book.tex 834 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949229502295122952229532295422955229562295722958229592296022961229622296322964229652296622967229682296922970229712297222973229742297522976229772297822979229802298122982229832298422985229862298722988229892299022991229922299322994229952299622997229982299923000230012300223003230042300523006230072300823009230102301123012230132301423015230162301723018230192302023021230222302323024230252302623027230282302923030230312303223033230342303523036230372303823039230402304123042230432304423045230462304723048230492305023051230522305323054230552305623057230582305923060230612306223063230642306523066230672306823069230702307123072230732307423075230762307723078230792308023081230822308323084230852308623087230882308923090230912309223093230942309523096230972309823099231002310123102231032310423105231062310723108231092311023111231122311323114231152311623117231182311923120231212312223123231242312523126231272312823129231302313123132231332313423135231362313723138231392314023141231422314323144231452314623147231482314923150231512315223153231542315523156231572315823159231602316123162231632316423165231662316723168231692317023171231722317323174231752317623177231782317923180231812318223183231842318523186231872318823189231902319123192231932319423195231962319723198231992320023201232022320323204232052320623207232082320923210232112321223213232142321523216232172321823219232202322123222232232322423225232262322723228232292323023231232322323323234232352323623237232382323923240232412324223243232442324523246232472324823249232502325123252232532325423255232562325723258232592326023261232622326323264232652326623267232682326923270232712327223273232742327523276232772327823279232802328123282232832328423285232862328723288232892329023291232922329323294232952329623297232982329923300233012330223303233042330523306233072330823309233102331123312233132331423315233162331723318233192332023321233222332323324233252332623327233282332923330233312333223333233342333523336233372333823339233402334123342233432334423345233462334723348233492335023351233522335323354233552335623357233582335923360233612336223363233642336523366233672336823369233702337123372233732337423375233762337723378233792338023381233822338323384233852338623387233882338923390233912339223393233942339523396233972339823399234002340123402234032340423405234062340723408234092341023411234122341323414234152341623417234182341923420234212342223423234242342523426234272342823429234302343123432234332343423435234362343723438234392344023441234422344323444234452344623447234482344923450234512345223453234542345523456234572345823459234602346123462234632346423465234662346723468234692347023471234722347323474234752347623477234782347923480234812348223483234842348523486234872348823489234902349123492234932349423495234962349723498234992350023501235022350323504235052350623507235082350923510235112351223513235142351523516235172351823519235202352123522235232352423525235262352723528235292353023531235322353323534235352353623537235382353923540235412354223543235442354523546235472354823549235502355123552235532355423555235562355723558235592356023561235622356323564235652356623567235682356923570235712357223573235742357523576235772357823579235802358123582235832358423585235862358723588235892359023591235922359323594235952359623597235982359923600236012360223603236042360523606236072360823609236102361123612236132361423615236162361723618236192362023621236222362323624236252362623627236282362923630236312363223633236342363523636236372363823639236402364123642236432364423645236462364723648236492365023651236522365323654236552365623657236582365923660236612366223663236642366523666236672366823669236702367123672236732367423675236762367723678236792368023681236822368323684236852368623687236882368923690236912369223693236942369523696236972369823699237002370123702237032370423705237062370723708237092371023711237122371323714237152371623717237182371923720237212372223723237242372523726237272372823729237302373123732237332373423735237362373723738237392374023741237422374323744237452374623747237482374923750237512375223753237542375523756237572375823759237602376123762237632376423765237662376723768237692377023771237722377323774237752377623777237782377923780237812378223783237842378523786237872378823789237902379123792237932379423795237962379723798237992380023801238022380323804238052380623807238082380923810238112381223813238142381523816238172381823819238202382123822238232382423825238262382723828238292383023831238322383323834238352383623837238382383923840238412384223843238442384523846238472384823849238502385123852238532385423855238562385723858238592386023861238622386323864238652386623867238682386923870238712387223873238742387523876238772387823879238802388123882238832388423885238862388723888238892389023891238922389323894238952389623897238982389923900239012390223903239042390523906239072390823909
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. %
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \usepackage[all]{xy}
  18. \usepackage{url}
  19. \definecolor{lightgray}{gray}{1}
  20. \newcommand{\black}[1]{{\color{black} #1}}
  21. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  22. \newcommand{\gray}[1]{{\color{gray} #1}}
  23. \def\racketEd{0}
  24. \def\pythonEd{1}
  25. \def\edition{0}
  26. % material that is specific to the Racket edition of the book
  27. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  28. % would like a command for: \if\edition\racketEd\color{olive}
  29. % and : \fi\color{black}
  30. %\newcommand{\pythonColor}[0]{\color{purple}}
  31. \newcommand{\pythonColor}[0]{}
  32. % material that is specific to the Python edition of the book
  33. \newcommand{\python}[1]{{\if\edition\pythonEd\pythonColor #1\fi}}
  34. \makeatletter
  35. \newcommand{\captionabove}[2][]{%
  36. \vskip-\abovecaptionskip
  37. \vskip+\belowcaptionskip
  38. \ifx\@nnil#1\@nnil
  39. \caption{#2}%
  40. \else
  41. \caption[#1]{#2}%
  42. \fi
  43. \vskip+\abovecaptionskip
  44. \vskip-\belowcaptionskip
  45. }
  46. %% For multiple indices:
  47. %\usepackage{multind} moved this to the file TimesAPriori_MIT.cls. -Jeremy
  48. \makeindex{subject}
  49. %\makeindex{authors}
  50. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  51. \if\edition\racketEd
  52. \lstset{%
  53. language=Lisp,
  54. basicstyle=\ttfamily\small,
  55. morekeywords={lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  56. deletekeywords={read,mapping,vector},
  57. escapechar=|,
  58. columns=flexible,
  59. %moredelim=[is][\color{red}]{~}{~},
  60. showstringspaces=false
  61. }
  62. \fi
  63. \if\edition\pythonEd
  64. \lstset{%
  65. language=Python,
  66. basicstyle=\ttfamily\small,
  67. morekeywords={match,case,bool,int,let,begin,if,else,closure},
  68. deletekeywords={},
  69. escapechar=|,
  70. columns=flexible,
  71. %moredelim=[is][\color{red}]{~}{~},
  72. showstringspaces=false
  73. }
  74. \fi
  75. %%% Any shortcut own defined macros place here
  76. %% sample of author macro:
  77. \input{defs}
  78. \newtheorem{exercise}[theorem]{Exercise}
  79. \numberwithin{theorem}{chapter}
  80. \numberwithin{definition}{chapter}
  81. \numberwithin{equation}{chapter}
  82. % Adjusted settings
  83. \setlength{\columnsep}{4pt}
  84. %% \begingroup
  85. %% \setlength{\intextsep}{0pt}%
  86. %% \setlength{\columnsep}{0pt}%
  87. %% \begin{wrapfigure}{r}{0.5\textwidth}
  88. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  89. %% \caption{Basic layout}
  90. %% \end{wrapfigure}
  91. %% \lipsum[1]
  92. %% \endgroup
  93. \newbox\oiintbox
  94. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  95. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  96. \def\oiint{\copy\oiintbox}
  97. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  98. %\usepackage{showframe}
  99. \def\ShowFrameLinethickness{0.125pt}
  100. \addbibresource{book.bib}
  101. \if\edition\pythonEd
  102. \addbibresource{python.bib}
  103. \fi
  104. \begin{document}
  105. \frontmatter
  106. %\HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  107. \HalfTitle{Essentials of Compilation}
  108. \halftitlepage
  109. \clearemptydoublepage
  110. \Title{Essentials of Compilation}
  111. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  112. %\edition{First Edition}
  113. \BookAuthor{Jeremy G. Siek}
  114. \imprint{The MIT Press\\
  115. Cambridge, Massachusetts\\
  116. London, England}
  117. \begin{copyrightpage}
  118. \textcopyright\ 2023 Jeremy G. Siek \\[2ex]
  119. This work is subject to a Creative Commons CC-BY-ND-NC license. \\[2ex]
  120. Subject to such license, all rights are reserved. \\[2ex]
  121. \includegraphics{CCBY-logo}
  122. The MIT Press would like to thank the anonymous peer reviewers who
  123. provided comments on drafts of this book. The generous work of
  124. academic experts is essential for establishing the authority and
  125. quality of our publications. We acknowledge with gratitude the
  126. contributions of these otherwise uncredited readers.
  127. This book was set in Times LT Std Roman by the author. Printed and
  128. bound in the United States of America.
  129. {\if\edition\racketEd
  130. Library of Congress Cataloging-in-Publication Data\\
  131. \ \\
  132. Names: Siek, Jeremy, author. \\
  133. Title: Essentials of compilation : an incremental approach in Racket / Jeremy G. Siek. \\
  134. Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes bibliographical references and index. \\
  135. Identifiers: LCCN 2022015399 (print) | LCCN 2022015400 (ebook) | ISBN 9780262047760 (hardcover) | ISBN 9780262373272 (epub) | ISBN 9780262373289 (pdf) \\
  136. Subjects: LCSH: Racket (Computer program language) | Compilers (Computer programs) \\
  137. Classification: LCC QA76.73.R33 S54 2023 (print) | LCC QA76.73.R33 (ebook) | DDC 005.13/3--dc23/eng/20220705 \\
  138. LC record available at https://lccn.loc.gov/2022015399\\
  139. LC ebook record available at https://lccn.loc.gov/2022015400\\
  140. \ \\
  141. \fi}
  142. %
  143. {\if\edition\pythonEd
  144. Library of Congress Cataloging-in-Publication Data\\
  145. \ \\
  146. Names: Siek, Jeremy, author. \\
  147. Title: Essentials of compilation : an incremental approach in Python / Jeremy G. Siek. \\
  148. Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes
  149. bibliographical references and index. \\
  150. Identifiers: LCCN 2022043053 (print) | LCCN 2022043054 (ebook) | ISBN
  151. 9780262048248 | ISBN 9780262375542 (epub) | ISBN 9780262375559 (pdf) \\
  152. Subjects: LCSH: Compilers (Computer programs) | Python (Computer program
  153. language) | Programming languages (Electronic computers) | Computer
  154. programming. \\
  155. Classification: LCC QA76.76.C65 S54 2023 (print) | LCC QA76.76.C65
  156. (ebook) | DDC 005.4/53--dc23/eng/20221117 \\
  157. LC record available at https://lccn.loc.gov/2022043053\\
  158. LC ebook record available at https://lccn.loc.gov/2022043054 \\
  159. \ \\
  160. \fi}
  161. 10 9 8 7 6 5 4 3 2 1
  162. %% Jeremy G. Siek. Available for free viewing
  163. %% or personal downloading under the
  164. %% \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  165. %% license.
  166. %% Copyright in this monograph has been licensed exclusively to The MIT
  167. %% Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  168. %% version to the public in 2022. All inquiries regarding rights should
  169. %% be addressed to The MIT Press, Rights and Permissions Department.
  170. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  171. %% All rights reserved. No part of this book may be reproduced in any
  172. %% form by any electronic or mechanical means (including photocopying,
  173. %% recording, or information storage and retrieval) without permission in
  174. %% writing from the publisher.
  175. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  176. %% United States of America.
  177. %% Library of Congress Cataloging-in-Publication Data is available.
  178. %% ISBN:
  179. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  180. \end{copyrightpage}
  181. \dedication{This book is dedicated to Katie, my partner in everything,
  182. my children, who grew up during the writing of this book, and the
  183. programming language students at Indiana University, whose
  184. thoughtful questions made this a better book.}
  185. %% \begin{epigraphpage}
  186. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  187. %% \textit{Book Name if any}}
  188. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  189. %% \end{epigraphpage}
  190. \tableofcontents
  191. %\listoffigures
  192. %\listoftables
  193. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  194. \chapter*{Preface}
  195. \addcontentsline{toc}{fmbm}{Preface}
  196. There is a magical moment when a programmer presses the \emph{run}
  197. button and the software begins to execute. Somehow a program written
  198. in a high-level language is running on a computer that is capable only
  199. of shuffling bits. Here we reveal the wizardry that makes that moment
  200. possible. Beginning with the groundbreaking work of Backus and
  201. colleagues in the 1950s, computer scientists developed techniques for
  202. constructing programs called \emph{compilers} that automatically
  203. translate high-level programs into machine code.
  204. We take you on a journey through constructing your own compiler for a
  205. small but powerful language. Along the way we explain the essential
  206. concepts, algorithms, and data structures that underlie compilers. We
  207. develop your understanding of how programs are mapped onto computer
  208. hardware, which is helpful in reasoning about properties at the
  209. junction of hardware and software, such as execution time, software
  210. errors, and security vulnerabilities. For those interested in
  211. pursuing compiler construction as a career, our goal is to provide a
  212. stepping-stone to advanced topics such as just-in-time compilation,
  213. program analysis, and program optimization. For those interested in
  214. designing and implementing programming languages, we connect language
  215. design choices to their impact on the compiler and the generated code.
  216. A compiler is typically organized as a sequence of stages that
  217. progressively translate a program to the code that runs on
  218. hardware. We take this approach to the extreme by partitioning our
  219. compiler into a large number of \emph{nanopasses}, each of which
  220. performs a single task. This enables the testing of each pass in
  221. isolation and focuses our attention, making the compiler far easier to
  222. understand.
  223. The most familiar approach to describing compilers is to dedicate each
  224. chapter to one pass. The problem with that approach is that it
  225. obfuscates how language features motivate design choices in a
  226. compiler. We instead take an \emph{incremental} approach in which we
  227. build a complete compiler in each chapter, starting with a small input
  228. language that includes only arithmetic and variables. We add new
  229. language features in subsequent chapters, extending the compiler as
  230. necessary.
  231. Our choice of language features is designed to elicit fundamental
  232. concepts and algorithms used in compilers.
  233. \begin{itemize}
  234. \item We begin with integer arithmetic and local variables in
  235. chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  236. the fundamental tools of compiler construction: \emph{abstract
  237. syntax trees} and \emph{recursive functions}.
  238. {\if\edition\pythonEd\pythonColor
  239. \item In chapter~\ref{ch:parsing} we learn how to use the Lark
  240. parser framework to create a parser for the language of integer
  241. arithmetic and local variables. We learn about the parsing
  242. algorithms inside Lark, including Earley and LALR(1).
  243. %
  244. \fi}
  245. \item In chapter~\ref{ch:register-allocation-Lvar} we apply
  246. \emph{graph coloring} to assign variables to machine registers.
  247. \item Chapter~\ref{ch:Lif} adds conditional expressions, which
  248. motivates an elegant recursive algorithm for translating them into
  249. conditional \code{goto} statements.
  250. \item Chapter~\ref{ch:Lwhile} adds loops\racket{ and mutable
  251. variables}. This elicits the need for \emph{dataflow
  252. analysis} in the register allocator.
  253. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  254. \emph{garbage collection}.
  255. \item Chapter~\ref{ch:Lfun} adds functions as first-class values
  256. without lexical scoping, similar to functions in the C programming
  257. language~\citep{Kernighan:1988nx}. The reader learns about the
  258. procedure call stack and \emph{calling conventions} and how they interact
  259. with register allocation and garbage collection. The chapter also
  260. describes how to generate efficient tail calls.
  261. \item Chapter~\ref{ch:Llambda} adds anonymous functions with lexical
  262. scoping, that is, \emph{lambda} expressions. The reader learns about
  263. \emph{closure conversion}, in which lambdas are translated into a
  264. combination of functions and tuples.
  265. % Chapter about classes and objects?
  266. \item Chapter~\ref{ch:Ldyn} adds \emph{dynamic typing}. Prior to this
  267. point the input languages are statically typed. The reader extends
  268. the statically typed language with an \code{Any} type that serves
  269. as a target for compiling the dynamically typed language.
  270. %% {\if\edition\pythonEd\pythonColor
  271. %% \item Chapter~\ref{ch:Lobject} adds support for \emph{objects} and
  272. %% \emph{classes}.
  273. %% \fi}
  274. \item Chapter~\ref{ch:Lgrad} uses the \code{Any} type introduced in
  275. chapter~\ref{ch:Ldyn} to implement a \emph{gradually typed language}
  276. in which different regions of a program may be static or dynamically
  277. typed. The reader implements runtime support for \emph{proxies} that
  278. allow values to safely move between regions.
  279. \item Chapter~\ref{ch:Lpoly} adds \emph{generics} with autoboxing,
  280. leveraging the \code{Any} type and type casts developed in chapters
  281. \ref{ch:Ldyn} and \ref{ch:Lgrad}.
  282. \end{itemize}
  283. There are many language features that we do not include. Our choices
  284. balance the incidental complexity of a feature versus the fundamental
  285. concepts that it exposes. For example, we include tuples and not
  286. records because although they both elicit the study of heap allocation and
  287. garbage collection, records come with more incidental complexity.
  288. Since 2009, drafts of this book have served as the textbook for
  289. sixteen-week compiler courses for upper-level undergraduates and
  290. first-year graduate students at the University of Colorado and Indiana
  291. University.
  292. %
  293. Students come into the course having learned the basics of
  294. programming, data structures and algorithms, and discrete
  295. mathematics.
  296. %
  297. At the beginning of the course, students form groups of two to four
  298. people. The groups complete approximately one chapter every two
  299. weeks, starting with chapter~\ref{ch:Lvar} and including chapters
  300. according to the students interests while respecting the dependencies
  301. between chapters shown in
  302. figure~\ref{fig:chapter-dependences}. Chapter~\ref{ch:Lfun}
  303. (functions) depends on chapter~\ref{ch:Lvec} (tuples) only in the
  304. implementation of efficient tail calls.
  305. %
  306. The last two weeks of the course involve a final project in which
  307. students design and implement a compiler extension of their choosing.
  308. The last few chapters can be used in support of these projects. Many
  309. chapters include a challenge problem that we assign to the graduate
  310. students.
  311. For compiler courses at universities on the quarter system
  312. (about ten weeks in length), we recommend completing the course
  313. through chapter~\ref{ch:Lvec} or chapter~\ref{ch:Lfun} and providing
  314. some scaffolding code to the students for each compiler pass.
  315. %
  316. The course can be adapted to emphasize functional languages by
  317. skipping chapter~\ref{ch:Lwhile} (loops) and including
  318. chapter~\ref{ch:Llambda} (lambda). The course can be adapted to
  319. dynamically typed languages by including chapter~\ref{ch:Ldyn}.
  320. %
  321. %% \python{A course that emphasizes object-oriented languages would
  322. %% include Chapter~\ref{ch:Lobject}.}
  323. This book has been used in compiler courses at California Polytechnic
  324. State University, Portland State University, Rose–Hulman Institute of
  325. Technology, University of Freiburg, University of Massachusetts
  326. Lowell, and the University of Vermont.
  327. \begin{figure}[tp]
  328. \begin{tcolorbox}[colback=white]
  329. {\if\edition\racketEd
  330. \begin{tikzpicture}[baseline=(current bounding box.center)]
  331. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  332. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  333. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  334. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  335. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  336. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  337. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  338. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  339. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  340. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  341. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  342. \path[->] (C1) edge [above] node {} (C2);
  343. \path[->] (C2) edge [above] node {} (C3);
  344. \path[->] (C3) edge [above] node {} (C4);
  345. \path[->] (C4) edge [above] node {} (C5);
  346. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  347. \path[->] (C5) edge [above] node {} (C7);
  348. \path[->] (C6) edge [above] node {} (C7);
  349. \path[->] (C4) edge [above] node {} (C8);
  350. \path[->] (C4) edge [above] node {} (C9);
  351. \path[->] (C7) edge [above] node {} (C10);
  352. \path[->] (C8) edge [above] node {} (C10);
  353. \path[->] (C10) edge [above] node {} (C11);
  354. \end{tikzpicture}
  355. \fi}
  356. {\if\edition\pythonEd\pythonColor
  357. \begin{tikzpicture}[baseline=(current bounding box.center)]
  358. \node (Prelim) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  359. \node (Var) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  360. \node (Parse) at (8,1.5) {\small Ch.~\ref{ch:parsing} Parsing};
  361. \node (Reg) at (0,0) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  362. \node (Cond) at (4,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  363. \node (Loop) at (8,0) {\small Ch.~\ref{ch:Lwhile} Loops};
  364. \node (Fun) at (0,-1.5) {\small Ch.~\ref{ch:Lfun} Functions};
  365. \node (Tuple) at (4,-1.5) {\small Ch.~\ref{ch:Lvec} Tuples};
  366. \node (Dyn) at (8,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  367. % \node (CO) at (0,-3) {\small Ch.~\ref{ch:Lobject} Objects};
  368. \node (Lam) at (0,-3) {\small Ch.~\ref{ch:Llambda} Lambda};
  369. \node (Gradual) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  370. \node (Generic) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  371. \path[->] (Prelim) edge [above] node {} (Var);
  372. \path[->] (Var) edge [above] node {} (Reg);
  373. \path[->] (Var) edge [above] node {} (Parse);
  374. \path[->] (Reg) edge [above] node {} (Cond);
  375. \path[->] (Cond) edge [above] node {} (Tuple);
  376. \path[->,style=dotted] (Tuple) edge [above] node {} (Fun);
  377. \path[->] (Cond) edge [above] node {} (Fun);
  378. \path[->] (Tuple) edge [above] node {} (Lam);
  379. \path[->] (Fun) edge [above] node {} (Lam);
  380. \path[->] (Cond) edge [above] node {} (Dyn);
  381. \path[->] (Cond) edge [above] node {} (Loop);
  382. \path[->] (Lam) edge [above] node {} (Gradual);
  383. \path[->] (Dyn) edge [above] node {} (Gradual);
  384. % \path[->] (Dyn) edge [above] node {} (CO);
  385. \path[->] (Gradual) edge [above] node {} (Generic);
  386. \end{tikzpicture}
  387. \fi}
  388. \end{tcolorbox}
  389. \caption{Diagram of chapter dependencies.}
  390. \label{fig:chapter-dependences}
  391. \end{figure}
  392. \racket{We use the \href{https://racket-lang.org/}{Racket} language both for
  393. the implementation of the compiler and for the input language, so the
  394. reader should be proficient with Racket or Scheme. There are many
  395. excellent resources for learning Scheme and
  396. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.}
  397. %
  398. \python{This edition of the book uses \href{https://www.python.org/}{Python}
  399. both for the implementation of the compiler and for the input language, so the
  400. reader should be proficient with Python. There are many
  401. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.}%
  402. %
  403. The support code for this book is in the GitHub repository at
  404. the following location:
  405. \begin{center}\small\texttt
  406. https://github.com/IUCompilerCourse/
  407. \end{center}
  408. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  409. is helpful but not necessary for the reader to have taken a computer
  410. systems course~\citep{Bryant:2010aa}. We introduce the parts of x86-64
  411. assembly language that are needed in the compiler.
  412. %
  413. We follow the System V calling
  414. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  415. that we generate works with the runtime system (written in C) when it
  416. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  417. operating systems on Intel hardware.
  418. %
  419. On the Windows operating system, \code{gcc} uses the Microsoft x64
  420. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  421. assembly code that we generate does \emph{not} work with the runtime
  422. system on Windows. One workaround is to use a virtual machine with
  423. Linux as the guest operating system.
  424. \section*{Acknowledgments}
  425. The tradition of compiler construction at Indiana University goes back
  426. to research and courses on programming languages by Daniel Friedman in
  427. the 1970s and 1980s. One of his students, Kent Dybvig, implemented
  428. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  429. compiler for Scheme. Throughout the 1990s and 2000s, Dybvig taught
  430. the compiler course and continued the development of Chez Scheme.
  431. %
  432. The compiler course evolved to incorporate novel pedagogical ideas
  433. while also including elements of real-world compilers. One of
  434. Friedman's ideas was to split the compiler into many small
  435. passes. Another idea, called ``the game,'' was to test the code
  436. generated by each pass using interpreters.
  437. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  438. developed infrastructure to support this approach and evolved the
  439. course to use even smaller
  440. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  441. design decisions in this book are inspired by the assignment
  442. descriptions of \citet{Dybvig:2010aa}. In the mid 2000s, a student of
  443. Dybvig named Abdulaziz Ghuloum observed that the front-to-back
  444. organization of the course made it difficult for students to
  445. understand the rationale for the compiler design. Ghuloum proposed the
  446. incremental approach~\citep{Ghuloum:2006bh} on which this book is
  447. based.
  448. I thank the many students who served as teaching assistants for the
  449. compiler course at IU including Carl Factora, Ryan Scott, Cameron
  450. Swords, and Chris Wailes. I thank Andre Kuhlenschmidt for work on the
  451. garbage collector and x86 interpreter, Michael Vollmer for work on
  452. efficient tail calls, and Michael Vitousek for help with the first
  453. offering of the incremental compiler course at IU.
  454. I thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  455. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  456. Michael Wollowski for teaching courses based on drafts of this book
  457. and for their feedback. I thank the National Science Foundation for
  458. the grants that helped to support this work: Grant Numbers 1518844,
  459. 1763922, and 1814460.
  460. I thank Ronald Garcia for helping me survive Dybvig's compiler
  461. course in the early 2000s and especially for finding the bug that
  462. sent our garbage collector on a wild goose chase!
  463. \mbox{}\\
  464. \noindent Jeremy G. Siek \\
  465. Bloomington, Indiana
  466. \mainmatter
  467. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  468. \chapter{Preliminaries}
  469. \label{ch:trees-recur}
  470. \setcounter{footnote}{0}
  471. In this chapter we introduce the basic tools needed to implement a
  472. compiler. Programs are typically input by a programmer as text, that
  473. is, a sequence of characters. The program-as-text representation is
  474. called \emph{concrete syntax}. We use concrete syntax to concisely
  475. write down and talk about programs. Inside the compiler, we use
  476. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  477. that efficiently supports the operations that the compiler needs to
  478. perform.\index{subject}{concrete syntax}\index{subject}{abstract
  479. syntax}\index{subject}{abstract syntax
  480. tree}\index{subject}{AST}\index{subject}{program}
  481. The process of translating concrete syntax to abstract syntax is
  482. called \emph{parsing}\index{subject}{parsing}\python{\ and is studied in
  483. chapter~\ref{ch:parsing}}.
  484. \racket{This book does not cover the theory and implementation of parsing.
  485. We refer the readers interested in parsing to the thorough treatment
  486. of parsing by \citet{Aho:2006wb}. }%
  487. %
  488. \racket{A parser is provided in the support code for translating from
  489. concrete to abstract syntax.}%
  490. %
  491. \python{For now we use the \code{parse} function in Python's
  492. \code{ast} module to translate from concrete to abstract syntax.}
  493. ASTs can be represented inside the compiler in many different ways,
  494. depending on the programming language used to write the compiler.
  495. %
  496. \racket{We use Racket's
  497. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  498. feature to represent ASTs (section~\ref{sec:ast}).}
  499. %
  500. \python{We use Python classes and objects to represent ASTs, especially the
  501. classes defined in the standard \code{ast} module for the Python
  502. source language.}
  503. %
  504. We use grammars to define the abstract syntax of programming languages
  505. (section~\ref{sec:grammar}) and pattern matching to inspect individual
  506. nodes in an AST (section~\ref{sec:pattern-matching}). We use
  507. recursive functions to construct and deconstruct ASTs
  508. (section~\ref{sec:recursion}). This chapter provides a brief
  509. introduction to these components.
  510. \racket{\index{subject}{struct}}
  511. \python{\index{subject}{class}\index{subject}{object}}
  512. \section{Abstract Syntax Trees}
  513. \label{sec:ast}
  514. Compilers use abstract syntax trees to represent programs because they
  515. often need to ask questions such as, for a given part of a program,
  516. what kind of language feature is it? What are its subparts? Consider
  517. the program on the left and the diagram of its AST on the
  518. right~\eqref{eq:arith-prog}. This program is an addition operation
  519. that has two subparts, a \racket{read}\python{input} operation and a
  520. negation. The negation has another subpart, the integer constant
  521. \code{8}. By using a tree to represent the program, we can easily
  522. follow the links to go from one part of a program to its subparts.
  523. \begin{center}
  524. \begin{minipage}{0.4\textwidth}
  525. {\if\edition\racketEd
  526. \begin{lstlisting}
  527. (+ (read) (- 8))
  528. \end{lstlisting}
  529. \fi}
  530. {\if\edition\pythonEd\pythonColor
  531. \begin{lstlisting}
  532. input_int() + -8
  533. \end{lstlisting}
  534. \fi}
  535. \end{minipage}
  536. \begin{minipage}{0.4\textwidth}
  537. \begin{equation}
  538. \begin{tikzpicture}
  539. \node[draw] (plus) at (0 , 0) {\key{+}};
  540. \node[draw] (read) at (-1, -1) {\racket{\footnotesize\key{read}}\python{\key{input\_int()}}};
  541. \node[draw] (minus) at (1 , -1) {$\key{-}$};
  542. \node[draw] (8) at (1 , -2) {\key{8}};
  543. \draw[->] (plus) to (read);
  544. \draw[->] (plus) to (minus);
  545. \draw[->] (minus) to (8);
  546. \end{tikzpicture}
  547. \label{eq:arith-prog}
  548. \end{equation}
  549. \end{minipage}
  550. \end{center}
  551. We use the standard terminology for trees to describe ASTs: each
  552. rectangle above is called a \emph{node}. The arrows connect a node to its
  553. \emph{children}, which are also nodes. The top-most node is the
  554. \emph{root}. Every node except for the root has a \emph{parent} (the
  555. node of which it is the child). If a node has no children, it is a
  556. \emph{leaf} node; otherwise it is an \emph{internal} node.
  557. \index{subject}{node}
  558. \index{subject}{children}
  559. \index{subject}{root}
  560. \index{subject}{parent}
  561. \index{subject}{leaf}
  562. \index{subject}{internal node}
  563. %% Recall that an \emph{symbolic expression} (S-expression) is either
  564. %% \begin{enumerate}
  565. %% \item an atom, or
  566. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  567. %% where $e_1$ and $e_2$ are each an S-expression.
  568. %% \end{enumerate}
  569. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  570. %% null value \code{'()}, etc. We can create an S-expression in Racket
  571. %% simply by writing a backquote (called a quasi-quote in Racket)
  572. %% followed by the textual representation of the S-expression. It is
  573. %% quite common to use S-expressions to represent a list, such as $a, b
  574. %% ,c$ in the following way:
  575. %% \begin{lstlisting}
  576. %% `(a . (b . (c . ())))
  577. %% \end{lstlisting}
  578. %% Each element of the list is in the first slot of a pair, and the
  579. %% second slot is either the rest of the list or the null value, to mark
  580. %% the end of the list. Such lists are so common that Racket provides
  581. %% special notation for them that removes the need for the periods
  582. %% and so many parenthesis:
  583. %% \begin{lstlisting}
  584. %% `(a b c)
  585. %% \end{lstlisting}
  586. %% The following expression creates an S-expression that represents AST
  587. %% \eqref{eq:arith-prog}.
  588. %% \begin{lstlisting}
  589. %% `(+ (read) (- 8))
  590. %% \end{lstlisting}
  591. %% When using S-expressions to represent ASTs, the convention is to
  592. %% represent each AST node as a list and to put the operation symbol at
  593. %% the front of the list. The rest of the list contains the children. So
  594. %% in the above case, the root AST node has operation \code{`+} and its
  595. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  596. %% diagram \eqref{eq:arith-prog}.
  597. %% To build larger S-expressions one often needs to splice together
  598. %% several smaller S-expressions. Racket provides the comma operator to
  599. %% splice an S-expression into a larger one. For example, instead of
  600. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  601. %% we could have first created an S-expression for AST
  602. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  603. %% S-expression.
  604. %% \begin{lstlisting}
  605. %% (define ast1.4 `(- 8))
  606. %% (define ast1_1 `(+ (read) ,ast1.4))
  607. %% \end{lstlisting}
  608. %% In general, the Racket expression that follows the comma (splice)
  609. %% can be any expression that produces an S-expression.
  610. {\if\edition\racketEd
  611. We define a Racket \code{struct} for each kind of node. For this
  612. chapter we require just two kinds of nodes: one for integer constants
  613. (aka literals\index{subject}{literals})
  614. and one for primitive operations. The following is the \code{struct}
  615. definition for integer constants.\footnote{All the AST structures are
  616. defined in the file \code{utilities.rkt} in the support code.}
  617. \begin{lstlisting}
  618. (struct Int (value))
  619. \end{lstlisting}
  620. An integer node contains just one thing: the integer value.
  621. We establish the convention that \code{struct} names, such
  622. as \code{Int}, are capitalized.
  623. To create an AST node for the integer $8$, we write \INT{8}.
  624. \begin{lstlisting}
  625. (define eight (Int 8))
  626. \end{lstlisting}
  627. We say that the value created by \INT{8} is an
  628. \emph{instance} of the
  629. \code{Int} structure.
  630. The following is the \code{struct} definition for primitive operations.
  631. \begin{lstlisting}
  632. (struct Prim (op args))
  633. \end{lstlisting}
  634. A primitive operation node includes an operator symbol \code{op} and a
  635. list of child arguments called \code{args}. For example, to create an
  636. AST that negates the number $8$, we write the following.
  637. \begin{lstlisting}
  638. (define neg-eight (Prim '- (list eight)))
  639. \end{lstlisting}
  640. Primitive operations may have zero or more children. The \code{read}
  641. operator has zero:
  642. \begin{lstlisting}
  643. (define rd (Prim 'read '()))
  644. \end{lstlisting}
  645. The addition operator has two children:
  646. \begin{lstlisting}
  647. (define ast1_1 (Prim '+ (list rd neg-eight)))
  648. \end{lstlisting}
  649. We have made a design choice regarding the \code{Prim} structure.
  650. Instead of using one structure for many different operations
  651. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  652. structure for each operation, as follows:
  653. \begin{lstlisting}
  654. (struct Read ())
  655. (struct Add (left right))
  656. (struct Neg (value))
  657. \end{lstlisting}
  658. The reason that we choose to use just one structure is that many parts
  659. of the compiler can use the same code for the different primitive
  660. operators, so we might as well just write that code once by using a
  661. single structure.
  662. %
  663. \fi}
  664. {\if\edition\pythonEd\pythonColor
  665. We use a Python \code{class} for each kind of node.
  666. The following is the class definition for
  667. constants (aka literals\index{subject}{literals})
  668. from the Python \code{ast} module.
  669. \begin{lstlisting}
  670. class Constant:
  671. def __init__(self, value):
  672. self.value = value
  673. \end{lstlisting}
  674. An integer constant node includes just one thing: the integer value.
  675. To create an AST node for the integer $8$, we write \INT{8}.
  676. \begin{lstlisting}
  677. eight = Constant(8)
  678. \end{lstlisting}
  679. We say that the value created by \INT{8} is an
  680. \emph{instance} of the \code{Constant} class.
  681. The following is the class definition for unary operators.
  682. \begin{lstlisting}
  683. class UnaryOp:
  684. def __init__(self, op, operand):
  685. self.op = op
  686. self.operand = operand
  687. \end{lstlisting}
  688. The specific operation is specified by the \code{op} parameter. For
  689. example, the class \code{USub} is for unary subtraction.
  690. (More unary operators are introduced in later chapters.) To create an AST that
  691. negates the number $8$, we write the following.
  692. \begin{lstlisting}
  693. neg_eight = UnaryOp(USub(), eight)
  694. \end{lstlisting}
  695. The call to the \code{input\_int} function is represented by the
  696. \code{Call} and \code{Name} classes.
  697. \begin{lstlisting}
  698. class Call:
  699. def __init__(self, func, args):
  700. self.func = func
  701. self.args = args
  702. class Name:
  703. def __init__(self, id):
  704. self.id = id
  705. \end{lstlisting}
  706. To create an AST node that calls \code{input\_int}, we write
  707. \begin{lstlisting}
  708. read = Call(Name('input_int'), [])
  709. \end{lstlisting}
  710. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  711. the \code{BinOp} class for binary operators.
  712. \begin{lstlisting}
  713. class BinOp:
  714. def __init__(self, left, op, right):
  715. self.op = op
  716. self.left = left
  717. self.right = right
  718. \end{lstlisting}
  719. Similar to \code{UnaryOp}, the specific operation is specified by the
  720. \code{op} parameter, which for now is just an instance of the
  721. \code{Add} class. So to create the AST
  722. node that adds negative eight to some user input, we write the following.
  723. \begin{lstlisting}
  724. ast1_1 = BinOp(read, Add(), neg_eight)
  725. \end{lstlisting}
  726. \fi}
  727. To compile a program such as \eqref{eq:arith-prog}, we need to know
  728. that the operation associated with the root node is addition and we
  729. need to be able to access its two
  730. children. \racket{Racket}\python{Python} provides pattern matching to
  731. support these kinds of queries, as we see in
  732. section~\ref{sec:pattern-matching}.
  733. We often write down the concrete syntax of a program even when we
  734. actually have in mind the AST, because the concrete syntax is more
  735. concise. We recommend that you always think of programs as abstract
  736. syntax trees.
  737. \section{Grammars}
  738. \label{sec:grammar}
  739. \index{subject}{integer}
  740. %\index{subject}{constant}
  741. A programming language can be thought of as a \emph{set} of programs.
  742. The set is infinite (that is, one can always create larger programs),
  743. so one cannot simply describe a language by listing all the
  744. programs in the language. Instead we write down a set of rules, a
  745. \emph{context-free grammar}, for building programs. Grammars are often used to
  746. define the concrete syntax of a language, but they can also be used to
  747. describe the abstract syntax. We write our rules in a variant of
  748. Backus-Naur form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  749. \index{subject}{Backus-Naur form}\index{subject}{BNF} As an example,
  750. we describe a small language, named \LangInt{}, that consists of
  751. integers and arithmetic operations.\index{subject}{grammar}
  752. \index{subject}{context-free grammar}
  753. The first grammar rule for the abstract syntax of \LangInt{} says that an
  754. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  755. \begin{equation}
  756. \Exp ::= \INT{\Int} \label{eq:arith-int}
  757. \end{equation}
  758. %
  759. Each rule has a left-hand side and a right-hand side.
  760. If you have an AST node that matches the
  761. right-hand side, then you can categorize it according to the
  762. left-hand side.
  763. %
  764. Symbols in typewriter font, such as \racket{\code{Int}}\python{\code{Constant}},
  765. are \emph{terminal} symbols and must literally appear in the program for the
  766. rule to be applicable.\index{subject}{terminal}
  767. %
  768. Our grammars do not mention \emph{white space}, that is, delimiter
  769. characters like spaces, tabs, and new lines. White space may be
  770. inserted between symbols for disambiguation and to improve
  771. readability. \index{subject}{white space}
  772. %
  773. A name such as $\Exp$ that is defined by the grammar rules is a
  774. \emph{nonterminal}. \index{subject}{nonterminal}
  775. %
  776. The name $\Int$ is also a nonterminal, but instead of defining it with
  777. a grammar rule, we define it with the following explanation. An
  778. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  779. $-$ (for negative integers), such that the sequence of decimals
  780. %
  781. \racket{represents an integer in the range $-2^{62}$ to $2^{62}-1$. This
  782. enables the representation of integers using 63 bits, which simplifies
  783. several aspects of compilation.
  784. %
  785. Thus, these integers correspond to the Racket \texttt{fixnum}
  786. datatype on a 64-bit machine.}
  787. %
  788. \python{represents an integer in the range $-2^{63}$ to $2^{63}-1$. This
  789. enables the representation of integers using 64 bits, which simplifies
  790. several aspects of compilation. In contrast, integers in Python have
  791. unlimited precision, but the techniques needed to handle unlimited
  792. precision fall outside the scope of this book.}
  793. The second grammar rule is the \READOP{} operation, which receives an
  794. input integer from the user of the program.
  795. \begin{equation}
  796. \Exp ::= \READ{} \label{eq:arith-read}
  797. \end{equation}
  798. The third rule categorizes the negation of an $\Exp$ node as an
  799. $\Exp$.
  800. \begin{equation}
  801. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  802. \end{equation}
  803. We can apply these rules to categorize the ASTs that are in the
  804. \LangInt{} language. For example, by rule \eqref{eq:arith-int},
  805. \INT{8} is an $\Exp$, and then by rule \eqref{eq:arith-neg} the
  806. following AST is an $\Exp$.
  807. \begin{center}
  808. \begin{minipage}{0.5\textwidth}
  809. \NEG{\INT{\code{8}}}
  810. \end{minipage}
  811. \begin{minipage}{0.25\textwidth}
  812. \begin{equation}
  813. \begin{tikzpicture}
  814. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  815. \node[draw, circle] (8) at (0, -1.2) {$8$};
  816. \draw[->] (minus) to (8);
  817. \end{tikzpicture}
  818. \label{eq:arith-neg8}
  819. \end{equation}
  820. \end{minipage}
  821. \end{center}
  822. The next two grammar rules are for addition and subtraction expressions:
  823. \begin{align}
  824. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  825. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  826. \end{align}
  827. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  828. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  829. \eqref{eq:arith-read}, and we have already categorized
  830. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  831. to show that
  832. \[
  833. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  834. \]
  835. is an $\Exp$ in the \LangInt{} language.
  836. If you have an AST for which these rules do not apply, then the
  837. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  838. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  839. because there is no rule for the \key{*} operator. Whenever we
  840. define a language with a grammar, the language includes only those
  841. programs that are justified by the grammar rules.
  842. {\if\edition\pythonEd\pythonColor
  843. The language \LangInt{} includes a second nonterminal $\Stmt$ for statements.
  844. There is a statement for printing the value of an expression
  845. \[
  846. \Stmt{} ::= \PRINT{\Exp}
  847. \]
  848. and a statement that evaluates an expression but ignores the result.
  849. \[
  850. \Stmt{} ::= \EXPR{\Exp}
  851. \]
  852. \fi}
  853. {\if\edition\racketEd
  854. The last grammar rule for \LangInt{} states that there is a
  855. \code{Program} node to mark the top of the whole program:
  856. \[
  857. \LangInt{} ::= \PROGRAM{\code{\textquotesingle()}}{\Exp}
  858. \]
  859. The \code{Program} structure is defined as follows:
  860. \begin{lstlisting}
  861. (struct Program (info body))
  862. \end{lstlisting}
  863. where \code{body} is an expression. In further chapters, the \code{info}
  864. part is used to store auxiliary information, but for now it is
  865. just the empty list.
  866. \fi}
  867. {\if\edition\pythonEd\pythonColor
  868. The last grammar rule for \LangInt{} states that there is a
  869. \code{Module} node to mark the top of the whole program:
  870. \[
  871. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  872. \]
  873. The asterisk $*$ indicates a list of the preceding grammar item, in
  874. this case a list of statements.
  875. %
  876. The \code{Module} class is defined as follows:
  877. \begin{lstlisting}
  878. class Module:
  879. def __init__(self, body):
  880. self.body = body
  881. \end{lstlisting}
  882. where \code{body} is a list of statements.
  883. \fi}
  884. It is common to have many grammar rules with the same left-hand side
  885. but different right-hand sides, such as the rules for $\Exp$ in the
  886. grammar of \LangInt{}. As shorthand, a vertical bar can be used to
  887. combine several right-hand sides into a single rule.
  888. The concrete syntax for \LangInt{} is shown in
  889. figure~\ref{fig:r0-concrete-syntax} and the abstract syntax for
  890. \LangInt{} is shown in figure~\ref{fig:r0-syntax}. %
  891. %
  892. \racket{The \code{read-program} function provided in
  893. \code{utilities.rkt} of the support code reads a program from a file
  894. (the sequence of characters in the concrete syntax of Racket) and
  895. parses it into an abstract syntax tree. Refer to the description of
  896. \code{read-program} in appendix~\ref{appendix:utilities} for more
  897. details.}
  898. %
  899. \python{We recommend using the \code{parse} function in Python's
  900. \code{ast} module to convert the concrete syntax into an abstract
  901. syntax tree.}
  902. \newcommand{\LintGrammarRacket}{
  903. \begin{array}{rcl}
  904. \Type &::=& \key{Integer} \\
  905. \Exp{} &::=& \Int{} \MID \CREAD \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  906. \MID \CSUB{\Exp}{\Exp}
  907. \end{array}
  908. }
  909. \newcommand{\LintASTRacket}{
  910. \begin{array}{rcl}
  911. \Type &::=& \key{Integer} \\
  912. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  913. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \SUB{\Exp}{\Exp}
  914. \end{array}
  915. }
  916. \newcommand{\LintGrammarPython}{
  917. \begin{array}{rcl}
  918. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  919. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  920. \end{array}
  921. }
  922. \newcommand{\LintASTPython}{
  923. \begin{array}{rcl}
  924. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  925. &\MID& \UNIOP{\key{USub()}}{\Exp} \MID \BINOP{\Exp}{\key{Add()}}{\Exp}\\
  926. &\MID& \BINOP{\Exp}{\key{Sub()}}{\Exp}\\
  927. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  928. \end{array}
  929. }
  930. \begin{figure}[tp]
  931. \begin{tcolorbox}[colback=white]
  932. {\if\edition\racketEd
  933. \[
  934. \begin{array}{l}
  935. \LintGrammarRacket \\
  936. \begin{array}{rcl}
  937. \LangInt{} &::=& \Exp
  938. \end{array}
  939. \end{array}
  940. \]
  941. \fi}
  942. {\if\edition\pythonEd\pythonColor
  943. \[
  944. \begin{array}{l}
  945. \LintGrammarPython \\
  946. \begin{array}{rcl}
  947. \LangInt{} &::=& \Stmt^{*}
  948. \end{array}
  949. \end{array}
  950. \]
  951. \fi}
  952. \end{tcolorbox}
  953. \caption{The concrete syntax of \LangInt{}.}
  954. \label{fig:r0-concrete-syntax}
  955. \index{subject}{Lint@\LangInt{} concrete syntax}
  956. \end{figure}
  957. \begin{figure}[tp]
  958. \begin{tcolorbox}[colback=white]
  959. {\if\edition\racketEd
  960. \[
  961. \begin{array}{l}
  962. \LintASTRacket{} \\
  963. \begin{array}{rcl}
  964. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  965. \end{array}
  966. \end{array}
  967. \]
  968. \fi}
  969. {\if\edition\pythonEd\pythonColor
  970. \[
  971. \begin{array}{l}
  972. \LintASTPython\\
  973. \begin{array}{rcl}
  974. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  975. \end{array}
  976. \end{array}
  977. \]
  978. \fi}
  979. \end{tcolorbox}
  980. \python{
  981. \index{subject}{Constant@\texttt{Constant}}
  982. \index{subject}{UnaryOp@\texttt{UnaryOp}}
  983. \index{subject}{USub@\texttt{USub}}
  984. \index{subject}{inputint@\texttt{input\_int}}
  985. \index{subject}{Call@\texttt{Call}}
  986. \index{subject}{Name@\texttt{Name}}
  987. \index{subject}{BinOp@\texttt{BinOp}}
  988. \index{subject}{Add@\texttt{Add}}
  989. \index{subject}{Sub@\texttt{Sub}}
  990. \index{subject}{print@\texttt{print}}
  991. \index{subject}{Expr@\texttt{Expr}}
  992. \index{subject}{Module@\texttt{Module}}
  993. }
  994. \caption{The abstract syntax of \LangInt{}.}
  995. \label{fig:r0-syntax}
  996. \index{subject}{Lint@\LangInt{} abstract syntax}
  997. \end{figure}
  998. \section{Pattern Matching}
  999. \label{sec:pattern-matching}
  1000. As mentioned in section~\ref{sec:ast}, compilers often need to access
  1001. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python}
  1002. provides the \texttt{match} feature to access the parts of a value.
  1003. Consider the following example: \index{subject}{match} \index{subject}{pattern matching}
  1004. \begin{center}
  1005. \begin{minipage}{1.0\textwidth}
  1006. {\if\edition\racketEd
  1007. \begin{lstlisting}
  1008. (match ast1_1
  1009. [(Prim op (list child1 child2))
  1010. (print op)])
  1011. \end{lstlisting}
  1012. \fi}
  1013. {\if\edition\pythonEd\pythonColor
  1014. \begin{lstlisting}
  1015. match ast1_1:
  1016. case BinOp(child1, op, child2):
  1017. print(op)
  1018. \end{lstlisting}
  1019. \fi}
  1020. \end{minipage}
  1021. \end{center}
  1022. {\if\edition\racketEd
  1023. %
  1024. In this example, the \texttt{match} form checks whether the AST
  1025. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  1026. three pattern variables \texttt{op}, \texttt{child1}, and
  1027. \texttt{child2}. In general, a match clause consists of a
  1028. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  1029. recursively defined to be a pattern variable, a structure name
  1030. followed by a pattern for each of the structure's arguments, or an
  1031. S-expression (a symbol, list, etc.). (See chapter 12 of The Racket
  1032. Guide\footnote{See \url{https://docs.racket-lang.org/guide/match.html}.}
  1033. and chapter 9 of The Racket
  1034. Reference\footnote{See \url{https://docs.racket-lang.org/reference/match.html}.}
  1035. for complete descriptions of \code{match}.)
  1036. %
  1037. The body of a match clause may contain arbitrary Racket code. The
  1038. pattern variables can be used in the scope of the body, such as
  1039. \code{op} in \code{(print op)}.
  1040. %
  1041. \fi}
  1042. %
  1043. %
  1044. {\if\edition\pythonEd\pythonColor
  1045. %
  1046. In the example above, the \texttt{match} form checks whether the AST
  1047. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  1048. three pattern variables (\texttt{child1}, \texttt{op}, and
  1049. \texttt{child2}). In general, each \code{case} consists of a
  1050. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  1051. recursively defined to be one of the following: a pattern variable, a
  1052. class name followed by a pattern for each of its constructor's
  1053. arguments, or other literals\index{subject}{literals} such as strings
  1054. or lists.
  1055. %
  1056. The body of each \code{case} may contain arbitrary Python code. The
  1057. pattern variables can be used in the body, such as \code{op} in
  1058. \code{print(op)}.
  1059. %
  1060. \fi}
  1061. A \code{match} form may contain several clauses, as in the following
  1062. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  1063. the AST. The \code{match} proceeds through the clauses in order,
  1064. checking whether the pattern can match the input AST. The body of the
  1065. first clause that matches is executed. The output of \code{leaf} for
  1066. several ASTs is shown on the right side of the following:
  1067. \begin{center}
  1068. \begin{minipage}{0.6\textwidth}
  1069. {\if\edition\racketEd
  1070. \begin{lstlisting}
  1071. (define (leaf arith)
  1072. (match arith
  1073. [(Int n) #t]
  1074. [(Prim 'read '()) #t]
  1075. [(Prim '- (list e1)) #f]
  1076. [(Prim '+ (list e1 e2)) #f]
  1077. [(Prim '- (list e1 e2)) #f]))
  1078. (leaf (Prim 'read '()))
  1079. (leaf (Prim '- (list (Int 8))))
  1080. (leaf (Int 8))
  1081. \end{lstlisting}
  1082. \fi}
  1083. {\if\edition\pythonEd\pythonColor
  1084. \begin{lstlisting}
  1085. def leaf(arith):
  1086. match arith:
  1087. case Constant(n):
  1088. return True
  1089. case Call(Name('input_int'), []):
  1090. return True
  1091. case UnaryOp(USub(), e1):
  1092. return False
  1093. case BinOp(e1, Add(), e2):
  1094. return False
  1095. case BinOp(e1, Sub(), e2):
  1096. return False
  1097. print(leaf(Call(Name('input_int'), [])))
  1098. print(leaf(UnaryOp(USub(), eight)))
  1099. print(leaf(Constant(8)))
  1100. \end{lstlisting}
  1101. \fi}
  1102. \end{minipage}
  1103. \vrule
  1104. \begin{minipage}{0.25\textwidth}
  1105. {\if\edition\racketEd
  1106. \begin{lstlisting}
  1107. #t
  1108. #f
  1109. #t
  1110. \end{lstlisting}
  1111. \fi}
  1112. {\if\edition\pythonEd\pythonColor
  1113. \begin{lstlisting}
  1114. True
  1115. False
  1116. True
  1117. \end{lstlisting}
  1118. \fi}
  1119. \end{minipage}
  1120. \index{subject}{True@\TRUE{}}
  1121. \index{subject}{False@\FALSE{}}
  1122. \end{center}
  1123. When constructing a \code{match} expression, we refer to the grammar
  1124. definition to identify which nonterminal we are expecting to match
  1125. against, and then we make sure that (1) we have one
  1126. \racket{clause}\python{case} for each alternative of that nonterminal
  1127. and (2) the pattern in each \racket{clause}\python{case}
  1128. corresponds to the corresponding right-hand side of a grammar
  1129. rule. For the \code{match} in the \code{leaf} function, we refer to
  1130. the grammar for \LangInt{} shown in figure~\ref{fig:r0-syntax}. The $\Exp$
  1131. nonterminal has five alternatives, so the \code{match} has five
  1132. \racket{clauses}\python{cases}. The pattern in each
  1133. \racket{clause}\python{case} corresponds to the right-hand side of a
  1134. grammar rule. For example, the pattern \ADDP{\code{e1}}{\code{e2}}
  1135. corresponds to the right-hand side $\ADD{\Exp}{\Exp}$. When
  1136. translating from grammars to patterns, replace nonterminals such as
  1137. $\Exp$ with pattern variables of your choice (such as \code{e1} and
  1138. \code{e2}).
  1139. \section{Recursive Functions}
  1140. \label{sec:recursion}
  1141. \index{subject}{recursive function}
  1142. Programs are inherently recursive. For example, an expression is often
  1143. made of smaller expressions. Thus, the natural way to process an
  1144. entire program is to use a recursive function. As a first example of
  1145. such a recursive function, we define the function \code{is\_exp} as
  1146. shown in figure~\ref{fig:exp-predicate}, to take an arbitrary
  1147. value and determine whether or not it is an expression in \LangInt{}.
  1148. %
  1149. We say that a function is defined by \emph{structural recursion} if
  1150. it is defined using a sequence of match \racket{clauses}\python{cases}
  1151. that correspond to a grammar and the body of each
  1152. \racket{clause}\python{case} makes a recursive call on each child
  1153. node.\footnote{This principle of structuring code according to the
  1154. data definition is advocated in the book \emph{How to Design
  1155. Programs} by \citet{Felleisen:2001aa}.} \python{We define a
  1156. second function, named \code{is\_stmt}, that recognizes whether a value
  1157. is a \LangInt{} statement.} \python{Finally, }
  1158. figure~\ref{fig:exp-predicate} \racket{also} contains the definition of
  1159. \code{is\_Lint}, which determines whether an AST is a program in \LangInt{}.
  1160. In general, we can write one recursive function to handle each
  1161. nonterminal in a grammar.\index{subject}{structural recursion} Of the
  1162. two examples at the bottom of the figure, the first is in
  1163. \LangInt{} and the second is not.
  1164. \begin{figure}[tp]
  1165. \begin{tcolorbox}[colback=white]
  1166. {\if\edition\racketEd
  1167. \begin{lstlisting}
  1168. (define (is_exp ast)
  1169. (match ast
  1170. [(Int n) #t]
  1171. [(Prim 'read '()) #t]
  1172. [(Prim '- (list e)) (is_exp e)]
  1173. [(Prim '+ (list e1 e2))
  1174. (and (is_exp e1) (is_exp e2))]
  1175. [(Prim '- (list e1 e2))
  1176. (and (is_exp e1) (is_exp e2))]
  1177. [else #f]))
  1178. (define (is_Lint ast)
  1179. (match ast
  1180. [(Program '() e) (is_exp e)]
  1181. [else #f]))
  1182. (is_Lint (Program '() ast1_1)
  1183. (is_Lint (Program '()
  1184. (Prim '* (list (Prim 'read '())
  1185. (Prim '+ (list (Int 8)))))))
  1186. \end{lstlisting}
  1187. \fi}
  1188. {\if\edition\pythonEd\pythonColor
  1189. \begin{lstlisting}
  1190. def is_exp(e):
  1191. match e:
  1192. case Constant(n):
  1193. return True
  1194. case Call(Name('input_int'), []):
  1195. return True
  1196. case UnaryOp(USub(), e1):
  1197. return is_exp(e1)
  1198. case BinOp(e1, Add(), e2):
  1199. return is_exp(e1) and is_exp(e2)
  1200. case BinOp(e1, Sub(), e2):
  1201. return is_exp(e1) and is_exp(e2)
  1202. case _:
  1203. return False
  1204. def is_stmt(s):
  1205. match s:
  1206. case Expr(Call(Name('print'), [e])):
  1207. return is_exp(e)
  1208. case Expr(e):
  1209. return is_exp(e)
  1210. case _:
  1211. return False
  1212. def is_Lint(p):
  1213. match p:
  1214. case Module(body):
  1215. return all([is_stmt(s) for s in body])
  1216. case _:
  1217. return False
  1218. print(is_Lint(Module([Expr(ast1_1)])))
  1219. print(is_Lint(Module([Expr(BinOp(read, Sub(),
  1220. UnaryOp(Add(), Constant(8))))])))
  1221. \end{lstlisting}
  1222. \fi}
  1223. \end{tcolorbox}
  1224. \caption{Example of recursive functions for \LangInt{}. These functions
  1225. recognize whether an AST is in \LangInt{}.}
  1226. \label{fig:exp-predicate}
  1227. \end{figure}
  1228. %% You may be tempted to merge the two functions into one, like this:
  1229. %% \begin{center}
  1230. %% \begin{minipage}{0.5\textwidth}
  1231. %% \begin{lstlisting}
  1232. %% (define (Lint ast)
  1233. %% (match ast
  1234. %% [(Int n) #t]
  1235. %% [(Prim 'read '()) #t]
  1236. %% [(Prim '- (list e)) (Lint e)]
  1237. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1238. %% [(Program '() e) (Lint e)]
  1239. %% [else #f]))
  1240. %% \end{lstlisting}
  1241. %% \end{minipage}
  1242. %% \end{center}
  1243. %% %
  1244. %% Sometimes such a trick will save a few lines of code, especially when
  1245. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1246. %% \emph{not} recommended because it can get you into trouble.
  1247. %% %
  1248. %% For example, the above function is subtly wrong:
  1249. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1250. %% returns true when it should return false.
  1251. \section{Interpreters}
  1252. \label{sec:interp_Lint}
  1253. \index{subject}{interpreter}
  1254. The behavior of a program is defined by the specification of the
  1255. programming language.
  1256. %
  1257. \racket{For example, the Scheme language is defined in the report by
  1258. \citet{SPERBER:2009aa}. The Racket language is defined in its
  1259. reference manual~\citep{plt-tr}.}
  1260. %
  1261. \python{For example, the Python language is defined in the Python
  1262. language reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1263. %
  1264. In this book we use interpreters to specify each language that we
  1265. consider. An interpreter that is designated as the definition of a
  1266. language is called a \emph{definitional
  1267. interpreter}~\citep{reynolds72:_def_interp}.
  1268. \index{subject}{definitional interpreter} We warm up by creating a
  1269. definitional interpreter for the \LangInt{} language. This interpreter
  1270. serves as a second example of structural recursion. The definition of the
  1271. \code{interp\_Lint} function is shown in
  1272. figure~\ref{fig:interp_Lint}.
  1273. %
  1274. \racket{The body of the function is a match on the input program
  1275. followed by a call to the \lstinline{interp_exp} auxiliary function,
  1276. which in turn has one match clause per grammar rule for \LangInt{}
  1277. expressions.}
  1278. %
  1279. \python{The body of the function matches on the \code{Module} AST node
  1280. and then invokes \code{interp\_stmt} on each statement in the
  1281. module. The \code{interp\_stmt} function includes a case for each
  1282. grammar rule of the \Stmt{} nonterminal, and it calls
  1283. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1284. function includes a case for each grammar rule of the \Exp{}
  1285. nonterminal. We use several auxiliary functions such as \code{add64}
  1286. and \code{input\_int} that are defined in the support code for this book.}
  1287. \begin{figure}[tp]
  1288. \begin{tcolorbox}[colback=white]
  1289. {\if\edition\racketEd
  1290. \begin{lstlisting}
  1291. (define (interp_exp e)
  1292. (match e
  1293. [(Int n) n]
  1294. [(Prim 'read '())
  1295. (define r (read))
  1296. (cond [(fixnum? r) r]
  1297. [else (error 'interp_exp "read expected an integer: ~v" r)])]
  1298. [(Prim '- (list e))
  1299. (define v (interp_exp e))
  1300. (fx- 0 v)]
  1301. [(Prim '+ (list e1 e2))
  1302. (define v1 (interp_exp e1))
  1303. (define v2 (interp_exp e2))
  1304. (fx+ v1 v2)]
  1305. [(Prim '- (list e1 e2))
  1306. (define v1 (interp_exp e1))
  1307. (define v2 (interp_exp e2))
  1308. (fx- v1 v2)]))
  1309. (define (interp_Lint p)
  1310. (match p
  1311. [(Program '() e) (interp_exp e)]))
  1312. \end{lstlisting}
  1313. \fi}
  1314. {\if\edition\pythonEd\pythonColor
  1315. \begin{lstlisting}
  1316. def interp_exp(e):
  1317. match e:
  1318. case BinOp(left, Add(), right):
  1319. l = interp_exp(left); r = interp_exp(right)
  1320. return add64(l, r)
  1321. case BinOp(left, Sub(), right):
  1322. l = interp_exp(left); r = interp_exp(right)
  1323. return sub64(l, r)
  1324. case UnaryOp(USub(), v):
  1325. return neg64(interp_exp(v))
  1326. case Constant(value):
  1327. return value
  1328. case Call(Name('input_int'), []):
  1329. return input_int()
  1330. def interp_stmt(s):
  1331. match s:
  1332. case Expr(Call(Name('print'), [arg])):
  1333. print(interp_exp(arg))
  1334. case Expr(value):
  1335. interp_exp(value)
  1336. def interp_Lint(p):
  1337. match p:
  1338. case Module(body):
  1339. for s in body:
  1340. interp_stmt(s)
  1341. \end{lstlisting}
  1342. \fi}
  1343. \end{tcolorbox}
  1344. \caption{Interpreter for the \LangInt{} language.}
  1345. \label{fig:interp_Lint}
  1346. \end{figure}
  1347. Let us consider the result of interpreting a few \LangInt{} programs. The
  1348. following program adds two integers:
  1349. {\if\edition\racketEd
  1350. \begin{lstlisting}
  1351. (+ 10 32)
  1352. \end{lstlisting}
  1353. \fi}
  1354. {\if\edition\pythonEd\pythonColor
  1355. \begin{lstlisting}
  1356. print(10 + 32)
  1357. \end{lstlisting}
  1358. \fi}
  1359. %
  1360. \noindent The result is \key{42}, the answer to life, the universe,
  1361. and everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to
  1362. the Galaxy} by Douglas Adams.}
  1363. %
  1364. We wrote this program in concrete syntax, whereas the parsed
  1365. abstract syntax is
  1366. {\if\edition\racketEd
  1367. \begin{lstlisting}
  1368. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1369. \end{lstlisting}
  1370. \fi}
  1371. {\if\edition\pythonEd\pythonColor
  1372. \begin{lstlisting}
  1373. Module([Expr(Call(Name('print'),
  1374. [BinOp(Constant(10), Add(), Constant(32))]))])
  1375. \end{lstlisting}
  1376. \fi}
  1377. The following program demonstrates that expressions may be nested within
  1378. each other, in this case nesting several additions and negations.
  1379. {\if\edition\racketEd
  1380. \begin{lstlisting}
  1381. (+ 10 (- (+ 12 20)))
  1382. \end{lstlisting}
  1383. \fi}
  1384. {\if\edition\pythonEd\pythonColor
  1385. \begin{lstlisting}
  1386. print(10 + -(12 + 20))
  1387. \end{lstlisting}
  1388. \fi}
  1389. %
  1390. \noindent What is the result of this program?
  1391. {\if\edition\racketEd
  1392. As mentioned previously, the \LangInt{} language does not support
  1393. arbitrarily large integers but only $63$-bit integers, so we
  1394. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1395. in Racket.
  1396. Suppose that
  1397. \[
  1398. n = 999999999999999999
  1399. \]
  1400. which indeed fits in $63$ bits. What happens when we run the
  1401. following program in our interpreter?
  1402. \begin{lstlisting}
  1403. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1404. \end{lstlisting}
  1405. It produces the following error:
  1406. \begin{lstlisting}
  1407. fx+: result is not a fixnum
  1408. \end{lstlisting}
  1409. We establish the convention that if running the definitional
  1410. interpreter on a program produces an error, then the meaning of that
  1411. program is \emph{unspecified}\index{subject}{unspecified behavior} unless the
  1412. error is a \code{trapped-error}. A compiler for the language is under
  1413. no obligation regarding programs with unspecified behavior; it does
  1414. not have to produce an executable, and if it does, that executable can
  1415. do anything. On the other hand, if the error is a
  1416. \code{trapped-error}, then the compiler must produce an executable and
  1417. it is required to report that an error occurred. To signal an error,
  1418. exit with a return code of \code{255}. The interpreters in chapters
  1419. \ref{ch:Ldyn} and \ref{ch:Lgrad} and in section \ref{sec:arrays} use
  1420. \code{trapped-error}.
  1421. \fi}
  1422. % TODO: how to deal with too-large integers in the Python interpreter?
  1423. %% This convention applies to the languages defined in this
  1424. %% book, as a way to simplify the student's task of implementing them,
  1425. %% but this convention is not applicable to all programming languages.
  1426. %%
  1427. The last feature of the \LangInt{} language, the \READOP{} operation,
  1428. prompts the user of the program for an integer. Recall that program
  1429. \eqref{eq:arith-prog} requests an integer input and then subtracts
  1430. \code{8}. So, if we run {\if\edition\racketEd
  1431. \begin{lstlisting}
  1432. (interp_Lint (Program '() ast1_1))
  1433. \end{lstlisting}
  1434. \fi}
  1435. {\if\edition\pythonEd\pythonColor
  1436. \begin{lstlisting}
  1437. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1438. \end{lstlisting}
  1439. \fi}
  1440. \noindent and if the input is \code{50}, the result is \code{42}.
  1441. We include the \READOP{} operation in \LangInt{} so that a clever
  1442. student cannot implement a compiler for \LangInt{} that simply runs
  1443. the interpreter during compilation to obtain the output and then
  1444. generates the trivial code to produce the output.\footnote{Yes, a
  1445. clever student did this in the first instance of this course!}
  1446. The job of a compiler is to translate a program in one language into a
  1447. program in another language so that the output program behaves the
  1448. same way as the input program. This idea is depicted in the
  1449. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1450. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1451. Given a compiler that translates from language $\mathcal{L}_1$ to
  1452. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1453. compiler must translate it into some program $P_2$ such that
  1454. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1455. same input $i$ yields the same output $o$.
  1456. \begin{equation} \label{eq:compile-correct}
  1457. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1458. \node (p1) at (0, 0) {$P_1$};
  1459. \node (p2) at (3, 0) {$P_2$};
  1460. \node (o) at (3, -2.5) {$o$};
  1461. \path[->] (p1) edge [above] node {compile} (p2);
  1462. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1463. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1464. \end{tikzpicture}
  1465. \end{equation}
  1466. \python{We establish the convention that if running the definitional
  1467. interpreter on a program produces an error, then the meaning of that
  1468. program is \emph{unspecified}\index{subject}{unspecified behavior}
  1469. unless the exception raised is a \code{TrappedError}. A compiler for
  1470. the language is under no obligation regarding programs with
  1471. unspecified behavior; it does not have to produce an executable, and
  1472. if it does, that executable can do anything. On the other hand, if
  1473. the error is a \code{TrappedError}, then the compiler must produce
  1474. an executable and it is required to report that an error
  1475. occurred. To signal an error, exit with a return code of \code{255}.
  1476. The interpreters in chapters \ref{ch:Ldyn} and \ref{ch:Lgrad} and in
  1477. section \ref{sec:arrays} use \code{TrappedError}.}
  1478. In the next section we see our first example of a compiler.
  1479. \section{Example Compiler: A Partial Evaluator}
  1480. \label{sec:partial-evaluation}
  1481. In this section we consider a compiler that translates \LangInt{}
  1482. programs into \LangInt{} programs that may be more efficient. The
  1483. compiler eagerly computes the parts of the program that do not depend
  1484. on any inputs, a process known as \emph{partial
  1485. evaluation}~\citep{Jones:1993uq}.\index{subject}{partialevaluation@partial evaluation}
  1486. For example, given the following program
  1487. {\if\edition\racketEd
  1488. \begin{lstlisting}
  1489. (+ (read) (- (+ 5 3)))
  1490. \end{lstlisting}
  1491. \fi}
  1492. {\if\edition\pythonEd\pythonColor
  1493. \begin{lstlisting}
  1494. print(input_int() + -(5 + 3) )
  1495. \end{lstlisting}
  1496. \fi}
  1497. \noindent our compiler translates it into the program
  1498. {\if\edition\racketEd
  1499. \begin{lstlisting}
  1500. (+ (read) -8)
  1501. \end{lstlisting}
  1502. \fi}
  1503. {\if\edition\pythonEd\pythonColor
  1504. \begin{lstlisting}
  1505. print(input_int() + -8)
  1506. \end{lstlisting}
  1507. \fi}
  1508. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1509. evaluator for the \LangInt{} language. The output of the partial evaluator
  1510. is a program in \LangInt{}. In figure~\ref{fig:pe-arith}, the structural
  1511. recursion over $\Exp$ is captured in the \code{pe\_exp} function,
  1512. whereas the code for partially evaluating the negation and addition
  1513. operations is factored into three auxiliary functions:
  1514. \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub}. The input to these
  1515. functions is the output of partially evaluating the children.
  1516. The \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub} functions check whether their
  1517. arguments are integers and if they are, perform the appropriate
  1518. arithmetic. Otherwise, they create an AST node for the arithmetic
  1519. operation.
  1520. \begin{figure}[tp]
  1521. \begin{tcolorbox}[colback=white]
  1522. {\if\edition\racketEd
  1523. \begin{lstlisting}
  1524. (define (pe_neg r)
  1525. (match r
  1526. [(Int n) (Int (fx- 0 n))]
  1527. [else (Prim '- (list r))]))
  1528. (define (pe_add r1 r2)
  1529. (match* (r1 r2)
  1530. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1531. [(_ _) (Prim '+ (list r1 r2))]))
  1532. (define (pe_sub r1 r2)
  1533. (match* (r1 r2)
  1534. [((Int n1) (Int n2)) (Int (fx- n1 n2))]
  1535. [(_ _) (Prim '- (list r1 r2))]))
  1536. (define (pe_exp e)
  1537. (match e
  1538. [(Int n) (Int n)]
  1539. [(Prim 'read '()) (Prim 'read '())]
  1540. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1541. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]
  1542. [(Prim '- (list e1 e2)) (pe_sub (pe_exp e1) (pe_exp e2))]))
  1543. (define (pe_Lint p)
  1544. (match p
  1545. [(Program '() e) (Program '() (pe_exp e))]))
  1546. \end{lstlisting}
  1547. \fi}
  1548. {\if\edition\pythonEd\pythonColor
  1549. \begin{lstlisting}
  1550. def pe_neg(r):
  1551. match r:
  1552. case Constant(n):
  1553. return Constant(neg64(n))
  1554. case _:
  1555. return UnaryOp(USub(), r)
  1556. def pe_add(r1, r2):
  1557. match (r1, r2):
  1558. case (Constant(n1), Constant(n2)):
  1559. return Constant(add64(n1, n2))
  1560. case _:
  1561. return BinOp(r1, Add(), r2)
  1562. def pe_sub(r1, r2):
  1563. match (r1, r2):
  1564. case (Constant(n1), Constant(n2)):
  1565. return Constant(sub64(n1, n2))
  1566. case _:
  1567. return BinOp(r1, Sub(), r2)
  1568. def pe_exp(e):
  1569. match e:
  1570. case BinOp(left, Add(), right):
  1571. return pe_add(pe_exp(left), pe_exp(right))
  1572. case BinOp(left, Sub(), right):
  1573. return pe_sub(pe_exp(left), pe_exp(right))
  1574. case UnaryOp(USub(), v):
  1575. return pe_neg(pe_exp(v))
  1576. case Constant(value):
  1577. return e
  1578. case Call(Name('input_int'), []):
  1579. return e
  1580. def pe_stmt(s):
  1581. match s:
  1582. case Expr(Call(Name('print'), [arg])):
  1583. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1584. case Expr(value):
  1585. return Expr(pe_exp(value))
  1586. def pe_P_int(p):
  1587. match p:
  1588. case Module(body):
  1589. new_body = [pe_stmt(s) for s in body]
  1590. return Module(new_body)
  1591. \end{lstlisting}
  1592. \fi}
  1593. \end{tcolorbox}
  1594. \caption{A partial evaluator for \LangInt{}.}
  1595. \label{fig:pe-arith}
  1596. \end{figure}
  1597. To gain some confidence that the partial evaluator is correct, we can
  1598. test whether it produces programs that produce the same result as the
  1599. input programs. That is, we can test whether it satisfies the diagram
  1600. of \eqref{eq:compile-correct}.
  1601. %
  1602. {\if\edition\racketEd
  1603. The following code runs the partial evaluator on several examples and
  1604. tests the output program. The \texttt{parse-program} and
  1605. \texttt{assert} functions are defined in
  1606. appendix~\ref{appendix:utilities}.\\
  1607. \begin{minipage}{1.0\textwidth}
  1608. \begin{lstlisting}
  1609. (define (test_pe p)
  1610. (assert "testing pe_Lint"
  1611. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1612. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1613. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1614. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1615. \end{lstlisting}
  1616. \end{minipage}
  1617. \fi}
  1618. % TODO: python version of testing the PE
  1619. \begin{exercise}\normalfont\normalsize
  1620. Create three programs in the \LangInt{} language and test whether
  1621. partially evaluating them with \code{pe\_Lint} and then
  1622. interpreting them with \code{interp\_Lint} gives the same result
  1623. as directly interpreting them with \code{interp\_Lint}.
  1624. \end{exercise}
  1625. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1626. \chapter{Integers and Variables}
  1627. \label{ch:Lvar}
  1628. \setcounter{footnote}{0}
  1629. This chapter covers compiling a subset of
  1630. \racket{Racket}\python{Python} to x86-64 assembly
  1631. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1632. integer arithmetic and local variables. We often refer to x86-64
  1633. simply as x86. The chapter first describes the \LangVar{} language
  1634. (section~\ref{sec:s0}) and then introduces x86 assembly
  1635. (section~\ref{sec:x86}). Because x86 assembly language is large, we
  1636. discuss only the instructions needed for compiling \LangVar{}. We
  1637. introduce more x86 instructions in subsequent chapters. After
  1638. introducing \LangVar{} and x86, we reflect on their differences and
  1639. create a plan to break down the translation from \LangVar{} to x86
  1640. into a handful of steps (section~\ref{sec:plan-s0-x86}). The rest of
  1641. the chapter gives detailed hints regarding each step. We aim to give
  1642. enough hints that the well-prepared reader, together with a few
  1643. friends, can implement a compiler from \LangVar{} to x86 in a short
  1644. time. To suggest the scale of this first compiler, we note that the
  1645. instructor solution for the \LangVar{} compiler is approximately
  1646. \racket{500}\python{300} lines of code.
  1647. \section{The \LangVar{} Language}
  1648. \label{sec:s0}
  1649. \index{subject}{variable}
  1650. The \LangVar{} language extends the \LangInt{} language with
  1651. variables. The concrete syntax of the \LangVar{} language is defined
  1652. by the grammar presented in figure~\ref{fig:Lvar-concrete-syntax}, and
  1653. the abstract syntax is presented in figure~\ref{fig:Lvar-syntax}. The
  1654. nonterminal \Var{} may be any \racket{Racket}\python{Python}
  1655. identifier. As in \LangInt{}, \READOP{} is a nullary operator,
  1656. \key{-} is a unary operator, and \key{+} is a binary operator.
  1657. Similarly to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1658. \racket{\key{Program} struct}\python{\key{Module} instance} to mark
  1659. the top of the program.
  1660. %% The $\itm{info}$
  1661. %% field of the \key{Program} structure contains an \emph{association
  1662. %% list} (a list of key-value pairs) that is used to communicate
  1663. %% auxiliary data from one compiler pass the next.
  1664. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1665. exhibit several compilation techniques.
  1666. \newcommand{\LvarGrammarRacket}{
  1667. \begin{array}{rcl}
  1668. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1669. \end{array}
  1670. }
  1671. \newcommand{\LvarASTRacket}{
  1672. \begin{array}{rcl}
  1673. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1674. \end{array}
  1675. }
  1676. \newcommand{\LvarGrammarPython}{
  1677. \begin{array}{rcl}
  1678. \Exp &::=& \Var{} \\
  1679. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1680. \end{array}
  1681. }
  1682. \newcommand{\LvarASTPython}{
  1683. \begin{array}{rcl}
  1684. \Exp{} &::=& \VAR{\Var{}} \\
  1685. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1686. \end{array}
  1687. }
  1688. \begin{figure}[tp]
  1689. \centering
  1690. \begin{tcolorbox}[colback=white]
  1691. {\if\edition\racketEd
  1692. \[
  1693. \begin{array}{l}
  1694. \gray{\LintGrammarRacket{}} \\ \hline
  1695. \LvarGrammarRacket{} \\
  1696. \begin{array}{rcl}
  1697. \LangVarM{} &::=& \Exp
  1698. \end{array}
  1699. \end{array}
  1700. \]
  1701. \fi}
  1702. {\if\edition\pythonEd\pythonColor
  1703. \[
  1704. \begin{array}{l}
  1705. \gray{\LintGrammarPython} \\ \hline
  1706. \LvarGrammarPython \\
  1707. \begin{array}{rcl}
  1708. \LangVarM{} &::=& \Stmt^{*}
  1709. \end{array}
  1710. \end{array}
  1711. \]
  1712. \fi}
  1713. \end{tcolorbox}
  1714. \caption{The concrete syntax of \LangVar{}.}
  1715. \label{fig:Lvar-concrete-syntax}
  1716. \index{subject}{Lvar@\LangVar{} concrete syntax}
  1717. \end{figure}
  1718. \begin{figure}[tp]
  1719. \centering
  1720. \begin{tcolorbox}[colback=white]
  1721. {\if\edition\racketEd
  1722. \[
  1723. \begin{array}{l}
  1724. \gray{\LintASTRacket{}} \\ \hline
  1725. \LvarASTRacket \\
  1726. \begin{array}{rcl}
  1727. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1728. \end{array}
  1729. \end{array}
  1730. \]
  1731. \fi}
  1732. {\if\edition\pythonEd\pythonColor
  1733. \[
  1734. \begin{array}{l}
  1735. \gray{\LintASTPython}\\ \hline
  1736. \LvarASTPython \\
  1737. \begin{array}{rcl}
  1738. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1739. \end{array}
  1740. \end{array}
  1741. \]
  1742. \fi}
  1743. \end{tcolorbox}
  1744. \caption{The abstract syntax of \LangVar{}.}
  1745. \label{fig:Lvar-syntax}
  1746. \index{subject}{Lvar@\LangVar{} abstract syntax}
  1747. \end{figure}
  1748. {\if\edition\racketEd
  1749. Let us dive further into the syntax and semantics of the \LangVar{}
  1750. language. The \key{let} feature defines a variable for use within its
  1751. body and initializes the variable with the value of an expression.
  1752. The abstract syntax for \key{let} is shown in
  1753. figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1754. \begin{lstlisting}
  1755. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1756. \end{lstlisting}
  1757. For example, the following program initializes \code{x} to $32$ and then
  1758. evaluates the body \code{(+ 10 x)}, producing $42$.
  1759. \begin{lstlisting}
  1760. (let ([x (+ 12 20)]) (+ 10 x))
  1761. \end{lstlisting}
  1762. \fi}
  1763. %
  1764. {\if\edition\pythonEd\pythonColor
  1765. %
  1766. The \LangVar{} language includes an assignment statement, which defines a
  1767. variable for use in later statements and initializes the variable with
  1768. the value of an expression. The abstract syntax for assignment is
  1769. defined in figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1770. assignment is \index{subject}{Assign@\texttt{Assign}}
  1771. \begin{lstlisting}
  1772. |$\itm{var}$| = |$\itm{exp}$|
  1773. \end{lstlisting}
  1774. For example, the following program initializes the variable \code{x}
  1775. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1776. \begin{lstlisting}
  1777. x = 12 + 20
  1778. print(10 + x)
  1779. \end{lstlisting}
  1780. \fi}
  1781. {\if\edition\racketEd
  1782. %
  1783. When there are multiple \key{let}s for the same variable, the closest
  1784. enclosing \key{let} is used. That is, variable definitions overshadow
  1785. prior definitions. Consider the following program with two \key{let}s
  1786. that define two variables named \code{x}. Can you figure out the
  1787. result?
  1788. \begin{lstlisting}
  1789. (let ([x 32]) (+ (let ([x 10]) x) x))
  1790. \end{lstlisting}
  1791. For the purposes of depicting which variable occurrences correspond to
  1792. which definitions, the following shows the \code{x}'s annotated with
  1793. subscripts to distinguish them. Double-check that your answer for the
  1794. previous program is the same as your answer for this annotated version
  1795. of the program.
  1796. \begin{lstlisting}
  1797. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1798. \end{lstlisting}
  1799. The initializing expression is always evaluated before the body of the
  1800. \key{let}, so in the following, the \key{read} for \code{x} is
  1801. performed before the \key{read} for \code{y}. Given the input
  1802. $52$ then $10$, the following produces $42$ (not $-42$).
  1803. \begin{lstlisting}
  1804. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1805. \end{lstlisting}
  1806. \fi}
  1807. \subsection{Extensible Interpreters via Method Overriding}
  1808. \label{sec:extensible-interp}
  1809. \index{subject}{method overriding}
  1810. To prepare for discussing the interpreter of \LangVar{}, we explain
  1811. why we implement it in an object-oriented style. Throughout this book
  1812. we define many interpreters, one for each language that we
  1813. study. Because each language builds on the prior one, there is a lot
  1814. of commonality between these interpreters. We want to write down the
  1815. common parts just once instead of many times. A naive interpreter for
  1816. \LangVar{} would handle the \racket{cases for variables and
  1817. \code{let}} \python{case for variables} but dispatch to an
  1818. interpreter for \LangInt{} in the rest of the cases. The following
  1819. code sketches this idea. (We explain the \code{env} parameter in
  1820. section~\ref{sec:interp-Lvar}.)
  1821. \begin{center}
  1822. {\if\edition\racketEd
  1823. \begin{minipage}{0.45\textwidth}
  1824. \begin{lstlisting}
  1825. (define ((interp_Lint env) e)
  1826. (match e
  1827. [(Prim '- (list e1))
  1828. (fx- 0 ((interp_Lint env) e1))]
  1829. ...))
  1830. \end{lstlisting}
  1831. \end{minipage}
  1832. \begin{minipage}{0.45\textwidth}
  1833. \begin{lstlisting}
  1834. (define ((interp_Lvar env) e)
  1835. (match e
  1836. [(Var x)
  1837. (dict-ref env x)]
  1838. [(Let x e body)
  1839. (define v ((interp_Lvar env) e))
  1840. (define env^ (dict-set env x v))
  1841. ((interp_Lvar env^) body)]
  1842. [else ((interp_Lint env) e)]))
  1843. \end{lstlisting}
  1844. \end{minipage}
  1845. \fi}
  1846. {\if\edition\pythonEd\pythonColor
  1847. \begin{minipage}{0.45\textwidth}
  1848. \begin{lstlisting}
  1849. def interp_Lint(e, env):
  1850. match e:
  1851. case UnaryOp(USub(), e1):
  1852. return - interp_Lint(e1, env)
  1853. ...
  1854. \end{lstlisting}
  1855. \end{minipage}
  1856. \begin{minipage}{0.45\textwidth}
  1857. \begin{lstlisting}
  1858. def interp_Lvar(e, env):
  1859. match e:
  1860. case Name(id):
  1861. return env[id]
  1862. case _:
  1863. return interp_Lint(e, env)
  1864. \end{lstlisting}
  1865. \end{minipage}
  1866. \fi}
  1867. \end{center}
  1868. The problem with this naive approach is that it does not handle
  1869. situations in which an \LangVar{} feature, such as a variable, is
  1870. nested inside an \LangInt{} feature, such as the \code{-} operator, as
  1871. in the following program.
  1872. {\if\edition\racketEd
  1873. \begin{lstlisting}
  1874. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1875. \end{lstlisting}
  1876. \fi}
  1877. {\if\edition\pythonEd\pythonColor
  1878. \begin{minipage}{1.0\textwidth}
  1879. \begin{lstlisting}
  1880. y = 10
  1881. print(-y)
  1882. \end{lstlisting}
  1883. \end{minipage}
  1884. \fi}
  1885. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1886. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1887. then it recursively calls \code{interp\_Lint} again on its argument.
  1888. Because there is no case for \racket{\code{Var}}\python{\code{Name}} in
  1889. \code{interp\_Lint}, we get an error!
  1890. To make our interpreters extensible we need something called
  1891. \emph{open recursion}\index{subject}{open recursion}, in which the
  1892. tying of the recursive knot is delayed until the functions are
  1893. composed. Object-oriented languages provide open recursion via method
  1894. overriding. The following code uses
  1895. method overriding to interpret \LangInt{} and \LangVar{} using
  1896. %
  1897. \racket{the
  1898. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1899. \index{subject}{class} feature of Racket.}%
  1900. %
  1901. \python{Python \code{class} definitions.}
  1902. %
  1903. We define one class for each language and define a method for
  1904. interpreting expressions inside each class. The class for \LangVar{}
  1905. inherits from the class for \LangInt{}, and the method
  1906. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1907. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1908. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1909. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1910. \code{interp\_exp} in \LangInt{}.
  1911. \begin{center}
  1912. \hspace{-20pt}
  1913. {\if\edition\racketEd
  1914. \begin{minipage}{0.45\textwidth}
  1915. \begin{lstlisting}
  1916. (define interp-Lint-class
  1917. (class object%
  1918. (define/public ((interp_exp env) e)
  1919. (match e
  1920. [(Prim '- (list e))
  1921. (fx- 0 ((interp_exp env) e))]
  1922. ...))
  1923. ...))
  1924. \end{lstlisting}
  1925. \end{minipage}
  1926. \begin{minipage}{0.45\textwidth}
  1927. \begin{lstlisting}
  1928. (define interp-Lvar-class
  1929. (class interp-Lint-class
  1930. (define/override ((interp_exp env) e)
  1931. (match e
  1932. [(Var x)
  1933. (dict-ref env x)]
  1934. [(Let x e body)
  1935. (define v ((interp_exp env) e))
  1936. (define env^ (dict-set env x v))
  1937. ((interp_exp env^) body)]
  1938. [else
  1939. ((super interp_exp env) e)]))
  1940. ...
  1941. ))
  1942. \end{lstlisting}
  1943. \end{minipage}
  1944. \fi}
  1945. {\if\edition\pythonEd\pythonColor
  1946. \begin{minipage}{0.45\textwidth}
  1947. \begin{lstlisting}
  1948. class InterpLint:
  1949. def interp_exp(e):
  1950. match e:
  1951. case UnaryOp(USub(), e1):
  1952. return neg64(self.interp_exp(e1))
  1953. ...
  1954. ...
  1955. \end{lstlisting}
  1956. \end{minipage}
  1957. \begin{minipage}{0.45\textwidth}
  1958. \begin{lstlisting}
  1959. def InterpLvar(InterpLint):
  1960. def interp_exp(e):
  1961. match e:
  1962. case Name(id):
  1963. return env[id]
  1964. case _:
  1965. return super().interp_exp(e)
  1966. ...
  1967. \end{lstlisting}
  1968. \end{minipage}
  1969. \fi}
  1970. \end{center}
  1971. We return to the troublesome example, repeated here:
  1972. {\if\edition\racketEd
  1973. \begin{lstlisting}
  1974. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1975. \end{lstlisting}
  1976. \fi}
  1977. {\if\edition\pythonEd\pythonColor
  1978. \begin{lstlisting}
  1979. y = 10
  1980. print(-y)
  1981. \end{lstlisting}
  1982. \fi}
  1983. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1984. \racket{on this expression,}%
  1985. \python{on the \code{-y} expression,}
  1986. %
  1987. which we call \code{e0}, by creating an object of the \LangVar{} class
  1988. and calling the \code{interp\_exp} method
  1989. {\if\edition\racketEd
  1990. \begin{lstlisting}
  1991. ((send (new interp-Lvar-class) interp_exp '()) e0)
  1992. \end{lstlisting}
  1993. \fi}
  1994. {\if\edition\pythonEd\pythonColor
  1995. \begin{lstlisting}
  1996. InterpLvar().interp_exp(e0)
  1997. \end{lstlisting}
  1998. \fi}
  1999. \noindent To process the \code{-} operator, the default case of
  2000. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  2001. method in \LangInt{}. But then for the recursive method call, it
  2002. dispatches to \code{interp\_exp} in \LangVar{}, where the
  2003. \racket{\code{Var}}\python{\code{Name}} node is handled correctly.
  2004. Thus, method overriding gives us the open recursion that we need to
  2005. implement our interpreters in an extensible way.
  2006. \subsection{Definitional Interpreter for \LangVar{}}
  2007. \label{sec:interp-Lvar}
  2008. Having justified the use of classes and methods to implement
  2009. interpreters, we revisit the definitional interpreter for \LangInt{}
  2010. shown in figure~\ref{fig:interp-Lint-class} and then extend it to
  2011. create an interpreter for \LangVar{}, shown in
  2012. figure~\ref{fig:interp-Lvar}.
  2013. %
  2014. \python{We change the \code{interp\_stmt} method in the interpreter
  2015. for \LangInt{} to take two extra parameters named \code{env}, which
  2016. we discuss in the next paragraph, and \code{cont} for
  2017. \emph{continuation}, which is the technical name for what comes
  2018. after a particular point in a program. The \code{cont} parameter is
  2019. the list of statements that follow the current statement. Note
  2020. that \code{interp\_stmts} invokes \code{interp\_stmt} on the first
  2021. statement and passes the rest of the statements as the argument for
  2022. \code{cont}. This organization enables each statement to decide what
  2023. if anything should be evaluated after it, for example, allowing a
  2024. \code{return} statement to exit early from a function (see
  2025. Chapter~\ref{ch:Lfun}).}
  2026. The interpreter for \LangVar{} adds two new cases for
  2027. variables and \racket{\key{let}}\python{assignment}. For
  2028. \racket{\key{let}}\python{assignment}, we need a way to communicate the
  2029. value bound to a variable to all the uses of the variable. To
  2030. accomplish this, we maintain a mapping from variables to values called
  2031. an \emph{environment}\index{subject}{environment}.
  2032. %
  2033. We use
  2034. %
  2035. \racket{an association list (alist) }%
  2036. %
  2037. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary} }%
  2038. %
  2039. to represent the environment.
  2040. %
  2041. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  2042. and the \code{racket/dict} package.}
  2043. %
  2044. The \code{interp\_exp} function takes the current environment,
  2045. \code{env}, as an extra parameter. When the interpreter encounters a
  2046. variable, it looks up the corresponding value in the environment. If
  2047. the variable is not in the environment (because the variable was not
  2048. defined) then the lookup will fail and the interpreter will
  2049. halt with an error. Recall that the compiler is not obligated to
  2050. compile such programs (Section~\ref{sec:interp_Lint}).\footnote{In
  2051. Chapter~\ref{ch:Lif} we introduce type checking rules that
  2052. prohibit access to undefined variables.}
  2053. %
  2054. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  2055. initializing expression, extends the environment with the result
  2056. value bound to the variable, using \code{dict-set}, then evaluates
  2057. the body of the \key{Let}.}
  2058. %
  2059. \python{When the interpreter encounters an assignment, it evaluates
  2060. the initializing expression and then associates the resulting value
  2061. with the variable in the environment.}
  2062. \begin{figure}[tp]
  2063. \begin{tcolorbox}[colback=white]
  2064. {\if\edition\racketEd
  2065. \begin{lstlisting}
  2066. (define interp-Lint-class
  2067. (class object%
  2068. (super-new)
  2069. (define/public ((interp_exp env) e)
  2070. (match e
  2071. [(Int n) n]
  2072. [(Prim 'read '())
  2073. (define r (read))
  2074. (cond [(fixnum? r) r]
  2075. [else (error 'interp_exp "expected an integer" r)])]
  2076. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  2077. [(Prim '+ (list e1 e2))
  2078. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  2079. [(Prim '- (list e1 e2))
  2080. (fx- ((interp_exp env) e1) ((interp_exp env) e2))]))
  2081. (define/public (interp_program p)
  2082. (match p
  2083. [(Program '() e) ((interp_exp '()) e)]))
  2084. ))
  2085. \end{lstlisting}
  2086. \fi}
  2087. {\if\edition\pythonEd\pythonColor
  2088. \begin{lstlisting}
  2089. class InterpLint:
  2090. def interp_exp(self, e, env):
  2091. match e:
  2092. case BinOp(left, Add(), right):
  2093. l = self.interp_exp(left, env)
  2094. r = self.interp_exp(right, env)
  2095. return add64(l, r)
  2096. case BinOp(left, Sub(), right):
  2097. l = self.interp_exp(left, env)
  2098. r = self.interp_exp(right, env)
  2099. return sub64(l, r)
  2100. case UnaryOp(USub(), v):
  2101. return neg64(self.interp_exp(v, env))
  2102. case Constant(value):
  2103. return value
  2104. case Call(Name('input_int'), []):
  2105. return int(input())
  2106. def interp_stmt(self, s, env, cont):
  2107. match s:
  2108. case Expr(Call(Name('print'), [arg])):
  2109. val = self.interp_exp(arg, env)
  2110. print(val, end='')
  2111. return self.interp_stmts(cont, env)
  2112. case Expr(value):
  2113. self.interp_exp(value, env)
  2114. return self.interp_stmts(cont, env)
  2115. case _:
  2116. raise Exception('error in interp_stmt, unexpected ' + repr(s))
  2117. def interp_stmts(self, ss, env):
  2118. match ss:
  2119. case []:
  2120. return 0
  2121. case [s, *ss]:
  2122. return self.interp_stmt(s, env, ss)
  2123. def interp(self, p):
  2124. match p:
  2125. case Module(body):
  2126. self.interp_stmts(body, {})
  2127. def interp_Lint(p):
  2128. return InterpLint().interp(p)
  2129. \end{lstlisting}
  2130. \fi}
  2131. \end{tcolorbox}
  2132. \caption{Interpreter for \LangInt{} as a class.}
  2133. \label{fig:interp-Lint-class}
  2134. \end{figure}
  2135. \begin{figure}[tp]
  2136. \begin{tcolorbox}[colback=white]
  2137. {\if\edition\racketEd
  2138. \begin{lstlisting}
  2139. (define interp-Lvar-class
  2140. (class interp-Lint-class
  2141. (super-new)
  2142. (define/override ((interp_exp env) e)
  2143. (match e
  2144. [(Var x) (dict-ref env x)]
  2145. [(Let x e body)
  2146. (define new-env (dict-set env x ((interp_exp env) e)))
  2147. ((interp_exp new-env) body)]
  2148. [else ((super interp_exp env) e)]))
  2149. ))
  2150. (define (interp_Lvar p)
  2151. (send (new interp-Lvar-class) interp_program p))
  2152. \end{lstlisting}
  2153. \fi}
  2154. {\if\edition\pythonEd\pythonColor
  2155. \begin{lstlisting}
  2156. class InterpLvar(InterpLint):
  2157. def interp_exp(self, e, env):
  2158. match e:
  2159. case Name(id):
  2160. return env[id]
  2161. case _:
  2162. return super().interp_exp(e, env)
  2163. def interp_stmt(self, s, env, cont):
  2164. match s:
  2165. case Assign([Name(id)], value):
  2166. env[id] = self.interp_exp(value, env)
  2167. return self.interp_stmts(cont, env)
  2168. case _:
  2169. return super().interp_stmt(s, env, cont)
  2170. def interp_Lvar(p):
  2171. return InterpLvar().interp(p)
  2172. \end{lstlisting}
  2173. \fi}
  2174. \end{tcolorbox}
  2175. \caption{Interpreter for the \LangVar{} language.}
  2176. \label{fig:interp-Lvar}
  2177. \end{figure}
  2178. {\if\edition\racketEd
  2179. \begin{figure}[tp]
  2180. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  2181. \small
  2182. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  2183. An \emph{association list} (called an alist) is a list of key-value pairs.
  2184. For example, we can map people to their ages with an alist
  2185. \index{subject}{alist}\index{subject}{association list}
  2186. \begin{lstlisting}[basicstyle=\ttfamily]
  2187. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  2188. \end{lstlisting}
  2189. The \emph{dictionary} interface is for mapping keys to values.
  2190. Every alist implements this interface. \index{subject}{dictionary}
  2191. The package
  2192. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  2193. provides many functions for working with dictionaries, such as
  2194. \begin{description}
  2195. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  2196. returns the value associated with the given $\itm{key}$.
  2197. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  2198. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  2199. and otherwise is the same as $\itm{dict}$.
  2200. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  2201. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  2202. of keys and values in $\itm{dict}$. For example, the following
  2203. creates a new alist in which the ages are incremented:
  2204. \end{description}
  2205. \vspace{-10pt}
  2206. \begin{lstlisting}[basicstyle=\ttfamily]
  2207. (for/list ([(k v) (in-dict ages)])
  2208. (cons k (add1 v)))
  2209. \end{lstlisting}
  2210. \end{tcolorbox}
  2211. %\end{wrapfigure}
  2212. \caption{Association lists implement the dictionary interface.}
  2213. \label{fig:alist}
  2214. \end{figure}
  2215. \fi}
  2216. The goal for this chapter is to implement a compiler that translates
  2217. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2218. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2219. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2220. That is, they output the same integer $n$. We depict this correctness
  2221. criteria in the following diagram:
  2222. \[
  2223. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2224. \node (p1) at (0, 0) {$P_1$};
  2225. \node (p2) at (4, 0) {$P_2$};
  2226. \node (o) at (4, -2) {$n$};
  2227. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2228. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2229. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2230. \end{tikzpicture}
  2231. \]
  2232. Next we introduce the \LangXInt{} subset of x86 that suffices for
  2233. compiling \LangVar{}.
  2234. \section{The \LangXInt{} Assembly Language}
  2235. \label{sec:x86}
  2236. \index{subject}{x86}
  2237. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2238. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2239. assembler.
  2240. %
  2241. A program begins with a \code{main} label followed by a sequence of
  2242. instructions. The \key{globl} directive makes the \key{main} procedure
  2243. externally visible so that the operating system can call it.
  2244. %
  2245. An x86 program is stored in the computer's memory. For our purposes,
  2246. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2247. values. The computer has a \emph{program counter}
  2248. (PC)\index{subject}{program counter}\index{subject}{PC} stored in the
  2249. \code{rip} register that points to the address of the next instruction
  2250. to be executed. For most instructions, the program counter is
  2251. incremented after the instruction is executed so that it points to the
  2252. next instruction in memory. Most x86 instructions take two operands,
  2253. each of which is an integer constant (called an \emph{immediate
  2254. value}\index{subject}{immediate value}), a
  2255. \emph{register}\index{subject}{register}, or a memory location.
  2256. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2257. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2258. && \key{r8} \MID \key{r9} \MID \key{r10}
  2259. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2260. \MID \key{r14} \MID \key{r15}}
  2261. \newcommand{\GrammarXInt}{
  2262. \begin{array}{rcl}
  2263. \Reg &::=& \allregisters{} \\
  2264. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2265. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2266. \key{subq} \; \Arg\key{,} \Arg \MID
  2267. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2268. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2269. \key{callq} \; \mathit{label} \MID
  2270. \key{retq} \MID
  2271. \key{jmp}\,\itm{label} \MID \\
  2272. && \itm{label}\key{:}\; \Instr
  2273. \end{array}
  2274. }
  2275. \begin{figure}[tp]
  2276. \begin{tcolorbox}[colback=white]
  2277. {\if\edition\racketEd
  2278. \[
  2279. \begin{array}{l}
  2280. \GrammarXInt \\
  2281. \begin{array}{lcl}
  2282. \LangXIntM{} &::= & \key{.globl main}\\
  2283. & & \key{main:} \; \Instr\ldots
  2284. \end{array}
  2285. \end{array}
  2286. \]
  2287. \fi}
  2288. {\if\edition\pythonEd\pythonColor
  2289. \[
  2290. \begin{array}{lcl}
  2291. \Reg &::=& \allregisters{} \\
  2292. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2293. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2294. \key{subq} \; \Arg\key{,} \Arg \MID
  2295. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2296. && \key{callq} \; \mathit{label} \MID
  2297. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2298. \LangXIntM{} &::= & \key{.globl main}\\
  2299. & & \key{main:} \; \Instr^{*}
  2300. \end{array}
  2301. \]
  2302. \fi}
  2303. \end{tcolorbox}
  2304. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2305. \label{fig:x86-int-concrete}
  2306. \index{subject}{x86int@\LangXInt{} concrete syntax}
  2307. \end{figure}
  2308. A register is a special kind of variable that holds a 64-bit
  2309. value. There are 16 general-purpose registers in the computer; their
  2310. names are given in figure~\ref{fig:x86-int-concrete}. A register is
  2311. written with a percent sign, \key{\%}, followed by its name,
  2312. for example, \key{\%rax}.
  2313. An immediate value is written using the notation \key{\$}$n$ where $n$
  2314. is an integer.
  2315. %
  2316. %
  2317. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2318. which obtains the address stored in register $r$ and then adds $n$
  2319. bytes to the address. The resulting address is used to load or to store
  2320. to memory depending on whether it occurs as a source or destination
  2321. argument of an instruction.
  2322. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from
  2323. the source $s$ and destination $d$, applies the arithmetic operation,
  2324. and then writes the result to the destination $d$. \index{subject}{instruction}
  2325. %
  2326. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2327. stores the result in $d$.
  2328. %
  2329. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2330. specified by the label, and $\key{retq}$ returns from a procedure to
  2331. its caller.
  2332. %
  2333. We discuss procedure calls in more detail further in this chapter and
  2334. in chapter~\ref{ch:Lfun}.
  2335. %
  2336. The last letter \key{q} indicates that these instructions operate on
  2337. quadwords, which are 64-bit values.
  2338. %
  2339. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2340. counter to the address of the instruction immediately after the
  2341. specified label.}
  2342. Appendix~\ref{sec:x86-quick-reference} contains a reference for
  2343. all the x86 instructions used in this book.
