY{} is consistent with \INTTY{}.
  18559. %
  18560. Next consider the call to the \code{map} function shown in
  18561. figure~\ref{fig:gradual-map} with the arguments \code{inc} and a
  18562. tuple. The \code{inc} function has type
  18563. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}},
  18564. but parameter \code{f} of \code{map} has type
  18565. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18566. The type checker for \LangGrad{} accepts this call because the two types are
  18567. consistent.
  18568. \begin{figure}[btp]
  18569. % gradual_test_9.rkt
  18570. \begin{tcolorbox}[colback=white]
  18571. {\if\edition\racketEd
  18572. \begin{lstlisting}
  18573. (define (map [f : (Integer -> Integer)]
  18574. [v : (Vector Integer Integer)])
  18575. : (Vector Integer Integer)
  18576. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18577. (define (inc x) (+ x 1))
  18578. (vector-ref (map inc (vector 0 41)) 1)
  18579. \end{lstlisting}
  18580. \fi}
  18581. {\if\edition\pythonEd\pythonColor
  18582. \begin{lstlisting}
  18583. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18584. return f(v[0]), f(v[1])
  18585. def inc(x):
  18586. return x + 1
  18587. t = map(inc, (0, 41))
  18588. print(t[1])
  18589. \end{lstlisting}
  18590. \fi}
  18591. \end{tcolorbox}
  18592. \caption{A partially typed version of the \code{map} example.}
  18593. \label{fig:gradual-map}
  18594. \end{figure}
  18595. \begin{figure}[tbp]
  18596. \begin{tcolorbox}[colback=white]
  18597. {\if\edition\racketEd
  18598. \begin{lstlisting}
  18599. (define/public (consistent? t1 t2)
  18600. (match* (t1 t2)
  18601. [('Integer 'Integer) #t]
  18602. [('Boolean 'Boolean) #t]
  18603. [('Void 'Void) #t]
  18604. [('Any t2) #t]
  18605. [(t1 'Any) #t]
  18606. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  18607. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  18608. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  18609. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  18610. (consistent? rt1 rt2))]
  18611. [(other wise) #f]))
  18612. \end{lstlisting}
  18613. \fi}
  18614. {\if\edition\pythonEd\pythonColor
  18615. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18616. def consistent(self, t1, t2):
  18617. match (t1, t2):
  18618. case (AnyType(), _):
  18619. return True
  18620. case (_, AnyType()):
  18621. return True
  18622. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  18623. return all(map(self.consistent, ps1, ps2)) and consistent(rt1, rt2)
  18624. case (TupleType(ts1), TupleType(ts2)):
  18625. return all(map(self.consistent, ts1, ts2))
  18626. case (_, _):
  18627. return t1 == t2
  18628. \end{lstlisting}
  18629. \fi}
  18630. \end{tcolorbox}
  18631. \caption{The consistency method on types.}
  18632. \label{fig:consistent}
  18633. \end{figure}
  18634. It is also helpful to consider how gradual typing handles programs with an
  18635. error, such as applying \code{map} to a function that sometimes
  18636. returns a Boolean, as shown in figure~\ref{fig:map-maybe_inc}. The
  18637. type checker for \LangGrad{} accepts this program because the type of
  18638. \code{maybe\_inc} is consistent with the type of parameter \code{f} of
  18639. \code{map}; that is,
  18640. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}}
  18641. is consistent with
  18642. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18643. One might say that a gradual type checker is optimistic in that it
  18644. accepts programs that might execute without a runtime type error.
  18645. %
  18646. The definition of the type checker for \LangGrad{} is shown in
  18647. figures~\ref{fig:type-check-Lgradual-1}, \ref{fig:type-check-Lgradual-2},
  18648. and \ref{fig:type-check-Lgradual-3}.
  18649. %% \begin{figure}[tp]
  18650. %% \centering
  18651. %% \fbox{
  18652. %% \begin{minipage}{0.96\textwidth}
  18653. %% \small
  18654. %% \[
  18655. %% \begin{array}{lcl}
  18656. %% \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  18657. %% \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  18658. %% \end{array}
  18659. %% \]
  18660. %% \end{minipage}
  18661. %% }
  18662. %% \caption{The abstract syntax of \LangCast{}, extending \LangLam{} (figure~\ref{fig:Lwhile-syntax}).}
  18663. %% \label{fig:Lgrad-prime-syntax}
  18664. %% \end{figure}
  18665. \begin{figure}[tbp]
  18666. \begin{tcolorbox}[colback=white]
  18667. {\if\edition\racketEd
  18668. \begin{lstlisting}
  18669. (define (map [f : (Integer -> Integer)]
  18670. [v : (Vector Integer Integer)])
  18671. : (Vector Integer Integer)
  18672. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18673. (define (inc x) (+ x 1))
  18674. (define (true) #t)
  18675. (define (maybe_inc x) (if (eq? 0 (read)) (inc x) (true)))
  18676. (vector-ref (map maybe_inc (vector 0 41)) 0)
  18677. \end{lstlisting}
  18678. \fi}
  18679. {\if\edition\pythonEd\pythonColor
  18680. \begin{lstlisting}
  18681. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18682. return f(v[0]), f(v[1])
  18683. def inc(x):
  18684. return x + 1
  18685. def true():
  18686. return True
  18687. def maybe_inc(x):
  18688. return inc(x) if input_int() == 0 else true()
  18689. t = map(maybe_inc, (0, 41))
  18690. print( t[1] )
  18691. \end{lstlisting}
  18692. \fi}
  18693. \end{tcolorbox}
  18694. \caption{A variant of the \code{map} example with an error.}
  18695. \label{fig:map-maybe_inc}
  18696. \end{figure}
  18697. Running this program with input \code{1} triggers an
  18698. error when the \code{maybe\_inc} function returns
  18699. \racket{\code{\#t}}\python{\code{True}}. The \LangGrad{} language
  18700. performs checking at runtime to ensure the integrity of the static
  18701. types, such as the
  18702. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}
  18703. annotation on
  18704. parameter \code{f} of \code{map}.
  18705. Here we give a preview of how the runtime checking is accomplished;
  18706. the following sections provide the details.
  18707. The runtime checking is carried out by a new \code{Cast} AST node that
  18708. is generated in a new pass named \code{cast\_insert}. The output of
  18709. \code{cast\_insert} is a program in the \LangCast{} language, which
  18710. simply adds \code{Cast} and \CANYTY{} to \LangLam{}.
  18711. %
  18712. Figure~\ref{fig:map-cast} shows the output of \code{cast\_insert} for
  18713. \code{map} and \code{maybe\_inc}. The idea is that \code{Cast} is
  18714. inserted every time the type checker encounters two types that are
  18715. consistent but not equal. In the \code{inc} function, \code{x} is
  18716. cast to \INTTY{} and the result of the \code{+} is cast to
  18717. \CANYTY{}. In the call to \code{map}, the \code{inc} argument
  18718. is cast from
  18719. \racket{\code{(Any -> Any)}}
  18720. \python{\code{Callable[[Any], Any]}}
  18721. to
  18722. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18723. %
  18724. In the next section we see how to interpret the \code{Cast} node.
  18725. \begin{figure}[btp]
  18726. \begin{tcolorbox}[colback=white]
  18727. {\if\edition\racketEd
  18728. \begin{lstlisting}
  18729. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  18730. : (Vector Integer Integer)
  18731. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18732. (define (inc [x : Any]) : Any
  18733. (cast (+ (cast x Any Integer) 1) Integer Any))
  18734. (define (true) : Any (cast #t Boolean Any))
  18735. (define (maybe_inc [x : Any]) : Any
  18736. (if (eq? 0 (read)) (inc x) (true)))
  18737. (vector-ref (map (cast maybe_inc (Any -> Any) (Integer -> Integer))
  18738. (vector 0 41)) 0)
  18739. \end{lstlisting}
  18740. \fi}
  18741. {\if\edition\pythonEd\pythonColor
  18742. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18743. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18744. return f(v[0]), f(v[1])
  18745. def inc(x : Any) -> Any:
  18746. return Cast(Cast(x, Any, int) + 1, int, Any)
  18747. def true() -> Any:
  18748. return Cast(True, bool, Any)
  18749. def maybe_inc(x : Any) -> Any:
  18750. return inc(x) if input_int() == 0 else true()
  18751. t = map(Cast(maybe_inc, Callable[[Any], Any], Callable[[int], int]),
  18752. (0, 41))
  18753. print(t[1])
  18754. \end{lstlisting}
  18755. \fi}
  18756. \end{tcolorbox}
  18757. \caption{Output of the \code{cast\_insert} pass for the \code{map}
  18758. and \code{maybe\_inc} example.}
  18759. \label{fig:map-cast}
  18760. \end{figure}
  18761. {\if\edition\pythonEd\pythonColor
  18762. \begin{figure}[tbp]
  18763. \begin{tcolorbox}[colback=white]
  18764. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18765. class TypeCheckLgrad(TypeCheckLlambda):
  18766. def type_check_exp(self, e, env) -> Type:
  18767. match e:
  18768. case Name(id):
  18769. return env[id]
  18770. case Constant(value) if isinstance(value, bool):
  18771. return BoolType()
  18772. case Constant(value) if isinstance(value, int):
  18773. return IntType()
  18774. case Call(Name('input_int'), []):
  18775. return IntType()
  18776. case BinOp(left, op, right):
  18777. left_type = self.type_check_exp(left, env)
  18778. self.check_consistent(left_type, IntType(), left)
  18779. right_type = self.type_check_exp(right, env)
  18780. self.check_consistent(right_type, IntType(), right)
  18781. return IntType()
  18782. case IfExp(test, body, orelse):
  18783. test_t = self.type_check_exp(test, env)
  18784. self.check_consistent(test_t, BoolType(), test)
  18785. body_t = self.type_check_exp(body, env)
  18786. orelse_t = self.type_check_exp(orelse, env)
  18787. self.check_consistent(body_t, orelse_t, e)
  18788. return self.join_types(body_t, orelse_t)
  18789. case Call(func, args):
  18790. func_t = self.type_check_exp(func, env)
  18791. args_t = [self.type_check_exp(arg, env) for arg in args]
  18792. match func_t:
  18793. case FunctionType(params_t, return_t) if len(params_t) == len(args_t):
  18794. for (arg_t, param_t) in zip(args_t, params_t):
  18795. self.check_consistent(param_t, arg_t, e)
  18796. return return_t
  18797. case AnyType():
  18798. return AnyType()
  18799. case _:
  18800. raise Exception('type_check_exp: in call, unexpected ' + repr(func_t))
  18801. ...
  18802. case _:
  18803. raise Exception('type_check_exp: unexpected ' + repr(e))
  18804. \end{lstlisting}
  18805. \end{tcolorbox}
  18806. \caption{Type checking expressions in the \LangGrad{} language.}
  18807. \label{fig:type-check-Lgradual-1}
  18808. \end{figure}
  18809. \begin{figure}[tbp]
  18810. \begin{tcolorbox}[colback=white]
  18811. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18812. def check_exp(self, e, expected_ty, env):
  18813. match e:
  18814. case Lambda(params, body):
  18815. match expected_ty:
  18816. case FunctionType(params_t, return_t):
  18817. new_env = env.copy().update(zip(params, params_t))
  18818. e.has_type = expected_ty
  18819. body_ty = self.type_check_exp(body, new_env)
  18820. self.check_consistent(body_ty, return_t)
  18821. case AnyType():
  18822. new_env = env.copy().update((p, AnyType()) for p in params)
  18823. e.has_type = FunctionType([AnyType() for _ in params], AnyType())
  18824. body_ty = self.type_check_exp(body, new_env)
  18825. case _:
  18826. raise Exception('lambda does not have type ' + str(expected_ty))
  18827. case _:
  18828. e_ty = self.type_check_exp(e, env)
  18829. self.check_consistent(e_ty, expected_ty, e)
  18830. \end{lstlisting}
  18831. \end{tcolorbox}
  18832. \caption{Checking expressions with respect to a type in the \LangGrad{} language.}
  18833. \label{fig:type-check-Lgradual-2}
  18834. \end{figure}
  18835. \begin{figure}[tbp]
  18836. \begin{tcolorbox}[colback=white]
  18837. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18838. def type_check_stmt(self, s, env, return_type):
  18839. match s:
  18840. case Assign([Name(id)], value):
  18841. value_ty = self.type_check_exp(value, env)
  18842. if id in env:
  18843. self.check_consistent(env[id], value_ty, value)
  18844. else:
  18845. env[id] = value_ty
  18846. ...
  18847. case _:
  18848. raise Exception('type_check_stmts: unexpected ' + repr(ss))
  18849. def type_check_stmts(self, ss, env, return_type):
  18850. for s in ss:
  18851. self.type_check_stmt(s, env, return_type)
  18852. \end{lstlisting}
  18853. \end{tcolorbox}
  18854. \caption{Type checking statements in the \LangGrad{} language.}
  18855. \label{fig:type-check-Lgradual-3}
  18856. \end{figure}
  18857. \begin{figure}[tbp]
  18858. \begin{tcolorbox}[colback=white]
  18859. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  18860. def join_types(self, t1, t2):
  18861. match (t1, t2):
  18862. case (AnyType(), _):
  18863. return t2
  18864. case (_, AnyType()):
  18865. return t1
  18866. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  18867. return FunctionType(list(map(self.join_types, ps1, ps2)),
  18868. self.join_types(rt1,rt2))
  18869. case (TupleType(ts1), TupleType(ts2)):
  18870. return TupleType(list(map(self.join_types, ts1, ts2)))
  18871. case (_, _):
  18872. return t1
  18873. def check_consistent(self, t1, t2, e):
  18874. if not self.consistent(t1, t2):
  18875. raise Exception('error: ' + repr(t1) + ' inconsistent with ' + repr(t2) \
  18876. + ' in ' + repr(e))
  18877. \end{lstlisting}
  18878. \end{tcolorbox}
  18879. \caption{Auxiliary methods for type checking \LangGrad{}.}
  18880. \label{fig:type-check-Lgradual-aux}
  18881. \end{figure}
  18882. \fi}
  18883. {\if\edition\racketEd
  18884. \begin{figure}[tbp]
  18885. \begin{tcolorbox}[colback=white]
  18886. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18887. (define/override (type-check-exp env)
  18888. (lambda (e)
  18889. (define recur (type-check-exp env))
  18890. (match e
  18891. [(Prim op es) #:when (not (set-member? explicit-prim-ops op))
  18892. (define-values (new-es ts)
  18893. (for/lists (exprs types) ([e es])
  18894. (recur e)))
  18895. (define t-ret (type-check-op op ts e))
  18896. (values (Prim op new-es) t-ret)]
  18897. [(Prim 'eq? (list e1 e2))
  18898. (define-values (e1^ t1) (recur e1))
  18899. (define-values (e2^ t2) (recur e2))
  18900. (check-consistent? t1 t2 e)
  18901. (define T (meet t1 t2))
  18902. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  18903. [(Prim 'and (list e1 e2))
  18904. (recur (If e1 e2 (Bool #f)))]
  18905. [(Prim 'or (list e1 e2))
  18906. (define tmp (gensym 'tmp))
  18907. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  18908. [(If e1 e2 e3)
  18909. (define-values (e1^ T1) (recur e1))
  18910. (define-values (e2^ T2) (recur e2))
  18911. (define-values (e3^ T3) (recur e3))
  18912. (check-consistent? T1 'Boolean e)
  18913. (check-consistent? T2 T3 e)
  18914. (define Tif (meet T2 T3))
  18915. (values (If e1^ e2^ e3^) Tif)]
  18916. [(SetBang x e1)
  18917. (define-values (e1^ T1) (recur e1))
  18918. (define varT (dict-ref env x))
  18919. (check-consistent? T1 varT e)
  18920. (values (SetBang x e1^) 'Void)]
  18921. [(WhileLoop e1 e2)
  18922. (define-values (e1^ T1) (recur e1))
  18923. (check-consistent? T1 'Boolean e)
  18924. (define-values (e2^ T2) ((type-check-exp env) e2))
  18925. (values (WhileLoop e1^ e2^) 'Void)]
  18926. [(Prim 'vector-length (list e1))
  18927. (define-values (e1^ t) (recur e1))
  18928. (match t
  18929. [`(Vector ,ts ...)
  18930. (values (Prim 'vector-length (list e1^)) 'Integer)]
  18931. ['Any (values (Prim 'vector-length (list e1^)) 'Integer)])]
  18932. \end{lstlisting}
  18933. \end{tcolorbox}
  18934. \caption{Type checker for the \LangGrad{} language, part 1.}
  18935. \label{fig:type-check-Lgradual-1}
  18936. \end{figure}
  18937. \begin{figure}[tbp]
  18938. \begin{tcolorbox}[colback=white]
  18939. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18940. [(Prim 'vector-ref (list e1 e2))
  18941. (define-values (e1^ t1) (recur e1))
  18942. (define-values (e2^ t2) (recur e2))
  18943. (check-consistent? t2 'Integer e)
  18944. (match t1
  18945. [`(Vector ,ts ...)
  18946. (match e2^
  18947. [(Int i)
  18948. (unless (and (0 . <= . i) (i . < . (length ts)))
  18949. (error 'type-check "invalid index ~a in ~a" i e))
  18950. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  18951. [else (values (Prim 'vector-ref (list e1^ e2^)) 'Any)])]
  18952. ['Any (values (Prim 'vector-ref (list e1^ e2^)) 'Any)]
  18953. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  18954. [(Prim 'vector-set! (list e1 e2 e3) )
  18955. (define-values (e1^ t1) (recur e1))
  18956. (define-values (e2^ t2) (recur e2))
  18957. (define-values (e3^ t3) (recur e3))
  18958. (check-consistent? t2 'Integer e)
  18959. (match t1
  18960. [`(Vector ,ts ...)
