book.tex 651 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. % move binary subtraction from Lif to Lint
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \definecolor{lightgray}{gray}{1}
  18. \newcommand{\black}[1]{{\color{black} #1}}
  19. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  20. \newcommand{\gray}[1]{{\color{gray} #1}}
  21. \def\racketEd{0}
  22. \def\pythonEd{1}
  23. \def\edition{0}
  24. % material that is specific to the Racket edition of the book
  25. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  26. % would like a command for: \if\edition\racketEd\color{olive}
  27. % and : \fi\color{black}
  28. % material that is specific to the Python edition of the book
  29. \newcommand{\python}[1]{{\if\edition\pythonEd #1\fi}}
  30. %% For multiple indices:
  31. \usepackage{multind}
  32. \makeindex{subject}
  33. \makeindex{authors}
  34. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  35. \if\edition\racketEd
  36. \lstset{%
  37. language=Lisp,
  38. basicstyle=\ttfamily\small,
  39. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  40. deletekeywords={read,mapping,vector},
  41. escapechar=|,
  42. columns=flexible,
  43. moredelim=[is][\color{red}]{~}{~},
  44. showstringspaces=false
  45. }
  46. \fi
  47. \if\edition\pythonEd
  48. \lstset{%
  49. language=Python,
  50. basicstyle=\ttfamily\small,
  51. morekeywords={match,case,bool,int},
  52. deletekeywords={},
  53. escapechar=|,
  54. columns=flexible,
  55. moredelim=[is][\color{red}]{~}{~},
  56. showstringspaces=false
  57. }
  58. \fi
  59. %%% Any shortcut own defined macros place here
  60. %% sample of author macro:
  61. \input{defs}
  62. \newtheorem{exercise}[theorem]{Exercise}
  63. % Adjusted settings
  64. \setlength{\columnsep}{4pt}
  65. %% \begingroup
  66. %% \setlength{\intextsep}{0pt}%
  67. %% \setlength{\columnsep}{0pt}%
  68. %% \begin{wrapfigure}{r}{0.5\textwidth}
  69. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  70. %% \caption{Basic layout}
  71. %% \end{wrapfigure}
  72. %% \lipsum[1]
  73. %% \endgroup
  74. \newbox\oiintbox
  75. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  76. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  77. \def\oiint{\copy\oiintbox}
  78. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  79. %\usepackage{showframe}
  80. \def\ShowFrameLinethickness{0.125pt}
  81. \addbibresource{book.bib}
  82. \begin{document}
  83. \frontmatter
  84. \HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  85. \halftitlepage
  86. \Title{Essentials of Compilation}
  87. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  88. %\edition{First Edition}
  89. \BookAuthor{Jeremy G. Siek}
  90. \imprint{The MIT Press\\
  91. Cambridge, Massachusetts\\
  92. London, England}
  93. \begin{copyrightpage}
  94. \textcopyright\ 2021 Jeremy G. Siek. Available for free viewing
  95. or personal downloading under the
  96. \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  97. license.
  98. Copyright in this monograph has been licensed exclusively to The MIT
  99. Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  100. version to the public in 2022. All inquiries regarding rights should
  101. be addressed to The MIT Press, Rights and Permissions Department.
  102. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  103. %% All rights reserved. No part of this book may be reproduced in any
  104. %% form by any electronic or mechanical means (including photocopying,
  105. %% recording, or information storage and retrieval) without permission in
  106. %% writing from the publisher.
  107. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  108. %% United States of America.
  109. %% Library of Congress Cataloging-in-Publication Data is available.
  110. %% ISBN:
  111. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  112. \end{copyrightpage}
  113. \dedication{This book is dedicated to the programming language wonks
  114. at Indiana University.}
  115. %% \begin{epigraphpage}
  116. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  117. %% \textit{Book Name if any}}
  118. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  119. %% \end{epigraphpage}
  120. \tableofcontents
  121. %\listoffigures
  122. %\listoftables
  123. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  124. \chapter*{Preface}
  125. \addcontentsline{toc}{fmbm}{Preface}
  126. There is a magical moment when a programmer presses the ``run'' button
  127. and the software begins to execute. Somehow a program written in a
  128. high-level language is running on a computer that is only capable of
  129. shuffling bits. Here we reveal the wizardry that makes that moment
  130. possible. Beginning with the ground breaking work of Backus and
  131. colleagues in the 1950s, computer scientists discovered techniques for
  132. constructing programs, called \emph{compilers}, that automatically
  133. translate high-level programs into machine code.
  134. We take you on a journey by constructing your own compiler for a small
  135. but powerful language. Along the way we explain the essential
  136. concepts, algorithms, and data structures that underlie compilers. We
  137. develop your understanding of how programs are mapped onto computer
  138. hardware, which is helpful when reasoning about properties at the
  139. junction between hardware and software such as execution time,
  140. software errors, and security vulnerabilities. For those interested
  141. in pursuing compiler construction, our goal is to provide a
  142. stepping-stone to advanced topics such as just-in-time compilation,
  143. program analysis, and program optimization. For those interested in
  144. designing and implementing programming languages, we connect
  145. language design choices to their impact on the compiler and the generated
  146. code.
  147. A compiler is typically organized as a sequence of stages that
  148. progressively translate a program to code that runs on hardware. We
  149. take this approach to the extreme by partitioning our compiler into a
  150. large number of \emph{nanopasses}, each of which performs a single
  151. task. This allows us to test the output of each pass in isolation, and
  152. furthermore, allows us to focus our attention which makes the compiler
  153. far easier to understand.
  154. The most familiar approach to describing compilers is with one pass
  155. per chapter. The problem with that approach is it obfuscates how
  156. language features motivate design choices in a compiler. We take an
  157. \emph{incremental} approach in which we build a complete compiler in
  158. each chapter, starting with a small input language that includes only
  159. arithmetic and variables and we add new language features in
  160. subsequent chapters.
  161. Our choice of language features is designed to elicit the fundamental
  162. concepts and algorithms used in compilers.
  163. \begin{itemize}
  164. \item We begin with integer arithmetic and local variables in
  165. Chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  166. the fundamental tools of compiler construction: \emph{abstract
  167. syntax trees} and \emph{recursive functions}.
  168. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  169. \emph{graph coloring} to assign variables to machine registers.
  170. \item Chapter~\ref{ch:Lif} adds \code{if} expressions, which motivates
  171. an elegant recursive algorithm for translating them into conditional
  172. \code{goto}'s.
  173. \item Chapter~\ref{ch:Lwhile} fleshes out support for imperative
  174. programming languages with the addition of loops\racket{ and mutable
  175. variables}. This elicits the need for \emph{dataflow
  176. analysis} in the register allocator.
  177. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  178. \emph{garbage collection}.
  179. \item Chapter~\ref{ch:Rfun} adds functions that are first-class values
  180. but lack lexical scoping, similar to the C programming
  181. language~\citep{Kernighan:1988nx} except that we generate efficient
  182. tail calls. The reader learns about the procedure call stack,
  183. \emph{calling conventions}, and their interaction with register
  184. allocation and garbage collection.
  185. \item Chapter~\ref{ch:Rlam} adds anonymous functions with lexical
  186. scoping, i.e., \emph{lambda abstraction}. The reader learns about
  187. \emph{closure conversion}, in which lambdas are translated into a
  188. combination of functions and tuples.
  189. % Chapter about classes and objects?
  190. \item Chapter~\ref{ch:Rdyn} adds \emph{dynamic typing}. Prior to this
  191. point the input languages are statically typed. The reader extends
  192. the statically typed language with an \code{Any} type which serves
  193. as a target for compiling the dynamically typed language.
  194. {\if\edition\pythonEd
  195. \item Chapter~\ref{ch:Robject} adds support for \emph{objects} and
  196. \emph{classes}.
  197. \fi}
  198. \item Chapter~\ref{ch:Rgrad} uses the \code{Any} type of
  199. Chapter~\ref{ch:Rdyn} to implement a \emph{gradually typed language}
  200. in which different regions of a program may be static or dynamically
  201. typed. The reader implements runtime support for \emph{proxies} that
  202. allow values to safely move between regions.
  203. \item Chapter~\ref{ch:Rpoly} adds \emph{generics} with autoboxing,
  204. leveraging the \code{Any} type and type casts developed in Chapters
  205. \ref{ch:Rdyn} and \ref{ch:Rgrad}.
  206. \end{itemize}
  207. There are many language features that we do not include. Our choices
  208. balance the incidental complexity of a feature versus the fundamental
  209. concepts that it exposes. For example, we include tuples and not
  210. records because they both elicit the study of heap allocation and
  211. garbage collection but records come with more incidental complexity.
  212. Since 2009 drafts of this book have served as the textbook for 16-week
  213. compiler courses for upper-level undergraduates and first-year
  214. graduate students at the University of Colorado and Indiana
  215. University.
  216. %
  217. Students come into the course having learned the basics of
  218. programming, data structures and algorithms, and discrete
  219. mathematics.
  220. %
  221. At the beginning of the course, students form groups of 2-4 people.
  222. The groups complete one chapter every two weeks, starting with
  223. Chapter~\ref{ch:Lvar}. Many chapters include a challenge problem that
  224. we assign to the graduate students. The last two weeks of the course
  225. involve a final project in which students design and implement a
  226. compiler extension of their choosing. Chapters~\ref{ch:Rgrad} and
  227. \ref{ch:Rpoly} can be used in support of these projects or they can
  228. replace some of the other chapters. For example, a course with an
  229. emphasis on statically-typed imperative languages could include
  230. Chapter~\ref{ch:Rpoly} but skip Chapter~\ref{ch:Rdyn}. For compiler
  231. courses at universities on the quarter system, with 10 weeks, we
  232. recommend completing up through Chapter~\ref{ch:Rfun}. (If pressed
  233. for time, one can skip Chapter~\ref{ch:Lvec} but still include
  234. Chapter~\ref{ch:Rfun} by limiting the number of parameters allowed in
  235. functions.) Figure~\ref{fig:chapter-dependences} depicts the
  236. dependencies between chapters.
  237. This book has also been used in compiler courses at California
  238. Polytechnic State University, Portland State University, Rose–Hulman
  239. Institute of Technology, University of Massachusetts Lowell, and the
  240. University of Vermont.
  241. \begin{figure}[tp]
  242. {\if\edition\racketEd
  243. \begin{tikzpicture}[baseline=(current bounding box.center)]
  244. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  245. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  246. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  247. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  248. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  249. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  250. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  251. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  252. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  253. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  254. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  255. \path[->] (C1) edge [above] node {} (C2);
  256. \path[->] (C2) edge [above] node {} (C3);
  257. \path[->] (C3) edge [above] node {} (C4);
  258. \path[->] (C4) edge [above] node {} (C5);
  259. \path[->] (C5) edge [above] node {} (C6);
  260. \path[->] (C6) edge [above] node {} (C7);
  261. \path[->] (C4) edge [above] node {} (C8);
  262. \path[->] (C4) edge [above] node {} (C9);
  263. \path[->] (C8) edge [above] node {} (C10);
  264. \path[->] (C10) edge [above] node {} (C11);
  265. \end{tikzpicture}
  266. \fi}
  267. {\if\edition\pythonEd
  268. \begin{tikzpicture}[baseline=(current bounding box.center)]
  269. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  270. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  271. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  272. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  273. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  274. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  275. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  276. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  277. \node (CO) at (0,-3) {\small Ch.~\ref{ch:Robject} Objects};
  278. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  279. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  280. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  281. \path[->] (C1) edge [above] node {} (C2);
  282. \path[->] (C2) edge [above] node {} (C3);
  283. \path[->] (C3) edge [above] node {} (C4);
  284. \path[->] (C4) edge [above] node {} (C5);
  285. \path[->] (C5) edge [above] node {} (C6);
  286. \path[->] (C6) edge [above] node {} (C7);
  287. \path[->] (C4) edge [above] node {} (C8);
  288. \path[->] (C4) edge [above] node {} (C9);
  289. \path[->] (C8) edge [above] node {} (C10);
  290. \path[->] (C8) edge [above] node {} (CO);
  291. \path[->] (C10) edge [above] node {} (C11);
  292. \end{tikzpicture}
  293. \fi}
  294. \caption{Diagram of chapter dependencies.}
  295. \label{fig:chapter-dependences}
  296. \end{figure}
  297. \racket{
  298. We use the \href{https://racket-lang.org/}{Racket} language both for
  299. the implementation of the compiler and for the input language, so the
  300. reader should be proficient with Racket or Scheme. There are many
  301. excellent resources for learning Scheme and
  302. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  303. }
  304. \python{
  305. This edition of the book uses \href{https://www.python.org/}{Python}
  306. both for the implementation of the compiler and for the input language, so the
  307. reader should be proficient with Python. There are many
  308. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.
  309. }
  310. The support code for this book is in the github repository at
  311. the following URL:
  312. \if\edition\racketEd
  313. \begin{center}\small
  314. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  315. \end{center}
  316. \fi
  317. \if\edition\pythonEd
  318. \begin{center}\small
  319. \url{https://github.com/IUCompilerCourse/}
  320. \end{center}
  321. \fi
  322. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  323. is helpful but not necessary for the reader to have taken a computer
  324. systems course~\citep{Bryant:2010aa}. This book introduces the parts
  325. of x86-64 assembly language that are needed.
  326. %
  327. We follow the System V calling
  328. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  329. that we generate works with the runtime system (written in C) when it
  330. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  331. operating systems on Intel hardware.
  332. %
  333. On the Windows operating system, \code{gcc} uses the Microsoft x64
  334. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  335. assembly code that we generate does \emph{not} work with the runtime
  336. system on Windows. One workaround is to use a virtual machine with
  337. Linux as the guest operating system.
  338. \section*{Acknowledgments}
  339. The tradition of compiler construction at Indiana University goes back
  340. to research and courses on programming languages by Daniel Friedman in
  341. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  342. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  343. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  344. the compiler course and continued the development of Chez Scheme.
  345. %
  346. The compiler course evolved to incorporate novel pedagogical ideas
  347. while also including elements of real-world compilers. One of
  348. Friedman's ideas was to split the compiler into many small
  349. passes. Another idea, called ``the game'', was to test the code
  350. generated by each pass using interpreters.
  351. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  352. developed infrastructure to support this approach and evolved the
  353. course to use even smaller
  354. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  355. design decisions in this book are inspired by the assignment
  356. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  357. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  358. organization of the course made it difficult for students to
  359. understand the rationale for the compiler design. Ghuloum proposed the
  360. incremental approach~\citep{Ghuloum:2006bh} that this book is based
  361. on.
  362. We thank the many students who served as teaching assistants for the
  363. compiler course at IU and made suggestions for improving the book
  364. including Carl Factora, Ryan Scott, and Cameron Swords. We especially
  365. thank Andre Kuhlenschmidt for his work on the garbage collector,
  366. Michael Vollmer for his work on efficient tail calls, and Michael
  367. Vitousek for his help running the first offering of the incremental
  368. compiler course at IU.
  369. We thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  370. Near, Ryan Newton, Nate Nystrom, Andrew Tolmach, and Michael Wollowski
  371. for teaching courses based on drafts of this book and for their
  372. invaluable feedback.
  373. We thank Ronald Garcia for helping Jeremy survive Dybvig's compiler
  374. course in the early 2000's and especially for finding the bug that
  375. sent our garbage collector on a wild goose chase!
  376. \mbox{}\\
  377. \noindent Jeremy G. Siek \\
  378. Bloomington, Indiana
  379. \mainmatter
  380. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  381. \chapter{Preliminaries}
  382. \label{ch:trees-recur}
  383. In this chapter we review the basic tools that are needed to implement
  384. a compiler. Programs are typically input by a programmer as text,
  385. i.e., a sequence of characters. The program-as-text representation is
  386. called \emph{concrete syntax}. We use concrete syntax to concisely
  387. write down and talk about programs. Inside the compiler, we use
  388. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  389. that efficiently supports the operations that the compiler needs to
  390. perform.\index{subject}{concrete syntax}\index{subject}{abstract syntax}\index{subject}{abstract
  391. syntax tree}\index{subject}{AST}\index{subject}{program}\index{subject}{parse} The translation
  392. from concrete syntax to abstract syntax is a process called
  393. \emph{parsing}~\citep{Aho:2006wb}. We do not cover the theory and
  394. implementation of parsing in this book.
  395. %
  396. \racket{A parser is provided in the support code for translating from
  397. concrete to abstract syntax.}
  398. %
  399. \python{We use Python's \code{ast} module to translate from concrete
  400. to abstract syntax.}
  401. ASTs can be represented in many different ways inside the compiler,
  402. depending on the programming language used to write the compiler.
  403. %
  404. \racket{We use Racket's
  405. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  406. feature to represent ASTs (Section~\ref{sec:ast}).}
  407. %
  408. \python{We use Python classes and objects to represent ASTs, especially the
  409. classes defined in the standard \code{ast} module for the Python
  410. source language.}
  411. %
  412. We use grammars to define the abstract syntax of programming languages
  413. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  414. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  415. recursive functions to construct and deconstruct ASTs
  416. (Section~\ref{sec:recursion}). This chapter provides an brief
  417. introduction to these ideas.
  418. \racket{\index{subject}{struct}}
  419. \python{\index{subject}{class}\index{subject}{object}}
  420. \section{Abstract Syntax Trees}
  421. \label{sec:ast}
  422. Compilers use abstract syntax trees to represent programs because they
  423. often need to ask questions like: for a given part of a program, what
  424. kind of language feature is it? What are its sub-parts? Consider the
  425. program on the left and its AST on the right. This program is an
  426. addition operation and it has two sub-parts, a
  427. \racket{read}\python{input} operation and a negation. The negation has
  428. another sub-part, the integer constant \code{8}. By using a tree to
  429. represent the program, we can easily follow the links to go from one
  430. part of a program to its sub-parts.
  431. \begin{center}
  432. \begin{minipage}{0.4\textwidth}
  433. \if\edition\racketEd
  434. \begin{lstlisting}
  435. (+ (read) (- 8))
  436. \end{lstlisting}
  437. \fi
  438. \if\edition\pythonEd
  439. \begin{lstlisting}
  440. input_int() + -8
  441. \end{lstlisting}
  442. \fi
  443. \end{minipage}
  444. \begin{minipage}{0.4\textwidth}
  445. \begin{equation}
  446. \begin{tikzpicture}
  447. \node[draw] (plus) at (0 , 0) {\key{+}};
  448. \node[draw] (read) at (-1, -1.5) {{\if\edition\racketEd\footnotesize\key{read}\fi\if\edition\pythonEd\key{input\_int()}\fi}};
  449. \node[draw] (minus) at (1 , -1.5) {$\key{-}$};
  450. \node[draw] (8) at (1 , -3) {\key{8}};
  451. \draw[->] (plus) to (read);
  452. \draw[->] (plus) to (minus);
  453. \draw[->] (minus) to (8);
  454. \end{tikzpicture}
  455. \label{eq:arith-prog}
  456. \end{equation}
  457. \end{minipage}
  458. \end{center}
  459. We use the standard terminology for trees to describe ASTs: each
  460. rectangle above is called a \emph{node}. The arrows connect a node to its
  461. \emph{children} (which are also nodes). The top-most node is the
  462. \emph{root}. Every node except for the root has a \emph{parent} (the
  463. node it is the child of). If a node has no children, it is a
  464. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  465. \index{subject}{node}
  466. \index{subject}{children}
  467. \index{subject}{root}
  468. \index{subject}{parent}
  469. \index{subject}{leaf}
  470. \index{subject}{internal node}
  471. %% Recall that an \emph{symbolic expression} (S-expression) is either
  472. %% \begin{enumerate}
  473. %% \item an atom, or
  474. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  475. %% where $e_1$ and $e_2$ are each an S-expression.
  476. %% \end{enumerate}
  477. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  478. %% null value \code{'()}, etc. We can create an S-expression in Racket
  479. %% simply by writing a backquote (called a quasi-quote in Racket)
  480. %% followed by the textual representation of the S-expression. It is
  481. %% quite common to use S-expressions to represent a list, such as $a, b
  482. %% ,c$ in the following way:
  483. %% \begin{lstlisting}
  484. %% `(a . (b . (c . ())))
  485. %% \end{lstlisting}
  486. %% Each element of the list is in the first slot of a pair, and the
  487. %% second slot is either the rest of the list or the null value, to mark
  488. %% the end of the list. Such lists are so common that Racket provides
  489. %% special notation for them that removes the need for the periods
  490. %% and so many parenthesis:
  491. %% \begin{lstlisting}
  492. %% `(a b c)
  493. %% \end{lstlisting}
  494. %% The following expression creates an S-expression that represents AST
  495. %% \eqref{eq:arith-prog}.
  496. %% \begin{lstlisting}
  497. %% `(+ (read) (- 8))
  498. %% \end{lstlisting}
  499. %% When using S-expressions to represent ASTs, the convention is to
  500. %% represent each AST node as a list and to put the operation symbol at
  501. %% the front of the list. The rest of the list contains the children. So
  502. %% in the above case, the root AST node has operation \code{`+} and its
  503. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  504. %% diagram \eqref{eq:arith-prog}.
  505. %% To build larger S-expressions one often needs to splice together
  506. %% several smaller S-expressions. Racket provides the comma operator to
  507. %% splice an S-expression into a larger one. For example, instead of
  508. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  509. %% we could have first created an S-expression for AST
  510. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  511. %% S-expression.
  512. %% \begin{lstlisting}
  513. %% (define ast1.4 `(- 8))
  514. %% (define ast1_1 `(+ (read) ,ast1.4))
  515. %% \end{lstlisting}
  516. %% In general, the Racket expression that follows the comma (splice)
  517. %% can be any expression that produces an S-expression.
  518. {\if\edition\racketEd
  519. We define a Racket \code{struct} for each kind of node. For this
  520. chapter we require just two kinds of nodes: one for integer constants
  521. and one for primitive operations. The following is the \code{struct}
  522. definition for integer constants.
  523. \begin{lstlisting}
  524. (struct Int (value))
  525. \end{lstlisting}
  526. An integer node includes just one thing: the integer value.
  527. To create an AST node for the integer $8$, we write \INT{8}.
  528. \begin{lstlisting}
  529. (define eight (Int 8))
  530. \end{lstlisting}
  531. We say that the value created by \INT{8} is an
  532. \emph{instance} of the
  533. \code{Int} structure.
  534. The following is the \code{struct} definition for primitive operations.
  535. \begin{lstlisting}
  536. (struct Prim (op args))
  537. \end{lstlisting}
  538. A primitive operation node includes an operator symbol \code{op} and a
  539. list of child \code{args}. For example, to create an AST that negates
  540. the number $8$, we write \code{(Prim '- (list eight))}.
  541. \begin{lstlisting}
  542. (define neg-eight (Prim '- (list eight)))
  543. \end{lstlisting}
  544. Primitive operations may have zero or more children. The \code{read}
  545. operator has zero children:
  546. \begin{lstlisting}
  547. (define rd (Prim 'read '()))
  548. \end{lstlisting}
  549. whereas the addition operator has two children:
  550. \begin{lstlisting}
  551. (define ast1_1 (Prim '+ (list rd neg-eight)))
  552. \end{lstlisting}
  553. We have made a design choice regarding the \code{Prim} structure.
  554. Instead of using one structure for many different operations
  555. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  556. structure for each operation, as follows.
  557. \begin{lstlisting}
  558. (struct Read ())
  559. (struct Add (left right))
  560. (struct Neg (value))
  561. \end{lstlisting}
  562. The reason we choose to use just one structure is that in many parts
  563. of the compiler the code for the different primitive operators is the
  564. same, so we might as well just write that code once, which is enabled
  565. by using a single structure.
  566. \fi}
  567. {\if\edition\pythonEd
  568. We use a Python \code{class} for each kind of node.
  569. The following is the class definition for constants.
  570. \begin{lstlisting}
  571. class Constant:
  572. def __init__(self, value):
  573. self.value = value
  574. \end{lstlisting}
  575. An integer constant node includes just one thing: the integer value.
  576. To create an AST node for the integer $8$, we write \INT{8}.
  577. \begin{lstlisting}
  578. eight = Constant(8)
  579. \end{lstlisting}
  580. We say that the value created by \INT{8} is an
  581. \emph{instance} of the \code{Constant} class.
  582. The following is the class definition for unary operators.
  583. \begin{lstlisting}
  584. class UnaryOp:
  585. def __init__(self, op, operand):
  586. self.op = op
  587. self.operand = operand
  588. \end{lstlisting}
  589. The specific operation is specified by the \code{op} parameter. For
  590. example, the class \code{USub} is for unary subtraction. (More unary
  591. operators are introduced in later chapters.) To create an AST that
  592. negates the number $8$, we write the following.
  593. \begin{lstlisting}
  594. neg_eight = UnaryOp(USub(), eight)
  595. \end{lstlisting}
  596. The call to the \code{input\_int} function is represented by the
  597. \code{Call} and \code{Name} classes.
  598. \begin{lstlisting}
  599. class Call:
  600. def __init__(self, func, args):
  601. self.func = func
  602. self.args = args
  603. class Name:
  604. def __init__(self, id):
  605. self.id = id
  606. \end{lstlisting}
  607. To create an AST node that calls \code{input\_int}, we write
  608. \begin{lstlisting}
  609. read = Call(Name('input_int'), [])
  610. \end{lstlisting}
  611. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  612. the \code{BinOp} class for binary operators.
  613. \begin{lstlisting}
  614. class BinOp:
  615. def __init__(self, left, op, right):
  616. self.op = op
  617. self.left = left
  618. self.right = right
  619. \end{lstlisting}
  620. Similar to \code{UnaryOp}, the specific operation is specified by the
  621. \code{op} parameter, which for now is just an instance of the
  622. \code{Add} class. So to create the AST node that adds negative eight
  623. to some user input, we write the following.
  624. \begin{lstlisting}
  625. ast1_1 = BinOp(read, Add(), neg_eight)
  626. \end{lstlisting}
  627. \fi}
  628. When compiling a program such as \eqref{eq:arith-prog}, we need to
  629. know that the operation associated with the root node is addition and
  630. we need to be able to access its two children. \racket{Racket}\python{Python}
  631. provides pattern matching to support these kinds of queries, as we see in
  632. Section~\ref{sec:pattern-matching}.
  633. In this book, we often write down the concrete syntax of a program
  634. even when we really have in mind the AST because the concrete syntax
  635. is more concise. We recommend that, in your mind, you always think of
  636. programs as abstract syntax trees.
  637. \section{Grammars}
  638. \label{sec:grammar}
  639. \index{subject}{integer}
  640. \index{subject}{literal}
  641. \index{subject}{constant}
  642. A programming language can be thought of as a \emph{set} of programs.
  643. The set is typically infinite (one can always create larger and larger
  644. programs), so one cannot simply describe a language by listing all of
  645. the programs in the language. Instead we write down a set of rules, a
  646. \emph{grammar}, for building programs. Grammars are often used to
  647. define the concrete syntax of a language, but they can also be used to
  648. describe the abstract syntax. We write our rules in a variant of
  649. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  650. \index{subject}{Backus-Naur Form}\index{subject}{BNF}
  651. As an example, we describe a small language, named \LangInt{}, that consists of
  652. integers and arithmetic operations.
  653. \index{subject}{grammar}
  654. The first grammar rule for the abstract syntax of \LangInt{} says that an
  655. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  656. \begin{equation}
  657. \Exp ::= \INT{\Int} \label{eq:arith-int}
  658. \end{equation}
  659. %
  660. Each rule has a left-hand-side and a right-hand-side.
  661. If you have an AST node that matches the
  662. right-hand-side, then you can categorize it according to the
  663. left-hand-side.
  664. %
  665. Symbols in typewriter font are \emph{terminal} symbols and must
  666. literally appear in the program for the rule to be applicable.
  667. \index{subject}{terminal}
  668. %
  669. Our grammars do not mention \emph{white-space}, that is, separating characters
  670. like spaces, tabulators, and newlines. White-space may be inserted
  671. between symbols for disambiguation and to improve readability.
  672. \index{subject}{white-space}
  673. %
  674. A name such as $\Exp$ that is defined by the grammar rules is a
  675. \emph{non-terminal}. \index{subject}{non-terminal}
  676. %
  677. The name $\Int$ is also a non-terminal, but instead of defining it
  678. with a grammar rule, we define it with the following explanation. An
  679. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  680. $-$ (for negative integers), such that the sequence of decimals
  681. represent an integer in range $-2^{62}$ to $2^{62}-1$. This enables
  682. the representation of integers using 63 bits, which simplifies several
  683. aspects of compilation. \racket{Thus, these integers corresponds to
  684. the Racket \texttt{fixnum} datatype on a 64-bit machine.}
  685. \python{In contrast, integers in Python have unlimited precision, but
  686. the techniques needed to handle unlimited precision fall outside the
  687. scope of this book.}
  688. The second grammar rule is the \READOP{} operation that receives an
  689. input integer from the user of the program.
  690. \begin{equation}
  691. \Exp ::= \READ{} \label{eq:arith-read}
  692. \end{equation}
  693. The third rule says that, given an $\Exp$ node, the negation of that
  694. node is also an $\Exp$.
  695. \begin{equation}
  696. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  697. \end{equation}
  698. We can apply these rules to categorize the ASTs that are in the
  699. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  700. \INT{8} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  701. following AST is an $\Exp$.
  702. \begin{center}
  703. \begin{minipage}{0.5\textwidth}
  704. \NEG{\INT{\code{8}}}
  705. \end{minipage}
  706. \begin{minipage}{0.25\textwidth}
  707. \begin{equation}
  708. \begin{tikzpicture}
  709. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  710. \node[draw, circle] (8) at (0, -1.2) {$8$};
  711. \draw[->] (minus) to (8);
  712. \end{tikzpicture}
  713. \label{eq:arith-neg8}
  714. \end{equation}
  715. \end{minipage}
  716. \end{center}
  717. The next grammar rules are for addition and subtraction expressions:
  718. \begin{align}
  719. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  720. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  721. \end{align}
  722. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  723. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  724. \eqref{eq:arith-read} and we have already categorized
  725. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  726. to show that
  727. \[
  728. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  729. \]
  730. is an $\Exp$ in the \LangInt{} language.
  731. If you have an AST for which the above rules do not apply, then the
  732. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  733. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  734. because there are no rules for the \key{*} operator. Whenever we
  735. define a language with a grammar, the language only includes those
  736. programs that are justified by the grammar rules.
  737. {\if\edition\pythonEd
  738. The language \LangInt{} includes a second non-terminal $\Stmt$ for statements.
  739. There is a statement for printing the value of an expression
  740. \[
  741. \Stmt{} ::= \PRINT{\Exp}
  742. \]
  743. and a statement that evaluates an expression but ignores the result.
  744. \[
  745. \Stmt{} ::= \EXPR{\Exp}
  746. \]
  747. \fi}
  748. {\if\edition\racketEd
  749. The last grammar rule for \LangInt{} states that there is a
  750. \code{Program} node to mark the top of the whole program:
  751. \[
  752. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  753. \]
  754. The \code{Program} structure is defined as follows
  755. \begin{lstlisting}
  756. (struct Program (info body))
  757. \end{lstlisting}
  758. where \code{body} is an expression. In later chapters, the \code{info}
  759. part will be used to store auxiliary information but for now it is
  760. just the empty list.
  761. \fi}
  762. {\if\edition\pythonEd
  763. The last grammar rule for \LangInt{} states that there is a
  764. \code{Module} node to mark the top of the whole program:
  765. \[
  766. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  767. \]
  768. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  769. this case, a list of statements.
  770. %
  771. The \code{Module} class is defined as follows
  772. \begin{lstlisting}
  773. class Module:
  774. def __init__(self, body):
  775. self.body = body
  776. \end{lstlisting}
  777. where \code{body} is a list of statements.
  778. \fi}
  779. It is common to have many grammar rules with the same left-hand side
  780. but different right-hand sides, such as the rules for $\Exp$ in the
  781. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  782. combine several right-hand-sides into a single rule.
  783. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  784. in Figure~\ref{fig:r0-syntax}. The concrete syntax for \LangInt{} is
  785. defined in Figure~\ref{fig:r0-concrete-syntax}.
  786. \racket{The \code{read-program} function provided in
  787. \code{utilities.rkt} of the support code reads a program in from a
  788. file (the sequence of characters in the concrete syntax of Racket)
  789. and parses it into an abstract syntax tree. See the description of
  790. \code{read-program} in Appendix~\ref{appendix:utilities} for more
  791. details.}
  792. \python{The \code{parse} function in Python's \code{ast} module
  793. converts the concrete syntax (represented as a string) into an
  794. abstract syntax tree.}
  795. \newcommand{\LintGrammarRacket}{
  796. \begin{array}{rcl}
  797. \Type &::=& \key{Integer} \\
  798. \Exp{} &::=& \Int{} \MID \LP\key{read}\RP \MID \LP\key{-}\;\Exp\RP \MID \LP\key{+} \; \Exp{}\;\Exp{}\RP
  799. \end{array}
  800. }
  801. \newcommand{\LintASTRacket}{
  802. \begin{array}{rcl}
  803. \Type &::=& \key{Integer} \\
  804. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  805. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp}
  806. \end{array}
  807. }
  808. \newcommand{\LintGrammarPython}{
  809. \begin{array}{rcl}
  810. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  811. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  812. \end{array}
  813. }
  814. \newcommand{\LintASTPython}{
  815. \begin{array}{rcl}
  816. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  817. \itm{unaryop} &::= & \code{USub()} \\
  818. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  819. &\MID& \UNIOP{\itm{unaryop}}{\Exp} \MID \BINOP{\itm{binaryop}}{\Exp}{\Exp} \\
  820. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  821. \end{array}
  822. }
  823. \begin{figure}[tp]
  824. \fbox{
  825. \begin{minipage}{0.96\textwidth}
  826. {\if\edition\racketEd
  827. \[
  828. \begin{array}{l}
  829. \LintGrammarRacket \\
  830. \begin{array}{rcl}
  831. \LangInt{} &::=& \Exp
  832. \end{array}
  833. \end{array}
  834. \]
  835. \fi}
  836. {\if\edition\pythonEd
  837. \[
  838. \begin{array}{l}
  839. \LintGrammarPython \\
  840. \begin{array}{rcl}
  841. \LangInt{} &::=& \Stmt^{*}
  842. \end{array}
  843. \end{array}
  844. \]
  845. \fi}
  846. \end{minipage}
  847. }
  848. \caption{The concrete syntax of \LangInt{}.}
  849. \label{fig:r0-concrete-syntax}
  850. \end{figure}
  851. \begin{figure}[tp]
  852. \fbox{
  853. \begin{minipage}{0.96\textwidth}
  854. {\if\edition\racketEd
  855. \[
  856. \begin{array}{l}
  857. \LintASTRacket{} \\
  858. \begin{array}{rcl}
  859. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  860. \end{array}
  861. \end{array}
  862. \]
  863. \fi}
  864. {\if\edition\pythonEd
  865. \[
  866. \begin{array}{l}
  867. \LintASTPython\\
  868. \begin{array}{rcl}
  869. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  870. \end{array}
  871. \end{array}
  872. \]
  873. \fi}
  874. \end{minipage}
  875. }
  876. \caption{The abstract syntax of \LangInt{}.}
  877. \label{fig:r0-syntax}
  878. \end{figure}
  879. \section{Pattern Matching}
  880. \label{sec:pattern-matching}
  881. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  882. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python} provides the
  883. \texttt{match} feature to access the parts of a value.
  884. Consider the following example. \index{subject}{match} \index{subject}{pattern matching}
  885. \begin{center}
  886. \begin{minipage}{0.5\textwidth}
  887. {\if\edition\racketEd
  888. \begin{lstlisting}
  889. (match ast1_1
  890. [(Prim op (list child1 child2))
  891. (print op)])
  892. \end{lstlisting}
  893. \fi}
  894. {\if\edition\pythonEd
  895. \begin{lstlisting}
  896. match ast1_1:
  897. case BinOp(child1, op, child2):
  898. print(op)
  899. \end{lstlisting}
  900. \fi}
  901. \end{minipage}
  902. \end{center}
  903. {\if\edition\racketEd
  904. %
  905. In the above example, the \texttt{match} form checks whether the AST
  906. \eqref{eq:arith-prog} is a binary operator, binds its parts to the
  907. three pattern variables \texttt{op}, \texttt{child1}, and
  908. \texttt{child2}, and then prints out the operator. In general, a match
  909. clause consists of a \emph{pattern} and a
  910. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  911. to be either a pattern variable, a structure name followed by a
  912. pattern for each of the structure's arguments, or an S-expression
  913. (symbols, lists, etc.). (See Chapter 12 of The Racket
  914. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  915. and Chapter 9 of The Racket
  916. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  917. for a complete description of \code{match}.)
  918. %
  919. The body of a match clause may contain arbitrary Racket code. The
  920. pattern variables can be used in the scope of the body, such as
  921. \code{op} in \code{(print op)}.
  922. %
  923. \fi}
  924. %
  925. %
  926. {\if\edition\pythonEd
  927. %
  928. In the above example, the \texttt{match} form checks whether the AST
  929. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  930. three pattern variables \texttt{child1}, \texttt{op}, and
  931. \texttt{child2}, and then prints out the operator. In general, each
  932. \code{case} consists of a \emph{pattern} and a
  933. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  934. to be either a pattern variable, a class name followed by a pattern
  935. for each of its constructor's arguments, or other literals such as
  936. strings, lists, etc.
  937. %
  938. The body of each \code{case} may contain arbitrary Python code. The
  939. pattern variables can be used in the body, such as \code{op} in
  940. \code{print(op)}.
  941. %
  942. \fi}
  943. A \code{match} form may contain several clauses, as in the following
  944. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  945. the AST. The \code{match} proceeds through the clauses in order,
  946. checking whether the pattern can match the input AST. The body of the
  947. first clause that matches is executed. The output of \code{leaf} for
  948. several ASTs is shown on the right.
  949. \begin{center}
  950. \begin{minipage}{0.6\textwidth}
  951. {\if\edition\racketEd
  952. \begin{lstlisting}
  953. (define (leaf arith)
  954. (match arith
  955. [(Int n) #t]
  956. [(Prim 'read '()) #t]
  957. [(Prim '- (list e1)) #f]
  958. [(Prim '+ (list e1 e2)) #f]))
  959. (leaf (Prim 'read '()))
  960. (leaf (Prim '- (list (Int 8))))
  961. (leaf (Int 8))
  962. \end{lstlisting}
  963. \fi}
  964. {\if\edition\pythonEd
  965. \begin{lstlisting}
  966. def leaf(arith):
  967. match arith:
  968. case Constant(n):
  969. return True
  970. case Call(Name('input_int'), []):
  971. return True
  972. case UnaryOp(USub(), e1):
  973. return False
  974. case BinOp(e1, Add(), e2):
  975. return False
  976. print(leaf(Call(Name('input_int'), [])))
  977. print(leaf(UnaryOp(USub(), eight)))
  978. print(leaf(Constant(8)))
  979. \end{lstlisting}
  980. \fi}
  981. \end{minipage}
  982. \vrule
  983. \begin{minipage}{0.25\textwidth}
  984. {\if\edition\racketEd
  985. \begin{lstlisting}
  986. #t
  987. #f
  988. #t
  989. \end{lstlisting}
  990. \fi}
  991. {\if\edition\pythonEd
  992. \begin{lstlisting}
  993. True
  994. False
  995. True
  996. \end{lstlisting}
  997. \fi}
  998. \end{minipage}
  999. \end{center}
  1000. When writing a \code{match}, we refer to the grammar definition to
  1001. identify which non-terminal we are expecting to match against, then we
  1002. make sure that 1) we have one \racket{clause}\python{case} for each alternative of that
  1003. non-terminal and 2) that the pattern in each \racket{clause}\python{case} corresponds to the
  1004. corresponding right-hand side of a grammar rule. For the \code{match}
  1005. in the \code{leaf} function, we refer to the grammar for \LangInt{} in
  1006. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  1007. alternatives, so the \code{match} has 4 \racket{clauses}\python{cases}.
  1008. The pattern in each \racket{clause}\python{case} corresponds to the right-hand side
  1009. of a grammar rule. For example, the pattern \ADD{\code{e1}}{\code{e2}} corresponds to the
  1010. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  1011. patterns, replace non-terminals such as $\Exp$ with pattern variables
  1012. of your choice (e.g. \code{e1} and \code{e2}).
  1013. \section{Recursive Functions}
  1014. \label{sec:recursion}
  1015. \index{subject}{recursive function}
  1016. Programs are inherently recursive. For example, an expression is often
  1017. made of smaller expressions. Thus, the natural way to process an
  1018. entire program is with a recursive function. As a first example of
  1019. such a recursive function, we define the function \code{exp} in
  1020. Figure~\ref{fig:exp-predicate}, which takes an arbitrary value and
  1021. determines whether or not it is an expression in \LangInt{}.
  1022. %
  1023. We say that a function is defined by \emph{structural recursion} when
  1024. it is defined using a sequence of match \racket{clauses}\python{cases}
  1025. that correspond to a grammar, and the body of each
  1026. \racket{clause}\python{case} makes a recursive call on each child
  1027. node.\footnote{This principle of structuring code according to the
  1028. data definition is advocated in the book \emph{How to Design
  1029. Programs} \url{https://htdp.org/2020-8-1/Book/index.html}.}.
  1030. \python{We define a second function, named \code{stmt}, that
  1031. recognizes whether a value is a \LangInt{} statement.}
  1032. \python{Finally, } Figure~\ref{fig:exp-predicate} \racket{also}
  1033. defines \code{Lint}, which determines whether an AST is a program in
  1034. \LangInt{}. In general we can expect to write one recursive function
  1035. to handle each non-terminal in a grammar.\index{subject}{structural
  1036. recursion} Of the two examples at the bottom of the figure, the
  1037. first is in \code{Lint} and the second is not.
  1038. \begin{figure}[tp]
  1039. {\if\edition\racketEd
  1040. \begin{lstlisting}
  1041. (define (exp ast)
  1042. (match ast
  1043. [(Int n) #t]
  1044. [(Prim 'read '()) #t]
  1045. [(Prim '- (list e)) (exp e)]
  1046. [(Prim '+ (list e1 e2))
  1047. (and (exp e1) (exp e2))]
  1048. [else #f]))
  1049. (define (Lint ast)
  1050. (match ast
  1051. [(Program '() e) (exp e)]
  1052. [else #f]))
  1053. (Lint (Program '() ast1_1)
  1054. (Lint (Program '()
  1055. (Prim '- (list (Prim 'read '())
  1056. (Prim '+ (list (Num 8)))))))
  1057. \end{lstlisting}
  1058. \fi}
  1059. {\if\edition\pythonEd
  1060. \begin{lstlisting}
  1061. def exp(e):
  1062. match e:
  1063. case Constant(n):
  1064. return True
  1065. case Call(Name('input_int'), []):
  1066. return True
  1067. case UnaryOp(USub(), e1):
  1068. return exp(e1)
  1069. case BinOp(e1, Add(), e2):
  1070. return exp(e1) and exp(e2)
  1071. case BinOp(e1, Sub(), e2):
  1072. return exp(e1) and exp(e2)
  1073. case _:
  1074. return False
  1075. def stmt(s):
  1076. match s:
  1077. case Expr(Call(Name('print'), [e])):
  1078. return exp(e)
  1079. case Expr(e):
  1080. return exp(e)
  1081. case _:
  1082. return False
  1083. def Lint(p):
  1084. match p:
  1085. case Module(body):
  1086. return all([stmt(s) for s in body])
  1087. case _:
  1088. return False
  1089. print(Lint(Module([Expr(ast1_1)])))
  1090. print(Lint(Module([Expr(BinOp(read, Sub(),
  1091. UnaryOp(Add(), Constant(8))))])))
  1092. \end{lstlisting}
  1093. \fi}
  1094. \caption{Example of recursive functions for \LangInt{}. These functions
  1095. recognize whether an AST is in \LangInt{}.}
  1096. \label{fig:exp-predicate}
  1097. \end{figure}
  1098. %% You may be tempted to merge the two functions into one, like this:
  1099. %% \begin{center}
  1100. %% \begin{minipage}{0.5\textwidth}
  1101. %% \begin{lstlisting}
  1102. %% (define (Lint ast)
  1103. %% (match ast
  1104. %% [(Int n) #t]
  1105. %% [(Prim 'read '()) #t]
  1106. %% [(Prim '- (list e)) (Lint e)]
  1107. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1108. %% [(Program '() e) (Lint e)]
  1109. %% [else #f]))
  1110. %% \end{lstlisting}
  1111. %% \end{minipage}
  1112. %% \end{center}
  1113. %% %
  1114. %% Sometimes such a trick will save a few lines of code, especially when
  1115. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1116. %% \emph{not} recommended because it can get you into trouble.
  1117. %% %
  1118. %% For example, the above function is subtly wrong:
  1119. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1120. %% returns true when it should return false.
  1121. \section{Interpreters}
  1122. \label{sec:interp_Lint}
  1123. \index{subject}{interpreter}
  1124. The behavior of a program is defined by the specification of the
  1125. programming language.
  1126. %
  1127. \racket{For example, the Scheme language is defined in the report by
  1128. \cite{SPERBER:2009aa}. The Racket language is defined in its
  1129. reference manual~\citep{plt-tr}.}
  1130. %
  1131. \python{For example, the Python language is defined in the Python
  1132. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1133. %
  1134. In this book we use interpreters
  1135. to specify each language that we consider. An interpreter that is
  1136. designated as the definition of a language is called a
  1137. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  1138. \index{subject}{definitional interpreter} We warm up by creating a
  1139. definitional interpreter for the \LangInt{} language, which serves as
  1140. a second example of structural recursion. The \code{interp\_Lint}
  1141. function is defined in Figure~\ref{fig:interp_Lint}.
  1142. %
  1143. \racket{The body of the function is a match on the input program
  1144. followed by a call to the \lstinline{interp_exp} helper function,
  1145. which in turn has one match clause per grammar rule for \LangInt{}
  1146. expressions.}
  1147. %
  1148. \python{The body of the function matches on the \code{Module} AST node
  1149. and then invokes \code{interp\_stmt} on each statement in the
  1150. module. The \code{interp\_stmt} function includes a case for each
  1151. grammar rule of the \Stmt{} non-terminal and it calls
  1152. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1153. function includes a case for each grammar rule of the \Exp{}
  1154. non-terminal.}
  1155. \begin{figure}[tp]
  1156. {\if\edition\racketEd
  1157. \begin{lstlisting}
  1158. (define (interp_exp e)
  1159. (match e
  1160. [(Int n) n]
  1161. [(Prim 'read '())
  1162. (define r (read))
  1163. (cond [(fixnum? r) r]
  1164. [else (error 'interp_exp "read expected an integer" r)])]
  1165. [(Prim '- (list e))
  1166. (define v (interp_exp e))
  1167. (fx- 0 v)]
  1168. [(Prim '+ (list e1 e2))
  1169. (define v1 (interp_exp e1))
  1170. (define v2 (interp_exp e2))
  1171. (fx+ v1 v2)]))
  1172. (define (interp_Lint p)
  1173. (match p
  1174. [(Program '() e) (interp_exp e)]))
  1175. \end{lstlisting}
  1176. \fi}
  1177. {\if\edition\pythonEd
  1178. \begin{lstlisting}
  1179. def interp_exp(e):
  1180. match e:
  1181. case BinOp(left, Add(), right):
  1182. l = interp_exp(left); r = interp_exp(right)
  1183. return l + r
  1184. case BinOp(left, Sub(), right):
  1185. l = interp_exp(left); r = interp_exp(right)
  1186. return l - r
  1187. case UnaryOp(USub(), v):
  1188. return - interp_exp(v)
  1189. case Constant(value):
  1190. return value
  1191. case Call(Name('input_int'), []):
  1192. return int(input())
  1193. def interp_stmt(s):
  1194. match s:
  1195. case Expr(Call(Name('print'), [arg])):
  1196. print(interp_exp(arg))
  1197. case Expr(value):
  1198. interp_exp(value)
  1199. def interp_Lint(p):
  1200. match p:
  1201. case Module(body):
  1202. for s in body:
  1203. interp_stmt(s)
  1204. \end{lstlisting}
  1205. \fi}
  1206. \caption{Interpreter for the \LangInt{} language.}
  1207. \label{fig:interp_Lint}
  1208. \end{figure}
  1209. Let us consider the result of interpreting a few \LangInt{} programs. The
  1210. following program adds two integers.
  1211. {\if\edition\racketEd
  1212. \begin{lstlisting}
  1213. (+ 10 32)
  1214. \end{lstlisting}
  1215. \fi}
  1216. {\if\edition\pythonEd
  1217. \begin{lstlisting}
  1218. print(10 + 32)
  1219. \end{lstlisting}
  1220. \fi}
  1221. The result is \key{42}, the answer to life, the universe, and
  1222. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  1223. Galaxy} by Douglas Adams.}
  1224. %
  1225. We wrote the above program in concrete syntax whereas the parsed
  1226. abstract syntax is:
  1227. {\if\edition\racketEd
  1228. \begin{lstlisting}
  1229. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1230. \end{lstlisting}
  1231. \fi}
  1232. {\if\edition\pythonEd
  1233. \begin{lstlisting}
  1234. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1235. \end{lstlisting}
  1236. \fi}
  1237. The next example demonstrates that expressions may be nested within
  1238. each other, in this case nesting several additions and negations.
  1239. {\if\edition\racketEd
  1240. \begin{lstlisting}
  1241. (+ 10 (- (+ 12 20)))
  1242. \end{lstlisting}
  1243. \fi}
  1244. {\if\edition\pythonEd
  1245. \begin{lstlisting}
  1246. print(10 + -(12 + 20))
  1247. \end{lstlisting}
  1248. \fi}
  1249. %
  1250. \noindent What is the result of the above program?
  1251. {\if\edition\racketEd
  1252. As mentioned previously, the \LangInt{} language does not support
  1253. arbitrarily-large integers, but only $63$-bit integers, so we
  1254. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1255. in Racket.
  1256. Suppose
  1257. \[
  1258. n = 999999999999999999
  1259. \]
  1260. which indeed fits in $63$-bits. What happens when we run the
  1261. following program in our interpreter?
  1262. \begin{lstlisting}
  1263. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1264. \end{lstlisting}
  1265. It produces an error:
  1266. \begin{lstlisting}
  1267. fx+: result is not a fixnum
  1268. \end{lstlisting}
  1269. We establish the convention that if running the definitional
  1270. interpreter on a program produces an error then the meaning of that
  1271. program is \emph{unspecified}\index{subject}{unspecified behavior}, unless the
  1272. error is a \code{trapped-error}. A compiler for the language is under
  1273. no obligations regarding programs with unspecified behavior; it does
  1274. not have to produce an executable, and if it does, that executable can
  1275. do anything. On the other hand, if the error is a
  1276. \code{trapped-error}, then the compiler must produce an executable and
  1277. it is required to report that an error occurred. To signal an error,
  1278. exit with a return code of \code{255}. The interpreters in chapters
  1279. \ref{ch:Rdyn} and \ref{ch:Rgrad} use
  1280. \code{trapped-error}.
  1281. \fi}
  1282. % TODO: how to deal with too-large integers in the Python interpreter?
  1283. %% This convention applies to the languages defined in this
  1284. %% book, as a way to simplify the student's task of implementing them,
  1285. %% but this convention is not applicable to all programming languages.
  1286. %%
  1287. Moving on to the last feature of the \LangInt{} language, the
  1288. \READOP{} operation prompts the user of the program for an integer.
  1289. Recall that program \eqref{eq:arith-prog} requests an integer input
  1290. and then subtracts \code{8}. So if we run
  1291. {\if\edition\racketEd
  1292. \begin{lstlisting}
  1293. (interp_Lint (Program '() ast1_1))
  1294. \end{lstlisting}
  1295. \fi}
  1296. {\if\edition\pythonEd
  1297. \begin{lstlisting}
  1298. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1299. \end{lstlisting}
  1300. \fi}
  1301. \noindent and if the input is \code{50}, the result is \code{42}.
  1302. We include the \READOP{} operation in \LangInt{} so a clever student
  1303. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1304. during compilation to obtain the output and then generates the trivial
  1305. code to produce the output.\footnote{Yes, a clever student did this in the
  1306. first instance of this course!}
  1307. The job of a compiler is to translate a program in one language into a
  1308. program in another language so that the output program behaves the
  1309. same way as the input program. This idea is depicted in the
  1310. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1311. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1312. Given a compiler that translates from language $\mathcal{L}_1$ to
  1313. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1314. compiler must translate it into some program $P_2$ such that
  1315. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1316. same input $i$ yields the same output $o$.
  1317. \begin{equation} \label{eq:compile-correct}
  1318. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1319. \node (p1) at (0, 0) {$P_1$};
  1320. \node (p2) at (3, 0) {$P_2$};
  1321. \node (o) at (3, -2.5) {$o$};
  1322. \path[->] (p1) edge [above] node {compile} (p2);
  1323. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1324. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1325. \end{tikzpicture}
  1326. \end{equation}
  1327. In the next section we see our first example of a compiler.
  1328. \section{Example Compiler: a Partial Evaluator}
  1329. \label{sec:partial-evaluation}
  1330. In this section we consider a compiler that translates \LangInt{}
  1331. programs into \LangInt{} programs that may be more efficient. The
  1332. compiler eagerly computes the parts of the program that do not depend
  1333. on any inputs, a process known as \emph{partial
  1334. evaluation}~\citep{Jones:1993uq}. \index{subject}{partial evaluation}
  1335. For example, given the following program
  1336. {\if\edition\racketEd
  1337. \begin{lstlisting}
  1338. (+ (read) (- (+ 5 3)))
  1339. \end{lstlisting}
  1340. \fi}
  1341. {\if\edition\pythonEd
  1342. \begin{lstlisting}
  1343. print(input_int() + -(5 + 3) )
  1344. \end{lstlisting}
  1345. \fi}
  1346. \noindent our compiler translates it into the program
  1347. {\if\edition\racketEd
  1348. \begin{lstlisting}
  1349. (+ (read) -8)
  1350. \end{lstlisting}
  1351. \fi}
  1352. {\if\edition\pythonEd
  1353. \begin{lstlisting}
  1354. print(input_int() + -8)
  1355. \end{lstlisting}
  1356. \fi}
  1357. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1358. evaluator for the \LangInt{} language. The output of the partial evaluator
  1359. is a program in \LangInt{}. In Figure~\ref{fig:pe-arith}, the structural
  1360. recursion over $\Exp$ is captured in the \code{pe\_exp} function
  1361. whereas the code for partially evaluating the negation and addition
  1362. operations is factored into two auxiliary functions:
  1363. \code{pe\_neg} and \code{pe\_add}. The input to these
  1364. functions is the output of partially evaluating the children.
  1365. The \code{pe\_neg} and \code{pe\_add} functions check whether their
  1366. arguments are integers and if they are, perform the appropriate
  1367. arithmetic. Otherwise, they create an AST node for the arithmetic
  1368. operation.
  1369. \begin{figure}[tp]
  1370. {\if\edition\racketEd
  1371. \begin{lstlisting}
  1372. (define (pe_neg r)
  1373. (match r
  1374. [(Int n) (Int (fx- 0 n))]
  1375. [else (Prim '- (list r))]))
  1376. (define (pe_add r1 r2)
  1377. (match* (r1 r2)
  1378. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1379. [(_ _) (Prim '+ (list r1 r2))]))
  1380. (define (pe_exp e)
  1381. (match e
  1382. [(Int n) (Int n)]
  1383. [(Prim 'read '()) (Prim 'read '())]
  1384. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1385. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]))
  1386. (define (pe_Lint p)
  1387. (match p
  1388. [(Program '() e) (Program '() (pe_exp e))]))
  1389. \end{lstlisting}
  1390. \fi}
  1391. {\if\edition\pythonEd
  1392. \begin{lstlisting}
  1393. def pe_neg(r):
  1394. match r:
  1395. case Constant(n):
  1396. return Constant(-n)
  1397. case _:
  1398. return UnaryOp(USub(), r)
  1399. def pe_add(r1, r2):
  1400. match (r1, r2):
  1401. case (Constant(n1), Constant(n2)):
  1402. return Constant(n1 + n2)
  1403. case _:
  1404. return BinOp(r1, Add(), r2)
  1405. def pe_sub(r1, r2):
  1406. match (r1, r2):
  1407. case (Constant(n1), Constant(n2)):
  1408. return Constant(n1 - n2)
  1409. case _:
  1410. return BinOp(r1, Sub(), r2)
  1411. def pe_exp(e):
  1412. match e:
  1413. case BinOp(left, Add(), right):
  1414. return pe_add(pe_exp(left), pe_exp(right))
  1415. case BinOp(left, Sub(), right):
  1416. return pe_sub(pe_exp(left), pe_exp(right))
  1417. case UnaryOp(USub(), v):
  1418. return pe_neg(pe_exp(v))
  1419. case Constant(value):
  1420. return e
  1421. case Call(Name('input_int'), []):
  1422. return e
  1423. def pe_stmt(s):
  1424. match s:
  1425. case Expr(Call(Name('print'), [arg])):
  1426. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1427. case Expr(value):
  1428. return Expr(pe_exp(value))
  1429. def pe_P_int(p):
  1430. match p:
  1431. case Module(body):
  1432. new_body = [pe_stmt(s) for s in body]
  1433. return Module(new_body)
  1434. \end{lstlisting}
  1435. \fi}
  1436. \caption{A partial evaluator for \LangInt{}.}
  1437. \label{fig:pe-arith}
  1438. \end{figure}
  1439. To gain some confidence that the partial evaluator is correct, we can
  1440. test whether it produces programs that get the same result as the
  1441. input programs. That is, we can test whether it satisfies Diagram
  1442. \ref{eq:compile-correct}.
  1443. %
  1444. {\if\edition\racketEd
  1445. The following code runs the partial evaluator on several examples and
  1446. tests the output program. The \texttt{parse-program} and
  1447. \texttt{assert} functions are defined in
  1448. Appendix~\ref{appendix:utilities}.\\
  1449. \begin{minipage}{1.0\textwidth}
  1450. \begin{lstlisting}
  1451. (define (test_pe p)
  1452. (assert "testing pe_Lint"
  1453. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1454. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1455. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1456. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1457. \end{lstlisting}
  1458. \end{minipage}
  1459. \fi}
  1460. % TODO: python version of testing the PE
  1461. \begin{exercise}\normalfont
  1462. Create three programs in the \LangInt{} language and test whether
  1463. partially evaluating them with \code{pe\_Lint} and then
  1464. interpreting them with \code{interp\_Lint} gives the same result
  1465. as directly interpreting them with \code{interp\_Lint}.
  1466. \end{exercise}
  1467. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1468. \chapter{Integers and Variables}
  1469. \label{ch:Lvar}
  1470. This chapter is about compiling a subset of
  1471. \racket{Racket}\python{Python} to x86-64 assembly
  1472. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1473. integer arithmetic and local variables. We often refer to x86-64
  1474. simply as x86. The chapter begins with a description of the
  1475. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1476. to x86 assembly (Section~\ref{sec:x86}). The x86 assembly language is
  1477. large so we discuss only the instructions needed for compiling
  1478. \LangVar{}. We introduce more x86 instructions in later chapters.
  1479. After introducing \LangVar{} and x86, we reflect on their differences
  1480. and come up with a plan to break down the translation from \LangVar{}
  1481. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1482. rest of the sections in this chapter give detailed hints regarding
  1483. each step. We hope to give enough hints that the well-prepared
  1484. reader, together with a few friends, can implement a compiler from
  1485. \LangVar{} to x86 in a short time. To give the reader a feeling for
  1486. the scale of this first compiler, the instructor solution for the
  1487. \LangVar{} compiler is approximately \racket{500}\python{300} lines of
  1488. code.
  1489. \section{The \LangVar{} Language}
  1490. \label{sec:s0}
  1491. \index{subject}{variable}
  1492. The \LangVar{} language extends the \LangInt{} language with
  1493. variables. The concrete syntax of the \LangVar{} language is defined
  1494. by the grammar in Figure~\ref{fig:Lvar-concrete-syntax} and the
  1495. abstract syntax is defined in Figure~\ref{fig:Lvar-syntax}. The
  1496. non-terminal \Var{} may be any \racket{Racket}\python{Python} identifier.
  1497. As in \LangInt{}, \READOP{} is a nullary operator, \key{-} is a unary operator, and
  1498. \key{+} is a binary operator. Similar to \LangInt{}, the abstract
  1499. syntax of \LangVar{} includes the \racket{\key{Program}
  1500. struct}\python{\key{Module} instance} to mark the top of the
  1501. program.
  1502. %% The $\itm{info}$
  1503. %% field of the \key{Program} structure contains an \emph{association
  1504. %% list} (a list of key-value pairs) that is used to communicate
  1505. %% auxiliary data from one compiler pass the next.
  1506. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1507. exhibit several compilation techniques.
  1508. \newcommand{\LvarGrammarRacket}{
  1509. \begin{array}{rcl}
  1510. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1511. \end{array}
  1512. }
  1513. \newcommand{\LvarAST}{
  1514. \begin{array}{rcl}
  1515. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1516. \end{array}
  1517. }
  1518. \newcommand{\LvarGrammarPython}{
  1519. \begin{array}{rcl}
  1520. \Exp &::=& \Var{} \\
  1521. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1522. \end{array}
  1523. }
  1524. \newcommand{\LvarASTPython}{
  1525. \begin{array}{rcl}
  1526. \Exp{} &::=& \VAR{\Var{}} \\
  1527. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1528. \end{array}
  1529. }
  1530. \begin{figure}[tp]
  1531. \centering
  1532. \fbox{
  1533. \begin{minipage}{0.96\textwidth}
  1534. {\if\edition\racketEd
  1535. \[
  1536. \begin{array}{l}
  1537. \gray{\LintGrammarRacket{}} \\ \hline
  1538. \LvarGrammarRacket{} \\
  1539. \begin{array}{rcl}
  1540. \LangVarM{} &::=& \Exp
  1541. \end{array}
  1542. \end{array}
  1543. \]
  1544. \fi}
  1545. {\if\edition\pythonEd
  1546. \[
  1547. \begin{array}{l}
  1548. \gray{\LintGrammarPython} \\ \hline
  1549. \LvarGrammarPython \\
  1550. \begin{array}{rcl}
  1551. \LangVarM{} &::=& \Stmt^{*}
  1552. \end{array}
  1553. \end{array}
  1554. \]
  1555. \fi}
  1556. \end{minipage}
  1557. }
  1558. \caption{The concrete syntax of \LangVar{}.}
  1559. \label{fig:Lvar-concrete-syntax}
  1560. \end{figure}
  1561. \begin{figure}[tp]
  1562. \centering
  1563. \fbox{
  1564. \begin{minipage}{0.96\textwidth}
  1565. {\if\edition\racketEd
  1566. \[
  1567. \begin{array}{l}
  1568. \gray{\LintASTRacket{}} \\ \hline
  1569. \LvarAST \\
  1570. \begin{array}{rcl}
  1571. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1572. \end{array}
  1573. \end{array}
  1574. \]
  1575. \fi}
  1576. {\if\edition\pythonEd
  1577. \[
  1578. \begin{array}{l}
  1579. \gray{\LintASTPython}\\ \hline
  1580. \LvarASTPython \\
  1581. \begin{array}{rcl}
  1582. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1583. \end{array}
  1584. \end{array}
  1585. \]
  1586. \fi}
  1587. \end{minipage}
  1588. }
  1589. \caption{The abstract syntax of \LangVar{}.}
  1590. \label{fig:Lvar-syntax}
  1591. \end{figure}
  1592. {\if\edition\racketEd
  1593. Let us dive further into the syntax and semantics of the \LangVar{}
  1594. language. The \key{let} feature defines a variable for use within its
  1595. body and initializes the variable with the value of an expression.
  1596. The abstract syntax for \key{let} is defined in
  1597. Figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1598. \begin{lstlisting}
  1599. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1600. \end{lstlisting}
  1601. For example, the following program initializes \code{x} to $32$ and then
  1602. evaluates the body \code{(+ 10 x)}, producing $42$.
  1603. \begin{lstlisting}
  1604. (let ([x (+ 12 20)]) (+ 10 x))
  1605. \end{lstlisting}
  1606. \fi}
  1607. %
  1608. {\if\edition\pythonEd
  1609. %
  1610. The \LangVar{} language includes assignment statements, which define a
  1611. variable for use in later statements and initializes the variable with
  1612. the value of an expression. The abstract syntax for assignment is
  1613. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1614. assignment is
  1615. \begin{lstlisting}
  1616. |$\itm{var}$| = |$\itm{exp}$|
  1617. \end{lstlisting}
  1618. For example, the following program initializes the variable \code{x}
  1619. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1620. \begin{lstlisting}
  1621. x = 12 + 20
  1622. print(10 + x)
  1623. \end{lstlisting}
  1624. \fi}
  1625. {\if\edition\racketEd
  1626. %
  1627. When there are multiple \key{let}'s for the same variable, the closest
  1628. enclosing \key{let} is used. That is, variable definitions overshadow
  1629. prior definitions. Consider the following program with two \key{let}'s
  1630. that define variables named \code{x}. Can you figure out the result?
  1631. \begin{lstlisting}
  1632. (let ([x 32]) (+ (let ([x 10]) x) x))
  1633. \end{lstlisting}
  1634. For the purposes of depicting which variable uses correspond to which
  1635. definitions, the following shows the \code{x}'s annotated with
  1636. subscripts to distinguish them. Double check that your answer for the
  1637. above is the same as your answer for this annotated version of the
  1638. program.
  1639. \begin{lstlisting}
  1640. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1641. \end{lstlisting}
  1642. The initializing expression is always evaluated before the body of the
  1643. \key{let}, so in the following, the \key{read} for \code{x} is
  1644. performed before the \key{read} for \code{y}. Given the input
  1645. $52$ then $10$, the following produces $42$ (not $-42$).
  1646. \begin{lstlisting}
  1647. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1648. \end{lstlisting}
  1649. \fi}
  1650. \subsection{Extensible Interpreters via Method Overriding}
  1651. \label{sec:extensible-interp}
  1652. To prepare for discussing the interpreter of \LangVar{}, we explain
  1653. why we implement it in an object-oriented style. Throughout this book
  1654. we define many interpreters, one for each of language that we
  1655. study. Because each language builds on the prior one, there is a lot
  1656. of commonality between these interpreters. We want to write down the
  1657. common parts just once instead of many times. A naive approach would
  1658. be for the interpreter of \LangVar{} to handle the
  1659. \racket{cases for variables and \code{let}}
  1660. \python{case for variables}
  1661. but dispatch to \LangInt{}
  1662. for the rest of the cases. The following code sketches this idea. (We
  1663. explain the \code{env} parameter soon, in
  1664. Section~\ref{sec:interp-Lvar}.)
  1665. \begin{center}
  1666. {\if\edition\racketEd
  1667. \begin{minipage}{0.45\textwidth}
  1668. \begin{lstlisting}
  1669. (define ((interp_Lint env) e)
  1670. (match e
  1671. [(Prim '- (list e1))
  1672. (fx- 0 ((interp_Lint env) e1))]
  1673. ...))
  1674. \end{lstlisting}
  1675. \end{minipage}
  1676. \begin{minipage}{0.45\textwidth}
  1677. \begin{lstlisting}
  1678. (define ((interp_Lvar env) e)
  1679. (match e
  1680. [(Var x)
  1681. (dict-ref env x)]
  1682. [(Let x e body)
  1683. (define v ((interp_exp env) e))
  1684. (define env^ (dict-set env x v))
  1685. ((interp_exp env^) body)]
  1686. [else ((interp_Lint env) e)]))
  1687. \end{lstlisting}
  1688. \end{minipage}
  1689. \fi}
  1690. {\if\edition\pythonEd
  1691. \begin{minipage}{0.45\textwidth}
  1692. \begin{lstlisting}
  1693. def interp_Lint(e, env):
  1694. match e:
  1695. case UnaryOp(USub(), e1):
  1696. return - interp_Lint(e1, env)
  1697. ...
  1698. \end{lstlisting}
  1699. \end{minipage}
  1700. \begin{minipage}{0.45\textwidth}
  1701. \begin{lstlisting}
  1702. def interp_Lvar(e, env):
  1703. match e:
  1704. case Name(id):
  1705. return env[id]
  1706. case _:
  1707. return interp_Lint(e, env)
  1708. \end{lstlisting}
  1709. \end{minipage}
  1710. \fi}
  1711. \end{center}
  1712. The problem with this approach is that it does not handle situations
  1713. in which an \LangVar{} feature, such as a variable, is nested inside
  1714. an \LangInt{} feature, like the \code{-} operator, as in the following
  1715. program.
  1716. %
  1717. {\if\edition\racketEd
  1718. \begin{lstlisting}
  1719. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1720. \end{lstlisting}
  1721. \fi}
  1722. {\if\edition\pythonEd
  1723. \begin{lstlisting}
  1724. y = 10
  1725. print(-y)
  1726. \end{lstlisting}
  1727. \fi}
  1728. %
  1729. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1730. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1731. then it recursively calls \code{interp\_Lint} again on its argument.
  1732. But there is no case for \code{Var} in \code{interp\_Lint} so we get
  1733. an error!
  1734. To make our interpreters extensible we need something called
  1735. \emph{open recursion}\index{subject}{open recursion}, where the tying of the
  1736. recursive knot is delayed to when the functions are
  1737. composed. Object-oriented languages provide open recursion via
  1738. method overriding\index{subject}{method overriding}. The
  1739. following code uses method overriding to interpret \LangInt{} and
  1740. \LangVar{} using
  1741. %
  1742. \racket{the
  1743. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1744. \index{subject}{class} feature of Racket}
  1745. %
  1746. \python{a Python \code{class} definition}.
  1747. %
  1748. We define one class for each language and define a method for
  1749. interpreting expressions inside each class. The class for \LangVar{}
  1750. inherits from the class for \LangInt{} and the method
  1751. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1752. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1753. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1754. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1755. \code{interp\_exp} in \LangInt{}.
  1756. \begin{center}
  1757. \hspace{-20pt}
  1758. {\if\edition\racketEd
  1759. \begin{minipage}{0.45\textwidth}
  1760. \begin{lstlisting}
  1761. (define interp_Lint_class
  1762. (class object%
  1763. (define/public ((interp_exp env) e)
  1764. (match e
  1765. [(Prim '- (list e))
  1766. (fx- 0 ((interp_exp env) e))]
  1767. ...))
  1768. ...))
  1769. \end{lstlisting}
  1770. \end{minipage}
  1771. \begin{minipage}{0.45\textwidth}
  1772. \begin{lstlisting}
  1773. (define interp_Lvar_class
  1774. (class interp_Lint_class
  1775. (define/override ((interp_exp env) e)
  1776. (match e
  1777. [(Var x)
  1778. (dict-ref env x)]
  1779. [(Let x e body)
  1780. (define v ((interp_exp env) e))
  1781. (define env^ (dict-set env x v))
  1782. ((interp_exp env^) body)]
  1783. [else
  1784. (super (interp_exp env) e)]))
  1785. ...
  1786. ))
  1787. \end{lstlisting}
  1788. \end{minipage}
  1789. \fi}
  1790. {\if\edition\pythonEd
  1791. \begin{minipage}{0.45\textwidth}
  1792. \begin{lstlisting}
  1793. class InterpLint:
  1794. def interp_exp(e):
  1795. match e:
  1796. case UnaryOp(USub(), e1):
  1797. return -self.interp_exp(e1)
  1798. ...
  1799. ...
  1800. \end{lstlisting}
  1801. \end{minipage}
  1802. \begin{minipage}{0.45\textwidth}
  1803. \begin{lstlisting}
  1804. def InterpLvar(InterpLint):
  1805. def interp_exp(e):
  1806. match e:
  1807. case Name(id):
  1808. return env[id]
  1809. case _:
  1810. return super().interp_exp(e)
  1811. ...
  1812. \end{lstlisting}
  1813. \end{minipage}
  1814. \fi}
  1815. \end{center}
  1816. Getting back to the troublesome example, repeated here:
  1817. {\if\edition\racketEd
  1818. \begin{lstlisting}
  1819. (Let 'y (Int 10) (Prim '- (Var 'y)))
  1820. \end{lstlisting}
  1821. \fi}
  1822. {\if\edition\pythonEd
  1823. \begin{lstlisting}
  1824. y = 10
  1825. print(-y)
  1826. \end{lstlisting}
  1827. \fi}
  1828. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1829. \racket{on this expression,}
  1830. \python{on the \code{-y} expression,}
  1831. %
  1832. call it \code{e0}, by creating an object of the \LangVar{} class
  1833. and calling the \code{interp\_exp} method.
  1834. {\if\edition\racketEd
  1835. \begin{lstlisting}
  1836. (send (new interp_Lvar_class) interp_exp e0)
  1837. \end{lstlisting}
  1838. \fi}
  1839. {\if\edition\pythonEd
  1840. \begin{lstlisting}
  1841. InterpLvar().interp_exp(e0)
  1842. \end{lstlisting}
  1843. \fi}
  1844. \noindent To process the \code{-} operator, the default case of
  1845. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1846. method in \LangInt{}. But then for the recursive method call, it
  1847. dispatches back to \code{interp\_exp} in \LangVar{}, where the
  1848. \code{Var} node is handled correctly. Thus, method overriding gives us
  1849. the open recursion that we need to implement our interpreters in an
  1850. extensible way.
  1851. \subsection{Definitional Interpreter for \LangVar{}}
  1852. \label{sec:interp-Lvar}
  1853. {\if\edition\racketEd
  1854. \begin{figure}[tp]
  1855. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  1856. \small
  1857. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1858. An \emph{association list} (alist) is a list of key-value pairs.
  1859. For example, we can map people to their ages with an alist.
  1860. \index{subject}{alist}\index{subject}{association list}
  1861. \begin{lstlisting}[basicstyle=\ttfamily]
  1862. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  1863. \end{lstlisting}
  1864. The \emph{dictionary} interface is for mapping keys to values.
  1865. Every alist implements this interface. \index{subject}{dictionary} The package
  1866. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1867. provides many functions for working with dictionaries. Here
  1868. are a few of them:
  1869. \begin{description}
  1870. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1871. returns the value associated with the given $\itm{key}$.
  1872. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1873. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1874. but otherwise is the same as $\itm{dict}$.
  1875. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1876. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1877. of keys and values in $\itm{dict}$. For example, the following
  1878. creates a new alist in which the ages are incremented.
  1879. \end{description}
  1880. \vspace{-10pt}
  1881. \begin{lstlisting}[basicstyle=\ttfamily]
  1882. (for/list ([(k v) (in-dict ages)])
  1883. (cons k (add1 v)))
  1884. \end{lstlisting}
  1885. \end{tcolorbox}
  1886. %\end{wrapfigure}
  1887. \caption{Association lists implement the dictionary interface.}
  1888. \label{fig:alist}
  1889. \end{figure}
  1890. \fi}
  1891. Having justified the use of classes and methods to implement
  1892. interpreters, we revisit the definitional interpreter for \LangInt{}
  1893. in Figure~\ref{fig:interp-Lint-class} and then extend it to create an
  1894. interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}. The
  1895. interpreter for \LangVar{} adds two new \key{match} cases for
  1896. variables and \racket{\key{let}}\python{assignment}. For
  1897. \racket{\key{let}}\python{assignment} we need a way to communicate the
  1898. value bound to a variable to all the uses of the variable. To
  1899. accomplish this, we maintain a mapping from variables to values
  1900. called an \emph{environment}\index{subject}{environment}.
  1901. %
  1902. We use%
  1903. %
  1904. \racket{an association list (alist)}
  1905. %
  1906. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary}}
  1907. %
  1908. to represent the environment.
  1909. %
  1910. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  1911. and the \code{racket/dict} package.}
  1912. %
  1913. The \code{interp\_exp} function takes the current environment,
  1914. \code{env}, as an extra parameter. When the interpreter encounters a
  1915. variable, it looks up the corresponding value in the dictionary.
  1916. %
  1917. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  1918. initializing expression, extends the environment with the result
  1919. value bound to the variable, using \code{dict-set}, then evaluates
  1920. the body of the \key{Let}.}
  1921. %
  1922. \python{When the interpreter encounters an assignment, it evaluates
  1923. the initializing expression and then associates the resulting value
  1924. with the variable in the environment.}
  1925. \begin{figure}[tp]
  1926. {\if\edition\racketEd
  1927. \begin{lstlisting}
  1928. (define interp_Lint_class
  1929. (class object%
  1930. (super-new)
  1931. (define/public ((interp_exp env) e)
  1932. (match e
  1933. [(Int n) n]
  1934. [(Prim 'read '())
  1935. (define r (read))
  1936. (cond [(fixnum? r) r]
  1937. [else (error 'interp_exp "expected an integer" r)])]
  1938. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  1939. [(Prim '+ (list e1 e2))
  1940. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]))
  1941. (define/public (interp_program p)
  1942. (match p
  1943. [(Program '() e) ((interp_exp '()) e)]))
  1944. ))
  1945. \end{lstlisting}
  1946. \fi}
  1947. {\if\edition\pythonEd
  1948. \begin{lstlisting}
  1949. class InterpLint:
  1950. def interp_exp(self, e, env):
  1951. match e:
  1952. case BinOp(left, Add(), right):
  1953. return self.interp_exp(left, env) + self.interp_exp(right, env)
  1954. case UnaryOp(USub(), v):
  1955. return - self.interp_exp(v, env)
  1956. case Constant(value):
  1957. return value
  1958. case Call(Name('input_int'), []):
  1959. return int(input())
  1960. def interp_stmts(self, ss, env):
  1961. if len(ss) == 0:
  1962. return
  1963. match ss[0]:
  1964. case Expr(Call(Name('print'), [arg])):
  1965. print(self.interp_exp(arg, env), end='')
  1966. return self.interp_stmts(ss[1:], env)
  1967. case Expr(value):
  1968. self.interp_exp(value, env)
  1969. return self.interp_stmts(ss[1:], env)
  1970. def interp(self, p):
  1971. match p:
  1972. case Module(body):
  1973. self.interp_stmts(body, {})
  1974. def interp_Lint(p):
  1975. return InterpLint().interp(p)
  1976. \end{lstlisting}
  1977. \fi}
  1978. \caption{Interpreter for \LangInt{} as a class.}
  1979. \label{fig:interp-Lint-class}
  1980. \end{figure}
  1981. \begin{figure}[tp]
  1982. {\if\edition\racketEd
  1983. \begin{lstlisting}
  1984. (define interp_Lvar_class
  1985. (class interp_Lint_class
  1986. (super-new)
  1987. (define/override ((interp_exp env) e)
  1988. (match e
  1989. [(Var x) (dict-ref env x)]
  1990. [(Let x e body)
  1991. (define new-env (dict-set env x ((interp_exp env) e)))
  1992. ((interp_exp new-env) body)]
  1993. [else ((super interp-exp env) e)]))
  1994. ))
  1995. (define (interp_Lvar p)
  1996. (send (new interp_Lvar_class) interp_program p))
  1997. \end{lstlisting}
  1998. \fi}
  1999. {\if\edition\pythonEd
  2000. \begin{lstlisting}
  2001. class InterpLvar(InterpLint):
  2002. def interp_exp(self, e, env):
  2003. match e:
  2004. case Name(id):
  2005. return env[id]
  2006. case _:
  2007. return super().interp_exp(e, env)
  2008. def interp_stmts(self, ss, env):
  2009. if len(ss) == 0:
  2010. return
  2011. match ss[0]:
  2012. case Assign([lhs], value):
  2013. env[lhs.id] = self.interp_exp(value, env)
  2014. return self.interp_stmts(ss[1:], env)
  2015. case _:
  2016. return super().interp_stmts(ss, env)
  2017. def interp_Lvar(p):
  2018. return InterpLvar().interp(p)
  2019. \end{lstlisting}
  2020. \fi}
  2021. \caption{Interpreter for the \LangVar{} language.}
  2022. \label{fig:interp-Lvar}
  2023. \end{figure}
  2024. The goal for this chapter is to implement a compiler that translates
  2025. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2026. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2027. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2028. That is, they output the same integer $n$. We depict this correctness
  2029. criteria in the following diagram.
  2030. \[
  2031. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2032. \node (p1) at (0, 0) {$P_1$};
  2033. \node (p2) at (4, 0) {$P_2$};
  2034. \node (o) at (4, -2) {$n$};
  2035. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2036. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2037. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2038. \end{tikzpicture}
  2039. \]
  2040. In the next section we introduce the \LangXInt{} subset of x86 that
  2041. suffices for compiling \LangVar{}.
  2042. \section{The \LangXInt{} Assembly Language}
  2043. \label{sec:x86}
  2044. \index{subject}{x86}
  2045. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2046. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2047. assembler.
  2048. %
  2049. A program begins with a \code{main} label followed by a sequence of
  2050. instructions. The \key{globl} directive says that the \key{main}
  2051. procedure is externally visible, which is necessary so that the
  2052. operating system can call it.
  2053. %
  2054. An x86 program is stored in the computer's memory. For our purposes,
  2055. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2056. values. The computer has a \emph{program counter} (PC)\index{subject}{program
  2057. counter}\index{subject}{PC} stored in the \code{rip} register that points to
  2058. the address of the next instruction to be executed. For most
  2059. instructions, the program counter is incremented after the instruction
  2060. is executed, so it points to the next instruction in memory. Most x86
  2061. instructions take two operands, where each operand is either an
  2062. integer constant (called an \emph{immediate value}\index{subject}{immediate
  2063. value}), a \emph{register}\index{subject}{register}, or a memory location.
  2064. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2065. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2066. && \key{r8} \MID \key{r9} \MID \key{r10}
  2067. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2068. \MID \key{r14} \MID \key{r15}}
  2069. \begin{figure}[tp]
  2070. \fbox{
  2071. \begin{minipage}{0.96\textwidth}
  2072. {\if\edition\racketEd
  2073. \[
  2074. \begin{array}{lcl}
  2075. \Reg &::=& \allregisters{} \\
  2076. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2077. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2078. \key{subq} \; \Arg\key{,} \Arg \MID
  2079. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2080. && \key{callq} \; \mathit{label} \MID
  2081. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \key{jmp}\,\itm{label} \\
  2082. && \itm{label}\key{:}\; \Instr \\
  2083. \LangXIntM{} &::= & \key{.globl main}\\
  2084. & & \key{main:} \; \Instr\ldots
  2085. \end{array}
  2086. \]
  2087. \fi}
  2088. {\if\edition\pythonEd
  2089. \[
  2090. \begin{array}{lcl}
  2091. \Reg &::=& \allregisters{} \\
  2092. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2093. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2094. \key{subq} \; \Arg\key{,} \Arg \MID
  2095. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2096. && \key{callq} \; \mathit{label} \MID
  2097. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2098. \LangXIntM{} &::= & \key{.globl main}\\
  2099. & & \key{main:} \; \Instr^{*}
  2100. \end{array}
  2101. \]
  2102. \fi}
  2103. \end{minipage}
  2104. }
  2105. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2106. \label{fig:x86-int-concrete}
  2107. \end{figure}
  2108. A register is a special kind of variable that holds a 64-bit
  2109. value. There are 16 general-purpose registers in the computer and
  2110. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  2111. is written with a \key{\%} followed by the register name, such as
  2112. \key{\%rax}.
  2113. An immediate value is written using the notation \key{\$}$n$ where $n$
  2114. is an integer.
  2115. %
  2116. %
  2117. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2118. which obtains the address stored in register $r$ and then adds $n$
  2119. bytes to the address. The resulting address is used to load or store
  2120. to memory depending on whether it occurs as a source or destination
  2121. argument of an instruction.
  2122. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  2123. source $s$ and destination $d$, applies the arithmetic operation, then
  2124. writes the result back to the destination $d$. \index{subject}{instruction}
  2125. %
  2126. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2127. stores the result in $d$.