  2344. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2345. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2346. \lstinline{movq $10, %rax}
  2347. puts $10$ into register \key{rax}, and then \lstinline{addq $32, %rax}
  2348. adds $32$ to the $10$ in \key{rax} and
  2349. puts the result, $42$, into \key{rax}.
  2350. %
  2351. The last instruction \key{retq} finishes the \key{main} function by
  2352. returning the integer in \key{rax} to the operating system. The
  2353. operating system interprets this integer as the program's exit
  2354. code. By convention, an exit code of 0 indicates that a program has
  2355. completed successfully, and all other exit codes indicate various
  2356. errors.
  2357. %
  2358. \racket{However, in this book we return the result of the program
  2359. as the exit code.}
  2360. \begin{figure}[tbp]
  2361. \begin{minipage}{0.45\textwidth}
  2362. \begin{tcolorbox}[colback=white]
  2363. \begin{lstlisting}
  2364. .globl main
  2365. main:
  2366. movq $10, %rax
  2367. addq $32, %rax
  2368. retq
  2369. \end{lstlisting}
  2370. \end{tcolorbox}
  2371. \end{minipage}
  2372. \caption{An x86 program that computes
  2373. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2374. \label{fig:p0-x86}
  2375. \end{figure}
  2376. We exhibit the use of memory for storing intermediate results in the
  2377. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2378. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2379. uses a region of memory called the \emph{procedure call stack}
  2380. (\emph{stack} for
  2381. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2382. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2383. for each procedure call. The memory layout for an individual frame is
  2384. shown in figure~\ref{fig:frame}. The register \key{rsp} is called the
  2385. \emph{stack pointer}\index{subject}{stack pointer} and contains the
  2386. address of the item at the top of the stack. In general, we use the
  2387. term \emph{pointer}\index{subject}{pointer} for something that
  2388. contains an address. The stack grows downward in memory, so we
  2389. increase the size of the stack by subtracting from the stack pointer.
  2390. In the context of a procedure call, the \emph{return
  2391. address}\index{subject}{return address} is the location of the
  2392. instruction that immediately follows the call instruction on the
  2393. caller side. The function call instruction, \code{callq}, pushes the
  2394. return address onto the stack prior to jumping to the procedure. The
  2395. register \key{rbp} is the \emph{base pointer}\index{subject}{base
  2396. pointer} and is used to access variables that are stored in the
  2397. frame of the current procedure call. The base pointer of the caller
  2398. is stored immediately after the return address.
  2399. Figure~\ref{fig:frame} shows the memory layout of a frame with storage
  2400. for $n$ variables, which are numbered from $1$ to $n$. Variable $1$ is
  2401. stored at address $-8\key{(\%rbp)}$, variable $2$ at
  2402. $-16\key{(\%rbp)}$, and so on.
  2403. \begin{figure}[tbp]
  2404. \begin{minipage}{0.66\textwidth}
  2405. \begin{tcolorbox}[colback=white]
  2406. {\if\edition\racketEd
  2407. \begin{lstlisting}
  2408. start:
  2409. movq $10, -8(%rbp)
  2410. negq -8(%rbp)
  2411. movq -8(%rbp), %rax
  2412. addq $52, %rax
  2413. jmp conclusion
  2414. .globl main
  2415. main:
  2416. pushq %rbp
  2417. movq %rsp, %rbp
  2418. subq $16, %rsp
  2419. jmp start
  2420. conclusion:
  2421. addq $16, %rsp
  2422. popq %rbp
  2423. retq
  2424. \end{lstlisting}
  2425. \fi}
  2426. {\if\edition\pythonEd\pythonColor
  2427. \begin{lstlisting}
  2428. .globl main
  2429. main:
  2430. pushq %rbp
  2431. movq %rsp, %rbp
  2432. subq $16, %rsp
  2433. movq $10, -8(%rbp)
  2434. negq -8(%rbp)
  2435. movq -8(%rbp), %rax
  2436. addq $52, %rax
  2437. addq $16, %rsp
  2438. popq %rbp
  2439. retq
  2440. \end{lstlisting}
  2441. \fi}
  2442. \end{tcolorbox}
  2443. \end{minipage}
  2444. \caption{An x86 program that computes
  2445. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2446. \label{fig:p1-x86}
  2447. \end{figure}
  2448. \begin{figure}[tbp]
  2449. \begin{minipage}{0.66\textwidth}
  2450. \begin{tcolorbox}[colback=white]
  2451. \centering
  2452. \begin{tabular}{|r|l|} \hline
  2453. Position & Contents \\ \hline
  2454. $8$(\key{\%rbp}) & return address \\
  2455. $0$(\key{\%rbp}) & old \key{rbp} \\
  2456. $-8$(\key{\%rbp}) & variable $1$ \\
  2457. $-16$(\key{\%rbp}) & variable $2$ \\
  2458. \ldots & \ldots \\
  2459. $0$(\key{\%rsp}) & variable $n$\\ \hline
  2460. \end{tabular}
  2461. \end{tcolorbox}
  2462. \end{minipage}
  2463. \caption{Memory layout of a frame.}
  2464. \label{fig:frame}
  2465. \end{figure}
  2466. In the program shown in figure~\ref{fig:p1-x86}, consider how control
  2467. is transferred from the operating system to the \code{main} function.
  2468. The operating system issues a \code{callq main} instruction that
  2469. pushes its return address on the stack and then jumps to
  2470. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2471. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2472. that when control arrives at \code{main}, the \code{rsp} is 8 bytes
  2473. out of alignment (because the \code{callq} pushed the return address).
  2474. The first three instructions are the typical
  2475. \emph{prelude}\index{subject}{prelude} for a procedure. The
  2476. instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2477. pointer \code{rsp} and then saves the base pointer of the caller at
  2478. address \code{rsp} on the stack. The next instruction \code{movq
  2479. \%rsp, \%rbp} sets the base pointer to the current stack pointer,
  2480. which is pointing to the location of the old base pointer. The
  2481. instruction \code{subq \$16, \%rsp} moves the stack pointer down to
  2482. make enough room for storing variables. This program needs one
  2483. variable ($8$ bytes), but we round up to 16 bytes so that \code{rsp} is
  2484. 16-byte-aligned, and then we are ready to make calls to other functions.
  2485. \racket{The last instruction of the prelude is \code{jmp start}, which
  2486. transfers control to the instructions that were generated from the
  2487. expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2488. \racket{The first instruction under the \code{start} label is}
  2489. %
  2490. \python{The first instruction after the prelude is}
  2491. %
  2492. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2493. %
  2494. The instruction \code{negq -8(\%rbp)} changes the contents of variable
  2495. $1$ to $-10$.
  2496. %
  2497. The next instruction moves the $-10$ from variable $1$ into the
  2498. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2499. the value in \code{rax}, updating its contents to $42$.
  2500. \racket{The three instructions under the label \code{conclusion} are the
  2501. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2502. %
  2503. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2504. \code{main} function consists of the last three instructions.}
  2505. %
  2506. The first two restore the \code{rsp} and \code{rbp} registers to their
  2507. states at the beginning of the procedure. In particular,
  2508. \key{addq \$16, \%rsp} moves the stack pointer to point to the
  2509. old base pointer. Then \key{popq \%rbp} restores the old base pointer
  2510. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2511. \key{retq}, jumps back to the procedure that called this one and adds
  2512. $8$ to the stack pointer.
  2513. Our compiler needs a convenient representation for manipulating x86
  2514. programs, so we define an abstract syntax for x86, shown in
  2515. figure~\ref{fig:x86-int-ast}. We refer to this language as
  2516. \LangXInt{}.
  2517. %
  2518. {\if\edition\pythonEd\pythonColor%
  2519. The main difference between this and the concrete syntax of \LangXInt{}
  2520. (figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2521. names, and register names are explicitly represented by strings.
  2522. \fi} %
  2523. {\if\edition\racketEd
  2524. The main difference between this and the concrete syntax of \LangXInt{}
  2525. (figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2526. front of every instruction. Instead instructions are grouped into
  2527. \emph{basic blocks}\index{subject}{basic block} with a
  2528. label associated with every basic block; this is why the \key{X86Program}
  2529. struct includes an alist mapping labels to basic blocks. The reason for this
  2530. organization becomes apparent in chapter~\ref{ch:Lif} when we
  2531. introduce conditional branching. The \code{Block} structure includes
  2532. an $\itm{info}$ field that is not needed in this chapter but becomes
  2533. useful in chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2534. $\itm{info}$ field should contain an empty list.
  2535. \fi}
  2536. %
  2537. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2538. node includes an integer for representing the arity of the function,
  2539. that is, the number of arguments, which is helpful to know during
  2540. register allocation (chapter~\ref{ch:register-allocation-Lvar}).
  2541. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2542. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2543. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2544. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2545. \MID \skey{r14} \MID \skey{r15}}
  2546. \newcommand{\ASTXIntRacket}{
  2547. \begin{array}{lcl}
  2548. \Reg &::=& \allregisters{} \\
  2549. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2550. \MID \DEREF{\Reg}{\Int} \\
  2551. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2552. \MID \BININSTR{\code{subq}}{\Arg}{\Arg}\\
  2553. &\MID& \UNIINSTR{\code{negq}}{\Arg}
  2554. \MID \BININSTR{\code{movq}}{\Arg}{\Arg}\\
  2555. &\MID& \PUSHQ{\Arg}
  2556. \MID \POPQ{\Arg} \\
  2557. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2558. \MID \RETQ{}
  2559. \MID \JMP{\itm{label}} \\
  2560. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}
  2561. \end{array}
  2562. }
  2563. \newcommand{\ASTXIntPython}{
  2564. \begin{array}{lcl}
  2565. \Reg &::=& \allregisters{} \\
  2566. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2567. \MID \DEREF{\Reg}{\Int} \\
  2568. \Instr &::=& \BININSTR{\skey{addq}}{\Arg}{\Arg}
  2569. \MID \BININSTR{\skey{subq}}{\Arg}{\Arg}\\
  2570. &\MID& \UNIINSTR{\skey{negq}}{\Arg}
  2571. \MID \BININSTR{\skey{movq}}{\Arg}{\Arg}\\
  2572. &\MID& \PUSHQ{\Arg}
  2573. \MID \POPQ{\Arg} \\
  2574. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2575. \MID \RETQ{}
  2576. \MID \JMP{\itm{label}} \\
  2577. \Block &::= & \Instr^{+}
  2578. \end{array}
  2579. }
  2580. \begin{figure}[tp]
  2581. \begin{tcolorbox}[colback=white]
  2582. \small
  2583. {\if\edition\racketEd
  2584. \[\arraycolsep=3pt
  2585. \begin{array}{l}
  2586. \ASTXIntRacket \\
  2587. \begin{array}{lcl}
  2588. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2589. \end{array}
  2590. \end{array}
  2591. \]
  2592. \fi}
  2593. {\if\edition\pythonEd\pythonColor
  2594. \[
  2595. \begin{array}{lcl}
  2596. \Reg &::=& \allastregisters{} \\
  2597. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2598. \MID \DEREF{\Reg}{\Int} \\
  2599. \Instr &::=& \BININSTR{\scode{addq}}{\Arg}{\Arg}
  2600. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} \\
  2601. &\MID& \BININSTR{\scode{movq}}{\Arg}{\Arg}
  2602. \MID \UNIINSTR{\scode{negq}}{\Arg}\\
  2603. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2604. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{} \MID \JMP{\itm{label}} \\
  2605. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2606. \end{array}
  2607. \]
  2608. \fi}
  2609. \end{tcolorbox}
  2610. \caption{The abstract syntax of \LangXInt{} assembly.}
  2611. \label{fig:x86-int-ast}
  2612. \index{subject}{x86int@\LangXInt{} abstract syntax}
  2613. \end{figure}
  2614. \section{Planning the Trip to x86}
  2615. \label{sec:plan-s0-x86}
  2616. To compile one language to another, it helps to focus on the
  2617. differences between the two languages because the compiler will need
  2618. to bridge those differences. What are the differences between \LangVar{}
  2619. and x86 assembly? Here are some of the most important ones:
  2620. \begin{enumerate}
  2621. \item x86 arithmetic instructions typically have two arguments and
  2622. update the second argument in place. In contrast, \LangVar{}
  2623. arithmetic operations take two arguments and produce a new value.
  2624. An x86 instruction may have at most one memory-accessing argument.
  2625. Furthermore, some x86 instructions place special restrictions on
  2626. their arguments.
  2627. \item An argument of an \LangVar{} operator can be a deeply nested
  2628. expression, whereas x86 instructions restrict their arguments to be
  2629. integer constants, registers, and memory locations.
  2630. {\if\edition\racketEd
  2631. \item The order of execution in x86 is explicit in the syntax, which
  2632. is a sequence of instructions and jumps to labeled positions,
  2633. whereas in \LangVar{} the order of evaluation is a left-to-right
  2634. depth-first traversal of the abstract syntax tree. \fi}
  2635. \item A program in \LangVar{} can have any number of variables,
  2636. whereas x86 has 16 registers and the procedure call stack.
  2637. {\if\edition\racketEd
  2638. \item Variables in \LangVar{} can shadow other variables with the
  2639. same name. In x86, registers have unique names, and memory locations
  2640. have unique addresses.
  2641. \fi}
  2642. \end{enumerate}
  2643. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2644. down the problem into several steps, which deal with these differences
  2645. one at a time. Each of these steps is called a \emph{pass} of the
  2646. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2647. %
  2648. This term indicates that each step passes over, or traverses, the AST
  2649. of the program.
  2650. %
  2651. Furthermore, we follow the nanopass approach, which means that we
  2652. strive for each pass to accomplish one clear objective rather than two
  2653. or three at the same time.
  2654. %
  2655. We begin by sketching how we might implement each pass and give each
  2656. pass a name. We then figure out an ordering of the passes and the
  2657. input/output language for each pass. The very first pass has
  2658. \LangVar{} as its input language, and the last pass has \LangXInt{} as
  2659. its output language. In between these two passes, we can choose
  2660. whichever language is most convenient for expressing the output of
  2661. each pass, whether that be \LangVar{}, \LangXInt{}, or a new
  2662. \emph{intermediate language} of our own design. Finally, to
  2663. implement each pass we write one recursive function per nonterminal in
  2664. the grammar of the input language of the pass.
  2665. \index{subject}{intermediate language}
  2666. Our compiler for \LangVar{} consists of the following passes:
  2667. %
  2668. \begin{description}
  2669. {\if\edition\racketEd
  2670. \item[\key{uniquify}] deals with the shadowing of variables by
  2671. renaming every variable to a unique name.
  2672. \fi}
  2673. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2674. of a primitive operation or function call is a variable or integer,
  2675. that is, an \emph{atomic} expression. We refer to nonatomic
  2676. expressions as \emph{complex}. This pass introduces temporary
  2677. variables to hold the results of complex
  2678. subexpressions.\index{subject}{atomic
  2679. expression}\index{subject}{complex expression}%
  2680. {\if\edition\racketEd
  2681. \item[\key{explicate\_control}] makes the execution order of the
  2682. program explicit. It converts the abstract syntax tree
  2683. representation into a graph in which each node is a labeled sequence
  2684. of statements and the edges are \code{goto} statements.
  2685. \fi}
  2686. \item[\key{select\_instructions}]\index{subject}{select instructions}
  2687. handles the difference between
  2688. \LangVar{} operations and x86 instructions. This pass converts each
  2689. \LangVar{} operation to a short sequence of instructions that
  2690. accomplishes the same task.
  2691. \item[\key{assign\_homes}] replaces variables with registers or stack
  2692. locations.
  2693. \end{description}
  2694. %
  2695. {\if\edition\racketEd
  2696. %
  2697. Our treatment of \code{remove\_complex\_operands} and
  2698. \code{explicate\_control} as separate passes is an example of the
  2699. nanopass approach.\footnote{For analogous decompositions of the
  2700. translation into continuation passing style, see the work of
  2701. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.} The traditional
  2702. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2703. %
  2704. \fi}
  2705. The next question is, in what order should we apply these passes? This
  2706. question can be challenging because it is difficult to know ahead of
  2707. time which orderings will be better (that is, will be easier to
  2708. implement, produce more efficient code, and so on), and therefore
  2709. ordering often involves trial and error. Nevertheless, we can plan
  2710. ahead and make educated choices regarding the ordering.
  2711. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2712. \key{uniquify}? The \key{uniquify} pass should come first because
  2713. \key{explicate\_control} changes all the \key{let}-bound variables to
  2714. become local variables whose scope is the entire program, which would
  2715. confuse variables with the same name.}
  2716. %
  2717. \racket{We place \key{remove\_complex\_operands} before \key{explicate\_control}
  2718. because the latter removes the \key{let} form, but it is convenient to
  2719. use \key{let} in the output of \key{remove\_complex\_operands}.}
  2720. %
  2721. \racket{The ordering of \key{uniquify} with respect to
  2722. \key{remove\_complex\_operands} does not matter, so we arbitrarily choose
  2723. \key{uniquify} to come first.}
  2724. The \key{select\_instructions} and \key{assign\_homes} passes are
  2725. intertwined.
  2726. %
  2727. In chapter~\ref{ch:Lfun} we learn that in x86, registers are used for
  2728. passing arguments to functions and that it is preferable to assign
  2729. parameters to their corresponding registers. This suggests that it
  2730. would be better to start with the \key{select\_instructions} pass,
  2731. which generates the instructions for argument passing, before
  2732. performing register allocation.
  2733. %
  2734. On the other hand, by selecting instructions first we may run into a
  2735. dead end in \key{assign\_homes}. Recall that only one argument of an
  2736. x86 instruction may be a memory access, but \key{assign\_homes} might
  2737. be forced to assign both arguments to memory locations.
  2738. %
  2739. A sophisticated approach is to repeat the two passes until a solution
  2740. is found. However, to reduce implementation complexity we recommend
  2741. placing \key{select\_instructions} first, followed by the
  2742. \key{assign\_homes}, and then a third pass named \key{patch\_instructions}
  2743. that uses a reserved register to fix outstanding problems.
  2744. \begin{figure}[tbp]
  2745. \begin{tcolorbox}[colback=white]
  2746. {\if\edition\racketEd
  2747. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  2748. \node (Lvar) at (0,2) {\large \LangVar{}};
  2749. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2750. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  2751. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2752. \node (Cvar-2) at (0,0) {\large \LangCVar{}};
  2753. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  2754. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  2755. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  2756. \node (x86-5) at (11,-2) {\large \LangXInt{}};
  2757. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2758. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  2759. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize\ \ explicate\_control} (Cvar-2);
  2760. \path[->,bend right=15] (Cvar-2) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  2761. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2762. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  2763. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  2764. \end{tikzpicture}
  2765. \fi}
  2766. {\if\edition\pythonEd\pythonColor
  2767. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  2768. \node (Lvar) at (0,2) {\large \LangVar{}};
  2769. \node (Lvar-2) at (4,2) {\large \LangVarANF{}};
  2770. \node (x86-1) at (0,0) {\large \LangXVar{}};
  2771. \node (x86-2) at (4,0) {\large \LangXVar{}};
  2772. \node (x86-3) at (8,0) {\large \LangXInt{}};
  2773. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2774. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-2);
  2775. \path[->,bend left=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instructions\ \ } (x86-1);
  2776. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2777. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  2778. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  2779. \end{tikzpicture}
  2780. \fi}
  2781. \end{tcolorbox}
  2782. \caption{Diagram of the passes for compiling \LangVar{}. }
  2783. \label{fig:Lvar-passes}
  2784. \end{figure}
  2785. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2786. passes and identifies the input and output language of each pass.
  2787. %
  2788. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2789. language, which extends \LangXInt{} with an unbounded number of
  2790. program-scope variables and removes the restrictions regarding
  2791. instruction arguments.
  2792. %
  2793. The last pass, \key{prelude\_and\_conclusion}, places the program
  2794. instructions inside a \code{main} function with instructions for the
  2795. prelude and conclusion.
  2796. %
  2797. \racket{In the next section we discuss the \LangCVar{} intermediate
  2798. language that serves as the output of \code{explicate\_control}.}
  2799. %
  2800. The remainder of this chapter provides guidance on the implementation
  2801. of each of the compiler passes represented in
  2802. figure~\ref{fig:Lvar-passes}.
  2803. %% The output of \key{uniquify} and \key{remove-complex-operands}
  2804. %% are programs that are still in the \LangVar{} language, though the
  2805. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2806. %% (section~\ref{sec:remove-complex-opera-Lvar}).
  2807. %% %
  2808. %% The output of \code{explicate\_control} is in an intermediate language
  2809. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2810. %% syntax, which we introduce in the next section. The
  2811. %% \key{select-instruction} pass translates from \LangCVar{} to
  2812. %% \LangXVar{}. The \key{assign-homes} and
  2813. %% \key{patch-instructions}
  2814. %% passes input and output variants of x86 assembly.
  2815. \newcommand{\CvarGrammarRacket}{
  2816. \begin{array}{lcl}
  2817. \Atm &::=& \Int \MID \Var \\
  2818. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2819. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2820. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2821. \end{array}
  2822. }
  2823. \newcommand{\CvarASTRacket}{
  2824. \begin{array}{lcl}
  2825. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2826. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2827. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2828. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2829. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2830. \end{array}
  2831. }
  2832. {\if\edition\racketEd
  2833. \subsection{The \LangCVar{} Intermediate Language}
  2834. The output of \code{explicate\_control} is similar to the C
  2835. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2836. categories for expressions and statements, so we name it \LangCVar{}.
  2837. This style of intermediate language is also known as
  2838. \emph{three-address code}, to emphasize that the typical form of a
  2839. statement such as \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2840. addresses: \code{x}, \code{y}, and \code{z}~\citep{Aho:2006wb}.
  2841. The concrete syntax for \LangCVar{} is shown in
  2842. figure~\ref{fig:c0-concrete-syntax}, and the abstract syntax for
  2843. \LangCVar{} is shown in figure~\ref{fig:c0-syntax}.
  2844. %
  2845. The \LangCVar{} language supports the same operators as \LangVar{} but
  2846. the arguments of operators are restricted to atomic
  2847. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2848. assignment statements that can be executed in sequence using the
  2849. \key{Seq} form. A sequence of statements always ends with
  2850. \key{Return}, a guarantee that is baked into the grammar rules for
  2851. \itm{tail}. The naming of this nonterminal comes from the term
  2852. \emph{tail position}\index{subject}{tail position}, which refers to an
  2853. expression that is the last one to execute within a function or
  2854. program.
  2855. A \LangCVar{} program consists of an alist mapping labels to
  2856. tails. This is more general than necessary for the present chapter, as
  2857. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2858. us from having to change the syntax in chapter~\ref{ch:Lif}. For now
  2859. there is just one label, \key{start}, and the whole program is
  2860. its tail.
  2861. %
  2862. The $\itm{info}$ field of the \key{CProgram} form, after the
  2863. \code{explicate\_control} pass, contains an alist that associates the
  2864. symbol \key{locals} with a list of all the variables used in the
  2865. program. At the start of the program, these variables are
  2866. uninitialized; they become initialized on their first assignment.
  2867. \begin{figure}[tbp]
  2868. \begin{tcolorbox}[colback=white]
  2869. \[
  2870. \begin{array}{l}
  2871. \CvarGrammarRacket \\
  2872. \begin{array}{lcl}
  2873. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2874. \end{array}
  2875. \end{array}
  2876. \]
  2877. \end{tcolorbox}
  2878. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2879. \label{fig:c0-concrete-syntax}
  2880. \index{subject}{Cvar@\LangCVar{} concrete syntax}
  2881. \end{figure}
  2882. \begin{figure}[tbp]
  2883. \begin{tcolorbox}[colback=white]
  2884. \[
  2885. \begin{array}{l}
  2886. \CvarASTRacket \\
  2887. \begin{array}{lcl}
  2888. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2889. \end{array}
  2890. \end{array}
  2891. \]
  2892. \end{tcolorbox}
  2893. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2894. \label{fig:c0-syntax}
  2895. \index{subject}{Cvar@\LangCVar{} abstract syntax}
  2896. \end{figure}
  2897. The definitional interpreter for \LangCVar{} is in the support code,
  2898. in the file \code{interp-Cvar.rkt}.
  2899. \fi}
  2900. {\if\edition\racketEd
  2901. \section{Uniquify Variables}
  2902. \label{sec:uniquify-Lvar}
  2903. The \code{uniquify} pass replaces the variable bound by each \key{let}
  2904. with a unique name. Both the input and output of the \code{uniquify}
  2905. pass is the \LangVar{} language. For example, the \code{uniquify} pass
  2906. should translate the program on the left into the program on the
  2907. right.
  2908. \begin{transformation}
  2909. \begin{lstlisting}
  2910. (let ([x 32])
  2911. (+ (let ([x 10]) x) x))
  2912. \end{lstlisting}
  2913. \compilesto
  2914. \begin{lstlisting}
  2915. (let ([x.1 32])
  2916. (+ (let ([x.2 10]) x.2) x.1))
  2917. \end{lstlisting}
  2918. \end{transformation}
  2919. The following is another example translation, this time of a program
  2920. with a \key{let} nested inside the initializing expression of another
  2921. \key{let}.
  2922. \begin{transformation}
  2923. \begin{lstlisting}
  2924. (let ([x (let ([x 4])
  2925. (+ x 1))])
  2926. (+ x 2))
  2927. \end{lstlisting}
  2928. \compilesto
  2929. \begin{lstlisting}
  2930. (let ([x.2 (let ([x.1 4])
  2931. (+ x.1 1))])
  2932. (+ x.2 2))
  2933. \end{lstlisting}
  2934. \end{transformation}
  2935. We recommend implementing \code{uniquify} by creating a structurally
  2936. recursive function named \code{uniquify\_exp} that does little other
  2937. than copy an expression. However, when encountering a \key{let}, it
  2938. should generate a unique name for the variable and associate the old
  2939. name with the new name in an alist.\footnote{The Racket function
  2940. \code{gensym} is handy for generating unique variable names.} The
  2941. \code{uniquify\_exp} function needs to access this alist when it gets
  2942. to a variable reference, so we add a parameter to \code{uniquify\_exp}
  2943. for the alist.
  2944. The skeleton of the \code{uniquify\_exp} function is shown in
  2945. figure~\ref{fig:uniquify-Lvar}.
  2946. %% The function is curried so that it is
  2947. %% convenient to partially apply it to an alist and then apply it to
  2948. %% different expressions, as in the last case for primitive operations in
  2949. %% figure~\ref{fig:uniquify-Lvar}.
  2950. The
  2951. %
  2952. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2953. %
  2954. form of Racket is useful for transforming the element of a list to
  2955. produce a new list.\index{subject}{for/list}
  2956. \begin{figure}[tbp]
  2957. \begin{tcolorbox}[colback=white]
  2958. \begin{lstlisting}
  2959. (define (uniquify_exp env)
  2960. (lambda (e)
  2961. (match e
  2962. [(Var x) ___]
  2963. [(Int n) (Int n)]
  2964. [(Let x e body) ___]
  2965. [(Prim op es)
  2966. (Prim op (for/list ([e es]) ((uniquify_exp env) e)))])))
  2967. (define (uniquify p)
  2968. (match p
  2969. [(Program '() e) (Program '() ((uniquify_exp '()) e))]))
  2970. \end{lstlisting}
  2971. \end{tcolorbox}
  2972. \caption{Skeleton for the \key{uniquify} pass.}
  2973. \label{fig:uniquify-Lvar}
  2974. \end{figure}
  2975. \begin{exercise}
  2976. \normalfont\normalsize % I don't like the italics for exercises. -Jeremy
  2977. Complete the \code{uniquify} pass by filling in the blanks in
  2978. figure~\ref{fig:uniquify-Lvar}; that is, implement the cases for
  2979. variables and for the \key{let} form in the file \code{compiler.rkt}
  2980. in the support code.
  2981. \end{exercise}
  2982. \begin{exercise}
  2983. \normalfont\normalsize
  2984. \label{ex:Lvar}
  2985. Create five \LangVar{} programs that exercise the most interesting
  2986. parts of the \key{uniquify} pass; that is, the programs should include
  2987. \key{let} forms, variables, and variables that shadow each other.
  2988. The five programs should be placed in the subdirectory named
  2989. \key{tests}, and the file names should start with \code{var\_test\_}
  2990. followed by a unique integer and end with the file extension
  2991. \key{.rkt}.
  2992. %
  2993. The \key{run-tests.rkt} script in the support code checks whether the
  2994. output programs produce the same result as the input programs. The
  2995. script uses the \key{interp-tests} function
  2996. (appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2997. your \key{uniquify} pass on the example programs. The \code{passes}
  2998. parameter of \key{interp-tests} is a list that should have one entry
  2999. for each pass in your compiler. For now, define \code{passes} to
  3000. contain just one entry for \code{uniquify} as follows:
  3001. \begin{lstlisting}
  3002. (define passes
  3003. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3004. \end{lstlisting}
  3005. Run the \key{run-tests.rkt} script in the support code to check
  3006. whether the output programs produce the same result as the input
  3007. programs.
  3008. \end{exercise}
  3009. \fi}
  3010. \section{Remove Complex Operands}
  3011. \label{sec:remove-complex-opera-Lvar}
  3012. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  3013. into a restricted form in which the arguments of operations are atomic
  3014. expressions. Put another way, this pass removes complex
  3015. operands\index{subject}{complex operand}, such as the expression
  3016. \racket{\code{(- 10)}}\python{\code{-10}}
  3017. in the following program. This is accomplished by introducing a new
  3018. temporary variable, assigning the complex operand to the new
  3019. variable, and then using the new variable in place of the complex
  3020. operand, as shown in the output of \code{remove\_complex\_operands} on the
  3021. right.
  3022. {\if\edition\racketEd
  3023. \begin{transformation}
  3024. % var_test_19.rkt
  3025. \begin{lstlisting}
  3026. (let ([x (+ 42 (- 10))])
  3027. (+ x 10))
  3028. \end{lstlisting}
  3029. \compilesto
  3030. \begin{lstlisting}
  3031. (let ([x (let ([tmp.1 (- 10)])
  3032. (+ 42 tmp.1))])
  3033. (+ x 10))
  3034. \end{lstlisting}
  3035. \end{transformation}
  3036. \fi}
  3037. {\if\edition\pythonEd\pythonColor
  3038. \begin{transformation}
  3039. \begin{lstlisting}
  3040. x = 42 + -10
  3041. print(x + 10)
  3042. \end{lstlisting}
  3043. \compilesto
  3044. \begin{lstlisting}
  3045. tmp_0 = -10
  3046. x = 42 + tmp_0
  3047. tmp_1 = x + 10
  3048. print(tmp_1)
  3049. \end{lstlisting}
  3050. \end{transformation}
  3051. \fi}
  3052. \newcommand{\LvarMonadASTRacket}{
  3053. \begin{array}{rcl}
  3054. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  3055. \Exp &::=& \Atm \MID \READ{} \\
  3056. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm} \\
  3057. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  3058. \end{array}
  3059. }
  3060. \newcommand{\LvarMonadASTPython}{
  3061. \begin{array}{rcl}
  3062. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  3063. \Exp{} &::=& \Atm \MID \READ{} \\
  3064. &\MID& \UNIOP{\key{USub()}}{\Atm} \MID \BINOP{\Atm}{\key{Add()}}{\Atm} \\
  3065. &\MID& \BINOP{\Atm}{\key{Sub()}}{\Atm} \\
  3066. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  3067. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  3068. \end{array}
  3069. }
  3070. \begin{figure}[tp]
  3071. \centering
  3072. \begin{tcolorbox}[colback=white]
  3073. {\if\edition\racketEd
  3074. \[
  3075. \begin{array}{l}
  3076. \LvarMonadASTRacket \\
  3077. \begin{array}{rcl}
  3078. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  3079. \end{array}
  3080. \end{array}
  3081. \]
  3082. \fi}
  3083. {\if\edition\pythonEd\pythonColor
  3084. \[
  3085. \begin{array}{l}
  3086. \LvarMonadASTPython \\
  3087. \begin{array}{rcl}
  3088. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  3089. \end{array}
  3090. \end{array}
  3091. \]
  3092. \fi}
  3093. \end{tcolorbox}
  3094. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  3095. atomic expressions.}
  3096. \label{fig:Lvar-anf-syntax}
  3097. \index{subject}{Lvarmon@\LangVarANF{} abstract syntax}
  3098. \end{figure}
  3099. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  3100. of this pass, the language \LangVarANF{}. The only difference is that
  3101. operator arguments are restricted to be atomic expressions that are
  3102. defined by the \Atm{} nonterminal. In particular, integer constants
  3103. and variables are atomic.
  3104. The atomic expressions are pure (they do not cause or depend on side
  3105. effects) whereas complex expressions may have side effects, such as
  3106. \READ{}. A language with this separation between pure expressions
  3107. versus expressions with side effects is said to be in monadic normal
  3108. form~\citep{Moggi:1991in,Danvy:2003fk}, which explains the \textit{mon}
  3109. in the name \LangVarANF{}. An important invariant of the
  3110. \code{remove\_complex\_operands} pass is that the relative ordering
  3111. among complex expressions is not changed, but the relative ordering
  3112. between atomic expressions and complex expressions can change and
  3113. often does. These changes are behavior preserving because
  3114. atomic expressions are pure.
  3115. {\if\edition\racketEd
  3116. Another well-known form for intermediate languages is the
  3117. \emph{administrative normal form}
  3118. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  3119. \index{subject}{administrative normal form} \index{subject}{ANF}
  3120. %
  3121. The \LangVarANF{} language is not quite in ANF because it allows the
  3122. right-hand side of a \code{let} to be a complex expression, such as
  3123. another \code{let}. The flattening of nested \code{let} expressions is
  3124. instead one of the responsibilities of the \code{explicate\_control}
  3125. pass.
  3126. \fi}
  3127. {\if\edition\racketEd
  3128. We recommend implementing this pass with two mutually recursive
  3129. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  3130. \code{rco\_atom} to subexpressions that need to become atomic and to
  3131. apply \code{rco\_exp} to subexpressions that do not. Both functions
  3132. take an \LangVar{} expression as input. The \code{rco\_exp} function
  3133. returns an expression. The \code{rco\_atom} function returns two
  3134. things: an atomic expression and an alist mapping temporary variables to
  3135. complex subexpressions. You can return multiple things from a function
  3136. using Racket's \key{values} form, and you can receive multiple things
  3137. from a function call using the \key{define-values} form.
  3138. \fi}
  3139. %
  3140. {\if\edition\pythonEd\pythonColor
  3141. %
  3142. We recommend implementing this pass with an auxiliary method named
  3143. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  3144. Boolean that specifies whether the expression needs to become atomic
  3145. or not. The \code{rco\_exp} method should return a pair consisting of
  3146. the new expression and a list of pairs, associating new temporary
  3147. variables with their initializing expressions.
  3148. %
  3149. \fi}
  3150. {\if\edition\racketEd
  3151. %
  3152. In the example program with the expression \code{(+ 42 (-
  3153. 10))}, the subexpression \code{(- 10)} should be processed using the
  3154. \code{rco\_atom} function because it is an argument of the \code{+}
  3155. operator and therefore needs to become atomic. The output of
  3156. \code{rco\_atom} applied to \code{(- 10)} is as follows:
  3157. \begin{transformation}
  3158. \begin{lstlisting}
  3159. (- 10)
  3160. \end{lstlisting}
  3161. \compilesto
  3162. \begin{lstlisting}
  3163. tmp.1
  3164. ((tmp.1 . (- 10)))
  3165. \end{lstlisting}
  3166. \end{transformation}
  3167. \fi}
  3168. %
  3169. {\if\edition\pythonEd\pythonColor
  3170. %
  3171. Returning to the example program with the expression \code{42 + -10},
  3172. the subexpression \code{-10} should be processed using the
  3173. \code{rco\_exp} function with \code{True} as the second argument,
  3174. because \code{-10} is an argument of the \code{+} operator and
  3175. therefore needs to become atomic. The output of \code{rco\_exp}
  3176. applied to \code{-10} is as follows.
  3177. \begin{transformation}
  3178. \begin{lstlisting}
  3179. -10
  3180. \end{lstlisting}
  3181. \compilesto
  3182. \begin{lstlisting}
  3183. tmp_1
  3184. [(tmp_1, -10)]
  3185. \end{lstlisting}
  3186. \end{transformation}
  3187. %
  3188. \fi}
  3189. Take special care of programs, such as the following, that
  3190. %
  3191. \racket{bind a variable to an atomic expression.}
  3192. %
  3193. \python{assign an atomic expression to a variable.}
  3194. %
  3195. You should leave such \racket{variable bindings}\python{assignments}
  3196. unchanged, as shown in the program on the right:\\
  3197. %
  3198. {\if\edition\racketEd
  3199. \begin{transformation}
  3200. % var_test_20.rkt
  3201. \begin{lstlisting}
  3202. (let ([a 42])
  3203. (let ([b a])
  3204. b))
  3205. \end{lstlisting}
  3206. \compilesto
  3207. \begin{lstlisting}
  3208. (let ([a 42])
  3209. (let ([b a])
  3210. b))
  3211. \end{lstlisting}
  3212. \end{transformation}
  3213. \fi}
  3214. {\if\edition\pythonEd\pythonColor
  3215. \begin{transformation}
  3216. \begin{lstlisting}
  3217. a = 42
  3218. b = a
  3219. print(b)
  3220. \end{lstlisting}
  3221. \compilesto
  3222. \begin{lstlisting}
  3223. a = 42
  3224. b = a
  3225. print(b)
  3226. \end{lstlisting}
  3227. \end{transformation}
  3228. \fi}
  3229. %
  3230. \noindent A careless implementation might produce the following output with
  3231. unnecessary temporary variables.
  3232. \begin{center}
  3233. \begin{minipage}{0.4\textwidth}
  3234. {\if\edition\racketEd
  3235. \begin{lstlisting}
  3236. (let ([tmp.1 42])
  3237. (let ([a tmp.1])
  3238. (let ([tmp.2 a])
  3239. (let ([b tmp.2])
  3240. b))))
  3241. \end{lstlisting}
  3242. \fi}
  3243. {\if\edition\pythonEd\pythonColor
  3244. \begin{lstlisting}
  3245. tmp_1 = 42
  3246. a = tmp_1
  3247. tmp_2 = a
  3248. b = tmp_2
  3249. print(b)
  3250. \end{lstlisting}
  3251. \fi}
  3252. \end{minipage}
  3253. \end{center}
  3254. \begin{exercise}
  3255. \normalfont\normalsize
  3256. {\if\edition\racketEd
  3257. Implement the \code{remove\_complex\_operands} function in
  3258. \code{compiler.rkt}.
  3259. %
  3260. Create three new \LangVar{} programs that exercise the interesting
  3261. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  3262. regarding file names described in exercise~\ref{ex:Lvar}.
  3263. %
  3264. In the \code{run-tests.rkt} script, add the following entry to the
  3265. list of \code{passes}, and then run the script to test your compiler.
  3266. \begin{lstlisting}
  3267. (list "remove-complex" remove_complex_operands interp_Lvar type-check-Lvar)
  3268. \end{lstlisting}
  3269. In debugging your compiler, it is often useful to see the intermediate
  3270. programs that are output from each pass. To print the intermediate
  3271. programs, place \lstinline{(debug-level 1)} before the call to
  3272. \code{interp-tests} in \code{run-tests.rkt}. \fi}
  3273. %
  3274. {\if\edition\pythonEd\pythonColor
  3275. Implement the \code{remove\_complex\_operands} pass in
  3276. \code{compiler.py}, creating auxiliary functions for each
  3277. nonterminal in the grammar, that is, \code{rco\_exp}
  3278. and \code{rco\_stmt}. We recommend that you use the function
  3279. \code{utils.generate\_name()} to generate fresh names from a stub string.
  3280. \fi}
  3281. \end{exercise}
  3282. {\if\edition\pythonEd\pythonColor
  3283. \begin{exercise}
  3284. \normalfont\normalsize
  3285. \label{ex:Lvar}
  3286. Create five \LangVar{} programs that exercise the most interesting
  3287. parts of the \code{remove\_complex\_operands} pass. The five programs
  3288. should be placed in the subdirectory \key{tests/var}, and the file
  3289. names should end with the file extension \key{.py}. Run the
  3290. \key{run-tests.py} script in the support code to check whether the
  3291. output programs produce the same result as the input programs.
  3292. \end{exercise}
  3293. \fi}
  3294. {\if\edition\racketEd
  3295. \section{Explicate Control}
  3296. \label{sec:explicate-control-Lvar}
  3297. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3298. programs that make the order of execution explicit in their
  3299. syntax. For now this amounts to flattening \key{let} constructs into a
  3300. sequence of assignment statements. For example, consider the following
  3301. \LangVar{} program:\\
  3302. % var_test_11.rkt
  3303. \begin{minipage}{0.96\textwidth}
  3304. \begin{lstlisting}
  3305. (let ([y (let ([x 20])
  3306. (+ x (let ([x 22]) x)))])
  3307. y)
  3308. \end{lstlisting}
  3309. \end{minipage}\\
  3310. %
  3311. The output of the previous pass is shown next, on the left, and the
  3312. output of \code{explicate\_control} is on the right. Recall that the
  3313. right-hand side of a \key{let} executes before its body, so that the order
  3314. of evaluation for this program is to assign \code{20} to \code{x.1},
  3315. \code{22} to \code{x.2}, and \code{(+ x.1 x.2)} to \code{y}, and then to
  3316. return \code{y}. Indeed, the output of \code{explicate\_control} makes
  3317. this ordering explicit.
  3318. \begin{transformation}
  3319. \begin{lstlisting}
  3320. (let ([y (let ([x.1 20])
  3321. (let ([x.2 22])
  3322. (+ x.1 x.2)))])
  3323. y)
  3324. \end{lstlisting}
  3325. \compilesto
  3326. \begin{lstlisting}[language=C]
  3327. start:
  3328. x.1 = 20;
  3329. x.2 = 22;
  3330. y = (+ x.1 x.2);
  3331. return y;
  3332. \end{lstlisting}
  3333. \end{transformation}
  3334. \begin{figure}[tbp]
  3335. \begin{tcolorbox}[colback=white]
  3336. \begin{lstlisting}
  3337. (define (explicate_tail e)
  3338. (match e
  3339. [(Var x) ___]
  3340. [(Int n) (Return (Int n))]
  3341. [(Let x rhs body) ___]
  3342. [(Prim op es) ___]
  3343. [else (error "explicate_tail unhandled case" e)]))
  3344. (define (explicate_assign e x cont)
  3345. (match e
  3346. [(Var x) ___]
  3347. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3348. [(Let y rhs body) ___]
  3349. [(Prim op es) ___]
  3350. [else (error "explicate_assign unhandled case" e)]))
  3351. (define (explicate_control p)
  3352. (match p
  3353. [(Program info body) ___]))
  3354. \end{lstlisting}
  3355. \end{tcolorbox}
  3356. \caption{Skeleton for the \code{explicate\_control} pass.}
  3357. \label{fig:explicate-control-Lvar}
  3358. \end{figure}
  3359. The organization of this pass depends on the notion of tail position
  3360. to which we have alluded. Here is the definition.
  3361. \begin{definition}\normalfont
  3362. The following rules define when an expression is in \emph{tail
  3363. position}\index{subject}{tail position} for the language \LangVar{}.
  3364. \begin{enumerate}
  3365. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3366. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3367. \end{enumerate}
  3368. \end{definition}
  3369. We recommend implementing \code{explicate\_control} using two
  3370. recursive functions, \code{explicate\_tail} and
  3371. \code{explicate\_assign}, as suggested in the skeleton code shown in
  3372. figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3373. function should be applied to expressions in tail position, whereas the
  3374. \code{explicate\_assign} should be applied to expressions that occur on
  3375. the right-hand side of a \key{let}.
  3376. %
  3377. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3378. input and produces a \Tail{} in \LangCVar{} (see
  3379. figure~\ref{fig:c0-syntax}).
  3380. %
  3381. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3382. the variable to which it is to be assigned, and a \Tail{} in
  3383. \LangCVar{} for the code that comes after the assignment. The
  3384. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3385. The \code{explicate\_assign} function is in accumulator-passing style:
  3386. the \code{cont} parameter is used for accumulating the output. This
  3387. accumulator-passing style plays an important role in the way that we
  3388. generate high-quality code for conditional expressions in
  3389. chapter~\ref{ch:Lif}. The abbreviation \code{cont} is for
  3390. continuation because it contains the generated code that should come
  3391. after the current assignment. This code organization is also related
  3392. to continuation-passing style, except that \code{cont} is not what
  3393. happens next during compilation but is what happens next in the
  3394. generated code.
  3395. \begin{exercise}\normalfont\normalsize
  3396. %
  3397. Implement the \code{explicate\_control} function in
  3398. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3399. exercise the code in \code{explicate\_control}.
  3400. %
  3401. In the \code{run-tests.rkt} script, add the following entry to the
  3402. list of \code{passes} and then run the script to test your compiler.
  3403. \begin{lstlisting}
  3404. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3405. \end{lstlisting}
  3406. \end{exercise}
  3407. \fi}
  3408. \section{Select Instructions}
  3409. \label{sec:select-Lvar}
  3410. \index{subject}{select instructions}
  3411. In the \code{select\_instructions} pass we begin the work of
  3412. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3413. language of this pass, \LangXVar{}, is a variant of x86 that still
  3414. uses variables, so we add an AST node of the form $\XVAR{\itm{var}}$
  3415. to the \Arg{} nonterminal of the \LangXInt{} abstract syntax
  3416. (figure~\ref{fig:x86-int-ast})\index{subject}{x86var@\LangXVar{}}.
  3417. \racket{We recommend implementing the \code{select\_instructions} with
  3418. three auxiliary functions, one for each of the nonterminals of
  3419. \LangCVar{}: $\Atm$, $\Stmt$, and $\Tail$.} \python{We recommend
  3420. implementing an auxiliary function named \code{select\_stmt} for the
  3421. $\Stmt$ nonterminal.}
  3422. \racket{The cases for $\Atm$ are straightforward; variables stay the
  3423. same and integer constants change to immediates; that is, $\INT{n}$
  3424. changes to $\IMM{n}$.}
  3425. Next consider the cases for the $\Stmt$ nonterminal, starting with
  3426. arithmetic operations. For example, consider the following addition
  3427. operation, on the left side. (Let $\Arg_1$ and $\Arg_2$ be the
  3428. translations of $\Atm_1$ and $\Atm_2$, respectively.) There is an
  3429. \key{addq} instruction in x86, but it performs an in-place update.
  3430. %
  3431. So, we could move $\Arg_1$ into the \code{rax} register, then add
  3432. $\Arg_2$ to \code{rax}, and then finally move \code{rax} into \itm{var}.
  3433. \begin{transformation}
  3434. {\if\edition\racketEd
  3435. \begin{lstlisting}
  3436. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3437. \end{lstlisting}
  3438. \fi}
  3439. {\if\edition\pythonEd\pythonColor
  3440. \begin{lstlisting}
  3441. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3442. \end{lstlisting}
  3443. \fi}
  3444. \compilesto
  3445. \begin{lstlisting}
  3446. movq |$\Arg_1$|, %rax
  3447. addq |$\Arg_2$|, %rax
  3448. movq %rax, |$\itm{var}$|
  3449. \end{lstlisting}
  3450. \end{transformation}
  3451. %
  3452. However, with some care we can generate shorter sequences of
  3453. instructions. Suppose that one or more of the arguments of the
  3454. addition is the same variable as the left-hand side of the assignment.
  3455. Then the assignment statement can be translated into a single
  3456. \key{addq} instruction, as follows.
  3457. \begin{transformation}
  3458. {\if\edition\racketEd
  3459. \begin{lstlisting}
  3460. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3461. \end{lstlisting}
  3462. \fi}
  3463. {\if\edition\pythonEd\pythonColor
  3464. \begin{lstlisting}
  3465. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3466. \end{lstlisting}
  3467. \fi}
  3468. \compilesto
  3469. \begin{lstlisting}
  3470. addq |$\Arg_1$|, |$\itm{var}$|
  3471. \end{lstlisting}
  3472. \end{transformation}
  3473. %
  3474. On the other hand, if $\Atm_2$ is not the same variable as the
  3475. left-hand side, then we can move $\Arg_1$ into the left-hand \itm{var}
  3476. and then add $\Arg_2$ to \itm{var}.
  3477. %
  3478. \begin{transformation}
  3479. {\if\edition\racketEd
  3480. \begin{lstlisting}
  3481. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3482. \end{lstlisting}
  3483. \fi}
  3484. {\if\edition\pythonEd\pythonColor
  3485. \begin{lstlisting}
  3486. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3487. \end{lstlisting}
  3488. \fi}
  3489. \compilesto
  3490. \begin{lstlisting}
  3491. movq |$\Arg_1$|, |$\itm{var}$|
  3492. addq |$\Arg_2$|, |$\itm{var}$|
  3493. \end{lstlisting}
  3494. \end{transformation}
  3495. The \READOP{} operation does not have a direct counterpart in x86
  3496. assembly, so we provide this functionality with the function
  3497. \code{read\_int} in the file \code{runtime.c}, written in
  3498. C~\citep{Kernighan:1988nx}. In general, we refer to all the
  3499. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3500. system}, or simply the \emph{runtime} for short. When compiling your
  3501. generated x86 assembly code, you need to compile \code{runtime.c} to
  3502. \code{runtime.o} (an \emph{object file}, using \code{gcc} with option
  3503. \code{-c}) and link it into the executable. For our purposes of code
  3504. generation, all you need to do is translate an assignment of
  3505. \READOP{} into a call to the \code{read\_int} function followed by a
  3506. move from \code{rax} to the left-hand side variable. (The
  3507. return value of a function is placed in \code{rax}.)
  3508. \begin{transformation}
  3509. {\if\edition\racketEd
  3510. \begin{lstlisting}
  3511. |$\itm{var}$| = (read);
  3512. \end{lstlisting}
  3513. \fi}
  3514. {\if\edition\pythonEd\pythonColor
  3515. \begin{lstlisting}
  3516. |$\itm{var}$| = input_int();
  3517. \end{lstlisting}
  3518. \fi}
  3519. \compilesto
  3520. \begin{lstlisting}
  3521. callq read_int
  3522. movq %rax, |$\itm{var}$|
  3523. \end{lstlisting}
  3524. \end{transformation}
  3525. {\if\edition\pythonEd\pythonColor
  3526. %
  3527. Similarly, we translate the \code{print} operation, shown below, into
  3528. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3529. In x86, the first six arguments to functions are passed in registers,
  3530. with the first argument passed in register \code{rdi}. So we move the
  3531. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3532. \code{callq} instruction.
  3533. \begin{transformation}
  3534. \begin{lstlisting}
  3535. print(|$\Atm$|)
  3536. \end{lstlisting}
  3537. \compilesto
  3538. \begin{lstlisting}
  3539. movq |$\Arg$|, %rdi
  3540. callq print_int
  3541. \end{lstlisting}
  3542. \end{transformation}
  3543. %
  3544. \fi}
  3545. {\if\edition\racketEd
  3546. %
  3547. There are two cases for the $\Tail$ nonterminal: \key{Return} and
  3548. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3549. assignment to the \key{rax} register followed by a jump to
  3550. the label \key{conclusion}. Later, in Section~\ref{sec:print-x86},
  3551. we discuss the generation of the \key{conclusion} block.
  3552. In the meantime, the interpreter for \LangXVar{} recognizes a jump
  3553. to \key{conclusion} as the end of the program.
  3554. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3555. recursively and then append the resulting instructions.
  3556. %
  3557. \fi}
  3558. {\if\edition\pythonEd\pythonColor
  3559. We recommend that you use the function \code{utils.label\_name} to
  3560. transform strings into labels, for example, in
  3561. the target of the \code{callq} instruction. This practice makes your
  3562. compiler portable across Linux and Mac OS X, which requires an underscore
  3563. prefixed to all labels.
  3564. \fi}
  3565. \begin{exercise}
  3566. \normalfont\normalsize
  3567. {\if\edition\racketEd
  3568. Implement the \code{select\_instructions} pass in
  3569. \code{compiler.rkt}. Create three new example programs that are
  3570. designed to exercise all the interesting cases in this pass.
  3571. %
  3572. In the \code{run-tests.rkt} script, add the following entry to the
  3573. list of \code{passes} and then run the script to test your compiler.
  3574. \begin{lstlisting}
  3575. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3576. \end{lstlisting}
  3577. \fi}
  3578. {\if\edition\pythonEd\pythonColor
  3579. Implement the \key{select\_instructions} pass in
  3580. \code{compiler.py}. Create three new example programs that are
  3581. designed to exercise all the interesting cases in this pass.
  3582. Run the \code{run-tests.py} script to check
  3583. whether the output programs produce the same result as the input
  3584. programs.
  3585. \fi}
  3586. \end{exercise}
  3587. \section{Assign Homes}
  3588. \label{sec:assign-Lvar}
  3589. The \code{assign\_homes} pass compiles \LangXVar{} programs to
  3590. \LangXVar{} programs that no longer use program variables. Thus, the
  3591. \code{assign\_homes} pass is responsible for placing all the program
  3592. variables in registers or on the stack. For runtime efficiency, it is
  3593. better to place variables in registers, but because there are only
  3594. sixteen registers, some programs must necessarily resort to placing
  3595. some variables on the stack. In this chapter we focus on the mechanics
  3596. of placing variables on the stack. We study an algorithm for placing
  3597. variables in registers in chapter~\ref{ch:register-allocation-Lvar}.
  3598. Consider again the following \LangVar{} program from
  3599. section~\ref{sec:remove-complex-opera-Lvar}:\\
  3600. % var_test_20.rkt
  3601. \begin{minipage}{0.96\textwidth}
  3602. {\if\edition\racketEd
  3603. \begin{lstlisting}
  3604. (let ([a 42])
  3605. (let ([b a])
  3606. b))
  3607. \end{lstlisting}
  3608. \fi}
  3609. {\if\edition\pythonEd\pythonColor
  3610. \begin{lstlisting}
  3611. a = 42
  3612. b = a
  3613. print(b)
  3614. \end{lstlisting}
  3615. \fi}
  3616. \end{minipage}\\
  3617. %
  3618. The output of \code{select\_instructions} is shown next, on the left,
  3619. and the output of \code{assign\_homes} is on the right. In this
  3620. example, we assign variable \code{a} to stack location
  3621. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3622. \begin{transformation}
  3623. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3624. movq $42, a
  3625. movq a, b
  3626. movq b, %rax
  3627. \end{lstlisting}
  3628. \compilesto
  3629. %stack-space: 16
  3630. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3631. movq $42, -8(%rbp)
  3632. movq -8(%rbp), -16(%rbp)
  3633. movq -16(%rbp), %rax
  3634. \end{lstlisting}
  3635. \end{transformation}
  3636. \racket{
  3637. The \code{assign\_homes} pass should replace all variables
  3638. with stack locations.
  3639. The list of variables can be obtained from
  3640. the \code{locals-types} entry in the $\itm{info}$ of the
  3641. \code{X86Program} node. The \code{locals-types} entry is an alist
  3642. mapping all the variables in the program to their types
  3643. (for now, just \code{Integer}).
  3644. As an aside, the \code{locals-types} entry is
  3645. computed by \code{type-check-Cvar} in the support code, which
  3646. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3647. which you should propagate to the \code{X86Program} node.}
  3648. %
  3649. \python{The \code{assign\_homes} pass should replace all uses of
  3650. variables with stack locations.}
  3651. %
  3652. In the process of assigning variables to stack locations, it is
  3653. convenient for you to compute and store the size of the frame (in
  3654. bytes) in
  3655. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space},}
  3656. %
  3657. \python{the field \code{stack\_space} of the \key{X86Program} node,}
  3658. %
  3659. which is needed later to generate the conclusion of the \code{main}
  3660. procedure. The x86-64 standard requires the frame size to be a
  3661. multiple of 16 bytes.\index{subject}{frame}
  3662. % TODO: store the number of variables instead? -Jeremy
  3663. \begin{exercise}\normalfont\normalsize
  3664. Implement the \code{assign\_homes} pass in
  3665. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3666. auxiliary functions for each of the nonterminals in the \LangXVar{}
  3667. grammar. We recommend that the auxiliary functions take an extra
  3668. parameter that maps variable names to homes (stack locations for now).
  3669. %
  3670. {\if\edition\racketEd
  3671. In the \code{run-tests.rkt} script, add the following entry to the
  3672. list of \code{passes} and then run the script to test your compiler.
  3673. \begin{lstlisting}
  3674. (list "assign homes" assign-homes interp_x86-0)
  3675. \end{lstlisting}
  3676. \fi}
  3677. {\if\edition\pythonEd\pythonColor
  3678. Run the \code{run-tests.py} script to check
  3679. whether the output programs produce the same result as the input
  3680. programs.
  3681. \fi}
  3682. \end{exercise}
  3683. \section{Patch Instructions}
  3684. \label{sec:patch-s0}
  3685. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3686. \LangXInt{} by making sure that each instruction adheres to the
  3687. restriction that at most one argument of an instruction may be a
  3688. memory reference.
  3689. We return to the following example.\\
  3690. \begin{minipage}{0.5\textwidth}
  3691. % var_test_20.rkt
  3692. {\if\edition\racketEd
  3693. \begin{lstlisting}
  3694. (let ([a 42])
  3695. (let ([b a])
  3696. b))
  3697. \end{lstlisting}
  3698. \fi}
  3699. {\if\edition\pythonEd\pythonColor
  3700. \begin{lstlisting}
  3701. a = 42
  3702. b = a
  3703. print(b)
  3704. \end{lstlisting}
  3705. \fi}
  3706. \end{minipage}\\
  3707. The \code{assign\_homes} pass produces the following translation. \\
  3708. \begin{minipage}{0.5\textwidth}
  3709. {\if\edition\racketEd
  3710. \begin{lstlisting}
  3711. movq $42, -8(%rbp)
  3712. movq -8(%rbp), -16(%rbp)
  3713. movq -16(%rbp), %rax
  3714. \end{lstlisting}
  3715. \fi}
  3716. {\if\edition\pythonEd\pythonColor
  3717. \begin{lstlisting}
  3718. movq $42, -8(%rbp)
  3719. movq -8(%rbp), -16(%rbp)
  3720. movq -16(%rbp), %rdi
  3721. callq print_int
  3722. \end{lstlisting}
  3723. \fi}
  3724. \end{minipage}\\
  3725. The second \key{movq} instruction is problematic because both
  3726. arguments are stack locations. We suggest fixing this problem by
  3727. moving from the source location to the register \key{rax} and then
  3728. from \key{rax} to the destination location, as follows.
  3729. \begin{lstlisting}
  3730. movq -8(%rbp), %rax
  3731. movq %rax, -16(%rbp)
  3732. \end{lstlisting}
  3733. There is a similar corner case that also needs to be dealt with. If
  3734. one argument is an immediate integer larger than $2^{16}$ and the
  3735. other is a memory reference, then the instruction is invalid. One can
  3736. fix this, for example, by first moving the immediate integer into
  3737. \key{rax} and then using \key{rax} in place of the integer.
  3738. \begin{exercise}
  3739. \normalfont\normalsize Implement the \key{patch\_instructions} pass in
  3740. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3741. Create three new example programs that are
  3742. designed to exercise all the interesting cases in this pass.
  3743. %
  3744. {\if\edition\racketEd
  3745. In the \code{run-tests.rkt} script, add the following entry to the
  3746. list of \code{passes} and then run the script to test your compiler.
  3747. \begin{lstlisting}
  3748. (list "patch instructions" patch_instructions interp_x86-0)
  3749. \end{lstlisting}
  3750. \fi}
  3751. {\if\edition\pythonEd\pythonColor
  3752. Run the \code{run-tests.py} script to check
  3753. whether the output programs produce the same result as the input
  3754. programs.
  3755. \fi}
  3756. \end{exercise}
  3757. \section{Generate Prelude and Conclusion}
  3758. \label{sec:print-x86}
  3759. \index{subject}{prelude}\index{subject}{conclusion}
  3760. The last step of the compiler from \LangVar{} to x86 is to generate
  3761. the \code{main} function with a prelude and conclusion wrapped around
  3762. the rest of the program, as shown in figure~\ref{fig:p1-x86} and
  3763. discussed in section~\ref{sec:x86}.
  3764. When running on Mac OS X, your compiler should prefix an underscore to
  3765. all labels (for example, changing \key{main} to \key{\_main}).
  3766. %
  3767. \racket{The Racket call \code{(system-type 'os)} is useful for
  3768. determining which operating system the compiler is running on. It
  3769. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3770. %
  3771. \python{The Python \code{platform.system}
  3772. function returns \code{\textquotesingle Linux\textquotesingle},
  3773. \code{\textquotesingle Windows\textquotesingle}, or
  3774. \code{\textquotesingle Darwin\textquotesingle} (for Mac).}
  3775. \begin{exercise}\normalfont\normalsize
  3776. %
  3777. Implement the \key{prelude\_and\_conclusion} pass in
  3778. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3779. %
  3780. {\if\edition\racketEd
  3781. In the \code{run-tests.rkt} script, add the following entry to the
  3782. list of \code{passes} and then run the script to test your compiler.
  3783. \begin{lstlisting}
  3784. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3785. \end{lstlisting}
  3786. %
  3787. Uncomment the call to the \key{compiler-tests} function
  3788. (appendix~\ref{appendix:utilities}), which tests your complete
  3789. compiler by executing the generated x86 code. It translates the x86
  3790. AST that you produce into a string by invoking the \code{print-x86}
  3791. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3792. the provided \key{runtime.c} file to \key{runtime.o} using
  3793. \key{gcc}. Run the script to test your compiler.
  3794. %
  3795. \fi}
  3796. {\if\edition\pythonEd\pythonColor
  3797. %
  3798. Run the \code{run-tests.py} script to check whether the output
  3799. programs produce the same result as the input programs. That script
  3800. translates the x86 AST that you produce into a string by invoking the
  3801. \code{repr} method that is implemented by the x86 AST classes in
  3802. \code{x86\_ast.py}.
  3803. %
  3804. \fi}
  3805. \end{exercise}
  3806. \section{Challenge: Partial Evaluator for \LangVar{}}
  3807. \label{sec:pe-Lvar}
  3808. \index{subject}{partialevaluation@partial evaluation}
  3809. This section describes two optional challenge exercises that involve
  3810. adapting and improving the partial evaluator for \LangInt{} that was
  3811. introduced in section~\ref{sec:partial-evaluation}.
  3812. \begin{exercise}\label{ex:pe-Lvar}
  3813. \normalfont\normalsize
  3814. Adapt the partial evaluator from section~\ref{sec:partial-evaluation}
  3815. (figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3816. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3817. %
  3818. \racket{\key{let} binding}\python{assignment}
  3819. %
  3820. to the \LangInt{} language, so you will need to add cases for them in
  3821. the \code{pe\_exp}
  3822. %
  3823. \racket{function.}
  3824. %
  3825. \python{and \code{pe\_stmt} functions.}
  3826. %
  3827. Once complete, add the partial evaluation pass to the front of your
  3828. compiler.
  3829. \python{In particular, add a method named \code{partial\_eval} to
  3830. the \code{Compiler} class in \code{compiler.py}.}
  3831. Check that your compiler still passes all the
  3832. tests.
  3833. \end{exercise}
  3834. \begin{exercise}
  3835. \normalfont\normalsize
  3836. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3837. \code{pe\_add} auxiliary functions with functions that know more about
  3838. arithmetic. For example, your partial evaluator should translate
  3839. {\if\edition\racketEd
  3840. \[
  3841. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3842. \code{(+ 2 (read))}
  3843. \]
  3844. \fi}
  3845. {\if\edition\pythonEd\pythonColor
  3846. \[
  3847. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3848. \code{2 + input\_int()}
  3849. \]
  3850. \fi}
  3851. %
  3852. To accomplish this, the \code{pe\_exp} function should produce output
  3853. in the form of the $\itm{residual}$ nonterminal of the following
  3854. grammar. The idea is that when processing an addition expression, we
  3855. can always produce one of the following: (1) an integer constant, (2)
  3856. an addition expression with an integer constant on the left-hand side
  3857. but not the right-hand side, or (3) an addition expression in which
  3858. neither subexpression is a constant.
  3859. %
  3860. {\if\edition\racketEd
  3861. \[
  3862. \begin{array}{lcl}
  3863. \itm{inert} &::=& \Var
  3864. \MID \LP\key{read}\RP
  3865. \MID \LP\key{-} ~\Var\RP
  3866. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3867. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3868. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3869. \itm{residual} &::=& \Int
  3870. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3871. \MID \itm{inert}
  3872. \end{array}
  3873. \]
  3874. \fi}
  3875. {\if\edition\pythonEd\pythonColor
  3876. \[
  3877. \begin{array}{lcl}
  3878. \itm{inert} &::=& \Var
  3879. \MID \key{input\_int}\LP\RP
  3880. \MID \key{-} \Var
  3881. \MID \key{-} \key{input\_int}\LP\RP
  3882. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3883. \itm{residual} &::=& \Int
  3884. \MID \Int ~ \key{+} ~ \itm{inert}
  3885. \MID \itm{inert}
  3886. \end{array}
  3887. \]
  3888. \fi}
  3889. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3890. inputs are $\itm{residual}$ expressions and they should return
  3891. $\itm{residual}$ expressions. Once the improvements are complete,
  3892. make sure that your compiler still passes all the tests. After
  3893. all, fast code is useless if it produces incorrect results!
  3894. \end{exercise}
  3895. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3896. {\if\edition\pythonEd\pythonColor
  3897. \chapter{Parsing}
  3898. \label{ch:parsing}
  3899. \setcounter{footnote}{0}
  3900. \index{subject}{parsing}
  3901. In this chapter we learn how to use the Lark parser
  3902. framework~\citep{shinan20:_lark_docs} to translate the concrete syntax
  3903. of \LangInt{} (a sequence of characters) into an abstract syntax tree.
  3904. You are then asked to create a parser for \LangVar{} using Lark.
  3905. We also describe the parsing algorithms used inside Lark, studying the
  3906. \citet{Earley:1970ly} and LALR(1) algorithms~\citep{DeRemer69,Anderson73}.
  3907. A parser framework such as Lark takes in a specification of the
  3908. concrete syntax and an input program and produces a parse tree. Even
  3909. though a parser framework does most of the work for us, using one
  3910. properly requires some knowledge. In particular, we must learn about
  3911. its specification languages and we must learn how to deal with
  3912. ambiguity in our language specifications. Also, some algorithms, such
  3913. as LALR(1), place restrictions on the grammars they can handle, in
  3914. which case knowing the algorithm helps with trying to decipher the
  3915. error messages.
  3916. The process of parsing is traditionally subdivided into two phases:
  3917. \emph{lexical analysis} (also called scanning) and \emph{syntax
  3918. analysis} (also called parsing). The lexical analysis phase
  3919. translates the sequence of characters into a sequence of
  3920. \emph{tokens}, that is, words consisting of several characters. The
  3921. parsing phase organizes the tokens into a \emph{parse tree} that
  3922. captures how the tokens were matched by rules in the grammar of the
  3923. language. The reason for the subdivision into two phases is to enable
  3924. the use of a faster but less powerful algorithm for lexical analysis
  3925. and the use of a slower but more powerful algorithm for parsing.
  3926. %
  3927. %% Likewise, parser generators typical come in pairs, with separate
  3928. %% generators for the lexical analyzer (or lexer for short) and for the
  3929. %% parser. A particularly influential pair of generators were
  3930. %% \texttt{lex} and \texttt{yacc}. The \texttt{lex} generator was written
  3931. %% by \citet{Lesk:1975uq} at Bell Labs. The \texttt{yacc} generator was
  3932. %% written by \citet{Johnson:1979qy} at AT\&T and stands for Yet Another
  3933. %% Compiler Compiler.
  3934. %
  3935. The Lark parser framework that we use in this chapter includes both
  3936. lexical analyzers and parsers. The next section discusses lexical
  3937. analysis, and the remainder of the chapter discusses parsing.
  3938. \section{Lexical Analysis and Regular Expressions}
  3939. \label{sec:lex}
  3940. The lexical analyzers produced by Lark turn a sequence of characters
  3941. (a string) into a sequence of token objects. For example, a Lark
  3942. generated lexer for \LangInt{} converts the string
  3943. \begin{lstlisting}
  3944. 'print(1 + 3)'
  3945. \end{lstlisting}
  3946. \noindent into the following sequence of token objects:
  3947. \begin{center}
  3948. \begin{minipage}{0.95\textwidth}
  3949. \begin{lstlisting}
  3950. Token('PRINT', 'print')
  3951. Token('LPAR', '(')
  3952. Token('INT', '1')
  3953. Token('PLUS', '+')
  3954. Token('INT', '3')
  3955. Token('RPAR', ')')
  3956. Token('NEWLINE', '\n')
  3957. \end{lstlisting}
  3958. \end{minipage}
  3959. \end{center}
  3960. Each token includes a field for its \code{type}, such as \skey{INT},
  3961. and a field for its \code{value}, such as \skey{1}.
  3962. Following in the tradition of \code{lex}~\citep{Lesk:1975uq}, the
  3963. specification language for Lark's lexer is one regular expression for
  3964. each type of token. The term \emph{regular} comes from the term
  3965. \emph{regular languages}, which are the languages that can be
  3966. recognized by a finite state machine. A \emph{regular expression} is a
  3967. pattern formed of the following core elements:\index{subject}{regular
  3968. expression}\footnote{Regular expressions traditionally include the
  3969. empty regular expression that matches any zero-length part of a
  3970. string, but Lark does not support the empty regular expression.}
  3971. \begin{itemize}
  3972. \item A single character $c$ is a regular expression, and it matches
  3973. only itself. For example, the regular expression \code{a} matches
  3974. only the string \skey{a}.
  3975. \item Two regular expressions separated by a vertical bar $R_1 \ttm{|}
  3976. R_2$ form a regular expression that matches any string that matches
  3977. $R_1$ or $R_2$. For example, the regular expression \code{a|c}
  3978. matches the string \skey{a} and the string \skey{c}.
  3979. \item Two regular expressions in sequence $R_1 R_2$ form a regular
  3980. expression that matches any string that can be formed by
  3981. concatenating two strings, where the first string matches $R_1$ and
  3982. the second string matches $R_2$. For example, the regular expression
  3983. \code{(a|c)b} matches the strings \skey{ab} and \skey{cb}.
  3984. (Parentheses can be used to control the grouping of operators within
  3985. a regular expression.)
  3986. \item A regular expression followed by an asterisks $R\ttm{*}$ (called
  3987. Kleene closure) is a regular expression that matches any string that
  3988. can be formed by concatenating zero or more strings that each match
  3989. the regular expression $R$. For example, the regular expression
  3990. \code{((a|c)b)*} matches the string \skey{abcbab} but not
  3991. \skey{abc}.
  3992. \end{itemize}
  3993. For our convenience, Lark also accepts the following extended set of
  3994. regular expressions that are automatically translated into the core
  3995. regular expressions.
  3996. \begin{itemize}
  3997. \item A set of characters enclosed in square brackets $[c_1 c_2 \ldots
  3998. c_n]$ is a regular expression that matches any one of the
  3999. characters. So, $[c_1 c_2 \ldots c_n]$ is equivalent to
  4000. the regular expression $c_1\mid c_2\mid \ldots \mid c_n$.
  4001. \item A range of characters enclosed in square brackets $[c_1\ttm{-}c_2]$ is
  4002. a regular expression that matches any character between $c_1$ and
  4003. $c_2$, inclusive. For example, \code{[a-z]} matches any lowercase
  4004. letter in the alphabet.
  4005. \item A regular expression followed by the plus symbol $R\ttm{+}$
  4006. is a regular expression that matches any string that can
  4007. be formed by concatenating one or more strings that each match $R$.
  4008. So $R+$ is equivalent to $R(R*)$. For example, \code{[a-z]+}
  4009. matches \skey{b} and \skey{bzca}.
  4010. \item A regular expression followed by a question mark $R\ttm{?}$
  4011. is a regular expression that matches any string that either
  4012. matches $R$ or is the empty string.
  4013. For example, \code{a?b} matches both \skey{ab} and \skey{b}.
  4014. \end{itemize}
  4015. In a Lark grammar file, each kind of token is specified by a
  4016. \emph{terminal}\index{subject}{terminal}, which is defined by a rule
  4017. that consists of the name of the terminal followed by a colon followed
  4018. by a sequence of literals. The literals include strings such as
  4019. \code{"abc"}, regular expressions surrounded by \code{/} characters,
  4020. terminal names, and literals composed using the regular expression
  4021. operators ($+$, $*$, etc.). For example, the \code{DIGIT},
  4022. \code{INT}, and \code{NEWLINE} terminals are specified as follows:
  4023. \begin{center}
  4024. \begin{minipage}{0.95\textwidth}
  4025. \begin{lstlisting}
  4026. DIGIT: /[0-9]/
  4027. INT: "-"? DIGIT+
  4028. NEWLINE: (/\r/? /\n/)+
  4029. \end{lstlisting}
  4030. \end{minipage}
  4031. \end{center}
  4032. \section{Grammars and Parse Trees}
  4033. \label{sec:CFG}
  4034. In section~\ref{sec:grammar} we learned how to use grammar rules to
  4035. specify the abstract syntax of a language. We now take a closer look
  4036. at using grammar rules to specify the concrete syntax. Recall that
  4037. each rule has a left-hand side and a right-hand side, where the
  4038. left-hand side is a nonterminal and the right-hand side is a pattern
  4039. that defines what can be parsed as that nonterminal. For concrete
  4040. syntax, each right-hand side expresses a pattern for a string instead
  4041. of a pattern for an abstract syntax tree. In particular, each
  4042. right-hand side is a sequence of
  4043. \emph{symbols}\index{subject}{symbol}, where a symbol is either a
  4044. terminal or a nonterminal. The nonterminals play the same role as in
  4045. the abstract syntax, defining categories of syntax. The nonterminals
  4046. of a grammar include the tokens defined in the lexer and all the
  4047. nonterminals defined by the grammar rules.
  4048. As an example, let us take a closer look at the concrete syntax of the
  4049. \LangInt{} language, repeated here.
  4050. \[
  4051. \begin{array}{l}
  4052. \LintGrammarPython \\
  4053. \begin{array}{rcl}
  4054. \LangInt{} &::=& \Stmt^{*}
  4055. \end{array}
  4056. \end{array}
  4057. \]
  4058. The Lark syntax for grammar rules differs slightly from the variant of
  4059. BNF that we use in this book. In particular, the notation $::=$ is
  4060. replaced by a single colon, and the use of typewriter font for string
  4061. literals is replaced by quotation marks. The following grammar serves
  4062. as a first draft of a Lark grammar for \LangInt{}.
  4063. \begin{center}
  4064. \begin{minipage}{0.95\textwidth}
  4065. \begin{lstlisting}[escapechar=$]
  4066. exp: INT
  4067. | "input_int" "(" ")"
  4068. | "-" exp
  4069. | exp "+" exp
  4070. | exp "-" exp
  4071. | "(" exp ")"
  4072. stmt_list:
  4073. | stmt NEWLINE stmt_list
  4074. lang_int: stmt_list
  4075. \end{lstlisting}
  4076. \end{minipage}
  4077. \end{center}
  4078. Let us begin by discussing the rule \code{exp: INT}, which says that
  4079. if the lexer matches a string to \code{INT}, then the parser also
  4080. categorizes the string as an \code{exp}. Recall that in
  4081. section~\ref{sec:grammar} we defined the corresponding \Int{}
  4082. nonterminal with a sentence in English. Here we specify \code{INT}
  4083. more formally using a type of token \code{INT} and its regular
  4084. expression \code{"-"? DIGIT+}.
  4085. The rule \code{exp: exp "+" exp} says that any string that matches
  4086. \code{exp}, followed by the \code{+} character, followed by another
  4087. string that matches \code{exp}, is itself an \code{exp}. For example,
  4088. the string \lstinline{'1+3'} is an \code{exp} because \lstinline{'1'} and
  4089. \lstinline{'3'} are both \code{exp} by the rule \code{exp: INT}, and then
  4090. the rule for addition applies to categorize \lstinline{'1+3'} as an
  4091. \code{exp}. We can visualize the application of grammar rules to parse
  4092. a string using a \emph{parse tree}\index{subject}{parse tree}. Each
  4093. internal node in the tree is an application of a grammar rule and is
  4094. labeled with its left-hand side nonterminal. Each leaf node is a
  4095. substring of the input program. The parse tree for \lstinline{'1+3'} is
  4096. shown in figure~\ref{fig:simple-parse-tree}.
  4097. \begin{figure}[tbp]
  4098. \begin{tcolorbox}[colback=white]
  4099. \centering
  4100. \includegraphics[width=1.9in]{figs/simple-parse-tree}
  4101. \end{tcolorbox}
  4102. \caption{The parse tree for \lstinline{'1+3'}.}
  4103. \label{fig:simple-parse-tree}
  4104. \end{figure}
  4105. The result of parsing \lstinline{'1+3'} with this Lark grammar is the
  4106. following parse tree as represented by \code{Tree} and \code{Token}
  4107. objects.
  4108. \begin{lstlisting}
  4109. Tree('lang_int',
  4110. [Tree('stmt', [Tree('exp', [Tree('exp', [Token('INT', '1')]),
  4111. Tree('exp', [Token('INT', '3')])])]),
  4112. Token('NEWLINE', '\n')])
  4113. \end{lstlisting}
  4114. The nodes that come from the lexer are \code{Token} objects, whereas
  4115. the nodes from the parser are \code{Tree} objects. Each \code{Tree}
  4116. object has a \code{data} field containing the name of the nonterminal
  4117. for the grammar rule that was applied. Each \code{Tree} object also
  4118. has a \code{children} field that is a list containing trees and/or
  4119. tokens. Note that Lark does not produce nodes for string literals in
  4120. the grammar. For example, the \code{Tree} node for the addition
  4121. expression has only two children for the two integers but is missing
  4122. its middle child for the \code{"+"} terminal. This would be
  4123. problematic except that Lark provides a mechanism for customizing the
  4124. \code{data} field of each \code{Tree} node on the basis of which rule was
  4125. applied. Next to each alternative in a grammar rule, write \code{->}
  4126. followed by a string that you want to appear in the \code{data}
  4127. field. The following is a second draft of a Lark grammar for
  4128. \LangInt{}, this time with more specific labels on the \code{Tree}
  4129. nodes.
  4130. \begin{center}
  4131. \begin{minipage}{0.95\textwidth}
  4132. \begin{lstlisting}[escapechar=$]
  4133. exp: INT -> int
  4134. | "input_int" "(" ")" -> input_int
  4135. | "-" exp -> usub
  4136. | exp "+" exp -> add
  4137. | exp "-" exp -> sub
  4138. | "(" exp ")" -> paren
  4139. stmt: "print" "(" exp ")" -> print
  4140. | exp -> expr
  4141. stmt_list: -> empty_stmt
  4142. | stmt NEWLINE stmt_list -> add_stmt
  4143. lang_int: stmt_list -> module
  4144. \end{lstlisting}
  4145. \end{minipage}
  4146. \end{center}
  4147. Here is the resulting parse tree.
  4148. \begin{lstlisting}
  4149. Tree('module',
  4150. [Tree('expr', [Tree('add', [Tree('int', [Token('INT', '1')]),
  4151. Tree('int', [Token('INT', '3')])])]),
  4152. Token('NEWLINE', '\n')])
  4153. \end{lstlisting}
  4154. \section{Ambiguous Grammars}
  4155. A grammar is \emph{ambiguous}\index{subject}{ambiguous} when a string
  4156. can be parsed in more than one way. For example, consider the string
  4157. \lstinline{'1-2+3'}. This string can be parsed in two different ways using
  4158. our draft grammar, resulting in the two parse trees shown in
  4159. figure~\ref{fig:ambig-parse-tree}. This example is problematic because
  4160. interpreting the second parse tree would yield \code{-4} even through
  4161. the correct answer is \code{2}.
  4162. \begin{figure}[tbp]
  4163. \begin{tcolorbox}[colback=white]
  4164. \centering
  4165. \includegraphics[width=0.95\textwidth]{figs/ambig-parse-tree}
  4166. \end{tcolorbox}
  4167. \caption{The two parse trees for \lstinline{'1-2+3'}.}
  4168. \label{fig:ambig-parse-tree}
  4169. \end{figure}
  4170. To deal with this problem we can change the grammar by categorizing
  4171. the syntax in a more fine-grained fashion. In this case we want to
  4172. disallow the application of the rule \code{exp: exp "-" exp} when the
  4173. child on the right is an addition. To do this we can replace the
  4174. \code{exp} after \code{"-"} with a nonterminal that categorizes all
  4175. the expressions except for addition, as in the following.
  4176. \begin{center}
  4177. \begin{minipage}{0.95\textwidth}
  4178. \begin{lstlisting}[escapechar=$]
  4179. exp: exp "-" exp_no_add -> sub
  4180. | exp "+" exp -> add
  4181. | exp_no_add
  4182. exp_no_add: INT -> int
  4183. | "input_int" "(" ")" -> input_int
  4184. | "-" exp -> usub
  4185. | exp "-" exp_no_add -> sub
  4186. | "(" exp ")" -> paren
  4187. \end{lstlisting}
  4188. \end{minipage}
  4189. \end{center}
  4190. However, there remains some ambiguity in the grammar. For example, the
  4191. string \lstinline{'1-2-3'} can still be parsed in two different ways,
  4192. as \lstinline{'(1-2)-3'} (correct) or \lstinline{'1-(2-3)'}
  4193. (incorrect). That is, subtraction is left associative. Likewise,
  4194. addition in Python is left associative. We also need to consider the
  4195. interaction of unary subtraction with both addition and
  4196. subtraction. How should we parse \lstinline{'-1+2'}? Unary subtraction
  4197. has higher \emph{precedence}\index{subject}{precedence} than addition
  4198. and subtraction, so \lstinline{'-1+2'} should parse the same as
  4199. \lstinline{'(-1)+2'} and not \lstinline{'-(1+2)'}. The grammar in
  4200. figure~\ref{fig:Lint-lark-grammar} handles the associativity of
  4201. addition and subtraction by using the nonterminal \code{exp\_hi} for
  4202. all the other expressions, and it uses \code{exp\_hi} for the second
  4203. child in the rules for addition and subtraction. Furthermore, unary
  4204. subtraction uses \code{exp\_hi} for its child.
  4205. For languages with more operators and more precedence levels, one must
  4206. refine the \code{exp} nonterminal into several nonterminals, one for
  4207. each precedence level.
  4208. \begin{figure}[tbp]
  4209. \begin{tcolorbox}[colback=white]
  4210. \centering
  4211. \begin{lstlisting}[escapechar=$]
  4212. exp: exp "+" exp_hi -> add
  4213. | exp "-" exp_hi -> sub
  4214. | exp_hi
  4215. exp_hi: INT -> int
  4216. | "input_int" "(" ")" -> input_int
  4217. | "-" exp_hi -> usub
  4218. | "(" exp ")" -> paren
  4219. stmt: "print" "(" exp ")" -> print
  4220. | exp -> expr
  4221. stmt_list: -> empty_stmt
  4222. | stmt NEWLINE stmt_list -> add_stmt
  4223. lang_int: stmt_list -> module
  4224. \end{lstlisting}
  4225. \end{tcolorbox}
  4226. \caption{An unambiguous Lark grammar for \LangInt{}.}
  4227. \label{fig:Lint-lark-grammar}
  4228. \end{figure}
  4229. \section{From Parse Trees to Abstract Syntax Trees}
  4230. As we have seen, the output of a Lark parser is a parse tree, that is,
  4231. a tree consisting of \code{Tree} and \code{Token} nodes. So, the next
  4232. step is to convert the parse tree to an abstract syntax tree. This can
  4233. be accomplished with a recursive function that inspects the
  4234. \code{data} field of each node and then constructs the corresponding
  4235. AST node, using recursion to handle its children. The following is an
  4236. excerpt from the \code{parse\_tree\_to\_ast} function for \LangInt{}.
  4237. \begin{center}
  4238. \begin{minipage}{0.95\textwidth}
  4239. \begin{lstlisting}
  4240. def parse_tree_to_ast(e):
  4241. if e.data == 'int':
  4242. return Constant(int(e.children[0].value))
  4243. elif e.data == 'input_int':
  4244. return Call(Name('input_int'), [])
  4245. elif e.data == 'add':
  4246. e1, e2 = e.children
  4247. return BinOp(parse_tree_to_ast(e1), Add(), parse_tree_to_ast(e2))
  4248. ...
  4249. else:
  4250. raise Exception('unhandled parse tree', e)
  4251. \end{lstlisting}
  4252. \end{minipage}
  4253. \end{center}
  4254. \begin{exercise}
  4255. \normalfont\normalsize
  4256. %
  4257. Use Lark to create a lexer and parser for \LangVar{}. Use Lark's
  4258. default parsing algorithm (Earley) with the \code{ambiguity} option
  4259. set to \lstinline{'explicit'} so that if your grammar is ambiguous, the
  4260. output will include multiple parse trees that will indicate to you
  4261. that there is a problem with your grammar. Your parser should ignore
  4262. white space, so we recommend using Lark's \code{\%ignore} directive
  4263. as follows.
  4264. \begin{lstlisting}
  4265. %import common.WS_INLINE
  4266. %ignore WS_INLINE
  4267. \end{lstlisting}
  4268. Change your compiler from chapter~\ref{ch:Lvar} to use your
  4269. Lark parser instead of using the \code{parse} function from
  4270. the \code{ast} module. Test your compiler on all the \LangVar{}
  4271. programs that you have created, and create four additional programs
  4272. that test for ambiguities in your grammar.
  4273. \end{exercise}
  4274. \section{Earley's Algorithm}
  4275. \label{sec:earley}
  4276. In this section we discuss the parsing algorithm of
  4277. \citet{Earley:1970ly}, the default algorithm used by Lark. The
  4278. algorithm is powerful in that it can handle any context-free grammar,
  4279. which makes it easy to use, but it is not a particularly
  4280. efficient parsing algorithm. Earley's algorithm is $O(n^3)$ for
  4281. ambiguous grammars and $O(n^2)$ for unambiguous grammars, where $n$ is
  4282. the number of tokens in the input
  4283. string~\citep{Hopcroft06:_automata}. In section~\ref{sec:lalr} we
  4284. learn about the LALR(1) algorithm, which is more efficient but cannot
  4285. handle all context-free grammars.
  4286. Earley's algorithm can be viewed as an interpreter; it treats the
  4287. grammar as the program being interpreted, and it treats the concrete
  4288. syntax of the program-to-be-parsed as its input. Earley's algorithm
  4289. uses a data structure called a \emph{chart}\index{subject}{chart} to
  4290. keep track of its progress and to store its results. The chart is an
  4291. array with one slot for each position in the input string, where
  4292. position $0$ is before the first character and position $n$ is
  4293. immediately after the last character. So, the array has length $n+1$
  4294. for an input string of length $n$. Each slot in the chart contains a
  4295. set of \emph{dotted rules}. A dotted rule is simply a grammar rule
  4296. with a period indicating how much of its right-hand side has already
  4297. been parsed. For example, the dotted rule
  4298. \begin{lstlisting}
  4299. exp: exp "+" . exp_hi
  4300. \end{lstlisting}
  4301. represents a partial parse that has matched an \code{exp} followed by
  4302. \code{+} but has not yet parsed an \code{exp} to the right of
  4303. \code{+}.
  4304. %
  4305. Earley's algorithm starts with an initialization phase and then
  4306. repeats three actions---prediction, scanning, and completion---for as
  4307. long as opportunities arise. We demonstrate Earley's algorithm on a
  4308. running example, parsing the following program:
  4309. \begin{lstlisting}
  4310. print(1 + 3)
  4311. \end{lstlisting}
  4312. The algorithm's initialization phase creates dotted rules for all the
  4313. grammar rules whose left-hand side is the start symbol and places them
  4314. in slot $0$ of the chart. We also record the starting position of the
  4315. dotted rule in parentheses on the right. For example, given the
  4316. grammar in figure~\ref{fig:Lint-lark-grammar}, we place
  4317. \begin{lstlisting}
  4318. lang_int: . stmt_list (0)
  4319. \end{lstlisting}
  4320. in slot $0$ of the chart. The algorithm then proceeds with
  4321. \emph{prediction} actions in which it adds more dotted rules to the
  4322. chart based on the nonterminals that come immediately after a period. In
  4323. the dotted rule above, the nonterminal \code{stmt\_list} appears after a period,
  4324. so we add all the rules for \code{stmt\_list} to slot $0$, with a
  4325. period at the beginning of their right-hand sides, as follows:
  4326. \begin{lstlisting}
  4327. stmt_list: . (0)
  4328. stmt_list: . stmt NEWLINE stmt_list (0)
  4329. \end{lstlisting}
  4330. We continue to perform prediction actions as more opportunities
  4331. arise. For example, the \code{stmt} nonterminal now appears after a
  4332. period, so we add all the rules for \code{stmt}.
  4333. \begin{lstlisting}
  4334. stmt: . "print" "(" exp ")" (0)
  4335. stmt: . exp (0)
  4336. \end{lstlisting}
  4337. This reveals yet more opportunities for prediction, so we add the grammar
  4338. rules for \code{exp} and \code{exp\_hi} to slot $0$.
  4339. \begin{lstlisting}[escapechar=$]
  4340. exp: . exp "+" exp_hi (0)
  4341. exp: . exp "-" exp_hi (0)
  4342. exp: . exp_hi (0)
  4343. exp_hi: . INT (0)
  4344. exp_hi: . "input_int" "(" ")" (0)
  4345. exp_hi: . "-" exp_hi (0)
  4346. exp_hi: . "(" exp ")" (0)
  4347. \end{lstlisting}
  4348. We have exhausted the opportunities for prediction, so the algorithm
  4349. proceeds to \emph{scanning}, in which we inspect the next input token
  4350. and look for a dotted rule at the current position that has a matching
  4351. terminal immediately following the period. In our running example, the
  4352. first input token is \code{"print"}, so we identify the rule in slot
  4353. $0$ of the chart where \code{"print"} follows the period:
  4354. \begin{lstlisting}
  4355. stmt: . "print" "(" exp ")" (0)
  4356. \end{lstlisting}
  4357. We advance the period past \code{"print"} and add the resulting rule
  4358. to slot $1$:
  4359. \begin{lstlisting}
  4360. stmt: "print" . "(" exp ")" (0)
  4361. \end{lstlisting}
  4362. If the new dotted rule had a nonterminal after the period, we would
  4363. need to carry out a prediction action, adding more dotted rules to
  4364. slot $1$. That is not the case, so we continue scanning. The next
  4365. input token is \code{"("}, so we add the following to slot $2$ of the
  4366. chart.
  4367. \begin{lstlisting}
  4368. stmt: "print" "(" . exp ")" (0)
  4369. \end{lstlisting}
  4370. Now we have a nonterminal after the period, so we carry out several
  4371. prediction actions, adding dotted rules for \code{exp} and
  4372. \code{exp\_hi} to slot $2$ with a period at the beginning and with
  4373. starting position $2$.
  4374. \begin{lstlisting}[escapechar=$]
  4375. exp: . exp "+" exp_hi (2)
  4376. exp: . exp "-" exp_hi (2)
  4377. exp: . exp_hi (2)
  4378. exp_hi: . INT (2)
  4379. exp_hi: . "input_int" "(" ")" (2)
  4380. exp_hi: . "-" exp_hi (2)
  4381. exp_hi: . "(" exp ")" (2)
  4382. \end{lstlisting}
  4383. With this prediction complete, we return to scanning, noting that the
  4384. next input token is \code{"1"}, which the lexer parses as an
  4385. \code{INT}. There is a matching rule in slot $2$:
  4386. \begin{lstlisting}
  4387. exp_hi: . INT (2)
  4388. \end{lstlisting}
  4389. so we advance the period and put the following rule into slot $3$.
  4390. \begin{lstlisting}
  4391. exp_hi: INT . (2)
  4392. \end{lstlisting}
  4393. This brings us to \emph{completion} actions. When the period reaches
  4394. the end of a dotted rule, we recognize that the substring
  4395. has matched the nonterminal on the left-hand side of the rule, in this case
  4396. \code{exp\_hi}. We therefore need to advance the periods in any dotted
  4397. rules into slot $2$ (the starting position for the finished rule) if
  4398. the period is immediately followed by \code{exp\_hi}. So we identify
  4399. \begin{lstlisting}
  4400. exp: . exp_hi (2)
  4401. \end{lstlisting}
  4402. and add the following dotted rule to slot $3$
  4403. \begin{lstlisting}
  4404. exp: exp_hi . (2)
  4405. \end{lstlisting}
  4406. This triggers another completion step for the nonterminal \code{exp},
  4407. adding two more dotted rules to slot $3$.
  4408. \begin{lstlisting}[escapechar=$]
  4409. exp: exp . "+" exp_hi (2)
  4410. exp: exp . "-" exp_hi (2)
  4411. \end{lstlisting}
  4412. Returning to scanning, the next input token is \code{"+"}, so
  4413. we add the following to slot $4$.
  4414. \begin{lstlisting}[escapechar=$]
  4415. exp: exp "+" . exp_hi (2)
  4416. \end{lstlisting}
  4417. The period precedes the nonterminal \code{exp\_hi}, so prediction adds
  4418. the following dotted rules to slot $4$ of the chart.
  4419. \begin{lstlisting}[escapechar=$]
  4420. exp_hi: . INT (4)
  4421. exp_hi: . "input_int" "(" ")" (4)
  4422. exp_hi: . "-" exp_hi (4)
  4423. exp_hi: . "(" exp ")" (4)
  4424. \end{lstlisting}
  4425. The next input token is \code{"3"} which the lexer categorized as an
  4426. \code{INT}, so we advance the period past \code{INT} for the rules in
  4427. slot $4$, of which there is just one, and put the following into slot $5$.
  4428. \begin{lstlisting}[escapechar=$]
  4429. exp_hi: INT . (4)
  4430. \end{lstlisting}
  4431. The period at the end of the rule triggers a completion action for the
  4432. rules in slot $4$, one of which has a period before \code{exp\_hi}.
  4433. So we advance the period and put the following into slot $5$.
  4434. \begin{lstlisting}[escapechar=$]
  4435. exp: exp "+" exp_hi . (2)
  4436. \end{lstlisting}
  4437. This triggers another completion action for the rules in slot $2$ that
  4438. have a period before \code{exp}.
  4439. \begin{lstlisting}[escapechar=$]
  4440. stmt: "print" "(" exp . ")" (0)
  4441. exp: exp . "+" exp_hi (2)
  4442. exp: exp . "-" exp_hi (2)
  4443. \end{lstlisting}
  4444. We scan the next input token \code{")"}, placing the following dotted
  4445. rule into slot $6$.
  4446. \begin{lstlisting}[escapechar=$]
  4447. stmt: "print" "(" exp ")" . (0)
  4448. \end{lstlisting}
  4449. This triggers the completion of \code{stmt} in slot $0$
  4450. \begin{lstlisting}
  4451. stmt_list: stmt . NEWLINE stmt_list (0)
  4452. \end{lstlisting}
  4453. The last input token is a \code{NEWLINE}, so we advance the period
  4454. and place the new dotted rule into slot $7$.
  4455. \begin{lstlisting}
  4456. stmt_list: stmt NEWLINE . stmt_list (0)
  4457. \end{lstlisting}
  4458. We are close to the end of parsing the input!
  4459. The period is before the \code{stmt\_list} nonterminal, so we
  4460. apply prediction for \code{stmt\_list} and then \code{stmt}.
  4461. \begin{lstlisting}
  4462. stmt_list: . (7)
  4463. stmt_list: . stmt NEWLINE stmt_list (7)
  4464. stmt: . "print" "(" exp ")" (7)
  4465. stmt: . exp (7)
  4466. \end{lstlisting}
  4467. There is immediately an opportunity for completion of \code{stmt\_list},
  4468. so we add the following to slot $7$.
  4469. \begin{lstlisting}
  4470. stmt_list: stmt NEWLINE stmt_list . (0)
  4471. \end{lstlisting}
  4472. This triggers another completion action for \code{stmt\_list} in slot $0$
  4473. \begin{lstlisting}
  4474. lang_int: stmt_list . (0)
  4475. \end{lstlisting}
  4476. which in turn completes \code{lang\_int}, the start symbol of the
  4477. grammar, so the parsing of the input is complete.
  4478. For reference, we give a general description of Earley's
  4479. algorithm.
  4480. \begin{enumerate}
  4481. \item The algorithm begins by initializing slot $0$ of the chart with the
  4482. grammar rule for the start symbol, placing a period at the beginning
  4483. of the right-hand side, and recording its starting position as $0$.
  4484. \item The algorithm repeatedly applies the following three kinds of
  4485. actions for as long as there are opportunities to do so.
  4486. \begin{itemize}
  4487. \item Prediction: If there is a rule in slot $k$ whose period comes
  4488. before a nonterminal, add the rules for that nonterminal into slot
  4489. $k$, placing a period at the beginning of their right-hand sides
  4490. and recording their starting position as $k$.
  4491. \item Scanning: If the token at position $k$ of the input string
  4492. matches the symbol after the period in a dotted rule in slot $k$
  4493. of the chart, advance the period in the dotted rule, adding
  4494. the result to slot $k+1$.
  4495. \item Completion: If a dotted rule in slot $k$ has a period at the
  4496. end, inspect the rules in the slot corresponding to the starting
  4497. position of the completed rule. If any of those rules have a
  4498. nonterminal following their period that matches the left-hand side
  4499. of the completed rule, then advance their period, placing the new
  4500. dotted rule in slot $k$.
  4501. \end{itemize}
  4502. While repeating these three actions, take care never to add
  4503. duplicate dotted rules to the chart.
  4504. \end{enumerate}
  4505. We have described how Earley's algorithm recognizes that an input
  4506. string matches a grammar, but we have not described how it builds a
  4507. parse tree. The basic idea is simple, but building parse trees in an
  4508. efficient way is more complex, requiring a data structure called a
  4509. shared packed parse forest~\citep{Tomita:1985qr}. The simple idea is
  4510. to attach a partial parse tree to every dotted rule in the chart.
  4511. Initially, the node associated with a dotted rule has no
  4512. children. As the period moves to the right, the nodes from the
  4513. subparses are added as children to the node.
  4514. As mentioned at the beginning of this section, Earley's algorithm is
  4515. $O(n^2)$ for unambiguous grammars, which means that it can parse input
  4516. files that contain thousands of tokens in a reasonable amount of time,
  4517. but not millions.
  4518. %
  4519. In the next section we discuss the LALR(1) parsing algorithm, which is
  4520. efficient enough to use with even the largest of input files.
  4521. \section{The LALR(1) Algorithm}
  4522. \label{sec:lalr}
  4523. The LALR(1) algorithm~\citep{DeRemer69,Anderson73} can be viewed as a
  4524. two-phase approach in which it first compiles the grammar into a state
  4525. machine and then runs the state machine to parse an input string. The
  4526. second phase has time complexity $O(n)$ where $n$ is the number of
  4527. tokens in the input, so LALR(1) is the best one could hope for with
  4528. respect to efficiency.
  4529. %
  4530. A particularly influential implementation of LALR(1) is the
  4531. \texttt{yacc} parser generator by \citet{Johnson:1979qy};
  4532. \texttt{yacc} stands for ``yet another compiler compiler.''
  4533. %
  4534. The LALR(1) state machine uses a stack to record its progress in
  4535. parsing the input string. Each element of the stack is a pair: a
  4536. state number and a grammar symbol (a terminal or a nonterminal). The
  4537. symbol characterizes the input that has been parsed so far, and the
  4538. state number is used to remember how to proceed once the next
  4539. symbol's worth of input has been parsed. Each state in the machine
  4540. represents where the parser stands in the parsing process with respect
  4541. to certain grammar rules. In particular, each state is associated with
  4542. a set of dotted rules.
  4543. Figure~\ref{fig:shift-reduce} shows an example LALR(1) state machine
  4544. (also called parse table) for the following simple but ambiguous
  4545. grammar:
  4546. \begin{lstlisting}[escapechar=$]
  4547. exp: INT
  4548. | exp "+" exp
  4549. stmt: "print" exp
  4550. start: stmt
  4551. \end{lstlisting}
  4552. Consider state 1 in figure~\ref{fig:shift-reduce}. The parser has just
  4553. read in a \lstinline{"print"} token, so the top of the stack is
  4554. \lstinline{(1,"print")}. The parser is part of the way through parsing
  4555. the input according to grammar rule 1, which is signified by showing
  4556. rule 1 with a period after the \code{"print"} token and before the
  4557. \code{exp} nonterminal. There are two rules that could apply next,
  4558. rules 2 and 3, so state 1 also shows those rules with a period at
  4559. the beginning of their right-hand sides. The edges between states
  4560. indicate which transitions the machine should make depending on the
  4561. next input token. So, for example, if the next input token is
  4562. \code{INT} then the parser will push \code{INT} and the target state 4
  4563. on the stack and transition to state 4. Suppose that we are now at the end
  4564. of the input. State 4 says that we should reduce by rule 3, so we pop
  4565. from the stack the same number of items as the number of symbols in
  4566. the right-hand side of the rule, in this case just one. We then
  4567. momentarily jump to the state at the top of the stack (state 1) and
  4568. then follow the goto edge that corresponds to the left-hand side of
  4569. the rule we just reduced by, in this case \code{exp}, so we arrive at
  4570. state 3. (A slightly longer example parse is shown in
  4571. figure~\ref{fig:shift-reduce}.)
  4572. \begin{figure}[tbp]
  4573. \centering
  4574. \includegraphics[width=5.0in]{figs/shift-reduce-conflict}
  4575. \caption{An LALR(1) parse table and a trace of an example run.}
  4576. \label{fig:shift-reduce}
  4577. \end{figure}
  4578. In general, the algorithm works as follows. First, set the current state to
  4579. state $0$. Then repeat the following, looking at the next input token.
  4580. \begin{itemize}
  4581. \item If there there is a shift edge for the input token in the
  4582. current state, push the edge's target state and the input token onto
  4583. the stack and proceed to the edge's target state.
  4584. \item If there is a reduce action for the input token in the current
  4585. state, pop $k$ elements from the stack, where $k$ is the number of
  4586. symbols in the right-hand side of the rule being reduced. Jump to
  4587. the state at the top of the stack and then follow the goto edge for
  4588. the nonterminal that matches the left-hand side of the rule that we
  4589. are reducing by. Push the edge's target state and the nonterminal on the
  4590. stack.