  18961. (match e2^
  18962. [(Int i)
  18963. (unless (and (0 . <= . i) (i . < . (length ts)))
  18964. (error 'type-check "invalid index ~a in ~a" i e))
  18965. (check-consistent? (list-ref ts i) t3 e)
  18966. (values (Prim 'vector-set! (list e1^ (Int i) e3^)) 'Void)]
  18967. [else (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)])]
  18968. ['Any (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)]
  18969. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  18970. [(Apply e1 e2s)
  18971. (define-values (e1^ T1) (recur e1))
  18972. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  18973. (match T1
  18974. [`(,T1ps ... -> ,T1rt)
  18975. (for ([T2 T2s] [Tp T1ps])
  18976. (check-consistent? T2 Tp e))
  18977. (values (Apply e1^ e2s^) T1rt)]
  18978. [`Any (values (Apply e1^ e2s^) 'Any)]
  18979. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  18980. [(Lambda params Tr e1)
  18981. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  18982. (match p
  18983. [`[,x : ,T] (values x T)]
  18984. [(? symbol? x) (values x 'Any)])))
  18985. (define-values (e1^ T1)
  18986. ((type-check-exp (append (map cons xs Ts) env)) e1))
  18987. (check-consistent? Tr T1 e)
  18988. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr e1^)
  18989. `(,@Ts -> ,Tr))]
  18990. [else ((super type-check-exp env) e)]
  18991. )))
  18992. \end{lstlisting}
  18993. \end{tcolorbox}
  18994. \caption{Type checker for the \LangGrad{} language, part 2.}
  18995. \label{fig:type-check-Lgradual-2}
  18996. \end{figure}
  18997. \begin{figure}[tbp]
  18998. \begin{tcolorbox}[colback=white]
  18999. \begin{lstlisting}
  19000. (define/override (type-check-def env)
  19001. (lambda (e)
  19002. (match e
  19003. [(Def f params rt info body)
  19004. (define-values (xs ps) (for/lists (l1 l2) ([p params])
  19005. (match p
  19006. [`[,x : ,T] (values x T)]
  19007. [(? symbol? x) (values x 'Any)])))
  19008. (define new-env (append (map cons xs ps) env))
  19009. (define-values (body^ ty^) ((type-check-exp new-env) body))
  19010. (check-consistent? ty^ rt e)
  19011. (Def f (for/list ([x xs] [T ps]) `[,x : ,T]) rt info body^)]
  19012. [else (error 'type-check "ill-formed function definition ~a" e)]
  19013. )))
  19014. (define/override (type-check-program e)
  19015. (match e
  19016. [(Program info body)
  19017. (define-values (body^ ty) ((type-check-exp '()) body))
  19018. (check-consistent? ty 'Integer e)
  19019. (ProgramDefsExp info '() body^)]
  19020. [(ProgramDefsExp info ds body)
  19021. (define new-env (for/list ([d ds])
  19022. (cons (Def-name d) (fun-def-type d))))
  19023. (define ds^ (for/list ([d ds])
  19024. ((type-check-def new-env) d)))
  19025. (define-values (body^ ty) ((type-check-exp new-env) body))
  19026. (check-consistent? ty 'Integer e)
  19027. (ProgramDefsExp info ds^ body^)]
  19028. [else (super type-check-program e)]))
  19029. \end{lstlisting}
  19030. \end{tcolorbox}
  19031. \caption{Type checker for the \LangGrad{} language, part 3.}
  19032. \label{fig:type-check-Lgradual-3}
  19033. \end{figure}
  19034. \begin{figure}[tbp]
  19035. \begin{tcolorbox}[colback=white]
  19036. \begin{lstlisting}
  19037. (define/public (join t1 t2)
  19038. (match* (t1 t2)
  19039. [('Integer 'Integer) 'Integer]
  19040. [('Boolean 'Boolean) 'Boolean]
  19041. [('Void 'Void) 'Void]
  19042. [('Any t2) t2]
  19043. [(t1 'Any) t1]
  19044. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19045. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  19046. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19047. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  19048. -> ,(join rt1 rt2))]))
  19049. (define/public (meet t1 t2)
  19050. (match* (t1 t2)
  19051. [('Integer 'Integer) 'Integer]
  19052. [('Boolean 'Boolean) 'Boolean]
  19053. [('Void 'Void) 'Void]
  19054. [('Any t2) 'Any]
  19055. [(t1 'Any) 'Any]
  19056. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19057. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  19058. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19059. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  19060. -> ,(meet rt1 rt2))]))
  19061. (define/public (check-consistent? t1 t2 e)
  19062. (unless (consistent? t1 t2)
  19063. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  19064. (define explicit-prim-ops
  19065. (set-union
  19066. (type-predicates)
  19067. (set 'procedure-arity 'eq? 'not 'and 'or
  19068. 'vector 'vector-length 'vector-ref 'vector-set!
  19069. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  19070. (define/override (fun-def-type d)
  19071. (match d
  19072. [(Def f params rt info body)
  19073. (define ps
  19074. (for/list ([p params])
  19075. (match p
  19076. [`[,x : ,T] T]
  19077. [(? symbol?) 'Any]
  19078. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  19079. `(,@ps -> ,rt)]
  19080. [else (error 'fun-def-type "ill-formed definition in ~a" d)]))
  19081. \end{lstlisting}
  19082. \end{tcolorbox}
  19083. \caption{Auxiliary functions for type checking \LangGrad{}.}
  19084. \label{fig:type-check-Lgradual-aux}
  19085. \end{figure}
  19086. \fi}
  19087. \clearpage
  19088. \section{Interpreting \LangCast{}}
  19089. \label{sec:interp-casts}
  19090. The runtime behavior of casts involving simple types such as
  19091. \INTTY{} and \BOOLTY{} is straightforward. For example, a
  19092. cast from \INTTY{} to \CANYTY{} can be accomplished with the
  19093. \code{Inject} operator of \LangAny{}, which puts the integer into a
  19094. tagged value (figure~\ref{fig:interp-Lany}). Similarly, a cast from
  19095. \CANYTY{} to \INTTY{} is accomplished with the \code{Project}
  19096. operator, by checking the value's tag and either retrieving
  19097. the underlying integer or signaling an error if the tag is not the
  19098. one for integers (figure~\ref{fig:interp-Lany-aux}).
  19099. %
  19100. Things get more interesting with casts involving
  19101. \racket{function and tuple types}\python{function, tuple, and array types}.
  19102. Consider the cast of the function \code{maybe\_inc} from
  19103. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any], Any]}}
  19104. to
  19105. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int], int]}}
  19106. shown in figure~\ref{fig:map-maybe_inc}.
  19107. When the \code{maybe\_inc} function flows through
  19108. this cast at runtime, we don't know whether it will return
  19109. an integer, because that depends on the input from the user.
  19110. The \LangCast{} interpreter therefore delays the checking
  19111. of the cast until the function is applied. To do so it
  19112. wraps \code{maybe\_inc} in a new function that casts its parameter
  19113. from \INTTY{} to \CANYTY{}, applies \code{maybe\_inc}, and then
  19114. casts the return value from \CANYTY{} to \INTTY{}.
  19115. {\if\edition\pythonEd\pythonColor
  19116. %
  19117. There are further complications regarding casts on mutable data
  19118. such as the \code{list} type introduced in
  19119. the challenge assignment of section~\ref{sec:arrays}.
  19120. %
  19121. \fi}
  19122. %
  19123. Consider the example presented in figure~\ref{fig:map-bang} that
  19124. defines a partially typed version of \code{map} whose parameter
  19125. \code{v} has type
  19126. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}
  19127. and that updates \code{v} in place
  19128. instead of returning a new tuple. We name this function
  19129. \code{map\_inplace}. We apply \code{map\_inplace} to
  19130. \racket{a tuple}\python{an array} of integers, so the type checker
  19131. inserts a cast from
  19132. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}}
  19133. to
  19134. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}.
  19135. A naive way for the \LangCast{} interpreter to cast between
  19136. \racket{tuple}\python{array} types would be to build a new
  19137. \racket{tuple}\python{array} whose elements are the result
  19138. of casting each of the original elements to the appropriate target
  19139. type. However, this approach is not valid for mutable data structures.
  19140. In the example of figure~\ref{fig:map-bang},
  19141. if the cast created a new \racket{tuple}\python{array}, then the updates inside
  19142. \code{map\_inplace} would happen to the new \racket{tuple}\python{array} and not
  19143. the original one.
  19144. \begin{figure}[tbp]
  19145. \begin{tcolorbox}[colback=white]
  19146. % gradual_test_11.rkt
  19147. {\if\edition\racketEd
  19148. \begin{lstlisting}
  19149. (define (map_inplace [f : (Any -> Any)]
  19150. [v : (Vector Any Any)]) : Void
  19151. (begin
  19152. (vector-set! v 0 (f (vector-ref v 0)))
  19153. (vector-set! v 1 (f (vector-ref v 1)))))
  19154. (define (inc x) (+ x 1))
  19155. (let ([v (vector 0 41)])
  19156. (begin (map_inplace inc v) (vector-ref v 1)))
  19157. \end{lstlisting}
  19158. \fi}
  19159. {\if\edition\pythonEd\pythonColor
  19160. \begin{lstlisting}
  19161. def map_inplace(f : Callable[[int], int], v : list[Any]) -> None:
  19162. i = 0
  19163. while i != len(v):
  19164. v[i] = f(v[i])
  19165. i = i + 1
  19166. def inc(x : int) -> int:
  19167. return x + 1
  19168. v = [0, 41]
  19169. map_inplace(inc, v)
  19170. print( v[1] )
  19171. \end{lstlisting}
  19172. \fi}
  19173. \end{tcolorbox}
  19174. \caption{An example involving casts on arrays.}
  19175. \label{fig:map-bang}
  19176. \end{figure}
  19177. Instead the interpreter needs to create a new kind of value, a
  19178. \emph{proxy}, that intercepts every \racket{tuple}\python{array} operation.
  19179. On a read, the proxy reads from the underlying \racket{tuple}\python{array}
  19180. and then applies a
  19181. cast to the resulting value. On a write, the proxy casts the argument
  19182. value and then performs the write to the underlying \racket{tuple}\python{array}.
  19183. \racket{
  19184. For the first \code{(vector-ref v 0)} in \code{map\_inplace}, the proxy casts
  19185. \code{0} from \INTTY{} to \CANYTY{}.
  19186. For the first \code{vector-set!}, the proxy casts a tagged \code{1}
  19187. from \CANYTY{} to \INTTY{}.
  19188. }
  19189. \python{
  19190. For the subscript \code{v[i]} in \code{f(v[i])} of \code{map\_inplace},
  19191. the proxy casts the integer from \INTTY{} to \CANYTY{}.
  19192. For the subscript on the left of the assignment,
  19193. the proxy casts the tagged value from \CANYTY{} to \INTTY{}.
  19194. }
  19195. Finally we consider casts between the \CANYTY{} type and higher-order types
  19196. such as functions and \racket{tuples}\python{lists}. Figure~\ref{fig:map-any}
  19197. shows a variant of \code{map\_inplace} in which parameter \code{v} does not
  19198. have a type annotation, so it is given type \CANYTY{}. In the call to
  19199. \code{map\_inplace}, the \racket{tuple}\python{list} has type
  19200. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}},
  19201. so the type checker inserts a cast to \CANYTY{}. A first thought is to use
  19202. \code{Inject}, but that doesn't work because
  19203. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}} is not
  19204. a flat type. Instead, we must first cast to
  19205. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}, which is flat,
  19206. and then inject to \CANYTY{}.
  19207. \begin{figure}[tbp]
  19208. \begin{tcolorbox}[colback=white]
  19209. {\if\edition\racketEd
  19210. \begin{lstlisting}
  19211. (define (map_inplace [f : (Any -> Any)] v) : Void
  19212. (begin
  19213. (vector-set! v 0 (f (vector-ref v 0)))
  19214. (vector-set! v 1 (f (vector-ref v 1)))))
  19215. (define (inc x) (+ x 1))
  19216. (let ([v (vector 0 41)])
  19217. (begin (map_inplace inc v) (vector-ref v 1)))
  19218. \end{lstlisting}
  19219. \fi}
  19220. {\if\edition\pythonEd\pythonColor
  19221. \begin{lstlisting}
  19222. def map_inplace(f : Callable[[Any], Any], v) -> None:
  19223. i = 0
  19224. while i != len(v):
  19225. v[i] = f(v[i])
  19226. i = i + 1
  19227. def inc(x):
  19228. return x + 1
  19229. v = [0, 41]
  19230. map_inplace(inc, v)
  19231. print( v[1] )
  19232. \end{lstlisting}
  19233. \fi}
  19234. \end{tcolorbox}
  19235. \caption{Casting \racket{a tuple}\python{an array} to \CANYTY{}.}
  19236. \label{fig:map-any}
  19237. \end{figure}
  19238. \begin{figure}[tbp]
  19239. \begin{tcolorbox}[colback=white]
  19240. {\if\edition\racketEd
  19241. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19242. (define/public (apply_cast v s t)
  19243. (match* (s t)
  19244. [(t1 t2) #:when (equal? t1 t2) v]
  19245. [('Any t2)
  19246. (match t2
  19247. [`(,ts ... -> ,rt)
  19248. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19249. (define v^ (apply-project v any->any))
  19250. (apply_cast v^ any->any `(,@ts -> ,rt))]
  19251. [`(Vector ,ts ...)
  19252. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19253. (define v^ (apply-project v vec-any))
  19254. (apply_cast v^ vec-any `(Vector ,@ts))]
  19255. [else (apply-project v t2)])]
  19256. [(t1 'Any)
  19257. (match t1
  19258. [`(,ts ... -> ,rt)
  19259. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19260. (define v^ (apply_cast v `(,@ts -> ,rt) any->any))
  19261. (apply-inject v^ (any-tag any->any))]
  19262. [`(Vector ,ts ...)
  19263. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19264. (define v^ (apply_cast v `(Vector ,@ts) vec-any))
  19265. (apply-inject v^ (any-tag vec-any))]
  19266. [else (apply-inject v (any-tag t1))])]
  19267. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19268. (define x (gensym 'x))
  19269. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  19270. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  19271. (define cast-writes
  19272. (for/list ([t1 ts1] [t2 ts2])
  19273. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  19274. `(vector-proxy ,(vector v (apply vector cast-reads)
  19275. (apply vector cast-writes)))]
  19276. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19277. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  19278. `(function ,xs ,(Cast
  19279. (Apply (Value v)
  19280. (for/list ([x xs][t1 ts1][t2 ts2])
  19281. (Cast (Var x) t2 t1)))
  19282. rt1 rt2) ())]
  19283. ))
  19284. \end{lstlisting}
  19285. \fi}
  19286. {\if\edition\pythonEd\pythonColor
  19287. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19288. def apply_cast(self, value, src, tgt):
  19289. match (src, tgt):
  19290. case (AnyType(), FunctionType(ps2, rt2)):
  19291. anyfun = FunctionType([AnyType() for p in ps2], AnyType())
  19292. return self.apply_cast(self.apply_project(value, anyfun), anyfun, tgt)
  19293. case (AnyType(), TupleType(ts2)):
  19294. anytup = TupleType([AnyType() for t1 in ts2])
  19295. return self.apply_cast(self.apply_project(value, anytup), anytup, tgt)
  19296. case (AnyType(), ListType(t2)):
  19297. anylist = ListType([AnyType() for t1 in ts2])
  19298. return self.apply_cast(self.apply_project(value, anylist), anylist, tgt)
  19299. case (AnyType(), AnyType()):
  19300. return value
  19301. case (AnyType(), _):
  19302. return self.apply_project(value, tgt)
  19303. case (FunctionType(ps1,rt1), AnyType()):
  19304. anyfun = FunctionType([AnyType() for p in ps1], AnyType())
  19305. return self.apply_inject(self.apply_cast(value, src, anyfun), anyfun)
  19306. case (TupleType(ts1), AnyType()):
  19307. anytup = TupleType([AnyType() for t1 in ts1])
  19308. return self.apply_inject(self.apply_cast(value, src, anytup), anytup)
  19309. case (ListType(t1), AnyType()):
  19310. anylist = ListType(AnyType())
  19311. return self.apply_inject(self.apply_cast(value,src,anylist), anylist)
  19312. case (_, AnyType()):
  19313. return self.apply_inject(value, src)
  19314. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19315. params = [generate_name('x') for p in ps2]
  19316. args = [Cast(Name(x), t2, t1)
  19317. for (x,t1,t2) in zip(params, ps1, ps2)]
  19318. body = Cast(Call(ValueExp(value), args), rt1, rt2)
  19319. return Function('cast', params, [Return(body)], {})
  19320. case (TupleType(ts1), TupleType(ts2)):
  19321. x = generate_name('x')
  19322. reads = [Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19323. for (t1,t2) in zip(ts1,ts2)]
  19324. return ProxiedTuple(value, reads)
  19325. case (ListType(t1), ListType(t2)):
  19326. x = generate_name('x')
  19327. read = Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19328. write = Function('cast', [x], [Return(Cast(Name(x), t2, t1))], {})
  19329. return ProxiedList(value, read, write)
  19330. case (t1, t2) if t1 == t2:
  19331. return value
  19332. case (t1, t2):
  19333. raise Exception('apply_cast unexpected ' + repr(src) + ' ' + repr(tgt))
  19334. def apply_inject(self, value, src):
  19335. return Tagged(value, self.type_to_tag(src))
  19336. def apply_project(self, value, tgt):
  19337. match value:
  19338. case Tagged(val, tag) if self.type_to_tag(tgt) == tag:
  19339. return val
  19340. case _:
  19341. raise Exception('apply_project, unexpected ' + repr(value))
  19342. \end{lstlisting}
  19343. \fi}
  19344. \end{tcolorbox}
  19345. \caption{The \code{apply\_cast} auxiliary method.}
  19346. \label{fig:apply_cast}
  19347. \end{figure}
  19348. The \LangCast{} interpreter uses an auxiliary function named
  19349. \code{apply\_cast} to cast a value from a source type to a target type,
  19350. shown in figure~\ref{fig:apply_cast}. You'll find that it handles all
  19351. the kinds of casts that we've discussed in this section.