  2128. %
  2129. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2130. specified by the label and $\key{retq}$ returns from a procedure to
  2131. its caller.
  2132. %
  2133. We discuss procedure calls in more detail later in this chapter and in
  2134. Chapter~\ref{ch:Rfun}.
  2135. %
  2136. The last letter \key{q} indicates that these instructions operate on
  2137. quadwords, i.e., 64-bit values.
  2138. %
  2139. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2140. counter to the address of the instruction after the specified
  2141. label.}
  2142. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  2143. all of the x86 instructions used in this book.
  2144. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2145. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2146. \lstinline{movq $10, %rax}
  2147. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  2148. adds $32$ to the $10$ in \key{rax} and
  2149. puts the result, $42$, back into \key{rax}.
  2150. %
  2151. The last instruction, \key{retq}, finishes the \key{main} function by
  2152. returning the integer in \key{rax} to the operating system. The
  2153. operating system interprets this integer as the program's exit
  2154. code. By convention, an exit code of 0 indicates that a program
  2155. completed successfully, and all other exit codes indicate various
  2156. errors.
  2157. %
  2158. \racket{Nevertheless, in this book we return the result of the program
  2159. as the exit code.}
  2160. \begin{figure}[tbp]
  2161. \begin{lstlisting}
  2162. .globl main
  2163. main:
  2164. movq $10, %rax
  2165. addq $32, %rax
  2166. retq
  2167. \end{lstlisting}
  2168. \caption{An x86 program that computes
  2169. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2170. \label{fig:p0-x86}
  2171. \end{figure}
  2172. We exhibit the use of memory for storing intermediate results in the
  2173. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2174. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2175. uses a region of memory called the \emph{procedure call stack} (or
  2176. \emph{stack} for
  2177. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2178. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2179. for each procedure call. The memory layout for an individual frame is
  2180. shown in Figure~\ref{fig:frame}. The register \key{rsp} is called the
  2181. \emph{stack pointer}\index{subject}{stack pointer} and points to the
  2182. item at the top of the stack. The stack grows downward in memory, so
  2183. we increase the size of the stack by subtracting from the stack
  2184. pointer. In the context of a procedure call, the \emph{return
  2185. address}\index{subject}{return address} is the instruction after the
  2186. call instruction on the caller side. The function call instruction,
  2187. \code{callq}, pushes the return address onto the stack prior to
  2188. jumping to the procedure. The register \key{rbp} is the \emph{base
  2189. pointer}\index{subject}{base pointer} and is used to access variables
  2190. that are stored in the frame of the current procedure call. The base
  2191. pointer of the caller is store after the return address. In
  2192. Figure~\ref{fig:frame} we number the variables from $1$ to
  2193. $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$, variable $2$
  2194. at $-16\key{(\%rbp)}$, etc.
  2195. \begin{figure}[tbp]
  2196. {\if\edition\racketEd
  2197. \begin{lstlisting}
  2198. start:
  2199. movq $10, -8(%rbp)
  2200. negq -8(%rbp)
  2201. movq -8(%rbp), %rax
  2202. addq $52, %rax
  2203. jmp conclusion
  2204. .globl main
  2205. main:
  2206. pushq %rbp
  2207. movq %rsp, %rbp
  2208. subq $16, %rsp
  2209. jmp start
  2210. conclusion:
  2211. addq $16, %rsp
  2212. popq %rbp
  2213. retq
  2214. \end{lstlisting}
  2215. \fi}
  2216. {\if\edition\pythonEd
  2217. \begin{lstlisting}
  2218. .globl main
  2219. main:
  2220. pushq %rbp
  2221. movq %rsp, %rbp
  2222. subq $16, %rsp
  2223. movq $10, -8(%rbp)
  2224. negq -8(%rbp)
  2225. movq -8(%rbp), %rax
  2226. addq $52, %rax
  2227. addq $16, %rsp
  2228. popq %rbp
  2229. retq
  2230. \end{lstlisting}
  2231. \fi}
  2232. \caption{An x86 program that computes
  2233. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2234. \label{fig:p1-x86}
  2235. \end{figure}
  2236. \begin{figure}[tbp]
  2237. \centering
  2238. \begin{tabular}{|r|l|} \hline
  2239. Position & Contents \\ \hline
  2240. 8(\key{\%rbp}) & return address \\
  2241. 0(\key{\%rbp}) & old \key{rbp} \\
  2242. -8(\key{\%rbp}) & variable $1$ \\
  2243. -16(\key{\%rbp}) & variable $2$ \\
  2244. \ldots & \ldots \\
  2245. 0(\key{\%rsp}) & variable $n$\\ \hline
  2246. \end{tabular}
  2247. \caption{Memory layout of a frame.}
  2248. \label{fig:frame}
  2249. \end{figure}
  2250. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  2251. control is transferred from the operating system to the \code{main}
  2252. function. The operating system issues a \code{callq main} instruction
  2253. which pushes its return address on the stack and then jumps to
  2254. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2255. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2256. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  2257. alignment (because the \code{callq} pushed the return address). The
  2258. first three instructions are the typical \emph{prelude}\index{subject}{prelude}
  2259. for a procedure. The instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2260. pointer and then saves the base pointer of the caller at address
  2261. \code{rsp} on the stack. The next instruction \code{movq \%rsp, \%rbp} sets the
  2262. base pointer to the current stack pointer, which is pointing at the location
  2263. of the old base pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  2264. pointer down to make enough room for storing variables. This program
  2265. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  2266. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  2267. functions.
  2268. \racket{The last instruction of the prelude is \code{jmp start},
  2269. which transfers control to the instructions that were generated from
  2270. the expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2271. \racket{The first instruction under the \code{start} label is}
  2272. %
  2273. \python{The first instruction after the prelude is}
  2274. %
  2275. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2276. %
  2277. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  2278. %
  2279. The next instruction moves the $-10$ from variable $1$ into the
  2280. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2281. the value in \code{rax}, updating its contents to $42$.
  2282. \racket{The three instructions under the label \code{conclusion} are the
  2283. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2284. %
  2285. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2286. \code{main} function consists of the last three instructions.}
  2287. %
  2288. The first two restore the \code{rsp} and \code{rbp} registers to the
  2289. state they were in at the beginning of the procedure. In particular,
  2290. \key{addq \$16, \%rsp} moves the stack pointer back to point at the
  2291. old base pointer. Then \key{popq \%rbp} returns the old base pointer
  2292. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2293. \key{retq}, jumps back to the procedure that called this one and adds
  2294. $8$ to the stack pointer.
  2295. Our compiler needs a convenient representation for manipulating x86
  2296. programs, so we define an abstract syntax for x86 in
  2297. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  2298. \LangXInt{}.
  2299. %
  2300. {\if\edition\racketEd
  2301. The main difference compared to the concrete syntax of \LangXInt{}
  2302. (Figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2303. front of every instruction. Instead instructions are grouped into
  2304. \emph{blocks}\index{subject}{block} with a
  2305. label associated with every block, which is why the \key{X86Program}
  2306. struct includes an alist mapping labels to blocks. The reason for this
  2307. organization becomes apparent in Chapter~\ref{ch:Lif} when we
  2308. introduce conditional branching. The \code{Block} structure includes
  2309. an $\itm{info}$ field that is not needed for this chapter, but becomes
  2310. useful in Chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2311. $\itm{info}$ field should contain an empty list.
  2312. \fi}
  2313. %
  2314. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2315. node includes an integer for representing the arity of the function,
  2316. i.e., the number of arguments, which is helpful to know during
  2317. register allocation (Chapter~\ref{ch:register-allocation-Lvar}).
  2318. \begin{figure}[tp]
  2319. \fbox{
  2320. \begin{minipage}{0.98\textwidth}
  2321. \small
  2322. {\if\edition\racketEd
  2323. \[
  2324. \begin{array}{lcl}
  2325. \Reg &::=& \allregisters{} \\
  2326. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2327. \MID \DEREF{\Reg}{\Int} \\
  2328. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2329. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2330. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2331. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2332. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  2333. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} \\
  2334. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  2335. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2336. \end{array}
  2337. \]
  2338. \fi}
  2339. {\if\edition\pythonEd
  2340. \[
  2341. \begin{array}{lcl}
  2342. \Reg &::=& \allregisters{} \\
  2343. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2344. \MID \DEREF{\Reg}{\Int} \\
  2345. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2346. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2347. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2348. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2349. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  2350. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} \\
  2351. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2352. \end{array}
  2353. \]
  2354. \fi}
  2355. \end{minipage}
  2356. }
  2357. \caption{The abstract syntax of \LangXInt{} assembly.}
  2358. \label{fig:x86-int-ast}
  2359. \end{figure}
  2360. \section{Planning the trip to x86}
  2361. \label{sec:plan-s0-x86}
  2362. To compile one language to another it helps to focus on the
  2363. differences between the two languages because the compiler will need
  2364. to bridge those differences. What are the differences between \LangVar{}
  2365. and x86 assembly? Here are some of the most important ones:
  2366. \begin{enumerate}
  2367. \item x86 arithmetic instructions typically have two arguments and
  2368. update the second argument in place. In contrast, \LangVar{}
  2369. arithmetic operations take two arguments and produce a new value.
  2370. An x86 instruction may have at most one memory-accessing argument.
  2371. Furthermore, some x86 instructions place special restrictions on
  2372. their arguments.
  2373. \item An argument of an \LangVar{} operator can be a deeply-nested
  2374. expression, whereas x86 instructions restrict their arguments to be
  2375. integer constants, registers, and memory locations.
  2376. {\if\edition\racketEd
  2377. \item The order of execution in x86 is explicit in the syntax: a
  2378. sequence of instructions and jumps to labeled positions, whereas in
  2379. \LangVar{} the order of evaluation is a left-to-right depth-first
  2380. traversal of the abstract syntax tree.
  2381. \fi}
  2382. \item A program in \LangVar{} can have any number of variables
  2383. whereas x86 has 16 registers and the procedure call stack.
  2384. {\if\edition\racketEd
  2385. \item Variables in \LangVar{} can shadow other variables with the
  2386. same name. In x86, registers have unique names and memory locations
  2387. have unique addresses.
  2388. \fi}
  2389. \end{enumerate}
  2390. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2391. down the problem into several steps, dealing with the above
  2392. differences one at a time. Each of these steps is called a \emph{pass}
  2393. of the compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2394. %
  2395. This terminology comes from the way each step passes over, that is,
  2396. traverses the AST of the program.
  2397. %
  2398. Furthermore, we follow the nanopass approach, which means we strive
  2399. for each pass to accomplish one clear objective (not two or three at
  2400. the same time).
  2401. %
  2402. We begin by sketching how we might implement each pass, and give them
  2403. names. We then figure out an ordering of the passes and the
  2404. input/output language for each pass. The very first pass has
  2405. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2406. its output language. In between we can choose whichever language is
  2407. most convenient for expressing the output of each pass, whether that
  2408. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2409. our own design. Finally, to implement each pass we write one
  2410. recursive function per non-terminal in the grammar of the input
  2411. language of the pass. \index{subject}{intermediate language}
  2412. Our compiler for \LangVar{} consists of the following passes.
  2413. %
  2414. \begin{description}
  2415. {\if\edition\racketEd
  2416. \item[\key{uniquify}] deals with the shadowing of variables by
  2417. renaming every variable to a unique name.
  2418. \fi}
  2419. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2420. of a primitive operation or function call is a variable or integer,
  2421. that is, an \emph{atomic} expression. We refer to non-atomic
  2422. expressions as \emph{complex}. This pass introduces temporary
  2423. variables to hold the results of complex
  2424. subexpressions.\index{subject}{atomic
  2425. expression}\index{subject}{complex expression}%
  2426. {\if\edition\racketEd
  2427. \item[\key{explicate\_control}] makes the execution order of the
  2428. program explicit. It converts the abstract syntax tree representation
  2429. into a control-flow graph in which each node contains a sequence of
  2430. statements and the edges between nodes say which nodes contain jumps
  2431. to other nodes.
  2432. \fi}
  2433. \item[\key{select\_instructions}] handles the difference between
  2434. \LangVar{} operations and x86 instructions. This pass converts each
  2435. \LangVar{} operation to a short sequence of instructions that
  2436. accomplishes the same task.
  2437. \item[\key{assign\_homes}] replaces variables with registers or stack
  2438. locations.
  2439. \end{description}
  2440. %
  2441. {\if\edition\racketEd
  2442. %
  2443. Our treatment of \code{remove\_complex\_operands} and
  2444. \code{explicate\_control} as separate passes is an example of the
  2445. nanopass approach\footnote{For analogous decompositions of the
  2446. translation into continuation passing style, see the work of
  2447. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.}. The traditional
  2448. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2449. %
  2450. \fi}
  2451. The next question is: in what order should we apply these passes? This
  2452. question can be challenging because it is difficult to know ahead of
  2453. time which orderings will be better (easier to implement, produce more
  2454. efficient code, etc.) so oftentimes trial-and-error is
  2455. involved. Nevertheless, we can try to plan ahead and make educated
  2456. choices regarding the ordering.
  2457. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2458. \key{uniquify}? The \key{uniquify} pass should come first because
  2459. \key{explicate\_control} changes all the \key{let}-bound variables to
  2460. become local variables whose scope is the entire program, which would
  2461. confuse variables with the same name.}
  2462. %
  2463. \racket{We place \key{remove\_complex\_opera*} before \key{explicate\_control}
  2464. because the later removes the \key{let} form, but it is convenient to
  2465. use \key{let} in the output of \key{remove\_complex\_opera*}.}
  2466. %
  2467. \racket{The ordering of \key{uniquify} with respect to
  2468. \key{remove\_complex\_opera*} does not matter so we arbitrarily choose
  2469. \key{uniquify} to come first.}
  2470. The \key{select\_instructions} and \key{assign\_homes} passes are
  2471. intertwined.
  2472. %
  2473. In Chapter~\ref{ch:Rfun} we learn that, in x86, registers are used for
  2474. passing arguments to functions and it is preferable to assign
  2475. parameters to their corresponding registers. This suggests that it
  2476. would be better to start with the \key{select\_instructions} pass,
  2477. which generates the instructions for argument passing, before
  2478. performing register allocation.
  2479. %
  2480. On the other hand, by selecting instructions first we may run into a
  2481. dead end in \key{assign\_homes}. Recall that only one argument of an
  2482. x86 instruction may be a memory access but \key{assign\_homes} might
  2483. be forced to assign both arguments to memory locations.
  2484. %
  2485. A sophisticated approach is to iteratively repeat the two passes until
  2486. a solution is found. However, to reduce implementation complexity we
  2487. recommend placing \key{select\_instructions} first, followed by the
  2488. \key{assign\_homes}, then a third pass named \key{patch\_instructions}
  2489. that uses a reserved register to fix outstanding problems.
  2490. \begin{figure}[tbp]
  2491. {\if\edition\racketEd
  2492. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2493. \node (Lvar) at (0,2) {\large \LangVar{}};
  2494. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2495. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  2496. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2497. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2498. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2499. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2500. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2501. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2502. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2503. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  2504. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-2);
  2505. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  2506. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2507. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  2508. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  2509. \end{tikzpicture}
  2510. \fi}
  2511. {\if\edition\pythonEd
  2512. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2513. \node (Lvar) at (0,2) {\large \LangVar{}};
  2514. \node (Lvar-2) at (3,2) {\large \LangVarANF{}};
  2515. \node (x86-1) at (3,0) {\large \LangXVar{}};
  2516. \node (x86-2) at (6,0) {\large \LangXVar{}};
  2517. \node (x86-3) at (9,0) {\large \LangXInt{}};
  2518. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2519. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-2);
  2520. \path[->,bend right=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  2521. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2522. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  2523. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-4);
  2524. \end{tikzpicture}
  2525. \fi}
  2526. \caption{Diagram of the passes for compiling \LangVar{}. }
  2527. \label{fig:Lvar-passes}
  2528. \end{figure}
  2529. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2530. passes and identifies the input and output language of each pass.
  2531. %
  2532. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2533. language, which extends \LangXInt{} with an unbounded number of
  2534. program-scope variables and removes the restrictions regarding
  2535. instruction arguments.
  2536. %
  2537. The last pass, \key{prelude\_and\_conclusion}, places the program
  2538. instructions inside a \code{main} function with instructions for the
  2539. prelude and conclusion.
  2540. %
  2541. \racket{In the following section we discuss the \LangCVar{}
  2542. intermediate language.}
  2543. %
  2544. The remainder of this chapter provides guidance on the implementation
  2545. of each of the compiler passes in Figure~\ref{fig:Lvar-passes}.
  2546. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  2547. %% are programs that are still in the \LangVar{} language, though the
  2548. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2549. %% (Section~\ref{sec:remove-complex-opera-Lvar}).
  2550. %% %
  2551. %% The output of \code{explicate\_control} is in an intermediate language
  2552. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2553. %% syntax, which we introduce in the next section. The
  2554. %% \key{select-instruction} pass translates from \LangCVar{} to
  2555. %% \LangXVar{}. The \key{assign-homes} and
  2556. %% \key{patch-instructions}
  2557. %% passes input and output variants of x86 assembly.
  2558. {\if\edition\racketEd
  2559. \subsection{The \LangCVar{} Intermediate Language}
  2560. The output of \code{explicate\_control} is similar to the $C$
  2561. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2562. categories for expressions and statements, so we name it \LangCVar{}.
  2563. This style of intermediate language is also known as
  2564. \emph{three-address code}, to emphasize that the typical form of a
  2565. statement is \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2566. addresses~\citep{Aho:2006wb}.
  2567. The concrete syntax for \LangCVar{} is defined in
  2568. Figure~\ref{fig:c0-concrete-syntax} and the abstract syntax for
  2569. \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2570. %
  2571. The \LangCVar{} language supports the same operators as \LangVar{} but
  2572. the arguments of operators are restricted to atomic
  2573. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2574. assignment statements which can be executed in sequence using the
  2575. \key{Seq} form. A sequence of statements always ends with
  2576. \key{Return}, a guarantee that is baked into the grammar rules for
  2577. \itm{tail}. The naming of this non-terminal comes from the term
  2578. \emph{tail position}\index{subject}{tail position}, which refers to an
  2579. expression that is the last one to execute within a function.
  2580. A \LangCVar{} program consists of an alist mapping labels to
  2581. tails. This is more general than necessary for the present chapter, as
  2582. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2583. us from having to change the syntax in Chapter~\ref{ch:Lif}. For now
  2584. there will be just one label, \key{start}, and the whole program is
  2585. its tail.
  2586. %
  2587. The $\itm{info}$ field of the \key{CProgram} form, after the
  2588. \code{explicate\_control} pass, contains a mapping from the symbol
  2589. \key{locals} to a list of variables, that is, a list of all the
  2590. variables used in the program. At the start of the program, these
  2591. variables are uninitialized; they become initialized on their first
  2592. assignment.
  2593. \begin{figure}[tbp]
  2594. \fbox{
  2595. \begin{minipage}{0.96\textwidth}
  2596. \[
  2597. \begin{array}{lcl}
  2598. \Atm &::=& \Int \MID \Var \\
  2599. \Exp &::=& \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)}\\
  2600. \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
  2601. \Tail &::= & \key{return}~\Exp\key{;} \MID \Stmt~\Tail \\
  2602. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2603. \end{array}
  2604. \]
  2605. \end{minipage}
  2606. }
  2607. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2608. \label{fig:c0-concrete-syntax}
  2609. \end{figure}
  2610. \begin{figure}[tbp]
  2611. \fbox{
  2612. \begin{minipage}{0.96\textwidth}
  2613. \[
  2614. \begin{array}{lcl}
  2615. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2616. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2617. &\MID& \ADD{\Atm}{\Atm}\\
  2618. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2619. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail} \\
  2620. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2621. \end{array}
  2622. \]
  2623. \end{minipage}
  2624. }
  2625. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2626. \label{fig:c0-syntax}
  2627. \end{figure}
  2628. The definitional interpreter for \LangCVar{} is in the support code,
  2629. in the file \code{interp-Cvar.rkt}.
  2630. \fi}
  2631. {\if\edition\racketEd
  2632. \section{Uniquify Variables}
  2633. \label{sec:uniquify-Lvar}
  2634. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2635. programs in which every \key{let} binds a unique variable name. For
  2636. example, the \code{uniquify} pass should translate the program on the
  2637. left into the program on the right.
  2638. \begin{transformation}
  2639. \begin{lstlisting}
  2640. (let ([x 32])
  2641. (+ (let ([x 10]) x) x))
  2642. \end{lstlisting}
  2643. \compilesto
  2644. \begin{lstlisting}
  2645. (let ([x.1 32])
  2646. (+ (let ([x.2 10]) x.2) x.1))
  2647. \end{lstlisting}
  2648. \end{transformation}
  2649. The following is another example translation, this time of a program
  2650. with a \key{let} nested inside the initializing expression of another
  2651. \key{let}.
  2652. \begin{transformation}
  2653. \begin{lstlisting}
  2654. (let ([x (let ([x 4])
  2655. (+ x 1))])
  2656. (+ x 2))
  2657. \end{lstlisting}
  2658. \compilesto
  2659. \begin{lstlisting}
  2660. (let ([x.2 (let ([x.1 4])
  2661. (+ x.1 1))])
  2662. (+ x.2 2))
  2663. \end{lstlisting}
  2664. \end{transformation}
  2665. We recommend implementing \code{uniquify} by creating a structurally
  2666. recursive function named \code{uniquify-exp} that mostly just copies
  2667. an expression. However, when encountering a \key{let}, it should
  2668. generate a unique name for the variable and associate the old name
  2669. with the new name in an alist.\footnote{The Racket function
  2670. \code{gensym} is handy for generating unique variable names.} The
  2671. \code{uniquify-exp} function needs to access this alist when it gets
  2672. to a variable reference, so we add a parameter to \code{uniquify-exp}
  2673. for the alist.
  2674. The skeleton of the \code{uniquify-exp} function is shown in
  2675. Figure~\ref{fig:uniquify-Lvar}. The function is curried so that it is
  2676. convenient to partially apply it to an alist and then apply it to
  2677. different expressions, as in the last case for primitive operations in
  2678. Figure~\ref{fig:uniquify-Lvar}. The
  2679. %
  2680. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2681. %
  2682. form of Racket is useful for transforming each element of a list to
  2683. produce a new list.\index{subject}{for/list}
  2684. \begin{figure}[tbp]
  2685. \begin{lstlisting}
  2686. (define (uniquify-exp env)
  2687. (lambda (e)
  2688. (match e
  2689. [(Var x) ___]
  2690. [(Int n) (Int n)]
  2691. [(Let x e body) ___]
  2692. [(Prim op es)
  2693. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  2694. (define (uniquify p)
  2695. (match p
  2696. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  2697. \end{lstlisting}
  2698. \caption{Skeleton for the \key{uniquify} pass.}
  2699. \label{fig:uniquify-Lvar}
  2700. \end{figure}
  2701. \begin{exercise}
  2702. \normalfont % I don't like the italics for exercises. -Jeremy
  2703. Complete the \code{uniquify} pass by filling in the blanks in
  2704. Figure~\ref{fig:uniquify-Lvar}, that is, implement the cases for
  2705. variables and for the \key{let} form in the file \code{compiler.rkt}
  2706. in the support code.
  2707. \end{exercise}
  2708. \begin{exercise}
  2709. \normalfont % I don't like the italics for exercises. -Jeremy
  2710. \label{ex:Lvar}
  2711. Create five \LangVar{} programs that exercise the most interesting
  2712. parts of the \key{uniquify} pass, that is, the programs should include
  2713. \key{let} forms, variables, and variables that shadow each other.
  2714. The five programs should be placed in the subdirectory named
  2715. \key{tests} and the file names should start with \code{var\_test\_}
  2716. followed by a unique integer and end with the file extension
  2717. \key{.rkt}.
  2718. %
  2719. The \key{run-tests.rkt} script in the support code checks whether the
  2720. output programs produce the same result as the input programs. The
  2721. script uses the \key{interp-tests} function
  2722. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2723. your \key{uniquify} pass on the example programs. The \code{passes}
  2724. parameter of \key{interp-tests} is a list that should have one entry
  2725. for each pass in your compiler. For now, define \code{passes} to
  2726. contain just one entry for \code{uniquify} as shown below.
  2727. \begin{lstlisting}
  2728. (define passes
  2729. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2730. \end{lstlisting}
  2731. Run the \key{run-tests.rkt} script in the support code to check
  2732. whether the output programs produce the same result as the input
  2733. programs.
  2734. \end{exercise}
  2735. \fi}
  2736. \section{Remove Complex Operands}
  2737. \label{sec:remove-complex-opera-Lvar}
  2738. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2739. into a restricted form in which the arguments of operations are atomic
  2740. expressions. Put another way, this pass removes complex
  2741. operands\index{subject}{complex operand}, such as the expression
  2742. \racket{\code{(- 10)}}\python{\code{-10}}
  2743. in the program below. This is accomplished by introducing a new
  2744. temporary variable, assigning the complex operand to the new
  2745. variable, and then using the new variable in place of the complex
  2746. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2747. right.
  2748. {\if\edition\racketEd
  2749. \begin{transformation}
  2750. % var_test_19.rkt
  2751. \begin{lstlisting}
  2752. (let ([x (+ 42 (- 10))])
  2753. (+ x 10))
  2754. \end{lstlisting}
  2755. \compilesto
  2756. \begin{lstlisting}
  2757. (let ([x (let ([tmp.1 (- 10)])
  2758. (+ 42 tmp.1))])
  2759. (+ x 10))
  2760. \end{lstlisting}
  2761. \end{transformation}
  2762. \fi}
  2763. {\if\edition\pythonEd
  2764. \begin{transformation}
  2765. \begin{lstlisting}
  2766. x = 42 + -10
  2767. print(x + 10)
  2768. \end{lstlisting}
  2769. \compilesto
  2770. \begin{lstlisting}
  2771. tmp_0 = -10
  2772. x = 42 + tmp_0
  2773. tmp_1 = x + 10
  2774. print(tmp_1)
  2775. \end{lstlisting}
  2776. \end{transformation}
  2777. \fi}
  2778. \begin{figure}[tp]
  2779. \centering
  2780. \fbox{
  2781. \begin{minipage}{0.96\textwidth}
  2782. {\if\edition\racketEd
  2783. \[
  2784. \begin{array}{rcl}
  2785. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2786. \Exp &::=& \Atm \MID \READ{} \\
  2787. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2788. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2789. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  2790. \end{array}
  2791. \]
  2792. \fi}
  2793. {\if\edition\pythonEd
  2794. \[
  2795. \begin{array}{rcl}
  2796. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2797. \Exp{} &::=& \Atm \MID \READ{} \\
  2798. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2799. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  2800. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  2801. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  2802. \end{array}
  2803. \]
  2804. \fi}
  2805. \end{minipage}
  2806. }
  2807. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  2808. atomic expressions.}
  2809. \label{fig:Lvar-anf-syntax}
  2810. \end{figure}
  2811. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  2812. of this pass, the language \LangVarANF{}. The only difference is that
  2813. operator arguments are restricted to be atomic expressions that are
  2814. defined by the \Atm{} non-terminal. In particular, integer constants
  2815. and variables are atomic.
  2816. The atomic expressions are pure (they do not cause side-effects or
  2817. depend on them) whereas complex expressions may have side effects,
  2818. such as \READ{}. A language with this separation between pure versus
  2819. side-effecting expressions is said to be in monadic normal
  2820. form~\citep{Moggi:1991in,Danvy:2003fk} which explains the \textit{mon}
  2821. in \LangVarANF{}. An important invariant of the
  2822. \code{remove\_complex\_operands} pass is that the relative ordering
  2823. among complex expressions is not changed, but the relative ordering
  2824. between atomic expressions and complex expressions can change and
  2825. often does. The reason that these changes are behaviour preserving is
  2826. that the atomic expressions are pure.
  2827. Another well-known form for intermediate languages is the
  2828. \emph{administrative normal form}
  2829. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2830. \index{subject}{administrative normal form} \index{subject}{ANF}
  2831. %
  2832. The \LangVarANF{} language is not quite in ANF because we allow the
  2833. right-hand side of a \code{let} to be a complex expression.
  2834. {\if\edition\racketEd
  2835. We recommend implementing this pass with two mutually recursive
  2836. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  2837. \code{rco\_atom} to subexpressions that need to become atomic and to
  2838. apply \code{rco\_exp} to subexpressions that do not. Both functions
  2839. take an \LangVar{} expression as input. The \code{rco\_exp} function
  2840. returns an expression. The \code{rco\_atom} function returns two
  2841. things: an atomic expression and an alist mapping temporary variables to
  2842. complex subexpressions. You can return multiple things from a function
  2843. using Racket's \key{values} form and you can receive multiple things
  2844. from a function call using the \key{define-values} form.
  2845. Also, the
  2846. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  2847. form is useful for applying a function to each element of a list, in
  2848. the case where the function returns multiple values.
  2849. \index{subject}{for/lists}
  2850. \fi}
  2851. %
  2852. {\if\edition\pythonEd
  2853. %
  2854. We recommend implementing this pass with an auxiliary method named
  2855. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  2856. Boolean that specifies whether the expression needs to become atomic
  2857. or not. The \code{rco\_exp} method should return a pair consisting of
  2858. the new expression and a list of pairs, associating new temporary
  2859. variables with their initializing expressions.
  2860. %
  2861. \fi}
  2862. {\if\edition\racketEd
  2863. Returning to the example program with the expression \code{(+ 42 (-
  2864. 10))}, the subexpression \code{(- 10)} should be processed using the
  2865. \code{rco\_atom} function because it is an argument of the \code{+} and
  2866. therefore needs to become atomic. The output of \code{rco\_atom}
  2867. applied to \code{(- 10)} is as follows.
  2868. \begin{transformation}
  2869. \begin{lstlisting}
  2870. (- 10)
  2871. \end{lstlisting}
  2872. \compilesto
  2873. \begin{lstlisting}
  2874. tmp.1
  2875. ((tmp.1 . (- 10)))
  2876. \end{lstlisting}
  2877. \end{transformation}
  2878. \fi}
  2879. %
  2880. {\if\edition\pythonEd
  2881. %
  2882. Returning to the example program with the expression \code{42 + -10},
  2883. the subexpression \code{-10} should be processed using the
  2884. \code{rco\_exp} function with \code{True} as the second argument
  2885. because \code{-10} is an argument of the \code{+} operator and
  2886. therefore needs to become atomic. The output of \code{rco\_exp}
  2887. applied to \code{-10} is as follows.
  2888. \begin{transformation}
  2889. \begin{lstlisting}
  2890. -10
  2891. \end{lstlisting}
  2892. \compilesto
  2893. \begin{lstlisting}
  2894. tmp_1
  2895. [(tmp_1, -10)]
  2896. \end{lstlisting}
  2897. \end{transformation}
  2898. %
  2899. \fi}
  2900. Take special care of programs such as the following that
  2901. %
  2902. \racket{bind a variable to an atomic expression}
  2903. %
  2904. \python{assign an atomic expression to a variable}.
  2905. %
  2906. You should leave such \racket{variable bindings}\python{assignments}
  2907. unchanged, as shown in the program on the right\\
  2908. %
  2909. {\if\edition\racketEd
  2910. \begin{transformation}
  2911. % var_test_20.rkt
  2912. \begin{lstlisting}
  2913. (let ([a 42])
  2914. (let ([b a])
  2915. b))
  2916. \end{lstlisting}
  2917. \compilesto
  2918. \begin{lstlisting}
  2919. (let ([a 42])
  2920. (let ([b a])
  2921. b))
  2922. \end{lstlisting}
  2923. \end{transformation}
  2924. \fi}
  2925. {\if\edition\pythonEd
  2926. \begin{transformation}
  2927. \begin{lstlisting}
  2928. a = 42
  2929. b = a
  2930. print(b)
  2931. \end{lstlisting}
  2932. \compilesto
  2933. \begin{lstlisting}
  2934. a = 42
  2935. b = a
  2936. print(b)
  2937. \end{lstlisting}
  2938. \end{transformation}
  2939. \fi}
  2940. %
  2941. \noindent A careless implementation might produce the following output with
  2942. unnecessary temporary variables.
  2943. \begin{center}
  2944. \begin{minipage}{0.4\textwidth}
  2945. {\if\edition\racketEd
  2946. \begin{lstlisting}
  2947. (let ([tmp.1 42])
  2948. (let ([a tmp.1])
  2949. (let ([tmp.2 a])
  2950. (let ([b tmp.2])
  2951. b))))
  2952. \end{lstlisting}
  2953. \fi}
  2954. {\if\edition\pythonEd
  2955. \begin{lstlisting}
  2956. tmp_1 = 42
  2957. a = tmp_1
  2958. tmp_2 = a
  2959. b = tmp_2
  2960. print(b)
  2961. \end{lstlisting}
  2962. \fi}
  2963. \end{minipage}
  2964. \end{center}
  2965. \begin{exercise}
  2966. \normalfont
  2967. {\if\edition\racketEd
  2968. Implement the \code{remove\_complex\_operands} function in
  2969. \code{compiler.rkt}.
  2970. %
  2971. Create three new \LangVar{} programs that exercise the interesting
  2972. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  2973. regarding file names described in Exercise~\ref{ex:Lvar}.
  2974. %
  2975. In the \code{run-tests.rkt} script, add the following entry to the
  2976. list of \code{passes} and then run the script to test your compiler.
  2977. \begin{lstlisting}
  2978. (list "remove-complex" remove-complex-opera* interp_Lvar type-check-Lvar)
  2979. \end{lstlisting}
  2980. While debugging your compiler, it is often useful to see the
  2981. intermediate programs that are output from each pass. To print the
  2982. intermediate programs, place \lstinline{(debug-level 1)} before the call to
  2983. \code{interp-tests} in \code{run-tests.rkt}.
  2984. \fi}
  2985. %
  2986. {\if\edition\pythonEd
  2987. Implement the \code{remove\_complex\_operands} pass in
  2988. \code{compiler.py}, creating auxiliary functions for each
  2989. non-terminal in the grammar, i.e., \code{rco\_exp}
  2990. and \code{rco\_stmt}.
  2991. \fi}
  2992. \end{exercise}
  2993. {\if\edition\pythonEd
  2994. \begin{exercise}
  2995. \normalfont % I don't like the italics for exercises. -Jeremy
  2996. \label{ex:Lvar}
  2997. Create five \LangVar{} programs that exercise the most interesting
  2998. parts of the \code{remove\_complex\_operands} pass. The five programs
  2999. should be placed in the subdirectory named \key{tests} and the file
  3000. names should start with \code{var\_test\_} followed by a unique
  3001. integer and end with the file extension \key{.py}.
  3002. %% The \key{run-tests.rkt} script in the support code checks whether the
  3003. %% output programs produce the same result as the input programs. The
  3004. %% script uses the \key{interp-tests} function
  3005. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  3006. %% your \key{uniquify} pass on the example programs. The \code{passes}
  3007. %% parameter of \key{interp-tests} is a list that should have one entry
  3008. %% for each pass in your compiler. For now, define \code{passes} to
  3009. %% contain just one entry for \code{uniquify} as shown below.
  3010. %% \begin{lstlisting}
  3011. %% (define passes
  3012. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3013. %% \end{lstlisting}
  3014. Run the \key{run-tests.py} script in the support code to check
  3015. whether the output programs produce the same result as the input
  3016. programs.
  3017. \end{exercise}
  3018. \fi}
  3019. {\if\edition\racketEd
  3020. \section{Explicate Control}
  3021. \label{sec:explicate-control-Lvar}
  3022. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3023. programs that make the order of execution explicit in their
  3024. syntax. For now this amounts to flattening \key{let} constructs into a
  3025. sequence of assignment statements. For example, consider the following
  3026. \LangVar{} program.\\
  3027. % var_test_11.rkt
  3028. \begin{minipage}{0.96\textwidth}
  3029. \begin{lstlisting}
  3030. (let ([y (let ([x 20])
  3031. (+ x (let ([x 22]) x)))])
  3032. y)
  3033. \end{lstlisting}
  3034. \end{minipage}\\
  3035. %
  3036. The output of the previous pass and of \code{explicate\_control} is
  3037. shown below. Recall that the right-hand-side of a \key{let} executes
  3038. before its body, so the order of evaluation for this program is to
  3039. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  3040. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  3041. output of \code{explicate\_control} makes this ordering explicit.
  3042. \begin{transformation}
  3043. \begin{lstlisting}
  3044. (let ([y (let ([x.1 20])
  3045. (let ([x.2 22])
  3046. (+ x.1 x.2)))])
  3047. y)
  3048. \end{lstlisting}
  3049. \compilesto
  3050. \begin{lstlisting}[language=C]
  3051. start:
  3052. x.1 = 20;
  3053. x.2 = 22;
  3054. y = (+ x.1 x.2);
  3055. return y;
  3056. \end{lstlisting}
  3057. \end{transformation}
  3058. \begin{figure}[tbp]
  3059. \begin{lstlisting}
  3060. (define (explicate_tail e)
  3061. (match e
  3062. [(Var x) ___]
  3063. [(Int n) (Return (Int n))]
  3064. [(Let x rhs body) ___]
  3065. [(Prim op es) ___]
  3066. [else (error "explicate_tail unhandled case" e)]))
  3067. (define (explicate_assign e x cont)
  3068. (match e
  3069. [(Var x) ___]
  3070. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3071. [(Let y rhs body) ___]
  3072. [(Prim op es) ___]
  3073. [else (error "explicate_assign unhandled case" e)]))
  3074. (define (explicate_control p)
  3075. (match p
  3076. [(Program info body) ___]))
  3077. \end{lstlisting}
  3078. \caption{Skeleton for the \code{explicate\_control} pass.}
  3079. \label{fig:explicate-control-Lvar}
  3080. \end{figure}
  3081. The organization of this pass depends on the notion of tail position
  3082. that we have alluded to earlier.
  3083. \begin{definition}
  3084. The following rules define when an expression is in \textbf{\emph{tail
  3085. position}}\index{subject}{tail position} for the language \LangVar{}.
  3086. \begin{enumerate}
  3087. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3088. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3089. \end{enumerate}
  3090. \end{definition}
  3091. We recommend implementing \code{explicate\_control} using two mutually
  3092. recursive functions, \code{explicate\_tail} and
  3093. \code{explicate\_assign}, as suggested in the skeleton code in
  3094. Figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3095. function should be applied to expressions in tail position whereas the
  3096. \code{explicate\_assign} should be applied to expressions that occur on
  3097. the right-hand-side of a \key{let}.
  3098. %
  3099. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3100. input and produces a \Tail{} in \LangCVar{} (see
  3101. Figure~\ref{fig:c0-syntax}).
  3102. %
  3103. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3104. the variable that it is to be assigned to, and a \Tail{} in
  3105. \LangCVar{} for the code that comes after the assignment. The
  3106. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3107. The \code{explicate\_assign} function is in accumulator-passing style:
  3108. the \code{cont} parameter is used for accumulating the output. This
  3109. accumulator-passing style plays an important role in how we generate
  3110. high-quality code for conditional expressions in Chapter~\ref{ch:Lif}.
  3111. \begin{exercise}\normalfont
  3112. %
  3113. Implement the \code{explicate\_control} function in
  3114. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3115. exercise the code in \code{explicate\_control}.
  3116. %
  3117. In the \code{run-tests.rkt} script, add the following entry to the
  3118. list of \code{passes} and then run the script to test your compiler.
  3119. \begin{lstlisting}
  3120. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3121. \end{lstlisting}
  3122. \end{exercise}
  3123. \fi}
  3124. \section{Select Instructions}
  3125. \label{sec:select-Lvar}
  3126. \index{subject}{instruction selection}
  3127. In the \code{select\_instructions} pass we begin the work of
  3128. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3129. language of this pass is a variant of x86 that still uses variables,
  3130. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3131. non-terminal of the \LangXInt{} abstract syntax
  3132. (Figure~\ref{fig:x86-int-ast}).
  3133. \racket{We recommend implementing the
  3134. \code{select\_instructions} with three auxiliary functions, one for
  3135. each of the non-terminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3136. $\Tail$.}
  3137. \python{We recommend implementing an auxiliary function
  3138. named \code{select\_stmt} for the $\Stmt$ non-terminal.}
  3139. \racket{
  3140. The cases for $\Atm$ are straightforward; variables stay
  3141. the same and integer constants change to immediates:
  3142. $\INT{n}$ changes to $\IMM{n}$.}
  3143. We consider the cases for the $\Stmt$ non-terminal, starting with
  3144. arithmetic operations. For example, consider the addition operation
  3145. below, on the left side. There is an \key{addq} instruction in x86,
  3146. but it performs an in-place update. So we could move $\Arg_1$
  3147. into the left-hand side \itm{var} and then add $\Arg_2$ to
  3148. \itm{var}, where $\Arg_1$ and $\Arg_2$ are the translations of
  3149. $\Atm_1$ and $\Atm_2$ respectively.
  3150. \begin{transformation}
  3151. {\if\edition\racketEd
  3152. \begin{lstlisting}
  3153. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3154. \end{lstlisting}
  3155. \fi}
  3156. {\if\edition\pythonEd
  3157. \begin{lstlisting}
  3158. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3159. \end{lstlisting}
  3160. \fi}
  3161. \compilesto
  3162. \begin{lstlisting}
  3163. movq |$\Arg_1$|, |$\itm{var}$|
  3164. addq |$\Arg_2$|, |$\itm{var}$|
  3165. \end{lstlisting}
  3166. \end{transformation}
  3167. There are also cases that require special care to avoid generating
  3168. needlessly complicated code. For example, if one of the arguments of
  3169. the addition is the same variable as the left-hand side of the
  3170. assignment, as shown below, then there is no need for the extra move
  3171. instruction. The assignment statement can be translated into a single
  3172. \key{addq} instruction as follows.
  3173. \begin{transformation}
  3174. {\if\edition\racketEd
  3175. \begin{lstlisting}
  3176. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3177. \end{lstlisting}
  3178. \fi}
  3179. {\if\edition\pythonEd
  3180. \begin{lstlisting}
  3181. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3182. \end{lstlisting}
  3183. \fi}
  3184. \compilesto
  3185. \begin{lstlisting}
  3186. addq |$\Arg_1$|, |$\itm{var}$|
  3187. \end{lstlisting}
  3188. \end{transformation}
  3189. The \READOP{} operation does not have a direct counterpart in x86
  3190. assembly, so we provide this functionality with the function
  3191. \code{read\_int} in the file \code{runtime.c}, written in
  3192. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  3193. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3194. system}, or simply the \emph{runtime} for short. When compiling your
  3195. generated x86 assembly code, you need to compile \code{runtime.c} to
  3196. \code{runtime.o} (an ``object file'', using \code{gcc} with option
  3197. \code{-c}) and link it into the executable. For our purposes of code
  3198. generation, all you need to do is translate an assignment of
  3199. \READOP{} into a call to the \code{read\_int} function followed by a
  3200. move from \code{rax} to the left-hand-side variable. (Recall that the
  3201. return value of a function goes into \code{rax}.)
  3202. \begin{transformation}
  3203. {\if\edition\racketEd
  3204. \begin{lstlisting}
  3205. |$\itm{var}$| = (read);
  3206. \end{lstlisting}
  3207. \fi}
  3208. {\if\edition\pythonEd
  3209. \begin{lstlisting}
  3210. |$\itm{var}$| = input_int();
  3211. \end{lstlisting}
  3212. \fi}
  3213. \compilesto
  3214. \begin{lstlisting}
  3215. callq read_int
  3216. movq %rax, |$\itm{var}$|
  3217. \end{lstlisting}
  3218. \end{transformation}
  3219. {\if\edition\pythonEd
  3220. %
  3221. Similarly, we translate the \code{print} operation, shown below, into
  3222. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3223. In x86, the first six arguments to functions are passed in registers,
  3224. with the first argument passed in register \code{rdi}. So we move the
  3225. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3226. \code{callq} instruction.
  3227. \begin{transformation}
  3228. \begin{lstlisting}
  3229. print(|$\Atm$|)
  3230. \end{lstlisting}
  3231. \compilesto
  3232. \begin{lstlisting}
  3233. movq |$\Arg$|, %rdi
  3234. callq print_int
  3235. \end{lstlisting}
  3236. \end{transformation}
  3237. %
  3238. \fi}
  3239. {\if\edition\racketEd
  3240. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  3241. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3242. assignment to the \key{rax} register followed by a jump to the
  3243. conclusion of the program (so the conclusion needs to be labeled).
  3244. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3245. recursively and then append the resulting instructions.
  3246. \fi}
  3247. \begin{exercise}
  3248. \normalfont
  3249. {\if\edition\racketEd
  3250. Implement the \code{select\_instructions} pass in
  3251. \code{compiler.rkt}. Create three new example programs that are
  3252. designed to exercise all of the interesting cases in this pass.
  3253. %
  3254. In the \code{run-tests.rkt} script, add the following entry to the
  3255. list of \code{passes} and then run the script to test your compiler.
  3256. \begin{lstlisting}
  3257. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3258. \end{lstlisting}
  3259. \fi}
  3260. {\if\edition\pythonEd
  3261. Implement the \key{select\_instructions} pass in
  3262. \code{compiler.py}. Create three new example programs that are
  3263. designed to exercise all of the interesting cases in this pass.
  3264. Run the \code{run-tests.py} script to to check
  3265. whether the output programs produce the same result as the input
  3266. programs.
  3267. \fi}
  3268. \end{exercise}
  3269. \section{Assign Homes}
  3270. \label{sec:assign-Lvar}
  3271. The \key{assign\_homes} pass compiles \LangXVar{} programs to
  3272. \LangXVar{} programs that no longer use program variables.
  3273. Thus, the \key{assign-homes} pass is responsible for placing all of
  3274. the program variables in registers or on the stack. For runtime
  3275. efficiency, it is better to place variables in registers, but as there
  3276. are only 16 registers, some programs must necessarily resort to
  3277. placing some variables on the stack. In this chapter we focus on the
  3278. mechanics of placing variables on the stack. We study an algorithm for
  3279. placing variables in registers in
  3280. Chapter~\ref{ch:register-allocation-Lvar}.
  3281. Consider again the following \LangVar{} program from
  3282. Section~\ref{sec:remove-complex-opera-Lvar}.
  3283. % var_test_20.rkt
  3284. {\if\edition\racketEd
  3285. \begin{lstlisting}
  3286. (let ([a 42])
  3287. (let ([b a])
  3288. b))
  3289. \end{lstlisting}
  3290. \fi}
  3291. {\if\edition\pythonEd
  3292. \begin{lstlisting}
  3293. a = 42
  3294. b = a
  3295. print(b)
  3296. \end{lstlisting}
  3297. \fi}
  3298. %
  3299. The output of \code{select\_instructions} is shown below, on the left,
  3300. and the output of \code{assign\_homes} is on the right. In this
  3301. example, we assign variable \code{a} to stack location
  3302. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3303. \begin{transformation}
  3304. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3305. movq $42, a
  3306. movq a, b
  3307. movq b, %rax
  3308. \end{lstlisting}
  3309. \compilesto
  3310. %stack-space: 16
  3311. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3312. movq $42, -8(%rbp)
  3313. movq -8(%rbp), -16(%rbp)
  3314. movq -16(%rbp), %rax
  3315. \end{lstlisting}
  3316. \end{transformation}
  3317. \racket{The \code{locals-types} entry in the $\itm{info}$ of the
  3318. \code{X86Program} node is an alist mapping all the variables in the
  3319. program to their types (for now just \code{Integer}). The
  3320. \code{assign\_homes} pass should replace all uses of those variables
  3321. with stack locations. As an aside, the \code{locals-types} entry is
  3322. computed by \code{type-check-Cvar} in the support code, which
  3323. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3324. which should be propagated to the \code{X86Program} node.}
  3325. %
  3326. \python{The \code{assign\_homes} pass should replace all uses of
  3327. variables with stack locations.}
  3328. %
  3329. In the process of assigning variables to stack locations, it is
  3330. convenient for you to compute and store the size of the frame (in
  3331. bytes) in%
  3332. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space}}
  3333. %
  3334. \python{the field \code{stack\_space} of the \key{X86Program} node},
  3335. which is needed later to generate the conclusion of the \code{main}
  3336. procedure. The x86-64 standard requires the frame size to be a
  3337. multiple of 16 bytes.\index{subject}{frame}
  3338. % TODO: store the number of variables instead? -Jeremy
  3339. \begin{exercise}\normalfont
  3340. Implement the \key{assign\_homes} pass in
  3341. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3342. auxiliary functions for each of the non-terminals in the \LangXVar{}
  3343. grammar. We recommend that the auxiliary functions take an extra
  3344. parameter that maps variable names to homes (stack locations for now).
  3345. %
  3346. {\if\edition\racketEd
  3347. In the \code{run-tests.rkt} script, add the following entry to the
  3348. list of \code{passes} and then run the script to test your compiler.
  3349. \begin{lstlisting}
  3350. (list "assign homes" assign-homes interp_x86-0)
  3351. \end{lstlisting}
  3352. \fi}
  3353. {\if\edition\pythonEd
  3354. Run the \code{run-tests.py} script to to check
  3355. whether the output programs produce the same result as the input
  3356. programs.
  3357. \fi}
  3358. \end{exercise}
  3359. \section{Patch Instructions}
  3360. \label{sec:patch-s0}
  3361. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3362. \LangXInt{} by making sure that each instruction adheres to the
  3363. restriction that at most one argument of an instruction may be a
  3364. memory reference.
  3365. We return to the following example.\\
  3366. \begin{minipage}{0.5\textwidth}
  3367. % var_test_20.rkt
  3368. {\if\edition\racketEd
  3369. \begin{lstlisting}
  3370. (let ([a 42])
  3371. (let ([b a])
  3372. b))
  3373. \end{lstlisting}
  3374. \fi}
  3375. {\if\edition\pythonEd
  3376. \begin{lstlisting}
  3377. a = 42
  3378. b = a
  3379. print(b)
  3380. \end{lstlisting}
  3381. \fi}
  3382. \end{minipage}\\
  3383. The \key{assign\_homes} pass produces the following translation. \\
  3384. \begin{minipage}{0.5\textwidth}
  3385. {\if\edition\racketEd
  3386. \begin{lstlisting}
  3387. movq $42, -8(%rbp)
  3388. movq -8(%rbp), -16(%rbp)
  3389. movq -16(%rbp), %rax
  3390. \end{lstlisting}
  3391. \fi}
  3392. {\if\edition\pythonEd
  3393. \begin{lstlisting}
  3394. movq 42, -8(%rbp)
  3395. movq -8(%rbp), -16(%rbp)
  3396. movq -16(%rbp), %rdi
  3397. callq print_int
  3398. \end{lstlisting}
  3399. \fi}
  3400. \end{minipage}\\
  3401. The second \key{movq} instruction is problematic because both
  3402. arguments are stack locations. We suggest fixing this problem by
  3403. moving from the source location to the register \key{rax} and then
  3404. from \key{rax} to the destination location, as follows.
  3405. \begin{lstlisting}
  3406. movq -8(%rbp), %rax
  3407. movq %rax, -16(%rbp)
  3408. \end{lstlisting}
  3409. \begin{exercise}
  3410. \normalfont Implement the \key{patch\_instructions} pass in
  3411. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3412. Create three new example programs that are
  3413. designed to exercise all of the interesting cases in this pass.
  3414. %
  3415. {\if\edition\racketEd
  3416. In the \code{run-tests.rkt} script, add the following entry to the
  3417. list of \code{passes} and then run the script to test your compiler.
  3418. \begin{lstlisting}
  3419. (list "patch instructions" patch_instructions interp_x86-0)
  3420. \end{lstlisting}
  3421. \fi}
  3422. {\if\edition\pythonEd
  3423. Run the \code{run-tests.py} script to to check
  3424. whether the output programs produce the same result as the input
  3425. programs.
  3426. \fi}
  3427. \end{exercise}
  3428. \section{Generate Prelude and Conclusion}
  3429. \label{sec:print-x86}
  3430. \index{subject}{prelude}\index{subject}{conclusion}
  3431. The last step of the compiler from \LangVar{} to x86 is to generate
  3432. the \code{main} function with a prelude and conclusion wrapped around
  3433. the rest of the program, as shown in Figure~\ref{fig:p1-x86} and
  3434. discussed in Section~\ref{sec:x86}.
  3435. When running on Mac OS X, your compiler should prefix an underscore to
  3436. all labels, e.g., changing \key{main} to \key{\_main}.
  3437. %
  3438. \racket{The Racket call \code{(system-type 'os)} is useful for
  3439. determining which operating system the compiler is running on. It
  3440. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3441. %
  3442. \python{The Python \code{platform} library includes a \code{system()}
  3443. function that returns \code{'Linux'}, \code{'Windows'}, or
  3444. \code{'Darwin'} (for Mac).}
  3445. \begin{exercise}\normalfont
  3446. %
  3447. Implement the \key{prelude\_and\_conclusion} pass in
  3448. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3449. %
  3450. {\if\edition\racketEd
  3451. In the \code{run-tests.rkt} script, add the following entry to the
  3452. list of \code{passes} and then run the script to test your compiler.
  3453. \begin{lstlisting}
  3454. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3455. \end{lstlisting}
  3456. %
  3457. Uncomment the call to the \key{compiler-tests} function
  3458. (Appendix~\ref{appendix:utilities}), which tests your complete
  3459. compiler by executing the generated x86 code. It translates the x86
  3460. AST that you produce into a string by invoking the \code{print-x86}
  3461. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3462. the provided \key{runtime.c} file to \key{runtime.o} using
  3463. \key{gcc}. Run the script to test your compiler.
  3464. %
  3465. \fi}
  3466. {\if\edition\pythonEd
  3467. %
  3468. Run the \code{run-tests.py} script to to check whether the output
  3469. programs produce the same result as the input programs. That script
  3470. translates the x86 AST that you produce into a string by invoking the
  3471. \code{repr} method that is implemented by the x86 AST classes in
  3472. \code{x86\_ast.py}.
  3473. %
  3474. \fi}
  3475. \end{exercise}
  3476. \section{Challenge: Partial Evaluator for \LangVar{}}
  3477. \label{sec:pe-Lvar}
  3478. \index{subject}{partial evaluation}
  3479. This section describes two optional challenge exercises that involve
  3480. adapting and improving the partial evaluator for \LangInt{} that was
  3481. introduced in Section~\ref{sec:partial-evaluation}.
  3482. \begin{exercise}\label{ex:pe-Lvar}
  3483. \normalfont
  3484. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  3485. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3486. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3487. %
  3488. \racket{\key{let} binding}\python{assignment}
  3489. %
  3490. to the \LangInt{} language, so you will need to add cases for them in
  3491. the \code{pe\_exp}
  3492. %
  3493. \racket{function}
  3494. %
  3495. \python{and \code{pe\_stmt} functions}.
  3496. %
  3497. Once complete, add the partial evaluation pass to the front of your
  3498. compiler and make sure that your compiler still passes all of the
  3499. tests.
  3500. \end{exercise}
  3501. \begin{exercise}
  3502. \normalfont
  3503. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3504. \code{pe\_add} auxiliary functions with functions that know more about
  3505. arithmetic. For example, your partial evaluator should translate
  3506. {\if\edition\racketEd
  3507. \[
  3508. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3509. \code{(+ 2 (read))}
  3510. \]
  3511. \fi}
  3512. {\if\edition\pythonEd
  3513. \[
  3514. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3515. \code{2 + input\_int()}
  3516. \]
  3517. \fi}
  3518. To accomplish this, the \code{pe\_exp} function should produce output
  3519. in the form of the $\itm{residual}$ non-terminal of the following
  3520. grammar. The idea is that when processing an addition expression, we
  3521. can always produce either 1) an integer constant, 2) an addition
  3522. expression with an integer constant on the left-hand side but not the
  3523. right-hand side, or 3) or an addition expression in which neither
  3524. subexpression is a constant.
  3525. {\if\edition\racketEd
  3526. \[
  3527. \begin{array}{lcl}
  3528. \itm{inert} &::=& \Var
  3529. \MID \LP\key{read}\RP
  3530. \MID \LP\key{-} ~\Var\RP
  3531. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3532. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3533. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3534. \itm{residual} &::=& \Int
  3535. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3536. \MID \itm{inert}
  3537. \end{array}
  3538. \]
  3539. \fi}
  3540. {\if\edition\pythonEd
  3541. \[
  3542. \begin{array}{lcl}
  3543. \itm{inert} &::=& \Var
  3544. \MID \key{input\_int}\LP\RP
  3545. \MID \key{-} \Var
  3546. \MID \key{-} \key{input\_int}\LP\RP
  3547. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3548. \itm{residual} &::=& \Int
  3549. \MID \Int ~ \key{+} ~ \itm{inert}
  3550. \MID \itm{inert}
  3551. \end{array}
  3552. \]
  3553. \fi}
  3554. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3555. inputs are $\itm{residual}$ expressions and they should return
  3556. $\itm{residual}$ expressions. Once the improvements are complete,
  3557. make sure that your compiler still passes all of the tests. After
  3558. all, fast code is useless if it produces incorrect results!
  3559. \end{exercise}
  3560. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3561. \chapter{Register Allocation}
  3562. \label{ch:register-allocation-Lvar}
  3563. \index{subject}{register allocation}
  3564. In Chapter~\ref{ch:Lvar} we learned how to store variables on the
  3565. stack. In this chapter we learn how to improve the performance of the
  3566. generated code by assigning some variables to registers. The CPU can
  3567. access a register in a single cycle, whereas accessing the stack can
  3568. take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
  3569. serves as a running example. The source program is on the left and the
  3570. output of instruction selection is on the right. The program is almost
  3571. in the x86 assembly language but it still uses variables.
  3572. \begin{figure}
  3573. \begin{minipage}{0.45\textwidth}
  3574. Example \LangVar{} program:
  3575. % var_test_28.rkt
  3576. {\if\edition\racketEd
  3577. \begin{lstlisting}
  3578. (let ([v 1])
  3579. (let ([w 42])
  3580. (let ([x (+ v 7)])
  3581. (let ([y x])
  3582. (let ([z (+ x w)])
  3583. (+ z (- y)))))))
  3584. \end{lstlisting}
  3585. \fi}
  3586. {\if\edition\pythonEd
  3587. \begin{lstlisting}
  3588. v = 1
  3589. w = 42
  3590. x = v + 7
  3591. y = x
  3592. z = x + w
  3593. print(z + (- y))
  3594. \end{lstlisting}
  3595. \fi}
  3596. \end{minipage}
  3597. \begin{minipage}{0.45\textwidth}
  3598. After instruction selection:
  3599. {\if\edition\racketEd
  3600. \begin{lstlisting}
  3601. locals-types:
  3602. x : Integer, y : Integer,
  3603. z : Integer, t : Integer,
  3604. v : Integer, w : Integer
  3605. start:
  3606. movq $1, v
  3607. movq $42, w
  3608. movq v, x
  3609. addq $7, x
  3610. movq x, y
  3611. movq x, z
  3612. addq w, z
  3613. movq y, t
  3614. negq t
  3615. movq z, %rax
  3616. addq t, %rax
  3617. jmp conclusion
  3618. \end{lstlisting}
  3619. \fi}
  3620. {\if\edition\pythonEd
  3621. \begin{lstlisting}
  3622. movq $1, v
  3623. movq $42, w
  3624. movq v, x
  3625. addq $7, x
  3626. movq x, y
  3627. movq x, z
  3628. addq w, z
  3629. movq y, tmp_0
  3630. negq tmp_0
  3631. movq z, tmp_1
  3632. addq tmp_0, tmp_1
  3633. movq tmp_1, %rdi
  3634. callq print_int
  3635. \end{lstlisting}
  3636. \fi}
  3637. \end{minipage}
  3638. \caption{A running example for register allocation.}
  3639. \label{fig:reg-eg}
  3640. \end{figure}
  3641. The goal of register allocation is to fit as many variables into
  3642. registers as possible. Some programs have more variables than
  3643. registers so we cannot always map each variable to a different
  3644. register. Fortunately, it is common for different variables to be
  3645. needed during different periods of time during program execution, and
  3646. in such cases several variables can be mapped to the same register.
  3647. Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
  3648. After the variable \code{x} is moved to \code{z} it is no longer
  3649. needed. Variable \code{z}, on the other hand, is used only after this
  3650. point, so \code{x} and \code{z} could share the same register. The
  3651. topic of Section~\ref{sec:liveness-analysis-Lvar} is how to compute
  3652. where a variable is needed. Once we have that information, we compute
  3653. which variables are needed at the same time, i.e., which ones
  3654. \emph{interfere} with each other, and represent this relation as an
  3655. undirected graph whose vertices are variables and edges indicate when
  3656. two variables interfere (Section~\ref{sec:build-interference}). We
  3657. then model register allocation as a graph coloring problem
  3658. (Section~\ref{sec:graph-coloring}).
  3659. If we run out of registers despite these efforts, we place the
  3660. remaining variables on the stack, similar to what we did in
  3661. Chapter~\ref{ch:Lvar}. It is common to use the verb \emph{spill} for
  3662. assigning a variable to a stack location. The decision to spill a
  3663. variable is handled as part of the graph coloring process.
  3664. We make the simplifying assumption that each variable is assigned to
  3665. one location (a register or stack address). A more sophisticated
  3666. approach is to assign a variable to one or more locations in different
  3667. regions of the program. For example, if a variable is used many times
  3668. in short sequence and then only used again after many other
  3669. instructions, it could be more efficient to assign the variable to a
  3670. register during the initial sequence and then move it to the stack for
  3671. the rest of its lifetime. We refer the interested reader to
  3672. \citet{Cooper:2011aa} Chapter 13 for more information about that
  3673. approach.
  3674. % discuss prioritizing variables based on how much they are used.
  3675. \section{Registers and Calling Conventions}
  3676. \label{sec:calling-conventions}
  3677. \index{subject}{calling conventions}
  3678. As we perform register allocation, we need to be aware of the
  3679. \emph{calling conventions} \index{subject}{calling conventions} that govern how
  3680. functions calls are performed in x86.
  3681. %
  3682. Even though \LangVar{} does not include programmer-defined functions,
  3683. our generated code includes a \code{main} function that is called by
  3684. the operating system and our generated code contains calls to the
  3685. \code{read\_int} function.
  3686. Function calls require coordination between two pieces of code that
  3687. may be written by different programmers or generated by different
  3688. compilers. Here we follow the System V calling conventions that are
  3689. used by the GNU C compiler on Linux and
  3690. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3691. %
  3692. The calling conventions include rules about how functions share the
  3693. use of registers. In particular, the caller is responsible for freeing
  3694. up some registers prior to the function call for use by the callee.
  3695. These are called the \emph{caller-saved registers}
  3696. \index{subject}{caller-saved registers}
  3697. and they are
  3698. \begin{lstlisting}
  3699. rax rcx rdx rsi rdi r8 r9 r10 r11
  3700. \end{lstlisting}
  3701. On the other hand, the callee is responsible for preserving the values
  3702. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  3703. which are
  3704. \begin{lstlisting}
  3705. rsp rbp rbx r12 r13 r14 r15
  3706. \end{lstlisting}
  3707. We can think about this caller/callee convention from two points of
  3708. view, the caller view and the callee view:
  3709. \begin{itemize}
  3710. \item The caller should assume that all the caller-saved registers get
  3711. overwritten with arbitrary values by the callee. On the other hand,
  3712. the caller can safely assume that all the callee-saved registers
  3713. contain the same values after the call that they did before the
  3714. call.
  3715. \item The callee can freely use any of the caller-saved registers.
  3716. However, if the callee wants to use a callee-saved register, the
  3717. callee must arrange to put the original value back in the register
  3718. prior to returning to the caller. This can be accomplished by saving
  3719. the value to the stack in the prelude of the function and restoring
  3720. the value in the conclusion of the function.
  3721. \end{itemize}
  3722. In x86, registers are also used for passing arguments to a function
  3723. and for the return value. In particular, the first six arguments to a
  3724. function are passed in the following six registers, in this order.
  3725. \begin{lstlisting}
  3726. rdi rsi rdx rcx r8 r9
  3727. \end{lstlisting}
  3728. If there are more than six arguments, then the convention is to use
  3729. space on the frame of the caller for the rest of the
  3730. arguments. However, in Chapter~\ref{ch:Rfun} we arrange never to
  3731. need more than six arguments.
  3732. %
  3733. \racket{For now, the only function we care about is \code{read\_int}
  3734. and it takes zero arguments.}
  3735. %
  3736. \python{For now, the only functions we care about are \code{read\_int}
  3737. and \code{print\_int}, which take zero and one argument, respectively.}
  3738. %
  3739. The register \code{rax} is used for the return value of a function.
  3740. The next question is how these calling conventions impact register
  3741. allocation. Consider the \LangVar{} program in
  3742. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3743. example from the caller point of view and then from the callee point
  3744. of view.
  3745. The program makes two calls to \READOP{}. Also, the variable \code{x}
  3746. is in use during the second call to \READOP{}, so we need to make sure
  3747. that the value in \code{x} does not get accidentally wiped out by the
  3748. call to \READOP{}. One obvious approach is to save all the values in
  3749. caller-saved registers to the stack prior to each function call, and
  3750. restore them after each call. That way, if the register allocator
  3751. chooses to assign \code{x} to a caller-saved register, its value will
  3752. be preserved across the call to \READOP{}. However, saving and
  3753. restoring to the stack is relatively slow. If \code{x} is not used
  3754. many times, it may be better to assign \code{x} to a stack location in
  3755. the first place. Or better yet, if we can arrange for \code{x} to be
  3756. placed in a callee-saved register, then it won't need to be saved and
  3757. restored during function calls.
  3758. The approach that we recommend for variables that are in use during a
  3759. function call is to either assign them to callee-saved registers or to
  3760. spill them to the stack. On the other hand, for variables that are not
  3761. in use during a function call, we try the following alternatives in
  3762. order 1) look for an available caller-saved register (to leave room
  3763. for other variables in the callee-saved register), 2) look for a
  3764. callee-saved register, and 3) spill the variable to the stack.
  3765. It is straightforward to implement this approach in a graph coloring
  3766. register allocator. First, we know which variables are in use during
  3767. every function call because we compute that information for every
  3768. instruction (Section~\ref{sec:liveness-analysis-Lvar}). Second, when
  3769. we build the interference graph
  3770. (Section~\ref{sec:build-interference}), we can place an edge between
  3771. each of these call-live variables and the caller-saved registers in
  3772. the interference graph. This will prevent the graph coloring algorithm
  3773. from assigning them to caller-saved registers.
  3774. Returning to the example in
  3775. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3776. generated x86 code on the right-hand side. Notice that variable
  3777. \code{x} is assigned to \code{rbx}, a callee-saved register. Thus, it
  3778. is already in a safe place during the second call to
  3779. \code{read\_int}. Next, notice that variable \code{y} is assigned to
  3780. \code{rcx}, a caller-saved register, because \code{y} is not in the
  3781. live-after set of a \code{callq} instruction.
  3782. Next we analyze the example from the callee point of view, focusing on
  3783. the prelude and conclusion of the \code{main} function. As usual the
  3784. prelude begins with saving the \code{rbp} register to the stack and
  3785. setting the \code{rbp} to the current stack pointer. We now know why
  3786. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3787. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3788. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3789. (\code{x}). The other callee-saved registers are not saved in the
  3790. prelude because they are not used. The prelude subtracts 8 bytes from
  3791. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  3792. conclusion, we see that \code{rbx} is restored from the stack with a
  3793. \code{popq} instruction.
  3794. \index{subject}{prelude}\index{subject}{conclusion}
  3795. \begin{figure}[tp]
  3796. \begin{minipage}{0.45\textwidth}
  3797. Example \LangVar{} program:
  3798. %var_test_14.rkt
  3799. {\if\edition\racketEd
  3800. \begin{lstlisting}
  3801. (let ([x (read)])
  3802. (let ([y (read)])
  3803. (+ (+ x y) 42)))
  3804. \end{lstlisting}
  3805. \fi}
  3806. {\if\edition\pythonEd
  3807. \begin{lstlisting}
  3808. x = input_int()
  3809. y = input_int()
  3810. print((x + y) + 42)
  3811. \end{lstlisting}
  3812. \fi}
  3813. \end{minipage}
  3814. \begin{minipage}{0.45\textwidth}
  3815. Generated x86 assembly:
  3816. {\if\edition\racketEd
  3817. \begin{lstlisting}
  3818. start:
  3819. callq read_int
  3820. movq %rax, %rbx
  3821. callq read_int
  3822. movq %rax, %rcx
  3823. addq %rcx, %rbx
  3824. movq %rbx, %rax
  3825. addq $42, %rax
  3826. jmp _conclusion
  3827. .globl main
  3828. main:
  3829. pushq %rbp
  3830. movq %rsp, %rbp
  3831. pushq %rbx
  3832. subq $8, %rsp
  3833. jmp start
  3834. conclusion:
  3835. addq $8, %rsp
  3836. popq %rbx
  3837. popq %rbp
  3838. retq
  3839. \end{lstlisting}
  3840. \fi}
  3841. {\if\edition\pythonEd
  3842. \begin{lstlisting}
  3843. .globl main
  3844. main:
  3845. pushq %rbp
  3846. movq %rsp, %rbp
  3847. pushq %rbx
  3848. subq $8, %rsp
  3849. callq read_int
  3850. movq %rax, %rbx
  3851. callq read_int
  3852. movq %rax, %rcx
  3853. movq %rbx, %rdx
  3854. addq %rcx, %rdx
  3855. movq %rdx, %rcx
  3856. addq $42, %rcx
  3857. movq %rcx, %rdi
  3858. callq print_int
  3859. addq $8, %rsp
  3860. popq %rbx
  3861. popq %rbp
  3862. retq
  3863. \end{lstlisting}
  3864. \fi}
  3865. \end{minipage}
  3866. \caption{An example with function calls.}
  3867. \label{fig:example-calling-conventions}
  3868. \end{figure}
  3869. %\clearpage
  3870. \section{Liveness Analysis}
  3871. \label{sec:liveness-analysis-Lvar}
  3872. \index{subject}{liveness analysis}
  3873. The \code{uncover\_live} \racket{pass}\python{function}
  3874. performs \emph{liveness analysis}, that
  3875. is, it discovers which variables are in-use in different regions of a
  3876. program.
  3877. %
  3878. A variable or register is \emph{live} at a program point if its
  3879. current value is used at some later point in the program. We refer to
  3880. variables, stack locations, and registers collectively as
  3881. \emph{locations}.
  3882. %
  3883. Consider the following code fragment in which there are two writes to
  3884. \code{b}. Are \code{a} and \code{b} both live at the same time?
  3885. \begin{center}
  3886. \begin{minipage}{0.96\textwidth}
  3887. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3888. movq $5, a
  3889. movq $30, b
  3890. movq a, c
  3891. movq $10, b
  3892. addq b, c
  3893. \end{lstlisting}
  3894. \end{minipage}
  3895. \end{center}
  3896. The answer is no because \code{a} is live from line 1 to 3 and
  3897. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  3898. line 2 is never used because it is overwritten (line 4) before the
  3899. next read (line 5).
  3900. The live locations can be computed by traversing the instruction
  3901. sequence back to front (i.e., backwards in execution order). Let
  3902. $I_1,\ldots, I_n$ be the instruction sequence. We write
  3903. $L_{\mathsf{after}}(k)$ for the set of live locations after
  3904. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  3905. locations before instruction $I_k$.
  3906. \racket{We recommend representing these
  3907. sets with the Racket \code{set} data structure described in
  3908. Figure~\ref{fig:set}.}
  3909. \python{We recommend representing these sets with the Python
  3910. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  3911. data structure.}
  3912. {\if\edition\racketEd
  3913. \begin{figure}[tp]
  3914. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  3915. \small
  3916. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  3917. A \emph{set} is an unordered collection of elements without duplicates.
  3918. Here are some of the operations defined on sets.
  3919. \index{subject}{set}
  3920. \begin{description}
  3921. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  3922. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  3923. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  3924. difference of the two sets.
  3925. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  3926. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  3927. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  3928. \end{description}
  3929. \end{tcolorbox}
  3930. %\end{wrapfigure}
  3931. \caption{The \code{set} data structure.}
  3932. \label{fig:set}
  3933. \end{figure}
  3934. \fi}
  3935. The live locations after an instruction are always the same as the
  3936. live locations before the next instruction.
  3937. \index{subject}{live-after} \index{subject}{live-before}
  3938. \begin{equation} \label{eq:live-after-before-next}
  3939. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  3940. \end{equation}
  3941. To start things off, there are no live locations after the last
  3942. instruction, so
  3943. \begin{equation}\label{eq:live-last-empty}
  3944. L_{\mathsf{after}}(n) = \emptyset
  3945. \end{equation}
  3946. We then apply the following rule repeatedly, traversing the
  3947. instruction sequence back to front.
  3948. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  3949. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  3950. \end{equation}
  3951. where $W(k)$ are the locations written to by instruction $I_k$ and
  3952. $R(k)$ are the locations read by instruction $I_k$.
  3953. {\if\edition\racketEd
  3954. There is a special case for \code{jmp} instructions. The locations
  3955. that are live before a \code{jmp} should be the locations in
  3956. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  3957. maintaining an alist named \code{label->live} that maps each label to
  3958. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  3959. now the only \code{jmp} in a \LangXVar{} program is the one at the
  3960. end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
  3961. The conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should
  3962. map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  3963. \fi}
  3964. Let us walk through the above example, applying these formulas
  3965. starting with the instruction on line 5. We collect the answers in
  3966. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  3967. \code{addq b, c} instruction is $\emptyset$ because it is the last
  3968. instruction (formula~\ref{eq:live-last-empty}). The
  3969. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  3970. because it reads from variables \code{b} and \code{c}
  3971. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  3972. \[
  3973. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  3974. \]
  3975. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  3976. the live-before set from line 5 to be the live-after set for this
  3977. instruction (formula~\ref{eq:live-after-before-next}).
  3978. \[
  3979. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  3980. \]
  3981. This move instruction writes to \code{b} and does not read from any
  3982. variables, so we have the following live-before set
  3983. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  3984. \[
  3985. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  3986. \]
  3987. The live-before for instruction \code{movq a, c}
  3988. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  3989. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  3990. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  3991. variable that is not live and does not read from a variable.
  3992. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  3993. because it writes to variable \code{a}.
  3994. \begin{figure}[tbp]
  3995. \begin{minipage}{0.45\textwidth}
  3996. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3997. movq $5, a
  3998. movq $30, b
  3999. movq a, c
  4000. movq $10, b
  4001. addq b, c
  4002. \end{lstlisting}
  4003. \end{minipage}
  4004. \vrule\hspace{10pt}
  4005. \begin{minipage}{0.45\textwidth}
  4006. \begin{align*}
  4007. L_{\mathsf{before}}(1)= \emptyset,
  4008. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  4009. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  4010. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  4011. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  4012. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  4013. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  4014. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  4015. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  4016. L_{\mathsf{after}}(5)= \emptyset
  4017. \end{align*}
  4018. \end{minipage}
  4019. \caption{Example output of liveness analysis on a short example.}
  4020. \label{fig:liveness-example-0}
  4021. \end{figure}
  4022. \begin{exercise}\normalfont
  4023. Perform liveness analysis on the running example in
  4024. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  4025. sets for each instruction. Compare your answers to the solution
  4026. shown in Figure~\ref{fig:live-eg}.
  4027. \end{exercise}
  4028. \begin{figure}[tp]
  4029. \hspace{20pt}
  4030. \begin{minipage}{0.45\textwidth}
  4031. {\if\edition\racketEd
  4032. \begin{lstlisting}
  4033. |$\{\ttm{rsp}\}$|
  4034. movq $1, v
  4035. |$\{\ttm{v},\ttm{rsp}\}$|
  4036. movq $42, w
  4037. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  4038. movq v, x
  4039. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4040. addq $7, x
  4041. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4042. movq x, y
  4043. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  4044. movq x, z
  4045. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4046. addq w, z
  4047. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4048. movq y, t
  4049. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4050. negq t
  4051. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4052. movq z, %rax
  4053. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  4054. addq t, %rax
  4055. |$\{\ttm{rax},\ttm{rsp}\}$|
  4056. jmp conclusion
  4057. \end{lstlisting}
  4058. \fi}
  4059. {\if\edition\pythonEd
  4060. \begin{lstlisting}
  4061. movq $1, v
  4062. |$\{\ttm{v}\}$|
  4063. movq $42, w
  4064. |$\{\ttm{w}, \ttm{v}\}$|
  4065. movq v, x
  4066. |$\{\ttm{w}, \ttm{x}\}$|
  4067. addq $7, x
  4068. |$\{\ttm{w}, \ttm{x}\}$|
  4069. movq x, y
  4070. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  4071. movq x, z
  4072. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  4073. addq w, z
  4074. |$\{\ttm{y}, \ttm{z}\}$|
  4075. movq y, tmp_0
  4076. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4077. negq tmp_0
  4078. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4079. movq z, tmp_1
  4080. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  4081. addq tmp_0, tmp_1
  4082. |$\{\ttm{tmp\_1}\}$|
  4083. movq tmp_1, %rdi
  4084. |$\{\ttm{rdi}\}$|
  4085. callq print_int
  4086. |$\{\}$|
  4087. \end{lstlisting}
  4088. \fi}
  4089. \end{minipage}
  4090. \caption{The running example annotated with live-after sets.}
  4091. \label{fig:live-eg}
  4092. \end{figure}
  4093. \begin{exercise}\normalfont
  4094. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  4095. %
  4096. \racket{Store the sequence of live-after sets in the $\itm{info}$
  4097. field of the \code{Block} structure.}
  4098. %
  4099. \python{Return a dictionary that maps each instruction to its
  4100. live-after set.}
  4101. %
  4102. \racket{We recommend creating an auxiliary function that takes a list
  4103. of instructions and an initial live-after set (typically empty) and
  4104. returns the list of live-after sets.}
  4105. %
  4106. We recommend creating auxiliary functions to 1) compute the set
  4107. of locations that appear in an \Arg{}, 2) compute the locations read
  4108. by an instruction (the $R$ function), and 3) the locations written by
  4109. an instruction (the $W$ function). The \code{callq} instruction should
  4110. include all of the caller-saved registers in its write-set $W$ because
  4111. the calling convention says that those registers may be written to
  4112. during the function call. Likewise, the \code{callq} instruction
  4113. should include the appropriate argument-passing registers in its
  4114. read-set $R$, depending on the arity of the function being
  4115. called. (This is why the abstract syntax for \code{callq} includes the
  4116. arity.)
  4117. \end{exercise}
  4118. %\clearpage
  4119. \section{Build the Interference Graph}
  4120. \label{sec:build-interference}
  4121. {\if\edition\racketEd
  4122. \begin{figure}[tp]
  4123. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  4124. \small
  4125. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  4126. A \emph{graph} is a collection of vertices and edges where each
  4127. edge connects two vertices. A graph is \emph{directed} if each
  4128. edge points from a source to a target. Otherwise the graph is
  4129. \emph{undirected}.
  4130. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  4131. \begin{description}
  4132. %% We currently don't use directed graphs. We instead use
  4133. %% directed multi-graphs. -Jeremy
  4134. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  4135. directed graph from a list of edges. Each edge is a list
  4136. containing the source and target vertex.
  4137. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  4138. undirected graph from a list of edges. Each edge is represented by
  4139. a list containing two vertices.
  4140. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  4141. inserts a vertex into the graph.
  4142. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  4143. inserts an edge between the two vertices.
  4144. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  4145. returns a sequence of vertices adjacent to the vertex.
  4146. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  4147. returns a sequence of all vertices in the graph.
  4148. \end{description}
  4149. \end{tcolorbox}
  4150. %\end{wrapfigure}
  4151. \caption{The Racket \code{graph} package.}
  4152. \label{fig:graph}
  4153. \end{figure}
  4154. \fi}
  4155. Based on the liveness analysis, we know where each location is live.
  4156. However, during register allocation, we need to answer questions of
  4157. the specific form: are locations $u$ and $v$ live at the same time?
  4158. (And therefore cannot be assigned to the same register.) To make this
  4159. question more efficient to answer, we create an explicit data
  4160. structure, an \emph{interference graph}\index{subject}{interference
  4161. graph}. An interference graph is an undirected graph that has an
  4162. edge between two locations if they are live at the same time, that is,
  4163. if they interfere with each other.
  4164. %
  4165. \racket{We recommend using the Racket \code{graph} package
  4166. (Figure~\ref{fig:graph}) to represent the interference graph.}
  4167. %
  4168. \python{We provide implementations of directed and undirected graph
  4169. data structures in the file \code{graph.py} of the support code.}
  4170. A straightforward way to compute the interference graph is to look at
  4171. the set of live locations between each instruction and add an edge to
  4172. the graph for every pair of variables in the same set. This approach
  4173. is less than ideal for two reasons. First, it can be expensive because
  4174. it takes $O(n^2)$ time to consider at every pair in a set of $n$ live
  4175. locations. Second, in the special case where two locations hold the
  4176. same value (because one was assigned to the other), they can be live
  4177. at the same time without interfering with each other.
  4178. A better way to compute the interference graph is to focus on
  4179. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  4180. must not overwrite something in a live location. So for each
  4181. instruction, we create an edge between the locations being written to
  4182. and the live locations. (Except that one should not create self
  4183. edges.) Note that for the \key{callq} instruction, we consider all of
  4184. the caller-saved registers as being written to, so an edge is added
  4185. between every live variable and every caller-saved register. Also, for
  4186. \key{movq} there is the above-mentioned special case to deal with. If
  4187. a live variable $v$ is the same as the source of the \key{movq}, then
  4188. there is no need to add an edge between $v$ and the destination,
  4189. because they both hold the same value.
  4190. %
  4191. So we have the following two rules.
  4192. \begin{enumerate}
  4193. \item If instruction $I_k$ is a move instruction of the form
  4194. \key{movq} $s$\key{,} $d$, then for every $v \in
  4195. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  4196. $(d,v)$.
  4197. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  4198. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  4199. $(d,v)$.
  4200. \end{enumerate}
  4201. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  4202. the above rules to each instruction. We highlight a few of the
  4203. instructions. \racket{The first instruction is \lstinline{movq $1, v}
  4204. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  4205. so \code{v} interferes with \code{rsp}.}
  4206. %
  4207. \python{The first instruction is \lstinline{movq $1, v} and the
  4208. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  4209. no interference because $\ttm{v}$ is the destination of the move.}
  4210. %
  4211. \racket{The fourth instruction is \lstinline{addq $7, x} and the
  4212. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  4213. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  4214. %
  4215. \python{The fourth instruction is \lstinline{addq $7, x} and the
  4216. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  4217. $\ttm{x}$ interferes with \ttm{w}.}
  4218. %
  4219. \racket{The next instruction is \lstinline{movq x, y} and the
  4220. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  4221. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  4222. \ttm{x} because \ttm{x} is the source of the move and therefore
  4223. \ttm{x} and \ttm{y} hold the same value.}
  4224. %
  4225. \python{The next instruction is \lstinline{movq x, y} and the
  4226. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  4227. applies, so \ttm{y} interferes with \ttm{w} but not
  4228. \ttm{x} because \ttm{x} is the source of the move and therefore
  4229. \ttm{x} and \ttm{y} hold the same value.}
  4230. %
  4231. Figure~\ref{fig:interference-results} lists the interference results
  4232. for all of the instructions and the resulting interference graph is
  4233. shown in Figure~\ref{fig:interfere}.
  4234. \begin{figure}[tbp]
  4235. \begin{quote}
  4236. {\if\edition\racketEd
  4237. \begin{tabular}{ll}
  4238. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  4239. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  4240. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4241. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4242. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  4243. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  4244. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  4245. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4246. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4247. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  4248. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  4249. \lstinline!jmp conclusion!& no interference.