  4591. \end{itemize}
  4592. Notice that in state 6 of figure~\ref{fig:shift-reduce} there is both
  4593. a shift and a reduce action for the token \lstinline{PLUS}, so the
  4594. algorithm does not know which action to take in this case. When a
  4595. state has both a shift and a reduce action for the same token, we say
  4596. there is a \emph{shift/reduce conflict}. In this case, the conflict
  4597. will arise, for example, in trying to parse the input
  4598. \lstinline{print 1 + 2 + 3}. After having consumed \lstinline{print 1 + 2},
  4599. the parser will be in state 6 and will not know whether to
  4600. reduce to form an \code{exp} of \lstinline{1 + 2} or
  4601. to proceed by shifting the next \lstinline{+} from the input.
  4602. A similar kind of problem, known as a \emph{reduce/reduce} conflict,
  4603. arises when there are two reduce actions in a state for the same
  4604. token. To understand which grammars give rise to shift/reduce and
  4605. reduce/reduce conflicts, it helps to know how the parse table is
  4606. generated from the grammar, which we discuss next.
  4607. The parse table is generated one state at a time. State 0 represents
  4608. the start of the parser. We add the grammar rule for the start symbol
  4609. to this state with a period at the beginning of the right-hand side,
  4610. similarly to the initialization phase of the Earley parser. If the
  4611. period appears immediately before another nonterminal, we add all the
  4612. rules with that nonterminal on the left-hand side. Again, we place a
  4613. period at the beginning of the right-hand side of each new
  4614. rule. This process, called \emph{state closure}, is continued
  4615. until there are no more rules to add (similarly to the prediction
  4616. actions of an Earley parser). We then examine each dotted rule in the
  4617. current state $I$. Suppose that a dotted rule has the form $A ::=
  4618. s_1.\,X \,s_2$, where $A$ and $X$ are symbols and $s_1$ and $s_2$
  4619. are sequences of symbols. We create a new state and call it $J$. If $X$
  4620. is a terminal, we create a shift edge from $I$ to $J$ (analogously to
  4621. scanning in Earley), whereas if $X$ is a nonterminal, we create a
  4622. goto edge from $I$ to $J$. We then need to add some dotted rules to
  4623. state $J$. We start by adding all dotted rules from state $I$ that
  4624. have the form $B ::= s_1.\,X\,s_2$ (where $B$ is any nonterminal and
  4625. $s_1$ and $s_2$ are arbitrary sequences of symbols), with
  4626. the period moved past the $X$. (This is analogous to completion in
  4627. Earley's algorithm.) We then perform state closure on $J$. This
  4628. process repeats until there are no more states or edges to add.
  4629. We then mark states as accepting states if they have a dotted rule
  4630. that is the start rule with a period at the end. Also, to add
  4631. the reduce actions, we look for any state containing a dotted rule
  4632. with a period at the end. Let $n$ be the rule number for this dotted
  4633. rule. We then put a reduce $n$ action into that state for every token
  4634. $Y$. For example, in figure~\ref{fig:shift-reduce} state 4 has a
  4635. dotted rule with a period at the end. We therefore put a reduce by
  4636. rule 3 action into state 4 for every
  4637. token.
  4638. When inserting reduce actions, take care to spot any shift/reduce or
  4639. reduce/reduce conflicts. If there are any, abort the construction of
  4640. the parse table.
  4641. \begin{exercise}
  4642. \normalfont\normalsize
  4643. %
  4644. Working on paper, walk through the parse table generation process for
  4645. the grammar at the top of figure~\ref{fig:shift-reduce}, and check
  4646. your results against the parse table shown in
  4647. figure~\ref{fig:shift-reduce}.
  4648. \end{exercise}
  4649. \begin{exercise}
  4650. \normalfont\normalsize
  4651. %
  4652. Change the parser in your compiler for \LangVar{} to set the
  4653. \code{parser} option of Lark to \lstinline{'lalr'}. Test your compiler on
  4654. all the \LangVar{} programs that you have created. In doing so, Lark
  4655. may signal an error due to shift/reduce or reduce/reduce conflicts
  4656. in your grammar. If so, change your Lark grammar for \LangVar{} to
  4657. remove those conflicts.
  4658. \end{exercise}
  4659. \section{Further Reading}
  4660. In this chapter we have just scratched the surface of the field of
  4661. parsing, with the study of a very general but less efficient algorithm
  4662. (Earley) and with a more limited but highly efficient algorithm
  4663. (LALR). There are many more algorithms and classes of grammars that
  4664. fall between these two ends of the spectrum. We recommend to the reader
  4665. \citet{Aho:2006wb} for a thorough treatment of parsing.
  4666. Regarding lexical analysis, we have described the specification
  4667. language, which are the regular expressions, but not the algorithms
  4668. for recognizing them. In short, regular expressions can be translated
  4669. to nondeterministic finite automata, which in turn are translated to
  4670. finite automata. We refer the reader again to \citet{Aho:2006wb} for
  4671. all the details on lexical analysis.
  4672. \fi}
  4673. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4674. \chapter{Register Allocation}
  4675. \label{ch:register-allocation-Lvar}
  4676. \setcounter{footnote}{0}
  4677. \index{subject}{register allocation}
  4678. In chapter~\ref{ch:Lvar} we learned how to compile \LangVar{} to x86,
  4679. storing variables on the procedure call stack. The CPU may require tens
  4680. to hundreds of cycles to access a location on the stack, whereas
  4681. accessing a register takes only a single cycle. In this chapter we
  4682. improve the efficiency of our generated code by storing some variables
  4683. in registers. The goal of register allocation is to fit as many
  4684. variables into registers as possible. Some programs have more
  4685. variables than registers, so we cannot always map each variable to a
  4686. different register. Fortunately, it is common for different variables
  4687. to be in use during different periods of time during program
  4688. execution, and in those cases we can map multiple variables to the
  4689. same register.
  4690. The program shown in figure~\ref{fig:reg-eg} serves as a running
  4691. example. The source program is on the left and the output of
  4692. instruction selection\index{subject}{instruction selection}
  4693. is on the right. The program is almost
  4694. completely in the x86 assembly language, but it still uses variables.
  4695. Consider variables \code{x} and \code{z}. After the variable \code{x}
  4696. has been moved to \code{z}, it is no longer in use. Variable \code{z}, on
  4697. the other hand, is used only after this point, so \code{x} and
  4698. \code{z} could share the same register.
  4699. \begin{figure}
  4700. \begin{tcolorbox}[colback=white]
  4701. \begin{minipage}{0.45\textwidth}
  4702. Example \LangVar{} program:
  4703. % var_test_28.rkt
  4704. {\if\edition\racketEd
  4705. \begin{lstlisting}
  4706. (let ([v 1])
  4707. (let ([w 42])
  4708. (let ([x (+ v 7)])
  4709. (let ([y x])
  4710. (let ([z (+ x w)])
  4711. (+ z (- y)))))))
  4712. \end{lstlisting}
  4713. \fi}
  4714. {\if\edition\pythonEd\pythonColor
  4715. \begin{lstlisting}
  4716. v = 1
  4717. w = 42
  4718. x = v + 7
  4719. y = x
  4720. z = x + w
  4721. print(z + (- y))
  4722. \end{lstlisting}
  4723. \fi}
  4724. \end{minipage}
  4725. \begin{minipage}{0.45\textwidth}
  4726. After instruction selection:
  4727. {\if\edition\racketEd
  4728. \begin{lstlisting}
  4729. locals-types:
  4730. x : Integer, y : Integer,
  4731. z : Integer, t : Integer,
  4732. v : Integer, w : Integer
  4733. start:
  4734. movq $1, v
  4735. movq $42, w
  4736. movq v, x
  4737. addq $7, x
  4738. movq x, y
  4739. movq x, z
  4740. addq w, z
  4741. movq y, t
  4742. negq t
  4743. movq z, %rax
  4744. addq t, %rax
  4745. jmp conclusion
  4746. \end{lstlisting}
  4747. \fi}
  4748. {\if\edition\pythonEd\pythonColor
  4749. \begin{lstlisting}
  4750. movq $1, v
  4751. movq $42, w
  4752. movq v, x
  4753. addq $7, x
  4754. movq x, y
  4755. movq x, z
  4756. addq w, z
  4757. movq y, tmp_0
  4758. negq tmp_0
  4759. movq z, tmp_1
  4760. addq tmp_0, tmp_1
  4761. movq tmp_1, %rdi
  4762. callq print_int
  4763. \end{lstlisting}
  4764. \fi}
  4765. \end{minipage}
  4766. \end{tcolorbox}
  4767. \caption{A running example for register allocation.}
  4768. \label{fig:reg-eg}
  4769. \end{figure}
  4770. The topic of section~\ref{sec:liveness-analysis-Lvar} is how to
  4771. compute where a variable is in use. Once we have that information, we
  4772. compute which variables are in use at the same time, that is, which ones
  4773. \emph{interfere}\index{subject}{interfere} with each other, and
  4774. represent this relation as an undirected graph whose vertices are
  4775. variables and edges indicate when two variables interfere
  4776. (section~\ref{sec:build-interference}). We then model register
  4777. allocation as a graph coloring problem
  4778. (section~\ref{sec:graph-coloring}).
  4779. If we run out of registers despite these efforts, we place the
  4780. remaining variables on the stack, similarly to how we handled
  4781. variables in chapter~\ref{ch:Lvar}. It is common to use the verb
  4782. \emph{spill}\index{subject}{spill} for assigning a variable to a stack
  4783. location. The decision to spill a variable is handled as part of the
  4784. graph coloring process.
  4785. We make the simplifying assumption that each variable is assigned to
  4786. one location (a register or stack address). A more sophisticated
  4787. approach is to assign a variable to one or more locations in different
  4788. regions of the program. For example, if a variable is used many times
  4789. in short sequence and then used again only after many other
  4790. instructions, it could be more efficient to assign the variable to a
  4791. register during the initial sequence and then move it to the stack for
  4792. the rest of its lifetime. We refer the interested reader to
  4793. \citet{Cooper:2011aa} (chapter 13) for more information about that
  4794. approach.
  4795. % discuss prioritizing variables based on how much they are used.
  4796. \section{Registers and Calling Conventions}
  4797. \label{sec:calling-conventions}
  4798. \index{subject}{calling conventions}
  4799. As we perform register allocation, we must be aware of the
  4800. \emph{calling conventions} \index{subject}{calling conventions} that
  4801. govern how function calls are performed in x86.
  4802. %
  4803. Even though \LangVar{} does not include programmer-defined functions,
  4804. our generated code includes a \code{main} function that is called by
  4805. the operating system and our generated code contains calls to the
  4806. \code{read\_int} function.
  4807. Function calls require coordination between two pieces of code that
  4808. may be written by different programmers or generated by different
  4809. compilers. Here we follow the System V calling conventions that are
  4810. used by the GNU C compiler on Linux and
  4811. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  4812. %
  4813. The calling conventions include rules about how functions share the
  4814. use of registers. In particular, the caller is responsible for freeing
  4815. some registers prior to the function call for use by the callee.
  4816. These are called the \emph{caller-saved registers}
  4817. \index{subject}{caller-saved registers}
  4818. and they are
  4819. \begin{lstlisting}
  4820. rax rcx rdx rsi rdi r8 r9 r10 r11
  4821. \end{lstlisting}
  4822. On the other hand, the callee is responsible for preserving the values
  4823. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  4824. which are
  4825. \begin{lstlisting}
  4826. rsp rbp rbx r12 r13 r14 r15
  4827. \end{lstlisting}
  4828. We can think about this caller/callee convention from two points of
  4829. view, the caller view and the callee view, as follows:
  4830. \begin{itemize}
  4831. \item The caller should assume that all the caller-saved registers get
  4832. overwritten with arbitrary values by the callee. On the other hand,
  4833. the caller can safely assume that all the callee-saved registers
  4834. retain their original values.
  4835. \item The callee can freely use any of the caller-saved registers.
  4836. However, if the callee wants to use a callee-saved register, the
  4837. callee must arrange to put the original value back in the register
  4838. prior to returning to the caller. This can be accomplished by saving
  4839. the value to the stack in the prelude of the function and restoring
  4840. the value in the conclusion of the function.
  4841. \end{itemize}
  4842. In x86, registers are also used for passing arguments to a function
  4843. and for the return value. In particular, the first six arguments of a
  4844. function are passed in the following six registers, in this order.
  4845. \begin{lstlisting}
  4846. rdi rsi rdx rcx r8 r9
  4847. \end{lstlisting}
  4848. We refer to these six registers are the argument-passing registers
  4849. \index{subject}{argument-passing registers}.
  4850. If there are more than six arguments, the convention is to use space
  4851. on the frame of the caller for the rest of the arguments. In
  4852. chapter~\ref{ch:Lfun}, we instead pass a tuple containing the sixth
  4853. argument and the rest of the arguments, which simplifies the treatment
  4854. of efficient tail calls.
  4855. %
  4856. \racket{For now, the only function we care about is \code{read\_int},
  4857. which takes zero arguments.}
  4858. %
  4859. \python{For now, the only functions we care about are \code{read\_int}
  4860. and \code{print\_int}, which take zero and one argument, respectively.}
  4861. %
  4862. The register \code{rax} is used for the return value of a function.
  4863. The next question is how these calling conventions impact register
  4864. allocation. Consider the \LangVar{} program presented in
  4865. figure~\ref{fig:example-calling-conventions}. We first analyze this
  4866. example from the caller point of view and then from the callee point
  4867. of view. We refer to a variable that is in use during a function call
  4868. as a \emph{call-live variable}\index{subject}{call-live variable}.
  4869. The program makes two calls to \READOP{}. The variable \code{x} is
  4870. call-live because it is in use during the second call to \READOP{}; we
  4871. must ensure that the value in \code{x} does not get overwritten during
  4872. the call to \READOP{}. One obvious approach is to save all the values
  4873. that reside in caller-saved registers to the stack prior to each
  4874. function call and to restore them after each call. That way, if the
  4875. register allocator chooses to assign \code{x} to a caller-saved
  4876. register, its value will be preserved across the call to \READOP{}.
  4877. However, saving and restoring to the stack is relatively slow. If
  4878. \code{x} is not used many times, it may be better to assign \code{x}
  4879. to a stack location in the first place. Or better yet, if we can
  4880. arrange for \code{x} to be placed in a callee-saved register, then it
  4881. won't need to be saved and restored during function calls.
  4882. We recommend an approach that captures these issues in the
  4883. interference graph, without complicating the graph coloring algorithm.
  4884. During liveness analysis we know which variables are call-live because
  4885. we compute which variables are in use at every instruction
  4886. (section~\ref{sec:liveness-analysis-Lvar}). When we build the
  4887. interference graph (section~\ref{sec:build-interference}), we can
  4888. place an edge in the interference graph between each call-live
  4889. variable and the caller-saved registers. This will prevent the graph
  4890. coloring algorithm from assigning call-live variables to caller-saved
  4891. registers.
  4892. On the other hand, for variables that are not call-live, we prefer
  4893. placing them in caller-saved registers to leave more room for
  4894. call-live variables in the callee-saved registers. This can also be
  4895. implemented without complicating the graph coloring algorithm. We
  4896. recommend that the graph coloring algorithm assign variables to
  4897. natural numbers, choosing the lowest number for which there is no
  4898. interference. After the coloring is complete, we map the numbers to
  4899. registers and stack locations: mapping the lowest numbers to
  4900. caller-saved registers, the next lowest to callee-saved registers, and
  4901. the largest numbers to stack locations. This ordering gives preference
  4902. to registers over stack locations and to caller-saved registers over
  4903. callee-saved registers.
  4904. Returning to the example in
  4905. figure~\ref{fig:example-calling-conventions}, let us analyze the
  4906. generated x86 code on the right-hand side. Variable \code{x} is
  4907. assigned to \code{rbx}, a callee-saved register. Thus, it is already
  4908. in a safe place during the second call to \code{read\_int}. Next,
  4909. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  4910. because \code{y} is not a call-live variable.
  4911. We have completed the analysis from the caller point of view, so now
  4912. we switch to the callee point of view, focusing on the prelude and
  4913. conclusion of the \code{main} function. As usual, the prelude begins
  4914. with saving the \code{rbp} register to the stack and setting the
  4915. \code{rbp} to the current stack pointer. We now know why it is
  4916. necessary to save the \code{rbp}: it is a callee-saved register. The
  4917. prelude then pushes \code{rbx} to the stack because (1) \code{rbx} is
  4918. a callee-saved register and (2) \code{rbx} is assigned to a variable
  4919. (\code{x}). The other callee-saved registers are not saved in the
  4920. prelude because they are not used. The prelude subtracts 8 bytes from
  4921. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  4922. conclusion, we see that \code{rbx} is restored from the stack with a
  4923. \code{popq} instruction.
  4924. \index{subject}{prelude}\index{subject}{conclusion}
  4925. \begin{figure}[tp]
  4926. \begin{tcolorbox}[colback=white]
  4927. \begin{minipage}{0.45\textwidth}
  4928. Example \LangVar{} program:
  4929. %var_test_14.rkt
  4930. {\if\edition\racketEd
  4931. \begin{lstlisting}
  4932. (let ([x (read)])
  4933. (let ([y (read)])
  4934. (+ (+ x y) 42)))
  4935. \end{lstlisting}
  4936. \fi}
  4937. {\if\edition\pythonEd\pythonColor
  4938. \begin{lstlisting}
  4939. x = input_int()
  4940. y = input_int()
  4941. print((x + y) + 42)
  4942. \end{lstlisting}
  4943. \fi}
  4944. \end{minipage}
  4945. \begin{minipage}{0.45\textwidth}
  4946. Generated x86 assembly:
  4947. {\if\edition\racketEd
  4948. \begin{lstlisting}
  4949. start:
  4950. callq read_int
  4951. movq %rax, %rbx
  4952. callq read_int
  4953. movq %rax, %rcx
  4954. addq %rcx, %rbx
  4955. movq %rbx, %rax
  4956. addq $42, %rax
  4957. jmp conclusion
  4958. .globl main
  4959. main:
  4960. pushq %rbp
  4961. movq %rsp, %rbp
  4962. pushq %rbx
  4963. subq $8, %rsp
  4964. jmp start
  4965. conclusion:
  4966. addq $8, %rsp
  4967. popq %rbx
  4968. popq %rbp
  4969. retq
  4970. \end{lstlisting}
  4971. \fi}
  4972. {\if\edition\pythonEd\pythonColor
  4973. \begin{lstlisting}
  4974. .globl main
  4975. main:
  4976. pushq %rbp
  4977. movq %rsp, %rbp
  4978. pushq %rbx
  4979. subq $8, %rsp
  4980. callq read_int
  4981. movq %rax, %rbx
  4982. callq read_int
  4983. movq %rax, %rcx
  4984. movq %rbx, %rdx
  4985. addq %rcx, %rdx
  4986. movq %rdx, %rcx
  4987. addq $42, %rcx
  4988. movq %rcx, %rdi
  4989. callq print_int
  4990. addq $8, %rsp
  4991. popq %rbx
  4992. popq %rbp
  4993. retq
  4994. \end{lstlisting}
  4995. \fi}
  4996. \end{minipage}
  4997. \end{tcolorbox}
  4998. \caption{An example with function calls.}
  4999. \label{fig:example-calling-conventions}
  5000. \end{figure}
  5001. %\clearpage
  5002. \section{Liveness Analysis}
  5003. \label{sec:liveness-analysis-Lvar}
  5004. \index{subject}{liveness analysis}
  5005. The \code{uncover\_live} \racket{pass}\python{function} performs
  5006. \emph{liveness analysis}; that is, it discovers which variables are
  5007. in use in different regions of a program.
  5008. %
  5009. A variable or register is \emph{live} at a program point if its
  5010. current value is used at some later point in the program. We refer to
  5011. variables, stack locations, and registers collectively as
  5012. \emph{locations}.
  5013. %
  5014. Consider the following code fragment in which there are two writes to
  5015. \code{b}. Are variables \code{a} and \code{b} both live at the same
  5016. time?
  5017. \begin{center}
  5018. \begin{minipage}{0.85\textwidth}
  5019. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  5020. movq $5, a
  5021. movq $30, b
  5022. movq a, c
  5023. movq $10, b
  5024. addq b, c
  5025. \end{lstlisting}
  5026. \end{minipage}
  5027. \end{center}
  5028. The answer is no, because \code{a} is live from line 1 to 3 and
  5029. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  5030. line 2 is never used because it is overwritten (line 4) before the
  5031. next read (line 5).
  5032. The live locations for each instruction can be computed by traversing
  5033. the instruction sequence back to front (i.e., backward in execution
  5034. order). Let $I_1,\ldots, I_n$ be the instruction sequence. We write
  5035. $L_{\mathsf{after}}(k)$ for the set of live locations after
  5036. instruction $I_k$ and write $L_{\mathsf{before}}(k)$ for the set of live
  5037. locations before instruction $I_k$. \racket{We recommend representing
  5038. these sets with the Racket \code{set} data structure described in
  5039. figure~\ref{fig:set}.} \python{We recommend representing these sets
  5040. with the Python
  5041. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  5042. data structure.}
  5043. {\if\edition\racketEd
  5044. \begin{figure}[tp]
  5045. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  5046. \small
  5047. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  5048. A \emph{set} is an unordered collection of elements without duplicates.
  5049. Here are some of the operations defined on sets.
  5050. \index{subject}{set}
  5051. \begin{description}
  5052. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  5053. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  5054. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  5055. difference of the two sets.
  5056. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  5057. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  5058. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  5059. \end{description}
  5060. \end{tcolorbox}
  5061. %\end{wrapfigure}
  5062. \caption{The \code{set} data structure.}
  5063. \label{fig:set}
  5064. \end{figure}
  5065. \fi}
  5066. % TODO: add a python version of the reference box for sets. -Jeremy
  5067. The locations that are live after an instruction are its
  5068. \emph{live-after}\index{subject}{live-after} set, and the locations
  5069. that are live before an instruction are its
  5070. \emph{live-before}\index{subject}{live-before} set. The live-after
  5071. set of an instruction is always the same as the live-before set of the
  5072. next instruction.
  5073. \begin{equation} \label{eq:live-after-before-next}
  5074. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  5075. \end{equation}
  5076. To start things off, there are no live locations after the last
  5077. instruction, so
  5078. \begin{equation}\label{eq:live-last-empty}
  5079. L_{\mathsf{after}}(n) = \emptyset
  5080. \end{equation}
  5081. We then apply the following rule repeatedly, traversing the
  5082. instruction sequence back to front.
  5083. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  5084. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  5085. \end{equation}
  5086. where $W(k)$ are the locations written to by instruction $I_k$, and
  5087. $R(k)$ are the locations read by instruction $I_k$.
  5088. {\if\edition\racketEd
  5089. %
  5090. There is a special case for \code{jmp} instructions. The locations
  5091. that are live before a \code{jmp} should be the locations in
  5092. $L_{\mathsf{before}}$ at the target of the jump. So, we recommend
  5093. maintaining an alist named \code{label->live} that maps each label to
  5094. the $L_{\mathsf{before}}$ for the first instruction in its block. For
  5095. now the only \code{jmp} in a \LangXVar{} program is the jump to the
  5096. conclusion. (For example, see figure~\ref{fig:reg-eg}.) The
  5097. conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should map
  5098. \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  5099. %
  5100. \fi}
  5101. Let us walk through the previous example, applying these formulas
  5102. starting with the instruction on line 5 of the code fragment. We
  5103. collect the answers in figure~\ref{fig:liveness-example-0}. The
  5104. $L_{\mathsf{after}}$ for the \code{addq b, c} instruction is
  5105. $\emptyset$ because it is the last instruction
  5106. (formula~\eqref{eq:live-last-empty}). The $L_{\mathsf{before}}$ for
  5107. this instruction is $\{\ttm{b},\ttm{c}\}$ because it reads from
  5108. variables \code{b} and \code{c}
  5109. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}):
  5110. \[
  5111. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  5112. \]
  5113. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  5114. the live-before set from line 5 to be the live-after set for this
  5115. instruction (formula~\eqref{eq:live-after-before-next}).
  5116. \[
  5117. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  5118. \]
  5119. This move instruction writes to \code{b} and does not read from any
  5120. variables, so we have the following live-before set
  5121. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}).
  5122. \[
  5123. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  5124. \]
  5125. The live-before for instruction \code{movq a, c}
  5126. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  5127. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}). The
  5128. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  5129. variable that is not live and does not read from a variable.
  5130. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  5131. because it writes to variable \code{a}.
  5132. \begin{figure}[tbp]
  5133. \centering
  5134. \begin{tcolorbox}[colback=white]
  5135. \hspace{10pt}
  5136. \begin{minipage}{0.4\textwidth}
  5137. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  5138. movq $5, a
  5139. movq $30, b
  5140. movq a, c
  5141. movq $10, b
  5142. addq b, c
  5143. \end{lstlisting}
  5144. \end{minipage}
  5145. \vrule\hspace{10pt}
  5146. \begin{minipage}{0.45\textwidth}
  5147. \begin{align*}
  5148. L_{\mathsf{before}}(1)= \emptyset,
  5149. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  5150. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  5151. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  5152. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  5153. L_{\mathsf{after}}(3)= \{\ttm{c}\}\\
  5154. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  5155. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  5156. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  5157. L_{\mathsf{after}}(5)= \emptyset
  5158. \end{align*}
  5159. \end{minipage}
  5160. \end{tcolorbox}
  5161. \caption{Example output of liveness analysis on a short example.}
  5162. \label{fig:liveness-example-0}
  5163. \end{figure}
  5164. \begin{exercise}\normalfont\normalsize
  5165. Perform liveness analysis by hand on the running example in
  5166. figure~\ref{fig:reg-eg}, computing the live-before and live-after
  5167. sets for each instruction. Compare your answers to the solution
  5168. shown in figure~\ref{fig:live-eg}.
  5169. \end{exercise}
  5170. \begin{figure}[tp]
  5171. \hspace{20pt}
  5172. \begin{minipage}{0.55\textwidth}
  5173. \begin{tcolorbox}[colback=white]
  5174. {\if\edition\racketEd
  5175. \begin{lstlisting}
  5176. |$\{\ttm{rsp}\}$|
  5177. movq $1, v
  5178. |$\{\ttm{v},\ttm{rsp}\}$|
  5179. movq $42, w
  5180. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  5181. movq v, x
  5182. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5183. addq $7, x
  5184. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5185. movq x, y
  5186. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  5187. movq x, z
  5188. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5189. addq w, z
  5190. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5191. movq y, t
  5192. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5193. negq t
  5194. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5195. movq z, %rax
  5196. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  5197. addq t, %rax
  5198. |$\{\ttm{rax},\ttm{rsp}\}$|
  5199. jmp conclusion
  5200. \end{lstlisting}
  5201. \fi}
  5202. {\if\edition\pythonEd\pythonColor
  5203. \begin{lstlisting}
  5204. movq $1, v
  5205. |$\{\ttm{v}\}$|
  5206. movq $42, w
  5207. |$\{\ttm{w}, \ttm{v}\}$|
  5208. movq v, x
  5209. |$\{\ttm{w}, \ttm{x}\}$|
  5210. addq $7, x
  5211. |$\{\ttm{w}, \ttm{x}\}$|
  5212. movq x, y
  5213. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  5214. movq x, z
  5215. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  5216. addq w, z
  5217. |$\{\ttm{y}, \ttm{z}\}$|
  5218. movq y, tmp_0
  5219. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5220. negq tmp_0
  5221. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5222. movq z, tmp_1
  5223. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  5224. addq tmp_0, tmp_1
  5225. |$\{\ttm{tmp\_1}\}$|
  5226. movq tmp_1, %rdi
  5227. |$\{\ttm{rdi}\}$|
  5228. callq print_int
  5229. |$\{\}$|
  5230. \end{lstlisting}
  5231. \fi}
  5232. \end{tcolorbox}
  5233. \end{minipage}
  5234. \caption{The running example annotated with live-after sets.}
  5235. \label{fig:live-eg}
  5236. \end{figure}
  5237. \begin{exercise}\normalfont\normalsize
  5238. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  5239. %
  5240. \racket{Store the sequence of live-after sets in the $\itm{info}$
  5241. field of the \code{Block} structure.}
  5242. %
  5243. \python{Return a dictionary that maps each instruction to its
  5244. live-after set.}
  5245. %
  5246. \racket{We recommend creating an auxiliary function that takes a list
  5247. of instructions and an initial live-after set (typically empty) and
  5248. returns the list of live-after sets.}
  5249. %
  5250. We recommend creating auxiliary functions to (1) compute the set
  5251. of locations that appear in an \Arg{}, (2) compute the locations read
  5252. by an instruction (the $R$ function), and (3) the locations written by
  5253. an instruction (the $W$ function). The \code{callq} instruction should
  5254. include all the caller-saved registers in its write set $W$ because
  5255. the calling convention says that those registers may be written to
  5256. during the function call. Likewise, the \code{callq} instruction
  5257. should include the appropriate argument-passing registers in its
  5258. read set $R$, depending on the arity of the function being
  5259. called. (This is why the abstract syntax for \code{callq} includes the
  5260. arity.)
  5261. \end{exercise}
  5262. %\clearpage
  5263. \section{Build the Interference Graph}
  5264. \label{sec:build-interference}
  5265. {\if\edition\racketEd
  5266. \begin{figure}[tp]
  5267. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  5268. \small
  5269. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  5270. A \emph{graph} is a collection of vertices and edges where each
  5271. edge connects two vertices. A graph is \emph{directed} if each
  5272. edge points from a source to a target. Otherwise the graph is
  5273. \emph{undirected}.
  5274. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  5275. \begin{description}
  5276. %% We currently don't use directed graphs. We instead use
  5277. %% directed multi-graphs. -Jeremy
  5278. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  5279. directed graph from a list of edges. Each edge is a list
  5280. containing the source and target vertex.
  5281. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  5282. undirected graph from a list of edges. Each edge is represented by
  5283. a list containing two vertices.
  5284. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  5285. inserts a vertex into the graph.
  5286. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  5287. inserts an edge between the two vertices.
  5288. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  5289. returns a sequence of vertices adjacent to the vertex.
  5290. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  5291. returns a sequence of all vertices in the graph.
  5292. \end{description}
  5293. \end{tcolorbox}
  5294. %\end{wrapfigure}
  5295. \caption{The Racket \code{graph} package.}
  5296. \label{fig:graph}
  5297. \end{figure}
  5298. \fi}
  5299. On the basis of the liveness analysis, we know where each location is
  5300. live. However, during register allocation, we need to answer
  5301. questions of the specific form: are locations $u$ and $v$ live at the
  5302. same time? (If so, they cannot be assigned to the same register.) To
  5303. make this question more efficient to answer, we create an explicit
  5304. data structure, an \emph{interference
  5305. graph}\index{subject}{interference graph}. An interference graph is
  5306. an undirected graph that has a node for every variable and register
  5307. and has an edge between two nodes if they are
  5308. live at the same time, that is, if they interfere with each other.
  5309. %
  5310. \racket{We recommend using the Racket \code{graph} package
  5311. (figure~\ref{fig:graph}) to represent the interference graph.}
  5312. %
  5313. \python{We provide implementations of directed and undirected graph
  5314. data structures in the file \code{graph.py} of the support code.}
  5315. A straightforward way to compute the interference graph is to look at
  5316. the set of live locations between each instruction and add an edge to
  5317. the graph for every pair of variables in the same set. This approach
  5318. is less than ideal for two reasons. First, it can be expensive because
  5319. it takes $O(n^2)$ time to consider every pair in a set of $n$ live
  5320. locations. Second, in the special case in which two locations hold the
  5321. same value (because one was assigned to the other), they can be live
  5322. at the same time without interfering with each other.
  5323. A better way to compute the interference graph is to focus on
  5324. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  5325. must not overwrite something in a live location. So for each
  5326. instruction, we create an edge between the locations being written to
  5327. and the live locations. (However, a location never interferes with
  5328. itself.) For the \key{callq} instruction, we consider all the
  5329. caller-saved registers to have been written to, so an edge is added
  5330. between every live variable and every caller-saved register. Also, for
  5331. \key{movq} there is the special case of two variables holding the same
  5332. value. If a live variable $v$ is the same as the source of the
  5333. \key{movq}, then there is no need to add an edge between $v$ and the
  5334. destination, because they both hold the same value.
  5335. %
  5336. Hence we have the following two rules:
  5337. \begin{enumerate}
  5338. \item If instruction $I_k$ is a move instruction of the form
  5339. \key{movq} $s$\key{,} $d$, then for every $v \in
  5340. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  5341. $(d,v)$.
  5342. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  5343. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  5344. $(d,v)$.
  5345. \end{enumerate}
  5346. Working from the top to bottom of figure~\ref{fig:live-eg}, we apply
  5347. these rules to each instruction. We highlight a few of the
  5348. instructions. \racket{The first instruction is \lstinline{movq $1, v},
  5349. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  5350. so \code{v} interferes with \code{rsp}.}
  5351. %
  5352. \python{The first instruction is \lstinline{movq $1, v}, and the
  5353. live-after set is $\{\ttm{v}\}$. Rule 1 applies, but there is
  5354. no interference because $\ttm{v}$ is the destination of the move.}
  5355. %
  5356. \racket{The fourth instruction is \lstinline{addq $7, x}, and the
  5357. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies, so
  5358. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  5359. %
  5360. \python{The fourth instruction is \lstinline{addq $7, x}, and the
  5361. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies, so
  5362. $\ttm{x}$ interferes with \ttm{w}.}
  5363. %
  5364. \racket{The next instruction is \lstinline{movq x, y}, and the
  5365. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  5366. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  5367. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5368. \ttm{x} and \ttm{y} hold the same value.}
  5369. %
  5370. \python{The next instruction is \lstinline{movq x, y}, and the
  5371. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  5372. applies, so \ttm{y} interferes with \ttm{w} but not
  5373. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5374. \ttm{x} and \ttm{y} hold the same value.}
  5375. %
  5376. Figure~\ref{fig:interference-results} lists the interference results
  5377. for all the instructions, and the resulting interference graph is
  5378. shown in figure~\ref{fig:interfere}. We elide the register nodes from
  5379. the interference graph in figure~\ref{fig:interfere} because there
  5380. were no interference edges involving registers and we did not wish to
  5381. clutter the graph, but in general one needs to include all the
  5382. registers in the interference graph.
  5383. \begin{figure}[tbp]
  5384. \begin{tcolorbox}[colback=white]
  5385. \begin{quote}
  5386. {\if\edition\racketEd
  5387. \begin{tabular}{ll}
  5388. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  5389. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  5390. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5391. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5392. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  5393. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  5394. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  5395. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5396. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5397. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  5398. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  5399. \lstinline!jmp conclusion!& no interference.
  5400. \end{tabular}
  5401. \fi}
  5402. {\if\edition\pythonEd\pythonColor
  5403. \begin{tabular}{ll}
  5404. \lstinline!movq $1, v!& no interference\\
  5405. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  5406. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  5407. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  5408. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  5409. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  5410. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  5411. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5412. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5413. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  5414. \lstinline!addq tmp_0, tmp_1! & no interference\\
  5415. \lstinline!movq tmp_1, %rdi! & no interference \\
  5416. \lstinline!callq print_int!& no interference.
  5417. \end{tabular}
  5418. \fi}
  5419. \end{quote}
  5420. \end{tcolorbox}
  5421. \caption{Interference results for the running example.}
  5422. \label{fig:interference-results}
  5423. \end{figure}
  5424. \begin{figure}[tbp]
  5425. \begin{tcolorbox}[colback=white]
  5426. \large
  5427. {\if\edition\racketEd
  5428. \[
  5429. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5430. \node (rax) at (0,0) {$\ttm{rax}$};
  5431. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5432. \node (t1) at (0,2) {$\ttm{t}$};
  5433. \node (z) at (3,2) {$\ttm{z}$};
  5434. \node (x) at (6,2) {$\ttm{x}$};
  5435. \node (y) at (3,0) {$\ttm{y}$};
  5436. \node (w) at (6,0) {$\ttm{w}$};
  5437. \node (v) at (9,0) {$\ttm{v}$};
  5438. \draw (t1) to (rax);
  5439. \draw (t1) to (z);
  5440. \draw (z) to (y);
  5441. \draw (z) to (w);
  5442. \draw (x) to (w);
  5443. \draw (y) to (w);
  5444. \draw (v) to (w);
  5445. \draw (v) to (rsp);
  5446. \draw (w) to (rsp);
  5447. \draw (x) to (rsp);
  5448. \draw (y) to (rsp);
  5449. \path[-.,bend left=15] (z) edge node {} (rsp);
  5450. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5451. \draw (rax) to (rsp);
  5452. \end{tikzpicture}
  5453. \]
  5454. \fi}
  5455. {\if\edition\pythonEd\pythonColor
  5456. \[
  5457. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5458. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5459. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5460. \node (z) at (3,2) {$\ttm{z}$};
  5461. \node (x) at (6,2) {$\ttm{x}$};
  5462. \node (y) at (3,0) {$\ttm{y}$};
  5463. \node (w) at (6,0) {$\ttm{w}$};
  5464. \node (v) at (9,0) {$\ttm{v}$};
  5465. \draw (t0) to (t1);
  5466. \draw (t0) to (z);
  5467. \draw (z) to (y);
  5468. \draw (z) to (w);
  5469. \draw (x) to (w);
  5470. \draw (y) to (w);
  5471. \draw (v) to (w);
  5472. \end{tikzpicture}
  5473. \]
  5474. \fi}
  5475. \end{tcolorbox}
  5476. \caption{The interference graph of the example program.}
  5477. \label{fig:interfere}
  5478. \end{figure}
  5479. \begin{exercise}\normalfont\normalsize
  5480. \racket{Implement the compiler pass named \code{build\_interference} according
  5481. to the algorithm suggested here. We recommend using the Racket
  5482. \code{graph} package to create and inspect the interference graph.
  5483. The output graph of this pass should be stored in the $\itm{info}$ field of
  5484. the program, under the key \code{conflicts}.}
  5485. %
  5486. \python{Implement a function named \code{build\_interference}
  5487. according to the algorithm suggested above that
  5488. returns the interference graph.}
  5489. \end{exercise}
  5490. \section{Graph Coloring via Sudoku}
  5491. \label{sec:graph-coloring}
  5492. \index{subject}{graph coloring}
  5493. \index{subject}{sudoku}
  5494. \index{subject}{color}
  5495. We come to the main event discussed in this chapter, mapping variables
  5496. to registers and stack locations. Variables that interfere with each
  5497. other must be mapped to different locations. In terms of the
  5498. interference graph, this means that adjacent vertices must be mapped
  5499. to different locations. If we think of locations as colors, the
  5500. register allocation problem becomes the graph coloring
  5501. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  5502. The reader may be more familiar with the graph coloring problem than he
  5503. or she realizes; the popular game of sudoku is an instance of the
  5504. graph coloring problem. The following describes how to build a graph
  5505. out of an initial sudoku board.
  5506. \begin{itemize}
  5507. \item There is one vertex in the graph for each sudoku square.
  5508. \item There is an edge between two vertices if the corresponding squares
  5509. are in the same row, in the same column, or in the same $3\times 3$ region.
  5510. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  5511. \item On the basis of the initial assignment of numbers to squares on the
  5512. sudoku board, assign the corresponding colors to the corresponding
  5513. vertices in the graph.
  5514. \end{itemize}
  5515. If you can color the remaining vertices in the graph with the nine
  5516. colors, then you have also solved the corresponding game of sudoku.
  5517. Figure~\ref{fig:sudoku-graph} shows an initial sudoku game board and
  5518. the corresponding graph with colored vertices. Here we use a
  5519. monochrome representation of colors, mapping the sudoku number 1 to
  5520. black, 2 to white, and 3 to gray. We show edges for only a sampling
  5521. of the vertices (the colored ones) because showing edges for all the
  5522. vertices would make the graph unreadable.
  5523. \begin{figure}[tbp]
  5524. \begin{tcolorbox}[colback=white]
  5525. \includegraphics[width=0.5\textwidth]{figs/sudoku}
  5526. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  5527. \end{tcolorbox}
  5528. \caption{A sudoku game board and the corresponding colored graph.}
  5529. \label{fig:sudoku-graph}
  5530. \end{figure}
  5531. Some techniques for playing sudoku correspond to heuristics used in
  5532. graph coloring algorithms. For example, one of the basic techniques
  5533. for sudoku is called Pencil Marks. The idea is to use a process of
  5534. elimination to determine what numbers are no longer available for a
  5535. square and to write those numbers in the square (writing very
  5536. small). For example, if the number $1$ is assigned to a square, then
  5537. write the pencil mark $1$ in all the squares in the same row, column,
  5538. and region to indicate that $1$ is no longer an option for those other
  5539. squares.
  5540. %
  5541. The Pencil Marks technique corresponds to the notion of
  5542. \emph{saturation}\index{subject}{saturation} due to \citet{Brelaz:1979eu}. The
  5543. saturation of a vertex, in sudoku terms, is the set of numbers that
  5544. are no longer available. In graph terminology, we have the following
  5545. definition:
  5546. \begin{equation*}
  5547. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  5548. \text{ and } \mathrm{color}(v) = c \}
  5549. \end{equation*}
  5550. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  5551. edge with $u$.
  5552. The Pencil Marks technique leads to a simple strategy for filling in
  5553. numbers: if there is a square with only one possible number left, then
  5554. choose that number! But what if there are no squares with only one
  5555. possibility left? One brute-force approach is to try them all: choose
  5556. the first one, and if that ultimately leads to a solution, great. If
  5557. not, backtrack and choose the next possibility. One good thing about
  5558. Pencil Marks is that it reduces the degree of branching in the search
  5559. tree. Nevertheless, backtracking can be terribly time consuming. One
  5560. way to reduce the amount of backtracking is to use the
  5561. most-constrained-first heuristic (aka minimum remaining
  5562. values)~\citep{Russell2003}. That is, in choosing a square, always
  5563. choose one with the fewest possibilities left (the vertex with the
  5564. highest saturation). The idea is that choosing highly constrained
  5565. squares earlier rather than later is better, because later on there may
  5566. not be any possibilities left in the highly saturated squares.
  5567. However, register allocation is easier than sudoku, because the
  5568. register allocator can fall back to assigning variables to stack
  5569. locations when the registers run out. Thus, it makes sense to replace
  5570. backtracking with greedy search: make the best choice at the time and
  5571. keep going. We still wish to minimize the number of colors needed, so
  5572. we use the most-constrained-first heuristic in the greedy search.
  5573. Figure~\ref{fig:satur-algo} gives the pseudocode for a simple greedy
  5574. algorithm for register allocation based on saturation and the
  5575. most-constrained-first heuristic. It is roughly equivalent to the
  5576. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}. Just as in
  5577. sudoku, the algorithm represents colors with integers. The integers
  5578. $0$ through $k-1$ correspond to the $k$ registers that we use for
  5579. register allocation. In particular, we recommend the following
  5580. correspondence, with $k=11$.
  5581. \begin{lstlisting}
  5582. 0: rcx, 1: rdx, 2: rsi, 3: rdi, 4: r8, 5: r9,
  5583. 6: r10, 7: rbx, 8: r12, 9: r13, 10: r14
  5584. \end{lstlisting}
  5585. The integers $k$ and larger correspond to stack locations. The
  5586. registers that are not used for register allocation, such as
  5587. \code{rax}, are assigned to negative integers. In particular, we
  5588. recommend the following correspondence.
  5589. \begin{lstlisting}
  5590. -1: rax, -2: rsp, -3: rbp, -4: r11, -5: r15
  5591. \end{lstlisting}
  5592. \begin{figure}[btp]
  5593. \begin{tcolorbox}[colback=white]
  5594. \centering
  5595. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  5596. Algorithm: DSATUR
  5597. Input: A graph |$G$|
  5598. Output: An assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  5599. |$W \gets \mathrm{vertices}(G)$|
  5600. while |$W \neq \emptyset$| do
  5601. pick a vertex |$u$| from |$W$| with the highest saturation,
  5602. breaking ties randomly
  5603. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  5604. |$\mathrm{color}[u] \gets c$|
  5605. |$W \gets W - \{u\}$|
  5606. \end{lstlisting}
  5607. \end{tcolorbox}
  5608. \caption{The saturation-based greedy graph coloring algorithm.}
  5609. \label{fig:satur-algo}
  5610. \end{figure}
  5611. {\if\edition\racketEd
  5612. With the DSATUR algorithm in hand, let us return to the running
  5613. example and consider how to color the interference graph shown in
  5614. figure~\ref{fig:interfere}.
  5615. %
  5616. We start by assigning each register node to its own color. For
  5617. example, \code{rax} is assigned the color $-1$, \code{rsp} is assign
  5618. $-2$, \code{rcx} is assigned $0$, and \code{rdx} is assigned $1$.
  5619. (To reduce clutter in the interference graph, we elide nodes
  5620. that do not have interference edges, such as \code{rcx}.)
  5621. The variables are not yet colored, so they are annotated with a dash. We
  5622. then update the saturation for vertices that are adjacent to a
  5623. register, obtaining the following annotated graph. For example, the
  5624. saturation for \code{t} is $\{-1,-2\}$ because it interferes with both
  5625. \code{rax} and \code{rsp}.
  5626. \[
  5627. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5628. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  5629. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  5630. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  5631. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  5632. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5633. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5634. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5635. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5636. \draw (t1) to (rax);
  5637. \draw (t1) to (z);
  5638. \draw (z) to (y);
  5639. \draw (z) to (w);
  5640. \draw (x) to (w);
  5641. \draw (y) to (w);
  5642. \draw (v) to (w);
  5643. \draw (v) to (rsp);
  5644. \draw (w) to (rsp);
  5645. \draw (x) to (rsp);
  5646. \draw (y) to (rsp);
  5647. \path[-.,bend left=15] (z) edge node {} (rsp);
  5648. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5649. \draw (rax) to (rsp);
  5650. \end{tikzpicture}
  5651. \]
  5652. The algorithm says to select a maximally saturated vertex. So, we pick
  5653. $\ttm{t}$ and color it with the first available integer, which is
  5654. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  5655. and \ttm{rsp} because they interfere with $\ttm{t}$.
  5656. \[
  5657. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5658. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5659. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  5660. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  5661. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  5662. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5663. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5664. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5665. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5666. \draw (t1) to (rax);
  5667. \draw (t1) to (z);
  5668. \draw (z) to (y);
  5669. \draw (z) to (w);
  5670. \draw (x) to (w);
  5671. \draw (y) to (w);
  5672. \draw (v) to (w);
  5673. \draw (v) to (rsp);
  5674. \draw (w) to (rsp);
  5675. \draw (x) to (rsp);
  5676. \draw (y) to (rsp);
  5677. \path[-.,bend left=15] (z) edge node {} (rsp);
  5678. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5679. \draw (rax) to (rsp);
  5680. \end{tikzpicture}
  5681. \]
  5682. We repeat the process, selecting a maximally saturated vertex,
  5683. choosing \code{z}, and coloring it with the first available number, which
  5684. is $1$. We add $1$ to the saturation for the neighboring vertices
  5685. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  5686. \[
  5687. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5688. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5689. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5690. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5691. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5692. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5693. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5694. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5695. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5696. \draw (t1) to (rax);
  5697. \draw (t1) to (z);
  5698. \draw (z) to (y);
  5699. \draw (z) to (w);
  5700. \draw (x) to (w);
  5701. \draw (y) to (w);
  5702. \draw (v) to (w);
  5703. \draw (v) to (rsp);
  5704. \draw (w) to (rsp);
  5705. \draw (x) to (rsp);
  5706. \draw (y) to (rsp);
  5707. \path[-.,bend left=15] (z) edge node {} (rsp);
  5708. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5709. \draw (rax) to (rsp);
  5710. \end{tikzpicture}
  5711. \]
  5712. The most saturated vertices are now \code{w} and \code{y}. We color
  5713. \code{w} with the first available color, which is $0$.
  5714. \[
  5715. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5716. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5717. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5718. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5719. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5720. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5721. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  5722. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  5723. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5724. \draw (t1) to (rax);
  5725. \draw (t1) to (z);
  5726. \draw (z) to (y);
  5727. \draw (z) to (w);
  5728. \draw (x) to (w);
  5729. \draw (y) to (w);
  5730. \draw (v) to (w);
  5731. \draw (v) to (rsp);
  5732. \draw (w) to (rsp);
  5733. \draw (x) to (rsp);
  5734. \draw (y) to (rsp);
  5735. \path[-.,bend left=15] (z) edge node {} (rsp);
  5736. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5737. \draw (rax) to (rsp);
  5738. \end{tikzpicture}
  5739. \]
  5740. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  5741. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  5742. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  5743. and \code{z}, whose colors are $0$ and $1$ respectively.
  5744. \[
  5745. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5746. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5747. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5748. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5749. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5750. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5751. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5752. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5753. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5754. \draw (t1) to (rax);
  5755. \draw (t1) to (z);
  5756. \draw (z) to (y);
  5757. \draw (z) to (w);
  5758. \draw (x) to (w);
  5759. \draw (y) to (w);
  5760. \draw (v) to (w);
  5761. \draw (v) to (rsp);
  5762. \draw (w) to (rsp);
  5763. \draw (x) to (rsp);
  5764. \draw (y) to (rsp);
  5765. \path[-.,bend left=15] (z) edge node {} (rsp);
  5766. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5767. \draw (rax) to (rsp);
  5768. \end{tikzpicture}
  5769. \]
  5770. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  5771. \[
  5772. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5773. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5774. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5775. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5776. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5777. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5778. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5779. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5780. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5781. \draw (t1) to (rax);
  5782. \draw (t1) to (z);
  5783. \draw (z) to (y);
  5784. \draw (z) to (w);
  5785. \draw (x) to (w);
  5786. \draw (y) to (w);
  5787. \draw (v) to (w);
  5788. \draw (v) to (rsp);
  5789. \draw (w) to (rsp);
  5790. \draw (x) to (rsp);
  5791. \draw (y) to (rsp);
  5792. \path[-.,bend left=15] (z) edge node {} (rsp);
  5793. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5794. \draw (rax) to (rsp);
  5795. \end{tikzpicture}
  5796. \]
  5797. In the last step of the algorithm, we color \code{x} with $1$.
  5798. \[
  5799. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5800. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5801. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5802. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5803. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5804. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  5805. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5806. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5807. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5808. \draw (t1) to (rax);
  5809. \draw (t1) to (z);
  5810. \draw (z) to (y);
  5811. \draw (z) to (w);
  5812. \draw (x) to (w);
  5813. \draw (y) to (w);
  5814. \draw (v) to (w);
  5815. \draw (v) to (rsp);
  5816. \draw (w) to (rsp);
  5817. \draw (x) to (rsp);
  5818. \draw (y) to (rsp);
  5819. \path[-.,bend left=15] (z) edge node {} (rsp);
  5820. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5821. \draw (rax) to (rsp);
  5822. \end{tikzpicture}
  5823. \]
  5824. So, we obtain the following coloring:
  5825. \[
  5826. \{
  5827. \ttm{rax} \mapsto -1,
  5828. \ttm{rsp} \mapsto -2,
  5829. \ttm{t} \mapsto 0,
  5830. \ttm{z} \mapsto 1,
  5831. \ttm{x} \mapsto 1,
  5832. \ttm{y} \mapsto 2,
  5833. \ttm{w} \mapsto 0,
  5834. \ttm{v} \mapsto 1
  5835. \}
  5836. \]
  5837. \fi}
  5838. %
  5839. {\if\edition\pythonEd\pythonColor
  5840. %
  5841. With the DSATUR algorithm in hand, let us return to the running
  5842. example and consider how to color the interference graph shown in
  5843. figure~\ref{fig:interfere}. We annotate each variable node with a dash
  5844. to indicate that it has not yet been assigned a color. Each register
  5845. node (not shown) should be assigned the number that the register
  5846. corresponds to, for example, color \code{rcx} with the number \code{0}
  5847. and \code{rdx} with \code{1}. The saturation sets are also shown for
  5848. each node; all of them start as the empty set.
  5849. %
  5850. \[
  5851. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5852. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  5853. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  5854. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  5855. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5856. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5857. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5858. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5859. \draw (t0) to (t1);
  5860. \draw (t0) to (z);
  5861. \draw (z) to (y);
  5862. \draw (z) to (w);
  5863. \draw (x) to (w);
  5864. \draw (y) to (w);
  5865. \draw (v) to (w);
  5866. \end{tikzpicture}
  5867. \]
  5868. The algorithm says to select a maximally saturated vertex, but they
  5869. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  5870. and then we color it with the first available integer, which is $0$. We mark
  5871. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  5872. they interfere with $\ttm{tmp\_0}$.
  5873. \[
  5874. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5875. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  5876. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5877. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  5878. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5879. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5880. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5881. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5882. \draw (t0) to (t1);
  5883. \draw (t0) to (z);
  5884. \draw (z) to (y);
  5885. \draw (z) to (w);
  5886. \draw (x) to (w);
  5887. \draw (y) to (w);
  5888. \draw (v) to (w);
  5889. \end{tikzpicture}
  5890. \]
  5891. We repeat the process. The most saturated vertices are \code{z} and
  5892. \code{tmp\_1}, so we choose \code{z} and color it with the first
  5893. available number, which is $1$. We add $1$ to the saturation for the
  5894. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  5895. \[
  5896. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5897. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5898. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5899. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5900. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5901. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5902. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5903. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5904. \draw (t0) to (t1);
  5905. \draw (t0) to (z);
  5906. \draw (z) to (y);
  5907. \draw (z) to (w);
  5908. \draw (x) to (w);
  5909. \draw (y) to (w);
  5910. \draw (v) to (w);
  5911. \end{tikzpicture}
  5912. \]
  5913. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  5914. \code{y}. We color \code{w} with the first available color, which
  5915. is $0$.
  5916. \[
  5917. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5918. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5919. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5920. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5921. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5922. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  5923. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  5924. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5925. \draw (t0) to (t1);
  5926. \draw (t0) to (z);
  5927. \draw (z) to (y);
  5928. \draw (z) to (w);
  5929. \draw (x) to (w);
  5930. \draw (y) to (w);
  5931. \draw (v) to (w);
  5932. \end{tikzpicture}
  5933. \]
  5934. Now \code{y} is the most saturated, so we color it with $2$.
  5935. \[
  5936. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5937. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5938. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5939. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5940. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5941. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5942. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5943. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5944. \draw (t0) to (t1);
  5945. \draw (t0) to (z);
  5946. \draw (z) to (y);
  5947. \draw (z) to (w);
  5948. \draw (x) to (w);
  5949. \draw (y) to (w);
  5950. \draw (v) to (w);
  5951. \end{tikzpicture}
  5952. \]
  5953. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  5954. We choose to color \code{v} with $1$.
  5955. \[
  5956. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5957. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5958. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5959. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5960. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5961. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5962. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5963. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5964. \draw (t0) to (t1);
  5965. \draw (t0) to (z);
  5966. \draw (z) to (y);
  5967. \draw (z) to (w);
  5968. \draw (x) to (w);
  5969. \draw (y) to (w);
  5970. \draw (v) to (w);
  5971. \end{tikzpicture}
  5972. \]
  5973. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  5974. \[
  5975. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  5976. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5977. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5978. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5979. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  5980. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5981. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5982. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5983. \draw (t0) to (t1);
  5984. \draw (t0) to (z);
  5985. \draw (z) to (y);
  5986. \draw (z) to (w);
  5987. \draw (x) to (w);
  5988. \draw (y) to (w);
  5989. \draw (v) to (w);
  5990. \end{tikzpicture}
  5991. \]
  5992. So, we obtain the following coloring:
  5993. \[
  5994. \{ \ttm{tmp\_0} \mapsto 0,
  5995. \ttm{tmp\_1} \mapsto 1,
  5996. \ttm{z} \mapsto 1,
  5997. \ttm{x} \mapsto 1,
  5998. \ttm{y} \mapsto 2,
  5999. \ttm{w} \mapsto 0,
  6000. \ttm{v} \mapsto 1 \}
  6001. \]
  6002. \fi}
  6003. We recommend creating an auxiliary function named \code{color\_graph}
  6004. that takes an interference graph and a list of all the variables in
  6005. the program. This function should return a mapping of variables to
  6006. their colors (represented as natural numbers). By creating this helper
  6007. function, you will be able to reuse it in chapter~\ref{ch:Lfun}
  6008. when we add support for functions.
  6009. To prioritize the processing of highly saturated nodes inside the
  6010. \code{color\_graph} function, we recommend using the priority queue
  6011. data structure \racket{described in figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  6012. addition, you will need to maintain a mapping from variables to their
  6013. handles in the priority queue so that you can notify the priority
  6014. queue when their saturation changes.}
  6015. {\if\edition\racketEd
  6016. \begin{figure}[tp]
  6017. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  6018. \small
  6019. \begin{tcolorbox}[title=Priority Queue]
  6020. A \emph{priority queue}\index{subject}{priority queue}
  6021. is a collection of items in which the
  6022. removal of items is governed by priority. In a \emph{min} queue,
  6023. lower priority items are removed first. An implementation is in
  6024. \code{priority\_queue.rkt} of the support code.\index{subject}{min queue}
  6025. \begin{description}
  6026. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  6027. priority queue that uses the $\itm{cmp}$ predicate to determine
  6028. whether its first argument has lower or equal priority to its
  6029. second argument.
  6030. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  6031. items in the queue.
  6032. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  6033. the item into the queue and returns a handle for the item in the
  6034. queue.
  6035. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  6036. the lowest priority.
  6037. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  6038. notifies the queue that the priority has decreased for the item
  6039. associated with the given handle.
  6040. \end{description}
  6041. \end{tcolorbox}
  6042. %\end{wrapfigure}
  6043. \caption{The priority queue data structure.}
  6044. \label{fig:priority-queue}
  6045. \end{figure}
  6046. \fi}
  6047. With the coloring complete, we finalize the assignment of variables to
  6048. registers and stack locations. We map the first $k$ colors to the $k$
  6049. registers and the rest of the colors to stack locations. Suppose for
  6050. the moment that we have just one register to use for register
  6051. allocation, \key{rcx}. Then we have the following assignment.
  6052. \[
  6053. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  6054. \]
  6055. Composing this mapping with the coloring, we arrive at the following
  6056. assignment of variables to locations.
  6057. {\if\edition\racketEd
  6058. \begin{gather*}
  6059. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6060. \ttm{w} \mapsto \key{\%rcx}, \,
  6061. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6062. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6063. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6064. \ttm{t} \mapsto \key{\%rcx} \}
  6065. \end{gather*}
  6066. \fi}
  6067. {\if\edition\pythonEd\pythonColor
  6068. \begin{gather*}
  6069. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6070. \ttm{w} \mapsto \key{\%rcx}, \,
  6071. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6072. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6073. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6074. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6075. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6076. \end{gather*}
  6077. \fi}
  6078. Adapt the code from the \code{assign\_homes} pass
  6079. (section~\ref{sec:assign-Lvar}) to replace the variables with their
  6080. assigned location. Applying this assignment to our running
  6081. example shown next, on the left, yields the program on the right.
  6082. \begin{center}
  6083. {\if\edition\racketEd
  6084. \begin{minipage}{0.35\textwidth}
  6085. \begin{lstlisting}
  6086. movq $1, v
  6087. movq $42, w
  6088. movq v, x
  6089. addq $7, x
  6090. movq x, y
  6091. movq x, z
  6092. addq w, z
  6093. movq y, t
  6094. negq t
  6095. movq z, %rax
  6096. addq t, %rax
  6097. jmp conclusion
  6098. \end{lstlisting}
  6099. \end{minipage}
  6100. $\Rightarrow\qquad$
  6101. \begin{minipage}{0.45\textwidth}
  6102. \begin{lstlisting}
  6103. movq $1, -8(%rbp)
  6104. movq $42, %rcx
  6105. movq -8(%rbp), -8(%rbp)
  6106. addq $7, -8(%rbp)
  6107. movq -8(%rbp), -16(%rbp)
  6108. movq -8(%rbp), -8(%rbp)
  6109. addq %rcx, -8(%rbp)
  6110. movq -16(%rbp), %rcx
  6111. negq %rcx
  6112. movq -8(%rbp), %rax
  6113. addq %rcx, %rax
  6114. jmp conclusion
  6115. \end{lstlisting}
  6116. \end{minipage}
  6117. \fi}
  6118. {\if\edition\pythonEd\pythonColor
  6119. \begin{minipage}{0.35\textwidth}
  6120. \begin{lstlisting}
  6121. movq $1, v
  6122. movq $42, w
  6123. movq v, x
  6124. addq $7, x
  6125. movq x, y
  6126. movq x, z
  6127. addq w, z
  6128. movq y, tmp_0
  6129. negq tmp_0
  6130. movq z, tmp_1
  6131. addq tmp_0, tmp_1
  6132. movq tmp_1, %rdi
  6133. callq print_int
  6134. \end{lstlisting}
  6135. \end{minipage}
  6136. $\Rightarrow\qquad$
  6137. \begin{minipage}{0.45\textwidth}
  6138. \begin{lstlisting}
  6139. movq $1, -8(%rbp)
  6140. movq $42, %rcx
  6141. movq -8(%rbp), -8(%rbp)
  6142. addq $7, -8(%rbp)
  6143. movq -8(%rbp), -16(%rbp)
  6144. movq -8(%rbp), -8(%rbp)
  6145. addq %rcx, -8(%rbp)
  6146. movq -16(%rbp), %rcx
  6147. negq %rcx
  6148. movq -8(%rbp), -8(%rbp)
  6149. addq %rcx, -8(%rbp)
  6150. movq -8(%rbp), %rdi
  6151. callq print_int
  6152. \end{lstlisting}
  6153. \end{minipage}
  6154. \fi}
  6155. \end{center}
  6156. \begin{exercise}\normalfont\normalsize
  6157. Implement the \code{allocate\_registers} \racket{pass}\python{function}.
  6158. Create five programs that exercise all aspects of the register
  6159. allocation algorithm, including spilling variables to the stack.
  6160. %
  6161. {\if\edition\racketEd
  6162. Replace \code{assign\_homes} in the list of \code{passes} in the
  6163. \code{run-tests.rkt} script with the three new passes:
  6164. \code{uncover\_live}, \code{build\_interference}, and
  6165. \code{allocate\_registers}.
  6166. Temporarily remove the call to \code{compiler-tests}.
  6167. Run the script to test the register allocator.
  6168. \fi}
  6169. %
  6170. {\if\edition\pythonEd\pythonColor
  6171. Update the \code{assign\_homes} pass to make use of
  6172. the functions you have created to perform register allocation:
  6173. \code{uncover\_live}, \code{build\_interference}, and
  6174. \code{allocate\_registers}.
  6175. Run the \code{run-tests.py} script to check whether the
  6176. output programs produce the same result as the input programs.
  6177. Inspect the generated x86 programs to make sure that some variables
  6178. are assigned to registers.
  6179. \fi}
  6180. \end{exercise}
  6181. \section{Patch Instructions}
  6182. \label{sec:patch-instructions}
  6183. The remaining step in the compilation to x86 is to ensure that the
  6184. instructions have at most one argument that is a memory access.
  6185. %
  6186. In the running example, the instruction \code{movq -8(\%rbp),
  6187. -16(\%rbp)} is problematic. Recall from section~\ref{sec:patch-s0}
  6188. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  6189. then move \code{rax} into \code{-16(\%rbp)}.
  6190. %
  6191. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  6192. problematic, but they can simply be deleted. In general, we recommend
  6193. deleting all the trivial moves whose source and destination are the
  6194. same location.
  6195. %
  6196. The following is the output of \code{patch\_instructions} on the
  6197. running example.
  6198. \begin{center}
  6199. {\if\edition\racketEd
  6200. \begin{minipage}{0.35\textwidth}
  6201. \begin{lstlisting}
  6202. movq $1, -8(%rbp)
  6203. movq $42, %rcx
  6204. movq -8(%rbp), -8(%rbp)
  6205. addq $7, -8(%rbp)
  6206. movq -8(%rbp), -16(%rbp)
  6207. movq -8(%rbp), -8(%rbp)
  6208. addq %rcx, -8(%rbp)
  6209. movq -16(%rbp), %rcx
  6210. negq %rcx
  6211. movq -8(%rbp), %rax
  6212. addq %rcx, %rax
  6213. jmp conclusion
  6214. \end{lstlisting}
  6215. \end{minipage}
  6216. $\Rightarrow\qquad$
  6217. \begin{minipage}{0.45\textwidth}
  6218. \begin{lstlisting}
  6219. movq $1, -8(%rbp)
  6220. movq $42, %rcx
  6221. addq $7, -8(%rbp)
  6222. movq -8(%rbp), %rax
  6223. movq %rax, -16(%rbp)
  6224. addq %rcx, -8(%rbp)
  6225. movq -16(%rbp), %rcx
  6226. negq %rcx
  6227. movq -8(%rbp), %rax
  6228. addq %rcx, %rax
  6229. jmp conclusion
  6230. \end{lstlisting}
  6231. \end{minipage}
  6232. \fi}
  6233. {\if\edition\pythonEd\pythonColor
  6234. \begin{minipage}{0.35\textwidth}
  6235. \begin{lstlisting}
  6236. movq $1, -8(%rbp)
  6237. movq $42, %rcx
  6238. movq -8(%rbp), -8(%rbp)
  6239. addq $7, -8(%rbp)
  6240. movq -8(%rbp), -16(%rbp)
  6241. movq -8(%rbp), -8(%rbp)
  6242. addq %rcx, -8(%rbp)
  6243. movq -16(%rbp), %rcx
  6244. negq %rcx
  6245. movq -8(%rbp), -8(%rbp)
  6246. addq %rcx, -8(%rbp)
  6247. movq -8(%rbp), %rdi
  6248. callq print_int
  6249. \end{lstlisting}
  6250. \end{minipage}
  6251. $\Rightarrow\qquad$
  6252. \begin{minipage}{0.45\textwidth}
  6253. \begin{lstlisting}
  6254. movq $1, -8(%rbp)
  6255. movq $42, %rcx
  6256. addq $7, -8(%rbp)
  6257. movq -8(%rbp), %rax
  6258. movq %rax, -16(%rbp)
  6259. addq %rcx, -8(%rbp)
  6260. movq -16(%rbp), %rcx
  6261. negq %rcx
  6262. addq %rcx, -8(%rbp)
  6263. movq -8(%rbp), %rdi
  6264. callq print_int
  6265. \end{lstlisting}
  6266. \end{minipage}
  6267. \fi}
  6268. \end{center}
  6269. \begin{exercise}\normalfont\normalsize
  6270. %
  6271. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  6272. %
  6273. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  6274. %in the \code{run-tests.rkt} script.
  6275. %
  6276. Run the script to test the \code{patch\_instructions} pass.
  6277. \end{exercise}
  6278. \section{Generate Prelude and Conclusion}
  6279. \label{sec:print-x86-reg-alloc}
  6280. \index{subject}{calling conventions}
  6281. \index{subject}{prelude}\index{subject}{conclusion}
  6282. Recall that this pass generates the prelude and conclusion
  6283. instructions to satisfy the x86 calling conventions
  6284. (section~\ref{sec:calling-conventions}). With the addition of the
  6285. register allocator, the callee-saved registers used by the register
  6286. allocator must be saved in the prelude and restored in the conclusion.
  6287. In the \code{allocate\_registers} pass,
  6288. %
  6289. \racket{add an entry to the \itm{info}
  6290. of \code{X86Program} named \code{used\_callee}}
  6291. %
  6292. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  6293. %
  6294. that stores the set of callee-saved registers that were assigned to
  6295. variables. The \code{prelude\_and\_conclusion} pass can then access
  6296. this information to decide which callee-saved registers need to be
  6297. saved and restored.
  6298. %
  6299. When calculating the amount to adjust the \code{rsp} in the prelude,
  6300. make sure to take into account the space used for saving the
  6301. callee-saved registers. Also, remember that the frame needs to be a
  6302. multiple of 16 bytes! We recommend using the following equation for
  6303. the amount $A$ to subtract from the \code{rsp}. Let $S$ be the number
  6304. of stack locations used by spilled variables\footnote{Sometimes two or
  6305. more spilled variables are assigned to the same stack location, so
  6306. $S$ can be less than the number of spilled variables.} and $C$ be
  6307. the number of callee-saved registers that were
  6308. allocated\index{subject}{allocate} to
  6309. variables. The $\itm{align}$ function rounds a number up to the
  6310. nearest 16 bytes.
  6311. \[
  6312. \itm{A} = \itm{align}(8\itm{S} + 8\itm{C}) - 8\itm{C}
  6313. \]
  6314. The reason we subtract $8\itm{C}$ in this equation is that the
  6315. prelude uses \code{pushq} to save each of the callee-saved registers,
  6316. and \code{pushq} subtracts $8$ from the \code{rsp}.
  6317. \racket{An overview of all the passes involved in register
  6318. allocation is shown in figure~\ref{fig:reg-alloc-passes}.}
  6319. {\if\edition\racketEd
  6320. \begin{figure}[tbp]
  6321. \begin{tcolorbox}[colback=white]
  6322. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6323. \node (Lvar) at (0,2) {\large \LangVar{}};
  6324. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  6325. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  6326. \node (Cvar-1) at (0,0) {\large \LangCVar{}};
  6327. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  6328. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  6329. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  6330. \node (x86-5) at (7,-4) {\large \LangXInt{}};
  6331. \node (x86-2-1) at (0,-4) {\large \LangXVar{}};
  6332. \node (x86-2-2) at (3,-4) {\large \LangXVar{}};
  6333. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  6334. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  6335. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (Cvar-1);
  6336. \path[->,bend right=15] (Cvar-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  6337. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  6338. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  6339. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  6340. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  6341. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  6342. \end{tikzpicture}
  6343. \end{tcolorbox}
  6344. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  6345. \label{fig:reg-alloc-passes}
  6346. \end{figure}
  6347. \fi}
  6348. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  6349. the running example (figure~\ref{fig:reg-eg}). To demonstrate both the
  6350. use of registers and the stack, we limit the register allocator for
  6351. this example to use just two registers: \code{rcx} (color $0$) and
  6352. \code{rbx} (color $1$). In the prelude\index{subject}{prelude} of the
  6353. \code{main} function, we push \code{rbx} onto the stack because it is
  6354. a callee-saved register and it was assigned to a variable by the
  6355. register allocator. We subtract \code{8} from the \code{rsp} at the
  6356. end of the prelude to reserve space for the one spilled variable.
  6357. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  6358. Moving on to the program proper, we see how the registers were
  6359. allocated.
  6360. %
  6361. \racket{Variables \code{v}, \code{x}, and \code{z} were assigned to
  6362. \code{rbx}, and variables \code{w} and \code{t} was assigned to \code{rcx}.}
  6363. %
  6364. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  6365. were assigned to \code{rcx}, and variables \code{w} and \code{tmp\_1}
  6366. were assigned to \code{rbx}.}
  6367. %
  6368. Variable \racket{\code{y}}\python{\code{z}} was spilled to the stack
  6369. location \code{-16(\%rbp)}. Recall that the prelude saved the
  6370. callee-save register \code{rbx} onto the stack. The spilled variables
  6371. must be placed lower on the stack than the saved callee-save
  6372. registers, so in this case \racket{\code{y}}\python{z} is placed at
  6373. \code{-16(\%rbp)}.
  6374. In the conclusion\index{subject}{conclusion}, we undo the work that was
  6375. done in the prelude. We move the stack pointer up by \code{8} bytes
  6376. (the room for spilled variables), then pop the old values of
  6377. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  6378. \code{retq} to return control to the operating system.
  6379. \begin{figure}[tbp]
  6380. \begin{minipage}{0.55\textwidth}
  6381. \begin{tcolorbox}[colback=white]
  6382. % var_test_28.rkt
  6383. % (use-minimal-set-of-registers! #t)
  6384. % 0 -> rcx
  6385. % 1 -> rbx
  6386. %
  6387. % t 0 rcx
  6388. % z 1 rbx
  6389. % w 0 rcx
  6390. % y 2 rbp -16
  6391. % v 1 rbx
  6392. % x 1 rbx
  6393. {\if\edition\racketEd
  6394. \begin{lstlisting}
  6395. start:
  6396. movq $1, %rbx
  6397. movq $42, %rcx
  6398. addq $7, %rbx
  6399. movq %rbx, -16(%rbp)
  6400. addq %rcx, %rbx
  6401. movq -16(%rbp), %rcx
  6402. negq %rcx
  6403. movq %rbx, %rax
  6404. addq %rcx, %rax
  6405. jmp conclusion
  6406. .globl main
  6407. main:
  6408. pushq %rbp
  6409. movq %rsp, %rbp
  6410. pushq %rbx
  6411. subq $8, %rsp
  6412. jmp start
  6413. conclusion:
  6414. addq $8, %rsp
  6415. popq %rbx
  6416. popq %rbp
  6417. retq
  6418. \end{lstlisting}
  6419. \fi}
  6420. {\if\edition\pythonEd\pythonColor
  6421. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  6422. \begin{lstlisting}
  6423. .globl main
  6424. main:
  6425. pushq %rbp
  6426. movq %rsp, %rbp
  6427. pushq %rbx
  6428. subq $8, %rsp
  6429. movq $1, %rcx
  6430. movq $42, %rbx
  6431. addq $7, %rcx
  6432. movq %rcx, -16(%rbp)
  6433. addq %rbx, -16(%rbp)
  6434. negq %rcx
  6435. movq -16(%rbp), %rbx
  6436. addq %rcx, %rbx
  6437. movq %rbx, %rdi
  6438. callq print_int
  6439. addq $8, %rsp
  6440. popq %rbx
  6441. popq %rbp
  6442. retq
  6443. \end{lstlisting}
  6444. \fi}
  6445. \end{tcolorbox}
  6446. \end{minipage}
  6447. \caption{The x86 output from the running example
  6448. (figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  6449. and \code{rcx}.}
  6450. \label{fig:running-example-x86}
  6451. \end{figure}
  6452. \begin{exercise}\normalfont\normalsize
  6453. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  6454. %
  6455. \racket{
  6456. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  6457. list of passes and the call to \code{compiler-tests}.}
  6458. %
  6459. Run the script to test the complete compiler for \LangVar{} that
  6460. performs register allocation.
  6461. \end{exercise}
  6462. \section{Challenge: Move Biasing}
  6463. \label{sec:move-biasing}
  6464. \index{subject}{move biasing}
  6465. This section describes an enhancement to the register allocator,
  6466. called move biasing, for students who are looking for an extra
  6467. challenge.
  6468. {\if\edition\racketEd
  6469. To motivate the need for move biasing we return to the running example,
  6470. but this time we use all the general purpose registers. So, we have
  6471. the following mapping of color numbers to registers.
  6472. \[
  6473. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi}, \ldots \}
  6474. \]
  6475. Using the same assignment of variables to color numbers that was
  6476. produced by the register allocator described in the last section, we
  6477. get the following program.
  6478. \begin{center}
  6479. \begin{minipage}{0.35\textwidth}
  6480. \begin{lstlisting}
  6481. movq $1, v
  6482. movq $42, w
  6483. movq v, x
  6484. addq $7, x
  6485. movq x, y
  6486. movq x, z
  6487. addq w, z
  6488. movq y, t
  6489. negq t
  6490. movq z, %rax
  6491. addq t, %rax
  6492. jmp conclusion
  6493. \end{lstlisting}
  6494. \end{minipage}
  6495. $\Rightarrow\qquad$
  6496. \begin{minipage}{0.45\textwidth}
  6497. \begin{lstlisting}
  6498. movq $1, %rdx
  6499. movq $42, %rcx
  6500. movq %rdx, %rdx
  6501. addq $7, %rdx
  6502. movq %rdx, %rsi
  6503. movq %rdx, %rdx
  6504. addq %rcx, %rdx
  6505. movq %rsi, %rcx
  6506. negq %rcx
  6507. movq %rdx, %rax
  6508. addq %rcx, %rax
  6509. jmp conclusion
  6510. \end{lstlisting}
  6511. \end{minipage}
  6512. \end{center}
  6513. In this output code there are two \key{movq} instructions that
  6514. can be removed because their source and target are the same. However,
  6515. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  6516. register, we could instead remove three \key{movq} instructions. We
  6517. can accomplish this by taking into account which variables appear in
  6518. \key{movq} instructions with which other variables.
  6519. \fi}
  6520. {\if\edition\pythonEd\pythonColor
  6521. %
  6522. To motivate the need for move biasing we return to the running example
  6523. and recall that in section~\ref{sec:patch-instructions} we were able to
  6524. remove three trivial move instructions from the running
  6525. example. However, we could remove another trivial move if we were able
  6526. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  6527. We say that two variables $p$ and $q$ are \emph{move
  6528. related}\index{subject}{move related} if they participate together in
  6529. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  6530. \key{movq} $q$\key{,} $p$.
  6531. %
  6532. Recall that we color variables that are more saturated before coloring
  6533. variables that are less saturated, and in the case of equally
  6534. saturated variables, we choose randomly. Now we break such ties by
  6535. giving preference to variables that have an available color that is
  6536. the same as the color of a move-related variable.
  6537. %
  6538. Furthermore, when the register allocator chooses a color for a
  6539. variable, it should prefer a color that has already been used for a
  6540. move-related variable if one exists (and assuming that they do not
  6541. interfere). This preference should not override the preference for
  6542. registers over stack locations. So, this preference should be used as
  6543. a tie breaker in choosing between two registers or in choosing between
  6544. two stack locations.
  6545. We recommend representing the move relationships in a graph, similarly
  6546. to how we represented interference. The following is the \emph{move
  6547. graph} for our example.
  6548. {\if\edition\racketEd
  6549. \[
  6550. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6551. \node (rax) at (0,0) {$\ttm{rax}$};
  6552. \node (rsp) at (9,2) {$\ttm{rsp}$};
  6553. \node (t) at (0,2) {$\ttm{t}$};
  6554. \node (z) at (3,2) {$\ttm{z}$};
  6555. \node (x) at (6,2) {$\ttm{x}$};
  6556. \node (y) at (3,0) {$\ttm{y}$};
  6557. \node (w) at (6,0) {$\ttm{w}$};
  6558. \node (v) at (9,0) {$\ttm{v}$};
  6559. \draw (v) to (x);
  6560. \draw (x) to (y);
  6561. \draw (x) to (z);
  6562. \draw (y) to (t);
  6563. \end{tikzpicture}
  6564. \]
  6565. \fi}
  6566. %
  6567. {\if\edition\pythonEd\pythonColor
  6568. \[
  6569. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6570. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  6571. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  6572. \node (z) at (3,2) {$\ttm{z}$};
  6573. \node (x) at (6,2) {$\ttm{x}$};
  6574. \node (y) at (3,0) {$\ttm{y}$};
  6575. \node (w) at (6,0) {$\ttm{w}$};
  6576. \node (v) at (9,0) {$\ttm{v}$};
  6577. \draw (y) to (t0);
  6578. \draw (z) to (x);
  6579. \draw (z) to (t1);
  6580. \draw (x) to (y);
  6581. \draw (x) to (v);
  6582. \end{tikzpicture}
  6583. \]
  6584. \fi}
  6585. {\if\edition\racketEd
  6586. Now we replay the graph coloring, pausing to see the coloring of
  6587. \code{y}. Recall the following configuration. The most saturated vertices
  6588. were \code{w} and \code{y}.
  6589. \[
  6590. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6591. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6592. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6593. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6594. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6595. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6596. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  6597. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  6598. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6599. \draw (t1) to (rax);
  6600. \draw (t1) to (z);
  6601. \draw (z) to (y);
  6602. \draw (z) to (w);
  6603. \draw (x) to (w);
  6604. \draw (y) to (w);
  6605. \draw (v) to (w);
  6606. \draw (v) to (rsp);
  6607. \draw (w) to (rsp);
  6608. \draw (x) to (rsp);
  6609. \draw (y) to (rsp);
  6610. \path[-.,bend left=15] (z) edge node {} (rsp);
  6611. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6612. \draw (rax) to (rsp);
  6613. \end{tikzpicture}
  6614. \]
  6615. %
  6616. The last time, we chose to color \code{w} with $0$. This time, we see
  6617. that \code{w} is not move-related to any vertex, but \code{y} is
  6618. move-related to \code{t}. So we choose to color \code{y} with $0$,
  6619. the same color as \code{t}.
  6620. \[
  6621. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6622. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6623. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6624. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6625. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6626. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6627. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  6628. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  6629. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6630. \draw (t1) to (rax);
  6631. \draw (t1) to (z);
  6632. \draw (z) to (y);
  6633. \draw (z) to (w);
  6634. \draw (x) to (w);
  6635. \draw (y) to (w);
  6636. \draw (v) to (w);
  6637. \draw (v) to (rsp);
  6638. \draw (w) to (rsp);
  6639. \draw (x) to (rsp);
  6640. \draw (y) to (rsp);
  6641. \path[-.,bend left=15] (z) edge node {} (rsp);
  6642. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6643. \draw (rax) to (rsp);
  6644. \end{tikzpicture}
  6645. \]
  6646. Now \code{w} is the most saturated, so we color it $2$.
  6647. \[
  6648. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6649. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6650. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6651. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6652. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6653. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  6654. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6655. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6656. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  6657. \draw (t1) to (rax);
  6658. \draw (t1) to (z);
  6659. \draw (z) to (y);
  6660. \draw (z) to (w);
  6661. \draw (x) to (w);
  6662. \draw (y) to (w);
  6663. \draw (v) to (w);
  6664. \draw (v) to (rsp);
  6665. \draw (w) to (rsp);
  6666. \draw (x) to (rsp);
  6667. \draw (y) to (rsp);
  6668. \path[-.,bend left=15] (z) edge node {} (rsp);
  6669. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6670. \draw (rax) to (rsp);
  6671. \end{tikzpicture}
  6672. \]
  6673. At this point, vertices \code{x} and \code{v} are most saturated, but
  6674. \code{x} is move related to \code{y} and \code{z}, so we color
  6675. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  6676. \[
  6677. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6678. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6679. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6680. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6681. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6682. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  6683. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6684. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6685. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  6686. \draw (t1) to (rax);
  6687. \draw (t) to (z);
  6688. \draw (z) to (y);
  6689. \draw (z) to (w);
  6690. \draw (x) to (w);
  6691. \draw (y) to (w);
  6692. \draw (v) to (w);
  6693. \draw (v) to (rsp);
  6694. \draw (w) to (rsp);
  6695. \draw (x) to (rsp);
  6696. \draw (y) to (rsp);
  6697. \path[-.,bend left=15] (z) edge node {} (rsp);
  6698. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6699. \draw (rax) to (rsp);
  6700. \end{tikzpicture}
  6701. \]
  6702. \fi}
  6703. %
  6704. {\if\edition\pythonEd\pythonColor
  6705. Now we replay the graph coloring, pausing before the coloring of
  6706. \code{w}. Recall the following configuration. The most saturated vertices
  6707. were \code{tmp\_1}, \code{w}, and \code{y}.
  6708. \[
  6709. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6710. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6711. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6712. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6713. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6714. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  6715. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  6716. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6717. \draw (t0) to (t1);
  6718. \draw (t0) to (z);
  6719. \draw (z) to (y);
  6720. \draw (z) to (w);
  6721. \draw (x) to (w);
  6722. \draw (y) to (w);
  6723. \draw (v) to (w);
  6724. \end{tikzpicture}
  6725. \]
  6726. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  6727. or \code{y}. Note, however, that \code{w} is not move related to any
  6728. variables, whereas \code{y} and \code{tmp\_1} are move related to
  6729. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  6730. \code{y} and color it $0$, we can delete another move instruction.
  6731. \[
  6732. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6733. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6734. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6735. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6736. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6737. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  6738. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  6739. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6740. \draw (t0) to (t1);
  6741. \draw (t0) to (z);
  6742. \draw (z) to (y);
  6743. \draw (z) to (w);
  6744. \draw (x) to (w);
  6745. \draw (y) to (w);
  6746. \draw (v) to (w);
  6747. \end{tikzpicture}
  6748. \]
  6749. Now \code{w} is the most saturated, so we color it $2$.
  6750. \[
  6751. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6752. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6753. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6754. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6755. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  6756. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6757. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6758. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  6759. \draw (t0) to (t1);
  6760. \draw (t0) to (z);
  6761. \draw (z) to (y);
  6762. \draw (z) to (w);
  6763. \draw (x) to (w);
  6764. \draw (y) to (w);
  6765. \draw (v) to (w);
  6766. \end{tikzpicture}
  6767. \]
  6768. To finish the coloring, \code{x} and \code{v} get $0$ and
  6769. \code{tmp\_1} gets $1$.
  6770. \[
  6771. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.9]
  6772. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6773. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  6774. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6775. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  6776. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6777. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6778. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  6779. \draw (t0) to (t1);
  6780. \draw (t0) to (z);
  6781. \draw (z) to (y);
  6782. \draw (z) to (w);
  6783. \draw (x) to (w);
  6784. \draw (y) to (w);
  6785. \draw (v) to (w);
  6786. \end{tikzpicture}
  6787. \]
  6788. \fi}
  6789. So, we have the following assignment of variables to registers.
  6790. {\if\edition\racketEd
  6791. \begin{gather*}
  6792. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6793. \ttm{w} \mapsto \key{\%rsi}, \,
  6794. \ttm{x} \mapsto \key{\%rcx}, \,
  6795. \ttm{y} \mapsto \key{\%rcx}, \,
  6796. \ttm{z} \mapsto \key{\%rdx}, \,
  6797. \ttm{t} \mapsto \key{\%rcx} \}
  6798. \end{gather*}
  6799. \fi}
  6800. {\if\edition\pythonEd\pythonColor
  6801. \begin{gather*}
  6802. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6803. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  6804. \ttm{x} \mapsto \key{\%rcx}, \,
  6805. \ttm{y} \mapsto \key{\%rcx}, \\
  6806. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6807. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6808. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6809. \end{gather*}
  6810. \fi}
  6811. %
  6812. We apply this register assignment to the running example shown next,
  6813. on the left, to obtain the code in the middle. The
  6814. \code{patch\_instructions} then deletes the trivial moves to obtain
  6815. the code on the right.
  6816. {\if\edition\racketEd
  6817. \begin{center}
  6818. \begin{minipage}{0.2\textwidth}
  6819. \begin{lstlisting}
  6820. movq $1, v
  6821. movq $42, w
  6822. movq v, x
  6823. addq $7, x
  6824. movq x, y
  6825. movq x, z
  6826. addq w, z
  6827. movq y, t
  6828. negq t
  6829. movq z, %rax
  6830. addq t, %rax
  6831. jmp conclusion
  6832. \end{lstlisting}
  6833. \end{minipage}
  6834. $\Rightarrow\qquad$
  6835. \begin{minipage}{0.25\textwidth}
  6836. \begin{lstlisting}
  6837. movq $1, %rcx
  6838. movq $42, %rsi
  6839. movq %rcx, %rcx
  6840. addq $7, %rcx
  6841. movq %rcx, %rcx
  6842. movq %rcx, %rdx
  6843. addq %rsi, %rdx
  6844. movq %rcx, %rcx
  6845. negq %rcx
  6846. movq %rdx, %rax
  6847. addq %rcx, %rax
  6848. jmp conclusion
  6849. \end{lstlisting}
  6850. \end{minipage}
  6851. $\Rightarrow\qquad$
  6852. \begin{minipage}{0.23\textwidth}
  6853. \begin{lstlisting}
  6854. movq $1, %rcx
  6855. movq $42, %rsi
  6856. addq $7, %rcx
  6857. movq %rcx, %rdx
  6858. addq %rsi, %rdx
  6859. negq %rcx
  6860. movq %rdx, %rax
  6861. addq %rcx, %rax
  6862. jmp conclusion
  6863. \end{lstlisting}
  6864. \end{minipage}
  6865. \end{center}
  6866. \fi}
  6867. {\if\edition\pythonEd\pythonColor
  6868. \begin{center}
  6869. \begin{minipage}{0.20\textwidth}
  6870. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6871. movq $1, v
  6872. movq $42, w
  6873. movq v, x
  6874. addq $7, x
  6875. movq x, y
  6876. movq x, z
  6877. addq w, z
  6878. movq y, tmp_0
  6879. negq tmp_0
  6880. movq z, tmp_1
  6881. addq tmp_0, tmp_1
  6882. movq tmp_1, %rdi
  6883. callq _print_int
  6884. \end{lstlisting}
  6885. \end{minipage}
  6886. ${\Rightarrow\qquad}$
  6887. \begin{minipage}{0.35\textwidth}
  6888. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6889. movq $1, %rcx
  6890. movq $42, -16(%rbp)
  6891. movq %rcx, %rcx
  6892. addq $7, %rcx
  6893. movq %rcx, %rcx
  6894. movq %rcx, -8(%rbp)
  6895. addq -16(%rbp), -8(%rbp)
  6896. movq %rcx, %rcx
  6897. negq %rcx
  6898. movq -8(%rbp), -8(%rbp)
  6899. addq %rcx, -8(%rbp)
  6900. movq -8(%rbp), %rdi
  6901. callq _print_int
  6902. \end{lstlisting}
  6903. \end{minipage}
  6904. ${\Rightarrow\qquad}$
  6905. \begin{minipage}{0.20\textwidth}
  6906. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6907. movq $1, %rcx
  6908. movq $42, -16(%rbp)
  6909. addq $7, %rcx
  6910. movq %rcx, -8(%rbp)
  6911. movq -16(%rbp), %rax
  6912. addq %rax, -8(%rbp)
  6913. negq %rcx
  6914. addq %rcx, -8(%rbp)
  6915. movq -8(%rbp), %rdi
  6916. callq print_int
  6917. \end{lstlisting}
  6918. \end{minipage}
  6919. \end{center}
  6920. \fi}
  6921. \begin{exercise}\normalfont\normalsize
  6922. Change your implementation of \code{allocate\_registers} to take move
  6923. biasing into account. Create two new tests that include at least one
  6924. opportunity for move biasing, and visually inspect the output x86
  6925. programs to make sure that your move biasing is working properly. Make
  6926. sure that your compiler still passes all the tests.
  6927. \end{exercise}
  6928. %To do: another neat challenge would be to do
  6929. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  6930. %% \subsection{Output of the Running Example}
  6931. %% \label{sec:reg-alloc-output}
  6932. % challenge: prioritize variables based on execution frequencies
  6933. % and the number of uses of a variable
  6934. % challenge: enhance the coloring algorithm using Chaitin's
  6935. % approach of prioritizing high-degree variables
  6936. % by removing low-degree variables (coloring them later)
  6937. % from the interference graph
  6938. \section{Further Reading}
  6939. \label{sec:register-allocation-further-reading}
  6940. Early register allocation algorithms were developed for Fortran
  6941. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  6942. of graph coloring began in the late 1970s and early 1980s with the
  6943. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  6944. algorithm is based on the following observation of
  6945. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  6946. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  6947. $v$ removed is also $k$ colorable. To see why, suppose that the
  6948. subgraph is $k$ colorable. At worst, the neighbors of $v$ are assigned
  6949. different colors, but because there are fewer than $k$ neighbors, there
  6950. will be one or more colors left over to use for coloring $v$ in $G$.
  6951. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  6952. less than $k$ from the graph and recursively colors the rest of the
  6953. graph. Upon returning from the recursion, it colors $v$ with one of
  6954. the available colors and returns. \citet{Chaitin:1982vn} augments
  6955. this algorithm to handle spilling as follows. If there are no vertices
  6956. of degree lower than $k$ then pick a vertex at random, spill it,
  6957. remove it from the graph, and proceed recursively to color the rest of
  6958. the graph.
  6959. Prior to coloring, \citet{Chaitin:1981vl} merged variables that are
  6960. move-related and that don't interfere with each other, in a process
  6961. called \emph{coalescing}. Although coalescing decreases the number of
  6962. moves, it can make the graph more difficult to
  6963. color. \citet{Briggs:1994kx} proposed \emph{conservative coalescing} in
  6964. which two variables are merged only if they have fewer than $k$
  6965. neighbors of high degree. \citet{George:1996aa} observes that
  6966. conservative coalescing is sometimes too conservative and made it more
  6967. aggressive by iterating the coalescing with the removal of low-degree
  6968. vertices.
  6969. %
  6970. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  6971. also proposed \emph{biased coloring}, in which a variable is assigned to
  6972. the same color as another move-related variable if possible, as
  6973. discussed in section~\ref{sec:move-biasing}.
  6974. %
  6975. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  6976. performs coalescing, graph coloring, and spill code insertion until
  6977. all variables have been assigned a location.
  6978. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  6979. spilled variables that don't have to be: a high-degree variable can be
  6980. colorable if many of its neighbors are assigned the same color.
  6981. \citet{Briggs:1994kx} proposed \emph{optimistic coloring}, in which a
  6982. high-degree vertex is not immediately spilled. Instead the decision is
  6983. deferred until after the recursive call, when it is apparent whether
  6984. there is an available color or not. We observe that this algorithm is
  6985. equivalent to the smallest-last ordering
  6986. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  6987. be registers and the rest to be stack locations.
  6988. %% biased coloring
  6989. Earlier editions of the compiler course at Indiana University
  6990. \citep{Dybvig:2010aa} were based on the algorithm of
  6991. \citet{Briggs:1994kx}.
  6992. The smallest-last ordering algorithm is one of many \emph{greedy}
  6993. coloring algorithms. A greedy coloring algorithm visits all the
  6994. vertices in a particular order and assigns each one the first
  6995. available color. An \emph{offline} greedy algorithm chooses the
  6996. ordering up front, prior to assigning colors. The algorithm of
  6997. \citet{Chaitin:1981vl} should be considered offline because the vertex
  6998. ordering does not depend on the colors assigned. Other orderings are
  6999. possible. For example, \citet{Chow:1984ys} ordered variables according
  7000. to an estimate of runtime cost.
  7001. An \emph{online} greedy coloring algorithm uses information about the
  7002. current assignment of colors to influence the order in which the
  7003. remaining vertices are colored. The saturation-based algorithm
  7004. described in this chapter is one such algorithm. We choose to use
  7005. saturation-based coloring because it is fun to introduce graph
  7006. coloring via sudoku!
  7007. A register allocator may choose to map each variable to just one
  7008. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  7009. variable to one or more locations. The latter can be achieved by
  7010. \emph{live range splitting}, where a variable is replaced by several
  7011. variables that each handle part of its live
  7012. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  7013. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  7014. %% replacement algorithm, bottom-up local
  7015. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  7016. %% Cooper: top-down (priority bassed), bottom-up
  7017. %% top-down
  7018. %% order variables by priority (estimated cost)
  7019. %% caveat: split variables into two groups:
  7020. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  7021. %% color the constrained ones first
  7022. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  7023. %% cite J. Cocke for an algorithm that colors variables
  7024. %% in a high-degree first ordering
  7025. %Register Allocation via Usage Counts, Freiburghouse CACM
  7026. \citet{Palsberg:2007si} observes that many of the interference graphs
  7027. that arise from Java programs in the JoeQ compiler are \emph{chordal};
  7028. that is, every cycle with four or more edges has an edge that is not
  7029. part of the cycle but that connects two vertices on the cycle. Such
  7030. graphs can be optimally colored by the greedy algorithm with a vertex
  7031. ordering determined by maximum cardinality search.
  7032. In situations in which compile time is of utmost importance, such as
  7033. in just-in-time compilers, graph coloring algorithms can be too
  7034. expensive, and the linear scan algorithm of \citet{Poletto:1999uq} may
  7035. be more appropriate.
  7036. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7037. {\if\edition\racketEd
  7038. \addtocontents{toc}{\newpage}
  7039. \fi}
  7040. \chapter{Booleans and Conditionals}
  7041. \label{ch:Lif}
  7042. \setcounter{footnote}{0}
  7043. The \LangVar{} language has only a single kind of value, the
  7044. integers. In this chapter we add a second kind of value, the Booleans,
  7045. to create the \LangIf{} language. In \racket{Racket}\python{Python},
  7046. the Boolean\index{subject}{Boolean} values \emph{true} and \emph{false}
  7047. are written
  7048. \TRUE{}\index{subject}{True@\TRUE{}} and
  7049. \FALSE{}\index{subject}{False@\FALSE{}}, respectively. The \LangIf{}
  7050. language includes several operations that involve Booleans
  7051. (\key{and}\index{subject}{and@\ANDNAME{}},
  7052. \key{or}\index{subject}{or@\ORNAME{}},
  7053. \key{not}\index{subject}{not@\NOTNAME{}},
  7054. \racket{\key{eq?}\index{subject}{equal@\EQNAME{}}}\python{==},
  7055. \key{<}\index{subject}{lessthan@\texttt{<}}, etc.) and the
  7056. \key{if}\index{subject}{IfExp@\IFNAME{}}
  7057. conditional expression\index{subject}{conditional expression}%
  7058. \python{ and statement\index{subject}{IfStmt@\IFSTMTNAME{}}}.
  7059. With the addition of \key{if}, programs can have
  7060. nontrivial control flow\index{subject}{control flow}, which
  7061. %
  7062. \racket{impacts \code{explicate\_control} and liveness analysis.}%
  7063. %
  7064. \python{impacts liveness analysis and motivates a new pass named
  7065. \code{explicate\_control}.}
  7066. %
  7067. Also, because we now have two kinds of values, we need to handle
  7068. programs that apply an operation to the wrong kind of value, such as
  7069. \racket{\code{(not 1)}}\python{\code{not 1}}.
  7070. There are two language design options for such situations. One option
  7071. is to signal an error and the other is to provide a wider
  7072. interpretation of the operation. \racket{The Racket
  7073. language}\python{Python} uses a mixture of these two options,
  7074. depending on the operation and the kind of value. For example, the
  7075. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  7076. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  7077. treats nonzero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  7078. %
  7079. \racket{On the other hand, \code{(car 1)} results in a runtime error
  7080. in Racket because \code{car} expects a pair.}
  7081. %
  7082. \python{On the other hand, \code{1[0]} results in a runtime error
  7083. in Python because an ``\code{int} object is not subscriptable.''}
  7084. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  7085. design choices as \racket{Racket}\python{Python}, except that much of the
  7086. error detection happens at compile time instead of runtime\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  7087. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  7088. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed Racket}
  7089. \python{MyPy} reports a compile-time error
  7090. %
  7091. \racket{because Racket expects the type of the argument to be of the form
  7092. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  7093. %
  7094. \python{stating that a ``value of type \code{int} is not indexable.''}
  7095. The \LangIf{} language performs type checking during compilation just as
  7096. \racket{Typed Racket}\python{MyPy}. In chapter~\ref{ch:Ldyn} we study
  7097. the alternative choice, that is, a dynamically typed language like
  7098. \racket{Racket}\python{Python}. The \LangIf{} language is a subset of
  7099. \racket{Typed Racket}\python{MyPy}; for some operations we are more
  7100. restrictive, for example, rejecting \racket{\code{(not
  7101. 1)}}\python{\code{not 1}}. We keep the type checker for \LangIf{}
  7102. fairly simple because the focus of this book is on compilation and not
  7103. type systems, about which there are already several excellent
  7104. books~\citep{Pierce:2002hj,Pierce:2004fk,Harper2016,Pierce:SF2}.
  7105. This chapter is organized as follows. We begin by defining the syntax
  7106. and interpreter for the \LangIf{} language
  7107. (section~\ref{sec:lang-if}). We then introduce the idea of type
  7108. checking (aka semantic analysis\index{subject}{semantic analysis})
  7109. and define a type checker for \LangIf{}
  7110. (section~\ref{sec:type-check-Lif}).
  7111. %
  7112. \racket{To compile \LangIf{} we need to enlarge the intermediate
  7113. language \LangCVar{} into \LangCIf{} (section~\ref{sec:Cif}) and
  7114. \LangXInt{} into \LangXIf{} (section~\ref{sec:x86-if}).}
  7115. %
  7116. The remaining sections of this chapter discuss how Booleans and
  7117. conditional control flow require changes to the existing compiler
  7118. passes and the addition of new ones. We introduce the \code{shrink}
  7119. pass to translate some operators into others, thereby reducing the
  7120. number of operators that need to be handled in later passes.
  7121. %
  7122. The main event of this chapter is the \code{explicate\_control} pass
  7123. that is responsible for translating \code{if}s into conditional
  7124. \code{goto}s (section~\ref{sec:explicate-control-Lif}).
  7125. %
  7126. Regarding register allocation, there is the interesting question of
  7127. how to handle conditional \code{goto}s during liveness analysis.
  7128. \section{The \LangIf{} Language}
  7129. \label{sec:lang-if}
  7130. Definitions of the concrete syntax and abstract syntax of the
  7131. \LangIf{} language are shown in figures~\ref{fig:Lif-concrete-syntax}
  7132. and~\ref{fig:Lif-syntax}, respectively. The \LangIf{} language
  7133. includes all of \LangVar{} {(shown in gray)}, the Boolean
  7134. literals\index{subject}{literals}
  7135. \TRUE{} and \FALSE{}, \racket{and} the \code{if} expression%
  7136. \python{, and the \code{if} statement}. We expand the set of
  7137. operators to include
  7138. \begin{enumerate}
  7139. \item the logical operators \key{and}, \key{or}, and \key{not},
  7140. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  7141. for comparing integers or Booleans for equality, and
  7142. \item the \key{<}, \key{<=}\index{subject}{lessthaneq@\texttt{<=}},
  7143. \key{>}\index{subject}{greaterthan@\texttt{>}}, and
  7144. \key{>=}\index{subject}{greaterthaneq@\texttt{>=}} operations for
  7145. comparing integers.