  19352. %
  19353. The definition of the interpreter for \LangCast{} is shown in
  19354. figure~\ref{fig:interp-Lcast}, with the case for \code{Cast}
  19355. dispatching to \code{apply\_cast}.
  19356. \racket{To handle the addition of tuple
  19357. proxies, we update the tuple primitives in \code{interp-op} using the
  19358. functions given in figure~\ref{fig:guarded-tuple}.}
  19359. Next we turn to the individual passes needed for compiling \LangGrad{}.
  19360. \begin{figure}[tbp]
  19361. \begin{tcolorbox}[colback=white]
  19362. {\if\edition\racketEd
  19363. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19364. (define interp-Lcast-class
  19365. (class interp-Llambda-class
  19366. (super-new)
  19367. (inherit apply-fun apply-inject apply-project)
  19368. (define/override (interp-op op)
  19369. (match op
  19370. ['vector-length guarded-vector-length]
  19371. ['vector-ref guarded-vector-ref]
  19372. ['vector-set! guarded-vector-set!]
  19373. ['any-vector-ref (lambda (v i)
  19374. (match v [`(tagged ,v^ ,tg)
  19375. (guarded-vector-ref v^ i)]))]
  19376. ['any-vector-set! (lambda (v i a)
  19377. (match v [`(tagged ,v^ ,tg)
  19378. (guarded-vector-set! v^ i a)]))]
  19379. ['any-vector-length (lambda (v)
  19380. (match v [`(tagged ,v^ ,tg)
  19381. (guarded-vector-length v^)]))]
  19382. [else (super interp-op op)]
  19383. ))
  19384. (define/override ((interp-exp env) e)
  19385. (define (recur e) ((interp-exp env) e))
  19386. (match e
  19387. [(Value v) v]
  19388. [(Cast e src tgt) (apply_cast (recur e) src tgt)]
  19389. [else ((super interp-exp env) e)]))
  19390. ))
  19391. (define (interp-Lcast p)
  19392. (send (new interp-Lcast-class) interp-program p))
  19393. \end{lstlisting}
  19394. \fi}
  19395. {\if\edition\pythonEd\pythonColor
  19396. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19397. class InterpLcast(InterpLany):
  19398. def interp_exp(self, e, env):
  19399. match e:
  19400. case Cast(value, src, tgt):
  19401. v = self.interp_exp(value, env)
  19402. return self.apply_cast(v, src, tgt)
  19403. case ValueExp(value):
  19404. return value
  19405. ...
  19406. case _:
  19407. return super().interp_exp(e, env)
  19408. \end{lstlisting}
  19409. \fi}
  19410. \end{tcolorbox}
  19411. \caption{The interpreter for \LangCast{}.}
  19412. \label{fig:interp-Lcast}
  19413. \end{figure}
  19414. {\if\edition\racketEd
  19415. \begin{figure}[tbp]
  19416. \begin{tcolorbox}[colback=white]
  19417. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19418. (define (guarded-vector-ref vec i)
  19419. (match vec
  19420. [`(vector-proxy ,proxy)
  19421. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  19422. (define rd (vector-ref (vector-ref proxy 1) i))
  19423. (apply-fun rd (list val) 'guarded-vector-ref)]
  19424. [else (vector-ref vec i)]))
  19425. (define (guarded-vector-set! vec i arg)
  19426. (match vec
  19427. [`(vector-proxy ,proxy)
  19428. (define wr (vector-ref (vector-ref proxy 2) i))
  19429. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  19430. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  19431. [else (vector-set! vec i arg)]))
  19432. (define (guarded-vector-length vec)
  19433. (match vec
  19434. [`(vector-proxy ,proxy)
  19435. (guarded-vector-length (vector-ref proxy 0))]
  19436. [else (vector-length vec)]))
  19437. \end{lstlisting}
  19438. %% {\if\edition\pythonEd\pythonColor
  19439. %% \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19440. %% UNDER CONSTRUCTION
  19441. %% \end{lstlisting}
  19442. %% \fi}
  19443. \end{tcolorbox}
  19444. \caption{The \code{guarded-vector} auxiliary functions.}
  19445. \label{fig:guarded-tuple}
  19446. \end{figure}
  19447. \fi}
  19448. {\if\edition\pythonEd\pythonColor
  19449. \section{Overload Resolution}
  19450. \label{sec:gradual-resolution}
  19451. Recall that when we added support for arrays in
  19452. section~\ref{sec:arrays}, the syntax for the array operations were the
  19453. same as for tuple operations (for example, accessing an element, getting the
  19454. length). So we performed overload resolution, with a pass named
  19455. \code{resolve}, to separate the array and tuple operations. In
  19456. particular, we introduced the primitives \code{array\_load},
  19457. \code{array\_store}, and \code{array\_len}.
  19458. For gradual typing, we further overload these operators to work on
  19459. values of type \CANYTY{}. Thus, the \code{resolve} pass should be
  19460. updated with new cases for the \CANYTY{} type, translating the element
  19461. access and length operations to the primitives \code{any\_load},
  19462. \code{any\_store}, and \code{any\_len}.
  19463. \fi}
  19464. \section{Cast Insertion}
  19465. \label{sec:gradual-insert-casts}
  19466. In our discussion of type checking of \LangGrad{}, we mentioned how
  19467. the runtime aspect of type checking is carried out by the \code{Cast}
  19468. AST node, which is added to the program by a new pass named
  19469. \code{cast\_insert}. The target of this pass is the \LangCast{}
  19470. language. We now discuss the details of this pass.
  19471. The \code{cast\_insert} pass is closely related to the type checker
  19472. for \LangGrad{} (starting in figure~\ref{fig:type-check-Lgradual-1}).
  19473. In particular, the type checker allows implicit casts between
  19474. consistent types. The job of the \code{cast\_insert} pass is to make
  19475. those casts explicit. It does so by inserting
  19476. \code{Cast} nodes into the AST.
  19477. %
  19478. For the most part, the implicit casts occur in places where the type
  19479. checker checks two types for consistency. Consider the case for
  19480. binary operators in figure~\ref{fig:type-check-Lgradual-1}. The type
  19481. checker requires that the type of the left operand is consistent with
  19482. \INTTY{}. Thus, the \code{cast\_insert} pass should insert a
  19483. \code{Cast} around the left operand, converting from its type to
  19484. \INTTY{}. The story is similar for the right operand. It is not always
  19485. necessary to insert a cast, for example, if the left operand already has type
  19486. \INTTY{} then there is no need for a \code{Cast}.
  19487. Some of the implicit casts are not as straightforward. One such case
  19488. arises with the
  19489. conditional expression. In figure~\ref{fig:type-check-Lgradual-1} we
  19490. see that the type checker requires that the two branches have
  19491. consistent types and that type of the conditional expression is the
  19492. meet of the branches' types. In the target language \LangCast{}, both
  19493. branches will need to have the same type, and that type
  19494. will be the type of the conditional expression. Thus, each branch requires
  19495. a \code{Cast} to convert from its type to the meet of the branches' types.
  19496. The case for the function call exhibits another interesting situation. If
  19497. the function expression is of type \CANYTY{}, then it needs to be cast
  19498. to a function type so that it can be used in a function call in
  19499. \LangCast{}. Which function type should it be cast to? The parameter
  19500. and return types are unknown, so we can simply use \CANYTY{} for all
  19501. of them. Furthermore, in \LangCast{} the argument types will need to
  19502. exactly match the parameter types, so we must cast all the arguments
  19503. to type \CANYTY{} (if they are not already of that type).
  19504. {\if\edition\racketEd
  19505. %
  19506. Likewise, the cases for the tuple operators \code{vector-length},
  19507. \code{vector-ref}, and \code{vector-set!} need to handle the situation
  19508. where the tuple expression is of type \CANYTY{}. Instead of
  19509. handling these situations with casts, we recommend translating
  19510. the special-purpose variants of the tuple operators that handle
  19511. tuples of type \CANYTY{}: \code{any-vector-length},
  19512. \code{any-vector-ref}, and \code{any-vector-set!}.
  19513. %
  19514. \fi}
  19515. \section{Lower Casts}
  19516. \label{sec:lower_casts}
  19517. The next step in the journey toward x86 is the \code{lower\_casts}
  19518. pass that translates the casts in \LangCast{} to the lower-level
  19519. \code{Inject} and \code{Project} operators and new operators for
  19520. proxies, extending the \LangLam{} language to \LangProxy{}.
  19521. The \LangProxy{} language can also be described as an extension of
  19522. \LangAny{}, with the addition of proxies. We recommend creating an
  19523. auxiliary function named \code{lower\_cast} that takes an expression
  19524. (in \LangCast{}), a source type, and a target type and translates it
  19525. to an expression in \LangProxy{}.
  19526. The \code{lower\_cast} function can follow a code structure similar to
  19527. the \code{apply\_cast} function (figure~\ref{fig:apply_cast}) used in
  19528. the interpreter for \LangCast{}, because it must handle the same cases
  19529. as \code{apply\_cast} and it needs to mimic the behavior of
  19530. \code{apply\_cast}. The most interesting cases concern
  19531. the casts involving \racket{tuple and function types}\python{tuple, array, and function types}.
  19532. {\if\edition\racketEd
  19533. As mentioned in section~\ref{sec:interp-casts}, a cast from one tuple
  19534. type to another tuple type is accomplished by creating a proxy that
  19535. intercepts the operations on the underlying tuple. Here we make the
  19536. creation of the proxy explicit with the \code{vector-proxy} AST
  19537. node. It takes three arguments: the first is an expression for the
  19538. tuple, the second is a tuple of functions for casting an element that is
  19539. being read from the tuple, and the third is a tuple of functions for
  19540. casting an element that is being written to the array. You can create
  19541. the functions for reading and writing using lambda expressions. Also,
  19542. as we show in the next section, we need to differentiate these tuples
  19543. of functions from the user-created ones, so we recommend using a new
  19544. AST node named \code{raw-vector} instead of \code{vector}.
  19545. %
  19546. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19547. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19548. that involved casting a tuple of integers to a tuple of \CANYTY{}.
  19549. \fi}
  19550. {\if\edition\pythonEd\pythonColor
  19551. As mentioned in section~\ref{sec:interp-casts}, a cast from one array
  19552. type to another array type is accomplished by creating a proxy that
  19553. intercepts the operations on the underlying array. Here we make the
  19554. creation of the proxy explicit with the \code{ListProxy} AST node. It
  19555. takes fives arguments: the first is an expression for the array, the
  19556. second is a function for casting an element that is being read from
  19557. the array, the third is a function for casting an element that is
  19558. being written to the array, the fourth is the type of the underlying
  19559. array, and the fifth is the type of the proxied array. You can create
  19560. the functions for reading and writing using lambda expressions.
  19561. A cast between two tuple types can be handled in a similar manner. We
  19562. create a proxy with the \code{TupleProxy} AST node. Tuples are
  19563. immutable, so there is no need for a function to cast the value during
  19564. a write. Because there is a separate element type for each slot in
  19565. the tuple, we need not just one function for casting during a read,
  19566. but instead a tuple of functions.
  19567. %
  19568. Also, as we show in the next section, we need to differentiate these
  19569. tuples from the user-created ones, so we recommend using a new AST
  19570. node named \code{RawTuple} instead of \code{Tuple} to create the
  19571. tuples of functions.
  19572. %
  19573. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19574. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19575. that involved casting an array of integers to an array of \CANYTY{}.
  19576. \fi}
  19577. \begin{figure}[tbp]
  19578. \begin{tcolorbox}[colback=white]
  19579. {\if\edition\racketEd
  19580. \begin{lstlisting}
  19581. (define (map_inplace [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  19582. (begin
  19583. (vector-set! v 0 (f (vector-ref v 0)))
  19584. (vector-set! v 1 (f (vector-ref v 1)))))
  19585. (define (inc [x : Any]) : Any
  19586. (inject (+ (project x Integer) 1) Integer))
  19587. (let ([v (vector 0 41)])
  19588. (begin
  19589. (map_inplace inc (vector-proxy v
  19590. (raw-vector (lambda: ([x9 : Integer]) : Any
  19591. (inject x9 Integer))
  19592. (lambda: ([x9 : Integer]) : Any
  19593. (inject x9 Integer)))
  19594. (raw-vector (lambda: ([x9 : Any]) : Integer
  19595. (project x9 Integer))
  19596. (lambda: ([x9 : Any]) : Integer
  19597. (project x9 Integer)))))
  19598. (vector-ref v 1)))
  19599. \end{lstlisting}
  19600. \fi}
  19601. {\if\edition\pythonEd\pythonColor
  19602. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19603. def map_inplace(f : Callable[[int], int], v : list[Any]) -> void:
  19604. i = 0
  19605. while i != array_len(v):
  19606. array_store(v, i, inject(f(project(array_load(v, i), int)), int))
  19607. i = (i + 1)
  19608. def inc(x : int) -> int:
  19609. return (x + 1)
  19610. def main() -> int:
  19611. v = [0, 41]
  19612. map_inplace(inc, array_proxy(v, list[int], list[Any]))
  19613. print(array_load(v, 1))
  19614. return 0
  19615. \end{lstlisting}
  19616. \fi}
  19617. \end{tcolorbox}
  19618. \caption{Output of \code{lower\_casts} on the example shown in
  19619. figure~\ref{fig:map-bang}.}
  19620. \label{fig:map-bang-lower-cast}
  19621. \end{figure}
  19622. A cast from one function type to another function type is accomplished
  19623. by generating a \code{lambda} whose parameter and return types match
  19624. the target function type. The body of the \code{lambda} should cast
  19625. the parameters from the target type to the source type. (Yes,
  19626. backward! Functions are contravariant\index{subject}{contravariant}
  19627. in the parameters.) Afterward, call the underlying function and then
  19628. cast the result from the source return type to the target return type.
  19629. Figure~\ref{fig:map-lower-cast} shows the output of the
  19630. \code{lower\_casts} pass on the \code{map} example give in
  19631. figure~\ref{fig:gradual-map}. Note that the \code{inc} argument in the
  19632. call to \code{map} is wrapped in a \code{lambda}.
  19633. \begin{figure}[tbp]
  19634. \begin{tcolorbox}[colback=white]
  19635. {\if\edition\racketEd
  19636. \begin{lstlisting}
  19637. (define (map [f : (Integer -> Integer)]
  19638. [v : (Vector Integer Integer)])
  19639. : (Vector Integer Integer)
  19640. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19641. (define (inc [x : Any]) : Any
  19642. (inject (+ (project x Integer) 1) Integer))
  19643. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  19644. (project (inc (inject x9 Integer)) Integer))
  19645. (vector 0 41)) 1)
  19646. \end{lstlisting}
  19647. \fi}
  19648. {\if\edition\pythonEd\pythonColor
  19649. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19650. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19651. return (f(v[0]), f(v[1]),)
  19652. def inc(x : any) -> any:
  19653. return inject((project(x, int) + 1), int)
  19654. def main() -> int:
  19655. t = map(lambda x: project(inc(inject(x, int)), int), (0, 41,))
  19656. print(t[1])
  19657. return 0
  19658. \end{lstlisting}
  19659. \fi}
  19660. \end{tcolorbox}
  19661. \caption{Output of \code{lower\_casts} on the example shown in
  19662. figure~\ref{fig:gradual-map}.}
  19663. \label{fig:map-lower-cast}
  19664. \end{figure}
  19665. \section{Differentiate Proxies}
  19666. \label{sec:differentiate-proxies}
  19667. So far, the responsibility of differentiating tuples and tuple proxies
  19668. has been the job of the interpreter.
  19669. %
  19670. \racket{For example, the interpreter for \LangCast{} implements
  19671. \code{vector-ref} using the \code{guarded-vector-ref} function shown in
  19672. figure~\ref{fig:guarded-tuple}.}
  19673. %
  19674. In the \code{differentiate\_proxies} pass we shift this responsibility
  19675. to the generated code.
  19676. We begin by designing the output language \LangPVec{}. In \LangGrad{}
  19677. we used the type \TUPLETYPENAME{} for both
  19678. real tuples and tuple proxies.
  19679. \python{Similarly, we use the type \code{list} for both arrays and
  19680. array proxies.}
  19681. In \LangPVec{} we return the
  19682. \TUPLETYPENAME{} type to its original
  19683. meaning, as the type of just tuples, and we introduce a new type,
  19684. \PTUPLETYNAME{}, whose values
  19685. can be either real tuples or tuple
  19686. proxies.
  19687. %
  19688. {\if\edition\pythonEd\pythonColor
  19689. Likewise, we return the
  19690. \ARRAYTYPENAME{} type to its original
  19691. meaning, as the type of arrays, and we introduce a new type,
  19692. \PARRAYTYNAME{}, whose values
  19693. can be either arrays or array proxies.
  19694. These new types come with a suite of new primitive operations.
  19695. \fi}
  19696. {\if\edition\racketEd
  19697. A tuple proxy is represented by a tuple containing three things: (1) the
  19698. underlying tuple, (2) a tuple of functions for casting elements that
  19699. are read from the tuple, and (3) a tuple of functions for casting
  19700. values to be written to the tuple. So, we define the following
  19701. abbreviation for the type of a tuple proxy:
  19702. \[
  19703. \itm{TupleProxy} (T\ldots \Rightarrow T'\ldots)
  19704. = (\ttm{Vector}~\PTUPLETY{T\ldots} ~R~ W) \to \PTUPLETY{T' \ldots})
  19705. \]
  19706. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  19707. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  19708. %
  19709. Next we describe each of the new primitive operations.
  19710. \begin{description}
  19711. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  19712. (\key{PVector} $T \ldots$)]\ \\
  19713. %
  19714. This operation brands a vector as a value of the \code{PVector} type.
  19715. \item[\code{inject-proxy} : $\itm{TupleProxy}(T\ldots \Rightarrow T'\ldots)$
  19716. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  19717. %
  19718. This operation brands a vector proxy as value of the \code{PVector} type.
  19719. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  19720. \BOOLTY{}] \ \\
  19721. %
  19722. This returns true if the value is a tuple proxy and false if it is a
  19723. real tuple.