  4250. \end{tabular}
  4251. \fi}
  4252. {\if\edition\pythonEd
  4253. \begin{tabular}{ll}
  4254. \lstinline!movq $1, v!& no interference\\
  4255. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  4256. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  4257. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  4258. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  4259. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  4260. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  4261. \lstinline!movq y, tmp_0!& \ttm{t} interferes with \ttm{z} \\
  4262. \lstinline!negq tmp_0!& \ttm{t} interferes with \ttm{z} \\
  4263. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  4264. \lstinline!addq tmp_0, tmp_1! & no interference\\
  4265. \lstinline!movq tmp_1, %rdi! & no interference \\
  4266. \lstinline!callq print_int!& no interference.
  4267. \end{tabular}
  4268. \fi}
  4269. \end{quote}
  4270. \caption{Interference results for the running example.}
  4271. \label{fig:interference-results}
  4272. \end{figure}
  4273. \begin{figure}[tbp]
  4274. \large
  4275. {\if\edition\racketEd
  4276. \[
  4277. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4278. \node (rax) at (0,0) {$\ttm{rax}$};
  4279. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4280. \node (t1) at (0,2) {$\ttm{t}$};
  4281. \node (z) at (3,2) {$\ttm{z}$};
  4282. \node (x) at (6,2) {$\ttm{x}$};
  4283. \node (y) at (3,0) {$\ttm{y}$};
  4284. \node (w) at (6,0) {$\ttm{w}$};
  4285. \node (v) at (9,0) {$\ttm{v}$};
  4286. \draw (t1) to (rax);
  4287. \draw (t1) to (z);
  4288. \draw (z) to (y);
  4289. \draw (z) to (w);
  4290. \draw (x) to (w);
  4291. \draw (y) to (w);
  4292. \draw (v) to (w);
  4293. \draw (v) to (rsp);
  4294. \draw (w) to (rsp);
  4295. \draw (x) to (rsp);
  4296. \draw (y) to (rsp);
  4297. \path[-.,bend left=15] (z) edge node {} (rsp);
  4298. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4299. \draw (rax) to (rsp);
  4300. \end{tikzpicture}
  4301. \]
  4302. \fi}
  4303. {\if\edition\pythonEd
  4304. \[
  4305. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4306. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  4307. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  4308. \node (z) at (3,2) {$\ttm{z}$};
  4309. \node (x) at (6,2) {$\ttm{x}$};
  4310. \node (y) at (3,0) {$\ttm{y}$};
  4311. \node (w) at (6,0) {$\ttm{w}$};
  4312. \node (v) at (9,0) {$\ttm{v}$};
  4313. \draw (t0) to (t1);
  4314. \draw (t0) to (z);
  4315. \draw (z) to (y);
  4316. \draw (z) to (w);
  4317. \draw (x) to (w);
  4318. \draw (y) to (w);
  4319. \draw (v) to (w);
  4320. \end{tikzpicture}
  4321. \]
  4322. \fi}
  4323. \caption{The interference graph of the example program.}
  4324. \label{fig:interfere}
  4325. \end{figure}
  4326. %% Our next concern is to choose a data structure for representing the
  4327. %% interference graph. There are many choices for how to represent a
  4328. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  4329. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  4330. %% data structure is to study the algorithm that uses the data structure,
  4331. %% determine what operations need to be performed, and then choose the
  4332. %% data structure that provide the most efficient implementations of
  4333. %% those operations. Often times the choice of data structure can have an
  4334. %% effect on the time complexity of the algorithm, as it does here. If
  4335. %% you skim the next section, you will see that the register allocation
  4336. %% algorithm needs to ask the graph for all of its vertices and, given a
  4337. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  4338. %% correct choice of graph representation is that of an adjacency
  4339. %% list. There are helper functions in \code{utilities.rkt} for
  4340. %% representing graphs using the adjacency list representation:
  4341. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  4342. %% (Appendix~\ref{appendix:utilities}).
  4343. %% %
  4344. %% \margincomment{\footnotesize To do: change to use the
  4345. %% Racket graph library. \\ --Jeremy}
  4346. %% %
  4347. %% In particular, those functions use a hash table to map each vertex to
  4348. %% the set of adjacent vertices, and the sets are represented using
  4349. %% Racket's \key{set}, which is also a hash table.
  4350. \begin{exercise}\normalfont
  4351. \racket{Implement the compiler pass named \code{build\_interference} according
  4352. to the algorithm suggested above. We recommend using the Racket
  4353. \code{graph} package to create and inspect the interference graph.
  4354. The output graph of this pass should be stored in the $\itm{info}$ field of
  4355. the program, under the key \code{conflicts}.}
  4356. %
  4357. \python{Implement a function named \code{build\_interference}
  4358. according to the algorithm suggested above that
  4359. returns the interference graph.}
  4360. \end{exercise}
  4361. \section{Graph Coloring via Sudoku}
  4362. \label{sec:graph-coloring}
  4363. \index{subject}{graph coloring}
  4364. \index{subject}{Sudoku}
  4365. \index{subject}{color}
  4366. We come to the main event, mapping variables to registers and stack
  4367. locations. Variables that interfere with each other must be mapped to
  4368. different locations. In terms of the interference graph, this means
  4369. that adjacent vertices must be mapped to different locations. If we
  4370. think of locations as colors, the register allocation problem becomes
  4371. the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  4372. The reader may be more familiar with the graph coloring problem than he
  4373. or she realizes; the popular game of Sudoku is an instance of the
  4374. graph coloring problem. The following describes how to build a graph
  4375. out of an initial Sudoku board.
  4376. \begin{itemize}
  4377. \item There is one vertex in the graph for each Sudoku square.
  4378. \item There is an edge between two vertices if the corresponding squares
  4379. are in the same row, in the same column, or if the squares are in
  4380. the same $3\times 3$ region.
  4381. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  4382. \item Based on the initial assignment of numbers to squares in the
  4383. Sudoku board, assign the corresponding colors to the corresponding
  4384. vertices in the graph.
  4385. \end{itemize}
  4386. If you can color the remaining vertices in the graph with the nine
  4387. colors, then you have also solved the corresponding game of Sudoku.
  4388. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  4389. the corresponding graph with colored vertices. We map the Sudoku
  4390. number 1 to black, 2 to white, and 3 to gray. We only show edges for a
  4391. sampling of the vertices (the colored ones) because showing edges for
  4392. all of the vertices would make the graph unreadable.
  4393. \begin{figure}[tbp]
  4394. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  4395. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  4396. \caption{A Sudoku game board and the corresponding colored graph.}
  4397. \label{fig:sudoku-graph}
  4398. \end{figure}
  4399. Some techniques for playing Sudoku correspond to heuristics used in
  4400. graph coloring algorithms. For example, one of the basic techniques
  4401. for Sudoku is called Pencil Marks. The idea is to use a process of
  4402. elimination to determine what numbers are no longer available for a
  4403. square and write down those numbers in the square (writing very
  4404. small). For example, if the number $1$ is assigned to a square, then
  4405. write the pencil mark $1$ in all the squares in the same row, column,
  4406. and region to indicate that $1$ is no longer an option for those other
  4407. squares.
  4408. %
  4409. The Pencil Marks technique corresponds to the notion of
  4410. \emph{saturation}\index{subject}{saturation} due to \cite{Brelaz:1979eu}. The
  4411. saturation of a vertex, in Sudoku terms, is the set of numbers that
  4412. are no longer available. In graph terminology, we have the following
  4413. definition:
  4414. \begin{equation*}
  4415. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  4416. \text{ and } \mathrm{color}(v) = c \}
  4417. \end{equation*}
  4418. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  4419. edge with $u$.
  4420. The Pencil Marks technique leads to a simple strategy for filling in
  4421. numbers: if there is a square with only one possible number left, then
  4422. choose that number! But what if there are no squares with only one
  4423. possibility left? One brute-force approach is to try them all: choose
  4424. the first one and if that ultimately leads to a solution, great. If
  4425. not, backtrack and choose the next possibility. One good thing about
  4426. Pencil Marks is that it reduces the degree of branching in the search
  4427. tree. Nevertheless, backtracking can be terribly time consuming. One
  4428. way to reduce the amount of backtracking is to use the
  4429. most-constrained-first heuristic (aka. minimum remaining
  4430. values)~\citep{Russell2003}. That is, when choosing a square, always
  4431. choose one with the fewest possibilities left (the vertex with the
  4432. highest saturation). The idea is that choosing highly constrained
  4433. squares earlier rather than later is better because later on there may
  4434. not be any possibilities left in the highly saturated squares.
  4435. However, register allocation is easier than Sudoku because the
  4436. register allocator can fall back to assigning variables to stack
  4437. locations when the registers run out. Thus, it makes sense to replace
  4438. backtracking with greedy search: make the best choice at the time and
  4439. keep going. We still wish to minimize the number of colors needed, so
  4440. we use the most-constrained-first heuristic in the greedy search.
  4441. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  4442. algorithm for register allocation based on saturation and the
  4443. most-constrained-first heuristic. It is roughly equivalent to the
  4444. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}.
  4445. %,Gebremedhin:1999fk,Omari:2006uq
  4446. Just as in Sudoku, the algorithm represents colors with integers. The
  4447. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  4448. for register allocation. The integers $k$ and larger correspond to
  4449. stack locations. The registers that are not used for register
  4450. allocation, such as \code{rax}, are assigned to negative integers. In
  4451. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  4452. %% One might wonder why we include registers at all in the liveness
  4453. %% analysis and interference graph. For example, we never allocate a
  4454. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  4455. %% leave them out. As we see in Chapter~\ref{ch:Lvec}, when we begin
  4456. %% to use register for passing arguments to functions, it will be
  4457. %% necessary for those registers to appear in the interference graph
  4458. %% because those registers will also be assigned to variables, and we
  4459. %% don't want those two uses to encroach on each other. Regarding
  4460. %% registers such as \code{rax} and \code{rsp} that are not used for
  4461. %% variables, we could omit them from the interference graph but that
  4462. %% would require adding special cases to our algorithm, which would
  4463. %% complicate the logic for little gain.
  4464. \begin{figure}[btp]
  4465. \centering
  4466. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  4467. Algorithm: DSATUR
  4468. Input: a graph |$G$|
  4469. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  4470. |$W \gets \mathrm{vertices}(G)$|
  4471. while |$W \neq \emptyset$| do
  4472. pick a vertex |$u$| from |$W$| with the highest saturation,
  4473. breaking ties randomly
  4474. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  4475. |$\mathrm{color}[u] \gets c$|
  4476. |$W \gets W - \{u\}$|
  4477. \end{lstlisting}
  4478. \caption{The saturation-based greedy graph coloring algorithm.}
  4479. \label{fig:satur-algo}
  4480. \end{figure}
  4481. {\if\edition\racketEd
  4482. With the DSATUR algorithm in hand, let us return to the running
  4483. example and consider how to color the interference graph in
  4484. Figure~\ref{fig:interfere}.
  4485. %
  4486. We start by assigning the register nodes to their own color. For
  4487. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  4488. assigned $-2$. The variables are not yet colored, so they are
  4489. annotated with a dash. We then update the saturation for vertices that
  4490. are adjacent to a register, obtaining the following annotated
  4491. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  4492. it interferes with both \code{rax} and \code{rsp}.
  4493. \[
  4494. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4495. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  4496. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  4497. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  4498. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  4499. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4500. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4501. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4502. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4503. \draw (t1) to (rax);
  4504. \draw (t1) to (z);
  4505. \draw (z) to (y);
  4506. \draw (z) to (w);
  4507. \draw (x) to (w);
  4508. \draw (y) to (w);
  4509. \draw (v) to (w);
  4510. \draw (v) to (rsp);
  4511. \draw (w) to (rsp);
  4512. \draw (x) to (rsp);
  4513. \draw (y) to (rsp);
  4514. \path[-.,bend left=15] (z) edge node {} (rsp);
  4515. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4516. \draw (rax) to (rsp);
  4517. \end{tikzpicture}
  4518. \]
  4519. The algorithm says to select a maximally saturated vertex. So we pick
  4520. $\ttm{t}$ and color it with the first available integer, which is
  4521. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4522. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4523. \[
  4524. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4525. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4526. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4527. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4528. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4529. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4530. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4531. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4532. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4533. \draw (t1) to (rax);
  4534. \draw (t1) to (z);
  4535. \draw (z) to (y);
  4536. \draw (z) to (w);
  4537. \draw (x) to (w);
  4538. \draw (y) to (w);
  4539. \draw (v) to (w);
  4540. \draw (v) to (rsp);
  4541. \draw (w) to (rsp);
  4542. \draw (x) to (rsp);
  4543. \draw (y) to (rsp);
  4544. \path[-.,bend left=15] (z) edge node {} (rsp);
  4545. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4546. \draw (rax) to (rsp);
  4547. \end{tikzpicture}
  4548. \]
  4549. We repeat the process, selecting a maximally saturated vertex,
  4550. choosing is \code{z}, and color it with the first available number, which
  4551. is $1$. We add $1$ to the saturation for the neighboring vertices
  4552. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4553. \[
  4554. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4555. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4556. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4557. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4558. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4559. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4560. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4561. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4562. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4563. \draw (t1) to (rax);
  4564. \draw (t1) to (z);
  4565. \draw (z) to (y);
  4566. \draw (z) to (w);
  4567. \draw (x) to (w);
  4568. \draw (y) to (w);
  4569. \draw (v) to (w);
  4570. \draw (v) to (rsp);
  4571. \draw (w) to (rsp);
  4572. \draw (x) to (rsp);
  4573. \draw (y) to (rsp);
  4574. \path[-.,bend left=15] (z) edge node {} (rsp);
  4575. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4576. \draw (rax) to (rsp);
  4577. \end{tikzpicture}
  4578. \]
  4579. The most saturated vertices are now \code{w} and \code{y}. We color
  4580. \code{w} with the first available color, which is $0$.
  4581. \[
  4582. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4583. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4584. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4585. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4586. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4587. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4588. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4589. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4590. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4591. \draw (t1) to (rax);
  4592. \draw (t1) to (z);
  4593. \draw (z) to (y);
  4594. \draw (z) to (w);
  4595. \draw (x) to (w);
  4596. \draw (y) to (w);
  4597. \draw (v) to (w);
  4598. \draw (v) to (rsp);
  4599. \draw (w) to (rsp);
  4600. \draw (x) to (rsp);
  4601. \draw (y) to (rsp);
  4602. \path[-.,bend left=15] (z) edge node {} (rsp);
  4603. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4604. \draw (rax) to (rsp);
  4605. \end{tikzpicture}
  4606. \]
  4607. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4608. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4609. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4610. and \code{z}, whose colors are $0$ and $1$ respectively.
  4611. \[
  4612. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4613. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4614. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4615. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4616. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4617. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4618. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4619. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4620. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4621. \draw (t1) to (rax);
  4622. \draw (t1) to (z);
  4623. \draw (z) to (y);
  4624. \draw (z) to (w);
  4625. \draw (x) to (w);
  4626. \draw (y) to (w);
  4627. \draw (v) to (w);
  4628. \draw (v) to (rsp);
  4629. \draw (w) to (rsp);
  4630. \draw (x) to (rsp);
  4631. \draw (y) to (rsp);
  4632. \path[-.,bend left=15] (z) edge node {} (rsp);
  4633. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4634. \draw (rax) to (rsp);
  4635. \end{tikzpicture}
  4636. \]
  4637. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4638. \[
  4639. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4640. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4641. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4642. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4643. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4644. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4645. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4646. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4647. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4648. \draw (t1) to (rax);
  4649. \draw (t1) to (z);
  4650. \draw (z) to (y);
  4651. \draw (z) to (w);
  4652. \draw (x) to (w);
  4653. \draw (y) to (w);
  4654. \draw (v) to (w);
  4655. \draw (v) to (rsp);
  4656. \draw (w) to (rsp);
  4657. \draw (x) to (rsp);
  4658. \draw (y) to (rsp);
  4659. \path[-.,bend left=15] (z) edge node {} (rsp);
  4660. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4661. \draw (rax) to (rsp);
  4662. \end{tikzpicture}
  4663. \]
  4664. In the last step of the algorithm, we color \code{x} with $1$.
  4665. \[
  4666. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4667. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4668. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4669. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4670. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4671. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4672. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4673. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4674. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4675. \draw (t1) to (rax);
  4676. \draw (t1) to (z);
  4677. \draw (z) to (y);
  4678. \draw (z) to (w);
  4679. \draw (x) to (w);
  4680. \draw (y) to (w);
  4681. \draw (v) to (w);
  4682. \draw (v) to (rsp);
  4683. \draw (w) to (rsp);
  4684. \draw (x) to (rsp);
  4685. \draw (y) to (rsp);
  4686. \path[-.,bend left=15] (z) edge node {} (rsp);
  4687. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4688. \draw (rax) to (rsp);
  4689. \end{tikzpicture}
  4690. \]
  4691. So we obtain the following coloring:
  4692. \[
  4693. \{
  4694. \ttm{rax} \mapsto -1,
  4695. \ttm{rsp} \mapsto -2,
  4696. \ttm{t} \mapsto 0,
  4697. \ttm{z} \mapsto 1,
  4698. \ttm{x} \mapsto 1,
  4699. \ttm{y} \mapsto 2,
  4700. \ttm{w} \mapsto 0,
  4701. \ttm{v} \mapsto 1
  4702. \}
  4703. \]
  4704. \fi}
  4705. %
  4706. {\if\edition\pythonEd
  4707. %
  4708. With the DSATUR algorithm in hand, let us return to the running
  4709. example and consider how to color the interference graph in
  4710. Figure~\ref{fig:interfere}. We annotate each variable node with a dash
  4711. to indicate that it has not yet been assigned a color. The saturation
  4712. sets are also shown for each node; all of them start as the empty set.
  4713. (We do not include the register nodes in the graph below because there
  4714. were no interference edges involving registers in this program, but in
  4715. general there can be.)
  4716. %
  4717. \[
  4718. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4719. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  4720. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  4721. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  4722. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4723. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4724. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4725. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4726. \draw (t0) to (t1);
  4727. \draw (t0) to (z);
  4728. \draw (z) to (y);
  4729. \draw (z) to (w);
  4730. \draw (x) to (w);
  4731. \draw (y) to (w);
  4732. \draw (v) to (w);
  4733. \end{tikzpicture}
  4734. \]
  4735. The algorithm says to select a maximally saturated vertex, but they
  4736. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  4737. then color it with the first available integer, which is $0$. We mark
  4738. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  4739. they interfere with $\ttm{tmp\_0}$.
  4740. \[
  4741. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4742. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  4743. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4744. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  4745. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4746. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4747. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4748. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4749. \draw (t0) to (t1);
  4750. \draw (t0) to (z);
  4751. \draw (z) to (y);
  4752. \draw (z) to (w);
  4753. \draw (x) to (w);
  4754. \draw (y) to (w);
  4755. \draw (v) to (w);
  4756. \end{tikzpicture}
  4757. \]
  4758. We repeat the process. The most saturated vertices are \code{z} and
  4759. \code{tmp\_1}, so we choose \code{z} and color it with the first
  4760. available number, which is $1$. We add $1$ to the saturation for the
  4761. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  4762. \[
  4763. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4764. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4765. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4766. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4767. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4768. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  4769. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  4770. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4771. \draw (t0) to (t1);
  4772. \draw (t0) to (z);
  4773. \draw (z) to (y);
  4774. \draw (z) to (w);
  4775. \draw (x) to (w);
  4776. \draw (y) to (w);
  4777. \draw (v) to (w);
  4778. \end{tikzpicture}
  4779. \]
  4780. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  4781. \code{y}. We color \code{w} with the first available color, which
  4782. is $0$.
  4783. \[
  4784. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4785. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4786. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4787. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4788. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4789. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  4790. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  4791. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4792. \draw (t0) to (t1);
  4793. \draw (t0) to (z);
  4794. \draw (z) to (y);
  4795. \draw (z) to (w);
  4796. \draw (x) to (w);
  4797. \draw (y) to (w);
  4798. \draw (v) to (w);
  4799. \end{tikzpicture}
  4800. \]
  4801. Now \code{y} is the most saturated, so we color it with $2$.
  4802. \[
  4803. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4804. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4805. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4806. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4807. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4808. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4809. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4810. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4811. \draw (t0) to (t1);
  4812. \draw (t0) to (z);
  4813. \draw (z) to (y);
  4814. \draw (z) to (w);
  4815. \draw (x) to (w);
  4816. \draw (y) to (w);
  4817. \draw (v) to (w);
  4818. \end{tikzpicture}
  4819. \]
  4820. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  4821. We choose to color \code{v} with $1$.
  4822. \[
  4823. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4824. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4825. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4826. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4827. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4828. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4829. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4830. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4831. \draw (t0) to (t1);
  4832. \draw (t0) to (z);
  4833. \draw (z) to (y);
  4834. \draw (z) to (w);
  4835. \draw (x) to (w);
  4836. \draw (y) to (w);
  4837. \draw (v) to (w);
  4838. \end{tikzpicture}
  4839. \]
  4840. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  4841. \[
  4842. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4843. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4844. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  4845. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4846. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  4847. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4848. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4849. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4850. \draw (t0) to (t1);
  4851. \draw (t0) to (z);
  4852. \draw (z) to (y);
  4853. \draw (z) to (w);
  4854. \draw (x) to (w);
  4855. \draw (y) to (w);
  4856. \draw (v) to (w);
  4857. \end{tikzpicture}
  4858. \]
  4859. So we obtain the following coloring:
  4860. \[
  4861. \{ \ttm{tmp\_0} \mapsto 0,
  4862. \ttm{tmp\_1} \mapsto 1,
  4863. \ttm{z} \mapsto 1,
  4864. \ttm{x} \mapsto 1,
  4865. \ttm{y} \mapsto 2,
  4866. \ttm{w} \mapsto 0,
  4867. \ttm{v} \mapsto 1 \}
  4868. \]
  4869. \fi}
  4870. We recommend creating an auxiliary function named \code{color\_graph}
  4871. that takes an interference graph and a list of all the variables in
  4872. the program. This function should return a mapping of variables to
  4873. their colors (represented as natural numbers). By creating this helper
  4874. function, you will be able to reuse it in Chapter~\ref{ch:Rfun}
  4875. when we add support for functions.
  4876. To prioritize the processing of highly saturated nodes inside the
  4877. \code{color\_graph} function, we recommend using the priority queue
  4878. data structure \racket{described in Figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  4879. addition, you will need to maintain a mapping from variables to their
  4880. ``handles'' in the priority queue so that you can notify the priority
  4881. queue when their saturation changes.}
  4882. {\if\edition\racketEd
  4883. \begin{figure}[tp]
  4884. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  4885. \small
  4886. \begin{tcolorbox}[title=Priority Queue]
  4887. A \emph{priority queue} is a collection of items in which the
  4888. removal of items is governed by priority. In a ``min'' queue,
  4889. lower priority items are removed first. An implementation is in
  4890. \code{priority\_queue.rkt} of the support code. \index{subject}{priority
  4891. queue} \index{subject}{minimum priority queue}
  4892. \begin{description}
  4893. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  4894. priority queue that uses the $\itm{cmp}$ predicate to determine
  4895. whether its first argument has lower or equal priority to its
  4896. second argument.
  4897. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  4898. items in the queue.
  4899. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  4900. the item into the queue and returns a handle for the item in the
  4901. queue.
  4902. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  4903. the lowest priority.
  4904. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  4905. notifies the queue that the priority has decreased for the item
  4906. associated with the given handle.
  4907. \end{description}
  4908. \end{tcolorbox}
  4909. %\end{wrapfigure}
  4910. \caption{The priority queue data structure.}
  4911. \label{fig:priority-queue}
  4912. \end{figure}
  4913. \fi}
  4914. With the coloring complete, we finalize the assignment of variables to
  4915. registers and stack locations. We map the first $k$ colors to the $k$
  4916. registers and the rest of the colors to stack locations. Suppose for
  4917. the moment that we have just one register to use for register
  4918. allocation, \key{rcx}. Then we have the following map from colors to
  4919. locations.
  4920. \[
  4921. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  4922. \]
  4923. Composing this mapping with the coloring, we arrive at the following
  4924. assignment of variables to locations.
  4925. {\if\edition\racketEd
  4926. \begin{gather*}
  4927. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4928. \ttm{w} \mapsto \key{\%rcx}, \,
  4929. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4930. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4931. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4932. \ttm{t} \mapsto \key{\%rcx} \}
  4933. \end{gather*}
  4934. \fi}
  4935. {\if\edition\pythonEd
  4936. \begin{gather*}
  4937. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4938. \ttm{w} \mapsto \key{\%rcx}, \,
  4939. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4940. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4941. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4942. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  4943. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  4944. \end{gather*}
  4945. \fi}
  4946. Adapt the code from the \code{assign\_homes} pass
  4947. (Section~\ref{sec:assign-Lvar}) to replace the variables with their
  4948. assigned location. Applying the above assignment to our running
  4949. example, on the left, yields the program on the right.
  4950. % why frame size of 32? -JGS
  4951. \begin{center}
  4952. {\if\edition\racketEd
  4953. \begin{minipage}{0.3\textwidth}
  4954. \begin{lstlisting}
  4955. movq $1, v
  4956. movq $42, w
  4957. movq v, x
  4958. addq $7, x
  4959. movq x, y
  4960. movq x, z
  4961. addq w, z
  4962. movq y, t
  4963. negq t
  4964. movq z, %rax
  4965. addq t, %rax
  4966. jmp conclusion
  4967. \end{lstlisting}
  4968. \end{minipage}
  4969. $\Rightarrow\qquad$
  4970. \begin{minipage}{0.45\textwidth}
  4971. \begin{lstlisting}
  4972. movq $1, -8(%rbp)
  4973. movq $42, %rcx
  4974. movq -8(%rbp), -8(%rbp)
  4975. addq $7, -8(%rbp)
  4976. movq -8(%rbp), -16(%rbp)
  4977. movq -8(%rbp), -8(%rbp)
  4978. addq %rcx, -8(%rbp)
  4979. movq -16(%rbp), %rcx
  4980. negq %rcx
  4981. movq -8(%rbp), %rax
  4982. addq %rcx, %rax
  4983. jmp conclusion
  4984. \end{lstlisting}
  4985. \end{minipage}
  4986. \fi}
  4987. {\if\edition\pythonEd
  4988. \begin{minipage}{0.3\textwidth}
  4989. \begin{lstlisting}
  4990. movq $1, v
  4991. movq $42, w
  4992. movq v, x
  4993. addq $7, x
  4994. movq x, y
  4995. movq x, z
  4996. addq w, z
  4997. movq y, tmp_0
  4998. negq tmp_0
  4999. movq z, tmp_1
  5000. addq tmp_0, tmp_1
  5001. movq tmp_1, %rdi
  5002. callq print_int
  5003. \end{lstlisting}
  5004. \end{minipage}
  5005. $\Rightarrow\qquad$
  5006. \begin{minipage}{0.45\textwidth}
  5007. \begin{lstlisting}
  5008. movq $1, -8(%rbp)
  5009. movq $42, %rcx
  5010. movq -8(%rbp), -8(%rbp)
  5011. addq $7, -8(%rbp)
  5012. movq -8(%rbp), -16(%rbp)
  5013. movq -8(%rbp), -8(%rbp)
  5014. addq %rcx, -8(%rbp)
  5015. movq -16(%rbp), %rcx
  5016. negq %rcx
  5017. movq -8(%rbp), -8(%rbp)
  5018. addq %rcx, -8(%rbp)
  5019. movq -8(%rbp), %rdi
  5020. callq print_int
  5021. \end{lstlisting}
  5022. \end{minipage}
  5023. \fi}
  5024. \end{center}
  5025. \begin{exercise}\normalfont
  5026. %
  5027. Implement the compiler pass \code{allocate\_registers}.
  5028. %
  5029. Create five programs that exercise all aspects of the register
  5030. allocation algorithm, including spilling variables to the stack.
  5031. %
  5032. \racket{Replace \code{assign\_homes} in the list of \code{passes} in the
  5033. \code{run-tests.rkt} script with the three new passes:
  5034. \code{uncover\_live}, \code{build\_interference}, and
  5035. \code{allocate\_registers}.
  5036. %
  5037. Temporarily remove the \code{print\_x86} pass from the list of passes
  5038. and the call to \code{compiler-tests}.
  5039. Run the script to test the register allocator.
  5040. }
  5041. %
  5042. \python{Run the \code{run-tests.py} script to to check whether the
  5043. output programs produce the same result as the input programs.}
  5044. \end{exercise}
  5045. \section{Patch Instructions}
  5046. \label{sec:patch-instructions}
  5047. The remaining step in the compilation to x86 is to ensure that the
  5048. instructions have at most one argument that is a memory access.
  5049. %
  5050. In the running example, the instruction \code{movq -8(\%rbp),
  5051. -16(\%rbp)} is problematic. Recall from Section~\ref{sec:patch-s0}
  5052. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  5053. then move \code{rax} into \code{-16(\%rbp)}.
  5054. %
  5055. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  5056. problematic, but they can simply be deleted. In general, we recommend
  5057. deleting all the trivial moves whose source and destination are the
  5058. same location.
  5059. %
  5060. The following is the output of \code{patch\_instructions} on the
  5061. running example.
  5062. \begin{center}
  5063. {\if\edition\racketEd
  5064. \begin{minipage}{0.4\textwidth}
  5065. \begin{lstlisting}
  5066. movq $1, -8(%rbp)
  5067. movq $42, %rcx
  5068. movq -8(%rbp), -8(%rbp)
  5069. addq $7, -8(%rbp)
  5070. movq -8(%rbp), -16(%rbp)
  5071. movq -8(%rbp), -8(%rbp)
  5072. addq %rcx, -8(%rbp)
  5073. movq -16(%rbp), %rcx
  5074. negq %rcx
  5075. movq -8(%rbp), %rax
  5076. addq %rcx, %rax
  5077. jmp conclusion
  5078. \end{lstlisting}
  5079. \end{minipage}
  5080. $\Rightarrow\qquad$
  5081. \begin{minipage}{0.45\textwidth}
  5082. \begin{lstlisting}
  5083. movq $1, -8(%rbp)
  5084. movq $42, %rcx
  5085. addq $7, -8(%rbp)
  5086. movq -8(%rbp), %rax
  5087. movq %rax, -16(%rbp)
  5088. addq %rcx, -8(%rbp)
  5089. movq -16(%rbp), %rcx
  5090. negq %rcx
  5091. movq -8(%rbp), %rax
  5092. addq %rcx, %rax
  5093. jmp conclusion
  5094. \end{lstlisting}
  5095. \end{minipage}
  5096. \fi}
  5097. {\if\edition\pythonEd
  5098. \begin{minipage}{0.4\textwidth}
  5099. \begin{lstlisting}
  5100. movq $1, -8(%rbp)
  5101. movq $42, %rcx
  5102. movq -8(%rbp), -8(%rbp)
  5103. addq $7, -8(%rbp)
  5104. movq -8(%rbp), -16(%rbp)
  5105. movq -8(%rbp), -8(%rbp)
  5106. addq %rcx, -8(%rbp)
  5107. movq -16(%rbp), %rcx
  5108. negq %rcx
  5109. movq -8(%rbp), -8(%rbp)
  5110. addq %rcx, -8(%rbp)
  5111. movq -8(%rbp), %rdi
  5112. callq print_int
  5113. \end{lstlisting}
  5114. \end{minipage}
  5115. $\Rightarrow\qquad$
  5116. \begin{minipage}{0.45\textwidth}
  5117. \begin{lstlisting}
  5118. movq $1, -8(%rbp)
  5119. movq $42, %rcx
  5120. addq $7, -8(%rbp)
  5121. movq -8(%rbp), %rax
  5122. movq %rax, -16(%rbp)
  5123. addq %rcx, -8(%rbp)
  5124. movq -16(%rbp), %rcx
  5125. negq %rcx
  5126. addq %rcx, -8(%rbp)
  5127. movq -8(%rbp), %rdi
  5128. callq print_int
  5129. \end{lstlisting}
  5130. \end{minipage}
  5131. \fi}
  5132. \end{center}
  5133. \begin{exercise}\normalfont
  5134. %
  5135. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  5136. %
  5137. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  5138. %in the \code{run-tests.rkt} script.
  5139. %
  5140. Run the script to test the \code{patch\_instructions} pass.
  5141. \end{exercise}
  5142. \section{Prelude and Conclusion}
  5143. \label{sec:print-x86-reg-alloc}
  5144. \index{subject}{calling conventions}
  5145. \index{subject}{prelude}\index{subject}{conclusion}
  5146. Recall that this pass generates the prelude and conclusion
  5147. instructions to satisfy the x86 calling conventions
  5148. (Section~\ref{sec:calling-conventions}). With the addition of the
  5149. register allocator, the callee-saved registers used by the register
  5150. allocator must be saved in the prelude and restored in the conclusion.
  5151. In the \code{allocate\_registers} pass,
  5152. %
  5153. \racket{add an entry to the \itm{info}
  5154. of \code{X86Program} named \code{used\_callee}}
  5155. %
  5156. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  5157. %
  5158. that stores the set of callee-saved registers that were assigned to
  5159. variables. The \code{prelude\_and\_conclusion} pass can then access
  5160. this information to decide which callee-saved registers need to be
  5161. saved and restored.
  5162. %
  5163. When calculating the size of the frame to adjust the \code{rsp} in the
  5164. prelude, make sure to take into account the space used for saving the
  5165. callee-saved registers. Also, don't forget that the frame needs to be
  5166. a multiple of 16 bytes!
  5167. \racket{An overview of all of the passes involved in register
  5168. allocation is shown in Figure~\ref{fig:reg-alloc-passes}.}
  5169. {\if\edition\racketEd
  5170. \begin{figure}[tbp]
  5171. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5172. \node (Lvar) at (0,2) {\large \LangVar{}};
  5173. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  5174. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  5175. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  5176. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  5177. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  5178. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  5179. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  5180. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  5181. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  5182. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  5183. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  5184. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-1);
  5185. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  5186. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  5187. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  5188. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  5189. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  5190. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  5191. \end{tikzpicture}
  5192. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  5193. \label{fig:reg-alloc-passes}
  5194. \end{figure}
  5195. \fi}
  5196. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  5197. the running example (Figure~\ref{fig:reg-eg}). To demonstrate both the
  5198. use of registers and the stack, we limit the register allocator for
  5199. this example to use just two registers: \code{rbx} and \code{rcx}. In
  5200. the prelude\index{subject}{prelude} of the \code{main} function, we
  5201. push \code{rbx} onto the stack because it is a callee-saved register
  5202. and it was assigned to variable by the register allocator. We
  5203. subtract \code{8} from the \code{rsp} at the end of the prelude to
  5204. reserve space for the one spilled variable. After that subtraction,
  5205. the \code{rsp} is aligned to 16 bytes.
  5206. Moving on to the program proper, we see how the registers were
  5207. allocated.
  5208. %
  5209. \racket{Variables \code{v}, \code{x}, and \code{y} were assigned to
  5210. \code{rbx} and variable \code{z} was assigned to \code{rcx}.}
  5211. %
  5212. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  5213. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  5214. were assigned to \code{rbx}.}
  5215. %
  5216. Variable \racket{\code{w}}\python{\code{z}} was spilled to the stack
  5217. location \code{-16(\%rbp)}. Recall that the prelude saved the
  5218. callee-save register \code{rbx} onto the stack. The spilled variables
  5219. must be placed lower on the stack than the saved callee-save
  5220. registers, so in this case \racket{\code{w}}\python{z} is placed at
  5221. \code{-16(\%rbp)}.
  5222. In the conclusion\index{subject}{conclusion}, we undo the work that was
  5223. done in the prelude. We move the stack pointer up by \code{8} bytes
  5224. (the room for spilled variables), then we pop the old values of
  5225. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  5226. \code{retq} to return control to the operating system.
  5227. \begin{figure}[tbp]
  5228. % var_test_28.rkt
  5229. % (use-minimal-set-of-registers! #t)
  5230. % and only rbx rcx
  5231. % tmp 0 rbx
  5232. % z 1 rcx
  5233. % y 0 rbx
  5234. % w 2 16(%rbp)
  5235. % v 0 rbx
  5236. % x 0 rbx
  5237. {\if\edition\racketEd
  5238. \begin{lstlisting}
  5239. start:
  5240. movq $1, %rbx
  5241. movq $42, -16(%rbp)
  5242. addq $7, %rbx
  5243. movq %rbx, %rcx
  5244. addq -16(%rbp), %rcx
  5245. negq %rbx
  5246. movq %rcx, %rax
  5247. addq %rbx, %rax
  5248. jmp conclusion
  5249. .globl main
  5250. main:
  5251. pushq %rbp
  5252. movq %rsp, %rbp
  5253. pushq %rbx
  5254. subq $8, %rsp
  5255. jmp start
  5256. conclusion:
  5257. addq $8, %rsp
  5258. popq %rbx
  5259. popq %rbp
  5260. retq
  5261. \end{lstlisting}
  5262. \fi}
  5263. {\if\edition\pythonEd
  5264. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  5265. \begin{lstlisting}
  5266. .globl main
  5267. main:
  5268. pushq %rbp
  5269. movq %rsp, %rbp
  5270. pushq %rbx
  5271. subq $8, %rsp
  5272. movq $1, %rcx
  5273. movq $42, %rbx
  5274. addq $7, %rcx
  5275. movq %rcx, -16(%rbp)
  5276. addq %rbx, -16(%rbp)
  5277. negq %rcx
  5278. movq -16(%rbp), %rbx
  5279. addq %rcx, %rbx
  5280. movq %rbx, %rdi
  5281. callq print_int
  5282. addq $8, %rsp
  5283. popq %rbx
  5284. popq %rbp
  5285. retq
  5286. \end{lstlisting}
  5287. \fi}
  5288. \caption{The x86 output from the running example
  5289. (Figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  5290. and \code{rcx}.}
  5291. \label{fig:running-example-x86}
  5292. \end{figure}
  5293. \begin{exercise}\normalfont
  5294. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  5295. %
  5296. \racket{
  5297. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  5298. list of passes and the call to \code{compiler-tests}.}
  5299. %
  5300. Run the script to test the complete compiler for \LangVar{} that
  5301. performs register allocation.
  5302. \end{exercise}
  5303. \section{Challenge: Move Biasing}
  5304. \label{sec:move-biasing}
  5305. \index{subject}{move biasing}
  5306. This section describes an enhancement to the register allocator,
  5307. called move biasing, for students who are looking for an extra
  5308. challenge.
  5309. {\if\edition\racketEd
  5310. To motivate the need for move biasing we return to the running example
  5311. but this time use all of the general purpose registers. So we have
  5312. the following mapping of color numbers to registers.
  5313. \[
  5314. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
  5315. \]
  5316. Using the same assignment of variables to color numbers that was
  5317. produced by the register allocator described in the last section, we
  5318. get the following program.
  5319. \begin{center}
  5320. \begin{minipage}{0.3\textwidth}
  5321. \begin{lstlisting}
  5322. movq $1, v
  5323. movq $42, w
  5324. movq v, x
  5325. addq $7, x
  5326. movq x, y
  5327. movq x, z
  5328. addq w, z
  5329. movq y, t
  5330. negq t
  5331. movq z, %rax
  5332. addq t, %rax
  5333. jmp conclusion
  5334. \end{lstlisting}
  5335. \end{minipage}
  5336. $\Rightarrow\qquad$
  5337. \begin{minipage}{0.45\textwidth}
  5338. \begin{lstlisting}
  5339. movq $1, %rdx
  5340. movq $42, %rcx
  5341. movq %rdx, %rdx
  5342. addq $7, %rdx
  5343. movq %rdx, %rsi
  5344. movq %rdx, %rdx
  5345. addq %rcx, %rdx
  5346. movq %rsi, %rcx
  5347. negq %rcx
  5348. movq %rdx, %rax
  5349. addq %rcx, %rax
  5350. jmp conclusion
  5351. \end{lstlisting}
  5352. \end{minipage}
  5353. \end{center}
  5354. In the above output code there are two \key{movq} instructions that
  5355. can be removed because their source and target are the same. However,
  5356. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  5357. register, we could instead remove three \key{movq} instructions. We
  5358. can accomplish this by taking into account which variables appear in
  5359. \key{movq} instructions with which other variables.
  5360. \fi}
  5361. {\if\edition\pythonEd
  5362. %
  5363. To motivate the need for move biasing we return to the running example
  5364. and recall that in Section~\ref{sec:patch-instructions} we were able to
  5365. remove three trivial move instructions from the running
  5366. example. However, we could remove another trivial move if we were able
  5367. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  5368. We say that two variables $p$ and $q$ are \emph{move
  5369. related}\index{subject}{move related} if they participate together in
  5370. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  5371. \key{movq} $q$\key{,} $p$. When deciding which variable to color next,
  5372. when there are multiple variables with the same saturation, prefer
  5373. variables that can be assigned to a color that is the same as the
  5374. color of a move related variable. Furthermore, when the register
  5375. allocator chooses a color for a variable, it should prefer a color
  5376. that has already been used for a move-related variable (assuming that
  5377. they do not interfere). Of course, this preference should not override
  5378. the preference for registers over stack locations. So this preference
  5379. should be used as a tie breaker when choosing between registers or
  5380. when choosing between stack locations.
  5381. We recommend representing the move relationships in a graph, similar
  5382. to how we represented interference. The following is the \emph{move
  5383. graph} for our running example.
  5384. {\if\edition\racketEd
  5385. \[
  5386. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5387. \node (rax) at (0,0) {$\ttm{rax}$};
  5388. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5389. \node (t) at (0,2) {$\ttm{t}$};
  5390. \node (z) at (3,2) {$\ttm{z}$};
  5391. \node (x) at (6,2) {$\ttm{x}$};
  5392. \node (y) at (3,0) {$\ttm{y}$};
  5393. \node (w) at (6,0) {$\ttm{w}$};
  5394. \node (v) at (9,0) {$\ttm{v}$};
  5395. \draw (v) to (x);
  5396. \draw (x) to (y);
  5397. \draw (x) to (z);
  5398. \draw (y) to (t);
  5399. \end{tikzpicture}
  5400. \]
  5401. \fi}
  5402. %
  5403. {\if\edition\pythonEd
  5404. \[
  5405. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5406. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5407. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5408. \node (z) at (3,2) {$\ttm{z}$};
  5409. \node (x) at (6,2) {$\ttm{x}$};
  5410. \node (y) at (3,0) {$\ttm{y}$};
  5411. \node (w) at (6,0) {$\ttm{w}$};
  5412. \node (v) at (9,0) {$\ttm{v}$};
  5413. \draw (y) to (t0);
  5414. \draw (z) to (x);
  5415. \draw (z) to (t1);
  5416. \draw (x) to (y);
  5417. \draw (x) to (v);
  5418. \end{tikzpicture}
  5419. \]
  5420. \fi}
  5421. {\if\edition\racketEd
  5422. Now we replay the graph coloring, pausing to see the coloring of
  5423. \code{y}. Recall the following configuration. The most saturated vertices
  5424. were \code{w} and \code{y}.
  5425. \[
  5426. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5427. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5428. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5429. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5430. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5431. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5432. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5433. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5434. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5435. \draw (t1) to (rax);
  5436. \draw (t1) to (z);
  5437. \draw (z) to (y);
  5438. \draw (z) to (w);
  5439. \draw (x) to (w);
  5440. \draw (y) to (w);
  5441. \draw (v) to (w);
  5442. \draw (v) to (rsp);
  5443. \draw (w) to (rsp);
  5444. \draw (x) to (rsp);
  5445. \draw (y) to (rsp);
  5446. \path[-.,bend left=15] (z) edge node {} (rsp);
  5447. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5448. \draw (rax) to (rsp);
  5449. \end{tikzpicture}
  5450. \]
  5451. %
  5452. Last time we chose to color \code{w} with $0$. But this time we see
  5453. that \code{w} is not move related to any vertex, but \code{y} is move
  5454. related to \code{t}. So we choose to color \code{y} the same color as
  5455. \code{t}, $0$.
  5456. \[
  5457. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5458. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5459. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5460. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5461. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5462. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5463. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  5464. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  5465. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5466. \draw (t1) to (rax);
  5467. \draw (t1) to (z);
  5468. \draw (z) to (y);
  5469. \draw (z) to (w);
  5470. \draw (x) to (w);
  5471. \draw (y) to (w);
  5472. \draw (v) to (w);
  5473. \draw (v) to (rsp);
  5474. \draw (w) to (rsp);
  5475. \draw (x) to (rsp);
  5476. \draw (y) to (rsp);
  5477. \path[-.,bend left=15] (z) edge node {} (rsp);
  5478. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5479. \draw (rax) to (rsp);
  5480. \end{tikzpicture}
  5481. \]
  5482. Now \code{w} is the most saturated, so we color it $2$.
  5483. \[
  5484. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5485. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5486. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5487. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5488. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5489. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  5490. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5491. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5492. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  5493. \draw (t1) to (rax);
  5494. \draw (t1) to (z);
  5495. \draw (z) to (y);
  5496. \draw (z) to (w);
  5497. \draw (x) to (w);
  5498. \draw (y) to (w);
  5499. \draw (v) to (w);
  5500. \draw (v) to (rsp);
  5501. \draw (w) to (rsp);
  5502. \draw (x) to (rsp);
  5503. \draw (y) to (rsp);
  5504. \path[-.,bend left=15] (z) edge node {} (rsp);
  5505. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5506. \draw (rax) to (rsp);
  5507. \end{tikzpicture}
  5508. \]
  5509. At this point, vertices \code{x} and \code{v} are most saturated, but
  5510. \code{x} is move related to \code{y} and \code{z}, so we color
  5511. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  5512. \[
  5513. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5514. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5515. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5516. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5517. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5518. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  5519. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5520. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5521. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  5522. \draw (t1) to (rax);
  5523. \draw (t) to (z);
  5524. \draw (z) to (y);
  5525. \draw (z) to (w);
  5526. \draw (x) to (w);
  5527. \draw (y) to (w);
  5528. \draw (v) to (w);
  5529. \draw (v) to (rsp);
  5530. \draw (w) to (rsp);
  5531. \draw (x) to (rsp);
  5532. \draw (y) to (rsp);
  5533. \path[-.,bend left=15] (z) edge node {} (rsp);
  5534. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5535. \draw (rax) to (rsp);
  5536. \end{tikzpicture}
  5537. \]
  5538. \fi}
  5539. %
  5540. {\if\edition\pythonEd
  5541. Now we replay the graph coloring, pausing before the coloring of
  5542. \code{w}. Recall the following configuration. The most saturated vertices
  5543. were \code{tmp\_1}, \code{w}, and \code{y}.
  5544. \[
  5545. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5546. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5547. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5548. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5549. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5550. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5551. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5552. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5553. \draw (t0) to (t1);
  5554. \draw (t0) to (z);
  5555. \draw (z) to (y);
  5556. \draw (z) to (w);
  5557. \draw (x) to (w);
  5558. \draw (y) to (w);
  5559. \draw (v) to (w);
  5560. \end{tikzpicture}
  5561. \]
  5562. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  5563. or \code{y}, but note that \code{w} is not move related to any
  5564. variables, whereas \code{y} and \code{tmp\_1} are move related to
  5565. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  5566. \code{y} and color it $0$, we can delete another move instruction.
  5567. \[
  5568. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5569. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5570. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5571. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5572. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5573. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  5574. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  5575. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5576. \draw (t0) to (t1);
  5577. \draw (t0) to (z);
  5578. \draw (z) to (y);
  5579. \draw (z) to (w);
  5580. \draw (x) to (w);
  5581. \draw (y) to (w);
  5582. \draw (v) to (w);
  5583. \end{tikzpicture}
  5584. \]
  5585. Now \code{w} is the most saturated, so we color it $2$.
  5586. \[
  5587. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5588. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5589. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5590. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5591. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  5592. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5593. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5594. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  5595. \draw (t0) to (t1);
  5596. \draw (t0) to (z);
  5597. \draw (z) to (y);
  5598. \draw (z) to (w);
  5599. \draw (x) to (w);
  5600. \draw (y) to (w);
  5601. \draw (v) to (w);
  5602. \end{tikzpicture}
  5603. \]
  5604. To finish the coloring, \code{x} and \code{v} get $0$ and
  5605. \code{tmp\_1} gets $1$.
  5606. \[
  5607. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5608. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5609. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5610. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5611. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  5612. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5613. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5614. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  5615. \draw (t0) to (t1);
  5616. \draw (t0) to (z);
  5617. \draw (z) to (y);
  5618. \draw (z) to (w);
  5619. \draw (x) to (w);
  5620. \draw (y) to (w);
  5621. \draw (v) to (w);
  5622. \end{tikzpicture}
  5623. \]
  5624. \fi}
  5625. So we have the following assignment of variables to registers.
  5626. {\if\edition\racketEd
  5627. \begin{gather*}
  5628. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5629. \ttm{w} \mapsto \key{\%rsi}, \,
  5630. \ttm{x} \mapsto \key{\%rcx}, \,
  5631. \ttm{y} \mapsto \key{\%rcx}, \,
  5632. \ttm{z} \mapsto \key{\%rdx}, \,
  5633. \ttm{t} \mapsto \key{\%rcx} \}
  5634. \end{gather*}
  5635. \fi}
  5636. {\if\edition\pythonEd
  5637. \begin{gather*}
  5638. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5639. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  5640. \ttm{x} \mapsto \key{\%rcx}, \,
  5641. \ttm{y} \mapsto \key{\%rcx}, \\
  5642. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5643. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5644. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5645. \end{gather*}
  5646. \fi}
  5647. We apply this register assignment to the running example, on the left,
  5648. to obtain the code in the middle. The \code{patch\_instructions} then
  5649. deletes the trivial moves to obtain the code on the right.
  5650. {\if\edition\racketEd
  5651. \begin{minipage}{0.25\textwidth}
  5652. \begin{lstlisting}
  5653. movq $1, v
  5654. movq $42, w
  5655. movq v, x
  5656. addq $7, x
  5657. movq x, y
  5658. movq x, z
  5659. addq w, z
  5660. movq y, t
  5661. negq t
  5662. movq z, %rax
  5663. addq t, %rax
  5664. jmp conclusion
  5665. \end{lstlisting}
  5666. \end{minipage}
  5667. $\Rightarrow\qquad$
  5668. \begin{minipage}{0.25\textwidth}
  5669. \begin{lstlisting}
  5670. movq $1, %rcx
  5671. movq $42, %rsi
  5672. movq %rcx, %rcx
  5673. addq $7, %rcx
  5674. movq %rcx, %rcx
  5675. movq %rcx, %rdx
  5676. addq %rsi, %rdx
  5677. movq %rcx, %rcx
  5678. negq %rcx
  5679. movq %rdx, %rax
  5680. addq %rcx, %rax
  5681. jmp conclusion
  5682. \end{lstlisting}
  5683. \end{minipage}
  5684. $\Rightarrow\qquad$
  5685. \begin{minipage}{0.25\textwidth}
  5686. \begin{lstlisting}
  5687. movq $1, %rcx
  5688. movq $42, %rsi
  5689. addq $7, %rcx
  5690. movq %rcx, %rdx
  5691. addq %rsi, %rdx
  5692. negq %rcx
  5693. movq %rdx, %rax
  5694. addq %rcx, %rax
  5695. jmp conclusion
  5696. \end{lstlisting}
  5697. \end{minipage}
  5698. \fi}
  5699. {\if\edition\pythonEd
  5700. \begin{minipage}{0.20\textwidth}
  5701. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5702. movq $1, v
  5703. movq $42, w
  5704. movq v, x
  5705. addq $7, x
  5706. movq x, y
  5707. movq x, z
  5708. addq w, z
  5709. movq y, tmp_0
  5710. negq tmp_0
  5711. movq z, tmp_1
  5712. addq tmp_0, tmp_1
  5713. movq tmp_1, %rdi
  5714. callq _print_int
  5715. \end{lstlisting}
  5716. \end{minipage}
  5717. ${\Rightarrow\qquad}$
  5718. \begin{minipage}{0.30\textwidth}
  5719. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5720. movq $1, %rcx
  5721. movq $42, -16(%rbp)
  5722. movq %rcx, %rcx
  5723. addq $7, %rcx
  5724. movq %rcx, %rcx
  5725. movq %rcx, -8(%rbp)
  5726. addq -16(%rbp), -8(%rbp)
  5727. movq %rcx, %rcx
  5728. negq %rcx
  5729. movq -8(%rbp), -8(%rbp)
  5730. addq %rcx, -8(%rbp)
  5731. movq -8(%rbp), %rdi
  5732. callq _print_int
  5733. \end{lstlisting}
  5734. \end{minipage}
  5735. ${\Rightarrow\qquad}$
  5736. \begin{minipage}{0.20\textwidth}
  5737. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5738. movq $1, %rcx
  5739. movq $42, -16(%rbp)
  5740. addq $7, %rcx
  5741. movq %rcx, -8(%rbp)
  5742. movq -16(%rbp), %rax
  5743. addq %rax, -8(%rbp)
  5744. negq %rcx
  5745. addq %rcx, -8(%rbp)
  5746. movq -8(%rbp), %rdi
  5747. callq print_int
  5748. \end{lstlisting}
  5749. \end{minipage}
  5750. \fi}
  5751. \begin{exercise}\normalfont
  5752. Change your implementation of \code{allocate\_registers} to take move
  5753. biasing into account. Create two new tests that include at least one
  5754. opportunity for move biasing and visually inspect the output x86
  5755. programs to make sure that your move biasing is working properly. Make
  5756. sure that your compiler still passes all of the tests.
  5757. \end{exercise}
  5758. %To do: another neat challenge would be to do
  5759. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  5760. %% \subsection{Output of the Running Example}
  5761. %% \label{sec:reg-alloc-output}
  5762. % challenge: prioritize variables based on execution frequencies
  5763. % and the number of uses of a variable
  5764. % challenge: enhance the coloring algorithm using Chaitin's
  5765. % approach of prioritizing high-degree variables
  5766. % by removing low-degree variables (coloring them later)
  5767. % from the interference graph
  5768. \section{Further Reading}
  5769. \label{sec:register-allocation-further-reading}
  5770. Early register allocation algorithms were developed for Fortran
  5771. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  5772. of graph coloring began in the late 1970s and early 1980s with the
  5773. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  5774. algorithm is based on the following observation of
  5775. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  5776. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  5777. $v$ removed is also $k$ colorable. To see why, suppose that the
  5778. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  5779. different colors, but since there are less than $k$ neighbors, there
  5780. will be one or more colors left over to use for coloring $v$ in $G$.
  5781. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  5782. less than $k$ from the graph and recursively colors the rest of the
  5783. graph. Upon returning from the recursion, it colors $v$ with one of
  5784. the available colors and returns. \citet{Chaitin:1982vn} augments
  5785. this algorithm to handle spilling as follows. If there are no vertices
  5786. of degree lower than $k$ then pick a vertex at random, spill it,
  5787. remove it from the graph, and proceed recursively to color the rest of
  5788. the graph.
  5789. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  5790. move-related and that don't interfere with each other, a process
  5791. called \emph{coalescing}. While coalescing decreases the number of
  5792. moves, it can make the graph more difficult to
  5793. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  5794. which two variables are merged only if they have fewer than $k$
  5795. neighbors of high degree. \citet{George:1996aa} observe that
  5796. conservative coalescing is sometimes too conservative and make it more
  5797. aggressive by iterating the coalescing with the removal of low-degree
  5798. vertices.
  5799. %
  5800. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  5801. also propose \emph{biased coloring} in which a variable is assigned to
  5802. the same color as another move-related variable if possible, as
  5803. discussed in Section~\ref{sec:move-biasing}.
  5804. %
  5805. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  5806. performs coalescing, graph coloring, and spill code insertion until
  5807. all variables have been assigned a location.
  5808. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  5809. spills variables that don't have to be: a high-degree variable can be
  5810. colorable if many of its neighbors are assigned the same color.
  5811. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  5812. high-degree vertex is not immediately spilled. Instead the decision is
  5813. deferred until after the recursive call, at which point it is apparent
  5814. whether there is actually an available color or not. We observe that
  5815. this algorithm is equivalent to the smallest-last ordering
  5816. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  5817. be registers and the rest to be stack locations.
  5818. %% biased coloring
  5819. Earlier editions of the compiler course at Indiana University
  5820. \citep{Dybvig:2010aa} were based on the algorithm of
  5821. \citet{Briggs:1994kx}.
  5822. The smallest-last ordering algorithm is one of many \emph{greedy}
  5823. coloring algorithms. A greedy coloring algorithm visits all the
  5824. vertices in a particular order and assigns each one the first
  5825. available color. An \emph{offline} greedy algorithm chooses the
  5826. ordering up-front, prior to assigning colors. The algorithm of
  5827. \citet{Chaitin:1981vl} should be considered offline because the vertex
  5828. ordering does not depend on the colors assigned. Other orderings are
  5829. possible. For example, \citet{Chow:1984ys} order variables according
  5830. to an estimate of runtime cost.
  5831. An \emph{online} greedy coloring algorithm uses information about the
  5832. current assignment of colors to influence the order in which the
  5833. remaining vertices are colored. The saturation-based algorithm
  5834. described in this chapter is one such algorithm. We choose to use
  5835. saturation-based coloring because it is fun to introduce graph
  5836. coloring via Sudoku!
  5837. A register allocator may choose to map each variable to just one
  5838. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  5839. variable to one or more locations. The later can be achieved by
  5840. \emph{live range splitting}, where a variable is replaced by several
  5841. variables that each handle part of its live
  5842. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  5843. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  5844. %% replacement algorithm, bottom-up local
  5845. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  5846. %% Cooper: top-down (priority bassed), bottom-up
  5847. %% top-down
  5848. %% order variables by priority (estimated cost)
  5849. %% caveat: split variables into two groups:
  5850. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  5851. %% color the constrained ones first
  5852. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  5853. %% cite J. Cocke for an algorithm that colors variables
  5854. %% in a high-degree first ordering
  5855. %Register Allocation via Usage Counts, Freiburghouse CACM
  5856. \citet{Palsberg:2007si} observe that many of the interference graphs
  5857. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  5858. that is, every cycle with four or more edges has an edge which is not
  5859. part of the cycle but which connects two vertices on the cycle. Such
  5860. graphs can be optimally colored by the greedy algorithm with a vertex
  5861. ordering determined by maximum cardinality search.
  5862. In situations where compile time is of utmost importance, such as in
  5863. just-in-time compilers, graph coloring algorithms can be too expensive
  5864. and the linear scan algorithm of \citet{Poletto:1999uq} may be more
  5865. appropriate.
  5866. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5867. \chapter{Booleans and Conditionals}
  5868. \label{ch:Lif}
  5869. \index{subject}{Boolean}
  5870. \index{subject}{control flow}
  5871. \index{subject}{conditional expression}
  5872. The \LangInt{} and \LangVar{} languages only have a single kind of
  5873. value, the integers. In this chapter we add a second kind of value,
  5874. the Booleans, to create the \LangIf{} language. The Boolean values
  5875. \emph{true} and \emph{false} are written \TRUE{} and \FALSE{}
  5876. respectively in \racket{Racket}\python{Python}. The \LangIf{}
  5877. language includes several operations that involve Booleans (\key{and},
  5878. \key{not}, \racket{\key{eq?}}\python{==}, \key{<}, etc.) and the
  5879. \key{if} expression \python{and statement}. With the addition of
  5880. \key{if}, programs can have non-trivial control flow which
  5881. %
  5882. \racket{impacts \code{explicate\_control} and liveness analysis}
  5883. %
  5884. \python{impacts liveness analysis and motivates a new pass named
  5885. \code{explicate\_control}}.
  5886. %
  5887. Also, because we now have two kinds of values, we need to handle
  5888. programs that apply an operation to the wrong kind of value, such as
  5889. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5890. There are two language design options for such situations. One option
  5891. is to signal an error and the other is to provide a wider
  5892. interpretation of the operation. \racket{The Racket
  5893. language}\python{Python} uses a mixture of these two options,
  5894. depending on the operation and the kind of value. For example, the
  5895. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  5896. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  5897. treats non-zero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  5898. %
  5899. \racket{On the other hand, \code{(car 1)} results in a run-time error
  5900. in Racket because \code{car} expects a pair.}
  5901. %
  5902. \python{On the other hand, \code{1[0]} results in a run-time error
  5903. in Python because an ``\code{int} object is not subscriptable''.}
  5904. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  5905. design choices as \racket{Racket}\python{Python}, except much of the
  5906. error detection happens at compile time instead of run
  5907. time\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  5908. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  5909. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed
  5910. Racket}\python{MyPy} reports a compile-time error
  5911. %
  5912. \racket{because Racket expects the type of the argument to be of the form
  5913. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  5914. %
  5915. \python{stating that a ``value of type \code{int} is not indexable''.}
  5916. The \LangIf{} language performs type checking during compilation like
  5917. \racket{Typed Racket}\python{MyPy}. In Chapter~\ref{ch:Rdyn} we study the
  5918. alternative choice, that is, a dynamically typed language like
  5919. \racket{Racket}\python{Python}.
  5920. The \LangIf{} language is a subset of \racket{Typed Racket}\python{MyPy};
  5921. for some operations we are more restrictive, for example, rejecting
  5922. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5923. This chapter is organized as follows. We begin by defining the syntax
  5924. and interpreter for the \LangIf{} language
  5925. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  5926. checking and define a type checker for \LangIf{}
  5927. (Section~\ref{sec:type-check-Lif}).
  5928. %
  5929. \racket{To compile \LangIf{} we need to enlarge the intermediate
  5930. language \LangCVar{} into \LangCIf{} (Section~\ref{sec:Cif}) and
  5931. \LangXInt{} into \LangXIf{} (Section~\ref{sec:x86-if}).}
  5932. %
  5933. The remaining sections of this chapter discuss how the addition of
  5934. Booleans and conditional control flow to the language requires changes
  5935. to the existing compiler passes and the addition of new ones. In
  5936. particular, we introduce the \code{shrink} pass to translates some
  5937. operators into others, thereby reducing the number of operators that
  5938. need to be handled in later passes.
  5939. %
  5940. The main event of this chapter is the \code{explicate\_control} pass
  5941. that is responsible for translating \code{if}'s into conditional
  5942. \code{goto}'s (Section~\ref{sec:explicate-control-Lif}).
  5943. %
  5944. Regarding register allocation, there is the interesting question of
  5945. how to handle conditional \code{goto}'s during liveness analysis.
  5946. \section{The \LangIf{} Language}
  5947. \label{sec:lang-if}
  5948. The concrete syntax of the \LangIf{} language is defined in
  5949. Figure~\ref{fig:Lif-concrete-syntax} and the abstract syntax is defined
  5950. in Figure~\ref{fig:Lif-syntax}. The \LangIf{} language includes all of
  5951. \LangVar{}\racket{(shown in gray)}, the Boolean literals \TRUE{} and
  5952. \FALSE{}, and the \code{if} expression \python{and statement}. We expand the
  5953. operators to include
  5954. \begin{enumerate}
  5955. \item subtraction on integers,
  5956. \item the logical operators \key{and}, \key{or}, and \key{not},
  5957. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  5958. for comparing integers or Booleans for equality, and
  5959. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  5960. comparing integers.
  5961. \end{enumerate}
  5962. \racket{We reorganize the abstract syntax for the primitive
  5963. operations in Figure~\ref{fig:Lif-syntax}, using only one grammar
  5964. rule for all of them. This means that the grammar no longer checks
  5965. whether the arity of an operators matches the number of
  5966. arguments. That responsibility is moved to the type checker for
  5967. \LangIf{}, which we introduce in Section~\ref{sec:type-check-Lif}.}
  5968. \newcommand{\LifGrammarRacket}{
  5969. \begin{array}{lcl}
  5970. \Type &::=& \key{Boolean} \\
  5971. \itm{bool} &::=& \TRUE \MID \FALSE \\
  5972. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  5973. \Exp &::=& \CSUB{\Exp}{\Exp} \MID \itm{bool}
  5974. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  5975. \MID (\key{not}\;\Exp) \\
  5976. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  5977. \end{array}
  5978. }
  5979. \newcommand{\LifAST}{
  5980. \begin{array}{lcl}
  5981. \Type &::=& \key{Boolean} \\
  5982. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  5983. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  5984. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  5985. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  5986. \end{array}
  5987. }
  5988. \newcommand{\LintOpAST}{
  5989. \begin{array}{rcl}
  5990. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  5991. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  5992. \end{array}
  5993. }
  5994. \newcommand{\LifGrammarPython}{
  5995. \begin{array}{rcl}
  5996. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  5997. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  5998. \MID \key{not}~\Exp \\
  5999. &\MID& \Exp ~\itm{cmp} ~\Exp
  6000. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  6001. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  6002. \end{array}
  6003. }
  6004. \newcommand{\LifASTPython}{
  6005. \begin{array}{lcl}
  6006. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  6007. \itm{unaryop} &::=& \code{Not()} \\
  6008. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  6009. \itm{bool} &::=& \code{True} \MID \code{False} \\
  6010. \Exp &::=& \BOOL{\itm{bool}}
  6011. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  6012. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6013. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  6014. \end{array}
  6015. }
  6016. \begin{figure}[tp]
  6017. \centering
  6018. \fbox{
  6019. \begin{minipage}{0.96\textwidth}
  6020. {\if\edition\racketEd
  6021. \[
  6022. \begin{array}{l}
  6023. \gray{\LintGrammarRacket{}} \\ \hline
  6024. \gray{\LvarGrammarRacket{}} \\ \hline
  6025. \LifGrammarRacket{} \\
  6026. \begin{array}{lcl}
  6027. \LangIfM{} &::=& \Exp
  6028. \end{array}
  6029. \end{array}
  6030. \]
  6031. \fi}
  6032. {\if\edition\pythonEd
  6033. \[
  6034. \begin{array}{l}
  6035. \gray{\LintGrammarPython} \\ \hline
  6036. \gray{\LvarGrammarPython} \\ \hline
  6037. \LifGrammarPython \\
  6038. \begin{array}{rcl}
  6039. \LangIfM{} &::=& \Stmt^{*}
  6040. \end{array}
  6041. \end{array}
  6042. \]
  6043. \fi}
  6044. \end{minipage}
  6045. }
  6046. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  6047. (Figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  6048. \label{fig:Lif-concrete-syntax}
  6049. \end{figure}
  6050. \begin{figure}[tp]
  6051. \centering
  6052. \fbox{
  6053. \begin{minipage}{0.96\textwidth}
  6054. {\if\edition\racketEd
  6055. \[
  6056. \begin{array}{l}
  6057. \gray{\LintOpAST} \\ \hline
  6058. \gray{\LvarAST{}} \\ \hline
  6059. \LifAST{} \\
  6060. \begin{array}{lcl}
  6061. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  6062. \end{array}
  6063. \end{array}
  6064. \]
  6065. \fi}
  6066. {\if\edition\pythonEd
  6067. \[
  6068. \begin{array}{l}
  6069. \gray{\LintASTPython} \\ \hline
  6070. \gray{\LvarASTPython} \\ \hline
  6071. \LifASTPython \\
  6072. \begin{array}{lcl}
  6073. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  6074. \end{array}
  6075. \end{array}
  6076. \]
  6077. \fi}
  6078. \end{minipage}
  6079. }
  6080. \caption{The abstract syntax of \LangIf{}.}
  6081. \label{fig:Lif-syntax}
  6082. \end{figure}
  6083. Figure~\ref{fig:interp-Lif} defines the interpreter for \LangIf{},
  6084. which inherits from the interpreter for \LangVar{}
  6085. (Figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  6086. evaluate to the corresponding Boolean values. The conditional
  6087. expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates expression $e_1$
  6088. and then either evaluates $e_2$ or $e_3$ depending on whether
  6089. $e_1$ produced \TRUE{} or \FALSE{}. The logical operations
  6090. \code{and}, \code{or}, and \code{not} behave according to propositional logic,
  6091. but note that the \code{and} and \code{or} operations are
  6092. short-circuiting.
  6093. %
  6094. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  6095. is not evaluated if $e_1$ evaluates to \FALSE{}.
  6096. %
  6097. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  6098. evaluated if $e_1$ evaluates to \TRUE{}.
  6099. \racket{With the increase in the number of primitive operations, the
  6100. interpreter would become repetitive without some care. We refactor
  6101. the case for \code{Prim}, moving the code that differs with each
  6102. operation into the \code{interp\_op} method shown in in
  6103. Figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  6104. \code{or} operations separately because of their short-circuiting
  6105. behavior.}
  6106. \begin{figure}[tbp]
  6107. {\if\edition\racketEd
  6108. \begin{lstlisting}
  6109. (define interp_Lif_class
  6110. (class interp_Lvar_class
  6111. (super-new)
  6112. (define/public (interp_op op) ...)
  6113. (define/override ((interp_exp env) e)
  6114. (define recur (interp_exp env))
  6115. (match e
  6116. [(Bool b) b]
  6117. [(If cnd thn els)
  6118. (match (recur cnd)
  6119. [#t (recur thn)]
  6120. [#f (recur els)])]
  6121. [(Prim 'and (list e1 e2))
  6122. (match (recur e1)
  6123. [#t (match (recur e2) [#t #t] [#f #f])]
  6124. [#f #f])]
  6125. [(Prim 'or (list e1 e2))
  6126. (define v1 (recur e1))
  6127. (match v1
  6128. [#t #t]
  6129. [#f (match (recur e2) [#t #t] [#f #f])])]
  6130. [(Prim op args)
  6131. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  6132. [else ((super interp_exp env) e)]))
  6133. ))
  6134. (define (interp_Lif p)
  6135. (send (new interp_Lif_class) interp_program p))
  6136. \end{lstlisting}
  6137. \fi}
  6138. {\if\edition\pythonEd
  6139. \begin{lstlisting}
  6140. class InterpLif(InterpLvar):
  6141. def interp_exp(self, e, env):
  6142. match e:
  6143. case IfExp(test, body, orelse):
  6144. if self.interp_exp(test, env):
  6145. return self.interp_exp(body, env)
  6146. else:
  6147. return self.interp_exp(orelse, env)
  6148. case BinOp(left, Sub(), right):
  6149. return self.interp_exp(left, env) - self.interp_exp(right, env)
  6150. case UnaryOp(Not(), v):
  6151. return not self.interp_exp(v, env)
  6152. case BoolOp(And(), values):
  6153. if self.interp_exp(values[0], env):
  6154. return self.interp_exp(values[1], env)
  6155. else:
  6156. return False
  6157. case BoolOp(Or(), values):
  6158. if self.interp_exp(values[0], env):
  6159. return True
  6160. else:
  6161. return self.interp_exp(values[1], env)
  6162. case Compare(left, [cmp], [right]):
  6163. l = self.interp_exp(left, env)
  6164. r = self.interp_exp(right, env)
  6165. return self.interp_cmp(cmp)(l, r)
  6166. case _:
  6167. return super().interp_exp(e, env)
  6168. def interp_stmts(self, ss, env):
  6169. if len(ss) == 0:
  6170. return
  6171. match ss[0]:
  6172. case If(test, body, orelse):
  6173. if self.interp_exp(test, env):
  6174. return self.interp_stmts(body + ss[1:], env)
  6175. else:
  6176. return self.interp_stmts(orelse + ss[1:], env)
  6177. case _:
  6178. return super().interp_stmts(ss, env)
  6179. ...
  6180. \end{lstlisting}
  6181. \fi}
  6182. \caption{Interpreter for the \LangIf{} language. \racket{(See
  6183. Figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  6184. \python{(See Figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  6185. \label{fig:interp-Lif}
  6186. \end{figure}
  6187. {\if\edition\racketEd
  6188. \begin{figure}[tbp]
  6189. \begin{lstlisting}
  6190. (define/public (interp_op op)
  6191. (match op
  6192. ['+ fx+]
  6193. ['- fx-]
  6194. ['read read-fixnum]
  6195. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  6196. ['eq? (lambda (v1 v2)
  6197. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6198. (and (boolean? v1) (boolean? v2))
  6199. (and (vector? v1) (vector? v2)))
  6200. (eq? v1 v2)]))]
  6201. ['< (lambda (v1 v2)
  6202. (cond [(and (fixnum? v1) (fixnum? v2))
  6203. (< v1 v2)]))]
  6204. ['<= (lambda (v1 v2)
  6205. (cond [(and (fixnum? v1) (fixnum? v2))
  6206. (<= v1 v2)]))]
  6207. ['> (lambda (v1 v2)
  6208. (cond [(and (fixnum? v1) (fixnum? v2))
  6209. (> v1 v2)]))]
  6210. ['>= (lambda (v1 v2)
  6211. (cond [(and (fixnum? v1) (fixnum? v2))
  6212. (>= v1 v2)]))]
  6213. [else (error 'interp_op "unknown operator")]))
  6214. \end{lstlisting}
  6215. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  6216. \label{fig:interp-op-Lif}
  6217. \end{figure}
  6218. \fi}
  6219. {\if\edition\pythonEd
  6220. \begin{figure}
  6221. \begin{lstlisting}
  6222. class InterpLif(InterpLvar):
  6223. ...
  6224. def interp_cmp(self, cmp):
  6225. match cmp:
  6226. case Lt():
  6227. return lambda x, y: x < y
  6228. case LtE():
  6229. return lambda x, y: x <= y
  6230. case Gt():
  6231. return lambda x, y: x > y
  6232. case GtE():
  6233. return lambda x, y: x >= y
  6234. case Eq():
  6235. return lambda x, y: x == y
  6236. case NotEq():
  6237. return lambda x, y: x != y
  6238. \end{lstlisting}
  6239. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  6240. \label{fig:interp-cmp-Lif}
  6241. \end{figure}
  6242. \fi}
  6243. \section{Type Checking \LangIf{} Programs}
  6244. \label{sec:type-check-Lif}
  6245. \index{subject}{type checking}
  6246. \index{subject}{semantic analysis}
  6247. It is helpful to think about type checking in two complementary
  6248. ways. A type checker predicts the type of value that will be produced
  6249. by each expression in the program. For \LangIf{}, we have just two types,
  6250. \INTTY{} and \BOOLTY{}. So a type checker should predict that
  6251. {\if\edition\racketEd
  6252. \begin{lstlisting}
  6253. (+ 10 (- (+ 12 20)))
  6254. \end{lstlisting}
  6255. \fi}
  6256. {\if\edition\pythonEd
  6257. \begin{lstlisting}
  6258. 10 + -(12 + 20)
  6259. \end{lstlisting}
  6260. \fi}
  6261. \noindent produces a value of type \INTTY{} while
  6262. {\if\edition\racketEd
  6263. \begin{lstlisting}
  6264. (and (not #f) #t)
  6265. \end{lstlisting}
  6266. \fi}
  6267. {\if\edition\pythonEd
  6268. \begin{lstlisting}
  6269. (not False) and True
  6270. \end{lstlisting}
  6271. \fi}
  6272. \noindent produces a value of type \BOOLTY{}.
  6273. A second way to think about type checking is that it enforces a set of
  6274. rules about which operators can be applied to which kinds of
  6275. values. For example, our type checker for \LangIf{} signals an error
  6276. for the below expression {\if\edition\racketEd
  6277. \begin{lstlisting}
  6278. (not (+ 10 (- (+ 12 20))))
  6279. \end{lstlisting}
  6280. \fi}
  6281. {\if\edition\pythonEd
  6282. \begin{lstlisting}
  6283. not (10 + -(12 + 20))
  6284. \end{lstlisting}
  6285. \fi}
  6286. The subexpression
  6287. \racket{\code{(+ 10 (- (+ 12 20)))}}\python{\code{(10 + -(12 + 20))}}
  6288. has type \INTTY{} but the type checker enforces the rule that the argument of
  6289. \code{not} must be an expression of type \BOOLTY{}.
  6290. We implement type checking using classes and methods because they
  6291. provide the open recursion needed to reuse code as we extend the type
  6292. checker in later chapters, analogous to the use of classes and methods
  6293. for the interpreters (Section~\ref{sec:extensible-interp}).
  6294. We separate the type checker for the \LangVar{} subset into its own
  6295. class, shown in Figure~\ref{fig:type-check-Lvar}. The type checker for
  6296. \LangIf{} is shown in Figure~\ref{fig:type-check-Lif} and it inherits
  6297. from the type checker for \LangVar{}. These type checkers are in the
  6298. files
  6299. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  6300. and
  6301. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  6302. of the support code.
  6303. %
  6304. Each type checker is a structurally recursive function over the AST.
  6305. Given an input expression \code{e}, the type checker either signals an
  6306. error or returns \racket{an expression and} its type (\INTTY{} or
  6307. \BOOLTY{}).
  6308. %
  6309. \racket{It returns an expression because there are situations in which
  6310. we want to change or update the expression.}
  6311. Next we discuss the \code{type\_check\_exp} function of \LangVar{} in
  6312. Figure~\ref{fig:type-check-Lvar}. The type of an integer constant is
  6313. \INTTY{}. To handle variables, the type checker uses the environment
  6314. \code{env} to map variables to types.
  6315. %
  6316. \racket{Consider the case for \key{let}. We type check the
  6317. initializing expression to obtain its type \key{T} and then
  6318. associate type \code{T} with the variable \code{x} in the
  6319. environment used to type check the body of the \key{let}. Thus,
  6320. when the type checker encounters a use of variable \code{x}, it can
  6321. find its type in the environment.}
  6322. %
  6323. \python{Consider the case for assignment. We type check the
  6324. initializing expression to obtain its type \key{t}. If the variable
  6325. \code{lhs.id} is already in the environment because there was a
  6326. prior assignment, we check that this initializer has the same type
  6327. as the prior one. If this is the first assignment to the variable,
  6328. we associate type \code{t} with the variable \code{lhs.id} in the
  6329. environment. Thus, when the type checker encounters a use of
  6330. variable \code{x}, it can find its type in the environment.}
  6331. %
  6332. \racket{Regarding primitive operators, we recursively analyze the
  6333. arguments and then invoke \code{type\_check\_op} to check whether
  6334. the argument types are allowed.}
  6335. %
  6336. \python{Regarding addition and negation, we recursively analyze the
  6337. arguments, check that they have type \INT{}, and return \INT{}.}
  6338. \racket{Several auxiliary methods are used in the type checker. The
  6339. method \code{operator-types} defines a dictionary that maps the
  6340. operator names to their parameter and return types. The
  6341. \code{type-equal?} method determines whether two types are equal,
  6342. which for now simply dispatches to \code{equal?} (deep
  6343. equality). The \code{check-type-equal?} method triggers an error if
  6344. the two types are not equal. The \code{type-check-op} method looks
  6345. up the operator in the \code{operator-types} dictionary and then
  6346. checks whether the argument types are equal to the parameter types.
  6347. The result is the return type of the operator.}
  6348. %
  6349. \python{The auxiliary method \code{check\_type\_equal} method triggers
  6350. an error if the two types are not equal.}
  6351. \begin{figure}[tbp]
  6352. {\if\edition\racketEd
  6353. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6354. (define type-check-Lvar_class
  6355. (class object%
  6356. (super-new)
  6357. (define/public (operator-types)
  6358. '((+ . ((Integer Integer) . Integer))
  6359. (- . ((Integer) . Integer))
  6360. (read . (() . Integer))))
  6361. (define/public (type-equal? t1 t2) (equal? t1 t2))
  6362. (define/public (check-type-equal? t1 t2 e)
  6363. (unless (type-equal? t1 t2)
  6364. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  6365. (define/public (type-check-op op arg-types e)
  6366. (match (dict-ref (operator-types) op)
  6367. [`(,param-types . ,return-type)
  6368. (for ([at arg-types] [pt param-types])
  6369. (check-type-equal? at pt e))
  6370. return-type]
  6371. [else (error 'type-check-op "unrecognized ~a" op)]))
  6372. (define/public (type-check-exp env)
  6373. (lambda (e)
  6374. (match e
  6375. [(Int n) (values (Int n) 'Integer)]
  6376. [(Var x) (values (Var x) (dict-ref env x))]
  6377. [(Let x e body)
  6378. (define-values (e^ Te) ((type-check-exp env) e))
  6379. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  6380. (values (Let x e^ b) Tb)]
  6381. [(Prim op es)
  6382. (define-values (new-es ts)
  6383. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  6384. (values (Prim op new-es) (type-check-op op ts e))]
  6385. [else (error 'type-check-exp "couldn't match" e)])))
  6386. (define/public (type-check-program e)
  6387. (match e
  6388. [(Program info body)
  6389. (define-values (body^ Tb) ((type-check-exp '()) body))
  6390. (check-type-equal? Tb 'Integer body)
  6391. (Program info body^)]
  6392. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  6393. ))
  6394. (define (type-check-Lvar p)
  6395. (send (new type-check-Lvar_class) type-check-program p))
  6396. \end{lstlisting}
  6397. \fi}
  6398. {\if\edition\pythonEd
  6399. \begin{lstlisting}
  6400. class TypeCheckLvar:
  6401. def check_type_equal(self, t1, t2, e):
  6402. if t1 != t2:
  6403. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  6404. raise Exception(msg)
  6405. def type_check_exp(self, e, env):
  6406. match e:
  6407. case BinOp(left, Add(), right):
  6408. l = self.type_check_exp(left, env)
  6409. check_type_equal(l, int, left)
  6410. r = self.type_check_exp(right, env)
  6411. check_type_equal(r, int, right)
  6412. return int
  6413. case UnaryOp(USub(), v):
  6414. t = self.type_check_exp(v, env)
  6415. check_type_equal(t, int, v)
  6416. return int
  6417. case Name(id):
  6418. return env[id]
  6419. case Constant(value) if isinstance(value, int):
  6420. return int
  6421. case Call(Name('input_int'), []):
  6422. return int
  6423. def type_check_stmts(self, ss, env):
  6424. if len(ss) == 0:
  6425. return
  6426. match ss[0]:
  6427. case Assign([lhs], value):
  6428. t = self.type_check_exp(value, env)
  6429. if lhs.id in env:
  6430. check_type_equal(env[lhs.id], t, value)
  6431. else:
  6432. env[lhs.id] = t
  6433. return self.type_check_stmts(ss[1:], env)
  6434. case Expr(Call(Name('print'), [arg])):
  6435. t = self.type_check_exp(arg, env)
  6436. check_type_equal(t, int, arg)
  6437. return self.type_check_stmts(ss[1:], env)
  6438. case Expr(value):
  6439. self.type_check_exp(value, env)
  6440. return self.type_check_stmts(ss[1:], env)
  6441. def type_check_P(self, p):
  6442. match p:
  6443. case Module(body):
  6444. self.type_check_stmts(body, {})
  6445. \end{lstlisting}
  6446. \fi}
  6447. \caption{Type checker for the \LangVar{} language.}
  6448. \label{fig:type-check-Lvar}
  6449. \end{figure}
  6450. \begin{figure}[tbp]
  6451. {\if\edition\racketEd
  6452. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6453. (define type-check-Lif_class
  6454. (class type-check-Lvar_class
  6455. (super-new)
  6456. (inherit check-type-equal?)