  7146. \end{enumerate}
  7147. \racket{We reorganize the abstract syntax for the primitive
  7148. operations given in figure~\ref{fig:Lif-syntax}, using only one grammar
  7149. rule for all of them. This means that the grammar no longer checks
  7150. whether the arity of an operator matches the number of
  7151. arguments. That responsibility is moved to the type checker for
  7152. \LangIf{} (section~\ref{sec:type-check-Lif}).}
  7153. \newcommand{\LifGrammarRacket}{
  7154. \begin{array}{lcl}
  7155. \Type &::=& \key{Boolean} \\
  7156. \itm{bool} &::=& \TRUE \MID \FALSE \\
  7157. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7158. \Exp &::=& \itm{bool}
  7159. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  7160. \MID (\key{not}\;\Exp) \\
  7161. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  7162. \end{array}
  7163. }
  7164. \newcommand{\LifASTRacket}{
  7165. \begin{array}{lcl}
  7166. \Type &::=& \key{Boolean} \\
  7167. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  7168. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7169. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  7170. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  7171. \end{array}
  7172. }
  7173. \newcommand{\LintOpAST}{
  7174. \begin{array}{rcl}
  7175. \Type &::=& \key{Integer} \\
  7176. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  7177. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  7178. \end{array}
  7179. }
  7180. \newcommand{\LifGrammarPython}{
  7181. \begin{array}{rcl}
  7182. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7183. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  7184. \MID \key{not}~\Exp \\
  7185. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  7186. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  7187. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  7188. \end{array}
  7189. }
  7190. \newcommand{\LifASTPython}{
  7191. \begin{array}{lcl}
  7192. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  7193. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7194. \itm{bool} &::=& \code{True} \MID \code{False} \\
  7195. \Exp &::=& \BOOL{\itm{bool}}
  7196. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  7197. &\MID& \UNIOP{\key{Not()}}{\Exp}
  7198. \MID \CMP{\Exp}{\itm{cmp}}{\Exp} \\
  7199. &\MID& \IF{\Exp}{\Exp}{\Exp} \\
  7200. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  7201. \end{array}
  7202. }
  7203. \begin{figure}[tp]
  7204. \centering
  7205. \begin{tcolorbox}[colback=white]
  7206. {\if\edition\racketEd
  7207. \[
  7208. \begin{array}{l}
  7209. \gray{\LintGrammarRacket{}} \\ \hline
  7210. \gray{\LvarGrammarRacket{}} \\ \hline
  7211. \LifGrammarRacket{} \\
  7212. \begin{array}{lcl}
  7213. \LangIfM{} &::=& \Exp
  7214. \end{array}
  7215. \end{array}
  7216. \]
  7217. \fi}
  7218. {\if\edition\pythonEd\pythonColor
  7219. \[
  7220. \begin{array}{l}
  7221. \gray{\LintGrammarPython} \\ \hline
  7222. \gray{\LvarGrammarPython} \\ \hline
  7223. \LifGrammarPython \\
  7224. \begin{array}{rcl}
  7225. \LangIfM{} &::=& \Stmt^{*}
  7226. \end{array}
  7227. \end{array}
  7228. \]
  7229. \fi}
  7230. \end{tcolorbox}
  7231. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  7232. (figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  7233. \label{fig:Lif-concrete-syntax}
  7234. \index{subject}{Lif@\LangIf{} concrete syntax}
  7235. \end{figure}
  7236. \begin{figure}[tp]
  7237. %\begin{minipage}{0.66\textwidth}
  7238. \begin{tcolorbox}[colback=white]
  7239. \centering
  7240. {\if\edition\racketEd
  7241. \[
  7242. \begin{array}{l}
  7243. \gray{\LintOpAST} \\ \hline
  7244. \gray{\LvarASTRacket{}} \\ \hline
  7245. \LifASTRacket{} \\
  7246. \begin{array}{lcl}
  7247. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  7248. \end{array}
  7249. \end{array}
  7250. \]
  7251. \fi}
  7252. {\if\edition\pythonEd\pythonColor
  7253. \[
  7254. \begin{array}{l}
  7255. \gray{\LintASTPython} \\ \hline
  7256. \gray{\LvarASTPython} \\ \hline
  7257. \LifASTPython \\
  7258. \begin{array}{lcl}
  7259. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  7260. \end{array}
  7261. \end{array}
  7262. \]
  7263. \fi}
  7264. \end{tcolorbox}
  7265. %\end{minipage}
  7266. \python{\index{subject}{not equal@\NOTEQNAME{}}}
  7267. \python{
  7268. \index{subject}{BoolOp@\texttt{BoolOp}}
  7269. \index{subject}{Compare@\texttt{Compare}}
  7270. \index{subject}{Lt@\texttt{Lt}}
  7271. \index{subject}{LtE@\texttt{LtE}}
  7272. \index{subject}{Gt@\texttt{Gt}}
  7273. \index{subject}{GtE@\texttt{GtE}}
  7274. }
  7275. \caption{The abstract syntax of \LangIf{}.}
  7276. \label{fig:Lif-syntax}
  7277. \index{subject}{Lif@\LangIf{} abstract syntax}
  7278. \end{figure}
  7279. Figure~\ref{fig:interp-Lif} shows the definition of the interpreter
  7280. for \LangIf{}, which inherits from the interpreter for \LangVar{}
  7281. (figure~\ref{fig:interp-Lvar}). The constants \TRUE{} and \FALSE{}
  7282. evaluate to the corresponding Boolean values, behavior that is
  7283. inherited from the interpreter for \LangInt{}
  7284. (figure~\ref{fig:interp-Lint-class}).
  7285. The conditional expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates
  7286. expression $e_1$ and then either evaluates $e_2$ or $e_3$, depending
  7287. on whether $e_1$ produced \TRUE{} or \FALSE{}. The logical operations
  7288. \code{and}, \code{or}, and \code{not} behave according to propositional
  7289. logic. In addition, the \code{and} and \code{or} operations perform
  7290. \emph{short-circuit evaluation}.
  7291. %
  7292. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  7293. is not evaluated if $e_1$ evaluates to \FALSE{}.
  7294. %
  7295. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  7296. evaluated if $e_1$ evaluates to \TRUE{}.
  7297. \racket{With the increase in the number of primitive operations, the
  7298. interpreter would become repetitive without some care. We refactor
  7299. the case for \code{Prim}, moving the code that differs with each
  7300. operation into the \code{interp\_op} method shown in
  7301. figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  7302. \code{or} operations separately because of their short-circuiting
  7303. behavior.}
  7304. \begin{figure}[tbp]
  7305. \begin{tcolorbox}[colback=white]
  7306. {\if\edition\racketEd
  7307. \begin{lstlisting}
  7308. (define interp-Lif-class
  7309. (class interp-Lvar-class
  7310. (super-new)
  7311. (define/public (interp_op op) ...)
  7312. (define/override ((interp_exp env) e)
  7313. (define recur (interp_exp env))
  7314. (match e
  7315. [(Bool b) b]
  7316. [(If cnd thn els)
  7317. (match (recur cnd)
  7318. [#t (recur thn)]
  7319. [#f (recur els)])]
  7320. [(Prim 'and (list e1 e2))
  7321. (match (recur e1)
  7322. [#t (match (recur e2) [#t #t] [#f #f])]
  7323. [#f #f])]
  7324. [(Prim 'or (list e1 e2))
  7325. (define v1 (recur e1))
  7326. (match v1
  7327. [#t #t]
  7328. [#f (match (recur e2) [#t #t] [#f #f])])]
  7329. [(Prim op args)
  7330. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  7331. [else ((super interp_exp env) e)]))
  7332. ))
  7333. (define (interp_Lif p)
  7334. (send (new interp-Lif-class) interp_program p))
  7335. \end{lstlisting}
  7336. \fi}
  7337. {\if\edition\pythonEd\pythonColor
  7338. \begin{lstlisting}
  7339. class InterpLif(InterpLvar):
  7340. def interp_exp(self, e, env):
  7341. match e:
  7342. case IfExp(test, body, orelse):
  7343. if self.interp_exp(test, env):
  7344. return self.interp_exp(body, env)
  7345. else:
  7346. return self.interp_exp(orelse, env)
  7347. case UnaryOp(Not(), v):
  7348. return not self.interp_exp(v, env)
  7349. case BoolOp(And(), values):
  7350. if self.interp_exp(values[0], env):
  7351. return self.interp_exp(values[1], env)
  7352. else:
  7353. return False
  7354. case BoolOp(Or(), values):
  7355. if self.interp_exp(values[0], env):
  7356. return True
  7357. else:
  7358. return self.interp_exp(values[1], env)
  7359. case Compare(left, [cmp], [right]):
  7360. l = self.interp_exp(left, env)
  7361. r = self.interp_exp(right, env)
  7362. return self.interp_cmp(cmp)(l, r)
  7363. case _:
  7364. return super().interp_exp(e, env)
  7365. def interp_stmt(self, s, env, cont):
  7366. match s:
  7367. case If(test, body, orelse):
  7368. match self.interp_exp(test, env):
  7369. case True:
  7370. return self.interp_stmts(body + cont, env)
  7371. case False:
  7372. return self.interp_stmts(orelse + cont, env)
  7373. case _:
  7374. return super().interp_stmt(s, env, cont)
  7375. ...
  7376. \end{lstlisting}
  7377. \fi}
  7378. \end{tcolorbox}
  7379. \caption{Interpreter for the \LangIf{} language. \racket{(See
  7380. figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  7381. \python{(See figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  7382. \label{fig:interp-Lif}
  7383. \end{figure}
  7384. {\if\edition\racketEd
  7385. \begin{figure}[tbp]
  7386. \begin{tcolorbox}[colback=white]
  7387. \begin{lstlisting}
  7388. (define/public (interp_op op)
  7389. (match op
  7390. ['+ fx+]
  7391. ['- fx-]
  7392. ['read read-fixnum]
  7393. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  7394. ['eq? (lambda (v1 v2)
  7395. (cond [(or (and (fixnum? v1) (fixnum? v2))
  7396. (and (boolean? v1) (boolean? v2))
  7397. (and (vector? v1) (vector? v2)))
  7398. (eq? v1 v2)]))]
  7399. ['< (lambda (v1 v2)
  7400. (cond [(and (fixnum? v1) (fixnum? v2))
  7401. (< v1 v2)]))]
  7402. ['<= (lambda (v1 v2)
  7403. (cond [(and (fixnum? v1) (fixnum? v2))
  7404. (<= v1 v2)]))]
  7405. ['> (lambda (v1 v2)
  7406. (cond [(and (fixnum? v1) (fixnum? v2))
  7407. (> v1 v2)]))]
  7408. ['>= (lambda (v1 v2)
  7409. (cond [(and (fixnum? v1) (fixnum? v2))
  7410. (>= v1 v2)]))]
  7411. [else (error 'interp_op "unknown operator")]))
  7412. \end{lstlisting}
  7413. \end{tcolorbox}
  7414. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  7415. \label{fig:interp-op-Lif}
  7416. \end{figure}
  7417. \fi}
  7418. {\if\edition\pythonEd\pythonColor
  7419. \begin{figure}
  7420. \begin{tcolorbox}[colback=white]
  7421. \begin{lstlisting}
  7422. class InterpLif(InterpLvar):
  7423. ...
  7424. def interp_cmp(self, cmp):
  7425. match cmp:
  7426. case Lt():
  7427. return lambda x, y: x < y
  7428. case LtE():
  7429. return lambda x, y: x <= y
  7430. case Gt():
  7431. return lambda x, y: x > y
  7432. case GtE():
  7433. return lambda x, y: x >= y
  7434. case Eq():
  7435. return lambda x, y: x == y
  7436. case NotEq():
  7437. return lambda x, y: x != y
  7438. \end{lstlisting}
  7439. \end{tcolorbox}
  7440. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  7441. \label{fig:interp-cmp-Lif}
  7442. \end{figure}
  7443. \fi}
  7444. \section{Type Checking \LangIf{} Programs}
  7445. \label{sec:type-check-Lif}
  7446. It is helpful to think about type checking\index{subject}{type
  7447. checking} in two complementary ways. A type checker predicts the
  7448. type of value that will be produced by each expression in the program.
  7449. For \LangIf{}, we have just two types, \INTTY{} and \BOOLTY{}. So, a
  7450. type checker should predict that {\if\edition\racketEd
  7451. \begin{lstlisting}
  7452. (+ 10 (- (+ 12 20)))
  7453. \end{lstlisting}
  7454. \fi}
  7455. {\if\edition\pythonEd\pythonColor
  7456. \begin{lstlisting}
  7457. 10 + -(12 + 20)
  7458. \end{lstlisting}
  7459. \fi}
  7460. \noindent produces a value of type \INTTY{}, whereas
  7461. {\if\edition\racketEd
  7462. \begin{lstlisting}
  7463. (and (not #f) #t)
  7464. \end{lstlisting}
  7465. \fi}
  7466. {\if\edition\pythonEd\pythonColor
  7467. \begin{lstlisting}
  7468. (not False) and True
  7469. \end{lstlisting}
  7470. \fi}
  7471. \noindent produces a value of type \BOOLTY{}.
  7472. A second way to think about type checking is that it enforces a set of
  7473. rules about which operators can be applied to which kinds of
  7474. values. For example, our type checker for \LangIf{} signals an error
  7475. for the following expression:
  7476. %
  7477. {\if\edition\racketEd
  7478. \begin{lstlisting}
  7479. (not (+ 10 (- (+ 12 20))))
  7480. \end{lstlisting}
  7481. \fi}
  7482. {\if\edition\pythonEd\pythonColor
  7483. \begin{lstlisting}
  7484. not (10 + -(12 + 20))
  7485. \end{lstlisting}
  7486. \fi}
  7487. \noindent The subexpression
  7488. \racket{\code{(+ 10 (- (+ 12 20)))}}
  7489. \python{\code{(10 + -(12 + 20))}}
  7490. has type \INTTY{}, but the type checker enforces the rule that the
  7491. argument of \code{not} must be an expression of type \BOOLTY{}.
  7492. We implement type checking using classes and methods because they
  7493. provide the open recursion needed to reuse code as we extend the type
  7494. checker in subsequent chapters, analogous to the use of classes and methods
  7495. for the interpreters (section~\ref{sec:extensible-interp}).
  7496. We separate the type checker for the \LangVar{} subset into its own
  7497. class, shown in figure~\ref{fig:type-check-Lvar}. The type checker for
  7498. \LangIf{} is shown in figure~\ref{fig:type-check-Lif}, and it inherits
  7499. from the type checker for \LangVar{}. These type checkers are in the
  7500. files
  7501. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  7502. and
  7503. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  7504. of the support code.
  7505. %
  7506. Each type checker is a structurally recursive function over the AST.
  7507. Given an input expression \code{e}, the type checker either signals an
  7508. error or returns \racket{an expression and its type.}\python{its type.}
  7509. %
  7510. \racket{It returns an expression because there are situations in which
  7511. we want to change or update the expression.}
  7512. Next we discuss the \code{type\_check\_exp} function of \LangVar{}
  7513. shown in figure~\ref{fig:type-check-Lvar}. The type of an integer
  7514. constant is \INTTY{}. To handle variables, the type checker uses the
  7515. environment \code{env} to map variables to types.
  7516. %
  7517. \racket{Consider the case for \key{let}. We type check the
  7518. initializing expression to obtain its type \key{T} and then
  7519. associate type \code{T} with the variable \code{x} in the
  7520. environment used to type check the body of the \key{let}. Thus,
  7521. when the type checker encounters a use of variable \code{x}, it can
  7522. find its type in the environment.}
  7523. %
  7524. \python{Consider the case for assignment. We type check the
  7525. initializing expression to obtain its type \key{t}. If the variable
  7526. \code{id} is already in the environment because there was a
  7527. prior assignment, we check that this initializer has the same type
  7528. as the prior one. If this is the first assignment to the variable,
  7529. we associate type \code{t} with the variable \code{id} in the
  7530. environment. Thus, when the type checker encounters a use of
  7531. variable \code{x}, it can find its type in the environment.}
  7532. %
  7533. \racket{Regarding primitive operators, we recursively analyze the
  7534. arguments and then invoke \code{type\_check\_op} to check whether
  7535. the argument types are allowed.}
  7536. %
  7537. \python{Regarding addition, subtraction, and negation, we recursively analyze the
  7538. arguments, check that they have type \INTTY{}, and return \INTTY{}.}
  7539. \racket{Several auxiliary methods are used in the type checker. The
  7540. method \code{operator-types} defines a dictionary that maps the
  7541. operator names to their parameter and return types. The
  7542. \code{type-equal?} method determines whether two types are equal,
  7543. which for now simply dispatches to \code{equal?} (deep
  7544. equality). The \code{check-type-equal?} method triggers an error if
  7545. the two types are not equal. The \code{type-check-op} method looks
  7546. up the operator in the \code{operator-types} dictionary and then
  7547. checks whether the argument types are equal to the parameter types.
  7548. The result is the return type of the operator.}
  7549. %
  7550. \python{The auxiliary method \code{check\_type\_equal} triggers
  7551. an error if the two types are not equal.}
  7552. \begin{figure}[tbp]
  7553. \begin{tcolorbox}[colback=white]
  7554. {\if\edition\racketEd
  7555. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7556. (define type-check-Lvar-class
  7557. (class object%
  7558. (super-new)
  7559. (define/public (operator-types)
  7560. '((+ . ((Integer Integer) . Integer))
  7561. (- . ((Integer Integer) . Integer))
  7562. (read . (() . Integer))))
  7563. (define/public (type-equal? t1 t2) (equal? t1 t2))
  7564. (define/public (check-type-equal? t1 t2 e)
  7565. (unless (type-equal? t1 t2)
  7566. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  7567. (define/public (type-check-op op arg-types e)
  7568. (match (dict-ref (operator-types) op)
  7569. [`(,param-types . ,return-type)
  7570. (for ([at arg-types] [pt param-types])
  7571. (check-type-equal? at pt e))
  7572. return-type]
  7573. [else (error 'type-check-op "unrecognized ~a" op)]))
  7574. (define/public (type-check-exp env)
  7575. (lambda (e)
  7576. (match e
  7577. [(Int n) (values (Int n) 'Integer)]
  7578. [(Var x) (values (Var x) (dict-ref env x))]
  7579. [(Let x e body)
  7580. (define-values (e^ Te) ((type-check-exp env) e))
  7581. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  7582. (values (Let x e^ b) Tb)]
  7583. [(Prim op es)
  7584. (define-values (new-es ts)
  7585. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  7586. (values (Prim op new-es) (type-check-op op ts e))]
  7587. [else (error 'type-check-exp "couldn't match" e)])))
  7588. (define/public (type-check-program e)
  7589. (match e
  7590. [(Program info body)
  7591. (define-values (body^ Tb) ((type-check-exp '()) body))
  7592. (check-type-equal? Tb 'Integer body)
  7593. (Program info body^)]
  7594. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  7595. ))
  7596. (define (type-check-Lvar p)
  7597. (send (new type-check-Lvar-class) type-check-program p))
  7598. \end{lstlisting}
  7599. \fi}
  7600. {\if\edition\pythonEd\pythonColor
  7601. \begin{lstlisting}[escapechar=`]
  7602. class TypeCheckLvar:
  7603. def check_type_equal(self, t1, t2, e):
  7604. if t1 != t2:
  7605. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  7606. raise Exception(msg)
  7607. def type_check_exp(self, e, env):
  7608. match e:
  7609. case BinOp(left, (Add() | Sub()), right):
  7610. l = self.type_check_exp(left, env)
  7611. check_type_equal(l, int, left)
  7612. r = self.type_check_exp(right, env)
  7613. check_type_equal(r, int, right)
  7614. return int
  7615. case UnaryOp(USub(), v):
  7616. t = self.type_check_exp(v, env)
  7617. check_type_equal(t, int, v)
  7618. return int
  7619. case Name(id):
  7620. return env[id]
  7621. case Constant(value) if isinstance(value, int):
  7622. return int
  7623. case Call(Name('input_int'), []):
  7624. return int
  7625. def type_check_stmts(self, ss, env):
  7626. if len(ss) == 0:
  7627. return
  7628. match ss[0]:
  7629. case Assign([Name(id)], value):
  7630. t = self.type_check_exp(value, env)
  7631. if id in env:
  7632. check_type_equal(env[id], t, value)
  7633. else:
  7634. env[id] = t
  7635. return self.type_check_stmts(ss[1:], env)
  7636. case Expr(Call(Name('print'), [arg])):
  7637. t = self.type_check_exp(arg, env)
  7638. check_type_equal(t, int, arg)
  7639. return self.type_check_stmts(ss[1:], env)
  7640. case Expr(value):
  7641. self.type_check_exp(value, env)
  7642. return self.type_check_stmts(ss[1:], env)
  7643. def type_check_P(self, p):
  7644. match p:
  7645. case Module(body):
  7646. self.type_check_stmts(body, {})
  7647. \end{lstlisting}
  7648. \fi}
  7649. \end{tcolorbox}
  7650. \caption{Type checker for the \LangVar{} language.}
  7651. \label{fig:type-check-Lvar}
  7652. \end{figure}
  7653. \begin{figure}[tbp]
  7654. \begin{tcolorbox}[colback=white]
  7655. {\if\edition\racketEd
  7656. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7657. (define type-check-Lif-class
  7658. (class type-check-Lvar-class
  7659. (super-new)
  7660. (inherit check-type-equal?)
  7661. (define/override (operator-types)
  7662. (append '((and . ((Boolean Boolean) . Boolean))
  7663. (or . ((Boolean Boolean) . Boolean))
  7664. (< . ((Integer Integer) . Boolean))
  7665. (<= . ((Integer Integer) . Boolean))
  7666. (> . ((Integer Integer) . Boolean))
  7667. (>= . ((Integer Integer) . Boolean))
  7668. (not . ((Boolean) . Boolean)))
  7669. (super operator-types)))
  7670. (define/override (type-check-exp env)
  7671. (lambda (e)
  7672. (match e
  7673. [(Bool b) (values (Bool b) 'Boolean)]
  7674. [(Prim 'eq? (list e1 e2))
  7675. (define-values (e1^ T1) ((type-check-exp env) e1))
  7676. (define-values (e2^ T2) ((type-check-exp env) e2))
  7677. (check-type-equal? T1 T2 e)
  7678. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  7679. [(If cnd thn els)
  7680. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  7681. (define-values (thn^ Tt) ((type-check-exp env) thn))
  7682. (define-values (els^ Te) ((type-check-exp env) els))
  7683. (check-type-equal? Tc 'Boolean e)
  7684. (check-type-equal? Tt Te e)
  7685. (values (If cnd^ thn^ els^) Te)]
  7686. [else ((super type-check-exp env) e)])))
  7687. ))
  7688. (define (type-check-Lif p)
  7689. (send (new type-check-Lif-class) type-check-program p))
  7690. \end{lstlisting}
  7691. \fi}
  7692. {\if\edition\pythonEd\pythonColor
  7693. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7694. class TypeCheckLif(TypeCheckLvar):
  7695. def type_check_exp(self, e, env):
  7696. match e:
  7697. case Constant(value) if isinstance(value, bool):
  7698. return bool
  7699. case BinOp(left, Sub(), right):
  7700. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7701. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7702. return int
  7703. case UnaryOp(Not(), v):
  7704. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  7705. return bool
  7706. case BoolOp(op, values):
  7707. left = values[0] ; right = values[1]
  7708. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  7709. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  7710. return bool
  7711. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  7712. or isinstance(cmp, NotEq):
  7713. l = self.type_check_exp(left, env)
  7714. r = self.type_check_exp(right, env)
  7715. check_type_equal(l, r, e)
  7716. return bool
  7717. case Compare(left, [cmp], [right]):
  7718. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7719. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7720. return bool
  7721. case IfExp(test, body, orelse):
  7722. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7723. b = self.type_check_exp(body, env)
  7724. o = self.type_check_exp(orelse, env)
  7725. check_type_equal(b, o, e)
  7726. return b
  7727. case _:
  7728. return super().type_check_exp(e, env)
  7729. def type_check_stmts(self, ss, env):
  7730. if len(ss) == 0:
  7731. return
  7732. match ss[0]:
  7733. case If(test, body, orelse):
  7734. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7735. b = self.type_check_stmts(body, env)
  7736. o = self.type_check_stmts(orelse, env)
  7737. check_type_equal(b, o, ss[0])
  7738. return self.type_check_stmts(ss[1:], env)
  7739. case _:
  7740. return super().type_check_stmts(ss, env)
  7741. \end{lstlisting}
  7742. \fi}
  7743. \end{tcolorbox}
  7744. \caption{Type checker for the \LangIf{} language.}
  7745. \label{fig:type-check-Lif}
  7746. \end{figure}
  7747. The definition of the type checker for \LangIf{} is shown in
  7748. figure~\ref{fig:type-check-Lif}.
  7749. %
  7750. The type of a Boolean constant is \BOOLTY{}.
  7751. %
  7752. \racket{The \code{operator-types} function adds dictionary entries for
  7753. the new operators.}
  7754. %
  7755. \python{The logical \code{not} operator requires its argument to be a
  7756. \BOOLTY{} and produces a \BOOLTY{}. Similarly for the logical \code{and}
  7757. and logical \code{or} operators.}
  7758. %
  7759. The equality operator requires the two arguments to have the same type,
  7760. and therefore we handle it separately from the other operators.
  7761. %
  7762. \python{The other comparisons (less-than, etc.) require their
  7763. arguments to be of type \INTTY{}, and they produce a \BOOLTY{}.}
  7764. %
  7765. The condition of an \code{if} must
  7766. be of \BOOLTY{} type, and the two branches must have the same type.
  7767. \begin{exercise}\normalfont\normalsize
  7768. Create ten new test programs in \LangIf{}. Half the programs should
  7769. have a type error.
  7770. \racket{For those programs, create an empty file with the
  7771. same base name and with file extension \code{.tyerr}. For example, if
  7772. the test \code{cond\_test\_14.rkt}
  7773. is expected to error, then create
  7774. an empty file named \code{cond\_test\_14.tyerr}.
  7775. This indicates to \code{interp-tests} and
  7776. \code{compiler-tests} that a type error is expected.}
  7777. %
  7778. The other half of the test programs should not have type errors.
  7779. %
  7780. \racket{In the \code{run-tests.rkt} script, change the second argument
  7781. of \code{interp-tests} and \code{compiler-tests} to
  7782. \code{type-check-Lif}, which causes the type checker to run prior to
  7783. the compiler passes. Temporarily change the \code{passes} to an
  7784. empty list and run the script, thereby checking that the new test
  7785. programs either type check or do not, as intended.}
  7786. %
  7787. Run the test script to check that these test programs type check as
  7788. expected.
  7789. \end{exercise}
  7790. \clearpage
  7791. \section{The \LangCIf{} Intermediate Language}
  7792. \label{sec:Cif}
  7793. {\if\edition\racketEd
  7794. %
  7795. The \LangCIf{} language builds on \LangCVar{} by adding logical and
  7796. comparison operators to the \Exp{} nonterminal and the literals
  7797. \TRUE{} and \FALSE{} to the \Arg{} nonterminal. Regarding control
  7798. flow, \LangCIf{} adds \key{goto} and \code{if} statements to the
  7799. \Tail{} nonterminal. The condition of an \code{if} statement is a
  7800. comparison operation and the branches are \code{goto} statements,
  7801. making it straightforward to compile \code{if} statements to x86. The
  7802. \key{CProgram} construct contains an alist mapping labels to $\Tail$
  7803. expressions. A \code{goto} statement transfers control to the $\Tail$
  7804. expression corresponding to its label.
  7805. %
  7806. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  7807. \LangCIf{} intermediate language, and figure~\ref{fig:c1-syntax}
  7808. defines its abstract syntax.
  7809. %
  7810. \fi}
  7811. %
  7812. {\if\edition\pythonEd\pythonColor
  7813. %
  7814. The output of \key{explicate\_control} is a language similar to the
  7815. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  7816. \code{goto} statements, so we name it \LangCIf{}.
  7817. %
  7818. The \LangCIf{} language supports most of the operators in \LangIf{}, but
  7819. the arguments of operators are restricted to atomic expressions. The
  7820. \LangCIf{} language does not include \code{if} expressions, but it does
  7821. include a restricted form of \code{if} statement. The condition must be
  7822. a comparison, and the two branches may contain only \code{goto}
  7823. statements. These restrictions make it easier to translate \code{if}
  7824. statements to x86. The \LangCIf{} language also adds a \code{return}
  7825. statement to finish the program with a specified value.
  7826. %
  7827. The \key{CProgram} construct contains a dictionary mapping labels to
  7828. lists of statements that end with a \emph{tail} statement, which is
  7829. either a \code{return} statement, a \code{goto}, or an
  7830. \code{if} statement.
  7831. %
  7832. A \code{goto} transfers control to the sequence of statements
  7833. associated with its label.
  7834. %
  7835. Figure~\ref{fig:c1-concrete-syntax} shows the concrete syntax for \LangCIf{},
  7836. and figure~\ref{fig:c1-syntax} shows its
  7837. abstract syntax.
  7838. %
  7839. \fi}
  7840. %
  7841. \newcommand{\CifGrammarRacket}{
  7842. \begin{array}{lcl}
  7843. \Atm &::=& \itm{bool} \\
  7844. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7845. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  7846. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  7847. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  7848. \end{array}
  7849. }
  7850. \newcommand{\CifASTRacket}{
  7851. \begin{array}{lcl}
  7852. \Atm &::=& \BOOL{\itm{bool}} \\
  7853. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7854. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  7855. \Tail &::= & \GOTO{\itm{label}} \\
  7856. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  7857. \end{array}
  7858. }
  7859. \newcommand{\CifGrammarPython}{
  7860. \begin{array}{lcl}
  7861. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  7862. \Exp &::= & \Atm \MID \CREAD{}
  7863. \MID \CUNIOP{\key{-}}{\Atm}
  7864. \MID \CBINOP{\key{+}}{\Atm}{\Atm}
  7865. \MID \CBINOP{\key{-}}{\Atm}{\Atm}
  7866. \MID \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  7867. \Stmt &::=& \CPRINT{\Atm} \MID \Exp \MID \CASSIGN{\Var}{\Exp} \\
  7868. \Tail &::=& \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  7869. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  7870. \end{array}
  7871. }
  7872. \newcommand{\CifASTPython}{
  7873. \begin{array}{lcl}
  7874. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  7875. \Exp &::= & \Atm \MID \READ{}
  7876. \MID \UNIOP{\key{USub()}}{\Atm} \\
  7877. &\MID& \BINOP{\Atm}{\key{Sub()}}{\Atm}
  7878. \MID \BINOP{\Atm}{\key{Add()}}{\Atm} \\
  7879. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  7880. \Stmt &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  7881. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  7882. \Tail &::= & \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  7883. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  7884. \end{array}
  7885. }
  7886. \begin{figure}[tbp]
  7887. \begin{tcolorbox}[colback=white]
  7888. \small
  7889. {\if\edition\racketEd
  7890. \[
  7891. \begin{array}{l}
  7892. \gray{\CvarGrammarRacket} \\ \hline
  7893. \CifGrammarRacket \\
  7894. \begin{array}{lcl}
  7895. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  7896. \end{array}
  7897. \end{array}
  7898. \]
  7899. \fi}
  7900. {\if\edition\pythonEd\pythonColor
  7901. \[
  7902. \begin{array}{l}
  7903. \CifGrammarPython \\
  7904. \begin{array}{lcl}
  7905. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}\;\Tail) \ldots
  7906. \end{array}
  7907. \end{array}
  7908. \]
  7909. \fi}
  7910. \end{tcolorbox}
  7911. \caption{The concrete syntax of the \LangCIf{} intermediate language%
  7912. \racket{, an extension of \LangCVar{} (figure~\ref{fig:c0-concrete-syntax})}.}
  7913. \label{fig:c1-concrete-syntax}
  7914. \index{subject}{Cif@\LangCIf{} concrete syntax}
  7915. \end{figure}
  7916. \begin{figure}[tp]
  7917. \begin{tcolorbox}[colback=white]
  7918. \small
  7919. {\if\edition\racketEd
  7920. \[
  7921. \begin{array}{l}
  7922. \gray{\CvarASTRacket} \\ \hline
  7923. \CifASTRacket \\
  7924. \begin{array}{lcl}
  7925. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  7926. \end{array}
  7927. \end{array}
  7928. \]
  7929. \fi}
  7930. {\if\edition\pythonEd\pythonColor
  7931. \[
  7932. \begin{array}{l}
  7933. \CifASTPython \\
  7934. \begin{array}{lcl}
  7935. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\LS\Stmt,\ldots,\Tail\RS, \ldots \RC}
  7936. \end{array}
  7937. \end{array}
  7938. \]
  7939. \fi}
  7940. \end{tcolorbox}
  7941. \racket{
  7942. \index{subject}{IfStmt@\IFSTMTNAME{}}
  7943. }
  7944. \index{subject}{Goto@\texttt{Goto}}
  7945. \index{subject}{Return@\texttt{Return}}
  7946. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  7947. (figure~\ref{fig:c0-syntax})}.}
  7948. \label{fig:c1-syntax}
  7949. \index{subject}{Cif@\LangCIf{} abstract syntax}
  7950. \end{figure}
  7951. \section{The \LangXIf{} Language}
  7952. \label{sec:x86-if}
  7953. \index{subject}{x86}
  7954. To implement Booleans, the new logical operations, the
  7955. comparison operations, and the \key{if} expression\python{ and
  7956. statement}, we delve further into the x86
  7957. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} present
  7958. the definitions of the concrete and abstract syntax for the \LangXIf{}
  7959. subset of x86, which includes instructions for logical operations,
  7960. comparisons, and \racket{conditional} jumps.
  7961. %
  7962. \python{The abstract syntax for an \LangXIf{} program contains a
  7963. dictionary mapping labels to sequences of instructions, each of
  7964. which we refer to as a \emph{basic block}\index{subject}{basic
  7965. block}.}
  7966. As x86 does not provide direct support for Booleans, we take the usual
  7967. approach of encoding Booleans as integers, with \code{True} as $1$ and
  7968. \code{False} as $0$.
  7969. Furthermore, x86 does not provide an instruction that directly
  7970. implements logical negation (\code{not} in \LangIf{} and \LangCIf{}).
  7971. However, the \code{xorq} instruction can be used to encode \code{not}.
  7972. The \key{xorq} instruction takes two arguments, performs a pairwise
  7973. exclusive-or ($\mathrm{XOR}$) operation on each bit of its arguments,
  7974. and writes the results into its second argument. Recall the following
  7975. truth table for exclusive-or:
  7976. \begin{center}
  7977. \begin{tabular}{l|cc}
  7978. & 0 & 1 \\ \hline
  7979. 0 & 0 & 1 \\
  7980. 1 & 1 & 0
  7981. \end{tabular}
  7982. \end{center}
  7983. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  7984. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  7985. for the bit $1$, the result is the opposite of the second bit. Thus,
  7986. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  7987. the first argument, as follows, where $\Arg$ is the translation of
  7988. $\Atm$ to x86:
  7989. \[
  7990. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  7991. \qquad\Rightarrow\qquad
  7992. \begin{array}{l}
  7993. \key{movq}~ \Arg\key{,} \Var\\
  7994. \key{xorq}~ \key{\$1,} \Var
  7995. \end{array}
  7996. \]
  7997. \newcommand{\GrammarXIf}{
  7998. \begin{array}{lcl}
  7999. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  8000. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  8001. \Arg &::=& \key{\%}\itm{bytereg}\\
  8002. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  8003. \Instr &::=& \key{xorq}~\Arg\key{,}~\Arg
  8004. \MID \key{cmpq}~\Arg\key{,}~\Arg
  8005. \MID \key{set}cc~\Arg
  8006. \MID \key{movzbq}~\Arg\key{,}~\Arg \\
  8007. &\MID& \key{j}cc~\itm{label} \\
  8008. \end{array}
  8009. }
  8010. \begin{figure}[tp]
  8011. \begin{tcolorbox}[colback=white]
  8012. \[
  8013. \begin{array}{l}
  8014. \gray{\GrammarXInt} \\ \hline
  8015. \GrammarXIf \\
  8016. \begin{array}{lcl}
  8017. \LangXIfM{} &::= & \key{.globl main} \\
  8018. & & \key{main:} \; \Instr\ldots
  8019. \end{array}
  8020. \end{array}
  8021. \]
  8022. \end{tcolorbox}
  8023. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of figure~\ref{fig:x86-int-concrete}).}
  8024. \label{fig:x86-1-concrete}
  8025. \index{subject}{x86if@\LangXIf{} concrete syntax}
  8026. \end{figure}
  8027. \newcommand{\ASTXIfRacket}{
  8028. \begin{array}{lcl}
  8029. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  8030. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  8031. \Arg &::=& \BYTEREG{\itm{bytereg}} \\
  8032. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  8033. \Instr &::=& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  8034. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  8035. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  8036. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  8037. &\MID& \JMPIF{\itm{cc}}{\itm{label}}
  8038. \end{array}
  8039. }
  8040. \newcommand{\ASTXIfPython}{
  8041. \begin{array}{lcl}
  8042. \itm{bytereg} &::=& \skey{ah} \MID \skey{al} \MID \skey{bh} \MID \skey{bl}
  8043. \MID \skey{ch} \MID \skey{cl} \MID \skey{dh} \MID \skey{dl} \\
  8044. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  8045. \MID \BYTEREG{\itm{bytereg}} \\
  8046. \itm{cc} & ::= & \skey{e} \MID \skey{ne} \MID \skey{l} \MID \skey{le} \MID \skey{g} \MID \skey{ge} \\
  8047. \Instr &::=& \python{\JMP{\itm{label}}}\\
  8048. &\MID& \BININSTR{\scode{xorq}}{\Arg}{\Arg}
  8049. \MID \BININSTR{\scode{cmpq}}{\Arg}{\Arg}\\
  8050. &\MID& \UNIINSTR{\scode{set}\code{+}\itm{cc}}{\Arg}
  8051. \MID \BININSTR{\scode{movzbq}}{\Arg}{\Arg}\\
  8052. &\MID& \JMPIF{\itm{cc}}{\itm{label}}
  8053. \end{array}
  8054. }
  8055. \begin{figure}[tp]
  8056. \begin{tcolorbox}[colback=white]
  8057. \small
  8058. {\if\edition\racketEd
  8059. \[\arraycolsep=3pt
  8060. \begin{array}{l}
  8061. \gray{\ASTXIntRacket} \\ \hline
  8062. \ASTXIfRacket \\
  8063. \begin{array}{lcl}
  8064. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  8065. \end{array}
  8066. \end{array}
  8067. \]
  8068. \fi}
  8069. %
  8070. {\if\edition\pythonEd\pythonColor
  8071. \[
  8072. \begin{array}{l}
  8073. \gray{\ASTXIntPython} \\ \hline
  8074. \ASTXIfPython \\
  8075. \begin{array}{lcl}
  8076. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  8077. \end{array}
  8078. \end{array}
  8079. \]
  8080. \fi}
  8081. \end{tcolorbox}
  8082. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} shown in figure~\ref{fig:x86-int-ast}).}
  8083. \label{fig:x86-1}
  8084. \index{subject}{x86if@\LangXIf{} abstract syntax}
  8085. \end{figure}
  8086. Next we consider the x86 instructions that are relevant for compiling
  8087. the comparison operations. The \key{cmpq} instruction compares its two
  8088. arguments to determine whether one argument is less than, equal to, or
  8089. greater than the other argument. The \key{cmpq} instruction is unusual
  8090. regarding the order of its arguments and where the result is
  8091. placed. The argument order is backward: if you want to test whether
  8092. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  8093. \key{cmpq} is placed in the special EFLAGS register. This register
  8094. cannot be accessed directly, but it can be queried by a number of
  8095. instructions, including the \key{set} instruction. The instruction
  8096. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$,
  8097. depending on whether the contents of the EFLAGS register matches the
  8098. condition code \itm{cc}: \key{e} for equal, \key{l} for less, \key{le}
  8099. for less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal.
  8100. The \key{set} instruction has a quirk in that its destination argument
  8101. must be a single-byte register, such as \code{al} (\code{l} for lower bits) or
  8102. \code{ah} (\code{h} for higher bits), which are part of the \code{rax}
  8103. register. Thankfully, the \key{movzbq} instruction can be used to
  8104. move from a single-byte register to a normal 64-bit register. The
  8105. abstract syntax for the \code{set} instruction differs from the
  8106. concrete syntax in that it separates the instruction name from the
  8107. condition code.
  8108. \python{The x86 instructions for jumping are relevant to the
  8109. compilation of \key{if} expressions.}
  8110. %
  8111. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  8112. counter to the address of the instruction after the specified
  8113. label.}
  8114. %
  8115. \racket{The x86 instruction for conditional jump is relevant to the
  8116. compilation of \key{if} expressions.}
  8117. %
  8118. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  8119. counter to point to the instruction after \itm{label}, depending on
  8120. whether the result in the EFLAGS register matches the condition code
  8121. \itm{cc}; otherwise, the jump instruction falls through to the next
  8122. instruction. Like the abstract syntax for \code{set}, the abstract
  8123. syntax for conditional jump separates the instruction name from the
  8124. condition code. For example, \JMPIF{\QUOTE{\code{le}}}{\QUOTE{\code{foo}}}
  8125. corresponds to \code{jle foo}. Because the conditional jump instruction
  8126. relies on the EFLAGS register, it is common for it to be immediately preceded by
  8127. a \key{cmpq} instruction to set the EFLAGS register.
  8128. \section{Shrink the \LangIf{} Language}
  8129. \label{sec:shrink-Lif}
  8130. The \code{shrink} pass translates some of the language features into
  8131. other features, thereby reducing the kinds of expressions in the
  8132. language. For example, the short-circuiting nature of the \code{and}
  8133. and \code{or} logical operators can be expressed using \code{if} as
  8134. follows.
  8135. \begin{align*}
  8136. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  8137. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  8138. \end{align*}
  8139. By performing these translations in the front end of the compiler,
  8140. subsequent passes of the compiler can be shorter.
  8141. On the other hand, translations sometimes reduce the efficiency of the
  8142. generated code by increasing the number of instructions. For example,
  8143. expressing subtraction in terms of addition and negation
  8144. \[
  8145. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  8146. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  8147. \]
  8148. produces code with two x86 instructions (\code{negq} and \code{addq})
  8149. instead of just one (\code{subq}). Thus, we do not recommend
  8150. translating subtraction into addition and negation.
  8151. \begin{exercise}\normalfont\normalsize
  8152. %
  8153. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  8154. the language by translating them to \code{if} expressions in \LangIf{}.
  8155. %
  8156. Create four test programs that involve these operators.
  8157. %
  8158. {\if\edition\racketEd
  8159. In the \code{run-tests.rkt} script, add the following entry for
  8160. \code{shrink} to the list of passes (it should be the only pass at
  8161. this point).
  8162. \begin{lstlisting}
  8163. (list "shrink" shrink interp_Lif type-check-Lif)
  8164. \end{lstlisting}
  8165. This instructs \code{interp-tests} to run the interpreter
  8166. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  8167. output of \code{shrink}.
  8168. \fi}
  8169. %
  8170. Run the script to test your compiler on all the test programs.
  8171. \end{exercise}
  8172. {\if\edition\racketEd
  8173. \section{Uniquify Variables}
  8174. \label{sec:uniquify-Lif}
  8175. Add cases to \code{uniquify\_exp} to handle Boolean constants and
  8176. \code{if} expressions.
  8177. \begin{exercise}\normalfont\normalsize
  8178. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  8179. entry to the list of \code{passes} in the \code{run-tests.rkt} script:
  8180. \begin{lstlisting}
  8181. (list "uniquify" uniquify interp_Lif type_check_Lif)
  8182. \end{lstlisting}
  8183. Run the script to test your compiler.
  8184. \end{exercise}
  8185. \fi}
  8186. \section{Remove Complex Operands}
  8187. \label{sec:remove-complex-opera-Lif}
  8188. The output language of \code{remove\_complex\_operands} is
  8189. \LangIfANF{} (figure~\ref{fig:Lif-anf-syntax}), the monadic
  8190. normal form of \LangIf{}. A Boolean constant is an atomic expression,
  8191. but the \code{if} expression is not. All three subexpressions of an
  8192. \code{if} are allowed to be complex expressions, but the operands of
  8193. the \code{not} operator and comparison operators must be atomic.
  8194. %
  8195. \python{We add a new language form, the \code{Begin} expression, to aid
  8196. in the translation of \code{if} expressions. When we recursively
  8197. process the two branches of the \code{if}, we generate temporary
  8198. variables and their initializing expressions. However, these
  8199. expressions may contain side effects and should be executed only
  8200. when the condition of the \code{if} is true (for the ``then''
  8201. branch) or false (for the ``else'' branch). The \code{Begin} expression
  8202. provides a way to initialize the temporary variables within the two branches
  8203. of the \code{if} expression. In general, the $\BEGIN{ss}{e}$
  8204. form executes the statements $ss$ and then returns the result of
  8205. expression $e$.}
  8206. Add cases to the \code{rco\_exp} and \code{rco\_atom} functions for
  8207. the new features in \LangIf{}. In recursively processing
  8208. subexpressions, recall that you should invoke \code{rco\_atom} when
  8209. the output needs to be an \Atm{} (as specified in the grammar for
  8210. \LangIfANF{}) and invoke \code{rco\_exp} when the output should be
  8211. \Exp{}. Regarding \code{if}, it is particularly important
  8212. \emph{not} to replace its condition with a temporary variable, because
  8213. that would interfere with the generation of high-quality output in the
  8214. upcoming \code{explicate\_control} pass.
  8215. \newcommand{\LifMonadASTRacket}{
  8216. \begin{array}{rcl}
  8217. \Atm &::=& \BOOL{\itm{bool}}\\
  8218. \Exp &::=& \UNIOP{\key{not}}{\Atm}
  8219. \MID \BINOP{\itm{cmp}}{\Atm}{\Atm}
  8220. \MID \IF{\Exp}{\Exp}{\Exp}
  8221. \end{array}
  8222. }
  8223. \newcommand{\LifMonadASTPython}{
  8224. \begin{array}{rcl}
  8225. \Atm &::=& \BOOL{\itm{bool}}\\
  8226. \Exp &::=& \UNIOP{\key{Not()}}{\Exp}
  8227. \MID \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  8228. &\MID& \IF{\Exp}{\Exp}{\Exp}
  8229. \MID \BEGIN{\Stmt^{*}}{\Exp}\\
  8230. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}
  8231. \end{array}
  8232. }
  8233. \begin{figure}[tp]
  8234. \centering
  8235. \begin{tcolorbox}[colback=white]
  8236. {\if\edition\racketEd
  8237. \[
  8238. \begin{array}{l}
  8239. \gray{\LvarMonadASTRacket} \\ \hline
  8240. \LifMonadASTRacket \\
  8241. \begin{array}{rcl}
  8242. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  8243. \end{array}
  8244. \end{array}
  8245. \]
  8246. \fi}
  8247. {\if\edition\pythonEd\pythonColor
  8248. \[
  8249. \begin{array}{l}
  8250. \gray{\LvarMonadASTPython} \\ \hline
  8251. \LifMonadASTPython \\
  8252. \begin{array}{rcl}
  8253. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  8254. \end{array}
  8255. \end{array}
  8256. \]
  8257. \fi}
  8258. \end{tcolorbox}
  8259. \python{\index{subject}{Begin@\texttt{Begin}}}
  8260. \caption{\LangIfANF{} is \LangIf{} in monadic normal form
  8261. (extends \LangVarANF in figure~\ref{fig:Lvar-anf-syntax}).}
  8262. \label{fig:Lif-anf-syntax}
  8263. \index{subject}{Lifmon@\LangIfANF{} abstract syntax}
  8264. \end{figure}
  8265. \begin{exercise}\normalfont\normalsize
  8266. %
  8267. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  8268. and \code{rco\_exp} functions.
  8269. %
  8270. Create three new \LangIf{} programs that exercise the interesting
  8271. code in this pass.
  8272. %
  8273. {\if\edition\racketEd
  8274. In the \code{run-tests.rkt} script, add the following entry to the
  8275. list of \code{passes} and then run the script to test your compiler.
  8276. \begin{lstlisting}
  8277. (list "remove-complex" remove_complex_operands interp-Lif type-check-Lif)
  8278. \end{lstlisting}
  8279. \fi}
  8280. \end{exercise}
  8281. \section{Explicate Control}
  8282. \label{sec:explicate-control-Lif}
  8283. \racket{Recall that the purpose of \code{explicate\_control} is to
  8284. make the order of evaluation explicit in the syntax of the program.
  8285. With the addition of \key{if}, this becomes more interesting.}
  8286. %
  8287. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  8288. %
  8289. The main challenge to overcome is that the condition of an \key{if}
  8290. can be an arbitrary expression in \LangIf{}, whereas in \LangCIf{} the
  8291. condition must be a comparison.
  8292. As a motivating example, consider the following program that has an
  8293. \key{if} expression nested in the condition of another \key{if}:%
  8294. \python{\footnote{Programmers rarely write nested \code{if}
  8295. expressions, but they do write nested expressions involving
  8296. logical \code{and}, which, as we have seen, translates to
  8297. \code{if}.}}
  8298. % cond_test_41.rkt, if_lt_eq.py
  8299. \begin{center}
  8300. \begin{minipage}{0.96\textwidth}
  8301. {\if\edition\racketEd
  8302. \begin{lstlisting}
  8303. (let ([x (read)])
  8304. (let ([y (read)])
  8305. (if (if (< x 1) (eq? x 0) (eq? x 2))
  8306. (+ y 2)
  8307. (+ y 10))))
  8308. \end{lstlisting}
  8309. \fi}
  8310. {\if\edition\pythonEd\pythonColor
  8311. \begin{lstlisting}
  8312. x = input_int()
  8313. y = input_int()
  8314. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  8315. \end{lstlisting}
  8316. \fi}
  8317. \end{minipage}
  8318. \end{center}
  8319. %
  8320. The naive way to compile \key{if} and the comparison operations would
  8321. be to handle each of them in isolation, regardless of their context.
  8322. Each comparison would be translated into a \key{cmpq} instruction
  8323. followed by several instructions to move the result from the EFLAGS
  8324. register into a general purpose register or stack location. Each
  8325. \key{if} would be translated into a \key{cmpq} instruction followed by
  8326. a conditional jump. The generated code for the inner \key{if} in this
  8327. example would be as follows:
  8328. \begin{center}
  8329. \begin{minipage}{0.96\textwidth}
  8330. \begin{lstlisting}
  8331. cmpq $1, x
  8332. setl %al
  8333. movzbq %al, tmp
  8334. cmpq $1, tmp
  8335. je then_branch_1
  8336. jmp else_branch_1
  8337. \end{lstlisting}
  8338. \end{minipage}
  8339. \end{center}
  8340. Notice that the three instructions starting with \code{setl} are
  8341. redundant; the conditional jump could come immediately after the first
  8342. \code{cmpq}.
  8343. Our goal is to compile \key{if} expressions so that the relevant
  8344. comparison instruction appears directly before the conditional jump.
  8345. For example, we want to generate the following code for the inner
  8346. \code{if}:
  8347. \begin{center}
  8348. \begin{minipage}{0.96\textwidth}
  8349. \begin{lstlisting}
  8350. cmpq $1, x
  8351. jl then_branch_1
  8352. jmp else_branch_1
  8353. \end{lstlisting}
  8354. \end{minipage}
  8355. \end{center}
  8356. One way to achieve this goal is to reorganize the code at the level of
  8357. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  8358. the following code:
  8359. \begin{center}
  8360. \begin{minipage}{0.96\textwidth}
  8361. {\if\edition\racketEd
  8362. \begin{lstlisting}
  8363. (let ([x (read)])
  8364. (let ([y (read)])
  8365. (if (< x 1)
  8366. (if (eq? x 0)
  8367. (+ y 2)
  8368. (+ y 10))
  8369. (if (eq? x 2)
  8370. (+ y 2)
  8371. (+ y 10)))))
  8372. \end{lstlisting}
  8373. \fi}
  8374. {\if\edition\pythonEd\pythonColor
  8375. \begin{lstlisting}
  8376. x = input_int()
  8377. y = input_int()
  8378. print(((y + 2) if x == 0 else (y + 10)) \
  8379. if (x < 1) \
  8380. else ((y + 2) if (x == 2) else (y + 10)))
  8381. \end{lstlisting}
  8382. \fi}
  8383. \end{minipage}
  8384. \end{center}
  8385. Unfortunately, this approach duplicates the two branches from the
  8386. outer \code{if}, and a compiler must never duplicate code! After all,
  8387. the two branches could be very large expressions.
  8388. How can we apply this transformation without duplicating code? In
  8389. other words, how can two different parts of a program refer to one
  8390. piece of code?
  8391. %
  8392. The answer is that we must move away from abstract syntax \emph{trees}
  8393. and instead use \emph{graphs}.
  8394. %
  8395. At the level of x86 assembly, this is straightforward because we can
  8396. label the code for each branch and insert jumps in all the places that
  8397. need to execute the branch. In this way, jump instructions are edges
  8398. in the graph and the basic blocks are the nodes.
  8399. %
  8400. Likewise, our language \LangCIf{} provides the ability to label a
  8401. sequence of statements and to jump to a label via \code{goto}.
  8402. As a preview of what \code{explicate\_control} will do,
  8403. figure~\ref{fig:explicate-control-s1-38} shows the output of
  8404. \code{explicate\_control} on this example. Note how the condition of
  8405. every \code{if} is a comparison operation and that we have not
  8406. duplicated any code but instead have used labels and \code{goto} to
  8407. enable sharing of code.
  8408. \begin{figure}[tbp]
  8409. \begin{tcolorbox}[colback=white]
  8410. {\if\edition\racketEd
  8411. \begin{tabular}{lll}
  8412. \begin{minipage}{0.4\textwidth}
  8413. % cond_test_41.rkt
  8414. \begin{lstlisting}
  8415. (let ([x (read)])
  8416. (let ([y (read)])
  8417. (if (if (< x 1)
  8418. (eq? x 0)
  8419. (eq? x 2))
  8420. (+ y 2)
  8421. (+ y 10))))
  8422. \end{lstlisting}
  8423. \end{minipage}
  8424. &
  8425. $\Rightarrow$
  8426. &
  8427. \begin{minipage}{0.55\textwidth}
  8428. \begin{lstlisting}
  8429. start:
  8430. x = (read);
  8431. y = (read);
  8432. if (< x 1)
  8433. goto block_4;
  8434. else
  8435. goto block_5;
  8436. block_4:
  8437. if (eq? x 0)
  8438. goto block_2;
  8439. else
  8440. goto block_3;
  8441. block_5:
  8442. if (eq? x 2)
  8443. goto block_2;
  8444. else
  8445. goto block_3;
  8446. block_2:
  8447. return (+ y 2);
  8448. block_3:
  8449. return (+ y 10);
  8450. \end{lstlisting}
  8451. \end{minipage}
  8452. \end{tabular}
  8453. \fi}
  8454. {\if\edition\pythonEd\pythonColor
  8455. \begin{tabular}{lll}
  8456. \begin{minipage}{0.4\textwidth}
  8457. % tests/if/if_lt_eq.py
  8458. \begin{lstlisting}
  8459. x = input_int()
  8460. y = input_int()
  8461. print(y + 2 \
  8462. if (x == 0 \
  8463. if x < 1 \
  8464. else x == 2) \
  8465. else y + 10)
  8466. \end{lstlisting}
  8467. \end{minipage}
  8468. &
  8469. $\Rightarrow\qquad$
  8470. &
  8471. \begin{minipage}{0.55\textwidth}
  8472. \begin{lstlisting}
  8473. start:
  8474. x = input_int()
  8475. y = input_int()
  8476. if x < 1:
  8477. goto block_6
  8478. else:
  8479. goto block_7
  8480. block_6:
  8481. if x == 0:
  8482. goto block_4
  8483. else:
  8484. goto block_5
  8485. block_7:
  8486. if x == 2:
  8487. goto block_4
  8488. else:
  8489. goto block_5
  8490. block_4:
  8491. tmp.82 = (y + 2)
  8492. goto block_3
  8493. block_5:
  8494. tmp.82 = (y + 10)
  8495. goto block_3
  8496. block_3:
  8497. print(tmp.82)
  8498. return 0
  8499. \end{lstlisting}
  8500. \end{minipage}
  8501. \end{tabular}
  8502. \fi}
  8503. \end{tcolorbox}
  8504. \caption{Translation from \LangIf{} to \LangCIf{}
  8505. via the \code{explicate\_control}.}
  8506. \label{fig:explicate-control-s1-38}
  8507. \end{figure}
  8508. {\if\edition\racketEd
  8509. %
  8510. Recall that in section~\ref{sec:explicate-control-Lvar} we implement
  8511. \code{explicate\_control} for \LangVar{} using two recursive
  8512. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  8513. former function translates expressions in tail position, whereas the
  8514. latter function translates expressions on the right-hand side of a
  8515. \key{let}. With the addition of \key{if} expression to \LangIf{} we
  8516. have a new kind of position to deal with: the predicate position of
  8517. the \key{if}. We need another function, \code{explicate\_pred}, that
  8518. decides how to compile an \key{if} by analyzing its condition. So,
  8519. \code{explicate\_pred} takes an \LangIf{} expression and two
  8520. \LangCIf{} tails for the \emph{then} branch and \emph{else} branch
  8521. and outputs a tail. In the following paragraphs we discuss specific
  8522. cases in the \code{explicate\_tail}, \code{explicate\_assign}, and
  8523. \code{explicate\_pred} functions.
  8524. %
  8525. \fi}
  8526. %
  8527. {\if\edition\pythonEd\pythonColor
  8528. %
  8529. We recommend implementing \code{explicate\_control} using the
  8530. following four auxiliary functions.
  8531. \begin{description}
  8532. \item[\code{explicate\_effect}] generates code for expressions as
  8533. statements, so their result is ignored and only their side effects
  8534. matter.
  8535. \item[\code{explicate\_assign}] generates code for expressions
  8536. on the right-hand side of an assignment.
  8537. \item[\code{explicate\_pred}] generates code for an \code{if}
  8538. expression or statement by analyzing the condition expression.
  8539. \item[\code{explicate\_stmt}] generates code for statements.
  8540. \end{description}
  8541. These four functions should build the dictionary of basic blocks. The
  8542. following auxiliary function \code{create\_block} is used to create a
  8543. new basic block from a list of statements. If the list just contains a
  8544. \code{goto}, then \code{create\_block} returns the list. Otherwise
  8545. \code{create\_block} creates a new basic block and returns a
  8546. \code{goto} to its label.
  8547. \begin{center}
  8548. \begin{minipage}{\textwidth}
  8549. \begin{lstlisting}
  8550. def create_block(stmts, basic_blocks):
  8551. match stmts:
  8552. case [Goto(l)]:
  8553. return stmts
  8554. case _:
  8555. label = label_name(generate_name('block'))
  8556. basic_blocks[label] = stmts
  8557. return [Goto(label)]
  8558. \end{lstlisting}
  8559. \end{minipage}
  8560. \end{center}
  8561. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  8562. \code{explicate\_control} pass.
  8563. The \code{explicate\_effect} function has three parameters: (1) the
  8564. expression to be compiled; (2) the already-compiled code for this
  8565. expression's \emph{continuation}, that is, the list of statements that
  8566. should execute after this expression; and (3) the dictionary of
  8567. generated basic blocks. The \code{explicate\_effect} function returns
  8568. a list of \LangCIf{} statements and it may add to the dictionary of
  8569. basic blocks.
  8570. %
  8571. Let's consider a few of the cases for the expression to be compiled.
  8572. If the expression to be compiled is a constant, then it can be
  8573. discarded because it has no side effects. If it's a \CREAD{}, then it
  8574. has a side effect and should be preserved. So the expression should be
  8575. translated into a statement using the \code{Expr} AST class. If the
  8576. expression to be compiled is an \code{if} expression, we translate the
  8577. two branches using \code{explicate\_effect} and then translate the
  8578. condition expression using \code{explicate\_pred}, which generates
  8579. code for the entire \code{if}.
  8580. The \code{explicate\_assign} function has four parameters: (1) the
  8581. right-hand side of the assignment, (2) the left-hand side of the
  8582. assignment (the variable), (3) the continuation, and (4) the dictionary
  8583. of basic blocks. The \code{explicate\_assign} function returns a list
  8584. of \LangCIf{} statements, and it may add to the dictionary of basic
  8585. blocks.
  8586. When the right-hand side is an \code{if} expression, there is some
  8587. work to do. In particular, the two branches should be translated using
  8588. \code{explicate\_assign}, and the condition expression should be
  8589. translated using \code{explicate\_pred}. Otherwise we can simply
  8590. generate an assignment statement, with the given left- and right-hand
  8591. sides, concatenated with its continuation.
  8592. \begin{figure}[tbp]
  8593. \begin{tcolorbox}[colback=white]
  8594. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8595. def explicate_effect(e, cont, basic_blocks):
  8596. match e:
  8597. case IfExp(test, body, orelse):
  8598. ...
  8599. case Call(func, args):
  8600. ...
  8601. case Begin(body, result):
  8602. ...
  8603. case _:
  8604. ...
  8605. def explicate_assign(rhs, lhs, cont, basic_blocks):
  8606. match rhs:
  8607. case IfExp(test, body, orelse):
  8608. ...
  8609. case Begin(body, result):
  8610. ...
  8611. case _:
  8612. return [Assign([lhs], rhs)] + cont
  8613. def explicate_pred(cnd, thn, els, basic_blocks):
  8614. match cnd:
  8615. case Compare(left, [op], [right]):
  8616. goto_thn = create_block(thn, basic_blocks)
  8617. goto_els = create_block(els, basic_blocks)
  8618. return [If(cnd, goto_thn, goto_els)]
  8619. case Constant(True):
  8620. return thn;
  8621. case Constant(False):
  8622. return els;
  8623. case UnaryOp(Not(), operand):
  8624. ...
  8625. case IfExp(test, body, orelse):
  8626. ...
  8627. case Begin(body, result):
  8628. ...
  8629. case _:
  8630. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  8631. create_block(els, basic_blocks),
  8632. create_block(thn, basic_blocks))]
  8633. def explicate_stmt(s, cont, basic_blocks):
  8634. match s:
  8635. case Assign([lhs], rhs):
  8636. return explicate_assign(rhs, lhs, cont, basic_blocks)
  8637. case Expr(value):
  8638. return explicate_effect(value, cont, basic_blocks)
  8639. case If(test, body, orelse):
  8640. ...
  8641. def explicate_control(p):
  8642. match p:
  8643. case Module(body):
  8644. new_body = [Return(Constant(0))]
  8645. basic_blocks = {}
  8646. for s in reversed(body):
  8647. new_body = explicate_stmt(s, new_body, basic_blocks)
  8648. basic_blocks[label_name('start')] = new_body
  8649. return CProgram(basic_blocks)
  8650. \end{lstlisting}
  8651. \end{tcolorbox}
  8652. \caption{Skeleton for the \code{explicate\_control} pass.}
  8653. \label{fig:explicate-control-Lif}
  8654. \end{figure}
  8655. \fi}
  8656. {\if\edition\racketEd
  8657. \subsection{Explicate Tail and Assign}
  8658. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  8659. additional cases for Boolean constants and \key{if}. The cases for
  8660. \code{if} should recursively compile the two branches using either
  8661. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  8662. cases should then invoke \code{explicate\_pred} on the condition
  8663. expression, passing in the generated code for the two branches. For
  8664. example, consider the following program with an \code{if} in tail
  8665. position.
  8666. % cond_test_6.rkt
  8667. \begin{lstlisting}
  8668. (let ([x (read)])
  8669. (if (eq? x 0) 42 777))
  8670. \end{lstlisting}
  8671. The two branches are recursively compiled to return statements. We
  8672. then delegate to \code{explicate\_pred}, passing the condition
  8673. \code{(eq? x 0)} and the two return statements. We return to this
  8674. example shortly when we discuss \code{explicate\_pred}.
  8675. Next let us consider a program with an \code{if} on the right-hand
  8676. side of a \code{let}.
  8677. \begin{lstlisting}
  8678. (let ([y (read)])
  8679. (let ([x (if (eq? y 0) 40 777)])
  8680. (+ x 2)))
  8681. \end{lstlisting}
  8682. Note that the body of the inner \code{let} will have already been
  8683. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  8684. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  8685. to recursively process both branches of the \code{if}, and we do not
  8686. want to duplicate code, so we generate the following block using an
  8687. auxiliary function named \code{create\_block}, discussed in the next
  8688. section.
  8689. \begin{lstlisting}
  8690. block_6:
  8691. return (+ x 2)
  8692. \end{lstlisting}
  8693. We then use \code{goto block\_6;} as the \code{cont} argument for
  8694. compiling the branches. So the two branches compile to
  8695. \begin{center}
  8696. \begin{minipage}{0.2\textwidth}
  8697. \begin{lstlisting}
  8698. x = 40;
  8699. goto block_6;
  8700. \end{lstlisting}
  8701. \end{minipage}
  8702. \hspace{0.5in} and \hspace{0.5in}
  8703. \begin{minipage}{0.2\textwidth}
  8704. \begin{lstlisting}
  8705. x = 777;
  8706. goto block_6;
  8707. \end{lstlisting}
  8708. \end{minipage}
  8709. \end{center}
  8710. Finally, we delegate to \code{explicate\_pred}, passing the condition
  8711. \code{(eq? y 0)} and the previously presented code for the branches.
  8712. \subsection{Create Block}
  8713. We recommend implementing the \code{create\_block} auxiliary function
  8714. as follows, using a global variable \code{basic-blocks} to store a
  8715. dictionary that maps labels to $\Tail$ expressions. The main idea is
  8716. that \code{create\_block} generates a new label and then associates
  8717. the given \code{tail} with the new label in the \code{basic-blocks}
  8718. dictionary. The result of \code{create\_block} is a \code{Goto} to the
  8719. new label. However, if the given \code{tail} is already a \code{Goto},
  8720. then there is no need to generate a new label and entry in
  8721. \code{basic-blocks}; we can simply return that \code{Goto}.
  8722. %
  8723. \begin{lstlisting}
  8724. (define (create_block tail)
  8725. (match tail
  8726. [(Goto label) (Goto label)]
  8727. [else
  8728. (let ([label (gensym 'block)])
  8729. (set! basic-blocks (cons (cons label tail) basic-blocks))
  8730. (Goto label))]))
  8731. \end{lstlisting}
  8732. \fi}
  8733. {\if\edition\racketEd
  8734. \subsection{Explicate Predicate}
  8735. The skeleton for the \code{explicate\_pred} function is given in
  8736. figure~\ref{fig:explicate-pred}. It takes three parameters: (1)
  8737. \code{cnd}, the condition expression of the \code{if}; (2) \code{thn},
  8738. the code generated by explicate for the \emph{then} branch; and (3)
  8739. \code{els}, the code generated by explicate for the \emph{else}
  8740. branch. The \code{explicate\_pred} function should match on
  8741. \code{cnd} with a case for every kind of expression that can have type
  8742. \BOOLTY{}.
  8743. \begin{figure}[tbp]
  8744. \begin{tcolorbox}[colback=white]
  8745. \begin{lstlisting}
  8746. (define (explicate_pred cnd thn els)
  8747. (match cnd
  8748. [(Var x) ___]
  8749. [(Let x rhs body) ___]
  8750. [(Prim 'not (list e)) ___]
  8751. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  8752. (IfStmt (Prim op es) (create_block thn)
  8753. (create_block els))]
  8754. [(Bool b) (if b thn els)]
  8755. [(If cnd^ thn^ els^) ___]
  8756. [else (error "explicate_pred unhandled case" cnd)]))
  8757. \end{lstlisting}
  8758. \end{tcolorbox}
  8759. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  8760. \label{fig:explicate-pred}
  8761. \end{figure}
  8762. \fi}
  8763. %
  8764. {\if\edition\pythonEd\pythonColor
  8765. The \code{explicate\_pred} function has four parameters: (1) the
  8766. condition expression, (2) the generated statements for the \emph{then}
  8767. branch, (3) the generated statements for the \emph{else} branch, and
  8768. (4) the dictionary of basic blocks. The \code{explicate\_pred}
  8769. function returns a list of statements, and it adds to the dictionary
  8770. of basic blocks.
  8771. \fi}
  8772. Consider the case for comparison operators. We translate the
  8773. comparison to an \code{if} statement whose branches are \code{goto}
  8774. statements created by applying \code{create\_block} to the \code{thn}
  8775. and \code{els} parameters. Let us illustrate this translation by
  8776. returning to the program with an \code{if} expression in tail
  8777. position, shown next. We invoke \code{explicate\_pred} on its
  8778. condition \racket{\code{(eq? x 0)}}\python{\code{x == 0}}.
  8779. %
  8780. {\if\edition\racketEd
  8781. \begin{lstlisting}
  8782. (let ([x (read)])
  8783. (if (eq? x 0) 42 777))
  8784. \end{lstlisting}
  8785. \fi}
  8786. %
  8787. {\if\edition\pythonEd\pythonColor
  8788. \begin{lstlisting}
  8789. x = input_int()
  8790. 42 if x == 0 else 777
  8791. \end{lstlisting}
  8792. \fi}
  8793. %
  8794. \noindent The two branches \code{42} and \code{777} were already
  8795. compiled to \code{return} statements, from which we now create the
  8796. following blocks:
  8797. %
  8798. \begin{center}
  8799. \begin{minipage}{\textwidth}
  8800. \begin{lstlisting}
  8801. block_1:
  8802. return 42;
  8803. block_2:
  8804. return 777;
  8805. \end{lstlisting}
  8806. \end{minipage}
  8807. \end{center}
  8808. %
  8809. After that, \code{explicate\_pred} compiles the comparison
  8810. \racket{\code{(eq? x 0)}}
  8811. \python{\code{x == 0}}
  8812. to the following \code{if} statement:
  8813. %
  8814. {\if\edition\racketEd
  8815. \begin{center}
  8816. \begin{minipage}{\textwidth}
  8817. \begin{lstlisting}
  8818. if (eq? x 0)
  8819. goto block_1;
  8820. else
  8821. goto block_2;
  8822. \end{lstlisting}
  8823. \end{minipage}
  8824. \end{center}
  8825. \fi}
  8826. {\if\edition\pythonEd\pythonColor
  8827. \begin{center}
  8828. \begin{minipage}{\textwidth}
  8829. \begin{lstlisting}
  8830. if x == 0:
  8831. goto block_1;
  8832. else
  8833. goto block_2;
  8834. \end{lstlisting}
  8835. \end{minipage}
  8836. \end{center}
  8837. \fi}
  8838. Next consider the case for Boolean constants. We perform a kind of
  8839. partial evaluation\index{subject}{partialevaluation@partial evaluation} and output
  8840. either the \code{thn} or \code{els} parameter, depending on whether the
  8841. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  8842. following program:
  8843. {\if\edition\racketEd
  8844. \begin{lstlisting}
  8845. (if #t 42 777)
  8846. \end{lstlisting}
  8847. \fi}
  8848. {\if\edition\pythonEd\pythonColor
  8849. \begin{lstlisting}
  8850. 42 if True else 777
  8851. \end{lstlisting}
  8852. \fi}
  8853. %
  8854. \noindent Again, the two branches \code{42} and \code{777} were
  8855. compiled to \code{return} statements, so \code{explicate\_pred}
  8856. compiles the constant \racket{\code{\#t}} \python{\code{True}} to the
  8857. code for the \emph{then} branch.
  8858. \begin{lstlisting}
  8859. return 42;
  8860. \end{lstlisting}
  8861. This case demonstrates that we sometimes discard the \code{thn} or
  8862. \code{els} blocks that are input to \code{explicate\_pred}.
  8863. The case for \key{if} expressions in \code{explicate\_pred} is
  8864. particularly illuminating because it deals with the challenges
  8865. discussed previously regarding nested \key{if} expressions
  8866. (figure~\ref{fig:explicate-control-s1-38}). The
  8867. \racket{\lstinline{thn^}}\python{\code{body}} and
  8868. \racket{\lstinline{els^}}\python{\code{orelse}} branches of the
  8869. \key{if} inherit their context from the current one, that is,
  8870. predicate context. So, you should recursively apply
  8871. \code{explicate\_pred} to the
  8872. \racket{\lstinline{thn^}}\python{\code{body}} and
  8873. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  8874. those recursive calls, pass \code{thn} and \code{els} as the extra
  8875. parameters. Thus, \code{thn} and \code{els} may be used twice, once
  8876. inside each recursive call. As discussed previously, to avoid
  8877. duplicating code, we need to add them to the dictionary of basic
  8878. blocks so that we can instead refer to them by name and execute them
  8879. with a \key{goto}.
  8880. {\if\edition\pythonEd\pythonColor
  8881. %
  8882. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  8883. three parameters: (1) the statement to be compiled, (2) the code for its
  8884. continuation, and (3) the dictionary of basic blocks. The
  8885. \code{explicate\_stmt} returns a list of statements, and it may add to
  8886. the dictionary of basic blocks. The cases for assignment and an
  8887. expression-statement are given in full in the skeleton code: they
  8888. simply dispatch to \code{explicate\_assign} and
  8889. \code{explicate\_effect}, respectively. The case for \code{if}
  8890. statements is not given; it is similar to the case for \code{if}
  8891. expressions.
  8892. The \code{explicate\_control} function itself is given in
  8893. figure~\ref{fig:explicate-control-Lif}. It applies
  8894. \code{explicate\_stmt} to each statement in the program, from back to
  8895. front. Thus, the result so far, stored in \code{new\_body}, can be
  8896. used as the continuation parameter in the next call to
  8897. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  8898. \code{Return} statement. Once complete, we add the \code{new\_body} to
  8899. the dictionary of basic blocks, labeling it the ``start'' block.
  8900. %
  8901. \fi}
  8902. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  8903. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  8904. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  8905. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  8906. %% results from the two recursive calls. We complete the case for
  8907. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  8908. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  8909. %% the result $B_5$.
  8910. %% \[
  8911. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  8912. %% \quad\Rightarrow\quad
  8913. %% B_5
  8914. %% \]
  8915. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  8916. %% inherit the current context, so they are in tail position. Thus, the
  8917. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  8918. %% \code{explicate\_tail}.
  8919. %% %
  8920. %% We need to pass $B_0$ as the accumulator argument for both of these
  8921. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  8922. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  8923. %% to the control-flow graph and obtain a promised goto $G_0$.
  8924. %% %
  8925. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  8926. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  8927. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  8928. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  8929. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  8930. %% \[
  8931. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  8932. %% \]
  8933. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  8934. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  8935. %% should not be confused with the labels for the blocks that appear in
  8936. %% the generated code. We initially construct unlabeled blocks; we only
  8937. %% attach labels to blocks when we add them to the control-flow graph, as
  8938. %% we see in the next case.
  8939. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  8940. %% function. The context of the \key{if} is an assignment to some
  8941. %% variable $x$ and then the control continues to some promised block
  8942. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  8943. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  8944. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  8945. %% branches of the \key{if} inherit the current context, so they are in
  8946. %% assignment positions. Let $B_2$ be the result of applying
  8947. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  8948. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  8949. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  8950. %% the result of applying \code{explicate\_pred} to the predicate
  8951. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  8952. %% translates to the promise $B_4$.
  8953. %% \[
  8954. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  8955. %% \]
  8956. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  8957. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  8958. \code{remove\_complex\_operands} pass and then the
  8959. \code{explicate\_control} pass on the example program. We walk through
  8960. the output program.
  8961. %
  8962. Following the order of evaluation in the output of
  8963. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  8964. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  8965. in the predicate of the inner \key{if}. In the output of
  8966. \code{explicate\_control}, in the
  8967. block labeled \code{start}, two assignment statements are followed by an
  8968. \code{if} statement that branches to \racket{\code{block\_4}}\python{\code{block\_6}}
  8969. or \racket{\code{block\_5}}\python{\code{block\_7}}.
  8970. The blocks associated with those labels contain the
  8971. translations of the code
  8972. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8973. and
  8974. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  8975. respectively. In particular, we start
  8976. \racket{\code{block\_4}}\python{\code{block\_6}}
  8977. with the comparison
  8978. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8979. and then branch to \racket{\code{block\_2}}\python{\code{block\_4}}
  8980. or \racket{\code{block\_3}}\python{\code{block\_5}},
  8981. which correspond to the two branches of the outer \key{if}, that is,
  8982. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  8983. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  8984. %
  8985. The story for \racket{\code{block\_5}}\python{\code{block\_7}}
  8986. is similar to that of \racket{\code{block\_4}}\python{\code{block\_6}}.
  8987. %
  8988. \python{The \code{block\_3} is the translation of the \code{print} statement.}
  8989. {\if\edition\racketEd
  8990. \subsection{Interactions between Explicate and Shrink}
  8991. The way in which the \code{shrink} pass transforms logical operations
  8992. such as \code{and} and \code{or} can impact the quality of code
  8993. generated by \code{explicate\_control}. For example, consider the
  8994. following program:
  8995. % cond_test_21.rkt, and_eq_input.py
  8996. \begin{lstlisting}
  8997. (if (and (eq? (read) 0) (eq? (read) 1))
  8998. 0
  8999. 42)
  9000. \end{lstlisting}
  9001. The \code{and} operation should transform into something that the
  9002. \code{explicate\_pred} function can analyze and descend through to
  9003. reach the underlying \code{eq?} conditions. Ideally, for this program
  9004. your \code{explicate\_control} pass should generate code similar to
  9005. the following:
  9006. \begin{center}
  9007. \begin{minipage}{\textwidth}
  9008. \begin{lstlisting}
  9009. start:
  9010. tmp1 = (read);
  9011. if (eq? tmp1 0) goto block40;
  9012. else goto block39;
  9013. block40:
  9014. tmp2 = (read);
  9015. if (eq? tmp2 1) goto block38;
  9016. else goto block39;
  9017. block38:
  9018. return 0;
  9019. block39:
  9020. return 42;
  9021. \end{lstlisting}
  9022. \end{minipage}
  9023. \end{center}
  9024. \fi}
  9025. \begin{exercise}\normalfont\normalsize
  9026. \racket{
  9027. Implement the pass \code{explicate\_control} by adding the cases for
  9028. Boolean constants and \key{if} to the \code{explicate\_tail} and
  9029. \code{explicate\_assign} functions. Implement the auxiliary function
  9030. \code{explicate\_pred} for predicate contexts.}
  9031. \python{Implement \code{explicate\_control} pass with its
  9032. four auxiliary functions.}
  9033. %
  9034. Create test cases that exercise all the new cases in the code for
  9035. this pass.
  9036. %
  9037. {\if\edition\racketEd
  9038. Add the following entry to the list of \code{passes} in
  9039. \code{run-tests.rkt}:
  9040. \begin{lstlisting}
  9041. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  9042. \end{lstlisting}
  9043. and then run \code{run-tests.rkt} to test your compiler.
  9044. \fi}
  9045. \end{exercise}
  9046. \section{Select Instructions}
  9047. \label{sec:select-Lif}
  9048. \index{subject}{select instructions}
  9049. The \code{select\_instructions} pass translates \LangCIf{} to
  9050. \LangXIfVar{}.
  9051. %
  9052. \racket{Recall that we implement this pass using three auxiliary
  9053. functions, one for each of the nonterminals $\Atm$, $\Stmt$, and
  9054. $\Tail$ in \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  9055. %
  9056. \racket{For $\Atm$, we have new cases for the Booleans.}
  9057. %
  9058. \python{We begin with the Boolean constants.}
  9059. As previously discussed, we encode them as integers.
  9060. \[
  9061. \TRUE{} \quad\Rightarrow\quad \key{1}
  9062. \qquad\qquad
  9063. \FALSE{} \quad\Rightarrow\quad \key{0}
  9064. \]
  9065. For translating statements, we discuss some of the cases. The
  9066. \code{not} operation can be implemented in terms of \code{xorq}, as we
  9067. discussed at the beginning of this section. Given an assignment, if
  9068. the left-hand-side variable is the same as the argument of \code{not},
  9069. then just the \code{xorq} instruction suffices.
  9070. \[
  9071. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  9072. \quad\Rightarrow\quad
  9073. \key{xorq}~\key{\$}1\key{,}~\Var
  9074. \]
  9075. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  9076. semantics of x86. In the following translation, let $\Arg$ be the
  9077. result of translating $\Atm$ to x86.
  9078. \[
  9079. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  9080. \quad\Rightarrow\quad
  9081. \begin{array}{l}
  9082. \key{movq}~\Arg\key{,}~\Var\\
  9083. \key{xorq}~\key{\$}1\key{,}~\Var
  9084. \end{array}
  9085. \]
  9086. Next consider the cases for equality comparisons. Translating this
  9087. operation to x86 is slightly involved due to the unusual nature of the
  9088. \key{cmpq} instruction that we discussed in section~\ref{sec:x86-if}.
  9089. We recommend translating an assignment with an equality on the
  9090. right-hand side into a sequence of three instructions. Let $\Arg_1$
  9091. be the translation of $\Atm_1$ to x86 and likewise for $\Arg_2$.\\
  9092. \begin{tabular}{lll}
  9093. \begin{minipage}{0.4\textwidth}
  9094. $\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$
  9095. \end{minipage}
  9096. &
  9097. $\Rightarrow$
  9098. &
  9099. \begin{minipage}{0.4\textwidth}
  9100. \begin{lstlisting}
  9101. cmpq |$\Arg_2$|, |$\Arg_1$|
  9102. sete %al
  9103. movzbq %al, |$\Var$|
  9104. \end{lstlisting}
  9105. \end{minipage}
  9106. \end{tabular} \\
  9107. The translations for the other comparison operators are similar to
  9108. this but use different condition codes for the \code{set} instruction.
  9109. \racket{Regarding the $\Tail$ nonterminal, we have two new cases:
  9110. \key{goto} and \key{if} statements. Both are straightforward to
  9111. translate to x86.}
  9112. %
  9113. A \key{goto} statement becomes a jump instruction.
  9114. \[
  9115. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  9116. \]
  9117. %
  9118. An \key{if} statement becomes a compare instruction followed by a
  9119. conditional jump (for the \emph{then} branch), and the fall-through is to
  9120. a regular jump (for the \emph{else} branch). Again, $\Arg_1$ and $\Arg_2$
  9121. are the translations of $\Atm_1$ and $\Atm_2$, respectively.\\
  9122. \begin{tabular}{lll}
  9123. \begin{minipage}{0.4\textwidth}
  9124. \begin{lstlisting}
  9125. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  9126. goto |$\ell_1$||$\racket{\key{;}}$|
  9127. else|$\python{\key{:}}$|
  9128. goto |$\ell_2$||$\racket{\key{;}}$|
  9129. \end{lstlisting}
  9130. \end{minipage}
  9131. &
  9132. $\Rightarrow$
  9133. &
  9134. \begin{minipage}{0.4\textwidth}
  9135. \begin{lstlisting}
  9136. cmpq |$\Arg_2$|, |$\Arg_1$|
  9137. je |$\ell_1$|
  9138. jmp |$\ell_2$|
  9139. \end{lstlisting}
  9140. \end{minipage}
  9141. \end{tabular} \\
  9142. Again, the translations for the other comparison operators are similar to this
  9143. but use different condition codes for the conditional jump instruction.
  9144. \python{Regarding the \key{return} statement, we recommend treating it
  9145. as an assignment to the \key{rax} register followed by a jump to the
  9146. conclusion of the \code{main} function. (See section~\ref{sec:prelude-conclusion-cond} for more about the conclusion of \code{main}.)}
  9147. \begin{exercise}\normalfont\normalsize
  9148. Expand your \code{select\_instructions} pass to handle the new
  9149. features of the \LangCIf{} language.
  9150. %
  9151. {\if\edition\racketEd
  9152. Add the following entry to the list of \code{passes} in
  9153. \code{run-tests.rkt}
  9154. \begin{lstlisting}
  9155. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  9156. \end{lstlisting}
  9157. \fi}
  9158. %
  9159. Run the script to test your compiler on all the test programs.
  9160. \end{exercise}
  9161. \section{Register Allocation}
  9162. \label{sec:register-allocation-Lif}
  9163. \index{subject}{register allocation}
  9164. The changes required for compiling \LangIf{} affect liveness analysis,
  9165. building the interference graph, and assigning homes, but the graph
  9166. coloring algorithm itself does not change.
  9167. \subsection{Liveness Analysis}
  9168. \label{sec:liveness-analysis-Lif}
  9169. \index{subject}{liveness analysis}
  9170. Recall that for \LangVar{} we implemented liveness analysis for a
  9171. single basic block (section~\ref{sec:liveness-analysis-Lvar}). With
  9172. the addition of \key{if} expressions to \LangIf{},
  9173. \code{explicate\_control} produces many basic blocks.
  9174. %% We recommend that you create a new auxiliary function named
  9175. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  9176. %% control-flow graph.
  9177. The first question is, in what order should we process the basic blocks?
  9178. Recall that to perform liveness analysis on a basic block we need to
  9179. know the live-after set for the last instruction in the block. If a
  9180. basic block has no successors (i.e., contains no jumps to other
  9181. blocks), then it has an empty live-after set and we can immediately
  9182. apply liveness analysis to it. If a basic block has some successors,
  9183. then we need to complete liveness analysis on those blocks
  9184. first. These ordering constraints are the reverse of a
  9185. \emph{topological order}\index{subject}{topological order} on a graph
  9186. representation of the program. In particular, the \emph{control flow
  9187. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  9188. of a program has a node for each basic block and an edge for each jump
  9189. from one block to another. It is straightforward to generate a CFG
  9190. from the dictionary of basic blocks. One then transposes the CFG and
  9191. applies the topological sort algorithm.
  9192. %
  9193. %
  9194. \racket{We recommend using the \code{tsort} and \code{transpose}
  9195. functions of the Racket \code{graph} package to accomplish this.}
  9196. %
  9197. \python{We provide implementations of \code{topological\_sort} and
  9198. \code{transpose} in the file \code{graph.py} of the support code.}
  9199. %
  9200. As an aside, a topological ordering is only guaranteed to exist if the
  9201. graph does not contain any cycles. This is the case for the
  9202. control-flow graphs that we generate from \LangIf{} programs.
  9203. However, in chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  9204. and learn how to handle cycles in the control-flow graph.
  9205. \racket{You need to construct a directed graph to represent the
  9206. control-flow graph. Do not use the \code{directed-graph} of the
  9207. \code{graph} package because that allows at most one edge
  9208. between each pair of vertices, whereas a control-flow graph may have
  9209. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  9210. file in the support code implements a graph representation that
  9211. allows multiple edges between a pair of vertices.}
  9212. {\if\edition\racketEd
  9213. The next question is how to analyze jump instructions. Recall that in
  9214. section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  9215. \code{label->live} that maps each label to the set of live locations
  9216. at the beginning of its block. We use \code{label->live} to determine
  9217. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  9218. that we have many basic blocks, \code{label->live} needs to be updated
  9219. as we process the blocks. In particular, after performing liveness
  9220. analysis on a block, we take the live-before set of its first
  9221. instruction and associate that with the block's label in the
  9222. \code{label->live} alist.
  9223. \fi}
  9224. %
  9225. {\if\edition\pythonEd\pythonColor
  9226. %
  9227. The next question is how to analyze jump instructions. The locations
  9228. that are live before a \code{jmp} should be the locations in
  9229. $L_{\mathsf{before}}$ at the target of the jump. So we recommend
  9230. maintaining a dictionary named \code{live\_before\_block} that maps each
  9231. label to the $L_{\mathsf{before}}$ for the first instruction in its
  9232. block. After performing liveness analysis on each block, we take the
  9233. live-before set of its first instruction and associate that with the
  9234. block's label in the \code{live\_before\_block} dictionary.
  9235. %
  9236. \fi}
  9237. In \LangXIfVar{} we also have the conditional jump
  9238. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  9239. this instruction is particularly interesting because during
  9240. compilation, we do not know which way a conditional jump will go. Thus
  9241. we do not know whether to use the live-before set for the block
  9242. associated with the $\itm{label}$ or the live-before set for the
  9243. following instruction. So we use both, by taking the union of the
  9244. live-before sets from the following instruction and from the mapping
  9245. for $\itm{label}$ in
  9246. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  9247. The auxiliary functions for computing the variables in an
  9248. instruction's argument and for computing the variables read-from ($R$)
  9249. or written-to ($W$) by an instruction need to be updated to handle the
  9250. new kinds of arguments and instructions in \LangXIfVar{}.
  9251. \begin{exercise}\normalfont\normalsize
  9252. {\if\edition\racketEd
  9253. %
  9254. Update the \code{uncover\_live} pass to apply liveness analysis to
  9255. every basic block in the program.
  9256. %
  9257. Add the following entry to the list of \code{passes} in the
  9258. \code{run-tests.rkt} script:
  9259. \begin{lstlisting}
  9260. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  9261. \end{lstlisting}
  9262. \fi}
  9263. {\if\edition\pythonEd\pythonColor
  9264. %
  9265. Update the \code{uncover\_live} function to perform liveness analysis,
  9266. in reverse topological order, on all the basic blocks in the
  9267. program.
  9268. %
  9269. \fi}
  9270. % Check that the live-after sets that you generate for
  9271. % example X matches the following... -Jeremy
  9272. \end{exercise}
  9273. \subsection{Build the Interference Graph}
  9274. \label{sec:build-interference-Lif}
  9275. Many of the new instructions in \LangXIfVar{} can be handled in the
  9276. same way as the instructions in \LangXVar{}.
  9277. % Thus, if your code was
  9278. % already quite general, it will not need to be changed to handle the
  9279. % new instructions. If your code is not general enough, we recommend that
  9280. % you change your code to be more general. For example, you can factor
  9281. % out the computing of the the read and write sets for each kind of
  9282. % instruction into auxiliary functions.
  9283. %
  9284. Some instructions, such as the \key{movzbq} instruction, require special care,
  9285. similar to the \key{movq} instruction. Refer to rule number 1 in
  9286. section~\ref{sec:build-interference}.
  9287. \begin{exercise}\normalfont\normalsize
  9288. Update the \code{build\_interference} pass for \LangXIfVar{}.
  9289. {\if\edition\racketEd
  9290. Add the following entries to the list of \code{passes} in the
  9291. \code{run-tests.rkt} script:
  9292. \begin{lstlisting}
  9293. (list "build_interference" build_interference interp-pseudo-x86-1)
  9294. (list "allocate_registers" allocate_registers interp-pseudo-x86-1)
  9295. \end{lstlisting}
  9296. \fi}
  9297. % Check that the interference graph that you generate for
  9298. % example X matches the following graph G... -Jeremy
  9299. \end{exercise}
  9300. \section{Patch Instructions}
  9301. The new instructions \key{cmpq} and \key{movzbq} have some special
  9302. restrictions that need to be handled in the \code{patch\_instructions}
  9303. pass.
  9304. %
  9305. The second argument of the \key{cmpq} instruction must not be an
  9306. immediate value (such as an integer). So, if you are comparing two
  9307. immediates, we recommend inserting a \key{movq} instruction to put the
  9308. second argument in \key{rax}. On the other hand, if you implemented
  9309. the partial evaluator (section~\ref{sec:pe-Lvar}), you could
  9310. update it for \LangIf{} and then this situation would not arise.
  9311. %
  9312. As usual, \key{cmpq} may have at most one memory reference.
  9313. %
  9314. The second argument of the \key{movzbq} must be a register.
  9315. \begin{exercise}\normalfont\normalsize
  9316. %
  9317. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  9318. %
  9319. {\if\edition\racketEd
  9320. Add the following entry to the list of \code{passes} in
  9321. \code{run-tests.rkt}, and then run this script to test your compiler.
  9322. \begin{lstlisting}
  9323. (list "patch_instructions" patch_instructions interp-x86-1)
  9324. \end{lstlisting}
  9325. \fi}
  9326. \end{exercise}
  9327. {\if\edition\pythonEd\pythonColor
  9328. \section{Generate Prelude and Conclusion}
  9329. \label{sec:prelude-conclusion-cond}
  9330. The generation of the \code{main} function with its prelude and
  9331. conclusion must change to accommodate how the program now consists of
  9332. one or more basic blocks. After the prelude in \code{main}, jump to
  9333. the \code{start} block. Place the conclusion in a basic block labeled
  9334. with \code{conclusion}.
  9335. \fi}
  9336. Figure~\ref{fig:if-example-x86} shows a simple example program in
  9337. \LangIf{} translated to x86, showing the results of
  9338. \code{explicate\_control}, \code{select\_instructions}, and the final
  9339. x86 assembly.
  9340. \begin{figure}[tbp]
  9341. \begin{tcolorbox}[colback=white]
  9342. {\if\edition\racketEd
  9343. \begin{tabular}{lll}
  9344. \begin{minipage}{0.4\textwidth}
  9345. % cond_test_20.rkt, eq_input.py
  9346. \begin{lstlisting}
  9347. (if (eq? (read) 1) 42 0)
  9348. \end{lstlisting}
  9349. $\Downarrow$
  9350. \begin{lstlisting}
  9351. start:
  9352. tmp7951 = (read);
  9353. if (eq? tmp7951 1)
  9354. goto block7952;
  9355. else
  9356. goto block7953;
  9357. block7952:
  9358. return 42;
  9359. block7953:
  9360. return 0;
  9361. \end{lstlisting}
  9362. $\Downarrow$
  9363. \begin{lstlisting}
  9364. start:
  9365. callq read_int
  9366. movq %rax, tmp7951
  9367. cmpq $1, tmp7951
  9368. je block7952
  9369. jmp block7953
  9370. block7953:
  9371. movq $0, %rax
  9372. jmp conclusion
  9373. block7952:
  9374. movq $42, %rax
  9375. jmp conclusion
  9376. \end{lstlisting}
  9377. \end{minipage}
  9378. &
  9379. $\Rightarrow\qquad$
  9380. \begin{minipage}{0.4\textwidth}
  9381. \begin{lstlisting}
  9382. start:
  9383. callq read_int
  9384. movq %rax, %rcx
  9385. cmpq $1, %rcx
  9386. je block7952
  9387. jmp block7953
  9388. block7953:
  9389. movq $0, %rax
  9390. jmp conclusion
  9391. block7952:
  9392. movq $42, %rax
  9393. jmp conclusion
  9394. .globl main
  9395. main:
  9396. pushq %rbp
  9397. movq %rsp, %rbp
  9398. pushq %r13
  9399. pushq %r12
  9400. pushq %rbx
  9401. pushq %r14
  9402. subq $0, %rsp
  9403. jmp start
  9404. conclusion:
  9405. addq $0, %rsp
  9406. popq %r14
  9407. popq %rbx
  9408. popq %r12
  9409. popq %r13
  9410. popq %rbp
  9411. retq
  9412. \end{lstlisting}
  9413. \end{minipage}
  9414. \end{tabular}
  9415. \fi}
  9416. {\if\edition\pythonEd\pythonColor
  9417. \begin{tabular}{lll}
  9418. \begin{minipage}{0.4\textwidth}
  9419. % cond_test_20.rkt, eq_input.py
  9420. \begin{lstlisting}
  9421. print(42 if input_int() == 1 else 0)
  9422. \end{lstlisting}
  9423. $\Downarrow$
  9424. \begin{lstlisting}
  9425. start:
  9426. tmp_0 = input_int()
  9427. if tmp_0 == 1:
  9428. goto block_3
  9429. else:
  9430. goto block_4
  9431. block_3:
  9432. tmp_1 = 42
  9433. goto block_2
  9434. block_4:
  9435. tmp_1 = 0
  9436. goto block_2
  9437. block_2:
  9438. print(tmp_1)
  9439. return 0
  9440. \end{lstlisting}
  9441. $\Downarrow$
  9442. \begin{lstlisting}
  9443. start:
  9444. callq read_int
  9445. movq %rax, tmp_0
  9446. cmpq 1, tmp_0
  9447. je block_3
  9448. jmp block_4
  9449. block_3:
  9450. movq 42, tmp_1
  9451. jmp block_2
  9452. block_4:
  9453. movq 0, tmp_1
  9454. jmp block_2
  9455. block_2:
  9456. movq tmp_1, %rdi
  9457. callq print_int
  9458. movq 0, %rax
  9459. jmp conclusion
  9460. \end{lstlisting}
  9461. \end{minipage}
  9462. &
  9463. $\Rightarrow\qquad$
  9464. \begin{minipage}{0.4\textwidth}
  9465. \begin{lstlisting}
  9466. .globl main
  9467. main:
  9468. pushq %rbp
  9469. movq %rsp, %rbp
  9470. subq $0, %rsp
  9471. jmp start
  9472. start:
  9473. callq read_int
  9474. movq %rax, %rcx
  9475. cmpq $1, %rcx
  9476. je block_3
  9477. jmp block_4
  9478. block_3:
  9479. movq $42, %rcx
  9480. jmp block_2
  9481. block_4:
  9482. movq $0, %rcx
  9483. jmp block_2
  9484. block_2:
  9485. movq %rcx, %rdi
  9486. callq print_int
  9487. movq $0, %rax
  9488. jmp conclusion
  9489. conclusion:
  9490. addq $0, %rsp
  9491. popq %rbp
  9492. retq
  9493. \end{lstlisting}
  9494. \end{minipage}
  9495. \end{tabular}
  9496. \fi}
  9497. \end{tcolorbox}
  9498. \caption{Example compilation of an \key{if} expression to x86, showing
  9499. the results of \code{explicate\_control},
  9500. \code{select\_instructions}, and the final x86 assembly code. }
  9501. \label{fig:if-example-x86}
  9502. \end{figure}
  9503. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  9504. compilation of \LangIf{}.
  9505. \begin{figure}[htbp]
  9506. \begin{tcolorbox}[colback=white]
  9507. {\if\edition\racketEd
  9508. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9509. \node (Lif-2) at (0,2) {\large \LangIf{}};
  9510. \node (Lif-3) at (3,2) {\large \LangIf{}};
  9511. \node (Lif-4) at (6,2) {\large \LangIf{}};
  9512. \node (Lif-5) at (10,2) {\large \LangIfANF{}};
  9513. \node (C1-1) at (0,0) {\large \LangCIf{}};
  9514. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  9515. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  9516. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  9517. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  9518. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  9519. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  9520. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  9521. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  9522. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-5);
  9523. \path[->,bend left=10] (Lif-5) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C1-1);
  9524. \path[->,bend right=15] (C1-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  9525. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9526. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  9527. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  9528. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  9529. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion } (x86-5);
  9530. \end{tikzpicture}
  9531. \fi}
  9532. {\if\edition\pythonEd\pythonColor
  9533. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9534. \node (Lif-1) at (0,2) {\large \LangIf{}};
  9535. \node (Lif-2) at (4,2) {\large \LangIf{}};
  9536. \node (Lif-3) at (8,2) {\large \LangIfANF{}};
  9537. \node (C-1) at (0,0) {\large \LangCIf{}};
  9538. \node (x86-1) at (0,-2) {\large \LangXIfVar{}};
  9539. \node (x86-2) at (4,-2) {\large \LangXIfVar{}};
  9540. \node (x86-3) at (8,-2) {\large \LangXIf{}};
  9541. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  9542. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  9543. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-3);
  9544. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (C-1);
  9545. \path[->,bend right=15] (C-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-1);
  9546. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  9547. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  9548. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  9549. \end{tikzpicture}
  9550. \fi}
  9551. \end{tcolorbox}
  9552. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  9553. \label{fig:Lif-passes}
  9554. \end{figure}
  9555. \section{Challenge: Optimize Blocks and Remove Jumps}
  9556. \label{sec:opt-jumps}
  9557. We discuss two challenges that involve optimizing the control-flow of
  9558. the program.
  9559. \subsection{Optimize Blocks}
  9560. The algorithm for \code{explicate\_control} that we discussed in
  9561. section~\ref{sec:explicate-control-Lif} sometimes generates too many
  9562. blocks. It creates a block whenever a continuation \emph{might} get
  9563. used more than once (for example, whenever the \code{cont} parameter
  9564. is passed into two or more recursive calls). However, some
  9565. continuation arguments may not be used at all. Consider the case for
  9566. the constant \TRUE{} in \code{explicate\_pred}, in which we discard
  9567. the \code{els} continuation.
  9568. %
  9569. {\if\edition\racketEd
  9570. The following example program falls into this
  9571. case, and it creates two unused blocks.
  9572. \begin{center}
  9573. \begin{tabular}{lll}
  9574. \begin{minipage}{0.4\textwidth}
  9575. % cond_test_82.rkt
  9576. \begin{lstlisting}
  9577. (let ([y (if #t
  9578. (read)
  9579. (if (eq? (read) 0)
  9580. 777
  9581. (let ([x (read)])
  9582. (+ 1 x))))])
  9583. (+ y 2))
  9584. \end{lstlisting}
  9585. \end{minipage}
  9586. &
  9587. $\Rightarrow$
  9588. &
  9589. \begin{minipage}{0.4\textwidth}
  9590. \begin{lstlisting}
  9591. start:
  9592. y = (read);
  9593. goto block_5;
  9594. block_5:
  9595. return (+ y 2);
  9596. block_6:
  9597. y = 777;
  9598. goto block_5;
  9599. block_7:
  9600. x = (read);
  9601. y = (+ 1 x2);
  9602. goto block_5;
  9603. \end{lstlisting}
  9604. \end{minipage}
  9605. \end{tabular}
  9606. \end{center}
  9607. \fi}
  9608. {\if\edition\pythonEd
  9609. The following example program falls into this
  9610. case, and it creates the unused \code{block\_9}.
  9611. \begin{center}
  9612. \begin{minipage}{0.4\textwidth}
  9613. % if/if_true.py
  9614. \begin{lstlisting}
  9615. if True:
  9616. print(0)
  9617. else:
  9618. x = 1 if False else 2
  9619. print(x)
  9620. \end{lstlisting}
  9621. \end{minipage}
  9622. $\Rightarrow\qquad\qquad$
  9623. \begin{minipage}{0.4\textwidth}
  9624. \begin{lstlisting}
  9625. start:
  9626. print(0)
  9627. goto block_8
  9628. block_9:
  9629. print(x)
  9630. goto block_8
  9631. block_8:
  9632. return 0
  9633. \end{lstlisting}
  9634. \end{minipage}
  9635. \end{center}
  9636. \fi}
  9637. The question is, how can we decide whether to create a basic block?
  9638. \emph{Lazy evaluation}\index{subject}{lazy
  9639. evaluation}~\citep{Friedman:1976aa} can solve this conundrum by
  9640. delaying the creation of a basic block until the point in time at which
  9641. we know that it will be used.
  9642. %
  9643. {\if\edition\racketEd
  9644. %
  9645. Racket provides support for
  9646. lazy evaluation with the
  9647. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  9648. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  9649. \index{subject}{delay} creates a
  9650. \emph{promise}\index{subject}{promise} in which the evaluation of the
  9651. expressions is postponed. When \key{(force}
  9652. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  9653. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  9654. result of $e_n$ is cached in the promise and returned. If \code{force}
  9655. is applied again to the same promise, then the cached result is
  9656. returned. If \code{force} is applied to an argument that is not a
  9657. promise, \code{force} simply returns the argument.