  19724. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  19725. (\key{Vector} $T \ldots$)]\ \\
  19726. %
  19727. Assuming that the input is a tuple, this operation returns the
  19728. tuple.
  19729. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  19730. $\to$ \BOOLTY{}]\ \\
  19731. %
  19732. Given a tuple proxy, this operation returns the length of the tuple.
  19733. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  19734. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  19735. %
  19736. Given a tuple proxy, this operation returns the $i$th element of the
  19737. tuple.
  19738. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  19739. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\
  19740. Given a tuple proxy, this operation writes a value to the $i$th element
  19741. of the tuple.
  19742. \end{description}
  19743. \fi}
  19744. {\if\edition\pythonEd\pythonColor
  19745. %
  19746. A tuple proxy is represented by a tuple containing 1) the underlying
  19747. tuple and 2) a tuple of functions for casting elements that are read
  19748. from the tuple. The \LangPVec{} language includes the following AST
  19749. classes and primitive functions.
  19750. \begin{description}
  19751. \item[\code{InjectTuple}] \ \\
  19752. %
  19753. This AST node brands a tuple as a value of the \PTUPLETYNAME{} type.
  19754. \item[\code{InjectTupleProxy}]\ \\
  19755. %
  19756. This AST node brands a tuple proxy as value of the \PTUPLETYNAME{} type.
  19757. \item[\code{is\_tuple\_proxy}]\ \\
  19758. %
  19759. This primitive returns true if the value is a tuple proxy and false
  19760. if it is a tuple.
  19761. \item[\code{project\_tuple}]\ \\
  19762. %
  19763. Converts a tuple that is branded as \PTUPLETYNAME{}
  19764. back to a tuple.
  19765. \item[\code{proxy\_tuple\_len}]\ \\
  19766. %
  19767. Given a tuple proxy, returns the length of the underlying tuple.
  19768. \item[\code{proxy\_tuple\_load}]\ \\
  19769. %
  19770. Given a tuple proxy, returns the $i$th element of the underlying
  19771. tuple.
  19772. \end{description}
  19773. An array proxy is represented by a tuple containing 1) the underlying
  19774. array, 2) a function for casting elements that are read from the
  19775. array, and 3) a function for casting elements that are written to the
  19776. array. The \LangPVec{} language includes the following AST classes
  19777. and primitive functions.
  19778. \begin{description}
  19779. \item[\code{InjectList}]\ \\
  19780. This AST node brands an array as a value of the \PARRAYTYNAME{} type.
  19781. \item[\code{InjectListProxy}]\ \\
  19782. %
  19783. This AST node brands a array proxy as value of the \PARRAYTYNAME{} type.
  19784. \item[\code{is\_array\_proxy}]\ \\
  19785. %
  19786. Returns true if the value is a array proxy and false if it is an
  19787. array.
  19788. \item[\code{project\_array}]\ \\
  19789. %
  19790. Converts an array that is branded as \PARRAYTYNAME{} back to an
  19791. array.
  19792. \item[\code{proxy\_array\_len}]\ \\
  19793. %
  19794. Given a array proxy, returns the length of the underlying array.
  19795. \item[\code{proxy\_array\_load}]\ \\
  19796. %
  19797. Given a array proxy, returns the $i$th element of the underlying
  19798. array.
  19799. \item[\code{proxy\_array\_store}]\ \\
  19800. %
  19801. Given an array proxy, writes a value to the $i$th element of the
  19802. underlying array.
  19803. \end{description}
  19804. \fi}
  19805. Now we discuss the translation that differentiates tuples and arrays
  19806. from proxies. First, every type annotation in the program is
  19807. translated (recursively) to replace \TUPLETYPENAME{} with \PTUPLETYNAME{}.
  19808. Next, we insert uses of \PTUPLETYNAME{} operations in the appropriate
  19809. places. For example, we wrap every tuple creation with an
  19810. \racket{\code{inject-vector}}\python{\code{InjectTuple}}.
  19811. %
  19812. {\if\edition\racketEd
  19813. \begin{minipage}{0.96\textwidth}
  19814. \begin{lstlisting}
  19815. (vector |$e_1 \ldots e_n$|)
  19816. |$\Rightarrow$|
  19817. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  19818. \end{lstlisting}
  19819. \end{minipage}
  19820. \fi}
  19821. {\if\edition\pythonEd\pythonColor
  19822. \begin{lstlisting}
  19823. Tuple(|$e_1, \ldots, e_n$|)
  19824. |$\Rightarrow$|
  19825. InjectTuple(Tuple(|$e'_1, \ldots, e'_n$|))
  19826. \end{lstlisting}
  19827. \fi}
  19828. The \racket{\code{raw-vector}}\python{\code{RawTuple}}
  19829. AST node that we introduced in the previous
  19830. section does not get injected.
  19831. {\if\edition\racketEd
  19832. \begin{lstlisting}
  19833. (raw-vector |$e_1 \ldots e_n$|)
  19834. |$\Rightarrow$|
  19835. (vector |$e'_1 \ldots e'_n$|)
  19836. \end{lstlisting}
  19837. \fi}
  19838. {\if\edition\pythonEd\pythonColor
  19839. \begin{lstlisting}
  19840. RawTuple(|$e_1, \ldots, e_n$|)
  19841. |$\Rightarrow$|
  19842. Tuple(|$e'_1, \ldots, e'_n$|)
  19843. \end{lstlisting}
  19844. \fi}
  19845. The \racket{\code{vector-proxy}}\python{\code{TupleProxy}} AST
  19846. translates as follows:
  19847. %
  19848. {\if\edition\racketEd
  19849. \begin{lstlisting}
  19850. (vector-proxy |$e_1~e_2~e_3$|)
  19851. |$\Rightarrow$|
  19852. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  19853. \end{lstlisting}
  19854. \fi}
  19855. {\if\edition\pythonEd\pythonColor
  19856. \begin{lstlisting}
  19857. TupleProxy(|$e_1, e_2, T_1, T_2$|)
  19858. |$\Rightarrow$|
  19859. InjectTupleProxy(Tuple(|$e'_1,e'_2, T'_1, T'_2$|))
  19860. \end{lstlisting}
  19861. \fi}
  19862. We translate the element access operations into conditional
  19863. expressions that check whether the value is a proxy and then dispatch
  19864. to either the appropriate proxy tuple operation or the regular tuple
  19865. operation.
  19866. {\if\edition\racketEd
  19867. \begin{lstlisting}
  19868. (vector-ref |$e_1$| |$i$|)
  19869. |$\Rightarrow$|
  19870. (let ([|$v~e_1$|])
  19871. (if (proxy? |$v$|)
  19872. (proxy-vector-ref |$v$| |$i$|)
  19873. (vector-ref (project-vector |$v$|) |$i$|)
  19874. \end{lstlisting}
  19875. \fi}
  19876. %
  19877. Note that in the branch for a tuple, we must apply
  19878. \racket{\code{project-vector}}\python{\code{project\_tuple}} before reading
  19879. from the tuple.
  19880. The translation of array operations is similar to the ones for tuples.
  19881. \section{Reveal Casts}
  19882. \label{sec:reveal-casts-gradual}
  19883. {\if\edition\racketEd
  19884. Recall that the \code{reveal\_casts} pass
  19885. (section~\ref{sec:reveal-casts-Lany}) is responsible for lowering
  19886. \code{Inject} and \code{Project} into lower-level operations.
  19887. %
  19888. In particular, \code{Project} turns into a conditional expression that
  19889. inspects the tag and retrieves the underlying value. Here we need to
  19890. augment the translation of \code{Project} to handle the situation in which
  19891. the target type is \code{PVector}. Instead of using
  19892. \code{vector-length} we need to use \code{proxy-vector-length}.
  19893. \begin{lstlisting}
  19894. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  19895. |$\Rightarrow$|
  19896. (let |$\itm{tmp}$| |$e'$|
  19897. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  19898. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  19899. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  19900. (exit)))
  19901. \end{lstlisting}
  19902. \fi}
  19903. %
  19904. {\if\edition\pythonEd\pythonColor
  19905. Recall that the $\itm{tagof}$ function determines the bits used to
  19906. identify values of different types and it is used in the \code{reveal\_casts}
  19907. pass in the translation of \code{Project}. The \PTUPLETYNAME{} and
  19908. \PARRAYTYNAME{} types can be mapped to $010$ in binary ($2$ is
  19909. decimal), just like the tuple and array types.
  19910. \fi}
  19911. %
  19912. Otherwise, the only other changes are adding cases that copy the new AST nodes.
  19913. \section{Closure Conversion}
  19914. \label{sec:closure-conversion-gradual}
  19915. The auxiliary function that translates type annotations needs to be
  19916. updated to handle the \PTUPLETYNAME{}
  19917. \racket{type}\python{and \PARRAYTYNAME{} types}.
  19918. %
  19919. Otherwise, the only other changes are adding cases that copy the new
  19920. AST nodes.
  19921. \section{Select Instructions}
  19922. \label{sec:select-instructions-gradual}
  19923. \index{subject}{select instructions}
  19924. Recall that the \code{select\_instructions} pass is responsible for
  19925. lowering the primitive operations into x86 instructions. So, we need
  19926. to translate the new operations on \PTUPLETYNAME{} \python{and \PARRAYTYNAME{}}
  19927. to x86. To do so, the first question we need to answer is how to
  19928. differentiate between tuple and tuple proxies\python{, and likewise for
  19929. arrays and array proxies}. We need just one bit to accomplish this;
  19930. we use the bit in position $63$ of the 64-bit tag at the front of
  19931. every tuple (see figure~\ref{fig:tuple-rep})\python{ or array
  19932. (section~\ref{sec:array-rep})}. So far, this bit has been set to $0$,
  19933. so for \racket{\code{inject-vector}}\python{\code{InjectTuple}} we leave
  19934. it that way.
  19935. {\if\edition\racketEd
  19936. \begin{lstlisting}
  19937. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  19938. |$\Rightarrow$|
  19939. movq |$e'_1$|, |$\itm{lhs'}$|
  19940. \end{lstlisting}
  19941. \fi}
  19942. {\if\edition\pythonEd\pythonColor
  19943. \begin{lstlisting}
  19944. Assign([|$\itm{lhs}$|], InjectTuple(|$e_1$|))
  19945. |$\Rightarrow$|
  19946. movq |$e'_1$|, |$\itm{lhs'}$|
  19947. \end{lstlisting}
  19948. \fi}
  19949. \python{The translation for \code{InjectList} is also a move instruction.}
  19950. \noindent On the other hand,
  19951. \racket{\code{inject-proxy}}\python{\code{InjectTupleProxy}} sets bit
  19952. $63$ to $1$.
  19953. %
  19954. {\if\edition\racketEd
  19955. \begin{lstlisting}
  19956. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  19957. |$\Rightarrow$|
  19958. movq |$e'_1$|, %r11
  19959. movq |$(1 << 63)$|, %rax
  19960. orq 0(%r11), %rax
  19961. movq %rax, 0(%r11)
  19962. movq %r11, |$\itm{lhs'}$|
  19963. \end{lstlisting}
  19964. \fi}
  19965. {\if\edition\pythonEd\pythonColor
  19966. \begin{lstlisting}
  19967. Assign([|$\itm{lhs}$|], InjectTupleProxy(|$e_1$|))
  19968. |$\Rightarrow$|
  19969. movq |$e'_1$|, %r11
  19970. movq |$(1 << 63)$|, %rax
  19971. orq 0(%r11), %rax
  19972. movq %rax, 0(%r11)
  19973. movq %r11, |$\itm{lhs'}$|
  19974. \end{lstlisting}
  19975. \fi}
  19976. \python{\noindent The translation for \code{InjectListProxy} should set bit $63$
  19977. of the tag and also bit $62$, to differentiate between arrays and tuples.}
  19978. The \racket{\code{proxy?} operation consumes}%
  19979. \python{\code{is\_tuple\_proxy} and \code{is\_array\_proxy} operations
  19980. consume}
  19981. the information so carefully stashed away by the injections. It
  19982. isolates bit $63$ to tell whether the value is a proxy.
  19983. %
  19984. {\if\edition\racketEd
  19985. \begin{lstlisting}
  19986. (Assign |$\itm{lhs}$| (Prim 'proxy? (list |$e_1$|)))
  19987. |$\Rightarrow$|
  19988. movq |$e_1'$|, %r11
  19989. movq 0(%r11), %rax
  19990. sarq $63, %rax
  19991. andq $1, %rax
  19992. movq %rax, |$\itm{lhs'}$|
  19993. \end{lstlisting}
  19994. \fi}%
  19995. %
  19996. {\if\edition\pythonEd\pythonColor
  19997. \begin{lstlisting}
  19998. Assign([|$\itm{lhs}$|], Call(Name('is_tuple_proxy'), [|$e_1$|]))
  19999. |$\Rightarrow$|
  20000. movq |$e_1'$|, %r11
  20001. movq 0(%r11), %rax
  20002. sarq $63, %rax
  20003. andq $1, %rax
  20004. movq %rax, |$\itm{lhs'}$|
  20005. \end{lstlisting}
  20006. \fi}%
  20007. %
  20008. The \racket{\code{project-vector} operation is}
  20009. \python{\code{project\_tuple} and \code{project\_array} operations are}
  20010. straightforward to translate, so we leave that to the reader.
  20011. Regarding the element access operations for tuples\python{ and arrays}, the
  20012. runtime provides procedures that implement them (they are recursive
  20013. functions!), so here we simply need to translate these tuple
  20014. operations into the appropriate function call. For example, here is
  20015. the translation for
  20016. \racket{\code{proxy-vector-ref}}\python{\code{proxy\_tuple\_load}}.
  20017. {\if\edition\racketEd
  20018. \begin{minipage}{0.96\textwidth}
  20019. \begin{lstlisting}
  20020. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  20021. |$\Rightarrow$|
  20022. movq |$e_1'$|, %rdi
  20023. movq |$e_2'$|, %rsi
  20024. callq proxy_vector_ref
  20025. movq %rax, |$\itm{lhs'}$|
  20026. \end{lstlisting}
  20027. \end{minipage}
  20028. \fi}
  20029. {\if\edition\pythonEd\pythonColor
  20030. \begin{lstlisting}
  20031. Assign([|$\itm{lhs}$|], Call(Name('proxy_tuple_load'), [|$e_1$|, |$e_2$|]))
  20032. |$\Rightarrow$|
  20033. movq |$e_1'$|, %rdi
  20034. movq |$e_2'$|, %rsi
  20035. callq proxy_vector_ref
  20036. movq %rax, |$\itm{lhs'}$|
  20037. \end{lstlisting}
  20038. \fi}
  20039. {\if\edition\pythonEd\pythonColor
  20040. % TODO: revisit the names vecof for python -Jeremy
  20041. We translate
  20042. \code{proxy\_array\_load} to \code{proxy\_vecof\_ref},
  20043. \code{proxy\_array\_store} to \code{proxy\_vecof\_set}, and
  20044. \code{proxy\_array\_len} to \code{proxy\_vecof\_length}.
  20045. \fi}
  20046. We have another batch of operations to deal with: those for the
  20047. \CANYTY{} type. Recall that we generate an
  20048. \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}} when
  20049. there is a element access on something of type \CANYTY{}, and
  20050. similarly for
  20051. \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}} and
  20052. \racket{\code{any-vector-length}}\python{\code{any\_len}}. In
  20053. section~\ref{sec:select-Lany} we selected instructions for these
  20054. operations on the basis of the idea that the underlying value was a tuple or
  20055. array. But in the current setting, the underlying value is of type
  20056. \PTUPLETYNAME{}\python{ or \PARRAYTYNAME{}}. We have added three runtime
  20057. functions to deal with this:
  20058. \code{proxy\_vector\_ref},
  20059. \code{proxy\_vector\_set}, and
  20060. \code{proxy\_vector\_length} that inspect bit $62$ of the tag
  20061. to determine whether the value is a proxy, and then
  20062. dispatches to the the appropriate code.
  20063. %
  20064. So \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}}
  20065. can be translated as follows.
  20066. We begin by projecting the underlying value out of the tagged value and
  20067. then call the \code{proxy\_vector\_ref} procedure in the runtime.
  20068. {\if\edition\racketEd
  20069. \begin{lstlisting}
  20070. (Assign |$\itm{lhs}$| (Prim 'any-vec-ref (list |$e_1$| |$e_2$|)))
  20071. |$\Rightarrow$|
  20072. movq |$\neg 111$|, %rdi
  20073. andq |$e_1'$|, %rdi
  20074. movq |$e_2'$|, %rsi
  20075. callq proxy_vector_ref
  20076. movq %rax, |$\itm{lhs'}$|
  20077. \end{lstlisting}
  20078. \fi}
  20079. {\if\edition\pythonEd\pythonColor
  20080. \begin{lstlisting}
  20081. Assign([|$\itm{lhs}$|], Call(Name('any_load_unsafe'), [|$e_1$|, |$e_2$|]))
  20082. |$\Rightarrow$|
  20083. movq |$\neg 111$|, %rdi
  20084. andq |$e_1'$|, %rdi
  20085. movq |$e_2'$|, %rsi
  20086. callq proxy_vector_ref
  20087. movq %rax, |$\itm{lhs'}$|
  20088. \end{lstlisting}
  20089. \fi}
  20090. \noindent The \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}}
  20091. and \racket{\code{any-vector-length}}\python{\code{any\_len}} operators
  20092. are translated in a similar way. Alternatively, you could generate
  20093. instructions to open-code
  20094. the \code{proxy\_vector\_ref}, \code{proxy\_vector\_set},
  20095. and \code{proxy\_vector\_length} functions.
  20096. \begin{exercise}\normalfont\normalsize
  20097. Implement a compiler for the gradually typed \LangGrad{} language by
  20098. extending and adapting your compiler for \LangLam{}. Create ten new
  20099. partially typed test programs. In addition to testing with these
  20100. new programs, test your compiler on all the tests for \LangLam{}
  20101. and for \LangDyn{}.