  6457. (define/override (operator-types)
  6458. (append '((- . ((Integer Integer) . Integer))
  6459. (and . ((Boolean Boolean) . Boolean))
  6460. (or . ((Boolean Boolean) . Boolean))
  6461. (< . ((Integer Integer) . Boolean))
  6462. (<= . ((Integer Integer) . Boolean))
  6463. (> . ((Integer Integer) . Boolean))
  6464. (>= . ((Integer Integer) . Boolean))
  6465. (not . ((Boolean) . Boolean))
  6466. )
  6467. (super operator-types)))
  6468. (define/override (type-check-exp env)
  6469. (lambda (e)
  6470. (match e
  6471. [(Bool b) (values (Bool b) 'Boolean)]
  6472. [(Prim 'eq? (list e1 e2))
  6473. (define-values (e1^ T1) ((type-check-exp env) e1))
  6474. (define-values (e2^ T2) ((type-check-exp env) e2))
  6475. (check-type-equal? T1 T2 e)
  6476. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  6477. [(If cnd thn els)
  6478. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  6479. (define-values (thn^ Tt) ((type-check-exp env) thn))
  6480. (define-values (els^ Te) ((type-check-exp env) els))
  6481. (check-type-equal? Tc 'Boolean e)
  6482. (check-type-equal? Tt Te e)
  6483. (values (If cnd^ thn^ els^) Te)]
  6484. [else ((super type-check-exp env) e)])))
  6485. ))
  6486. (define (type-check-Lif p)
  6487. (send (new type-check-Lif_class) type-check-program p))
  6488. \end{lstlisting}
  6489. \fi}
  6490. {\if\edition\pythonEd
  6491. \begin{lstlisting}
  6492. class TypeCheckLif(TypeCheckLvar):
  6493. def type_check_exp(self, e, env):
  6494. match e:
  6495. case Constant(value) if isinstance(value, bool):
  6496. return bool
  6497. case BinOp(left, Sub(), right):
  6498. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6499. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6500. return int
  6501. case UnaryOp(Not(), v):
  6502. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  6503. return bool
  6504. case BoolOp(op, values):
  6505. left = values[0] ; right = values[1]
  6506. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  6507. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  6508. return bool
  6509. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  6510. or isinstance(cmp, NotEq):
  6511. l = self.type_check_exp(left, env)
  6512. r = self.type_check_exp(right, env)
  6513. check_type_equal(l, r, e)
  6514. return bool
  6515. case Compare(left, [cmp], [right]):
  6516. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6517. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6518. return bool
  6519. case IfExp(test, body, orelse):
  6520. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6521. b = self.type_check_exp(body, env)
  6522. o = self.type_check_exp(orelse, env)
  6523. check_type_equal(b, o, e)
  6524. return b
  6525. case _:
  6526. return super().type_check_exp(e, env)
  6527. def type_check_stmts(self, ss, env):
  6528. if len(ss) == 0:
  6529. return
  6530. match ss[0]:
  6531. case If(test, body, orelse):
  6532. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6533. b = self.type_check_stmts(body, env)
  6534. o = self.type_check_stmts(orelse, env)
  6535. check_type_equal(b, o, ss[0])
  6536. return self.type_check_stmts(ss[1:], env)
  6537. case _:
  6538. return super().type_check_stmts(ss, env)
  6539. \end{lstlisting}
  6540. \fi}
  6541. \caption{Type checker for the \LangIf{} language.}
  6542. \label{fig:type-check-Lif}
  6543. \end{figure}
  6544. We shift our focus to Figure~\ref{fig:type-check-Lif}, the type
  6545. checker for \LangIf{}.
  6546. %
  6547. The type of a Boolean constant is \BOOLTY{}.
  6548. %
  6549. \racket{The \code{operator-types} function adds dictionary entries for
  6550. the other new operators.}
  6551. %
  6552. \python{Subtraction requires its arguments to be of type \INTTY{} and produces
  6553. an \INTTY{}. Negation requires its argument to be a \BOOLTY{} and
  6554. produces a \BOOLTY{}. Similarly for logical and and logical or. }
  6555. %
  6556. The equality operators requires the two arguments to have the same
  6557. type.
  6558. %
  6559. \python{The other comparisons (less-than, etc.) require their
  6560. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  6561. %
  6562. The condition of an \code{if} must
  6563. be of \BOOLTY{} type and the two branches must have the same type.
  6564. \begin{exercise}\normalfont
  6565. Create 10 new test programs in \LangIf{}. Half of the programs should
  6566. have a type error. For those programs, create an empty file with the
  6567. same base name but with file extension \code{.tyerr}. For example, if
  6568. the test
  6569. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  6570. is expected to error, then create
  6571. an empty file named \code{cond\_test\_14.tyerr}.
  6572. %
  6573. \racket{This indicates to \code{interp-tests} and
  6574. \code{compiler-tests} that a type error is expected. }
  6575. %
  6576. \racket{This indicates to the \code{run-tests.rkt} scripts that a type
  6577. error is expected.}
  6578. %
  6579. The other half of the test programs should not have type errors.
  6580. %
  6581. \racket{In the \code{run-tests.rkt} script, change the second argument
  6582. of \code{interp-tests} and \code{compiler-tests} to
  6583. \code{type-check-Lif}, which causes the type checker to run prior to
  6584. the compiler passes. Temporarily change the \code{passes} to an
  6585. empty list and run the script, thereby checking that the new test
  6586. programs either type check or not as intended.}
  6587. %
  6588. Run the test script to check that these test programs type check as
  6589. expected.
  6590. \end{exercise}
  6591. \clearpage
  6592. \section{The \LangCIf{} Intermediate Language}
  6593. \label{sec:Cif}
  6594. {\if\edition\racketEd
  6595. %
  6596. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  6597. \LangCIf{} intermediate language and Figure~\ref{fig:c1-syntax}
  6598. defines its abstract syntax. Compared to \LangCVar{}, the \LangCIf{}
  6599. language adds logical and comparison operators to the \Exp{}
  6600. non-terminal and the literals \TRUE{} and \FALSE{} to the \Arg{}
  6601. non-terminal.
  6602. Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
  6603. statements to the \Tail{} non-terminal. The condition of an \code{if}
  6604. statement is a comparison operation and the branches are \code{goto}
  6605. statements, making it straightforward to compile \code{if} statements
  6606. to x86.
  6607. %
  6608. \fi}
  6609. %
  6610. {\if\edition\pythonEd
  6611. %
  6612. The output of \key{explicate\_control} is a language similar to the
  6613. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  6614. \code{goto} statements, so we name it \LangCIf{}. The
  6615. concrete syntax for \LangCIf{} is defined in
  6616. Figure~\ref{fig:c1-concrete-syntax}
  6617. and the abstract syntax is defined in Figure~\ref{fig:c1-syntax}.
  6618. %
  6619. The \LangCIf{} language supports the same operators as \LangIf{} but
  6620. the arguments of operators are restricted to atomic expressions. The
  6621. \LangCIf{} language does not include \code{if} expressions but it does
  6622. include a restricted form of \code{if} statment. The condition must be
  6623. a comparison and the two branches may only contain \code{goto}
  6624. statements. These restrictions make it easier to translate \code{if}
  6625. statements to x86.
  6626. %
  6627. \fi}
  6628. %
  6629. The \key{CProgram} construct contains
  6630. %
  6631. \racket{an alist}\python{a dictionary}
  6632. %
  6633. mapping labels to $\Tail$ expressions, which can be return statements,
  6634. an assignment statement followed by a $\Tail$ expression, a
  6635. \code{goto}, or a conditional \code{goto}.
  6636. \begin{figure}[tbp]
  6637. \fbox{
  6638. \begin{minipage}{0.96\textwidth}
  6639. \small
  6640. \[
  6641. \begin{array}{lcl}
  6642. \Atm &::=& \gray{ \Int \MID \Var } \MID \itm{bool} \\
  6643. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6644. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} \MID \key{(-}~\Atm~\Atm\key{)} } \\
  6645. &\MID& \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  6646. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
  6647. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  6648. \MID \key{goto}~\itm{label}\key{;}\\
  6649. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
  6650. \LangCIfM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  6651. \end{array}
  6652. \]
  6653. \end{minipage}
  6654. }
  6655. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  6656. \label{fig:c1-concrete-syntax}
  6657. \end{figure}
  6658. \begin{figure}[tp]
  6659. \fbox{
  6660. \begin{minipage}{0.96\textwidth}
  6661. \small
  6662. {\if\edition\racketEd
  6663. \[
  6664. \begin{array}{lcl}
  6665. \Atm &::=& \gray{\INT{\Int} \MID \VAR{\Var}} \MID \BOOL{\itm{bool}} \\
  6666. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6667. \Exp &::= & \gray{ \Atm \MID \READ{} }\\
  6668. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  6669. &\MID& \UNIOP{\key{'not}}{\Atm}
  6670. \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  6671. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
  6672. \Tail &::= & \gray{\RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail} }
  6673. \MID \GOTO{\itm{label}} \\
  6674. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
  6675. \LangCIfM{} & ::= & \gray{\CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}}
  6676. \end{array}
  6677. \]
  6678. \fi}
  6679. {\if\edition\pythonEd
  6680. \[
  6681. \begin{array}{lcl}
  6682. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  6683. \Exp &::= & \Atm \MID \READ{} \\
  6684. &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  6685. \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  6686. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm}
  6687. \MID \BOOLOP{\itm{boolop}}{\Atm}{\Atm} \\
  6688. \Stmt &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  6689. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  6690. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  6691. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS} \\
  6692. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\,\key{:}\,\Stmt^{*}, \ldots \RC}
  6693. \end{array}
  6694. \]
  6695. \fi}
  6696. \end{minipage}
  6697. }
  6698. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  6699. (Figure~\ref{fig:c0-syntax})}.}
  6700. \label{fig:c1-syntax}
  6701. \end{figure}
  6702. \section{The \LangXIf{} Language}
  6703. \label{sec:x86-if}
  6704. \index{subject}{x86} To implement the new logical operations, the comparison
  6705. operations, and the \key{if} expression, we need to delve further into
  6706. the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
  6707. define the concrete and abstract syntax for the \LangXIf{} subset
  6708. of x86, which includes instructions for logical operations,
  6709. comparisons, and \racket{conditional} jumps.
  6710. One challenge is that x86 does not provide an instruction that
  6711. directly implements logical negation (\code{not} in \LangIf{} and
  6712. \LangCIf{}). However, the \code{xorq} instruction can be used to
  6713. encode \code{not}. The \key{xorq} instruction takes two arguments,
  6714. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  6715. bit of its arguments, and writes the results into its second argument.
  6716. Recall the truth table for exclusive-or:
  6717. \begin{center}
  6718. \begin{tabular}{l|cc}
  6719. & 0 & 1 \\ \hline
  6720. 0 & 0 & 1 \\
  6721. 1 & 1 & 0
  6722. \end{tabular}
  6723. \end{center}
  6724. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  6725. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  6726. for the bit $1$, the result is the opposite of the second bit. Thus,
  6727. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  6728. the first argument as follows, where $\Arg$ is the translation of
  6729. $\Atm$.
  6730. \[
  6731. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  6732. \qquad\Rightarrow\qquad
  6733. \begin{array}{l}
  6734. \key{movq}~ \Arg\key{,} \Var\\
  6735. \key{xorq}~ \key{\$1,} \Var
  6736. \end{array}
  6737. \]
  6738. \begin{figure}[tp]
  6739. \fbox{
  6740. \begin{minipage}{0.96\textwidth}
  6741. \[
  6742. \begin{array}{lcl}
  6743. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6744. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6745. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} } \MID \key{\%}\itm{bytereg}\\
  6746. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6747. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \MID
  6748. \key{subq} \; \Arg\key{,} \Arg \MID
  6749. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID } \\
  6750. && \gray{ \key{callq} \; \itm{label} \MID
  6751. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \racket{\key{jmp}\,\itm{label} \MID} } \python{\key{jmp}\,\itm{label} \MID} \\
  6752. && \racket{\gray{ \itm{label}\key{:}\; \Instr }}\python{\itm{label}\key{:}\; \Instr}
  6753. \MID \key{xorq}~\Arg\key{,}~\Arg
  6754. \MID \key{cmpq}~\Arg\key{,}~\Arg \MID \\
  6755. && \key{set}cc~\Arg
  6756. \MID \key{movzbq}~\Arg\key{,}~\Arg
  6757. \MID \key{j}cc~\itm{label}
  6758. \\
  6759. \LangXIfM{} &::= & \gray{ \key{.globl main} }\\
  6760. & & \gray{ \key{main:} \; \Instr\ldots }
  6761. \end{array}
  6762. \]
  6763. \end{minipage}
  6764. }
  6765. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  6766. \label{fig:x86-1-concrete}
  6767. \end{figure}
  6768. \begin{figure}[tp]
  6769. \fbox{
  6770. \begin{minipage}{0.98\textwidth}
  6771. \small
  6772. {\if\edition\racketEd
  6773. \[
  6774. \begin{array}{lcl}
  6775. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6776. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6777. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6778. \MID \BYTEREG{\itm{bytereg}} \\
  6779. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6780. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6781. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6782. &\MID& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  6783. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6784. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6785. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} } \\
  6786. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6787. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6788. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6789. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6790. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}} \\
  6791. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  6792. \LangXIfM{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  6793. \end{array}
  6794. \]
  6795. \fi}
  6796. %
  6797. {\if\edition\pythonEd
  6798. \[
  6799. \begin{array}{lcl}
  6800. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6801. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6802. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6803. \MID \BYTEREG{\itm{bytereg}} \\
  6804. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6805. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6806. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6807. &\MID& \gray{ \BININSTR{\code{movq}}{\Arg}{\Arg}
  6808. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6809. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6810. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  6811. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6812. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6813. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6814. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6815. &\MID& \JMPIF{\key{'}\itm{cc}\key{'}}{\itm{label}} \\
  6816. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Instr^{*} \key{,} \ldots \RC }
  6817. \end{array}
  6818. \]
  6819. \fi}
  6820. \end{minipage}
  6821. }
  6822. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  6823. \label{fig:x86-1}
  6824. \end{figure}
  6825. Next we consider the x86 instructions that are relevant for compiling
  6826. the comparison operations. The \key{cmpq} instruction compares its two
  6827. arguments to determine whether one argument is less than, equal, or
  6828. greater than the other argument. The \key{cmpq} instruction is unusual
  6829. regarding the order of its arguments and where the result is
  6830. placed. The argument order is backwards: if you want to test whether
  6831. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  6832. \key{cmpq} is placed in the special EFLAGS register. This register
  6833. cannot be accessed directly but it can be queried by a number of
  6834. instructions, including the \key{set} instruction. The instruction
  6835. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  6836. depending on whether the comparison comes out according to the
  6837. condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
  6838. for less-or-equal, \key{g} for greater, \key{ge} for
  6839. greater-or-equal). The \key{set} instruction has a quirk in
  6840. that its destination argument must be single byte register, such as
  6841. \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
  6842. are part of the \code{rax} register. Thankfully, the \key{movzbq}
  6843. instruction can be used to move from a single byte register to a
  6844. normal 64-bit register. The abstract syntax for the \code{set}
  6845. instruction differs from the concrete syntax in that it separates the
  6846. instruction name from the condition code.
  6847. \python{The x86 instructions for jumping are relevant to the
  6848. compilation of \key{if} expressions.}
  6849. %
  6850. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  6851. counter to the address of the instruction after the specified
  6852. label.}
  6853. %
  6854. \racket{The x86 instruction for conditional jump is relevant to the
  6855. compilation of \key{if} expressions.}
  6856. %
  6857. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  6858. counter to point to the instruction after \itm{label} depending on
  6859. whether the result in the EFLAGS register matches the condition code
  6860. \itm{cc}, otherwise the jump instruction falls through to the next
  6861. instruction. Like the abstract syntax for \code{set}, the abstract
  6862. syntax for conditional jump separates the instruction name from the
  6863. condition code. For example, \JMPIF{\key{'le'}}{\key{foo}} corresponds
  6864. to \code{jle foo}. Because the conditional jump instruction relies on
  6865. the EFLAGS register, it is common for it to be immediately preceded by
  6866. a \key{cmpq} instruction to set the EFLAGS register.
  6867. \section{Shrink the \LangIf{} Language}
  6868. \label{sec:shrink-Lif}
  6869. The \LangIf{} language includes several features that are easily
  6870. expressible with other features. For example, \code{and} and \code{or}
  6871. are expressible using \code{if} as follows.
  6872. \begin{align*}
  6873. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  6874. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  6875. \end{align*}
  6876. By performing these translations in the front-end of the compiler, the
  6877. later passes of the compiler do not need to deal with these features,
  6878. making the passes shorter.
  6879. %% For example, subtraction is
  6880. %% expressible using addition and negation.
  6881. %% \[
  6882. %% \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  6883. %% \]
  6884. %% Several of the comparison operations are expressible using less-than
  6885. %% and logical negation.
  6886. %% \[
  6887. %% \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  6888. %% \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  6889. %% \]
  6890. %% The \key{let} is needed in the above translation to ensure that
  6891. %% expression $e_1$ is evaluated before $e_2$.
  6892. On the other hand, sometimes translations reduce the efficiency of the
  6893. generated code by increasing the number of instructions. For example,
  6894. expressing subtraction in terms of negation
  6895. \[
  6896. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  6897. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  6898. \]
  6899. produces code with two x86 instructions (\code{negq} and \code{addq})
  6900. instead of just one (\code{subq}).
  6901. %% However,
  6902. %% these differences typically do not affect the number of accesses to
  6903. %% memory, which is the primary factor that determines execution time on
  6904. %% modern computer architectures.
  6905. \begin{exercise}\normalfont
  6906. %
  6907. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  6908. the language by translating them to \code{if} expressions in \LangIf{}.
  6909. %
  6910. Create four test programs that involve these operators.
  6911. %
  6912. {\if\edition\racketEd
  6913. In the \code{run-tests.rkt} script, add the following entry for
  6914. \code{shrink} to the list of passes (it should be the only pass at
  6915. this point).
  6916. \begin{lstlisting}
  6917. (list "shrink" shrink interp_Lif type-check-Lif)
  6918. \end{lstlisting}
  6919. This instructs \code{interp-tests} to run the intepreter
  6920. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  6921. output of \code{shrink}.
  6922. \fi}
  6923. %
  6924. Run the script to test your compiler on all the test programs.
  6925. \end{exercise}
  6926. {\if\edition\racketEd
  6927. \section{Uniquify Variables}
  6928. \label{sec:uniquify-Lif}
  6929. Add cases to \code{uniquify-exp} to handle Boolean constants and
  6930. \code{if} expressions.
  6931. \begin{exercise}\normalfont
  6932. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  6933. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  6934. \begin{lstlisting}
  6935. (list "uniquify" uniquify interp_Lif type_check_Lif)
  6936. \end{lstlisting}
  6937. Run the script to test your compiler.
  6938. \end{exercise}
  6939. \fi}
  6940. \section{Remove Complex Operands}
  6941. \label{sec:remove-complex-opera-Lif}
  6942. The output language of \code{remove\_complex\_operands} is
  6943. \LangIfANF{} (Figure~\ref{fig:Lif-anf-syntax}), the administrative
  6944. normal form of \LangIf{}. A Boolean constant is an atomic expressions
  6945. but the \code{if} expression is not. All three sub-expressions of an
  6946. \code{if} are allowed to be complex expressions but the operands of
  6947. \code{not} and the comparisons must be atomic.
  6948. %
  6949. \python{We add a new language form, the \code{Let} expression, to aid
  6950. in the translation of \code{if} expressions. When we recursively
  6951. process the two branches of the \code{if}, we generate temporary
  6952. variables and their initializing expressions. However, these
  6953. expressions may contain side effects and should only be executed
  6954. when the condition of the \code{if} is true (for the ``then''
  6955. branch) or false (for the ``else'' branch). The \code{Let} provides
  6956. a way to initialize the temporary variables within the two branches
  6957. of the \code{if} expression. In general, the $\LET{x}{e_1}{e_2}$
  6958. form assigns the result of $e_1$ to the variable $x$, an then
  6959. evaluates $e_2$, which may reference $x$.}
  6960. Add cases for Boolean constants, \python{comparisons,} and \code{if}
  6961. expressions to the \code{rco\_exp} and \code{rco\_atom} functions
  6962. according to whether the output needs to be \Exp{} or \Atm{} as
  6963. specified in the grammar for \LangIfANF{}. Regarding \code{if}, it is
  6964. particularly important to \textbf{not} replace its condition with a
  6965. temporary variable because that would interfere with the generation of
  6966. high-quality output in the \code{explicate\_control} pass.
  6967. \begin{figure}[tp]
  6968. \centering
  6969. \fbox{
  6970. \begin{minipage}{0.96\textwidth}
  6971. {\if\edition\racketEd
  6972. \[
  6973. \begin{array}{rcl}
  6974. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} } \MID \BOOL{\itm{bool}}\\
  6975. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  6976. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  6977. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  6978. &\MID& \UNIOP{\key{not}}{\Atm} \\
  6979. &\MID& \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6980. R^{\mathsf{ANF}}_{\mathsf{if}} &::=& \PROGRAM{\code{()}}{\Exp}
  6981. \end{array}
  6982. \]
  6983. \fi}
  6984. {\if\edition\pythonEd
  6985. \[
  6986. \begin{array}{rcl}
  6987. \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  6988. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  6989. \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  6990. \itm{bool} &::=& \code{True} \MID \code{False} \\
  6991. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  6992. \Exp &::=& \Atm \MID \READ{} \\
  6993. &\MID& \BINOP{\itm{binaryop}}{\Atm}{\Atm} \MID \UNIOP{\key{unaryop}}{\Atm} \\
  6994. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6995. &\MID& \LET{\Var}{\Exp}{\Exp}\\
  6996. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  6997. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}\\
  6998. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  6999. \end{array}
  7000. \]
  7001. \fi}
  7002. \end{minipage}
  7003. }
  7004. \caption{\LangIfANF{} is \LangIf{} in monadic normal form.}
  7005. \label{fig:Lif-anf-syntax}
  7006. \end{figure}
  7007. \begin{exercise}\normalfont
  7008. %
  7009. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  7010. and \code{rco\_exp} functions in \code{compiler.rkt}.
  7011. %
  7012. Create three new \LangIf{} programs that exercise the interesting
  7013. code in this pass.
  7014. %
  7015. {\if\edition\racketEd
  7016. In the \code{run-tests.rkt} script, add the following entry to the
  7017. list of \code{passes} and then run the script to test your compiler.
  7018. \begin{lstlisting}
  7019. (list "remove-complex" remove-complex-opera* interp-Lif type-check-Lif)
  7020. \end{lstlisting}
  7021. \fi}
  7022. \end{exercise}
  7023. \section{Explicate Control}
  7024. \label{sec:explicate-control-Lif}
  7025. \racket{Recall that the purpose of \code{explicate\_control} is to
  7026. make the order of evaluation explicit in the syntax of the program.
  7027. With the addition of \key{if} this get more interesting.}
  7028. %
  7029. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  7030. %
  7031. The main challenge to overcome is that the condition of an \key{if}
  7032. can be an arbitrary expression in \LangIf{} whereas in \LangCIf{} the
  7033. condition must be a comparison.
  7034. As a motivating example, consider the following program that has an
  7035. \key{if} expression nested in the condition of another \key{if}.%
  7036. \python{\footnote{Programmers rarely write nested \code{if}
  7037. expressions, but it is not uncommon for the condition of an
  7038. \code{if} statement to be a call of a function that also contains an
  7039. \code{if} statement. When such a function is inlined, the result is
  7040. a nested \code{if} that requires the techniques discussed in this
  7041. section.}}
  7042. % cond_test_41.rkt, if_lt_eq.py
  7043. \begin{center}
  7044. \begin{minipage}{0.96\textwidth}
  7045. {\if\edition\racketEd
  7046. \begin{lstlisting}
  7047. (let ([x (read)])
  7048. (let ([y (read)])
  7049. (if (if (< x 1) (eq? x 0) (eq? x 2))
  7050. (+ y 2)
  7051. (+ y 10))))
  7052. \end{lstlisting}
  7053. \fi}
  7054. {\if\edition\pythonEd
  7055. \begin{lstlisting}
  7056. x = input_int()
  7057. y = input_int()
  7058. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  7059. \end{lstlisting}
  7060. \fi}
  7061. \end{minipage}
  7062. \end{center}
  7063. %
  7064. The naive way to compile \key{if} and the comparison operations would
  7065. be to handle each of them in isolation, regardless of their context.
  7066. Each comparison would be translated into a \key{cmpq} instruction
  7067. followed by a couple instructions to move the result from the EFLAGS
  7068. register into a general purpose register or stack location. Each
  7069. \key{if} would be translated into a \key{cmpq} instruction followed by
  7070. a conditional jump. The generated code for the inner \key{if} in the
  7071. above example would be as follows.
  7072. \begin{center}
  7073. \begin{minipage}{0.96\textwidth}
  7074. \begin{lstlisting}
  7075. cmpq $1, x
  7076. setl %al
  7077. movzbq %al, tmp
  7078. cmpq $1, tmp
  7079. je then_branch_1
  7080. jmp else_branch_1
  7081. \end{lstlisting}
  7082. \end{minipage}
  7083. \end{center}
  7084. However, if we take context into account we can do better and reduce
  7085. the use of \key{cmpq} instructions for accessing the EFLAG register.
  7086. Our goal will be to compile \key{if} expressions so that the relevant
  7087. comparison instruction appears directly before the conditional jump.
  7088. For example, we want to generate the following code for the inner
  7089. \code{if}.
  7090. \begin{center}
  7091. \begin{minipage}{0.96\textwidth}
  7092. \begin{lstlisting}
  7093. cmpq $1, x
  7094. jl then_branch_1
  7095. jmp else_branch_1
  7096. \end{lstlisting}
  7097. \end{minipage}
  7098. \end{center}
  7099. One way to achieve this is to reorganize the code at the level of
  7100. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  7101. the following code.
  7102. \begin{center}
  7103. \begin{minipage}{0.96\textwidth}
  7104. {\if\edition\racketEd
  7105. \begin{lstlisting}
  7106. (let ([x (read)])
  7107. (let ([y (read)])
  7108. (if (< x 1)
  7109. (if (eq? x 0)
  7110. (+ y 2)
  7111. (+ y 10))
  7112. (if (eq? x 2)
  7113. (+ y 2)
  7114. (+ y 10)))))
  7115. \end{lstlisting}
  7116. \fi}
  7117. {\if\edition\pythonEd
  7118. \begin{lstlisting}
  7119. x = input_int()
  7120. y = intput_int()
  7121. print(((y + 2) if x == 0 else (y + 10)) \
  7122. if (x < 1) \
  7123. else ((y + 2) if (x == 2) else (y + 10)))
  7124. \end{lstlisting}
  7125. \fi}
  7126. \end{minipage}
  7127. \end{center}
  7128. Unfortunately, this approach duplicates the two branches from the
  7129. outer \code{if} and a compiler must never duplicate code! After all,
  7130. the two branches could have been very large expressions.
  7131. We need a way to perform the above transformation but without
  7132. duplicating code. That is, we need a way for different parts of a
  7133. program to refer to the same piece of code.
  7134. %
  7135. Put another way, we need to move away from abstract syntax
  7136. \emph{trees} and instead use \emph{graphs}.
  7137. %
  7138. At the level of x86 assembly this is straightforward because we can
  7139. label the code for each branch and insert jumps in all the places that
  7140. need to execute the branch.
  7141. %
  7142. Likewise, our language \LangCIf{} provides the ability to label a
  7143. sequence of code and to jump to a label via \code{goto}.
  7144. %
  7145. %% In particular, we use a standard program representation called a
  7146. %% \emph{control flow graph} (CFG), due to Frances Elizabeth
  7147. %% \citet{Allen:1970uq}. \index{subject}{control-flow graph} Each vertex
  7148. %% is a labeled sequence of code, called a \emph{basic block}, and each
  7149. %% edge represents a jump to another block.
  7150. %
  7151. %% The nice thing about the output of \code{explicate\_control} is that
  7152. %% there are no unnecessary comparisons and every comparison is part of a
  7153. %% conditional jump.
  7154. %% The down-side of this output is that it includes
  7155. %% trivial blocks, such as the blocks labeled \code{block92} through
  7156. %% \code{block95}, that only jump to another block. We discuss a solution
  7157. %% to this problem in Section~\ref{sec:opt-jumps}.
  7158. {\if\edition\racketEd
  7159. %
  7160. Recall that in Section~\ref{sec:explicate-control-Lvar} we implement
  7161. \code{explicate\_control} for \LangVar{} using two mutually recursive
  7162. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  7163. former function translates expressions in tail position whereas the
  7164. later function translates expressions on the right-hand-side of a
  7165. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  7166. have a new kind of position to deal with: the predicate position of
  7167. the \key{if}. We need another function, \code{explicate\_pred}, that
  7168. decides how to compile an \key{if} by analyzing its predicate. So
  7169. \code{explicate\_pred} takes an \LangIf{} expression and two \LangCIf{}
  7170. tails for the then-branch and else-branch and outputs a tail. In the
  7171. following paragraphs we discuss specific cases in the
  7172. \code{explicate\_tail}, \code{explicate\_assign}, and
  7173. \code{explicate\_pred} functions.
  7174. %
  7175. \fi}
  7176. %
  7177. {\if\edition\pythonEd
  7178. %
  7179. We recommend implementing \code{explicate\_control} using the
  7180. following four auxiliary functions.
  7181. \begin{description}
  7182. \item[\code{explicate\_effect}] generates code for expressions as
  7183. statements, so their result is ignored and only their side effects
  7184. matter.
  7185. \item[\code{explicate\_assign}] generates code for expressions
  7186. on the right-hand side of an assignment.
  7187. \item[\code{explicate\_pred}] generates code for an \code{if}
  7188. expression or statement by analyzing the condition expression.
  7189. \item[\code{explicate\_stmt}] generates code for statements.
  7190. \end{description}
  7191. These four functions should build the dictionary of basic blocks. The
  7192. following auxiliary function can be used to create a new basic block
  7193. from a list of statements. It returns a \code{goto} statement that
  7194. jumps to the new basic block.
  7195. \begin{center}
  7196. \begin{minipage}{\textwidth}
  7197. \begin{lstlisting}
  7198. def create_block(stmts, basic_blocks):
  7199. label = label_name(generate_name('block'))
  7200. basic_blocks[label] = stmts
  7201. return Goto(label)
  7202. \end{lstlisting}
  7203. \end{minipage}
  7204. \end{center}
  7205. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  7206. \code{explicate\_control} pass.
  7207. The \code{explicate\_effect} function has three parameters: 1) the
  7208. expression to be compiled, 2) the already-compiled code for this
  7209. expression's \emph{continuation}, that is, the list of statements that
  7210. should execute after this expression, and 3) the dictionary of
  7211. generated basic blocks. The \code{explicate\_effect} function returns
  7212. a list of \LangCIf{} statements and it may add to the dictionary of
  7213. basic blocks.
  7214. %
  7215. Let's consider a few of the cases for the expression to be compiled.
  7216. If the expression to be compiled is a constant, then it can be
  7217. discarded because it has no side effects. If it's a \CREAD{}, then it
  7218. has a side-effect and should be preserved. So the exprssion should be
  7219. translated into a statement using the \code{Expr} AST class. If the
  7220. expression to be compiled is an \code{if} expression, we translate the
  7221. two branches using \code{explicate\_effect} and then translate the
  7222. condition expression using \code{explicate\_pred}, which generates
  7223. code for the entire \code{if}.
  7224. The \code{explicate\_assign} function has four parameters: 1) the
  7225. right-hand-side of the assignment, 2) the left-hand-side of the
  7226. assignment (the variable), 3) the continuation, and 4) the dictionary
  7227. of basic blocks. The \code{explicate\_assign} function returns a list
  7228. of \LangCIf{} statements and it may add to the dictionary of basic
  7229. blocks.
  7230. When the right-hand-side is an \code{if} expression, there is some
  7231. work to do. In particular, the two branches should be translated using
  7232. \code{explicate\_assign} and the condition expression should be
  7233. translated using \code{explicate\_pred}. Otherwise we can simply
  7234. generate an assignment statement, with the given left and right-hand
  7235. sides, concatenated with its continuation.
  7236. \begin{figure}[tbp]
  7237. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7238. def explicate_effect(e, cont, basic_blocks):
  7239. match e:
  7240. case IfExp(test, body, orelse):
  7241. ...
  7242. case Call(func, args):
  7243. ...
  7244. case Let(var, rhs, body):
  7245. ...
  7246. case _:
  7247. ...
  7248. def explicate_assign(rhs, lhs, cont, basic_blocks):
  7249. match rhs:
  7250. case IfExp(test, body, orelse):
  7251. ...
  7252. case Let(var, rhs, body):
  7253. ...
  7254. case _:
  7255. return [Assign([lhs], rhs)] + cont
  7256. def explicate_pred(cnd, thn, els, basic_blocks):
  7257. match cnd:
  7258. case Compare(left, [op], [right]):
  7259. goto_thn = create_block(thn, basic_blocks)
  7260. goto_els = create_block(els, basic_blocks)
  7261. return [If(cnd, [goto_thn], [goto_els])]
  7262. case Constant(True):
  7263. return thn;
  7264. case Constant(False):
  7265. return els;
  7266. case UnaryOp(Not(), operand):
  7267. ...
  7268. case IfExp(test, body, orelse):
  7269. ...
  7270. case Let(var, rhs, body):
  7271. ...
  7272. case _:
  7273. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  7274. [create_block(els, basic_blocks)],
  7275. [create_block(thn, basic_blocks)])]
  7276. def explicate_stmt(s, cont, basic_blocks):
  7277. match s:
  7278. case Assign([lhs], rhs):
  7279. return explicate_assign(rhs, lhs, cont, basic_blocks)
  7280. case Expr(value):
  7281. return explicate_effect(value, cont, basic_blocks)
  7282. case If(test, body, orelse):
  7283. ...
  7284. def explicate_control(p):
  7285. match p:
  7286. case Module(body):
  7287. new_body = [Return(Constant(0))]
  7288. basic_blocks = {}
  7289. for s in reversed(body):
  7290. new_body = explicate_stmt(s, new_body, basic_blocks)
  7291. basic_blocks[label_name('start')] = new_body
  7292. return CProgram(basic_blocks)
  7293. \end{lstlisting}
  7294. \caption{Skeleton for the \code{explicate\_control} pass.}
  7295. \label{fig:explicate-control-Lif}
  7296. \end{figure}
  7297. \fi}
  7298. {\if\edition\racketEd
  7299. %
  7300. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  7301. additional cases for Boolean constants and \key{if}. The cases for
  7302. \code{if} should recursively compile the two branches using either
  7303. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  7304. cases should then invoke \code{explicate\_pred} on the condition
  7305. expression, passing in the generated code for the two branches. For
  7306. example, consider the following program with an \code{if} in tail
  7307. position.
  7308. \begin{lstlisting}
  7309. (let ([x (read)])
  7310. (if (eq? x 0) 42 777))
  7311. \end{lstlisting}
  7312. The two branches are recursively compiled to \code{return 42;} and
  7313. \code{return 777;}. We then delegate to \code{explicate\_pred},
  7314. passing the condition \code{(eq? x 0)} and the two return statements, which is
  7315. used as the result for \code{explicate\_tail}.
  7316. Next let us consider a program with an \code{if} on the right-hand
  7317. side of a \code{let}.
  7318. \begin{lstlisting}
  7319. (let ([y (read)])
  7320. (let ([x (if (eq? y 0) 40 777)])
  7321. (+ x 2)))
  7322. \end{lstlisting}
  7323. Note that the body of the inner \code{let} will have already been
  7324. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  7325. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  7326. to recursively process both branches of the \code{if}, so we generate
  7327. the following block using an auxiliary function named \code{create\_block}.
  7328. \begin{lstlisting}
  7329. block_6:
  7330. return (+ x 2)
  7331. \end{lstlisting}
  7332. and use \code{goto block\_6;} as the \code{cont} argument for
  7333. compiling the branches. So the two branches compile to
  7334. \begin{lstlisting}
  7335. x = 40;
  7336. goto block_6;
  7337. \end{lstlisting}
  7338. and
  7339. \begin{lstlisting}
  7340. x = 777;
  7341. goto block_6;
  7342. \end{lstlisting}
  7343. We then delegate to \code{explicate\_pred}, passing the condition \code{(eq? y
  7344. 0)} and the above code for the branches.
  7345. \fi}
  7346. {\if\edition\racketEd
  7347. \begin{figure}[tbp]
  7348. \begin{lstlisting}
  7349. (define (explicate_pred cnd thn els)
  7350. (match cnd
  7351. [(Var x) ___]
  7352. [(Let x rhs body) ___]
  7353. [(Prim 'not (list e)) ___]
  7354. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  7355. (IfStmt (Prim op es) (create_block thn)
  7356. (create_block els))]
  7357. [(Bool b) (if b thn els)]
  7358. [(If cnd^ thn^ els^) ___]
  7359. [else (error "explicate_pred unhandled case" cnd)]))
  7360. \end{lstlisting}
  7361. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  7362. \label{fig:explicate-pred}
  7363. \end{figure}
  7364. \fi}
  7365. \racket{The skeleton for the \code{explicate\_pred} function is given
  7366. in Figure~\ref{fig:explicate-pred}. It takes three parameters:
  7367. 1) \code{cnd}, the condition expression of the \code{if},
  7368. 2) \code{thn}, the code generated by explicate for the ``then'' branch,
  7369. and 3) \code{els}, the code generated by
  7370. explicate for the ``else'' branch. The \code{explicate\_pred}
  7371. function should match on \code{cnd} with a case for
  7372. every kind of expression that can have type \code{Boolean}.}
  7373. %
  7374. \python{The \code{explicate\_pred} function has four parameters: 1)
  7375. the condition expession, 2) the generated statements for the
  7376. ``then'' branch, 3) the generated statements for the ``else''
  7377. branch, and 4) the dictionary of basic blocks. The
  7378. \code{explicate\_pred} function returns a list of \LangCIf{}
  7379. statements and it may add to the dictionary of basic blocks.}
  7380. Consider the case for comparison operators. We translate the
  7381. comparison to an \code{if} statement whose branches are \code{goto}
  7382. statements created by applying \code{create\_block} to the code
  7383. generated for the \code{thn} and \code{els} branches. Let us
  7384. illustrate this translation with an example. Returning
  7385. to the program with an \code{if} expression in tail position,
  7386. we invoke \code{explicate\_pred} on its condition \code{(eq? x 0)}
  7387. which happens to be a comparison operator.
  7388. \begin{lstlisting}
  7389. (let ([x (read)])
  7390. (if (eq? x 0) 42 777))
  7391. \end{lstlisting}
  7392. The two branches \code{42} and \code{777} were already compiled to \code{return}
  7393. statements, from which we now create the following blocks.
  7394. \begin{center}
  7395. \begin{minipage}{\textwidth}
  7396. \begin{lstlisting}
  7397. block_1:
  7398. return 42;
  7399. block_2:
  7400. return 777;
  7401. \end{lstlisting}
  7402. \end{minipage}
  7403. \end{center}
  7404. %
  7405. So \code{explicate\_pred} compiles the comparison \code{(eq? x 0)}
  7406. to the following \code{if} statement.
  7407. %
  7408. \begin{center}
  7409. \begin{minipage}{\textwidth}
  7410. \begin{lstlisting}
  7411. if (eq? x 0)
  7412. goto block_1;
  7413. else
  7414. goto block_2;
  7415. \end{lstlisting}
  7416. \end{minipage}
  7417. \end{center}
  7418. Next consider the case for Boolean constants. We perform a kind of
  7419. partial evaluation\index{subject}{partial evaluation} and output
  7420. either the \code{thn} or \code{els} branch depending on whether the
  7421. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  7422. following program.
  7423. \begin{center}
  7424. \begin{minipage}{\textwidth}
  7425. \begin{lstlisting}
  7426. (if #t 42 777)
  7427. \end{lstlisting}
  7428. \end{minipage}
  7429. \end{center}
  7430. %
  7431. Again, the two branches \code{42} and \code{777} were compiled to
  7432. \code{return} statements, so \code{explicate\_pred} compiles the
  7433. constant \code{\#t} to the code for the ``then'' branch.
  7434. \begin{center}
  7435. \begin{minipage}{\textwidth}
  7436. \begin{lstlisting}
  7437. return 42;
  7438. \end{lstlisting}
  7439. \end{minipage}
  7440. \end{center}
  7441. %
  7442. This case demonstrates that we sometimes discard the \code{thn} or
  7443. \code{els} blocks that are input to \code{explicate\_pred}.
  7444. The case for \key{if} expressions in \code{explicate\_pred} is
  7445. particularly illuminating because it deals with the challenges we
  7446. discussed above regarding nested \key{if} expressions
  7447. (Figure~\ref{fig:explicate-control-s1-38}). The
  7448. \racket{\lstinline{thn^}}\python{\code{body}} and
  7449. \racket{\lstinline{els^}}\python{\code{orlese}} branches of the
  7450. \key{if} inherit their context from the current one, that is,
  7451. predicate context. So you should recursively apply
  7452. \code{explicate\_pred} to the
  7453. \racket{\lstinline{thn^}}\python{\code{body}} and
  7454. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  7455. those recursive calls, pass \code{thn} and \code{els} as the extra
  7456. parameters. Thus, \code{thn} and \code{els} may get used twice, once
  7457. inside each recursive call. As discussed above, to avoid duplicating
  7458. code, we need to add them to the dictionary of basic blocks so that we
  7459. can instead refer to them by name and execute them with a \key{goto}.
  7460. {\if\edition\pythonEd
  7461. %
  7462. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  7463. three parameters: 1) the statement to be compiled, 2) the code for its
  7464. continuation, and 3) the dictionary of basic blocks. The
  7465. \code{explicate\_stmt} returns a list of statements and it may add to
  7466. the dictionary of basic blocks. The cases for assignment and an
  7467. expression-statement are given in full in the skeleton code: they
  7468. simply dispatch to \code{explicate\_assign} and
  7469. \code{explicate\_effect}, respectively. The case for \code{if}
  7470. statements is not given, and is similar to the case for \code{if}
  7471. expressions.
  7472. The \code{explicate\_control} function itself is given in
  7473. Figure~\ref{fig:explicate-control-Lif}. It applies
  7474. \code{explicate\_stmt} to each statement in the program, from back to
  7475. front. Thus, the result so-far, stored in \code{new\_body}, can be
  7476. used as the continuation parameter in the next call to
  7477. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  7478. \code{Return} statement. Once complete, we add the \code{new\_body} to
  7479. the dictionary of basic blocks, labeling it as the ``start'' block.
  7480. %
  7481. \fi}
  7482. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  7483. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  7484. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  7485. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  7486. %% results from the two recursive calls. We complete the case for
  7487. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  7488. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  7489. %% the result $B_5$.
  7490. %% \[
  7491. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  7492. %% \quad\Rightarrow\quad
  7493. %% B_5
  7494. %% \]
  7495. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  7496. %% inherit the current context, so they are in tail position. Thus, the
  7497. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  7498. %% \code{explicate\_tail}.
  7499. %% %
  7500. %% We need to pass $B_0$ as the accumulator argument for both of these
  7501. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  7502. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  7503. %% to the control-flow graph and obtain a promised goto $G_0$.
  7504. %% %
  7505. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  7506. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  7507. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  7508. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  7509. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  7510. %% \[
  7511. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  7512. %% \]
  7513. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  7514. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  7515. %% should not be confused with the labels for the blocks that appear in
  7516. %% the generated code. We initially construct unlabeled blocks; we only
  7517. %% attach labels to blocks when we add them to the control-flow graph, as
  7518. %% we see in the next case.
  7519. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  7520. %% function. The context of the \key{if} is an assignment to some
  7521. %% variable $x$ and then the control continues to some promised block
  7522. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  7523. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  7524. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  7525. %% branches of the \key{if} inherit the current context, so they are in
  7526. %% assignment positions. Let $B_2$ be the result of applying
  7527. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  7528. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  7529. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  7530. %% the result of applying \code{explicate\_pred} to the predicate
  7531. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  7532. %% translates to the promise $B_4$.
  7533. %% \[
  7534. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  7535. %% \]
  7536. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  7537. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  7538. \code{remove\_complex\_operands} pass and then the
  7539. \code{explicate\_control} pass on the example program. We walk through
  7540. the output program.
  7541. %
  7542. Following the order of evaluation in the output of
  7543. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  7544. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  7545. in the predicate of the inner \key{if}. In the output of
  7546. \code{explicate\_control}, in the
  7547. block labeled \code{start}, are two assignment statements followed by a
  7548. \code{if} statement that branches to \code{block\_8} or
  7549. \code{block\_9}. The blocks associated with those labels contain the
  7550. translations of the code
  7551. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7552. and
  7553. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  7554. respectively. In particular, we start \code{block\_8} with the
  7555. comparison
  7556. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7557. and then branch to \code{block\_4} or \code{block\_5}.
  7558. Here was see that our algorithm sometimes inserts unnecessary blocks:
  7559. \code{block\_4} is just a \code{goto} to \code{block\_2}
  7560. and \code{block\_5} is just a \code{goto} to \code{block\_3}.
  7561. It would be better to skip blocks \code{block\_4} and \code{block\_5}
  7562. and go directly to \code{block\_2} and \code{block\_3},
  7563. which we investigate in Section~\ref{sec:opt-jumps}.
  7564. Getting back to the example, \code{block\_2} and \code{block\_3},
  7565. corresponds to the two branches of the outer \key{if}, i.e.,
  7566. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  7567. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  7568. %
  7569. The story for \code{block\_9} is similar to that of \code{block\_8}.
  7570. %
  7571. \python{The \code{block\_1} corresponds to the \code{print} statment
  7572. at the end of the program.}
  7573. \begin{figure}[tbp]
  7574. {\if\edition\racketEd
  7575. \begin{tabular}{lll}
  7576. \begin{minipage}{0.4\textwidth}
  7577. % cond_test_41.rkt
  7578. \begin{lstlisting}
  7579. (let ([x (read)])
  7580. (let ([y (read)])
  7581. (if (if (< x 1)
  7582. (eq? x 0)
  7583. (eq? x 2))
  7584. (+ y 2)
  7585. (+ y 10))))
  7586. \end{lstlisting}
  7587. \end{minipage}
  7588. &
  7589. $\Rightarrow$
  7590. &
  7591. \begin{minipage}{0.55\textwidth}
  7592. \begin{lstlisting}
  7593. start:
  7594. x = (read);
  7595. y = (read);
  7596. if (< x 1)
  7597. goto block_8;
  7598. else
  7599. goto block_9;
  7600. block_8:
  7601. if (eq? x 0)
  7602. goto block_4;
  7603. else
  7604. goto block_5;
  7605. block_9:
  7606. if (eq? x 2)
  7607. goto block_6;
  7608. else
  7609. goto block_7;
  7610. block_4:
  7611. goto block_2;
  7612. block_5:
  7613. goto block_3;
  7614. block_6:
  7615. goto block_2;
  7616. block_7:
  7617. goto block_3;
  7618. block_2:
  7619. return (+ y 2);
  7620. block_3:
  7621. return (+ y 10);
  7622. \end{lstlisting}
  7623. \end{minipage}
  7624. \end{tabular}
  7625. \fi}
  7626. {\if\edition\pythonEd
  7627. \begin{tabular}{lll}
  7628. \begin{minipage}{0.4\textwidth}
  7629. % cond_test_41.rkt
  7630. \begin{lstlisting}
  7631. x = input_int()
  7632. y = input_int()
  7633. print(y + 2 \
  7634. if (x == 0 \
  7635. if x < 1 \
  7636. else x == 2) \
  7637. else y + 10)
  7638. \end{lstlisting}
  7639. \end{minipage}
  7640. &
  7641. $\Rightarrow$
  7642. &
  7643. \begin{minipage}{0.55\textwidth}
  7644. \begin{lstlisting}
  7645. start:
  7646. x = input_int()
  7647. y = input_int()
  7648. if x < 1:
  7649. goto block_8
  7650. else:
  7651. goto block_9
  7652. block_8:
  7653. if x == 0:
  7654. goto block_4
  7655. else:
  7656. goto block_5
  7657. block_9:
  7658. if x == 2:
  7659. goto block_6
  7660. else:
  7661. goto block_7
  7662. block_4:
  7663. goto block_2
  7664. block_5:
  7665. goto block_3
  7666. block_6:
  7667. goto block_2
  7668. block_7:
  7669. goto block_3
  7670. block_2:
  7671. tmp_0 = y + 2
  7672. goto block_1
  7673. block_3:
  7674. tmp_0 = y + 10
  7675. goto block_1
  7676. block_1:
  7677. print(tmp_0)
  7678. return 0
  7679. \end{lstlisting}
  7680. \end{minipage}
  7681. \end{tabular}
  7682. \fi}
  7683. \caption{Translation from \LangIf{} to \LangCIf{}
  7684. via the \code{explicate\_control}.}
  7685. \label{fig:explicate-control-s1-38}
  7686. \end{figure}
  7687. {\if\edition\racketEd
  7688. The way in which the \code{shrink} pass transforms logical operations
  7689. such as \code{and} and \code{or} can impact the quality of code
  7690. generated by \code{explicate\_control}. For example, consider the
  7691. following program.
  7692. % cond_test_21.rkt, and_eq_input.py
  7693. \begin{lstlisting}
  7694. (if (and (eq? (read) 0) (eq? (read) 1))
  7695. 0
  7696. 42)
  7697. \end{lstlisting}
  7698. The \code{and} operation should transform into something that the
  7699. \code{explicate\_pred} function can still analyze and descend through to
  7700. reach the underlying \code{eq?} conditions. Ideally, your
  7701. \code{explicate\_control} pass should generate code similar to the
  7702. following for the above program.
  7703. \begin{center}
  7704. \begin{lstlisting}
  7705. start:
  7706. tmp1 = (read);
  7707. if (eq? tmp1 0) goto block40;
  7708. else goto block39;
  7709. block40:
  7710. tmp2 = (read);
  7711. if (eq? tmp2 1) goto block38;
  7712. else goto block39;
  7713. block38:
  7714. return 0;
  7715. block39:
  7716. return 42;
  7717. \end{lstlisting}
  7718. \end{center}
  7719. \fi}
  7720. \begin{exercise}\normalfont
  7721. \racket{
  7722. Implement the pass \code{explicate\_control} by adding the cases for
  7723. Boolean constants and \key{if} to the \code{explicate\_tail} and
  7724. \code{explicate\_assign} functions. Implement the auxiliary function
  7725. \code{explicate\_pred} for predicate contexts.}
  7726. \python{Implement \code{explicate\_control} pass with its
  7727. four auxiliary functions.}
  7728. %
  7729. Create test cases that exercise all of the new cases in the code for
  7730. this pass.
  7731. %
  7732. {\if\edition\racketEd
  7733. Add the following entry to the list of \code{passes} in
  7734. \code{run-tests.rkt} and then run this script to test your compiler.
  7735. \begin{lstlisting}
  7736. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  7737. \end{lstlisting}
  7738. \fi}
  7739. \end{exercise}
  7740. \clearpage
  7741. \section{Select Instructions}
  7742. \label{sec:select-Lif}
  7743. \index{subject}{instruction selection}
  7744. The \code{select\_instructions} pass translates \LangCIf{} to
  7745. \LangXIfVar{}.
  7746. %
  7747. \racket{Recall that we implement this pass using three auxiliary
  7748. functions, one for each of the non-terminals $\Atm$, $\Stmt$, and
  7749. $\Tail$.}
  7750. %
  7751. \racket{For $\Atm$, we have new cases for the Booleans.}
  7752. %
  7753. \python{We begin with the Boolean constants.}
  7754. We take the usual approach of encoding them as integers.
  7755. \[
  7756. \TRUE{} \quad\Rightarrow\quad \key{1}
  7757. \qquad\qquad
  7758. \FALSE{} \quad\Rightarrow\quad \key{0}
  7759. \]
  7760. For translating statements, we discuss a couple cases. The \code{not}
  7761. operation can be implemented in terms of \code{xorq} as we discussed
  7762. at the beginning of this section. Given an assignment, if the
  7763. left-hand side variable is the same as the argument of \code{not},
  7764. then just the \code{xorq} instruction suffices.
  7765. \[
  7766. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  7767. \quad\Rightarrow\quad
  7768. \key{xorq}~\key{\$}1\key{,}~\Var
  7769. \]
  7770. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  7771. semantics of x86. In the following translation, let $\Arg$ be the
  7772. result of translating $\Atm$ to x86.
  7773. \[
  7774. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  7775. \quad\Rightarrow\quad
  7776. \begin{array}{l}
  7777. \key{movq}~\Arg\key{,}~\Var\\
  7778. \key{xorq}~\key{\$}1\key{,}~\Var
  7779. \end{array}
  7780. \]
  7781. Next consider the cases for equality. Translating this operation to
  7782. x86 is slightly involved due to the unusual nature of the \key{cmpq}
  7783. instruction discussed above. We recommend translating an assignment
  7784. with an equality on the right-hand side into a sequence of three
  7785. instructions. \\
  7786. \begin{tabular}{lll}
  7787. \begin{minipage}{0.4\textwidth}
  7788. \begin{lstlisting}
  7789. |$\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$|
  7790. \end{lstlisting}
  7791. \end{minipage}
  7792. &
  7793. $\Rightarrow$
  7794. &
  7795. \begin{minipage}{0.4\textwidth}
  7796. \begin{lstlisting}
  7797. cmpq |$\Arg_2$|, |$\Arg_1$|
  7798. sete %al
  7799. movzbq %al, |$\Var$|
  7800. \end{lstlisting}
  7801. \end{minipage}
  7802. \end{tabular} \\
  7803. The translations for the other comparison operators are similar to the
  7804. above but use different suffixes for the \code{set} instruction.
  7805. \racket{Regarding the $\Tail$ non-terminal, we have two new cases:
  7806. \key{goto} and \key{if} statements. Both are straightforward to
  7807. translate to x86.}
  7808. %
  7809. A \key{goto} statement becomes a jump instruction.
  7810. \[
  7811. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  7812. \]
  7813. %
  7814. An \key{if} statement becomes a compare instruction followed by a
  7815. conditional jump (for the ``then'' branch) and the fall-through is to
  7816. a regular jump (for the ``else'' branch).\\
  7817. \begin{tabular}{lll}
  7818. \begin{minipage}{0.4\textwidth}
  7819. \begin{lstlisting}
  7820. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  7821. goto |$\ell_1$||$\racket{\key{;}}$|
  7822. else|$\python{\key{:}}$|
  7823. goto |$\ell_2$||$\racket{\key{;}}$|
  7824. \end{lstlisting}
  7825. \end{minipage}
  7826. &
  7827. $\Rightarrow$
  7828. &
  7829. \begin{minipage}{0.4\textwidth}
  7830. \begin{lstlisting}
  7831. cmpq |$\Arg_2$|, |$\Arg_1$|
  7832. je |$\ell_1$|
  7833. jmp |$\ell_2$|
  7834. \end{lstlisting}
  7835. \end{minipage}
  7836. \end{tabular} \\
  7837. Again, the translations for the other comparison operators are similar to the
  7838. above but use different suffixes for the conditional jump instruction.
  7839. \python{Regarding the \key{return} statement, we recommend treating it
  7840. as an assignment to the \key{rax} register followed by a jump to the
  7841. conclusion of the \code{main} function.}
  7842. \begin{exercise}\normalfont
  7843. Expand your \code{select\_instructions} pass to handle the new
  7844. features of the \LangIf{} language.
  7845. %
  7846. {\if\edition\racketEd
  7847. Add the following entry to the list of \code{passes} in
  7848. \code{run-tests.rkt}
  7849. \begin{lstlisting}
  7850. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  7851. \end{lstlisting}
  7852. \fi}
  7853. %
  7854. Run the script to test your compiler on all the test programs.
  7855. \end{exercise}
  7856. \section{Register Allocation}
  7857. \label{sec:register-allocation-Lif}
  7858. \index{subject}{register allocation}
  7859. The changes required for \LangIf{} affect liveness analysis, building the
  7860. interference graph, and assigning homes, but the graph coloring
  7861. algorithm itself does not change.
  7862. \subsection{Liveness Analysis}
  7863. \label{sec:liveness-analysis-Lif}
  7864. \index{subject}{liveness analysis}
  7865. Recall that for \LangVar{} we implemented liveness analysis for a
  7866. single basic block (Section~\ref{sec:liveness-analysis-Lvar}). With
  7867. the addition of \key{if} expressions to \LangIf{},
  7868. \code{explicate\_control} produces many basic blocks.
  7869. %% We recommend that you create a new auxiliary function named
  7870. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  7871. %% control-flow graph.
  7872. The first question is: what order should we process the basic blocks?
  7873. Recall that to perform liveness analysis on a basic block we need to
  7874. know the live-after set for the last instruction in the block. If a
  7875. basic block has no successors (i.e. contains no jumps to other
  7876. blocks), then it has an empty live-after set and we can immediately
  7877. apply liveness analysis to it. If a basic block has some successors,
  7878. then we need to complete liveness analysis on those blocks
  7879. first. These ordering contraints are the reverse of a
  7880. \emph{topological order}\index{subject}{topological order} on a graph
  7881. representation of the program. In particular, the \emph{control flow
  7882. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  7883. of a program has a node for each basic block and an edge for each jump
  7884. from one block to another. It is straightforward to generate a CFG
  7885. from the dictionary of basic blocks. One then transposes the CFG and
  7886. applies the topological sort algorithm.
  7887. %
  7888. %
  7889. \racket{We recommend using the \code{tsort} and \code{transpose}
  7890. functions of the Racket \code{graph} package to accomplish this.}
  7891. %
  7892. \python{We provide implementations of \code{topological\_sort} and
  7893. \code{transpose} in the file \code{graph.py} of the support code.}
  7894. %
  7895. As an aside, a topological ordering is only guaranteed to exist if the
  7896. graph does not contain any cycles. This is the case for the
  7897. control-flow graphs that we generate from \LangIf{} programs.
  7898. However, in Chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  7899. and learn how to handle cycles in the control-flow graph.
  7900. \racket{You'll need to construct a directed graph to represent the
  7901. control-flow graph. Do not use the \code{directed-graph} of the
  7902. \code{graph} package because that only allows at most one edge
  7903. between each pair of vertices, but a control-flow graph may have
  7904. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  7905. file in the support code implements a graph representation that
  7906. allows multiple edges between a pair of vertices.}
  7907. {\if\edition\racketEd
  7908. The next question is how to analyze jump instructions. Recall that in
  7909. Section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  7910. \code{label->live} that maps each label to the set of live locations
  7911. at the beginning of its block. We use \code{label->live} to determine
  7912. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  7913. that we have many basic blocks, \code{label->live} needs to be updated
  7914. as we process the blocks. In particular, after performing liveness
  7915. analysis on a block, we take the live-before set of its first
  7916. instruction and associate that with the block's label in the
  7917. \code{label->live}.
  7918. \fi}
  7919. %
  7920. {\if\edition\pythonEd
  7921. %
  7922. The next question is how to analyze jump instructions. The locations
  7923. that are live before a \code{jmp} should be the locations in
  7924. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  7925. maintaining a dictionary named \code{live\_before\_block} that maps each
  7926. label to the $L_{\mathtt{before}}$ for the first instruction in its
  7927. block. After performing liveness analysis on each block, we take the
  7928. live-before set of its first instruction and associate that with the
  7929. block's label in the \code{live\_before\_block} dictionary.
  7930. %
  7931. \fi}
  7932. In \LangXIfVar{} we also have the conditional jump
  7933. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  7934. this instruction is particularly interesting because, during
  7935. compilation, we do not know which way a conditional jump will go. So
  7936. we do not know whether to use the live-before set for the following
  7937. instruction or the live-before set for the block associated with the
  7938. $\itm{label}$. However, there is no harm to the correctness of the
  7939. generated code if we classify more locations as live than the ones
  7940. that are truly live during one particular execution of the
  7941. instruction. Thus, we can take the union of the live-before sets from
  7942. the following instruction and from the mapping for $\itm{label}$ in
  7943. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  7944. The auxiliary functions for computing the variables in an
  7945. instruction's argument and for computing the variables read-from ($R$)
  7946. or written-to ($W$) by an instruction need to be updated to handle the
  7947. new kinds of arguments and instructions in \LangXIfVar{}.
  7948. \begin{exercise}\normalfont
  7949. {\if\edition\racketEd
  7950. %
  7951. Update the \code{uncover\_live} pass to apply liveness analysis to
  7952. every basic block in the program.
  7953. %
  7954. Add the following entry to the list of \code{passes} in the
  7955. \code{run-tests.rkt} script.
  7956. \begin{lstlisting}
  7957. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  7958. \end{lstlisting}
  7959. \fi}
  7960. {\if\edition\pythonEd
  7961. %
  7962. Update the \code{uncover\_live} function to perform liveness analysis,
  7963. in reverse topological order, on all of the basic blocks in the
  7964. program.
  7965. %
  7966. \fi}
  7967. % Check that the live-after sets that you generate for
  7968. % example X matches the following... -Jeremy
  7969. \end{exercise}
  7970. \subsection{Build the Interference Graph}
  7971. \label{sec:build-interference-Lif}
  7972. Many of the new instructions in \LangXIfVar{} can be handled in the
  7973. same way as the instructions in \LangXVar{}. Thus, if your code was
  7974. already quite general, it will not need to be changed to handle the
  7975. new instructions. If you code is not general enough, we recommend that
  7976. you change your code to be more general. For example, you can factor
  7977. out the computing of the the read and write sets for each kind of
  7978. instruction into auxiliary functions.
  7979. Note that the \key{movzbq} instruction requires some special care,
  7980. similar to the \key{movq} instruction. See rule number 1 in
  7981. Section~\ref{sec:build-interference}.
  7982. \begin{exercise}\normalfont
  7983. Update the \code{build\_interference} pass for \LangXIfVar{}.
  7984. {\if\edition\racketEd
  7985. Add the following entries to the list of \code{passes} in the
  7986. \code{run-tests.rkt} script.
  7987. \begin{lstlisting}
  7988. (list "build_interference" build_interference interp-pseudo-x86-1)
  7989. (list "allocate_registers" allocate_registers interp-x86-1)
  7990. \end{lstlisting}
  7991. \fi}
  7992. % Check that the interference graph that you generate for
  7993. % example X matches the following graph G... -Jeremy
  7994. \end{exercise}
  7995. \section{Patch Instructions}
  7996. The new instructions \key{cmpq} and \key{movzbq} have some special
  7997. restrictions that need to be handled in the \code{patch\_instructions}
  7998. pass.
  7999. %
  8000. The second argument of the \key{cmpq} instruction must not be an
  8001. immediate value (such as an integer). So if you are comparing two
  8002. immediates, we recommend inserting a \key{movq} instruction to put the
  8003. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  8004. one memory reference.
  8005. %
  8006. The second argument of the \key{movzbq} must be a register.
  8007. \begin{exercise}\normalfont
  8008. %
  8009. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  8010. %
  8011. {\if\edition\racketEd
  8012. Add the following entry to the list of \code{passes} in
  8013. \code{run-tests.rkt} and then run this script to test your compiler.
  8014. \begin{lstlisting}
  8015. (list "patch_instructions" patch_instructions interp-x86-1)
  8016. \end{lstlisting}
  8017. \fi}
  8018. \end{exercise}
  8019. {\if\edition\pythonEd
  8020. \section{Prelude and Conclusion}
  8021. \label{sec:prelude-conclusion-cond}
  8022. The generation of the \code{main} function with its prelude and
  8023. conclusion must change to accomodate how the program now consists of
  8024. one or more basic blocks. After the prelude in \code{main}, jump to
  8025. the \code{start} block. Place the conclusion in a basic block labelled
  8026. with \code{conclusion}.
  8027. \fi}
  8028. Figure~\ref{fig:if-example-x86} shows a simple example program in
  8029. \LangIf{} translated to x86, showing the results of
  8030. \code{explicate\_control}, \code{select\_instructions}, and the final
  8031. x86 assembly.
  8032. \begin{figure}[tbp]
  8033. {\if\edition\racketEd
  8034. \begin{tabular}{lll}
  8035. \begin{minipage}{0.4\textwidth}
  8036. % cond_test_20.rkt, eq_input.py
  8037. \begin{lstlisting}
  8038. (if (eq? (read) 1) 42 0)
  8039. \end{lstlisting}
  8040. $\Downarrow$
  8041. \begin{lstlisting}
  8042. start:
  8043. tmp7951 = (read);
  8044. if (eq? tmp7951 1)
  8045. goto block7952;
  8046. else
  8047. goto block7953;
  8048. block7952:
  8049. return 42;
  8050. block7953:
  8051. return 0;
  8052. \end{lstlisting}
  8053. $\Downarrow$
  8054. \begin{lstlisting}
  8055. start:
  8056. callq read_int
  8057. movq %rax, tmp7951
  8058. cmpq $1, tmp7951
  8059. je block7952
  8060. jmp block7953
  8061. block7953:
  8062. movq $0, %rax
  8063. jmp conclusion
  8064. block7952:
  8065. movq $42, %rax
  8066. jmp conclusion
  8067. \end{lstlisting}
  8068. \end{minipage}
  8069. &
  8070. $\Rightarrow\qquad$
  8071. \begin{minipage}{0.4\textwidth}
  8072. \begin{lstlisting}
  8073. start:
  8074. callq read_int
  8075. movq %rax, %rcx
  8076. cmpq $1, %rcx
  8077. je block7952
  8078. jmp block7953
  8079. block7953:
  8080. movq $0, %rax
  8081. jmp conclusion
  8082. block7952:
  8083. movq $42, %rax
  8084. jmp conclusion
  8085. .globl main
  8086. main:
  8087. pushq %rbp
  8088. movq %rsp, %rbp
  8089. pushq %r13
  8090. pushq %r12
  8091. pushq %rbx
  8092. pushq %r14
  8093. subq $0, %rsp
  8094. jmp start
  8095. conclusion:
  8096. addq $0, %rsp
  8097. popq %r14
  8098. popq %rbx
  8099. popq %r12
  8100. popq %r13
  8101. popq %rbp
  8102. retq
  8103. \end{lstlisting}
  8104. \end{minipage}
  8105. \end{tabular}
  8106. \fi}
  8107. {\if\edition\pythonEd
  8108. \begin{tabular}{lll}
  8109. \begin{minipage}{0.4\textwidth}
  8110. % cond_test_20.rkt, eq_input.py
  8111. \begin{lstlisting}
  8112. print(42 if input_int() == 1 else 0)
  8113. \end{lstlisting}
  8114. $\Downarrow$
  8115. \begin{lstlisting}
  8116. start:
  8117. tmp_0 = input_int()
  8118. if tmp_0 == 1:
  8119. goto block_3
  8120. else:
  8121. goto block_4
  8122. block_3:
  8123. tmp_1 = 42
  8124. goto block_2
  8125. block_4:
  8126. tmp_1 = 0
  8127. goto block_2
  8128. block_2:
  8129. print(tmp_1)
  8130. return 0
  8131. \end{lstlisting}
  8132. $\Downarrow$
  8133. \begin{lstlisting}
  8134. start:
  8135. callq read_int
  8136. movq %rax, tmp_0
  8137. cmpq 1, tmp_0
  8138. je block_3
  8139. jmp block_4
  8140. block_3:
  8141. movq 42, tmp_1
  8142. jmp block_2
  8143. block_4:
  8144. movq 0, tmp_1
  8145. jmp block_2
  8146. block_2:
  8147. movq tmp_1, %rdi
  8148. callq print_int
  8149. movq 0, %rax
  8150. jmp conclusion
  8151. \end{lstlisting}
  8152. \end{minipage}
  8153. &
  8154. $\Rightarrow\qquad$
  8155. \begin{minipage}{0.4\textwidth}
  8156. \begin{lstlisting}
  8157. .globl main
  8158. main:
  8159. pushq %rbp
  8160. movq %rsp, %rbp
  8161. subq $0, %rsp
  8162. jmp start
  8163. start:
  8164. callq read_int
  8165. movq %rax, %rcx
  8166. cmpq $1, %rcx
  8167. je block_3
  8168. jmp block_4
  8169. block_3:
  8170. movq $42, %rcx
  8171. jmp block_2
  8172. block_4:
  8173. movq $0, %rcx
  8174. jmp block_2
  8175. block_2:
  8176. movq %rcx, %rdi
  8177. callq print_int
  8178. movq $0, %rax
  8179. jmp conclusion
  8180. conclusion:
  8181. addq $0, %rsp
  8182. popq %rbp
  8183. retq
  8184. \end{lstlisting}
  8185. \end{minipage}
  8186. \end{tabular}
  8187. \fi}
  8188. \caption{Example compilation of an \key{if} expression to x86, showing
  8189. the results of \code{explicate\_control},
  8190. \code{select\_instructions}, and the final x86 assembly code. }
  8191. \label{fig:if-example-x86}
  8192. \end{figure}
  8193. \begin{figure}[tbp]
  8194. {\if\edition\racketEd
  8195. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8196. \node (Lif) at (0,2) {\large \LangIf{}};
  8197. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8198. \node (Lif-3) at (6,2) {\large \LangIf{}};
  8199. \node (Lif-4) at (9,2) {\large \LangIf{}};
  8200. \node (Lif-5) at (12,2) {\large \LangIfANF{}};
  8201. \node (C1-1) at (3,0) {\large \LangCIf{}};
  8202. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  8203. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  8204. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  8205. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  8206. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  8207. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  8208. \path[->,bend left=15] (Lif) edge [above] node {\ttfamily\footnotesize type\_check} (Lif-2);
  8209. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  8210. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  8211. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-5);
  8212. \path[->,bend left=15] (Lif-5) edge [left] node {\ttfamily\footnotesize explicate\_control} (C1-1);
  8213. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  8214. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  8215. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  8216. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  8217. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  8218. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86 } (x86-5);
  8219. \end{tikzpicture}
  8220. \fi}
  8221. {\if\edition\pythonEd
  8222. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8223. \node (Lif-1) at (0,2) {\large \LangIf{}};
  8224. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8225. \node (Lif-3) at (6,2) {\large \LangIfANF{}};
  8226. \node (C-1) at (3,0) {\large \LangCIf{}};
  8227. \node (x86-1) at (3,-2) {\large \LangXIfVar{}};
  8228. \node (x86-2) at (6,-2) {\large \LangXIfVar{}};
  8229. \node (x86-3) at (9,-2) {\large \LangXIf{}};
  8230. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  8231. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  8232. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-3);
  8233. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (C-1);
  8234. \path[->,bend right=15] (C-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  8235. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  8236. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  8237. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl. } (x86-4);
  8238. \end{tikzpicture}
  8239. \fi}
  8240. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  8241. \label{fig:Lif-passes}
  8242. \end{figure}
  8243. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  8244. compilation of \LangIf{}.
  8245. \section{Challenge: Optimize Blocks and Remove Jumps}
  8246. \label{sec:opt-jumps}
  8247. We discuss two optional challenges that involve optimizing the
  8248. control-flow of the program.
  8249. \subsection{Optimize Blocks}
  8250. The algorithm for \code{explicate\_control} that we discussed in
  8251. Section~\ref{sec:explicate-control-Lif} sometimes generates too many
  8252. blocks. It does so in two different ways.
  8253. %
  8254. First, recall how in Figure~\ref{fig:explicate-control-s1-38},
  8255. \code{block\_4} consists of just a jump to \code{block\_2}. We created
  8256. a new basic block from a single \code{goto} statement, whereas we
  8257. could have simply returned the \code{goto} statement. We can solve
  8258. this problem by modifying the \code{create\_block} function to
  8259. recognize this situation.
  8260. Second, \code{explicate\_control} creates a basic block whenever a
  8261. continuation \emph{might} get used more than once (wheneven a
  8262. continuation is passed into two or more recursive calls). However,
  8263. just because a continuation might get used more than once, doesn't
  8264. mean it will. In fact, some continuation parameters may not be used
  8265. at all because we sometimes ignore them. For example, consider the
  8266. case for the constant \TRUE{} in \code{explicate\_pred}, where we
  8267. discard the \code{els} branch. So the question is how can we decide
  8268. whether to create a basic block?
  8269. The solution to this conundrum is to use \emph{lazy
  8270. evaluation}\index{subject}{lazy evaluation}~\citep{Friedman:1976aa}
  8271. to delay creating a basic block until the point in time where we know
  8272. it will be used.
  8273. %
  8274. {\if\edition\racketEd
  8275. %
  8276. Racket provides support for
  8277. lazy evaluation with the
  8278. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  8279. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  8280. \index{subject}{delay} creates a
  8281. \emph{promise}\index{subject}{promise} in which the evaluation of the
  8282. expressions is postponed. When \key{(force}
  8283. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  8284. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  8285. result of $e_n$ is cached in the promise and returned. If \code{force}
  8286. is applied again to the same promise, then the cached result is
  8287. returned. If \code{force} is applied to an argument that is not a
  8288. promise, \code{force} simply returns the argument.
  8289. %
  8290. \fi}
  8291. %
  8292. {\if\edition\pythonEd
  8293. %
  8294. While Python does not provide direct support for lazy evaluation, it
  8295. is easy to mimic. We can \emph{delay} the evaluation of a computation
  8296. by wrapping it inside a function with no parameters. We can
  8297. \emph{force} its evaluation by calling the function. However, in some
  8298. cases of \code{explicate\_pred}, etc., we will return a list of
  8299. statements and in other cases we will return a function that computes
  8300. a list of statements. We use the term \emph{promise} to refer to a
  8301. value that may or may not be delayed. To uniformly deal with
  8302. promises, we define the following \code{force} function that checks
  8303. whether its input is delayed (i.e. whether it is a function) and then
  8304. either 1) calls the function, or 2) returns the input.
  8305. \begin{lstlisting}
  8306. def force(promise):
  8307. if isinstance(promise, types.FunctionType):
  8308. return promise()
  8309. else:
  8310. return promise
  8311. \end{lstlisting}
  8312. %
  8313. \fi}
  8314. We use promises for the input and output of the functions
  8315. \code{explicate\_pred}, \code{explicate\_assign},
  8316. %
  8317. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  8318. %
  8319. So instead of taking and returning lists of statments, they take and
  8320. return promises. Furthermore, when we come to a situation in which a
  8321. continuation might be used more than once, as in the case for
  8322. \code{if} in \code{explicate\_pred}, we create a delayed computation
  8323. that creates a basic block for each continuation (if there is not
  8324. already one) and then returns a \code{goto} statement to that basic
  8325. block.
  8326. %
  8327. {\if\edition\racketEd
  8328. %
  8329. The following auxiliary function named \code{create\_block} accomplishes
  8330. this task. It begins with \code{delay} to create a promise. When
  8331. forced, this promise will force the original promise. If that returns
  8332. a \code{goto} (because the block was already added to the control-flow
  8333. graph), then we return the \code{goto}. Otherwise we add the block to
  8334. the control-flow graph with another auxiliary function named
  8335. \code{add-node}. That function returns the label for the new block,
  8336. which we use to create a \code{goto}.
  8337. \begin{lstlisting}
  8338. (define (create_block tail)
  8339. (delay
  8340. (define t (force tail))
  8341. (match t
  8342. [(Goto label) (Goto label)]
  8343. [else (Goto (add-node t))])))
  8344. \end{lstlisting}
  8345. \fi}
  8346. {\if\edition\pythonEd
  8347. %
  8348. Here's the new version of the \code{create\_block} auxiliary function
  8349. that works on promises and that checks whether the block consists of a
  8350. solitary \code{goto} statement.\\
  8351. \begin{minipage}{\textwidth}
  8352. \begin{lstlisting}
  8353. def create_block(promise, basic_blocks):
  8354. stmts = force(promise)
  8355. match stmts:
  8356. case [Goto(l)]:
  8357. return Goto(l)
  8358. case _:
  8359. label = label_name(generate_name('block'))
  8360. basic_blocks[label] = stmts
  8361. return Goto(label)
  8362. \end{lstlisting}
  8363. \end{minipage}
  8364. \fi}
  8365. Figure~\ref{fig:explicate-control-challenge} shows the output of
  8366. \code{explicate\_control} on the example of the nested \code{if}
  8367. expressions with the two improvements discussed above. As you can
  8368. see, the number of basic blocks has been reduced from 10 blocks (see
  8369. Figure~\ref{fig:explicate-control-s1-38}) down to 6 blocks.
  8370. \begin{figure}[tbp]
  8371. {\if\edition\racketEd
  8372. \begin{tabular}{lll}
  8373. \begin{minipage}{0.4\textwidth}
  8374. % cond_test_41.rkt
  8375. \begin{lstlisting}
  8376. (let ([x (read)])
  8377. (let ([y (read)])
  8378. (if (if (< x 1)
  8379. (eq? x 0)
  8380. (eq? x 2))
  8381. (+ y 2)
  8382. (+ y 10))))
  8383. \end{lstlisting}
  8384. \end{minipage}
  8385. &
  8386. $\Rightarrow$
  8387. &
  8388. \begin{minipage}{0.55\textwidth}
  8389. \begin{lstlisting}
  8390. start:
  8391. x = (read);
  8392. y = (read);
  8393. if (< x 1) goto block40;
  8394. else goto block41;
  8395. block40:
  8396. if (eq? x 0) goto block38;
  8397. else goto block39;
  8398. block41:
  8399. if (eq? x 2) goto block38;
  8400. else goto block39;
  8401. block38:
  8402. return (+ y 2);
  8403. block39:
  8404. return (+ y 10);
  8405. \end{lstlisting}
  8406. \end{minipage}
  8407. \end{tabular}
  8408. \fi}
  8409. {\if\edition\pythonEd
  8410. \begin{tabular}{lll}
  8411. \begin{minipage}{0.4\textwidth}
  8412. % cond_test_41.rkt
  8413. \begin{lstlisting}
  8414. x = input_int()
  8415. y = input_int()
  8416. print(y + 2 \
  8417. if (x == 0 \
  8418. if x < 1 \
  8419. else x == 2) \
  8420. else y + 10)
  8421. \end{lstlisting}
  8422. \end{minipage}
  8423. &
  8424. $\Rightarrow$
  8425. &
  8426. \begin{minipage}{0.55\textwidth}
  8427. \begin{lstlisting}
  8428. start:
  8429. x = input_int()
  8430. y = input_int()
  8431. if x < 1:
  8432. goto block_4
  8433. else:
  8434. goto block_5
  8435. block_4:
  8436. if x == 0:
  8437. goto block_2
  8438. else:
  8439. goto block_3
  8440. block_5:
  8441. if x == 2:
  8442. goto block_2
  8443. else:
  8444. goto block_3
  8445. block_2:
  8446. tmp_0 = y + 2
  8447. goto block_1
  8448. block_3:
  8449. tmp_0 = y + 10
  8450. goto block_1
  8451. block_1:
  8452. print(tmp_0)
  8453. return 0
  8454. \end{lstlisting}
  8455. \end{minipage}
  8456. \end{tabular}
  8457. \fi}
  8458. \caption{Translation from \LangIf{} to \LangCIf{}
  8459. via the improved \code{explicate\_control}.}
  8460. \label{fig:explicate-control-challenge}
  8461. \end{figure}
  8462. %% Recall that in the example output of \code{explicate\_control} in
  8463. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  8464. %% \code{block60} are trivial blocks, they do nothing but jump to another
  8465. %% block. The first goal of this challenge assignment is to remove those
  8466. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  8467. %% \code{explicate\_control} on the left and shows the result of bypassing
  8468. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  8469. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  8470. %% \code{block55}. The optimized code on the right of
  8471. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  8472. %% \code{then} branch jumping directly to \code{block55}. The story is
  8473. %% similar for the \code{else} branch, as well as for the two branches in
  8474. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  8475. %% have been optimized in this way, there are no longer any jumps to
  8476. %% blocks \code{block57} through \code{block60}, so they can be removed.
  8477. %% \begin{figure}[tbp]
  8478. %% \begin{tabular}{lll}
  8479. %% \begin{minipage}{0.4\textwidth}
  8480. %% \begin{lstlisting}
  8481. %% block62:
  8482. %% tmp54 = (read);
  8483. %% if (eq? tmp54 2) then
  8484. %% goto block59;
  8485. %% else
  8486. %% goto block60;
  8487. %% block61:
  8488. %% tmp53 = (read);
  8489. %% if (eq? tmp53 0) then
  8490. %% goto block57;
  8491. %% else
  8492. %% goto block58;
  8493. %% block60:
  8494. %% goto block56;
  8495. %% block59:
  8496. %% goto block55;
  8497. %% block58:
  8498. %% goto block56;
  8499. %% block57:
  8500. %% goto block55;
  8501. %% block56:
  8502. %% return (+ 700 77);
  8503. %% block55:
  8504. %% return (+ 10 32);
  8505. %% start:
  8506. %% tmp52 = (read);
  8507. %% if (eq? tmp52 1) then
  8508. %% goto block61;
  8509. %% else
  8510. %% goto block62;
  8511. %% \end{lstlisting}
  8512. %% \end{minipage}
  8513. %% &
  8514. %% $\Rightarrow$
  8515. %% &
  8516. %% \begin{minipage}{0.55\textwidth}
  8517. %% \begin{lstlisting}
  8518. %% block62:
  8519. %% tmp54 = (read);
  8520. %% if (eq? tmp54 2) then
  8521. %% goto block55;
  8522. %% else
  8523. %% goto block56;
  8524. %% block61:
  8525. %% tmp53 = (read);
  8526. %% if (eq? tmp53 0) then
  8527. %% goto block55;
  8528. %% else
  8529. %% goto block56;
  8530. %% block56:
  8531. %% return (+ 700 77);
  8532. %% block55:
  8533. %% return (+ 10 32);
  8534. %% start:
  8535. %% tmp52 = (read);
  8536. %% if (eq? tmp52 1) then
  8537. %% goto block61;
  8538. %% else
  8539. %% goto block62;
  8540. %% \end{lstlisting}
  8541. %% \end{minipage}
  8542. %% \end{tabular}
  8543. %% \caption{Optimize jumps by removing trivial blocks.}
  8544. %% \label{fig:optimize-jumps}
  8545. %% \end{figure}
  8546. %% The name of this pass is \code{optimize-jumps}. We recommend
  8547. %% implementing this pass in two phases. The first phrase builds a hash
  8548. %% table that maps labels to possibly improved labels. The second phase
  8549. %% changes the target of each \code{goto} to use the improved label. If
  8550. %% the label is for a trivial block, then the hash table should map the
  8551. %% label to the first non-trivial block that can be reached from this
  8552. %% label by jumping through trivial blocks. If the label is for a
  8553. %% non-trivial block, then the hash table should map the label to itself;
  8554. %% we do not want to change jumps to non-trivial blocks.
  8555. %% The first phase can be accomplished by constructing an empty hash
  8556. %% table, call it \code{short-cut}, and then iterating over the control
  8557. %% flow graph. Each time you encouter a block that is just a \code{goto},
  8558. %% then update the hash table, mapping the block's source to the target
  8559. %% of the \code{goto}. Also, the hash table may already have mapped some
  8560. %% labels to the block's source, to you must iterate through the hash
  8561. %% table and update all of those so that they instead map to the target
  8562. %% of the \code{goto}.
  8563. %% For the second phase, we recommend iterating through the $\Tail$ of
  8564. %% each block in the program, updating the target of every \code{goto}
  8565. %% according to the mapping in \code{short-cut}.
  8566. \begin{exercise}\normalfont
  8567. Implement the improvements to the \code{explicate\_control} pass.
  8568. Check that it removes trivial blocks in a few example programs. Then
  8569. check that your compiler still passes all of your tests.
  8570. \end{exercise}
  8571. \subsection{Remove Jumps}
  8572. There is an opportunity for removing jumps that is apparent in the
  8573. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  8574. ends with a jump to \code{block\_4} and there are no other jumps to
  8575. \code{block\_4} in the rest of the program. In this situation we can
  8576. avoid the runtime overhead of this jump by merging \code{block\_4}
  8577. into the preceding block, in this case the \code{start} block.
  8578. Figure~\ref{fig:remove-jumps} shows the output of
  8579. \code{select\_instructions} on the left and the result of this
  8580. optimization on the right.