  9658. %
  9659. \fi}
  9660. %
  9661. {\if\edition\pythonEd\pythonColor
  9662. %
  9663. Although Python does not provide direct support for lazy evaluation,
  9664. it is easy to mimic. We \emph{delay} the evaluation of a computation
  9665. by wrapping it inside a function with no parameters. We \emph{force}
  9666. its evaluation by calling the function. However, we might need to
  9667. force multiple times, so we store the result of calling the
  9668. function instead of recomputing it each time. The following
  9669. \code{Promise} class handles this memoization process.
  9670. \begin{minipage}{0.8\textwidth}
  9671. \begin{lstlisting}
  9672. @dataclass
  9673. class Promise:
  9674. fun : typing.Any
  9675. cache : list[stmt] = None
  9676. def force(self):
  9677. if self.cache is None:
  9678. self.cache = self.fun(); return self.cache
  9679. else:
  9680. return self.cache
  9681. \end{lstlisting}
  9682. \end{minipage}
  9683. \noindent However, in some cases of \code{explicate\_pred}, we return
  9684. a list of statements, and in other cases we return a function that
  9685. computes a list of statements. To uniformly deal with both regular
  9686. data and promises, we define the following \code{force} function that
  9687. checks whether its input is delayed (i.e., whether it is a
  9688. \code{Promise}) and then either (1) forces the promise or (2) returns
  9689. the input.
  9690. %
  9691. \begin{lstlisting}
  9692. def force(promise):
  9693. if isinstance(promise, Promise):
  9694. return promise.force()
  9695. else:
  9696. return promise
  9697. \end{lstlisting}
  9698. %
  9699. \fi}
  9700. We use promises for the input and output of the functions
  9701. \code{explicate\_pred}, \code{explicate\_assign},
  9702. %
  9703. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  9704. %
  9705. So, instead of taking and returning \racket{$\Tail$
  9706. expressions}\python{lists of statements}, they take and return
  9707. promises. Furthermore, when we come to a situation in which a
  9708. continuation might be used more than once, as in the case for
  9709. \code{if} in \code{explicate\_pred}, we create a delayed computation
  9710. that creates a basic block for each continuation (if there is not
  9711. already one) and then returns a \code{goto} statement to that basic
  9712. block. When we come to a situation in which we have a promise but need an
  9713. actual piece of code, for example, to create a larger piece of code with a
  9714. constructor such as \code{Seq}, then insert a call to \code{force}.
  9715. %
  9716. {\if\edition\racketEd
  9717. %
  9718. Also, we must modify the \code{create\_block} function to begin with
  9719. \code{delay} to create a promise. When forced, this promise forces the
  9720. original promise. If that returns a \code{Goto} (because the block was
  9721. already added to \code{basic-blocks}), then we return the
  9722. \code{Goto}. Otherwise, we add the block to \code{basic-blocks} and
  9723. return a \code{Goto} to the new label.
  9724. \begin{center}
  9725. \begin{minipage}{\textwidth}
  9726. \begin{lstlisting}
  9727. (define (create_block tail)
  9728. (delay
  9729. (define t (force tail))
  9730. (match t
  9731. [(Goto label) (Goto label)]
  9732. [else
  9733. (let ([label (gensym 'block)])
  9734. (set! basic-blocks (cons (cons label t) basic-blocks))
  9735. (Goto label))])))
  9736. \end{lstlisting}
  9737. \end{minipage}
  9738. \end{center}
  9739. \fi}
  9740. {\if\edition\pythonEd\pythonColor
  9741. %
  9742. Here is the new version of the \code{create\_block} auxiliary function
  9743. that delays the creation of the new basic block.\\
  9744. \begin{minipage}{\textwidth}
  9745. \begin{lstlisting}
  9746. def create_block(promise, basic_blocks):
  9747. def delay():
  9748. stmts = force(promise)
  9749. match stmts:
  9750. case [Goto(l)]:
  9751. return [Goto(l)]
  9752. case _:
  9753. label = label_name(generate_name('block'))
  9754. basic_blocks[label] = stmts
  9755. return [Goto(label)]
  9756. return Promise(delay)
  9757. \end{lstlisting}
  9758. \end{minipage}
  9759. \fi}
  9760. Figure~\ref{fig:explicate-control-challenge} shows the output of
  9761. improved \code{explicate\_control} on this example.
  9762. \racket{As you can see, the number of basic blocks has been reduced
  9763. from four blocks to two blocks.}%
  9764. \python{As you can see, the number of basic blocks has been reduced
  9765. from three blocks to two blocks.}
  9766. \begin{figure}[tbp]
  9767. \begin{tcolorbox}[colback=white]
  9768. {\if\edition\racketEd
  9769. \begin{tabular}{lll}
  9770. \begin{minipage}{0.45\textwidth}
  9771. % cond_test_82.rkt
  9772. \begin{lstlisting}
  9773. (let ([y (if #t
  9774. (read)
  9775. (if (eq? (read) 0)
  9776. 777
  9777. (let ([x (read)])
  9778. (+ 1 x))))])
  9779. (+ y 2))
  9780. \end{lstlisting}
  9781. \end{minipage}
  9782. &
  9783. $\quad\Rightarrow\quad$
  9784. &
  9785. \begin{minipage}{0.4\textwidth}
  9786. \begin{lstlisting}
  9787. start:
  9788. y = (read);
  9789. goto block_5;
  9790. block_5:
  9791. return (+ y 2);
  9792. \end{lstlisting}
  9793. \end{minipage}
  9794. \end{tabular}
  9795. \fi}
  9796. {\if\edition\pythonEd\pythonColor
  9797. \begin{tabular}{lll}
  9798. \begin{minipage}{0.4\textwidth}
  9799. % if/if_true.py
  9800. \begin{lstlisting}
  9801. if True:
  9802. print(0)
  9803. else:
  9804. x = 1 if False else 2
  9805. print(x)
  9806. \end{lstlisting}
  9807. \end{minipage}
  9808. &
  9809. $\Rightarrow$
  9810. &
  9811. \begin{minipage}{0.55\textwidth}
  9812. \begin{lstlisting}
  9813. start:
  9814. print(0)
  9815. goto block_4
  9816. block_4:
  9817. return 0
  9818. \end{lstlisting}
  9819. \end{minipage}
  9820. \end{tabular}
  9821. \fi}
  9822. \end{tcolorbox}
  9823. \caption{Translation from \LangIf{} to \LangCIf{}
  9824. via the improved \code{explicate\_control}.}
  9825. \label{fig:explicate-control-challenge}
  9826. \end{figure}
  9827. %% Recall that in the example output of \code{explicate\_control} in
  9828. %% figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  9829. %% \code{block60} are trivial blocks, they do nothing but jump to another
  9830. %% block. The first goal of this challenge assignment is to remove those
  9831. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  9832. %% \code{explicate\_control} on the left and shows the result of bypassing
  9833. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  9834. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  9835. %% \code{block55}. The optimized code on the right of
  9836. %% figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  9837. %% \code{then} branch jumping directly to \code{block55}. The story is
  9838. %% similar for the \code{else} branch, as well as for the two branches in
  9839. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  9840. %% have been optimized in this way, there are no longer any jumps to
  9841. %% blocks \code{block57} through \code{block60}, so they can be removed.
  9842. %% \begin{figure}[tbp]
  9843. %% \begin{tabular}{lll}
  9844. %% \begin{minipage}{0.4\textwidth}
  9845. %% \begin{lstlisting}
  9846. %% block62:
  9847. %% tmp54 = (read);
  9848. %% if (eq? tmp54 2) then
  9849. %% goto block59;
  9850. %% else
  9851. %% goto block60;
  9852. %% block61:
  9853. %% tmp53 = (read);
  9854. %% if (eq? tmp53 0) then
  9855. %% goto block57;
  9856. %% else
  9857. %% goto block58;
  9858. %% block60:
  9859. %% goto block56;
  9860. %% block59:
  9861. %% goto block55;
  9862. %% block58:
  9863. %% goto block56;
  9864. %% block57:
  9865. %% goto block55;
  9866. %% block56:
  9867. %% return (+ 700 77);
  9868. %% block55:
  9869. %% return (+ 10 32);
  9870. %% start:
  9871. %% tmp52 = (read);
  9872. %% if (eq? tmp52 1) then
  9873. %% goto block61;
  9874. %% else
  9875. %% goto block62;
  9876. %% \end{lstlisting}
  9877. %% \end{minipage}
  9878. %% &
  9879. %% $\Rightarrow$
  9880. %% &
  9881. %% \begin{minipage}{0.55\textwidth}
  9882. %% \begin{lstlisting}
  9883. %% block62:
  9884. %% tmp54 = (read);
  9885. %% if (eq? tmp54 2) then
  9886. %% goto block55;
  9887. %% else
  9888. %% goto block56;
  9889. %% block61:
  9890. %% tmp53 = (read);
  9891. %% if (eq? tmp53 0) then
  9892. %% goto block55;
  9893. %% else
  9894. %% goto block56;
  9895. %% block56:
  9896. %% return (+ 700 77);
  9897. %% block55:
  9898. %% return (+ 10 32);
  9899. %% start:
  9900. %% tmp52 = (read);
  9901. %% if (eq? tmp52 1) then
  9902. %% goto block61;
  9903. %% else
  9904. %% goto block62;
  9905. %% \end{lstlisting}
  9906. %% \end{minipage}
  9907. %% \end{tabular}
  9908. %% \caption{Optimize jumps by removing trivial blocks.}
  9909. %% \label{fig:optimize-jumps}
  9910. %% \end{figure}
  9911. %% The name of this pass is \code{optimize-jumps}. We recommend
  9912. %% implementing this pass in two phases. The first phrase builds a hash
  9913. %% table that maps labels to possibly improved labels. The second phase
  9914. %% changes the target of each \code{goto} to use the improved label. If
  9915. %% the label is for a trivial block, then the hash table should map the
  9916. %% label to the first non-trivial block that can be reached from this
  9917. %% label by jumping through trivial blocks. If the label is for a
  9918. %% non-trivial block, then the hash table should map the label to itself;
  9919. %% we do not want to change jumps to non-trivial blocks.
  9920. %% The first phase can be accomplished by constructing an empty hash
  9921. %% table, call it \code{short-cut}, and then iterating over the control
  9922. %% flow graph. Each time you encounter a block that is just a \code{goto},
  9923. %% then update the hash table, mapping the block's source to the target
  9924. %% of the \code{goto}. Also, the hash table may already have mapped some
  9925. %% labels to the block's source, to you must iterate through the hash
  9926. %% table and update all of those so that they instead map to the target
  9927. %% of the \code{goto}.
  9928. %% For the second phase, we recommend iterating through the $\Tail$ of
  9929. %% each block in the program, updating the target of every \code{goto}
  9930. %% according to the mapping in \code{short-cut}.
  9931. \begin{exercise}\normalfont\normalsize
  9932. Implement the improvements to the \code{explicate\_control} pass.
  9933. Check that it removes trivial blocks in a few example programs. Then
  9934. check that your compiler still passes all your tests.
  9935. \end{exercise}
  9936. \subsection{Remove Jumps}
  9937. There is an opportunity for removing jumps that is apparent in the
  9938. example of figure~\ref{fig:if-example-x86}. The \code{start} block
  9939. ends with a jump to \racket{\code{block\_5}}\python{\code{block\_4}},
  9940. and there are no other jumps to
  9941. \racket{\code{block\_5}}\python{\code{block\_4}} in the rest of the program.
  9942. In this situation we can avoid the runtime overhead of this jump by merging
  9943. \racket{\code{block\_5}}\python{\code{block\_4}}
  9944. into the preceding block, which in this case is the \code{start} block.
  9945. Figure~\ref{fig:remove-jumps} shows the output of
  9946. \code{allocate\_registers} on the left and the result of this
  9947. optimization on the right.
  9948. \begin{figure}[tbp]
  9949. \begin{tcolorbox}[colback=white]
  9950. {\if\edition\racketEd
  9951. \begin{tabular}{lll}
  9952. \begin{minipage}{0.5\textwidth}
  9953. % cond_test_82.rkt
  9954. \begin{lstlisting}
  9955. start:
  9956. callq read_int
  9957. movq %rax, %rcx
  9958. jmp block_5
  9959. block_5:
  9960. movq %rcx, %rax
  9961. addq $2, %rax
  9962. jmp conclusion
  9963. \end{lstlisting}
  9964. \end{minipage}
  9965. &
  9966. $\Rightarrow\qquad$
  9967. \begin{minipage}{0.4\textwidth}
  9968. \begin{lstlisting}
  9969. start:
  9970. callq read_int
  9971. movq %rax, %rcx
  9972. movq %rcx, %rax
  9973. addq $2, %rax
  9974. jmp conclusion
  9975. \end{lstlisting}
  9976. \end{minipage}
  9977. \end{tabular}
  9978. \fi}
  9979. {\if\edition\pythonEd\pythonColor
  9980. \begin{tabular}{lll}
  9981. \begin{minipage}{0.5\textwidth}
  9982. % cond_test_20.rkt
  9983. \begin{lstlisting}
  9984. start:
  9985. callq read_int
  9986. movq %rax, tmp_0
  9987. cmpq 1, tmp_0
  9988. je block_3
  9989. jmp block_4
  9990. block_3:
  9991. movq 42, tmp_1
  9992. jmp block_2
  9993. block_4:
  9994. movq 0, tmp_1
  9995. jmp block_2
  9996. block_2:
  9997. movq tmp_1, %rdi
  9998. callq print_int
  9999. movq 0, %rax
  10000. jmp conclusion
  10001. \end{lstlisting}
  10002. \end{minipage}
  10003. &
  10004. $\Rightarrow\qquad$
  10005. \begin{minipage}{0.4\textwidth}
  10006. \begin{lstlisting}
  10007. start:
  10008. callq read_int
  10009. movq %rax, tmp_0
  10010. cmpq 1, tmp_0
  10011. je block_3
  10012. movq 0, tmp_1
  10013. jmp block_2
  10014. block_3:
  10015. movq 42, tmp_1
  10016. jmp block_2
  10017. block_2:
  10018. movq tmp_1, %rdi
  10019. callq print_int
  10020. movq 0, %rax
  10021. jmp conclusion
  10022. \end{lstlisting}
  10023. \end{minipage}
  10024. \end{tabular}
  10025. \fi}
  10026. \end{tcolorbox}
  10027. \caption{Merging basic blocks by removing unnecessary jumps.}
  10028. \label{fig:remove-jumps}
  10029. \end{figure}
  10030. \begin{exercise}\normalfont\normalsize
  10031. %
  10032. Implement a pass named \code{remove\_jumps} that merges basic blocks
  10033. into their preceding basic block, when there is only one preceding
  10034. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  10035. %
  10036. {\if\edition\racketEd
  10037. In the \code{run-tests.rkt} script, add the following entry to the
  10038. list of \code{passes} between \code{allocate\_registers}
  10039. and \code{patch\_instructions}:
  10040. \begin{lstlisting}
  10041. (list "remove_jumps" remove_jumps interp-pseudo-x86-1)
  10042. \end{lstlisting}
  10043. \fi}
  10044. %
  10045. Run the script to test your compiler.
  10046. %
  10047. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  10048. blocks on several test programs.
  10049. \end{exercise}
  10050. \section{Further Reading}
  10051. \label{sec:cond-further-reading}
  10052. The algorithm for \code{explicate\_control} is based on the
  10053. \code{expose-basic-blocks} pass in the course notes of
  10054. \citet{Dybvig:2010aa}.
  10055. %
  10056. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  10057. \citet{Appel:2003fk}, and is related to translations into continuation
  10058. passing
  10059. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  10060. %
  10061. The treatment of conditionals in the \code{explicate\_control} pass is
  10062. similar to short-cut Boolean
  10063. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  10064. and the case-of-case transformation~\citep{PeytonJones:1998}.
  10065. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10066. \chapter{Loops and Dataflow Analysis}
  10067. \label{ch:Lwhile}
  10068. \setcounter{footnote}{0}
  10069. % TODO: define R'_8
  10070. % TODO: multi-graph
  10071. {\if\edition\racketEd
  10072. %
  10073. In this chapter we study two features that are the hallmarks of
  10074. imperative programming languages: loops and assignments to local
  10075. variables. The following example demonstrates these new features by
  10076. computing the sum of the first five positive integers:
  10077. % similar to loop_test_1.rkt
  10078. \begin{lstlisting}
  10079. (let ([sum 0])
  10080. (let ([i 5])
  10081. (begin
  10082. (while (> i 0)
  10083. (begin
  10084. (set! sum (+ sum i))
  10085. (set! i (- i 1))))
  10086. sum)))
  10087. \end{lstlisting}
  10088. The \code{while} loop consists of a condition and a
  10089. body.\footnote{The \code{while} loop is not a built-in
  10090. feature of the Racket language, but Racket includes many looping
  10091. constructs and it is straightforward to define \code{while} as a
  10092. macro.} The body is evaluated repeatedly so long as the condition
  10093. remains true.
  10094. %
  10095. The \code{set!} consists of a variable and a right-hand side
  10096. expression. The \code{set!} updates value of the variable to the
  10097. value of the right-hand side.
  10098. %
  10099. The primary purpose of both the \code{while} loop and \code{set!} is
  10100. to cause side effects, so they do not give a meaningful result
  10101. value. Instead, their result is the \code{\#<void>} value. The
  10102. expression \code{(void)} is an explicit way to create the
  10103. \code{\#<void>} value, and it has type \code{Void}. The
  10104. \code{\#<void>} value can be passed around just like other values
  10105. inside an \LangLoop{} program, and it can be compared for equality with
  10106. another \code{\#<void>} value. However, there are no other operations
  10107. specific to the \code{\#<void>} value in \LangLoop{}. In contrast,
  10108. Racket defines the \code{void?} predicate that returns \code{\#t}
  10109. when applied to \code{\#<void>} and \code{\#f} otherwise.%
  10110. %
  10111. \footnote{Racket's \code{Void} type corresponds to what is often
  10112. called the \code{Unit} type. Racket's \code{Void} type is inhabited
  10113. by a single value \code{\#<void>}, which corresponds to \code{unit}
  10114. or \code{()} in the literature~\citep{Pierce:2002hj}.}
  10115. %
  10116. With the addition of side effect-producing features such as
  10117. \code{while} loop and \code{set!}, it is helpful to include a language
  10118. feature for sequencing side effects: the \code{begin} expression. It
  10119. consists of one or more subexpressions that are evaluated
  10120. left to right.
  10121. %
  10122. \fi}
  10123. {\if\edition\pythonEd\pythonColor
  10124. %
  10125. In this chapter we study loops, one of the hallmarks of imperative
  10126. programming languages. The following example demonstrates the
  10127. \code{while} loop by computing the sum of the first five positive
  10128. integers.
  10129. \begin{lstlisting}
  10130. sum = 0
  10131. i = 5
  10132. while i > 0:
  10133. sum = sum + i
  10134. i = i - 1
  10135. print(sum)
  10136. \end{lstlisting}
  10137. The \code{while} loop consists of a condition and a body (a sequence
  10138. of statements). The body is evaluated repeatedly so long as the
  10139. condition remains true.
  10140. %
  10141. \fi}
  10142. \section{The \LangLoop{} Language}
  10143. \newcommand{\LwhileGrammarRacket}{
  10144. \begin{array}{lcl}
  10145. \Type &::=& \key{Void}\\
  10146. \Exp &::=& \CSETBANG{\Var}{\Exp}
  10147. \MID \CBEGIN{\Exp^{*}}{\Exp}
  10148. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  10149. \end{array}
  10150. }
  10151. \newcommand{\LwhileASTRacket}{
  10152. \begin{array}{lcl}
  10153. \Type &::=& \key{Void}\\
  10154. \Exp &::=& \SETBANG{\Var}{\Exp}
  10155. \MID \BEGIN{\Exp^{*}}{\Exp}
  10156. \MID \WHILE{\Exp}{\Exp}
  10157. \MID \VOID{}
  10158. \end{array}
  10159. }
  10160. \newcommand{\LwhileGrammarPython}{
  10161. \begin{array}{rcl}
  10162. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  10163. \end{array}
  10164. }
  10165. \newcommand{\LwhileASTPython}{
  10166. \begin{array}{lcl}
  10167. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10168. \end{array}
  10169. }
  10170. \begin{figure}[tp]
  10171. \centering
  10172. \begin{tcolorbox}[colback=white]
  10173. \small
  10174. {\if\edition\racketEd
  10175. \[
  10176. \begin{array}{l}
  10177. \gray{\LintGrammarRacket{}} \\ \hline
  10178. \gray{\LvarGrammarRacket{}} \\ \hline
  10179. \gray{\LifGrammarRacket{}} \\ \hline
  10180. \LwhileGrammarRacket \\
  10181. \begin{array}{lcl}
  10182. \LangLoopM{} &::=& \Exp
  10183. \end{array}
  10184. \end{array}
  10185. \]
  10186. \fi}
  10187. {\if\edition\pythonEd\pythonColor
  10188. \[
  10189. \begin{array}{l}
  10190. \gray{\LintGrammarPython} \\ \hline
  10191. \gray{\LvarGrammarPython} \\ \hline
  10192. \gray{\LifGrammarPython} \\ \hline
  10193. \LwhileGrammarPython \\
  10194. \begin{array}{rcl}
  10195. \LangLoopM{} &::=& \Stmt^{*}
  10196. \end{array}
  10197. \end{array}
  10198. \]
  10199. \fi}
  10200. \end{tcolorbox}
  10201. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-concrete-syntax}).}
  10202. \label{fig:Lwhile-concrete-syntax}
  10203. \index{subject}{Lwhile@\LangLoop{} concrete syntax}
  10204. \end{figure}
  10205. \begin{figure}[tp]
  10206. \centering
  10207. \begin{tcolorbox}[colback=white]
  10208. \small
  10209. {\if\edition\racketEd
  10210. \[
  10211. \begin{array}{l}
  10212. \gray{\LintOpAST} \\ \hline
  10213. \gray{\LvarASTRacket{}} \\ \hline
  10214. \gray{\LifASTRacket{}} \\ \hline
  10215. \LwhileASTRacket{} \\
  10216. \begin{array}{lcl}
  10217. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10218. \end{array}
  10219. \end{array}
  10220. \]
  10221. \fi}
  10222. {\if\edition\pythonEd\pythonColor
  10223. \[
  10224. \begin{array}{l}
  10225. \gray{\LintASTPython} \\ \hline
  10226. \gray{\LvarASTPython} \\ \hline
  10227. \gray{\LifASTPython} \\ \hline
  10228. \LwhileASTPython \\
  10229. \begin{array}{lcl}
  10230. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10231. \end{array}
  10232. \end{array}
  10233. \]
  10234. \fi}
  10235. \end{tcolorbox}
  10236. \python{
  10237. \index{subject}{While@\texttt{While}}
  10238. }
  10239. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-syntax}).}
  10240. \label{fig:Lwhile-syntax}
  10241. \index{subject}{Lwhile@\LangLoop{} abstract syntax}
  10242. \end{figure}
  10243. Figure~\ref{fig:Lwhile-concrete-syntax} shows the definition of the
  10244. concrete syntax of \LangLoop{}, and figure~\ref{fig:Lwhile-syntax}
  10245. shows the definition of its abstract syntax.
  10246. %
  10247. The definitional interpreter for \LangLoop{} is shown in
  10248. figure~\ref{fig:interp-Lwhile}.
  10249. %
  10250. {\if\edition\racketEd
  10251. %
  10252. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  10253. and \code{Void}, and we make changes to the cases for \code{Var} and
  10254. \code{Let} regarding variables. To support assignment to variables and
  10255. to make their lifetimes indefinite (see the second example in
  10256. section~\ref{sec:assignment-scoping}), we box the value that is bound
  10257. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  10258. value.
  10259. %
  10260. Now we discuss the new cases. For \code{SetBang}, we find the
  10261. variable in the environment to obtain a boxed value, and then we change
  10262. it using \code{set-box!} to the result of evaluating the right-hand
  10263. side. The result value of a \code{SetBang} is \code{\#<void>}.
  10264. %
  10265. For the \code{WhileLoop}, we repeatedly (1) evaluate the condition, and
  10266. if the result is true, (2) evaluate the body.
  10267. The result value of a \code{while} loop is also \code{\#<void>}.
  10268. %
  10269. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  10270. subexpressions \itm{es} for their effects and then evaluates
  10271. and returns the result from \itm{body}.
  10272. %
  10273. The $\VOID{}$ expression produces the \code{\#<void>} value.
  10274. %
  10275. \fi}
  10276. {\if\edition\pythonEd\pythonColor
  10277. %
  10278. We add a new case for \code{While} in the \code{interp\_stmts}
  10279. function, in which we repeatedly interpret the \code{body} so long as the
  10280. \code{test} expression remains true.
  10281. %
  10282. \fi}
  10283. \begin{figure}[tbp]
  10284. \begin{tcolorbox}[colback=white]
  10285. {\if\edition\racketEd
  10286. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10287. (define interp-Lwhile-class
  10288. (class interp-Lif-class
  10289. (super-new)
  10290. (define/override ((interp-exp env) e)
  10291. (define recur (interp-exp env))
  10292. (match e
  10293. [(Let x e body)
  10294. (define new-env (dict-set env x (box (recur e))))
  10295. ((interp-exp new-env) body)]
  10296. [(Var x) (unbox (dict-ref env x))]
  10297. [(SetBang x rhs)
  10298. (set-box! (dict-ref env x) (recur rhs))]
  10299. [(WhileLoop cnd body)
  10300. (define (loop)
  10301. (cond [(recur cnd) (recur body) (loop)]
  10302. [else (void)]))
  10303. (loop)]
  10304. [(Begin es body)
  10305. (for ([e es]) (recur e))
  10306. (recur body)]
  10307. [(Void) (void)]
  10308. [else ((super interp-exp env) e)]))
  10309. ))
  10310. (define (interp-Lwhile p)
  10311. (send (new interp-Lwhile-class) interp-program p))
  10312. \end{lstlisting}
  10313. \fi}
  10314. {\if\edition\pythonEd\pythonColor
  10315. \begin{lstlisting}
  10316. class InterpLwhile(InterpLif):
  10317. def interp_stmt(self, s, env, cont):
  10318. match s:
  10319. case While(test, body, []):
  10320. if self.interp_exp(test, env):
  10321. self.interp_stmts(body + [s] + cont, env)
  10322. else:
  10323. return self.interp_stmts(cont, env)
  10324. case _:
  10325. return super().interp_stmt(s, env, cont)
  10326. \end{lstlisting}
  10327. \fi}
  10328. \end{tcolorbox}
  10329. \caption{Interpreter for \LangLoop{}.}
  10330. \label{fig:interp-Lwhile}
  10331. \end{figure}
  10332. The definition of the type checker for \LangLoop{} is shown in
  10333. figure~\ref{fig:type-check-Lwhile}.
  10334. %
  10335. {\if\edition\racketEd
  10336. %
  10337. The type checking of the \code{SetBang} expression requires the type
  10338. of the variable and the right-hand side to agree. The result type is
  10339. \code{Void}. For \code{while}, the condition must be a \BOOLTY{}
  10340. and the result type is \code{Void}. For \code{Begin}, the result type
  10341. is the type of its last subexpression.
  10342. %
  10343. \fi}
  10344. %
  10345. {\if\edition\pythonEd\pythonColor
  10346. %
  10347. A \code{while} loop is well typed if the type of the \code{test}
  10348. expression is \code{bool} and the statements in the \code{body} are
  10349. well typed.
  10350. %
  10351. \fi}
  10352. \begin{figure}[tbp]
  10353. \begin{tcolorbox}[colback=white]
  10354. {\if\edition\racketEd
  10355. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10356. (define type-check-Lwhile-class
  10357. (class type-check-Lif-class
  10358. (super-new)
  10359. (inherit check-type-equal?)
  10360. (define/override (type-check-exp env)
  10361. (lambda (e)
  10362. (define recur (type-check-exp env))
  10363. (match e
  10364. [(SetBang x rhs)
  10365. (define-values (rhs^ rhsT) (recur rhs))
  10366. (define varT (dict-ref env x))
  10367. (check-type-equal? rhsT varT e)
  10368. (values (SetBang x rhs^) 'Void)]
  10369. [(WhileLoop cnd body)
  10370. (define-values (cnd^ Tc) (recur cnd))
  10371. (check-type-equal? Tc 'Boolean e)
  10372. (define-values (body^ Tbody) ((type-check-exp env) body))
  10373. (values (WhileLoop cnd^ body^) 'Void)]
  10374. [(Begin es body)
  10375. (define-values (es^ ts)
  10376. (for/lists (l1 l2) ([e es]) (recur e)))
  10377. (define-values (body^ Tbody) (recur body))
  10378. (values (Begin es^ body^) Tbody)]
  10379. [else ((super type-check-exp env) e)])))
  10380. ))
  10381. (define (type-check-Lwhile p)
  10382. (send (new type-check-Lwhile-class) type-check-program p))
  10383. \end{lstlisting}
  10384. \fi}
  10385. {\if\edition\pythonEd\pythonColor
  10386. \begin{lstlisting}
  10387. class TypeCheckLwhile(TypeCheckLif):
  10388. def type_check_stmts(self, ss, env):
  10389. if len(ss) == 0:
  10390. return
  10391. match ss[0]:
  10392. case While(test, body, []):
  10393. test_t = self.type_check_exp(test, env)
  10394. check_type_equal(bool, test_t, test)
  10395. body_t = self.type_check_stmts(body, env)
  10396. return self.type_check_stmts(ss[1:], env)
  10397. case _:
  10398. return super().type_check_stmts(ss, env)
  10399. \end{lstlisting}
  10400. \fi}
  10401. \end{tcolorbox}
  10402. \caption{Type checker for the \LangLoop{} language.}
  10403. \label{fig:type-check-Lwhile}
  10404. \end{figure}
  10405. {\if\edition\racketEd
  10406. %
  10407. At first glance, the translation of these language features to x86
  10408. seems straightforward because the \LangCIf{} intermediate language
  10409. already supports all the ingredients that we need: assignment,
  10410. \code{goto}, conditional branching, and sequencing. However,
  10411. complications arise, which we discuss in the next section. After
  10412. that we introduce the changes necessary to the existing passes.
  10413. %
  10414. \fi}
  10415. {\if\edition\pythonEd\pythonColor
  10416. %
  10417. At first glance, the translation of \code{while} loops to x86 seems
  10418. straightforward because the \LangCIf{} intermediate language already
  10419. supports \code{goto} and conditional branching. However, there are
  10420. complications that arise, which we discuss in the next section. After
  10421. that we introduce the changes necessary to the existing passes.
  10422. %
  10423. \fi}
  10424. \section{Cyclic Control Flow and Dataflow Analysis}
  10425. \label{sec:dataflow-analysis}
  10426. Up until this point, the programs generated in
  10427. \code{explicate\_control} were guaranteed to be acyclic. However, each
  10428. \code{while} loop introduces a cycle. Does that matter?
  10429. %
  10430. Indeed, it does. Recall that for register allocation, the compiler
  10431. performs liveness analysis to determine which variables can share the
  10432. same register. To accomplish this, we analyzed the control-flow graph
  10433. in reverse topological order
  10434. (section~\ref{sec:liveness-analysis-Lif}), but topological order is
  10435. well defined only for acyclic graphs.
  10436. Let us return to the example of computing the sum of the first five
  10437. positive integers. Here is the program after instruction
  10438. selection\index{subject}{instruction selection} but before register
  10439. allocation.
  10440. \begin{center}
  10441. {\if\edition\racketEd
  10442. \begin{minipage}{0.45\textwidth}
  10443. \begin{lstlisting}
  10444. (define (main) : Integer
  10445. mainstart:
  10446. movq $0, sum
  10447. movq $5, i
  10448. jmp block5
  10449. block5:
  10450. movq i, tmp3
  10451. cmpq tmp3, $0
  10452. jl block7
  10453. jmp block8
  10454. \end{lstlisting}
  10455. \end{minipage}
  10456. \begin{minipage}{0.45\textwidth}
  10457. \begin{lstlisting}
  10458. block7:
  10459. addq i, sum
  10460. movq $1, tmp4
  10461. negq tmp4
  10462. addq tmp4, i
  10463. jmp block5
  10464. block8:
  10465. movq $27, %rax
  10466. addq sum, %rax
  10467. jmp mainconclusion)
  10468. \end{lstlisting}
  10469. \end{minipage}
  10470. \fi}
  10471. {\if\edition\pythonEd\pythonColor
  10472. \begin{minipage}{0.45\textwidth}
  10473. \begin{lstlisting}
  10474. mainstart:
  10475. movq $0, sum
  10476. movq $5, i
  10477. jmp block5
  10478. block5:
  10479. cmpq $0, i
  10480. jg block7
  10481. jmp block8
  10482. \end{lstlisting}
  10483. \end{minipage}
  10484. \begin{minipage}{0.45\textwidth}
  10485. \begin{lstlisting}
  10486. block7:
  10487. addq i, sum
  10488. subq $1, i
  10489. jmp block5
  10490. block8:
  10491. movq sum, %rdi
  10492. callq print_int
  10493. movq $0, %rax
  10494. jmp mainconclusion
  10495. \end{lstlisting}
  10496. \end{minipage}
  10497. \fi}
  10498. \end{center}
  10499. Recall that liveness analysis works backward, starting at the end
  10500. of each function. For this example we could start with \code{block8}
  10501. because we know what is live at the beginning of the conclusion:
  10502. only \code{rax} and \code{rsp}. So the live-before set
  10503. for \code{block8} is \code{\{rsp,sum\}}.
  10504. %
  10505. Next we might try to analyze \code{block5} or \code{block7}, but
  10506. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  10507. we are stuck.
  10508. The way out of this impasse is to realize that we can compute an
  10509. underapproximation of each live-before set by starting with empty
  10510. live-after sets. By \emph{underapproximation}, we mean that the set
  10511. contains only variables that are live for some execution of the
  10512. program, but the set may be missing some variables that are live.
  10513. Next, the underapproximations for each block can be improved by (1)
  10514. updating the live-after set for each block using the approximate
  10515. live-before sets from the other blocks, and (2) performing liveness
  10516. analysis again on each block. In fact, by iterating this process, the
  10517. underapproximations eventually become the correct solutions!
  10518. %
  10519. This approach of iteratively analyzing a control-flow graph is
  10520. applicable to many static analysis problems and goes by the name
  10521. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  10522. \citet{Kildall:1973vn} in his PhD thesis at the University of
  10523. Washington.
  10524. Let us apply this approach to the previously presented example. We use
  10525. the empty set for the initial live-before set for each block. Let
  10526. $m_0$ be the following mapping from label names to sets of locations
  10527. (variables and registers):
  10528. \begin{center}
  10529. \begin{lstlisting}
  10530. mainstart: {}, block5: {}, block7: {}, block8: {}
  10531. \end{lstlisting}
  10532. \end{center}
  10533. Using the above live-before approximations, we determine the
  10534. live-after for each block and then apply liveness analysis to each
  10535. block. This produces our next approximation $m_1$ of the live-before
  10536. sets.
  10537. \begin{center}
  10538. \begin{lstlisting}
  10539. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  10540. \end{lstlisting}
  10541. \end{center}
  10542. For the second round, the live-after for \code{mainstart} is the
  10543. current live-before for \code{block5}, which is \code{\{i\}}. Therefore
  10544. the liveness analysis for \code{mainstart} computes the empty set. The
  10545. live-after for \code{block5} is the union of the live-before sets for
  10546. \code{block7} and \code{block8}, which is \code{\{i, rsp, sum\}}.
  10547. So the liveness analysis for \code{block5} computes \code{\{i, rsp,
  10548. sum\}}. The live-after for \code{block7} is the live-before for
  10549. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  10550. So the liveness analysis for \code{block7} remains \code{\{i, sum\}}.
  10551. Together these yield the following approximation $m_2$ of
  10552. the live-before sets:
  10553. \begin{center}
  10554. \begin{lstlisting}
  10555. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  10556. \end{lstlisting}
  10557. \end{center}
  10558. In the preceding iteration, only \code{block5} changed, so we can
  10559. limit our attention to \code{mainstart} and \code{block7}, the two
  10560. blocks that jump to \code{block5}. As a result, the live-before sets
  10561. for \code{mainstart} and \code{block7} are updated to include
  10562. \code{rsp}, yielding the following approximation $m_3$:
  10563. \begin{center}
  10564. \begin{lstlisting}
  10565. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  10566. \end{lstlisting}
  10567. \end{center}
  10568. Because \code{block7} changed, we analyze \code{block5} once more, but
  10569. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  10570. our approximations have converged, so $m_3$ is the solution.
  10571. This iteration process is guaranteed to converge to a solution by the
  10572. Kleene fixed-point theorem, a general theorem about functions on
  10573. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  10574. any collection that comes with a partial ordering\index{subject}{partialordering@partial ordering} $\sqsubseteq$ on its
  10575. elements, a least element $\bot$ (pronounced \emph{bottom}), and a
  10576. join operator
  10577. $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{join}\footnote{Technically speaking, we
  10578. will be working with join semilattices.} When two elements are
  10579. ordered $m_i \sqsubseteq m_j$, it means that $m_j$ contains at least
  10580. as much information as $m_i$, so we can think of $m_j$ as a
  10581. better-than-or-equal-to approximation in relation to $m_i$. The
  10582. bottom element $\bot$ represents the complete lack of information,
  10583. that is, the worst approximation. The join operator takes two lattice
  10584. elements and combines their information; that is, it produces the
  10585. least upper bound of the two.\index{subject}{least upper bound}
  10586. A dataflow analysis typically involves two lattices: one lattice to
  10587. represent abstract states and another lattice that aggregates the
  10588. abstract states of all the blocks in the control-flow graph. For
  10589. liveness analysis, an abstract state is a set of locations. We form
  10590. the lattice $L$ by taking its elements to be sets of locations, the
  10591. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  10592. set, and the join operator to be set union.
  10593. %
  10594. We form a second lattice $M$ by taking its elements to be mappings
  10595. from the block labels to sets of locations (elements of $L$). We
  10596. order the mappings point-wise, using the ordering of $L$. So, given any
  10597. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  10598. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  10599. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  10600. to the empty set, $\bot_M(\ell) = \emptyset$.
  10601. We can think of one iteration of liveness analysis applied to the
  10602. whole program as being a function $f$ on the lattice $M$. It takes a
  10603. mapping as input and computes a new mapping.
  10604. \[
  10605. f(m_i) = m_{i+1}
  10606. \]
  10607. Next let us think for a moment about what a final solution $m_s$
  10608. should look like. If we perform liveness analysis using the solution
  10609. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  10610. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  10611. \[
  10612. f(m_s) = m_s
  10613. \]
  10614. Furthermore, the solution should include only locations that are
  10615. forced to be there by performing liveness analysis on the program, so
  10616. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  10617. The Kleene fixed-point theorem states that if a function $f$ is
  10618. monotone (better inputs produce better outputs), then the least fixed
  10619. point of $f$ is the least upper bound of the \emph{ascending Kleene
  10620. chain} that starts at $\bot$ and iterates $f$ as
  10621. follows:\index{subject}{Kleene fixed-point theorem}
  10622. \[
  10623. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10624. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  10625. \]
  10626. When a lattice contains only finitely long ascending chains, then
  10627. every Kleene chain tops out at some fixed point after some number of
  10628. iterations of $f$.
  10629. \[
  10630. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10631. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  10632. \]
  10633. The liveness analysis is indeed a monotone function and the lattice
  10634. $M$ has finitely long ascending chains because there are only a
  10635. finite number of variables and blocks in the program. Thus we are
  10636. guaranteed that iteratively applying liveness analysis to all blocks
  10637. in the program will eventually produce the least fixed point solution.
  10638. Next let us consider dataflow analysis in general and discuss the
  10639. generic work list algorithm (figure~\ref{fig:generic-dataflow}).
  10640. %
  10641. The algorithm has four parameters: the control-flow graph \code{G}, a
  10642. function \code{transfer} that applies the analysis to one block, and the
  10643. \code{bottom} and \code{join} operators for the lattice of abstract
  10644. states. The \code{analyze\_dataflow} function is formulated as a
  10645. \emph{forward} dataflow analysis; that is, the inputs to the transfer
  10646. function come from the predecessor nodes in the control-flow
  10647. graph. However, liveness analysis is a \emph{backward} dataflow
  10648. analysis, so in that case one must supply the \code{analyze\_dataflow}
  10649. function with the transpose of the control-flow graph.
  10650. The algorithm begins by creating the bottom mapping, represented by a
  10651. hash table. It then pushes all the nodes in the control-flow graph
  10652. onto the work list (a queue). The algorithm repeats the \code{while}
  10653. loop as long as there are items in the work list. In each iteration, a
  10654. node is popped from the work list and processed. The \code{input} for
  10655. the node is computed by taking the join of the abstract states of all
  10656. the predecessor nodes. The \code{transfer} function is then applied to
  10657. obtain the \code{output} abstract state. If the output differs from
  10658. the previous state for this block, the mapping for this block is
  10659. updated and its successor nodes are pushed onto the work list.
  10660. \begin{figure}[tb]
  10661. \begin{tcolorbox}[colback=white]
  10662. {\if\edition\racketEd
  10663. \begin{lstlisting}
  10664. (define (analyze_dataflow G transfer bottom join)
  10665. (define mapping (make-hash))
  10666. (for ([v (in-vertices G)])
  10667. (dict-set! mapping v bottom))
  10668. (define worklist (make-queue))
  10669. (for ([v (in-vertices G)])
  10670. (enqueue! worklist v))
  10671. (define trans-G (transpose G))
  10672. (while (not (queue-empty? worklist))
  10673. (define node (dequeue! worklist))
  10674. (define input (for/fold ([state bottom])
  10675. ([pred (in-neighbors trans-G node)])
  10676. (join state (dict-ref mapping pred))))
  10677. (define output (transfer node input))
  10678. (cond [(not (equal? output (dict-ref mapping node)))
  10679. (dict-set! mapping node output)
  10680. (for ([v (in-neighbors G node)])
  10681. (enqueue! worklist v))]))
  10682. mapping)
  10683. \end{lstlisting}
  10684. \fi}
  10685. {\if\edition\pythonEd\pythonColor
  10686. \begin{lstlisting}
  10687. def analyze_dataflow(G, transfer, bottom, join):
  10688. trans_G = transpose(G)
  10689. mapping = dict((v, bottom) for v in G.vertices())
  10690. worklist = deque(G.vertices)
  10691. while worklist:
  10692. node = worklist.pop()
  10693. inputs = [mapping[v] for v in trans_G.adjacent(node)]
  10694. input = reduce(join, inputs, bottom)
  10695. output = transfer(node, input)
  10696. if output != mapping[node]:
  10697. mapping[node] = output
  10698. worklist.extend(G.adjacent(node))
  10699. \end{lstlisting}
  10700. \fi}
  10701. \end{tcolorbox}
  10702. \caption{Generic work list algorithm for dataflow analysis.}
  10703. \label{fig:generic-dataflow}
  10704. \end{figure}
  10705. {\if\edition\racketEd
  10706. \section{Mutable Variables and Remove Complex Operands}
  10707. There is a subtle interaction between the
  10708. \code{remove\_complex\_operands} pass, the addition of \code{set!},
  10709. and the left-to-right order of evaluation of Racket. Consider the
  10710. following example:
  10711. \begin{lstlisting}
  10712. (let ([x 2])
  10713. (+ x (begin (set! x 40) x)))
  10714. \end{lstlisting}
  10715. The result of this program is \code{42} because the first read from
  10716. \code{x} produces \code{2} and the second produces \code{40}. However,
  10717. if we naively apply the \code{remove\_complex\_operands} pass to this
  10718. example we obtain the following program whose result is \code{80}!
  10719. \begin{lstlisting}
  10720. (let ([x 2])
  10721. (let ([tmp (begin (set! x 40) x)])
  10722. (+ x tmp)))
  10723. \end{lstlisting}
  10724. The problem is that with mutable variables, the ordering between
  10725. reads and writes is important, and the
  10726. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  10727. before the first read of \code{x}.
  10728. We recommend solving this problem by giving special treatment to reads
  10729. from mutable variables, that is, variables that occur on the left-hand
  10730. side of a \code{set!}. We mark each read from a mutable variable with
  10731. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  10732. that the read operation is effectful in that it can produce different
  10733. results at different points in time. Let's apply this idea to the
  10734. following variation that also involves a variable that is not mutated:
  10735. % loop_test_24.rkt
  10736. \begin{lstlisting}
  10737. (let ([x 2])
  10738. (let ([y 0])
  10739. (+ y (+ x (begin (set! x 40) x)))))
  10740. \end{lstlisting}
  10741. We first analyze this program to discover that variable \code{x}
  10742. is mutable but \code{y} is not. We then transform the program as
  10743. follows, replacing each occurrence of \code{x} with \code{(get! x)}:
  10744. \begin{lstlisting}
  10745. (let ([x 2])
  10746. (let ([y 0])
  10747. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  10748. \end{lstlisting}
  10749. Now that we have a clear distinction between reads from mutable and
  10750. immutable variables, we can apply the \code{remove\_complex\_operands}
  10751. pass, where reads from immutable variables are still classified as
  10752. atomic expressions but reads from mutable variables are classified as
  10753. complex. Thus, \code{remove\_complex\_operands} yields the following
  10754. program:\\
  10755. \begin{minipage}{\textwidth}
  10756. \begin{lstlisting}
  10757. (let ([x 2])
  10758. (let ([y 0])
  10759. (let ([t1 x])
  10760. (let ([t2 (begin (set! x 40) x)])
  10761. (let ([t3 (+ t1 t2)])
  10762. (+ y t3))))))
  10763. \end{lstlisting}
  10764. \end{minipage}
  10765. The temporary variable \code{t1} gets the value of \code{x} before the
  10766. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  10767. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  10768. do not generate a temporary variable for the occurrence of \code{y}
  10769. because it's an immutable variable. We want to avoid such unnecessary
  10770. extra temporaries because they would needlessly increase the number of
  10771. variables, making it more likely for some of them to be spilled. The
  10772. result of this program is \code{42}, the same as the result prior to
  10773. \code{remove\_complex\_operands}.
  10774. The approach that we've sketched requires only a small
  10775. modification to \code{remove\_complex\_operands} to handle
  10776. \code{get!}. However, it requires a new pass, called
  10777. \code{uncover-get!}, that we discuss in
  10778. section~\ref{sec:uncover-get-bang}.
  10779. As an aside, this problematic interaction between \code{set!} and the
  10780. pass \code{remove\_complex\_operands} is particular to Racket and not
  10781. its predecessor, the Scheme language. The key difference is that
  10782. Scheme does not specify an order of evaluation for the arguments of an
  10783. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  10784. Scheme is free to choose any ordering: both \code{42} and \code{80}
  10785. would be correct results for the example program. Interestingly,
  10786. Racket is implemented on top of the Chez Scheme
  10787. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  10788. presented in this section (using extra \code{let} bindings to control
  10789. the order of evaluation) is used in the translation from Racket to
  10790. Scheme~\citep{Flatt:2019tb}.
  10791. \fi} % racket
  10792. Having discussed the complications that arise from adding support for
  10793. assignment and loops, we turn to discussing the individual compilation
  10794. passes.
  10795. {\if\edition\racketEd
  10796. \section{Uncover \texttt{get!}}
  10797. \label{sec:uncover-get-bang}
  10798. The goal of this pass is to mark uses of mutable variables so that
  10799. \code{remove\_complex\_operands} can treat them as complex expressions
  10800. and thereby preserve their ordering relative to the side effects in
  10801. other operands. So, the first step is to collect all the mutable
  10802. variables. We recommend creating an auxiliary function for this,
  10803. named \code{collect-set!}, that recursively traverses expressions,
  10804. returning the set of all variables that occur on the left-hand side of a
  10805. \code{set!}. Here's an excerpt of its implementation.
  10806. \begin{center}
  10807. \begin{minipage}{\textwidth}
  10808. \begin{lstlisting}
  10809. (define (collect-set! e)
  10810. (match e
  10811. [(Var x) (set)]
  10812. [(Int n) (set)]
  10813. [(Let x rhs body)
  10814. (set-union (collect-set! rhs) (collect-set! body))]
  10815. [(SetBang var rhs)
  10816. (set-union (set var) (collect-set! rhs))]
  10817. ...))
  10818. \end{lstlisting}
  10819. \end{minipage}
  10820. \end{center}
  10821. By placing this pass after \code{uniquify}, we need not worry about
  10822. variable shadowing, and our logic for \code{Let} can remain simple, as
  10823. in this excerpt.
  10824. The second step is to mark the occurrences of the mutable variables
  10825. with the new \code{GetBang} AST node (\code{get!} in concrete
  10826. syntax). The following is an excerpt of the \code{uncover-get!-exp}
  10827. function, which takes two parameters: the set of mutable variables
  10828. \code{set!-vars} and the expression \code{e} to be processed. The
  10829. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  10830. mutable variable or leaves it alone if not.
  10831. \begin{center}
  10832. \begin{minipage}{\textwidth}
  10833. \begin{lstlisting}
  10834. (define ((uncover-get!-exp set!-vars) e)
  10835. (match e
  10836. [(Var x)
  10837. (if (set-member? set!-vars x)
  10838. (GetBang x)
  10839. (Var x))]
  10840. ...))
  10841. \end{lstlisting}
  10842. \end{minipage}
  10843. \end{center}
  10844. To wrap things up, define the \code{uncover-get!} function for
  10845. processing a whole program, using \code{collect-set!} to obtain the
  10846. set of mutable variables and then \code{uncover-get!-exp} to replace
  10847. their occurrences with \code{GetBang}.
  10848. \fi}
  10849. \section{Remove Complex Operands}
  10850. \label{sec:rco-loop}
  10851. {\if\edition\racketEd
  10852. %
  10853. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  10854. \code{while} are all complex expressions. The subexpressions of
  10855. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  10856. %
  10857. \fi}
  10858. {\if\edition\pythonEd\pythonColor
  10859. %
  10860. The change needed for this pass is to add a case for the \code{while}
  10861. statement. The condition of a loop is allowed to be a complex
  10862. expression, just like the condition of the \code{if} statement.
  10863. %
  10864. \fi}
  10865. %
  10866. Figure~\ref{fig:Lwhile-anf-syntax} defines the output language
  10867. \LangLoopANF{} of this pass.
  10868. \newcommand{\LwhileMonadASTRacket}{
  10869. \begin{array}{rcl}
  10870. \Atm &::=& \VOID{} \\
  10871. \Exp &::=& \GETBANG{\Var}
  10872. \MID \SETBANG{\Var}{\Exp}
  10873. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  10874. &\MID& \WHILE{\Exp}{\Exp}
  10875. \end{array}
  10876. }
  10877. \newcommand{\LwhileMonadASTPython}{
  10878. \begin{array}{rcl}
  10879. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10880. \end{array}
  10881. }
  10882. \begin{figure}[tp]
  10883. \centering
  10884. \begin{tcolorbox}[colback=white]
  10885. \small
  10886. {\if\edition\racketEd
  10887. \[
  10888. \begin{array}{l}
  10889. \gray{\LvarMonadASTRacket} \\ \hline
  10890. \gray{\LifMonadASTRacket} \\ \hline
  10891. \LwhileMonadASTRacket \\
  10892. \begin{array}{rcl}
  10893. \LangLoopANF &::=& \PROGRAM{\code{'()}}{\Exp}
  10894. \end{array}
  10895. \end{array}
  10896. \]
  10897. \fi}
  10898. {\if\edition\pythonEd\pythonColor
  10899. \[
  10900. \begin{array}{l}
  10901. \gray{\LvarMonadASTPython} \\ \hline
  10902. \gray{\LifMonadASTPython} \\ \hline
  10903. \LwhileMonadASTPython \\
  10904. \begin{array}{rcl}
  10905. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  10906. \end{array}
  10907. \end{array}
  10908. \]
  10909. \fi}
  10910. \end{tcolorbox}
  10911. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  10912. \label{fig:Lwhile-anf-syntax}
  10913. \index{subject}{Lwhilemon@\LangLoopANF{} abstract syntax}
  10914. \end{figure}
  10915. {\if\edition\racketEd
  10916. %
  10917. As usual, when a complex expression appears in a grammar position that
  10918. needs to be atomic, such as the argument of a primitive operator, we
  10919. must introduce a temporary variable and bind it to the complex
  10920. expression. This approach applies, unchanged, to handle the new
  10921. language forms. For example, in the following code there are two
  10922. \code{begin} expressions appearing as arguments to the \code{+}
  10923. operator. The output of \code{rco\_exp} is then shown, in which the
  10924. \code{begin} expressions have been bound to temporary
  10925. variables. Recall that \code{let} expressions in \LangLoopANF{} are
  10926. allowed to have arbitrary expressions in their right-hand side
  10927. expression, so it is fine to place \code{begin} there.
  10928. %
  10929. \begin{center}
  10930. \begin{tabular}{lcl}
  10931. \begin{minipage}{0.4\textwidth}
  10932. \begin{lstlisting}
  10933. (let ([x2 10])
  10934. (let ([y3 0])
  10935. (+ (+ (begin
  10936. (set! y3 (read))
  10937. (get! x2))
  10938. (begin
  10939. (set! x2 (read))
  10940. (get! y3)))
  10941. (get! x2))))
  10942. \end{lstlisting}
  10943. \end{minipage}
  10944. &
  10945. $\Rightarrow$
  10946. &
  10947. \begin{minipage}{0.4\textwidth}
  10948. \begin{lstlisting}
  10949. (let ([x2 10])
  10950. (let ([y3 0])
  10951. (let ([tmp4 (begin
  10952. (set! y3 (read))
  10953. x2)])
  10954. (let ([tmp5 (begin
  10955. (set! x2 (read))
  10956. y3)])
  10957. (let ([tmp6 (+ tmp4 tmp5)])
  10958. (let ([tmp7 x2])
  10959. (+ tmp6 tmp7)))))))
  10960. \end{lstlisting}
  10961. \end{minipage}
  10962. \end{tabular}
  10963. \end{center}
  10964. \fi}
  10965. \section{Explicate Control \racket{and \LangCLoop{}}}
  10966. \label{sec:explicate-loop}
  10967. \newcommand{\CloopASTRacket}{
  10968. \begin{array}{lcl}
  10969. \Atm &::=& \VOID \\
  10970. \Stmt &::=& \READ{}
  10971. \end{array}
  10972. }
  10973. {\if\edition\racketEd
  10974. Recall that in the \code{explicate\_control} pass we define one helper
  10975. function for each kind of position in the program. For the \LangVar{}
  10976. language of integers and variables, we needed assignment and tail
  10977. positions. The \code{if} expressions of \LangIf{} introduced predicate
  10978. positions. For \LangLoop{}, the \code{begin} expression introduces yet
  10979. another kind of position: effect position. Except for the last
  10980. subexpression, the subexpressions inside a \code{begin} are evaluated
  10981. only for their effect. Their result values are discarded. We can
  10982. generate better code by taking this fact into account.
  10983. The output language of \code{explicate\_control} is \LangCLoop{}
  10984. (figure~\ref{fig:c7-syntax}), which is nearly identical to
  10985. \LangCIf{}. The only syntactic differences are the addition of \VOID{}
  10986. and that \code{read} may appear as a statement. The most significant
  10987. difference between the programs generated by \code{explicate\_control}
  10988. in chapter~\ref{ch:Lif} versus \code{explicate\_control} in this
  10989. chapter is that the control-flow graphs of the latter may contain
  10990. cycles.
  10991. \begin{figure}[tp]
  10992. \begin{tcolorbox}[colback=white]
  10993. \small
  10994. \[
  10995. \begin{array}{l}
  10996. \gray{\CvarASTRacket} \\ \hline
  10997. \gray{\CifASTRacket} \\ \hline
  10998. \CloopASTRacket \\
  10999. \begin{array}{lcl}
  11000. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  11001. \end{array}
  11002. \end{array}
  11003. \]
  11004. \end{tcolorbox}
  11005. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  11006. \label{fig:c7-syntax}
  11007. \index{subject}{Cwhile@\LangCLoop{} abstract syntax}
  11008. \end{figure}
  11009. The new auxiliary function \code{explicate\_effect} takes an
  11010. expression (in an effect position) and the code for its
  11011. continuation. The function returns a $\Tail$ that includes the
  11012. generated code for the input expression followed by the
  11013. continuation. If the expression is obviously pure, that is, never
  11014. causes side effects, then the expression can be removed, so the result
  11015. is just the continuation.
  11016. %
  11017. The case for $\WHILE{\itm{cnd}}{\itm{body}}$ expressions is
  11018. interesting; the generated code is depicted in the following diagram:
  11019. \begin{center}
  11020. \begin{minipage}{0.3\textwidth}
  11021. \xymatrix{
  11022. *+[F=]{\txt{\code{goto} \itm{loop}}} \ar[r]
  11023. & *+[F]{\txt{\itm{loop}: \\ \itm{cnd'}}} \ar[r]^{else} \ar[d]^{then}
  11024. & *+[F]{\txt{\itm{cont}}} \\
  11025. & *+[F]{\txt{\itm{body'} \\ \code{goto} \itm{loop}}} \ar@/^50pt/[u]
  11026. }
  11027. \end{minipage}
  11028. \end{center}
  11029. We start by creating a fresh label $\itm{loop}$ for the top of the
  11030. loop. Next, recursively process the \itm{body} (in effect position)
  11031. with a \code{goto} to $\itm{loop}$ as the continuation, producing
  11032. \itm{body'}. Process the \itm{cnd} (in predicate position) with
  11033. \itm{body'} as the \emph{then} branch and the continuation block as the
  11034. \emph{else} branch. The result should be added to the dictionary of
  11035. \code{basic-blocks} with the label \itm{loop}. The result for the
  11036. whole \code{while} loop is a \code{goto} to the \itm{loop} label.
  11037. The auxiliary functions for tail, assignment, and predicate positions
  11038. need to be updated. The three new language forms, \code{while},
  11039. \code{set!}, and \code{begin}, can appear in assignment and tail
  11040. positions. Only \code{begin} may appear in predicate positions; the
  11041. other two have result type \code{Void}.
  11042. \fi}
  11043. %
  11044. {\if\edition\pythonEd\pythonColor
  11045. %
  11046. The output of this pass is the language \LangCIf{}. No new language
  11047. features are needed in the output, because a \code{while} loop can be
  11048. expressed in terms of \code{goto} and \code{if} statements, which are
  11049. already in \LangCIf{}.
  11050. %
  11051. Add a case for the \code{while} statement to the
  11052. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  11053. the condition expression.
  11054. %
  11055. \fi}
  11056. {\if\edition\racketEd
  11057. \section{Select Instructions}
  11058. \label{sec:select-instructions-loop}
  11059. \index{subject}{select instructions}
  11060. Only two small additions are needed in the \code{select\_instructions}
  11061. pass to handle the changes to \LangCLoop{}. First, to handle the
  11062. addition of \VOID{} we simply translate it to \code{0}. Second,
  11063. \code{read} may appear as a stand-alone statement instead of
  11064. appearing only on the right-hand side of an assignment statement. The code
  11065. generation is nearly identical to the one for assignment; just leave
  11066. off the instruction for moving the result into the left-hand side.
  11067. \fi}
  11068. \section{Register Allocation}
  11069. \label{sec:register-allocation-loop}
  11070. As discussed in section~\ref{sec:dataflow-analysis}, the presence of
  11071. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  11072. which complicates the liveness analysis needed for register
  11073. allocation.
  11074. %
  11075. We recommend using the generic \code{analyze\_dataflow} function that
  11076. was presented at the end of section~\ref{sec:dataflow-analysis} to
  11077. perform liveness analysis, replacing the code in
  11078. \code{uncover\_live} that processed the basic blocks in topological
  11079. order (section~\ref{sec:liveness-analysis-Lif}).
  11080. The \code{analyze\_dataflow} function has the following four parameters.
  11081. \begin{enumerate}
  11082. \item The first parameter \code{G} should be passed the transpose
  11083. of the control-flow graph.
  11084. \item The second parameter \code{transfer} should be passed a function
  11085. that applies liveness analysis to a basic block. It takes two
  11086. parameters: the label for the block to analyze and the live-after
  11087. set for that block. The transfer function should return the
  11088. live-before set for the block.
  11089. %
  11090. \racket{Also, as a side effect, it should update the block's
  11091. $\itm{info}$ with the liveness information for each instruction.}
  11092. %
  11093. \python{Also, as a side effect, it should update the live-before and
  11094. live-after sets for each instruction.}
  11095. %
  11096. To implement the \code{transfer} function, you should be able to
  11097. reuse the code you already have for analyzing basic blocks.
  11098. \item The third and fourth parameters of \code{analyze\_dataflow} are
  11099. \code{bottom} and \code{join} for the lattice of abstract states,
  11100. that is, sets of locations. For liveness analysis, the bottom of the
  11101. lattice is the empty set, and the join operator is set union.
  11102. \end{enumerate}
  11103. \begin{figure}[tp]
  11104. \begin{tcolorbox}[colback=white]
  11105. {\if\edition\racketEd
  11106. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11107. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11108. \node (Lfun-2) at (3,2) {\large \LangLoop{}};
  11109. \node (F1-4) at (6,2) {\large \LangLoop{}};
  11110. \node (F1-5) at (9,2) {\large \LangLoop{}};
  11111. \node (F1-6) at (9,0) {\large \LangLoopANF{}};
  11112. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11113. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11114. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  11115. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  11116. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11117. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11118. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  11119. \path[->,bend left=15] (Lfun) edge [above] node
  11120. {\ttfamily\footnotesize shrink} (Lfun-2);
  11121. \path[->,bend left=15] (Lfun-2) edge [above] node
  11122. {\ttfamily\footnotesize uniquify} (F1-4);
  11123. \path[->,bend left=15] (F1-4) edge [above] node
  11124. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  11125. \path[->,bend left=15] (F1-5) edge [left] node
  11126. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11127. \path[->,bend left=10] (F1-6) edge [above] node
  11128. {\ttfamily\footnotesize explicate\_control} (C3-2);
  11129. \path[->,bend left=15] (C3-2) edge [right] node
  11130. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11131. \path[->,bend right=15] (x86-2) edge [right] node
  11132. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11133. \path[->,bend right=15] (x86-2-1) edge [below] node
  11134. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  11135. \path[->,bend right=15] (x86-2-2) edge [right] node
  11136. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  11137. \path[->,bend left=15] (x86-3) edge [above] node
  11138. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11139. \path[->,bend left=15] (x86-4) edge [right] node
  11140. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11141. \end{tikzpicture}
  11142. \fi}
  11143. {\if\edition\pythonEd\pythonColor
  11144. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11145. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11146. \node (Lfun-2) at (4,2) {\large \LangLoop{}};
  11147. \node (F1-6) at (8,2) {\large \LangLoopANF{}};
  11148. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11149. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11150. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11151. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11152. \node (x86-5) at (12,-2) {\large \LangXIf{}};
  11153. \path[->,bend left=15] (Lfun) edge [above] node
  11154. {\ttfamily\footnotesize shrink} (Lfun-2);
  11155. \path[->,bend left=15] (Lfun-2) edge [above] node
  11156. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11157. \path[->,bend left=10] (F1-6) edge [right] node
  11158. {\ttfamily\footnotesize \ \ explicate\_control} (C3-2);
  11159. \path[->,bend right=15] (C3-2) edge [right] node
  11160. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11161. \path[->,bend right=15] (x86-2) edge [below] node
  11162. {\ttfamily\footnotesize assign\_homes} (x86-3);
  11163. \path[->,bend left=15] (x86-3) edge [above] node
  11164. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11165. \path[->,bend right=15] (x86-4) edge [below] node
  11166. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11167. \end{tikzpicture}
  11168. \fi}
  11169. \end{tcolorbox}
  11170. \caption{Diagram of the passes for \LangLoop{}.}
  11171. \label{fig:Lwhile-passes}
  11172. \end{figure}
  11173. Figure~\ref{fig:Lwhile-passes} provides an overview of all the passes needed
  11174. for the compilation of \LangLoop{}.
  11175. % Further Reading: dataflow analysis
  11176. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11177. \chapter{Tuples and Garbage Collection}
  11178. \label{ch:Lvec}
  11179. \index{subject}{tuple}
  11180. \index{subject}{vector}
  11181. \setcounter{footnote}{0}
  11182. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  11183. %% all the IR grammars are spelled out! \\ --Jeremy}
  11184. %% \margincomment{\scriptsize Be more explicit about how to deal with
  11185. %% the root stack. \\ --Jeremy}
  11186. In this chapter we study the implementation of tuples\racket{, called
  11187. vectors in Racket}. A tuple is a fixed-length sequence of elements
  11188. in which each element may have a different type.
  11189. %
  11190. This language feature is the first to use the computer's
  11191. \emph{heap}\index{subject}{heap}, because the lifetime of a tuple is
  11192. indefinite; that is, a tuple lives forever from the programmer's
  11193. viewpoint. Of course, from an implementer's viewpoint, it is important
  11194. to reclaim the space associated with a tuple when it is no longer
  11195. needed, which is why we also study \emph{garbage collection}
  11196. \index{subject}{garbage collection} techniques in this chapter.
  11197. Section~\ref{sec:r3} introduces the \LangVec{} language, including its
  11198. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  11199. language (chapter~\ref{ch:Lwhile}) with tuples.
  11200. %
  11201. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  11202. copying live tuples back and forth between two halves of the heap. The
  11203. garbage collector requires coordination with the compiler so that it
  11204. can find all the live tuples.
  11205. %
  11206. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  11207. discuss the necessary changes and additions to the compiler passes,
  11208. including a new compiler pass named \code{expose\_allocation}.
  11209. \section{The \LangVec{} Language}
  11210. \label{sec:r3}
  11211. Figure~\ref{fig:Lvec-concrete-syntax} shows the definition of the
  11212. concrete syntax for \LangVec{}, and figure~\ref{fig:Lvec-syntax} shows
  11213. the definition of the abstract syntax.
  11214. %
  11215. \racket{The \LangVec{} language includes the forms \code{vector} for
  11216. creating a tuple, \code{vector-ref} for reading an element of a
  11217. tuple, \code{vector-set!} for writing to an element of a tuple, and
  11218. \code{vector-length} for obtaining the number of elements of a
  11219. tuple.}
  11220. %
  11221. \python{The \LangVec{} language adds (1) tuple creation via a
  11222. comma-separated list of expressions; (2) accessing an element of a
  11223. tuple with the square bracket notation (i.e., \code{t[n]} returns
  11224. the element at index \code{n} of tuple \code{t}); (3) the \code{is}
  11225. comparison operator; and (4) obtaining the number of elements (the
  11226. length) of a tuple. In this chapter, we restrict access indices to
  11227. constant integers.}
  11228. %
  11229. The following program shows an example of the use of tuples. It creates a tuple
  11230. \code{t} containing the elements \code{40},
  11231. \racket{\code{\#t}}\python{\code{True}}, and another tuple that
  11232. contains just \code{2}. The element at index $1$ of \code{t} is
  11233. \racket{\code{\#t}}\python{\code{True}}, so the \emph{then} branch of the
  11234. \key{if} is taken. The element at index $0$ of \code{t} is \code{40},
  11235. to which we add \code{2}, the element at index $0$ of the tuple.
  11236. The result of the program is \code{42}.
  11237. %
  11238. {\if\edition\racketEd
  11239. \begin{lstlisting}
  11240. (let ([t (vector 40 #t (vector 2))])
  11241. (if (vector-ref t 1)
  11242. (+ (vector-ref t 0)
  11243. (vector-ref (vector-ref t 2) 0))
  11244. 44))
  11245. \end{lstlisting}
  11246. \fi}
  11247. {\if\edition\pythonEd\pythonColor
  11248. \begin{lstlisting}
  11249. t = 40, True, (2,)
  11250. print(t[0] + t[2][0] if t[1] else 44)
  11251. \end{lstlisting}
  11252. \fi}
  11253. \newcommand{\LtupGrammarRacket}{
  11254. \begin{array}{lcl}
  11255. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11256. \Exp &::=& \LP\key{vector}\;\Exp^{*}\RP
  11257. \MID \LP\key{vector-length}\;\Exp\RP \\
  11258. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  11259. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  11260. \end{array}
  11261. }
  11262. \newcommand{\LtupASTRacket}{
  11263. \begin{array}{lcl}
  11264. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11265. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  11266. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  11267. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp}
  11268. % &\MID& \LP\key{HasType}~\Exp~\Type \RP
  11269. \end{array}
  11270. }
  11271. \newcommand{\LtupGrammarPython}{
  11272. \begin{array}{rcl}
  11273. \itm{cmp} &::= & \key{is} \\
  11274. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Int} \MID \CLEN{\Exp}
  11275. \end{array}
  11276. }
  11277. \newcommand{\LtupASTPython}{
  11278. \begin{array}{lcl}
  11279. \itm{cmp} &::= & \code{Is()} \\
  11280. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\INT{\Int}} \\
  11281. &\MID& \LEN{\Exp}
  11282. \end{array}
  11283. }
  11284. \begin{figure}[tbp]
  11285. \centering
  11286. \begin{tcolorbox}[colback=white]
  11287. \small
  11288. {\if\edition\racketEd
  11289. \[
  11290. \begin{array}{l}
  11291. \gray{\LintGrammarRacket{}} \\ \hline
  11292. \gray{\LvarGrammarRacket{}} \\ \hline
  11293. \gray{\LifGrammarRacket{}} \\ \hline
  11294. \gray{\LwhileGrammarRacket} \\ \hline
  11295. \LtupGrammarRacket \\
  11296. \begin{array}{lcl}
  11297. \LangVecM{} &::=& \Exp
  11298. \end{array}
  11299. \end{array}
  11300. \]
  11301. \fi}
  11302. {\if\edition\pythonEd\pythonColor
  11303. \[
  11304. \begin{array}{l}
  11305. \gray{\LintGrammarPython{}} \\ \hline
  11306. \gray{\LvarGrammarPython{}} \\ \hline
  11307. \gray{\LifGrammarPython{}} \\ \hline
  11308. \gray{\LwhileGrammarPython} \\ \hline
  11309. \LtupGrammarPython \\
  11310. \begin{array}{rcl}
  11311. \LangVecM{} &::=& \Stmt^{*}
  11312. \end{array}
  11313. \end{array}
  11314. \]
  11315. \fi}
  11316. \end{tcolorbox}
  11317. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  11318. (figure~\ref{fig:Lwhile-concrete-syntax}).}
  11319. \label{fig:Lvec-concrete-syntax}
  11320. \index{subject}{Ltup@\LangVec{} concrete syntax}
  11321. \end{figure}
  11322. \begin{figure}[tp]
  11323. \centering
  11324. \begin{tcolorbox}[colback=white]
  11325. \small
  11326. {\if\edition\racketEd
  11327. \[
  11328. \begin{array}{l}
  11329. \gray{\LintOpAST} \\ \hline
  11330. \gray{\LvarASTRacket{}} \\ \hline
  11331. \gray{\LifASTRacket{}} \\ \hline
  11332. \gray{\LwhileASTRacket{}} \\ \hline
  11333. \LtupASTRacket{} \\
  11334. \begin{array}{lcl}
  11335. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  11336. \end{array}
  11337. \end{array}
  11338. \]
  11339. \fi}
  11340. {\if\edition\pythonEd\pythonColor
  11341. \[
  11342. \begin{array}{l}
  11343. \gray{\LintASTPython} \\ \hline
  11344. \gray{\LvarASTPython} \\ \hline
  11345. \gray{\LifASTPython} \\ \hline
  11346. \gray{\LwhileASTPython} \\ \hline
  11347. \LtupASTPython \\
  11348. \begin{array}{lcl}
  11349. \LangVecM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  11350. \end{array}
  11351. \end{array}
  11352. \]
  11353. \fi}
  11354. \end{tcolorbox}
  11355. \caption{The abstract syntax of \LangVec{}.}
  11356. \label{fig:Lvec-syntax}
  11357. \index{subject}{Ltup@\LangVec{} abstract syntax}
  11358. \end{figure}
  11359. Tuples raise several interesting new issues. First, variable binding
  11360. performs a shallow copy in dealing with tuples, which means that
  11361. different variables can refer to the same tuple; that is, two
  11362. variables can be \emph{aliases}\index{subject}{alias} for the same
  11363. entity. Consider the following example, in which \code{t1} and
  11364. \code{t2} refer to the same tuple value and \code{t3} refers to a
  11365. different tuple value with equal elements. The result of the
  11366. program is \code{42}.
  11367. \begin{center}
  11368. \begin{minipage}{0.96\textwidth}
  11369. {\if\edition\racketEd
  11370. \begin{lstlisting}
  11371. (let ([t1 (vector 3 7)])
  11372. (let ([t2 t1])
  11373. (let ([t3 (vector 3 7)])
  11374. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  11375. 42
  11376. 0))))
  11377. \end{lstlisting}
  11378. \fi}
  11379. {\if\edition\pythonEd\pythonColor
  11380. \begin{lstlisting}
  11381. t1 = 3, 7
  11382. t2 = t1
  11383. t3 = 3, 7
  11384. print(42 if (t1 is t2) and not (t1 is t3) else 0)
  11385. \end{lstlisting}
  11386. \fi}
  11387. \end{minipage}
  11388. \end{center}
  11389. {\if\edition\racketEd
  11390. Whether two variables are aliased or not affects what happens
  11391. when the underlying tuple is mutated\index{subject}{mutation}.
  11392. Consider the following example in which \code{t1} and \code{t2}
  11393. again refer to the same tuple value.
  11394. \begin{center}
  11395. \begin{minipage}{0.96\textwidth}
  11396. \begin{lstlisting}
  11397. (let ([t1 (vector 3 7)])
  11398. (let ([t2 t1])
  11399. (let ([_ (vector-set! t2 0 42)])
  11400. (vector-ref t1 0))))
  11401. \end{lstlisting}
  11402. \end{minipage}
  11403. \end{center}
  11404. The mutation through \code{t2} is visible in referencing the tuple
  11405. from \code{t1}, so the result of this program is \code{42}.
  11406. \fi}
  11407. The next issue concerns the lifetime of tuples. When does a tuple's
  11408. lifetime end? Notice that \LangVec{} does not include an operation
  11409. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  11410. to any notion of static scoping.
  11411. %
  11412. {\if\edition\racketEd
  11413. %
  11414. For example, the following program returns \code{42} even though the
  11415. variable \code{w} goes out of scope prior to the \code{vector-ref}
  11416. that reads from the vector to which it was bound.
  11417. \begin{center}
  11418. \begin{minipage}{0.96\textwidth}
  11419. \begin{lstlisting}
  11420. (let ([v (vector (vector 44))])
  11421. (let ([x (let ([w (vector 42)])
  11422. (let ([_ (vector-set! v 0 w)])
  11423. 0))])
  11424. (+ x (vector-ref (vector-ref v 0) 0))))
  11425. \end{lstlisting}
  11426. \end{minipage}
  11427. \end{center}
  11428. \fi}
  11429. %
  11430. {\if\edition\pythonEd\pythonColor
  11431. %
  11432. For example, the following program returns \code{42} even though the
  11433. variable \code{x} goes out of scope when the function returns, prior
  11434. to reading the tuple element at index $0$. (We study the compilation
  11435. of functions in chapter~\ref{ch:Lfun}.)
  11436. %
  11437. \begin{center}
  11438. \begin{minipage}{0.96\textwidth}
  11439. \begin{lstlisting}
  11440. def f():
  11441. x = 42, 43
  11442. return x
  11443. t = f()
  11444. print(t[0])
  11445. \end{lstlisting}
  11446. \end{minipage}
  11447. \end{center}
  11448. \fi}
  11449. %
  11450. From the perspective of programmer-observable behavior, tuples live
  11451. forever. However, if they really lived forever then many long-running
  11452. programs would run out of memory. To solve this problem, the
  11453. language's runtime system performs automatic garbage collection.
  11454. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  11455. \LangVec{} language.
  11456. %
  11457. \racket{We define the \code{vector}, \code{vector-ref},
  11458. \code{vector-set!}, and \code{vector-length} operations for
  11459. \LangVec{} in terms of the corresponding operations in Racket. One
  11460. subtle point is that the \code{vector-set!} operation returns the
  11461. \code{\#<void>} value.}
  11462. %
  11463. \python{We represent tuples with Python lists in the interpreter
  11464. because we need to write to them
  11465. (section~\ref{sec:expose-allocation}). (Python tuples are
  11466. immutable.) We define element access, the \code{is} operator, and
  11467. the \code{len} operator for \LangVec{} in terms of the corresponding
  11468. operations in Python.}
  11469. \begin{figure}[tbp]
  11470. \begin{tcolorbox}[colback=white]
  11471. {\if\edition\racketEd
  11472. \begin{lstlisting}
  11473. (define interp-Lvec-class
  11474. (class interp-Lwhile-class
  11475. (super-new)
  11476. (define/override (interp-op op)
  11477. (match op
  11478. ['eq? (lambda (v1 v2)
  11479. (cond [(or (and (fixnum? v1) (fixnum? v2))
  11480. (and (boolean? v1) (boolean? v2))
  11481. (and (vector? v1) (vector? v2))
  11482. (and (void? v1) (void? v2)))
  11483. (eq? v1 v2)]))]
  11484. ['vector vector]
  11485. ['vector-length vector-length]
  11486. ['vector-ref vector-ref]
  11487. ['vector-set! vector-set!]
  11488. [else (super interp-op op)]
  11489. ))
  11490. (define/override ((interp-exp env) e)
  11491. (match e
  11492. [(HasType e t) ((interp-exp env) e)]
  11493. [else ((super interp-exp env) e)]
  11494. ))
  11495. ))
  11496. (define (interp-Lvec p)
  11497. (send (new interp-Lvec-class) interp-program p))
  11498. \end{lstlisting}
  11499. \fi}
  11500. %
  11501. {\if\edition\pythonEd\pythonColor
  11502. \begin{lstlisting}
  11503. class InterpLtup(InterpLwhile):
  11504. def interp_cmp(self, cmp):
  11505. match cmp:
  11506. case Is():
  11507. return lambda x, y: x is y
  11508. case _:
  11509. return super().interp_cmp(cmp)
  11510. def interp_exp(self, e, env):
  11511. match e:
  11512. case Tuple(es, Load()):
  11513. return tuple([self.interp_exp(e, env) for e in es])
  11514. case Subscript(tup, index, Load()):
  11515. t = self.interp_exp(tup, env)
  11516. n = self.interp_exp(index, env)
  11517. return t[n]
  11518. case _:
  11519. return super().interp_exp(e, env)
  11520. \end{lstlisting}
  11521. \fi}
  11522. \end{tcolorbox}
  11523. \caption{Interpreter for the \LangVec{} language.}
  11524. \label{fig:interp-Lvec}
  11525. \end{figure}
  11526. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  11527. \LangVec{}.
  11528. %
  11529. The type of a tuple is a
  11530. \racket{\code{Vector}}\python{\code{TupleType}} type that contains a
  11531. type for each of its elements.
  11532. %
  11533. \racket{To create the s-expression for the \code{Vector} type, we use the
  11534. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  11535. operator} \code{,@} to insert the list \code{t*} without its usual
  11536. start and end parentheses. \index{subject}{unquote-splicing}}
  11537. %
  11538. The type of accessing the ith element of a tuple is the ith element
  11539. type of the tuple's type, if there is one. If not, an error is
  11540. signaled. Note that the index \code{i} is required to be a constant
  11541. integer (and not, for example, a call to
  11542. \racket{\code{read}}\python{\code{input\_int}}) so that the type checker
  11543. can determine the element's type given the tuple type.
  11544. %
  11545. \racket{
  11546. Regarding writing an element to a tuple, the element's type must
  11547. be equal to the ith element type of the tuple's type.
  11548. The result type is \code{Void}.}
  11549. %% When allocating a tuple,
  11550. %% we need to know which elements of the tuple are themselves tuples for
  11551. %% the purposes of garbage collection. We can obtain this information
  11552. %% during type checking. The type checker shown in
  11553. %% figure~\ref{fig:type-check-Lvec} not only computes the type of an
  11554. %% expression; it also
  11555. %% %
  11556. %% \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  11557. %% where $T$ is the tuple's type.
  11558. %
  11559. %records the type of each tuple expression in a new field named \code{has\_type}.
  11560. \begin{figure}[tp]
  11561. \begin{tcolorbox}[colback=white]
  11562. {\if\edition\racketEd
  11563. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11564. (define type-check-Lvec-class
  11565. (class type-check-Lif-class
  11566. (super-new)
  11567. (inherit check-type-equal?)
  11568. (define/override (type-check-exp env)
  11569. (lambda (e)
  11570. (define recur (type-check-exp env))
  11571. (match e
  11572. [(Prim 'vector es)
  11573. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  11574. (define t `(Vector ,@t*))
  11575. (values (Prim 'vector e*) t)]
  11576. [(Prim 'vector-ref (list e1 (Int i)))
  11577. (define-values (e1^ t) (recur e1))
  11578. (match t
  11579. [`(Vector ,ts ...)
  11580. (unless (and (0 . <= . i) (i . < . (length ts)))
  11581. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11582. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  11583. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11584. [(Prim 'vector-set! (list e1 (Int i) elt) )
  11585. (define-values (e-vec t-vec) (recur e1))
  11586. (define-values (e-elt^ t-elt) (recur elt))
  11587. (match t-vec
  11588. [`(Vector ,ts ...)
  11589. (unless (and (0 . <= . i) (i . < . (length ts)))
  11590. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11591. (check-type-equal? (list-ref ts i) t-elt e)
  11592. (values (Prim 'vector-set! (list e-vec (Int i) e-elt^)) 'Void)]
  11593. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  11594. [(Prim 'vector-length (list e))
  11595. (define-values (e^ t) (recur e))
  11596. (match t
  11597. [`(Vector ,ts ...)
  11598. (values (Prim 'vector-length (list e^)) 'Integer)]
  11599. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11600. [(Prim 'eq? (list arg1 arg2))
  11601. (define-values (e1 t1) (recur arg1))
  11602. (define-values (e2 t2) (recur arg2))
  11603. (match* (t1 t2)
  11604. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  11605. [(other wise) (check-type-equal? t1 t2 e)])
  11606. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  11607. [else ((super type-check-exp env) e)]
  11608. )))
  11609. ))
  11610. (define (type-check-Lvec p)
  11611. (send (new type-check-Lvec-class) type-check-program p))
  11612. \end{lstlisting}
  11613. \fi}
  11614. {\if\edition\pythonEd\pythonColor
  11615. \begin{lstlisting}
  11616. class TypeCheckLtup(TypeCheckLwhile):
  11617. def type_check_exp(self, e, env):
  11618. match e:
  11619. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  11620. l = self.type_check_exp(left, env)
  11621. r = self.type_check_exp(right, env)
  11622. check_type_equal(l, r, e)
  11623. return bool
  11624. case Tuple(es, Load()):
  11625. ts = [self.type_check_exp(e, env) for e in es]
  11626. e.has_type = TupleType(ts)
  11627. return e.has_type
  11628. case Subscript(tup, Constant(i), Load()):
  11629. tup_ty = self.type_check_exp(tup, env)
  11630. i_ty = self.type_check_exp(Constant(i), env)
  11631. check_type_equal(i_ty, int, i)
  11632. match tup_ty:
  11633. case TupleType(ts):
  11634. return ts[i]
  11635. case _:
  11636. raise Exception('expected a tuple, not ' + repr(tup_ty))
  11637. case _:
  11638. return super().type_check_exp(e, env)
  11639. \end{lstlisting}
  11640. \fi}
  11641. \end{tcolorbox}
  11642. \caption{Type checker for the \LangVec{} language.}
  11643. \label{fig:type-check-Lvec}
  11644. \end{figure}
  11645. \section{Garbage Collection}
  11646. \label{sec:GC}
  11647. Garbage collection is a runtime technique for reclaiming space on the
  11648. heap that will not be used in the future of the running program. We
  11649. use the term \emph{object}\index{subject}{object} to refer to any
  11650. value that is stored in the heap, which for now includes only
  11651. tuples.%
  11652. %
  11653. \footnote{The term \emph{object} as it is used in the context of
  11654. object-oriented programming has a more specific meaning than the
  11655. way in which we use the term here.}
  11656. %
  11657. Unfortunately, it is impossible to know precisely which objects will
  11658. be accessed in the future and which will not. Instead, garbage
  11659. collectors overapproximate the set of objects that will be accessed by
  11660. identifying which objects can possibly be accessed. The running
  11661. program can directly access objects that are in registers and on the
  11662. procedure call stack. It can also transitively access the elements of
  11663. tuples, starting with a tuple whose address is in a register or on the
  11664. procedure call stack. We define the \emph{root
  11665. set}\index{subject}{root set} to be all the tuple addresses that are
  11666. in registers or on the procedure call stack. We define the \emph{live
  11667. objects}\index{subject}{live objects} to be the objects that are
  11668. reachable from the root set. Garbage collectors reclaim the space that
  11669. is allocated to objects that are no longer live. \index{subject}{allocate}
  11670. That means that some objects may not get reclaimed as soon as they could be,
  11671. but at least
  11672. garbage collectors do not reclaim the space dedicated to objects that
  11673. will be accessed in the future! The programmer can influence which
  11674. objects get reclaimed by causing them to become unreachable.
  11675. So the goal of the garbage collector is twofold:
  11676. \begin{enumerate}
  11677. \item to preserve all the live objects, and
  11678. \item to reclaim the memory of everything else, that is, the \emph{garbage}.
  11679. \end{enumerate}
  11680. \subsection{Two-Space Copying Collector}
  11681. Here we study a relatively simple algorithm for garbage collection
  11682. that is the basis of many state-of-the-art garbage
  11683. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  11684. particular, we describe a two-space copying
  11685. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  11686. perform the copy~\citep{Cheney:1970aa}. \index{subject}{copying
  11687. collector} \index{subject}{two-space copying collector}
  11688. Figure~\ref{fig:copying-collector} gives a coarse-grained depiction of
  11689. what happens in a two-space collector, showing two time steps, prior
  11690. to garbage collection (on the top) and after garbage collection (on
  11691. the bottom). In a two-space collector, the heap is divided into two
  11692. parts named the FromSpace\index{subject}{FromSpace} and the
  11693. ToSpace\index{subject}{ToSpace}. Initially, all allocations go to the
  11694. FromSpace until there is not enough room for the next allocation
  11695. request. At that point, the garbage collector goes to work to make
  11696. room for the next allocation.
  11697. A copying collector makes more room by copying all the live objects
  11698. from the FromSpace into the ToSpace and then performs a sleight of
  11699. hand, treating the ToSpace as the new FromSpace and the old FromSpace
  11700. as the new ToSpace. In the example shown in
  11701. figure~\ref{fig:copying-collector}, the root set consists of three
  11702. pointers, one in a register and two on the stack. All the live
  11703. objects have been copied to the ToSpace (the right-hand side of
  11704. figure~\ref{fig:copying-collector}) in a way that preserves the
  11705. pointer relationships. For example, the pointer in the register still
  11706. points to a tuple that in turn points to two other tuples. There are
  11707. four tuples that are not reachable from the root set and therefore do
  11708. not get copied into the ToSpace.
  11709. The exact situation shown in figure~\ref{fig:copying-collector} cannot be
  11710. created by a well-typed program in \LangVec{} because it contains a
  11711. cycle. However, creating cycles will be possible once we get to
  11712. \LangDyn{} (chapter~\ref{ch:Ldyn}). We design the garbage collector
  11713. to deal with cycles to begin with, so we will not need to revisit this
  11714. issue.
  11715. \begin{figure}[tbp]
  11716. \centering
  11717. \begin{tcolorbox}[colback=white]
  11718. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-1}}
  11719. \python{\includegraphics[width=\textwidth]{figs/copy-collect-1-python}}
  11720. \\[5ex]
  11721. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-2}}
  11722. \python{\includegraphics[width=\textwidth]{figs/copy-collect-2-python}}
  11723. \end{tcolorbox}
  11724. \caption{A copying collector in action.}
  11725. \label{fig:copying-collector}
  11726. \end{figure}
  11727. \subsection{Graph Copying via Cheney's Algorithm}
  11728. \label{sec:cheney}
  11729. \index{subject}{Cheney's algorithm}
  11730. Let us take a closer look at the copying of the live objects. The
  11731. allocated\index{subject}{allocate} objects and pointers can be viewed
  11732. as a graph, and we need to copy the part of the graph that is
  11733. reachable from the root set. To make sure that we copy all the
  11734. reachable vertices in the graph, we need an exhaustive graph traversal
  11735. algorithm, such as depth-first search or breadth-first
  11736. search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that such algorithms
  11737. take into account the possibility of cycles by marking which vertices
  11738. have already been visited, so to ensure termination of the
  11739. algorithm. These search algorithms also use a data structure such as a
  11740. stack or queue as a to-do list to keep track of the vertices that need
  11741. to be visited. We use breadth-first search and a trick due to
  11742. \citet{Cheney:1970aa} for simultaneously representing the queue and
  11743. copying tuples into the ToSpace.
  11744. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  11745. copy progresses. The queue is represented by a chunk of contiguous
  11746. memory at the beginning of the ToSpace, using two pointers to track
  11747. the front and the back of the queue, called the \emph{free pointer}
  11748. and the \emph{scan pointer}, respectively. The algorithm starts by
  11749. copying all tuples that are immediately reachable from the root set
  11750. into the ToSpace to form the initial queue. When we copy a tuple, we
  11751. mark the old tuple to indicate that it has been visited. We discuss
  11752. how this marking is accomplished in section~\ref{sec:data-rep-gc}. Note
  11753. that any pointers inside the copied tuples in the queue still point
  11754. back to the FromSpace. Once the initial queue has been created, the
  11755. algorithm enters a loop in which it repeatedly processes the tuple at
  11756. the front of the queue and pops it off the queue. To process a tuple,
  11757. the algorithm copies all the objects that are directly reachable from it
  11758. to the ToSpace, placing them at the back of the queue. The algorithm
  11759. then updates the pointers in the popped tuple so that they point to the
  11760. newly copied objects.
  11761. \begin{figure}[tbp]
  11762. \centering
  11763. \begin{tcolorbox}[colback=white]
  11764. \racket{\includegraphics[width=0.8\textwidth]{figs/cheney}}
  11765. \python{\includegraphics[width=0.8\textwidth]{figs/cheney-python}}
  11766. \end{tcolorbox}
  11767. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  11768. \label{fig:cheney}
  11769. \end{figure}
  11770. As shown in figure~\ref{fig:cheney}, in the first step we copy the
  11771. tuple whose second element is $42$ to the back of the queue. The other
  11772. pointer goes to a tuple that has already been copied, so we do not
  11773. need to copy it again, but we do need to update the pointer to the new
  11774. location. This can be accomplished by storing a \emph{forwarding
  11775. pointer}\index{subject}{forwarding pointer} to the new location in the
  11776. old tuple, when we initially copied the tuple into the
  11777. ToSpace. This completes one step of the algorithm. The algorithm
  11778. continues in this way until the queue is empty; that is, when the scan
  11779. pointer catches up with the free pointer.
  11780. \subsection{Data Representation}
  11781. \label{sec:data-rep-gc}
  11782. The garbage collector places some requirements on the data
  11783. representations used by our compiler. First, the garbage collector
  11784. needs to distinguish between pointers and other kinds of data such as
  11785. integers. The following are three ways to accomplish this:
  11786. \begin{enumerate}
  11787. \item Attach a tag to each object that identifies what type of
  11788. object it is~\citep{McCarthy:1960dz}.
  11789. \item Store different types of objects in different
  11790. regions~\citep{Steele:1977ab}.
  11791. \item Use type information from the program to either (a) generate
  11792. type-specific code for collecting, or (b) generate tables that
  11793. guide the collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  11794. \end{enumerate}
  11795. Dynamically typed languages, such as \racket{Racket}\python{Python},
  11796. need to tag objects in any case, so option 1 is a natural choice for those
  11797. languages. However, \LangVec{} is a statically typed language, so it
  11798. would be unfortunate to require tags on every object, especially small
  11799. and pervasive objects like integers and Booleans. Option 3 is the
  11800. best-performing choice for statically typed languages, but it comes with
  11801. a relatively high implementation complexity. To keep this chapter
  11802. within a reasonable scope of complexity, we recommend a combination of options
  11803. 1 and 2, using separate strategies for the stack and the heap.
  11804. Regarding the stack, we recommend using a separate stack for pointers,
  11805. which we call the \emph{root stack}\index{subject}{root stack}
  11806. (aka \emph{shadow stack})~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}.
  11807. That is, when a local variable needs to be spilled and is of type
  11808. \racket{\code{Vector}}\python{\code{TupleType}}, we put it on the
  11809. root stack instead of putting it on the procedure call
  11810. stack. Furthermore, we always spill tuple-typed variables if they are
  11811. live during a call to the collector, thereby ensuring that no pointers
  11812. are in registers during a collection. Figure~\ref{fig:shadow-stack}
  11813. reproduces the example shown in figure~\ref{fig:copying-collector} and
  11814. contrasts it with the data layout using a root stack. The root stack
  11815. contains the two pointers from the regular stack and also the pointer
  11816. in the second register.
  11817. \begin{figure}[tbp]
  11818. \centering
  11819. \begin{tcolorbox}[colback=white]
  11820. \racket{\includegraphics[width=0.60\textwidth]{figs/root-stack}}
  11821. \python{\includegraphics[width=0.60\textwidth]{figs/root-stack-python}}
  11822. \end{tcolorbox}
  11823. \caption{Maintaining a root stack to facilitate garbage collection.}
  11824. \label{fig:shadow-stack}
  11825. \end{figure}
  11826. The problem of distinguishing between pointers and other kinds of data
  11827. also arises inside each tuple on the heap. We solve this problem by
  11828. attaching a tag, an extra 64 bits, to each
  11829. tuple. Figure~\ref{fig:tuple-rep} shows a zoomed-in view of the tags for
  11830. two of the tuples in the example given in figure~\ref{fig:copying-collector}.
  11831. Note that we have drawn the bits in a big-endian way, from right to left,
  11832. with bit location 0 (the least significant bit) on the far right,
  11833. which corresponds to the direction of the x86 shifting instructions
  11834. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  11835. is dedicated to specifying which elements of the tuple are pointers,
  11836. the part labeled \emph{pointer mask}. Within the pointer mask, a 1 bit
  11837. indicates that there is a pointer, and a 0 bit indicates some other kind of
  11838. data. The pointer mask starts at bit location 7. We limit tuples to a
  11839. maximum size of fifty elements, so we need 50 bits for the pointer
  11840. mask.%
  11841. %
  11842. \footnote{A production-quality compiler would handle
  11843. arbitrarily sized tuples and use a more complex approach.}
  11844. %
  11845. The tag also contains two other pieces of information. The length of
  11846. the tuple (number of elements) is stored in bits at locations 1 through
  11847. 6. Finally, the bit at location 0 indicates whether the tuple has yet
  11848. to be copied to the ToSpace. If the bit has value 1, then this tuple
  11849. has not yet been copied. If the bit has value 0, then the entire tag
  11850. is a forwarding pointer. (The lower 3 bits of a pointer are always
  11851. zero in any case, because our tuples are 8-byte aligned.)
  11852. \begin{figure}[tbp]
  11853. \centering
  11854. \begin{tcolorbox}[colback=white]
  11855. \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  11856. \end{tcolorbox}
  11857. \caption{Representation of tuples in the heap.}
  11858. \label{fig:tuple-rep}
  11859. \end{figure}
  11860. \subsection{Implementation of the Garbage Collector}
  11861. \label{sec:organize-gz}
  11862. \index{subject}{prelude}
  11863. An implementation of the copying collector is provided in the
  11864. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  11865. interface to the garbage collector that is used by the compiler. The
  11866. \code{initialize} function creates the FromSpace, ToSpace, and root
  11867. stack and should be called in the prelude of the \code{main}
  11868. function. The arguments of \code{initialize} are the root stack size
  11869. and the heap size. Both need to be multiples of sixty-four, and $16,384$ is a
  11870. good choice for both. The \code{initialize} function puts the address
  11871. of the beginning of the FromSpace into the global variable
  11872. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  11873. the address that is one past the last element of the FromSpace. We use
  11874. half-open intervals to represent chunks of
  11875. memory~\citep{Dijkstra:1982aa}. The \code{rootstack\_begin} variable
  11876. points to the first element of the root stack.
  11877. As long as there is room left in the FromSpace, your generated code
  11878. can allocate\index{subject}{allocate} tuples simply by moving the
  11879. \code{free\_ptr} forward.
  11880. %
  11881. The amount of room left in the FromSpace is the difference between the
  11882. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  11883. function should be called when there is not enough room left in the
  11884. FromSpace for the next allocation. The \code{collect} function takes
  11885. a pointer to the current top of the root stack (one past the last item
  11886. that was pushed) and the number of bytes that need to be
  11887. allocated. The \code{collect} function performs the copying collection
  11888. and leaves the heap in a state such that there is enough room for the
  11889. next allocation.
  11890. \begin{figure}[tbp]
  11891. \begin{tcolorbox}[colback=white]
  11892. \begin{lstlisting}
  11893. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  11894. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  11895. int64_t* free_ptr;
  11896. int64_t* fromspace_begin;
  11897. int64_t* fromspace_end;
  11898. int64_t** rootstack_begin;
  11899. \end{lstlisting}
  11900. \end{tcolorbox}
  11901. \caption{The compiler's interface to the garbage collector.}
  11902. \label{fig:gc-header}
  11903. \end{figure}
  11904. %% \begin{exercise}
  11905. %% In the file \code{runtime.c} you will find the implementation of
  11906. %% \code{initialize} and a partial implementation of \code{collect}.
  11907. %% The \code{collect} function calls another function, \code{cheney},
  11908. %% to perform the actual copy, and that function is left to the reader
  11909. %% to implement. The following is the prototype for \code{cheney}.
  11910. %% \begin{lstlisting}
  11911. %% static void cheney(int64_t** rootstack_ptr);
  11912. %% \end{lstlisting}
  11913. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  11914. %% rootstack (which is an array of pointers). The \code{cheney} function
  11915. %% also communicates with \code{collect} through the global
  11916. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  11917. %% mentioned in figure~\ref{fig:gc-header} as well as the pointers for
  11918. %% the ToSpace:
  11919. %% \begin{lstlisting}
  11920. %% static int64_t* tospace_begin;
  11921. %% static int64_t* tospace_end;
  11922. %% \end{lstlisting}
  11923. %% The job of the \code{cheney} function is to copy all the live
  11924. %% objects (reachable from the root stack) into the ToSpace, update
  11925. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  11926. %% update the root stack so that it points to the objects in the
  11927. %% ToSpace, and finally to swap the global pointers for the FromSpace
  11928. %% and ToSpace.
  11929. %% \end{exercise}
  11930. The introduction of garbage collection has a nontrivial impact on our
  11931. compiler passes. We introduce a new compiler pass named
  11932. \code{expose\_allocation} that elaborates the code for allocating
  11933. tuples. We also make significant changes to
  11934. \code{select\_instructions}, \code{build\_interference},
  11935. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  11936. make minor changes in several more passes.
  11937. The following program serves as our running example. It creates
  11938. two tuples, one nested inside the other. Both tuples have length
  11939. one. The program accesses the element in the inner tuple.
  11940. % tests/vectors_test_17.rkt
  11941. {\if\edition\racketEd
  11942. \begin{lstlisting}
  11943. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  11944. \end{lstlisting}
  11945. \fi}
  11946. % tests/tuple/get_get.py
  11947. {\if\edition\pythonEd\pythonColor
  11948. \begin{lstlisting}
  11949. v1 = (42,)
  11950. v2 = (v1,)
  11951. print(v2[0][0])
  11952. \end{lstlisting}
  11953. \fi}
  11954. %% {\if\edition\racketEd
  11955. %% \section{Shrink}
  11956. %% \label{sec:shrink-Lvec}
  11957. %% Recall that the \code{shrink} pass translates the primitives operators
  11958. %% into a smaller set of primitives.
  11959. %% %
  11960. %% This pass comes after type checking, and the type checker adds a
  11961. %% \code{HasType} AST node around each \code{vector} AST node, so you'll
  11962. %% need to add a case for \code{HasType} to the \code{shrink} pass.
  11963. %% \fi}
  11964. \section{Expose Allocation}
  11965. \label{sec:expose-allocation}
  11966. The pass \code{expose\_allocation} lowers tuple creation into making a
  11967. conditional call to the collector followed by allocating the
  11968. appropriate amount of memory and initializing it. We choose to place
  11969. the \code{expose\_allocation} pass before
  11970. \code{remove\_complex\_operands} because it generates code that
  11971. contains complex operands. However, with some care it can also be
  11972. placed after \code{remove\_complex\_operands}, which would simplify
  11973. tuple creation by removing the need to assign the initializing
  11974. expressions to temporary variables (see below).
  11975. The output of \code{expose\_allocation} is a language \LangAlloc{}
  11976. that replaces tuple creation with new lower-level forms that we use in the
  11977. translation of tuple creation\index{subject}{Lalloc@\LangAlloc{}}.
  11978. %
  11979. {\if\edition\racketEd
  11980. \[
  11981. \begin{array}{lcl}
  11982. \Exp &::=& (\key{collect} \,\itm{int})
  11983. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  11984. \MID (\key{global-value} \,\itm{name})
  11985. \end{array}
  11986. \]
  11987. \fi}
  11988. {\if\edition\pythonEd\pythonColor
  11989. \[
  11990. \begin{array}{lcl}
  11991. \Exp &::=& \key{collect}(\itm{int})
  11992. \MID \key{allocate}(\itm{int},\itm{type})
  11993. \MID \key{global\_value}(\itm{name}) \\
  11994. \Stmt &::= & \CASSIGN{\CPUT{\Exp}{\itm{int}}}{\Exp}
  11995. \end{array}
  11996. \]
  11997. \fi}
  11998. %
  11999. The \CCOLLECT{$n$} form runs the garbage collector, requesting that
  12000. there be $n$ bytes ready to be allocated. During instruction
  12001. selection\index{subject}{instruction selection}, the \CCOLLECT{$n$}
  12002. form will become a call to the \code{collect} function in
  12003. \code{runtime.c}.