  20102. %
  20103. \racket{Sometimes you may get a type checking error on the
  20104. \LangDyn{} programs, but you can adapt them by inserting a cast to
  20105. the \CANYTY{} type around each subexpression that has caused a type
  20106. error. Although \LangDyn{} does not have explicit casts, you can
  20107. induce one by wrapping the subexpression \code{e} with a call to
  20108. an unannotated identity function, as follows: \code{((lambda (x) x) e)}.}
  20109. %
  20110. \python{Sometimes you may get a type checking error on the
  20111. \LangDyn{} programs but you can adapt them by inserting a
  20112. temporary variable of type \CANYTY{} that is initialized with the
  20113. troublesome expression.}
  20114. \end{exercise}
  20115. \begin{figure}[p]
  20116. \begin{tcolorbox}[colback=white]
  20117. {\if\edition\racketEd
  20118. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  20119. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20120. \node (Lgradual2) at (4,4) {\large \LangCast{}};
  20121. \node (Lgradual3) at (8,4) {\large \LangProxy{}};
  20122. \node (Lgradual4) at (12,4) {\large \LangPVec{}};
  20123. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20124. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20125. \node (Llambdapp) at (4,2) {\large \LangPVecFunRef{}};
  20126. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20127. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20128. %\node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20129. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20130. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20131. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  20132. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20133. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20134. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20135. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20136. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  20137. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  20138. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20139. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20140. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  20141. \path[->,bend left=15] (Lgradual) edge [above] node
  20142. {\ttfamily\footnotesize cast\_insert} (Lgradual2);
  20143. \path[->,bend left=15] (Lgradual2) edge [above] node
  20144. {\ttfamily\footnotesize lower\_casts} (Lgradual3);
  20145. \path[->,bend left=15] (Lgradual3) edge [above] node
  20146. {\ttfamily\footnotesize differentiate\_proxies} (Lgradual4);
  20147. \path[->,bend left=15] (Lgradual4) edge [left] node
  20148. {\ttfamily\footnotesize shrink} (Lgradualr);
  20149. \path[->,bend left=15] (Lgradualr) edge [above] node
  20150. {\ttfamily\footnotesize uniquify} (Lgradualp);
  20151. \path[->,bend right=15] (Lgradualp) edge [above] node
  20152. {\ttfamily\footnotesize reveal\_functions} (Llambdapp);
  20153. %% \path[->,bend left=15] (Llambdaproxy-4) edge [left] node
  20154. %% {\ttfamily\footnotesize resolve} (Lgradualr);
  20155. \path[->,bend right=15] (Llambdapp) edge [above] node
  20156. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-4);
  20157. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20158. {\ttfamily\footnotesize convert\_assignments} (Llambdaproxy-5);
  20159. \path[->,bend right=10] (Llambdaproxy-5) edge [above] node
  20160. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20161. \path[->,bend left=15] (F1-2) edge [above] node
  20162. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20163. \path[->,bend left=15] (F1-3) edge [left] node
  20164. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  20165. \path[->,bend left=15] (F1-4) edge [below] node
  20166. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  20167. \path[->,bend right=15] (F1-5) edge [above] node
  20168. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20169. \path[->,bend right=15] (F1-6) edge [above] node
  20170. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20171. \path[->,bend right=15] (C3-2) edge [right] node
  20172. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20173. \path[->,bend right=15] (x86-2) edge [right] node
  20174. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  20175. \path[->,bend right=15] (x86-2-1) edge [below] node
  20176. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  20177. \path[->,bend right=15] (x86-2-2) edge [right] node
  20178. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  20179. \path[->,bend left=15] (x86-3) edge [above] node
  20180. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20181. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20182. \end{tikzpicture}
  20183. \fi}
  20184. {\if\edition\pythonEd\pythonColor
  20185. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.80]
  20186. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20187. \node (Lgradual2) at (4,4) {\large \LangGrad{}};
  20188. \node (Lgradual3) at (8,4) {\large \LangCast{}};
  20189. \node (Lgradual4) at (12,4) {\large \LangProxy{}};
  20190. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20191. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20192. \node (Llambdapp) at (4,2) {\large \LangPVec{}};
  20193. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20194. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20195. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20196. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20197. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20198. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20199. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20200. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20201. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20202. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20203. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20204. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  20205. \path[->,bend left=15] (Lgradual) edge [above] node
  20206. {\ttfamily\footnotesize shrink} (Lgradual2);
  20207. \path[->,bend left=15] (Lgradual2) edge [above] node
  20208. {\ttfamily\footnotesize uniquify} (Lgradual3);
  20209. \path[->,bend left=15] (Lgradual3) edge [above] node
  20210. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  20211. \path[->,bend left=15] (Lgradual4) edge [left] node
  20212. {\ttfamily\footnotesize resolve} (Lgradualr);
  20213. \path[->,bend left=15] (Lgradualr) edge [below] node
  20214. {\ttfamily\footnotesize cast\_insert} (Lgradualp);
  20215. \path[->,bend right=15] (Lgradualp) edge [above] node
  20216. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  20217. \path[->,bend right=15] (Llambdapp) edge [above] node
  20218. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  20219. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20220. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  20221. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  20222. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  20223. \path[->,bend left=15] (F1-1) edge [above] node
  20224. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20225. \path[->,bend left=15] (F1-2) edge [above] node
  20226. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20227. \path[->,bend left=15] (F1-3) edge [right] node
  20228. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  20229. \path[->,bend right=15] (F1-5) edge [above] node
  20230. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20231. \path[->,bend right=15] (F1-6) edge [above] node
  20232. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20233. \path[->,bend right=15] (C3-2) edge [right] node
  20234. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20235. \path[->,bend right=15] (x86-2) edge [below] node
  20236. {\ttfamily\footnotesize assign\_homes} (x86-3);
  20237. \path[->,bend right=15] (x86-3) edge [below] node
  20238. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20239. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20240. \end{tikzpicture}
  20241. \fi}
  20242. \end{tcolorbox}
  20243. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  20244. \label{fig:Lgradual-passes}
  20245. \end{figure}
  20246. Figure~\ref{fig:Lgradual-passes} provides an overview of the passes
  20247. needed for the compilation of \LangGrad{}.
  20248. \section{Further Reading}
  20249. This chapter just scratches the surface of gradual typing. The basic
  20250. approach described here is missing two key ingredients that one would
  20251. want in a implementation of gradual typing: blame
  20252. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  20253. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  20254. problem addressed by blame tracking is that when a cast on a
  20255. higher-order value fails, it often does so at a point in the program
  20256. that is far removed from the original cast. Blame tracking is a
  20257. technique for propagating extra information through casts and proxies
  20258. so that when a cast fails, the error message can point back to the
  20259. original location of the cast in the source program.
  20260. The problem addressed by space-efficient casts also relates to
  20261. higher-order casts. It turns out that in partially typed programs, a
  20262. function or tuple can flow through a great many casts at runtime. With
  20263. the approach described in this chapter, each cast adds another
  20264. \code{lambda} wrapper or a tuple proxy. Not only does this take up
  20265. considerable space, but it also makes the function calls and tuple
  20266. operations slow. For example, a partially typed version of quicksort
  20267. could, in the worst case, build a chain of proxies of length $O(n)$
  20268. around the tuple, changing the overall time complexity of the
  20269. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  20270. solution to this problem by representing casts using the coercion
  20271. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  20272. long chains of proxies by compressing them into a concise normal
  20273. form. \citet{Siek:2015ab} give an algorithm for compressing coercions,
  20274. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  20275. the Grift compiler:
  20276. \begin{center}
  20277. \url{https://github.com/Gradual-Typing/Grift}
  20278. \end{center}
  20279. There are also interesting interactions between gradual typing and
  20280. other language features, such as generics, information-flow types, and
  20281. type inference, to name a few. We recommend to the reader the
  20282. online gradual typing bibliography for more material:
  20283. \begin{center}
  20284. \url{http://samth.github.io/gradual-typing-bib/}
  20285. \end{center}
  20286. % TODO: challenge problem:
  20287. % type analysis and type specialization?
  20288. % coercions?
  20289. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  20290. \chapter{Generics}
  20291. \label{ch:Lpoly}
  20292. \setcounter{footnote}{0}
  20293. This chapter studies the compilation of
  20294. generics\index{subject}{generics} (aka parametric
  20295. polymorphism\index{subject}{parametric polymorphism}), compiling the
  20296. \LangPoly{} subset of \racket{Typed Racket}\python{Python}. Generics
  20297. enable programmers to make code more reusable by parameterizing
  20298. functions and data structures with respect to the types on which they
  20299. operate. For example, figure~\ref{fig:map-poly} revisits the
  20300. \code{map} example and this time gives it a more fitting type. This
  20301. \code{map} function is parameterized with respect to the element type
  20302. of the tuple. The type of \code{map} is the following generic type
  20303. specified by the \code{All} type with parameter \code{T}:
  20304. {\if\edition\racketEd
  20305. \begin{lstlisting}
  20306. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  20307. \end{lstlisting}
  20308. \fi}
  20309. {\if\edition\pythonEd\pythonColor
  20310. \begin{lstlisting}
  20311. All[[T], Callable[[Callable[[T],T], tuple[T,T]], tuple[T,T]]]
  20312. \end{lstlisting}
  20313. \fi}
  20314. %
  20315. The idea is that \code{map} can be used at \emph{all} choices of a
  20316. type for parameter \code{T}. In the example shown in
  20317. figure~\ref{fig:map-poly} we apply \code{map} to a tuple of integers,
  20318. implicitly choosing \racket{\code{Integer}}\python{\code{int}} for
  20319. \code{T}, but we could have just as well applied \code{map} to a tuple
  20320. of Booleans.
  20321. %
  20322. A \emph{monomorphic} function is simply one that is not generic.
  20323. %
  20324. We use the term \emph{instantiation} for the process (within the
  20325. language implementation) of turning a generic function into a
  20326. monomorphic one, where the type parameters have been replaced by
  20327. types.
  20328. {\if\edition\pythonEd\pythonColor
  20329. %
  20330. In Python, when writing a generic function such as \code{map}, one
  20331. does not explicitly write down its generic type (using \code{All}).
  20332. Instead, the fact that it is generic is implied by the use of type
  20333. variables (such as \code{T}) in the type annotations of its
  20334. parameters.
  20335. %
  20336. \fi}
  20337. \begin{figure}[tbp]
  20338. % poly_test_2.rkt
  20339. \begin{tcolorbox}[colback=white]
  20340. {\if\edition\racketEd
  20341. \begin{lstlisting}
  20342. (: map (All (T) ((T -> T) (Vector T T) -> (Vector T T))))
  20343. (define (map f v)
  20344. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  20345. (define (inc [x : Integer]) : Integer (+ x 1))
  20346. (vector-ref (map inc (vector 0 41)) 1)
  20347. \end{lstlisting}
  20348. \fi}
  20349. {\if\edition\pythonEd\pythonColor
  20350. \begin{lstlisting}
  20351. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  20352. return (f(tup[0]), f(tup[1]))
  20353. def add1(x : int) -> int:
  20354. return x + 1
  20355. t = map(add1, (0, 41))
  20356. print(t[1])
  20357. \end{lstlisting}
  20358. \fi}
  20359. \end{tcolorbox}
  20360. \caption{A generic version of the \code{map} function.}
  20361. \label{fig:map-poly}
  20362. \end{figure}
  20363. Figure~\ref{fig:Lpoly-concrete-syntax} presents the definition of the
  20364. concrete syntax of \LangPoly{}, and figure~\ref{fig:Lpoly-syntax}
  20365. shows the definition of the abstract syntax.
  20366. %
  20367. {\if\edition\racketEd
  20368. We add a second form for function definitions in which a type
  20369. declaration comes before the \code{define}. In the abstract syntax,
  20370. the return type in the \code{Def} is \CANYTY{}, but that should be
  20371. ignored in favor of the return type in the type declaration. (The
  20372. \CANYTY{} comes from using the same parser as discussed in
  20373. chapter~\ref{ch:Ldyn}.) The presence of a type declaration
  20374. enables the use of an \code{All} type for a function, thereby making
  20375. it generic.
  20376. \fi}
  20377. %
  20378. The grammar for types is extended to include the type of a generic
  20379. (\code{All}) and type variables\python{\ (\code{GenericVar} in the
  20380. abstract syntax)}.
  20381. \newcommand{\LpolyGrammarRacket}{
  20382. \begin{array}{lcl}
  20383. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20384. \Def &::=& \LP\key{:}~\Var~\Type\RP \\
  20385. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP
  20386. \end{array}
  20387. }
  20388. \newcommand{\LpolyASTRacket}{
  20389. \begin{array}{lcl}
  20390. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20391. \Def &::=& \DECL{\Var}{\Type} \\
  20392. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp}
  20393. \end{array}
  20394. }
  20395. \newcommand{\LpolyGrammarPython}{
  20396. \begin{array}{lcl}
  20397. \Type &::=& \key{All}\LS \LS\Var\ldots\RS,\Type\RS \MID \Var
  20398. \end{array}
  20399. }
  20400. \newcommand{\LpolyASTPython}{
  20401. \begin{array}{lcl}
  20402. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP
  20403. \MID \key{GenericVar}\LP\Var\RP
  20404. \end{array}
  20405. }
  20406. \begin{figure}[tp]
  20407. \centering
  20408. \begin{tcolorbox}[colback=white]
  20409. \footnotesize
  20410. {\if\edition\racketEd
  20411. \[
  20412. \begin{array}{l}
  20413. \gray{\LintGrammarRacket{}} \\ \hline
  20414. \gray{\LvarGrammarRacket{}} \\ \hline
  20415. \gray{\LifGrammarRacket{}} \\ \hline
  20416. \gray{\LwhileGrammarRacket} \\ \hline
  20417. \gray{\LtupGrammarRacket} \\ \hline
  20418. \gray{\LfunGrammarRacket} \\ \hline
  20419. \gray{\LlambdaGrammarRacket} \\ \hline
  20420. \LpolyGrammarRacket \\
  20421. \begin{array}{lcl}
  20422. \LangPoly{} &::=& \Def \ldots ~ \Exp
  20423. \end{array}
  20424. \end{array}
  20425. \]
  20426. \fi}
  20427. {\if\edition\pythonEd\pythonColor
  20428. \[
  20429. \begin{array}{l}
  20430. \gray{\LintGrammarPython{}} \\ \hline
  20431. \gray{\LvarGrammarPython{}} \\ \hline
  20432. \gray{\LifGrammarPython{}} \\ \hline
  20433. \gray{\LwhileGrammarPython} \\ \hline
  20434. \gray{\LtupGrammarPython} \\ \hline
  20435. \gray{\LfunGrammarPython} \\ \hline
  20436. \gray{\LlambdaGrammarPython} \\\hline
  20437. \LpolyGrammarPython \\
  20438. \begin{array}{lcl}
  20439. \LangPoly{} &::=& \Def\ldots \Stmt\ldots
  20440. \end{array}
  20441. \end{array}
  20442. \]
  20443. \fi}
  20444. \end{tcolorbox}
  20445. \caption{The concrete syntax of \LangPoly{}, extending \LangLam{}
  20446. (figure~\ref{fig:Llam-concrete-syntax}).}
  20447. \label{fig:Lpoly-concrete-syntax}
  20448. \end{figure}
  20449. \begin{figure}[tp]
  20450. \centering
  20451. \begin{tcolorbox}[colback=white]
  20452. \footnotesize
  20453. {\if\edition\racketEd
  20454. \[
  20455. \begin{array}{l}
  20456. \gray{\LintOpAST} \\ \hline
  20457. \gray{\LvarASTRacket{}} \\ \hline
  20458. \gray{\LifASTRacket{}} \\ \hline
  20459. \gray{\LwhileASTRacket{}} \\ \hline
  20460. \gray{\LtupASTRacket{}} \\ \hline
  20461. \gray{\LfunASTRacket} \\ \hline
  20462. \gray{\LlambdaASTRacket} \\ \hline
  20463. \LpolyASTRacket \\
  20464. \begin{array}{lcl}
  20465. \LangPoly{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  20466. \end{array}
  20467. \end{array}
  20468. \]
  20469. \fi}
  20470. {\if\edition\pythonEd\pythonColor
  20471. \[
  20472. \begin{array}{l}
  20473. \gray{\LintASTPython} \\ \hline
  20474. \gray{\LvarASTPython{}} \\ \hline
  20475. \gray{\LifASTPython{}} \\ \hline
  20476. \gray{\LwhileASTPython{}} \\ \hline
  20477. \gray{\LtupASTPython{}} \\ \hline
  20478. \gray{\LfunASTPython} \\ \hline
  20479. \gray{\LlambdaASTPython} \\ \hline
  20480. \LpolyASTPython \\
  20481. \begin{array}{lcl}
  20482. \LangPoly{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  20483. \end{array}
  20484. \end{array}
  20485. \]
  20486. \fi}
  20487. \end{tcolorbox}
  20488. \caption{The abstract syntax of \LangPoly{}, extending \LangLam{}
  20489. (figure~\ref{fig:Llam-syntax}).}
  20490. \label{fig:Lpoly-syntax}
  20491. \end{figure}
  20492. By including the \code{All} type in the $\Type$ nonterminal of the
  20493. grammar we choose to make generics first class, which has interesting
  20494. repercussions on the compiler.\footnote{The Python \code{typing} library does
  20495. not include syntax for the \code{All} type. It is inferred for functions whose
  20496. type annotations contain type variables.} Many languages with generics, such as
  20497. C++~\citep{stroustrup88:_param_types} and Standard
  20498. ML~\citep{Milner:1990fk}, support only second-class generics, so it
  20499. may be helpful to see an example of first-class generics in action. In
  20500. figure~\ref{fig:apply-twice} we define a function \code{apply\_twice}
  20501. whose parameter is a generic function. Indeed, because the grammar for
  20502. $\Type$ includes the \code{All} type, a generic function may also be
  20503. returned from a function or stored inside a tuple. The body of
  20504. \code{apply\_twice} applies the generic function \code{f} to a Boolean
  20505. and also to an integer, which would not be possible if \code{f} were
  20506. not generic.