  8581. \begin{figure}[tbp]
  8582. {\if\edition\racketEd
  8583. \begin{tabular}{lll}
  8584. \begin{minipage}{0.5\textwidth}
  8585. % cond_test_20.rkt
  8586. \begin{lstlisting}
  8587. start:
  8588. callq read_int
  8589. movq %rax, tmp7951
  8590. cmpq $1, tmp7951
  8591. je block7952
  8592. jmp block7953
  8593. block7953:
  8594. movq $0, %rax
  8595. jmp conclusion
  8596. block7952:
  8597. movq $42, %rax
  8598. jmp conclusion
  8599. \end{lstlisting}
  8600. \end{minipage}
  8601. &
  8602. $\Rightarrow\qquad$
  8603. \begin{minipage}{0.4\textwidth}
  8604. \begin{lstlisting}
  8605. start:
  8606. callq read_int
  8607. movq %rax, tmp7951
  8608. cmpq $1, tmp7951
  8609. je block7952
  8610. movq $0, %rax
  8611. jmp conclusion
  8612. block7952:
  8613. movq $42, %rax
  8614. jmp conclusion
  8615. \end{lstlisting}
  8616. \end{minipage}
  8617. \end{tabular}
  8618. \fi}
  8619. {\if\edition\pythonEd
  8620. \begin{tabular}{lll}
  8621. \begin{minipage}{0.5\textwidth}
  8622. % cond_test_20.rkt
  8623. \begin{lstlisting}
  8624. start:
  8625. callq read_int
  8626. movq %rax, tmp_0
  8627. cmpq 1, tmp_0
  8628. je block_3
  8629. jmp block_4
  8630. block_3:
  8631. movq 42, tmp_1
  8632. jmp block_2
  8633. block_4:
  8634. movq 0, tmp_1
  8635. jmp block_2
  8636. block_2:
  8637. movq tmp_1, %rdi
  8638. callq print_int
  8639. movq 0, %rax
  8640. jmp conclusion
  8641. \end{lstlisting}
  8642. \end{minipage}
  8643. &
  8644. $\Rightarrow\qquad$
  8645. \begin{minipage}{0.4\textwidth}
  8646. \begin{lstlisting}
  8647. start:
  8648. callq read_int
  8649. movq %rax, tmp_0
  8650. cmpq 1, tmp_0
  8651. je block_3
  8652. movq 0, tmp_1
  8653. jmp block_2
  8654. block_3:
  8655. movq 42, tmp_1
  8656. jmp block_2
  8657. block_2:
  8658. movq tmp_1, %rdi
  8659. callq print_int
  8660. movq 0, %rax
  8661. jmp conclusion
  8662. \end{lstlisting}
  8663. \end{minipage}
  8664. \end{tabular}
  8665. \fi}
  8666. \caption{Merging basic blocks by removing unnecessary jumps.}
  8667. \label{fig:remove-jumps}
  8668. \end{figure}
  8669. \begin{exercise}\normalfont
  8670. %
  8671. Implement a pass named \code{remove\_jumps} that merges basic blocks
  8672. into their preceding basic block, when there is only one preceding
  8673. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  8674. %
  8675. {\if\edition\racketEd
  8676. In the \code{run-tests.rkt} script, add the following entry to the
  8677. list of \code{passes} between \code{allocate\_registers}
  8678. and \code{patch\_instructions}.
  8679. \begin{lstlisting}
  8680. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  8681. \end{lstlisting}
  8682. \fi}
  8683. %
  8684. Run the script to test your compiler.
  8685. %
  8686. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  8687. blocks on several test programs.
  8688. \end{exercise}
  8689. \section{Further Reading}
  8690. \label{sec:cond-further-reading}
  8691. The algorithm for the \code{explicate\_control} pass is based on the
  8692. the \code{explose-basic-blocks} pass in the course notes of
  8693. \citet{Dybvig:2010aa}.
  8694. %
  8695. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  8696. \citet{Appel:2003fk}, and is related to translations into continuation
  8697. passing
  8698. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  8699. %
  8700. The treatment of conditionals in the \code{explicate\_control} pass is
  8701. similar to short-cut boolean
  8702. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  8703. and the case-of-case transformation of \citet{PeytonJones:1998}.
  8704. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8705. \chapter{Loops and Dataflow Analysis}
  8706. \label{ch:Lwhile}
  8707. % TODO: define R'_8
  8708. % TODO: multi-graph
  8709. {\if\edition\racketEd
  8710. %
  8711. In this chapter we study two features that are the hallmarks of
  8712. imperative programming languages: loops and assignments to local
  8713. variables. The following example demonstrates these new features by
  8714. computing the sum of the first five positive integers.
  8715. % similar to loop_test_1.rkt
  8716. \begin{lstlisting}
  8717. (let ([sum 0])
  8718. (let ([i 5])
  8719. (begin
  8720. (while (> i 0)
  8721. (begin
  8722. (set! sum (+ sum i))
  8723. (set! i (- i 1))))
  8724. sum)))
  8725. \end{lstlisting}
  8726. The \code{while} loop consists of a condition and a
  8727. body\footnote{The \code{while} loop in particular is not a built-in
  8728. feature of the Racket language, but Racket includes many looping
  8729. constructs and it is straightforward to define \code{while} as a
  8730. macro.}. The body is evaluated repeatedly so long as the condition
  8731. remains true.
  8732. %
  8733. The \code{set!} consists of a variable and a right-hand-side
  8734. expression. The \code{set!} updates value of the variable to the
  8735. value of the right-hand-side.
  8736. %
  8737. The primary purpose of both the \code{while} loop and \code{set!} is
  8738. to cause side effects, so they do not have a meaningful result
  8739. value. Instead their result is the \code{\#<void>} value. The
  8740. expression \code{(void)} is an explicit way to create the
  8741. \code{\#<void>} value and it has type \code{Void}. The
  8742. \code{\#<void>} value can be passed around just like other values
  8743. inside an \LangLoop{} program and a \code{\#<void>} value can be
  8744. compared for equality with another \code{\#<void>} value. However,
  8745. there are no other operations specific to the the \code{\#<void>}
  8746. value in \LangLoop{}. In contrast, Racket defines the \code{void?}
  8747. predicate that returns \code{\#t} when applied to \code{\#<void>} and
  8748. \code{\#f} otherwise.
  8749. %
  8750. \footnote{Racket's \code{Void} type corresponds to what is called the
  8751. \code{Unit} type in the programming languages literature. Racket's
  8752. \code{Void} type is inhabited by a single value \code{\#<void>}
  8753. which corresponds to \code{unit} or \code{()} in the
  8754. literature~\citep{Pierce:2002hj}.}.
  8755. %
  8756. With the addition of side-effecting features such as \code{while} loop
  8757. and \code{set!}, it is helpful to also include in a language feature
  8758. for sequencing side effects: the \code{begin} expression. It consists
  8759. of one or more subexpressions that are evaluated left-to-right.
  8760. %
  8761. \fi}
  8762. {\if\edition\pythonEd
  8763. %
  8764. In this chapter we study loops, one of the hallmarks of imperative
  8765. programming languages. The following example demonstrates the
  8766. \code{while} loop by computing the sum of the first five positive
  8767. integers.
  8768. \begin{lstlisting}
  8769. sum = 0
  8770. i = 5
  8771. while i > 0:
  8772. sum = sum + i
  8773. i = i - 1
  8774. print(sum)
  8775. \end{lstlisting}
  8776. The \code{while} loop consists of a condition expression and a body (a
  8777. sequence of statements). The body is evaluated repeatedly so long as
  8778. the condition remains true.
  8779. %
  8780. \fi}
  8781. \section{The \LangLoop{} Language}
  8782. \newcommand{\LwhileGrammarRacket}{
  8783. \begin{array}{lcl}
  8784. \Type &::=& \key{Void}\\
  8785. \Exp &::=& \CSETBANG{\Var}{\Exp}
  8786. \MID \CBEGIN{\Exp\ldots}{\Exp}
  8787. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  8788. \end{array}
  8789. }
  8790. \newcommand{\LwhileAST}{
  8791. \begin{array}{lcl}
  8792. \Type &::=& \key{Void}\\
  8793. \Exp &::=& \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp}\\
  8794. &\MID& \WHILE{\Exp}{\Exp} \MID \VOID{}
  8795. \end{array}
  8796. }
  8797. \newcommand{\LwhileGrammarPython}{
  8798. \begin{array}{rcl}
  8799. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  8800. \end{array}
  8801. }
  8802. \newcommand{\LwhileASTPython}{
  8803. \begin{array}{lcl}
  8804. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  8805. \end{array}
  8806. }
  8807. \begin{figure}[tp]
  8808. \centering
  8809. \fbox{
  8810. \begin{minipage}{0.96\textwidth}
  8811. \small
  8812. {\if\edition\racketEd
  8813. \[
  8814. \begin{array}{l}
  8815. \gray{\LintGrammarRacket{}} \\ \hline
  8816. \gray{\LvarGrammarRacket{}} \\ \hline
  8817. \gray{\LifGrammarRacket{}} \\ \hline
  8818. \LwhileGrammarRacket \\
  8819. \begin{array}{lcl}
  8820. \LangLoopM{} &::=& \Exp
  8821. \end{array}
  8822. \end{array}
  8823. \]
  8824. \fi}
  8825. {\if\edition\pythonEd
  8826. \[
  8827. \begin{array}{l}
  8828. \gray{\LintGrammarPython} \\ \hline
  8829. \gray{\LvarGrammarPython} \\ \hline
  8830. \gray{\LifGrammarPython} \\ \hline
  8831. \LwhileGrammarPython \\
  8832. \begin{array}{rcl}
  8833. \LangLoopM{} &::=& \Stmt^{*}
  8834. \end{array}
  8835. \end{array}
  8836. \]
  8837. \fi}
  8838. \end{minipage}
  8839. }
  8840. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-concrete-syntax}).}
  8841. \label{fig:Lwhile-concrete-syntax}
  8842. \end{figure}
  8843. \begin{figure}[tp]
  8844. \centering
  8845. \fbox{
  8846. \begin{minipage}{0.96\textwidth}
  8847. \small
  8848. {\if\edition\racketEd
  8849. \[
  8850. \begin{array}{l}
  8851. \gray{\LintOpAST} \\ \hline
  8852. \gray{\LvarAST{}} \\ \hline
  8853. \gray{\LifAST{}} \\ \hline
  8854. \LwhileAST{} \\
  8855. \begin{array}{lcl}
  8856. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  8857. \end{array}
  8858. \end{array}
  8859. \]
  8860. \fi}
  8861. {\if\edition\pythonEd
  8862. \[
  8863. \begin{array}{l}
  8864. \gray{\LintASTPython} \\ \hline
  8865. \gray{\LvarASTPython} \\ \hline
  8866. \gray{\LifASTPython} \\ \hline
  8867. \LwhileASTPython \\
  8868. \begin{array}{lcl}
  8869. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  8870. \end{array}
  8871. \end{array}
  8872. \]
  8873. \fi}
  8874. \end{minipage}
  8875. }
  8876. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-syntax}).}
  8877. \label{fig:Lwhile-syntax}
  8878. \end{figure}
  8879. The concrete syntax of \LangLoop{} is defined in
  8880. Figure~\ref{fig:Lwhile-concrete-syntax} and its abstract syntax is defined
  8881. in Figure~\ref{fig:Lwhile-syntax}.
  8882. %
  8883. The definitional interpreter for \LangLoop{} is shown in
  8884. Figure~\ref{fig:interp-Rwhile}.
  8885. %
  8886. {\if\edition\racketEd
  8887. %
  8888. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  8889. and \code{Void} and we make changes to the cases for \code{Var},
  8890. \code{Let}, and \code{Apply} regarding variables. To support
  8891. assignment to variables and to make their lifetimes indefinite (see
  8892. the second example in Section~\ref{sec:assignment-scoping}), we box
  8893. the value that is bound to each variable (in \code{Let}) and function
  8894. parameter (in \code{Apply}). The case for \code{Var} unboxes the
  8895. value.
  8896. %
  8897. Now to discuss the new cases. For \code{SetBang}, we lookup the
  8898. variable in the environment to obtain a boxed value and then we change
  8899. it using \code{set-box!} to the result of evaluating the right-hand
  8900. side. The result value of a \code{SetBang} is \code{void}.
  8901. %
  8902. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  8903. if the result is true, 2) evaluate the body.
  8904. The result value of a \code{while} loop is also \code{void}.
  8905. %
  8906. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  8907. subexpressions \itm{es} for their effects and then evaluates
  8908. and returns the result from \itm{body}.
  8909. %
  8910. The $\VOID{}$ expression produces the \code{void} value.
  8911. %
  8912. \fi}
  8913. {\if\edition\pythonEd
  8914. %
  8915. We add a new case for \code{While} in the \code{interp\_stmts}
  8916. function, where we repeatedly interpret the \code{body} so long as the
  8917. \code{test} expression remains true.
  8918. %
  8919. \fi}
  8920. \begin{figure}[tbp]
  8921. {\if\edition\racketEd
  8922. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8923. (define interp-Rwhile_class
  8924. (class interp-Rany_class
  8925. (super-new)
  8926. (define/override ((interp-exp env) e)
  8927. (define recur (interp-exp env))
  8928. (match e
  8929. [(SetBang x rhs)
  8930. (set-box! (lookup x env) (recur rhs))]
  8931. [(WhileLoop cnd body)
  8932. (define (loop)
  8933. (cond [(recur cnd) (recur body) (loop)]
  8934. [else (void)]))
  8935. (loop)]
  8936. [(Begin es body)
  8937. (for ([e es]) (recur e))
  8938. (recur body)]
  8939. [(Void) (void)]
  8940. [else ((super interp-exp env) e)]))
  8941. ))
  8942. (define (interp-Rwhile p)
  8943. (send (new interp-Rwhile_class) interp-program p))
  8944. \end{lstlisting}
  8945. \fi}
  8946. {\if\edition\pythonEd
  8947. \begin{lstlisting}
  8948. class InterpLwhile(InterpLif):
  8949. def interp_stmts(self, ss, env):
  8950. if len(ss) == 0:
  8951. return
  8952. match ss[0]:
  8953. case While(test, body, []):
  8954. while self.interp_exp(test, env):
  8955. self.interp_stmts(body, env)
  8956. return self.interp_stmts(ss[1:], env)
  8957. case _:
  8958. return super().interp_stmts(ss, env)
  8959. \end{lstlisting}
  8960. \fi}
  8961. \caption{Interpreter for \LangLoop{}.}
  8962. \label{fig:interp-Rwhile}
  8963. \end{figure}
  8964. The type checker for \LangLoop{} is defined in
  8965. Figure~\ref{fig:type-check-Rwhile}.
  8966. %
  8967. {\if\edition\racketEd
  8968. %
  8969. For \LangLoop{} we add a type named \code{Void} and the only value of
  8970. this type is the \code{void} value.
  8971. %
  8972. The type checking of the \code{SetBang} expression requires the type of
  8973. the variable and the right-hand-side to agree. The result type is
  8974. \code{Void}. For \code{while}, the condition must be a
  8975. \code{Boolean}. The result type is also \code{Void}. For
  8976. \code{Begin}, the result type is the type of its last subexpression.
  8977. %
  8978. \fi}
  8979. %
  8980. {\if\edition\pythonEd
  8981. %
  8982. A \code{while} loop is well typed if the type of the \code{test}
  8983. expression is \code{bool} and the statements in the \code{body} are
  8984. well typed.
  8985. %
  8986. \fi}
  8987. \begin{figure}[tbp]
  8988. {\if\edition\racketEd
  8989. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8990. (define type-check-Rwhile_class
  8991. (class type-check-Rany_class
  8992. (super-new)
  8993. (inherit check-type-equal?)
  8994. (define/override (type-check-exp env)
  8995. (lambda (e)
  8996. (define recur (type-check-exp env))
  8997. (match e
  8998. [(SetBang x rhs)
  8999. (define-values (rhs^ rhsT) (recur rhs))
  9000. (define varT (dict-ref env x))
  9001. (check-type-equal? rhsT varT e)
  9002. (values (SetBang x rhs^) 'Void)]
  9003. [(WhileLoop cnd body)
  9004. (define-values (cnd^ Tc) (recur cnd))
  9005. (check-type-equal? Tc 'Boolean e)
  9006. (define-values (body^ Tbody) ((type-check-exp env) body))
  9007. (values (WhileLoop cnd^ body^) 'Void)]
  9008. [(Begin es body)
  9009. (define-values (es^ ts)
  9010. (for/lists (l1 l2) ([e es]) (recur e)))
  9011. (define-values (body^ Tbody) (recur body))
  9012. (values (Begin es^ body^) Tbody)]
  9013. [else ((super type-check-exp env) e)])))
  9014. ))
  9015. (define (type-check-Rwhile p)
  9016. (send (new type-check-Rwhile_class) type-check-program p))
  9017. \end{lstlisting}
  9018. \fi}
  9019. {\if\edition\pythonEd
  9020. \begin{lstlisting}
  9021. class TypeCheckLwhile(TypeCheckLif):
  9022. def type_check_stmts(self, ss, env):
  9023. if len(ss) == 0:
  9024. return
  9025. match ss[0]:
  9026. case While(test, body, []):
  9027. test_t = self.type_check_exp(test, env)
  9028. check_type_equal(bool, test_t, test)
  9029. body_t = self.type_check_stmts(body, env)
  9030. return self.type_check_stmts(ss[1:], env)
  9031. case _:
  9032. return super().type_check_stmts(ss, env)
  9033. \end{lstlisting}
  9034. \fi}
  9035. \caption{Type checker for the \LangLoop{} language.}
  9036. \label{fig:type-check-Rwhile}
  9037. \end{figure}
  9038. {\if\edition\racketEd
  9039. %
  9040. At first glance, the translation of these language features to x86
  9041. seems straightforward because the \LangCIf{} intermediate language
  9042. already supports all of the ingredients that we need: assignment,
  9043. \code{goto}, conditional branching, and sequencing. However, there are
  9044. complications that arise which we discuss in the next section. After
  9045. that we introduce the changes necessary to the existing passes.
  9046. %
  9047. \fi}
  9048. {\if\edition\pythonEd
  9049. %
  9050. At first glance, the translation of \code{while} loops to x86 seems
  9051. straightforward because the \LangCIf{} intermediate language already
  9052. supports \code{goto} and conditional branching. However, there are
  9053. complications that arise which we discuss in the next section. After
  9054. that we introduce the changes necessary to the existing passes.
  9055. %
  9056. \fi}
  9057. \section{Cyclic Control Flow and Dataflow Analysis}
  9058. \label{sec:dataflow-analysis}
  9059. Up until this point the control-flow graphs of the programs generated
  9060. in \code{explicate\_control} were guaranteed to be acyclic. However,
  9061. each \code{while} loop introduces a cycle in the control-flow graph.
  9062. But does that matter?
  9063. %
  9064. Indeed it does. Recall that for register allocation, the compiler
  9065. performs liveness analysis to determine which variables can share the
  9066. same register. To accomplish this we analyzed the control-flow graph
  9067. in reverse topological order
  9068. (Section~\ref{sec:liveness-analysis-Lif}), but topological order is
  9069. only well-defined for acyclic graphs.
  9070. Let us return to the example of computing the sum of the first five
  9071. positive integers. Here is the program after instruction selection but
  9072. before register allocation.
  9073. \begin{center}
  9074. {\if\edition\racketEd
  9075. \begin{minipage}{0.45\textwidth}
  9076. \begin{lstlisting}
  9077. (define (main) : Integer
  9078. mainstart:
  9079. movq $0, sum
  9080. movq $5, i
  9081. jmp block5
  9082. block5:
  9083. movq i, tmp3
  9084. cmpq tmp3, $0
  9085. jl block7
  9086. jmp block8
  9087. \end{lstlisting}
  9088. \end{minipage}
  9089. \begin{minipage}{0.45\textwidth}
  9090. \begin{lstlisting}
  9091. block7:
  9092. addq i, sum
  9093. movq $1, tmp4
  9094. negq tmp4
  9095. addq tmp4, i
  9096. jmp block5
  9097. block8:
  9098. movq $27, %rax
  9099. addq sum, %rax
  9100. jmp mainconclusion
  9101. )
  9102. \end{lstlisting}
  9103. \end{minipage}
  9104. \fi}
  9105. {\if\edition\pythonEd
  9106. \begin{minipage}{0.45\textwidth}
  9107. \begin{lstlisting}
  9108. mainstart:
  9109. movq $0, sum
  9110. movq $5, i
  9111. jmp block5
  9112. block5:
  9113. cmpq $0, i
  9114. jg block7
  9115. jmp block8
  9116. \end{lstlisting}
  9117. \end{minipage}
  9118. \begin{minipage}{0.45\textwidth}
  9119. \begin{lstlisting}
  9120. block7:
  9121. addq i, sum
  9122. subq $1, i
  9123. jmp block5
  9124. block8:
  9125. movq sum, %rdi
  9126. callq print_int
  9127. movq $0, %rax
  9128. jmp mainconclusion
  9129. \end{lstlisting}
  9130. \end{minipage}
  9131. \fi}
  9132. \end{center}
  9133. Recall that liveness analysis works backwards, starting at the end
  9134. of each function. For this example we could start with \code{block8}
  9135. because we know what is live at the beginning of the conclusion,
  9136. just \code{rax} and \code{rsp}. So the live-before set
  9137. for \code{block8} is $\{\ttm{rsp},\ttm{sum}\}$.
  9138. %
  9139. Next we might try to analyze \code{block5} or \code{block7}, but
  9140. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  9141. we are stuck.
  9142. The way out of this impasse is to realize that we can compute an
  9143. under-approximation of the live-before set by starting with empty
  9144. live-after sets. By \emph{under-approximation}, we mean that the set
  9145. only contains variables that are live for some execution of the
  9146. program, but the set may be missing some variables. Next, the
  9147. under-approximations for each block can be improved by 1) updating the
  9148. live-after set for each block using the approximate live-before sets
  9149. from the other blocks and 2) perform liveness analysis again on each
  9150. block. In fact, by iterating this process, the under-approximations
  9151. eventually become the correct solutions!
  9152. %
  9153. This approach of iteratively analyzing a control-flow graph is
  9154. applicable to many static analysis problems and goes by the name
  9155. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  9156. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  9157. Washington.
  9158. Let us apply this approach to the above example. We use the empty set
  9159. for the initial live-before set for each block. Let $m_0$ be the
  9160. following mapping from label names to sets of locations (variables and
  9161. registers).
  9162. \begin{center}
  9163. \begin{lstlisting}
  9164. mainstart: {}, block5: {}, block7: {}, block8: {}
  9165. \end{lstlisting}
  9166. \end{center}
  9167. Using the above live-before approximations, we determine the
  9168. live-after for each block and then apply liveness analysis to each
  9169. block. This produces our next approximation $m_1$ of the live-before
  9170. sets.
  9171. \begin{center}
  9172. \begin{lstlisting}
  9173. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  9174. \end{lstlisting}
  9175. \end{center}
  9176. For the second round, the live-after for \code{mainstart} is the
  9177. current live-before for \code{block5}, which is \code{\{i\}}. So the
  9178. liveness analysis for \code{mainstart} computes the empty set. The
  9179. live-after for \code{block5} is the union of the live-before sets for
  9180. \code{block7} and \code{block8}, which is \code{\{i , rsp, sum\}}.
  9181. So the liveness analysis for \code{block5} computes \code{\{i , rsp,
  9182. sum\}}. The live-after for \code{block7} is the live-before for
  9183. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  9184. So the liveness analysis for \code{block7} remains \code{\{i,
  9185. sum\}}. Together these yield the following approximation $m_2$ of
  9186. the live-before sets.
  9187. \begin{center}
  9188. \begin{lstlisting}
  9189. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  9190. \end{lstlisting}
  9191. \end{center}
  9192. In the preceding iteration, only \code{block5} changed, so we can
  9193. limit our attention to \code{mainstart} and \code{block7}, the two
  9194. blocks that jump to \code{block5}. As a result, the live-before sets
  9195. for \code{mainstart} and \code{block7} are updated to include
  9196. \code{rsp}, yielding the following approximation $m_3$.
  9197. \begin{center}
  9198. \begin{lstlisting}
  9199. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  9200. \end{lstlisting}
  9201. \end{center}
  9202. Because \code{block7} changed, we analyze \code{block5} once more, but
  9203. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  9204. our approximations have converged, so $m_3$ is the solution.
  9205. This iteration process is guaranteed to converge to a solution by the
  9206. Kleene Fixed-Point Theorem, a general theorem about functions on
  9207. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  9208. any collection that comes with a partial ordering $\sqsubseteq$ on its
  9209. elements, a least element $\bot$ (pronounced bottom), and a join
  9210. operator $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{partial
  9211. ordering}\index{subject}{join}\footnote{Technically speaking, we will be
  9212. working with join semi-lattices.} When two elements are ordered $m_i
  9213. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  9214. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  9215. approximation than $m_i$. The bottom element $\bot$ represents the
  9216. complete lack of information, i.e., the worst approximation. The join
  9217. operator takes two lattice elements and combines their information,
  9218. i.e., it produces the least upper bound of the two.\index{subject}{least upper
  9219. bound}
  9220. A dataflow analysis typically involves two lattices: one lattice to
  9221. represent abstract states and another lattice that aggregates the
  9222. abstract states of all the blocks in the control-flow graph. For
  9223. liveness analysis, an abstract state is a set of locations. We form
  9224. the lattice $L$ by taking its elements to be sets of locations, the
  9225. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  9226. set, and the join operator to be set union.
  9227. %
  9228. We form a second lattice $M$ by taking its elements to be mappings
  9229. from the block labels to sets of locations (elements of $L$). We
  9230. order the mappings point-wise, using the ordering of $L$. So given any
  9231. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  9232. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  9233. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  9234. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  9235. We can think of one iteration of liveness analysis applied to the
  9236. whole program as being a function $f$ on the lattice $M$. It takes a
  9237. mapping as input and computes a new mapping.
  9238. \[
  9239. f(m_i) = m_{i+1}
  9240. \]
  9241. Next let us think for a moment about what a final solution $m_s$
  9242. should look like. If we perform liveness analysis using the solution
  9243. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  9244. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  9245. \[
  9246. f(m_s) = m_s
  9247. \]
  9248. Furthermore, the solution should only include locations that are
  9249. forced to be there by performing liveness analysis on the program, so
  9250. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  9251. The Kleene Fixed-Point Theorem states that if a function $f$ is
  9252. monotone (better inputs produce better outputs), then the least fixed
  9253. point of $f$ is the least upper bound of the \emph{ascending Kleene
  9254. chain} obtained by starting at $\bot$ and iterating $f$ as
  9255. follows.\index{subject}{Kleene Fixed-Point Theorem}
  9256. \[
  9257. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9258. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  9259. \]
  9260. When a lattice contains only finitely-long ascending chains, then
  9261. every Kleene chain tops out at some fixed point after some number of
  9262. iterations of $f$.
  9263. \[
  9264. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9265. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  9266. \]
  9267. The liveness analysis is indeed a monotone function and the lattice
  9268. $M$ only has finitely-long ascending chains because there are only a
  9269. finite number of variables and blocks in the program. Thus we are
  9270. guaranteed that iteratively applying liveness analysis to all blocks
  9271. in the program will eventually produce the least fixed point solution.
  9272. Next let us consider dataflow analysis in general and discuss the
  9273. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  9274. %
  9275. The algorithm has four parameters: the control-flow graph \code{G}, a
  9276. function \code{transfer} that applies the analysis to one block, the
  9277. \code{bottom} and \code{join} operator for the lattice of abstract
  9278. states. The algorithm begins by creating the bottom mapping,
  9279. represented by a hash table. It then pushes all of the nodes in the
  9280. control-flow graph onto the work list (a queue). The algorithm repeats
  9281. the \code{while} loop as long as there are items in the work list. In
  9282. each iteration, a node is popped from the work list and processed. The
  9283. \code{input} for the node is computed by taking the join of the
  9284. abstract states of all the predecessor nodes. The \code{transfer}
  9285. function is then applied to obtain the \code{output} abstract
  9286. state. If the output differs from the previous state for this block,
  9287. the mapping for this block is updated and its successor nodes are
  9288. pushed onto the work list.
  9289. Note that the \code{analyze\_dataflow} function is formulated as a
  9290. \emph{forward} dataflow analysis, that is, the inputs to the transfer
  9291. function come from the predecessor nodes in the control-flow
  9292. graph. However, liveness analysis is a \emph{backward} dataflow
  9293. analysis, so in that case one must supply the \code{analyze\_dataflow}
  9294. function with the transpose of the control-flow graph.
  9295. \begin{figure}[tb]
  9296. {\if\edition\racketEd
  9297. \begin{lstlisting}
  9298. (define (analyze_dataflow G transfer bottom join)
  9299. (define mapping (make-hash))
  9300. (for ([v (in-vertices G)])
  9301. (dict-set! mapping v bottom))
  9302. (define worklist (make-queue))
  9303. (for ([v (in-vertices G)])
  9304. (enqueue! worklist v))
  9305. (define trans-G (transpose G))
  9306. (while (not (queue-empty? worklist))
  9307. (define node (dequeue! worklist))
  9308. (define input (for/fold ([state bottom])
  9309. ([pred (in-neighbors trans-G node)])
  9310. (join state (dict-ref mapping pred))))
  9311. (define output (transfer node input))
  9312. (cond [(not (equal? output (dict-ref mapping node)))
  9313. (dict-set! mapping node output)
  9314. (for ([v (in-neighbors G node)])
  9315. (enqueue! worklist v))]))
  9316. mapping)
  9317. \end{lstlisting}
  9318. \fi}
  9319. {\if\edition\pythonEd
  9320. \begin{lstlisting}
  9321. def analyze_dataflow(G, transfer, bottom, join):
  9322. trans_G = transpose(G)
  9323. mapping = {}
  9324. for v in G.vertices():
  9325. mapping[v] = bottom
  9326. worklist = deque()
  9327. for v in G.vertices():
  9328. worklist.append(v)
  9329. while worklist:
  9330. node = worklist.pop()
  9331. input = reduce(join, [mapping[v] for v in trans_G.adjacent(node)], bottom)
  9332. output = transfer(node, input)
  9333. if output != mapping[node]:
  9334. mapping[node] = output
  9335. for v in G.adjacent(node):
  9336. worklist.append(v)
  9337. \end{lstlisting}
  9338. \fi}
  9339. \caption{Generic work list algorithm for dataflow analysis}
  9340. \label{fig:generic-dataflow}
  9341. \end{figure}
  9342. {\if\edition\racketEd
  9343. \section{Mutable Variables \& Remove Complex Operands}
  9344. There is a subtle interaction between the addition of \code{set!}, the
  9345. \code{remove\_complex\_operands} pass, and the left-to-right order of
  9346. evaluation of Racket. Consider the following example.
  9347. \begin{lstlisting}
  9348. (let ([x 2])
  9349. (+ x (begin (set! x 40) x)))
  9350. \end{lstlisting}
  9351. The result of this program is \code{42} because the first read from
  9352. \code{x} produces \code{2} and the second produces \code{40}. However,
  9353. if we naively apply the \code{remove\_complex\_operands} pass to this
  9354. example we obtain the following program whose result is \code{80}!
  9355. \begin{lstlisting}
  9356. (let ([x 2])
  9357. (let ([tmp (begin (set! x 40) x)])
  9358. (+ x tmp)))
  9359. \end{lstlisting}
  9360. The problem is that, with mutable variables, the ordering between
  9361. reads and writes is important, and the
  9362. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  9363. before the first read of \code{x}.
  9364. We recommend solving this problem by giving special treatment to reads
  9365. from mutable variables, that is, variables that occur on the left-hand
  9366. side of a \code{set!}. We mark each read from a mutable variable with
  9367. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  9368. that the read operation is effectful in that it can produce different
  9369. results at different points in time. Let's apply this idea to the
  9370. following variation that also involves a variable that is not mutated.
  9371. % loop_test_24.rkt
  9372. \begin{lstlisting}
  9373. (let ([x 2])
  9374. (let ([y 0])
  9375. (+ y (+ x (begin (set! x 40) x)))))
  9376. \end{lstlisting}
  9377. We analyze the above program to discover that variable \code{x} is
  9378. mutable but \code{y} is not. We then transform the program as follows,
  9379. replacing each occurence of \code{x} with \code{(get! x)}.
  9380. \begin{lstlisting}
  9381. (let ([x 2])
  9382. (let ([y 0])
  9383. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  9384. \end{lstlisting}
  9385. Now that we have a clear distinction between reads from mutable and
  9386. immutable variables, we can apply the \code{remove\_complex\_operands}
  9387. pass, where reads from immutable variables are still classified as
  9388. atomic expressions but reads from mutable variables are classified as
  9389. complex. Thus, \code{remove\_complex\_operands} yields the following
  9390. program.
  9391. \begin{lstlisting}
  9392. (let ([x 2])
  9393. (let ([y 0])
  9394. (+ y (let ([t1 (get! x)])
  9395. (let ([t2 (begin (set! x 40) (get! x))])
  9396. (+ t1 t2))))))
  9397. \end{lstlisting}
  9398. The temporary variable \code{t1} gets the value of \code{x} before the
  9399. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  9400. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  9401. do not generate a temporary variable for the occurence of \code{y}
  9402. because it's an immutable variable. We want to avoid such unnecessary
  9403. extra temporaries because they would needless increase the number of
  9404. variables, making it more likely for some of them to be spilled. The
  9405. result of this program is \code{42}, the same as the result prior to
  9406. \code{remove\_complex\_operands}.
  9407. The approach that we've sketched above requires only a small
  9408. modification to \code{remove\_complex\_operands} to handle
  9409. \code{get!}. However, it requires a new pass, called
  9410. \code{uncover-get!}, that we discuss in
  9411. Section~\ref{sec:uncover-get-bang}.
  9412. As an aside, this problematic interaction between \code{set!} and the
  9413. pass \code{remove\_complex\_operands} is particular to Racket and not
  9414. its predecessor, the Scheme language. The key difference is that
  9415. Scheme does not specify an order of evaluation for the arguments of an
  9416. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  9417. Scheme is free to choose any ordering: both \code{42} and \code{80}
  9418. would be correct results for the example program. Interestingly,
  9419. Racket is implemented on top of the Chez Scheme
  9420. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  9421. presented in this section (using extra \code{let} bindings to control
  9422. the order of evaluation) is used in the translation from Racket to
  9423. Scheme~\citep{Flatt:2019tb}.
  9424. \fi} % racket
  9425. Having discussed the complications that arise from adding support for
  9426. assignment and loops, we turn to discussing the individual compilation
  9427. passes.
  9428. {\if\edition\racketEd
  9429. \section{Uncover \texttt{get!}}
  9430. \label{sec:uncover-get-bang}
  9431. The goal of this pass it to mark uses of mutable variables so that
  9432. \code{remove\_complex\_operands} can treat them as complex expressions
  9433. and thereby preserve their ordering relative to the side-effects in
  9434. other operands. So the first step is to collect all the mutable
  9435. variables. We recommend creating an auxilliary function for this,
  9436. named \code{collect-set!}, that recursively traverses expressions,
  9437. returning a set of all variables that occur on the left-hand side of a
  9438. \code{set!}. Here's an exerpt of its implementation.
  9439. \begin{center}
  9440. \begin{minipage}{\textwidth}
  9441. \begin{lstlisting}
  9442. (define (collect-set! e)
  9443. (match e
  9444. [(Var x) (set)]
  9445. [(Int n) (set)]
  9446. [(Let x rhs body)
  9447. (set-union (collect-set! rhs) (collect-set! body))]
  9448. [(SetBang var rhs)
  9449. (set-union (set var) (collect-set! rhs))]
  9450. ...))
  9451. \end{lstlisting}
  9452. \end{minipage}
  9453. \end{center}
  9454. By placing this pass after \code{uniquify}, we need not worry about
  9455. variable shadowing and our logic for \code{let} can remain simple, as
  9456. in the exerpt above.
  9457. The second step is to mark the occurences of the mutable variables
  9458. with the new \code{GetBang} AST node (\code{get!} in concrete
  9459. syntax). The following is an exerpt of the \code{uncover-get!-exp}
  9460. function, which takes two parameters: the set of mutable varaibles
  9461. \code{set!-vars}, and the expression \code{e} to be processed. The
  9462. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  9463. mutable variable or leaves it alone if not.
  9464. \begin{center}
  9465. \begin{minipage}{\textwidth}
  9466. \begin{lstlisting}
  9467. (define ((uncover-get!-exp set!-vars) e)
  9468. (match e
  9469. [(Var x)
  9470. (if (set-member? set!-vars x)
  9471. (GetBang x)
  9472. (Var x))]
  9473. ...))
  9474. \end{lstlisting}
  9475. \end{minipage}
  9476. \end{center}
  9477. To wrap things up, define the \code{uncover-get!} function for
  9478. processing a whole program, using \code{collect-set!} to obtain the
  9479. set of mutable variables and then \code{uncover-get!-exp} to replace
  9480. their occurences with \code{GetBang}.
  9481. \fi}
  9482. \section{Remove Complex Operands}
  9483. \label{sec:rco-loop}
  9484. {\if\edition\racketEd
  9485. %
  9486. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  9487. \code{while} are all complex expressions. The subexpressions of
  9488. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  9489. %
  9490. \fi}
  9491. {\if\edition\pythonEd
  9492. %
  9493. The change needed for this pass is to add a case for the \code{while}
  9494. statement. The condition of a \code{while} loop is allowed to be a
  9495. complex expression, just like the condition of the \code{if}
  9496. statement.
  9497. %
  9498. \fi}
  9499. %
  9500. Figure~\ref{fig:Rwhile-anf-syntax} defines the output language
  9501. \LangLoopANF{} of this pass.
  9502. \begin{figure}[tp]
  9503. \centering
  9504. \fbox{
  9505. \begin{minipage}{0.96\textwidth}
  9506. \small
  9507. {\if\edition\racketEd
  9508. \[
  9509. \begin{array}{rcl}
  9510. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  9511. \MID \VOID{} } \\
  9512. \Exp &::=& \ldots \MID \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  9513. &\MID& \GETBANG{\Var}
  9514. \MID \SETBANG{\Var}{\Exp} \\
  9515. &\MID& \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  9516. \MID \WHILE{\Exp}{\Exp} \\
  9517. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  9518. \LangLoopANF &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  9519. \end{array}
  9520. \]
  9521. \fi}
  9522. {\if\edition\pythonEd
  9523. \[
  9524. \begin{array}{rcl}
  9525. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  9526. \Exp &::=& \Atm \MID \READ{} \\
  9527. &\MID& \BINOP{\itm{binaryop}}{\Atm}{\Atm} \MID \UNIOP{\key{unaryop}}{\Atm} \\
  9528. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  9529. % &\MID& \LET{\Var}{\Exp}{\Exp}\\
  9530. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  9531. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  9532. &\MID& \WHILESTMT{\Exp}{\Stmt^{+}} \\
  9533. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  9534. \end{array}
  9535. \]
  9536. \fi}
  9537. \end{minipage}
  9538. }
  9539. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  9540. \label{fig:Rwhile-anf-syntax}
  9541. \end{figure}
  9542. {\if\edition\racketEd
  9543. As usual, when a complex expression appears in a grammar position that
  9544. needs to be atomic, such as the argument of a primitive operator, we
  9545. must introduce a temporary variable and bind it to the complex
  9546. expression. This approach applies, unchanged, to handle the new
  9547. language forms. For example, in the following code there are two
  9548. \code{begin} expressions appearing as arguments to \code{+}. The
  9549. output of \code{rco\_exp} is shown below, in which the \code{begin}
  9550. expressions have been bound to temporary variables. Recall that
  9551. \code{let} expressions in \LangLoopANF{} are allowed to have
  9552. arbitrary expressions in their right-hand-side expression, so it is
  9553. fine to place \code{begin} there.
  9554. \begin{center}
  9555. \begin{minipage}{\textwidth}
  9556. \begin{lstlisting}
  9557. (let ([x0 10])
  9558. (let ([y1 0])
  9559. (+ (+ (begin (set! y1 (read)) x0)
  9560. (begin (set! x0 (read)) y1))
  9561. x0)))
  9562. |$\Rightarrow$|
  9563. (let ([x0 10])
  9564. (let ([y1 0])
  9565. (let ([tmp2 (begin (set! y1 (read)) x0)])
  9566. (let ([tmp3 (begin (set! x0 (read)) y1)])
  9567. (let ([tmp4 (+ tmp2 tmp3)])
  9568. (+ tmp4 x0))))))
  9569. \end{lstlisting}
  9570. \end{minipage}
  9571. \end{center}
  9572. \fi}
  9573. \section{Explicate Control \racket{and \LangCLoop{}}}
  9574. \label{sec:explicate-loop}
  9575. {\if\edition\racketEd
  9576. Recall that in the \code{explicate\_control} pass we define one helper
  9577. function for each kind of position in the program. For the \LangVar{}
  9578. language of integers and variables we needed kinds of positions:
  9579. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  9580. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  9581. yet another kind of position: effect position. Except for the last
  9582. subexpression, the subexpressions inside a \code{begin} are evaluated
  9583. only for their effect. Their result values are discarded. We can
  9584. generate better code by taking this fact into account.
  9585. The output language of \code{explicate\_control} is \LangCLoop{}
  9586. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  9587. \LangCLam{}. The only syntactic difference is that \code{Call} and
  9588. \code{read} may also appear as statements. The most significant
  9589. difference between \LangCLam{} and \LangCLoop{} is that the
  9590. control-flow graphs of the later may contain cycles.
  9591. \begin{figure}[tp]
  9592. \fbox{
  9593. \begin{minipage}{0.96\textwidth}
  9594. \small
  9595. \[
  9596. \begin{array}{lcl}
  9597. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  9598. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  9599. &\MID& \CALL{\Atm}{\LP\Atm\ldots\RP} \MID \READ{}\\
  9600. % &\MID& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
  9601. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  9602. \LangCLoopM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  9603. \end{array}
  9604. \]
  9605. \end{minipage}
  9606. }
  9607. \caption{The abstract syntax of \LangCLoop{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  9608. \label{fig:c7-syntax}
  9609. \end{figure}
  9610. The new auxiliary function \code{explicate\_effect} takes an
  9611. expression (in an effect position) and a continuation. The function
  9612. returns a $\Tail$ that includes the generated code for the input
  9613. expression followed by the continuation. If the expression is
  9614. obviously pure, that is, never causes side effects, then the
  9615. expression can be removed, so the result is just the continuation.
  9616. %
  9617. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  9618. case. First, you will need a fresh label $\itm{loop}$ for the top of
  9619. the loop. Recursively process the \itm{body} (in effect position)
  9620. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  9621. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  9622. \itm{body'} as the then-branch and the continuation block as the
  9623. else-branch. The result should be added to the control-flow graph with
  9624. the label \itm{loop}. The result for the whole \code{while} loop is a
  9625. \code{goto} to the \itm{loop} label.
  9626. The auxiliary functions for tail, assignment, and predicate positions
  9627. need to be updated. The three new language forms, \code{while},
  9628. \code{set!}, and \code{begin}, can appear in assignment and tail
  9629. positions. Only \code{begin} may appear in predicate positions; the
  9630. other two have result type \code{Void}.
  9631. \fi}
  9632. %
  9633. {\if\edition\pythonEd
  9634. %
  9635. The output of this pass is the language \LangCIf{}. No new language
  9636. features are needed in the output because a \code{while} loop can be
  9637. expressed in terms of \code{goto} and \code{if} statements, which are
  9638. already in \LangCIf{}.
  9639. %
  9640. Add a case for the \code{while} statement to the
  9641. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  9642. the condition expression.
  9643. %
  9644. \fi}
  9645. {\if\edition\racketEd
  9646. \section{Select Instructions}
  9647. \label{sec:select-instructions-loop}
  9648. Only three small additions are needed in the
  9649. \code{select\_instructions} pass to handle the changes to
  9650. \LangCLoop{}. That is, a \code{Call} to \code{read} may now appear as a
  9651. stand-alone statement instead of only appearing on the right-hand
  9652. side of an assignment statement. The code generation is nearly
  9653. identical; just leave off the instruction for moving the result into
  9654. the left-hand side.
  9655. \fi}
  9656. \section{Register Allocation}
  9657. \label{sec:register-allocation-loop}
  9658. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  9659. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  9660. which complicates the liveness analysis needed for register
  9661. allocation.
  9662. \subsection{Liveness Analysis}
  9663. \label{sec:liveness-analysis-r8}
  9664. We recommend using the generic \code{analyze\_dataflow} function that
  9665. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  9666. perform liveness analysis, replacing the code in
  9667. \code{uncover\_live} that processed the basic blocks in topological
  9668. order (Section~\ref{sec:liveness-analysis-Lif}).
  9669. The \code{analyze\_dataflow} function has four parameters.
  9670. \begin{enumerate}
  9671. \item The first parameter \code{G} should be a directed graph from the
  9672. \racket{
  9673. \code{racket/graph} package (see the sidebar in
  9674. Section~\ref{sec:build-interference})}
  9675. \python{\code{graph.py} file in the support code}
  9676. that represents the
  9677. control-flow graph.
  9678. \item The second parameter \code{transfer} is a function that applies
  9679. liveness analysis to a basic block. It takes two parameters: the
  9680. label for the block to analyze and the live-after set for that
  9681. block. The transfer function should return the live-before set for
  9682. the block.
  9683. %
  9684. \racket{Also, as a side-effect, it should update the block's
  9685. $\itm{info}$ with the liveness information for each instruction.}
  9686. %
  9687. \python{Also, as a side-effect, it should update the live-before and
  9688. live-after sets for each instruction.}
  9689. %
  9690. To implement the \code{transfer} function, you should be able to
  9691. reuse the code you already have for analyzing basic blocks.
  9692. \item The third and fourth parameters of \code{analyze\_dataflow} are
  9693. \code{bottom} and \code{join} for the lattice of abstract states,
  9694. i.e. sets of locations. The bottom of the lattice is the empty set
  9695. and the join operator is set union.
  9696. \end{enumerate}
  9697. \begin{figure}[p]
  9698. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9699. \node (Rfun) at (0,2) {\large \LangLoop{}};
  9700. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  9701. %\node (Rfun-3) at (6,2) {\large \LangLoop{}};
  9702. %\node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  9703. %\node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  9704. %\node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  9705. %\node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  9706. \node (F1-4) at (6,2) {\large \LangLoop{}};
  9707. \node (F1-5) at (9,2) {\large \LangLoopANF{}};
  9708. \node (C3-2) at (3,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  9709. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  9710. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  9711. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  9712. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  9713. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  9714. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  9715. %% \path[->,bend left=15] (Rfun) edge [above] node
  9716. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  9717. \path[->,bend left=15] (Rfun) edge [above] node
  9718. {\ttfamily\footnotesize shrink} (Rfun-2);
  9719. \path[->,bend left=15] (Rfun-2) edge [above] node
  9720. {\ttfamily\footnotesize uniquify} (F1-4);
  9721. %% \path[->,bend left=15] (Rfun-3) edge [above] node
  9722. %% {\ttfamily\footnotesize reveal\_functions} (Rfun-4);
  9723. %% \path[->,bend left=15] (Rfun-4) edge [right] node
  9724. %% {\ttfamily\footnotesize convert\_assignments} (F1-1);
  9725. %% \path[->,bend left=15] (Rfun-4) edge [right] node
  9726. %% {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  9727. %% \path[->,bend right=15] (F1-2) edge [above] node
  9728. %% {\ttfamily\footnotesize limit\_fun.} (F1-3);
  9729. %% \path[->,bend right=15] (F1-3) edge [above] node
  9730. %% {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9731. \path[->,bend left=15] (F1-4) edge [above] node
  9732. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  9733. \path[->,bend left=15] (F1-5) edge [right] node
  9734. {\ttfamily\footnotesize explicate\_control} (C3-2);
  9735. \path[->,bend left=15] (C3-2) edge [left] node
  9736. {\ttfamily\footnotesize select\_instr.} (x86-2);
  9737. \path[->,bend right=15] (x86-2) edge [left] node
  9738. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9739. \path[->,bend right=15] (x86-2-1) edge [below] node
  9740. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  9741. \path[->,bend right=15] (x86-2-2) edge [left] node
  9742. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  9743. \path[->,bend left=15] (x86-3) edge [above] node
  9744. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  9745. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  9746. \end{tikzpicture}
  9747. \caption{Diagram of the passes for \LangLoop{}.}
  9748. \label{fig:Rwhile-passes}
  9749. \end{figure}
  9750. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  9751. for the compilation of \LangLoop{}.
  9752. % Further Reading: dataflow analysis
  9753. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9754. \chapter{Tuples and Garbage Collection}
  9755. \label{ch:Lvec}
  9756. \index{subject}{tuple}
  9757. \index{subject}{vector}
  9758. \index{subject}{allocate}
  9759. \index{subject}{heap allocate}
  9760. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  9761. %% all the IR grammars are spelled out! \\ --Jeremy}
  9762. %% \margincomment{\scriptsize Be more explicit about how to deal with
  9763. %% the root stack. \\ --Jeremy}
  9764. In this chapter we study the implementation of
  9765. tuples\racket{, called vectors in Racket}.
  9766. %
  9767. This language feature is the first of ours to use the computer's
  9768. \emph{heap}\index{subject}{heap} because the lifetime of a tuple is
  9769. indefinite, that is, a tuple lives forever from the programmer's
  9770. viewpoint. Of course, from an implementer's viewpoint, it is important
  9771. to reclaim the space associated with a tuple when it is no longer
  9772. needed, which is why we also study \emph{garbage collection}
  9773. \index{garbage collection} techniques in this chapter.
  9774. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  9775. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  9776. language of Chapter~\ref{ch:Lwhile} with tuples.
  9777. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  9778. copying live objects back and forth between two halves of the
  9779. heap. The garbage collector requires coordination with the compiler so
  9780. that it can see all of the \emph{root} pointers, that is, pointers in
  9781. registers or on the procedure call stack.
  9782. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  9783. discuss all the necessary changes and additions to the compiler
  9784. passes, including a new compiler pass named \code{expose\_allocation}.
  9785. \section{The \LangVec{} Language}
  9786. \label{sec:r3}
  9787. Figure~\ref{fig:Lvec-concrete-syntax} defines the concrete syntax for
  9788. \LangVec{} and Figure~\ref{fig:Lvec-syntax} defines the abstract syntax.
  9789. %
  9790. \racket{The \LangVec{} language includes the forms: \code{vector} for
  9791. creating a tuple, \code{vector-ref} for reading an element of a
  9792. tuple, \code{vector-set!} for writing to an element of a tuple, and
  9793. \code{vector-length} for obtaining the number of elements of a
  9794. tuple.}
  9795. %
  9796. \python{The \LangVec{} language adds 1) tuple creation via a
  9797. comma-separated list of expressions, 2) accessing an element of a
  9798. tuple with the square bracket notation, i.e., \code{t[n]} returns
  9799. the nth element of the tuple \code{t}, 3) the \code{is} comparison
  9800. operator, and 4) obtaining the number of elements (the length) of a
  9801. tuple.}
  9802. %
  9803. The program below shows an example use of tuples. It creates a 3-tuple
  9804. \code{t} and a 1-tuple that is stored at index $2$ of the 3-tuple,
  9805. demonstrating that tuples are first-class values. The element at
  9806. index $1$ of \code{t} is \racket{\code{\#t}}\python{\code{True}}, so the
  9807. ``then'' branch of the \key{if} is taken. The element at index $0$ of
  9808. \code{t} is \code{40}, to which we add \code{2}, the element at index
  9809. $0$ of the 1-tuple. So the result of the program is \code{42}.
  9810. %
  9811. {\if\edition\racketEd
  9812. \begin{lstlisting}
  9813. (let ([t (vector 40 #t (vector 2))])
  9814. (if (vector-ref t 1)
  9815. (+ (vector-ref t 0)
  9816. (vector-ref (vector-ref t 2) 0))
  9817. 44))
  9818. \end{lstlisting}
  9819. \fi}
  9820. {\if\edition\pythonEd
  9821. \begin{lstlisting}
  9822. t = 40, True, (2,)
  9823. print( t[0] + t[2][0] if t[1] else 44 )
  9824. \end{lstlisting}
  9825. \fi}
  9826. \newcommand{\LtupGrammarRacket}{
  9827. \begin{array}{lcl}
  9828. \Type &::=& \LP\key{Vector}\;\Type\ldots\RP \\
  9829. \Exp &::=& \LP\key{vector}\;\Exp\ldots\RP
  9830. \MID \LP\key{vector-length}\;\Exp\RP \\
  9831. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  9832. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  9833. \end{array}
  9834. }
  9835. \newcommand{\LtupASTRacket}{
  9836. \begin{array}{lcl}
  9837. \Type &::=& \LP\key{Vector}\;\Type\ldots\RP \\
  9838. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  9839. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  9840. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  9841. &\MID& \LP\key{HasType}~\Exp~\Type \RP
  9842. \end{array}
  9843. }
  9844. \newcommand{\LtupGrammarPython}{
  9845. \begin{array}{rcl}
  9846. \itm{cmp} &::= & \key{is} \\
  9847. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp} \MID \CLEN{\Exp}
  9848. \end{array}
  9849. }
  9850. \newcommand{\LtupASTPython}{
  9851. \begin{array}{lcl}
  9852. \itm{cmp} &::= & \code{Is()} \\
  9853. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  9854. &\MID& \LEN{\Exp}
  9855. \end{array}
  9856. }
  9857. \begin{figure}[tbp]
  9858. \centering
  9859. \fbox{
  9860. \begin{minipage}{0.96\textwidth}
  9861. {\if\edition\racketEd
  9862. \[
  9863. \begin{array}{l}
  9864. \gray{\LintGrammarRacket{}} \\ \hline
  9865. \gray{\LvarGrammarRacket{}} \\ \hline
  9866. \gray{\LifGrammarRacket{}} \\ \hline
  9867. \gray{\LwhileGrammarRacket} \\ \hline
  9868. \LtupGrammarRacket \\
  9869. \begin{array}{lcl}
  9870. \LangVecM{} &::=& \Exp
  9871. \end{array}
  9872. \end{array}
  9873. \]
  9874. \fi}
  9875. {\if\edition\pythonEd
  9876. \[
  9877. \begin{array}{l}
  9878. \gray{\LintGrammarPython{}} \\ \hline
  9879. \gray{\LvarGrammarPython{}} \\ \hline
  9880. \gray{\LifGrammarPython{}} \\ \hline
  9881. \gray{\LwhileGrammarPython} \\ \hline
  9882. \LtupGrammarPython \\
  9883. \begin{array}{rcl}
  9884. \LangVecM{} &::=& \Stmt^{*}
  9885. \end{array}
  9886. \end{array}
  9887. \]
  9888. \fi}
  9889. \end{minipage}
  9890. }
  9891. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  9892. (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  9893. \label{fig:Lvec-concrete-syntax}
  9894. \end{figure}
  9895. \begin{figure}[tp]
  9896. \centering
  9897. \fbox{
  9898. \begin{minipage}{0.96\textwidth}
  9899. {\if\edition\racketEd
  9900. \[
  9901. \begin{array}{l}
  9902. \gray{\LintOpAST} \\ \hline
  9903. \gray{\LvarAST{}} \\ \hline
  9904. \gray{\LifAST{}} \\ \hline
  9905. \gray{\LwhileAST{}} \\ \hline
  9906. \LtupASTRacket{} \\
  9907. \begin{array}{lcl}
  9908. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  9909. \end{array}
  9910. \end{array}
  9911. \]
  9912. \fi}
  9913. {\if\edition\pythonEd
  9914. \[
  9915. \begin{array}{l}
  9916. \gray{\LintASTPython} \\ \hline
  9917. \gray{\LvarASTPython} \\ \hline
  9918. \gray{\LifASTPython} \\ \hline
  9919. \gray{\LwhileASTPython} \\ \hline
  9920. \LtupASTPython \\
  9921. \begin{array}{lcl}
  9922. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  9923. \end{array}
  9924. \end{array}
  9925. \]
  9926. \fi}
  9927. \end{minipage}
  9928. }
  9929. \caption{The abstract syntax of \LangVec{}.}
  9930. \label{fig:Lvec-syntax}
  9931. \end{figure}
  9932. Tuples raises several interesting new issues. First, variable binding
  9933. performs a shallow-copy when dealing with tuples, which means that
  9934. different variables can refer to the same tuple, that is, two
  9935. variables can be \emph{aliases}\index{subject}{alias} for the same
  9936. entity. Consider the following example in which both \code{t1} and
  9937. \code{t2} refer to the same tuple value but \code{t3} refers to a
  9938. different tuple value but with equal elements. The result of the
  9939. program is \code{42}.
  9940. \begin{center}
  9941. \begin{minipage}{0.96\textwidth}
  9942. {\if\edition\racketEd
  9943. \begin{lstlisting}
  9944. (let ([t1 (vector 3 7)])
  9945. (let ([t2 t1])
  9946. (let ([t3 (vector 3 7)])
  9947. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  9948. 42
  9949. 0))))
  9950. \end{lstlisting}
  9951. \fi}
  9952. {\if\edition\pythonEd
  9953. \begin{lstlisting}
  9954. t1 = 3, 7
  9955. t2 = t1
  9956. t3 = 3, 7
  9957. print( 42 if (t1 is t2) and not (t1 is t3) else 0)
  9958. \end{lstlisting}
  9959. \fi}
  9960. \end{minipage}
  9961. \end{center}
  9962. {\if\edition\racketEd
  9963. Whether two variables are aliased or not affects what happens
  9964. when the underlying tuple is mutated\index{subject}{mutation}.
  9965. Consider the following example in which \code{t1} and \code{t2}
  9966. again refer to the same tuple value.
  9967. \begin{center}
  9968. \begin{minipage}{0.96\textwidth}
  9969. \begin{lstlisting}
  9970. (let ([t1 (vector 3 7)])
  9971. (let ([t2 t1])
  9972. (let ([_ (vector-set! t2 0 42)])
  9973. (vector-ref t1 0))))
  9974. \end{lstlisting}
  9975. \end{minipage}
  9976. \end{center}
  9977. The mutation through \code{t2} is visible when referencing the tuple
  9978. from \code{t1}, so the result of this program is \code{42}.
  9979. \fi}
  9980. The next issue concerns the lifetime of tuples. When does their
  9981. lifetime end? Notice that \LangVec{} does not include an operation
  9982. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  9983. to any notion of static scoping.
  9984. %
  9985. {\if\edition\racketEd
  9986. %
  9987. For example, the following program returns \code{42} even though the
  9988. variable \code{w} goes out of scope prior to the \code{vector-ref}
  9989. that reads from the vector it was bound to.
  9990. \begin{center}
  9991. \begin{minipage}{0.96\textwidth}
  9992. \begin{lstlisting}
  9993. (let ([v (vector (vector 44))])
  9994. (let ([x (let ([w (vector 42)])
  9995. (let ([_ (vector-set! v 0 w)])
  9996. 0))])
  9997. (+ x (vector-ref (vector-ref v 0) 0))))
  9998. \end{lstlisting}
  9999. \end{minipage}
  10000. \end{center}
  10001. \fi}
  10002. %
  10003. {\if\edition\pythonEd
  10004. %
  10005. For example, the following program returns \code{42} even though the
  10006. variable \code{x} goes out of scope when the function returns, prior
  10007. to reading the tuple element at index zero. (We study the compilation
  10008. of functions in Chapter~\ref{ch:Rfun}.)
  10009. %
  10010. \begin{center}
  10011. \begin{minipage}{0.96\textwidth}
  10012. \begin{lstlisting}
  10013. def f():
  10014. x = 42, 43
  10015. return x
  10016. t = f()
  10017. print( t[0] )
  10018. \end{lstlisting}
  10019. \end{minipage}
  10020. \end{center}
  10021. \fi}
  10022. %
  10023. From the perspective of programmer-observable behavior, tuples live
  10024. forever. Of course, if they really lived forever then many programs
  10025. would run out of memory. The language's runtime system must therefore
  10026. perform automatic garbage collection.
  10027. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  10028. \LangVec{} language.
  10029. %
  10030. \racket{We define the \code{vector}, \code{vector-ref},
  10031. \code{vector-set!}, and \code{vector-length} operations for
  10032. \LangVec{} in terms of the corresponding operations in Racket. One
  10033. subtle point is that the \code{vector-set!} operation returns the
  10034. \code{\#<void>} value.}
  10035. %
  10036. \python{We define tuple creation, element access, and the \code{len}
  10037. operator for \LangVec{} in terms of the corresponding operations in
  10038. Python.}
  10039. \begin{figure}[tbp]
  10040. {\if\edition\racketEd
  10041. \begin{lstlisting}
  10042. (define interp-Lvec_class
  10043. (class interp-Lif_class
  10044. (super-new)
  10045. (define/override (interp-op op)
  10046. (match op
  10047. ['eq? (lambda (v1 v2)
  10048. (cond [(or (and (fixnum? v1) (fixnum? v2))
  10049. (and (boolean? v1) (boolean? v2))
  10050. (and (vector? v1) (vector? v2))
  10051. (and (void? v1) (void? v2)))
  10052. (eq? v1 v2)]))]
  10053. ['vector vector]
  10054. ['vector-length vector-length]
  10055. ['vector-ref vector-ref]
  10056. ['vector-set! vector-set!]
  10057. [else (super interp-op op)]
  10058. ))
  10059. (define/override ((interp-exp env) e)
  10060. (define recur (interp-exp env))
  10061. (match e
  10062. [(HasType e t) (recur e)]
  10063. [(Void) (void)]
  10064. [else ((super interp-exp env) e)]
  10065. ))
  10066. ))
  10067. (define (interp-Lvec p)
  10068. (send (new interp-Lvec_class) interp-program p))
  10069. \end{lstlisting}
  10070. \fi}
  10071. %
  10072. {\if\edition\pythonEd
  10073. \begin{lstlisting}
  10074. class InterpLtup(InterpLwhile):
  10075. def interp_cmp(self, cmp):
  10076. match cmp:
  10077. case Is():
  10078. return lambda x, y: x is y
  10079. case _:
  10080. return super().interp_cmp(cmp)
  10081. def interp_exp(self, e, env):
  10082. match e:
  10083. case Tuple(es, Load()):
  10084. return tuple([self.interp_exp(e, env) for e in es])
  10085. case Subscript(tup, index, Load()):
  10086. t = self.interp_exp(tup, env)
  10087. n = self.interp_exp(index, env)
  10088. return t[n]
  10089. case _:
  10090. return super().interp_exp(e, env)
  10091. \end{lstlisting}
  10092. \fi}
  10093. \caption{Interpreter for the \LangVec{} language.}
  10094. \label{fig:interp-Lvec}
  10095. \end{figure}
  10096. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  10097. \LangVec{}, which deserves some explanation. When allocating a tuple,
  10098. we need to know which elements of the tuple are pointers (i.e. are
  10099. also tuple) for garbage collection purposes. We can obtain this
  10100. information during type checking. The type checker in
  10101. Figure~\ref{fig:type-check-Lvec} not only computes the type of an
  10102. expression, it also
  10103. %
  10104. \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  10105. where $T$ is the vector's type.
  10106. To create the s-expression for the \code{Vector} type in
  10107. Figure~\ref{fig:type-check-Lvec}, we use the
  10108. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  10109. operator} \code{,@} to insert the list \code{t*} without its usual
  10110. start and end parentheses. \index{subject}{unquote-slicing}}
  10111. %
  10112. \python{records the type of each tuple expression in a new field
  10113. named \code{has\_type}.}
  10114. \begin{figure}[tp]
  10115. {\if\edition\racketEd
  10116. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10117. (define type-check-Lvec_class
  10118. (class type-check-Lif_class
  10119. (super-new)
  10120. (inherit check-type-equal?)
  10121. (define/override (type-check-exp env)
  10122. (lambda (e)
  10123. (define recur (type-check-exp env))
  10124. (match e
  10125. [(Void) (values (Void) 'Void)]
  10126. [(Prim 'vector es)
  10127. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  10128. (define t `(Vector ,@t*))
  10129. (values (HasType (Prim 'vector e*) t) t)]
  10130. [(Prim 'vector-ref (list e1 (Int i)))
  10131. (define-values (e1^ t) (recur e1))
  10132. (match t
  10133. [`(Vector ,ts ...)
  10134. (unless (and (0 . <= . i) (i . < . (length ts)))
  10135. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10136. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  10137. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10138. [(Prim 'vector-set! (list e1 (Int i) arg) )
  10139. (define-values (e-vec t-vec) (recur e1))
  10140. (define-values (e-arg^ t-arg) (recur arg))
  10141. (match t-vec
  10142. [`(Vector ,ts ...)
  10143. (unless (and (0 . <= . i) (i . < . (length ts)))
  10144. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10145. (check-type-equal? (list-ref ts i) t-arg e)
  10146. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  10147. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  10148. [(Prim 'vector-length (list e))
  10149. (define-values (e^ t) (recur e))
  10150. (match t
  10151. [`(Vector ,ts ...)
  10152. (values (Prim 'vector-length (list e^)) 'Integer)]
  10153. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10154. [(Prim 'eq? (list arg1 arg2))
  10155. (define-values (e1 t1) (recur arg1))
  10156. (define-values (e2 t2) (recur arg2))
  10157. (match* (t1 t2)
  10158. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  10159. [(other wise) (check-type-equal? t1 t2 e)])
  10160. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  10161. [(HasType (Prim 'vector es) t)
  10162. ((type-check-exp env) (Prim 'vector es))]
  10163. [(HasType e1 t)
  10164. (define-values (e1^ t^) (recur e1))
  10165. (check-type-equal? t t^ e)
  10166. (values (HasType e1^ t) t)]
  10167. [else ((super type-check-exp env) e)]
  10168. )))
  10169. ))
  10170. (define (type-check-Lvec p)
  10171. (send (new type-check-Lvec_class) type-check-program p))
  10172. \end{lstlisting}
  10173. \fi}
  10174. {\if\edition\pythonEd
  10175. \begin{lstlisting}
  10176. class TypeCheckLtup(TypeCheckLwhile):
  10177. def type_check_exp(self, e, env):
  10178. match e:
  10179. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  10180. l = self.type_check_exp(left, env)
  10181. r = self.type_check_exp(right, env)
  10182. check_type_equal(l, r, e)
  10183. return bool
  10184. case Tuple(es, Load()):
  10185. ts = [self.type_check_exp(e, env) for e in es]
  10186. e.has_type = tuple(ts)
  10187. return e.has_type
  10188. case Subscript(tup, Constant(index), Load()):
  10189. tup_ty = self.type_check_exp(tup, env)
  10190. index_ty = self.type_check_exp(Constant(index), env)
  10191. check_type_equal(index_ty, int, index)
  10192. match tup_ty:
  10193. case tuple(ts):
  10194. return ts[index]
  10195. case _:
  10196. raise Exception('error: expected a tuple, not ' + repr(tup_ty))
  10197. case _:
  10198. return super().type_check_exp(e, env)
  10199. \end{lstlisting}
  10200. \fi}
  10201. \caption{Type checker for the \LangVec{} language.}
  10202. \label{fig:type-check-Lvec}
  10203. \end{figure}
  10204. \section{Garbage Collection}
  10205. \label{sec:GC}
  10206. Here we study a relatively simple algorithm for garbage collection
  10207. that is the basis of state-of-the-art garbage
  10208. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  10209. particular, we describe a two-space copying
  10210. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  10211. perform the
  10212. copy~\citep{Cheney:1970aa}.
  10213. \index{subject}{copying collector}
  10214. \index{subject}{two-space copying collector}
  10215. Figure~\ref{fig:copying-collector} gives a
  10216. coarse-grained depiction of what happens in a two-space collector,
  10217. showing two time steps, prior to garbage collection (on the top) and
  10218. after garbage collection (on the bottom). In a two-space collector,
  10219. the heap is divided into two parts named the FromSpace and the
  10220. ToSpace. Initially, all allocations go to the FromSpace until there is
  10221. not enough room for the next allocation request. At that point, the
  10222. garbage collector goes to work to make more room.
  10223. \index{subject}{ToSpace}
  10224. \index{subject}{FromSpace}
  10225. The garbage collector must be careful not to reclaim tuples that will
  10226. be used by the program in the future. Of course, it is impossible in
  10227. general to predict what a program will do, but we can over approximate
  10228. the will-be-used tuples by preserving all tuples that could be
  10229. accessed by \emph{any} program given the current computer state. A
  10230. program could access any tuple whose address is in a register or on
  10231. the procedure call stack. These addresses are called the \emph{root
  10232. set}\index{subject}{root set}. In addition, a program could access any tuple that is
  10233. transitively reachable from the root set. Thus, it is safe for the
  10234. garbage collector to reclaim the tuples that are not reachable in this
  10235. way.
  10236. So the goal of the garbage collector is twofold:
  10237. \begin{enumerate}
  10238. \item preserve all tuple that are reachable from the root set via a
  10239. path of pointers, that is, the \emph{live} tuples, and
  10240. \item reclaim the memory of everything else, that is, the
  10241. \emph{garbage}.
  10242. \end{enumerate}
  10243. A copying collector accomplishes this by copying all of the live
  10244. objects from the FromSpace into the ToSpace and then performs a sleight
  10245. of hand, treating the ToSpace as the new FromSpace and the old
  10246. FromSpace as the new ToSpace. In the example of
  10247. Figure~\ref{fig:copying-collector}, there are three pointers in the
  10248. root set, one in a register and two on the stack. All of the live
  10249. objects have been copied to the ToSpace (the right-hand side of
  10250. Figure~\ref{fig:copying-collector}) in a way that preserves the
  10251. pointer relationships. For example, the pointer in the register still
  10252. points to a 2-tuple whose first element is a 3-tuple and whose second
  10253. element is a 2-tuple. There are four tuples that are not reachable
  10254. from the root set and therefore do not get copied into the ToSpace.
  10255. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  10256. created by a well-typed program in \LangVec{} because it contains a
  10257. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  10258. We design the garbage collector to deal with cycles to begin with so
  10259. we will not need to revisit this issue.
  10260. \begin{figure}[tbp]
  10261. \centering
  10262. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  10263. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  10264. \caption{A copying collector in action.}
  10265. \label{fig:copying-collector}
  10266. \end{figure}
  10267. There are many alternatives to copying collectors (and their bigger
  10268. siblings, the generational collectors) when its comes to garbage
  10269. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  10270. reference counting~\citep{Collins:1960aa}. The strengths of copying
  10271. collectors are that allocation is fast (just a comparison and pointer
  10272. increment), there is no fragmentation, cyclic garbage is collected,
  10273. and the time complexity of collection only depends on the amount of
  10274. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  10275. main disadvantages of a two-space copying collector is that it uses a
  10276. lot of space and takes a long time to perform the copy, though these
  10277. problems are ameliorated in generational collectors. Racket and
  10278. Scheme programs tend to allocate many small objects and generate a lot
  10279. of garbage, so copying and generational collectors are a good fit.
  10280. Garbage collection is an active research topic, especially concurrent
  10281. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  10282. developing new techniques and revisiting old
  10283. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  10284. meet every year at the International Symposium on Memory Management to
  10285. present these findings.
  10286. \subsection{Graph Copying via Cheney's Algorithm}
  10287. \label{sec:cheney}
  10288. \index{subject}{Cheney's algorithm}
  10289. Let us take a closer look at the copying of the live objects. The
  10290. allocated objects and pointers can be viewed as a graph and we need to
  10291. copy the part of the graph that is reachable from the root set. To
  10292. make sure we copy all of the reachable vertices in the graph, we need
  10293. an exhaustive graph traversal algorithm, such as depth-first search or
  10294. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  10295. such algorithms take into account the possibility of cycles by marking
  10296. which vertices have already been visited, so as to ensure termination
  10297. of the algorithm. These search algorithms also use a data structure
  10298. such as a stack or queue as a to-do list to keep track of the vertices
  10299. that need to be visited. We use breadth-first search and a trick
  10300. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  10301. and copying tuples into the ToSpace.
  10302. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  10303. copy progresses. The queue is represented by a chunk of contiguous
  10304. memory at the beginning of the ToSpace, using two pointers to track
  10305. the front and the back of the queue. The algorithm starts by copying
  10306. all tuples that are immediately reachable from the root set into the
  10307. ToSpace to form the initial queue. When we copy a tuple, we mark the
  10308. old tuple to indicate that it has been visited. We discuss how this
  10309. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  10310. pointers inside the copied tuples in the queue still point back to the
  10311. FromSpace. Once the initial queue has been created, the algorithm
  10312. enters a loop in which it repeatedly processes the tuple at the front
  10313. of the queue and pops it off the queue. To process a tuple, the
  10314. algorithm copies all the tuple that are directly reachable from it to
  10315. the ToSpace, placing them at the back of the queue. The algorithm then
  10316. updates the pointers in the popped tuple so they point to the newly
  10317. copied tuples.
  10318. \begin{figure}[tbp]
  10319. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  10320. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  10321. \label{fig:cheney}
  10322. \end{figure}
  10323. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  10324. tuple whose second element is $42$ to the back of the queue. The other
  10325. pointer goes to a tuple that has already been copied, so we do not
  10326. need to copy it again, but we do need to update the pointer to the new
  10327. location. This can be accomplished by storing a \emph{forwarding
  10328. pointer} to the new location in the old tuple, back when we initially
  10329. copied the tuple into the ToSpace. This completes one step of the
  10330. algorithm. The algorithm continues in this way until the front of the
  10331. queue is empty, that is, until the front catches up with the back.
  10332. \subsection{Data Representation}
  10333. \label{sec:data-rep-gc}
  10334. The garbage collector places some requirements on the data
  10335. representations used by our compiler. First, the garbage collector
  10336. needs to distinguish between pointers and other kinds of data. There
  10337. are several ways to accomplish this.
  10338. \begin{enumerate}
  10339. \item Attached a tag to each object that identifies what type of
  10340. object it is~\citep{McCarthy:1960dz}.
  10341. \item Store different types of objects in different
  10342. regions~\citep{Steele:1977ab}.
  10343. \item Use type information from the program to either generate
  10344. type-specific code for collecting or to generate tables that can
  10345. guide the
  10346. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  10347. \end{enumerate}
  10348. Dynamically typed languages, such as \racket{Racket}\python{Python},
  10349. need to tag objects anyways, so option 1 is a natural choice for those
  10350. languages. However, \LangVec{} is a statically typed language, so it
  10351. would be unfortunate to require tags on every object, especially small
  10352. and pervasive objects like integers and Booleans. Option 3 is the
  10353. best-performing choice for statically typed languages, but comes with
  10354. a relatively high implementation complexity. To keep this chapter
  10355. within a 2-week time budget, we recommend a combination of options 1
  10356. and 2, using separate strategies for the stack and the heap.
  10357. Regarding the stack, we recommend using a separate stack for pointers,
  10358. which we call a \emph{root stack}\index{subject}{root stack}
  10359. (a.k.a. ``shadow
  10360. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  10361. is, when a local variable needs to be spilled and is of type
  10362. \racket{\code{Vector}}\python{\code{TupleType}}, then we put it on the
  10363. root stack instead of the normal procedure call stack. Furthermore, we
  10364. always spill tuple-typed variables if they are live during a call to
  10365. the collector, thereby ensuring that no pointers are in registers
  10366. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  10367. example from Figure~\ref{fig:copying-collector} and contrasts it with
  10368. the data layout using a root stack. The root stack contains the two
  10369. pointers from the regular stack and also the pointer in the second
  10370. register.
  10371. \begin{figure}[tbp]
  10372. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  10373. \caption{Maintaining a root stack to facilitate garbage collection.}
  10374. \label{fig:shadow-stack}
  10375. \end{figure}
  10376. The problem of distinguishing between pointers and other kinds of data
  10377. also arises inside of each tuple on the heap. We solve this problem by
  10378. attaching a tag, an extra 64-bits, to each
  10379. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  10380. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  10381. that we have drawn the bits in a big-endian way, from right-to-left,
  10382. with bit location 0 (the least significant bit) on the far right,
  10383. which corresponds to the direction of the x86 shifting instructions
  10384. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  10385. is dedicated to specifying which elements of the tuple are pointers,
  10386. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  10387. indicates there is a pointer and a 0 bit indicates some other kind of
  10388. data. The pointer mask starts at bit location 7. We have limited
  10389. tuples to a maximum size of 50 elements, so we just need 50 bits for
  10390. the pointer mask. The tag also contains two other pieces of
  10391. information. The length of the tuple (number of elements) is stored in
  10392. bits location 1 through 6. Finally, the bit at location 0 indicates
  10393. whether the tuple has yet to be copied to the ToSpace. If the bit has
  10394. value 1, then this tuple has not yet been copied. If the bit has
  10395. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  10396. of a pointer are always zero anyways because our tuples are 8-byte
  10397. aligned.)
  10398. \begin{figure}[tbp]
  10399. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  10400. \caption{Representation of tuples in the heap.}
  10401. \label{fig:tuple-rep}
  10402. \end{figure}
  10403. \subsection{Implementation of the Garbage Collector}
  10404. \label{sec:organize-gz}
  10405. \index{subject}{prelude}
  10406. An implementation of the copying collector is provided in the
  10407. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  10408. interface to the garbage collector that is used by the compiler. The
  10409. \code{initialize} function creates the FromSpace, ToSpace, and root
  10410. stack and should be called in the prelude of the \code{main}
  10411. function. The arguments of \code{initialize} are the root stack size
  10412. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  10413. good choice for both. The \code{initialize} function puts the address
  10414. of the beginning of the FromSpace into the global variable
  10415. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  10416. the address that is 1-past the last element of the FromSpace. (We use
  10417. half-open intervals to represent chunks of
  10418. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  10419. points to the first element of the root stack.
  10420. As long as there is room left in the FromSpace, your generated code
  10421. can allocate tuples simply by moving the \code{free\_ptr} forward.
  10422. %
  10423. The amount of room left in FromSpace is the difference between the
  10424. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  10425. function should be called when there is not enough room left in the
  10426. FromSpace for the next allocation. The \code{collect} function takes
  10427. a pointer to the current top of the root stack (one past the last item
  10428. that was pushed) and the number of bytes that need to be
  10429. allocated. The \code{collect} function performs the copying collection
  10430. and leaves the heap in a state such that the next allocation will
  10431. succeed.
  10432. \begin{figure}[tbp]
  10433. \begin{lstlisting}
  10434. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  10435. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  10436. int64_t* free_ptr;
  10437. int64_t* fromspace_begin;
  10438. int64_t* fromspace_end;
  10439. int64_t** rootstack_begin;
  10440. \end{lstlisting}
  10441. \caption{The compiler's interface to the garbage collector.}
  10442. \label{fig:gc-header}
  10443. \end{figure}
  10444. %% \begin{exercise}
  10445. %% In the file \code{runtime.c} you will find the implementation of
  10446. %% \code{initialize} and a partial implementation of \code{collect}.
  10447. %% The \code{collect} function calls another function, \code{cheney},
  10448. %% to perform the actual copy, and that function is left to the reader
  10449. %% to implement. The following is the prototype for \code{cheney}.
  10450. %% \begin{lstlisting}
  10451. %% static void cheney(int64_t** rootstack_ptr);
  10452. %% \end{lstlisting}
  10453. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  10454. %% rootstack (which is an array of pointers). The \code{cheney} function
  10455. %% also communicates with \code{collect} through the global
  10456. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  10457. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  10458. %% the ToSpace:
  10459. %% \begin{lstlisting}
  10460. %% static int64_t* tospace_begin;
  10461. %% static int64_t* tospace_end;
  10462. %% \end{lstlisting}
  10463. %% The job of the \code{cheney} function is to copy all the live
  10464. %% objects (reachable from the root stack) into the ToSpace, update
  10465. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  10466. %% update the root stack so that it points to the objects in the
  10467. %% ToSpace, and finally to swap the global pointers for the FromSpace
  10468. %% and ToSpace.
  10469. %% \end{exercise}
  10470. %% \section{Compiler Passes}
  10471. %% \label{sec:code-generation-gc}
  10472. The introduction of garbage collection has a non-trivial impact on our
  10473. compiler passes. We introduce a new compiler pass named
  10474. \code{expose\_allocation}. We make significant changes to
  10475. \code{select\_instructions}, \code{build\_interference},
  10476. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  10477. make minor changes in several more passes. The following program will
  10478. serve as our running example. It creates two tuples, one nested
  10479. inside the other. Both tuples have length one. The program accesses
  10480. the element in the inner tuple tuple.
  10481. % tests/vectors_test_17.rkt
  10482. {\if\edition\racketEd
  10483. \begin{lstlisting}
  10484. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  10485. \end{lstlisting}
  10486. \fi}
  10487. {\if\edition\pythonEd
  10488. \begin{lstlisting}
  10489. print( ((42,),)[0][0] )
  10490. \end{lstlisting}
  10491. \fi}
  10492. {\if\edition\racketEd
  10493. \section{Shrink}
  10494. \label{sec:shrink-Lvec}
  10495. Recall that the \code{shrink} pass translates the primitives operators
  10496. into a smaller set of primitives.
  10497. %
  10498. This pass comes after type checking and the type checker adds a
  10499. \code{HasType} AST node around each \code{vector} AST node, so you'll
  10500. need to add a case for \code{HasType} to the \code{shrink} pass.
  10501. \fi}
  10502. \section{Expose Allocation}
  10503. \label{sec:expose-allocation}
  10504. The pass \code{expose\_allocation} lowers tuple creation into a
  10505. conditional call to the collector followed by allocating the
  10506. appropriate amount of memory and initializing it. We choose to place
  10507. the \code{expose\_allocation} pass before
  10508. \code{remove\_complex\_operands} because the code generated by
  10509. \code{expose\_allocation} contains complex operands.
  10510. The output of \code{expose\_allocation} is a language \LangAlloc{}
  10511. that extends \LangVec{} with new forms that we use in the translation
  10512. of tuple creation.
  10513. %
  10514. {\if\edition\racketEd
  10515. \[
  10516. \begin{array}{lcl}
  10517. \Exp &::=& \cdots
  10518. \MID (\key{collect} \,\itm{int})
  10519. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  10520. \MID (\key{global-value} \,\itm{name})
  10521. \end{array}
  10522. \]
  10523. \fi}
  10524. {\if\edition\pythonEd
  10525. \[
  10526. \begin{array}{lcl}
  10527. \Exp &::=& \cdots\\
  10528. &\MID& \key{collect}(\itm{int})
  10529. \MID \key{allocate}(\itm{int},\itm{type})
  10530. \MID \key{global\_value}(\itm{name}) \\
  10531. &\MID& \key{begin:} ~ \Stmt^{*} ~ \Exp
  10532. \end{array}
  10533. \]
  10534. \fi}
  10535. The \CCOLLECT{$n$} form runs the garbage collector, requesting that it
  10536. make sure that there are $n$ bytes ready to be allocated. During
  10537. instruction selection, the \CCOLLECT{$n$} form will become a call to
  10538. the \code{collect} function in \code{runtime.c}.
  10539. %
  10540. The \CALLOCATE{$n$}{$T$} form obtains memory for $n$ elements (and
  10541. space at the front for the 64 bit tag), but the elements are not
  10542. initialized. \index{subject}{allocate} The $T$ parameter is the type
  10543. of the tuple:
  10544. %
  10545. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  10546. %
  10547. where $\Type_i$ is the type of the $i$th element in the tuple. The
  10548. \CGLOBAL{\itm{name}} form reads the value of a global variable, such
  10549. as \code{free\_ptr}.
  10550. %
  10551. \python{The \code{begin} form is an expression that executes a
  10552. sequence of statements and then produces the value of the expression
  10553. at the end.}
  10554. The following shows the transformation of tuple creation into 1) a
  10555. sequence of temporary variables bindings for the initializing
  10556. expressions, 2) a conditional call to \code{collect}, 3) a call to
  10557. \code{allocate}, and 4) the initialization of the tuple. The
  10558. \itm{len} placeholder refers to the length of the tuple and
  10559. \itm{bytes} is how many total bytes need to be allocated for the
  10560. tuple, which is 8 for the tag plus \itm{len} times 8.