  12004. %
  12005. The \CALLOCATE{$n$}{$\itm{type}$} form obtains memory for $n$ elements (and
  12006. space at the front for the 64-bit tag), but the elements are not
  12007. initialized. \index{subject}{allocate} The $\itm{type}$ parameter is the type
  12008. of the tuple:
  12009. %
  12010. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  12011. %
  12012. where $\Type_i$ is the type of the $i$th element.
  12013. %
  12014. The \CGLOBALVALUE{\itm{name}} form reads the value of a global
  12015. variable, such as \code{free\_ptr}.
  12016. \racket{
  12017. The type information that you need for \CALLOCATE{$n$}{$\itm{type}$}
  12018. can be obtained by running the
  12019. \code{type-check-Lvec-has-type} type checker immediately before the
  12020. \code{expose\_allocation} pass. This version of the type checker
  12021. places a special AST node of the form $(\key{HasType}~e~\itm{type})$
  12022. around each tuple creation. The concrete syntax
  12023. for \code{HasType} is \code{has-type}.}
  12024. The following shows the transformation of tuple creation into (1) a
  12025. sequence of temporary variable bindings for the initializing
  12026. expressions, (2) a conditional call to \code{collect}, (3) a call to
  12027. \code{allocate}, and (4) the initialization of the tuple. The
  12028. \itm{len} placeholder refers to the length of the tuple, and
  12029. \itm{bytes} is the total number of bytes that need to be allocated for
  12030. the tuple, which is 8 for the tag plus \itm{len} times 8.
  12031. %
  12032. \python{The \itm{type} needed for the second argument of the
  12033. \code{allocate} form can be obtained from the \code{has\_type} field
  12034. of the tuple AST node, which is stored there by running the type
  12035. checker for \LangVec{} immediately before this pass.}
  12036. %
  12037. \begin{center}
  12038. \begin{minipage}{\textwidth}
  12039. {\if\edition\racketEd
  12040. \begin{lstlisting}
  12041. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  12042. |$\Longrightarrow$|
  12043. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  12044. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  12045. (global-value fromspace_end))
  12046. (void)
  12047. (collect |\itm{bytes}|))])
  12048. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  12049. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  12050. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  12051. |$v$|) ... )))) ...)
  12052. \end{lstlisting}
  12053. \fi}
  12054. {\if\edition\pythonEd\pythonColor
  12055. \begin{lstlisting}
  12056. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  12057. |$\Longrightarrow$|
  12058. begin:
  12059. |$x_0$| = |$e_0$|
  12060. |$\vdots$|
  12061. |$x_{n-1}$| = |$e_{n-1}$|
  12062. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  12063. 0
  12064. else:
  12065. collect(|\itm{bytes}|)
  12066. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  12067. |$v$|[0] = |$x_0$|
  12068. |$\vdots$|
  12069. |$v$|[|$n-1$|] = |$x_{n-1}$|
  12070. |$v$|
  12071. \end{lstlisting}
  12072. \fi}
  12073. \end{minipage}
  12074. \end{center}
  12075. %
  12076. \noindent The sequencing of the initializing expressions
  12077. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important because
  12078. they may trigger garbage collection and we cannot have an allocated
  12079. but uninitialized tuple on the heap during a collection.
  12080. Figure~\ref{fig:expose-alloc-output} shows the output of the
  12081. \code{expose\_allocation} pass on our running example.
  12082. \begin{figure}[tbp]
  12083. \begin{tcolorbox}[colback=white]
  12084. % tests/s2_17.rkt
  12085. {\if\edition\racketEd
  12086. \begin{lstlisting}
  12087. (vector-ref
  12088. (vector-ref
  12089. (let ([vecinit6
  12090. (let ([_4 (if (< (+ (global-value free_ptr) 16)
  12091. (global-value fromspace_end))
  12092. (void)
  12093. (collect 16))])
  12094. (let ([alloc2 (allocate 1 (Vector Integer))])
  12095. (let ([_3 (vector-set! alloc2 0 42)])
  12096. alloc2)))])
  12097. (let ([_8 (if (< (+ (global-value free_ptr) 16)
  12098. (global-value fromspace_end))
  12099. (void)
  12100. (collect 16))])
  12101. (let ([alloc5 (allocate 1 (Vector (Vector Integer)))])
  12102. (let ([_7 (vector-set! alloc5 0 vecinit6)])
  12103. alloc5))))
  12104. 0)
  12105. 0)
  12106. \end{lstlisting}
  12107. \fi}
  12108. {\if\edition\pythonEd\pythonColor
  12109. \begin{lstlisting}
  12110. v1 = begin:
  12111. init.514 = 42
  12112. if (free_ptr + 16) < fromspace_end:
  12113. else:
  12114. collect(16)
  12115. alloc.513 = allocate(1,tuple[int])
  12116. alloc.513[0] = init.514
  12117. alloc.513
  12118. v2 = begin:
  12119. init.516 = v1
  12120. if (free_ptr + 16) < fromspace_end:
  12121. else:
  12122. collect(16)
  12123. alloc.515 = allocate(1,tuple[tuple[int]])
  12124. alloc.515[0] = init.516
  12125. alloc.515
  12126. print(v2[0][0])
  12127. \end{lstlisting}
  12128. \fi}
  12129. \end{tcolorbox}
  12130. \caption{Output of the \code{expose\_allocation} pass.}
  12131. \label{fig:expose-alloc-output}
  12132. \end{figure}
  12133. \section{Remove Complex Operands}
  12134. \label{sec:remove-complex-opera-Lvec}
  12135. {\if\edition\racketEd
  12136. %
  12137. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  12138. should be treated as complex operands.
  12139. %
  12140. \fi}
  12141. %
  12142. {\if\edition\pythonEd\pythonColor
  12143. %
  12144. The expressions \code{allocate}, \code{begin},
  12145. and tuple access should be treated as complex operands. The
  12146. subexpressions of tuple access must be atomic.
  12147. The \code{global\_value} AST node is atomic.
  12148. %
  12149. \fi}
  12150. %% A new case for
  12151. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  12152. %% handled carefully to prevent the \code{Prim} node from being separated
  12153. %% from its enclosing \code{HasType}.
  12154. Figure~\ref{fig:Lvec-anf-syntax}
  12155. shows the grammar for the output language \LangAllocANF{} of this
  12156. pass, which is \LangAlloc{} in monadic normal form.
  12157. \newcommand{\LtupMonadASTRacket}{
  12158. \begin{array}{rcl}
  12159. \Exp &::=& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  12160. \MID \GLOBALVALUE{\Var}
  12161. \end{array}
  12162. }
  12163. \newcommand{\LtupMonadASTPython}{
  12164. \begin{array}{rcl}
  12165. \Atm &::=& \GLOBALVALUE{\Var} \\
  12166. \Exp &::=& \GET{\Atm}{\Atm}
  12167. \MID \LEN{\Atm}\\
  12168. &\MID& \ALLOCATE{\Int}{\Type}\\
  12169. \Stmt{} &::=& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  12170. &\MID& \COLLECT{\Int}
  12171. \end{array}
  12172. }
  12173. \begin{figure}[tp]
  12174. \centering
  12175. \begin{tcolorbox}[colback=white]
  12176. \small
  12177. {\if\edition\racketEd
  12178. \[
  12179. \begin{array}{l}
  12180. \gray{\LvarMonadASTRacket} \\ \hline
  12181. \gray{\LifMonadASTRacket} \\ \hline
  12182. \gray{\LwhileMonadASTRacket} \\ \hline
  12183. \LtupMonadASTRacket \\
  12184. \begin{array}{rcl}
  12185. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  12186. \end{array}
  12187. \end{array}
  12188. \]
  12189. \fi}
  12190. {\if\edition\pythonEd\pythonColor
  12191. \[
  12192. \begin{array}{l}
  12193. \gray{\LvarMonadASTPython} \\ \hline
  12194. \gray{\LifMonadASTPython} \\ \hline
  12195. \gray{\LwhileMonadASTPython} \\ \hline
  12196. \LtupMonadASTPython \\
  12197. \begin{array}{rcl}
  12198. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  12199. \end{array}
  12200. \end{array}
  12201. \]
  12202. \fi}
  12203. \end{tcolorbox}
  12204. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  12205. \label{fig:Lvec-anf-syntax}
  12206. \index{subject}{Ltupmon@\LangAllocANF{} abstract syntax}
  12207. \end{figure}
  12208. \section{Explicate Control and the \LangCVec{} Language}
  12209. \label{sec:explicate-control-r3}
  12210. \newcommand{\CtupASTRacket}{
  12211. \begin{array}{lcl}
  12212. \Exp &::= & \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  12213. &\MID& \VECREF{\Atm}{\INT{\Int}} \\
  12214. &\MID& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12215. &\MID& \VECLEN{\Atm} \\
  12216. &\MID& \GLOBALVALUE{\Var} \\
  12217. \Stmt &::=& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12218. &\MID& \LP\key{Collect} \,\itm{int}\RP
  12219. \end{array}
  12220. }
  12221. \newcommand{\CtupASTPython}{
  12222. \begin{array}{lcl}
  12223. \Atm &::=& \GLOBALVALUE{\Var} \\
  12224. \Exp &::=& \GET{\Atm}{\Atm} \MID \ALLOCATE{\Int}{\Type} \\
  12225. &\MID& \LEN{\Atm} \\
  12226. \Stmt &::=& \COLLECT{\Int}
  12227. \MID \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  12228. \end{array}
  12229. }
  12230. \begin{figure}[tp]
  12231. \begin{tcolorbox}[colback=white]
  12232. \small
  12233. {\if\edition\racketEd
  12234. \[
  12235. \begin{array}{l}
  12236. \gray{\CvarASTRacket} \\ \hline
  12237. \gray{\CifASTRacket} \\ \hline
  12238. \gray{\CloopASTRacket} \\ \hline
  12239. \CtupASTRacket \\
  12240. \begin{array}{lcl}
  12241. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  12242. \end{array}
  12243. \end{array}
  12244. \]
  12245. \fi}
  12246. {\if\edition\pythonEd\pythonColor
  12247. \[
  12248. \begin{array}{l}
  12249. \gray{\CifASTPython} \\ \hline
  12250. \CtupASTPython \\
  12251. \begin{array}{lcl}
  12252. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}\;\Tail, \ldots \RC}
  12253. \end{array}
  12254. \end{array}
  12255. \]
  12256. \fi}
  12257. \end{tcolorbox}
  12258. \caption{The abstract syntax of \LangCVec{}, extending
  12259. \racket{\LangCLoop{} (figure~\ref{fig:c7-syntax})}\python{\LangCIf{}
  12260. (figure~\ref{fig:c1-syntax})}.}
  12261. \label{fig:c2-syntax}
  12262. \index{subject}{Cvec@\LangCVec{} abstract syntax}
  12263. \end{figure}
  12264. The output of \code{explicate\_control} is a program in the
  12265. intermediate language \LangCVec{}, for which figure~\ref{fig:c2-syntax}
  12266. shows the definition of the abstract syntax.
  12267. %
  12268. %% \racket{(The concrete syntax is defined in
  12269. %% figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  12270. %
  12271. The new expressions of \LangCVec{} include \key{allocate},
  12272. %
  12273. \racket{\key{vector-ref}, and \key{vector-set!},}
  12274. %
  12275. \python{accessing tuple elements,}
  12276. %
  12277. and \key{global\_value}.
  12278. %
  12279. \python{\LangCVec{} also includes the \code{collect} statement and
  12280. assignment to a tuple element.}
  12281. %
  12282. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  12283. %
  12284. The \code{explicate\_control} pass can treat these new forms much like
  12285. the other forms that we've already encountered. The output of the
  12286. \code{explicate\_control} pass on the running example is shown on the
  12287. left side of figure~\ref{fig:select-instr-output-gc} in the next
  12288. section.
  12289. \section{Select Instructions and the \LangXGlobal{} Language}
  12290. \label{sec:select-instructions-gc}
  12291. \index{subject}{select instructions}
  12292. %% void (rep as zero)
  12293. %% allocate
  12294. %% collect (callq collect)
  12295. %% vector-ref
  12296. %% vector-set!
  12297. %% vector-length
  12298. %% global (postpone)
  12299. In this pass we generate x86 code for most of the new operations that
  12300. are needed to compile tuples, including \code{Allocate},
  12301. \code{Collect}, accessing tuple elements, and the \code{Is}
  12302. comparison.
  12303. %
  12304. We compile \code{GlobalValue} to \code{Global} because the latter has a
  12305. different concrete syntax (see figures~\ref{fig:x86-2-concrete} and
  12306. \ref{fig:x86-2}). \index{subject}{x86}
  12307. The tuple read and write forms translate into \code{movq}
  12308. instructions. (The $+1$ in the offset serves to move past the tag at the
  12309. beginning of the tuple representation.)
  12310. %
  12311. \begin{center}
  12312. \begin{minipage}{\textwidth}
  12313. {\if\edition\racketEd
  12314. \begin{lstlisting}
  12315. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  12316. |$\Longrightarrow$|
  12317. movq |$\itm{tup}'$|, %r11
  12318. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12319. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  12320. |$\Longrightarrow$|
  12321. movq |$\itm{tup}'$|, %r11
  12322. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12323. movq $0, |$\itm{lhs'}$|
  12324. \end{lstlisting}
  12325. \fi}
  12326. {\if\edition\pythonEd\pythonColor
  12327. \begin{lstlisting}
  12328. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  12329. |$\Longrightarrow$|
  12330. movq |$\itm{tup}'$|, %r11
  12331. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12332. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  12333. |$\Longrightarrow$|
  12334. movq |$\itm{tup}'$|, %r11
  12335. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12336. \end{lstlisting}
  12337. \fi}
  12338. \end{minipage}
  12339. \end{center}
  12340. \racket{The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$}
  12341. \python{The $\itm{tup}'$ and $\itm{rhs}'$}
  12342. are obtained by translating from \LangCVec{} to x86.
  12343. %
  12344. The move of $\itm{tup}'$ to
  12345. register \code{r11} ensures that the offset expression
  12346. \code{$8(n+1)$(\%r11)} contains a register operand. This requires
  12347. removing \code{r11} from consideration by the register allocator.
  12348. Why not use \code{rax} instead of \code{r11}? Suppose that we instead used
  12349. \code{rax}. Then the generated code for tuple assignment would be
  12350. \begin{lstlisting}
  12351. movq |$\itm{tup}'$|, %rax
  12352. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  12353. \end{lstlisting}
  12354. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  12355. \code{patch\_instructions} would insert a move through \code{rax}
  12356. as follows:
  12357. \begin{lstlisting}
  12358. movq |$\itm{tup}'$|, %rax
  12359. movq |$\itm{rhs}'$|, %rax
  12360. movq %rax, |$8(n+1)$|(%rax)
  12361. \end{lstlisting}
  12362. However, this sequence of instructions does not work because we're
  12363. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  12364. $\itm{rhs}'$) at the same time!
  12365. The \racket{\code{vector-length}}\python{\code{len}} operation should
  12366. be translated into a sequence of instructions that read the tag of the
  12367. tuple and extract the 6 bits that represent the tuple length, which
  12368. are the bits starting at index 1 and going up to and including bit 6.
  12369. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  12370. (shift right) can be used to accomplish this.
  12371. We compile the \code{allocate} form to operations on the
  12372. \code{free\_ptr}, as shown next. This approach is called
  12373. \emph{inline allocation} because it implements allocation without a
  12374. function call by simply incrementing the allocation pointer. It is much
  12375. more efficient than calling a function for each allocation. The
  12376. address in the \code{free\_ptr} is the next free address in the
  12377. FromSpace, so we copy it into \code{r11} and then move it forward by
  12378. enough space for the tuple being allocated, which is $8(\itm{len}+1)$
  12379. bytes because each element is 8 bytes (64 bits) and we use 8 bytes for
  12380. the tag. We then initialize the \itm{tag} and finally copy the
  12381. address in \code{r11} to the left-hand side. Refer to
  12382. figure~\ref{fig:tuple-rep} to see how the tag is organized.
  12383. %
  12384. \racket{We recommend using the Racket operations
  12385. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  12386. during compilation.}
  12387. %
  12388. \python{We recommend using the bitwise-or operator \code{|} and the
  12389. shift-left operator \code{<<} to compute the tag during
  12390. compilation.}
  12391. %
  12392. The type annotation in the \code{allocate} form is used to determine
  12393. the pointer mask region of the tag.
  12394. %
  12395. The addressing mode \verb!free_ptr(%rip)! essentially stands for the
  12396. address of the \code{free\_ptr} global variable using a special
  12397. instruction-pointer-relative addressing mode of the x86-64 processor.
  12398. In particular, the assembler computes the distance $d$ between the
  12399. address of \code{free\_ptr} and where the \code{rip} would be at that
  12400. moment and then changes the \code{free\_ptr(\%rip)} argument to
  12401. \code{$d$(\%rip)}, which at runtime will compute the address of
  12402. \code{free\_ptr}.
  12403. %
  12404. {\if\edition\racketEd
  12405. \begin{lstlisting}
  12406. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  12407. |$\Longrightarrow$|
  12408. movq free_ptr(%rip), %r11
  12409. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12410. movq $|$\itm{tag}$|, 0(%r11)
  12411. movq %r11, |$\itm{lhs}'$|
  12412. \end{lstlisting}
  12413. \fi}
  12414. {\if\edition\pythonEd\pythonColor
  12415. \begin{lstlisting}
  12416. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  12417. |$\Longrightarrow$|
  12418. movq free_ptr(%rip), %r11
  12419. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12420. movq $|$\itm{tag}$|, 0(%r11)
  12421. movq %r11, |$\itm{lhs}'$|
  12422. \end{lstlisting}
  12423. \fi}
  12424. %
  12425. The \code{collect} form is compiled to a call to the \code{collect}
  12426. function in the runtime. The arguments to \code{collect} are (1) the
  12427. top of the root stack, and (2) the number of bytes that need to be
  12428. allocated. We use another dedicated register, \code{r15}, to store
  12429. the pointer to the top of the root stack. Therefore \code{r15} is not
  12430. available for use by the register allocator.
  12431. %
  12432. {\if\edition\racketEd
  12433. \begin{lstlisting}
  12434. (collect |$\itm{bytes}$|)
  12435. |$\Longrightarrow$|
  12436. movq %r15, %rdi
  12437. movq $|\itm{bytes}|, %rsi
  12438. callq collect
  12439. \end{lstlisting}
  12440. \fi}
  12441. {\if\edition\pythonEd\pythonColor
  12442. \begin{lstlisting}
  12443. collect(|$\itm{bytes}$|)
  12444. |$\Longrightarrow$|
  12445. movq %r15, %rdi
  12446. movq $|\itm{bytes}|, %rsi
  12447. callq collect
  12448. \end{lstlisting}
  12449. \fi}
  12450. {\if\edition\pythonEd\pythonColor
  12451. The \code{is} comparison is compiled similarly to the other comparison
  12452. operators, using the \code{cmpq} instruction. Because the value of a
  12453. tuple is its address, we can translate \code{is} into a simple check
  12454. for equality using the \code{e} condition code. \\
  12455. \begin{tabular}{lll}
  12456. \begin{minipage}{0.4\textwidth}
  12457. $\CASSIGN{\Var}{ \LP\CIS{\Atm_1}{\Atm_2} \RP }$
  12458. \end{minipage}
  12459. &
  12460. $\Rightarrow$
  12461. &
  12462. \begin{minipage}{0.4\textwidth}
  12463. \begin{lstlisting}
  12464. cmpq |$\Arg_2$|, |$\Arg_1$|
  12465. sete %al
  12466. movzbq %al, |$\Var$|
  12467. \end{lstlisting}
  12468. \end{minipage}
  12469. \end{tabular}
  12470. \fi}
  12471. \newcommand{\GrammarXGlobal}{
  12472. \begin{array}{lcl}
  12473. \Arg &::=& \itm{label} \key{(\%rip)}
  12474. \end{array}
  12475. }
  12476. \newcommand{\ASTXGlobalRacket}{
  12477. \begin{array}{lcl}
  12478. \Arg &::=& \GLOBAL{\itm{label}}
  12479. \end{array}
  12480. }
  12481. \begin{figure}[tp]
  12482. \begin{tcolorbox}[colback=white]
  12483. \[
  12484. \begin{array}{l}
  12485. \gray{\GrammarXInt} \\ \hline
  12486. \gray{\GrammarXIf} \\ \hline
  12487. \GrammarXGlobal \\
  12488. \begin{array}{lcl}
  12489. \LangXGlobalM{} &::= & \key{.globl main} \\
  12490. & & \key{main:} \; \Instr^{*}
  12491. \end{array}
  12492. \end{array}
  12493. \]
  12494. \end{tcolorbox}
  12495. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1-concrete}).}
  12496. \label{fig:x86-2-concrete}
  12497. \end{figure}
  12498. \begin{figure}[tp]
  12499. \begin{tcolorbox}[colback=white]
  12500. \small
  12501. {\if\edition\racketEd
  12502. \[
  12503. \begin{array}{l}
  12504. \gray{\ASTXIntRacket} \\ \hline
  12505. \gray{\ASTXIfRacket} \\ \hline
  12506. \ASTXGlobalRacket \\
  12507. \begin{array}{lcl}
  12508. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  12509. \end{array}
  12510. \end{array}
  12511. \]
  12512. \fi}
  12513. {\if\edition\pythonEd\pythonColor
  12514. \[
  12515. \begin{array}{l}
  12516. \gray{\ASTXIntPython} \\ \hline
  12517. \gray{\ASTXIfPython} \\ \hline
  12518. \ASTXGlobalRacket \\
  12519. \begin{array}{lcl}
  12520. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  12521. \end{array}
  12522. \end{array}
  12523. \]
  12524. \fi}
  12525. \end{tcolorbox}
  12526. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1}).}
  12527. \label{fig:x86-2}
  12528. \end{figure}
  12529. The definitions of the concrete and abstract syntax of the
  12530. \LangXGlobal{} language are shown in figures~\ref{fig:x86-2-concrete}
  12531. and \ref{fig:x86-2}. It differs from \LangXIf{} only in the addition
  12532. of global variables.
  12533. %
  12534. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  12535. \code{select\_instructions} pass on the running example.
  12536. \begin{figure}[tbp]
  12537. \centering
  12538. \begin{tcolorbox}[colback=white]
  12539. {\if\edition\racketEd
  12540. % tests/s2_17.rkt
  12541. \begin{tabular}{lll}
  12542. \begin{minipage}{0.5\textwidth}
  12543. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12544. start:
  12545. tmp9 = (global-value free_ptr);
  12546. tmp0 = (+ tmp9 16);
  12547. tmp1 = (global-value fromspace_end);
  12548. if (< tmp0 tmp1)
  12549. goto block0;
  12550. else
  12551. goto block1;
  12552. block0:
  12553. _4 = (void);
  12554. goto block9;
  12555. block1:
  12556. (collect 16)
  12557. goto block9;
  12558. block9:
  12559. alloc2 = (allocate 1 (Vector Integer));
  12560. _3 = (vector-set! alloc2 0 42);
  12561. vecinit6 = alloc2;
  12562. tmp2 = (global-value free_ptr);
  12563. tmp3 = (+ tmp2 16);
  12564. tmp4 = (global-value fromspace_end);
  12565. if (< tmp3 tmp4)
  12566. goto block7;
  12567. else
  12568. goto block8;
  12569. block7:
  12570. _8 = (void);
  12571. goto block6;
  12572. block8:
  12573. (collect 16)
  12574. goto block6;
  12575. block6:
  12576. alloc5 = (allocate 1 (Vector (Vector Integer)));
  12577. _7 = (vector-set! alloc5 0 vecinit6);
  12578. tmp5 = (vector-ref alloc5 0);
  12579. return (vector-ref tmp5 0);
  12580. \end{lstlisting}
  12581. \end{minipage}
  12582. &$\Rightarrow$&
  12583. \begin{minipage}{0.4\textwidth}
  12584. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12585. start:
  12586. movq free_ptr(%rip), tmp9
  12587. movq tmp9, tmp0
  12588. addq $16, tmp0
  12589. movq fromspace_end(%rip), tmp1
  12590. cmpq tmp1, tmp0
  12591. jl block0
  12592. jmp block1
  12593. block0:
  12594. movq $0, _4
  12595. jmp block9
  12596. block1:
  12597. movq %r15, %rdi
  12598. movq $16, %rsi
  12599. callq collect
  12600. jmp block9
  12601. block9:
  12602. movq free_ptr(%rip), %r11
  12603. addq $16, free_ptr(%rip)
  12604. movq $3, 0(%r11)
  12605. movq %r11, alloc2
  12606. movq alloc2, %r11
  12607. movq $42, 8(%r11)
  12608. movq $0, _3
  12609. movq alloc2, vecinit6
  12610. movq free_ptr(%rip), tmp2
  12611. movq tmp2, tmp3
  12612. addq $16, tmp3
  12613. movq fromspace_end(%rip), tmp4
  12614. cmpq tmp4, tmp3
  12615. jl block7
  12616. jmp block8
  12617. block7:
  12618. movq $0, _8
  12619. jmp block6
  12620. block8:
  12621. movq %r15, %rdi
  12622. movq $16, %rsi
  12623. callq collect
  12624. jmp block6
  12625. block6:
  12626. movq free_ptr(%rip), %r11
  12627. addq $16, free_ptr(%rip)
  12628. movq $131, 0(%r11)
  12629. movq %r11, alloc5
  12630. movq alloc5, %r11
  12631. movq vecinit6, 8(%r11)
  12632. movq $0, _7
  12633. movq alloc5, %r11
  12634. movq 8(%r11), tmp5
  12635. movq tmp5, %r11
  12636. movq 8(%r11), %rax
  12637. jmp conclusion
  12638. \end{lstlisting}
  12639. \end{minipage}
  12640. \end{tabular}
  12641. \fi}
  12642. {\if\edition\pythonEd
  12643. % tests/tuple/get_get.py
  12644. \begin{tabular}{lll}
  12645. \begin{minipage}{0.5\textwidth}
  12646. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12647. start:
  12648. init.514 = 42
  12649. tmp.517 = free_ptr
  12650. tmp.518 = (tmp.517 + 16)
  12651. tmp.519 = fromspace_end
  12652. if tmp.518 < tmp.519:
  12653. goto block.529
  12654. else:
  12655. goto block.530
  12656. block.529:
  12657. goto block.528
  12658. block.530:
  12659. collect(16)
  12660. goto block.528
  12661. block.528:
  12662. alloc.513 = allocate(1,tuple[int])
  12663. alloc.513:tuple[int][0] = init.514
  12664. v1 = alloc.513
  12665. init.516 = v1
  12666. tmp.520 = free_ptr
  12667. tmp.521 = (tmp.520 + 16)
  12668. tmp.522 = fromspace_end
  12669. if tmp.521 < tmp.522:
  12670. goto block.526
  12671. else:
  12672. goto block.527
  12673. block.526:
  12674. goto block.525
  12675. block.527:
  12676. collect(16)
  12677. goto block.525
  12678. block.525:
  12679. alloc.515 = allocate(1,tuple[tuple[int]])
  12680. alloc.515:tuple[tuple[int]][0] = init.516
  12681. v2 = alloc.515
  12682. tmp.523 = v2[0]
  12683. tmp.524 = tmp.523[0]
  12684. print(tmp.524)
  12685. return 0
  12686. \end{lstlisting}
  12687. \end{minipage}
  12688. &$\Rightarrow$&
  12689. \begin{minipage}{0.4\textwidth}
  12690. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12691. start:
  12692. movq $42, init.514
  12693. movq free_ptr(%rip), tmp.517
  12694. movq tmp.517, tmp.518
  12695. addq $16, tmp.518
  12696. movq fromspace_end(%rip), tmp.519
  12697. cmpq tmp.519, tmp.518
  12698. jl block.529
  12699. jmp block.530
  12700. block.529:
  12701. jmp block.528
  12702. block.530:
  12703. movq %r15, %rdi
  12704. movq $16, %rsi
  12705. callq collect
  12706. jmp block.528
  12707. block.528:
  12708. movq free_ptr(%rip), %r11
  12709. addq $16, free_ptr(%rip)
  12710. movq $3, 0(%r11)
  12711. movq %r11, alloc.513
  12712. movq alloc.513, %r11
  12713. movq init.514, 8(%r11)
  12714. movq alloc.513, v1
  12715. movq v1, init.516
  12716. movq free_ptr(%rip), tmp.520
  12717. movq tmp.520, tmp.521
  12718. addq $16, tmp.521
  12719. movq fromspace_end(%rip), tmp.522
  12720. cmpq tmp.522, tmp.521
  12721. jl block.526
  12722. jmp block.527
  12723. block.526:
  12724. jmp block.525
  12725. block.527:
  12726. movq %r15, %rdi
  12727. movq $16, %rsi
  12728. callq collect
  12729. jmp block.525
  12730. block.525:
  12731. movq free_ptr(%rip), %r11
  12732. addq $16, free_ptr(%rip)
  12733. movq $131, 0(%r11)
  12734. movq %r11, alloc.515
  12735. movq alloc.515, %r11
  12736. movq init.516, 8(%r11)
  12737. movq alloc.515, v2
  12738. movq v2, %r11
  12739. movq 8(%r11), %r11
  12740. movq %r11, tmp.523
  12741. movq tmp.523, %r11
  12742. movq 8(%r11), %r11
  12743. movq %r11, tmp.524
  12744. movq tmp.524, %rdi
  12745. callq print_int
  12746. movq $0, %rax
  12747. jmp conclusion
  12748. \end{lstlisting}
  12749. \end{minipage}
  12750. \end{tabular}
  12751. \fi}
  12752. \end{tcolorbox}
  12753. \caption{Output of \code{explicate\_control} (\emph{left}) and
  12754. \code{select\_instructions} (\emph{right}) on the running example.}
  12755. \label{fig:select-instr-output-gc}
  12756. \end{figure}
  12757. \clearpage
  12758. \section{Register Allocation}
  12759. \label{sec:reg-alloc-gc}
  12760. \index{subject}{register allocation}
  12761. As discussed previously in this chapter, the garbage collector needs to
  12762. access all the pointers in the root set, that is, all variables that
  12763. are tuples. It will be the responsibility of the register allocator
  12764. to make sure that
  12765. \begin{enumerate}
  12766. \item the root stack is used for spilling tuple-typed variables, and
  12767. \item if a tuple-typed variable is live during a call to the
  12768. collector, it must be spilled to ensure that it is visible to the
  12769. collector.
  12770. \end{enumerate}
  12771. The latter responsibility can be handled during construction of the
  12772. interference graph, by adding interference edges between the call-live
  12773. tuple-typed variables and all the callee-saved registers. (They
  12774. already interfere with the caller-saved registers.)
  12775. %
  12776. \racket{The type information for variables is in the \code{Program}
  12777. form, so we recommend adding another parameter to the
  12778. \code{build\_interference} function to communicate this alist.}
  12779. %
  12780. \python{The type information for variables is generated by the type
  12781. checker for \LangCVec{}, stored in a field named \code{var\_types} in
  12782. the \code{CProgram} AST mode. You'll need to propagate that
  12783. information so that it is available in this pass.}
  12784. The spilling of tuple-typed variables to the root stack can be handled
  12785. after graph coloring, in choosing how to assign the colors
  12786. (integers) to registers and stack locations. The
  12787. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  12788. changes to also record the number of spills to the root stack.
  12789. % build-interference
  12790. %
  12791. % callq
  12792. % extra parameter for var->type assoc. list
  12793. % update 'program' and 'if'
  12794. % allocate-registers
  12795. % allocate spilled vectors to the rootstack
  12796. % don't change color-graph
  12797. % TODO:
  12798. %\section{Patch Instructions}
  12799. %[mention that global variables are memory references]
  12800. \section{Generate Prelude and Conclusion}
  12801. \label{sec:print-x86-gc}
  12802. \label{sec:prelude-conclusion-x86-gc}
  12803. \index{subject}{prelude}\index{subject}{conclusion}
  12804. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  12805. \code{prelude\_and\_conclusion} pass on the running example. In the
  12806. prelude of the \code{main} function, we allocate space
  12807. on the root stack to make room for the spills of tuple-typed
  12808. variables. We do so by incrementing the root stack pointer (\code{r15}),
  12809. taking care that the root stack grows up instead of down. For the
  12810. running example, there was just one spill, so we increment \code{r15}
  12811. by 8 bytes. In the conclusion we subtract 8 bytes from \code{r15}.
  12812. One issue that deserves special care is that there may be a call to
  12813. \code{collect} prior to the initializing assignments for all the
  12814. variables in the root stack. We do not want the garbage collector to
  12815. mistakenly determine that some uninitialized variable is a pointer that
  12816. needs to be followed. Thus, we zero out all locations on the root
  12817. stack in the prelude of \code{main}. In
  12818. figure~\ref{fig:print-x86-output-gc}, the instruction
  12819. %
  12820. \lstinline{movq $0, 0(%r15)}
  12821. %
  12822. is sufficient to accomplish this task because there is only one spill.
  12823. In general, we have to clear as many words as there are spills of
  12824. tuple-typed variables. The garbage collector tests each root to see
  12825. if it is null prior to dereferencing it.
  12826. \begin{figure}[htbp]
  12827. \begin{tcolorbox}[colback=white]
  12828. {\if\edition\racketEd
  12829. \begin{minipage}[t]{0.5\textwidth}
  12830. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12831. .globl main
  12832. main:
  12833. pushq %rbp
  12834. movq %rsp, %rbp
  12835. subq $0, %rsp
  12836. movq $65536, %rdi
  12837. movq $65536, %rsi
  12838. callq initialize
  12839. movq rootstack_begin(%rip), %r15
  12840. movq $0, 0(%r15)
  12841. addq $8, %r15
  12842. jmp start
  12843. conclusion:
  12844. subq $8, %r15
  12845. addq $0, %rsp
  12846. popq %rbp
  12847. retq
  12848. \end{lstlisting}
  12849. \end{minipage}
  12850. \fi}
  12851. {\if\edition\pythonEd
  12852. \begin{minipage}[t]{0.5\textwidth}
  12853. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12854. .globl main
  12855. main:
  12856. pushq %rbp
  12857. movq %rsp, %rbp
  12858. pushq %rbx
  12859. subq $8, %rsp
  12860. movq $65536, %rdi
  12861. movq $16, %rsi
  12862. callq initialize
  12863. movq rootstack_begin(%rip), %r15
  12864. movq $0, 0(%r15)
  12865. addq $8, %r15
  12866. jmp start
  12867. conclusion:
  12868. subq $8, %r15
  12869. addq $8, %rsp
  12870. popq %rbx
  12871. popq %rbp
  12872. retq
  12873. \end{lstlisting}
  12874. \end{minipage}
  12875. \fi}
  12876. \end{tcolorbox}
  12877. \caption{The prelude and conclusion for the running example.}
  12878. \label{fig:print-x86-output-gc}
  12879. \end{figure}
  12880. \begin{figure}[tbp]
  12881. \begin{tcolorbox}[colback=white]
  12882. {\if\edition\racketEd
  12883. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  12884. \node (Lvec) at (0,2) {\large \LangVec{}};
  12885. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  12886. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  12887. \node (Lvec-4) at (10,2) {\large \LangAlloc{}};
  12888. \node (Lvec-5) at (10,0) {\large \LangAlloc{}};
  12889. \node (Lvec-6) at (5,0) {\large \LangAllocANF{}};
  12890. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12891. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12892. \node (x86-2-1) at (0,-4) {\large \LangXGlobalVar{}};
  12893. \node (x86-2-2) at (4,-4) {\large \LangXGlobalVar{}};
  12894. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12895. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12896. \node (x86-5) at (8,-4) {\large \LangXGlobal{}};
  12897. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12898. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  12899. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-4);
  12900. \path[->,bend left=15] (Lvec-4) edge [right] node
  12901. {\ttfamily\footnotesize uncover\_get!} (Lvec-5);
  12902. \path[->,bend left=10] (Lvec-5) edge [below] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12903. \path[->,bend right=10] (Lvec-6) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  12904. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12905. \path[->,bend right=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  12906. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  12907. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  12908. \path[->,bend left=10] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12909. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12910. \end{tikzpicture}
  12911. \fi}
  12912. {\if\edition\pythonEd\pythonColor
  12913. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  12914. \node (Lvec) at (0,2) {\large \LangVec{}};
  12915. \node (Lvec-2) at (4,2) {\large \LangVec{}};
  12916. \node (Lvec-5) at (8,2) {\large \LangAlloc{}};
  12917. \node (Lvec-6) at (12,2) {\large \LangAllocANF{}};
  12918. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12919. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12920. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12921. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12922. \node (x86-5) at (12,-2) {\large \LangXGlobal{}};
  12923. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12924. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-5);
  12925. \path[->,bend left=15] (Lvec-5) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12926. \path[->,bend left=10] (Lvec-6) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C2-4);
  12927. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12928. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  12929. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12930. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12931. \end{tikzpicture}
  12932. \fi}
  12933. \end{tcolorbox}
  12934. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  12935. \label{fig:Lvec-passes}
  12936. \end{figure}
  12937. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  12938. for the compilation of \LangVec{}.
  12939. \clearpage
  12940. {\if\edition\racketEd
  12941. \section{Challenge: Simple Structures}
  12942. \label{sec:simple-structures}
  12943. \index{subject}{struct}
  12944. \index{subject}{structure}
  12945. The language \LangStruct{} extends \LangVec{} with support for simple
  12946. structures. The definition of its concrete syntax is shown in
  12947. figure~\ref{fig:Lstruct-concrete-syntax}, and the abstract syntax is
  12948. shown in figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct}
  12949. in Typed Racket is a user-defined data type that contains named fields
  12950. and that is heap allocated\index{subject}{heap allocated},
  12951. similarly to a vector. The following is an
  12952. example of a structure definition, in this case the definition of a
  12953. \code{point} type:
  12954. \begin{lstlisting}
  12955. (struct point ([x : Integer] [y : Integer]) #:mutable)
  12956. \end{lstlisting}
  12957. \newcommand{\LstructGrammarRacket}{
  12958. \begin{array}{lcl}
  12959. \Type &::=& \Var \\
  12960. \Exp &::=& (\Var\;\Exp \ldots)\\
  12961. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  12962. \end{array}
  12963. }
  12964. \newcommand{\LstructASTRacket}{
  12965. \begin{array}{lcl}
  12966. \Type &::=& \VAR{\Var} \\
  12967. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  12968. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  12969. \end{array}
  12970. }
  12971. \begin{figure}[tbp]
  12972. \centering
  12973. \begin{tcolorbox}[colback=white]
  12974. \[
  12975. \begin{array}{l}
  12976. \gray{\LintGrammarRacket{}} \\ \hline
  12977. \gray{\LvarGrammarRacket{}} \\ \hline
  12978. \gray{\LifGrammarRacket{}} \\ \hline
  12979. \gray{\LwhileGrammarRacket} \\ \hline
  12980. \gray{\LtupGrammarRacket} \\ \hline
  12981. \LstructGrammarRacket \\
  12982. \begin{array}{lcl}
  12983. \LangStruct{} &::=& \Def \ldots \; \Exp
  12984. \end{array}
  12985. \end{array}
  12986. \]
  12987. \end{tcolorbox}
  12988. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  12989. (figure~\ref{fig:Lvec-concrete-syntax}).}
  12990. \label{fig:Lstruct-concrete-syntax}
  12991. \index{subject}{Lstruct@\LangStruct{} concrete syntax}
  12992. \end{figure}
  12993. \begin{figure}[tbp]
  12994. \centering
  12995. \begin{tcolorbox}[colback=white]
  12996. \small
  12997. \[
  12998. \begin{array}{l}
  12999. \gray{\LintASTRacket{}} \\ \hline
  13000. \gray{\LvarASTRacket{}} \\ \hline
  13001. \gray{\LifASTRacket{}} \\ \hline
  13002. \gray{\LwhileASTRacket} \\ \hline
  13003. \gray{\LtupASTRacket} \\ \hline
  13004. \LstructASTRacket \\
  13005. \begin{array}{lcl}
  13006. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  13007. \end{array}
  13008. \end{array}
  13009. \]
  13010. \end{tcolorbox}
  13011. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  13012. (figure~\ref{fig:Lvec-syntax}).}
  13013. \label{fig:Lstruct-syntax}
  13014. \index{subject}{Lstruct@\LangStruct{} abstract syntax}
  13015. \end{figure}
  13016. An instance of a structure is created using function-call syntax, with
  13017. the name of the structure in the function position, as follows:
  13018. \begin{lstlisting}
  13019. (point 7 12)
  13020. \end{lstlisting}
  13021. Function-call syntax is also used to read a field of a structure. The
  13022. function name is formed by the structure name, a dash, and the field
  13023. name. The following example uses \code{point-x} and \code{point-y} to
  13024. access the \code{x} and \code{y} fields of two point instances:
  13025. \begin{center}
  13026. \begin{lstlisting}
  13027. (let ([pt1 (point 7 12)])
  13028. (let ([pt2 (point 4 3)])
  13029. (+ (- (point-x pt1) (point-x pt2))
  13030. (- (point-y pt1) (point-y pt2)))))
  13031. \end{lstlisting}
  13032. \end{center}
  13033. Similarly, to write to a field of a structure, use its set function,
  13034. whose name starts with \code{set-}, followed by the structure name,
  13035. then a dash, then the field name, and finally with an exclamation
  13036. mark. The following example uses \code{set-point-x!} to change the
  13037. \code{x} field from \code{7} to \code{42}:
  13038. \begin{center}
  13039. \begin{lstlisting}
  13040. (let ([pt (point 7 12)])
  13041. (let ([_ (set-point-x! pt 42)])
  13042. (point-x pt)))
  13043. \end{lstlisting}
  13044. \end{center}
  13045. \begin{exercise}\normalfont\normalsize
  13046. Create a type checker for \LangStruct{} by extending the type
  13047. checker for \LangVec{}. Extend your compiler with support for simple
  13048. structures, compiling \LangStruct{} to x86 assembly code. Create
  13049. five new test cases that use structures, and test your compiler.
  13050. \end{exercise}
  13051. % TODO: create an interpreter for L_struct
  13052. \clearpage
  13053. \fi}
  13054. \section{Challenge: Arrays}
  13055. \label{sec:arrays}
  13056. % TODO mention trapped-error
  13057. In this chapter we have studied tuples, that is, heterogeneous
  13058. sequences of elements whose length is determined at compile time. This
  13059. challenge is also about sequences, but this time the length is
  13060. determined at runtime and all the elements have the same type (they
  13061. are homogeneous). We use the traditional term \emph{array} for this
  13062. latter kind of sequence.
  13063. %
  13064. \racket{
  13065. The Racket language does not distinguish between tuples and arrays;
  13066. they are both represented by vectors. However, Typed Racket
  13067. distinguishes between tuples and arrays: the \code{Vector} type is for
  13068. tuples, and the \code{Vectorof} type is for arrays.}%
  13069. \python{Arrays correspond to the \code{list} type in the Python language.}
  13070. Figure~\ref{fig:Lvecof-concrete-syntax} presents the definition of the
  13071. concrete syntax for \LangArray{}, and figure~\ref{fig:Lvecof-syntax}
  13072. presents the definition of the abstract syntax, extending \LangVec{}
  13073. with the \racket{\code{Vectorof}}\python{\code{list}} type and the
  13074. \racket{\code{make-vector} primitive operator for creating an array,
  13075. whose arguments are the length of the array and an initial value for
  13076. all the elements in the array.}%
  13077. \python{bracket notation for creating an array literal.}
  13078. \racket{The \code{vector-length},
  13079. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  13080. for tuples become overloaded for use with arrays.}
  13081. \python{
  13082. The subscript operator becomes overloaded for use with arrays and tuples
  13083. and now may appear on the left-hand side of an assignment.
  13084. Note that the index of the subscript, when applied to an array, may be an
  13085. arbitrary expression and not exclusively a constant integer.
  13086. The \code{len} function is also applicable to arrays.
  13087. }
  13088. %
  13089. We include integer multiplication in \LangArray{} because it is
  13090. useful in many examples involving arrays such as computing the
  13091. inner product of two arrays (figure~\ref{fig:inner_product}).
  13092. \newcommand{\LarrayGrammarRacket}{
  13093. \begin{array}{lcl}
  13094. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  13095. \Exp &::=& \CMUL{\Exp}{\Exp}
  13096. \MID \CMAKEVEC{\Exp}{\Exp}
  13097. \end{array}
  13098. }
  13099. \newcommand{\LarrayASTRacket}{
  13100. \begin{array}{lcl}
  13101. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  13102. \Exp &::=& \MUL{\Exp}{\Exp}
  13103. \MID \MAKEVEC{\Exp}{\Exp}
  13104. \end{array}
  13105. }
  13106. \newcommand{\LarrayGrammarPython}{
  13107. \begin{array}{lcl}
  13108. \Type &::=& \key{list}\LS\Type\RS \\
  13109. \Exp &::=& \CMUL{\Exp}{\Exp}
  13110. \MID \CGET{\Exp}{\Exp}
  13111. \MID \LS \Exp \code{,} \ldots \RS \\
  13112. \Stmt &::= & \CGET{\Exp}{\Exp} \mathop{\key{=}}\Exp
  13113. \end{array}
  13114. }
  13115. \newcommand{\LarrayASTPython}{
  13116. \begin{array}{lcl}
  13117. \Type &::=& \key{ListType}\LP\Type\RP \\
  13118. \Exp &::=& \MUL{\Exp}{\Exp}
  13119. \MID \GET{\Exp}{\Exp} \\
  13120. &\MID& \key{List}\LP \Exp \code{,} \ldots \code{, } \code{Load()} \RP \\
  13121. \Stmt &::= & \ASSIGN{ \PUT{\Exp}{\Exp} }{\Exp}
  13122. \end{array}
  13123. }
  13124. \begin{figure}[tp]
  13125. \centering
  13126. \begin{tcolorbox}[colback=white]
  13127. \small
  13128. {\if\edition\racketEd
  13129. \[
  13130. \begin{array}{l}
  13131. \gray{\LintGrammarRacket{}} \\ \hline
  13132. \gray{\LvarGrammarRacket{}} \\ \hline
  13133. \gray{\LifGrammarRacket{}} \\ \hline
  13134. \gray{\LwhileGrammarRacket} \\ \hline
  13135. \gray{\LtupGrammarRacket} \\ \hline
  13136. \LarrayGrammarRacket \\
  13137. \begin{array}{lcl}
  13138. \LangArray{} &::=& \Exp
  13139. \end{array}
  13140. \end{array}
  13141. \]
  13142. \fi}
  13143. {\if\edition\pythonEd\pythonColor
  13144. \[
  13145. \begin{array}{l}
  13146. \gray{\LintGrammarPython{}} \\ \hline
  13147. \gray{\LvarGrammarPython{}} \\ \hline
  13148. \gray{\LifGrammarPython{}} \\ \hline
  13149. \gray{\LwhileGrammarPython} \\ \hline
  13150. \gray{\LtupGrammarPython} \\ \hline
  13151. \LarrayGrammarPython \\
  13152. \begin{array}{rcl}
  13153. \LangArrayM{} &::=& \Stmt^{*}
  13154. \end{array}
  13155. \end{array}
  13156. \]
  13157. \fi}
  13158. \end{tcolorbox}
  13159. \caption{The concrete syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  13160. \label{fig:Lvecof-concrete-syntax}
  13161. \index{subject}{Larray@\LangArray{} concrete syntax}
  13162. \end{figure}
  13163. \begin{figure}[tp]
  13164. \centering
  13165. \begin{tcolorbox}[colback=white]
  13166. \small
  13167. {\if\edition\racketEd
  13168. \[
  13169. \begin{array}{l}
  13170. \gray{\LintASTRacket{}} \\ \hline
  13171. \gray{\LvarASTRacket{}} \\ \hline
  13172. \gray{\LifASTRacket{}} \\ \hline
  13173. \gray{\LwhileASTRacket} \\ \hline
  13174. \gray{\LtupASTRacket} \\ \hline
  13175. \LarrayASTRacket \\
  13176. \begin{array}{lcl}
  13177. \LangArray{} &::=& \Exp
  13178. \end{array}
  13179. \end{array}
  13180. \]
  13181. \fi}
  13182. {\if\edition\pythonEd\pythonColor
  13183. \[
  13184. \begin{array}{l}
  13185. \gray{\LintASTPython{}} \\ \hline
  13186. \gray{\LvarASTPython{}} \\ \hline
  13187. \gray{\LifASTPython{}} \\ \hline
  13188. \gray{\LwhileASTPython} \\ \hline
  13189. \gray{\LtupASTPython} \\ \hline
  13190. \LarrayASTPython \\
  13191. \begin{array}{rcl}
  13192. \LangArrayM{} &::=& \Stmt^{*}
  13193. \end{array}
  13194. \end{array}
  13195. \]
  13196. \fi}
  13197. \end{tcolorbox}
  13198. \caption{The abstract syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  13199. \label{fig:Lvecof-syntax}
  13200. \index{subject}{Larray@\LangArray{} abstract syntax}
  13201. \end{figure}
  13202. \begin{figure}[tp]
  13203. \begin{tcolorbox}[colback=white]
  13204. {\if\edition\racketEd
  13205. % TODO: remove the function from the following example, like the python version -Jeremy
  13206. \begin{lstlisting}
  13207. (let ([A (make-vector 2 2)])
  13208. (let ([B (make-vector 2 3)])
  13209. (let ([i 0])
  13210. (let ([prod 0])
  13211. (begin
  13212. (while (< i n)
  13213. (begin
  13214. (set! prod (+ prod (* (vector-ref A i)
  13215. (vector-ref B i))))
  13216. (set! i (+ i 1))))
  13217. prod)))))
  13218. \end{lstlisting}
  13219. \fi}
  13220. {\if\edition\pythonEd\pythonColor
  13221. \begin{lstlisting}
  13222. A = [2, 2]
  13223. B = [3, 3]
  13224. i = 0
  13225. prod = 0
  13226. while i != len(A):
  13227. prod = prod + A[i] * B[i]
  13228. i = i + 1
  13229. print(prod)
  13230. \end{lstlisting}
  13231. \fi}
  13232. \end{tcolorbox}
  13233. \caption{Example program that computes the inner product.}
  13234. \label{fig:inner_product}
  13235. \end{figure}
  13236. {\if\edition\racketEd
  13237. %
  13238. Figure~\ref{fig:type-check-Lvecof} shows the definition of the type
  13239. checker for \LangArray{}. The result type of
  13240. \code{make-vector} is \code{(Vectorof T)}, where \code{T} is the type
  13241. of the initializing expression. The length expression is required to
  13242. have type \code{Integer}. The type checking of the operators
  13243. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  13244. updated to handle the situation in which the vector has type
  13245. \code{Vectorof}. In these cases we translate the operators to their
  13246. \code{vectorof} form so that later passes can easily distinguish
  13247. between operations on tuples versus arrays. We override the
  13248. \code{operator-types} method to provide the type signature for
  13249. multiplication: it takes two integers and returns an integer.
  13250. \fi}
  13251. %
  13252. {\if\edition\pythonEd\pythonColor
  13253. %
  13254. The type checker for \LangArray{} is defined in
  13255. figures~\ref{fig:type-check-Lvecof} and
  13256. \ref{fig:type-check-Lvecof-part2}. The result type of a list literal
  13257. is \code{list[T]}, where \code{T} is the type of the initializing
  13258. expressions. The type checking of the \code{len} function and the
  13259. subscript operator are updated to handle lists. The type checker now
  13260. also handles a subscript on the left-hand side of an assignment.
  13261. Regarding multiplication, it takes two integers and returns an
  13262. integer.
  13263. %
  13264. \fi}
  13265. \begin{figure}[tbp]
  13266. \begin{tcolorbox}[colback=white]
  13267. {\if\edition\racketEd
  13268. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13269. (define type-check-Lvecof-class
  13270. (class type-check-Lvec-class
  13271. (super-new)
  13272. (inherit check-type-equal?)
  13273. (define/override (operator-types)
  13274. (append '((* . ((Integer Integer) . Integer)))
  13275. (super operator-types)))
  13276. (define/override (type-check-exp env)
  13277. (lambda (e)
  13278. (define recur (type-check-exp env))
  13279. (match e
  13280. [(Prim 'make-vector (list e1 e2))
  13281. (define-values (e1^ t1) (recur e1))
  13282. (define-values (e2^ elt-type) (recur e2))
  13283. (define vec-type `(Vectorof ,elt-type))
  13284. (values (Prim 'make-vector (list e1^ e2^)) vec-type)]
  13285. [(Prim 'vector-ref (list e1 e2))
  13286. (define-values (e1^ t1) (recur e1))
  13287. (define-values (e2^ t2) (recur e2))
  13288. (match* (t1 t2)
  13289. [(`(Vectorof ,elt-type) 'Integer)
  13290. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  13291. [(other wise) ((super type-check-exp env) e)])]
  13292. [(Prim 'vector-set! (list e1 e2 e3) )
  13293. (define-values (e-vec t-vec) (recur e1))
  13294. (define-values (e2^ t2) (recur e2))
  13295. (define-values (e-arg^ t-arg) (recur e3))
  13296. (match t-vec
  13297. [`(Vectorof ,elt-type)
  13298. (check-type-equal? elt-type t-arg e)
  13299. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  13300. [else ((super type-check-exp env) e)])]
  13301. [(Prim 'vector-length (list e1))
  13302. (define-values (e1^ t1) (recur e1))
  13303. (match t1
  13304. [`(Vectorof ,t)
  13305. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  13306. [else ((super type-check-exp env) e)])]
  13307. [else ((super type-check-exp env) e)])))
  13308. ))
  13309. (define (type-check-Lvecof p)
  13310. (send (new type-check-Lvecof-class) type-check-program p))
  13311. \end{lstlisting}
  13312. \fi}
  13313. {\if\edition\pythonEd\pythonColor
  13314. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13315. class TypeCheckLarray(TypeCheckLtup):
  13316. def type_check_exp(self, e, env):
  13317. match e:
  13318. case ast.List(es, Load()):
  13319. ts = [self.type_check_exp(e, env) for e in es]
  13320. elt_ty = ts[0]
  13321. for (ty, elt) in zip(ts, es):
  13322. self.check_type_equal(elt_ty, ty, elt)
  13323. e.has_type = ListType(elt_ty)
  13324. return e.has_type
  13325. case Call(Name('len'), [tup]):
  13326. tup_t = self.type_check_exp(tup, env)
  13327. tup.has_type = tup_t
  13328. match tup_t:
  13329. case TupleType(ts):
  13330. return IntType()
  13331. case ListType(ty):
  13332. return IntType()
  13333. case _:
  13334. raise Exception('len expected a tuple, not ' + repr(tup_t))
  13335. case Subscript(tup, index, Load()):
  13336. tup_ty = self.type_check_exp(tup, env)
  13337. index_ty = self.type_check_exp(index, env)
  13338. self.check_type_equal(index_ty, IntType(), index)
  13339. match tup_ty:
  13340. case TupleType(ts):
  13341. match index:
  13342. case Constant(i):
  13343. return ts[i]
  13344. case _:
  13345. raise Exception('subscript required constant integer index')
  13346. case ListType(ty):
  13347. return ty
  13348. case _:
  13349. raise Exception('subscript expected a tuple, not ' + repr(tup_ty))
  13350. case BinOp(left, Mult(), right):
  13351. l = self.type_check_exp(left, env)
  13352. self.check_type_equal(l, IntType(), left)
  13353. r = self.type_check_exp(right, env)
  13354. self.check_type_equal(r, IntType(), right)
  13355. return IntType()
  13356. case _:
  13357. return super().type_check_exp(e, env)
  13358. \end{lstlisting}
  13359. \fi}
  13360. \end{tcolorbox}
  13361. \caption{Type checker for the \LangArray{} language\python{, part 1}.}
  13362. \label{fig:type-check-Lvecof}
  13363. \end{figure}
  13364. {\if\edition\pythonEd
  13365. \begin{figure}[tbp]
  13366. \begin{tcolorbox}[colback=white]
  13367. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13368. def type_check_stmts(self, ss, env):
  13369. if len(ss) == 0:
  13370. return VoidType()
  13371. match ss[0]:
  13372. case Assign([Subscript(tup, index, Store())], value):
  13373. tup_t = self.type_check_exp(tup, env)
  13374. value_t = self.type_check_exp(value, env)
  13375. index_ty = self.type_check_exp(index, env)
  13376. self.check_type_equal(index_ty, IntType(), index)
  13377. match tup_t:
  13378. case ListType(ty):
  13379. self.check_type_equal(ty, value_t, ss[0])
  13380. case TupleType(ts):
  13381. return self.type_check_stmts(ss, env)
  13382. case _:
  13383. raise Exception('type_check_stmts: '
  13384. 'expected tuple or list, not ' + repr(tup_t))
  13385. return self.type_check_stmts(ss[1:], env)
  13386. case _:
  13387. return super().type_check_stmts(ss, env)
  13388. \end{lstlisting}
  13389. \end{tcolorbox}
  13390. \caption{Type checker for the \LangArray{} language, part 2.}
  13391. \label{fig:type-check-Lvecof-part2}
  13392. \end{figure}
  13393. \fi}
  13394. The definition of the interpreter for \LangArray{} is shown in
  13395. \racket{figure~\ref{fig:interp-Lvecof}}
  13396. \python{figure~\ref{fig:interp-Lvecof}}.
  13397. \racket{The \code{make-vector} operator is
  13398. interpreted using Racket's \code{make-vector} function,
  13399. and multiplication is interpreted using \code{fx*},
  13400. which is multiplication for \code{fixnum} integers.
  13401. In the \code{resolve} pass (section~\ref{sec:array-resolution})
  13402. we translate array access operations
  13403. into \code{vectorof-ref} and \code{vectorof-set!} operations,
  13404. which we interpret using \code{vector} operations with additional
  13405. bounds checks that signal a \code{trapped-error}.
  13406. }
  13407. %
  13408. \python{We implement array creation with a Python list comprehension,
  13409. and multiplication is implemented with 64-bit multiplication. We
  13410. add a case for a subscript on the left-hand side of
  13411. assignment. Other uses of subscript can be handled by the existing
  13412. code for tuples.}
  13413. \begin{figure}[tbp]
  13414. \begin{tcolorbox}[colback=white]
  13415. {\if\edition\racketEd
  13416. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13417. (define interp-Lvecof-class
  13418. (class interp-Lvec-class
  13419. (super-new)
  13420. (define/override (interp-op op)
  13421. (match op
  13422. ['make-vector make-vector]
  13423. ['vectorof-length vector-length]
  13424. ['vectorof-ref
  13425. (lambda (v i)
  13426. (if (< i (vector-length v))
  13427. (vector-ref v i)
  13428. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13429. ['vectorof-set!
  13430. (lambda (v i e)
  13431. (if (< i (vector-length v))
  13432. (vector-set! v i e)
  13433. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13434. [else (super interp-op op)]))
  13435. ))
  13436. (define (interp-Lvecof p)
  13437. (send (new interp-Lvecof-class) interp-program p))
  13438. \end{lstlisting}
  13439. \fi}
  13440. {\if\edition\pythonEd\pythonColor
  13441. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13442. class InterpLarray(InterpLtup):
  13443. def interp_exp(self, e, env):
  13444. match e:
  13445. case ast.List(es, Load()):
  13446. return [self.interp_exp(e, env) for e in es]
  13447. case BinOp(left, Mult(), right):
  13448. l = self.interp_exp(left, env)
  13449. r = self.interp_exp(right, env)
  13450. return mul64(l, r)
  13451. case Subscript(tup, index, Load()):
  13452. t = self.interp_exp(tup, env)
  13453. n = self.interp_exp(index, env)
  13454. if n < len(t):
  13455. return t[n]
  13456. else:
  13457. raise TrappedError('array index out of bounds')
  13458. case _:
  13459. return super().interp_exp(e, env)
  13460. def interp_stmt(self, s, env, cont):
  13461. match s:
  13462. case Assign([Subscript(tup, index)], value):
  13463. t = self.interp_exp(tup, env)
  13464. n = self.interp_exp(index, env)
  13465. if n < len(t):
  13466. t[n] = self.interp_exp(value, env)
  13467. else:
  13468. raise TrappedError('array index out of bounds')
  13469. return self.interp_stmts(cont, env)
  13470. case _:
  13471. return super().interp_stmt(s, env, cont)
  13472. \end{lstlisting}
  13473. \fi}
  13474. \end{tcolorbox}
  13475. \caption{Interpreter for \LangArray{}.}
  13476. \label{fig:interp-Lvecof}
  13477. \end{figure}
  13478. \subsection{Data Representation}
  13479. \label{sec:array-rep}
  13480. Just as with tuples, we store arrays on the heap, which means that the
  13481. garbage collector will need to inspect arrays. An immediate thought is
  13482. to use the same representation for arrays that we use for tuples.
  13483. However, we limit tuples to a length of fifty so that their length and
  13484. pointer mask can fit into the 64-bit tag at the beginning of each
  13485. tuple (section~\ref{sec:data-rep-gc}). We intend arrays to allow
  13486. millions of elements, so we need more bits to store the length.
  13487. However, because arrays are homogeneous, we need only 1 bit for the
  13488. pointer mask instead of 1 bit per array element. Finally, the
  13489. garbage collector must be able to distinguish between tuples
  13490. and arrays, so we need to reserve one bit for that purpose. We
  13491. arrive at the following layout for the 64-bit tag at the beginning of
  13492. an array:
  13493. \begin{itemize}
  13494. \item The right-most bit is the forwarding bit, just as in a tuple.
  13495. A $0$ indicates that it is a forwarding pointer, and a $1$ indicates
  13496. that it is not.
  13497. \item The next bit to the left is the pointer mask. A $0$ indicates
  13498. that none of the elements are pointers, and a $1$ indicates that all
  13499. the elements are pointers.
  13500. \item The next $60$ bits store the length of the array.
  13501. \item The bit at position $62$ distinguishes between a tuple ($0$)
  13502. and an array ($1$).
  13503. \item The left-most bit is reserved as explained in
  13504. chapter~\ref{ch:Lgrad}.
  13505. \end{itemize}
  13506. %% Recall that in chapter~\ref{ch:Ldyn}, we use a $3$-bit tag to
  13507. %% differentiate the kinds of values that have been injected into the
  13508. %% \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  13509. %% to indicate that the value is an array.
  13510. In the following subsections we provide hints regarding how to update
  13511. the passes to handle arrays.
  13512. \subsection{Overload Resolution}
  13513. \label{sec:array-resolution}
  13514. As noted previously, with the addition of arrays, several operators
  13515. have become \emph{overloaded}; that is, they can be applied to values
  13516. of more than one type. In this case, the element access and length
  13517. operators can be applied to both tuples and arrays. This kind of
  13518. overloading is quite common in programming languages, so many
  13519. compilers perform \emph{overload resolution}\index{subject}{overload
  13520. resolution} to handle it. The idea is to translate each overloaded
  13521. operator into different operators for the different types.
  13522. Implement a new pass named \code{resolve}.
  13523. Translate the reading of an array element to
  13524. \racket{\code{vectorof-ref}}\python{\code{array\_load}}
  13525. and the writing of an array element to
  13526. \racket{\code{vectorof-set!}}\python{\code{array\_store}}.
  13527. Translate calls to \racket{\code{vector-length}}\python{\code{len}}
  13528. into \racket{\code{vectorof-length}}\python{\code{array\_len}}.
  13529. When these operators are applied to tuples, leave them as is.
  13530. %
  13531. \python{The type checker for \LangArray{} adds a \code{has\_type}
  13532. field, which can be inspected to determine whether the operator
  13533. is applied to a tuple or an array.}
  13534. \subsection{Bounds Checking}
  13535. Recall that the interpreter for \LangArray{} signals a
  13536. \racket{\code{trapped-error}}\python{\code{TrappedError}}
  13537. when there is an array access that is out of
  13538. bounds. Therefore your compiler is obliged to also catch these errors
  13539. during execution and halt, signaling an error. We recommend inserting
  13540. a new pass named \code{check\_bounds} that inserts code around each
  13541. \racket{\code{vectorof-ref} and \code{vectorof-set!}}
  13542. \python{subscript} operation to ensure that the index is greater than
  13543. or equal to zero and less than the array's length. If not, the program
  13544. should halt, for which we recommend using a new primitive operation
  13545. named \code{exit}.
  13546. %% \subsection{Reveal Casts}
  13547. %% The array-access operators \code{vectorof-ref} and
  13548. %% \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  13549. %% \code{any-vector-set!} operators of chapter~\ref{ch:Ldyn} in
  13550. %% that the type checker cannot tell whether the index will be in bounds,
  13551. %% so the bounds check must be performed at run time. Recall that the
  13552. %% \code{reveal-casts} pass (section~\ref{sec:reveal-casts-Rany}) wraps
  13553. %% an \code{If} around a vector reference for update to check whether
  13554. %% the index is less than the length. You should do the same for
  13555. %% \code{vectorof-ref} and \code{vectorof-set!} .
  13556. %% In addition, the handling of the \code{any-vector} operators in
  13557. %% \code{reveal-casts} needs to be updated to account for arrays that are
  13558. %% injected to \code{Any}. For the \code{any-vector-length} operator, the
  13559. %% generated code should test whether the tag is for tuples (\code{010})
  13560. %% or arrays (\code{110}) and then dispatch to either
  13561. %% \code{any-vector-length} or \code{any-vectorof-length}. For the later
  13562. %% we add a case in \code{select\_instructions} to generate the
  13563. %% appropriate instructions for accessing the array length from the
  13564. %% header of an array.
  13565. %% For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  13566. %% the generated code needs to check that the index is less than the
  13567. %% vector length, so like the code for \code{any-vector-length}, check
  13568. %% the tag to determine whether to use \code{any-vector-length} or
  13569. %% \code{any-vectorof-length} for this purpose. Once the bounds checking
  13570. %% is complete, the generated code can use \code{any-vector-ref} and
  13571. %% \code{any-vector-set!} for both tuples and arrays because the
  13572. %% instructions used for those operators do not look at the tag at the
  13573. %% front of the tuple or array.
  13574. \subsection{Expose Allocation}
  13575. This pass should translate array creation into lower-level
  13576. operations. In particular, the new AST node \ALLOCARRAY{\Exp}{\Type}
  13577. is analogous to the \code{Allocate} AST node for tuples. The $\Type$
  13578. argument must be \ARRAYTY{T}, where $T$ is the element type for the
  13579. array. The \code{AllocateArray} AST node allocates an array of the
  13580. length specified by the $\Exp$ (of type \INTTY), but does not
  13581. initialize the elements of the array. Generate code in this pass to
  13582. initialize the elements analogous to the case for tuples.
  13583. {\if\edition\racketEd
  13584. \subsection{Uncover \texttt{get!}}
  13585. \label{sec:uncover-get-bang-vecof}
  13586. Add cases for \code{AllocateArray} to \code{collect-set!} and
  13587. \code{uncover-get!-exp}.
  13588. \fi}
  13589. \subsection{Remove Complex Operands}
  13590. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  13591. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  13592. complex, and its subexpression must be atomic.
  13593. \subsection{Explicate Control}
  13594. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  13595. \code{explicate\_assign}.
  13596. \subsection{Select Instructions}
  13597. \index{subject}{select instructions}
  13598. Generate instructions for \code{AllocateArray} similar to those for
  13599. \code{Allocate} given in section~\ref{sec:select-instructions-gc}
  13600. except that the tag at the front of the array should instead use the
  13601. representation discussed in section~\ref{sec:array-rep}.
  13602. Regarding \racket{\code{vectorof-length}}\python{\code{array\_len}},
  13603. extract the length from the tag.
  13604. The instructions generated for accessing an element of an array differ
  13605. from those for a tuple (section~\ref{sec:select-instructions-gc}) in
  13606. that the index is not a constant so you need to generate instructions
  13607. that compute the offset at runtime.
  13608. Compile the \code{exit} primitive into a call to the \code{exit}
  13609. function of the C standard library, with an argument of $255$.
  13610. %% Also, note that assignment to an array element may appear in
  13611. %% as a stand-alone statement, so make sure to handle that situation in
  13612. %% this pass.
  13613. %% Finally, the instructions for \code{any-vectorof-length} should be
  13614. %% similar to those for \code{vectorof-length}, except that one must
  13615. %% first project the array by writing zeroes into the $3$-bit tag
  13616. \begin{exercise}\normalfont\normalsize
  13617. Implement a compiler for the \LangArray{} language by extending your
  13618. compiler for \LangLoop{}. Test your compiler on a half dozen new
  13619. programs, including the one shown in figure~\ref{fig:inner_product}
  13620. and also a program that multiplies two matrices. Note that although
  13621. matrices are two-dimensional arrays, they can be encoded into
  13622. one-dimensional arrays by laying out each row in the array, one after
  13623. the next.
  13624. \end{exercise}
  13625. {\if\edition\racketEd
  13626. \section{Challenge: Generational Collection}
  13627. The copying collector described in section~\ref{sec:GC} can incur
  13628. significant runtime overhead because the call to \code{collect} takes
  13629. time proportional to all the live data. One way to reduce this
  13630. overhead is to reduce how much data is inspected in each call to
  13631. \code{collect}. In particular, researchers have observed that recently
  13632. allocated data is more likely to become garbage then data that has
  13633. survived one or more previous calls to \code{collect}. This insight
  13634. motivated the creation of \emph{generational garbage collectors}
  13635. \index{subject}{generational garbage collector} that
  13636. (1) segregate data according to its age into two or more generations;
  13637. (2) allocate less space for younger generations, so collecting them is
  13638. faster, and more space for the older generations; and (3) perform
  13639. collection on the younger generations more frequently than on older
  13640. generations~\citep{Wilson:1992fk}.
  13641. For this challenge assignment, the goal is to adapt the copying
  13642. collector implemented in \code{runtime.c} to use two generations, one
  13643. for young data and one for old data. Each generation consists of a
  13644. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  13645. \code{collect} function to use the two generations:
  13646. \begin{enumerate}
  13647. \item Copy the young generation's FromSpace to its ToSpace and then
  13648. switch the role of the ToSpace and FromSpace.
  13649. \item If there is enough space for the requested number of bytes in
  13650. the young FromSpace, then return from \code{collect}.
  13651. \item If there is not enough space in the young FromSpace for the
  13652. requested bytes, then move the data from the young generation to the
  13653. old one with the following steps:
  13654. \begin{enumerate}
  13655. \item[a.] If there is enough room in the old FromSpace, copy the young
  13656. FromSpace to the old FromSpace and then return.
  13657. \item[b.] If there is not enough room in the old FromSpace, then collect
  13658. the old generation by copying the old FromSpace to the old ToSpace
  13659. and swap the roles of the old FromSpace and ToSpace.
  13660. \item[c.] If there is enough room now, copy the young FromSpace to the
  13661. old FromSpace and return. Otherwise, allocate a larger FromSpace
  13662. and ToSpace for the old generation. Copy the young FromSpace and
  13663. the old FromSpace into the larger FromSpace for the old
  13664. generation and then return.
  13665. \end{enumerate}
  13666. \end{enumerate}
  13667. We recommend that you generalize the \code{cheney} function so that it
  13668. can be used for all the copies mentioned: between the young FromSpace
  13669. and ToSpace, between the old FromSpace and ToSpace, and between the
  13670. young FromSpace and old FromSpace. This can be accomplished by adding
  13671. parameters to \code{cheney} that replace its use of the global
  13672. variables \code{fromspace\_begin}, \code{fromspace\_end},
  13673. \code{tospace\_begin}, and \code{tospace\_end}.
  13674. Note that the collection of the young generation does not traverse the
  13675. old generation. This introduces a potential problem: there may be
  13676. young data that is reachable only through pointers in the old
  13677. generation. If these pointers are not taken into account, the
  13678. collector could throw away young data that is live! One solution,
  13679. called \emph{pointer recording}, is to maintain a set of all the
  13680. pointers from the old generation into the new generation and consider
  13681. this set as part of the root set. To maintain this set, the compiler
  13682. must insert extra instructions around every \code{vector-set!}. If the
  13683. vector being modified is in the old generation, and if the value being
  13684. written is a pointer into the new generation, then that pointer must
  13685. be added to the set. Also, if the value being overwritten was a
  13686. pointer into the new generation, then that pointer should be removed
  13687. from the set.
  13688. \begin{exercise}\normalfont\normalsize
  13689. Adapt the \code{collect} function in \code{runtime.c} to implement
  13690. generational garbage collection, as outlined in this section.
  13691. Update the code generation for \code{vector-set!} to implement
  13692. pointer recording. Make sure that your new compiler and runtime
  13693. execute without error on your test suite.
  13694. \end{exercise}
  13695. \fi}
  13696. \section{Further Reading}
  13697. \citet{Appel90} describes many data representation approaches
  13698. including the ones used in the compilation of Standard ML.
  13699. There are many alternatives to copying collectors (and their bigger
  13700. siblings, the generational collectors) with regard to garbage
  13701. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  13702. reference counting~\citep{Collins:1960aa}. The strengths of copying
  13703. collectors are that allocation is fast (just a comparison and pointer
  13704. increment), there is no fragmentation, cyclic garbage is collected,
  13705. and the time complexity of collection depends only on the amount of
  13706. live data and not on the amount of garbage~\citep{Wilson:1992fk}. The
  13707. main disadvantages of a two-space copying collector is that it uses a
  13708. lot of extra space and takes a long time to perform the copy, though
  13709. these problems are ameliorated in generational collectors.
  13710. \racket{Racket}\python{Object-oriented} programs tend to allocate many
  13711. small objects and generate a lot of garbage, so copying and
  13712. generational collectors are a good fit\python{~\citep{Dieckmann99}}.
  13713. Garbage collection is an active research topic, especially concurrent
  13714. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  13715. developing new techniques and revisiting old
  13716. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  13717. meet every year at the International Symposium on Memory Management to
  13718. present these findings.
  13719. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13720. \chapter{Functions}
  13721. \label{ch:Lfun}
  13722. \index{subject}{function}
  13723. \setcounter{footnote}{0}
  13724. This chapter studies the compilation of a subset of \racket{Typed
  13725. Racket}\python{Python} in which only top-level function definitions
  13726. are allowed. This kind of function appears in the C programming
  13727. language, and it serves as an important stepping-stone to implementing
  13728. lexically scoped functions in the form of \key{lambda}\index{subject}{lambda}
  13729. abstractions, which is the topic of chapter~\ref{ch:Llambda}.
  13730. \section{The \LangFun{} Language}
  13731. The concrete syntax and abstract syntax for function definitions and
  13732. function application are shown in
  13733. figures~\ref{fig:Lfun-concrete-syntax} and \ref{fig:Lfun-syntax}, with
  13734. which we define the \LangFun{} language. Programs in \LangFun{} begin
  13735. with zero or more function definitions. The function names from these
  13736. definitions are in scope for the entire program, including all the
  13737. function definitions, and therefore the ordering of function
  13738. definitions does not matter.
  13739. %
  13740. \python{The abstract syntax for function parameters in
  13741. figure~\ref{fig:Lfun-syntax} is a list of pairs, each of which
  13742. consists of a parameter name and its type. This design differs from
  13743. Python's \code{ast} module, which has a more complex structure for
  13744. function parameters to handle keyword parameters,
  13745. defaults, and so on. The type checker in \code{type\_check\_Lfun} converts the
  13746. complex Python abstract syntax into the simpler syntax shown in
  13747. figure~\ref{fig:Lfun-syntax}. The fourth and sixth parameters of the
  13748. \code{FunctionDef} constructor are for decorators and a type
  13749. comment, neither of which are used by our compiler. We recommend
  13750. replacing them with \code{None} in the \code{shrink} pass.
  13751. }
  13752. %
  13753. The concrete syntax for function application
  13754. \index{subject}{function application}
  13755. is \python{$\CAPPLY{\Exp}{\Exp\code{,} \ldots}$}\racket{$\CAPPLY{\Exp}{\Exp \ldots}$},
  13756. where the first expression
  13757. must evaluate to a function and the remaining expressions are the arguments. The
  13758. abstract syntax for function application is
  13759. $\APPLY{\Exp}{\Exp^*}$.
  13760. %% The syntax for function application does not include an explicit
  13761. %% keyword, which is error prone when using \code{match}. To alleviate
  13762. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  13763. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  13764. Functions are first-class in the sense that a function pointer
  13765. \index{subject}{function pointer} is data and can be stored in memory or passed
  13766. as a parameter to another function. Thus, there is a function
  13767. type, written
  13768. {\if\edition\racketEd
  13769. \begin{lstlisting}
  13770. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  13771. \end{lstlisting}
  13772. \fi}
  13773. {\if\edition\pythonEd\pythonColor
  13774. \begin{lstlisting}
  13775. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_R$|]
  13776. \end{lstlisting}
  13777. \fi}
  13778. %
  13779. \noindent for a function whose $n$ parameters have the types $\Type_1$
  13780. through $\Type_n$ and whose return type is $\Type_R$. The main
  13781. limitation of these functions (with respect to
  13782. \racket{Racket}\python{Python} functions) is that they are not
  13783. lexically scoped. That is, the only external entities that can be
  13784. referenced from inside a function body are other globally defined
  13785. functions. The syntax of \LangFun{} prevents function definitions from
  13786. being nested inside each other.
  13787. \newcommand{\LfunGrammarRacket}{
  13788. \begin{array}{lcl}
  13789. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13790. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  13791. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  13792. \end{array}
  13793. }
  13794. \newcommand{\LfunASTRacket}{
  13795. \begin{array}{lcl}
  13796. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13797. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  13798. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  13799. \end{array}
  13800. }
  13801. \newcommand{\LfunGrammarPython}{
  13802. \begin{array}{lcl}
  13803. \Type &::=& \key{int}
  13804. \MID \key{bool} \MID \key{void}
  13805. \MID \key{tuple}\LS \Type^+ \RS
  13806. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  13807. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  13808. \Stmt &::=& \CRETURN{\Exp} \\
  13809. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  13810. \end{array}
  13811. }
  13812. \newcommand{\LfunASTPython}{
  13813. \begin{array}{lcl}
  13814. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  13815. \MID \key{TupleType}\LS\Type^+\RS\\
  13816. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  13817. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  13818. \Stmt &::=& \RETURN{\Exp} \\
  13819. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  13820. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  13821. \end{array}
  13822. }
  13823. \begin{figure}[tp]
  13824. \centering
  13825. \begin{tcolorbox}[colback=white]
  13826. \small
  13827. {\if\edition\racketEd
  13828. \[
  13829. \begin{array}{l}
  13830. \gray{\LintGrammarRacket{}} \\ \hline
  13831. \gray{\LvarGrammarRacket{}} \\ \hline
  13832. \gray{\LifGrammarRacket{}} \\ \hline
  13833. \gray{\LwhileGrammarRacket} \\ \hline
  13834. \gray{\LtupGrammarRacket} \\ \hline
  13835. \LfunGrammarRacket \\
  13836. \begin{array}{lcl}
  13837. \LangFunM{} &::=& \Def \ldots \; \Exp
  13838. \end{array}
  13839. \end{array}
  13840. \]
  13841. \fi}
  13842. {\if\edition\pythonEd\pythonColor
  13843. \[
  13844. \begin{array}{l}
  13845. \gray{\LintGrammarPython{}} \\ \hline
  13846. \gray{\LvarGrammarPython{}} \\ \hline
  13847. \gray{\LifGrammarPython{}} \\ \hline
  13848. \gray{\LwhileGrammarPython} \\ \hline
  13849. \gray{\LtupGrammarPython} \\ \hline
  13850. \LfunGrammarPython \\
  13851. \begin{array}{rcl}
  13852. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  13853. \end{array}
  13854. \end{array}
  13855. \]
  13856. \fi}
  13857. \end{tcolorbox}
  13858. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  13859. \label{fig:Lfun-concrete-syntax}
  13860. \index{subject}{Lfun@\LangFun{} concrete syntax}
  13861. \end{figure}
  13862. \begin{figure}[tp]
  13863. \centering
  13864. \begin{tcolorbox}[colback=white]
  13865. \small
  13866. {\if\edition\racketEd
  13867. \[
  13868. \begin{array}{l}
  13869. \gray{\LintOpAST} \\ \hline
  13870. \gray{\LvarASTRacket{}} \\ \hline
  13871. \gray{\LifASTRacket{}} \\ \hline
  13872. \gray{\LwhileASTRacket{}} \\ \hline
  13873. \gray{\LtupASTRacket{}} \\ \hline
  13874. \LfunASTRacket \\
  13875. \begin{array}{lcl}
  13876. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  13877. \end{array}
  13878. \end{array}
  13879. \]
  13880. \fi}
  13881. {\if\edition\pythonEd\pythonColor
  13882. \[
  13883. \begin{array}{l}
  13884. \gray{\LintASTPython{}} \\ \hline
  13885. \gray{\LvarASTPython{}} \\ \hline
  13886. \gray{\LifASTPython{}} \\ \hline
  13887. \gray{\LwhileASTPython} \\ \hline
  13888. \gray{\LtupASTPython} \\ \hline
  13889. \LfunASTPython \\
  13890. \begin{array}{rcl}
  13891. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  13892. \end{array}
  13893. \end{array}
  13894. \]
  13895. \fi}
  13896. \end{tcolorbox}
  13897. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  13898. \label{fig:Lfun-syntax}
  13899. \index{subject}{Lfun@\LangFun{} abstract syntax}
  13900. \end{figure}
  13901. The program shown in figure~\ref{fig:Lfun-function-example} is a
  13902. representative example of defining and using functions in \LangFun{}.
  13903. We define a function \code{map} that applies some other function
  13904. \code{f} to both elements of a tuple and returns a new tuple
  13905. containing the results. We also define a function \code{inc}. The
  13906. program applies \code{map} to \code{inc} and
  13907. %
  13908. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  13909. %
  13910. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  13911. %
  13912. from which we return \code{42}.
  13913. \begin{figure}[tbp]
  13914. \begin{tcolorbox}[colback=white]
  13915. {\if\edition\racketEd
  13916. \begin{lstlisting}
  13917. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  13918. : (Vector Integer Integer)
  13919. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13920. (define (inc [x : Integer]) : Integer
  13921. (+ x 1))
  13922. (vector-ref (map inc (vector 0 41)) 1)
  13923. \end{lstlisting}
  13924. \fi}
  13925. {\if\edition\pythonEd\pythonColor
  13926. \begin{lstlisting}
  13927. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  13928. return f(v[0]), f(v[1])
  13929. def inc(x : int) -> int:
  13930. return x + 1
  13931. print(map(inc, (0, 41))[1])
  13932. \end{lstlisting}
  13933. \fi}
  13934. \end{tcolorbox}
  13935. \caption{Example of using functions in \LangFun{}.}
  13936. \label{fig:Lfun-function-example}
  13937. \end{figure}
  13938. The definitional interpreter for \LangFun{} is shown in
  13939. figure~\ref{fig:interp-Lfun}. The case for the
  13940. %
  13941. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  13942. %
  13943. AST is responsible for setting up the mutual recursion between the
  13944. top-level function definitions.
  13945. %
  13946. \racket{We use the classic back-patching
  13947. \index{subject}{back-patching} approach that uses mutable variables
  13948. and makes two passes over the function
  13949. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  13950. top-level environment using a mutable cons cell for each function
  13951. definition. Note that the \code{lambda}\index{subject}{lambda} value
  13952. for each function is incomplete; it does not yet include the environment.
  13953. Once the top-level environment has been constructed, we iterate over it and
  13954. update the \code{lambda} values to use the top-level environment.}
  13955. %
  13956. \python{We create a dictionary named \code{env} and fill it in
  13957. by mapping each function name to a new \code{Function} value,
  13958. each of which stores a reference to the \code{env}.
  13959. (We define the class \code{Function} for this purpose.)}
  13960. %
  13961. To interpret a function \racket{application}\python{call}, we match
  13962. the result of the function expression to obtain a function value. We
  13963. then extend the function's environment with the mapping of parameters to
  13964. argument values. Finally, we interpret the body of the function in
  13965. this extended environment.
  13966. \begin{figure}[tp]
  13967. \begin{tcolorbox}[colback=white]
  13968. {\if\edition\racketEd
  13969. \begin{lstlisting}
  13970. (define interp-Lfun-class
  13971. (class interp-Lvec-class
  13972. (super-new)
  13973. (define/override ((interp-exp env) e)
  13974. (define recur (interp-exp env))
  13975. (match e
  13976. [(Apply fun args)
  13977. (define fun-val (recur fun))
  13978. (define arg-vals (for/list ([e args]) (recur e)))
  13979. (match fun-val
  13980. [`(function (,xs ...) ,body ,fun-env)
  13981. (define params-args (for/list ([x xs] [arg arg-vals])
  13982. (cons x (box arg))))
  13983. (define new-env (append params-args fun-env))
  13984. ((interp-exp new-env) body)]
  13985. [else
  13986. (error 'interp-exp "expected function, not ~a" fun-val)])]
  13987. [else ((super interp-exp env) e)]
  13988. ))
  13989. (define/public (interp-def d)
  13990. (match d
  13991. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  13992. (cons f (box `(function ,xs ,body ())))]))
  13993. (define/override (interp-program p)
  13994. (match p
  13995. [(ProgramDefsExp info ds body)
  13996. (let ([top-level (for/list ([d ds]) (interp-def d))])
  13997. (for/list ([f (in-dict-values top-level)])
  13998. (set-box! f (match (unbox f)
  13999. [`(function ,xs ,body ())
  14000. `(function ,xs ,body ,top-level)])))
  14001. ((interp-exp top-level) body))]))
  14002. ))
  14003. (define (interp-Lfun p)
  14004. (send (new interp-Lfun-class) interp-program p))
  14005. \end{lstlisting}
  14006. \fi}
  14007. {\if\edition\pythonEd\pythonColor
  14008. \begin{lstlisting}
  14009. class InterpLfun(InterpLtup):
  14010. def apply_fun(self, fun, args, e):
  14011. match fun:
  14012. case Function(name, xs, body, env):
  14013. new_env = env.copy().update(zip(xs, args))
  14014. return self.interp_stmts(body, new_env)
  14015. case _:
  14016. raise Exception('apply_fun: unexpected: ' + repr(fun))
  14017. def interp_exp(self, e, env):
  14018. match e:
  14019. case Call(Name('input_int'), []):
  14020. return super().interp_exp(e, env)
  14021. case Call(func, args):
  14022. f = self.interp_exp(func, env)
  14023. vs = [self.interp_exp(arg, env) for arg in args]
  14024. return self.apply_fun(f, vs, e)
  14025. case _:
  14026. return super().interp_exp(e, env)
  14027. def interp_stmt(self, s, env, cont):
  14028. match s:
  14029. case Return(value):
  14030. return self.interp_exp(value, env)
  14031. case FunctionDef(name, params, bod, dl, returns, comment):
  14032. if isinstance(params, ast.arguments):
  14033. ps = [p.arg for p in params.args]
  14034. else:
  14035. ps = [x for (x,t) in params]
  14036. env[name] = Function(name, ps, bod, env)
  14037. return self.interp_stmts(cont, env)
  14038. case _:
  14039. return super().interp_stmt(s, env, cont)
  14040. def interp(self, p):
  14041. match p:
  14042. case Module(ss):
  14043. env = {}
  14044. self.interp_stmts(ss, env)
  14045. if 'main' in env.keys():
  14046. self.apply_fun(env['main'], [], None)
  14047. case _:
  14048. raise Exception('interp: unexpected ' + repr(p))
  14049. \end{lstlisting}
  14050. \fi}
  14051. \end{tcolorbox}
  14052. \caption{Interpreter for the \LangFun{} language.}
  14053. \label{fig:interp-Lfun}
  14054. \end{figure}
  14055. %\margincomment{TODO: explain type checker}
  14056. The type checker for \LangFun{} is shown in
  14057. figure~\ref{fig:type-check-Lfun}.
  14058. %
  14059. \python{(We omit the code that parses function parameters into the
  14060. simpler abstract syntax.)}
  14061. %
  14062. Similarly to the interpreter, the case for the
  14063. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  14064. %
  14065. AST is responsible for setting up the mutual recursion between the
  14066. top-level function definitions. We begin by creating a mapping
  14067. \code{env} from every function name to its type. We then type check
  14068. the program using this mapping.
  14069. %
  14070. \python{To check a function definition, we copy and extend the
  14071. \code{env} with the parameters of the function. We then type check
  14072. the body of the function and obtain the actual return type
  14073. \code{rt}, which is either the type of the expression in a
  14074. \code{return} statement or the \code{VoidType} if control reaches
  14075. the end of the function without a \code{return} statement. (If
  14076. there are multiple \code{return} statements, the types of their
  14077. expressions must agree.) Finally, we check that the actual return
  14078. type \code{rt} is equal to the declared return type \code{returns}.}
  14079. %
  14080. To check a function \racket{application}\python{call}, we match
  14081. the type of the function expression to a function type and check that
  14082. the types of the argument expressions are equal to the function's
  14083. parameter types. The type of the \racket{application}\python{call} as
  14084. a whole is the return type from the function type.
  14085. \begin{figure}[tp]
  14086. \begin{tcolorbox}[colback=white]
  14087. {\if\edition\racketEd
  14088. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14089. (define type-check-Lfun-class
  14090. (class type-check-Lvec-class
  14091. (super-new)
  14092. (inherit check-type-equal?)
  14093. (define/public (type-check-apply env e es)
  14094. (define-values (e^ ty) ((type-check-exp env) e))
  14095. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  14096. ((type-check-exp env) e)))
  14097. (match ty
  14098. [`(,ty^* ... -> ,rt)
  14099. (for ([arg-ty ty*] [param-ty ty^*])
  14100. (check-type-equal? arg-ty param-ty (Apply e es)))
  14101. (values e^ e* rt)]))
  14102. (define/override (type-check-exp env)
  14103. (lambda (e)
  14104. (match e
  14105. [(FunRef f n)
  14106. (values (FunRef f n) (dict-ref env f))]
  14107. [(Apply e es)
  14108. (define-values (e^ es^ rt) (type-check-apply env e es))
  14109. (values (Apply e^ es^) rt)]
  14110. [(Call e es)
  14111. (define-values (e^ es^ rt) (type-check-apply env e es))
  14112. (values (Call e^ es^) rt)]
  14113. [else ((super type-check-exp env) e)])))
  14114. (define/public (type-check-def env)
  14115. (lambda (e)
  14116. (match e
  14117. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  14118. (define new-env (append (map cons xs ps) env))
  14119. (define-values (body^ ty^) ((type-check-exp new-env) body))
  14120. (check-type-equal? ty^ rt body)
  14121. (Def f p:t* rt info body^)])))
  14122. (define/public (fun-def-type d)
  14123. (match d
  14124. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  14125. (define/override (type-check-program e)
  14126. (match e
  14127. [(ProgramDefsExp info ds body)
  14128. (define env (for/list ([d ds])
  14129. (cons (Def-name d) (fun-def-type d))))
  14130. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  14131. (define-values (body^ ty) ((type-check-exp env) body))
  14132. (check-type-equal? ty 'Integer body)
  14133. (ProgramDefsExp info ds^ body^)]))))
  14134. (define (type-check-Lfun p)
  14135. (send (new type-check-Lfun-class) type-check-program p))
  14136. \end{lstlisting}
  14137. \fi}
  14138. {\if\edition\pythonEd\pythonColor
  14139. \begin{lstlisting}
  14140. class TypeCheckLfun(TypeCheckLtup):
  14141. def type_check_exp(self, e, env):
  14142. match e:
  14143. case Call(Name('input_int'), []):
  14144. return super().type_check_exp(e, env)
  14145. case Call(func, args):
  14146. func_t = self.type_check_exp(func, env)
  14147. args_t = [self.type_check_exp(arg, env) for arg in args]
  14148. match func_t:
  14149. case FunctionType(params_t, return_t):
  14150. for (arg_t, param_t) in zip(args_t, params_t):
  14151. check_type_equal(param_t, arg_t, e)
  14152. return return_t
  14153. case _:
  14154. raise Exception('type_check_exp: in call, unexpected ' +
  14155. repr(func_t))
  14156. case _:
  14157. return super().type_check_exp(e, env)
  14158. def type_check_stmts(self, ss, env):
  14159. if len(ss) == 0:
  14160. return VoidType()
  14161. match ss[0]:
  14162. case FunctionDef(name, params, body, dl, returns, comment):
  14163. new_env = env.copy().update(params)
  14164. rt = self.type_check_stmts(body, new_env)
  14165. check_type_equal(returns, rt, ss[0])
  14166. return self.type_check_stmts(ss[1:], env)
  14167. case Return(value):
  14168. return self.type_check_exp(value, env)
  14169. case _:
  14170. return super().type_check_stmts(ss, env)
  14171. def type_check(self, p):
  14172. match p:
  14173. case Module(body):
  14174. env = {}
  14175. for s in body:
  14176. match s:
  14177. case FunctionDef(name, params, bod, dl, returns, comment):
  14178. if name in env:
  14179. raise Exception('type_check: function ' +
  14180. repr(name) + ' defined twice')
  14181. params_t = [t for (x,t) in params]
  14182. env[name] = FunctionType(params_t, returns)
  14183. self.type_check_stmts(body, env)
  14184. case _:
  14185. raise Exception('type_check: unexpected ' + repr(p))
  14186. \end{lstlisting}
  14187. \fi}
  14188. \end{tcolorbox}
  14189. \caption{Type checker for the \LangFun{} language.}
  14190. \label{fig:type-check-Lfun}
  14191. \end{figure}
  14192. \clearpage
  14193. \section{Functions in x86}
  14194. \label{sec:fun-x86}
  14195. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  14196. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  14197. %% \margincomment{\tiny Talk about the return address on the
  14198. %% stack and what callq and retq does.\\ --Jeremy }
  14199. The x86 architecture provides a few features to support the
  14200. implementation of functions. We have already seen that there are
  14201. labels in x86 so that one can refer to the location of an instruction,
  14202. as is needed for jump instructions. Labels can also be used to mark
  14203. the beginning of the instructions for a function. Going further, we
  14204. can obtain the address of a label by using the \key{leaq}
  14205. instruction. For example, the following puts the address of the
  14206. \code{inc} label into the \code{rbx} register:
  14207. \begin{lstlisting}
  14208. leaq inc(%rip), %rbx
  14209. \end{lstlisting}
  14210. Recall from section~\ref{sec:select-instructions-gc} that
  14211. \verb!inc(%rip)! is an example of instruction-pointer-relative
  14212. addressing.
  14213. In section~\ref{sec:x86} we used the \code{callq} instruction to jump
  14214. to functions whose locations were given by a label, such as
  14215. \code{read\_int}. To support function calls in this chapter we instead
  14216. jump to functions whose location are given by an address in
  14217. a register; that is, we use \emph{indirect function calls}. The
  14218. x86 syntax for this is a \code{callq} instruction that requires an asterisk
  14219. before the register name.\index{subject}{indirect function call}
  14220. \begin{lstlisting}
  14221. callq *%rbx
  14222. \end{lstlisting}
  14223. \subsection{Calling Conventions}
  14224. \label{sec:calling-conventions-fun}
  14225. \index{subject}{calling conventions}
  14226. The \code{callq} instruction provides partial support for implementing
  14227. functions: it pushes the return address on the stack and it jumps to
  14228. the target. However, \code{callq} does not handle
  14229. \begin{enumerate}
  14230. \item parameter passing,
  14231. \item pushing frames on the procedure call stack and popping them off,
  14232. or
  14233. \item determining how registers are shared by different functions.
  14234. \end{enumerate}
  14235. Regarding parameter passing, recall that the x86-64 calling
  14236. convention for Unix-based systems uses the following six registers to
  14237. pass arguments to a function, in the given order:
  14238. \begin{lstlisting}
  14239. rdi rsi rdx rcx r8 r9
  14240. \end{lstlisting}
  14241. If there are more than six arguments, then the calling convention
  14242. mandates using space on the frame of the caller for the rest of the
  14243. arguments. However, to ease the implementation of efficient tail calls
  14244. (section~\ref{sec:tail-call}), we arrange never to need more than six
  14245. arguments.
  14246. %
  14247. The return value of the function is stored in register \code{rax}.
  14248. Regarding frames \index{subject}{frame} and the procedure call stack,
  14249. \index{subject}{procedure call stack} recall from
  14250. section~\ref{sec:x86} that the stack grows down and each function call
  14251. uses a chunk of space on the stack called a frame. The caller sets the
  14252. stack pointer, register \code{rsp}, to the last data item in its
  14253. frame. The callee must not change anything in the caller's frame, that
  14254. is, anything that is at or above the stack pointer. The callee is free
  14255. to use locations that are below the stack pointer.
  14256. Recall that we store variables of tuple type on the root stack. So,
  14257. the prelude\index{subject}{prelude} of a function needs to move the
  14258. root stack pointer \code{r15} up according to the number of variables
  14259. of tuple type and the conclusion\index{subject}{conclusion} needs to
  14260. move the root stack pointer back down. Also, the prelude must
  14261. initialize to \code{0} this frame's slots in the root stack to signal
  14262. to the garbage collector that those slots do not yet contain a valid
  14263. pointer. Otherwise the garbage collector will interpret the garbage
  14264. bits in those slots as memory addresses and try to traverse them,
  14265. causing serious mayhem!
  14266. Regarding the sharing of registers between different functions, recall
  14267. from section~\ref{sec:calling-conventions} that the registers are
  14268. divided into two groups, the caller-saved registers and the
  14269. callee-saved registers. The caller should assume that all the
  14270. caller-saved registers are overwritten with arbitrary values by the
  14271. callee. For that reason we recommend in
  14272. section~\ref{sec:calling-conventions} that variables that are live
  14273. during a function call should not be assigned to caller-saved
  14274. registers.
  14275. On the flip side, if the callee wants to use a callee-saved register,
  14276. the callee must save the contents of those registers on their stack
  14277. frame and then put them back prior to returning to the caller. For
  14278. that reason we recommend in section~\ref{sec:calling-conventions} that if
  14279. the register allocator assigns a variable to a callee-saved register,
  14280. then the prelude of the \code{main} function must save that register
  14281. to the stack and the conclusion of \code{main} must restore it. This
  14282. recommendation now generalizes to all functions.
  14283. Recall that the base pointer, register \code{rbp}, is used as a
  14284. point of reference within a frame, so that each local variable can be
  14285. accessed at a fixed offset from the base pointer
  14286. (section~\ref{sec:x86}).
  14287. %
  14288. Figure~\ref{fig:call-frames} shows the layout of the caller and callee
  14289. frames.
  14290. \begin{figure}[tbp]
  14291. \centering
  14292. \begin{tcolorbox}[colback=white]
  14293. \begin{tabular}{r|r|l|l} \hline
  14294. Caller View & Callee View & Contents & Frame \\ \hline
  14295. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  14296. 0(\key{\%rbp}) & & old \key{rbp} \\
  14297. -8(\key{\%rbp}) & & callee-saved $1$ \\
  14298. \ldots & & \ldots \\
  14299. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  14300. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  14301. \ldots & & \ldots \\
  14302. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  14303. %% & & \\
  14304. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  14305. %% & \ldots & \ldots \\
  14306. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  14307. \hline
  14308. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  14309. & 0(\key{\%rbp}) & old \key{rbp} \\
  14310. & -8(\key{\%rbp}) & callee-saved $1$ \\
  14311. & \ldots & \ldots \\
  14312. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  14313. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  14314. & \ldots & \ldots \\
  14315. & $-8(n+m)$(\key{\%rbp}) & local variable $m$\\ \hline
  14316. \end{tabular}
  14317. \end{tcolorbox}
  14318. \caption{Memory layout of caller and callee frames.}
  14319. \label{fig:call-frames}
  14320. \end{figure}
  14321. %% Recall from section~\ref{sec:x86} that the stack is also used for
  14322. %% local variables and for storing the values of callee-saved registers
  14323. %% (we shall refer to all of these collectively as ``locals''), and that
  14324. %% at the beginning of a function we move the stack pointer \code{rsp}
  14325. %% down to make room for them.
  14326. %% We recommend storing the local variables
  14327. %% first and then the callee-saved registers, so that the local variables
  14328. %% can be accessed using \code{rbp} the same as before the addition of
  14329. %% functions.
  14330. %% To make additional room for passing arguments, we shall
  14331. %% move the stack pointer even further down. We count how many stack
  14332. %% arguments are needed for each function call that occurs inside the
  14333. %% body of the function and find their maximum. Adding this number to the
  14334. %% number of locals gives us how much the \code{rsp} should be moved at
  14335. %% the beginning of the function. In preparation for a function call, we
  14336. %% offset from \code{rsp} to set up the stack arguments. We put the first
  14337. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  14338. %% so on.
  14339. %% Upon calling the function, the stack arguments are retrieved by the
  14340. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  14341. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  14342. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  14343. %% the layout of the caller and callee frames. Notice how important it is
  14344. %% that we correctly compute the maximum number of arguments needed for
  14345. %% function calls; if that number is too small then the arguments and
  14346. %% local variables will smash into each other!
  14347. \subsection{Efficient Tail Calls}
  14348. \label{sec:tail-call}
  14349. In general, the amount of stack space used by a program is determined
  14350. by the longest chain of nested function calls. That is, if function
  14351. $f_1$ calls $f_2$, $f_2$ calls $f_3$, and so on to $f_n$, then the
  14352. amount of stack space is linear in $n$. The depth $n$ can grow quite
  14353. large if functions are recursive. However, in some cases we can
  14354. arrange to use only a constant amount of space for a long chain of
  14355. nested function calls.
  14356. A \emph{tail call}\index{subject}{tail call} is a function call that
  14357. happens as the last action in a function body. For example, in the
  14358. following program, the recursive call to \code{tail\_sum} is a tail
  14359. call:
  14360. \begin{center}
  14361. {\if\edition\racketEd
  14362. \begin{lstlisting}
  14363. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  14364. (if (eq? n 0)
  14365. r
  14366. (tail_sum (- n 1) (+ n r))))
  14367. (+ (tail_sum 3 0) 36)
  14368. \end{lstlisting}
  14369. \fi}
  14370. {\if\edition\pythonEd\pythonColor
  14371. \begin{lstlisting}
  14372. def tail_sum(n : int, r : int) -> int:
  14373. if n == 0:
  14374. return r
  14375. else:
  14376. return tail_sum(n - 1, n + r)
  14377. print(tail_sum(3, 0) + 36)
  14378. \end{lstlisting}
  14379. \fi}
  14380. \end{center}
  14381. At a tail call, the frame of the caller is no longer needed, so we can
  14382. pop the caller's frame before making the tail
  14383. call. \index{subject}{frame} With this approach, a recursive function
  14384. that makes only tail calls ends up using a constant amount of stack
  14385. space. \racket{Functional languages like Racket rely heavily on
  14386. recursive functions, so the definition of Racket \emph{requires}
  14387. that all tail calls be optimized in this way.}
  14388. Some care is needed with regard to argument passing in tail calls. As
  14389. mentioned, for arguments beyond the sixth, the convention is to use
  14390. space in the caller's frame for passing arguments. However, for a
  14391. tail call we pop the caller's frame and can no longer use it. An
  14392. alternative is to use space in the callee's frame for passing
  14393. arguments. However, this option is also problematic because the caller
  14394. and callee's frames overlap in memory. As we begin to copy the
  14395. arguments from their sources in the caller's frame, the target
  14396. locations in the callee's frame might collide with the sources for
  14397. later arguments! We solve this problem by using the heap instead of
  14398. the stack for passing more than six arguments
  14399. (section~\ref{sec:limit-functions-r4}).