  20507. \begin{figure}[tbp]
  20508. \begin{tcolorbox}[colback=white]
  20509. {\if\edition\racketEd
  20510. \begin{lstlisting}
  20511. (: apply_twice ((All (U) (U -> U)) -> Integer))
  20512. (define (apply_twice f)
  20513. (if (f #t) (f 42) (f 777)))
  20514. (: id (All (T) (T -> T)))
  20515. (define (id x) x)
  20516. (apply_twice id)
  20517. \end{lstlisting}
  20518. \fi}
  20519. {\if\edition\pythonEd\pythonColor
  20520. \begin{lstlisting}
  20521. def apply_twice(f : All[[U], Callable[[U],U]]) -> int:
  20522. if f(True):
  20523. return f(42)
  20524. else:
  20525. return f(777)
  20526. def id(x: T) -> T:
  20527. return x
  20528. print(apply_twice(id))
  20529. \end{lstlisting}
  20530. \fi}
  20531. \end{tcolorbox}
  20532. \caption{An example illustrating first-class generics.}
  20533. \label{fig:apply-twice}
  20534. \end{figure}
  20535. The type checker for \LangPoly{} shown in
  20536. figure~\ref{fig:type-check-Lpoly} has several new responsibilities
  20537. (compared to \LangLam{}) which we discuss in the following paragraphs.
  20538. {\if\edition\pythonEd\pythonColor
  20539. %
  20540. Regarding function definitions, if the type annotations on its
  20541. parameters contain generic variables, then the function is generic and
  20542. therefore its type is an \code{All} type wrapped around a function
  20543. type. Otherwise the function is monomorphic and its type is simply
  20544. a function type.
  20545. %
  20546. \fi}
  20547. The type checking of a function application is extended to handle the
  20548. case in which the operator expression is a generic function. In that case
  20549. the type arguments are deduced by matching the types of the parameters
  20550. with the types of the arguments.
  20551. %
  20552. The \code{match\_types} auxiliary function
  20553. (figure~\ref{fig:type-check-Lpoly-aux}) carries out this deduction by
  20554. recursively descending through a parameter type \code{param\_ty} and
  20555. the corresponding argument type \code{arg\_ty}, making sure that they
  20556. are equal except when there is a type parameter in the parameter
  20557. type. Upon encountering a type parameter for the first time, the
  20558. algorithm deduces an association of the type parameter to the
  20559. corresponding part of the argument type. If it is not the first time
  20560. that the type parameter has been encountered, the algorithm looks up
  20561. its deduced type and makes sure that it is equal to the corresponding
  20562. part of the argument type. The return type of the application is the
  20563. return type of the generic function with the type parameters
  20564. replaced by the deduced type arguments, using the
  20565. \code{substitute\_type} auxiliary function, which is also listed in
  20566. figure~\ref{fig:type-check-Lpoly-aux}.
  20567. The type checker extends type equality to handle the \code{All} type.
  20568. This is not quite as simple as for other types, such as function and
  20569. tuple types, because two \code{All} types can be syntactically
  20570. different even though they are equivalent. For example,
  20571. \begin{center}
  20572. \racket{\code{(All (T) (T -> T))}}\python{\code{All[[T], Callable[[T], T]]}}
  20573. \end{center}
  20574. is equivalent to
  20575. \begin{center}
  20576. \racket{\code{(All (U) (U -> U))}}\python{\code{All[[U], Callable[[U], U]]}}.
  20577. \end{center}
  20578. Two generic types are equal if they differ only in
  20579. the choice of the names of the type parameters. The definition of type
  20580. equality shown in figure~\ref{fig:type-check-Lpoly-aux} renames the type
  20581. parameters in one type to match the type parameters of the other type.
  20582. {\if\edition\racketEd
  20583. %
  20584. The type checker also ensures that only defined type variables appear
  20585. in type annotations. The \code{check\_well\_formed} function for which
  20586. the definition is shown in figure~\ref{fig:well-formed-types}
  20587. recursively inspects a type, making sure that each type variable has
  20588. been defined.
  20589. %
  20590. \fi}
  20591. \begin{figure}[tbp]
  20592. \begin{tcolorbox}[colback=white]
  20593. {\if\edition\racketEd
  20594. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20595. (define type-check-poly-class
  20596. (class type-check-Llambda-class
  20597. (super-new)
  20598. (inherit check-type-equal?)
  20599. (define/override (type-check-apply env e1 es)
  20600. (define-values (e^ ty) ((type-check-exp env) e1))
  20601. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  20602. ((type-check-exp env) e)))
  20603. (match ty
  20604. [`(,ty^* ... -> ,rt)
  20605. (for ([arg-ty ty*] [param-ty ty^*])
  20606. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  20607. (values e^ es^ rt)]
  20608. [`(All ,xs (,tys ... -> ,rt))
  20609. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  20610. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  20611. (match_types env^^ param-ty arg-ty)))
  20612. (define targs
  20613. (for/list ([x xs])
  20614. (match (dict-ref env^^ x (lambda () #f))
  20615. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  20616. x (Apply e1 es))]
  20617. [ty ty])))
  20618. (values (Inst e^ ty targs) es^ (substitute_type env^^ rt))]
  20619. [else (error 'type-check "expected a function, not ~a" ty)]))
  20620. (define/override ((type-check-exp env) e)
  20621. (match e
  20622. [(Lambda `([,xs : ,Ts] ...) rT body)
  20623. (for ([T Ts]) ((check_well_formed env) T))
  20624. ((check_well_formed env) rT)
  20625. ((super type-check-exp env) e)]
  20626. [(HasType e1 ty)
  20627. ((check_well_formed env) ty)
  20628. ((super type-check-exp env) e)]
  20629. [else ((super type-check-exp env) e)]))
  20630. (define/override ((type-check-def env) d)
  20631. (verbose 'type-check "poly/def" d)
  20632. (match d
  20633. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  20634. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  20635. (for ([p ps]) ((check_well_formed ts-env) p))
  20636. ((check_well_formed ts-env) rt)
  20637. (define new-env (append ts-env (map cons xs ps) env))
  20638. (define-values (body^ ty^) ((type-check-exp new-env) body))
  20639. (check-type-equal? ty^ rt body)
  20640. (Generic ts (Def f p:t* rt info body^))]
  20641. [else ((super type-check-def env) d)]))
  20642. (define/override (type-check-program p)
  20643. (match p
  20644. [(Program info body)
  20645. (type-check-program (ProgramDefsExp info '() body))]
  20646. [(ProgramDefsExp info ds body)
  20647. (define ds^ (combine-decls-defs ds))
  20648. (define new-env (for/list ([d ds^])
  20649. (cons (def-name d) (fun-def-type d))))
  20650. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  20651. (define-values (body^ ty) ((type-check-exp new-env) body))
  20652. (check-type-equal? ty 'Integer body)
  20653. (ProgramDefsExp info ds^^ body^)]))
  20654. ))
  20655. \end{lstlisting}
  20656. \fi}
  20657. {\if\edition\pythonEd\pythonColor
  20658. \begin{lstlisting}[basicstyle=\ttfamily\small]
  20659. def type_check_exp(self, e, env):
  20660. match e:
  20661. case Call(Name(f), args) if f in builtin_functions:
  20662. return super().type_check_exp(e, env)
  20663. case Call(func, args):
  20664. func_t = self.type_check_exp(func, env)
  20665. func.has_type = func_t
  20666. match func_t:
  20667. case AllType(ps, FunctionType(p_tys, rt)):
  20668. for arg in args:
  20669. arg.has_type = self.type_check_exp(arg, env)
  20670. arg_tys = [arg.has_type for arg in args]
  20671. deduced = {}
  20672. for (p, a) in zip(p_tys, arg_tys):
  20673. self.match_types(p, a, deduced, e)
  20674. return self.substitute_type(rt, deduced)
  20675. case _:
  20676. return super().type_check_exp(e, env)
  20677. case _:
  20678. return super().type_check_exp(e, env)
  20679. def type_check(self, p):
  20680. match p:
  20681. case Module(body):
  20682. env = {}
  20683. for s in body:
  20684. match s:
  20685. case FunctionDef(name, params, bod, dl, returns, comment):
  20686. params_t = [t for (x,t) in params]
  20687. ty_params = set()
  20688. for t in params_t:
  20689. ty_params |$\mid$|= self.generic_variables(t)
  20690. ty = FunctionType(params_t, returns)
  20691. if len(ty_params) > 0:
  20692. ty = AllType(list(ty_params), ty)
  20693. env[name] = ty
  20694. self.check_stmts(body, IntType(), env)
  20695. case _:
  20696. raise Exception('type_check: unexpected ' + repr(p))
  20697. \end{lstlisting}
  20698. \fi}
  20699. \end{tcolorbox}
  20700. \caption{Type checker for the \LangPoly{} language.}
  20701. \label{fig:type-check-Lpoly}
  20702. \end{figure}
  20703. \begin{figure}[tbp]
  20704. \begin{tcolorbox}[colback=white]
  20705. {\if\edition\racketEd
  20706. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20707. (define/override (type-equal? t1 t2)
  20708. (match* (t1 t2)
  20709. [(`(All ,xs ,T1) `(All ,ys ,T2))
  20710. (define env (map cons xs ys))
  20711. (type-equal? (substitute_type env T1) T2)]
  20712. [(other wise)
  20713. (super type-equal? t1 t2)]))
  20714. (define/public (match_types env pt at)
  20715. (match* (pt at)
  20716. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  20717. [('Void 'Void) env] [('Any 'Any) env]
  20718. [(`(Vector ,pts ...) `(Vector ,ats ...))
  20719. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  20720. (match_types env^ pt1 at1))]
  20721. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  20722. (define env^ (match_types env prt art))
  20723. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  20724. (match_types env^^ pt1 at1))]
  20725. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  20726. (define env^ (append (map cons pxs axs) env))
  20727. (match_types env^ pt1 at1)]
  20728. [((? symbol? x) at)
  20729. (match (dict-ref env x (lambda () #f))
  20730. [#f (error 'type-check "undefined type variable ~a" x)]
  20731. ['Type (cons (cons x at) env)]
  20732. [t^ (check-type-equal? at t^ 'matching) env])]
  20733. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  20734. (define/public (substitute_type env pt)
  20735. (match pt
  20736. ['Integer 'Integer] ['Boolean 'Boolean]
  20737. ['Void 'Void] ['Any 'Any]
  20738. [`(Vector ,ts ...)
  20739. `(Vector ,@(for/list ([t ts]) (substitute_type env t)))]
  20740. [`(,ts ... -> ,rt)
  20741. `(,@(for/list ([t ts]) (substitute_type env t)) -> ,(substitute_type env rt))]
  20742. [`(All ,xs ,t)
  20743. `(All ,xs ,(substitute_type (append (map cons xs xs) env) t))]
  20744. [(? symbol? x) (dict-ref env x)]
  20745. [else (error 'type-check "expected a type not ~a" pt)]))
  20746. (define/public (combine-decls-defs ds)
  20747. (match ds
  20748. ['() '()]
  20749. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  20750. (unless (equal? name f)
  20751. (error 'type-check "name mismatch, ~a != ~a" name f))
  20752. (match type
  20753. [`(All ,xs (,ps ... -> ,rt))
  20754. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  20755. (cons (Generic xs (Def name params^ rt info body))
  20756. (combine-decls-defs ds^))]
  20757. [`(,ps ... -> ,rt)
  20758. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  20759. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  20760. [else (error 'type-check "expected a function type, not ~a" type) ])]
  20761. [`(,(Def f params rt info body) . ,ds^)
  20762. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  20763. \end{lstlisting}
  20764. \fi}
  20765. {\if\edition\pythonEd\pythonColor
  20766. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20767. def match_types(self, param_ty, arg_ty, deduced, e):
  20768. match (param_ty, arg_ty):
  20769. case (GenericVar(id), _):
  20770. if id in deduced:
  20771. self.check_type_equal(arg_ty, deduced[id], e)
  20772. else:
  20773. deduced[id] = arg_ty
  20774. case (AllType(ps, ty), AllType(arg_ps, arg_ty)):
  20775. rename = {ap:p for (ap,p) in zip(arg_ps, ps)}
  20776. new_arg_ty = self.substitute_type(arg_ty, rename)
  20777. self.match_types(ty, new_arg_ty, deduced, e)
  20778. case (TupleType(ps), TupleType(ts)):
  20779. for (p, a) in zip(ps, ts):
  20780. self.match_types(p, a, deduced, e)
  20781. case (ListType(p), ListType(a)):
  20782. self.match_types(p, a, deduced, e)
  20783. case (FunctionType(pps, prt), FunctionType(aps, art)):
  20784. for (pp, ap) in zip(pps, aps):
  20785. self.match_types(pp, ap, deduced, e)
  20786. self.match_types(prt, art, deduced, e)
  20787. case (IntType(), IntType()):
  20788. pass
  20789. case (BoolType(), BoolType()):
  20790. pass
  20791. case _:
  20792. raise Exception('mismatch: ' + str(param_ty) + '\n!= ' + str(arg_ty))
  20793. def substitute_type(self, ty, var_map):
  20794. match ty:
  20795. case GenericVar(id):
  20796. return var_map[id]
  20797. case AllType(ps, ty):
  20798. new_map = copy.deepcopy(var_map)
  20799. for p in ps:
  20800. new_map[p] = GenericVar(p)
  20801. return AllType(ps, self.substitute_type(ty, new_map))
  20802. case TupleType(ts):
  20803. return TupleType([self.substitute_type(t, var_map) for t in ts])
  20804. case ListType(ty):
  20805. return ListType(self.substitute_type(ty, var_map))
  20806. case FunctionType(pts, rt):
  20807. return FunctionType([self.substitute_type(p, var_map) for p in pts],
  20808. self.substitute_type(rt, var_map))
  20809. case IntType():
  20810. return IntType()
  20811. case BoolType():
  20812. return BoolType()
  20813. case _:
  20814. raise Exception('substitute_type: unexpected ' + repr(ty))
  20815. def check_type_equal(self, t1, t2, e):
  20816. match (t1, t2):
  20817. case (AllType(ps1, ty1), AllType(ps2, ty2)):
  20818. rename = {p2: GenericVar(p1) for (p1,p2) in zip(ps1,ps2)}
  20819. return self.check_type_equal(ty1, self.substitute_type(ty2, rename), e)
  20820. case (_, _):
  20821. return super().check_type_equal(t1, t2, e)
  20822. \end{lstlisting}
  20823. \fi}
  20824. \end{tcolorbox}
  20825. \caption{Auxiliary functions for type checking \LangPoly{}.}
  20826. \label{fig:type-check-Lpoly-aux}
  20827. \end{figure}
  20828. {\if\edition\racketEd
  20829. \begin{figure}[tbp]
  20830. \begin{tcolorbox}[colback=white]
  20831. \begin{lstlisting}
  20832. (define/public ((check_well_formed env) ty)
  20833. (match ty
  20834. ['Integer (void)]
  20835. ['Boolean (void)]
  20836. ['Void (void)]
  20837. [(? symbol? a)
  20838. (match (dict-ref env a (lambda () #f))
  20839. ['Type (void)]
  20840. [else (error 'type-check "undefined type variable ~a" a)])]
  20841. [`(Vector ,ts ...)
  20842. (for ([t ts]) ((check_well_formed env) t))]
  20843. [`(,ts ... -> ,t)
  20844. (for ([t ts]) ((check_well_formed env) t))
  20845. ((check_well_formed env) t)]
  20846. [`(All ,xs ,t)
  20847. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  20848. ((check_well_formed env^) t)]
  20849. [else (error 'type-check "unrecognized type ~a" ty)]))
  20850. \end{lstlisting}
  20851. \end{tcolorbox}
  20852. \caption{Well-formed types.}
  20853. \label{fig:well-formed-types}
  20854. \end{figure}
  20855. \fi}
  20856. % TODO: interpreter for R'_10
  20857. \clearpage
  20858. \section{Compiling Generics}
  20859. \label{sec:compiling-poly}
  20860. Broadly speaking, there are four approaches to compiling generics, as
  20861. follows:
  20862. \begin{description}
  20863. \item[Monomorphization] generates a different version of a generic
  20864. function for each set of type arguments with which it is used,
  20865. producing type-specialized code. This approach results in the most
  20866. efficient code but requires whole-program compilation (no separate
  20867. compilation) and may increase code size. Unfortunately,
  20868. monomorphization is incompatible with first-class generics because
  20869. it is not always possible to determine which generic functions are
  20870. used with which type arguments during compilation. (It can be done
  20871. at runtime with just-in-time compilation.) Monomorphization is
  20872. used to compile C++ templates~\citep{stroustrup88:_param_types} and
  20873. generic functions in NESL~\citep{Blelloch:1993aa} and
  20874. ML~\citep{Weeks:2006aa}.
  20875. \item[Uniform representation] generates one version of each generic
  20876. function and requires all values to have a common \emph{boxed} format,
  20877. such as the tagged values of type \CANYTY{} in \LangAny{}. Both
  20878. generic and monomorphic code is compiled similarly to code in a
  20879. dynamically typed language (like \LangDyn{}), in which primitive
  20880. operators require their arguments to be projected from \CANYTY{} and
  20881. their results to be injected into \CANYTY{}. (In object-oriented
  20882. languages, the projection is accomplished via virtual method
  20883. dispatch.) The uniform representation approach is compatible with
  20884. separate compilation and with first-class generics. However, it
  20885. produces the least efficient code because it introduces overhead in
  20886. the entire program. This approach is used in
  20887. Java~\citep{Bracha:1998fk},
  20888. CLU~\citep{liskov79:_clu_ref,Liskov:1993dk}, and some implementations
  20889. of ML~\citep{Cardelli:1984aa,Appel:1987aa}.