  10561. %
  10562. \python{The \itm{type} needed for the second argument of the
  10563. \code{allocate} form can be obtained from the \code{has\_type} field
  10564. of the tuple AST node, which is stored there by running the type
  10565. checker for \LangVec{} immediately before this pass.}
  10566. %
  10567. {\if\edition\racketEd
  10568. \begin{lstlisting}
  10569. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  10570. |$\Longrightarrow$|
  10571. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  10572. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  10573. (global-value fromspace_end))
  10574. (void)
  10575. (collect |\itm{bytes}|))])
  10576. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  10577. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  10578. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  10579. |$v$|) ... )))) ...)
  10580. \end{lstlisting}
  10581. \fi}
  10582. {\if\edition\pythonEd
  10583. \begin{lstlisting}
  10584. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  10585. |$\Longrightarrow$|
  10586. begin:
  10587. |$x_0$| = |$e_0$|
  10588. |$\vdots$|
  10589. |$x_{n-1}$| = |$e_{n-1}$|
  10590. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  10591. 0
  10592. else:
  10593. collect(|\itm{bytes}|)
  10594. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  10595. |$v$|[0] = |$x_0$|
  10596. |$\vdots$|
  10597. |$v$|[|$n-1$|] = |$x_{n-1}$|
  10598. |$v$|
  10599. \end{lstlisting}
  10600. \fi}
  10601. %
  10602. \noindent The sequencing of the initializing expressions
  10603. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important, as
  10604. they may trigger garbage collection and we cannot have an allocated
  10605. but uninitialized tuple on the heap during a collection.
  10606. Figure~\ref{fig:expose-alloc-output} shows the output of the
  10607. \code{expose\_allocation} pass on our running example.
  10608. \begin{figure}[tbp]
  10609. % tests/s2_17.rkt
  10610. {\if\edition\racketEd
  10611. \begin{lstlisting}
  10612. (vector-ref
  10613. (vector-ref
  10614. (let ([vecinit7976
  10615. (let ([vecinit7972 42])
  10616. (let ([collectret7974
  10617. (if (< (+ (global-value free_ptr) 16)
  10618. (global-value fromspace_end))
  10619. (void)
  10620. (collect 16)
  10621. )])
  10622. (let ([alloc7971 (allocate 1 (Vector Integer))])
  10623. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  10624. alloc7971))))])
  10625. (let ([collectret7978
  10626. (if (< (+ (global-value free_ptr) 16)
  10627. (global-value fromspace_end))
  10628. (void)
  10629. (collect 16)
  10630. )])
  10631. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  10632. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  10633. alloc7975))))
  10634. 0)
  10635. 0)
  10636. \end{lstlisting}
  10637. \fi}
  10638. {\if\edition\pythonEd
  10639. \begin{lstlisting}
  10640. print( |$T_1$|[0][0] )
  10641. \end{lstlisting}
  10642. where $T_1$ is
  10643. \begin{lstlisting}
  10644. begin:
  10645. tmp.1 = |$T_2$|
  10646. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  10647. 0
  10648. else:
  10649. collect(16)
  10650. tmp.2 = allocate(1, TupleType(TupleType([int])))
  10651. tmp.2[0] = tmp.1
  10652. tmp.2
  10653. \end{lstlisting}
  10654. and $T_2$ is
  10655. \begin{lstlisting}
  10656. begin:
  10657. tmp.3 = 42
  10658. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  10659. 0
  10660. else:
  10661. collect(16)
  10662. tmp.4 = allocate(1, TupleType([int]))
  10663. tmp.4[0] = tmp.3
  10664. tmp.4
  10665. \end{lstlisting}
  10666. \fi}
  10667. \caption{Output of the \code{expose\_allocation} pass.}
  10668. \label{fig:expose-alloc-output}
  10669. \end{figure}
  10670. \section{Remove Complex Operands}
  10671. \label{sec:remove-complex-opera-Lvec}
  10672. {\if\edition\racketEd
  10673. %
  10674. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  10675. should be treated as complex operands.
  10676. %
  10677. \fi}
  10678. %
  10679. {\if\edition\pythonEd
  10680. %
  10681. The expressions \code{allocate}, \code{global\_value}, \code{begin},
  10682. and tuple access should be treated as complex operands. The
  10683. sub-expressions of tuple access must be atomic.
  10684. %
  10685. \fi}
  10686. %% A new case for
  10687. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  10688. %% handled carefully to prevent the \code{Prim} node from being separated
  10689. %% from its enclosing \code{HasType}.
  10690. Figure~\ref{fig:Lvec-anf-syntax}
  10691. shows the grammar for the output language \LangVecANF{} of this
  10692. pass, which is \LangVec{} in monadic normal form.
  10693. \begin{figure}[tp]
  10694. \centering
  10695. \fbox{
  10696. \begin{minipage}{0.96\textwidth}
  10697. \small
  10698. {\if\edition\racketEd
  10699. \[
  10700. \begin{array}{rcl}
  10701. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  10702. \MID \VOID{} } \\
  10703. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  10704. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  10705. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  10706. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  10707. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  10708. &\MID& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  10709. \MID \GLOBALVALUE{\Var}\\
  10710. % &\MID& \LP\key{HasType}~\Exp~\Type\RP \\
  10711. \LangVecANFM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10712. \end{array}
  10713. \]
  10714. \fi}
  10715. {\if\edition\pythonEd
  10716. \[
  10717. \begin{array}{lcl}
  10718. \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  10719. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  10720. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \MID \code{Is()} \\
  10721. \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  10722. \itm{bool} &::=& \code{True} \MID \code{False} \\
  10723. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  10724. \Exp &::=& \Atm \MID \READ{} \MID \\
  10725. &\MID& \BINOP{\Exp}{\itm{binaryop}}{\Exp}
  10726. \MID \UNIOP{\itm{unaryop}}{\Exp}\\
  10727. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp}
  10728. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  10729. &\MID& \IF{\Exp}{\Exp}{\Exp} \\
  10730. &\MID& \GET{\Atm}{\Atm} \\
  10731. &\MID& \LEN{\Exp}\\
  10732. &\MID& \ALLOCATE{\Int}{\Type}
  10733. \MID \GLOBALVALUE{\Var}\RP\\
  10734. &\MID& \BEGIN{\Stmt^{*}}{\Exp} \\
  10735. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  10736. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  10737. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Exp} \\
  10738. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  10739. &\MID& \WHILESTMT{\Exp}{\Stmt^{+}}
  10740. \MID \COLLECT{\Int} \\
  10741. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10742. \end{array}
  10743. \]
  10744. \fi}
  10745. \end{minipage}
  10746. }
  10747. \caption{\LangVecANF{} is \LangVec{} in monadic normal form.}
  10748. \label{fig:Lvec-anf-syntax}
  10749. \end{figure}
  10750. \section{Explicate Control and the \LangCVec{} language}
  10751. \label{sec:explicate-control-r3}
  10752. \begin{figure}[tp]
  10753. \fbox{
  10754. \begin{minipage}{0.96\textwidth}
  10755. \small
  10756. {\if\edition\racketEd
  10757. \[
  10758. \begin{array}{lcl}
  10759. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  10760. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  10761. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  10762. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  10763. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  10764. &\MID& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  10765. &\MID& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  10766. &\MID& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
  10767. &\MID& \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP\\
  10768. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  10769. \MID \LP\key{Collect} \,\itm{int}\RP \\
  10770. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  10771. \MID \GOTO{\itm{label}} } \\
  10772. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  10773. \LangCVecM{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
  10774. \end{array}
  10775. \]
  10776. \fi}
  10777. {\if\edition\pythonEd
  10778. \[
  10779. \begin{array}{lcl}
  10780. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  10781. \Exp &::= & \Atm \MID \READ{} \\
  10782. &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  10783. \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  10784. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm}
  10785. \MID \BOOLOP{\itm{boolop}}{\Atm}{\Atm} \\
  10786. &\MID& \GET{\Atm}{\Atm}
  10787. \MID \ALLOCATE{\Int}{\Type} \MID \GLOBALVALUE{\Var}\RP\\
  10788. &\MID& \LEN{\Atm} \\
  10789. \Stmt &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  10790. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  10791. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  10792. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS} \\
  10793. &\MID& \COLLECT{\Int} \\
  10794. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  10795. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\,\key{:}\,\Stmt^{*}, \ldots \RC}
  10796. \end{array}
  10797. \]
  10798. \fi}
  10799. \end{minipage}
  10800. }
  10801. \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
  10802. (Figure~\ref{fig:c1-syntax}).}
  10803. \label{fig:c2-syntax}
  10804. \end{figure}
  10805. The output of \code{explicate\_control} is a program in the
  10806. intermediate language \LangCVec{}, whose abstract syntax is defined in
  10807. Figure~\ref{fig:c2-syntax}. \racket{(The concrete syntax is defined
  10808. in Figure~\ref{fig:c2-concrete-syntax} of the Appendix.)} The new
  10809. expressions of \LangCVec{} include \key{allocate},
  10810. %
  10811. \racket{\key{vector-ref}, and \key{vector-set!},}
  10812. %
  10813. \python{accessing tuple elements,}
  10814. %
  10815. and \key{global\_value}.
  10816. %
  10817. \python{\LangCVec{} also includes the \code{collect} statement and
  10818. assignment to a tuple element.}
  10819. %
  10820. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  10821. %
  10822. The \code{explicate\_control} pass can treat these new forms much like
  10823. the other forms that we've already encoutered.
  10824. \section{Select Instructions and the \LangXGlobal{} Language}
  10825. \label{sec:select-instructions-gc}
  10826. \index{subject}{instruction selection}
  10827. %% void (rep as zero)
  10828. %% allocate
  10829. %% collect (callq collect)
  10830. %% vector-ref
  10831. %% vector-set!
  10832. %% global (postpone)
  10833. In this pass we generate x86 code for most of the new operations that
  10834. were needed to compile tuples, including \code{Allocate},
  10835. \code{Collect}, and accessing tuple elements.
  10836. %
  10837. We compile \code{GlobalValue} to \code{Global} because the later has a
  10838. different concrete syntax (see Figures~\ref{fig:x86-2-concrete} and
  10839. \ref{fig:x86-2}). \index{subject}{x86}
  10840. The tuple read and write forms translate into \code{movq}
  10841. instructions. (The plus one in the offset is to get past the tag at
  10842. the beginning of the tuple representation.)
  10843. %
  10844. \begin{center}
  10845. \begin{minipage}{\textwidth}
  10846. {\if\edition\racketEd
  10847. \begin{lstlisting}
  10848. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  10849. |$\Longrightarrow$|
  10850. movq |$\itm{tup}'$|, %r11
  10851. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  10852. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  10853. |$\Longrightarrow$|
  10854. movq |$\itm{tup}'$|, %r11
  10855. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  10856. movq $0, |$\itm{lhs'}$|
  10857. \end{lstlisting}
  10858. \fi}
  10859. {\if\edition\pythonEd
  10860. \begin{lstlisting}
  10861. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  10862. |$\Longrightarrow$|
  10863. movq |$\itm{tup}'$|, %r11
  10864. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  10865. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  10866. |$\Longrightarrow$|
  10867. movq |$\itm{tup}'$|, %r11
  10868. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  10869. movq $0, |$\itm{lhs'}$|
  10870. \end{lstlisting}
  10871. \fi}
  10872. \end{minipage}
  10873. \end{center}
  10874. The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$ are obtained by
  10875. translating $\itm{tup}$ and $\itm{rhs}$ to x86. The move of $\itm{tup}'$ to
  10876. register \code{r11} ensures that offset expression
  10877. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  10878. removing \code{r11} from consideration by the register allocating.
  10879. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  10880. \code{rax}. Then the generated code for tuple assignment would be
  10881. \begin{lstlisting}
  10882. movq |$\itm{tup}'$|, %rax
  10883. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  10884. movq $0, |$\itm{lhs}'$|
  10885. \end{lstlisting}
  10886. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  10887. \code{patch\_instructions} would insert a move through \code{rax}
  10888. as follows.
  10889. \begin{lstlisting}
  10890. movq |$\itm{tup}'$|, %rax
  10891. movq |$\itm{rhs}'$|, %rax
  10892. movq %rax, |$8(n+1)$|(%rax)
  10893. movq $0, |$\itm{lhs}'$|
  10894. \end{lstlisting}
  10895. But the above sequence of instructions does not work because we're
  10896. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  10897. $\itm{rhs}'$) at the same time!
  10898. We compile the \code{allocate} form to operations on the
  10899. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  10900. is the next free address in the FromSpace, so we copy it into
  10901. \code{r11} and then move it forward by enough space for the tuple
  10902. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  10903. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  10904. initialize the \itm{tag} and finally copy the address in \code{r11} to
  10905. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  10906. tag is organized.
  10907. %
  10908. \racket{We recommend using the Racket operations
  10909. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  10910. during compilation.}
  10911. %
  10912. The type annotation in the \code{allocate} form is used to determine
  10913. the pointer mask region of the tag.
  10914. %
  10915. {\if\edition\racketEd
  10916. \begin{lstlisting}
  10917. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  10918. |$\Longrightarrow$|
  10919. movq free_ptr(%rip), %r11
  10920. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  10921. movq $|$\itm{tag}$|, 0(%r11)
  10922. movq %r11, |$\itm{lhs}'$|
  10923. \end{lstlisting}
  10924. \fi}
  10925. {\if\edition\pythonEd
  10926. \begin{lstlisting}
  10927. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  10928. |$\Longrightarrow$|
  10929. movq free_ptr(%rip), %r11
  10930. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  10931. movq $|$\itm{tag}$|, 0(%r11)
  10932. movq %r11, |$\itm{lhs}'$|
  10933. \end{lstlisting}
  10934. \fi}
  10935. The \code{collect} form is compiled to a call to the \code{collect}
  10936. function in the runtime. The arguments to \code{collect} are 1) the
  10937. top of the root stack and 2) the number of bytes that need to be
  10938. allocated. We use another dedicated register, \code{r15}, to
  10939. store the pointer to the top of the root stack. So \code{r15} is not
  10940. available for use by the register allocator.
  10941. {\if\edition\racketEd
  10942. \begin{lstlisting}
  10943. (collect |$\itm{bytes}$|)
  10944. |$\Longrightarrow$|
  10945. movq %r15, %rdi
  10946. movq $|\itm{bytes}|, %rsi
  10947. callq collect
  10948. \end{lstlisting}
  10949. \fi}
  10950. {\if\edition\pythonEd
  10951. \begin{lstlisting}
  10952. collect(|$\itm{bytes}$|)
  10953. |$\Longrightarrow$|
  10954. movq %r15, %rdi
  10955. movq $|\itm{bytes}|, %rsi
  10956. callq collect
  10957. \end{lstlisting}
  10958. \fi}
  10959. \begin{figure}[tp]
  10960. \fbox{
  10961. \begin{minipage}{0.96\textwidth}
  10962. \[
  10963. \begin{array}{lcl}
  10964. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)} \\
  10965. \LangXGlobalM{} &::= & \gray{ \key{.globl main} }\\
  10966. & & \gray{ \key{main:} \; \Instr\ldots }
  10967. \end{array}
  10968. \]
  10969. \end{minipage}
  10970. }
  10971. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  10972. \label{fig:x86-2-concrete}
  10973. \end{figure}
  10974. \begin{figure}[tp]
  10975. \fbox{
  10976. \begin{minipage}{0.96\textwidth}
  10977. \small
  10978. \[
  10979. \begin{array}{lcl}
  10980. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  10981. \MID \BYTEREG{\Reg}} \\
  10982. &\MID& \GLOBAL{\Var} \\
  10983. \LangXGlobalM{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  10984. \end{array}
  10985. \]
  10986. \end{minipage}
  10987. }
  10988. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  10989. \label{fig:x86-2}
  10990. \end{figure}
  10991. The concrete and abstract syntax of the \LangXGlobal{} language is
  10992. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  10993. differs from \LangXIf{} just in the addition of global variables.
  10994. %
  10995. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  10996. \code{select\_instructions} pass on the running example.
  10997. \begin{figure}[tbp]
  10998. \centering
  10999. % tests/s2_17.rkt
  11000. \begin{minipage}[t]{0.5\textwidth}
  11001. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11002. block35:
  11003. movq free_ptr(%rip), alloc9024
  11004. addq $16, free_ptr(%rip)
  11005. movq alloc9024, %r11
  11006. movq $131, 0(%r11)
  11007. movq alloc9024, %r11
  11008. movq vecinit9025, 8(%r11)
  11009. movq $0, initret9026
  11010. movq alloc9024, %r11
  11011. movq 8(%r11), tmp9034
  11012. movq tmp9034, %r11
  11013. movq 8(%r11), %rax
  11014. jmp conclusion
  11015. block36:
  11016. movq $0, collectret9027
  11017. jmp block35
  11018. block38:
  11019. movq free_ptr(%rip), alloc9020
  11020. addq $16, free_ptr(%rip)
  11021. movq alloc9020, %r11
  11022. movq $3, 0(%r11)
  11023. movq alloc9020, %r11
  11024. movq vecinit9021, 8(%r11)
  11025. movq $0, initret9022
  11026. movq alloc9020, vecinit9025
  11027. movq free_ptr(%rip), tmp9031
  11028. movq tmp9031, tmp9032
  11029. addq $16, tmp9032
  11030. movq fromspace_end(%rip), tmp9033
  11031. cmpq tmp9033, tmp9032
  11032. jl block36
  11033. jmp block37
  11034. block37:
  11035. movq %r15, %rdi
  11036. movq $16, %rsi
  11037. callq 'collect
  11038. jmp block35
  11039. block39:
  11040. movq $0, collectret9023
  11041. jmp block38
  11042. \end{lstlisting}
  11043. \end{minipage}
  11044. \begin{minipage}[t]{0.45\textwidth}
  11045. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11046. start:
  11047. movq $42, vecinit9021
  11048. movq free_ptr(%rip), tmp9028
  11049. movq tmp9028, tmp9029
  11050. addq $16, tmp9029
  11051. movq fromspace_end(%rip), tmp9030
  11052. cmpq tmp9030, tmp9029
  11053. jl block39
  11054. jmp block40
  11055. block40:
  11056. movq %r15, %rdi
  11057. movq $16, %rsi
  11058. callq 'collect
  11059. jmp block38
  11060. \end{lstlisting}
  11061. \end{minipage}
  11062. \caption{Output of the \code{select\_instructions} pass.}
  11063. \label{fig:select-instr-output-gc}
  11064. \end{figure}
  11065. \clearpage
  11066. \section{Register Allocation}
  11067. \label{sec:reg-alloc-gc}
  11068. \index{subject}{register allocation}
  11069. As discussed earlier in this chapter, the garbage collector needs to
  11070. access all the pointers in the root set, that is, all variables that
  11071. are tuples. It will be the responsibility of the register allocator
  11072. to make sure that:
  11073. \begin{enumerate}
  11074. \item the root stack is used for spilling tuple-typed variables, and
  11075. \item if a tuple-typed variable is live during a call to the
  11076. collector, it must be spilled to ensure it is visible to the
  11077. collector.
  11078. \end{enumerate}
  11079. The later responsibility can be handled during construction of the
  11080. interference graph, by adding interference edges between the call-live
  11081. tuple-typed variables and all the callee-saved registers. (They
  11082. already interfere with the caller-saved registers.)
  11083. %
  11084. \racket{The type information for variables is in the \code{Program}
  11085. form, so we recommend adding another parameter to the
  11086. \code{build\_interference} function to communicate this alist.}
  11087. %
  11088. \python{The type information for variables is generated by the type
  11089. checker for \LangCVec{}, stored a field named \code{var\_types} in
  11090. the \code{CProgram} AST mode. You'll need to propagate that
  11091. information so that it is available in this pass.}
  11092. The spilling of tuple-typed variables to the root stack can be handled
  11093. after graph coloring, when choosing how to assign the colors
  11094. (integers) to registers and stack locations. The
  11095. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  11096. changes to also record the number of spills to the root stack.
  11097. % build-interference
  11098. %
  11099. % callq
  11100. % extra parameter for var->type assoc. list
  11101. % update 'program' and 'if'
  11102. % allocate-registers
  11103. % allocate spilled vectors to the rootstack
  11104. % don't change color-graph
  11105. \section{Patch Instructions}
  11106. [mention that global variables are memory references]
  11107. \section{Prelude and Conclusion}
  11108. \label{sec:print-x86-gc}
  11109. \label{sec:prelude-conclusion-x86-gc}
  11110. \index{subject}{prelude}\index{subject}{conclusion}
  11111. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  11112. \code{prelude\_and\_conclusion} pass on the running example. In the
  11113. prelude and conclusion of the \code{main} function, we treat the root
  11114. stack very much like the regular stack in that we move the root stack
  11115. pointer (\code{r15}) to make room for the spills to the root stack,
  11116. except that the root stack grows up instead of down. For the running
  11117. example, there was just one spill so we increment \code{r15} by 8
  11118. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  11119. One issue that deserves special care is that there may be a call to
  11120. \code{collect} prior to the initializing assignments for all the
  11121. variables in the root stack. We do not want the garbage collector to
  11122. accidentally think that some uninitialized variable is a pointer that
  11123. needs to be followed. Thus, we zero-out all locations on the root
  11124. stack in the prelude of \code{main}. In
  11125. Figure~\ref{fig:print-x86-output-gc}, the instruction
  11126. %
  11127. \lstinline{movq $0, (%r15)}
  11128. %
  11129. accomplishes this task. The garbage collector tests each root to see
  11130. if it is null prior to dereferencing it.
  11131. \begin{figure}[htbp]
  11132. % TODO: Python Version -Jeremy
  11133. \begin{minipage}[t]{0.5\textwidth}
  11134. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11135. block35:
  11136. movq free_ptr(%rip), %rcx
  11137. addq $16, free_ptr(%rip)
  11138. movq %rcx, %r11
  11139. movq $131, 0(%r11)
  11140. movq %rcx, %r11
  11141. movq -8(%r15), %rax
  11142. movq %rax, 8(%r11)
  11143. movq $0, %rdx
  11144. movq %rcx, %r11
  11145. movq 8(%r11), %rcx
  11146. movq %rcx, %r11
  11147. movq 8(%r11), %rax
  11148. jmp conclusion
  11149. block36:
  11150. movq $0, %rcx
  11151. jmp block35
  11152. block38:
  11153. movq free_ptr(%rip), %rcx
  11154. addq $16, free_ptr(%rip)
  11155. movq %rcx, %r11
  11156. movq $3, 0(%r11)
  11157. movq %rcx, %r11
  11158. movq %rbx, 8(%r11)
  11159. movq $0, %rdx
  11160. movq %rcx, -8(%r15)
  11161. movq free_ptr(%rip), %rcx
  11162. addq $16, %rcx
  11163. movq fromspace_end(%rip), %rdx
  11164. cmpq %rdx, %rcx
  11165. jl block36
  11166. movq %r15, %rdi
  11167. movq $16, %rsi
  11168. callq collect
  11169. jmp block35
  11170. block39:
  11171. movq $0, %rcx
  11172. jmp block38
  11173. \end{lstlisting}
  11174. \end{minipage}
  11175. \begin{minipage}[t]{0.45\textwidth}
  11176. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11177. start:
  11178. movq $42, %rbx
  11179. movq free_ptr(%rip), %rdx
  11180. addq $16, %rdx
  11181. movq fromspace_end(%rip), %rcx
  11182. cmpq %rcx, %rdx
  11183. jl block39
  11184. movq %r15, %rdi
  11185. movq $16, %rsi
  11186. callq collect
  11187. jmp block38
  11188. .globl main
  11189. main:
  11190. pushq %rbp
  11191. movq %rsp, %rbp
  11192. pushq %r13
  11193. pushq %r12
  11194. pushq %rbx
  11195. pushq %r14
  11196. subq $0, %rsp
  11197. movq $16384, %rdi
  11198. movq $16384, %rsi
  11199. callq initialize
  11200. movq rootstack_begin(%rip), %r15
  11201. movq $0, (%r15)
  11202. addq $8, %r15
  11203. jmp start
  11204. conclusion:
  11205. subq $8, %r15
  11206. addq $0, %rsp
  11207. popq %r14
  11208. popq %rbx
  11209. popq %r12
  11210. popq %r13
  11211. popq %rbp
  11212. retq
  11213. \end{lstlisting}
  11214. \end{minipage}
  11215. \caption{Output of the \code{prelude\_and\_conclusion} pass.}
  11216. \label{fig:print-x86-output-gc}
  11217. \end{figure}
  11218. \begin{figure}[p]
  11219. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11220. \node (Lvec) at (0,2) {\large \LangVec{}};
  11221. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  11222. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  11223. \node (Lvec-4) at (9,2) {\large \LangVec{}};
  11224. \node (Lvec-5) at (12,2) {\large \LangAllocANF{}};
  11225. \node (C2-4) at (3,0) {\large \LangCVec{}};
  11226. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  11227. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  11228. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  11229. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  11230. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  11231. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  11232. %\path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize type-check} (Lvec-2);
  11233. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  11234. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  11235. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_alloc.} (Lvec-4);
  11236. \path[->,bend left=15] (Lvec-4) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvec-5);
  11237. \path[->,bend left=20] (Lvec-5) edge [left] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  11238. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  11239. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11240. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  11241. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  11242. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  11243. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  11244. \end{tikzpicture}
  11245. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  11246. \label{fig:Lvec-passes}
  11247. \end{figure}
  11248. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  11249. for the compilation of \LangVec{}.
  11250. {\if\edition\racketEd
  11251. \section{Challenge: Simple Structures}
  11252. \label{sec:simple-structures}
  11253. \index{subject}{struct}
  11254. \index{subject}{structure}
  11255. Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
  11256. \LangStruct{}, which extends \LangVec{} with support for simple structures.
  11257. Recall that a \code{struct} in Typed Racket is a user-defined data
  11258. type that contains named fields and that is heap allocated, similar to
  11259. a vector. The following is an example of a structure definition, in
  11260. this case the definition of a \code{point} type.
  11261. \begin{lstlisting}
  11262. (struct point ([x : Integer] [y : Integer]) #:mutable)
  11263. \end{lstlisting}
  11264. \begin{figure}[tbp]
  11265. \centering
  11266. \fbox{
  11267. \begin{minipage}{0.96\textwidth}
  11268. \[
  11269. \begin{array}{lcl}
  11270. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  11271. \MID (\key{Vector}\;\Type \ldots) \MID \key{Void} } \MID \Var \\
  11272. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} } \\
  11273. \Exp &::=& \gray{ \Int \MID (\key{read}) \MID (\key{-}\;\Exp) \MID (\key{+} \; \Exp\;\Exp) \MID (\key{-}\;\Exp\;\Exp) } \\
  11274. &\MID& \gray{ \Var \MID (\key{let}~([\Var~\Exp])~\Exp) }\\
  11275. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  11276. \MID (\key{and}\;\Exp\;\Exp)
  11277. \MID (\key{or}\;\Exp\;\Exp)
  11278. \MID (\key{not}\;\Exp) } \\
  11279. &\MID& \gray{ (\itm{cmp}\;\Exp\;\Exp)
  11280. \MID (\key{if}~\Exp~\Exp~\Exp) } \\
  11281. &\MID& \gray{ (\key{vector}\;\Exp \ldots)
  11282. \MID (\key{vector-ref}\;\Exp\;\Int) } \\
  11283. &\MID& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
  11284. &\MID& \gray{ (\key{void}) } \MID (\Var\;\Exp \ldots)\\
  11285. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  11286. \LangStruct{} &::=& \Def \ldots \; \Exp
  11287. \end{array}
  11288. \]
  11289. \end{minipage}
  11290. }
  11291. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  11292. (Figure~\ref{fig:Lvec-concrete-syntax}).}
  11293. \label{fig:r3s-concrete-syntax}
  11294. \end{figure}
  11295. An instance of a structure is created using function call syntax, with
  11296. the name of the structure in the function position:
  11297. \begin{lstlisting}
  11298. (point 7 12)
  11299. \end{lstlisting}
  11300. Function-call syntax is also used to read the value in a field of a
  11301. structure. The function name is formed by the structure name, a dash,
  11302. and the field name. The following example uses \code{point-x} and
  11303. \code{point-y} to access the \code{x} and \code{y} fields of two point
  11304. instances.
  11305. \begin{center}
  11306. \begin{lstlisting}
  11307. (let ([pt1 (point 7 12)])
  11308. (let ([pt2 (point 4 3)])
  11309. (+ (- (point-x pt1) (point-x pt2))
  11310. (- (point-y pt1) (point-y pt2)))))
  11311. \end{lstlisting}
  11312. \end{center}
  11313. Similarly, to write to a field of a structure, use its set function,
  11314. whose name starts with \code{set-}, followed by the structure name,
  11315. then a dash, then the field name, and concluded with an exclamation
  11316. mark. The following example uses \code{set-point-x!} to change the
  11317. \code{x} field from \code{7} to \code{42}.
  11318. \begin{center}
  11319. \begin{lstlisting}
  11320. (let ([pt (point 7 12)])
  11321. (let ([_ (set-point-x! pt 42)])
  11322. (point-x pt)))
  11323. \end{lstlisting}
  11324. \end{center}
  11325. \begin{exercise}\normalfont
  11326. Create a type checker for \LangStruct{} by extending the type
  11327. checker for \LangVec{}. Extend your compiler with support for simple
  11328. structures, compiling \LangStruct{} to x86 assembly code. Create
  11329. five new test cases that use structures and test your compiler.
  11330. \end{exercise}
  11331. % TODO: show the abstract syntax with ProgramDefsExp
  11332. \clearpage
  11333. \section{Challenge: Arrays}
  11334. \label{sec:arrays}
  11335. In Chapter~\ref{ch:Lvec} we studied tuples, that is, sequences of
  11336. elements whose length is determined at compile-time and where each
  11337. element of a tuple may have a different type (they are
  11338. heterogeous). This challenge is also about sequences, but this time
  11339. the length is determined at run-time and all the elements have the same
  11340. type (they are homogeneous). We use the term ``array'' for this later
  11341. kind of sequence.
  11342. The Racket language does not distinguish between tuples and arrays,
  11343. they are both represented by vectors. However, Typed Racket
  11344. distinguishes between tuples and arrays: the \code{Vector} type is for
  11345. tuples and the \code{Vectorof} type is for arrays.
  11346. %
  11347. Figure~\ref{fig:Lvecof-concrete-syntax} defines the concrete syntax
  11348. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  11349. and the \code{make-vector} primitive operator for creating an array,
  11350. whose arguments are the length of the array and an initial value for
  11351. all the elements in the array. The \code{vector-length},
  11352. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  11353. for tuples become overloaded for use with arrays.
  11354. %
  11355. We also include integer multiplication in \LangArray{}, as it is
  11356. useful in many examples involving arrays such as computing the
  11357. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  11358. \begin{figure}[tp]
  11359. \centering
  11360. \fbox{
  11361. \begin{minipage}{0.96\textwidth}
  11362. \small
  11363. \[
  11364. \begin{array}{lcl}
  11365. \Type &::=& \ldots \MID \LP \key{Vectorof}~\Type \RP \\
  11366. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  11367. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \MID \CMUL{\Exp}{\Exp}\\
  11368. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  11369. &\MID& \gray{\key{\#t} \MID \key{\#f}
  11370. \MID \LP\key{and}\;\Exp\;\Exp\RP
  11371. \MID \LP\key{or}\;\Exp\;\Exp\RP
  11372. \MID \LP\key{not}\;\Exp\RP } \\
  11373. &\MID& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  11374. &\MID& \gray{ \LP\key{vector}\;\Exp\ldots\RP \MID
  11375. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  11376. &\MID& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\MID \LP\key{void}\RP
  11377. \MID \LP\Exp \; \Exp\ldots\RP } \\
  11378. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP
  11379. \MID \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  11380. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  11381. \MID \CBEGIN{\Exp\ldots}{\Exp}
  11382. \MID \CWHILE{\Exp}{\Exp} } \\
  11383. &\MID& \CMAKEVEC{\Exp}{\Exp} \\
  11384. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11385. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  11386. \end{array}
  11387. \]
  11388. \end{minipage}
  11389. }
  11390. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  11391. \label{fig:Lvecof-concrete-syntax}
  11392. \end{figure}
  11393. \begin{figure}[tp]
  11394. \begin{lstlisting}
  11395. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  11396. [n : Integer]) : Integer
  11397. (let ([i 0])
  11398. (let ([prod 0])
  11399. (begin
  11400. (while (< i n)
  11401. (begin
  11402. (set! prod (+ prod (* (vector-ref A i)
  11403. (vector-ref B i))))
  11404. (set! i (+ i 1))
  11405. ))
  11406. prod))))
  11407. (let ([A (make-vector 2 2)])
  11408. (let ([B (make-vector 2 3)])
  11409. (+ (inner-product A B 2)
  11410. 30)))
  11411. \end{lstlisting}
  11412. \caption{Example program that computes the inner-product.}
  11413. \label{fig:inner-product}
  11414. \end{figure}
  11415. The type checker for \LangArray{} is define in
  11416. Figure~\ref{fig:type-check-Lvecof}. The result type of
  11417. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  11418. of the intializing expression. The length expression is required to
  11419. have type \code{Integer}. The type checking of the operators
  11420. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  11421. updated to handle the situation where the vector has type
  11422. \code{Vectorof}. In these cases we translate the operators to their
  11423. \code{vectorof} form so that later passes can easily distinguish
  11424. between operations on tuples versus arrays. We override the
  11425. \code{operator-types} method to provide the type signature for
  11426. multiplication: it takes two integers and returns an integer. To
  11427. support injection and projection of arrays to the \code{Any} type
  11428. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  11429. predicate.
  11430. \begin{figure}[tbp]
  11431. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11432. (define type-check-Lvecof_class
  11433. (class type-check-Rwhile_class
  11434. (super-new)
  11435. (inherit check-type-equal?)
  11436. (define/override (flat-ty? ty)
  11437. (match ty
  11438. ['(Vectorof Any) #t]
  11439. [else (super flat-ty? ty)]))
  11440. (define/override (operator-types)
  11441. (append '((* . ((Integer Integer) . Integer)))
  11442. (super operator-types)))
  11443. (define/override (type-check-exp env)
  11444. (lambda (e)
  11445. (define recur (type-check-exp env))
  11446. (match e
  11447. [(Prim 'make-vector (list e1 e2))
  11448. (define-values (e1^ t1) (recur e1))
  11449. (define-values (e2^ elt-type) (recur e2))
  11450. (define vec-type `(Vectorof ,elt-type))
  11451. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  11452. vec-type)]
  11453. [(Prim 'vector-ref (list e1 e2))
  11454. (define-values (e1^ t1) (recur e1))
  11455. (define-values (e2^ t2) (recur e2))
  11456. (match* (t1 t2)
  11457. [(`(Vectorof ,elt-type) 'Integer)
  11458. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  11459. [(other wise) ((super type-check-exp env) e)])]
  11460. [(Prim 'vector-set! (list e1 e2 e3) )
  11461. (define-values (e-vec t-vec) (recur e1))
  11462. (define-values (e2^ t2) (recur e2))
  11463. (define-values (e-arg^ t-arg) (recur e3))
  11464. (match t-vec
  11465. [`(Vectorof ,elt-type)
  11466. (check-type-equal? elt-type t-arg e)
  11467. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  11468. [else ((super type-check-exp env) e)])]
  11469. [(Prim 'vector-length (list e1))
  11470. (define-values (e1^ t1) (recur e1))
  11471. (match t1
  11472. [`(Vectorof ,t)
  11473. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  11474. [else ((super type-check-exp env) e)])]
  11475. [else ((super type-check-exp env) e)])))
  11476. ))
  11477. (define (type-check-Lvecof p)
  11478. (send (new type-check-Lvecof_class) type-check-program p))
  11479. \end{lstlisting}
  11480. \caption{Type checker for the \LangArray{} language.}
  11481. \label{fig:type-check-Lvecof}
  11482. \end{figure}
  11483. The interpreter for \LangArray{} is defined in
  11484. Figure~\ref{fig:interp-Lvecof}. The \code{make-vector} operator is
  11485. implemented with Racket's \code{make-vector} function and
  11486. multiplication is \code{fx*}, multiplication for \code{fixnum}
  11487. integers.
  11488. \begin{figure}[tbp]
  11489. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11490. (define interp-Lvecof_class
  11491. (class interp-Rwhile_class
  11492. (super-new)
  11493. (define/override (interp-op op)
  11494. (verbose "Lvecof/interp-op" op)
  11495. (match op
  11496. ['make-vector make-vector]
  11497. ['* fx*]
  11498. [else (super interp-op op)]))
  11499. ))
  11500. (define (interp-Lvecof p)
  11501. (send (new interp-Lvecof_class) interp-program p))
  11502. \end{lstlisting}
  11503. \caption{Interpreter for \LangArray{}.}
  11504. \label{fig:interp-Lvecof}
  11505. \end{figure}
  11506. \subsection{Data Representation}
  11507. \label{sec:array-rep}
  11508. Just like tuples, we store arrays on the heap which means that the
  11509. garbage collector will need to inspect arrays. An immediate thought is
  11510. to use the same representation for arrays that we use for tuples.
  11511. However, we limit tuples to a length of $50$ so that their length and
  11512. pointer mask can fit into the 64-bit tag at the beginning of each
  11513. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  11514. millions of elements, so we need more bits to store the length.
  11515. However, because arrays are homogeneous, we only need $1$ bit for the
  11516. pointer mask instead of one bit per array elements. Finally, the
  11517. garbage collector will need to be able to distinguish between tuples
  11518. and arrays, so we need to reserve $1$ bit for that purpose. So we
  11519. arrive at the following layout for the 64-bit tag at the beginning of
  11520. an array:
  11521. \begin{itemize}
  11522. \item The right-most bit is the forwarding bit, just like in a tuple.
  11523. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  11524. it is not.
  11525. \item The next bit to the left is the pointer mask. A $0$ indicates
  11526. that none of the elements are pointers to the heap and a $1$
  11527. indicates that all of the elements are pointers.
  11528. \item The next $61$ bits store the length of the array.
  11529. \item The left-most bit distinguishes between a tuple ($0$) versus an
  11530. array ($1$).
  11531. \end{itemize}
  11532. Recall that in Chapter~\ref{ch:Rdyn}, we use a $3$-bit tag to
  11533. differentiate the kinds of values that have been injected into the
  11534. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  11535. to indicate that the value is an array.
  11536. In the following subsections we provide hints regarding how to update
  11537. the passes to handle arrays.
  11538. \subsection{Reveal Casts}
  11539. The array-access operators \code{vectorof-ref} and
  11540. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  11541. \code{any-vector-set!} operators of Chapter~\ref{ch:Rdyn} in
  11542. that the type checker cannot tell whether the index will be in bounds,
  11543. so the bounds check must be performed at run time. Recall that the
  11544. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  11545. an \code{If} arround a vector reference for update to check whether
  11546. the index is less than the length. You should do the same for
  11547. \code{vectorof-ref} and \code{vectorof-set!} .
  11548. In addition, the handling of the \code{any-vector} operators in
  11549. \code{reveal-casts} needs to be updated to account for arrays that are
  11550. injected to \code{Any}. For the \code{any-vector-length} operator, the
  11551. generated code should test whether the tag is for tuples (\code{010})
  11552. or arrays (\code{110}) and then dispatch to either
  11553. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  11554. we add a case in \code{select\_instructions} to generate the
  11555. appropriate instructions for accessing the array length from the
  11556. header of an array.
  11557. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  11558. the generated code needs to check that the index is less than the
  11559. vector length, so like the code for \code{any-vector-length}, check
  11560. the tag to determine whether to use \code{any-vector-length} or
  11561. \code{any-vectorof-length} for this purpose. Once the bounds checking
  11562. is complete, the generated code can use \code{any-vector-ref} and
  11563. \code{any-vector-set!} for both tuples and arrays because the
  11564. instructions used for those operators do not look at the tag at the
  11565. front of the tuple or array.
  11566. \subsection{Expose Allocation}
  11567. This pass should translate the \code{make-vector} operator into
  11568. lower-level operations. In particular, the new AST node
  11569. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  11570. length specified by the $\Exp$, but does not initialize the elements
  11571. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  11572. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  11573. element type for the array. Regarding the initialization of the array,
  11574. we recommend generated a \code{while} loop that uses
  11575. \code{vector-set!} to put the initializing value into every element of
  11576. the array.
  11577. \subsection{Remove Complex Operands}
  11578. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  11579. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  11580. complex and its subexpression must be atomic.
  11581. \subsection{Explicate Control}
  11582. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  11583. \code{explicate\_assign}.
  11584. \subsection{Select Instructions}
  11585. Generate instructions for \code{AllocateArray} similar to those for
  11586. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  11587. that the tag at the front of the array should instead use the
  11588. representation discussed in Section~\ref{sec:array-rep}.
  11589. Regarding \code{vectorof-length}, extract the length from the tag
  11590. according to the representation discussed in
  11591. Section~\ref{sec:array-rep}.
  11592. The instructions generated for \code{vectorof-ref} differ from those
  11593. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  11594. that the index is not a constant so the offset must be computed at
  11595. runtime, similar to the instructions generated for
  11596. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). The same is
  11597. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  11598. appear in an assignment and as a stand-alone statement, so make sure
  11599. to handle both situations in this pass.
  11600. Finally, the instructions for \code{any-vectorof-length} should be
  11601. similar to those for \code{vectorof-length}, except that one must
  11602. first project the array by writing zeroes into the $3$-bit tag
  11603. \begin{exercise}\normalfont
  11604. Implement a compiler for the \LangArray{} language by extending your
  11605. compiler for \LangLoop{}. Test your compiler on a half dozen new
  11606. programs, including the one in Figure~\ref{fig:inner-product} and also
  11607. a program that multiplies two matrices. Note that matrices are
  11608. 2-dimensional arrays, but those can be encoded into 1-dimensional
  11609. arrays by laying out each row in the array, one after the next.
  11610. \end{exercise}
  11611. \section{Challenge: Generational Collection}
  11612. The copying collector described in Section~\ref{sec:GC} can incur
  11613. significant runtime overhead because the call to \code{collect} takes
  11614. time proportional to all of the live data. One way to reduce this
  11615. overhead is to reduce how much data is inspected in each call to
  11616. \code{collect}. In particular, researchers have observed that recently
  11617. allocated data is more likely to become garbage then data that has
  11618. survived one or more previous calls to \code{collect}. This insight
  11619. motivated the creation of \emph{generational garbage collectors}
  11620. \index{subject}{generational garbage collector} that
  11621. 1) segregates data according to its age into two or more generations,
  11622. 2) allocates less space for younger generations, so collecting them is
  11623. faster, and more space for the older generations, and 3) performs
  11624. collection on the younger generations more frequently then for older
  11625. generations~\citep{Wilson:1992fk}.
  11626. For this challenge assignment, the goal is to adapt the copying
  11627. collector implemented in \code{runtime.c} to use two generations, one
  11628. for young data and one for old data. Each generation consists of a
  11629. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  11630. \code{collect} function to use the two generations.
  11631. \begin{enumerate}
  11632. \item Copy the young generation's FromSpace to its ToSpace then switch
  11633. the role of the ToSpace and FromSpace
  11634. \item If there is enough space for the requested number of bytes in
  11635. the young FromSpace, then return from \code{collect}.
  11636. \item If there is not enough space in the young FromSpace for the
  11637. requested bytes, then move the data from the young generation to the
  11638. old one with the following steps:
  11639. \begin{enumerate}
  11640. \item If there is enough room in the old FromSpace, copy the young
  11641. FromSpace to the old FromSpace and then return.
  11642. \item If there is not enough room in the old FromSpace, then collect
  11643. the old generation by copying the old FromSpace to the old ToSpace
  11644. and swap the roles of the old FromSpace and ToSpace.
  11645. \item If there is enough room now, copy the young FromSpace to the
  11646. old FromSpace and return. Otherwise, allocate a larger FromSpace
  11647. and ToSpace for the old generation. Copy the young FromSpace and
  11648. the old FromSpace into the larger FromSpace for the old
  11649. generation and then return.
  11650. \end{enumerate}
  11651. \end{enumerate}
  11652. We recommend that you generalize the \code{cheney} function so that it
  11653. can be used for all the copies mentioned above: between the young
  11654. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  11655. between the young FromSpace and old FromSpace. This can be
  11656. accomplished by adding parameters to \code{cheney} that replace its
  11657. use of the global variables \code{fromspace\_begin},
  11658. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  11659. Note that the collection of the young generation does not traverse the
  11660. old generation. This introduces a potential problem: there may be
  11661. young data that is only reachable through pointers in the old
  11662. generation. If these pointers are not taken into account, the
  11663. collector could throw away young data that is live! One solution,
  11664. called \emph{pointer recording}, is to maintain a set of all the
  11665. pointers from the old generation into the new generation and consider
  11666. this set as part of the root set. To maintain this set, the compiler
  11667. must insert extra instructions around every \code{vector-set!}. If the
  11668. vector being modified is in the old generation, and if the value being
  11669. written is a pointer into the new generation, than that pointer must
  11670. be added to the set. Also, if the value being overwritten was a
  11671. pointer into the new generation, then that pointer should be removed
  11672. from the set.
  11673. \begin{exercise}\normalfont
  11674. Adapt the \code{collect} function in \code{runtime.c} to implement
  11675. generational garbage collection, as outlined in this section.
  11676. Update the code generation for \code{vector-set!} to implement
  11677. pointer recording. Make sure that your new compiler and runtime
  11678. passes your test suite.
  11679. \end{exercise}
  11680. \fi}
  11681. % Further Reading
  11682. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11683. \chapter{Functions}
  11684. \label{ch:Rfun}
  11685. \index{subject}{function}
  11686. This chapter studies the compilation of functions similar to those
  11687. found in the C language. This corresponds to a subset of Typed Racket
  11688. in which only top-level function definitions are allowed. This kind of
  11689. function is an important stepping stone to implementing
  11690. lexically-scoped functions, that is, \key{lambda} abstractions, which
  11691. is the topic of Chapter~\ref{ch:Rlam}.
  11692. \section{The \LangFun{} Language}
  11693. The concrete and abstract syntax for function definitions and function
  11694. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  11695. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  11696. \LangFun{} begin with zero or more function definitions. The function
  11697. names from these definitions are in-scope for the entire program,
  11698. including all other function definitions (so the ordering of function
  11699. definitions does not matter).
  11700. %
  11701. \python{The abstract syntax for function parameters in
  11702. Figure~\ref{fig:Rfun-syntax} is a list of pairs, where each pair
  11703. consists of a parameter name and its type. This differs from
  11704. Python's \code{ast} module, which has a more complex syntax for
  11705. function parameters, for example, to handle keyword parameters and
  11706. defaults. The type checker in \code{type\_check\_Lfun} converts the
  11707. more commplex syntax into the simpler syntax of
  11708. Figure~\ref{fig:Rfun-syntax}.}
  11709. %
  11710. The concrete syntax for function application\index{subject}{function
  11711. application} is $(\Exp \; \Exp \ldots)$ where the first expression
  11712. must evaluate to a function and the rest are the arguments. The
  11713. abstract syntax for function application is
  11714. $\APPLY{\Exp}{\Exp\ldots}$.
  11715. %% The syntax for function application does not include an explicit
  11716. %% keyword, which is error prone when using \code{match}. To alleviate
  11717. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  11718. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  11719. Functions are first-class in the sense that a function pointer
  11720. \index{subject}{function pointer} is data and can be stored in memory or passed
  11721. as a parameter to another function. Thus, we introduce a function
  11722. type, written
  11723. \begin{lstlisting}
  11724. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  11725. \end{lstlisting}
  11726. for a function whose $n$ parameters have the types $\Type_1$ through
  11727. $\Type_n$ and whose return type is $\Type_r$. The main limitation of
  11728. these functions (with respect to Racket functions) is that they are
  11729. not lexically scoped. That is, the only external entities that can be
  11730. referenced from inside a function body are other globally-defined
  11731. functions. The syntax of \LangFun{} prevents functions from being nested
  11732. inside each other.
  11733. \newcommand{\LfunGrammarRacket}{
  11734. \begin{array}{lcl}
  11735. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  11736. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  11737. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  11738. \end{array}
  11739. }
  11740. \newcommand{\LfunASTRacket}{
  11741. \begin{array}{lcl}
  11742. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  11743. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  11744. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  11745. \end{array}
  11746. }
  11747. \newcommand{\LfunGrammarPython}{
  11748. \begin{array}{lcl}
  11749. \Type &::=& \key{Callable}\LS \LS \Type \key{, } \ldots \RS \key{, } \Type \RS \\
  11750. \Exp &::=& \Exp \LP \Exp \ldots\RP \\
  11751. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{, } \ldots}{\Type}{\Stmt^{+}}
  11752. \end{array}
  11753. }
  11754. \newcommand{\LfunASTPython}{
  11755. \begin{array}{lcl}
  11756. \Type &::=& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  11757. \Exp &::& \CALL{\Exp}{\Exp^{*}}\\
  11758. \Def &::=& \FUNDEF{\Var}{\LS \LP \Var \key{, } \Type \RP \key{, } \ldots \RS}{\Type}{}{\Stmt^{+}}
  11759. \end{array}
  11760. }
  11761. \begin{figure}[tp]
  11762. \centering
  11763. \fbox{
  11764. \begin{minipage}{0.96\textwidth}
  11765. \small
  11766. {\if\edition\racketEd
  11767. \[
  11768. \begin{array}{l}
  11769. \gray{\LintGrammarRacket{}} \\ \hline
  11770. \gray{\LvarGrammarRacket{}} \\ \hline
  11771. \gray{\LifGrammarRacket{}} \\ \hline
  11772. \gray{\LwhileGrammarRacket} \\ \hline
  11773. \gray{\LtupGrammarRacket} \\ \hline
  11774. \LfunGrammarRacket \\
  11775. \begin{array}{lcl}
  11776. \LangFunM{} &::=& \Def \ldots \; \Exp
  11777. \end{array}
  11778. \end{array}
  11779. \]
  11780. \fi}
  11781. {\if\edition\pythonEd
  11782. \[
  11783. \begin{array}{l}
  11784. \gray{\LintGrammarPython{}} \\ \hline
  11785. \gray{\LvarGrammarPython{}} \\ \hline
  11786. \gray{\LifGrammarPython{}} \\ \hline
  11787. \gray{\LwhileGrammarPython} \\ \hline
  11788. \gray{\LtupGrammarPython} \\ \hline
  11789. \LfunGrammarPython \\
  11790. \begin{array}{rcl}
  11791. \LangFunM{} &::=& \Def^{*} \Stmt^{*}
  11792. \end{array}
  11793. \end{array}
  11794. \]
  11795. \fi}
  11796. \end{minipage}
  11797. }
  11798. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-concrete-syntax}).}
  11799. \label{fig:Rfun-concrete-syntax}
  11800. \end{figure}
  11801. \begin{figure}[tp]
  11802. \centering
  11803. \fbox{
  11804. \begin{minipage}{0.96\textwidth}
  11805. \small
  11806. {\if\edition\racketEd
  11807. \[
  11808. \begin{array}{l}
  11809. \gray{\LintOpAST} \\ \hline
  11810. \gray{\LvarAST{}} \\ \hline
  11811. \gray{\LifAST{}} \\ \hline
  11812. \gray{\LwhileAST{}} \\ \hline
  11813. \gray{\LtupASTRacket{}} \\ \hline
  11814. \LfunASTRacket \\
  11815. \begin{array}{lcl}
  11816. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  11817. \end{array}
  11818. \end{array}
  11819. \]
  11820. \fi}
  11821. {\if\edition\pythonEd
  11822. \[
  11823. \begin{array}{l}
  11824. \gray{\LintASTPython{}} \\ \hline
  11825. \gray{\LvarASTPython{}} \\ \hline
  11826. \gray{\LifASTPython{}} \\ \hline
  11827. \gray{\LwhileASTPython} \\ \hline
  11828. \gray{\LtupASTPython} \\ \hline
  11829. \LfunASTPython \\
  11830. \begin{array}{rcl}
  11831. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  11832. \end{array}
  11833. \end{array}
  11834. \]
  11835. \fi}
  11836. \end{minipage}
  11837. }
  11838. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-syntax}).}
  11839. \label{fig:Rfun-syntax}
  11840. \end{figure}
  11841. The program in Figure~\ref{fig:Rfun-function-example} is a
  11842. representative example of defining and using functions in \LangFun{}. We
  11843. define a function \code{map-vec} that applies some other function
  11844. \code{f} to both elements of a vector and returns a new
  11845. vector containing the results. We also define a function \code{add1}.
  11846. The program applies
  11847. \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
  11848. \code{(vector 1 42)}, from which we return the \code{42}.
  11849. \begin{figure}[tbp]
  11850. \begin{lstlisting}
  11851. (define (map-vec [f : (Integer -> Integer)]
  11852. [v : (Vector Integer Integer)])
  11853. : (Vector Integer Integer)
  11854. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11855. (define (add1 [x : Integer]) : Integer
  11856. (+ x 1))
  11857. (vector-ref (map-vec add1 (vector 0 41)) 1)
  11858. \end{lstlisting}
  11859. \caption{Example of using functions in \LangFun{}.}
  11860. \label{fig:Rfun-function-example}
  11861. \end{figure}
  11862. The definitional interpreter for \LangFun{} is in
  11863. Figure~\ref{fig:interp-Rfun}. The case for the \code{ProgramDefsExp} form is
  11864. responsible for setting up the mutual recursion between the top-level
  11865. function definitions. We use the classic back-patching \index{subject}{back-patching}
  11866. approach that uses mutable variables and makes two passes over the function
  11867. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  11868. top-level environment using a mutable cons cell for each function
  11869. definition. Note that the \code{lambda} value for each function is
  11870. incomplete; it does not yet include the environment. Once the
  11871. top-level environment is constructed, we then iterate over it and
  11872. update the \code{lambda} values to use the top-level environment.
  11873. \begin{figure}[tp]
  11874. \begin{lstlisting}
  11875. (define interp-Rfun_class
  11876. (class interp-Lvec_class
  11877. (super-new)
  11878. (define/override ((interp-exp env) e)
  11879. (define recur (interp-exp env))
  11880. (match e
  11881. [(Var x) (unbox (dict-ref env x))]
  11882. [(Let x e body)
  11883. (define new-env (dict-set env x (box (recur e))))
  11884. ((interp-exp new-env) body)]
  11885. [(Apply fun args)
  11886. (define fun-val (recur fun))
  11887. (define arg-vals (for/list ([e args]) (recur e)))
  11888. (match fun-val
  11889. [`(function (,xs ...) ,body ,fun-env)
  11890. (define params-args (for/list ([x xs] [arg arg-vals])
  11891. (cons x (box arg))))
  11892. (define new-env (append params-args fun-env))
  11893. ((interp-exp new-env) body)]
  11894. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  11895. [else ((super interp-exp env) e)]
  11896. ))
  11897. (define/public (interp-def d)
  11898. (match d
  11899. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  11900. (cons f (box `(function ,xs ,body ())))]))
  11901. (define/override (interp-program p)
  11902. (match p
  11903. [(ProgramDefsExp info ds body)
  11904. (let ([top-level (for/list ([d ds]) (interp-def d))])
  11905. (for/list ([f (in-dict-values top-level)])
  11906. (set-box! f (match (unbox f)
  11907. [`(function ,xs ,body ())
  11908. `(function ,xs ,body ,top-level)])))
  11909. ((interp-exp top-level) body))]))
  11910. ))
  11911. (define (interp-Rfun p)
  11912. (send (new interp-Rfun_class) interp-program p))
  11913. \end{lstlisting}
  11914. \caption{Interpreter for the \LangFun{} language.}
  11915. \label{fig:interp-Rfun}
  11916. \end{figure}
  11917. %\margincomment{TODO: explain type checker}
  11918. The type checker for \LangFun{} is in Figure~\ref{fig:type-check-Rfun}.
  11919. \begin{figure}[tp]
  11920. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11921. (define type-check-Rfun_class
  11922. (class type-check-Lvec_class
  11923. (super-new)
  11924. (inherit check-type-equal?)
  11925. (define/public (type-check-apply env e es)
  11926. (define-values (e^ ty) ((type-check-exp env) e))
  11927. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  11928. ((type-check-exp env) e)))
  11929. (match ty
  11930. [`(,ty^* ... -> ,rt)
  11931. (for ([arg-ty ty*] [param-ty ty^*])
  11932. (check-type-equal? arg-ty param-ty (Apply e es)))
  11933. (values e^ e* rt)]))
  11934. (define/override (type-check-exp env)
  11935. (lambda (e)
  11936. (match e
  11937. [(FunRef f)
  11938. (values (FunRef f) (dict-ref env f))]
  11939. [(Apply e es)
  11940. (define-values (e^ es^ rt) (type-check-apply env e es))
  11941. (values (Apply e^ es^) rt)]
  11942. [(Call e es)
  11943. (define-values (e^ es^ rt) (type-check-apply env e es))
  11944. (values (Call e^ es^) rt)]
  11945. [else ((super type-check-exp env) e)])))
  11946. (define/public (type-check-def env)
  11947. (lambda (e)
  11948. (match e
  11949. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  11950. (define new-env (append (map cons xs ps) env))
  11951. (define-values (body^ ty^) ((type-check-exp new-env) body))
  11952. (check-type-equal? ty^ rt body)
  11953. (Def f p:t* rt info body^)])))
  11954. (define/public (fun-def-type d)
  11955. (match d
  11956. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  11957. (define/override (type-check-program e)
  11958. (match e
  11959. [(ProgramDefsExp info ds body)
  11960. (define new-env (for/list ([d ds])
  11961. (cons (Def-name d) (fun-def-type d))))
  11962. (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
  11963. (define-values (body^ ty) ((type-check-exp new-env) body))
  11964. (check-type-equal? ty 'Integer body)
  11965. (ProgramDefsExp info ds^ body^)]))))
  11966. (define (type-check-Rfun p)
  11967. (send (new type-check-Rfun_class) type-check-program p))
  11968. \end{lstlisting}
  11969. \caption{Type checker for the \LangFun{} language.}
  11970. \label{fig:type-check-Rfun}
  11971. \end{figure}
  11972. \section{Functions in x86}
  11973. \label{sec:fun-x86}
  11974. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  11975. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  11976. %% \margincomment{\tiny Talk about the return address on the
  11977. %% stack and what callq and retq does.\\ --Jeremy }
  11978. The x86 architecture provides a few features to support the
  11979. implementation of functions. We have already seen that x86 provides
  11980. labels so that one can refer to the location of an instruction, as is
  11981. needed for jump instructions. Labels can also be used to mark the
  11982. beginning of the instructions for a function. Going further, we can
  11983. obtain the address of a label by using the \key{leaq} instruction and
  11984. PC-relative addressing. For example, the following puts the
  11985. address of the \code{add1} label into the \code{rbx} register.
  11986. \begin{lstlisting}
  11987. leaq add1(%rip), %rbx
  11988. \end{lstlisting}
  11989. The instruction pointer register \key{rip} (aka. the program counter
  11990. \index{subject}{program counter}) always points to the next instruction to be
  11991. executed. When combined with an label, as in \code{add1(\%rip)}, the
  11992. linker computes the distance $d$ between the address of \code{add1}
  11993. and where the \code{rip} would be at that moment and then changes
  11994. \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
  11995. the address of \code{add1}.
  11996. In Section~\ref{sec:x86} we used the \code{callq} instruction to jump
  11997. to functions whose locations were given by a label, such as
  11998. \code{read\_int}. To support function calls in this chapter we instead
  11999. will be jumping to functions whose location are given by an address in
  12000. a register, that is, we need to make an \emph{indirect function
  12001. call}. The x86 syntax for this is a \code{callq} instruction but with
  12002. an asterisk before the register name.\index{subject}{indirect function
  12003. call}
  12004. \begin{lstlisting}
  12005. callq *%rbx
  12006. \end{lstlisting}
  12007. \subsection{Calling Conventions}
  12008. \index{subject}{calling conventions}
  12009. The \code{callq} instruction provides partial support for implementing
  12010. functions: it pushes the return address on the stack and it jumps to
  12011. the target. However, \code{callq} does not handle
  12012. \begin{enumerate}
  12013. \item parameter passing,
  12014. \item pushing frames on the procedure call stack and popping them off,
  12015. or
  12016. \item determining how registers are shared by different functions.
  12017. \end{enumerate}
  12018. Regarding (1) parameter passing, recall that the following six
  12019. registers are used to pass arguments to a function, in this order.
  12020. \begin{lstlisting}
  12021. rdi rsi rdx rcx r8 r9
  12022. \end{lstlisting}
  12023. If there are
  12024. more than six arguments, then the convention is to use space on the
  12025. frame of the caller for the rest of the arguments. However, to ease
  12026. the implementation of efficient tail calls
  12027. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  12028. arguments.
  12029. %
  12030. Also recall that the register \code{rax} is for the return value of
  12031. the function.
  12032. \index{subject}{prelude}\index{subject}{conclusion}
  12033. Regarding (2) frames \index{subject}{frame} and the procedure call
  12034. stack, \index{subject}{procedure call stack} recall from
  12035. Section~\ref{sec:x86} that the stack grows down and each function call
  12036. uses a chunk of space on the stack called a frame. The caller sets the
  12037. stack pointer, register \code{rsp}, to the last data item in its
  12038. frame. The callee must not change anything in the caller's frame, that
  12039. is, anything that is at or above the stack pointer. The callee is free
  12040. to use locations that are below the stack pointer.
  12041. Recall that we are storing variables of tuple type on the root stack.
  12042. So the prelude needs to move the root stack pointer \code{r15} up and
  12043. the conclusion needs to move the root stack pointer back down. Also,
  12044. the prelude must initialize to \code{0} this frame's slots in the root
  12045. stack to signal to the garbage collector that those slots do not yet
  12046. contain a pointer to a vector. Otherwise the garbage collector will
  12047. interpret the garbage bits in those slots as memory addresses and try
  12048. to traverse them, causing serious mayhem!
  12049. Regarding (3) the sharing of registers between different functions,
  12050. recall from Section~\ref{sec:calling-conventions} that the registers
  12051. are divided into two groups, the caller-saved registers and the
  12052. callee-saved registers. The caller should assume that all the
  12053. caller-saved registers get overwritten with arbitrary values by the
  12054. callee. That is why we recommend in
  12055. Section~\ref{sec:calling-conventions} that variables that are live
  12056. during a function call should not be assigned to caller-saved
  12057. registers.
  12058. On the flip side, if the callee wants to use a callee-saved register,
  12059. the callee must save the contents of those registers on their stack
  12060. frame and then put them back prior to returning to the caller. That
  12061. is why we recommended in Section~\ref{sec:calling-conventions} that if
  12062. the register allocator assigns a variable to a callee-saved register,
  12063. then the prelude of the \code{main} function must save that register
  12064. to the stack and the conclusion of \code{main} must restore it. This
  12065. recommendation now generalizes to all functions.
  12066. Recall that the base pointer, register \code{rbp}, is used as a
  12067. point-of-reference within a frame, so that each local variable can be
  12068. accessed at a fixed offset from the base pointer
  12069. (Section~\ref{sec:x86}).
  12070. %
  12071. Figure~\ref{fig:call-frames} shows the general layout of the caller
  12072. and callee frames.
  12073. \begin{figure}[tbp]
  12074. \centering
  12075. \begin{tabular}{r|r|l|l} \hline
  12076. Caller View & Callee View & Contents & Frame \\ \hline
  12077. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  12078. 0(\key{\%rbp}) & & old \key{rbp} \\
  12079. -8(\key{\%rbp}) & & callee-saved $1$ \\
  12080. \ldots & & \ldots \\
  12081. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  12082. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  12083. \ldots & & \ldots \\
  12084. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  12085. %% & & \\
  12086. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  12087. %% & \ldots & \ldots \\
  12088. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  12089. \hline
  12090. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  12091. & 0(\key{\%rbp}) & old \key{rbp} \\
  12092. & -8(\key{\%rbp}) & callee-saved $1$ \\
  12093. & \ldots & \ldots \\
  12094. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  12095. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  12096. & \ldots & \ldots \\
  12097. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  12098. \end{tabular}
  12099. \caption{Memory layout of caller and callee frames.}
  12100. \label{fig:call-frames}
  12101. \end{figure}
  12102. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  12103. %% local variables and for storing the values of callee-saved registers
  12104. %% (we shall refer to all of these collectively as ``locals''), and that
  12105. %% at the beginning of a function we move the stack pointer \code{rsp}
  12106. %% down to make room for them.
  12107. %% We recommend storing the local variables
  12108. %% first and then the callee-saved registers, so that the local variables
  12109. %% can be accessed using \code{rbp} the same as before the addition of
  12110. %% functions.
  12111. %% To make additional room for passing arguments, we shall
  12112. %% move the stack pointer even further down. We count how many stack
  12113. %% arguments are needed for each function call that occurs inside the
  12114. %% body of the function and find their maximum. Adding this number to the
  12115. %% number of locals gives us how much the \code{rsp} should be moved at
  12116. %% the beginning of the function. In preparation for a function call, we
  12117. %% offset from \code{rsp} to set up the stack arguments. We put the first
  12118. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  12119. %% so on.
  12120. %% Upon calling the function, the stack arguments are retrieved by the
  12121. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  12122. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  12123. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  12124. %% the layout of the caller and callee frames. Notice how important it is
  12125. %% that we correctly compute the maximum number of arguments needed for
  12126. %% function calls; if that number is too small then the arguments and
  12127. %% local variables will smash into each other!
  12128. \subsection{Efficient Tail Calls}
  12129. \label{sec:tail-call}
  12130. In general, the amount of stack space used by a program is determined
  12131. by the longest chain of nested function calls. That is, if function
  12132. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
  12133. $f_n$, then the amount of stack space is linear in $n$. The depth $n$
  12134. can grow quite large in the case of recursive or mutually recursive
  12135. functions. However, in some cases we can arrange to use only a
  12136. constant amount of space for a long chain of nested function calls.
  12137. If a function call is the last action in a function body, then that
  12138. call is said to be a \emph{tail call}\index{subject}{tail call}.
  12139. For example, in the following
  12140. program, the recursive call to \code{tail\_sum} is a tail call.
  12141. \begin{center}
  12142. \begin{lstlisting}
  12143. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  12144. (if (eq? n 0)
  12145. r
  12146. (tail_sum (- n 1) (+ n r))))
  12147. (+ (tail_sum 5 0) 27)
  12148. \end{lstlisting}
  12149. \end{center}
  12150. At a tail call, the frame of the caller is no longer needed, so we can
  12151. pop the caller's frame before making the tail call. With this
  12152. approach, a recursive function that only makes tail calls will only
  12153. use a constant amount of stack space. Functional languages like
  12154. Racket typically rely heavily on recursive functions, so they
  12155. typically guarantee that all tail calls will be optimized in this way.
  12156. \index{subject}{frame}
  12157. Some care is needed with regards to argument passing in tail calls.
  12158. As mentioned above, for arguments beyond the sixth, the convention is
  12159. to use space in the caller's frame for passing arguments. But for a
  12160. tail call we pop the caller's frame and can no longer use it. An
  12161. alternative is to use space in the callee's frame for passing
  12162. arguments. However, this option is also problematic because the caller
  12163. and callee's frames overlap in memory. As we begin to copy the
  12164. arguments from their sources in the caller's frame, the target
  12165. locations in the callee's frame might collide with the sources for
  12166. later arguments! We solve this problem by using the heap instead of
  12167. the stack for passing more than six arguments, which we describe in
  12168. the Section~\ref{sec:limit-functions-r4}.
  12169. As mentioned above, for a tail call we pop the caller's frame prior to
  12170. making the tail call. The instructions for popping a frame are the
  12171. instructions that we usually place in the conclusion of a
  12172. function. Thus, we also need to place such code immediately before
  12173. each tail call. These instructions include restoring the callee-saved
  12174. registers, so it is fortunate that the argument passing registers are
  12175. all caller-saved registers!
  12176. One last note regarding which instruction to use to make the tail
  12177. call. When the callee is finished, it should not return to the current
  12178. function, but it should return to the function that called the current
  12179. one. Thus, the return address that is already on the stack is the
  12180. right one, and we should not use \key{callq} to make the tail call, as
  12181. that would unnecessarily overwrite the return address. Instead we can
  12182. simply use the \key{jmp} instruction. Like the indirect function call,
  12183. we write an \emph{indirect jump}\index{subject}{indirect jump} with a
  12184. register prefixed with an asterisk. We recommend using \code{rax} to
  12185. hold the jump target because the preceding conclusion can overwrite
  12186. just about everything else.
  12187. \begin{lstlisting}
  12188. jmp *%rax
  12189. \end{lstlisting}
  12190. \section{Shrink \LangFun{}}
  12191. \label{sec:shrink-r4}
  12192. The \code{shrink} pass performs a minor modification to ease the
  12193. later passes. This pass introduces an explicit \code{main} function
  12194. and changes the top \code{ProgramDefsExp} form to
  12195. \code{ProgramDefs} as follows.
  12196. \begin{lstlisting}
  12197. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  12198. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  12199. \end{lstlisting}
  12200. where $\itm{mainDef}$ is
  12201. \begin{lstlisting}
  12202. (Def 'main '() 'Integer '() |$\Exp'$|)
  12203. \end{lstlisting}
  12204. \section{Reveal Functions and the \LangFunRef{} language}
  12205. \label{sec:reveal-functions-r4}
  12206. The syntax of \LangFun{} is inconvenient for purposes of compilation in one
  12207. respect: it conflates the use of function names and local
  12208. variables. This is a problem because we need to compile the use of a
  12209. function name differently than the use of a local variable; we need to
  12210. use \code{leaq} to convert the function name (a label in x86) to an
  12211. address in a register. Thus, it is a good idea to create a new pass
  12212. that changes function references from just a symbol $f$ to
  12213. $\FUNREF{f}$. This pass is named \code{reveal\_functions} and the
  12214. output language, \LangFunRef{}, is defined in Figure~\ref{fig:f1-syntax}.
  12215. The concrete syntax for a function reference is $\CFUNREF{f}$.
  12216. \begin{figure}[tp]
  12217. \centering
  12218. \fbox{
  12219. \begin{minipage}{0.96\textwidth}
  12220. \[
  12221. \begin{array}{lcl}
  12222. \Exp &::=& \ldots \MID \FUNREF{\Var}\\
  12223. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12224. \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  12225. \end{array}
  12226. \]
  12227. \end{minipage}
  12228. }
  12229. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  12230. (Figure~\ref{fig:Rfun-syntax}).}
  12231. \label{fig:f1-syntax}
  12232. \end{figure}
  12233. %% Distinguishing between calls in tail position and non-tail position
  12234. %% requires the pass to have some notion of context. We recommend using
  12235. %% two mutually recursive functions, one for processing expressions in
  12236. %% tail position and another for the rest.
  12237. Placing this pass after \code{uniquify} will make sure that there are
  12238. no local variables and functions that share the same name. On the
  12239. other hand, \code{reveal\_functions} needs to come before the
  12240. \code{remove\_complex\_operands} pass because function references
  12241. should be categorized as complex expressions.
  12242. \section{Limit Functions}
  12243. \label{sec:limit-functions-r4}
  12244. Recall that we wish to limit the number of function parameters to six
  12245. so that we do not need to use the stack for argument passing, which
  12246. makes it easier to implement efficient tail calls. However, because
  12247. the input language \LangFun{} supports arbitrary numbers of function
  12248. arguments, we have some work to do!
  12249. This pass transforms functions and function calls that involve more
  12250. than six arguments to pass the first five arguments as usual, but it
  12251. packs the rest of the arguments into a vector and passes it as the
  12252. sixth argument.
  12253. Each function definition with too many parameters is transformed as
  12254. follows.
  12255. \begin{lstlisting}
  12256. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  12257. |$\Rightarrow$|
  12258. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  12259. \end{lstlisting}
  12260. where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
  12261. the occurrences of the later parameters with vector references.
  12262. \begin{lstlisting}
  12263. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
  12264. \end{lstlisting}
  12265. For function calls with too many arguments, the \code{limit-functions}
  12266. pass transforms them in the following way.
  12267. \begin{tabular}{lll}
  12268. \begin{minipage}{0.2\textwidth}
  12269. \begin{lstlisting}
  12270. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  12271. \end{lstlisting}
  12272. \end{minipage}
  12273. &
  12274. $\Rightarrow$
  12275. &
  12276. \begin{minipage}{0.4\textwidth}
  12277. \begin{lstlisting}
  12278. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  12279. \end{lstlisting}
  12280. \end{minipage}
  12281. \end{tabular}
  12282. \section{Remove Complex Operands}
  12283. \label{sec:rco-r4}
  12284. The primary decisions to make for this pass is whether to classify
  12285. \code{FunRef} and \code{Apply} as either atomic or complex
  12286. expressions. Recall that a simple expression will eventually end up as
  12287. just an immediate argument of an x86 instruction. Function
  12288. application will be translated to a sequence of instructions, so
  12289. \code{Apply} must be classified as complex expression.
  12290. On the other hand, the arguments of \code{Apply} should be
  12291. atomic expressions.
  12292. %
  12293. Regarding \code{FunRef}, as discussed above, the function label needs
  12294. to be converted to an address using the \code{leaq} instruction. Thus,
  12295. even though \code{FunRef} seems rather simple, it needs to be
  12296. classified as a complex expression so that we generate an assignment
  12297. statement with a left-hand side that can serve as the target of the
  12298. \code{leaq}. Figure~\ref{fig:Rfun-anf-syntax} defines the
  12299. output language \LangFunANF{} of this pass.
  12300. \begin{figure}[tp]
  12301. \centering
  12302. \fbox{
  12303. \begin{minipage}{0.96\textwidth}
  12304. \small
  12305. \[
  12306. \begin{array}{rcl}
  12307. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  12308. \MID \VOID{} } \\
  12309. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  12310. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  12311. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  12312. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  12313. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  12314. &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  12315. \MID \LP\key{GlobalValue}~\Var\RP }\\
  12316. &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  12317. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12318. R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  12319. \end{array}
  12320. \]
  12321. \end{minipage}
  12322. }
  12323. \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  12324. \label{fig:Rfun-anf-syntax}
  12325. \end{figure}
  12326. \section{Explicate Control and the \LangCFun{} language}
  12327. \label{sec:explicate-control-r4}
  12328. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  12329. output of \code{explicate\_control}. (The concrete syntax is given in
  12330. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
  12331. functions for assignment and tail contexts should be updated with
  12332. cases for \code{Apply} and \code{FunRef} and the function for
  12333. predicate context should be updated for \code{Apply} but not
  12334. \code{FunRef}. (A \code{FunRef} can't be a Boolean.) In assignment
  12335. and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
  12336. tail position \code{Apply} becomes \code{TailCall}. We recommend
  12337. defining a new auxiliary function for processing function definitions.
  12338. This code is similar to the case for \code{Program} in \LangVec{}. The
  12339. top-level \code{explicate\_control} function that handles the
  12340. \code{ProgramDefs} form of \LangFun{} can then apply this new function to
  12341. all the function definitions.
  12342. \begin{figure}[tp]
  12343. \fbox{
  12344. \begin{minipage}{0.96\textwidth}
  12345. \small
  12346. \[
  12347. \begin{array}{lcl}
  12348. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  12349. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  12350. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  12351. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  12352. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  12353. &\MID& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  12354. &\MID& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  12355. &\MID& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  12356. &\MID& \gray{ \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP }\\
  12357. &\MID& \FUNREF{\itm{label}} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  12358. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  12359. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  12360. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  12361. \MID \GOTO{\itm{label}} } \\
  12362. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  12363. &\MID& \TAILCALL{\Atm}{\Atm\ldots} \\
  12364. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  12365. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  12366. \end{array}
  12367. \]
  12368. \end{minipage}
  12369. }
  12370. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  12371. \label{fig:c3-syntax}
  12372. \end{figure}
  12373. \section{Select Instructions and the \LangXIndCall{} Language}
  12374. \label{sec:select-r4}
  12375. \index{subject}{instruction selection}
  12376. The output of select instructions is a program in the \LangXIndCall{}
  12377. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  12378. \index{subject}{x86}
  12379. \begin{figure}[tp]
  12380. \fbox{
  12381. \begin{minipage}{0.96\textwidth}
  12382. \small
  12383. \[
  12384. \begin{array}{lcl}
  12385. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)}
  12386. \MID \LP\key{fun-ref}\; \itm{label}\RP\\
  12387. \itm{cc} & ::= & \gray{ \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} } \\
  12388. \Instr &::=& \ldots
  12389. \MID \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  12390. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  12391. \Block &::= & \Instr\ldots \\
  12392. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  12393. \LangXIndCallM{} &::= & \Def\ldots
  12394. \end{array}
  12395. \]
  12396. \end{minipage}
  12397. }
  12398. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  12399. \label{fig:x86-3-concrete}
  12400. \end{figure}
  12401. \begin{figure}[tp]
  12402. \fbox{
  12403. \begin{minipage}{0.96\textwidth}
  12404. \small
  12405. \[
  12406. \begin{array}{lcl}
  12407. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  12408. \MID \BYTEREG{\Reg} } \\
  12409. &\MID& \gray{ (\key{Global}~\Var) } \MID \FUNREF{\itm{label}} \\
  12410. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  12411. \MID \TAILJMP{\Arg}{\itm{int}}\\
  12412. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  12413. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  12414. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  12415. \LangXIndCallM{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  12416. \end{array}
  12417. \]
  12418. \end{minipage}
  12419. }
  12420. \caption{The abstract syntax of \LangXIndCall{} (extends
  12421. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  12422. \label{fig:x86-3}
  12423. \end{figure}
  12424. An assignment of a function reference to a variable becomes a
  12425. load-effective-address instruction as follows, where $\itm{lhs}'$
  12426. is the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{}
  12427. to \Arg{} in \LangXIndCallVar{}. \\
  12428. \begin{tabular}{lcl}
  12429. \begin{minipage}{0.35\textwidth}
  12430. \begin{lstlisting}
  12431. |$\itm{lhs}$| = (fun-ref |$f$|);
  12432. \end{lstlisting}
  12433. \end{minipage}
  12434. &
  12435. $\Rightarrow$\qquad\qquad
  12436. &
  12437. \begin{minipage}{0.3\textwidth}
  12438. \begin{lstlisting}
  12439. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  12440. \end{lstlisting}
  12441. \end{minipage}
  12442. \end{tabular} \\
  12443. Regarding function definitions, we need to remove the parameters and
  12444. instead perform parameter passing using the conventions discussed in
  12445. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  12446. registers. We recommend turning the parameters into local variables
  12447. and generating instructions at the beginning of the function to move
  12448. from the argument passing registers to these local variables.
  12449. \begin{lstlisting}
  12450. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
  12451. |$\Rightarrow$|
  12452. (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
  12453. \end{lstlisting}
  12454. The $G'$ control-flow graph is the same as $G$ except that the
  12455. \code{start} block is modified to add the instructions for moving from
  12456. the argument registers to the parameter variables. So the \code{start}
  12457. block of $G$ shown on the left is changed to the code on the right.
  12458. \begin{center}
  12459. \begin{minipage}{0.3\textwidth}
  12460. \begin{lstlisting}
  12461. start:
  12462. |$\itm{instr}_1$|
  12463. |$\vdots$|
  12464. |$\itm{instr}_n$|
  12465. \end{lstlisting}
  12466. \end{minipage}
  12467. $\Rightarrow$
  12468. \begin{minipage}{0.3\textwidth}
  12469. \begin{lstlisting}
  12470. start:
  12471. movq %rdi, |$x_1$|
  12472. movq %rsi, |$x_2$|
  12473. |$\vdots$|
  12474. |$\itm{instr}_1$|
  12475. |$\vdots$|
  12476. |$\itm{instr}_n$|
  12477. \end{lstlisting}
  12478. \end{minipage}
  12479. \end{center}
  12480. By changing the parameters to local variables, we are giving the
  12481. register allocator control over which registers or stack locations to
  12482. use for them. If you implemented the move-biasing challenge
  12483. (Section~\ref{sec:move-biasing}), the register allocator will try to
  12484. assign the parameter variables to the corresponding argument register,
  12485. in which case the \code{patch\_instructions} pass will remove the
  12486. \code{movq} instruction. This happens in the example translation in
  12487. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  12488. the \code{add} function.
  12489. %
  12490. Also, note that the register allocator will perform liveness analysis
  12491. on this sequence of move instructions and build the interference
  12492. graph. So, for example, $x_1$ will be marked as interfering with
  12493. \code{rsi} and that will prevent the assignment of $x_1$ to
  12494. \code{rsi}, which is good, because that would overwrite the argument
  12495. that needs to move into $x_2$.
  12496. Next, consider the compilation of function calls. In the mirror image
  12497. of handling the parameters of function definitions, the arguments need
  12498. to be moved to the argument passing registers. The function call
  12499. itself is performed with an indirect function call. The return value
  12500. from the function is stored in \code{rax}, so it needs to be moved
  12501. into the \itm{lhs}.
  12502. \begin{lstlisting}
  12503. |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
  12504. |$\Rightarrow$|
  12505. movq |$\itm{arg}_1$|, %rdi
  12506. movq |$\itm{arg}_2$|, %rsi
  12507. |$\vdots$|
  12508. callq *|\itm{fun}|
  12509. movq %rax, |\itm{lhs}|
  12510. \end{lstlisting}
  12511. The \code{IndirectCallq} AST node includes an integer for the arity of
  12512. the function, i.e., the number of parameters. That information is
  12513. useful in the \code{uncover-live} pass for determining which
  12514. argument-passing registers are potentially read during the call.
  12515. For tail calls, the parameter passing is the same as non-tail calls:
  12516. generate instructions to move the arguments into to the argument
  12517. passing registers. After that we need to pop the frame from the
  12518. procedure call stack. However, we do not yet know how big the frame
  12519. is; that gets determined during register allocation. So instead of
  12520. generating those instructions here, we invent a new instruction that
  12521. means ``pop the frame and then do an indirect jump'', which we name
  12522. \code{TailJmp}. The abstract syntax for this instruction includes an
  12523. argument that specifies where to jump and an integer that represents
  12524. the arity of the function being called.
  12525. Recall that in Section~\ref{sec:explicate-control-Lvar} we recommended
  12526. using the label \code{start} for the initial block of a program, and
  12527. in Section~\ref{sec:select-Lvar} we recommended labeling the conclusion
  12528. of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
  12529. can be compiled to an assignment to \code{rax} followed by a jump to
  12530. \code{conclusion}. With the addition of function definitions, we will
  12531. have a starting block and conclusion for each function, but their
  12532. labels need to be unique. We recommend prepending the function's name
  12533. to \code{start} and \code{conclusion}, respectively, to obtain unique
  12534. labels. (Alternatively, one could \code{gensym} labels for the start
  12535. and conclusion and store them in the $\itm{info}$ field of the
  12536. function definition.)
  12537. \section{Register Allocation}
  12538. \label{sec:register-allocation-r4}
  12539. \subsection{Liveness Analysis}
  12540. \label{sec:liveness-analysis-r4}
  12541. \index{subject}{liveness analysis}
  12542. %% The rest of the passes need only minor modifications to handle the new
  12543. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  12544. %% \code{leaq}.
  12545. The \code{IndirectCallq} instruction should be treated like
  12546. \code{Callq} regarding its written locations $W$, in that they should
  12547. include all the caller-saved registers. Recall that the reason for
  12548. that is to force call-live variables to be assigned to callee-saved
  12549. registers or to be spilled to the stack.
  12550. Regarding the set of read locations $R$ the arity field of
  12551. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  12552. argument-passing registers should be considered as read by those
  12553. instructions.
  12554. \subsection{Build Interference Graph}
  12555. \label{sec:build-interference-r4}
  12556. With the addition of function definitions, we compute an interference
  12557. graph for each function (not just one for the whole program).