  14400. As mentioned, for a tail call we pop the caller's frame prior to
  14401. making the tail call. The instructions for popping a frame are the
  14402. instructions that we usually place in the conclusion of a
  14403. function. Thus, we also need to place such code immediately before
  14404. each tail call. These instructions include restoring the callee-saved
  14405. registers, so it is fortunate that the argument passing registers are
  14406. all caller-saved registers.
  14407. One note remains regarding which instruction to use to make the tail
  14408. call. When the callee is finished, it should not return to the current
  14409. function but instead return to the function that called the current
  14410. one. Thus, the return address that is already on the stack is the
  14411. right one, and we should not use \key{callq} to make the tail call
  14412. because that would overwrite the return address. Instead we simply use
  14413. the \key{jmp} instruction. As with the indirect function call, we write
  14414. an \emph{indirect jump}\index{subject}{indirect jump} with a register
  14415. prefixed with an asterisk. We recommend using \code{rax} to hold the
  14416. jump target because the conclusion can overwrite just about everything
  14417. else.
  14418. \begin{lstlisting}
  14419. jmp *%rax
  14420. \end{lstlisting}
  14421. \section{Shrink \LangFun{}}
  14422. \label{sec:shrink-r4}
  14423. The \code{shrink} pass performs a minor modification to ease the
  14424. later passes. This pass introduces an explicit \code{main} function
  14425. that gobbles up all the top-level statements of the module.
  14426. %
  14427. \racket{It also changes the top \code{ProgramDefsExp} form to
  14428. \code{ProgramDefs}.}
  14429. {\if\edition\racketEd
  14430. \begin{lstlisting}
  14431. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  14432. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  14433. \end{lstlisting}
  14434. where $\itm{mainDef}$ is
  14435. \begin{lstlisting}
  14436. (Def 'main '() 'Integer '() |$\Exp'$|)
  14437. \end{lstlisting}
  14438. \fi}
  14439. {\if\edition\pythonEd\pythonColor
  14440. \begin{lstlisting}
  14441. Module(|$\Def\ldots\Stmt\ldots$|)
  14442. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  14443. \end{lstlisting}
  14444. where $\itm{mainDef}$ is
  14445. \begin{lstlisting}
  14446. FunctionDef('main', [], int, None, |$\Stmt\ldots$|Return(Constant(0)), None)
  14447. \end{lstlisting}
  14448. \fi}
  14449. \section{Reveal Functions and the \LangFunRef{} Language}
  14450. \label{sec:reveal-functions-r4}
  14451. The syntax of \LangFun{} is inconvenient for purposes of compilation
  14452. in that it conflates the use of function names and local
  14453. variables. This is a problem because we need to compile the use of a
  14454. function name differently from the use of a local variable. In
  14455. particular, we use \code{leaq} to convert the function name (a label
  14456. in x86) to an address in a register. Thus, we create a new pass that
  14457. changes function references from $\VAR{f}$ to $\FUNREF{f}{n}$ where
  14458. $n$ is the arity of the function.\python{\footnote{The arity is not
  14459. needed in this chapter but is used in chapter~\ref{ch:Ldyn}.}}
  14460. This pass is named \code{reveal\_functions} and the output language
  14461. is \LangFunRef{}\index{subject}{Lfunref@\LangFunRef{}}.
  14462. %is defined in figure~\ref{fig:f1-syntax}.
  14463. %% The concrete syntax for a
  14464. %% function reference is $\CFUNREF{f}$.
  14465. %% \begin{figure}[tp]
  14466. %% \centering
  14467. %% \fbox{
  14468. %% \begin{minipage}{0.96\textwidth}
  14469. %% {\if\edition\racketEd
  14470. %% \[
  14471. %% \begin{array}{lcl}
  14472. %% \Exp &::=& \ldots \MID \FUNREF{\Var}{\Int}\\
  14473. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14474. %% \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  14475. %% \end{array}
  14476. %% \]
  14477. %% \fi}
  14478. %% {\if\edition\pythonEd\pythonColor
  14479. %% \[
  14480. %% \begin{array}{lcl}
  14481. %% \Exp &::=& \FUNREF{\Var}{\Int}\\
  14482. %% \LangFunRefM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  14483. %% \end{array}
  14484. %% \]
  14485. %% \fi}
  14486. %% \end{minipage}
  14487. %% }
  14488. %% \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  14489. %% (figure~\ref{fig:Lfun-syntax}).}
  14490. %% \label{fig:f1-syntax}
  14491. %% \end{figure}
  14492. %% Distinguishing between calls in tail position and non-tail position
  14493. %% requires the pass to have some notion of context. We recommend using
  14494. %% two mutually recursive functions, one for processing expressions in
  14495. %% tail position and another for the rest.
  14496. \racket{Placing this pass after \code{uniquify} will make sure that
  14497. there are no local variables and functions that share the same
  14498. name.}
  14499. %
  14500. The \code{reveal\_functions} pass should come before the
  14501. \code{remove\_complex\_operands} pass because function references
  14502. should be categorized as complex expressions.
  14503. \section{Limit Functions}
  14504. \label{sec:limit-functions-r4}
  14505. Recall that we wish to limit the number of function parameters to six
  14506. so that we do not need to use the stack for argument passing, which
  14507. makes it easier to implement efficient tail calls. However, because
  14508. the input language \LangFun{} supports arbitrary numbers of function
  14509. arguments, we have some work to do! The \code{limit\_functions} pass
  14510. transforms functions and function calls that involve more than six
  14511. arguments to pass the first five arguments as usual, but it packs the
  14512. rest of the arguments into a tuple and passes it as the sixth
  14513. argument.\footnote{The implementation this pass can be postponed to
  14514. last because you can test the rest of the passes on functions with
  14515. six or fewer parameters.}
  14516. Each function definition with seven or more parameters is transformed as
  14517. follows:
  14518. {\if\edition\racketEd
  14519. \begin{lstlisting}
  14520. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  14521. |$\Rightarrow$|
  14522. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  14523. \end{lstlisting}
  14524. \fi}
  14525. {\if\edition\pythonEd\pythonColor
  14526. \begin{lstlisting}
  14527. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, None, |$\itm{body}$|, None)
  14528. |$\Rightarrow$|
  14529. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))],
  14530. |$T_r$|, None, |$\itm{body}'$|, None)
  14531. \end{lstlisting}
  14532. \fi}
  14533. %
  14534. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  14535. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  14536. the $k$th element of the tuple, where $k = i - 6$.
  14537. %
  14538. {\if\edition\racketEd
  14539. \begin{lstlisting}
  14540. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  14541. \end{lstlisting}
  14542. \fi}
  14543. {\if\edition\pythonEd\pythonColor
  14544. \begin{lstlisting}
  14545. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|), Load())
  14546. \end{lstlisting}
  14547. \fi}
  14548. For function calls with too many arguments, the \code{limit\_functions}
  14549. pass transforms them in the following way:
  14550. \begin{tabular}{lll}
  14551. \begin{minipage}{0.3\textwidth}
  14552. {\if\edition\racketEd
  14553. \begin{lstlisting}
  14554. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  14555. \end{lstlisting}
  14556. \fi}
  14557. {\if\edition\pythonEd\pythonColor
  14558. \begin{lstlisting}
  14559. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  14560. \end{lstlisting}
  14561. \fi}
  14562. \end{minipage}
  14563. &
  14564. $\Rightarrow$
  14565. &
  14566. \begin{minipage}{0.5\textwidth}
  14567. {\if\edition\racketEd
  14568. \begin{lstlisting}
  14569. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  14570. \end{lstlisting}
  14571. \fi}
  14572. {\if\edition\pythonEd\pythonColor
  14573. \begin{lstlisting}
  14574. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  14575. \end{lstlisting}
  14576. \fi}
  14577. \end{minipage}
  14578. \end{tabular}
  14579. \section{Remove Complex Operands}
  14580. \label{sec:rco-r4}
  14581. The primary decisions to make for this pass are whether to classify
  14582. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  14583. atomic or complex expressions. Recall that an atomic expression
  14584. ends up as an immediate argument of an x86 instruction. Function
  14585. application translates to a sequence of instructions, so
  14586. \racket{\code{Apply}}\python{\code{Call}} must be classified as
  14587. a complex expression. On the other hand, the arguments of
  14588. \racket{\code{Apply}}\python{\code{Call}} should be atomic
  14589. expressions.
  14590. %
  14591. Regarding \code{FunRef}, as discussed previously, the function label
  14592. needs to be converted to an address using the \code{leaq}
  14593. instruction. Thus, even though \code{FunRef} seems rather simple, it
  14594. needs to be classified as a complex expression so that we generate an
  14595. assignment statement with a left-hand side that can serve as the
  14596. target of the \code{leaq}.
  14597. The output of this pass, \LangFunANF{} (figure~\ref{fig:Lfun-anf-syntax}),
  14598. extends \LangAllocANF{} (figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  14599. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions
  14600. and augments programs to include a list of function definitions.
  14601. %
  14602. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  14603. \newcommand{\LfunMonadASTRacket}{
  14604. \begin{array}{lcl}
  14605. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  14606. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14607. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  14608. \end{array}
  14609. }
  14610. \newcommand{\LfunMonadASTPython}{
  14611. \begin{array}{lcl}
  14612. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  14613. \MID \key{TupleType}\LS\Type^+\RS\\
  14614. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  14615. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}}\\
  14616. \Stmt &::=& \RETURN{\Exp} \\
  14617. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  14618. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  14619. \end{array}
  14620. }
  14621. \begin{figure}[tp]
  14622. \centering
  14623. \begin{tcolorbox}[colback=white]
  14624. \footnotesize
  14625. {\if\edition\racketEd
  14626. \[
  14627. \begin{array}{l}
  14628. \gray{\LvarMonadASTRacket} \\ \hline
  14629. \gray{\LifMonadASTRacket} \\ \hline
  14630. \gray{\LwhileMonadASTRacket} \\ \hline
  14631. \gray{\LtupMonadASTRacket} \\ \hline
  14632. \LfunMonadASTRacket \\
  14633. \begin{array}{rcl}
  14634. \LangFunANFM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  14635. \end{array}
  14636. \end{array}
  14637. \]
  14638. \fi}
  14639. {\if\edition\pythonEd\pythonColor
  14640. \[
  14641. \begin{array}{l}
  14642. \gray{\LvarMonadASTPython} \\ \hline
  14643. \gray{\LifMonadASTPython} \\ \hline
  14644. \gray{\LwhileMonadASTPython} \\ \hline
  14645. \gray{\LtupMonadASTPython} \\ \hline
  14646. \LfunMonadASTPython \\
  14647. \begin{array}{rcl}
  14648. \LangFunANFM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  14649. \end{array}
  14650. \end{array}
  14651. \]
  14652. \fi}
  14653. \end{tcolorbox}
  14654. \caption{\LangFunANF{} is \LangFunRef{} in monadic normal form.}
  14655. \label{fig:Lfun-anf-syntax}
  14656. \index{subject}{Lfunmon@\LangFunANF{} abstract syntax}
  14657. \end{figure}
  14658. %% Figure~\ref{fig:Lfun-anf-syntax} defines the output language
  14659. %% \LangFunANF{} of this pass.
  14660. %% \begin{figure}[tp]
  14661. %% \centering
  14662. %% \fbox{
  14663. %% \begin{minipage}{0.96\textwidth}
  14664. %% \small
  14665. %% \[
  14666. %% \begin{array}{rcl}
  14667. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  14668. %% \MID \VOID{} } \\
  14669. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  14670. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  14671. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  14672. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  14673. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  14674. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  14675. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  14676. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14677. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14678. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  14679. %% \end{array}
  14680. %% \]
  14681. %% \end{minipage}
  14682. %% }
  14683. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  14684. %% \label{fig:Lfun-anf-syntax}
  14685. %% \end{figure}
  14686. \section{Explicate Control and the \LangCFun{} Language}
  14687. \label{sec:explicate-control-r4}
  14688. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  14689. output of \code{explicate\_control}.
  14690. %
  14691. %% \racket{(The concrete syntax is given in
  14692. %% figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  14693. %
  14694. The auxiliary functions for assignment\racket{ and tail contexts} should
  14695. be updated with cases for
  14696. \racket{\code{Apply}}\python{\code{Call}} and \code{FunRef} and the
  14697. function for predicate context should be updated for
  14698. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  14699. \code{FunRef} cannot be a Boolean.)
  14700. In assignment and predicate contexts,
  14701. %
  14702. \racket{\code{Apply} becomes \code{Call}, whereas
  14703. in tail position \code{Apply} becomes \code{TailCall}}
  14704. %
  14705. \python{\code{Call} remains \code{Call}, whereas
  14706. in tail position \code{Call} becomes \code{TailCall}}.
  14707. %
  14708. We recommend defining a new auxiliary function for processing function
  14709. definitions. This code is similar to the case for \code{Program} in
  14710. \LangVec{}. The top-level \code{explicate\_control} function that
  14711. handles the \code{ProgramDefs} form of \LangFun{} can then apply this
  14712. new function to all the function definitions.
  14713. {\if\edition\pythonEd\pythonColor
  14714. The translation of \code{Return} statements requires a new auxiliary
  14715. function to handle expressions in tail context, called
  14716. \code{explicate\_tail}. The function should take an expression and the
  14717. dictionary of basic blocks and produce a list of statements in the
  14718. \LangCFun{} language. The \code{explicate\_tail} function should
  14719. include cases for \code{Begin}, \code{IfExp}, and \code{Call},
  14720. and a default case for other kinds of expressions. The default case
  14721. should produce a \code{Return} statement. The case for \code{Call}
  14722. should change it into \code{TailCall}. The other cases should
  14723. recursively process their subexpressions and statements, choosing the
  14724. appropriate explicate functions for the various contexts.
  14725. \fi}
  14726. \newcommand{\CfunASTRacket}{
  14727. \begin{array}{lcl}
  14728. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  14729. \Tail &::= & \TAILCALL{\Atm}{\Atm\ldots} \\
  14730. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  14731. \end{array}
  14732. }
  14733. \newcommand{\CfunASTPython}{
  14734. \begin{array}{lcl}
  14735. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}} \\
  14736. \Tail &::= & \TAILCALL{\Atm}{\Atm^{*}} \\
  14737. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  14738. \Block &::=& \itm{label}\key{:} \Stmt^{*}\;\Tail \\
  14739. \Def &::=& \DEF{\itm{label}}{\Params}{\LC\Block\code{,}\ldots\RC}{\key{None}}{\Type}{\key{None}}
  14740. \end{array}
  14741. }
  14742. \begin{figure}[tp]
  14743. \begin{tcolorbox}[colback=white]
  14744. \footnotesize
  14745. {\if\edition\racketEd
  14746. \[
  14747. \begin{array}{l}
  14748. \gray{\CvarASTRacket} \\ \hline
  14749. \gray{\CifASTRacket} \\ \hline
  14750. \gray{\CloopASTRacket} \\ \hline
  14751. \gray{\CtupASTRacket} \\ \hline
  14752. \CfunASTRacket \\
  14753. \begin{array}{lcl}
  14754. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14755. \end{array}
  14756. \end{array}
  14757. \]
  14758. \fi}
  14759. {\if\edition\pythonEd\pythonColor
  14760. \[
  14761. \begin{array}{l}
  14762. \gray{\CifASTPython} \\ \hline
  14763. \gray{\CtupASTPython} \\ \hline
  14764. \CfunASTPython \\
  14765. \begin{array}{lcl}
  14766. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14767. \end{array}
  14768. \end{array}
  14769. \]
  14770. \fi}
  14771. \end{tcolorbox}
  14772. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  14773. \label{fig:c3-syntax}
  14774. \index{subject}{Cfun@\LangCFun{} abstract syntax}
  14775. \end{figure}
  14776. \clearpage
  14777. \section{Select Instructions and the \LangXIndCall{} Language}
  14778. \label{sec:select-r4}
  14779. \index{subject}{select instructions}
  14780. The output of select instructions is a program in the \LangXIndCall{}
  14781. language; the definition of its concrete syntax is shown in
  14782. figure~\ref{fig:x86-3-concrete}, and the definition of its abstract
  14783. syntax is shown in figure~\ref{fig:x86-3}. We use the \code{align}
  14784. directive on the labels of function definitions to make sure the
  14785. bottom three bits are zero, which we put to use in
  14786. chapter~\ref{ch:Ldyn}. We discuss the new instructions as needed in
  14787. this section. \index{subject}{x86}
  14788. \newcommand{\GrammarXIndCall}{
  14789. \begin{array}{lcl}
  14790. \Instr &::=& \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  14791. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  14792. \Block &::= & \Instr^{+} \\
  14793. \Def &::= & \code{.globl}\,\code{.align 8}\,\itm{label}\; (\itm{label}\key{:}\, \Block)^{*}
  14794. \end{array}
  14795. }
  14796. \newcommand{\ASTXIndCallRacket}{
  14797. \begin{array}{lcl}
  14798. \Instr &::=& \INDCALLQ{\Arg}{\itm{int}}
  14799. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14800. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  14801. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  14802. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP}
  14803. \end{array}
  14804. }
  14805. \begin{figure}[tp]
  14806. \begin{tcolorbox}[colback=white]
  14807. \small
  14808. \[
  14809. \begin{array}{l}
  14810. \gray{\GrammarXInt} \\ \hline
  14811. \gray{\GrammarXIf} \\ \hline
  14812. \gray{\GrammarXGlobal} \\ \hline
  14813. \GrammarXIndCall \\
  14814. \begin{array}{lcl}
  14815. \LangXIndCallM{} &::= & \Def^{*}
  14816. \end{array}
  14817. \end{array}
  14818. \]
  14819. \end{tcolorbox}
  14820. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of figure~\ref{fig:x86-2-concrete}).}
  14821. \label{fig:x86-3-concrete}
  14822. \end{figure}
  14823. \begin{figure}[tp]
  14824. \begin{tcolorbox}[colback=white]
  14825. \small
  14826. {\if\edition\racketEd
  14827. \[\arraycolsep=3pt
  14828. \begin{array}{l}
  14829. \gray{\ASTXIntRacket} \\ \hline
  14830. \gray{\ASTXIfRacket} \\ \hline
  14831. \gray{\ASTXGlobalRacket} \\ \hline
  14832. \ASTXIndCallRacket \\
  14833. \begin{array}{lcl}
  14834. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14835. \end{array}
  14836. \end{array}
  14837. \]
  14838. \fi}
  14839. {\if\edition\pythonEd\pythonColor
  14840. \[
  14841. \begin{array}{lcl}
  14842. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  14843. \MID \BYTEREG{\Reg} } \\
  14844. &\MID& \gray{ \GLOBAL{\itm{label}} } \MID \FUNREF{\itm{label}}{\Int} \\
  14845. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  14846. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14847. &\MID& \BININSTR{\scode{leaq}}{\Arg}{\REG{\Reg}}\\
  14848. \Block &::=&\itm{label}\key{:}\,\Instr^{*} \\
  14849. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\LC\Block\code{,}\ldots\RC}{\_}{\Type}{\_} \\
  14850. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14851. \end{array}
  14852. \]
  14853. \fi}
  14854. \end{tcolorbox}
  14855. \caption{The abstract syntax of \LangXIndCall{} (extends
  14856. \LangXGlobal{} of figure~\ref{fig:x86-2}).}
  14857. \label{fig:x86-3}
  14858. \end{figure}
  14859. An assignment of a function reference to a variable becomes a
  14860. load-effective-address instruction as follows, where $\itm{lhs}'$ is
  14861. the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{} to \Arg{} in
  14862. \LangXIndCallVar{}. The \code{FunRef} becomes a \code{Global} AST
  14863. node, whose concrete syntax is instruction-pointer-relative
  14864. addressing.
  14865. \begin{center}
  14866. \begin{tabular}{lcl}
  14867. \begin{minipage}{0.35\textwidth}
  14868. {\if\edition\racketEd
  14869. \begin{lstlisting}
  14870. |$\itm{lhs}$| = (fun-ref |$f$| |$n$|);
  14871. \end{lstlisting}
  14872. \fi}
  14873. {\if\edition\pythonEd\pythonColor
  14874. \begin{lstlisting}
  14875. |$\itm{lhs}$| = FunRef(|$f$| |$n$|);
  14876. \end{lstlisting}
  14877. \fi}
  14878. \end{minipage}
  14879. &
  14880. $\Rightarrow$\qquad\qquad
  14881. &
  14882. \begin{minipage}{0.3\textwidth}
  14883. \begin{lstlisting}
  14884. leaq |$f$|(%rip), |$\itm{lhs}'$|
  14885. \end{lstlisting}
  14886. \end{minipage}
  14887. \end{tabular}
  14888. \end{center}
  14889. Regarding function definitions, we need to remove the parameters and
  14890. instead perform parameter passing using the conventions discussed in
  14891. section~\ref{sec:fun-x86}. That is, the arguments are passed in
  14892. registers. We recommend turning the parameters into local variables
  14893. and generating instructions at the beginning of the function to move
  14894. from the argument-passing registers
  14895. (section~\ref{sec:calling-conventions-fun}) to these local variables.
  14896. {\if\edition\racketEd
  14897. \begin{lstlisting}
  14898. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  14899. |$\Rightarrow$|
  14900. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  14901. \end{lstlisting}
  14902. \fi}
  14903. {\if\edition\pythonEd\pythonColor
  14904. \begin{lstlisting}
  14905. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  14906. |$\Rightarrow$|
  14907. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  14908. \end{lstlisting}
  14909. \fi}
  14910. The basic blocks $B'$ are the same as $B$ except that the
  14911. \code{start} block is modified to add the instructions for moving from
  14912. the argument registers to the parameter variables. So the \code{start}
  14913. block of $B$ shown on the left of the following is changed to the code
  14914. on the right:
  14915. \begin{center}
  14916. \begin{minipage}{0.3\textwidth}
  14917. \begin{lstlisting}
  14918. start:
  14919. |$\itm{instr}_1$|
  14920. |$\cdots$|
  14921. |$\itm{instr}_n$|
  14922. \end{lstlisting}
  14923. \end{minipage}
  14924. $\Rightarrow$
  14925. \begin{minipage}{0.3\textwidth}
  14926. \begin{lstlisting}
  14927. |$f$|start:
  14928. movq %rdi, |$x_1$|
  14929. movq %rsi, |$x_2$|
  14930. |$\cdots$|
  14931. |$\itm{instr}_1$|
  14932. |$\cdots$|
  14933. |$\itm{instr}_n$|
  14934. \end{lstlisting}
  14935. \end{minipage}
  14936. \end{center}
  14937. Recall that we use the label \code{start} for the initial block of a
  14938. program, and in section~\ref{sec:select-Lvar} we recommend labeling
  14939. the conclusion of the program with \code{conclusion}, so that
  14940. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  14941. by a jump to \code{conclusion}. With the addition of function
  14942. definitions, there is a start block and conclusion for each function,
  14943. but their labels need to be unique. We recommend prepending the
  14944. function's name to \code{start} and \code{conclusion}, respectively,
  14945. to obtain unique labels.
  14946. \racket{The interpreter for \LangXIndCall{} needs to be given the
  14947. number of parameters the function expects, but the parameters are no
  14948. longer in the syntax of function definitions. Instead, add an entry
  14949. to $\itm{info}$ that maps \code{num-params} to the number of
  14950. parameters to construct $\itm{info}'$.}
  14951. By changing the parameters to local variables, we are giving the
  14952. register allocator control over which registers or stack locations to
  14953. use for them. If you implement the move-biasing challenge
  14954. (section~\ref{sec:move-biasing}), the register allocator will try to
  14955. assign the parameter variables to the corresponding argument register,
  14956. in which case the \code{patch\_instructions} pass will remove the
  14957. \code{movq} instruction. This happens in the example translation given
  14958. in figure~\ref{fig:add-fun} in section~\ref{sec:functions-example}, in
  14959. the \code{add} function.
  14960. %
  14961. Also, note that the register allocator will perform liveness analysis
  14962. on this sequence of move instructions and build the interference
  14963. graph. So, for example, $x_1$ will be marked as interfering with
  14964. \code{rsi}, and that will prevent the mapping of $x_1$ to \code{rsi},
  14965. which is good because otherwise the first \code{movq} would overwrite
  14966. the argument in \code{rsi} that is needed for $x_2$.
  14967. Next, consider the compilation of function calls. In the mirror image
  14968. of the handling of parameters in function definitions, the arguments
  14969. are moved to the argument-passing registers. Note that the function
  14970. is not given as a label, but its address is produced by the argument
  14971. $\itm{arg}_0$. So, we translate the call into an indirect function
  14972. call. The return value from the function is stored in \code{rax}, so
  14973. it needs to be moved into the \itm{lhs}.
  14974. \begin{lstlisting}
  14975. |\itm{lhs}| = |$\CALL{\itm{arg}_0}{\python{\LS}\itm{arg}_1~\itm{arg}_2 \ldots\python{\RS}}$|
  14976. |$\Rightarrow$|
  14977. movq |$\itm{arg}_1$|, %rdi
  14978. movq |$\itm{arg}_2$|, %rsi
  14979. |$\vdots$|
  14980. callq *|$\itm{arg}_0$|
  14981. movq %rax, |$\itm{lhs}$|
  14982. \end{lstlisting}
  14983. The \code{IndirectCallq} AST node includes an integer for the arity of
  14984. the function, that is, the number of parameters. That information is
  14985. useful in the \code{uncover\_live} pass for determining which
  14986. argument-passing registers are potentially read during the call.
  14987. For tail calls, the parameter passing is the same as non-tail calls:
  14988. generate instructions to move the arguments into the argument-passing
  14989. registers. After that we need to pop the frame from the procedure
  14990. call stack. However, we do not yet know how big the frame is; that
  14991. gets determined during register allocation. So, instead of generating
  14992. those instructions here, we invent a new instruction that means ``pop
  14993. the frame and then do an indirect jump,'' which we name
  14994. \code{TailJmp}. The abstract syntax for this instruction includes an
  14995. argument that specifies where to jump and an integer that represents
  14996. the arity of the function being called.
  14997. \section{Register Allocation}
  14998. \label{sec:register-allocation-r4}
  14999. The addition of functions requires some changes to all three aspects
  15000. of register allocation, which we discuss in the following subsections.
  15001. \subsection{Liveness Analysis}
  15002. \label{sec:liveness-analysis-r4}
  15003. \index{subject}{liveness analysis}
  15004. %% The rest of the passes need only minor modifications to handle the new
  15005. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  15006. %% \code{leaq}.
  15007. The \code{IndirectCallq} instruction should be treated like
  15008. \code{Callq} regarding its written locations $W$, in that they should
  15009. include all the caller-saved registers. Recall that the reason for
  15010. that is to force variables that are live across a function call to be assigned to callee-saved
  15011. registers or to be spilled to the stack.
  15012. Regarding the set of read locations $R$, the arity fields of
  15013. \code{TailJmp} and \code{IndirectCallq} determine how many of the
  15014. argument-passing registers should be considered as read by those
  15015. instructions. Also, the target field of \code{TailJmp} and
  15016. \code{IndirectCallq} should be included in the set of read locations
  15017. $R$.
  15018. \subsection{Build Interference Graph}
  15019. \label{sec:build-interference-r4}
  15020. With the addition of function definitions, we compute a separate interference
  15021. graph for each function (not just one for the whole program).
  15022. Recall that in section~\ref{sec:reg-alloc-gc} we discussed the need to
  15023. spill tuple-typed variables that are live during a call to
  15024. \code{collect}, the garbage collector. With the addition of functions
  15025. to our language, we need to revisit this issue. Functions that perform
  15026. allocation contain calls to the collector. Thus, we should not only
  15027. spill a tuple-typed variable when it is live during a call to
  15028. \code{collect}, but we should spill the variable if it is live during
  15029. a call to any user-defined function. Thus, in the
  15030. \code{build\_interference} pass, we recommend adding interference
  15031. edges between call-live tuple-typed variables and the callee-saved
  15032. registers (in addition to creating edges between
  15033. call-live variables and the caller-saved registers).
  15034. \subsection{Allocate Registers}
  15035. The primary change to the \code{allocate\_registers} pass is adding an
  15036. auxiliary function for handling definitions (the \Def{} nonterminal
  15037. shown in figure~\ref{fig:x86-3}) with one case for function
  15038. definitions. The logic is the same as described in
  15039. chapter~\ref{ch:register-allocation-Lvar} except that now register
  15040. allocation is performed many times, once for each function definition,
  15041. instead of just once for the whole program.
  15042. \section{Patch Instructions}
  15043. In \code{patch\_instructions}, you should deal with the x86
  15044. idiosyncrasy that the destination argument of \code{leaq} must be a
  15045. register. Additionally, you should ensure that the argument of
  15046. \code{TailJmp} is \itm{rax}, our reserved register---because we
  15047. trample many other registers before the tail call, as explained in the
  15048. next section.
  15049. \section{Generate Prelude and Conclusion}
  15050. Now that register allocation is complete, we can translate the
  15051. \code{TailJmp} into a sequence of instructions. A naive translation of
  15052. \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}. However,
  15053. before the jump we need to pop the current frame to achieve efficient
  15054. tail calls. This sequence of instructions is the same as the code for
  15055. the conclusion of a function, except that the \code{retq} is replaced with
  15056. \code{jmp *$\itm{arg}$}.
  15057. Regarding function definitions, we generate a prelude and conclusion
  15058. for each one. This code is similar to the prelude and conclusion
  15059. generated for the \code{main} function presented in
  15060. chapter~\ref{ch:Lvec}. To review, the prelude of every function should
  15061. carry out the following steps:
  15062. % TODO: .align the functions!
  15063. \begin{enumerate}
  15064. %% \item Start with \code{.global} and \code{.align} directives followed
  15065. %% by the label for the function. (See figure~\ref{fig:add-fun} for an
  15066. %% example.)
  15067. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  15068. pointer.
  15069. \item Push to the stack all the callee-saved registers that were
  15070. used for register allocation.
  15071. \item Move the stack pointer \code{rsp} down to make room for the
  15072. regular spills (aligned to 16 bytes).
  15073. \item Move the root stack pointer \code{r15} up by the size of the
  15074. root-stack frame for this function, which depends on the number of
  15075. spilled tuple-typed variables. \label{root-stack-init}
  15076. \item Initialize to zero all new entries in the root-stack frame.
  15077. \item Jump to the start block.
  15078. \end{enumerate}
  15079. The prelude of the \code{main} function has an additional task: call
  15080. the \code{initialize} function to set up the garbage collector, and
  15081. then move the value of the global \code{rootstack\_begin} in
  15082. \code{r15}. This initialization should happen before step
  15083. \ref{root-stack-init}, which depends on \code{r15}.
  15084. The conclusion of every function should do the following:
  15085. \begin{enumerate}
  15086. \item Move the stack pointer back up past the regular spills.
  15087. \item Restore the callee-saved registers by popping them from the
  15088. stack.
  15089. \item Move the root stack pointer back down by the size of the
  15090. root-stack frame for this function.
  15091. \item Restore \code{rbp} by popping it from the stack.
  15092. \item Return to the caller with the \code{retq} instruction.
  15093. \end{enumerate}
  15094. The output of this pass is \LangXIndCallFlat{}, which differs from
  15095. \LangXIndCall{} in that there is no longer an AST node for function
  15096. definitions. Instead, a program is just
  15097. \racket{an association list}\python{a dictionary}
  15098. of basic blocks, as in \LangXGlobal{}. So we have the following grammar rule:
  15099. {\if\edition\racketEd
  15100. \[
  15101. \LangXIndCallFlatM{} ::= \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  15102. \]
  15103. \fi}
  15104. {\if\edition\pythonEd
  15105. \[
  15106. \LangXIndCallFlatM{} ::= \XPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Instr^{*}\code{,}\ldots\RC}
  15107. \]
  15108. \fi}
  15109. Figure~\ref{fig:Lfun-passes} gives an overview of the passes for
  15110. compiling \LangFun{} to x86.
  15111. \begin{exercise}\normalfont\normalsize
  15112. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  15113. Create eight new programs that use functions including examples that
  15114. pass functions and return functions from other functions, recursive
  15115. functions, functions that create tuples, and functions that make tail
  15116. calls. Test your compiler on these new programs and all your
  15117. previously created test programs.
  15118. \end{exercise}
  15119. \begin{figure}[tbp]
  15120. \begin{tcolorbox}[colback=white]
  15121. {\if\edition\racketEd
  15122. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  15123. \node (Lfun) at (0,2) {\large \LangFun{}};
  15124. \node (Lfun-1) at (4,2) {\large \LangFun{}};
  15125. \node (Lfun-2) at (7,2) {\large \LangFun{}};
  15126. \node (F1-1) at (11,2) {\large \LangFunRef{}};
  15127. \node (F1-2) at (11,0) {\large \LangFunRef{}};
  15128. \node (F1-3) at (7,0) {\large \LangFunRefAlloc{}};
  15129. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  15130. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  15131. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  15132. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  15133. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  15134. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  15135. \node (x86-5) at (8,-6) {\large \LangXIndCallFlat{}};
  15136. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  15137. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  15138. \path[->,bend left=15] (Lfun) edge [above] node
  15139. {\ttfamily\footnotesize shrink} (Lfun-1);
  15140. \path[->,bend left=15] (Lfun-1) edge [above] node
  15141. {\ttfamily\footnotesize uniquify} (Lfun-2);
  15142. \path[->,bend left=15] (Lfun-2) edge [above] node
  15143. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  15144. \path[->,bend left=15] (F1-1) edge [left] node
  15145. {\ttfamily\footnotesize limit\_functions} (F1-2);
  15146. \path[->,bend left=15] (F1-2) edge [below] node
  15147. {\ttfamily\footnotesize expose\_allocation} (F1-3);
  15148. \path[->,bend left=15] (F1-3) edge [below] node
  15149. {\ttfamily\footnotesize uncover\_get!} (F1-4);
  15150. \path[->,bend right=15] (F1-4) edge [above] node
  15151. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  15152. \path[->,bend right=15] (F1-5) edge [right] node
  15153. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15154. \path[->,bend right=15] (C3-2) edge [right] node
  15155. {\ttfamily\footnotesize select\_instructions} (x86-2);
  15156. \path[->,bend left=15] (x86-2) edge [right] node
  15157. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  15158. \path[->,bend right=15] (x86-2-1) edge [below] node
  15159. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  15160. \path[->,bend right=15] (x86-2-2) edge [right] node
  15161. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  15162. \path[->,bend left=15] (x86-3) edge [above] node
  15163. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  15164. \path[->,bend right=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  15165. \end{tikzpicture}
  15166. \fi}
  15167. {\if\edition\pythonEd\pythonColor
  15168. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  15169. \node (Lfun) at (0,2) {\large \LangFun{}};
  15170. \node (Lfun-2) at (4,2) {\large \LangFun{}};
  15171. \node (F1-1) at (8,2) {\large \LangFunRef{}};
  15172. \node (F1-2) at (12,2) {\large \LangFunRef{}};
  15173. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  15174. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  15175. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  15176. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  15177. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  15178. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  15179. \node (x86-5) at (12,-4) {\large \LangXIndCallFlat{}};
  15180. \path[->,bend left=15] (Lfun) edge [above] node
  15181. {\ttfamily\footnotesize shrink} (Lfun-2);
  15182. \path[->,bend left=15] (Lfun-2) edge [above] node
  15183. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  15184. \path[->,bend left=15] (F1-1) edge [above] node
  15185. {\ttfamily\footnotesize limit\_functions} (F1-2);
  15186. \path[->,bend left=15] (F1-2) edge [right] node
  15187. {\ttfamily\footnotesize \ \ expose\_allocation} (F1-4);
  15188. \path[->,bend right=15] (F1-4) edge [above] node
  15189. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  15190. \path[->,bend right=15] (F1-5) edge [right] node
  15191. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15192. \path[->,bend left=15] (C3-2) edge [right] node
  15193. {\ttfamily\footnotesize select\_instructions} (x86-2);
  15194. \path[->,bend right=15] (x86-2) edge [below] node
  15195. {\ttfamily\footnotesize assign\_homes} (x86-3);
  15196. \path[->,bend left=15] (x86-3) edge [above] node
  15197. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  15198. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  15199. \end{tikzpicture}
  15200. \fi}
  15201. \end{tcolorbox}
  15202. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  15203. \label{fig:Lfun-passes}
  15204. \end{figure}
  15205. \section{An Example Translation}
  15206. \label{sec:functions-example}
  15207. Figure~\ref{fig:add-fun} shows an example translation of a simple
  15208. function in \LangFun{} to x86. The figure includes the results of
  15209. \code{explicate\_control} and \code{select\_instructions}.
  15210. \begin{figure}[hbtp]
  15211. \begin{tcolorbox}[colback=white]
  15212. \begin{tabular}{ll}
  15213. \begin{minipage}{0.4\textwidth}
  15214. % s3_2.rkt
  15215. {\if\edition\racketEd
  15216. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15217. (define (add [x : Integer]
  15218. [y : Integer])
  15219. : Integer
  15220. (+ x y))
  15221. (add 40 2)
  15222. \end{lstlisting}
  15223. \fi}
  15224. {\if\edition\pythonEd\pythonColor
  15225. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15226. def add(x:int, y:int) -> int:
  15227. return x + y
  15228. print(add(40, 2))
  15229. \end{lstlisting}
  15230. \fi}
  15231. $\Downarrow$
  15232. {\if\edition\racketEd
  15233. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15234. (define (add86 [x87 : Integer]
  15235. [y88 : Integer])
  15236. : Integer
  15237. add86start:
  15238. return (+ x87 y88);
  15239. )
  15240. (define (main) : Integer ()
  15241. mainstart:
  15242. tmp89 = (fun-ref add86 2);
  15243. (tail-call tmp89 40 2)
  15244. )
  15245. \end{lstlisting}
  15246. \fi}
  15247. {\if\edition\pythonEd\pythonColor
  15248. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15249. def add(x:int, y:int) -> int:
  15250. addstart:
  15251. return x + y
  15252. def main() -> int:
  15253. mainstart:
  15254. fun.0 = add
  15255. tmp.1 = fun.0(40, 2)
  15256. print(tmp.1)
  15257. return 0
  15258. \end{lstlisting}
  15259. \fi}
  15260. \end{minipage}
  15261. &
  15262. $\Rightarrow$
  15263. \begin{minipage}{0.5\textwidth}
  15264. {\if\edition\racketEd
  15265. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15266. (define (add86) : Integer
  15267. add86start:
  15268. movq %rdi, x87
  15269. movq %rsi, y88
  15270. movq x87, %rax
  15271. addq y88, %rax
  15272. jmp inc1389conclusion
  15273. )
  15274. (define (main) : Integer
  15275. mainstart:
  15276. leaq (fun-ref add86 2), tmp89
  15277. movq $40, %rdi
  15278. movq $2, %rsi
  15279. tail-jmp tmp89
  15280. )
  15281. \end{lstlisting}
  15282. \fi}
  15283. {\if\edition\pythonEd\pythonColor
  15284. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15285. def add() -> int:
  15286. addstart:
  15287. movq %rdi, x
  15288. movq %rsi, y
  15289. movq x, %rax
  15290. addq y, %rax
  15291. jmp addconclusion
  15292. def main() -> int:
  15293. mainstart:
  15294. leaq add, fun.0
  15295. movq $40, %rdi
  15296. movq $2, %rsi
  15297. callq *fun.0
  15298. movq %rax, tmp.1
  15299. movq tmp.1, %rdi
  15300. callq print_int
  15301. movq $0, %rax
  15302. jmp mainconclusion
  15303. \end{lstlisting}
  15304. \fi}
  15305. $\Downarrow$
  15306. \end{minipage}
  15307. \end{tabular}
  15308. \begin{tabular}{ll}
  15309. \begin{minipage}{0.3\textwidth}
  15310. {\if\edition\racketEd
  15311. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15312. .globl add86
  15313. .align 8
  15314. add86:
  15315. pushq %rbp
  15316. movq %rsp, %rbp
  15317. jmp add86start
  15318. add86start:
  15319. movq %rdi, %rax
  15320. addq %rsi, %rax
  15321. jmp add86conclusion
  15322. add86conclusion:
  15323. popq %rbp
  15324. retq
  15325. \end{lstlisting}
  15326. \fi}
  15327. {\if\edition\pythonEd\pythonColor
  15328. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15329. .align 8
  15330. add:
  15331. pushq %rbp
  15332. movq %rsp, %rbp
  15333. subq $0, %rsp
  15334. jmp addstart
  15335. addstart:
  15336. movq %rdi, %rdx
  15337. movq %rsi, %rcx
  15338. movq %rdx, %rax
  15339. addq %rcx, %rax
  15340. jmp addconclusion
  15341. addconclusion:
  15342. subq $0, %r15
  15343. addq $0, %rsp
  15344. popq %rbp
  15345. retq
  15346. \end{lstlisting}
  15347. \fi}
  15348. \end{minipage}
  15349. &
  15350. \begin{minipage}{0.5\textwidth}
  15351. {\if\edition\racketEd
  15352. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15353. .globl main
  15354. .align 8
  15355. main:
  15356. pushq %rbp
  15357. movq %rsp, %rbp
  15358. movq $16384, %rdi
  15359. movq $16384, %rsi
  15360. callq initialize
  15361. movq rootstack_begin(%rip), %r15
  15362. jmp mainstart
  15363. mainstart:
  15364. leaq add86(%rip), %rcx
  15365. movq $40, %rdi
  15366. movq $2, %rsi
  15367. movq %rcx, %rax
  15368. popq %rbp
  15369. jmp *%rax
  15370. mainconclusion:
  15371. popq %rbp
  15372. retq
  15373. \end{lstlisting}
  15374. \fi}
  15375. {\if\edition\pythonEd\pythonColor
  15376. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15377. .globl main
  15378. .align 8
  15379. main:
  15380. pushq %rbp
  15381. movq %rsp, %rbp
  15382. subq $0, %rsp
  15383. movq $65536, %rdi
  15384. movq $65536, %rsi
  15385. callq initialize
  15386. movq rootstack_begin(%rip), %r15
  15387. jmp mainstart
  15388. mainstart:
  15389. leaq add(%rip), %rcx
  15390. movq $40, %rdi
  15391. movq $2, %rsi
  15392. callq *%rcx
  15393. movq %rax, %rcx
  15394. movq %rcx, %rdi
  15395. callq print_int
  15396. movq $0, %rax
  15397. jmp mainconclusion
  15398. mainconclusion:
  15399. subq $0, %r15
  15400. addq $0, %rsp
  15401. popq %rbp
  15402. retq
  15403. \end{lstlisting}
  15404. \fi}
  15405. \end{minipage}
  15406. \end{tabular}
  15407. \end{tcolorbox}
  15408. \caption{Example compilation of a simple function to x86.}
  15409. \label{fig:add-fun}
  15410. \end{figure}
  15411. % Challenge idea: inlining! (simple version)
  15412. % Further Reading
  15413. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15414. \chapter{Lexically Scoped Functions}
  15415. \label{ch:Llambda}
  15416. \setcounter{footnote}{0}
  15417. This chapter studies lexically scoped functions. Lexical
  15418. scoping\index{subject}{lexical scoping} means that a function's body
  15419. may refer to variables whose binding site is outside of the function,
  15420. in an enclosing scope.
  15421. %
  15422. Consider the example shown in figure~\ref{fig:lexical-scoping} written
  15423. in \LangLam{}, which extends \LangFun{} with the
  15424. \key{lambda}\index{subject}{lambda} form for creating lexically scoped
  15425. functions. The body of the \key{lambda} refers to three variables:
  15426. \code{x}, \code{y}, and \code{z}. The binding sites for \code{x} and
  15427. \code{y} are outside of the \key{lambda}. Variable \code{y} is
  15428. \racket{bound by the enclosing \key{let}}\python{a local variable of
  15429. function \code{f}}, and \code{x} is a parameter of function
  15430. \code{f}. Note that function \code{f} returns the \key{lambda} as its
  15431. result value. The main expression of the program includes two calls to
  15432. \code{f} with different arguments for \code{x}: first \code{5} and
  15433. then \code{3}. The functions returned from \code{f} are bound to
  15434. variables \code{g} and \code{h}. Even though these two functions were
  15435. created by the same \code{lambda}, they are really different functions
  15436. because they use different values for \code{x}. Applying \code{g} to
  15437. \code{11} produces \code{20} whereas applying \code{h} to \code{15}
  15438. produces \code{22}, so the result of the program is \code{42}.
  15439. \begin{figure}[btp]
  15440. \begin{tcolorbox}[colback=white]
  15441. {\if\edition\racketEd
  15442. % lambda_test_21.rkt
  15443. \begin{lstlisting}
  15444. (define (f [x : Integer]) : (Integer -> Integer)
  15445. (let ([y 4])
  15446. (lambda: ([z : Integer]) : Integer
  15447. (+ x (+ y z)))))
  15448. (let ([g (f 5)])
  15449. (let ([h (f 3)])
  15450. (+ (g 11) (h 15))))
  15451. \end{lstlisting}
  15452. \fi}
  15453. {\if\edition\pythonEd\pythonColor
  15454. \begin{lstlisting}
  15455. def f(x : int) -> Callable[[int], int]:
  15456. y = 4
  15457. return lambda z: x + y + z
  15458. g = f(5)
  15459. h = f(3)
  15460. print(g(11) + h(15))
  15461. \end{lstlisting}
  15462. \fi}
  15463. \end{tcolorbox}
  15464. \caption{Example of a lexically scoped function.}
  15465. \label{fig:lexical-scoping}
  15466. \end{figure}
  15467. The approach that we take for implementing lexically scoped functions
  15468. is to compile them into top-level function definitions, translating
  15469. from \LangLam{} into \LangFun{}. However, the compiler must give
  15470. special treatment to variable occurrences such as \code{x} and
  15471. \code{y} in the body of the \code{lambda} shown in
  15472. figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  15473. may not refer to variables defined outside of it. To identify such
  15474. variable occurrences, we review the standard notion of free variable.
  15475. \begin{definition}\normalfont
  15476. A variable is \emph{free in expression} $e$ if the variable occurs
  15477. inside $e$ but does not have an enclosing definition that is also in
  15478. $e$.\index{subject}{free variable}
  15479. \end{definition}
  15480. For example, in the expression
  15481. \racket{\code{(+ x (+ y z))}}\python{\code{x + y + z}}
  15482. the variables \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  15483. only \code{x} and \code{y} are free in the following expression,
  15484. because \code{z} is defined by the \code{lambda}
  15485. {\if\edition\racketEd
  15486. \begin{lstlisting}
  15487. (lambda: ([z : Integer]) : Integer
  15488. (+ x (+ y z)))
  15489. \end{lstlisting}
  15490. \fi}
  15491. {\if\edition\pythonEd\pythonColor
  15492. \begin{lstlisting}
  15493. lambda z: x + y + z
  15494. \end{lstlisting}
  15495. \fi}
  15496. %
  15497. \noindent Thus the free variables of a \code{lambda} are the ones that
  15498. need special treatment. We need to transport at runtime the values
  15499. of those variables from the point where the \code{lambda} was created
  15500. to the point where the \code{lambda} is applied. An efficient solution
  15501. to the problem, due to \citet{Cardelli:1983aa}, is to bundle the
  15502. values of the free variables together with a function pointer into a
  15503. tuple, an arrangement called a \emph{flat closure} (which we shorten
  15504. to just \emph{closure}).\index{subject}{closure}\index{subject}{flat
  15505. closure}
  15506. %
  15507. By design, we have all the ingredients to make closures:
  15508. chapter~\ref{ch:Lvec} gave us tuples, and chapter~\ref{ch:Lfun} gave us
  15509. function pointers. The function pointer resides at index $0$, and the
  15510. values for the free variables fill in the rest of the tuple.
  15511. Let us revisit the example shown in figure~\ref{fig:lexical-scoping}
  15512. to see how closures work. It is a three-step dance. The program calls
  15513. function \code{f}, which creates a closure for the \code{lambda}. The
  15514. closure is a tuple whose first element is a pointer to the top-level
  15515. function that we will generate for the \code{lambda}; the second
  15516. element is the value of \code{x}, which is \code{5}; and the third
  15517. element is \code{4}, the value of \code{y}. The closure does not
  15518. contain an element for \code{z} because \code{z} is not a free
  15519. variable of the \code{lambda}. Creating the closure is step 1 of the
  15520. dance. The closure is returned from \code{f} and bound to \code{g}, as
  15521. shown in figure~\ref{fig:closures}.
  15522. %
  15523. The second call to \code{f} creates another closure, this time with
  15524. \code{3} in the second slot (for \code{x}). This closure is also
  15525. returned from \code{f} but bound to \code{h}, which is also shown in
  15526. figure~\ref{fig:closures}.
  15527. \begin{figure}[tbp]
  15528. \centering
  15529. \begin{minipage}{0.65\textwidth}
  15530. \begin{tcolorbox}[colback=white]
  15531. \includegraphics[width=\textwidth]{figs/closures}
  15532. \end{tcolorbox}
  15533. \end{minipage}
  15534. \caption{Flat closure representations for the two functions
  15535. produced by the \key{lambda} in figure~\ref{fig:lexical-scoping}.}
  15536. \label{fig:closures}
  15537. \end{figure}
  15538. Continuing with the example, consider the application of \code{g} to
  15539. \code{11} shown in figure~\ref{fig:lexical-scoping}. To apply a
  15540. closure, we obtain the function pointer from the first element of the
  15541. closure and call it, passing in the closure itself and then the
  15542. regular arguments, in this case \code{11}. This technique for applying
  15543. a closure is step 2 of the dance.
  15544. %
  15545. But doesn't this \code{lambda} take only one argument, for parameter
  15546. \code{z}? The third and final step of the dance is generating a
  15547. top-level function for a \code{lambda}. We add an additional
  15548. parameter for the closure and insert an initialization at the beginning
  15549. of the function for each free variable, to bind those variables to the
  15550. appropriate elements from the closure parameter.
  15551. %
  15552. This three-step dance is known as \emph{closure
  15553. conversion}\index{subject}{closure conversion}. We discuss the
  15554. details of closure conversion in section~\ref{sec:closure-conversion}
  15555. and show the code generated from the example in
  15556. section~\ref{sec:example-lambda}. First, we define the syntax and
  15557. semantics of \LangLam{} in section~\ref{sec:r5}.
  15558. \section{The \LangLam{} Language}
  15559. \label{sec:r5}
  15560. The definitions of the concrete syntax and abstract syntax for
  15561. \LangLam{}, a language with anonymous functions and lexical scoping,
  15562. are shown in figures~\ref{fig:Llam-concrete-syntax} and
  15563. \ref{fig:Llam-syntax}. They add the \key{lambda} form to the grammar
  15564. for \LangFun{}, which already has syntax for function application.
  15565. %
  15566. \python{The syntax also includes an assignment statement that includes
  15567. a type annotation for the variable on the left-hand side, which
  15568. facilitates the type checking of \code{lambda} expressions that we
  15569. discuss later in this section.}
  15570. %
  15571. \racket{The \code{procedure-arity} operation returns the number of parameters
  15572. of a given function, an operation that we need for the translation
  15573. of dynamic typing that is discussed in chapter~\ref{ch:Ldyn}.}
  15574. %
  15575. \python{The \code{arity} operation returns the number of parameters of
  15576. a given function, an operation that we need for the translation
  15577. of dynamic typing that is discussed in chapter~\ref{ch:Ldyn}.
  15578. The \code{arity} operation is not in Python, but the same functionality
  15579. is available in a more complex form. We include \code{arity} in the
  15580. \LangLam{} source language to enable testing.}
  15581. \newcommand{\LlambdaGrammarRacket}{
  15582. \begin{array}{lcl}
  15583. \Exp &::=& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  15584. &\MID& \LP \key{procedure-arity}~\Exp\RP
  15585. \end{array}
  15586. }
  15587. \newcommand{\LlambdaASTRacket}{
  15588. \begin{array}{lcl}
  15589. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  15590. \itm{op} &::=& \code{procedure-arity}
  15591. \end{array}
  15592. }
  15593. \newcommand{\LlambdaGrammarPython}{
  15594. \begin{array}{lcl}
  15595. \Exp &::=& \CLAMBDA{\Var\code{, }\ldots}{\Exp} \MID \CARITY{\Exp} \\
  15596. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp}
  15597. \end{array}
  15598. }
  15599. \newcommand{\LlambdaASTPython}{
  15600. \begin{array}{lcl}
  15601. \Exp &::=& \LAMBDA{\Var^{*}}{\Exp} \MID \ARITY{\Exp} \\
  15602. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  15603. \end{array}
  15604. }
  15605. % include AnnAssign in ASTPython
  15606. \begin{figure}[tp]
  15607. \centering
  15608. \begin{tcolorbox}[colback=white]
  15609. \small
  15610. {\if\edition\racketEd
  15611. \[
  15612. \begin{array}{l}
  15613. \gray{\LintGrammarRacket{}} \\ \hline
  15614. \gray{\LvarGrammarRacket{}} \\ \hline
  15615. \gray{\LifGrammarRacket{}} \\ \hline
  15616. \gray{\LwhileGrammarRacket} \\ \hline
  15617. \gray{\LtupGrammarRacket} \\ \hline
  15618. \gray{\LfunGrammarRacket} \\ \hline
  15619. \LlambdaGrammarRacket \\
  15620. \begin{array}{lcl}
  15621. \LangLamM{} &::=& \Def\ldots \; \Exp
  15622. \end{array}
  15623. \end{array}
  15624. \]
  15625. \fi}
  15626. {\if\edition\pythonEd\pythonColor
  15627. \[
  15628. \begin{array}{l}
  15629. \gray{\LintGrammarPython{}} \\ \hline
  15630. \gray{\LvarGrammarPython{}} \\ \hline
  15631. \gray{\LifGrammarPython{}} \\ \hline
  15632. \gray{\LwhileGrammarPython} \\ \hline
  15633. \gray{\LtupGrammarPython} \\ \hline
  15634. \gray{\LfunGrammarPython} \\ \hline
  15635. \LlambdaGrammarPython \\
  15636. \begin{array}{lcl}
  15637. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  15638. \end{array}
  15639. \end{array}
  15640. \]
  15641. \fi}
  15642. \end{tcolorbox}
  15643. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-concrete-syntax})
  15644. with \key{lambda}.}
  15645. \label{fig:Llam-concrete-syntax}
  15646. \index{subject}{Llambda@\LangLam{} concrete syntax}
  15647. \end{figure}
  15648. \begin{figure}[tp]
  15649. \centering
  15650. \begin{tcolorbox}[colback=white]
  15651. \small
  15652. {\if\edition\racketEd
  15653. \[\arraycolsep=3pt
  15654. \begin{array}{l}
  15655. \gray{\LintOpAST} \\ \hline
  15656. \gray{\LvarASTRacket{}} \\ \hline
  15657. \gray{\LifASTRacket{}} \\ \hline
  15658. \gray{\LwhileASTRacket{}} \\ \hline
  15659. \gray{\LtupASTRacket{}} \\ \hline
  15660. \gray{\LfunASTRacket} \\ \hline
  15661. \LlambdaASTRacket \\
  15662. \begin{array}{lcl}
  15663. \LangLamM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15664. \end{array}
  15665. \end{array}
  15666. \]
  15667. \fi}
  15668. {\if\edition\pythonEd\pythonColor
  15669. \[
  15670. \begin{array}{l}
  15671. \gray{\LintASTPython} \\ \hline
  15672. \gray{\LvarASTPython{}} \\ \hline
  15673. \gray{\LifASTPython{}} \\ \hline
  15674. \gray{\LwhileASTPython{}} \\ \hline
  15675. \gray{\LtupASTPython{}} \\ \hline
  15676. \gray{\LfunASTPython} \\ \hline
  15677. \LlambdaASTPython \\
  15678. \begin{array}{lcl}
  15679. \LangLamM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  15680. \end{array}
  15681. \end{array}
  15682. \]
  15683. \fi}
  15684. \end{tcolorbox}
  15685. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-syntax}).}
  15686. \label{fig:Llam-syntax}
  15687. \index{subject}{Llambda@\LangLam{} abstract syntax}
  15688. \end{figure}
  15689. Figure~\ref{fig:interp-Llambda} shows the definitional
  15690. interpreter\index{subject}{interpreter} for \LangLam{}. The case for
  15691. \key{Lambda} saves the current environment inside the returned
  15692. function value. Recall that during function application, the
  15693. environment stored in the function value, extended with the mapping of
  15694. parameters to argument values, is used to interpret the body of the
  15695. function.
  15696. \begin{figure}[tbp]
  15697. \begin{tcolorbox}[colback=white]
  15698. {\if\edition\racketEd
  15699. \begin{lstlisting}
  15700. (define interp-Llambda-class
  15701. (class interp-Lfun-class
  15702. (super-new)
  15703. (define/override (interp-op op)
  15704. (match op
  15705. ['procedure-arity
  15706. (lambda (v)
  15707. (match v
  15708. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  15709. [else (error 'interp-op "expected a function, not ~a" v)]))]
  15710. [else (super interp-op op)]))
  15711. (define/override ((interp-exp env) e)
  15712. (define recur (interp-exp env))
  15713. (match e
  15714. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  15715. `(function ,xs ,body ,env)]
  15716. [else ((super interp-exp env) e)]))
  15717. ))
  15718. (define (interp-Llambda p)
  15719. (send (new interp-Llambda-class) interp-program p))
  15720. \end{lstlisting}
  15721. \fi}
  15722. {\if\edition\pythonEd\pythonColor
  15723. \begin{lstlisting}
  15724. class InterpLlambda(InterpLfun):
  15725. def arity(self, v):
  15726. match v:
  15727. case Function(name, params, body, env):
  15728. return len(params)
  15729. case _:
  15730. raise Exception('Llambda arity unexpected ' + repr(v))
  15731. def interp_exp(self, e, env):
  15732. match e:
  15733. case Call(Name('arity'), [fun]):
  15734. f = self.interp_exp(fun, env)
  15735. return self.arity(f)
  15736. case Lambda(params, body):
  15737. return Function('lambda', params, [Return(body)], env)
  15738. case _:
  15739. return super().interp_exp(e, env)
  15740. def interp_stmt(self, s, env, cont):
  15741. match s:
  15742. case AnnAssign(lhs, typ, value, simple):
  15743. env[lhs.id] = self.interp_exp(value, env)
  15744. return self.interp_stmts(cont, env)
  15745. case Pass():
  15746. return self.interp_stmts(cont, env)
  15747. case _:
  15748. return super().interp_stmt(s, env, cont)
  15749. \end{lstlisting}
  15750. \fi}
  15751. \end{tcolorbox}
  15752. \caption{Interpreter for \LangLam{}.}
  15753. \label{fig:interp-Llambda}
  15754. \end{figure}
  15755. {\if\edition\racketEd
  15756. %
  15757. Figure~\ref{fig:type-check-Llambda} shows how to type check the new
  15758. \key{lambda} form. The body of the \key{lambda} is checked in an
  15759. environment that includes the current environment (because it is
  15760. lexically scoped) and also includes the \key{lambda}'s parameters. We
  15761. require the body's type to match the declared return type.
  15762. %
  15763. \fi}
  15764. {\if\edition\pythonEd\pythonColor
  15765. %
  15766. Figures~\ref{fig:type-check-Llambda} and
  15767. \ref{fig:type-check-Llambda-part2} define the type checker for
  15768. \LangLam{}, which is more complex than one might expect. The reason
  15769. for the added complexity is that the syntax of \key{lambda} does not
  15770. include type annotations for the parameters or return type. Instead
  15771. they must be inferred. There are many approaches to type inference
  15772. from which to choose, of varying degrees of complexity. We choose one
  15773. of the simpler approaches, bidirectional type
  15774. inference~\citep{Pierce:2000,Dunfield:2021}, because the focus of this
  15775. book is compilation, not type inference.
  15776. The main idea of bidirectional type inference is to add an auxiliary
  15777. function, here named \code{check\_exp}, that takes an expected type
  15778. and checks whether the given expression is of that type. Thus, in
  15779. \code{check\_exp}, type information flows in a top-down manner with
  15780. respect to the AST, in contrast to the regular \code{type\_check\_exp}
  15781. function, where type information flows in a primarily bottom-up
  15782. manner.
  15783. %
  15784. The idea then is to use \code{check\_exp} in all the places where we
  15785. already know what the type of an expression should be, such as in the
  15786. \code{return} statement of a top-level function definition or on the
  15787. right-hand side of an annotated assignment statement.
  15788. With regard to \code{lambda}, it is straightforward to check a
  15789. \code{lambda} inside \code{check\_exp} because the expected type
  15790. provides the parameter types and the return type. On the other hand,
  15791. inside \code{type\_check\_exp} we disallow \code{lambda}, which means
  15792. that we do not allow \code{lambda} in contexts in which we don't already
  15793. know its type. This restriction does not incur a loss of
  15794. expressiveness for \LangLam{} because it is straightforward to modify
  15795. a program to sidestep the restriction, for example, by using an
  15796. annotated assignment statement to assign the \code{lambda} to a
  15797. temporary variable.
  15798. Note that for the \code{Name} and \code{Lambda} AST nodes, the type
  15799. checker records their type in a \code{has\_type} field. This type
  15800. information is used further on in this chapter.
  15801. %
  15802. \fi}
  15803. \begin{figure}[tbp]
  15804. \begin{tcolorbox}[colback=white]
  15805. {\if\edition\racketEd
  15806. \begin{lstlisting}
  15807. (define (type-check-Llambda env)
  15808. (lambda (e)
  15809. (match e
  15810. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  15811. (define-values (new-body bodyT)
  15812. ((type-check-exp (append (map cons xs Ts) env)) body))
  15813. (define ty `(,@Ts -> ,rT))
  15814. (cond
  15815. [(equal? rT bodyT)
  15816. (values (HasType (Lambda params rT new-body) ty) ty)]
  15817. [else
  15818. (error "mismatch in return type" bodyT rT)])]
  15819. ...
  15820. )))
  15821. \end{lstlisting}
  15822. \fi}
  15823. {\if\edition\pythonEd\pythonColor
  15824. \begin{lstlisting}
  15825. class TypeCheckLlambda(TypeCheckLfun):
  15826. def type_check_exp(self, e, env):
  15827. match e:
  15828. case Name(id):
  15829. e.has_type = env[id]
  15830. return env[id]
  15831. case Lambda(params, body):
  15832. raise Exception('cannot synthesize a type for a lambda')
  15833. case Call(Name('arity'), [func]):
  15834. func_t = self.type_check_exp(func, env)
  15835. match func_t:
  15836. case FunctionType(params_t, return_t):
  15837. return IntType()
  15838. case _:
  15839. raise Exception('in arity, unexpected ' + repr(func_t))
  15840. case _:
  15841. return super().type_check_exp(e, env)
  15842. def check_exp(self, e, ty, env):
  15843. match e:
  15844. case Lambda(params, body):
  15845. e.has_type = ty
  15846. match ty:
  15847. case FunctionType(params_t, return_t):
  15848. new_env = env.copy().update(zip(params, params_t))
  15849. self.check_exp(body, return_t, new_env)
  15850. case _:
  15851. raise Exception('lambda does not have type ' + str(ty))
  15852. case Call(func, args):
  15853. func_t = self.type_check_exp(func, env)
  15854. match func_t:
  15855. case FunctionType(params_t, return_t):
  15856. for (arg, param_t) in zip(args, params_t):
  15857. self.check_exp(arg, param_t, env)
  15858. self.check_type_equal(return_t, ty, e)
  15859. case _:
  15860. raise Exception('type_check_exp: in call, unexpected ' + \
  15861. repr(func_t))
  15862. case _:
  15863. t = self.type_check_exp(e, env)
  15864. self.check_type_equal(t, ty, e)
  15865. \end{lstlisting}
  15866. \fi}
  15867. \end{tcolorbox}
  15868. \caption{Type checking \LangLam{}\python{, part 1}.}
  15869. \label{fig:type-check-Llambda}
  15870. \end{figure}
  15871. {\if\edition\pythonEd\pythonColor
  15872. \begin{figure}[tbp]
  15873. \begin{tcolorbox}[colback=white]
  15874. \begin{lstlisting}
  15875. def check_stmts(self, ss, return_ty, env):
  15876. if len(ss) == 0:
  15877. return
  15878. match ss[0]:
  15879. case FunctionDef(name, params, body, dl, returns, comment):
  15880. new_env = env.copy().update(params)
  15881. rt = self.check_stmts(body, returns, new_env)
  15882. self.check_stmts(ss[1:], return_ty, env)
  15883. case Return(value):
  15884. self.check_exp(value, return_ty, env)
  15885. case Assign([Name(id)], value):
  15886. if id in env:
  15887. self.check_exp(value, env[id], env)
  15888. else:
  15889. env[id] = self.type_check_exp(value, env)
  15890. self.check_stmts(ss[1:], return_ty, env)
  15891. case Assign([Subscript(tup, Constant(index), Store())], value):
  15892. tup_t = self.type_check_exp(tup, env)
  15893. match tup_t:
  15894. case TupleType(ts):
  15895. self.check_exp(value, ts[index], env)
  15896. case _:
  15897. raise Exception('expected a tuple, not ' + repr(tup_t))
  15898. self.check_stmts(ss[1:], return_ty, env)
  15899. case AnnAssign(Name(id), ty_annot, value, simple):
  15900. ss[0].annotation = ty_annot
  15901. if id in env:
  15902. self.check_type_equal(env[id], ty_annot)
  15903. else:
  15904. env[id] = ty_annot
  15905. self.check_exp(value, ty_annot, env)
  15906. self.check_stmts(ss[1:], return_ty, env)
  15907. case _:
  15908. self.type_check_stmts(ss, env)
  15909. def type_check(self, p):
  15910. match p:
  15911. case Module(body):
  15912. env = {}
  15913. for s in body:
  15914. match s:
  15915. case FunctionDef(name, params, bod, dl, returns, comment):
  15916. params_t = [t for (x,t) in params]
  15917. env[name] = FunctionType(params_t, returns)
  15918. self.check_stmts(body, int, env)
  15919. \end{lstlisting}
  15920. \end{tcolorbox}
  15921. \caption{Type checking the \key{lambda}'s in \LangLam{}, part 2.}
  15922. \label{fig:type-check-Llambda-part2}
  15923. \end{figure}
  15924. \fi}
  15925. \clearpage
  15926. \section{Assignment and Lexically Scoped Functions}
  15927. \label{sec:assignment-scoping}
  15928. The combination of lexically scoped functions and assignment to
  15929. variables raises a challenge with the flat-closure approach to
  15930. implementing lexically scoped functions. Consider the following
  15931. example in which function \code{f} has a free variable \code{x} that
  15932. is changed after \code{f} is created but before the call to \code{f}.
  15933. % loop_test_11.rkt
  15934. {\if\edition\racketEd
  15935. \begin{lstlisting}
  15936. (let ([x 0])
  15937. (let ([y 0])
  15938. (let ([z 20])
  15939. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  15940. (begin
  15941. (set! x 10)
  15942. (set! y 12)
  15943. (f y))))))
  15944. \end{lstlisting}
  15945. \fi}
  15946. {\if\edition\pythonEd\pythonColor
  15947. % box_free_assign.py
  15948. \begin{lstlisting}
  15949. def g(z : int) -> int:
  15950. x = 0
  15951. y = 0
  15952. f : Callable[[int],int] = lambda a: a + x + z
  15953. x = 10
  15954. y = 12
  15955. return f(y)
  15956. print(g(20))
  15957. \end{lstlisting}
  15958. \fi} The correct output for this example is \code{42} because the call
  15959. to \code{f} is required to use the current value of \code{x} (which is
  15960. \code{10}). Unfortunately, the closure conversion pass
  15961. (section~\ref{sec:closure-conversion}) generates code for the
  15962. \code{lambda} that copies the old value of \code{x} into a
  15963. closure. Thus, if we naively applied closure conversion, the output of
  15964. this program would be \code{32}.
  15965. A first attempt at solving this problem would be to save a pointer to
  15966. \code{x} in the closure and change the occurrences of \code{x} inside
  15967. the lambda to dereference the pointer. Of course, this would require
  15968. assigning \code{x} to the stack and not to a register. However, the
  15969. problem goes a bit deeper.
  15970. Consider the following example that returns a function that refers to
  15971. a local variable of the enclosing function:
  15972. \begin{center}
  15973. \begin{minipage}{\textwidth}
  15974. {\if\edition\racketEd
  15975. \begin{lstlisting}
  15976. (define (f) : ( -> Integer)
  15977. (let ([x 0])
  15978. (let ([g (lambda: () : Integer x)])
  15979. (begin
  15980. (set! x 42)
  15981. g))))
  15982. ((f))
  15983. \end{lstlisting}
  15984. \fi}
  15985. {\if\edition\pythonEd\pythonColor
  15986. % counter.py
  15987. \begin{lstlisting}
  15988. def f():
  15989. x = 0
  15990. g = lambda: x
  15991. x = 42
  15992. return g
  15993. print(f()())
  15994. \end{lstlisting}
  15995. \fi}
  15996. \end{minipage}
  15997. \end{center}
  15998. In this example, the lifetime of \code{x} extends beyond the lifetime
  15999. of the call to \code{f}. Thus, if we were to store \code{x} on the
  16000. stack frame for the call to \code{f}, it would be gone by the time we
  16001. called \code{g}, leaving us with dangling pointers for
  16002. \code{x}. This example demonstrates that when a variable occurs free
  16003. inside a function, its lifetime becomes indefinite. Thus, the value of
  16004. the variable needs to live on the heap. The verb
  16005. \emph{box}\index{subject}{box} is often used for allocating a single
  16006. value on the heap, producing a pointer, and
  16007. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  16008. %
  16009. We introduce a new pass named \code{convert\_assignments} to address
  16010. this challenge.
  16011. %
  16012. \python{But before diving into that, we have one more
  16013. problem to discuss.}
  16014. {\if\edition\pythonEd\pythonColor
  16015. \section{Uniquify Variables}
  16016. \label{sec:uniquify-lambda}
  16017. With the addition of \code{lambda} we have a complication to deal
  16018. with: name shadowing. Consider the following program with a function
  16019. \code{f} that has a parameter \code{x}. Inside \code{f} there are two
  16020. \code{lambda} expressions. The first \code{lambda} has a parameter
  16021. that is also named \code{x}.
  16022. \begin{lstlisting}
  16023. def f(x:int, y:int) -> Callable[[int], int]:
  16024. g : Callable[[int],int] = (lambda x: x + y)
  16025. h : Callable[[int],int] = (lambda y: x + y)
  16026. x = input_int()
  16027. return g
  16028. print(f(0, 10)(32))
  16029. \end{lstlisting}
  16030. Many of our compiler passes rely on being able to connect variable
  16031. uses with their definitions using just the name of the
  16032. variable. However, in the example above, the name of the variable does
  16033. not uniquely determine its definition. To solve this problem we
  16034. recommend implementing a pass named \code{uniquify} that renames every
  16035. variable in the program to make sure that they are all unique.
  16036. The following shows the result of \code{uniquify} for the example
  16037. above. The \code{x} parameter of function \code{f} is renamed to
  16038. \code{x\_0}, and the \code{x} parameter of the first \code{lambda} is
  16039. renamed to \code{x\_4}.
  16040. \begin{lstlisting}
  16041. def f(x_0:int, y_1:int) -> Callable[[int], int] :
  16042. g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
  16043. h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
  16044. x_0 = input_int()
  16045. return g_2
  16046. def main() -> int :
  16047. print(f(0, 10)(32))
  16048. return 0
  16049. \end{lstlisting}
  16050. \fi} % pythonEd
  16051. %% \section{Reveal Functions}
  16052. %% \label{sec:reveal-functions-r5}
  16053. %% \racket{To support the \code{procedure-arity} operator we need to
  16054. %% communicate the arity of a function to the point of closure
  16055. %% creation.}
  16056. %% %
  16057. %% \python{In chapter~\ref{ch:Ldyn} we need to access the arity of a
  16058. %% function at runtime. Thus, we need to communicate the arity of a
  16059. %% function to the point of closure creation.}
  16060. %% %
  16061. %% We can accomplish this by replacing the $\FUNREF{\Var}{\Int}$ AST node with
  16062. %% one that has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$.
  16063. %% \[
  16064. %% \begin{array}{lcl}
  16065. %% \Exp &::=& \FUNREFARITY{\Var}{\Int}
  16066. %% \end{array}
  16067. %% \]
  16068. \section{Assignment Conversion}
  16069. \label{sec:convert-assignments}
  16070. The purpose of the \code{convert\_assignments} pass is to address the
  16071. challenge regarding the interaction between variable assignments and
  16072. closure conversion. First we identify which variables need to be
  16073. boxed, and then we transform the program to box those variables. In
  16074. general, boxing introduces runtime overhead that we would like to
  16075. avoid, so we should box as few variables as possible. We recommend
  16076. boxing the variables in the intersection of the following two sets of
  16077. variables:
  16078. \begin{enumerate}
  16079. \item The variables that are free in a \code{lambda}.
  16080. \item The variables that appear on the left-hand side of an
  16081. assignment.
  16082. \end{enumerate}
  16083. The first condition is a must but the second condition is
  16084. conservative. It is possible to develop a more liberal condition using
  16085. static program analysis.
  16086. Consider again the first example from
  16087. section~\ref{sec:assignment-scoping}:
  16088. %
  16089. {\if\edition\racketEd
  16090. \begin{lstlisting}
  16091. (let ([x 0])
  16092. (let ([y 0])
  16093. (let ([z 20])
  16094. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  16095. (begin
  16096. (set! x 10)
  16097. (set! y 12)
  16098. (f y))))))
  16099. \end{lstlisting}
  16100. \fi}
  16101. {\if\edition\pythonEd\pythonColor
  16102. \begin{lstlisting}
  16103. def g(z : int) -> int:
  16104. x = 0
  16105. y = 0
  16106. f : Callable[[int],int] = lambda a: a + x + z
  16107. x = 10
  16108. y = 12
  16109. return f(y)
  16110. print(g(20))
  16111. \end{lstlisting}
  16112. \fi}
  16113. %
  16114. \noindent The variables \code{x} and \code{y} appear on the left-hand
  16115. side of assignments. The variables \code{x} and \code{z} occur free
  16116. inside the \code{lambda}. Thus, variable \code{x} needs to be boxed
  16117. but not \code{y} or \code{z}. The boxing of \code{x} consists of
  16118. three transformations: initialize \code{x} with a tuple whose element
  16119. is uninitialized, replace reads from \code{x} with tuple reads, and
  16120. replace each assignment to \code{x} with a tuple write. The output of
  16121. \code{convert\_assignments} for this example is as follows:
  16122. %
  16123. {\if\edition\racketEd
  16124. \begin{lstlisting}
  16125. (define (main) : Integer
  16126. (let ([x0 (vector 0)])
  16127. (let ([y1 0])
  16128. (let ([z2 20])
  16129. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  16130. (+ a3 (+ (vector-ref x0 0) z2)))])
  16131. (begin
  16132. (vector-set! x0 0 10)
  16133. (set! y1 12)
  16134. (f4 y1)))))))
  16135. \end{lstlisting}
  16136. \fi}
  16137. %
  16138. {\if\edition\pythonEd\pythonColor
  16139. \begin{lstlisting}
  16140. def g(z : int)-> int:
  16141. x = (uninitialized(int),)
  16142. x[0] = 0
  16143. y = 0
  16144. f : Callable[[int], int] = (lambda a: a + x[0] + z)
  16145. x[0] = 10
  16146. y = 12
  16147. return f(y)
  16148. def main() -> int:
  16149. print(g(20))
  16150. return 0
  16151. \end{lstlisting}
  16152. \fi}
  16153. To compute the free variables of all the \code{lambda} expressions, we
  16154. recommend defining the following two auxiliary functions:
  16155. \begin{enumerate}
  16156. \item \code{free\_variables} computes the free variables of an expression, and
  16157. \item \code{free\_in\_lambda} collects all the variables that are
  16158. free in any of the \code{lambda} expressions, using
  16159. \code{free\_variables} in the case for each \code{lambda}.
  16160. \end{enumerate}
  16161. {\if\edition\racketEd
  16162. %
  16163. To compute the variables that are assigned to, we recommend updating
  16164. the \code{collect-set!} function that we introduced in
  16165. section~\ref{sec:uncover-get-bang} to include the new AST forms such
  16166. as \code{Lambda}.
  16167. %
  16168. \fi}
  16169. {\if\edition\pythonEd\pythonColor
  16170. %
  16171. To compute the variables that are assigned to, we recommend defining
  16172. an auxiliary function named \code{assigned\_vars\_stmt} that returns
  16173. the set of variables that occur in the left-hand side of an assignment
  16174. statement and otherwise returns the empty set.
  16175. %
  16176. \fi}
  16177. Let $\mathit{AF}$ be the intersection of the set of variables that are
  16178. free in a \code{lambda} and that are assigned to in the enclosing
  16179. function definition.
  16180. Next we discuss the \code{convert\_assignments} pass. In the case for
  16181. $\VAR{x}$, if $x$ is in $\mathit{AF}$, then unbox it by translating
  16182. $\VAR{x}$ to a tuple read.
  16183. %
  16184. {\if\edition\racketEd
  16185. \begin{lstlisting}
  16186. (Var |$x$|)
  16187. |$\Rightarrow$|
  16188. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  16189. \end{lstlisting}
  16190. \fi}
  16191. %
  16192. {\if\edition\pythonEd\pythonColor
  16193. \begin{lstlisting}
  16194. Name(|$x$|)
  16195. |$\Rightarrow$|
  16196. Subscript(Name(|$x$|), Constant(0), Load())
  16197. \end{lstlisting}
  16198. \fi}
  16199. %
  16200. \noindent In the case for assignment, recursively process the
  16201. right-hand side \itm{rhs} to obtain \itm{rhs'}. If the left-hand side
  16202. $x$ is in $\mathit{AF}$, translate the assignment into a tuple write
  16203. as follows:
  16204. %
  16205. {\if\edition\racketEd
  16206. \begin{lstlisting}
  16207. (SetBang |$x$| |$\itm{rhs}$|)
  16208. |$\Rightarrow$|
  16209. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  16210. \end{lstlisting}
  16211. \fi}
  16212. {\if\edition\pythonEd\pythonColor
  16213. \begin{lstlisting}
  16214. Assign([Name(|$x$|)],|$\itm{rhs}$|)
  16215. |$\Rightarrow$|
  16216. Assign([Subscript(Name(|$x$|), Constant(0), Store())], |$\itm{rhs'}$|)
  16217. \end{lstlisting}
  16218. \fi}
  16219. %
  16220. {\if\edition\racketEd
  16221. The case for \code{Lambda} is nontrivial, but it is similar to the
  16222. case for function definitions, which we discuss next.
  16223. \fi}
  16224. %
  16225. To translate a function definition, we first compute $\mathit{AF}$,
  16226. the intersection of the variables that are free in a \code{lambda} and
  16227. that are assigned to. We then apply assignment conversion to the body
  16228. of the function definition. Finally, we box the parameters of this
  16229. function definition that are in $\mathit{AF}$. For example,
  16230. the parameter \code{x} of the following function \code{g}
  16231. needs to be boxed:
  16232. {\if\edition\racketEd
  16233. \begin{lstlisting}
  16234. (define (g [x : Integer]) : Integer
  16235. (let ([f (lambda: ([a : Integer]) : Integer (+ a x))])
  16236. (begin
  16237. (set! x 10)
  16238. (f 32))))
  16239. \end{lstlisting}
  16240. \fi}
  16241. %
  16242. {\if\edition\pythonEd\pythonColor
  16243. \begin{lstlisting}
  16244. def g(x : int) -> int:
  16245. f : Callable[[int],int] = lambda a: a + x
  16246. x = 10
  16247. return f(32)
  16248. \end{lstlisting}
  16249. \fi}
  16250. %
  16251. \noindent We box parameter \code{x} by creating a local variable named
  16252. \code{x} that is initialized to a tuple whose contents is the value of
  16253. the parameter, which is renamed to \code{x\_0}.
  16254. %
  16255. {\if\edition\racketEd
  16256. \begin{lstlisting}
  16257. (define (g [x_0 : Integer]) : Integer
  16258. (let ([x (vector x_0)])
  16259. (let ([f (lambda: ([a : Integer]) : Integer
  16260. (+ a (vector-ref x 0)))])
  16261. (begin
  16262. (vector-set! x 0 10)
  16263. (f 32)))))
  16264. \end{lstlisting}
  16265. \fi}
  16266. %
  16267. {\if\edition\pythonEd\pythonColor
  16268. \begin{lstlisting}
  16269. def g(x_0 : int)-> int:
  16270. x = (x_0,)
  16271. f : Callable[[int], int] = (lambda a: a + x[0])
  16272. x[0] = 10
  16273. return f(32)
  16274. \end{lstlisting}
  16275. \fi}
  16276. \section{Closure Conversion}
  16277. \label{sec:closure-conversion}
  16278. \index{subject}{closure conversion}
  16279. The compiling of lexically scoped functions into top-level function
  16280. definitions and flat closures is accomplished in the pass
  16281. \code{convert\_to\_closures} that comes after \code{reveal\_functions}
  16282. and before \code{limit\_functions}.
  16283. As usual, we implement the pass as a recursive function over the
  16284. AST. The interesting cases are for \key{lambda} and function
  16285. application. We transform a \key{lambda} expression into an expression
  16286. that creates a closure, that is, a tuple for which the first element
  16287. is a function pointer and the rest of the elements are the values of
  16288. the free variables of the \key{lambda}.
  16289. %
  16290. However, we use the \code{Closure} AST node instead of using a tuple
  16291. so that we can record the arity.
  16292. %
  16293. In the generated code that follows, \itm{fvs} is the list of free
  16294. variables of the lambda and \itm{name} is a unique symbol generated to
  16295. identify the lambda.
  16296. %
  16297. \racket{The \itm{arity} is the number of parameters (the length of
  16298. \itm{ps}).}
  16299. %
  16300. {\if\edition\racketEd
  16301. \begin{lstlisting}
  16302. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  16303. |$\Rightarrow$|
  16304. (Closure |\itm{arity}| (cons (FunRef |\itm{name}| |\itm{arity}|) |\itm{fvs}|))
  16305. \end{lstlisting}
  16306. \fi}
  16307. %
  16308. {\if\edition\pythonEd\pythonColor
  16309. \begin{lstlisting}
  16310. Lambda([|$x_1,\ldots,x_n$|], |\itm{body}|)
  16311. |$\Rightarrow$|
  16312. Closure(|$n$|, [FunRef(|\itm{name}|, |$n$|), |$\itm{fvs}_1$, \ldots, $\itm{fvs}_m$|])
  16313. \end{lstlisting}
  16314. \fi}
  16315. %
  16316. In addition to transforming each \key{Lambda} AST node into a
  16317. tuple, we create a top-level function definition for each
  16318. \key{Lambda}, as shown next.\\
  16319. \begin{minipage}{0.8\textwidth}
  16320. {\if\edition\racketEd
  16321. \begin{lstlisting}
  16322. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  16323. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  16324. ...
  16325. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  16326. |\itm{body'}|)...))
  16327. \end{lstlisting}
  16328. \fi}
  16329. {\if\edition\pythonEd\pythonColor
  16330. \begin{lstlisting}
  16331. def |\itm{name}|(clos : |\itm{closTy}|, |$\itm{x}_1 : T'_1$, \ldots, $\itm{x}_n : T'_n$|) -> |\itm{rt'}|:
  16332. |$\itm{fvs}_1$| = clos[1]
  16333. |$\ldots$|
  16334. |$\itm{fvs}_m$| = clos[|$m$|]
  16335. |\itm{body'}|
  16336. \end{lstlisting}
  16337. \fi}
  16338. \end{minipage}\\
  16339. %
  16340. The \code{clos} parameter refers to the closure. The type
  16341. \itm{closTy} is a tuple type for which the first element type is
  16342. \python{\code{Bottom()}}\racket{\code{\_} (the dummy type)} and the
  16343. rest of the element types are the types of the free variables in the
  16344. lambda. We use \python{\code{Bottom()}}\racket{\code{\_}} because it
  16345. is nontrivial to give a type to the function in the closure's
  16346. type.\footnote{To give an accurate type to a closure, we would need to
  16347. add existential types to the type checker~\citep{Minamide:1996ys}.}
  16348. %
  16349. \racket{Translate the type
  16350. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  16351. the next paragraph, to obtain \itm{ps'} and \itm{rt'}.}%
  16352. \python{The \code{has\_type} field of the \code{Lambda} AST node
  16353. is of the form \code{FunctionType([$x_1:T_1,\ldots, x_n:T_n$], $rt$)}.
  16354. Translate the parameter types $T_1,\ldots,T_n$ and return type $\itm{rt}$
  16355. to obtain $T'_1,\ldots, T'_n$ and $\itm{rt'}$.}
  16356. %% The dummy type is considered to be equal to any other type during type
  16357. %% checking.
  16358. The free variables become local variables that are initialized with
  16359. their values in the closure.
  16360. Closure conversion turns every function into a tuple, so the type
  16361. annotations in the program must also be translated. We recommend
  16362. defining an auxiliary recursive function for this purpose. Function
  16363. types should be translated as follows:
  16364. %
  16365. {\if\edition\racketEd
  16366. \begin{lstlisting}
  16367. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  16368. |$\Rightarrow$|
  16369. (Vector ((Vector) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  16370. \end{lstlisting}
  16371. \fi}
  16372. {\if\edition\pythonEd\pythonColor
  16373. \begin{lstlisting}
  16374. FunctionType([|$T_1, \ldots, T_n$|], |$T_r$|)
  16375. |$\Rightarrow$|
  16376. TupleType([FunctionType([TupleType([]), |$T'_1, \ldots, T'_n$|], |$T'_r$|)])
  16377. \end{lstlisting}
  16378. \fi}
  16379. %
  16380. This type indicates that the first thing in the tuple is a
  16381. function. The first parameter of the function is a tuple (a closure)
  16382. and the rest of the parameters are the ones from the original
  16383. function, with types $T'_1, \ldots, T'_n$. The type for the closure
  16384. omits the types of the free variables because (1) those types are not
  16385. available in this context, and (2) we do not need them in the code that
  16386. is generated for function application. So this type describes only the
  16387. first component of the closure tuple. At runtime the tuple may have
  16388. more components, but we ignore them at this point.
  16389. We transform function application into code that retrieves the
  16390. function from the closure and then calls the function, passing the
  16391. closure as the first argument. We place $e'$ in a temporary variable
  16392. to avoid code duplication.
  16393. \begin{center}
  16394. \begin{minipage}{\textwidth}
  16395. {\if\edition\racketEd
  16396. \begin{lstlisting}
  16397. (Apply |$e$| |$\itm{es}$|)
  16398. |$\Rightarrow$|
  16399. (Let |$\itm{tmp}$| |$e'$|
  16400. (Apply (Prim 'vector-ref (list (Var |$\itm{tmp}$|) (Int 0))) (cons (Var |$\itm{tmp}$|) |$\itm{es'}$|)))
  16401. \end{lstlisting}
  16402. \fi}
  16403. %
  16404. {\if\edition\pythonEd\pythonColor
  16405. \begin{lstlisting}
  16406. Call(|$e$|, [|$e_1, \ldots, e_n$|])
  16407. |$\Rightarrow$|
  16408. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  16409. Call(Subscript(Name(|$\itm{tmp}$|), Constant(0)),
  16410. [|$\itm{tmp}$|, |$e'_1, \ldots, e'_n$|]))
  16411. \end{lstlisting}
  16412. \fi}
  16413. \end{minipage}
  16414. \end{center}
  16415. There is also the question of what to do with references to top-level
  16416. function definitions. To maintain a uniform translation of function
  16417. application, we turn function references into closures.
  16418. \begin{tabular}{lll}
  16419. \begin{minipage}{0.2\textwidth}
  16420. {\if\edition\racketEd
  16421. \begin{lstlisting}
  16422. (FunRef |$f$| |$n$|)
  16423. \end{lstlisting}
  16424. \fi}
  16425. {\if\edition\pythonEd\pythonColor
  16426. \begin{lstlisting}
  16427. FunRef(|$f$|, |$n$|)
  16428. \end{lstlisting}
  16429. \fi}
  16430. \end{minipage}
  16431. &
  16432. $\Rightarrow\qquad$
  16433. &
  16434. \begin{minipage}{0.5\textwidth}
  16435. {\if\edition\racketEd
  16436. \begin{lstlisting}
  16437. (Closure |$n$| (FunRef |$f$| |$n$|) '())
  16438. \end{lstlisting}
  16439. \fi}
  16440. {\if\edition\pythonEd\pythonColor
  16441. \begin{lstlisting}
  16442. Closure(|$n$|, [FunRef(|$f$| |$n$|)])
  16443. \end{lstlisting}
  16444. \fi}
  16445. \end{minipage}
  16446. \end{tabular} \\
  16447. We no longer need the annotated assignment statement \code{AnnAssign}
  16448. to support the type checking of \code{lambda} expressions, so we
  16449. translate it to a regular \code{Assign} statement.
  16450. The top-level function definitions need to be updated to take an extra
  16451. closure parameter, but that parameter is ignored in the body of those
  16452. functions.
  16453. \subsection{An Example Translation}
  16454. \label{sec:example-lambda}
  16455. Figure~\ref{fig:lexical-functions-example} shows the result of
  16456. \code{reveal\_functions} and \code{convert\_to\_closures} for the example
  16457. program demonstrating lexical scoping that we discussed at the
  16458. beginning of this chapter.
  16459. \begin{figure}[tbp]
  16460. \begin{tcolorbox}[colback=white]
  16461. \begin{minipage}{0.8\textwidth}
  16462. {\if\edition\racketEd
  16463. % tests/lambda_test_6.rkt
  16464. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16465. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  16466. (let ([y8 4])
  16467. (lambda: ([z9 : Integer]) : Integer
  16468. (+ x7 (+ y8 z9)))))
  16469. (define (main) : Integer
  16470. (let ([g0 ((fun-ref f6 1) 5)])
  16471. (let ([h1 ((fun-ref f6 1) 3)])
  16472. (+ (g0 11) (h1 15)))))
  16473. \end{lstlisting}
  16474. $\Rightarrow$
  16475. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16476. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  16477. (let ([y8 4])
  16478. (closure 1 (list (fun-ref lambda2 1) x7 y8))))
  16479. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  16480. (let ([x7 (vector-ref fvs3 1)])
  16481. (let ([y8 (vector-ref fvs3 2)])
  16482. (+ x7 (+ y8 z9)))))
  16483. (define (main) : Integer
  16484. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6 1)))])
  16485. ((vector-ref clos5 0) clos5 5))])
  16486. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6 1)))])
  16487. ((vector-ref clos6 0) clos6 3))])
  16488. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  16489. \end{lstlisting}
  16490. \fi}
  16491. %
  16492. {\if\edition\pythonEd\pythonColor
  16493. % free_var.py
  16494. \begin{lstlisting}
  16495. def f(x: int) -> Callable[[int],int]:
  16496. y = 4
  16497. return lambda z: x + y + z
  16498. g = f(5)
  16499. h = f(3)
  16500. print(g(11) + h(15))
  16501. \end{lstlisting}
  16502. $\Rightarrow$
  16503. \begin{lstlisting}
  16504. def lambda_0(fvs_1: tuple[bot,int,tuple[int]], z: int) -> int:
  16505. x = fvs_1[1]
  16506. y = fvs_1[2]
  16507. return (x + y[0] + z)
  16508. def f(fvs_2: tuple[bot], x: int) -> tuple[Callable[[tuple[],int],int]]:
  16509. y = (uninitialized(int),)
  16510. y[0] = 4
  16511. return closure{1}({lambda_0}, x, y)
  16512. def main() -> int:
  16513. g = (begin: clos_3 = closure{1}({f})
  16514. clos_3[0](clos_3, 5))
  16515. h = (begin: clos_4 = closure{1}({f})
  16516. clos_4[0](clos_4, 3))
  16517. print((begin: clos_5 = g
  16518. clos_5[0](clos_5, 11))
  16519. + (begin: clos_6 = h
  16520. clos_6[0](clos_6, 15)))
  16521. return 0
  16522. \end{lstlisting}
  16523. \fi}
  16524. \end{minipage}
  16525. \end{tcolorbox}
  16526. \caption{Example of closure conversion.}
  16527. \label{fig:lexical-functions-example}
  16528. \end{figure}
  16529. \begin{exercise}\normalfont\normalsize
  16530. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  16531. Create five new programs that use \key{lambda} functions and make use of
  16532. lexical scoping. Test your compiler on these new programs and all
  16533. your previously created test programs.
  16534. \end{exercise}
  16535. \section{Expose Allocation}
  16536. \label{sec:expose-allocation-r5}
  16537. Compile the $\CLOSURE{\itm{arity}}{\Exp^{*}}$ form into code that
  16538. allocates and initializes a tuple, similar to the translation of the
  16539. tuple creation in section~\ref{sec:expose-allocation}. The main
  16540. difference is replacing the use of \ALLOC{\itm{len}}{\itm{type}} with
  16541. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}. The result type of
  16542. the translation of $\CLOSURE{\itm{arity}}{\Exp^{*}}$ should be a tuple
  16543. type, but only a single element tuple type. The types of the tuple
  16544. elements that correspond to the free variables of the closure should
  16545. not appear in the tuple type. The new AST class \code{UncheckedCast}
  16546. can be used to adjust the result type.
  16547. \section{Explicate Control and \LangCLam{}}
  16548. \label{sec:explicate-r5}
  16549. The output language of \code{explicate\_control} is \LangCLam{}; the
  16550. definition of its abstract syntax is shown in
  16551. figure~\ref{fig:Clam-syntax}.
  16552. %
  16553. \racket{The only differences with respect to \LangCFun{} are the
  16554. addition of the \code{AllocateClosure} form to the grammar for
  16555. $\Exp$ and the \code{procedure-arity} operator. The handling of
  16556. \code{AllocateClosure} in the \code{explicate\_control} pass is
  16557. similar to the handling of other expressions such as primitive
  16558. operators.}
  16559. %
  16560. \python{The differences with respect to \LangCFun{} are the
  16561. additions of \code{Uninitialized}, \code{AllocateClosure},
  16562. and \code{arity} to the grammar for $\Exp$. The handling of them in the
  16563. \code{explicate\_control} pass is similar to the handling of other
  16564. expressions such as primitive operators.}
  16565. \newcommand{\ClambdaASTRacket}{
  16566. \begin{array}{lcl}
  16567. \Exp &::= & \ALLOCCLOS{\Int}{\Type}{\Int} \\
  16568. \itm{op} &::= & \code{procedure-arity}
  16569. \end{array}
  16570. }
  16571. \newcommand{\ClambdaASTPython}{
  16572. \begin{array}{lcl}
  16573. \Exp &::=& \key{Uninitialized}\LP \Type \RP
  16574. \MID \key{AllocateClosure}\LP\itm{len},\Type, \itm{arity}\RP \\
  16575. &\MID& \ARITY{\Atm}
  16576. \MID \key{UncheckedCast}\LP\Exp,\Type\RP
  16577. \end{array}
  16578. }
  16579. \begin{figure}[tp]
  16580. \begin{tcolorbox}[colback=white]
  16581. \small
  16582. {\if\edition\racketEd
  16583. \[
  16584. \begin{array}{l}
  16585. \gray{\CvarASTRacket} \\ \hline
  16586. \gray{\CifASTRacket} \\ \hline
  16587. \gray{\CloopASTRacket} \\ \hline
  16588. \gray{\CtupASTRacket} \\ \hline
  16589. \gray{\CfunASTRacket} \\ \hline
  16590. \ClambdaASTRacket \\
  16591. \begin{array}{lcl}
  16592. \LangCLamM{} & ::= & \PROGRAMDEFS{\itm{info}}{\Def^{*}}
  16593. \end{array}
  16594. \end{array}
  16595. \]
  16596. \fi}
  16597. {\if\edition\pythonEd\pythonColor
  16598. \[
  16599. \begin{array}{l}
  16600. \gray{\CifASTPython} \\ \hline
  16601. \gray{\CtupASTPython} \\ \hline
  16602. \gray{\CfunASTPython} \\ \hline
  16603. \ClambdaASTPython \\
  16604. \begin{array}{lcl}
  16605. \LangCLamM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  16606. \end{array}
  16607. \end{array}
  16608. \]
  16609. \fi}
  16610. \end{tcolorbox}
  16611. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (figure~\ref{fig:c3-syntax}).}
  16612. \label{fig:Clam-syntax}
  16613. \index{subject}{Clambda@\LangCLam{} abstract syntax}
  16614. \end{figure}
  16615. \section{Select Instructions}
  16616. \label{sec:select-instructions-Llambda}
  16617. \index{subject}{select instructions}
  16618. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  16619. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  16620. (section~\ref{sec:select-instructions-gc}). The only difference is
  16621. that you should place the \itm{arity} in the tag that is stored at
  16622. position $0$ of the tuple. Recall that in
  16623. section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  16624. was not used. We store the arity in the $5$ bits starting at position
  16625. $58$.
  16626. \racket{Compile the \code{procedure-arity} operator into a sequence of
  16627. instructions that access the tag from position $0$ of the vector and
  16628. extract the $5$ bits starting at position $58$ from the tag.}
  16629. %
  16630. \python{Compile a call to the \code{arity} operator to a sequence of
  16631. instructions that access the tag from position $0$ of the tuple
  16632. (representing a closure) and extract the $5$ bits starting at position
  16633. $58$ from the tag.}
  16634. Figure~\ref{fig:Llambda-passes} provides an overview of the passes
  16635. needed for the compilation of \LangLam{}.