  20890. \item[Mixed representation] generates one version of each generic
  20891. function, using a boxed representation for type variables. However,
  20892. monomorphic code is compiled as usual (as in \LangLam{}), and
  20893. conversions are performed at the boundaries between monomorphic code
  20894. and polymorphic code (for example, when a generic function is instantiated
  20895. and called). This approach is compatible with separate compilation
  20896. and first-class generics and maintains efficiency in monomorphic
  20897. code. The trade-off is increased overhead at the boundary between
  20898. monomorphic and generic code. This approach is used in
  20899. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  20900. Java 5 with the addition of autoboxing.
  20901. \item[Type passing] uses the unboxed representation in both
  20902. monomorphic and generic code. Each generic function is compiled to a
  20903. single function with extra parameters that describe the type
  20904. arguments. The type information is used by the generated code to
  20905. determine how to access the unboxed values at runtime. This approach is
  20906. used in implementation of Napier88~\citep{Morrison:1991aa} and
  20907. ML~\citep{Harper:1995um}. Type passing is compatible with separate
  20908. compilation and first-class generics and maintains the
  20909. efficiency for monomorphic code. There is runtime overhead in
  20910. polymorphic code from dispatching on type information.
  20911. \end{description}
  20912. In this chapter we use the mixed representation approach, partly
  20913. because of its favorable attributes and partly because it is
  20914. straightforward to implement using the tools that we have already
  20915. built to support gradual typing. The work of compiling generic
  20916. functions is performed in two passes, \code{resolve} and
  20917. \code{erase\_types}, that we discuss next. The output of
  20918. \code{erase\_types} is \LangCast{}
  20919. (section~\ref{sec:gradual-insert-casts}), so the rest of the
  20920. compilation is handled by the compiler of chapter~\ref{ch:Lgrad}.
  20921. \section{Resolve Instantiation}
  20922. \label{sec:generic-resolve}
  20923. Recall that the type checker for \LangPoly{} deduces the type
  20924. arguments at call sites to a generic function. The purpose of the
  20925. \code{resolve} pass is to turn this implicit instantiation into an
  20926. explicit one, by adding \code{inst} nodes to the syntax of the
  20927. intermediate language. An \code{inst} node records the mapping of
  20928. type parameters to type arguments. The semantics of the \code{inst}
  20929. node is to instantiate the result of its first argument, a generic
  20930. function, to produce a monomorphic function. However, because the
  20931. interpreter never analyzes type annotations, instantiation can be a
  20932. no-op and simply return the generic function.
  20933. %
  20934. The output language of the \code{resolve} pass is \LangInst{},
  20935. for which the definition is shown in figure~\ref{fig:Lpoly-prime-syntax}.
  20936. {\if\edition\racketEd
  20937. The \code{resolve} pass combines the type declaration and polymorphic
  20938. function into a single definition, using the \code{Poly} form, to make
  20939. polymorphic functions more convenient to process in the next pass of the
  20940. compiler.
  20941. \fi}
  20942. \newcommand{\LinstASTRacket}{
  20943. \begin{array}{lcl}
  20944. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20945. \Exp &::=& \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  20946. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  20947. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP
  20948. \end{array}
  20949. }
  20950. \newcommand{\LinstASTPython}{
  20951. \begin{array}{lcl}
  20952. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP \MID \Var \\
  20953. \Exp &::=& \INST{\Exp}{\LC\Var\key{:}\Type\ldots\RC}
  20954. \end{array}
  20955. }
  20956. \begin{figure}[tp]
  20957. \centering
  20958. \begin{tcolorbox}[colback=white]
  20959. \small
  20960. {\if\edition\racketEd
  20961. \[
  20962. \begin{array}{l}
  20963. \gray{\LintOpAST} \\ \hline
  20964. \gray{\LvarASTRacket{}} \\ \hline
  20965. \gray{\LifASTRacket{}} \\ \hline
  20966. \gray{\LwhileASTRacket{}} \\ \hline
  20967. \gray{\LtupASTRacket{}} \\ \hline
  20968. \gray{\LfunASTRacket} \\ \hline
  20969. \gray{\LlambdaASTRacket} \\ \hline
  20970. \LinstASTRacket \\
  20971. \begin{array}{lcl}
  20972. \LangInst{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  20973. \end{array}
  20974. \end{array}
  20975. \]
  20976. \fi}
  20977. {\if\edition\pythonEd\pythonColor
  20978. \[
  20979. \begin{array}{l}
  20980. \gray{\LintASTPython} \\ \hline
  20981. \gray{\LvarASTPython{}} \\ \hline
  20982. \gray{\LifASTPython{}} \\ \hline
  20983. \gray{\LwhileASTPython{}} \\ \hline
  20984. \gray{\LtupASTPython{}} \\ \hline
  20985. \gray{\LfunASTPython} \\ \hline
  20986. \gray{\LlambdaASTPython} \\ \hline
  20987. \LinstASTPython \\
  20988. \begin{array}{lcl}
  20989. \LangInst{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  20990. \end{array}
  20991. \end{array}
  20992. \]
  20993. \fi}
  20994. \end{tcolorbox}
  20995. \caption{The abstract syntax of \LangInst{}, extending \LangLam{}
  20996. (figure~\ref{fig:Llam-syntax}).}
  20997. \label{fig:Lpoly-prime-syntax}
  20998. \end{figure}
  20999. The output of the \code{resolve} pass on the generic \code{map}
  21000. example is listed in figure~\ref{fig:map-resolve}. Note that the use
  21001. of \code{map} is wrapped in an \code{inst} node, with the parameter
  21002. \code{T} chosen to be \racket{\code{Integer}}\python{\code{int}}.
  21003. \begin{figure}[tbp]
  21004. % poly_test_2.rkt
  21005. \begin{tcolorbox}[colback=white]
  21006. {\if\edition\racketEd
  21007. \begin{lstlisting}
  21008. (poly (T) (define (map [f : (T -> T)] [v : (Vector T T)]) : (Vector T T)
  21009. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  21010. (define (inc [x : Integer]) : Integer (+ x 1))
  21011. (vector-ref ((inst map (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21012. (Integer))
  21013. inc (vector 0 41)) 1)
  21014. \end{lstlisting}
  21015. \fi}
  21016. {\if\edition\pythonEd\pythonColor
  21017. \begin{lstlisting}
  21018. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  21019. return (f(tup[0]), f(tup[1]))
  21020. def add1(x : int) -> int:
  21021. return x + 1
  21022. t = inst(map, {T: int})(add1, (0, 41))
  21023. print(t[1])
  21024. \end{lstlisting}
  21025. \fi}
  21026. \end{tcolorbox}
  21027. \caption{Output of the \code{resolve} pass on the \code{map} example.}
  21028. \label{fig:map-resolve}
  21029. \end{figure}
  21030. \section{Erase Generic Types}
  21031. \label{sec:erase_types}
  21032. We use the \CANYTY{} type presented in chapter~\ref{ch:Ldyn} to
  21033. represent type variables. For example, figure~\ref{fig:map-erase}
  21034. shows the output of the \code{erase\_types} pass on the generic
  21035. \code{map} (figure~\ref{fig:map-poly}). The occurrences of
  21036. type parameter \code{a} are replaced by \CANYTY{}, and the generic
  21037. \code{All} types are removed from the type of \code{map}.
  21038. \begin{figure}[tbp]
  21039. \begin{tcolorbox}[colback=white]
  21040. {\if\edition\racketEd
  21041. \begin{lstlisting}
  21042. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  21043. : (Vector Any Any)
  21044. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  21045. (define (inc [x : Integer]) : Integer (+ x 1))
  21046. (vector-ref ((cast map
  21047. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21048. ((Integer -> Integer) (Vector Integer Integer)
  21049. -> (Vector Integer Integer)))
  21050. inc (vector 0 41)) 1)
  21051. \end{lstlisting}
  21052. \fi}
  21053. {\if\edition\pythonEd\pythonColor
  21054. \begin{lstlisting}
  21055. def map(f : Callable[[Any],Any], tup : tuple[Any,Any])-> tuple[Any,Any]:
  21056. return (f(tup[0]), f(tup[1]))
  21057. def add1(x : int) -> int:
  21058. return (x + 1)
  21059. def main() -> int:
  21060. t = cast(map, |$T_1$|, |$T_2$|)(add1, (0, 41))
  21061. print(t[1])
  21062. return 0
  21063. \end{lstlisting}
  21064. {\small
  21065. where\\
  21066. $T_1 = $ \code{Callable[[Callable[[Any], Any],tuple[Any,Any]], tuple[Any,Any]]}\\
  21067. $T_2 = $ \code{Callable[[Callable[[int], int],tuple[int,int]], tuple[int,int]]}
  21068. }
  21069. \fi}
  21070. \end{tcolorbox}
  21071. \caption{The generic \code{map} example after type erasure.}
  21072. \label{fig:map-erase}
  21073. \end{figure}
  21074. This process of type erasure creates a challenge at points of
  21075. instantiation. For example, consider the instantiation of
  21076. \code{map} shown in figure~\ref{fig:map-resolve}.
  21077. The type of \code{map} is
  21078. %
  21079. {\if\edition\racketEd
  21080. \begin{lstlisting}
  21081. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21082. \end{lstlisting}
  21083. \fi}
  21084. {\if\edition\pythonEd\pythonColor
  21085. \begin{lstlisting}
  21086. All[[T], Callable[[Callable[[T], T], tuple[T, T]], tuple[T, T]]]
  21087. \end{lstlisting}
  21088. \fi}
  21089. %
  21090. and it is instantiated to
  21091. %
  21092. {\if\edition\racketEd
  21093. \begin{lstlisting}
  21094. ((Integer -> Integer) (Vector Integer Integer)
  21095. -> (Vector Integer Integer))
  21096. \end{lstlisting}
  21097. \fi}
  21098. {\if\edition\pythonEd\pythonColor
  21099. \begin{lstlisting}
  21100. Callable[[Callable[[int], int], tuple[int, int]], tuple[int, int]]
  21101. \end{lstlisting}
  21102. \fi}
  21103. %
  21104. After erasure, the type of \code{map} is
  21105. %
  21106. {\if\edition\racketEd
  21107. \begin{lstlisting}
  21108. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21109. \end{lstlisting}
  21110. \fi}
  21111. {\if\edition\pythonEd\pythonColor
  21112. \begin{lstlisting}
  21113. Callable[[Callable[[Any], Any], tuple[Any, Any]], tuple[Any, Any]]
  21114. \end{lstlisting}
  21115. \fi}
  21116. %
  21117. but we need to convert it to the instantiated type. This is easy to
  21118. do in the language \LangCast{} with a single \code{cast}. In the
  21119. example shown in figure~\ref{fig:map-erase}, the instantiation of
  21120. \code{map} has been compiled to a \code{cast} from the type of
  21121. \code{map} to the instantiated type. The source and the target type of a
  21122. cast must be consistent (figure~\ref{fig:consistent}), which indeed is
  21123. the case because both the source and target are obtained from the same
  21124. generic type of \code{map}, replacing the type parameters with
  21125. \CANYTY{} in the former and with the deduced type arguments in the
  21126. latter. (Recall that the \CANYTY{} type is consistent with any type.)
  21127. To implement the \code{erase\_types} pass, we first recommend defining
  21128. a recursive function that translates types, named
  21129. \code{erase\_type}. It replaces type variables with \CANYTY{} as
  21130. follows.
  21131. %
  21132. {\if\edition\racketEd
  21133. \begin{lstlisting}
  21134. |$T$|
  21135. |$\Rightarrow$|
  21136. Any
  21137. \end{lstlisting}
  21138. \fi}
  21139. {\if\edition\pythonEd\pythonColor
  21140. \begin{lstlisting}
  21141. GenericVar(|$T$|)
  21142. |$\Rightarrow$|
  21143. Any
  21144. \end{lstlisting}
  21145. \fi}
  21146. %
  21147. \noindent The \code{erase\_type} function also removes the generic
  21148. \code{All} types.
  21149. %
  21150. {\if\edition\racketEd
  21151. \begin{lstlisting}
  21152. (All |$xs$| |$T_1$|)
  21153. |$\Rightarrow$|
  21154. |$T'_1$|
  21155. \end{lstlisting}
  21156. \fi}
  21157. {\if\edition\pythonEd\pythonColor
  21158. \begin{lstlisting}
  21159. AllType(|$xs$|, |$T_1$|)
  21160. |$\Rightarrow$|
  21161. |$T'_1$|
  21162. \end{lstlisting}
  21163. \fi}
  21164. where $T'_1$ is the result of applying \code{erase\_type} to $T_1$.
  21165. %
  21166. In this compiler pass, apply the \code{erase\_type} function to all
  21167. the type annotations in the program.
  21168. Regarding the translation of expressions, the case for \code{Inst} is
  21169. the interesting one. We translate it into a \code{Cast}, as shown
  21170. next.
  21171. The type of the subexpression $e$ is a generic type of the form
  21172. \racket{$\LP\key{All}~\itm{xs}~T\RP$}\python{$\key{AllType}\LP\itm{xs}, T\RP$}.
  21173. The source type of the cast is the erasure of $T$, the type $T_s$.
  21174. %
  21175. {\if\edition\racketEd
  21176. %
  21177. The target type $T_t$ is the result of substituting the argument types
  21178. $ts$ for the type parameters $xs$ in $T$ followed by doing type
  21179. erasure.
  21180. %
  21181. \begin{lstlisting}
  21182. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  21183. |$\Rightarrow$|
  21184. (Cast |$e'$| |$T_s$| |$T_t$|)
  21185. \end{lstlisting}
  21186. %
  21187. where $T_t = \LP\code{erase\_type}~\LP\code{substitute\_type}~s~T\RP\RP$,
  21188. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  21189. \fi}
  21190. {\if\edition\pythonEd\pythonColor
  21191. %
  21192. The target type $T_t$ is the result of substituting the deduced
  21193. argument types $d$ in $T$ followed by doing type erasure.
  21194. %
  21195. \begin{lstlisting}
  21196. Inst(|$e$|, |$d$|)
  21197. |$\Rightarrow$|
  21198. Cast(|$e'$|, |$T_s$|, |$T_t$|)
  21199. \end{lstlisting}
  21200. %
  21201. where
  21202. $T_t = \code{erase\_type}\LP\code{substitute\_type}\LP d, T\RP\RP$.
  21203. \fi}
  21204. Finally, each generic function is translated to a regular
  21205. function in which type erasure has been applied to all the type
  21206. annotations and the body.
  21207. %% \begin{lstlisting}
  21208. %% (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  21209. %% |$\Rightarrow$|
  21210. %% (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  21211. %% \end{lstlisting}
  21212. \begin{exercise}\normalfont\normalsize
  21213. Implement a compiler for the polymorphic language \LangPoly{} by
  21214. extending and adapting your compiler for \LangGrad{}. Create six new
  21215. test programs that use polymorphic functions. Some of them should
  21216. make use of first-class generics.
  21217. \end{exercise}
  21218. \begin{figure}[tbp]
  21219. \begin{tcolorbox}[colback=white]
  21220. {\if\edition\racketEd
  21221. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21222. \node (Lpoly) at (0,4) {\large \LangPoly{}};
  21223. \node (Lpolyp) at (4,4) {\large \LangInst{}};
  21224. \node (Lgradualp) at (8,4) {\large \LangCast{}};
  21225. \node (Llambdapp) at (12,4) {\large \LangProxy{}};
  21226. \node (Llambdaproxy) at (12,2) {\large \LangPVec{}};
  21227. \node (Llambdaproxy-2) at (8,2) {\large \LangPVec{}};
  21228. \node (Llambdaproxy-3) at (4,2) {\large \LangPVec{}};
  21229. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  21230. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  21231. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  21232. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  21233. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  21234. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  21235. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  21236. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  21237. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21238. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21239. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  21240. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  21241. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21242. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21243. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  21244. \path[->,bend left=15] (Lpoly) edge [above] node
  21245. {\ttfamily\footnotesize resolve} (Lpolyp);
  21246. \path[->,bend left=15] (Lpolyp) edge [above] node
  21247. {\ttfamily\footnotesize erase\_types} (Lgradualp);
  21248. \path[->,bend left=15] (Lgradualp) edge [above] node
  21249. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  21250. \path[->,bend left=15] (Llambdapp) edge [left] node
  21251. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy);
  21252. \path[->,bend left=15] (Llambdaproxy) edge [below] node
  21253. {\ttfamily\footnotesize shrink} (Llambdaproxy-2);
  21254. \path[->,bend right=15] (Llambdaproxy-2) edge [above] node
  21255. {\ttfamily\footnotesize uniquify} (Llambdaproxy-3);
  21256. \path[->,bend right=15] (Llambdaproxy-3) edge [above] node
  21257. {\ttfamily\footnotesize reveal\_functions} (Llambdaproxy-4);
  21258. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  21259. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21260. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  21261. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21262. \path[->,bend left=15] (F1-1) edge [above] node
  21263. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21264. \path[->,bend left=15] (F1-2) edge [above] node
  21265. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21266. \path[->,bend left=15] (F1-3) edge [left] node
  21267. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  21268. \path[->,bend left=15] (F1-4) edge [below] node
  21269. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  21270. \path[->,bend right=15] (F1-5) edge [above] node
  21271. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21272. \path[->,bend right=15] (F1-6) edge [above] node
  21273. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21274. \path[->,bend right=15] (C3-2) edge [right] node
  21275. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21276. \path[->,bend right=15] (x86-2) edge [right] node
  21277. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  21278. \path[->,bend right=15] (x86-2-1) edge [below] node
  21279. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  21280. \path[->,bend right=15] (x86-2-2) edge [right] node
  21281. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  21282. \path[->,bend left=15] (x86-3) edge [above] node
  21283. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21284. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21285. \end{tikzpicture}
  21286. \fi}
  21287. {\if\edition\pythonEd\pythonColor
  21288. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21289. \node (Lgradual) at (0,4) {\large \LangPoly{}};
  21290. \node (Lgradual2) at (4,4) {\large \LangPoly{}};
  21291. \node (Lgradual3) at (8,4) {\large \LangPoly{}};
  21292. \node (Lgradual4) at (12,4) {\large \LangPoly{}};
  21293. \node (Lgradualr) at (12,2) {\large \LangInst{}};
  21294. \node (Llambdapp) at (8,2) {\large \LangCast{}};
  21295. \node (Llambdaproxy-4) at (4,2) {\large \LangPVec{}};
  21296. \node (Llambdaproxy-5) at (0,2) {\large \LangPVec{}};
  21297. \node (F1-1) at (0,0) {\large \LangPVec{}};
  21298. \node (F1-2) at (4,0) {\large \LangPVec{}};
  21299. \node (F1-3) at (8,0) {\large \LangPVec{}};
  21300. \node (F1-5) at (12,0) {\large \LangPVecAlloc{}};
  21301. \node (F1-6) at (12,-2) {\large \LangPVecAlloc{}};
  21302. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21303. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21304. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21305. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21306. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  21307. \path[->,bend left=15] (Lgradual) edge [above] node
  21308. {\ttfamily\footnotesize shrink} (Lgradual2);
  21309. \path[->,bend left=15] (Lgradual2) edge [above] node
  21310. {\ttfamily\footnotesize uniquify} (Lgradual3);
  21311. \path[->,bend left=15] (Lgradual3) edge [above] node
  21312. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  21313. \path[->,bend left=15] (Lgradual4) edge [left] node
  21314. {\ttfamily\footnotesize resolve} (Lgradualr);
  21315. \path[->,bend left=15] (Lgradualr) edge [below] node
  21316. {\ttfamily\footnotesize erase\_types} (Llambdapp);
  21317. \path[->,bend right=15] (Llambdapp) edge [above] node
  21318. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  21319. \path[->,bend right=15] (Llambdaproxy-4) edge [above] node
  21320. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21321. \path[->,bend right=15] (Llambdaproxy-5) edge [right] node
  21322. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21323. \path[->,bend right=15] (F1-1) edge [below] node
  21324. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21325. \path[->,bend right=15] (F1-2) edge [below] node
  21326. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21327. \path[->,bend left=15] (F1-3) edge [above] node
  21328. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  21329. \path[->,bend left=15] (F1-5) edge [left] node
  21330. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21331. \path[->,bend left=5] (F1-6) edge [below] node
  21332. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21333. \path[->,bend right=15] (C3-2) edge [right] node
  21334. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21335. \path[->,bend right=15] (x86-2) edge [below] node
  21336. {\ttfamily\footnotesize assign\_homes} (x86-3);
  21337. \path[->,bend right=15] (x86-3) edge [below] node
  21338. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21339. \path[->,bend left=15] (x86-4) edge [above] node
  21340. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21341. \end{tikzpicture}
  21342. \fi}
  21343. \end{tcolorbox}
  21344. \caption{Diagram of the passes for \LangPoly{} (generics).}
  21345. \label{fig:Lpoly-passes}
  21346. \end{figure}
  21347. Figure~\ref{fig:Lpoly-passes} provides an overview of the passes
  21348. needed to compile \LangPoly{}.