  12558. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  12559. spill vector-typed variables that are live during a call to the
  12560. \code{collect}. With the addition of functions to our language, we
  12561. need to revisit this issue. Many functions perform allocation and
  12562. therefore have calls to the collector inside of them. Thus, we should
  12563. not only spill a vector-typed variable when it is live during a call
  12564. to \code{collect}, but we should spill the variable if it is live
  12565. during any function call. Thus, in the \code{build\_interference} pass,
  12566. we recommend adding interference edges between call-live vector-typed
  12567. variables and the callee-saved registers (in addition to the usual
  12568. addition of edges between call-live variables and the caller-saved
  12569. registers).
  12570. \subsection{Allocate Registers}
  12571. The primary change to the \code{allocate\_registers} pass is adding an
  12572. auxiliary function for handling definitions (the \Def{} non-terminal
  12573. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  12574. logic is the same as described in
  12575. Chapter~\ref{ch:register-allocation-Lvar}, except now register
  12576. allocation is performed many times, once for each function definition,
  12577. instead of just once for the whole program.
  12578. \section{Patch Instructions}
  12579. In \code{patch\_instructions}, you should deal with the x86
  12580. idiosyncrasy that the destination argument of \code{leaq} must be a
  12581. register. Additionally, you should ensure that the argument of
  12582. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  12583. code generation more convenient, because we trample many registers
  12584. before the tail call (as explained in the next section).
  12585. \section{Print x86}
  12586. For the \code{print\_x86} pass, the cases for \code{FunRef} and
  12587. \code{IndirectCallq} are straightforward: output their concrete
  12588. syntax.
  12589. \begin{lstlisting}
  12590. (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  12591. (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  12592. \end{lstlisting}
  12593. The \code{TailJmp} node requires a bit work. A straightforward
  12594. translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
  12595. before the jump we need to pop the current frame. This sequence of
  12596. instructions is the same as the code for the conclusion of a function,
  12597. except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  12598. Regarding function definitions, you will need to generate a prelude
  12599. and conclusion for each one. This code is similar to the prelude and
  12600. conclusion that you generated for the \code{main} function in
  12601. Chapter~\ref{ch:Lvec}. To review, the prelude of every function
  12602. should carry out the following steps.
  12603. \begin{enumerate}
  12604. \item Start with \code{.global} and \code{.align} directives followed
  12605. by the label for the function. (See Figure~\ref{fig:add-fun} for an
  12606. example.)
  12607. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  12608. pointer.
  12609. \item Push to the stack all of the callee-saved registers that were
  12610. used for register allocation.
  12611. \item Move the stack pointer \code{rsp} down by the size of the stack
  12612. frame for this function, which depends on the number of regular
  12613. spills. (Aligned to 16 bytes.)
  12614. \item Move the root stack pointer \code{r15} up by the size of the
  12615. root-stack frame for this function, which depends on the number of
  12616. spilled vectors. \label{root-stack-init}
  12617. \item Initialize to zero all of the entries in the root-stack frame.
  12618. \item Jump to the start block.
  12619. \end{enumerate}
  12620. The prelude of the \code{main} function has one additional task: call
  12621. the \code{initialize} function to set up the garbage collector and
  12622. move the value of the global \code{rootstack\_begin} in
  12623. \code{r15}. This should happen before step \ref{root-stack-init}
  12624. above, which depends on \code{r15}.
  12625. The conclusion of every function should do the following.
  12626. \begin{enumerate}
  12627. \item Move the stack pointer back up by the size of the stack frame
  12628. for this function.
  12629. \item Restore the callee-saved registers by popping them from the
  12630. stack.
  12631. \item Move the root stack pointer back down by the size of the
  12632. root-stack frame for this function.
  12633. \item Restore \code{rbp} by popping it from the stack.
  12634. \item Return to the caller with the \code{retq} instruction.
  12635. \end{enumerate}
  12636. \begin{exercise}\normalfont
  12637. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  12638. Create 5 new programs that use functions, including examples that pass
  12639. functions and return functions from other functions, recursive
  12640. functions, functions that create vectors, and functions that make tail
  12641. calls. Test your compiler on these new programs and all of your
  12642. previously created test programs.
  12643. \end{exercise}
  12644. \begin{figure}[tbp]
  12645. \begin{tikzpicture}[baseline=(current bounding box.center)]
  12646. \node (Rfun) at (0,2) {\large \LangFun{}};
  12647. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  12648. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  12649. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  12650. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  12651. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  12652. \node (F1-4) at (3,0) {\large \LangFunANF{}};
  12653. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  12654. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  12655. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  12656. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  12657. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  12658. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  12659. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  12660. \path[->,bend left=15] (Rfun) edge [above] node
  12661. {\ttfamily\footnotesize shrink} (Rfun-1);
  12662. \path[->,bend left=15] (Rfun-1) edge [above] node
  12663. {\ttfamily\footnotesize uniquify} (Rfun-2);
  12664. \path[->,bend left=15] (Rfun-2) edge [right] node
  12665. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  12666. \path[->,bend left=15] (F1-1) edge [below] node
  12667. {\ttfamily\footnotesize limit\_functions} (F1-2);
  12668. \path[->,bend right=15] (F1-2) edge [above] node
  12669. {\ttfamily\footnotesize expose\_alloc.} (F1-3);
  12670. \path[->,bend right=15] (F1-3) edge [above] node
  12671. {\ttfamily\footnotesize remove\_complex.} (F1-4);
  12672. \path[->,bend left=15] (F1-4) edge [right] node
  12673. {\ttfamily\footnotesize explicate\_control} (C3-2);
  12674. \path[->,bend right=15] (C3-2) edge [left] node
  12675. {\ttfamily\footnotesize select\_instr.} (x86-2);
  12676. \path[->,bend left=15] (x86-2) edge [left] node
  12677. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  12678. \path[->,bend right=15] (x86-2-1) edge [below] node
  12679. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  12680. \path[->,bend right=15] (x86-2-2) edge [left] node
  12681. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  12682. \path[->,bend left=15] (x86-3) edge [above] node
  12683. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  12684. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  12685. \end{tikzpicture}
  12686. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  12687. \label{fig:Rfun-passes}
  12688. \end{figure}
  12689. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  12690. compiling \LangFun{} to x86.
  12691. \section{An Example Translation}
  12692. \label{sec:functions-example}
  12693. Figure~\ref{fig:add-fun} shows an example translation of a simple
  12694. function in \LangFun{} to x86. The figure also includes the results of the
  12695. \code{explicate\_control} and \code{select\_instructions} passes.
  12696. \begin{figure}[htbp]
  12697. \begin{tabular}{ll}
  12698. \begin{minipage}{0.5\textwidth}
  12699. % s3_2.rkt
  12700. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12701. (define (add [x : Integer] [y : Integer])
  12702. : Integer
  12703. (+ x y))
  12704. (add 40 2)
  12705. \end{lstlisting}
  12706. $\Downarrow$
  12707. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12708. (define (add86 [x87 : Integer]
  12709. [y88 : Integer]) : Integer
  12710. add86start:
  12711. return (+ x87 y88);
  12712. )
  12713. (define (main) : Integer ()
  12714. mainstart:
  12715. tmp89 = (fun-ref add86);
  12716. (tail-call tmp89 40 2)
  12717. )
  12718. \end{lstlisting}
  12719. \end{minipage}
  12720. &
  12721. $\Rightarrow$
  12722. \begin{minipage}{0.5\textwidth}
  12723. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12724. (define (add86) : Integer
  12725. add86start:
  12726. movq %rdi, x87
  12727. movq %rsi, y88
  12728. movq x87, %rax
  12729. addq y88, %rax
  12730. jmp add11389conclusion
  12731. )
  12732. (define (main) : Integer
  12733. mainstart:
  12734. leaq (fun-ref add86), tmp89
  12735. movq $40, %rdi
  12736. movq $2, %rsi
  12737. tail-jmp tmp89
  12738. )
  12739. \end{lstlisting}
  12740. $\Downarrow$
  12741. \end{minipage}
  12742. \end{tabular}
  12743. \begin{tabular}{ll}
  12744. \begin{minipage}{0.3\textwidth}
  12745. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12746. .globl add86
  12747. .align 16
  12748. add86:
  12749. pushq %rbp
  12750. movq %rsp, %rbp
  12751. jmp add86start
  12752. add86start:
  12753. movq %rdi, %rax
  12754. addq %rsi, %rax
  12755. jmp add86conclusion
  12756. add86conclusion:
  12757. popq %rbp
  12758. retq
  12759. \end{lstlisting}
  12760. \end{minipage}
  12761. &
  12762. \begin{minipage}{0.5\textwidth}
  12763. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12764. .globl main
  12765. .align 16
  12766. main:
  12767. pushq %rbp
  12768. movq %rsp, %rbp
  12769. movq $16384, %rdi
  12770. movq $16384, %rsi
  12771. callq initialize
  12772. movq rootstack_begin(%rip), %r15
  12773. jmp mainstart
  12774. mainstart:
  12775. leaq add86(%rip), %rcx
  12776. movq $40, %rdi
  12777. movq $2, %rsi
  12778. movq %rcx, %rax
  12779. popq %rbp
  12780. jmp *%rax
  12781. mainconclusion:
  12782. popq %rbp
  12783. retq
  12784. \end{lstlisting}
  12785. \end{minipage}
  12786. \end{tabular}
  12787. \caption{Example compilation of a simple function to x86.}
  12788. \label{fig:add-fun}
  12789. \end{figure}
  12790. % Challenge idea: inlining! (simple version)
  12791. % Further Reading
  12792. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12793. \chapter{Lexically Scoped Functions}
  12794. \label{ch:Rlam}
  12795. \index{subject}{lambda}
  12796. \index{subject}{lexical scoping}
  12797. \if\edition\racketEd
  12798. This chapter studies lexically scoped functions as they appear in
  12799. functional languages such as Racket. By lexical scoping we mean that a
  12800. function's body may refer to variables whose binding site is outside
  12801. of the function, in an enclosing scope.
  12802. %
  12803. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  12804. \LangLam{}, which extends \LangFun{} with anonymous functions using the
  12805. \key{lambda} form. The body of the \key{lambda}, refers to three
  12806. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  12807. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  12808. \code{y} is bound by the enclosing \key{let} and \code{x} is a
  12809. parameter of function \code{f}. The \key{lambda} is returned from the
  12810. function \code{f}. The main expression of the program includes two
  12811. calls to \code{f} with different arguments for \code{x}, first
  12812. \code{5} then \code{3}. The functions returned from \code{f} are bound
  12813. to variables \code{g} and \code{h}. Even though these two functions
  12814. were created by the same \code{lambda}, they are really different
  12815. functions because they use different values for \code{x}. Applying
  12816. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  12817. \code{15} produces \code{22}. The result of this program is \code{42}.
  12818. \begin{figure}[btp]
  12819. % s4_6.rkt
  12820. \begin{lstlisting}
  12821. (define (f [x : Integer]) : (Integer -> Integer)
  12822. (let ([y 4])
  12823. (lambda: ([z : Integer]) : Integer
  12824. (+ x (+ y z)))))
  12825. (let ([g (f 5)])
  12826. (let ([h (f 3)])
  12827. (+ (g 11) (h 15))))
  12828. \end{lstlisting}
  12829. \caption{Example of a lexically scoped function.}
  12830. \label{fig:lexical-scoping}
  12831. \end{figure}
  12832. The approach that we take for implementing lexically scoped
  12833. functions is to compile them into top-level function definitions,
  12834. translating from \LangLam{} into \LangFun{}. However, the compiler will need to
  12835. provide special treatment for variable occurrences such as \code{x}
  12836. and \code{y} in the body of the \code{lambda} of
  12837. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function may not
  12838. refer to variables defined outside of it. To identify such variable
  12839. occurrences, we review the standard notion of free variable.
  12840. \begin{definition}
  12841. A variable is \emph{free in expression} $e$ if the variable occurs
  12842. inside $e$ but does not have an enclosing binding in $e$.\index{subject}{free
  12843. variable}
  12844. \end{definition}
  12845. For example, in the expression \code{(+ x (+ y z))} the variables
  12846. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  12847. only \code{x} and \code{y} are free in the following expression
  12848. because \code{z} is bound by the \code{lambda}.
  12849. \begin{lstlisting}
  12850. (lambda: ([z : Integer]) : Integer
  12851. (+ x (+ y z)))
  12852. \end{lstlisting}
  12853. So the free variables of a \code{lambda} are the ones that will need
  12854. special treatment. We need to arrange for some way to transport, at
  12855. runtime, the values of those variables from the point where the
  12856. \code{lambda} was created to the point where the \code{lambda} is
  12857. applied. An efficient solution to the problem, due to
  12858. \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
  12859. free variables together with the function pointer for the lambda's
  12860. code, an arrangement called a \emph{flat closure} (which we shorten to
  12861. just ``closure''). \index{subject}{closure}\index{subject}{flat closure} Fortunately,
  12862. we have all the ingredients to make closures, Chapter~\ref{ch:Lvec}
  12863. gave us vectors and Chapter~\ref{ch:Rfun} gave us function
  12864. pointers. The function pointer resides at index $0$ and the
  12865. values for the free variables will fill in the rest of the vector.
  12866. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  12867. how closures work. It's a three-step dance. The program first calls
  12868. function \code{f}, which creates a closure for the \code{lambda}. The
  12869. closure is a vector whose first element is a pointer to the top-level
  12870. function that we will generate for the \code{lambda}, the second
  12871. element is the value of \code{x}, which is \code{5}, and the third
  12872. element is \code{4}, the value of \code{y}. The closure does not
  12873. contain an element for \code{z} because \code{z} is not a free
  12874. variable of the \code{lambda}. Creating the closure is step 1 of the
  12875. dance. The closure is returned from \code{f} and bound to \code{g}, as
  12876. shown in Figure~\ref{fig:closures}.
  12877. %
  12878. The second call to \code{f} creates another closure, this time with
  12879. \code{3} in the second slot (for \code{x}). This closure is also
  12880. returned from \code{f} but bound to \code{h}, which is also shown in
  12881. Figure~\ref{fig:closures}.
  12882. \begin{figure}[tbp]
  12883. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  12884. \caption{Example closure representation for the \key{lambda}'s
  12885. in Figure~\ref{fig:lexical-scoping}.}
  12886. \label{fig:closures}
  12887. \end{figure}
  12888. Continuing with the example, consider the application of \code{g} to
  12889. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  12890. obtain the function pointer in the first element of the closure and
  12891. call it, passing in the closure itself and then the regular arguments,
  12892. in this case \code{11}. This technique for applying a closure is step
  12893. 2 of the dance.
  12894. %
  12895. But doesn't this \code{lambda} only take 1 argument, for parameter
  12896. \code{z}? The third and final step of the dance is generating a
  12897. top-level function for a \code{lambda}. We add an additional
  12898. parameter for the closure and we insert a \code{let} at the beginning
  12899. of the function for each free variable, to bind those variables to the
  12900. appropriate elements from the closure parameter.
  12901. %
  12902. This three-step dance is known as \emph{closure conversion}. We
  12903. discuss the details of closure conversion in
  12904. Section~\ref{sec:closure-conversion} and the code generated from the
  12905. example in Section~\ref{sec:example-lambda}. But first we define the
  12906. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  12907. \section{The \LangLam{} Language}
  12908. \label{sec:r5}
  12909. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  12910. functions and lexical scoping, is defined in
  12911. Figures~\ref{fig:Rlam-concrete-syntax} and ~\ref{fig:Rlam-syntax}. It adds
  12912. the \key{lambda} form to the grammar for \LangFun{}, which already has
  12913. syntax for function application.
  12914. \newcommand{\LlambdaGrammarRacket}{
  12915. \begin{array}{lcl}
  12916. \Exp &::=& \LP \key{procedure-arity}~\Exp\RP \\
  12917. &\MID& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp}
  12918. \end{array}
  12919. }
  12920. \newcommand{\LlambdaASTRacket}{
  12921. \begin{array}{lcl}
  12922. \itm{op} &::=& \code{procedure-arity} \\
  12923. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}
  12924. \end{array}
  12925. }
  12926. \begin{figure}[tp]
  12927. \centering
  12928. \fbox{
  12929. \begin{minipage}{0.96\textwidth}
  12930. \small
  12931. \[
  12932. \begin{array}{l}
  12933. \gray{\LintGrammarRacket{}} \\ \hline
  12934. \gray{\LvarGrammarRacket{}} \\ \hline
  12935. \gray{\LifGrammarRacket{}} \\ \hline
  12936. \gray{\LwhileGrammarRacket} \\ \hline
  12937. \gray{\LtupGrammarRacket} \\ \hline
  12938. \gray{\LfunGrammarRacket} \\ \hline
  12939. \LlambdaGrammarRacket \\
  12940. \begin{array}{lcl}
  12941. %% \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  12942. %% \MID (\key{Vector}\;\Type\ldots) \MID \key{Void}
  12943. %% \MID (\Type\ldots \; \key{->}\; \Type)} \\
  12944. %% \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  12945. %% \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  12946. %% &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  12947. %% &\MID& \gray{\key{\#t} \MID \key{\#f}
  12948. %% \MID (\key{and}\;\Exp\;\Exp)
  12949. %% \MID (\key{or}\;\Exp\;\Exp)
  12950. %% \MID (\key{not}\;\Exp) } \\
  12951. %% &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  12952. %% &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  12953. %% (\key{vector-ref}\;\Exp\;\Int)} \\
  12954. %% &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  12955. %% \MID (\Exp \; \Exp\ldots) } \\
  12956. %% &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  12957. %% &\MID& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  12958. %% \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  12959. \LangLamM{} &::=& \Def\ldots \; \Exp
  12960. \end{array}
  12961. \end{array}
  12962. \]
  12963. \end{minipage}
  12964. }
  12965. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  12966. with \key{lambda}.}
  12967. \label{fig:Rlam-concrete-syntax}
  12968. \end{figure}
  12969. \begin{figure}[tp]
  12970. \centering
  12971. \fbox{
  12972. \begin{minipage}{0.96\textwidth}
  12973. \small
  12974. \[
  12975. \begin{array}{l}
  12976. \gray{\LintOpAST} \\ \hline
  12977. \gray{\LvarAST{}} \\ \hline
  12978. \gray{\LifAST{}} \\ \hline
  12979. \gray{\LwhileAST{}} \\ \hline
  12980. \gray{\LtupASTRacket{}} \\ \hline
  12981. \gray{\LfunASTRacket} \\ \hline
  12982. \LlambdaASTRacket \\
  12983. \begin{array}{lcl}
  12984. %% \itm{op} &::=& \ldots \MID \code{procedure-arity} \\
  12985. %% \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  12986. %% &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  12987. %% &\MID& \gray{ \BOOL{\itm{bool}}
  12988. %% \MID \IF{\Exp}{\Exp}{\Exp} } \\
  12989. %% &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  12990. %% \MID \APPLY{\Exp}{\Exp\ldots} }\\
  12991. %% &\MID& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  12992. %% \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  12993. \LangLamM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  12994. \end{array}
  12995. \end{array}
  12996. \]
  12997. \end{minipage}
  12998. }
  12999. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  13000. \label{fig:Rlam-syntax}
  13001. \end{figure}
  13002. \index{subject}{interpreter}
  13003. \label{sec:interp-Rlambda}
  13004. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  13005. \LangLam{}. The case for \key{lambda} saves the current environment
  13006. inside the returned \key{lambda}. Then the case for \key{Apply} uses
  13007. the environment from the \key{lambda}, the \code{lam-env}, when
  13008. interpreting the body of the \key{lambda}. The \code{lam-env}
  13009. environment is extended with the mapping of parameters to argument
  13010. values.
  13011. \begin{figure}[tbp]
  13012. \begin{lstlisting}
  13013. (define interp-Rlambda_class
  13014. (class interp-Rfun_class
  13015. (super-new)
  13016. (define/override (interp-op op)
  13017. (match op
  13018. ['procedure-arity
  13019. (lambda (v)
  13020. (match v
  13021. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  13022. [else (error 'interp-op "expected a function, not ~a" v)]))]
  13023. [else (super interp-op op)]))
  13024. (define/override ((interp-exp env) e)
  13025. (define recur (interp-exp env))
  13026. (match e
  13027. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  13028. `(function ,xs ,body ,env)]
  13029. [else ((super interp-exp env) e)]))
  13030. ))
  13031. (define (interp-Rlambda p)
  13032. (send (new interp-Rlambda_class) interp-program p))
  13033. \end{lstlisting}
  13034. \caption{Interpreter for \LangLam{}.}
  13035. \label{fig:interp-Rlambda}
  13036. \end{figure}
  13037. \label{sec:type-check-r5}
  13038. \index{subject}{type checking}
  13039. Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
  13040. \key{lambda} form. The body of the \key{lambda} is checked in an
  13041. environment that includes the current environment (because it is
  13042. lexically scoped) and also includes the \key{lambda}'s parameters. We
  13043. require the body's type to match the declared return type.
  13044. \begin{figure}[tbp]
  13045. \begin{lstlisting}
  13046. (define (type-check-Rlambda env)
  13047. (lambda (e)
  13048. (match e
  13049. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  13050. (define-values (new-body bodyT)
  13051. ((type-check-exp (append (map cons xs Ts) env)) body))
  13052. (define ty `(,@Ts -> ,rT))
  13053. (cond
  13054. [(equal? rT bodyT)
  13055. (values (HasType (Lambda params rT new-body) ty) ty)]
  13056. [else
  13057. (error "mismatch in return type" bodyT rT)])]
  13058. ...
  13059. )))
  13060. \end{lstlisting}
  13061. \caption{Type checking the \key{lambda}'s in \LangLam{}.}
  13062. \label{fig:type-check-Rlambda}
  13063. \end{figure}
  13064. \section{Assignment and Lexically Scoped Functions}
  13065. \label{sec:assignment-scoping}
  13066. [UNDER CONSTRUCTION: This section was just moved into this location
  13067. and may need to be updated. -Jeremy]
  13068. The combination of lexically-scoped functions and assignment
  13069. (i.e. \code{set!}) raises a challenge with our approach to
  13070. implementing lexically-scoped functions. Consider the following
  13071. example in which function \code{f} has a free variable \code{x} that
  13072. is changed after \code{f} is created but before the call to \code{f}.
  13073. % loop_test_11.rkt
  13074. \begin{lstlisting}
  13075. (let ([x 0])
  13076. (let ([y 0])
  13077. (let ([z 20])
  13078. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  13079. (begin
  13080. (set! x 10)
  13081. (set! y 12)
  13082. (f y))))))
  13083. \end{lstlisting}
  13084. The correct output for this example is \code{42} because the call to
  13085. \code{f} is required to use the current value of \code{x} (which is
  13086. \code{10}). Unfortunately, the closure conversion pass
  13087. (Section~\ref{sec:closure-conversion}) generates code for the
  13088. \code{lambda} that copies the old value of \code{x} into a
  13089. closure. Thus, if we naively add support for assignment to our current
  13090. compiler, the output of this program would be \code{32}.
  13091. A first attempt at solving this problem would be to save a pointer to
  13092. \code{x} in the closure and change the occurrences of \code{x} inside
  13093. the lambda to dereference the pointer. Of course, this would require
  13094. assigning \code{x} to the stack and not to a register. However, the
  13095. problem goes a bit deeper. Consider the following example in which we
  13096. create a counter abstraction by creating a pair of functions that
  13097. share the free variable \code{x}.
  13098. % similar to loop_test_10.rkt
  13099. \begin{lstlisting}
  13100. (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  13101. (vector
  13102. (lambda: () : Integer x)
  13103. (lambda: () : Void (set! x (+ 1 x)))))
  13104. (let ([counter (f 0)])
  13105. (let ([get (vector-ref counter 0)])
  13106. (let ([inc (vector-ref counter 1)])
  13107. (begin
  13108. (inc)
  13109. (get)))))
  13110. \end{lstlisting}
  13111. In this example, the lifetime of \code{x} extends beyond the lifetime
  13112. of the call to \code{f}. Thus, if we were to store \code{x} on the
  13113. stack frame for the call to \code{f}, it would be gone by the time we
  13114. call \code{inc} and \code{get}, leaving us with dangling pointers for
  13115. \code{x}. This example demonstrates that when a variable occurs free
  13116. inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
  13117. value of the variable needs to live on the heap. The verb ``box'' is
  13118. often used for allocating a single value on the heap, producing a
  13119. pointer, and ``unbox'' for dereferencing the pointer.
  13120. We recommend solving these problems by ``boxing'' the local variables
  13121. that are in the intersection of 1) variables that appear on the
  13122. left-hand-side of a \code{set!} and 2) variables that occur free
  13123. inside a \code{lambda}. We shall introduce a new pass named
  13124. \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
  13125. perform this translation. But before diving into the compiler passes,
  13126. we one more problem to discuss.
  13127. \section{Reveal Functions and the $F_2$ language}
  13128. \label{sec:reveal-functions-r5}
  13129. To support the \code{procedure-arity} operator we need to communicate
  13130. the arity of a function to the point of closure creation. We can
  13131. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  13132. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  13133. output of this pass is the language $F_2$, whose syntax is defined in
  13134. Figure~\ref{fig:f2-syntax}.
  13135. \begin{figure}[tp]
  13136. \centering
  13137. \fbox{
  13138. \begin{minipage}{0.96\textwidth}
  13139. \[
  13140. \begin{array}{lcl}
  13141. \Exp &::=& \ldots \MID \FUNREFARITY{\Var}{\Int}\\
  13142. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  13143. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  13144. \end{array}
  13145. \]
  13146. \end{minipage}
  13147. }
  13148. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  13149. (Figure~\ref{fig:Rlam-syntax}).}
  13150. \label{fig:f2-syntax}
  13151. \end{figure}
  13152. \section{Convert Assignments}
  13153. \label{sec:convert-assignments}
  13154. [UNDER CONSTRUCTION: This section was just moved into this location
  13155. and may need to be updated. -Jeremy]
  13156. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  13157. the combination of assignments and lexically-scoped functions requires
  13158. that we box those variables that are both assigned-to and that appear
  13159. free inside a \code{lambda}. The purpose of the
  13160. \code{convert-assignments} pass is to carry out that transformation.
  13161. We recommend placing this pass after \code{uniquify} but before
  13162. \code{reveal\_functions}.
  13163. Consider again the first example from
  13164. Section~\ref{sec:assignment-scoping}:
  13165. \begin{lstlisting}
  13166. (let ([x 0])
  13167. (let ([y 0])
  13168. (let ([z 20])
  13169. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  13170. (begin
  13171. (set! x 10)
  13172. (set! y 12)
  13173. (f y))))))
  13174. \end{lstlisting}
  13175. The variables \code{x} and \code{y} are assigned-to. The variables
  13176. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  13177. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  13178. The boxing of \code{x} consists of three transformations: initialize
  13179. \code{x} with a vector, replace reads from \code{x} with
  13180. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  13181. \code{vector-set!}. The output of \code{convert-assignments} for this
  13182. example is as follows.
  13183. \begin{lstlisting}
  13184. (define (main) : Integer
  13185. (let ([x0 (vector 0)])
  13186. (let ([y1 0])
  13187. (let ([z2 20])
  13188. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  13189. (+ a3 (+ (vector-ref x0 0) z2)))])
  13190. (begin
  13191. (vector-set! x0 0 10)
  13192. (set! y1 12)
  13193. (f4 y1)))))))
  13194. \end{lstlisting}
  13195. \paragraph{Assigned \& Free}
  13196. We recommend defining an auxiliary function named
  13197. \code{assigned\&free} that takes an expression and simultaneously
  13198. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  13199. that occur free within lambda's, and 3) a new version of the
  13200. expression that records which bound variables occurred in the
  13201. intersection of $A$ and $F$. You can use the struct
  13202. \code{AssignedFree} to do this. Consider the case for
  13203. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  13204. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  13205. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  13206. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  13207. \begin{lstlisting}
  13208. (Let |$x$| |$rhs$| |$body$|)
  13209. |$\Rightarrow$|
  13210. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  13211. \end{lstlisting}
  13212. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  13213. The set of assigned variables for this \code{Let} is
  13214. $A_r \cup (A_b - \{x\})$
  13215. and the set of variables free in lambda's is
  13216. $F_r \cup (F_b - \{x\})$.
  13217. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  13218. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  13219. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  13220. and $F_r$.
  13221. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  13222. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  13223. recursively processing \itm{body}. Wrap each of parameter that occurs
  13224. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  13225. Let $P$ be the set of parameter names in \itm{params}. The result is
  13226. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  13227. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  13228. variables of an expression (see Chapter~\ref{ch:Rlam}).
  13229. \paragraph{Convert Assignments}
  13230. Next we discuss the \code{convert-assignment} pass with its auxiliary
  13231. functions for expressions and definitions. The function for
  13232. expressions, \code{cnvt-assign-exp}, should take an expression and a
  13233. set of assigned-and-free variables (obtained from the result of
  13234. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  13235. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  13236. \code{vector-ref}.
  13237. \begin{lstlisting}
  13238. (Var |$x$|)
  13239. |$\Rightarrow$|
  13240. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  13241. \end{lstlisting}
  13242. %
  13243. In the case for $\LET{\LP\code{AssignedFree}\,
  13244. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  13245. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  13246. \itm{body'} but with $x$ added to the set of assigned-and-free
  13247. variables. Translate the let-expression as follows to bind $x$ to a
  13248. boxed value.
  13249. \begin{lstlisting}
  13250. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  13251. |$\Rightarrow$|
  13252. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  13253. \end{lstlisting}
  13254. %
  13255. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  13256. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  13257. variables, translate the \code{set!} into a \code{vector-set!}
  13258. as follows.
  13259. \begin{lstlisting}
  13260. (SetBang |$x$| |$\itm{rhs}$|)
  13261. |$\Rightarrow$|
  13262. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  13263. \end{lstlisting}
  13264. %
  13265. The case for \code{Lambda} is non-trivial, but it is similar to the
  13266. case for function definitions, which we discuss next.
  13267. The auxiliary function for definitions, \code{cnvt-assign-def},
  13268. applies assignment conversion to function definitions.
  13269. We translate a function definition as follows.
  13270. \begin{lstlisting}
  13271. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  13272. |$\Rightarrow$|
  13273. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  13274. \end{lstlisting}
  13275. So it remains to explain \itm{params'} and $\itm{body}_4$.
  13276. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  13277. \code{assigned\&free} on $\itm{body_1}$.
  13278. Let $P$ be the parameter names in \itm{params}.
  13279. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  13280. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  13281. as the set of assigned-and-free variables.
  13282. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  13283. in a sequence of let-expressions that box the parameters
  13284. that are in $A_b \cap F_b$.
  13285. %
  13286. Regarding \itm{params'}, change the names of the parameters that are
  13287. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  13288. variables can retain the original names). Recall the second example in
  13289. Section~\ref{sec:assignment-scoping} involving a counter
  13290. abstraction. The following is the output of assignment version for
  13291. function \code{f}.
  13292. \begin{lstlisting}
  13293. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  13294. (vector
  13295. (lambda: () : Integer x1)
  13296. (lambda: () : Void (set! x1 (+ 1 x1)))))
  13297. |$\Rightarrow$|
  13298. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  13299. (let ([x1 (vector param_x1)])
  13300. (vector (lambda: () : Integer (vector-ref x1 0))
  13301. (lambda: () : Void
  13302. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  13303. \end{lstlisting}
  13304. \section{Closure Conversion}
  13305. \label{sec:closure-conversion}
  13306. \index{subject}{closure conversion}
  13307. The compiling of lexically-scoped functions into top-level function
  13308. definitions is accomplished in the pass \code{convert-to-closures}
  13309. that comes after \code{reveal\_functions} and before
  13310. \code{limit-functions}.
  13311. As usual, we implement the pass as a recursive function over the
  13312. AST. All of the action is in the cases for \key{Lambda} and
  13313. \key{Apply}. We transform a \key{Lambda} expression into an expression
  13314. that creates a closure, that is, a vector whose first element is a
  13315. function pointer and the rest of the elements are the free variables
  13316. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  13317. using \code{vector} so that we can distinguish closures from vectors
  13318. in Section~\ref{sec:optimize-closures} and to record the arity. In
  13319. the generated code below, the \itm{name} is a unique symbol generated
  13320. to identify the function and the \itm{arity} is the number of
  13321. parameters (the length of \itm{ps}).
  13322. \begin{lstlisting}
  13323. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  13324. |$\Rightarrow$|
  13325. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  13326. \end{lstlisting}
  13327. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  13328. create a top-level function definition for each \key{Lambda}, as
  13329. shown below.\\
  13330. \begin{minipage}{0.8\textwidth}
  13331. \begin{lstlisting}
  13332. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  13333. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  13334. ...
  13335. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  13336. |\itm{body'}|)...))
  13337. \end{lstlisting}
  13338. \end{minipage}\\
  13339. The \code{clos} parameter refers to the closure. Translate the type
  13340. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  13341. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  13342. $\itm{fvts}$ are the types of the free variables in the lambda and the
  13343. underscore \code{\_} is a dummy type that we use because it is rather
  13344. difficult to give a type to the function in the closure's
  13345. type.\footnote{To give an accurate type to a closure, we would need to
  13346. add existential types to the type checker~\citep{Minamide:1996ys}.}
  13347. The dummy type is considered to be equal to any other type during type
  13348. checking. The sequence of \key{Let} forms bind the free variables to
  13349. their values obtained from the closure.
  13350. Closure conversion turns functions into vectors, so the type
  13351. annotations in the program must also be translated. We recommend
  13352. defining a auxiliary recursive function for this purpose. Function
  13353. types should be translated as follows.
  13354. \begin{lstlisting}
  13355. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  13356. |$\Rightarrow$|
  13357. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  13358. \end{lstlisting}
  13359. The above type says that the first thing in the vector is a function
  13360. pointer. The first parameter of the function pointer is a vector (a
  13361. closure) and the rest of the parameters are the ones from the original
  13362. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  13363. the closure omits the types of the free variables because 1) those
  13364. types are not available in this context and 2) we do not need them in
  13365. the code that is generated for function application.
  13366. We transform function application into code that retrieves the
  13367. function pointer from the closure and then calls the function, passing
  13368. in the closure as the first argument. We bind $e'$ to a temporary
  13369. variable to avoid code duplication.
  13370. \begin{lstlisting}
  13371. (Apply |$e$| |\itm{es}|)
  13372. |$\Rightarrow$|
  13373. (Let |\itm{tmp}| |$e'$|
  13374. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  13375. \end{lstlisting}
  13376. There is also the question of what to do with references top-level
  13377. function definitions. To maintain a uniform translation of function
  13378. application, we turn function references into closures.
  13379. \begin{tabular}{lll}
  13380. \begin{minipage}{0.3\textwidth}
  13381. \begin{lstlisting}
  13382. (FunRefArity |$f$| |$n$|)
  13383. \end{lstlisting}
  13384. \end{minipage}
  13385. &
  13386. $\Rightarrow$
  13387. &
  13388. \begin{minipage}{0.5\textwidth}
  13389. \begin{lstlisting}
  13390. (Closure |$n$| (FunRef |$f$|) '())
  13391. \end{lstlisting}
  13392. \end{minipage}
  13393. \end{tabular} \\
  13394. %
  13395. The top-level function definitions need to be updated as well to take
  13396. an extra closure parameter.
  13397. \section{An Example Translation}
  13398. \label{sec:example-lambda}
  13399. Figure~\ref{fig:lexical-functions-example} shows the result of
  13400. \code{reveal\_functions} and \code{convert-to-closures} for the example
  13401. program demonstrating lexical scoping that we discussed at the
  13402. beginning of this chapter.
  13403. \begin{figure}[tbp]
  13404. \begin{minipage}{0.8\textwidth}
  13405. % tests/lambda_test_6.rkt
  13406. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13407. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  13408. (let ([y8 4])
  13409. (lambda: ([z9 : Integer]) : Integer
  13410. (+ x7 (+ y8 z9)))))
  13411. (define (main) : Integer
  13412. (let ([g0 ((fun-ref-arity f6 1) 5)])
  13413. (let ([h1 ((fun-ref-arity f6 1) 3)])
  13414. (+ (g0 11) (h1 15)))))
  13415. \end{lstlisting}
  13416. $\Rightarrow$
  13417. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13418. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  13419. (let ([y8 4])
  13420. (closure 1 (list (fun-ref lambda2) x7 y8))))
  13421. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  13422. (let ([x7 (vector-ref fvs3 1)])
  13423. (let ([y8 (vector-ref fvs3 2)])
  13424. (+ x7 (+ y8 z9)))))
  13425. (define (main) : Integer
  13426. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  13427. ((vector-ref clos5 0) clos5 5))])
  13428. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  13429. ((vector-ref clos6 0) clos6 3))])
  13430. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  13431. \end{lstlisting}
  13432. \end{minipage}
  13433. \caption{Example of closure conversion.}
  13434. \label{fig:lexical-functions-example}
  13435. \end{figure}
  13436. \begin{exercise}\normalfont
  13437. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  13438. Create 5 new programs that use \key{lambda} functions and make use of
  13439. lexical scoping. Test your compiler on these new programs and all of
  13440. your previously created test programs.
  13441. \end{exercise}
  13442. \section{Expose Allocation}
  13443. \label{sec:expose-allocation-r5}
  13444. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  13445. that allocates and initializes a vector, similar to the translation of
  13446. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  13447. The only difference is replacing the use of
  13448. \ALLOC{\itm{len}}{\itm{type}} with
  13449. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  13450. \section{Explicate Control and \LangCLam{}}
  13451. \label{sec:explicate-r5}
  13452. The output language of \code{explicate\_control} is \LangCLam{} whose
  13453. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  13454. difference with respect to \LangCFun{} is the addition of the
  13455. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  13456. of \code{AllocateClosure} in the \code{explicate\_control} pass is
  13457. similar to the handling of other expressions such as primitive
  13458. operators.
  13459. \begin{figure}[tp]
  13460. \fbox{
  13461. \begin{minipage}{0.96\textwidth}
  13462. \small
  13463. \[
  13464. \begin{array}{lcl}
  13465. \Exp &::= & \ldots
  13466. \MID \ALLOCCLOS{\Int}{\Type}{\Int} \\
  13467. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  13468. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  13469. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  13470. \MID \GOTO{\itm{label}} } \\
  13471. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  13472. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  13473. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  13474. \LangCLamM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  13475. \end{array}
  13476. \]
  13477. \end{minipage}
  13478. }
  13479. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  13480. \label{fig:c4-syntax}
  13481. \end{figure}
  13482. \section{Select Instructions}
  13483. \label{sec:select-instructions-Rlambda}
  13484. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  13485. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  13486. (Section~\ref{sec:select-instructions-gc}). The only difference is
  13487. that you should place the \itm{arity} in the tag that is stored at
  13488. position $0$ of the vector. Recall that in
  13489. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  13490. was not used. We store the arity in the $5$ bits starting at position
  13491. $58$.
  13492. Compile the \code{procedure-arity} operator into a sequence of
  13493. instructions that access the tag from position $0$ of the vector and
  13494. extract the $5$-bits starting at position $58$ from the tag.
  13495. \begin{figure}[p]
  13496. \begin{tikzpicture}[baseline=(current bounding box.center)]
  13497. \node (Rfun) at (0,2) {\large \LangLam{}};
  13498. \node (Rfun-2) at (3,2) {\large \LangLam{}};
  13499. \node (Rfun-3) at (6,2) {\large \LangLam{}};
  13500. \node (F1-0) at (9,2) {\large \LangLamFunRef{}};
  13501. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  13502. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  13503. \node (F1-3) at (6,0) {\large \LangFunRef{}};
  13504. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  13505. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  13506. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  13507. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  13508. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  13509. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  13510. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  13511. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  13512. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  13513. \path[->,bend left=15] (Rfun) edge [above] node
  13514. {\ttfamily\footnotesize shrink} (Rfun-2);
  13515. \path[->,bend left=15] (Rfun-2) edge [above] node
  13516. {\ttfamily\footnotesize uniquify} (Rfun-3);
  13517. \path[->,bend left=15] (Rfun-3) edge [above] node
  13518. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  13519. \path[->,bend left=15] (F1-0) edge [right] node
  13520. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  13521. \path[->,bend left=15] (F1-1) edge [below] node
  13522. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  13523. \path[->,bend right=15] (F1-2) edge [above] node
  13524. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  13525. \path[->,bend right=15] (F1-3) edge [above] node
  13526. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  13527. \path[->,bend right=15] (F1-4) edge [above] node
  13528. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  13529. \path[->,bend right=15] (F1-5) edge [right] node
  13530. {\ttfamily\footnotesize explicate\_control} (C3-2);
  13531. \path[->,bend left=15] (C3-2) edge [left] node
  13532. {\ttfamily\footnotesize select\_instr.} (x86-2);
  13533. \path[->,bend right=15] (x86-2) edge [left] node
  13534. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  13535. \path[->,bend right=15] (x86-2-1) edge [below] node
  13536. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  13537. \path[->,bend right=15] (x86-2-2) edge [left] node
  13538. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  13539. \path[->,bend left=15] (x86-3) edge [above] node
  13540. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  13541. \path[->,bend left=15] (x86-4) edge [right] node
  13542. {\ttfamily\footnotesize print\_x86} (x86-5);
  13543. \end{tikzpicture}
  13544. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  13545. functions.}
  13546. \label{fig:Rlambda-passes}
  13547. \end{figure}
  13548. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  13549. for the compilation of \LangLam{}.
  13550. \clearpage
  13551. \section{Challenge: Optimize Closures}
  13552. \label{sec:optimize-closures}
  13553. In this chapter we compiled lexically-scoped functions into a
  13554. relatively efficient representation: flat closures. However, even this
  13555. representation comes with some overhead. For example, consider the
  13556. following program with a function \code{tail\_sum} that does not have
  13557. any free variables and where all the uses of \code{tail\_sum} are in
  13558. applications where we know that only \code{tail\_sum} is being applied
  13559. (and not any other functions).
  13560. \begin{center}
  13561. \begin{minipage}{0.95\textwidth}
  13562. \begin{lstlisting}
  13563. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  13564. (if (eq? n 0)
  13565. r
  13566. (tail_sum (- n 1) (+ n r))))
  13567. (+ (tail_sum 5 0) 27)
  13568. \end{lstlisting}
  13569. \end{minipage}
  13570. \end{center}
  13571. As described in this chapter, we uniformly apply closure conversion to
  13572. all functions, obtaining the following output for this program.
  13573. \begin{center}
  13574. \begin{minipage}{0.95\textwidth}
  13575. \begin{lstlisting}
  13576. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  13577. (if (eq? n2 0)
  13578. r3
  13579. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  13580. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  13581. (define (main) : Integer
  13582. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  13583. ((vector-ref clos6 0) clos6 5 0)) 27))
  13584. \end{lstlisting}
  13585. \end{minipage}
  13586. \end{center}
  13587. In the previous Chapter, there would be no allocation in the program
  13588. and the calls to \code{tail\_sum} would be direct calls. In contrast,
  13589. the above program allocates memory for each \code{closure} and the
  13590. calls to \code{tail\_sum} are indirect. These two differences incur
  13591. considerable overhead in a program such as this one, where the
  13592. allocations and indirect calls occur inside a tight loop.
  13593. One might think that this problem is trivial to solve: can't we just
  13594. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  13595. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  13596. e'_n$)} instead of treating it like a call to a closure? We would
  13597. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  13598. %
  13599. However, this problem is not so trivial because a global function may
  13600. ``escape'' and become involved in applications that also involve
  13601. closures. Consider the following example in which the application
  13602. \code{(f 41)} needs to be compiled into a closure application, because
  13603. the \code{lambda} may get bound to \code{f}, but the \code{add1}
  13604. function might also get bound to \code{f}.
  13605. \begin{lstlisting}
  13606. (define (add1 [x : Integer]) : Integer
  13607. (+ x 1))
  13608. (let ([y (read)])
  13609. (let ([f (if (eq? (read) 0)
  13610. add1
  13611. (lambda: ([x : Integer]) : Integer (- x y)))])
  13612. (f 41)))
  13613. \end{lstlisting}
  13614. If a global function name is used in any way other than as the
  13615. operator in a direct call, then we say that the function
  13616. \emph{escapes}. If a global function does not escape, then we do not
  13617. need to perform closure conversion on the function.
  13618. \begin{exercise}\normalfont
  13619. Implement an auxiliary function for detecting which global
  13620. functions escape. Using that function, implement an improved version
  13621. of closure conversion that does not apply closure conversion to
  13622. global functions that do not escape but instead compiles them as
  13623. regular functions. Create several new test cases that check whether
  13624. you properly detect whether global functions escape or not.
  13625. \end{exercise}
  13626. So far we have reduced the overhead of calling global functions, but
  13627. it would also be nice to reduce the overhead of calling a
  13628. \code{lambda} when we can determine at compile time which
  13629. \code{lambda} will be called. We refer to such calls as \emph{known
  13630. calls}. Consider the following example in which a \code{lambda} is
  13631. bound to \code{f} and then applied.
  13632. \begin{lstlisting}
  13633. (let ([y (read)])
  13634. (let ([f (lambda: ([x : Integer]) : Integer
  13635. (+ x y))])
  13636. (f 21)))
  13637. \end{lstlisting}
  13638. Closure conversion compiles \code{(f 21)} into an indirect call:
  13639. \begin{lstlisting}
  13640. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  13641. (let ([y2 (vector-ref fvs6 1)])
  13642. (+ x3 y2)))
  13643. (define (main) : Integer
  13644. (let ([y2 (read)])
  13645. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  13646. ((vector-ref f4 0) f4 21))))
  13647. \end{lstlisting}
  13648. but we can instead compile the application \code{(f 21)} into a direct call
  13649. to \code{lambda5}:
  13650. \begin{lstlisting}
  13651. (define (main) : Integer
  13652. (let ([y2 (read)])
  13653. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  13654. ((fun-ref lambda5) f4 21))))
  13655. \end{lstlisting}
  13656. The problem of determining which lambda will be called from a
  13657. particular application is quite challenging in general and the topic
  13658. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  13659. following exercise we recommend that you compile an application to a
  13660. direct call when the operator is a variable and the variable is
  13661. \code{let}-bound to a closure. This can be accomplished by maintaining
  13662. an environment mapping \code{let}-bound variables to function names.
  13663. Extend the environment whenever you encounter a closure on the
  13664. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  13665. to the name of the global function for the closure. This pass should
  13666. come after closure conversion.
  13667. \begin{exercise}\normalfont
  13668. Implement a compiler pass, named \code{optimize-known-calls}, that
  13669. compiles known calls into direct calls. Verify that your compiler is
  13670. successful in this regard on several example programs.
  13671. \end{exercise}
  13672. These exercises only scratches the surface of optimizing of
  13673. closures. A good next step for the interested reader is to look at the
  13674. work of \citet{Keep:2012ab}.
  13675. \section{Further Reading}
  13676. The notion of lexically scoped anonymous functions predates modern
  13677. computers by about a decade. They were invented by
  13678. \citet{Church:1932aa}, who proposed the $\lambda$ calculus as a
  13679. foundation for logic. Anonymous functions were included in the
  13680. LISP~\citep{McCarthy:1960dz} programming language but were initially
  13681. dynamically scoped. The Scheme dialect of LISP adopted lexical scoping
  13682. and \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently
  13683. compile Scheme programs. However, environments were represented as
  13684. linked lists, so variable lookup was linear in the size of the
  13685. environment. In this chapter we represent environments using flat
  13686. closures, which were invented by
  13687. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  13688. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  13689. closures, variable lookup is constant time but the time to create a
  13690. closure is proportional to the number of its free variables. Flat
  13691. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  13692. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  13693. \fi
  13694. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13695. \chapter{Dynamic Typing}
  13696. \label{ch:Rdyn}
  13697. \index{subject}{dynamic typing}
  13698. \if\edition\racketEd
  13699. In this chapter we discuss the compilation of \LangDyn{}, a dynamically
  13700. typed language that is a subset of Racket. This is in contrast to the
  13701. previous chapters, which have studied the compilation of Typed
  13702. Racket. In dynamically typed languages such as \LangDyn{}, a given
  13703. expression may produce a value of a different type each time it is
  13704. executed. Consider the following example with a conditional \code{if}
  13705. expression that may return a Boolean or an integer depending on the
  13706. input to the program.
  13707. % part of dynamic_test_25.rkt
  13708. \begin{lstlisting}
  13709. (not (if (eq? (read) 1) #f 0))
  13710. \end{lstlisting}
  13711. Languages that allow expressions to produce different kinds of values
  13712. are called \emph{polymorphic}, a word composed of the Greek roots
  13713. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  13714. are several kinds of polymorphism in programming languages, such as
  13715. subtype polymorphism and parametric
  13716. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  13717. study in this chapter does not have a special name but it is the kind
  13718. that arises in dynamically typed languages.
  13719. Another characteristic of dynamically typed languages is that
  13720. primitive operations, such as \code{not}, are often defined to operate
  13721. on many different types of values. In fact, in Racket, the \code{not}
  13722. operator produces a result for any kind of value: given \code{\#f} it
  13723. returns \code{\#t} and given anything else it returns \code{\#f}.
  13724. Furthermore, even when primitive operations restrict their inputs to
  13725. values of a certain type, this restriction is enforced at runtime
  13726. instead of during compilation. For example, the following vector
  13727. reference results in a run-time contract violation because the index
  13728. must be in integer, not a Boolean such as \code{\#t}.
  13729. \begin{lstlisting}
  13730. (vector-ref (vector 42) #t)
  13731. \end{lstlisting}
  13732. \begin{figure}[tp]
  13733. \centering
  13734. \fbox{
  13735. \begin{minipage}{0.97\textwidth}
  13736. \[
  13737. \begin{array}{rcl}
  13738. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  13739. \Exp &::=& \Int \MID \CREAD{} \MID \CNEG{\Exp}
  13740. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} \\
  13741. &\MID& \Var \MID \CLET{\Var}{\Exp}{\Exp} \\
  13742. &\MID& \key{\#t} \MID \key{\#f}
  13743. \MID \CBINOP{\key{and}}{\Exp}{\Exp}
  13744. \MID \CBINOP{\key{or}}{\Exp}{\Exp}
  13745. \MID \CUNIOP{\key{not}}{\Exp} \\
  13746. &\MID& \LP\itm{cmp}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} \\
  13747. &\MID& \LP\key{vector}\;\Exp\ldots\RP \MID
  13748. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  13749. &\MID& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \MID \LP\key{void}\RP \\
  13750. &\MID& \LP\Exp \; \Exp\ldots\RP
  13751. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  13752. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  13753. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  13754. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  13755. \LangDynM{} &::=& \Def\ldots\; \Exp
  13756. \end{array}
  13757. \]
  13758. \end{minipage}
  13759. }
  13760. \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
  13761. \label{fig:r7-concrete-syntax}
  13762. \end{figure}
  13763. \begin{figure}[tp]
  13764. \centering
  13765. \fbox{
  13766. \begin{minipage}{0.96\textwidth}
  13767. \small
  13768. \[
  13769. \begin{array}{lcl}
  13770. \Exp &::=& \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  13771. &\MID& \PRIM{\itm{op}}{\Exp\ldots} \\
  13772. &\MID& \BOOL{\itm{bool}}
  13773. \MID \IF{\Exp}{\Exp}{\Exp} \\
  13774. &\MID& \VOID{} \MID \APPLY{\Exp}{\Exp\ldots} \\
  13775. &\MID& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  13776. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  13777. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  13778. \end{array}
  13779. \]
  13780. \end{minipage}
  13781. }
  13782. \caption{The abstract syntax of \LangDyn{}.}
  13783. \label{fig:r7-syntax}
  13784. \end{figure}
  13785. The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
  13786. defined in Figures~\ref{fig:r7-concrete-syntax} and
  13787. \ref{fig:r7-syntax}.
  13788. %
  13789. There is no type checker for \LangDyn{} because it is not a statically
  13790. typed language (it's dynamically typed!).
  13791. The definitional interpreter for \LangDyn{} is presented in
  13792. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined i
  13793. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
  13794. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  13795. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}), the
  13796. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  13797. value} that combines an underlying value with a tag that identifies
  13798. what kind of value it is. We define the following struct
  13799. to represented tagged values.
  13800. \begin{lstlisting}
  13801. (struct Tagged (value tag) #:transparent)
  13802. \end{lstlisting}
  13803. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  13804. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  13805. but don't always capture all the information that a type does. For
  13806. example, a vector of type \code{(Vector Any Any)} is tagged with
  13807. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  13808. is tagged with \code{Procedure}.
  13809. Next consider the match case for \code{vector-ref}. The
  13810. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  13811. is used to ensure that the first argument is a vector and the second
  13812. is an integer. If they are not, a \code{trapped-error} is raised.
  13813. Recall from Section~\ref{sec:interp_Lint} that when a definition
  13814. interpreter raises a \code{trapped-error} error, the compiled code
  13815. must also signal an error by exiting with return code \code{255}. A
  13816. \code{trapped-error} is also raised if the index is not less than
  13817. length of the vector.
  13818. \begin{figure}[tbp]
  13819. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13820. (define ((interp-Rdyn-exp env) ast)
  13821. (define recur (interp-Rdyn-exp env))
  13822. (match ast
  13823. [(Var x) (lookup x env)]
  13824. [(Int n) (Tagged n 'Integer)]
  13825. [(Bool b) (Tagged b 'Boolean)]
  13826. [(Lambda xs rt body)
  13827. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  13828. [(Prim 'vector es)
  13829. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  13830. [(Prim 'vector-ref (list e1 e2))
  13831. (define vec (recur e1)) (define i (recur e2))
  13832. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  13833. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  13834. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  13835. (vector-ref (Tagged-value vec) (Tagged-value i))]
  13836. [(Prim 'vector-set! (list e1 e2 e3))
  13837. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  13838. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  13839. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  13840. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  13841. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  13842. (Tagged (void) 'Void)]
  13843. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  13844. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  13845. [(Prim 'or (list e1 e2))
  13846. (define v1 (recur e1))
  13847. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  13848. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  13849. [(Prim op (list e1))
  13850. #:when (set-member? type-predicates op)
  13851. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  13852. [(Prim op es)
  13853. (define args (map recur es))
  13854. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  13855. (unless (for/or ([expected-tags (op-tags op)])
  13856. (equal? expected-tags tags))
  13857. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  13858. (tag-value
  13859. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  13860. [(If q t f)
  13861. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  13862. [(Apply f es)
  13863. (define new-f (recur f)) (define args (map recur es))
  13864. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  13865. (match f-val
  13866. [`(function ,xs ,body ,lam-env)
  13867. (unless (eq? (length xs) (length args))
  13868. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  13869. (define new-env (append (map cons xs args) lam-env))
  13870. ((interp-Rdyn-exp new-env) body)]
  13871. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  13872. \end{lstlisting}
  13873. \caption{Interpreter for the \LangDyn{} language.}
  13874. \label{fig:interp-Rdyn}
  13875. \end{figure}
  13876. \begin{figure}[tbp]
  13877. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13878. (define (interp-op op)
  13879. (match op
  13880. ['+ fx+]
  13881. ['- fx-]
  13882. ['read read-fixnum]
  13883. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  13884. ['< (lambda (v1 v2)
  13885. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  13886. ['<= (lambda (v1 v2)
  13887. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  13888. ['> (lambda (v1 v2)
  13889. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  13890. ['>= (lambda (v1 v2)
  13891. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  13892. ['boolean? boolean?]
  13893. ['integer? fixnum?]
  13894. ['void? void?]
  13895. ['vector? vector?]
  13896. ['vector-length vector-length]
  13897. ['procedure? (match-lambda
  13898. [`(functions ,xs ,body ,env) #t] [else #f])]
  13899. [else (error 'interp-op "unknown operator" op)]))
  13900. (define (op-tags op)
  13901. (match op
  13902. ['+ '((Integer Integer))]
  13903. ['- '((Integer Integer) (Integer))]
  13904. ['read '(())]
  13905. ['not '((Boolean))]
  13906. ['< '((Integer Integer))]
  13907. ['<= '((Integer Integer))]
  13908. ['> '((Integer Integer))]
  13909. ['>= '((Integer Integer))]
  13910. ['vector-length '((Vector))]))
  13911. (define type-predicates
  13912. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  13913. (define (tag-value v)
  13914. (cond [(boolean? v) (Tagged v 'Boolean)]
  13915. [(fixnum? v) (Tagged v 'Integer)]
  13916. [(procedure? v) (Tagged v 'Procedure)]
  13917. [(vector? v) (Tagged v 'Vector)]
  13918. [(void? v) (Tagged v 'Void)]
  13919. [else (error 'tag-value "unidentified value ~a" v)]))
  13920. (define (check-tag val expected ast)
  13921. (define tag (Tagged-tag val))
  13922. (unless (eq? tag expected)
  13923. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  13924. \end{lstlisting}
  13925. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  13926. \label{fig:interp-Rdyn-aux}
  13927. \end{figure}
  13928. \clearpage
  13929. \section{Representation of Tagged Values}
  13930. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  13931. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  13932. values at the bit level. Because almost every operation in \LangDyn{}
  13933. involves manipulating tagged values, the representation must be
  13934. efficient. Recall that all of our values are 64 bits. We shall steal
  13935. the 3 right-most bits to encode the tag. We use $001$ to identify
  13936. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  13937. and $101$ for the void value. We define the following auxiliary
  13938. function for mapping types to tag codes.
  13939. \begin{align*}
  13940. \itm{tagof}(\key{Integer}) &= 001 \\
  13941. \itm{tagof}(\key{Boolean}) &= 100 \\
  13942. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  13943. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  13944. \itm{tagof}(\key{Void}) &= 101
  13945. \end{align*}
  13946. This stealing of 3 bits comes at some price: our integers are reduced
  13947. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  13948. affect vectors and procedures because those values are addresses, and
  13949. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  13950. they are always $000$. Thus, we do not lose information by overwriting
  13951. the rightmost 3 bits with the tag and we can simply zero-out the tag
  13952. to recover the original address.
  13953. To make tagged values into first-class entities, we can give them a
  13954. type, called \code{Any}, and define operations such as \code{Inject}
  13955. and \code{Project} for creating and using them, yielding the \LangAny{}
  13956. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  13957. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  13958. in greater detail.
  13959. \section{The \LangAny{} Language}
  13960. \label{sec:Rany-lang}
  13961. \newcommand{\LAnyAST}{
  13962. \begin{array}{lcl}
  13963. \Type &::= & \key{Any} \\
  13964. \itm{op} &::= & \code{any-vector-length}
  13965. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  13966. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  13967. \MID \code{procedure?} \MID \code{void?} \\
  13968. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  13969. \end{array}
  13970. }
  13971. \begin{figure}[tp]
  13972. \centering
  13973. \fbox{
  13974. \begin{minipage}{0.96\textwidth}
  13975. \small
  13976. \[
  13977. \begin{array}{l}
  13978. \gray{\LintOpAST} \\ \hline
  13979. \gray{\LvarAST{}} \\ \hline
  13980. \gray{\LifAST{}} \\ \hline
  13981. \gray{\LwhileAST{}} \\ \hline
  13982. \gray{\LtupASTRacket{}} \\ \hline
  13983. \gray{\LfunASTRacket} \\ \hline
  13984. \gray{\LlambdaASTRacket} \\ \hline
  13985. \LAnyAST \\
  13986. \begin{array}{lcl}
  13987. %% \Type &::= & \ldots \MID \key{Any} \\
  13988. %% \itm{op} &::= & \ldots \MID \code{any-vector-length}
  13989. %% \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  13990. %% &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  13991. %% \MID \code{procedure?} \MID \code{void?} \\
  13992. %% \Exp &::=& \ldots
  13993. %% \MID \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  13994. %% &\MID& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  13995. %% \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  13996. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  13997. \end{array}
  13998. \end{array}
  13999. \]
  14000. \end{minipage}
  14001. }
  14002. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  14003. \label{fig:Rany-syntax}
  14004. \end{figure}
  14005. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  14006. (The concrete syntax of \LangAny{} is in the Appendix,
  14007. Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
  14008. converts the value produced by expression $e$ of type $T$ into a
  14009. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  14010. produced by expression $e$ into a value of type $T$ or else halts the
  14011. program if the type tag is not equivalent to $T$.
  14012. %
  14013. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  14014. restricted to a flat type $\FType$, which simplifies the
  14015. implementation and corresponds with what is needed for compiling \LangDyn{}.
  14016. The \code{any-vector} operators adapt the vector operations so that
  14017. they can be applied to a value of type \code{Any}. They also
  14018. generalize the vector operations in that the index is not restricted
  14019. to be a literal integer in the grammar but is allowed to be any
  14020. expression.
  14021. The type predicates such as \key{boolean?} expect their argument to
  14022. produce a tagged value; they return \key{\#t} if the tag corresponds
  14023. to the predicate and they return \key{\#f} otherwise.
  14024. The type checker for \LangAny{} is shown in
  14025. Figures~\ref{fig:type-check-Rany-part-1} and
  14026. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  14027. Figure~\ref{fig:type-check-Rany-aux}.
  14028. %
  14029. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  14030. auxiliary functions \code{apply-inject} and \code{apply-project} are
  14031. in Figure~\ref{fig:apply-project}.
  14032. \begin{figure}[btp]
  14033. \begin{lstlisting}[basicstyle=\ttfamily\small]
  14034. (define type-check-Rany_class
  14035. (class type-check-Rlambda_class
  14036. (super-new)
  14037. (inherit check-type-equal?)
  14038. (define/override (type-check-exp env)
  14039. (lambda (e)
  14040. (define recur (type-check-exp env))
  14041. (match e
  14042. [(Inject e1 ty)
  14043. (unless (flat-ty? ty)
  14044. (error 'type-check "may only inject from flat type, not ~a" ty))
  14045. (define-values (new-e1 e-ty) (recur e1))
  14046. (check-type-equal? e-ty ty e)
  14047. (values (Inject new-e1 ty) 'Any)]
  14048. [(Project e1 ty)
  14049. (unless (flat-ty? ty)
  14050. (error 'type-check "may only project to flat type, not ~a" ty))
  14051. (define-values (new-e1 e-ty) (recur e1))
  14052. (check-type-equal? e-ty 'Any e)
  14053. (values (Project new-e1 ty) ty)]
  14054. [(Prim 'any-vector-length (list e1))
  14055. (define-values (e1^ t1) (recur e1))
  14056. (check-type-equal? t1 'Any e)
  14057. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  14058. [(Prim 'any-vector-ref (list e1 e2))
  14059. (define-values (e1^ t1) (recur e1))
  14060. (define-values (e2^ t2) (recur e2))
  14061. (check-type-equal? t1 'Any e)
  14062. (check-type-equal? t2 'Integer e)
  14063. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  14064. [(Prim 'any-vector-set! (list e1 e2 e3))
  14065. (define-values (e1^ t1) (recur e1))
  14066. (define-values (e2^ t2) (recur e2))
  14067. (define-values (e3^ t3) (recur e3))
  14068. (check-type-equal? t1 'Any e)
  14069. (check-type-equal? t2 'Integer e)
  14070. (check-type-equal? t3 'Any e)
  14071. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  14072. \end{lstlisting}
  14073. \caption{Type checker for the \LangAny{} language, part 1.}
  14074. \label{fig:type-check-Rany-part-1}
  14075. \end{figure}
  14076. \begin{figure}[btp]
  14077. \begin{lstlisting}[basicstyle=\ttfamily\small]
  14078. [(ValueOf e ty)
  14079. (define-values (new-e e-ty) (recur e))
  14080. (values (ValueOf new-e ty) ty)]
  14081. [(Prim pred (list e1))
  14082. #:when (set-member? (type-predicates) pred)
  14083. (define-values (new-e1 e-ty) (recur e1))
  14084. (check-type-equal? e-ty 'Any e)
  14085. (values (Prim pred (list new-e1)) 'Boolean)]
  14086. [(If cnd thn els)
  14087. (define-values (cnd^ Tc) (recur cnd))
  14088. (define-values (thn^ Tt) (recur thn))
  14089. (define-values (els^ Te) (recur els))
  14090. (check-type-equal? Tc 'Boolean cnd)
  14091. (check-type-equal? Tt Te e)
  14092. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  14093. [(Exit) (values (Exit) '_)]
  14094. [(Prim 'eq? (list arg1 arg2))
  14095. (define-values (e1 t1) (recur arg1))
  14096. (define-values (e2 t2) (recur arg2))
  14097. (match* (t1 t2)
  14098. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  14099. [(other wise) (check-type-equal? t1 t2 e)])
  14100. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  14101. [else ((super type-check-exp env) e)])))
  14102. ))
  14103. \end{lstlisting}
  14104. \caption{Type checker for the \LangAny{} language, part 2.}
  14105. \label{fig:type-check-Rany-part-2}
  14106. \end{figure}
  14107. \begin{figure}[tbp]
  14108. \begin{lstlisting}
  14109. (define/override (operator-types)
  14110. (append
  14111. '((integer? . ((Any) . Boolean))
  14112. (vector? . ((Any) . Boolean))
  14113. (procedure? . ((Any) . Boolean))
  14114. (void? . ((Any) . Boolean))
  14115. (tag-of-any . ((Any) . Integer))
  14116. (make-any . ((_ Integer) . Any))
  14117. )
  14118. (super operator-types)))
  14119. (define/public (type-predicates)
  14120. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  14121. (define/public (combine-types t1 t2)
  14122. (match (list t1 t2)
  14123. [(list '_ t2) t2]
  14124. [(list t1 '_) t1]
  14125. [(list `(Vector ,ts1 ...)
  14126. `(Vector ,ts2 ...))
  14127. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  14128. (combine-types t1 t2)))]
  14129. [(list `(,ts1 ... -> ,rt1)
  14130. `(,ts2 ... -> ,rt2))
  14131. `(,@(for/list ([t1 ts1] [t2 ts2])
  14132. (combine-types t1 t2))
  14133. -> ,(combine-types rt1 rt2))]
  14134. [else t1]))
  14135. (define/public (flat-ty? ty)
  14136. (match ty
  14137. [(or `Integer `Boolean '_ `Void) #t]
  14138. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  14139. [`(,ts ... -> ,rt)
  14140. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  14141. [else #f]))
  14142. \end{lstlisting}
  14143. \caption{Auxiliary methods for type checking \LangAny{}.}
  14144. \label{fig:type-check-Rany-aux}
  14145. \end{figure}
  14146. \begin{figure}[btp]
  14147. \begin{lstlisting}
  14148. (define interp-Rany_class
  14149. (class interp-Rlambda_class
  14150. (super-new)
  14151. (define/override (interp-op op)
  14152. (match op
  14153. ['boolean? (match-lambda
  14154. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  14155. [else #f])]
  14156. ['integer? (match-lambda
  14157. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  14158. [else #f])]
  14159. ['vector? (match-lambda
  14160. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  14161. [else #f])]
  14162. ['procedure? (match-lambda
  14163. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  14164. [else #f])]
  14165. ['eq? (match-lambda*
  14166. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  14167. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  14168. [ls (apply (super interp-op op) ls)])]
  14169. ['any-vector-ref (lambda (v i)
  14170. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  14171. ['any-vector-set! (lambda (v i a)
  14172. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  14173. ['any-vector-length (lambda (v)
  14174. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  14175. [else (super interp-op op)]))
  14176. (define/override ((interp-exp env) e)
  14177. (define recur (interp-exp env))
  14178. (match e
  14179. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  14180. [(Project e ty2) (apply-project (recur e) ty2)]
  14181. [else ((super interp-exp env) e)]))
  14182. ))
  14183. (define (interp-Rany p)
  14184. (send (new interp-Rany_class) interp-program p))
  14185. \end{lstlisting}
  14186. \caption{Interpreter for \LangAny{}.}
  14187. \label{fig:interp-Rany}
  14188. \end{figure}
  14189. \begin{figure}[tbp]
  14190. \begin{lstlisting}
  14191. (define/public (apply-inject v tg) (Tagged v tg))
  14192. (define/public (apply-project v ty2)
  14193. (define tag2 (any-tag ty2))
  14194. (match v
  14195. [(Tagged v1 tag1)
  14196. (cond
  14197. [(eq? tag1 tag2)
  14198. (match ty2
  14199. [`(Vector ,ts ...)
  14200. (define l1 ((interp-op 'vector-length) v1))
  14201. (cond
  14202. [(eq? l1 (length ts)) v1]
  14203. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  14204. l1 (length ts))])]
  14205. [`(,ts ... -> ,rt)
  14206. (match v1
  14207. [`(function ,xs ,body ,env)
  14208. (cond [(eq? (length xs) (length ts)) v1]
  14209. [else
  14210. (error 'apply-project "arity mismatch ~a != ~a"
  14211. (length xs) (length ts))])]
  14212. [else (error 'apply-project "expected function not ~a" v1)])]
  14213. [else v1])]
  14214. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  14215. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  14216. \end{lstlisting}
  14217. \caption{Auxiliary functions for injection and projection.}
  14218. \label{fig:apply-project}
  14219. \end{figure}
  14220. \clearpage
  14221. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  14222. \label{sec:compile-r7}
  14223. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  14224. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  14225. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  14226. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  14227. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  14228. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  14229. the Boolean \code{\#t}, which must be injected to produce an
  14230. expression of type \key{Any}.
  14231. %
  14232. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  14233. addition, is representative of compilation for many primitive
  14234. operations: the arguments have type \key{Any} and must be projected to
  14235. \key{Integer} before the addition can be performed.
  14236. The compilation of \key{lambda} (third row of
  14237. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  14238. produce type annotations: we simply use \key{Any}.
  14239. %
  14240. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  14241. has to account for some differences in behavior between \LangDyn{} and
  14242. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  14243. kind of values can be used in various places. For example, the
  14244. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  14245. the arguments need not be of the same type (in that case the
  14246. result is \code{\#f}).
  14247. \begin{figure}[btp]
  14248. \centering
  14249. \begin{tabular}{|lll|} \hline
  14250. \begin{minipage}{0.27\textwidth}
  14251. \begin{lstlisting}
  14252. #t
  14253. \end{lstlisting}
  14254. \end{minipage}
  14255. &
  14256. $\Rightarrow$
  14257. &
  14258. \begin{minipage}{0.65\textwidth}
  14259. \begin{lstlisting}
  14260. (inject #t Boolean)
  14261. \end{lstlisting}
  14262. \end{minipage}
  14263. \\[2ex]\hline
  14264. \begin{minipage}{0.27\textwidth}
  14265. \begin{lstlisting}
  14266. (+ |$e_1$| |$e_2$|)
  14267. \end{lstlisting}
  14268. \end{minipage}
  14269. &
  14270. $\Rightarrow$
  14271. &
  14272. \begin{minipage}{0.65\textwidth}
  14273. \begin{lstlisting}
  14274. (inject
  14275. (+ (project |$e'_1$| Integer)
  14276. (project |$e'_2$| Integer))
  14277. Integer)
  14278. \end{lstlisting}
  14279. \end{minipage}
  14280. \\[2ex]\hline
  14281. \begin{minipage}{0.27\textwidth}
  14282. \begin{lstlisting}
  14283. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  14284. \end{lstlisting}
  14285. \end{minipage}
  14286. &
  14287. $\Rightarrow$
  14288. &
  14289. \begin{minipage}{0.65\textwidth}
  14290. \begin{lstlisting}
  14291. (inject
  14292. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  14293. (Any|$\ldots$|Any -> Any))
  14294. \end{lstlisting}
  14295. \end{minipage}
  14296. \\[2ex]\hline
  14297. \begin{minipage}{0.27\textwidth}
  14298. \begin{lstlisting}
  14299. (|$e_0$| |$e_1 \ldots e_n$|)
  14300. \end{lstlisting}
  14301. \end{minipage}
  14302. &
  14303. $\Rightarrow$
  14304. &
  14305. \begin{minipage}{0.65\textwidth}
  14306. \begin{lstlisting}
  14307. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  14308. \end{lstlisting}
  14309. \end{minipage}
  14310. \\[2ex]\hline
  14311. \begin{minipage}{0.27\textwidth}
  14312. \begin{lstlisting}
  14313. (vector-ref |$e_1$| |$e_2$|)
  14314. \end{lstlisting}
  14315. \end{minipage}
  14316. &
  14317. $\Rightarrow$
  14318. &
  14319. \begin{minipage}{0.65\textwidth}
  14320. \begin{lstlisting}
  14321. (any-vector-ref |$e_1'$| |$e_2'$|)
  14322. \end{lstlisting}
  14323. \end{minipage}
  14324. \\[2ex]\hline
  14325. \begin{minipage}{0.27\textwidth}
  14326. \begin{lstlisting}
  14327. (if |$e_1$| |$e_2$| |$e_3$|)
  14328. \end{lstlisting}
  14329. \end{minipage}
  14330. &
  14331. $\Rightarrow$
  14332. &
  14333. \begin{minipage}{0.65\textwidth}
  14334. \begin{lstlisting}
  14335. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  14336. \end{lstlisting}
  14337. \end{minipage}
  14338. \\[2ex]\hline
  14339. \begin{minipage}{0.27\textwidth}
  14340. \begin{lstlisting}
  14341. (eq? |$e_1$| |$e_2$|)
  14342. \end{lstlisting}
  14343. \end{minipage}
  14344. &
  14345. $\Rightarrow$
  14346. &
  14347. \begin{minipage}{0.65\textwidth}
  14348. \begin{lstlisting}
  14349. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  14350. \end{lstlisting}
  14351. \end{minipage}
  14352. \\[2ex]\hline
  14353. \begin{minipage}{0.27\textwidth}
  14354. \begin{lstlisting}
  14355. (not |$e_1$|)
  14356. \end{lstlisting}
  14357. \end{minipage}
  14358. &
  14359. $\Rightarrow$
  14360. &
  14361. \begin{minipage}{0.65\textwidth}
  14362. \begin{lstlisting}
  14363. (if (eq? |$e'_1$| (inject #f Boolean))
  14364. (inject #t Boolean) (inject #f Boolean))
  14365. \end{lstlisting}
  14366. \end{minipage}
  14367. \\[2ex]\hline
  14368. \end{tabular}
  14369. \caption{Cast Insertion}
  14370. \label{fig:compile-r7-Rany}
  14371. \end{figure}
  14372. \section{Reveal Casts}
  14373. \label{sec:reveal-casts-Rany}
  14374. % TODO: define R'_6
  14375. In the \code{reveal-casts} pass we recommend compiling \code{project}
  14376. into an \code{if} expression that checks whether the value's tag
  14377. matches the target type; if it does, the value is converted to a value
  14378. of the target type by removing the tag; if it does not, the program
  14379. exits. To perform these actions we need a new primitive operation,
  14380. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  14381. The \code{tag-of-any} operation retrieves the type tag from a tagged
  14382. value of type \code{Any}. The \code{ValueOf} form retrieves the
  14383. underlying value from a tagged value. The \code{ValueOf} form
  14384. includes the type for the underlying value which is used by the type
  14385. checker. Finally, the \code{Exit} form ends the execution of the
  14386. program.
  14387. If the target type of the projection is \code{Boolean} or
  14388. \code{Integer}, then \code{Project} can be translated as follows.
  14389. \begin{center}
  14390. \begin{minipage}{1.0\textwidth}
  14391. \begin{lstlisting}
  14392. (Project |$e$| |$\FType$|)
  14393. |$\Rightarrow$|
  14394. (Let |$\itm{tmp}$| |$e'$|
  14395. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  14396. (Int |$\itm{tagof}(\FType)$|)))
  14397. (ValueOf |$\itm{tmp}$| |$\FType$|)
  14398. (Exit)))
  14399. \end{lstlisting}
  14400. \end{minipage}
  14401. \end{center}
  14402. If the target type of the projection is a vector or function type,
  14403. then there is a bit more work to do. For vectors, check that the
  14404. length of the vector type matches the length of the vector (using the
  14405. \code{vector-length} primitive). For functions, check that the number
  14406. of parameters in the function type matches the function's arity (using
  14407. \code{procedure-arity}).
  14408. Regarding \code{inject}, we recommend compiling it to a slightly
  14409. lower-level primitive operation named \code{make-any}. This operation
  14410. takes a tag instead of a type.
  14411. \begin{center}
  14412. \begin{minipage}{1.0\textwidth}
  14413. \begin{lstlisting}
  14414. (Inject |$e$| |$\FType$|)
  14415. |$\Rightarrow$|
  14416. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  14417. \end{lstlisting}
  14418. \end{minipage}
  14419. \end{center}
  14420. The type predicates (\code{boolean?}, etc.) can be translated into
  14421. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  14422. translation of \code{Project}.
  14423. The \code{any-vector-ref} and \code{any-vector-set!} operations
  14424. combine the projection action with the vector operation. Also, the
  14425. read and write operations allow arbitrary expressions for the index so
  14426. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  14427. cannot guarantee that the index is within bounds. Thus, we insert code
  14428. to perform bounds checking at runtime. The translation for
  14429. \code{any-vector-ref} is as follows and the other two operations are
  14430. translated in a similar way.
  14431. \begin{lstlisting}
  14432. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  14433. |$\Rightarrow$|
  14434. (Let |$v$| |$e'_1$|
  14435. (Let |$i$| |$e'_2$|
  14436. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  14437. (If (Prim '< (list (Var |$i$|)
  14438. (Prim 'any-vector-length (list (Var |$v$|)))))
  14439. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  14440. (Exit))))
  14441. \end{lstlisting}
  14442. \section{Remove Complex Operands}
  14443. \label{sec:rco-Rany}
  14444. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  14445. The subexpression of \code{ValueOf} must be atomic.
  14446. \section{Explicate Control and \LangCAny{}}
  14447. \label{sec:explicate-Rany}
  14448. The output of \code{explicate\_control} is the \LangCAny{} language whose
  14449. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  14450. form that we added to \LangAny{} remains an expression and the \code{Exit}
  14451. expression becomes a $\Tail$. Also, note that the index argument of
  14452. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  14453. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  14454. \begin{figure}[tp]
  14455. \fbox{
  14456. \begin{minipage}{0.96\textwidth}
  14457. \small
  14458. \[
  14459. \begin{array}{lcl}
  14460. \Exp &::= & \ldots
  14461. \MID \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  14462. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  14463. &\MID& \VALUEOF{\Exp}{\FType} \\
  14464. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  14465. \MID \LP\key{Collect} \,\itm{int}\RP }\\
  14466. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  14467. \MID \GOTO{\itm{label}} } \\
  14468. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  14469. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  14470. \MID \LP\key{Exit}\RP \\
  14471. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  14472. \LangCAnyM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  14473. \end{array}
  14474. \]
  14475. \end{minipage}
  14476. }
  14477. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  14478. \label{fig:c5-syntax}
  14479. \end{figure}
  14480. \section{Select Instructions}
  14481. \label{sec:select-Rany}
  14482. In the \code{select\_instructions} pass we translate the primitive
  14483. operations on the \code{Any} type to x86 instructions that involve
  14484. manipulating the 3 tag bits of the tagged value.
  14485. \paragraph{Make-any}
  14486. We recommend compiling the \key{make-any} primitive as follows if the
  14487. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  14488. shifts the destination to the left by the number of bits specified its
  14489. source argument (in this case $3$, the length of the tag) and it
  14490. preserves the sign of the integer. We use the \key{orq} instruction to
  14491. combine the tag and the value to form the tagged value. \\
  14492. \begin{lstlisting}
  14493. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  14494. |$\Rightarrow$|
  14495. movq |$e'$|, |\itm{lhs'}|
  14496. salq $3, |\itm{lhs'}|
  14497. orq $|$\itm{tag}$|, |\itm{lhs'}|
  14498. \end{lstlisting}
  14499. The instruction selection for vectors and procedures is different
  14500. because their is no need to shift them to the left. The rightmost 3
  14501. bits are already zeros as described at the beginning of this
  14502. chapter. So we just combine the value and the tag using \key{orq}. \\
  14503. \begin{lstlisting}
  14504. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  14505. |$\Rightarrow$|
  14506. movq |$e'$|, |\itm{lhs'}|
  14507. orq $|$\itm{tag}$|, |\itm{lhs'}|
  14508. \end{lstlisting}
  14509. \paragraph{Tag-of-any}
  14510. Recall that the \code{tag-of-any} operation extracts the type tag from
  14511. a value of type \code{Any}. The type tag is the bottom three bits, so
  14512. we obtain the tag by taking the bitwise-and of the value with $111$
  14513. ($7$ in decimal).
  14514. \begin{lstlisting}
  14515. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  14516. |$\Rightarrow$|
  14517. movq |$e'$|, |\itm{lhs'}|
  14518. andq $7, |\itm{lhs'}|
  14519. \end{lstlisting}
  14520. \paragraph{ValueOf}
  14521. Like \key{make-any}, the instructions for \key{ValueOf} are different
  14522. depending on whether the type $T$ is a pointer (vector or procedure)
  14523. or not (Integer or Boolean). The following shows the instruction
  14524. selection for Integer and Boolean. We produce an untagged value by
  14525. shifting it to the right by 3 bits.
  14526. \begin{lstlisting}
  14527. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  14528. |$\Rightarrow$|
  14529. movq |$e'$|, |\itm{lhs'}|
  14530. sarq $3, |\itm{lhs'}|
  14531. \end{lstlisting}
  14532. %
  14533. In the case for vectors and procedures, there is no need to
  14534. shift. Instead we just need to zero-out the rightmost 3 bits. We
  14535. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  14536. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  14537. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  14538. then apply \code{andq} with the tagged value to get the desired
  14539. result. \\
  14540. \begin{lstlisting}
  14541. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  14542. |$\Rightarrow$|
  14543. movq $|$-8$|, |\itm{lhs'}|
  14544. andq |$e'$|, |\itm{lhs'}|
  14545. \end{lstlisting}
  14546. %% \paragraph{Type Predicates} We leave it to the reader to
  14547. %% devise a sequence of instructions to implement the type predicates
  14548. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  14549. \paragraph{Any-vector-length}
  14550. \begin{lstlisting}
  14551. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  14552. |$\Longrightarrow$|
  14553. movq |$\neg 111$|, %r11
  14554. andq |$a_1'$|, %r11
  14555. movq 0(%r11), %r11
  14556. andq $126, %r11
  14557. sarq $1, %r11
  14558. movq %r11, |$\itm{lhs'}$|
  14559. \end{lstlisting}
  14560. \paragraph{Any-vector-ref}
  14561. The index may be an arbitrary atom so instead of computing the offset
  14562. at compile time, instructions need to be generated to compute the
  14563. offset at runtime as follows. Note the use of the new instruction
  14564. \code{imulq}.
  14565. \begin{center}
  14566. \begin{minipage}{0.96\textwidth}
  14567. \begin{lstlisting}
  14568. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  14569. |$\Longrightarrow$|
  14570. movq |$\neg 111$|, %r11
  14571. andq |$a_1'$|, %r11
  14572. movq |$a_2'$|, %rax
  14573. addq $1, %rax
  14574. imulq $8, %rax
  14575. addq %rax, %r11
  14576. movq 0(%r11) |$\itm{lhs'}$|
  14577. \end{lstlisting}
  14578. \end{minipage}
  14579. \end{center}
  14580. \paragraph{Any-vector-set!}
  14581. The code generation for \code{any-vector-set!} is similar to the other
  14582. \code{any-vector} operations.
  14583. \section{Register Allocation for \LangAny{}}
  14584. \label{sec:register-allocation-Rany}
  14585. \index{subject}{register allocation}
  14586. There is an interesting interaction between tagged values and garbage
  14587. collection that has an impact on register allocation. A variable of
  14588. type \code{Any} might refer to a vector and therefore it might be a
  14589. root that needs to be inspected and copied during garbage
  14590. collection. Thus, we need to treat variables of type \code{Any} in a
  14591. similar way to variables of type \code{Vector} for purposes of
  14592. register allocation. In particular,
  14593. \begin{itemize}
  14594. \item If a variable of type \code{Any} is live during a function call,
  14595. then it must be spilled. This can be accomplished by changing
  14596. \code{build\_interference} to mark all variables of type \code{Any}
  14597. that are live after a \code{callq} as interfering with all the
  14598. registers.