  21349. % TODO: challenge problem: specialization of instantiations
  21350. % Further Reading
  21351. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  21352. \clearpage
  21353. \appendix
  21354. \chapter{Appendix}
  21355. \setcounter{footnote}{0}
  21356. {\if\edition\racketEd
  21357. \section{Interpreters}
  21358. \label{appendix:interp}
  21359. \index{subject}{interpreter}
  21360. We provide interpreters for each of the source languages \LangInt{},
  21361. \LangVar{}, $\ldots$ in the files \code{interp-Lint.rkt},
  21362. \code{interp-Lvar.rkt}, and so on. The interpreters for the
  21363. intermediate languages \LangCVar{} and \LangCIf{} are in
  21364. \code{interp-Cvar.rkt} and \code{interp-C1.rkt}. The interpreters for
  21365. \LangCVec{}, \LangCFun{}, pseudo-x86, and x86 are in the
  21366. \key{interp.rkt} file.
  21367. \section{Utility Functions}
  21368. \label{appendix:utilities}
  21369. The utility functions described in this section are in the
  21370. \key{utilities.rkt} file of the support code.
  21371. \paragraph{\code{interp-tests}}
  21372. This function runs the compiler passes and the interpreters on each of
  21373. the specified tests to check whether each pass is correct. The
  21374. \key{interp-tests} function has the following parameters:
  21375. \begin{description}
  21376. \item[name (a string)] A name to identify the compiler.
  21377. \item[typechecker] A function of exactly one argument that either
  21378. raises an error using the \code{error} function when it encounters a
  21379. type error, or returns \code{\#f} when it encounters a type
  21380. error. If there is no type error, the type checker returns the
  21381. program.
  21382. \item[passes] A list with one entry per pass. An entry is a list
  21383. consisting of four things:
  21384. \begin{enumerate}
  21385. \item a string giving the name of the pass;
  21386. \item the function that implements the pass (a translator from AST
  21387. to AST);
  21388. \item a function that implements the interpreter (a function from
  21389. AST to result value) for the output language; and,
  21390. \item a type checker for the output language. Type checkers for
  21391. all the $\Lang{}$ and $\CLang{}$ languages are provided in the support code.
  21392. For example, the type checkers for \LangVar{} and \LangCVar{} are in
  21393. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  21394. type checker entry is optional. The support code does not provide
  21395. type checkers for the x86 languages.
  21396. \end{enumerate}
  21397. \item[source-interp] An interpreter for the source language. The
  21398. interpreters from appendix~\ref{appendix:interp} make a good choice.
  21399. \item[test-family (a string)] For example, \code{"var"} or \code{"cond"}.
  21400. \item[tests] A list of test numbers that specifies which tests to
  21401. run (explained next).
  21402. \end{description}
  21403. %
  21404. The \key{interp-tests} function assumes that the subdirectory
  21405. \key{tests} has a collection of Racket programs whose names all start
  21406. with the family name, followed by an underscore and then the test
  21407. number, and ending with the file extension \key{.rkt}. Also, for each test
  21408. program that calls \code{read} one or more times, there is a file with
  21409. the same name except that the file extension is \key{.in}, which
  21410. provides the input for the Racket program. If the test program is
  21411. expected to fail type checking, then there should be an empty file of
  21412. the same name with extension \key{.tyerr}.
  21413. \paragraph{\code{compiler-tests}}
  21414. This function runs the compiler passes to generate x86 (a \key{.s}
  21415. file) and then runs the GNU C compiler (gcc) to generate machine code.
  21416. It runs the machine code and checks that the output is $42$. The
  21417. parameters to the \code{compiler-tests} function are similar to those
  21418. of the \code{interp-tests} function, and they consist of
  21419. \begin{itemize}
  21420. \item a compiler name (a string),
  21421. \item a type checker,
  21422. \item description of the passes,
  21423. \item name of a test-family, and
  21424. \item a list of test numbers.
  21425. \end{itemize}
  21426. \paragraph{\code{compile-file}}
  21427. This function takes a description of the compiler passes (see the
  21428. comment for \key{interp-tests}) and returns a function that, given a
  21429. program file name (a string ending in \key{.rkt}), applies all the
  21430. passes and writes the output to a file whose name is the same as the
  21431. program file name with extension \key{.rkt} replaced by \key{.s}.
  21432. \paragraph{\code{read-program}}
  21433. This function takes a file path and parses that file (it must be a
  21434. Racket program) into an abstract syntax tree.
  21435. \paragraph{\code{parse-program}}
  21436. This function takes an S-expression representation of an abstract
  21437. syntax tree and converts it into the struct-based representation.
  21438. \paragraph{\code{assert}}
  21439. This function takes two parameters, a string (\code{msg}) and Boolean
  21440. (\code{bool}), and displays the message \key{msg} if the Boolean
  21441. \key{bool} is false.
  21442. \paragraph{\code{lookup}}
  21443. % remove discussion of lookup? -Jeremy
  21444. This function takes a key and an alist and returns the first value that is
  21445. associated with the given key, if there is one. If not, an error is
  21446. triggered. The alist may contain both immutable pairs (built with
  21447. \key{cons}) and mutable pairs (built with \key{mcons}).
  21448. %The \key{map2} function ...
  21449. \fi} %\racketEd
  21450. \section{x86 Instruction Set Quick Reference}
  21451. \label{sec:x86-quick-reference}
  21452. \index{subject}{x86}
  21453. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  21454. do. We write $A \to B$ to mean that the value of $A$ is written into
  21455. location $B$. Address offsets are given in bytes. The instruction
  21456. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  21457. registers (such as \code{\%rax}), or memory references (such as
  21458. \code{-4(\%ebp)}). Most x86 instructions allow at most one memory
  21459. reference per instruction. Other operands must be immediates or
  21460. registers.
  21461. \begin{table}[tbp]
  21462. \centering
  21463. \begin{tabular}{l|l}
  21464. \textbf{Instruction} & \textbf{Operation} \\ \hline
  21465. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  21466. \texttt{negq} $A$ & $- A \to A$ \\
  21467. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  21468. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  21469. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  21470. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$ \\
  21471. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  21472. \texttt{retq} & Pops the return address and jumps to it \\
  21473. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  21474. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  21475. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  21476. \texttt{cmpq} $A$, $B$ & Compare $A$ and $B$ and set the flag register ($B$ must not
  21477. be an immediate) \\
  21478. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  21479. matches the condition code of the instruction; otherwise go to the
  21480. next instructions. The condition codes are \key{e} for \emph{equal},
  21481. \key{l} for \emph{less}, \key{le} for \emph{less or equal}, \key{g}
  21482. for \emph{greater}, and \key{ge} for \emph{greater or equal}.} \\
  21483. \texttt{jl} $L$ & \\
  21484. \texttt{jle} $L$ & \\
  21485. \texttt{jg} $L$ & \\
  21486. \texttt{jge} $L$ & \\
  21487. \texttt{jmp} $L$ & Jump to label $L$ \\
  21488. \texttt{movq} $A$, $B$ & $A \to B$ \\
  21489. \texttt{movzbq} $A$, $B$ &
  21490. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  21491. (e.g., \texttt{al} or \texttt{cl}), $B$ is an 8-byte register,
  21492. and the extra bytes of $B$ are set to zero.} \\
  21493. & \\
  21494. & \\
  21495. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  21496. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  21497. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  21498. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  21499. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  21500. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  21501. then $1 \to A$; else $0 \to A$. Refer to \texttt{je} for the
  21502. description of the condition codes. $A$ must be a single byte register
  21503. (e.g., \texttt{al} or \texttt{cl}).} \\
  21504. \texttt{setl} $A$ & \\
  21505. \texttt{setle} $A$ & \\
  21506. \texttt{setg} $A$ & \\
  21507. \texttt{setge} $A$ &
  21508. \end{tabular}
  21509. \vspace{5pt}
  21510. \caption{Quick reference for the x86 instructions used in this book.}
  21511. \label{tab:x86-instr}
  21512. \end{table}
  21513. \backmatter
  21514. \addtocontents{toc}{\vspace{11pt}}
  21515. \cleardoublepage % needed for right page number in TOC for References
  21516. %% \nocite{*} is a way to get all the entries in the .bib file to
  21517. %% print in the bibliography:
  21518. \nocite{*}\let\bibname\refname
  21519. \addcontentsline{toc}{fmbm}{\refname}
  21520. \printbibliography
  21521. %\printindex{authors}{Author Index}
  21522. \printindex{subject}{Index}
  21523. \end{document}
  21524. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  21525. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  21526. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  21527. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  21528. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  21529. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  21530. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  21531. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  21532. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  21533. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  21534. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  21535. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  21536. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  21537. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  21538. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  21539. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  21540. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  21541. % LocalWords: numberstyle Cormen sudoku Balakrishnan ve aka DSATUR
  21542. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS wb
  21543. % LocalWords: morekeywords fullflexible goto allocator tuples Wailes
  21544. % LocalWords: Kernighan runtime Freiburg Thiemann Bloomington unary
  21545. % LocalWords: eq prog rcl binaryop unaryop definitional Evaluator os
  21546. % LocalWords: subexpression evaluator InterpLint lcl quadwords concl
  21547. % LocalWords: nanopass subexpressions decompositions Lawall Hatcliff
  21548. % LocalWords: subdirectory monadic Moggi mon utils macosx unix repr
  21549. % LocalWords: Uncomment undirected vertices callee Liveness liveness
  21550. % LocalWords: frozenset unordered Appel Rosen pqueue cmp Fortran vl
  21551. % LocalWords: Horwitz Kempe colorable subgraph kx iteratively Matula
  21552. % LocalWords: ys ly Palsberg si JoeQ cardinality Poletto Booleans hj
  21553. % LocalWords: subscriptable MyPy Lehtosalo Listof Pairof indexable
  21554. % LocalWords: bool boolop NotEq LtE GtE refactor els orelse BoolOp
  21555. % LocalWords: boolean initializer param exprs TypeCheckLvar msg Tt
  21556. % LocalWords: isinstance TypeCheckLif tyerr xorq bytereg al dh dl ne
  21557. % LocalWords: le ge cmpq movzbq EFLAGS jle inlined setl je jl Cif
  21558. % LocalWords: lll pred IfStmt sete CFG tsort multigraph FunctionType
  21559. % LocalWords: Wijngaarden Plotkin Logothetis PeytonJones SetBang Ph
  21560. % LocalWords: WhileLoop unboxes Lwhile unbox InterpLwhile rhsT varT
  21561. % LocalWords: Tbody TypeCheckLwhile acyclic mainstart mainconclusion
  21562. % LocalWords: versa Kildall Kleene worklist enqueue dequeue deque tb
  21563. % LocalWords: GetBang effectful SPERBER Lfun tuple implementer's tup
  21564. % LocalWords: indices HasType Lvec InterpLtup tuple's vec ty Ungar
  21565. % LocalWords: TypeCheckLtup Detlefs Tene FromSpace ToSpace Diwan ptr
  21566. % LocalWords: Siebert TupleType endian salq sarq fromspace rootstack
  21567. % LocalWords: uint th vecinit alloc GlobalValue andq bitwise ior elt
  21568. % LocalWords: dereferencing StructDef Vectorof vectorof Lvecof Jacek
  21569. % LocalWords: AllocateArray cheney tospace Dieckmann Shahriyar di xs
  21570. % LocalWords: Shidal Osterlund Gamari lexically FunctionDef IntType
  21571. % LocalWords: BoolType VoidType ProgramDefsExp vals params ps ds num
  21572. % LocalWords: InterpLfun FunRef TypeCheckLfun leaq callee's mainDef
  21573. % LocalWords: ProgramDefs TailCall tailjmp IndirectCallq TailJmp rT
  21574. % LocalWords: prepending addstart addconclusion Cardelli Llambda typ
  21575. % LocalWords: Llambda InterpLlambda AnnAssign Dunfield bodyT str fvs
  21576. % LocalWords: TypeCheckLlambda annot dereference clos fvts closTy tg
  21577. % LocalWords: Minamide AllocateClosure Gilray Milner morphos subtype
  21578. % LocalWords: polymorphism untyped AnyType dataclass untag Ldyn conc
  21579. % LocalWords: lookup InterpLdyn elif tagof Lany TypeCheckLany tv orq
  21580. % LocalWords: AnnLambda InterpLany ClosureTuple ValueOf TagOf imulq
  21581. % LocalWords: untagged multi Tobin Hochstadt zr mn Gronski kd ret Tp
  21582. % LocalWords: Tif src tgt Lcast wr contravariant PVector un Lgradual
  21583. % LocalWords: Lgradualp Llambdapp Llambdaproxy Wadler qv quicksort
  21584. % LocalWords: Henglein nz coercions Grift parametetric parameterized
  21585. % LocalWords: parameterizing stroustrup subst tys targs decls defs
  21586. % LocalWords: pts ats prt pxs axs Decl Monomorphization NESL CLU qb
  21587. % LocalWords: monomorphization Blelloch monomorphic Bracha unboxed
  21588. % LocalWords: instantiation Lpoly Lpolyp typechecker mcons ebp jge
  21589. % LocalWords: notq setle setg setge uncredited LT Std groundbreaking
  21590. % LocalWords: colback GitHub inputint nonatomic ea tcolorbox bassed
  21591. % LocalWords: tikzpicture Chaitin's Belady's Cocke Freiburghouse Lt
  21592. % LocalWords: lessthan lessthaneq greaterthan greaterthaneq Gt pt Te
  21593. % LocalWords: ts escapechar Tc bl ch cl cc foo lt metavariables vars
  21594. % LocalWords: trans naively IR rep assoc ListType TypeCheckLarray dz
  21595. % LocalWords: Mult InterpLarray lst array's generation's Collins inc
  21596. % LocalWords: Cutler Kelsey val rt bod conflates reg inlining lam AF
  21597. % LocalWords: ASTPython body's bot todo rs ls TypeCheckLgrad ops ab
  21598. % LocalWords: value's inplace anyfun anytup anylist ValueExp proxied
  21599. % LocalWords: ProxiedTuple ProxiedList InterpLcast ListProxy vectof
  21600. % LocalWords: TupleProxy RawTuple InjectTuple InjectTupleProxy vecof
  21601. % LocalWords: InjectList InjectListProxy unannotated Lgradualr poly
  21602. % LocalWords: GenericVar AllType Inst builtin ap pps aps pp deepcopy
  21603. % LocalWords: liskov clu Liskov dk Napier um inst popl jg seq ith qy
  21604. % LocalWords: racketEd subparts subpart nonterminal nonterminals Dyn
  21605. % LocalWords: pseudocode underapproximation underapproximations LALR
  21606. % LocalWords: semilattices overapproximate incrementing Earley docs
  21607. % LocalWords: multilanguage Prelim shinan DeRemer lexer Lesk LPAR cb
  21608. % LocalWords: RPAR abcbab abc bzca usub paren expr lang WS Tomita qr
  21609. % LocalWords: subparses LCCN ebook hardcover epub pdf LCSH LCC DDC
  21610. % LocalWords: LC partialevaluation pythonEd TOC