  14599. \item If a variable of type \code{Any} is spilled, it must be spilled
  14600. to the root stack instead of the normal procedure call stack.
  14601. \end{itemize}
  14602. Another concern regarding the root stack is that the garbage collector
  14603. needs to differentiate between (1) plain old pointers to tuples, (2) a
  14604. tagged value that points to a tuple, and (3) a tagged value that is
  14605. not a tuple. We enable this differentiation by choosing not to use the
  14606. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  14607. reserved for identifying plain old pointers to tuples. That way, if
  14608. one of the first three bits is set, then we have a tagged value and
  14609. inspecting the tag can differentiation between vectors ($010$) and the
  14610. other kinds of values.
  14611. \begin{exercise}\normalfont
  14612. Expand your compiler to handle \LangAny{} as discussed in the last few
  14613. sections. Create 5 new programs that use the \code{Any} type and the
  14614. new operations (\code{inject}, \code{project}, \code{boolean?},
  14615. etc.). Test your compiler on these new programs and all of your
  14616. previously created test programs.
  14617. \end{exercise}
  14618. \begin{exercise}\normalfont
  14619. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  14620. Create tests for \LangDyn{} by adapting ten of your previous test programs
  14621. by removing type annotations. Add 5 more tests programs that
  14622. specifically rely on the language being dynamically typed. That is,
  14623. they should not be legal programs in a statically typed language, but
  14624. nevertheless, they should be valid \LangDyn{} programs that run to
  14625. completion without error.
  14626. \end{exercise}
  14627. \begin{figure}[p]
  14628. \begin{tikzpicture}[baseline=(current bounding box.center)]
  14629. \node (Rfun) at (0,4) {\large \LangDyn{}};
  14630. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  14631. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  14632. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  14633. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  14634. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  14635. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  14636. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  14637. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  14638. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  14639. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  14640. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  14641. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  14642. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  14643. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  14644. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  14645. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  14646. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  14647. \path[->,bend left=15] (Rfun) edge [above] node
  14648. {\ttfamily\footnotesize shrink} (Rfun-2);
  14649. \path[->,bend left=15] (Rfun-2) edge [above] node
  14650. {\ttfamily\footnotesize uniquify} (Rfun-3);
  14651. \path[->,bend left=15] (Rfun-3) edge [above] node
  14652. {\ttfamily\footnotesize reveal\_functions} (Rfun-4);
  14653. \path[->,bend right=15] (Rfun-4) edge [left] node
  14654. {\ttfamily\footnotesize cast\_insert} (Rfun-5);
  14655. \path[->,bend left=15] (Rfun-5) edge [above] node
  14656. {\ttfamily\footnotesize check\_bounds} (Rfun-6);
  14657. \path[->,bend left=15] (Rfun-6) edge [left] node
  14658. {\ttfamily\footnotesize reveal\_casts} (Rfun-7);
  14659. \path[->,bend left=15] (Rfun-7) edge [below] node
  14660. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  14661. \path[->,bend right=15] (F1-2) edge [above] node
  14662. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  14663. \path[->,bend right=15] (F1-3) edge [above] node
  14664. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  14665. \path[->,bend right=15] (F1-4) edge [above] node
  14666. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  14667. \path[->,bend right=15] (F1-5) edge [right] node
  14668. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14669. \path[->,bend left=15] (C3-2) edge [left] node
  14670. {\ttfamily\footnotesize select\_instr.} (x86-2);
  14671. \path[->,bend right=15] (x86-2) edge [left] node
  14672. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  14673. \path[->,bend right=15] (x86-2-1) edge [below] node
  14674. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  14675. \path[->,bend right=15] (x86-2-2) edge [left] node
  14676. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  14677. \path[->,bend left=15] (x86-3) edge [above] node
  14678. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  14679. \path[->,bend left=15] (x86-4) edge [right] node
  14680. {\ttfamily\footnotesize print\_x86} (x86-5);
  14681. \end{tikzpicture}
  14682. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  14683. \label{fig:Rdyn-passes}
  14684. \end{figure}
  14685. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  14686. for the compilation of \LangDyn{}.
  14687. % Further Reading
  14688. \fi % racketEd
  14689. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14690. {\if\edition\pythonEd
  14691. \chapter{Objects}
  14692. \label{ch:Robject}
  14693. \index{subject}{objects}
  14694. \index{subject}{classes}
  14695. \fi}
  14696. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14697. \chapter{Gradual Typing}
  14698. \label{ch:Rgrad}
  14699. \index{subject}{gradual typing}
  14700. \if\edition\racketEd
  14701. This chapter studies a language, \LangGrad{}, in which the programmer
  14702. can choose between static and dynamic type checking in different parts
  14703. of a program, thereby mixing the statically typed \LangLoop{} language
  14704. with the dynamically typed \LangDyn{}. There are several approaches to
  14705. mixing static and dynamic typing, including multi-language
  14706. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  14707. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  14708. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  14709. programmer controls the amount of static versus dynamic checking by
  14710. adding or removing type annotations on parameters and
  14711. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  14712. %
  14713. The concrete syntax of \LangGrad{} is defined in
  14714. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  14715. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  14716. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  14717. non-terminals that make type annotations optional. The return types
  14718. are not optional in the abstract syntax; the parser fills in
  14719. \code{Any} when the return type is not specified in the concrete
  14720. syntax.
  14721. \begin{figure}[tp]
  14722. \centering
  14723. \fbox{
  14724. \begin{minipage}{0.96\textwidth}
  14725. \small
  14726. \[
  14727. \begin{array}{lcl}
  14728. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  14729. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  14730. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  14731. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  14732. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  14733. &\MID& \gray{\key{\#t} \MID \key{\#f}
  14734. \MID (\key{and}\;\Exp\;\Exp)
  14735. \MID (\key{or}\;\Exp\;\Exp)
  14736. \MID (\key{not}\;\Exp) } \\
  14737. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  14738. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  14739. (\key{vector-ref}\;\Exp\;\Int)} \\
  14740. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  14741. \MID (\Exp \; \Exp\ldots) } \\
  14742. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  14743. \MID \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  14744. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  14745. \MID \CBEGIN{\Exp\ldots}{\Exp}
  14746. \MID \CWHILE{\Exp}{\Exp} } \\
  14747. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  14748. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  14749. \end{array}
  14750. \]
  14751. \end{minipage}
  14752. }
  14753. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  14754. \label{fig:Rgrad-concrete-syntax}
  14755. \end{figure}
  14756. \begin{figure}[tp]
  14757. \centering
  14758. \fbox{
  14759. \begin{minipage}{0.96\textwidth}
  14760. \small
  14761. \[
  14762. \begin{array}{lcl}
  14763. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  14764. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  14765. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  14766. &\MID& \gray{ \BOOL{\itm{bool}}
  14767. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  14768. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  14769. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  14770. &\MID& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  14771. &\MID& \gray{ \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  14772. &\MID& \gray{ \WHILE{\Exp}{\Exp} } \\
  14773. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  14774. \LangGradM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  14775. \end{array}
  14776. \]
  14777. \end{minipage}
  14778. }
  14779. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-syntax}).}
  14780. \label{fig:Rgrad-syntax}
  14781. \end{figure}
  14782. Both the type checker and the interpreter for \LangGrad{} require some
  14783. interesting changes to enable gradual typing, which we discuss in the
  14784. next two sections in the context of the \code{map-vec} example from
  14785. Chapter~\ref{ch:Rfun}. In Figure~\ref{fig:gradual-map-vec} we
  14786. revised the \code{map-vec} example, omitting the type annotations from
  14787. the \code{add1} function.
  14788. \begin{figure}[btp]
  14789. % gradual_test_9.rkt
  14790. \begin{lstlisting}
  14791. (define (map-vec [f : (Integer -> Integer)]
  14792. [v : (Vector Integer Integer)])
  14793. : (Vector Integer Integer)
  14794. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14795. (define (add1 x) (+ x 1))
  14796. (vector-ref (map-vec add1 (vector 0 41)) 1)
  14797. \end{lstlisting}
  14798. \caption{A partially-typed version of the \code{map-vec} example.}
  14799. \label{fig:gradual-map-vec}
  14800. \end{figure}
  14801. \section{Type Checking \LangGrad{} and \LangCast{}}
  14802. \label{sec:gradual-type-check}
  14803. The type checker for \LangGrad{} uses the \code{Any} type for missing
  14804. parameter and return types. For example, the \code{x} parameter of
  14805. \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
  14806. \code{Any} and the return type of \code{add1} is \code{Any}. Next
  14807. consider the \code{+} operator inside \code{add1}. It expects both
  14808. arguments to have type \code{Integer}, but its first argument \code{x}
  14809. has type \code{Any}. In a gradually typed language, such differences
  14810. are allowed so long as the types are \emph{consistent}, that is, they
  14811. are equal except in places where there is an \code{Any} type. The type
  14812. \code{Any} is consistent with every other type.
  14813. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  14814. \begin{figure}[tbp]
  14815. \begin{lstlisting}
  14816. (define/public (consistent? t1 t2)
  14817. (match* (t1 t2)
  14818. [('Integer 'Integer) #t]
  14819. [('Boolean 'Boolean) #t]
  14820. [('Void 'Void) #t]
  14821. [('Any t2) #t]
  14822. [(t1 'Any) #t]
  14823. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  14824. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  14825. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  14826. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  14827. (consistent? rt1 rt2))]
  14828. [(other wise) #f]))
  14829. \end{lstlisting}
  14830. \caption{The consistency predicate on types.}
  14831. \label{fig:consistent}
  14832. \end{figure}
  14833. Returning to the \code{map-vec} example of
  14834. Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
  14835. \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
  14836. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  14837. because the two types are consistent. In particular, \code{->} is
  14838. equal to \code{->} and because \code{Any} is consistent with
  14839. \code{Integer}.
  14840. Next consider a program with an error, such as applying the
  14841. \code{map-vec} to a function that sometimes returns a Boolean, as
  14842. shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
  14843. \LangGrad{} accepts this program because the type of \code{maybe-add1} is
  14844. consistent with the type of parameter \code{f} of \code{map-vec}, that
  14845. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  14846. Integer)}. One might say that a gradual type checker is optimistic
  14847. in that it accepts programs that might execute without a runtime type
  14848. error.
  14849. %
  14850. Unfortunately, running this program with input \code{1} triggers an
  14851. error when the \code{maybe-add1} function returns \code{\#t}. \LangGrad{}
  14852. performs checking at runtime to ensure the integrity of the static
  14853. types, such as the \code{(Integer -> Integer)} annotation on parameter
  14854. \code{f} of \code{map-vec}. This runtime checking is carried out by a
  14855. new \code{Cast} form that is inserted by the type checker. Thus, the
  14856. output of the type checker is a program in the \LangCast{} language, which
  14857. adds \code{Cast} to \LangLoop{}, as shown in
  14858. Figure~\ref{fig:Rgrad-prime-syntax}.
  14859. \begin{figure}[tp]
  14860. \centering
  14861. \fbox{
  14862. \begin{minipage}{0.96\textwidth}
  14863. \small
  14864. \[
  14865. \begin{array}{lcl}
  14866. \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  14867. \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  14868. \end{array}
  14869. \]
  14870. \end{minipage}
  14871. }
  14872. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-syntax}).}
  14873. \label{fig:Rgrad-prime-syntax}
  14874. \end{figure}
  14875. \begin{figure}[tbp]
  14876. \begin{lstlisting}
  14877. (define (map-vec [f : (Integer -> Integer)]
  14878. [v : (Vector Integer Integer)])
  14879. : (Vector Integer Integer)
  14880. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14881. (define (add1 x) (+ x 1))
  14882. (define (true) #t)
  14883. (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
  14884. (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
  14885. \end{lstlisting}
  14886. \caption{A variant of the \code{map-vec} example with an error.}
  14887. \label{fig:map-vec-maybe-add1}
  14888. \end{figure}
  14889. Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
  14890. \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
  14891. inserted every time the type checker sees two types that are
  14892. consistent but not equal. In the \code{add1} function, \code{x} is
  14893. cast to \code{Integer} and the result of the \code{+} is cast to
  14894. \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
  14895. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  14896. \begin{figure}[btp]
  14897. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14898. (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  14899. : (Vector Integer Integer)
  14900. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14901. (define (add1 [x : Any]) : Any
  14902. (cast (+ (cast x Any Integer) 1) Integer Any))
  14903. (define (true) : Any (cast #t Boolean Any))
  14904. (define (maybe-add1 [x : Any]) : Any
  14905. (if (eq? 0 (read)) (add1 x) (true)))
  14906. (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
  14907. (vector 0 41)) 0)
  14908. \end{lstlisting}
  14909. \caption{Output of type checking \code{map-vec}
  14910. and \code{maybe-add1}.}
  14911. \label{fig:map-vec-cast}
  14912. \end{figure}
  14913. The type checker for \LangGrad{} is defined in
  14914. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  14915. and \ref{fig:type-check-Rgradual-3}.
  14916. \begin{figure}[tbp]
  14917. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14918. (define type-check-gradual_class
  14919. (class type-check-Rwhile_class
  14920. (super-new)
  14921. (inherit operator-types type-predicates)
  14922. (define/override (type-check-exp env)
  14923. (lambda (e)
  14924. (define recur (type-check-exp env))
  14925. (match e
  14926. [(Prim 'vector-length (list e1))
  14927. (define-values (e1^ t) (recur e1))
  14928. (match t
  14929. [`(Vector ,ts ...)
  14930. (values (Prim 'vector-length (list e1^)) 'Integer)]
  14931. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  14932. [(Prim 'vector-ref (list e1 e2))
  14933. (define-values (e1^ t1) (recur e1))
  14934. (define-values (e2^ t2) (recur e2))
  14935. (check-consistent? t2 'Integer e)
  14936. (match t1
  14937. [`(Vector ,ts ...)
  14938. (match e2^
  14939. [(Int i)
  14940. (unless (and (0 . <= . i) (i . < . (length ts)))
  14941. (error 'type-check "invalid index ~a in ~a" i e))
  14942. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  14943. [else (define e1^^ (make-cast e1^ t1 'Any))
  14944. (define e2^^ (make-cast e2^ t2 'Integer))
  14945. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  14946. ['Any
  14947. (define e2^^ (make-cast e2^ t2 'Integer))
  14948. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  14949. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  14950. [(Prim 'vector-set! (list e1 e2 e3) )
  14951. (define-values (e1^ t1) (recur e1))
  14952. (define-values (e2^ t2) (recur e2))
  14953. (define-values (e3^ t3) (recur e3))
  14954. (check-consistent? t2 'Integer e)
  14955. (match t1
  14956. [`(Vector ,ts ...)
  14957. (match e2^
  14958. [(Int i)
  14959. (unless (and (0 . <= . i) (i . < . (length ts)))
  14960. (error 'type-check "invalid index ~a in ~a" i e))
  14961. (check-consistent? (list-ref ts i) t3 e)
  14962. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  14963. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  14964. [else
  14965. (define e1^^ (make-cast e1^ t1 'Any))
  14966. (define e2^^ (make-cast e2^ t2 'Integer))
  14967. (define e3^^ (make-cast e3^ t3 'Any))
  14968. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  14969. ['Any
  14970. (define e2^^ (make-cast e2^ t2 'Integer))
  14971. (define e3^^ (make-cast e3^ t3 'Any))
  14972. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  14973. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  14974. \end{lstlisting}
  14975. \caption{Type checker for the \LangGrad{} language, part 1.}
  14976. \label{fig:type-check-Rgradual-1}
  14977. \end{figure}
  14978. \begin{figure}[tbp]
  14979. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14980. [(Prim 'eq? (list e1 e2))
  14981. (define-values (e1^ t1) (recur e1))
  14982. (define-values (e2^ t2) (recur e2))
  14983. (check-consistent? t1 t2 e)
  14984. (define T (meet t1 t2))
  14985. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  14986. 'Boolean)]
  14987. [(Prim 'not (list e1))
  14988. (define-values (e1^ t1) (recur e1))
  14989. (match t1
  14990. ['Any
  14991. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  14992. (Bool #t) (Bool #f)))]
  14993. [else
  14994. (define-values (t-ret new-es^)
  14995. (type-check-op 'not (list t1) (list e1^) e))
  14996. (values (Prim 'not new-es^) t-ret)])]
  14997. [(Prim 'and (list e1 e2))
  14998. (recur (If e1 e2 (Bool #f)))]
  14999. [(Prim 'or (list e1 e2))
  15000. (define tmp (gensym 'tmp))
  15001. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  15002. [(Prim op es)
  15003. #:when (not (set-member? explicit-prim-ops op))
  15004. (define-values (new-es ts)
  15005. (for/lists (exprs types) ([e es])
  15006. (recur e)))
  15007. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  15008. (values (Prim op new-es^) t-ret)]
  15009. [(If e1 e2 e3)
  15010. (define-values (e1^ T1) (recur e1))
  15011. (define-values (e2^ T2) (recur e2))
  15012. (define-values (e3^ T3) (recur e3))
  15013. (check-consistent? T2 T3 e)
  15014. (match T1
  15015. ['Boolean
  15016. (define Tif (join T2 T3))
  15017. (values (If e1^ (make-cast e2^ T2 Tif)
  15018. (make-cast e3^ T3 Tif)) Tif)]
  15019. ['Any
  15020. (define Tif (meet T2 T3))
  15021. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  15022. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  15023. Tif)]
  15024. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  15025. [(HasType e1 T)
  15026. (define-values (e1^ T1) (recur e1))
  15027. (check-consistent? T1 T)
  15028. (values (make-cast e1^ T1 T) T)]
  15029. [(SetBang x e1)
  15030. (define-values (e1^ T1) (recur e1))
  15031. (define varT (dict-ref env x))
  15032. (check-consistent? T1 varT e)
  15033. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  15034. [(WhileLoop e1 e2)
  15035. (define-values (e1^ T1) (recur e1))
  15036. (check-consistent? T1 'Boolean e)
  15037. (define-values (e2^ T2) ((type-check-exp env) e2))
  15038. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  15039. \end{lstlisting}
  15040. \caption{Type checker for the \LangGrad{} language, part 2.}
  15041. \label{fig:type-check-Rgradual-2}
  15042. \end{figure}
  15043. \begin{figure}[tbp]
  15044. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  15045. [(Apply e1 e2s)
  15046. (define-values (e1^ T1) (recur e1))
  15047. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  15048. (match T1
  15049. [`(,T1ps ... -> ,T1rt)
  15050. (for ([T2 T2s] [Tp T1ps])
  15051. (check-consistent? T2 Tp e))
  15052. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  15053. (make-cast e2 src tgt)))
  15054. (values (Apply e1^ e2s^^) T1rt)]
  15055. [`Any
  15056. (define e1^^ (make-cast e1^ 'Any
  15057. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  15058. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  15059. (make-cast e2 src 'Any)))
  15060. (values (Apply e1^^ e2s^^) 'Any)]
  15061. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  15062. [(Lambda params Tr e1)
  15063. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  15064. (match p
  15065. [`[,x : ,T] (values x T)]
  15066. [(? symbol? x) (values x 'Any)])))
  15067. (define-values (e1^ T1)
  15068. ((type-check-exp (append (map cons xs Ts) env)) e1))
  15069. (check-consistent? Tr T1 e)
  15070. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  15071. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  15072. [else ((super type-check-exp env) e)]
  15073. )))
  15074. \end{lstlisting}
  15075. \caption{Type checker for the \LangGrad{} language, part 3.}
  15076. \label{fig:type-check-Rgradual-3}
  15077. \end{figure}
  15078. \begin{figure}[tbp]
  15079. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  15080. (define/public (join t1 t2)
  15081. (match* (t1 t2)
  15082. [('Integer 'Integer) 'Integer]
  15083. [('Boolean 'Boolean) 'Boolean]
  15084. [('Void 'Void) 'Void]
  15085. [('Any t2) t2]
  15086. [(t1 'Any) t1]
  15087. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  15088. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  15089. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  15090. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  15091. -> ,(join rt1 rt2))]))
  15092. (define/public (meet t1 t2)
  15093. (match* (t1 t2)
  15094. [('Integer 'Integer) 'Integer]
  15095. [('Boolean 'Boolean) 'Boolean]
  15096. [('Void 'Void) 'Void]
  15097. [('Any t2) 'Any]
  15098. [(t1 'Any) 'Any]
  15099. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  15100. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  15101. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  15102. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  15103. -> ,(meet rt1 rt2))]))
  15104. (define/public (make-cast e src tgt)
  15105. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  15106. (define/public (check-consistent? t1 t2 e)
  15107. (unless (consistent? t1 t2)
  15108. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  15109. (define/override (type-check-op op arg-types args e)
  15110. (match (dict-ref (operator-types) op)
  15111. [`(,param-types . ,return-type)
  15112. (for ([at arg-types] [pt param-types])
  15113. (check-consistent? at pt e))
  15114. (values return-type
  15115. (for/list ([e args] [s arg-types] [t param-types])
  15116. (make-cast e s t)))]
  15117. [else (error 'type-check-op "unrecognized ~a" op)]))
  15118. (define explicit-prim-ops
  15119. (set-union
  15120. (type-predicates)
  15121. (set 'procedure-arity 'eq?
  15122. 'vector 'vector-length 'vector-ref 'vector-set!
  15123. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  15124. (define/override (fun-def-type d)
  15125. (match d
  15126. [(Def f params rt info body)
  15127. (define ps
  15128. (for/list ([p params])
  15129. (match p
  15130. [`[,x : ,T] T]
  15131. [(? symbol?) 'Any]
  15132. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  15133. `(,@ps -> ,rt)]
  15134. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  15135. \end{lstlisting}
  15136. \caption{Auxiliary functions for type checking \LangGrad{}.}
  15137. \label{fig:type-check-Rgradual-aux}
  15138. \end{figure}
  15139. \clearpage
  15140. \section{Interpreting \LangCast{}}
  15141. \label{sec:interp-casts}
  15142. The runtime behavior of first-order casts is straightforward, that is,
  15143. casts involving simple types such as \code{Integer} and
  15144. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  15145. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  15146. puts the integer into a tagged value
  15147. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  15148. \code{Integer} is accomplished with the \code{Project} operator, that
  15149. is, by checking the value's tag and either retrieving the underlying
  15150. integer or signaling an error if it the tag is not the one for
  15151. integers (Figure~\ref{fig:apply-project}).
  15152. %
  15153. Things get more interesting for higher-order casts, that is, casts
  15154. involving function or vector types.
  15155. Consider the cast of the function \code{maybe-add1} from \code{(Any ->
  15156. Any)} to \code{(Integer -> Integer)}. When a function flows through
  15157. this cast at runtime, we can't know in general whether the function
  15158. will always return an integer.\footnote{Predicting the return value of
  15159. a function is equivalent to the halting problem, which is
  15160. undecidable.} The \LangCast{} interpreter therefore delays the checking
  15161. of the cast until the function is applied. This is accomplished by
  15162. wrapping \code{maybe-add1} in a new function that casts its parameter
  15163. from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
  15164. casts the return value from \code{Any} to \code{Integer}.
  15165. Turning our attention to casts involving vector types, we consider the
  15166. example in Figure~\ref{fig:map-vec-bang} that defines a
  15167. partially-typed version of \code{map-vec} whose parameter \code{v} has
  15168. type \code{(Vector Any Any)} and that updates \code{v} in place
  15169. instead of returning a new vector. So we name this function
  15170. \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
  15171. the type checker inserts a cast from \code{(Vector Integer Integer)}
  15172. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  15173. cast between vector types would be a build a new vector whose elements
  15174. are the result of casting each of the original elements to the
  15175. appropriate target type. However, this approach is only valid for
  15176. immutable vectors; and our vectors are mutable. In the example of
  15177. Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
  15178. the updates inside of \code{map-vec!} would happen to the new vector
  15179. and not the original one.
  15180. \begin{figure}[tbp]
  15181. % gradual_test_11.rkt
  15182. \begin{lstlisting}
  15183. (define (map-vec! [f : (Any -> Any)]
  15184. [v : (Vector Any Any)]) : Void
  15185. (begin
  15186. (vector-set! v 0 (f (vector-ref v 0)))
  15187. (vector-set! v 1 (f (vector-ref v 1)))))
  15188. (define (add1 x) (+ x 1))
  15189. (let ([v (vector 0 41)])
  15190. (begin (map-vec! add1 v) (vector-ref v 1)))
  15191. \end{lstlisting}
  15192. \caption{An example involving casts on vectors.}
  15193. \label{fig:map-vec-bang}
  15194. \end{figure}
  15195. Instead the interpreter needs to create a new kind of value, a
  15196. \emph{vector proxy}, that intercepts every vector operation. On a
  15197. read, the proxy reads from the underlying vector and then applies a
  15198. cast to the resulting value. On a write, the proxy casts the argument
  15199. value and then performs the write to the underlying vector. For the
  15200. first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
  15201. \code{0} from \code{Integer} to \code{Any}. For the first
  15202. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  15203. to \code{Integer}.
  15204. The final category of cast that we need to consider are casts between
  15205. the \code{Any} type and either a function or a vector
  15206. type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
  15207. in which parameter \code{v} does not have a type annotation, so it is
  15208. given type \code{Any}. In the call to \code{map-vec!}, the vector has
  15209. type \code{(Vector Integer Integer)} so the type checker inserts a
  15210. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  15211. thought is to use \code{Inject}, but that doesn't work because
  15212. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  15213. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  15214. to \code{Any}.
  15215. \begin{figure}[tbp]
  15216. \begin{lstlisting}
  15217. (define (map-vec! [f : (Any -> Any)] v) : Void
  15218. (begin
  15219. (vector-set! v 0 (f (vector-ref v 0)))
  15220. (vector-set! v 1 (f (vector-ref v 1)))))
  15221. (define (add1 x) (+ x 1))
  15222. (let ([v (vector 0 41)])
  15223. (begin (map-vec! add1 v) (vector-ref v 1)))
  15224. \end{lstlisting}
  15225. \caption{Casting a vector to \code{Any}.}
  15226. \label{fig:map-vec-any}
  15227. \end{figure}
  15228. The \LangCast{} interpreter uses an auxiliary function named
  15229. \code{apply-cast} to cast a value from a source type to a target type,
  15230. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  15231. of the kinds of casts that we've discussed in this section.
  15232. \begin{figure}[tbp]
  15233. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15234. (define/public (apply-cast v s t)
  15235. (match* (s t)
  15236. [(t1 t2) #:when (equal? t1 t2) v]
  15237. [('Any t2)
  15238. (match t2
  15239. [`(,ts ... -> ,rt)
  15240. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  15241. (define v^ (apply-project v any->any))
  15242. (apply-cast v^ any->any `(,@ts -> ,rt))]
  15243. [`(Vector ,ts ...)
  15244. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  15245. (define v^ (apply-project v vec-any))
  15246. (apply-cast v^ vec-any `(Vector ,@ts))]
  15247. [else (apply-project v t2)])]
  15248. [(t1 'Any)
  15249. (match t1
  15250. [`(,ts ... -> ,rt)
  15251. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  15252. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  15253. (apply-inject v^ (any-tag any->any))]
  15254. [`(Vector ,ts ...)
  15255. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  15256. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  15257. (apply-inject v^ (any-tag vec-any))]
  15258. [else (apply-inject v (any-tag t1))])]
  15259. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  15260. (define x (gensym 'x))
  15261. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  15262. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  15263. (define cast-writes
  15264. (for/list ([t1 ts1] [t2 ts2])
  15265. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  15266. `(vector-proxy ,(vector v (apply vector cast-reads)
  15267. (apply vector cast-writes)))]
  15268. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  15269. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  15270. `(function ,xs ,(Cast
  15271. (Apply (Value v)
  15272. (for/list ([x xs][t1 ts1][t2 ts2])
  15273. (Cast (Var x) t2 t1)))
  15274. rt1 rt2) ())]
  15275. ))
  15276. \end{lstlisting}
  15277. \caption{The \code{apply-cast} auxiliary method.}
  15278. \label{fig:apply-cast}
  15279. \end{figure}
  15280. The interpreter for \LangCast{} is defined in
  15281. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  15282. dispatching to \code{apply-cast}. To handle the addition of vector
  15283. proxies, we update the vector primitives in \code{interp-op} using the
  15284. functions in Figure~\ref{fig:guarded-vector}.
  15285. \begin{figure}[tbp]
  15286. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15287. (define interp-Rcast_class
  15288. (class interp-Rwhile_class
  15289. (super-new)
  15290. (inherit apply-fun apply-inject apply-project)
  15291. (define/override (interp-op op)
  15292. (match op
  15293. ['vector-length guarded-vector-length]
  15294. ['vector-ref guarded-vector-ref]
  15295. ['vector-set! guarded-vector-set!]
  15296. ['any-vector-ref (lambda (v i)
  15297. (match v [`(tagged ,v^ ,tg)
  15298. (guarded-vector-ref v^ i)]))]
  15299. ['any-vector-set! (lambda (v i a)
  15300. (match v [`(tagged ,v^ ,tg)
  15301. (guarded-vector-set! v^ i a)]))]
  15302. ['any-vector-length (lambda (v)
  15303. (match v [`(tagged ,v^ ,tg)
  15304. (guarded-vector-length v^)]))]
  15305. [else (super interp-op op)]
  15306. ))
  15307. (define/override ((interp-exp env) e)
  15308. (define (recur e) ((interp-exp env) e))
  15309. (match e
  15310. [(Value v) v]
  15311. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  15312. [else ((super interp-exp env) e)]))
  15313. ))
  15314. (define (interp-Rcast p)
  15315. (send (new interp-Rcast_class) interp-program p))
  15316. \end{lstlisting}
  15317. \caption{The interpreter for \LangCast{}.}
  15318. \label{fig:interp-Rcast}
  15319. \end{figure}
  15320. \begin{figure}[tbp]
  15321. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15322. (define (guarded-vector-ref vec i)
  15323. (match vec
  15324. [`(vector-proxy ,proxy)
  15325. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  15326. (define rd (vector-ref (vector-ref proxy 1) i))
  15327. (apply-fun rd (list val) 'guarded-vector-ref)]
  15328. [else (vector-ref vec i)]))
  15329. (define (guarded-vector-set! vec i arg)
  15330. (match vec
  15331. [`(vector-proxy ,proxy)
  15332. (define wr (vector-ref (vector-ref proxy 2) i))
  15333. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  15334. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  15335. [else (vector-set! vec i arg)]))
  15336. (define (guarded-vector-length vec)
  15337. (match vec
  15338. [`(vector-proxy ,proxy)
  15339. (guarded-vector-length (vector-ref proxy 0))]
  15340. [else (vector-length vec)]))
  15341. \end{lstlisting}
  15342. \caption{The guarded-vector auxiliary functions.}
  15343. \label{fig:guarded-vector}
  15344. \end{figure}
  15345. \section{Lower Casts}
  15346. \label{sec:lower-casts}
  15347. The next step in the journey towards x86 is the \code{lower-casts}
  15348. pass that translates the casts in \LangCast{} to the lower-level
  15349. \code{Inject} and \code{Project} operators and a new operator for
  15350. creating vector proxies, extending the \LangLoop{} language to create
  15351. \LangProxy{}. We recommend creating an auxiliary function named
  15352. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  15353. and a target type, and translates it to expression in \LangProxy{} that has
  15354. the same behavior as casting the expression from the source to the
  15355. target type in the interpreter.
  15356. The \code{lower-cast} function can follow a code structure similar to
  15357. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  15358. the interpreter for \LangCast{} because it must handle the same cases as
  15359. \code{apply-cast} and it needs to mimic the behavior of
  15360. \code{apply-cast}. The most interesting cases are those concerning the
  15361. casts between two vector types and between two function types.
  15362. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  15363. type to another vector type is accomplished by creating a proxy that
  15364. intercepts the operations on the underlying vector. Here we make the
  15365. creation of the proxy explicit with the \code{vector-proxy} primitive
  15366. operation. It takes three arguments, the first is an expression for
  15367. the vector, the second is a vector of functions for casting an element
  15368. that is being read from the vector, and the third is a vector of
  15369. functions for casting an element that is being written to the vector.
  15370. You can create the functions using \code{Lambda}. Also, as we shall
  15371. see in the next section, we need to differentiate these vectors from
  15372. the user-created ones, so we recommend using a new primitive operator
  15373. named \code{raw-vector} instead of \code{vector} to create these
  15374. vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
  15375. the output of \code{lower-casts} on the example in
  15376. Figure~\ref{fig:map-vec-bang} that involved casting a vector of
  15377. integers to a vector of \code{Any}.
  15378. \begin{figure}[tbp]
  15379. \begin{lstlisting}
  15380. (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  15381. (begin
  15382. (vector-set! v 0 (f (vector-ref v 0)))
  15383. (vector-set! v 1 (f (vector-ref v 1)))))
  15384. (define (add1 [x : Any]) : Any
  15385. (inject (+ (project x Integer) 1) Integer))
  15386. (let ([v (vector 0 41)])
  15387. (begin
  15388. (map-vec! add1 (vector-proxy v
  15389. (raw-vector (lambda: ([x9 : Integer]) : Any
  15390. (inject x9 Integer))
  15391. (lambda: ([x9 : Integer]) : Any
  15392. (inject x9 Integer)))
  15393. (raw-vector (lambda: ([x9 : Any]) : Integer
  15394. (project x9 Integer))
  15395. (lambda: ([x9 : Any]) : Integer
  15396. (project x9 Integer)))))
  15397. (vector-ref v 1)))
  15398. \end{lstlisting}
  15399. \caption{Output of \code{lower-casts} on the example in
  15400. Figure~\ref{fig:map-vec-bang}.}
  15401. \label{fig:map-vec-bang-lower-cast}
  15402. \end{figure}
  15403. A cast from one function type to another function type is accomplished
  15404. by generating a \code{Lambda} whose parameter and return types match
  15405. the target function type. The body of the \code{Lambda} should cast
  15406. the parameters from the target type to the source type (yes,
  15407. backwards! functions are contravariant\index{subject}{contravariant} in the
  15408. parameters), then call the underlying function, and finally cast the
  15409. result from the source return type to the target return type.
  15410. Figure~\ref{fig:map-vec-lower-cast} shows the output of the
  15411. \code{lower-casts} pass on the \code{map-vec} example in
  15412. Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
  15413. in the call to \code{map-vec} is wrapped in a \code{lambda}.
  15414. \begin{figure}[tbp]
  15415. \begin{lstlisting}
  15416. (define (map-vec [f : (Integer -> Integer)]
  15417. [v : (Vector Integer Integer)])
  15418. : (Vector Integer Integer)
  15419. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  15420. (define (add1 [x : Any]) : Any
  15421. (inject (+ (project x Integer) 1) Integer))
  15422. (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
  15423. (project (add1 (inject x9 Integer)) Integer))
  15424. (vector 0 41)) 1)
  15425. \end{lstlisting}
  15426. \caption{Output of \code{lower-casts} on the example in
  15427. Figure~\ref{fig:gradual-map-vec}.}
  15428. \label{fig:map-vec-lower-cast}
  15429. \end{figure}
  15430. \section{Differentiate Proxies}
  15431. \label{sec:differentiate-proxies}
  15432. So far the job of differentiating vectors and vector proxies has been
  15433. the job of the interpreter. For example, the interpreter for \LangCast{}
  15434. implements \code{vector-ref} using the \code{guarded-vector-ref}
  15435. function in Figure~\ref{fig:guarded-vector}. In the
  15436. \code{differentiate-proxies} pass we shift this responsibility to the
  15437. generated code.
  15438. We begin by designing the output language $R^p_8$. In
  15439. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  15440. proxies. In $R^p_8$ we return the \code{Vector} type to
  15441. its original meaning, as the type of real vectors, and we introduce a
  15442. new type, \code{PVector}, whose values can be either real vectors or
  15443. vector proxies. This new type comes with a suite of new primitive
  15444. operations for creating and using values of type \code{PVector}. We
  15445. don't need to introduce a new type to represent vector proxies. A
  15446. proxy is represented by a vector containing three things: 1) the
  15447. underlying vector, 2) a vector of functions for casting elements that
  15448. are read from the vector, and 3) a vector of functions for casting
  15449. values to be written to the vector. So we define the following
  15450. abbreviation for the type of a vector proxy:
  15451. \[
  15452. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  15453. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  15454. \to (\key{PVector}~ T' \ldots)
  15455. \]
  15456. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  15457. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  15458. %
  15459. Next we describe each of the new primitive operations.
  15460. \begin{description}
  15461. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  15462. (\key{PVector} $T \ldots$)]\ \\
  15463. %
  15464. This operation brands a vector as a value of the \code{PVector} type.
  15465. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  15466. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  15467. %
  15468. This operation brands a vector proxy as value of the \code{PVector} type.
  15469. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  15470. \code{Boolean}] \ \\
  15471. %
  15472. returns true if the value is a vector proxy and false if it is a
  15473. real vector.
  15474. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  15475. (\key{Vector} $T \ldots$)]\ \\
  15476. %
  15477. Assuming that the input is a vector (and not a proxy), this
  15478. operation returns the vector.
  15479. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  15480. $\to$ \code{Boolean}]\ \\
  15481. %
  15482. Given a vector proxy, this operation returns the length of the
  15483. underlying vector.
  15484. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  15485. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  15486. %
  15487. Given a vector proxy, this operation returns the $i$th element of
  15488. the underlying vector.
  15489. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  15490. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  15491. proxy, this operation writes a value to the $i$th element of the
  15492. underlying vector.
  15493. \end{description}
  15494. Now to discuss the translation that differentiates vectors from
  15495. proxies. First, every type annotation in the program must be
  15496. translated (recursively) to replace \code{Vector} with \code{PVector}.
  15497. Next, we must insert uses of \code{PVector} operations in the
  15498. appropriate places. For example, we wrap every vector creation with an
  15499. \code{inject-vector}.
  15500. \begin{lstlisting}
  15501. (vector |$e_1 \ldots e_n$|)
  15502. |$\Rightarrow$|
  15503. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  15504. \end{lstlisting}
  15505. The \code{raw-vector} operator that we introduced in the previous
  15506. section does not get injected.
  15507. \begin{lstlisting}
  15508. (raw-vector |$e_1 \ldots e_n$|)
  15509. |$\Rightarrow$|
  15510. (vector |$e'_1 \ldots e'_n$|)
  15511. \end{lstlisting}
  15512. The \code{vector-proxy} primitive translates as follows.
  15513. \begin{lstlisting}
  15514. (vector-proxy |$e_1~e_2~e_3$|)
  15515. |$\Rightarrow$|
  15516. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  15517. \end{lstlisting}
  15518. We translate the vector operations into conditional expressions that
  15519. check whether the value is a proxy and then dispatch to either the
  15520. appropriate proxy vector operation or the regular vector operation.
  15521. For example, the following is the translation for \code{vector-ref}.
  15522. \begin{lstlisting}
  15523. (vector-ref |$e_1$| |$i$|)
  15524. |$\Rightarrow$|
  15525. (let ([|$v~e_1$|])
  15526. (if (proxy? |$v$|)
  15527. (proxy-vector-ref |$v$| |$i$|)
  15528. (vector-ref (project-vector |$v$|) |$i$|)
  15529. \end{lstlisting}
  15530. Note in the case of a real vector, we must apply \code{project-vector}
  15531. before the \code{vector-ref}.
  15532. \section{Reveal Casts}
  15533. \label{sec:reveal-casts-gradual}
  15534. Recall that the \code{reveal-casts} pass
  15535. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  15536. \code{Inject} and \code{Project} into lower-level operations. In
  15537. particular, \code{Project} turns into a conditional expression that
  15538. inspects the tag and retrieves the underlying value. Here we need to
  15539. augment the translation of \code{Project} to handle the situation when
  15540. the target type is \code{PVector}. Instead of using
  15541. \code{vector-length} we need to use \code{proxy-vector-length}.
  15542. \begin{lstlisting}
  15543. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  15544. |$\Rightarrow$|
  15545. (let |$\itm{tmp}$| |$e'$|
  15546. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  15547. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  15548. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  15549. (exit)))
  15550. \end{lstlisting}
  15551. \section{Closure Conversion}
  15552. \label{sec:closure-conversion-gradual}
  15553. The closure conversion pass only requires one minor adjustment. The
  15554. auxiliary function that translates type annotations needs to be
  15555. updated to handle the \code{PVector} type.
  15556. \section{Explicate Control}
  15557. \label{sec:explicate-control-gradual}
  15558. Update the \code{explicate\_control} pass to handle the new primitive
  15559. operations on the \code{PVector} type.
  15560. \section{Select Instructions}
  15561. \label{sec:select-instructions-gradual}
  15562. Recall that the \code{select\_instructions} pass is responsible for
  15563. lowering the primitive operations into x86 instructions. So we need
  15564. to translate the new \code{PVector} operations to x86. To do so, the
  15565. first question we need to answer is how will we differentiate the two
  15566. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  15567. We need just one bit to accomplish this, and use the bit in position
  15568. $57$ of the 64-bit tag at the front of every vector (see
  15569. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  15570. for \code{inject-vector} we leave it that way.
  15571. \begin{lstlisting}
  15572. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  15573. |$\Rightarrow$|
  15574. movq |$e'_1$|, |$\itm{lhs'}$|
  15575. \end{lstlisting}
  15576. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  15577. \begin{lstlisting}
  15578. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  15579. |$\Rightarrow$|
  15580. movq |$e'_1$|, %r11
  15581. movq |$(1 << 57)$|, %rax
  15582. orq 0(%r11), %rax
  15583. movq %rax, 0(%r11)
  15584. movq %r11, |$\itm{lhs'}$|
  15585. \end{lstlisting}
  15586. The \code{proxy?} operation consumes the information so carefully
  15587. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  15588. isolates the $57$th bit to tell whether the value is a real vector or
  15589. a proxy.
  15590. \begin{lstlisting}
  15591. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  15592. |$\Rightarrow$|
  15593. movq |$e_1'$|, %r11
  15594. movq 0(%r11), %rax
  15595. sarq $57, %rax
  15596. andq $1, %rax
  15597. movq %rax, |$\itm{lhs'}$|
  15598. \end{lstlisting}
  15599. The \code{project-vector} operation is straightforward to translate,
  15600. so we leave it up to the reader.
  15601. Regarding the \code{proxy-vector} operations, the runtime provides
  15602. procedures that implement them (they are recursive functions!) so
  15603. here we simply need to translate these vector operations into the
  15604. appropriate function call. For example, here is the translation for
  15605. \code{proxy-vector-ref}.
  15606. \begin{lstlisting}
  15607. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  15608. |$\Rightarrow$|
  15609. movq |$e_1'$|, %rdi
  15610. movq |$e_2'$|, %rsi
  15611. callq proxy_vector_ref
  15612. movq %rax, |$\itm{lhs'}$|
  15613. \end{lstlisting}
  15614. We have another batch of vector operations to deal with, those for the
  15615. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  15616. \code{any-vector-ref} when there is a \code{vector-ref} on something
  15617. of type \code{Any}, and similarly for \code{any-vector-set!} and
  15618. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  15619. Section~\ref{sec:select-Rany} we selected instructions for these
  15620. operations based on the idea that the underlying value was a real
  15621. vector. But in the current setting, the underlying value is of type
  15622. \code{PVector}. So \code{any-vector-ref} can be translates to
  15623. pseudo-x86 as follows. We begin by projecting the underlying value out
  15624. of the tagged value and then call the \code{proxy\_vector\_ref}
  15625. procedure in the runtime.
  15626. \begin{lstlisting}
  15627. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  15628. movq |$\neg 111$|, %rdi
  15629. andq |$e_1'$|, %rdi
  15630. movq |$e_2'$|, %rsi
  15631. callq proxy_vector_ref
  15632. movq %rax, |$\itm{lhs'}$|
  15633. \end{lstlisting}
  15634. The \code{any-vector-set!} and \code{any-vector-length} operators can
  15635. be translated in a similar way.
  15636. \begin{exercise}\normalfont
  15637. Implement a compiler for the gradually-typed \LangGrad{} language by
  15638. extending and adapting your compiler for \LangLoop{}. Create 10 new
  15639. partially-typed test programs. In addition to testing with these
  15640. new programs, also test your compiler on all the tests for \LangLoop{}
  15641. and tests for \LangDyn{}. Sometimes you may get a type checking error
  15642. on the \LangDyn{} programs but you can adapt them by inserting
  15643. a cast to the \code{Any} type around each subexpression
  15644. causing a type error. While \LangDyn{} doesn't have explicit casts,
  15645. you can induce one by wrapping the subexpression \code{e}
  15646. with a call to an un-annotated identity function, like this:
  15647. \code{((lambda (x) x) e)}.
  15648. \end{exercise}
  15649. \begin{figure}[p]
  15650. \begin{tikzpicture}[baseline=(current bounding box.center)]
  15651. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  15652. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  15653. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  15654. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  15655. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  15656. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  15657. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  15658. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  15659. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  15660. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  15661. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  15662. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  15663. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  15664. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  15665. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  15666. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  15667. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  15668. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  15669. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  15670. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  15671. \path[->,bend right=15] (Rgradual) edge [above] node
  15672. {\ttfamily\footnotesize type\_check} (Rgradualp);
  15673. \path[->,bend right=15] (Rgradualp) edge [above] node
  15674. {\ttfamily\footnotesize lower\_casts} (Rwhilepp);
  15675. \path[->,bend right=15] (Rwhilepp) edge [right] node
  15676. {\ttfamily\footnotesize differentiate\_proxies} (Rwhileproxy);
  15677. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  15678. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  15679. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  15680. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  15681. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  15682. {\ttfamily\footnotesize reveal\_functions} (Rwhileproxy-4);
  15683. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  15684. {\ttfamily\footnotesize reveal\_casts} (Rwhileproxy-5);
  15685. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  15686. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  15687. \path[->,bend left=15] (F1-1) edge [below] node
  15688. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  15689. \path[->,bend right=15] (F1-2) edge [above] node
  15690. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  15691. \path[->,bend right=15] (F1-3) edge [above] node
  15692. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  15693. \path[->,bend right=15] (F1-4) edge [above] node
  15694. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  15695. \path[->,bend right=15] (F1-5) edge [right] node
  15696. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15697. \path[->,bend left=15] (C3-2) edge [left] node
  15698. {\ttfamily\footnotesize select\_instr.} (x86-2);
  15699. \path[->,bend right=15] (x86-2) edge [left] node
  15700. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  15701. \path[->,bend right=15] (x86-2-1) edge [below] node
  15702. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  15703. \path[->,bend right=15] (x86-2-2) edge [left] node
  15704. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  15705. \path[->,bend left=15] (x86-3) edge [above] node
  15706. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  15707. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  15708. \end{tikzpicture}
  15709. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  15710. \label{fig:Rgradual-passes}
  15711. \end{figure}
  15712. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  15713. for the compilation of \LangGrad{}.
  15714. \section{Further Reading}
  15715. This chapter just scratches the surface of gradual typing. The basic
  15716. approach described here is missing two key ingredients that one would
  15717. want in a implementation of gradual typing: blame
  15718. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  15719. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  15720. problem addressed by blame tracking is that when a cast on a
  15721. higher-order value fails, it often does so at a point in the program
  15722. that is far removed from the original cast. Blame tracking is a
  15723. technique for propagating extra information through casts and proxies
  15724. so that when a cast fails, the error message can point back to the
  15725. original location of the cast in the source program.
  15726. The problem addressed by space-efficient casts also relates to
  15727. higher-order casts. It turns out that in partially typed programs, a
  15728. function or vector can flow through very-many casts at runtime. With
  15729. the approach described in this chapter, each cast adds another
  15730. \code{lambda} wrapper or a vector proxy. Not only does this take up
  15731. considerable space, but it also makes the function calls and vector
  15732. operations slow. For example, a partially-typed version of quicksort
  15733. could, in the worst case, build a chain of proxies of length $O(n)$
  15734. around the vector, changing the overall time complexity of the
  15735. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  15736. solution to this problem by representing casts using the coercion
  15737. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  15738. long chains of proxies by compressing them into a concise normal
  15739. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  15740. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  15741. the Grift compiler.
  15742. \begin{center}
  15743. \url{https://github.com/Gradual-Typing/Grift}
  15744. \end{center}
  15745. There are also interesting interactions between gradual typing and
  15746. other language features, such as parametetric polymorphism,
  15747. information-flow types, and type inference, to name a few. We
  15748. recommend the reader to the online gradual typing bibliography:
  15749. \begin{center}
  15750. \url{http://samth.github.io/gradual-typing-bib/}
  15751. \end{center}
  15752. % TODO: challenge problem:
  15753. % type analysis and type specialization?
  15754. % coercions?
  15755. \fi
  15756. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15757. \chapter{Parametric Polymorphism}
  15758. \label{ch:Rpoly}
  15759. \index{subject}{parametric polymorphism}
  15760. \index{subject}{generics}
  15761. \if\edition\racketEd
  15762. This chapter studies the compilation of parametric
  15763. polymorphism\index{subject}{parametric polymorphism}
  15764. (aka. generics\index{subject}{generics}) in the subset \LangPoly{} of Typed
  15765. Racket. Parametric polymorphism enables improved code reuse by
  15766. parameterizing functions and data structures with respect to the types
  15767. that they operate on. For example, Figure~\ref{fig:map-vec-poly}
  15768. revisits the \code{map-vec} example but this time gives it a more
  15769. fitting type. This \code{map-vec} function is parameterized with
  15770. respect to the element type of the vector. The type of \code{map-vec}
  15771. is the following polymorphic type as specified by the \code{All} and
  15772. the type parameter \code{a}.
  15773. \begin{lstlisting}
  15774. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  15775. \end{lstlisting}
  15776. The idea is that \code{map-vec} can be used at \emph{all} choices of a
  15777. type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
  15778. \code{map-vec} to a vector of integers, a choice of \code{Integer} for
  15779. \code{a}, but we could have just as well applied \code{map-vec} to a
  15780. vector of Booleans (and a function on Booleans).
  15781. \begin{figure}[tbp]
  15782. % poly_test_2.rkt
  15783. \begin{lstlisting}
  15784. (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  15785. (define (map-vec f v)
  15786. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  15787. (define (add1 [x : Integer]) : Integer (+ x 1))
  15788. (vector-ref (map-vec add1 (vector 0 41)) 1)
  15789. \end{lstlisting}
  15790. \caption{The \code{map-vec} example using parametric polymorphism.}
  15791. \label{fig:map-vec-poly}
  15792. \end{figure}
  15793. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  15794. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  15795. syntax. We add a second form for function definitions in which a type
  15796. declaration comes before the \code{define}. In the abstract syntax,
  15797. the return type in the \code{Def} is \code{Any}, but that should be
  15798. ignored in favor of the return type in the type declaration. (The
  15799. \code{Any} comes from using the same parser as in
  15800. Chapter~\ref{ch:Rdyn}.) The presence of a type declaration
  15801. enables the use of an \code{All} type for a function, thereby making
  15802. it polymorphic. The grammar for types is extended to include
  15803. polymorphic types and type variables.
  15804. \begin{figure}[tp]
  15805. \centering
  15806. \fbox{
  15807. \begin{minipage}{0.96\textwidth}
  15808. \small
  15809. \[
  15810. \begin{array}{lcl}
  15811. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  15812. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  15813. &\MID& \LP\key{:}~\Var~\Type\RP \\
  15814. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  15815. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  15816. \end{array}
  15817. \]
  15818. \end{minipage}
  15819. }
  15820. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  15821. (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  15822. \label{fig:Rpoly-concrete-syntax}
  15823. \end{figure}
  15824. \begin{figure}[tp]
  15825. \centering
  15826. \fbox{
  15827. \begin{minipage}{0.96\textwidth}
  15828. \small
  15829. \[
  15830. \begin{array}{lcl}
  15831. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  15832. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  15833. &\MID& \DECL{\Var}{\Type} \\
  15834. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  15835. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  15836. \end{array}
  15837. \]
  15838. \end{minipage}
  15839. }
  15840. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  15841. (Figure~\ref{fig:Lwhile-syntax}).}
  15842. \label{fig:Rpoly-syntax}
  15843. \end{figure}
  15844. By including polymorphic types in the $\Type$ non-terminal we choose
  15845. to make them first-class which has interesting repercussions on the
  15846. compiler. Many languages with polymorphism, such as
  15847. C++~\citep{stroustrup88:_param_types} and Standard
  15848. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  15849. it is useful to see an example of first-class polymorphism. In
  15850. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  15851. whose parameter is a polymorphic function. The occurrence of a
  15852. polymorphic type underneath a function type is enabled by the normal
  15853. recursive structure of the grammar for $\Type$ and the categorization
  15854. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  15855. applies the polymorphic function to a Boolean and to an integer.
  15856. \begin{figure}[tbp]
  15857. \begin{lstlisting}
  15858. (: apply-twice ((All (b) (b -> b)) -> Integer))
  15859. (define (apply-twice f)
  15860. (if (f #t) (f 42) (f 777)))
  15861. (: id (All (a) (a -> a)))
  15862. (define (id x) x)
  15863. (apply-twice id)
  15864. \end{lstlisting}
  15865. \caption{An example illustrating first-class polymorphism.}
  15866. \label{fig:apply-twice}
  15867. \end{figure}
  15868. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Lvar0} has
  15869. three new responsibilities (compared to \LangLoop{}). The type checking of
  15870. function application is extended to handle the case where the operator
  15871. expression is a polymorphic function. In that case the type arguments
  15872. are deduced by matching the type of the parameters with the types of
  15873. the arguments.
  15874. %
  15875. The \code{match-types} auxiliary function carries out this deduction
  15876. by recursively descending through a parameter type \code{pt} and the
  15877. corresponding argument type \code{at}, making sure that they are equal
  15878. except when there is a type parameter on the left (in the parameter
  15879. type). If it's the first time that the type parameter has been
  15880. encountered, then the algorithm deduces an association of the type
  15881. parameter to the corresponding type on the right (in the argument
  15882. type). If it's not the first time that the type parameter has been
  15883. encountered, the algorithm looks up its deduced type and makes sure
  15884. that it is equal to the type on the right.
  15885. %
  15886. Once the type arguments are deduced, the operator expression is
  15887. wrapped in an \code{Inst} AST node (for instantiate) that records the
  15888. type of the operator, but more importantly, records the deduced type
  15889. arguments. The return type of the application is the return type of
  15890. the polymorphic function, but with the type parameters replaced by the
  15891. deduced type arguments, using the \code{subst-type} function.
  15892. The second responsibility of the type checker is extending the
  15893. function \code{type-equal?} to handle the \code{All} type. This is
  15894. not quite a simple as equal on other types, such as function and
  15895. vector types, because two polymorphic types can be syntactically
  15896. different even though they are equivalent types. For example,
  15897. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  15898. Two polymorphic types should be considered equal if they differ only
  15899. in the choice of the names of the type parameters. The
  15900. \code{type-equal?} function in Figure~\ref{fig:type-check-Lvar0-aux}
  15901. renames the type parameters of the first type to match the type
  15902. parameters of the second type.
  15903. The third responsibility of the type checker is making sure that only
  15904. defined type variables appear in type annotations. The
  15905. \code{check-well-formed} function defined in
  15906. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  15907. sure that each type variable has been defined.
  15908. The output language of the type checker is \LangInst{}, defined in
  15909. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  15910. declaration and polymorphic function into a single definition, using
  15911. the \code{Poly} form, to make polymorphic functions more convenient to
  15912. process in next pass of the compiler.
  15913. \begin{figure}[tp]
  15914. \centering
  15915. \fbox{
  15916. \begin{minipage}{0.96\textwidth}
  15917. \small
  15918. \[
  15919. \begin{array}{lcl}
  15920. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  15921. \Exp &::=& \ldots \MID \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  15922. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  15923. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  15924. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  15925. \end{array}
  15926. \]
  15927. \end{minipage}
  15928. }
  15929. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  15930. (Figure~\ref{fig:Lwhile-syntax}).}
  15931. \label{fig:Rpoly-prime-syntax}
  15932. \end{figure}
  15933. The output of the type checker on the polymorphic \code{map-vec}
  15934. example is listed in Figure~\ref{fig:map-vec-type-check}.
  15935. \begin{figure}[tbp]
  15936. % poly_test_2.rkt
  15937. \begin{lstlisting}
  15938. (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  15939. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  15940. (define (add1 [x : Integer]) : Integer (+ x 1))
  15941. (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  15942. (Integer))
  15943. add1 (vector 0 41)) 1)
  15944. \end{lstlisting}
  15945. \caption{Output of the type checker on the \code{map-vec} example.}
  15946. \label{fig:map-vec-type-check}
  15947. \end{figure}
  15948. \begin{figure}[tbp]
  15949. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  15950. (define type-check-poly-class
  15951. (class type-check-Rwhile-class
  15952. (super-new)
  15953. (inherit check-type-equal?)
  15954. (define/override (type-check-apply env e1 es)
  15955. (define-values (e^ ty) ((type-check-exp env) e1))
  15956. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  15957. ((type-check-exp env) e)))
  15958. (match ty
  15959. [`(,ty^* ... -> ,rt)
  15960. (for ([arg-ty ty*] [param-ty ty^*])
  15961. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  15962. (values e^ es^ rt)]
  15963. [`(All ,xs (,tys ... -> ,rt))
  15964. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  15965. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  15966. (match-types env^^ param-ty arg-ty)))
  15967. (define targs
  15968. (for/list ([x xs])
  15969. (match (dict-ref env^^ x (lambda () #f))
  15970. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  15971. x (Apply e1 es))]
  15972. [ty ty])))
  15973. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  15974. [else (error 'type-check "expected a function, not ~a" ty)]))
  15975. (define/override ((type-check-exp env) e)
  15976. (match e
  15977. [(Lambda `([,xs : ,Ts] ...) rT body)
  15978. (for ([T Ts]) ((check-well-formed env) T))
  15979. ((check-well-formed env) rT)
  15980. ((super type-check-exp env) e)]
  15981. [(HasType e1 ty)
  15982. ((check-well-formed env) ty)
  15983. ((super type-check-exp env) e)]
  15984. [else ((super type-check-exp env) e)]))
  15985. (define/override ((type-check-def env) d)
  15986. (verbose 'type-check "poly/def" d)
  15987. (match d
  15988. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  15989. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  15990. (for ([p ps]) ((check-well-formed ts-env) p))
  15991. ((check-well-formed ts-env) rt)
  15992. (define new-env (append ts-env (map cons xs ps) env))
  15993. (define-values (body^ ty^) ((type-check-exp new-env) body))
  15994. (check-type-equal? ty^ rt body)
  15995. (Generic ts (Def f p:t* rt info body^))]
  15996. [else ((super type-check-def env) d)]))
  15997. (define/override (type-check-program p)
  15998. (match p
  15999. [(Program info body)
  16000. (type-check-program (ProgramDefsExp info '() body))]
  16001. [(ProgramDefsExp info ds body)
  16002. (define ds^ (combine-decls-defs ds))
  16003. (define new-env (for/list ([d ds^])
  16004. (cons (def-name d) (fun-def-type d))))
  16005. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  16006. (define-values (body^ ty) ((type-check-exp new-env) body))
  16007. (check-type-equal? ty 'Integer body)
  16008. (ProgramDefsExp info ds^^ body^)]))
  16009. ))
  16010. \end{lstlisting}
  16011. \caption{Type checker for the \LangPoly{} language.}
  16012. \label{fig:type-check-Lvar0}
  16013. \end{figure}
  16014. \begin{figure}[tbp]
  16015. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  16016. (define/override (type-equal? t1 t2)
  16017. (match* (t1 t2)
  16018. [(`(All ,xs ,T1) `(All ,ys ,T2))
  16019. (define env (map cons xs ys))
  16020. (type-equal? (subst-type env T1) T2)]
  16021. [(other wise)
  16022. (super type-equal? t1 t2)]))
  16023. (define/public (match-types env pt at)
  16024. (match* (pt at)
  16025. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  16026. [('Void 'Void) env] [('Any 'Any) env]
  16027. [(`(Vector ,pts ...) `(Vector ,ats ...))
  16028. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  16029. (match-types env^ pt1 at1))]
  16030. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  16031. (define env^ (match-types env prt art))
  16032. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  16033. (match-types env^^ pt1 at1))]
  16034. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  16035. (define env^ (append (map cons pxs axs) env))
  16036. (match-types env^ pt1 at1)]
  16037. [((? symbol? x) at)
  16038. (match (dict-ref env x (lambda () #f))
  16039. [#f (error 'type-check "undefined type variable ~a" x)]
  16040. ['Type (cons (cons x at) env)]
  16041. [t^ (check-type-equal? at t^ 'matching) env])]
  16042. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  16043. (define/public (subst-type env pt)
  16044. (match pt
  16045. ['Integer 'Integer] ['Boolean 'Boolean]
  16046. ['Void 'Void] ['Any 'Any]
  16047. [`(Vector ,ts ...)
  16048. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  16049. [`(,ts ... -> ,rt)
  16050. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  16051. [`(All ,xs ,t)
  16052. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  16053. [(? symbol? x) (dict-ref env x)]
  16054. [else (error 'type-check "expected a type not ~a" pt)]))
  16055. (define/public (combine-decls-defs ds)
  16056. (match ds
  16057. ['() '()]
  16058. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  16059. (unless (equal? name f)
  16060. (error 'type-check "name mismatch, ~a != ~a" name f))
  16061. (match type
  16062. [`(All ,xs (,ps ... -> ,rt))
  16063. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  16064. (cons (Generic xs (Def name params^ rt info body))
  16065. (combine-decls-defs ds^))]
  16066. [`(,ps ... -> ,rt)
  16067. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  16068. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  16069. [else (error 'type-check "expected a function type, not ~a" type) ])]
  16070. [`(,(Def f params rt info body) . ,ds^)
  16071. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  16072. \end{lstlisting}
  16073. \caption{Auxiliary functions for type checking \LangPoly{}.}
  16074. \label{fig:type-check-Lvar0-aux}
  16075. \end{figure}
  16076. \begin{figure}[tbp]
  16077. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  16078. (define/public ((check-well-formed env) ty)
  16079. (match ty
  16080. ['Integer (void)]
  16081. ['Boolean (void)]
  16082. ['Void (void)]
  16083. [(? symbol? a)
  16084. (match (dict-ref env a (lambda () #f))
  16085. ['Type (void)]
  16086. [else (error 'type-check "undefined type variable ~a" a)])]
  16087. [`(Vector ,ts ...)
  16088. (for ([t ts]) ((check-well-formed env) t))]
  16089. [`(,ts ... -> ,t)
  16090. (for ([t ts]) ((check-well-formed env) t))
  16091. ((check-well-formed env) t)]
  16092. [`(All ,xs ,t)
  16093. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  16094. ((check-well-formed env^) t)]
  16095. [else (error 'type-check "unrecognized type ~a" ty)]))
  16096. \end{lstlisting}
  16097. \caption{Well-formed types.}
  16098. \label{fig:well-formed-types}
  16099. \end{figure}
  16100. % TODO: interpreter for R'_10
  16101. \section{Compiling Polymorphism}
  16102. \label{sec:compiling-poly}
  16103. Broadly speaking, there are four approaches to compiling parametric
  16104. polymorphism, which we describe below.
  16105. \begin{description}
  16106. \item[Monomorphization] generates a different version of a polymorphic
  16107. function for each set of type arguments that it is used with,
  16108. producing type-specialized code. This approach results in the most
  16109. efficient code but requires whole-program compilation (no separate
  16110. compilation) and increases code size. For our current purposes
  16111. monomorphization is a non-starter because, with first-class
  16112. polymorphism, it is sometimes not possible to determine which
  16113. generic functions are used with which type arguments during
  16114. compilation. (It can be done at runtime, with just-in-time
  16115. compilation.) This approach is used to compile C++
  16116. templates~\citep{stroustrup88:_param_types} and polymorphic
  16117. functions in NESL~\citep{Blelloch:1993aa} and
  16118. ML~\citep{Weeks:2006aa}.
  16119. \item[Uniform representation] generates one version of each
  16120. polymorphic function but requires all values have a common ``boxed''
  16121. format, such as the tagged values of type \code{Any} in
  16122. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  16123. similarly to code in a dynamically typed language (like \LangDyn{}),
  16124. in which primitive operators require their arguments to be projected
  16125. from \code{Any} and their results are injected into \code{Any}. (In
  16126. object-oriented languages, the projection is accomplished via
  16127. virtual method dispatch.) The uniform representation approach is
  16128. compatible with separate compilation and with first-class
  16129. polymorphism. However, it produces the least-efficient code because
  16130. it introduces overhead in the entire program, including
  16131. non-polymorphic code. This approach is used in implementations of
  16132. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  16133. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  16134. Java~\citep{Bracha:1998fk}.
  16135. \item[Mixed representation] generates one version of each polymorphic
  16136. function, using a boxed representation for type
  16137. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  16138. and conversions are performed at the boundaries between monomorphic
  16139. and polymorphic (e.g. when a polymorphic function is instantiated
  16140. and called). This approach is compatible with separate compilation
  16141. and first-class polymorphism and maintains the efficiency of
  16142. monomorphic code. The tradeoff is increased overhead at the boundary
  16143. between monomorphic and polymorphic code. This approach is used in
  16144. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  16145. Java 5 with the addition of autoboxing.
  16146. \item[Type passing] uses the unboxed representation in both
  16147. monomorphic and polymorphic code. Each polymorphic function is
  16148. compiled to a single function with extra parameters that describe
  16149. the type arguments. The type information is used by the generated
  16150. code to know how to access the unboxed values at runtime. This
  16151. approach is used in implementation of the Napier88
  16152. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  16153. passing is compatible with separate compilation and first-class
  16154. polymorphism and maintains the efficiency for monomorphic
  16155. code. There is runtime overhead in polymorphic code from dispatching
  16156. on type information.
  16157. \end{description}
  16158. In this chapter we use the mixed representation approach, partly
  16159. because of its favorable attributes, and partly because it is
  16160. straightforward to implement using the tools that we have already
  16161. built to support gradual typing. To compile polymorphic functions, we
  16162. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  16163. \LangCast{}.
  16164. \section{Erase Types}
  16165. \label{sec:erase-types}
  16166. We use the \code{Any} type from Chapter~\ref{ch:Rdyn} to
  16167. represent type variables. For example, Figure~\ref{fig:map-vec-erase}
  16168. shows the output of the \code{erase-types} pass on the polymorphic
  16169. \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
  16170. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  16171. \code{All} types are removed from the type of \code{map-vec}.
  16172. \begin{figure}[tbp]
  16173. \begin{lstlisting}
  16174. (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
  16175. : (Vector Any Any)
  16176. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  16177. (define (add1 [x : Integer]) : Integer (+ x 1))
  16178. (vector-ref ((cast map-vec
  16179. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  16180. ((Integer -> Integer) (Vector Integer Integer)
  16181. -> (Vector Integer Integer)))
  16182. add1 (vector 0 41)) 1)
  16183. \end{lstlisting}
  16184. \caption{The polymorphic \code{map-vec} example after type erasure.}
  16185. \label{fig:map-vec-erase}
  16186. \end{figure}
  16187. This process of type erasure creates a challenge at points of
  16188. instantiation. For example, consider the instantiation of
  16189. \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
  16190. The type of \code{map-vec} is
  16191. \begin{lstlisting}
  16192. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  16193. \end{lstlisting}
  16194. and it is instantiated to
  16195. \begin{lstlisting}
  16196. ((Integer -> Integer) (Vector Integer Integer)
  16197. -> (Vector Integer Integer))
  16198. \end{lstlisting}
  16199. After erasure, the type of \code{map-vec} is
  16200. \begin{lstlisting}
  16201. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  16202. \end{lstlisting}
  16203. but we need to convert it to the instantiated type. This is easy to
  16204. do in the target language \LangCast{} with a single \code{cast}. In
  16205. Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
  16206. has been compiled to a \code{cast} from the type of \code{map-vec} to
  16207. the instantiated type. The source and target type of a cast must be
  16208. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  16209. because both the source and target are obtained from the same
  16210. polymorphic type of \code{map-vec}, replacing the type parameters with
  16211. \code{Any} in the former and with the deduced type arguments in the
  16212. later. (Recall that the \code{Any} type is consistent with any type.)
  16213. To implement the \code{erase-types} pass, we recommend defining a
  16214. recursive auxiliary function named \code{erase-type} that applies the
  16215. following two transformations. It replaces type variables with
  16216. \code{Any}
  16217. \begin{lstlisting}
  16218. |$x$|
  16219. |$\Rightarrow$|
  16220. Any
  16221. \end{lstlisting}
  16222. and it removes the polymorphic \code{All} types.
  16223. \begin{lstlisting}
  16224. (All |$xs$| |$T_1$|)
  16225. |$\Rightarrow$|
  16226. |$T'_1$|
  16227. \end{lstlisting}
  16228. Apply the \code{erase-type} function to all of the type annotations in
  16229. the program.
  16230. Regarding the translation of expressions, the case for \code{Inst} is
  16231. the interesting one. We translate it into a \code{Cast}, as shown
  16232. below. The type of the subexpression $e$ is the polymorphic type
  16233. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  16234. $T$, the type $T'$. The target type $T''$ is the result of
  16235. substituting the arguments types $ts$ for the type parameters $xs$ in
  16236. $T$ followed by doing type erasure.
  16237. \begin{lstlisting}
  16238. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  16239. |$\Rightarrow$|
  16240. (Cast |$e'$| |$T'$| |$T''$|)
  16241. \end{lstlisting}
  16242. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  16243. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  16244. Finally, each polymorphic function is translated to a regular
  16245. functions in which type erasure has been applied to all the type
  16246. annotations and the body.
  16247. \begin{lstlisting}
  16248. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  16249. |$\Rightarrow$|
  16250. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  16251. \end{lstlisting}
  16252. \begin{exercise}\normalfont
  16253. Implement a compiler for the polymorphic language \LangPoly{} by
  16254. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  16255. programs that use polymorphic functions. Some of them should make
  16256. use of first-class polymorphism.
  16257. \end{exercise}
  16258. \begin{figure}[p]
  16259. \begin{tikzpicture}[baseline=(current bounding box.center)]
  16260. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  16261. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  16262. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  16263. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  16264. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  16265. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  16266. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  16267. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  16268. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  16269. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  16270. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  16271. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  16272. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  16273. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  16274. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  16275. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  16276. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  16277. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  16278. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  16279. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  16280. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  16281. \path[->,bend right=15] (Rpoly) edge [above] node
  16282. {\ttfamily\footnotesize type\_check} (Rpolyp);
  16283. \path[->,bend right=15] (Rpolyp) edge [above] node
  16284. {\ttfamily\footnotesize erase\_types} (Rgradualp);
  16285. \path[->,bend right=15] (Rgradualp) edge [above] node
  16286. {\ttfamily\footnotesize lower\_casts} (Rwhilepp);
  16287. \path[->,bend right=15] (Rwhilepp) edge [right] node
  16288. {\ttfamily\footnotesize differentiate\_proxies} (Rwhileproxy);
  16289. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  16290. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  16291. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  16292. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  16293. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  16294. {\ttfamily\footnotesize reveal\_functions} (Rwhileproxy-4);
  16295. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  16296. {\ttfamily\footnotesize reveal\_casts} (Rwhileproxy-5);
  16297. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  16298. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16299. \path[->,bend left=15] (F1-1) edge [below] node
  16300. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  16301. \path[->,bend right=15] (F1-2) edge [above] node
  16302. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  16303. \path[->,bend right=15] (F1-3) edge [above] node
  16304. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  16305. \path[->,bend right=15] (F1-4) edge [above] node
  16306. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  16307. \path[->,bend right=15] (F1-5) edge [right] node
  16308. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16309. \path[->,bend left=15] (C3-2) edge [left] node
  16310. {\ttfamily\footnotesize select\_instr.} (x86-2);
  16311. \path[->,bend right=15] (x86-2) edge [left] node
  16312. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16313. \path[->,bend right=15] (x86-2-1) edge [below] node
  16314. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  16315. \path[->,bend right=15] (x86-2-2) edge [left] node
  16316. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  16317. \path[->,bend left=15] (x86-3) edge [above] node
  16318. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  16319. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  16320. \end{tikzpicture}
  16321. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  16322. \label{fig:Rpoly-passes}
  16323. \end{figure}
  16324. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  16325. for the compilation of \LangPoly{}.
  16326. % TODO: challenge problem: specialization of instantiations
  16327. % Further Reading
  16328. \fi
  16329. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16330. \clearpage
  16331. \appendix
  16332. \chapter{Appendix}
  16333. \if\edition\racketEd
  16334. \section{Interpreters}
  16335. \label{appendix:interp}
  16336. \index{subject}{interpreter}
  16337. We provide interpreters for each of the source languages \LangInt{},
  16338. \LangVar{}, $\ldots$ in the files \code{interp\_Lint.rkt},
  16339. \code{interp-Lvar.rkt}, etc. The interpreters for the intermediate
  16340. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  16341. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  16342. and x86 are in the \key{interp.rkt} file.
  16343. \section{Utility Functions}
  16344. \label{appendix:utilities}
  16345. The utility functions described in this section are in the
  16346. \key{utilities.rkt} file of the support code.
  16347. \paragraph{\code{interp-tests}}
  16348. The \key{interp-tests} function runs the compiler passes and the
  16349. interpreters on each of the specified tests to check whether each pass
  16350. is correct. The \key{interp-tests} function has the following
  16351. parameters:
  16352. \begin{description}
  16353. \item[name (a string)] a name to identify the compiler,
  16354. \item[typechecker] a function of exactly one argument that either
  16355. raises an error using the \code{error} function when it encounters a
  16356. type error, or returns \code{\#f} when it encounters a type
  16357. error. If there is no type error, the type checker returns the
  16358. program.
  16359. \item[passes] a list with one entry per pass. An entry is a list with
  16360. four things:
  16361. \begin{enumerate}
  16362. \item a string giving the name of the pass,
  16363. \item the function that implements the pass (a translator from AST
  16364. to AST),
  16365. \item a function that implements the interpreter (a function from
  16366. AST to result value) for the output language,
  16367. \item and a type checker for the output language. Type checkers for
  16368. the $R$ and $C$ languages are provided in the support code. For
  16369. example, the type checkers for \LangVar{} and \LangCVar{} are in
  16370. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  16371. type checker entry is optional. The support code does not provide
  16372. type checkers for the x86 languages.
  16373. \end{enumerate}
  16374. \item[source-interp] an interpreter for the source language. The
  16375. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  16376. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  16377. \item[tests] a list of test numbers that specifies which tests to
  16378. run. (see below)
  16379. \end{description}
  16380. %
  16381. The \key{interp-tests} function assumes that the subdirectory
  16382. \key{tests} has a collection of Racket programs whose names all start
  16383. with the family name, followed by an underscore and then the test
  16384. number, ending with the file extension \key{.rkt}. Also, for each test
  16385. program that calls \code{read} one or more times, there is a file with
  16386. the same name except that the file extension is \key{.in} that
  16387. provides the input for the Racket program. If the test program is
  16388. expected to fail type checking, then there should be an empty file of
  16389. the same name but with extension \key{.tyerr}.
  16390. \paragraph{\code{compiler-tests}}
  16391. runs the compiler passes to generate x86 (a \key{.s} file) and then
  16392. runs the GNU C compiler (gcc) to generate machine code. It runs the
  16393. machine code and checks that the output is $42$. The parameters to the
  16394. \code{compiler-tests} function are similar to those of the
  16395. \code{interp-tests} function, and consist of
  16396. \begin{itemize}
  16397. \item a compiler name (a string),
  16398. \item a type checker,
  16399. \item description of the passes,
  16400. \item name of a test-family, and
  16401. \item a list of test numbers.
  16402. \end{itemize}
  16403. \paragraph{\code{compile-file}}
  16404. takes a description of the compiler passes (see the comment for
  16405. \key{interp-tests}) and returns a function that, given a program file
  16406. name (a string ending in \key{.rkt}), applies all of the passes and
  16407. writes the output to a file whose name is the same as the program file
  16408. name but with \key{.rkt} replaced with \key{.s}.
  16409. \paragraph{\code{read-program}}
  16410. takes a file path and parses that file (it must be a Racket program)
  16411. into an abstract syntax tree.
  16412. \paragraph{\code{parse-program}}
  16413. takes an S-expression representation of an abstract syntax tree and converts it into
  16414. the struct-based representation.
  16415. \paragraph{\code{assert}}
  16416. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  16417. and displays the message \key{msg} if the Boolean \key{bool} is false.
  16418. \paragraph{\code{lookup}}
  16419. % remove discussion of lookup? -Jeremy
  16420. takes a key and an alist, and returns the first value that is
  16421. associated with the given key, if there is one. If not, an error is
  16422. triggered. The alist may contain both immutable pairs (built with
  16423. \key{cons}) and mutable pairs (built with \key{mcons}).
  16424. %The \key{map2} function ...
  16425. \fi %\racketEd
  16426. \section{x86 Instruction Set Quick-Reference}
  16427. \label{sec:x86-quick-reference}
  16428. \index{subject}{x86}
  16429. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  16430. do. We write $A \to B$ to mean that the value of $A$ is written into
  16431. location $B$. Address offsets are given in bytes. The instruction
  16432. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  16433. registers (such as \code{\%rax}), or memory references (such as
  16434. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  16435. reference per instruction. Other operands must be immediates or
  16436. registers.
  16437. \begin{table}[tbp]
  16438. \centering
  16439. \begin{tabular}{l|l}
  16440. \textbf{Instruction} & \textbf{Operation} \\ \hline
  16441. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  16442. \texttt{negq} $A$ & $- A \to A$ \\
  16443. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  16444. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  16445. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  16446. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  16447. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  16448. \texttt{retq} & Pops the return address and jumps to it \\
  16449. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  16450. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  16451. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  16452. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  16453. be an immediate) \\
  16454. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  16455. matches the condition code of the instruction, otherwise go to the
  16456. next instructions. The condition codes are \key{e} for ``equal'',
  16457. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  16458. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  16459. \texttt{jl} $L$ & \\
  16460. \texttt{jle} $L$ & \\
  16461. \texttt{jg} $L$ & \\
  16462. \texttt{jge} $L$ & \\
  16463. \texttt{jmp} $L$ & Jump to label $L$ \\
  16464. \texttt{movq} $A$, $B$ & $A \to B$ \\
  16465. \texttt{movzbq} $A$, $B$ &
  16466. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  16467. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  16468. and the extra bytes of $B$ are set to zero.} \\
  16469. & \\
  16470. & \\
  16471. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  16472. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  16473. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  16474. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  16475. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  16476. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  16477. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  16478. description of the condition codes. $A$ must be a single byte register
  16479. (e.g., \texttt{al} or \texttt{cl}).} \\
  16480. \texttt{setl} $A$ & \\
  16481. \texttt{setle} $A$ & \\
  16482. \texttt{setg} $A$ & \\
  16483. \texttt{setge} $A$ &
  16484. \end{tabular}
  16485. \vspace{5pt}
  16486. \caption{Quick-reference for the x86 instructions used in this book.}
  16487. \label{tab:x86-instr}
  16488. \end{table}
  16489. \if\edition\racketEd
  16490. \cleardoublepage
  16491. \section{Concrete Syntax for Intermediate Languages}
  16492. The concrete syntax of \LangAny{} is defined in
  16493. Figure~\ref{fig:Rany-concrete-syntax}.
  16494. \begin{figure}[tp]
  16495. \centering
  16496. \fbox{
  16497. \begin{minipage}{0.97\textwidth}\small
  16498. \[
  16499. \begin{array}{lcl}
  16500. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  16501. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}} \\
  16502. &\MID& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \MID \key{Any} \\
  16503. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  16504. \MID \LP\key{Vector}\; \key{Any}\ldots\RP \\
  16505. &\MID& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  16506. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \MID \CPROJECT{\Exp}{\FType}\\
  16507. &\MID& \LP\key{any-vector-length}\;\Exp\RP
  16508. \MID \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  16509. &\MID& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  16510. &\MID& \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP
  16511. \MID \LP\key{void?}\;\Exp\RP \\
  16512. &\MID& \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \\
  16513. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  16514. \LangAnyM{} &::=& \gray{\Def\ldots \; \Exp}
  16515. \end{array}
  16516. \]
  16517. \end{minipage}
  16518. }
  16519. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  16520. (Figure~\ref{fig:Rlam-syntax}).}
  16521. \label{fig:Rany-concrete-syntax}
  16522. \end{figure}
  16523. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  16524. defined in Figures~\ref{fig:c0-concrete-syntax},
  16525. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  16526. and \ref{fig:c3-concrete-syntax}, respectively.
  16527. \begin{figure}[tbp]
  16528. \fbox{
  16529. \begin{minipage}{0.96\textwidth}
  16530. \small
  16531. \[
  16532. \begin{array}{lcl}
  16533. \Atm &::=& \gray{ \Int \MID \Var \MID \itm{bool} } \\
  16534. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  16535. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  16536. &\MID& \gray{ \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP } \\
  16537. &\MID& \LP \key{allocate}~\Int~\Type \RP \\
  16538. &\MID& (\key{vector-ref}\;\Atm\;\Int) \MID (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  16539. &\MID& \LP \key{global-value}~\Var \RP \MID \LP \key{void} \RP \\
  16540. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \MID \LP\key{collect}~\Int \RP\\
  16541. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  16542. \MID \gray{ \key{goto}~\itm{label}\key{;} }\\
  16543. &\MID& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  16544. \LangCVecM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  16545. \end{array}
  16546. \]
  16547. \end{minipage}
  16548. }
  16549. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  16550. \label{fig:c2-concrete-syntax}
  16551. \end{figure}
  16552. \begin{figure}[tp]
  16553. \fbox{
  16554. \begin{minipage}{0.96\textwidth}
  16555. \small
  16556. \[
  16557. \begin{array}{lcl}
  16558. \Atm &::=& \gray{ \Int \MID \Var \MID \key{\#t} \MID \key{\#f} }
  16559. \\
  16560. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  16561. \Exp &::= & \gray{ \Atm \MID \LP\key{read}\RP \MID \LP\key{-}\;\Atm\RP \MID \LP\key{+} \; \Atm\;\Atm\RP
  16562. \MID \LP\key{not}\;\Atm\RP \MID \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  16563. &\MID& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  16564. \MID \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  16565. &\MID& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \MID \LP\key{global-value} \,\itm{name}\RP \MID \LP\key{void}\RP } \\
  16566. &\MID& \LP\key{fun-ref}~\itm{label}\RP \MID \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  16567. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \MID \RETURN{\Exp}
  16568. \MID \LP\key{collect} \,\itm{int}\RP }\\
  16569. \Tail &::= & \gray{\RETURN{\Exp} \MID \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  16570. &\MID& \gray{\LP\key{goto}\,\itm{label}\RP
  16571. \MID \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  16572. &\MID& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  16573. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  16574. \LangCFunM{} & ::= & \Def\ldots
  16575. \end{array}
  16576. \]
  16577. \end{minipage}
  16578. }
  16579. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  16580. \label{fig:c3-concrete-syntax}
  16581. \end{figure}
  16582. \fi % racketEd
  16583. \backmatter
  16584. \addtocontents{toc}{\vspace{11pt}}
  16585. %% \addtocontents{toc}{\vspace{11pt}}
  16586. %% \nocite{*} is a way to get all the entries in the .bib file to print in the bibliography:
  16587. \nocite{*}\let\bibname\refname
  16588. \addcontentsline{toc}{fmbm}{\refname}
  16589. \printbibliography
  16590. \printindex{authors}{Author Index}
  16591. \printindex{subject}{Subject Index}
  16592. \end{document}
  16593. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  16594. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  16595. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  16596. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  16597. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  16598. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  16599. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  16600. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  16601. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  16602. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  16603. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  16604. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  16605. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  16606. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  16607. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  16608. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  16609. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  16610. % LocalWords: numberstyle Cormen Sudoku Balakrishnan ve aka DSATUR
  16611. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS
  16612. % LocalWords: morekeywords fullflexible