  16636. \begin{figure}[bthp]
  16637. \begin{tcolorbox}[colback=white]
  16638. {\if\edition\racketEd
  16639. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16640. \node (Lfun) at (0,2) {\large \LangLam{}};
  16641. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16642. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16643. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16644. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16645. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16646. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16647. \node (F1-4) at (0,0) {\large \LangFunRefAlloc{}};
  16648. \node (F1-5) at (0,-2) {\large \LangFunRefAlloc{}};
  16649. \node (F1-6) at (4,-2) {\large \LangFunANF{}};
  16650. \node (C3-2) at (8,-2) {\large \LangCFun{}};
  16651. \node (x86-2) at (0,-5) {\large \LangXIndCallVar{}};
  16652. \node (x86-2-1) at (0,-7) {\large \LangXIndCallVar{}};
  16653. \node (x86-2-2) at (4,-7) {\large \LangXIndCallVar{}};
  16654. \node (x86-3) at (4,-5) {\large \LangXIndCallVar{}};
  16655. \node (x86-4) at (8,-5) {\large \LangXIndCall{}};
  16656. \node (x86-5) at (8,-7) {\large \LangXIndCall{}};
  16657. \path[->,bend left=15] (Lfun) edge [above] node
  16658. {\ttfamily\footnotesize shrink} (Lfun-2);
  16659. \path[->,bend left=15] (Lfun-2) edge [above] node
  16660. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16661. \path[->,bend left=15] (Lfun-3) edge [above] node
  16662. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16663. \path[->,bend left=15] (F1-0) edge [left] node
  16664. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16665. \path[->,bend left=15] (F1-1) edge [below] node
  16666. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16667. \path[->,bend right=15] (F1-2) edge [above] node
  16668. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16669. \path[->,bend right=15] (F1-3) edge [above] node
  16670. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  16671. \path[->,bend left=15] (F1-4) edge [right] node
  16672. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  16673. \path[->,bend right=15] (F1-5) edge [below] node
  16674. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16675. \path[->,bend left=15] (F1-6) edge [above] node
  16676. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16677. \path[->] (C3-2) edge [right] node
  16678. {\ttfamily\footnotesize \ \ select\_instructions} (x86-2);
  16679. \path[->,bend right=15] (x86-2) edge [right] node
  16680. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16681. \path[->,bend right=15] (x86-2-1) edge [below] node
  16682. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  16683. \path[->,bend right=15] (x86-2-2) edge [right] node
  16684. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  16685. \path[->,bend left=15] (x86-3) edge [above] node
  16686. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16687. \path[->,bend left=15] (x86-4) edge [right] node
  16688. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16689. \end{tikzpicture}
  16690. \fi}
  16691. {\if\edition\pythonEd\pythonColor
  16692. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16693. \node (Lfun) at (0,2) {\large \LangLam{}};
  16694. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16695. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16696. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16697. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16698. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16699. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16700. \node (F1-5) at (0,0) {\large \LangFunRefAlloc{}};
  16701. \node (F1-6) at (0,-2) {\large \LangFunANF{}};
  16702. \node (C3-2) at (0,-4) {\large \LangCFun{}};
  16703. \node (x86-2) at (0,-6) {\large \LangXIndCallVar{}};
  16704. \node (x86-3) at (4,-6) {\large \LangXIndCallVar{}};
  16705. \node (x86-4) at (8,-6) {\large \LangXIndCall{}};
  16706. \node (x86-5) at (12,-6) {\large \LangXIndCall{}};
  16707. \path[->,bend left=15] (Lfun) edge [above] node
  16708. {\ttfamily\footnotesize shrink} (Lfun-2);
  16709. \path[->,bend left=15] (Lfun-2) edge [above] node
  16710. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16711. \path[->,bend left=15] (Lfun-3) edge [above] node
  16712. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16713. \path[->,bend left=15] (F1-0) edge [left] node
  16714. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16715. \path[->,bend left=15] (F1-1) edge [below] node
  16716. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16717. \path[->,bend left=15] (F1-2) edge [below] node
  16718. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16719. \path[->,bend right=15] (F1-3) edge [above] node
  16720. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  16721. \path[->,bend right=15] (F1-5) edge [right] node
  16722. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16723. \path[->,bend left=15] (F1-6) edge [right] node
  16724. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16725. \path[->,bend right=15] (C3-2) edge [right] node
  16726. {\ttfamily\footnotesize select\_instructions} (x86-2);
  16727. \path[->,bend right=15] (x86-2) edge [below] node
  16728. {\ttfamily\footnotesize assign\_homes} (x86-3);
  16729. \path[->,bend right=15] (x86-3) edge [below] node
  16730. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16731. \path[->,bend left=15] (x86-4) edge [above] node
  16732. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16733. \end{tikzpicture}
  16734. \fi}
  16735. \end{tcolorbox}
  16736. \caption{Diagram of the passes for \LangLam{}, a language with lexically scoped
  16737. functions.}
  16738. \label{fig:Llambda-passes}
  16739. \end{figure}
  16740. \clearpage
  16741. \section{Challenge: Optimize Closures}
  16742. \label{sec:optimize-closures}
  16743. In this chapter we compile lexically scoped functions into a
  16744. relatively efficient representation: flat closures. However, even this
  16745. representation comes with some overhead. For example, consider the
  16746. following program with a function \code{tail\_sum} that does not have
  16747. any free variables and where all the uses of \code{tail\_sum} are in
  16748. applications in which we know that only \code{tail\_sum} is being applied
  16749. (and not any other functions):
  16750. \begin{center}
  16751. \begin{minipage}{0.95\textwidth}
  16752. {\if\edition\racketEd
  16753. \begin{lstlisting}
  16754. (define (tail_sum [n : Integer] [s : Integer]) : Integer
  16755. (if (eq? n 0)
  16756. s
  16757. (tail_sum (- n 1) (+ n s))))
  16758. (+ (tail_sum 3 0) 36)
  16759. \end{lstlisting}
  16760. \fi}
  16761. {\if\edition\pythonEd\pythonColor
  16762. \begin{lstlisting}
  16763. def tail_sum(n : int, s : int) -> int:
  16764. if n == 0:
  16765. return s
  16766. else:
  16767. return tail_sum(n - 1, n + s)
  16768. print(tail_sum(3, 0) + 36)
  16769. \end{lstlisting}
  16770. \fi}
  16771. \end{minipage}
  16772. \end{center}
  16773. As described in this chapter, we uniformly apply closure conversion to
  16774. all functions, obtaining the following output for this program:
  16775. \begin{center}
  16776. \begin{minipage}{0.95\textwidth}
  16777. {\if\edition\racketEd
  16778. \begin{lstlisting}
  16779. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
  16780. (if (eq? n2 0)
  16781. s3
  16782. (let ([clos4 (closure (list (fun-ref tail_sum1 2)))])
  16783. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))
  16784. (define (main) : Integer
  16785. (+ (let ([clos6 (closure (list (fun-ref tail_sum1 2)))])
  16786. ((vector-ref clos6 0) clos6 3 0)) 27))
  16787. \end{lstlisting}
  16788. \fi}
  16789. {\if\edition\pythonEd\pythonColor
  16790. \begin{lstlisting}
  16791. def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
  16792. if n_0 == 0:
  16793. return s_1
  16794. else:
  16795. return (begin: clos_2 = (tail_sum,)
  16796. clos_2[0](clos_2, n_0 - 1, n_0 + s_1))
  16797. def main() -> int :
  16798. print((begin: clos_4 = (tail_sum,)
  16799. clos_4[0](clos_4, 3, 0)) + 36)
  16800. return 0
  16801. \end{lstlisting}
  16802. \fi}
  16803. \end{minipage}
  16804. \end{center}
  16805. If this program were compiled according to the previous chapter, there
  16806. would be no allocation and the calls to \code{tail\_sum} would be
  16807. direct calls. In contrast, the program presented here allocates memory
  16808. for each closure and the calls to \code{tail\_sum} are indirect. These
  16809. two differences incur considerable overhead in a program such as this,
  16810. in which the allocations and indirect calls occur inside a tight loop.
  16811. One might think that this problem is trivial to solve: can't we just
  16812. recognize calls of the form \APPLY{\FUNREF{$f$}{$n$}}{$\mathit{args}$}
  16813. and compile them to direct calls instead of treating it like a call to
  16814. a closure? We would also drop the new \code{fvs} parameter of
  16815. \code{tail\_sum}.
  16816. %
  16817. However, this problem is not so trivial, because a global function may
  16818. \emph{escape} and become involved in applications that also involve
  16819. closures. Consider the following example in which the application
  16820. \CAPPLY{\code{f}}{\code{41}} needs to be compiled into a closure
  16821. application because the \code{lambda} may flow into \code{f}, but the
  16822. \code{inc} function might also flow into \code{f}:
  16823. \begin{center}
  16824. \begin{minipage}{\textwidth}
  16825. % lambda_test_30.rkt
  16826. {\if\edition\racketEd
  16827. \begin{lstlisting}
  16828. (define (inc [x : Integer]) : Integer
  16829. (+ x 1))
  16830. (let ([y (read)])
  16831. (let ([f (if (eq? (read) 0)
  16832. inc
  16833. (lambda: ([x : Integer]) : Integer (- x y)))])
  16834. (f 41)))
  16835. \end{lstlisting}
  16836. \fi}
  16837. {\if\edition\pythonEd\pythonColor
  16838. \begin{lstlisting}
  16839. def add1(x : int) -> int:
  16840. return x + 1
  16841. y = input_int()
  16842. g : Callable[[int], int] = lambda x: x - y
  16843. f = add1 if input_int() == 0 else g
  16844. print(f(41))
  16845. \end{lstlisting}
  16846. \fi}
  16847. \end{minipage}
  16848. \end{center}
  16849. If a global function name is used in any way other than as the
  16850. operator in a direct call, then we say that the function
  16851. \emph{escapes}. If a global function does not escape, then we do not
  16852. need to perform closure conversion on the function.
  16853. \begin{exercise}\normalfont\normalsize
  16854. Implement an auxiliary function for detecting which global
  16855. functions escape. Using that function, implement an improved version
  16856. of closure conversion that does not apply closure conversion to
  16857. global functions that do not escape but instead compiles them as
  16858. regular functions. Create several new test cases that check whether
  16859. your compiler properly detects whether global functions escape or not.
  16860. \end{exercise}
  16861. So far we have reduced the overhead of calling global functions, but
  16862. it would also be nice to reduce the overhead of calling a
  16863. \code{lambda} when we can determine at compile time which
  16864. \code{lambda} will be called. We refer to such calls as \emph{known
  16865. calls}. Consider the following example in which a \code{lambda} is
  16866. bound to \code{f} and then applied.
  16867. {\if\edition\racketEd
  16868. % lambda_test_9.rkt
  16869. \begin{lstlisting}
  16870. (let ([y (read)])
  16871. (let ([f (lambda: ([x : Integer]) : Integer
  16872. (+ x y))])
  16873. (f 21)))
  16874. \end{lstlisting}
  16875. \fi}
  16876. {\if\edition\pythonEd\pythonColor
  16877. \begin{lstlisting}
  16878. y = input_int()
  16879. f : Callable[[int],int] = lambda x: x + y
  16880. print(f(21))
  16881. \end{lstlisting}
  16882. \fi}
  16883. %
  16884. \noindent Closure conversion compiles the application
  16885. \CAPPLY{\code{f}}{\code{21}} into an indirect call, as follows:
  16886. %
  16887. {\if\edition\racketEd
  16888. \begin{lstlisting}
  16889. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  16890. (let ([y2 (vector-ref fvs6 1)])
  16891. (+ x3 y2)))
  16892. (define (main) : Integer
  16893. (let ([y2 (read)])
  16894. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16895. ((vector-ref f4 0) f4 21))))
  16896. \end{lstlisting}
  16897. \fi}
  16898. {\if\edition\pythonEd\pythonColor
  16899. \begin{lstlisting}
  16900. def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
  16901. y_1 = fvs_4[1]
  16902. return x_2 + y_1[0]
  16903. def main() -> int:
  16904. y_1 = (777,)
  16905. y_1[0] = input_int()
  16906. f_0 = (lambda_3, y_1)
  16907. print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
  16908. return 0
  16909. \end{lstlisting}
  16910. \fi}
  16911. %
  16912. \noindent However, we can instead compile the application
  16913. \CAPPLY{\code{f}}{\code{21}} into a direct call, as follows:
  16914. %
  16915. {\if\edition\racketEd
  16916. \begin{lstlisting}
  16917. (define (main) : Integer
  16918. (let ([y2 (read)])
  16919. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16920. ((fun-ref lambda5 1) f4 21))))
  16921. \end{lstlisting}
  16922. \fi}
  16923. {\if\edition\pythonEd\pythonColor
  16924. \begin{lstlisting}
  16925. def main() -> int:
  16926. y_1 = (777,)
  16927. y_1[0] = input_int()
  16928. f_0 = (lambda_3, y_1)
  16929. print(lambda_3(f_0, 21))
  16930. return 0
  16931. \end{lstlisting}
  16932. \fi}
  16933. The problem of determining which \code{lambda} will be called from a
  16934. particular application is quite challenging in general and the topic
  16935. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  16936. following exercise we recommend that you compile an application to a
  16937. direct call when the operator is a variable and \racket{the variable
  16938. is \code{let}-bound to a closure}\python{the previous assignment to
  16939. the variable is a closure}. This can be accomplished by maintaining
  16940. an environment that maps variables to function names. Extend the
  16941. environment whenever you encounter a closure on the right-hand side of
  16942. \racket{a \code{let}}\python{an assignment}, mapping the variable to the
  16943. name of the global function for the closure. This pass should come
  16944. after closure conversion.
  16945. \begin{exercise}\normalfont\normalsize
  16946. Implement a compiler pass, named \code{optimize\_known\_calls}, that
  16947. compiles known calls into direct calls. Verify that your compiler is
  16948. successful in this regard on several example programs.
  16949. \end{exercise}
  16950. These exercises only scratch the surface of closure optimization. A
  16951. good next step for the interested reader is to look at the work of
  16952. \citet{Keep:2012ab}.
  16953. \section{Further Reading}
  16954. The notion of lexically scoped functions predates modern computers by
  16955. about a decade. They were invented by \citet{Church:1932aa}, who
  16956. proposed the lambda calculus as a foundation for logic. Anonymous
  16957. functions were included in the LISP~\citep{McCarthy:1960dz}
  16958. programming language but were initially dynamically scoped. The Scheme
  16959. dialect of LISP adopted lexical scoping, and
  16960. \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently compile
  16961. Scheme programs. However, environments were represented as linked
  16962. lists, so variable look-up was linear in the size of the
  16963. environment. \citet{Appel91} gives a detailed description of several
  16964. closure representations. In this chapter we represent environments
  16965. using flat closures, which were invented by
  16966. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purpose of compiling
  16967. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  16968. closures, variable look-up is constant time but the time to create a
  16969. closure is proportional to the number of its free variables. Flat
  16970. closures were reinvented by \citet{Dybvig:1987ab} in his PhD thesis
  16971. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  16972. % todo: related work on assignment conversion (e.g. orbit and rabbit
  16973. % compilers)
  16974. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16975. \chapter{Dynamic Typing}
  16976. \label{ch:Ldyn}
  16977. \index{subject}{dynamic typing}
  16978. \setcounter{footnote}{0}
  16979. In this chapter we learn how to compile \LangDyn{}, a dynamically
  16980. typed language that is a subset of \racket{Racket}\python{Python}. The
  16981. focus on dynamic typing is in contrast to the previous chapters, which
  16982. have studied the compilation of statically typed languages. In
  16983. dynamically typed languages such as \LangDyn{}, a particular
  16984. expression may produce a value of a different type each time it is
  16985. executed. Consider the following example with a conditional \code{if}
  16986. expression that may return a Boolean or an integer depending on the
  16987. input to the program:
  16988. % part of dynamic_test_25.rkt
  16989. {\if\edition\racketEd
  16990. \begin{lstlisting}
  16991. (not (if (eq? (read) 1) #f 0))
  16992. \end{lstlisting}
  16993. \fi}
  16994. {\if\edition\pythonEd\pythonColor
  16995. \begin{lstlisting}
  16996. not (False if input_int() == 1 else 0)
  16997. \end{lstlisting}
  16998. \fi}
  16999. Languages that allow expressions to produce different kinds of values
  17000. are called \emph{polymorphic}, a word composed of the Greek roots
  17001. \emph{poly}, meaning \emph{many}, and \emph{morph}, meaning \emph{form}.
  17002. There are several kinds of polymorphism in programming languages, such as
  17003. subtype polymorphism\index{subject}{subtype polymorphism} and
  17004. parametric polymorphism\index{subject}{parametric polymorphism}
  17005. (aka generics)~\citep{Cardelli:1985kx}. The kind of polymorphism that we
  17006. study in this chapter does not have a special name; it is the kind
  17007. that arises in dynamically typed languages.
  17008. Another characteristic of dynamically typed languages is that
  17009. their primitive operations, such as \code{not}, are often defined to operate
  17010. on many different types of values. In fact, in
  17011. \racket{Racket}\python{Python}, the \code{not} operator produces a
  17012. result for any kind of value: given \FALSE{} it returns \TRUE{}, and
  17013. given anything else it returns \FALSE{}.
  17014. Furthermore, even when primitive operations restrict their inputs to
  17015. values of a certain type, this restriction is enforced at runtime
  17016. instead of during compilation. For example, the tuple read
  17017. operation \racket{\code{(vector-ref \#t 0)}}\python{\code{True[0]}}
  17018. results in a runtime error because the first argument must
  17019. be a tuple, not a Boolean.
  17020. \section{The \LangDyn{} Language}
  17021. \newcommand{\LdynGrammarRacket}{
  17022. \begin{array}{rcl}
  17023. \Exp &::=& \LP\Exp \; \Exp\ldots\RP
  17024. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  17025. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  17026. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  17027. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP
  17028. \end{array}
  17029. }
  17030. \newcommand{\LdynASTRacket}{
  17031. \begin{array}{lcl}
  17032. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  17033. \MID \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  17034. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp}
  17035. \end{array}
  17036. }
  17037. \begin{figure}[tp]
  17038. \centering
  17039. \begin{tcolorbox}[colback=white]
  17040. \small
  17041. {\if\edition\racketEd
  17042. \[
  17043. \begin{array}{l}
  17044. \gray{\LintGrammarRacket{}} \\ \hline
  17045. \gray{\LvarGrammarRacket{}} \\ \hline
  17046. \gray{\LifGrammarRacket{}} \\ \hline
  17047. \gray{\LwhileGrammarRacket} \\ \hline
  17048. \gray{\LtupGrammarRacket} \\ \hline
  17049. \LdynGrammarRacket \\
  17050. \begin{array}{rcl}
  17051. \LangDynM{} &::=& \Def\ldots\; \Exp
  17052. \end{array}
  17053. \end{array}
  17054. \]
  17055. \fi}
  17056. {\if\edition\pythonEd\pythonColor
  17057. \[
  17058. \begin{array}{rcl}
  17059. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \MID \key{is} \\
  17060. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  17061. &\MID& \Var{} \MID \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp}
  17062. \MID \COR{\Exp}{\Exp} \MID \key{not}~\Exp \\
  17063. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  17064. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  17065. &\MID& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp}
  17066. \MID \CLEN{\Exp} \\
  17067. &\MID& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  17068. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}\\
  17069. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  17070. \MID \Var\mathop{\key{=}}\Exp \\
  17071. &\MID& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  17072. \MID \key{while}~ \Exp \key{:}~ \Stmt^{+} \\
  17073. &\MID& \CRETURN{\Exp} \\
  17074. \Def &::=& \CDEFU{\Var}{\Var{,} \ldots}{\Stmt^{+}} \\
  17075. \LangDynM{} &::=& \Def\ldots \Stmt\ldots
  17076. \end{array}
  17077. \]
  17078. \fi}
  17079. \end{tcolorbox}
  17080. \caption{Syntax of \LangDyn{}, an untyped language (a subset of \racket{Racket}\python{Python}).}
  17081. \label{fig:r7-concrete-syntax}
  17082. \index{subject}{Ldyn@\LangDyn{} concrete syntax}
  17083. \end{figure}
  17084. \begin{figure}[tp]
  17085. \centering
  17086. \begin{tcolorbox}[colback=white]
  17087. \small
  17088. {\if\edition\racketEd
  17089. \[
  17090. \begin{array}{l}
  17091. \gray{\LintASTRacket{}} \\ \hline
  17092. \gray{\LvarASTRacket{}} \\ \hline
  17093. \gray{\LifASTRacket{}} \\ \hline
  17094. \gray{\LwhileASTRacket} \\ \hline
  17095. \gray{\LtupASTRacket} \\ \hline
  17096. \LdynASTRacket \\
  17097. \begin{array}{lcl}
  17098. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17099. \end{array}
  17100. \end{array}
  17101. \]
  17102. \fi}
  17103. {\if\edition\pythonEd\pythonColor
  17104. \[
  17105. \begin{array}{rcl}
  17106. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  17107. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()}
  17108. \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()}
  17109. \MID \code{Is()} \\
  17110. \itm{bool} &::=& \code{True} \MID \code{False} \\
  17111. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  17112. &\MID& \UNIOP{\key{USub()}}{\Exp}\\
  17113. &\MID& \BINOP{\Exp}{\key{Add()}}{\Exp}
  17114. \MID \BINOP{\Exp}{\key{Sub()}}{\Exp} \\
  17115. &\MID& \VAR{\Var{}}
  17116. \MID \BOOL{\itm{bool}}
  17117. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  17118. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  17119. &\MID& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  17120. &\MID& \LEN{\Exp} \\
  17121. &\MID& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp} \\
  17122. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  17123. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  17124. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  17125. \MID \WHILESTMT{\Exp}{\Stmt^{+}}\\
  17126. &\MID& \RETURN{\Exp} \\
  17127. \Params &::=& \LP\Var\key{,}\code{AnyType()}\RP^* \\
  17128. \Def &::=& \FUNDEF{\Var}{\Params}{\code{AnyType()}}{}{\Stmt^{+}} \\
  17129. \LangDynM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17130. \end{array}
  17131. \]
  17132. \fi}
  17133. \end{tcolorbox}
  17134. \caption{The abstract syntax of \LangDyn{}.}
  17135. \label{fig:r7-syntax}
  17136. \index{subject}{Ldyn@\LangDyn{} abstract syntax}
  17137. \end{figure}
  17138. The definitions of the concrete and abstract syntax of \LangDyn{} are
  17139. shown in figures~\ref{fig:r7-concrete-syntax} and \ref{fig:r7-syntax}.
  17140. %
  17141. There is no type checker for \LangDyn{} because it checks types only
  17142. at runtime.
  17143. The definitional interpreter for \LangDyn{} is presented in
  17144. \racket{figure~\ref{fig:interp-Ldyn}}\python{figures~\ref{fig:interp-Ldyn} and \ref{fig:interp-Ldyn-2}}, and definitions of its auxiliary functions
  17145. are shown in figure~\ref{fig:interp-Ldyn-aux}. Consider the match case for
  17146. \INT{n}. Instead of simply returning the integer \code{n} (as
  17147. in the interpreter for \LangVar{} in figure~\ref{fig:interp-Lvar}), the
  17148. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  17149. value} that combines an underlying value with a tag that identifies
  17150. what kind of value it is. We define the following \racket{struct}\python{class}
  17151. to represent tagged values:
  17152. %
  17153. {\if\edition\racketEd
  17154. \begin{lstlisting}
  17155. (struct Tagged (value tag) #:transparent)
  17156. \end{lstlisting}
  17157. \fi}
  17158. {\if\edition\pythonEd\pythonColor
  17159. \begin{minipage}{\textwidth}
  17160. \begin{lstlisting}
  17161. @dataclass(eq=True)
  17162. class Tagged(Value):
  17163. value : Value
  17164. tag : str
  17165. def __str__(self):
  17166. return str(self.value)
  17167. \end{lstlisting}
  17168. \end{minipage}
  17169. \fi}
  17170. %
  17171. \racket{The tags are \code{Integer}, \BOOLTY{}, \code{Void},
  17172. \code{Vector}, and \code{Procedure}.}
  17173. %
  17174. \python{The tags are \skey{int}, \skey{bool}, \skey{none},
  17175. \skey{tuple}, and \skey{function}.}
  17176. %
  17177. Tags are closely related to types but do not always capture all the
  17178. information that a type does.
  17179. %
  17180. \racket{For example, a vector of type \code{(Vector Any Any)} is
  17181. tagged with \code{Vector}, and a procedure of type \code{(Any Any ->
  17182. Any)} is tagged with \code{Procedure}.}
  17183. %
  17184. \python{For example, a tuple of type \code{TupleType([AnyType(),AnyType()])}
  17185. is tagged with \skey{tuple} and a function of type
  17186. \code{FunctionType([AnyType(), AnyType()], AnyType())}
  17187. is tagged with \skey{function}.}
  17188. Next consider the match case for accessing the element of a tuple.
  17189. The \racket{\code{check-tag}}\python{\code{untag}} auxiliary function
  17190. (figure~\ref{fig:interp-Ldyn-aux}) is used to ensure that the first
  17191. argument is a tuple and the second is an integer.
  17192. \racket{
  17193. If they are not, a \code{trapped-error} is raised. Recall from
  17194. section~\ref{sec:interp_Lint} that when a definition interpreter
  17195. raises a \code{trapped-error} error, the compiled code must also
  17196. signal an error by exiting with return code \code{255}. A
  17197. \code{trapped-error} is also raised if the index is not less than the
  17198. length of the vector.
  17199. }
  17200. %
  17201. \python{If they are not, an exception is raised. The compiled code
  17202. must also signal an error by exiting with return code \code{255}. A
  17203. exception is also raised if the index is not less than the length of the
  17204. tuple or if it is negative.}
  17205. \begin{figure}[tbp]
  17206. \begin{tcolorbox}[colback=white]
  17207. {\if\edition\racketEd
  17208. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17209. (define ((interp-Ldyn-exp env) ast)
  17210. (define recur (interp-Ldyn-exp env))
  17211. (match ast
  17212. [(Var x) (dict-ref env x)]
  17213. [(Int n) (Tagged n 'Integer)]
  17214. [(Bool b) (Tagged b 'Boolean)]
  17215. [(Lambda xs rt body)
  17216. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  17217. [(Prim 'vector es)
  17218. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  17219. [(Prim 'vector-ref (list e1 e2))
  17220. (define vec (recur e1)) (define i (recur e2))
  17221. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  17222. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  17223. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  17224. (vector-ref (Tagged-value vec) (Tagged-value i))]
  17225. [(Prim 'vector-set! (list e1 e2 e3))
  17226. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  17227. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  17228. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  17229. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  17230. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  17231. (Tagged (void) 'Void)]
  17232. [(Let x e body) ((interp-Ldyn-exp (cons (cons x (recur e)) env)) body)]
  17233. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  17234. [(Prim 'or (list e1 e2))
  17235. (define v1 (recur e1))
  17236. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  17237. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  17238. [(Prim op (list e1))
  17239. #:when (set-member? type-predicates op)
  17240. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  17241. [(Prim op es)
  17242. (define args (map recur es))
  17243. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  17244. (unless (for/or ([expected-tags (op-tags op)])
  17245. (equal? expected-tags tags))
  17246. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  17247. (tag-value
  17248. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  17249. [(If q t f)
  17250. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  17251. [(Apply f es)
  17252. (define new-f (recur f)) (define args (map recur es))
  17253. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  17254. (match f-val
  17255. [`(function ,xs ,body ,lam-env)
  17256. (unless (eq? (length xs) (length args))
  17257. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  17258. (define new-env (append (map cons xs args) lam-env))
  17259. ((interp-Ldyn-exp new-env) body)]
  17260. [else (error "interp-Ldyn-exp, expected function, not" f-val)])]))
  17261. \end{lstlisting}
  17262. \fi}
  17263. {\if\edition\pythonEd\pythonColor
  17264. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17265. class InterpLdyn(InterpLlambda):
  17266. def interp_exp(self, e, env):
  17267. match e:
  17268. case Constant(n):
  17269. return self.tag(super().interp_exp(e, env))
  17270. case Tuple(es, Load()):
  17271. return self.tag(super().interp_exp(e, env))
  17272. case Lambda(params, body):
  17273. return self.tag(super().interp_exp(e, env))
  17274. case Call(Name('input_int'), []):
  17275. return self.tag(super().interp_exp(e, env))
  17276. case BinOp(left, Add(), right):
  17277. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  17278. return self.tag(self.untag(l, 'int', e) + self.untag(r, 'int', e))
  17279. case BinOp(left, Sub(), right):
  17280. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  17281. return self.tag(self.untag(l, 'int', e) - self.untag(r, 'int', e))
  17282. case UnaryOp(USub(), e1):
  17283. v = self.interp_exp(e1, env)
  17284. return self.tag(- self.untag(v, 'int', e))
  17285. case IfExp(test, body, orelse):
  17286. v = self.interp_exp(test, env)
  17287. if self.untag(v, 'bool', e):
  17288. return self.interp_exp(body, env)
  17289. else:
  17290. return self.interp_exp(orelse, env)
  17291. case UnaryOp(Not(), e1):
  17292. v = self.interp_exp(e1, env)
  17293. return self.tag(not self.untag(v, 'bool', e))
  17294. case BoolOp(And(), values):
  17295. left = values[0]; right = values[1]
  17296. l = self.interp_exp(left, env)
  17297. if self.untag(l, 'bool', e):
  17298. return self.interp_exp(right, env)
  17299. else:
  17300. return self.tag(False)
  17301. case BoolOp(Or(), values):
  17302. left = values[0]; right = values[1]
  17303. l = self.interp_exp(left, env)
  17304. if self.untag(l, 'bool', e):
  17305. return self.tag(True)
  17306. else:
  17307. return self.interp_exp(right, env)
  17308. \end{lstlisting}
  17309. \fi}
  17310. \end{tcolorbox}
  17311. \caption{Interpreter for the \LangDyn{} language\python{, part 1}.}
  17312. \label{fig:interp-Ldyn}
  17313. \end{figure}
  17314. {\if\edition\pythonEd\pythonColor
  17315. \begin{figure}[tbp]
  17316. \begin{tcolorbox}[colback=white]
  17317. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17318. # interp_exp continued
  17319. case Compare(left, [cmp], [right]):
  17320. l = self.interp_exp(left, env)
  17321. r = self.interp_exp(right, env)
  17322. if l.tag == r.tag:
  17323. return self.tag(self.interp_cmp(cmp)(l.value, r.value))
  17324. else:
  17325. raise Exception('interp Compare unexpected '
  17326. + repr(l) + ' ' + repr(r))
  17327. case Subscript(tup, index, Load()):
  17328. t = self.interp_exp(tup, env)
  17329. n = self.interp_exp(index, env)
  17330. return self.untag(t, 'tuple', e)[self.untag(n, 'int', e)]
  17331. case Call(Name('len'), [tup]):
  17332. t = self.interp_exp(tup, env)
  17333. return self.tag(len(self.untag(t, 'tuple', e)))
  17334. case _:
  17335. return self.tag(super().interp_exp(e, env))
  17336. def interp_stmt(self, s, env, cont):
  17337. match s:
  17338. case If(test, body, orelse):
  17339. v = self.interp_exp(test, env)
  17340. match self.untag(v, 'bool', s):
  17341. case True:
  17342. return self.interp_stmts(body + cont, env)
  17343. case False:
  17344. return self.interp_stmts(orelse + cont, env)
  17345. case While(test, body, []):
  17346. v = self.interp_exp(test, env)
  17347. if self.untag(v, 'bool', test):
  17348. self.interp_stmts(body + [s] + cont, env)
  17349. else:
  17350. return self.interp_stmts(cont, env)
  17351. case Assign([Subscript(tup, index)], value):
  17352. tup = self.interp_exp(tup, env)
  17353. index = self.interp_exp(index, env)
  17354. tup_v = self.untag(tup, 'tuple', s)
  17355. index_v = self.untag(index, 'int', s)
  17356. tup_v[index_v] = self.interp_exp(value, env)
  17357. return self.interp_stmts(cont, env)
  17358. case FunctionDef(name, params, bod, dl, returns, comment):
  17359. if isinstance(params, ast.arguments):
  17360. ps = [p.arg for p in params.args]
  17361. else:
  17362. ps = [x for (x,t) in params]
  17363. env[name] = self.tag(Function(name, ps, bod, env))
  17364. return self.interp_stmts(cont, env)
  17365. case _:
  17366. return super().interp_stmt(s, env, cont)
  17367. \end{lstlisting}
  17368. \end{tcolorbox}
  17369. \caption{Interpreter for the \LangDyn{} language\python{, part 2}.}
  17370. \label{fig:interp-Ldyn-2}
  17371. \end{figure}
  17372. \fi}
  17373. \begin{figure}[tbp]
  17374. \begin{tcolorbox}[colback=white]
  17375. {\if\edition\racketEd
  17376. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17377. (define (interp-op op)
  17378. (match op
  17379. ['+ fx+]
  17380. ['- fx-]
  17381. ['read read-fixnum]
  17382. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  17383. ['< (lambda (v1 v2)
  17384. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  17385. ['<= (lambda (v1 v2)
  17386. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  17387. ['> (lambda (v1 v2)
  17388. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  17389. ['>= (lambda (v1 v2)
  17390. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  17391. ['boolean? boolean?]
  17392. ['integer? fixnum?]
  17393. ['void? void?]
  17394. ['vector? vector?]
  17395. ['vector-length vector-length]
  17396. ['procedure? (match-lambda
  17397. [`(functions ,xs ,body ,env) #t] [else #f])]
  17398. [else (error 'interp-op "unknown operator" op)]))
  17399. (define (op-tags op)
  17400. (match op
  17401. ['+ '((Integer Integer))]
  17402. ['- '((Integer Integer) (Integer))]
  17403. ['read '(())]
  17404. ['not '((Boolean))]
  17405. ['< '((Integer Integer))]
  17406. ['<= '((Integer Integer))]
  17407. ['> '((Integer Integer))]
  17408. ['>= '((Integer Integer))]
  17409. ['vector-length '((Vector))]))
  17410. (define type-predicates
  17411. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17412. (define (tag-value v)
  17413. (cond [(boolean? v) (Tagged v 'Boolean)]
  17414. [(fixnum? v) (Tagged v 'Integer)]
  17415. [(procedure? v) (Tagged v 'Procedure)]
  17416. [(vector? v) (Tagged v 'Vector)]
  17417. [(void? v) (Tagged v 'Void)]
  17418. [else (error 'tag-value "unidentified value ~a" v)]))
  17419. (define (check-tag val expected ast)
  17420. (define tag (Tagged-tag val))
  17421. (unless (eq? tag expected)
  17422. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  17423. \end{lstlisting}
  17424. \fi}
  17425. {\if\edition\pythonEd\pythonColor
  17426. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17427. class InterpLdyn(InterpLlambda):
  17428. def tag(self, v):
  17429. if v is True or v is False:
  17430. return Tagged(v, 'bool')
  17431. elif isinstance(v, int):
  17432. return Tagged(v, 'int')
  17433. elif isinstance(v, Function):
  17434. return Tagged(v, 'function')
  17435. elif isinstance(v, tuple):
  17436. return Tagged(v, 'tuple')
  17437. elif isinstance(v, type(None)):
  17438. return Tagged(v, 'none')
  17439. else:
  17440. raise Exception('tag: unexpected ' + repr(v))
  17441. def untag(self, v, expected_tag, ast):
  17442. match v:
  17443. case Tagged(val, tag) if tag == expected_tag:
  17444. return val
  17445. case _:
  17446. raise TrappedError('expected Tagged value with '
  17447. + expected_tag + ', not ' + ' ' + repr(v))
  17448. def apply_fun(self, fun, args, e):
  17449. f = self.untag(fun, 'function', e)
  17450. return super().apply_fun(f, args, e)
  17451. \end{lstlisting}
  17452. \fi}
  17453. \end{tcolorbox}
  17454. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  17455. \label{fig:interp-Ldyn-aux}
  17456. \end{figure}
  17457. %\clearpage
  17458. \section{Representation of Tagged Values}
  17459. The interpreter for \LangDyn{} introduced a new kind of value: the
  17460. tagged value. To compile \LangDyn{} to x86 we must decide how to
  17461. represent tagged values at the bit level. Because almost every
  17462. operation in \LangDyn{} involves manipulating tagged values, the
  17463. representation must be efficient. Recall that all our values are 64
  17464. bits. We shall steal the right-most $3$ bits to encode the tag. We use
  17465. $001$ to identify integers, $100$ for Booleans, $010$ for tuples,
  17466. $011$ for procedures, and $101$ for the void value\python{,
  17467. \key{None}}. We define the following auxiliary function for mapping
  17468. types to tag codes:
  17469. %
  17470. {\if\edition\racketEd
  17471. \begin{align*}
  17472. \itm{tagof}(\key{Integer}) &= 001 \\
  17473. \itm{tagof}(\key{Boolean}) &= 100 \\
  17474. \itm{tagof}(\LP\key{Vector} \ldots\RP) &= 010 \\
  17475. \itm{tagof}(\LP\ldots \key{->} \ldots\RP) &= 011 \\
  17476. \itm{tagof}(\key{Void}) &= 101
  17477. \end{align*}
  17478. \fi}
  17479. {\if\edition\pythonEd\pythonColor
  17480. \begin{align*}
  17481. \itm{tagof}(\key{IntType()}) &= 001 \\
  17482. \itm{tagof}(\key{BoolType()}) &= 100 \\
  17483. \itm{tagof}(\key{TupleType(ts)}) &= 010 \\
  17484. \itm{tagof}(\key{FunctionType(ps, rt)}) &= 011 \\
  17485. \itm{tagof}(\key{type(None)}) &= 101
  17486. \end{align*}
  17487. \fi}
  17488. %
  17489. This stealing of 3 bits comes at some price: integers are now restricted
  17490. to the range $-2^{60}$ to $2^{60}-1$. The stealing does not adversely
  17491. affect tuples and procedures because those values are addresses, and
  17492. our addresses are 8-byte aligned so the rightmost 3 bits are unused;
  17493. they are always $000$. Thus, we do not lose information by overwriting
  17494. the rightmost 3 bits with the tag, and we can simply zero out the tag
  17495. to recover the original address.
  17496. To make tagged values into first-class entities, we can give them a
  17497. type called \racket{\code{Any}}\python{\code{AnyType}} and define
  17498. operations such as \code{Inject} and \code{Project} for creating and
  17499. using them, yielding the statically typed \LangAny{} intermediate
  17500. language. We describe how to compile \LangDyn{} to \LangAny{} in
  17501. section~\ref{sec:compile-r7}; in the next section we describe the
  17502. \LangAny{} language in greater detail.
  17503. \section{The \LangAny{} Language}
  17504. \label{sec:Rany-lang}
  17505. \newcommand{\LanyASTRacket}{
  17506. \begin{array}{lcl}
  17507. \Type &::= & \ANYTY \\
  17508. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  17509. \MID \LP\key{Vector}\; \ANYTY\ldots\RP
  17510. \MID \LP\ANYTY\ldots \; \key{->}\; \ANYTY\RP\\
  17511. \itm{op} &::= & \code{any-vector-length}
  17512. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  17513. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  17514. \MID \code{procedure?} \MID \code{void?} \\
  17515. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  17516. \end{array}
  17517. }
  17518. \newcommand{\LanyASTPython}{
  17519. \begin{array}{lcl}
  17520. \Type &::= & \key{AnyType()} \\
  17521. \FType &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  17522. \MID \key{TupleType}\LS\key{AnyType()}^+\RS \\
  17523. &\MID& \key{FunctionType}\LP \key{AnyType()}^{*}\key{, }\key{AnyType()}\RP \\
  17524. \Exp & ::= & \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  17525. &\MID& \CALL{\VAR{\skey{any\_tuple\_load}}}{\LS\Exp\key{, }\Exp\RS}\\
  17526. &\MID& \CALL{\VAR{\skey{any\_len}}}{\LS\Exp\RS} \\
  17527. &\MID& \CALL{\VAR{\skey{arity}}}{\LS\Exp\RS} \\
  17528. &\MID& \CALL{\VAR{\skey{make\_any}}}{\LS\Exp\key{, }\INT{\Int}\RS}
  17529. %% &\MID& \CALL{\VAR{\skey{is\_int}}}{\Exp}
  17530. %% \MID \CALL{\VAR{\skey{is\_bool}}}{\Exp} \\
  17531. %% &\MID& \CALL{\VAR{\skey{is\_none}}}{\Exp}
  17532. %% \MID \CALL{\VAR{\skey{is\_tuple}}}{\Exp} \\
  17533. %% &\MID& \CALL{\VAR{\skey{is\_function}}}{\Exp}
  17534. \end{array}
  17535. }
  17536. \begin{figure}[tp]
  17537. \centering
  17538. \begin{tcolorbox}[colback=white]
  17539. \small
  17540. {\if\edition\racketEd
  17541. \[
  17542. \begin{array}{l}
  17543. \gray{\LintOpAST} \\ \hline
  17544. \gray{\LvarASTRacket{}} \\ \hline
  17545. \gray{\LifASTRacket{}} \\ \hline
  17546. \gray{\LwhileASTRacket{}} \\ \hline
  17547. \gray{\LtupASTRacket{}} \\ \hline
  17548. \gray{\LfunASTRacket} \\ \hline
  17549. \gray{\LlambdaASTRacket} \\ \hline
  17550. \LanyASTRacket \\
  17551. \begin{array}{lcl}
  17552. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17553. \end{array}
  17554. \end{array}
  17555. \]
  17556. \fi}
  17557. {\if\edition\pythonEd\pythonColor
  17558. \[
  17559. \begin{array}{l}
  17560. \gray{\LintASTPython} \\ \hline
  17561. \gray{\LvarASTPython{}} \\ \hline
  17562. \gray{\LifASTPython{}} \\ \hline
  17563. \gray{\LwhileASTPython{}} \\ \hline
  17564. \gray{\LtupASTPython{}} \\ \hline
  17565. \gray{\LfunASTPython} \\ \hline
  17566. \gray{\LlambdaASTPython} \\ \hline
  17567. \LanyASTPython \\
  17568. \begin{array}{lcl}
  17569. \LangAnyM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17570. \end{array}
  17571. \end{array}
  17572. \]
  17573. \fi}
  17574. \end{tcolorbox}
  17575. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (figure~\ref{fig:Llam-syntax}).}
  17576. \label{fig:Lany-syntax}
  17577. \index{subject}{Lany@\LangAny{} abstract syntax}
  17578. \end{figure}
  17579. The definition of the abstract syntax of \LangAny{} is given in
  17580. figure~\ref{fig:Lany-syntax}.
  17581. %% \racket{(The concrete syntax of \LangAny{} is in the Appendix,
  17582. %% figure~\ref{fig:Lany-concrete-syntax}.)}
  17583. The $\INJECT{e}{T}$ form converts the value produced by expression $e$
  17584. of type $T$ into a tagged value. The $\PROJECT{e}{T}$ form either
  17585. converts the tagged value produced by expression $e$ into a value of
  17586. type $T$ or halts the program if the type tag does not match $T$.
  17587. %
  17588. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  17589. restricted to be a flat type (the nonterminal $\FType$) which
  17590. simplifies the implementation and complies with the needs for
  17591. compiling \LangDyn{}.
  17592. The \racket{\code{any-vector}} operators
  17593. \python{\code{any\_tuple\_load} and \code{any\_len}} adapt the tuple
  17594. operations so that they can be applied to a value of type
  17595. \racket{\code{Any}}\python{\code{AnyType}}. They also generalize the
  17596. tuple operations in that the index is not restricted to a literal
  17597. integer in the grammar but is allowed to be any expression.
  17598. \racket{The type predicates such as
  17599. \racket{\key{boolean?}}\python{\key{is\_bool}} expect their argument
  17600. to produce a tagged value; they return {\TRUE} if the tag corresponds to
  17601. the predicate and return {\FALSE} otherwise.}
  17602. \racket{The type checker for \LangAny{} is shown in figure~\ref{fig:type-check-Lany}
  17603. and it uses the auxiliary functions presented in figure~\ref{fig:type-check-Lany-aux}.}
  17604. \python{The type checker for \LangAny{} is shown in figure~\ref{fig:type-check-Lany}.}
  17605. The interpreter for \LangAny{} is shown in figure~\ref{fig:interp-Lany} and
  17606. its auxiliary functions are shown in figure~\ref{fig:interp-Lany-aux}.
  17607. \begin{figure}[btp]
  17608. \begin{tcolorbox}[colback=white]
  17609. {\if\edition\racketEd
  17610. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17611. (define type-check-Lany-class
  17612. (class type-check-Llambda-class
  17613. (super-new)
  17614. (inherit check-type-equal?)
  17615. (define/override (type-check-exp env)
  17616. (lambda (e)
  17617. (define recur (type-check-exp env))
  17618. (match e
  17619. [(Inject e1 ty)
  17620. (unless (flat-ty? ty)
  17621. (error 'type-check "may only inject from flat type, not ~a" ty))
  17622. (define-values (new-e1 e-ty) (recur e1))
  17623. (check-type-equal? e-ty ty e)
  17624. (values (Inject new-e1 ty) 'Any)]
  17625. [(Project e1 ty)
  17626. (unless (flat-ty? ty)
  17627. (error 'type-check "may only project to flat type, not ~a" ty))
  17628. (define-values (new-e1 e-ty) (recur e1))
  17629. (check-type-equal? e-ty 'Any e)
  17630. (values (Project new-e1 ty) ty)]
  17631. [(Prim 'any-vector-length (list e1))
  17632. (define-values (e1^ t1) (recur e1))
  17633. (check-type-equal? t1 'Any e)
  17634. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  17635. [(Prim 'any-vector-ref (list e1 e2))
  17636. (define-values (e1^ t1) (recur e1))
  17637. (define-values (e2^ t2) (recur e2))
  17638. (check-type-equal? t1 'Any e)
  17639. (check-type-equal? t2 'Integer e)
  17640. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  17641. [(Prim 'any-vector-set! (list e1 e2 e3))
  17642. (define-values (e1^ t1) (recur e1))
  17643. (define-values (e2^ t2) (recur e2))
  17644. (define-values (e3^ t3) (recur e3))
  17645. (check-type-equal? t1 'Any e)
  17646. (check-type-equal? t2 'Integer e)
  17647. (check-type-equal? t3 'Any e)
  17648. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  17649. [(Prim pred (list e1))
  17650. #:when (set-member? (type-predicates) pred)
  17651. (define-values (new-e1 e-ty) (recur e1))
  17652. (check-type-equal? e-ty 'Any e)
  17653. (values (Prim pred (list new-e1)) 'Boolean)]
  17654. [(Prim 'eq? (list arg1 arg2))
  17655. (define-values (e1 t1) (recur arg1))
  17656. (define-values (e2 t2) (recur arg2))
  17657. (match* (t1 t2)
  17658. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  17659. [(other wise) (check-type-equal? t1 t2 e)])
  17660. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  17661. [else ((super type-check-exp env) e)])))
  17662. ))
  17663. \end{lstlisting}
  17664. \fi}
  17665. {\if\edition\pythonEd\pythonColor
  17666. \begin{lstlisting}
  17667. class TypeCheckLany(TypeCheckLlambda):
  17668. def type_check_exp(self, e, env):
  17669. match e:
  17670. case Inject(value, typ):
  17671. self.check_exp(value, typ, env)
  17672. return AnyType()
  17673. case Project(value, typ):
  17674. self.check_exp(value, AnyType(), env)
  17675. return typ
  17676. case Call(Name('any_tuple_load'), [tup, index]):
  17677. self.check_exp(tup, AnyType(), env)
  17678. self.check_exp(index, IntType(), env)
  17679. return AnyType()
  17680. case Call(Name('any_len'), [tup]):
  17681. self.check_exp(tup, AnyType(), env)
  17682. return IntType()
  17683. case Call(Name('arity'), [fun]):
  17684. ty = self.type_check_exp(fun, env)
  17685. match ty:
  17686. case FunctionType(ps, rt):
  17687. return IntType()
  17688. case TupleType([FunctionType(ps,rs)]):
  17689. return IntType()
  17690. case _:
  17691. raise Exception('type check arity unexpected ' + repr(ty))
  17692. case Call(Name('make_any'), [value, tag]):
  17693. self.type_check_exp(value, env)
  17694. self.check_exp(tag, IntType(), env)
  17695. return AnyType()
  17696. case AnnLambda(params, returns, body):
  17697. new_env = {x:t for (x,t) in env.items()}
  17698. for (x,t) in params:
  17699. new_env[x] = t
  17700. return_t = self.type_check_exp(body, new_env)
  17701. self.check_type_equal(returns, return_t, e)
  17702. return FunctionType([t for (x,t) in params], return_t)
  17703. case _:
  17704. return super().type_check_exp(e, env)
  17705. \end{lstlisting}
  17706. \fi}
  17707. \end{tcolorbox}
  17708. \caption{Type checker for the \LangAny{} language.}
  17709. \label{fig:type-check-Lany}
  17710. \end{figure}
  17711. {\if\edition\racketEd
  17712. \begin{figure}[tbp]
  17713. \begin{tcolorbox}[colback=white]
  17714. \begin{lstlisting}
  17715. (define/override (operator-types)
  17716. (append
  17717. '((integer? . ((Any) . Boolean))
  17718. (vector? . ((Any) . Boolean))
  17719. (procedure? . ((Any) . Boolean))
  17720. (void? . ((Any) . Boolean)))
  17721. (super operator-types)))
  17722. (define/public (type-predicates)
  17723. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17724. (define/public (flat-ty? ty)
  17725. (match ty
  17726. [(or `Integer `Boolean `Void) #t]
  17727. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  17728. [`(,ts ... -> ,rt)
  17729. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  17730. [else #f]))
  17731. \end{lstlisting}
  17732. \end{tcolorbox}
  17733. \caption{Auxiliary methods for type checking \LangAny{}.}
  17734. \label{fig:type-check-Lany-aux}
  17735. \end{figure}
  17736. \fi}
  17737. \begin{figure}[tbp]
  17738. \begin{tcolorbox}[colback=white]
  17739. {\if\edition\racketEd
  17740. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17741. (define interp-Lany-class
  17742. (class interp-Llambda-class
  17743. (super-new)
  17744. (define/override (interp-op op)
  17745. (match op
  17746. ['boolean? (match-lambda
  17747. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  17748. [else #f])]
  17749. ['integer? (match-lambda
  17750. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  17751. [else #f])]
  17752. ['vector? (match-lambda
  17753. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  17754. [else #f])]
  17755. ['procedure? (match-lambda
  17756. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  17757. [else #f])]
  17758. ['eq? (match-lambda*
  17759. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  17760. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  17761. [ls (apply (super interp-op op) ls)])]
  17762. ['any-vector-ref (lambda (v i)
  17763. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  17764. ['any-vector-set! (lambda (v i a)
  17765. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  17766. ['any-vector-length (lambda (v)
  17767. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  17768. [else (super interp-op op)]))
  17769. (define/override ((interp-exp env) e)
  17770. (define recur (interp-exp env))
  17771. (match e
  17772. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  17773. [(Project e ty2) (apply-project (recur e) ty2)]
  17774. [else ((super interp-exp env) e)]))
  17775. ))
  17776. (define (interp-Lany p)
  17777. (send (new interp-Lany-class) interp-program p))
  17778. \end{lstlisting}
  17779. \fi}
  17780. {\if\edition\pythonEd\pythonColor
  17781. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17782. class InterpLany(InterpLlambda):
  17783. def interp_exp(self, e, env):
  17784. match e:
  17785. case Inject(value, typ):
  17786. return Tagged(self.interp_exp(value, env), self.type_to_tag(typ))
  17787. case Project(value, typ):
  17788. match self.interp_exp(value, env):
  17789. case Tagged(val, tag) if self.type_to_tag(typ) == tag:
  17790. return val
  17791. case _:
  17792. raise Exception('failed project to ' + self.type_to_tag(typ))
  17793. case Call(Name('any_tuple_load'), [tup, index]):
  17794. match self.interp_exp(tup, env):
  17795. case Tagged(v, tag):
  17796. return v[self.interp_exp(index, env)]
  17797. case _:
  17798. raise Exception('in any_tuple_load untagged value')
  17799. case Call(Name('any_len'), [value]):
  17800. match self.interp_exp(value, env):
  17801. case Tagged(value, tag):
  17802. return len(value)
  17803. case _:
  17804. raise Exception('interp any_len untagged value')
  17805. case Call(Name('arity'), [fun]):
  17806. return self.arity(self.interp_exp(fun, env))
  17807. case _:
  17808. return super().interp_exp(e, env)
  17809. \end{lstlisting}
  17810. \fi}
  17811. \end{tcolorbox}
  17812. \caption{Interpreter for \LangAny{}.}
  17813. \label{fig:interp-Lany}
  17814. \end{figure}
  17815. \begin{figure}[btp]
  17816. \begin{tcolorbox}[colback=white]
  17817. {\if\edition\racketEd
  17818. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17819. (define/public (apply-inject v tg) (Tagged v tg))
  17820. (define/public (apply-project v ty2)
  17821. (define tag2 (any-tag ty2))
  17822. (match v
  17823. [(Tagged v1 tag1)
  17824. (cond
  17825. [(eq? tag1 tag2)
  17826. (match ty2
  17827. [`(Vector ,ts ...)
  17828. (define l1 ((interp-op 'vector-length) v1))
  17829. (cond
  17830. [(eq? l1 (length ts)) v1]
  17831. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  17832. l1 (length ts))])]
  17833. [`(,ts ... -> ,rt)
  17834. (match v1
  17835. [`(function ,xs ,body ,env)
  17836. (cond [(eq? (length xs) (length ts)) v1]
  17837. [else
  17838. (error 'apply-project "arity mismatch ~a != ~a"
  17839. (length xs) (length ts))])]
  17840. [else (error 'apply-project "expected function not ~a" v1)])]
  17841. [else v1])]
  17842. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  17843. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  17844. \end{lstlisting}
  17845. \fi}
  17846. {\if\edition\pythonEd\pythonColor
  17847. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17848. class InterpLany(InterpLlambda):
  17849. def type_to_tag(self, typ):
  17850. match typ:
  17851. case FunctionType(params, rt):
  17852. return 'function'
  17853. case TupleType(fields):
  17854. return 'tuple'
  17855. case IntType():
  17856. return 'int'
  17857. case BoolType():
  17858. return 'bool'
  17859. case _:
  17860. raise Exception('type_to_tag unexpected ' + repr(typ))
  17861. def arity(self, v):
  17862. match v:
  17863. case Function(name, params, body, env):
  17864. return len(params)
  17865. case _:
  17866. raise Exception('Lany arity unexpected ' + repr(v))
  17867. \end{lstlisting}
  17868. \fi}
  17869. \end{tcolorbox}
  17870. \caption{Auxiliary functions for interpreting \LangAny{}.}
  17871. \label{fig:interp-Lany-aux}
  17872. \end{figure}
  17873. \clearpage
  17874. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  17875. \label{sec:compile-r7}
  17876. The \code{cast\_insert} pass compiles from \LangDyn{} to \LangAny{}.
  17877. Figure~\ref{fig:compile-r7-Lany} shows the compilation of many of the
  17878. \LangDyn{} forms into \LangAny{}. An important invariant of this pass
  17879. is that given any subexpression $e$ in the \LangDyn{} program, the
  17880. pass will produce an expression $e'$ in \LangAny{} that has type
  17881. \ANYTY{}. For example, the first row in
  17882. figure~\ref{fig:compile-r7-Lany} shows the compilation of the Boolean
  17883. \TRUE{}, which must be injected to produce an expression of type
  17884. \ANYTY{}.
  17885. %
  17886. The compilation of addition is shown in the second row of
  17887. figure~\ref{fig:compile-r7-Lany}. The compilation of addition is
  17888. representative of many primitive operations: the arguments have type
  17889. \ANYTY{} and must be projected to \INTTYPE{} before the addition can
  17890. be performed.
  17891. The compilation of \key{lambda} (third row of
  17892. figure~\ref{fig:compile-r7-Lany}) shows what happens when we need to
  17893. produce type annotations: we simply use \ANYTY{}.
  17894. %
  17895. % TODO:update the following for python, and the tests and interpreter. -Jeremy
  17896. \racket{The compilation of \code{if} and \code{eq?} demonstrate how
  17897. this pass has to account for some differences in behavior between
  17898. \LangDyn{} and \LangAny{}. The \LangDyn{} language is more
  17899. permissive than \LangAny{} regarding what kind of values can be used
  17900. in various places. For example, the condition of an \key{if} does
  17901. not have to be a Boolean. For \key{eq?}, the arguments need not be
  17902. of the same type (in that case the result is \code{\#f}).}
  17903. \begin{figure}[btp]
  17904. \centering
  17905. \begin{tcolorbox}[colback=white]
  17906. {\if\edition\racketEd
  17907. \begin{tabular}{lll}
  17908. \begin{minipage}{0.27\textwidth}
  17909. \begin{lstlisting}
  17910. #t
  17911. \end{lstlisting}
  17912. \end{minipage}
  17913. &
  17914. $\Rightarrow$
  17915. &
  17916. \begin{minipage}{0.65\textwidth}
  17917. \begin{lstlisting}
  17918. (inject #t Boolean)
  17919. \end{lstlisting}
  17920. \end{minipage}
  17921. \\[2ex]\hline
  17922. \begin{minipage}{0.27\textwidth}
  17923. \begin{lstlisting}
  17924. (+ |$e_1$| |$e_2$|)
  17925. \end{lstlisting}
  17926. \end{minipage}
  17927. &
  17928. $\Rightarrow$
  17929. &
  17930. \begin{minipage}{0.65\textwidth}
  17931. \begin{lstlisting}
  17932. (inject
  17933. (+ (project |$e'_1$| Integer)
  17934. (project |$e'_2$| Integer))
  17935. Integer)
  17936. \end{lstlisting}
  17937. \end{minipage}
  17938. \\[2ex]\hline
  17939. \begin{minipage}{0.27\textwidth}
  17940. \begin{lstlisting}
  17941. (lambda (|$x_1 \ldots$|) |$e$|)
  17942. \end{lstlisting}
  17943. \end{minipage}
  17944. &
  17945. $\Rightarrow$
  17946. &
  17947. \begin{minipage}{0.65\textwidth}
  17948. \begin{lstlisting}
  17949. (inject
  17950. (lambda: ([|$x_1$|:Any]|$\ldots$|):Any |$e'$|)
  17951. (Any|$\ldots$|Any -> Any))
  17952. \end{lstlisting}
  17953. \end{minipage}
  17954. \\[2ex]\hline
  17955. \begin{minipage}{0.27\textwidth}
  17956. \begin{lstlisting}
  17957. (|$e_0$| |$e_1 \ldots e_n$|)
  17958. \end{lstlisting}
  17959. \end{minipage}
  17960. &
  17961. $\Rightarrow$
  17962. &
  17963. \begin{minipage}{0.65\textwidth}
  17964. \begin{lstlisting}
  17965. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  17966. \end{lstlisting}
  17967. \end{minipage}
  17968. \\[2ex]\hline
  17969. \begin{minipage}{0.27\textwidth}
  17970. \begin{lstlisting}
  17971. (vector-ref |$e_1$| |$e_2$|)
  17972. \end{lstlisting}
  17973. \end{minipage}
  17974. &
  17975. $\Rightarrow$
  17976. &
  17977. \begin{minipage}{0.65\textwidth}
  17978. \begin{lstlisting}
  17979. (any-vector-ref |$e_1'$| (project |$e'_2$| Integer))
  17980. \end{lstlisting}
  17981. \end{minipage}
  17982. \\[2ex]\hline
  17983. \begin{minipage}{0.27\textwidth}
  17984. \begin{lstlisting}
  17985. (if |$e_1$| |$e_2$| |$e_3$|)
  17986. \end{lstlisting}
  17987. \end{minipage}
  17988. &
  17989. $\Rightarrow$
  17990. &
  17991. \begin{minipage}{0.65\textwidth}
  17992. \begin{lstlisting}
  17993. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  17994. \end{lstlisting}
  17995. \end{minipage}
  17996. \\[2ex]\hline
  17997. \begin{minipage}{0.27\textwidth}
  17998. \begin{lstlisting}
  17999. (eq? |$e_1$| |$e_2$|)
  18000. \end{lstlisting}
  18001. \end{minipage}
  18002. &
  18003. $\Rightarrow$
  18004. &
  18005. \begin{minipage}{0.65\textwidth}
  18006. \begin{lstlisting}
  18007. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  18008. \end{lstlisting}
  18009. \end{minipage}
  18010. \\[2ex]\hline
  18011. \begin{minipage}{0.27\textwidth}
  18012. \begin{lstlisting}
  18013. (not |$e_1$|)
  18014. \end{lstlisting}
  18015. \end{minipage}
  18016. &
  18017. $\Rightarrow$
  18018. &
  18019. \begin{minipage}{0.65\textwidth}
  18020. \begin{lstlisting}
  18021. (if (eq? |$e'_1$| (inject #f Boolean))
  18022. (inject #t Boolean) (inject #f Boolean))
  18023. \end{lstlisting}
  18024. \end{minipage}
  18025. \end{tabular}
  18026. \fi}
  18027. {\if\edition\pythonEd\pythonColor
  18028. \hspace{-0.8em}\begin{tabular}{|lll|} \hline
  18029. \begin{minipage}{0.23\textwidth}
  18030. \begin{lstlisting}
  18031. True
  18032. \end{lstlisting}
  18033. \end{minipage}
  18034. &
  18035. $\Rightarrow$
  18036. &
  18037. \begin{minipage}{0.7\textwidth}
  18038. \begin{lstlisting}
  18039. Inject(True, BoolType())
  18040. \end{lstlisting}
  18041. \end{minipage}
  18042. \\[2ex]\hline
  18043. \begin{minipage}{0.23\textwidth}
  18044. \begin{lstlisting}
  18045. |$e_1$| + |$e_2$|
  18046. \end{lstlisting}
  18047. \end{minipage}
  18048. &
  18049. $\Rightarrow$
  18050. &
  18051. \begin{minipage}{0.7\textwidth}
  18052. \begin{lstlisting}
  18053. Inject(Project(|$e'_1$|, IntType())
  18054. + Project(|$e'_2$|, IntType()),
  18055. IntType())
  18056. \end{lstlisting}
  18057. \end{minipage}
  18058. \\[2ex]\hline
  18059. \begin{minipage}{0.23\textwidth}
  18060. \begin{lstlisting}
  18061. lambda |$x_1 \ldots$|: |$e$|
  18062. \end{lstlisting}
  18063. \end{minipage}
  18064. &
  18065. $\Rightarrow$
  18066. &
  18067. \begin{minipage}{0.7\textwidth}
  18068. \begin{lstlisting}
  18069. Inject(Lambda([(|$x_1$|,AnyType),|$\ldots$|], |$e'$|)
  18070. FunctionType([AnyType(),|$\ldots$|], AnyType()))
  18071. \end{lstlisting}
  18072. \end{minipage}
  18073. \\[2ex]\hline
  18074. \begin{minipage}{0.23\textwidth}
  18075. \begin{lstlisting}
  18076. |$e_0$|(|$e_1 \ldots e_n$|)
  18077. \end{lstlisting}
  18078. \end{minipage}
  18079. &
  18080. $\Rightarrow$
  18081. &
  18082. \begin{minipage}{0.7\textwidth}
  18083. \begin{lstlisting}
  18084. Call(Project(|$e'_0$|, FunctionType([AnyType(),|$\ldots$|],
  18085. AnyType())), |$e'_1, \ldots, e'_n$|)
  18086. \end{lstlisting}
  18087. \end{minipage}
  18088. \\[2ex]\hline
  18089. \begin{minipage}{0.23\textwidth}
  18090. \begin{lstlisting}
  18091. |$e_1$|[|$e_2$|]
  18092. \end{lstlisting}
  18093. \end{minipage}
  18094. &
  18095. $\Rightarrow$
  18096. &
  18097. \begin{minipage}{0.7\textwidth}
  18098. \begin{lstlisting}
  18099. Call(Name('any_tuple_load'),
  18100. [|$e_1'$|, Project(|$e_2'$|, IntType())])
  18101. \end{lstlisting}
  18102. \end{minipage}
  18103. %% \begin{minipage}{0.23\textwidth}
  18104. %% \begin{lstlisting}
  18105. %% |$e_2$| if |$e_1$| else |$e_3$|
  18106. %% \end{lstlisting}
  18107. %% \end{minipage}
  18108. %% &
  18109. %% $\Rightarrow$
  18110. %% &
  18111. %% \begin{minipage}{0.7\textwidth}
  18112. %% \begin{lstlisting}
  18113. %% (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  18114. %% \end{lstlisting}
  18115. %% \end{minipage}
  18116. %% \\[2ex]\hline
  18117. %% \begin{minipage}{0.23\textwidth}
  18118. %% \begin{lstlisting}
  18119. %% (eq? |$e_1$| |$e_2$|)
  18120. %% \end{lstlisting}
  18121. %% \end{minipage}
  18122. %% &
  18123. %% $\Rightarrow$
  18124. %% &
  18125. %% \begin{minipage}{0.7\textwidth}
  18126. %% \begin{lstlisting}
  18127. %% (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  18128. %% \end{lstlisting}
  18129. %% \end{minipage}
  18130. %% \\[2ex]\hline
  18131. %% \begin{minipage}{0.23\textwidth}
  18132. %% \begin{lstlisting}
  18133. %% (not |$e_1$|)
  18134. %% \end{lstlisting}
  18135. %% \end{minipage}
  18136. %% &
  18137. %% $\Rightarrow$
  18138. %% &
  18139. %% \begin{minipage}{0.7\textwidth}
  18140. %% \begin{lstlisting}
  18141. %% (if (eq? |$e'_1$| (inject #f Boolean))
  18142. %% (inject #t Boolean) (inject #f Boolean))
  18143. %% \end{lstlisting}
  18144. %% \end{minipage}
  18145. %% \\[2ex]\hline
  18146. \\\hline
  18147. \end{tabular}
  18148. \fi}
  18149. \end{tcolorbox}
  18150. \caption{Cast insertion.}
  18151. \label{fig:compile-r7-Lany}
  18152. \end{figure}
  18153. \section{Reveal Casts}
  18154. \label{sec:reveal-casts-Lany}
  18155. % TODO: define R'_6
  18156. In the \code{reveal\_casts} pass, we recommend compiling
  18157. \code{Project} into a conditional expression that checks whether the
  18158. value's tag matches the target type; if it does, the value is
  18159. converted to a value of the target type by removing the tag; if it
  18160. does not, the program exits.
  18161. %
  18162. {\if\edition\racketEd
  18163. %
  18164. To perform these actions we need a new primitive operation,
  18165. \code{tag-of-any}, and a new form, \code{ValueOf}.
  18166. The \code{tag-of-any} operation retrieves the type tag from a tagged
  18167. value of type \code{Any}. The \code{ValueOf} form retrieves the
  18168. underlying value from a tagged value. The \code{ValueOf} form
  18169. includes the type for the underlying value that is used by the type
  18170. checker.
  18171. %
  18172. \fi}
  18173. %
  18174. {\if\edition\pythonEd\pythonColor
  18175. %
  18176. To perform these actions we need two new AST classes: \code{TagOf} and
  18177. \code{ValueOf}. The \code{TagOf} operation retrieves the type tag from a
  18178. tagged value of type \ANYTY{}. The \code{ValueOf} operation retrieves
  18179. the underlying value from a tagged value. The \code{ValueOf}
  18180. operation includes the type for the underlying value that is used by
  18181. the type checker.
  18182. %
  18183. \fi}
  18184. If the target type of the projection is \BOOLTY{} or \INTTY{}, then
  18185. \code{Project} can be translated as follows:
  18186. \begin{center}
  18187. \begin{minipage}{1.0\textwidth}
  18188. {\if\edition\racketEd
  18189. \begin{lstlisting}
  18190. (Project |$e$| |$\FType$|)
  18191. |$\Rightarrow$|
  18192. (Let |$\itm{tmp}$| |$e'$|
  18193. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  18194. (Int |$\itm{tagof}(\FType)$|)))
  18195. (ValueOf |$\itm{tmp}$| |$\FType$|)
  18196. (Exit)))
  18197. \end{lstlisting}
  18198. \fi}
  18199. {\if\edition\pythonEd\pythonColor
  18200. \begin{lstlisting}
  18201. Project(|$e$|, |$\FType$|)
  18202. |$\Rightarrow$|
  18203. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  18204. IfExp(Compare(TagOf(|$\itm{tmp}$|),[Eq()],
  18205. [Constant(|$\itm{tagof}(\FType)$|)]),
  18206. ValueOf(|$\itm{tmp}$|, |$\FType$|)
  18207. Call(Name('exit'), [])))
  18208. \end{lstlisting}
  18209. \fi}
  18210. \end{minipage}
  18211. \end{center}
  18212. If the target type of the projection is a tuple or function type, then
  18213. there is a bit more work to do. For tuples, check that the length of
  18214. the tuple type matches the length of the tuple. For functions, check
  18215. that the number of parameters in the function type matches the
  18216. function's arity.
  18217. Regarding \code{Inject}, we recommend compiling it to a slightly
  18218. lower-level primitive operation named \racket{\code{make-any}}\python{\code{make\_any}}. This operation
  18219. takes a tag instead of a type.
  18220. \begin{center}
  18221. \begin{minipage}{1.0\textwidth}
  18222. {\if\edition\racketEd
  18223. \begin{lstlisting}
  18224. (Inject |$e$| |$\FType$|)
  18225. |$\Rightarrow$|
  18226. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  18227. \end{lstlisting}
  18228. \fi}
  18229. {\if\edition\pythonEd\pythonColor
  18230. \begin{lstlisting}
  18231. Inject(|$e$|, |$\FType$|)
  18232. |$\Rightarrow$|
  18233. Call(Name('make_any'), [|$e'$|, Constant(|$\itm{tagof}(\FType)$|)])
  18234. \end{lstlisting}
  18235. \fi}
  18236. \end{minipage}
  18237. \end{center}
  18238. {\if\edition\pythonEd\pythonColor
  18239. %
  18240. The introduction of \code{make\_any} makes it difficult to use
  18241. bidirectional type checking because we no longer have an expected type
  18242. to use for type checking the expression $e'$. Thus, we run into
  18243. difficulty if $e'$ is a \code{Lambda} expression. We recommend
  18244. translating \code{Lambda} to a new AST class \code{AnnLambda} (for
  18245. annotated lambda) that contains its return type and the types of its
  18246. parameters.
  18247. %
  18248. \fi}
  18249. \racket{The type predicates (\code{boolean?}, etc.) can be translated into
  18250. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  18251. translation of \code{Project}.}
  18252. {\if\edition\racketEd
  18253. The \code{any-vector-ref} and \code{any-vector-set!} operations
  18254. combine the projection action with the vector operation. Also, the
  18255. read and write operations allow arbitrary expressions for the index, so
  18256. the type checker for \LangAny{} (figure~\ref{fig:type-check-Lany})
  18257. cannot guarantee that the index is within bounds. Thus, we insert code
  18258. to perform bounds checking at runtime. The translation for
  18259. \code{any-vector-ref} is as follows, and the other two operations are
  18260. translated in a similar way:
  18261. \begin{center}
  18262. \begin{minipage}{0.95\textwidth}
  18263. \begin{lstlisting}
  18264. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  18265. |$\Rightarrow$|
  18266. (Let |$v$| |$e'_1$|
  18267. (Let |$i$| |$e'_2$|
  18268. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  18269. (If (Prim '< (list (Var |$i$|) (Prim 'any-vector-length (list (Var |$v$|)))))
  18270. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  18271. (Exit))
  18272. (Exit))))
  18273. \end{lstlisting}
  18274. \end{minipage}
  18275. \end{center}
  18276. \fi}
  18277. %
  18278. {\if\edition\pythonEd\pythonColor
  18279. %
  18280. The \code{any\_tuple\_load} operation combines the projection action
  18281. with the load operation. Also, the load operation allows arbitrary
  18282. expressions for the index, so the type checker for \LangAny{}
  18283. (figure~\ref{fig:type-check-Lany}) cannot guarantee that the index is
  18284. within bounds. Thus, we insert code to perform bounds checking at
  18285. runtime. The translation for \code{any\_tuple\_load} is as follows.
  18286. \begin{lstlisting}
  18287. Call(Name('any_tuple_load'), [|$e_1$|,|$e_2$|])
  18288. |$\Rightarrow$|
  18289. Block([Assign([|$t$|], |$e'_1$|), Assign([|$i$|], |$e'_2$|)],
  18290. IfExp(Compare(TagOf(|$t$|), [Eq()], [Constant(2)]),
  18291. IfExp(Compare(|$i$|, [Lt()], [Call(Name('any_len'), [|$t$|])]),
  18292. Call(Name('any_tuple_load_unsafe'), [|$t$|, |$i$|]),
  18293. Call(Name('exit'), [])),
  18294. Call(Name('exit'), [])))
  18295. \end{lstlisting}
  18296. \fi}
  18297. {\if\edition\pythonEd\pythonColor
  18298. \section{Assignment Conversion}
  18299. \label{sec:convert-assignments-Lany}
  18300. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  18301. \code{AnnLambda} AST classes.
  18302. \section{Closure Conversion}
  18303. \label{sec:closure-conversion-Lany}
  18304. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  18305. \code{AnnLambda} AST classes.
  18306. \fi}
  18307. \section{Remove Complex Operands}
  18308. \label{sec:rco-Lany}
  18309. \racket{The \code{ValueOf} and \code{Exit} forms are both complex
  18310. expressions. The subexpression of \code{ValueOf} must be atomic.}
  18311. %
  18312. \python{The \code{ValueOf} and \code{TagOf} operations are both
  18313. complex expressions. Their subexpressions must be atomic.}
  18314. \section{Explicate Control and \LangCAny{}}
  18315. \label{sec:explicate-Lany}
  18316. The output of \code{explicate\_control} is the \LangCAny{} language,
  18317. whose syntax definition is shown in figure~\ref{fig:c5-syntax}.
  18318. %
  18319. \racket{The \code{ValueOf} form that we added to \LangAny{} remains an
  18320. expression and the \code{Exit} expression becomes a $\Tail$. Also,
  18321. note that the index argument of \code{vector-ref} and
  18322. \code{vector-set!} is an $\Atm$, instead of an integer as it was in
  18323. \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  18324. %
  18325. \python{Update the auxiliary functions \code{explicate\_tail},
  18326. \code{explicate\_effect}, and \code{explicate\_pred} as
  18327. appropriate to handle the new expressions in \LangCAny{}. }
  18328. \newcommand{\CanyASTPython}{
  18329. \begin{array}{lcl}
  18330. \Exp &::=& \CALL{\VAR{\skey{make\_any}}}{\LS \Atm,\Atm \RS}\\
  18331. &\MID& \key{TagOf}\LP \Atm \RP
  18332. \MID \key{ValueOf}\LP \Atm , \FType \RP \\
  18333. &\MID& \CALL{\VAR{\skey{any\_tuple\_load\_unsafe}}}{\LS \Atm,\Atm \RS}\\
  18334. &\MID& \CALL{\VAR{\skey{any\_len}}}{\LS \Atm \RS} \\
  18335. &\MID& \CALL{\VAR{\skey{exit}}}{\LS\RS}
  18336. \end{array}
  18337. }
  18338. \newcommand{\CanyASTRacket}{
  18339. \begin{array}{lcl}
  18340. \Exp &::= & \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  18341. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  18342. &\MID& \VALUEOF{\Atm}{\FType} \\
  18343. \Tail &::= & \LP\key{Exit}\RP
  18344. \end{array}
  18345. }
  18346. \begin{figure}[tp]
  18347. \begin{tcolorbox}[colback=white]
  18348. \small
  18349. {\if\edition\racketEd
  18350. \[
  18351. \begin{array}{l}
  18352. \gray{\CvarASTRacket} \\ \hline
  18353. \gray{\CifASTRacket} \\ \hline
  18354. \gray{\CloopASTRacket} \\ \hline
  18355. \gray{\CtupASTRacket} \\ \hline
  18356. \gray{\CfunASTRacket} \\ \hline
  18357. \gray{\ClambdaASTRacket} \\ \hline
  18358. \CanyASTRacket \\
  18359. \begin{array}{lcl}
  18360. \LangCAnyM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  18361. \end{array}
  18362. \end{array}
  18363. \]
  18364. \fi}
  18365. {\if\edition\pythonEd\pythonColor
  18366. \[
  18367. \begin{array}{l}
  18368. \gray{\CifASTPython} \\ \hline
  18369. \gray{\CtupASTPython} \\ \hline
  18370. \gray{\CfunASTPython} \\ \hline
  18371. \gray{\ClambdaASTPython} \\ \hline
  18372. \CanyASTPython \\
  18373. \begin{array}{lcl}
  18374. \LangCAnyM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  18375. \end{array}
  18376. \end{array}
  18377. \]
  18378. \fi}
  18379. \end{tcolorbox}
  18380. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (figure~\ref{fig:Clam-syntax}).}
  18381. \label{fig:c5-syntax}
  18382. \index{subject}{Cany@\LangCAny{} abstract syntax}
  18383. \end{figure}
  18384. \section{Select Instructions}
  18385. \label{sec:select-Lany}
  18386. \index{subject}{select instructions}
  18387. In the \code{select\_instructions} pass, we translate the primitive
  18388. operations on the \ANYTY{} type to x86 instructions that manipulate
  18389. the three tag bits of the tagged value. In the following descriptions,
  18390. given an atom $e$ we use a primed variable $e'$ to refer to the result
  18391. of translating $e$ into an x86 argument:
  18392. \paragraph{\racket{\code{make-any}}\python{\code{make\_any}}}
  18393. We recommend compiling the
  18394. \racket{\code{make-any}}\python{\code{make\_any}} operation as follows
  18395. if the tag is for \INTTY{} or \BOOLTY{}. The \key{salq} instruction
  18396. shifts the destination to the left by the number of bits specified by its
  18397. source argument (in this case three, the length of the tag), and it
  18398. preserves the sign of the integer. We use the \key{orq} instruction to
  18399. combine the tag and the value to form the tagged value.
  18400. {\if\edition\racketEd
  18401. \begin{lstlisting}
  18402. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18403. |$\Rightarrow$|
  18404. movq |$e'$|, |\itm{lhs'}|
  18405. salq $3, |\itm{lhs'}|
  18406. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18407. \end{lstlisting}
  18408. \fi}
  18409. %
  18410. {\if\edition\pythonEd\pythonColor
  18411. \begin{lstlisting}
  18412. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18413. |$\Rightarrow$|
  18414. movq |$e'$|, |\itm{lhs'}|
  18415. salq $3, |\itm{lhs'}|
  18416. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18417. \end{lstlisting}
  18418. \fi}
  18419. %
  18420. The instruction selection\index{subject}{instruction selection} for
  18421. tuples and procedures is different because there is no need to shift
  18422. them to the left. The rightmost 3 bits are already zeros, so we simply
  18423. combine the value and the tag using \key{orq}. \\
  18424. %
  18425. {\if\edition\racketEd
  18426. \begin{center}
  18427. \begin{minipage}{\textwidth}
  18428. \begin{lstlisting}
  18429. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18430. |$\Rightarrow$|
  18431. movq |$e'$|, |\itm{lhs'}|
  18432. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18433. \end{lstlisting}
  18434. \end{minipage}
  18435. \end{center}
  18436. \fi}
  18437. %
  18438. {\if\edition\pythonEd\pythonColor
  18439. \begin{lstlisting}
  18440. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18441. |$\Rightarrow$|
  18442. movq |$e'$|, |\itm{lhs'}|
  18443. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18444. \end{lstlisting}
  18445. \fi}
  18446. \paragraph{\racket{\code{tag-of-any}}\python{\code{TagOf}}}
  18447. Recall that the \racket{\code{tag-of-any}}\python{\code{TagOf}}
  18448. operation extracts the type tag from a value of type \ANYTY{}. The
  18449. type tag is the bottom $3$ bits, so we obtain the tag by taking the
  18450. bitwise-and of the value with $111$ ($7$ decimal).
  18451. %
  18452. {\if\edition\racketEd
  18453. \begin{lstlisting}
  18454. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  18455. |$\Rightarrow$|
  18456. movq |$e'$|, |\itm{lhs'}|
  18457. andq $7, |\itm{lhs'}|
  18458. \end{lstlisting}
  18459. \fi}
  18460. %
  18461. {\if\edition\pythonEd\pythonColor
  18462. \begin{lstlisting}
  18463. Assign([|\itm{lhs}|], TagOf(|$e$|))
  18464. |$\Rightarrow$|
  18465. movq |$e'$|, |\itm{lhs'}|
  18466. andq $7, |\itm{lhs'}|
  18467. \end{lstlisting}
  18468. \fi}
  18469. \paragraph{\code{ValueOf}}
  18470. The instructions for \key{ValueOf} also differ, depending on whether
  18471. the type $T$ is a pointer (tuple or function) or not (integer or
  18472. Boolean). The following shows the instruction
  18473. selection for integers and
  18474. Booleans, in which we produce an untagged value by shifting it to the
  18475. right by 3 bits:
  18476. %
  18477. {\if\edition\racketEd
  18478. \begin{lstlisting}
  18479. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18480. |$\Rightarrow$|
  18481. movq |$e'$|, |\itm{lhs'}|
  18482. sarq $3, |\itm{lhs'}|
  18483. \end{lstlisting}
  18484. \fi}
  18485. %
  18486. {\if\edition\pythonEd\pythonColor
  18487. \begin{lstlisting}
  18488. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18489. |$\Rightarrow$|
  18490. movq |$e'$|, |\itm{lhs'}|
  18491. sarq $3, |\itm{lhs'}|
  18492. \end{lstlisting}
  18493. \fi}
  18494. %
  18495. In the case for tuples and procedures, we zero out the rightmost 3
  18496. bits. We accomplish this by creating the bit pattern $\ldots 0111$
  18497. ($7$ decimal) and apply bitwise-not to obtain $\ldots 11111000$ (-8
  18498. decimal), which we \code{movq} into the destination $\itm{lhs'}$.
  18499. Finally, we apply \code{andq} with the tagged value to get the desired
  18500. result.
  18501. %
  18502. {\if\edition\racketEd
  18503. \begin{lstlisting}
  18504. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18505. |$\Rightarrow$|
  18506. movq $|$-8$|, |\itm{lhs'}|
  18507. andq |$e'$|, |\itm{lhs'}|
  18508. \end{lstlisting}
  18509. \fi}
  18510. %
  18511. {\if\edition\pythonEd\pythonColor
  18512. \begin{lstlisting}
  18513. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18514. |$\Rightarrow$|
  18515. movq $|$-8$|, |\itm{lhs'}|
  18516. andq |$e'$|, |\itm{lhs'}|
  18517. \end{lstlisting}
  18518. \fi}
  18519. %% \paragraph{Type Predicates} We leave it to the reader to
  18520. %% devise a sequence of instructions to implement the type predicates
  18521. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  18522. \paragraph{\racket{\code{any-vector-length}}\python{\code{any\_len}}}
  18523. The \racket{\code{any-vector-length}}\python{\code{any\_len}}
  18524. operation combines the effect of \code{ValueOf} with accessing the
  18525. length of a tuple from the tag stored at the zero index of the tuple.
  18526. {\if\edition\racketEd
  18527. \begin{lstlisting}
  18528. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$e_1$|)))
  18529. |$\Longrightarrow$|
  18530. movq $|$-8$|, %r11
  18531. andq |$e_1'$|, %r11
  18532. movq 0(%r11), %r11
  18533. andq $126, %r11
  18534. sarq $1, %r11
  18535. movq %r11, |$\itm{lhs'}$|
  18536. \end{lstlisting}
  18537. \fi}
  18538. {\if\edition\pythonEd\pythonColor
  18539. \begin{lstlisting}
  18540. Assign([|$\itm{lhs}$|], Call(Name('any_len'), [|$e_1$|]))
  18541. |$\Longrightarrow$|
  18542. movq $|$-8$|, %r11
  18543. andq |$e_1'$|, %r11
  18544. movq 0(%r11), %r11
  18545. andq $126, %r11
  18546. sarq $1, %r11
  18547. movq %r11, |$\itm{lhs'}$|
  18548. \end{lstlisting}
  18549. \fi}
  18550. \paragraph{\racket{\code{any-vector-ref}}\python{\code{\code{any\_tuple\_load\_unsafe}}}}
  18551. This operation combines the effect of \code{ValueOf} with reading an
  18552. element of the tuple (see
  18553. section~\ref{sec:select-instructions-gc}). However, the index may be
  18554. an arbitrary atom, so instead of computing the offset at compile time,
  18555. we must generate instructions to compute the offset at runtime as
  18556. follows. Note the use of the new instruction \code{imulq}.
  18557. \begin{center}
  18558. \begin{minipage}{0.96\textwidth}
  18559. {\if\edition\racketEd
  18560. \begin{lstlisting}
  18561. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  18562. |$\Longrightarrow$|
  18563. movq |$\neg 111$|, %r11
  18564. andq |$e_1'$|, %r11
  18565. movq |$e_2'$|, %rax
  18566. addq $1, %rax
  18567. imulq $8, %rax
  18568. addq %rax, %r11
  18569. movq 0(%r11) |$\itm{lhs'}$|
  18570. \end{lstlisting}
  18571. \fi}
  18572. %
  18573. {\if\edition\pythonEd\pythonColor
  18574. \begin{lstlisting}
  18575. Assign([|$\itm{lhs}$|], Call(Name('any_tuple_load_unsafe'), [|$e_1$|,|$e_2$|]))
  18576. |$\Longrightarrow$|
  18577. movq $|$-8$|, %r11
  18578. andq |$e_1'$|, %r11
  18579. movq |$e_2'$|, %rax
  18580. addq $1, %rax
  18581. imulq $8, %rax
  18582. addq %rax, %r11
  18583. movq 0(%r11) |$\itm{lhs'}$|
  18584. \end{lstlisting}
  18585. \fi}
  18586. \end{minipage}
  18587. \end{center}
  18588. % $ pacify font lock
  18589. %% \paragraph{\racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}}}
  18590. %% The code generation for
  18591. %% \racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}} is
  18592. %% analogous to the above translation for reading from a tuple.
  18593. \section{Register Allocation for \LangAny{} }
  18594. \label{sec:register-allocation-Lany}
  18595. \index{subject}{register allocation}
  18596. There is an interesting interaction between tagged values and garbage
  18597. collection that has an impact on register allocation. A variable of
  18598. type \ANYTY{} might refer to a tuple, and therefore it might be a root
  18599. that needs to be inspected and copied during garbage collection. Thus,
  18600. we need to treat variables of type \ANYTY{} in a similar way to
  18601. variables of tuple type for purposes of register allocation,
  18602. with particular attention to the following:
  18603. \begin{itemize}
  18604. \item If a variable of type \ANYTY{} is live during a function call,
  18605. then it must be spilled. This can be accomplished by changing
  18606. \code{build\_interference} to mark all variables of type \ANYTY{}
  18607. that are live after a \code{callq} to be interfering with all the
  18608. registers.
  18609. \item If a variable of type \ANYTY{} is spilled, it must be spilled to
  18610. the root stack instead of the normal procedure call stack.
  18611. \end{itemize}
  18612. Another concern regarding the root stack is that the garbage collector
  18613. needs to differentiate among (1) plain old pointers to tuples, (2) a
  18614. tagged value that points to a tuple, and (3) a tagged value that is
  18615. not a tuple. We enable this differentiation by choosing not to use the
  18616. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  18617. reserved for identifying plain old pointers to tuples. That way, if
  18618. one of the first three bits is set, then we have a tagged value and
  18619. inspecting the tag can differentiate between tuples ($010$) and the
  18620. other kinds of values.
  18621. %% \begin{exercise}\normalfont
  18622. %% Expand your compiler to handle \LangAny{} as discussed in the last few
  18623. %% sections. Create 5 new programs that use the \ANYTY{} type and the
  18624. %% new operations (\code{Inject}, \code{Project}, etc.). Test your
  18625. %% compiler on these new programs and all of your previously created test
  18626. %% programs.
  18627. %% \end{exercise}
  18628. \begin{exercise}\normalfont\normalsize
  18629. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  18630. Create tests for \LangDyn{} by adapting ten of your previous test programs
  18631. by removing type annotations. Add five more test programs that
  18632. specifically rely on the language being dynamically typed. That is,
  18633. they should not be legal programs in a statically typed language, but
  18634. nevertheless they should be valid \LangDyn{} programs that run to
  18635. completion without error.
  18636. \end{exercise}
  18637. Figure~\ref{fig:Ldyn-passes} gives an overview of the passes needed
  18638. for the compilation of \LangDyn{}.
  18639. \begin{figure}[bthp]
  18640. \begin{tcolorbox}[colback=white]
  18641. {\if\edition\racketEd
  18642. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18643. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18644. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18645. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18646. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18647. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18648. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18649. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18650. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18651. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18652. \node (F1-4) at (4,0) {\large \LangAnyAlloc{}};
  18653. \node (F1-5) at (8,0) {\large \LangAnyAlloc{}};
  18654. \node (F1-6) at (12,0) {\large \LangAnyAlloc{}};
  18655. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18656. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18657. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  18658. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  18659. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18660. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18661. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  18662. \path[->,bend left=15] (Lfun) edge [above] node
  18663. {\ttfamily\footnotesize shrink} (Lfun-2);
  18664. \path[->,bend left=15] (Lfun-2) edge [above] node
  18665. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18666. \path[->,bend left=15] (Lfun-3) edge [above] node
  18667. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18668. \path[->,bend left=15] (Lfun-4) edge [left] node
  18669. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18670. \path[->,bend left=15] (Lfun-5) edge [below] node
  18671. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18672. \path[->,bend left=15] (Lfun-6) edge [below] node
  18673. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18674. \path[->,bend right=15] (Lfun-7) edge [above] node
  18675. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18676. \path[->,bend right=15] (F1-2) edge [right] node
  18677. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18678. \path[->,bend right=15] (F1-3) edge [below] node
  18679. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  18680. \path[->,bend right=15] (F1-4) edge [below] node
  18681. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  18682. \path[->,bend left=15] (F1-5) edge [above] node
  18683. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18684. \path[->,bend left=10] (F1-6) edge [below] node
  18685. {\ttfamily\footnotesize \ \ \ \ \ explicate\_control} (C3-2);
  18686. \path[->,bend left=15] (C3-2) edge [right] node
  18687. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18688. \path[->,bend right=15] (x86-2) edge [right] node
  18689. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  18690. \path[->,bend right=15] (x86-2-1) edge [below] node
  18691. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  18692. \path[->,bend right=15] (x86-2-2) edge [right] node
  18693. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  18694. \path[->,bend left=15] (x86-3) edge [above] node
  18695. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18696. \path[->,bend left=15] (x86-4) edge [right] node
  18697. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18698. \end{tikzpicture}
  18699. \fi}
  18700. {\if\edition\pythonEd\pythonColor
  18701. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18702. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18703. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18704. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18705. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18706. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18707. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18708. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18709. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18710. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18711. \node (F1-5) at (4,0) {\large \LangAnyAlloc{}};
  18712. \node (F1-6) at (8,0) {\large \LangAnyAlloc{}};
  18713. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18714. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18715. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18716. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18717. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  18718. \path[->,bend left=15] (Lfun) edge [above] node
  18719. {\ttfamily\footnotesize shrink} (Lfun-2);
  18720. \path[->,bend left=15] (Lfun-2) edge [above] node
  18721. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18722. \path[->,bend left=15] (Lfun-3) edge [above] node
  18723. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18724. \path[->,bend left=15] (Lfun-4) edge [left] node
  18725. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18726. \path[->,bend left=15] (Lfun-5) edge [below] node
  18727. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18728. \path[->,bend right=15] (Lfun-6) edge [above] node
  18729. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18730. \path[->,bend right=15] (Lfun-7) edge [above] node
  18731. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18732. \path[->,bend right=15] (F1-2) edge [right] node
  18733. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18734. \path[->,bend right=15] (F1-3) edge [below] node
  18735. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  18736. \path[->,bend left=15] (F1-5) edge [above] node
  18737. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18738. \path[->,bend left=10] (F1-6) edge [below] node
  18739. {\ttfamily\footnotesize \ \ \ \ \ \ \ \ explicate\_control} (C3-2);
  18740. \path[->,bend right=15] (C3-2) edge [right] node
  18741. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18742. \path[->,bend right=15] (x86-2) edge [below] node
  18743. {\ttfamily\footnotesize assign\_homes} (x86-3);
  18744. \path[->,bend right=15] (x86-3) edge [below] node
  18745. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18746. \path[->,bend left=15] (x86-4) edge [above] node
  18747. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18748. \end{tikzpicture}
  18749. \fi}
  18750. \end{tcolorbox}
  18751. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  18752. \label{fig:Ldyn-passes}
  18753. \end{figure}
  18754. % Further Reading
  18755. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18756. %% {\if\edition\pythonEd\pythonColor
  18757. %% \chapter{Objects}
  18758. %% \label{ch:Lobject}
  18759. %% \index{subject}{objects}
  18760. %% \index{subject}{classes}
  18761. %% \setcounter{footnote}{0}
  18762. %% \fi}
  18763. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18764. \chapter{Gradual Typing}
  18765. \label{ch:Lgrad}
  18766. \index{subject}{gradual typing}
  18767. \setcounter{footnote}{0}
  18768. This chapter studies the language \LangGrad{}, in which the programmer
  18769. can choose between static and dynamic type checking in different parts
  18770. of a program, thereby mixing the statically typed \LangLam{} language
  18771. with the dynamically typed \LangDyn{}. There are several approaches to
  18772. mixing static and dynamic typing, including multilanguage
  18773. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  18774. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  18775. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  18776. programmer controls the amount of static versus dynamic checking by
  18777. adding or removing type annotations on parameters and
  18778. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  18779. The definition of the concrete syntax of \LangGrad{} is shown in
  18780. figure~\ref{fig:Lgrad-concrete-syntax}, and the definition of its
  18781. abstract syntax is shown in figure~\ref{fig:Lgrad-syntax}. The main
  18782. syntactic difference between \LangLam{} and \LangGrad{} is that type
  18783. annotations are optional, which is specified in the grammar using the
  18784. \Param{} and \itm{ret} nonterminals. In the abstract syntax, type
  18785. annotations are not optional, but we use the \CANYTY{} type when a type
  18786. annotation is absent.
  18787. %
  18788. Both the type checker and the interpreter for \LangGrad{} require some
  18789. interesting changes to enable gradual typing, which we discuss in the
  18790. next two sections.
  18791. \newcommand{\LgradGrammarRacket}{
  18792. \begin{array}{lcl}
  18793. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18794. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18795. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  18796. \Exp &::=& \LP\Exp \; \Exp \ldots\RP
  18797. \MID \CGLAMBDA{\LP\Param\ldots\RP}{\itm{ret}}{\Exp} \\
  18798. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  18799. \Def &::=& \CGDEF{\Var}{\Param\ldots}{\itm{ret}}{\Exp}
  18800. \end{array}
  18801. }
  18802. \newcommand{\LgradASTRacket}{
  18803. \begin{array}{lcl}
  18804. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18805. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18806. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  18807. \MID \LAMBDA{\LP\Param\ldots\RP}{\Type}{\Exp} \\
  18808. \itm{op} &::=& \code{procedure-arity} \\
  18809. \Def &::=& \FUNDEF{\Var}{\LP\Param\ldots\RP}{\Type}{\code{'()}}{\Exp}
  18810. \end{array}
  18811. }
  18812. \newcommand{\LgradGrammarPython}{
  18813. \begin{array}{lcl}
  18814. \Type &::=& \key{Any}
  18815. \MID \key{int}
  18816. \MID \key{bool}
  18817. \MID \key{tuple}\LS \Type \code{, } \ldots \RS
  18818. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  18819. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  18820. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}
  18821. \MID \CARITY{\Exp} \\
  18822. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp} \MID \CRETURN{\Exp} \\
  18823. \Param &::=& \Var \MID \Var \key{:} \Type \\
  18824. \itm{ret} &::=& \epsilon \MID \key{->}~\Type \\
  18825. \Def &::=& \CGDEF{\Var}{\Param\key{, }\ldots}{\itm{ret}}{\Stmt^{+}}
  18826. \end{array}
  18827. }
  18828. \newcommand{\LgradASTPython}{
  18829. \begin{array}{lcl}
  18830. \Type &::=& \key{AnyType()} \MID \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}\\
  18831. &\MID& \key{TupleType}\LP\Type^{*}\RP
  18832. \MID \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  18833. \Exp &::=& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp}\\
  18834. &\MID& \ARITY{\Exp} \\
  18835. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  18836. \MID \RETURN{\Exp} \\
  18837. \Param &::=& \LP\Var\key{,}\Type\RP \\
  18838. \Def &::=& \FUNDEF{\Var}{\Param^{*}}{\Type}{}{\Stmt^{+}}
  18839. \end{array}
  18840. }
  18841. \begin{figure}[tbp]
  18842. \centering
  18843. \begin{tcolorbox}[colback=white]
  18844. \vspace{-5pt}
  18845. \small
  18846. {\if\edition\racketEd
  18847. \[
  18848. \begin{array}{l}
  18849. \gray{\LintGrammarRacket{}} \\ \hline
  18850. \gray{\LvarGrammarRacket{}} \\ \hline
  18851. \gray{\LifGrammarRacket{}} \\ \hline
  18852. \gray{\LwhileGrammarRacket} \\ \hline
  18853. \gray{\LtupGrammarRacket} \\ \hline
  18854. \LgradGrammarRacket \\
  18855. \begin{array}{lcl}
  18856. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  18857. \end{array}
  18858. \end{array}
  18859. \]
  18860. \fi}
  18861. {\if\edition\pythonEd\pythonColor
  18862. \[
  18863. \begin{array}{l}
  18864. \gray{\LintGrammarPython{}} \\ \hline
  18865. \gray{\LvarGrammarPython{}} \\ \hline
  18866. \gray{\LifGrammarPython{}} \\ \hline
  18867. \gray{\LwhileGrammarPython} \\ \hline
  18868. \gray{\LtupGrammarPython} \\ \hline
  18869. \LgradGrammarPython \\
  18870. \begin{array}{lcl}
  18871. \LangGradM{} &::=& \Def\ldots \Stmt\ldots
  18872. \end{array}
  18873. \end{array}
  18874. \]
  18875. \fi}
  18876. \end{tcolorbox}
  18877. \caption{The concrete syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  18878. \label{fig:Lgrad-concrete-syntax}
  18879. \index{subject}{L?@\LangGrad{} concrete syntax}
  18880. \end{figure}
  18881. \begin{figure}[tbp]
  18882. \centering
  18883. \begin{tcolorbox}[colback=white]
  18884. \small
  18885. {\if\edition\racketEd
  18886. \[
  18887. \begin{array}{l}
  18888. \gray{\LintOpAST} \\ \hline
  18889. \gray{\LvarASTRacket{}} \\ \hline
  18890. \gray{\LifASTRacket{}} \\ \hline
  18891. \gray{\LwhileASTRacket{}} \\ \hline
  18892. \gray{\LtupASTRacket{}} \\ \hline
  18893. \LgradASTRacket \\
  18894. \begin{array}{lcl}
  18895. \LangGradM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  18896. \end{array}
  18897. \end{array}
  18898. \]
  18899. \fi}
  18900. {\if\edition\pythonEd\pythonColor
  18901. \[
  18902. \begin{array}{l}
  18903. \gray{\LintASTPython{}} \\ \hline
  18904. \gray{\LvarASTPython{}} \\ \hline
  18905. \gray{\LifASTPython{}} \\ \hline
  18906. \gray{\LwhileASTPython} \\ \hline
  18907. \gray{\LtupASTPython} \\ \hline
  18908. \LgradASTPython \\
  18909. \begin{array}{lcl}
  18910. \LangGradM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  18911. \end{array}
  18912. \end{array}
  18913. \]
  18914. \fi}
  18915. \end{tcolorbox}
  18916. \caption{The abstract syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  18917. \label{fig:Lgrad-syntax}
  18918. \index{subject}{L?@\LangGrad{} abstract syntax}
  18919. \end{figure}
  18920. % TODO: more road map -Jeremy
  18921. %\clearpage
  18922. \section{Type Checking \LangGrad{}}
  18923. \label{sec:gradual-type-check}
  18924. We begin by discussing the type checking of a partially typed variant
  18925. of the \code{map} example from chapter~\ref{ch:Lfun}, shown in
  18926. figure~\ref{fig:gradual-map}. The \code{map} function itself is
  18927. statically typed, so there is nothing special happening there with
  18928. respect to type checking. On the other hand, the \code{inc} function
  18929. does not have type annotations, so the type checker assigns the type
  18930. \CANYTY{} to parameter \code{x} and the return type. Now consider the
  18931. \code{+} operator inside \code{inc}. It expects both arguments to have
  18932. type \INTTY{}, but its first argument \code{x} has type \CANYTY{}. In
  18933. a gradually typed language, such differences are allowed so long as
  18934. the types are \emph{consistent}; that is, they are equal except in
  18935. places where there is an \CANYTY{} type. That is, the type \CANYTY{}
  18936. is consistent with every other type. Figure~\ref{fig:consistent}
  18937. shows the definition of the
  18938. \racket{\code{consistent?}}\python{\code{consistent}} method.
  18939. %
  18940. So the type checker allows the \code{+} operator to be applied
  18941. to \code{x} because \CANYTY{} is consistent with \INTTY{}.
  18942. %
  18943. Next consider the call to the \code{map} function shown in
  18944. figure~\ref{fig:gradual-map} with the arguments \code{inc} and a
  18945. tuple. The \code{inc} function has type
  18946. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}},
  18947. but parameter \code{f} of \code{map} has type
  18948. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18949. The type checker for \LangGrad{} accepts this call because the two types are
  18950. consistent.
  18951. \begin{figure}[hbtp]
  18952. % gradual_test_9.rkt
  18953. \begin{tcolorbox}[colback=white]
  18954. {\if\edition\racketEd
  18955. \begin{lstlisting}
  18956. (define (map [f : (Integer -> Integer)]
  18957. [v : (Vector Integer Integer)])
  18958. : (Vector Integer Integer)
  18959. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18960. (define (inc x) (+ x 1))
  18961. (vector-ref (map inc (vector 0 41)) 1)
  18962. \end{lstlisting}
  18963. \fi}
  18964. {\if\edition\pythonEd\pythonColor
  18965. \begin{lstlisting}
  18966. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18967. return f(v[0]), f(v[1])
  18968. def inc(x):
  18969. return x + 1
  18970. t = map(inc, (0, 41))
  18971. print(t[1])
  18972. \end{lstlisting}
  18973. \fi}
  18974. \end{tcolorbox}
  18975. \caption{A partially typed version of the \code{map} example.}
  18976. \label{fig:gradual-map}
  18977. \end{figure}
  18978. \begin{figure}[tbp]
  18979. \begin{tcolorbox}[colback=white]
  18980. {\if\edition\racketEd
  18981. \begin{lstlisting}
  18982. (define/public (consistent? t1 t2)
  18983. (match* (t1 t2)
  18984. [('Integer 'Integer) #t]
  18985. [('Boolean 'Boolean) #t]
  18986. [('Void 'Void) #t]
  18987. [('Any t2) #t]
  18988. [(t1 'Any) #t]
  18989. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  18990. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  18991. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  18992. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  18993. (consistent? rt1 rt2))]
  18994. [(other wise) #f]))
  18995. \end{lstlisting}
  18996. \fi}
  18997. {\if\edition\pythonEd\pythonColor
  18998. \begin{lstlisting}
  18999. def consistent(self, t1, t2):
  19000. match (t1, t2):
  19001. case (AnyType(), _):
  19002. return True
  19003. case (_, AnyType()):
  19004. return True
  19005. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19006. return all(map(self.consistent, ps1, ps2)) and consistent(rt1, rt2)
  19007. case (TupleType(ts1), TupleType(ts2)):
  19008. return all(map(self.consistent, ts1, ts2))
  19009. case (_, _):
  19010. return t1 == t2
  19011. \end{lstlisting}
  19012. \fi}
  19013. \vspace{-5pt}
  19014. \end{tcolorbox}
  19015. \caption{The consistency method on types.}
  19016. \label{fig:consistent}
  19017. \end{figure}
  19018. It is also helpful to consider how gradual typing handles programs with an
  19019. error, such as applying \code{map} to a function that sometimes
  19020. returns a Boolean, as shown in figure~\ref{fig:map-maybe_inc}. The
  19021. type checker for \LangGrad{} accepts this program because the type of
  19022. \code{maybe\_inc} is consistent with the type of parameter \code{f} of
  19023. \code{map}; that is,
  19024. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}}
  19025. is consistent with
  19026. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  19027. One might say that a gradual type checker is optimistic in that it
  19028. accepts programs that might execute without a runtime type error.
  19029. %
  19030. The definition of the type checker for \LangGrad{} is shown in
  19031. figures~\ref{fig:type-check-Lgradual-1}, \ref{fig:type-check-Lgradual-2},
  19032. and \ref{fig:type-check-Lgradual-3}.
  19033. %% \begin{figure}[tp]
  19034. %% \centering
  19035. %% \fbox{
  19036. %% \begin{minipage}{0.96\textwidth}
  19037. %% \small
  19038. %% \[
  19039. %% \begin{array}{lcl}
  19040. %% \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  19041. %% \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  19042. %% \end{array}
  19043. %% \]
  19044. %% \end{minipage}
  19045. %% }
  19046. %% \caption{The abstract syntax of \LangCast{}, extending \LangLam{} (figure~\ref{fig:Lwhile-syntax}).}
  19047. %% \label{fig:Lgrad-prime-syntax}
  19048. %% \end{figure}
  19049. \begin{figure}[tbp]
  19050. \begin{tcolorbox}[colback=white]
  19051. {\if\edition\racketEd
  19052. \begin{lstlisting}
  19053. (define (map [f : (Integer -> Integer)]
  19054. [v : (Vector Integer Integer)])
  19055. : (Vector Integer Integer)
  19056. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19057. (define (inc x) (+ x 1))
  19058. (define (true) #t)
  19059. (define (maybe_inc x) (if (eq? 0 (read)) (inc x) (true)))
  19060. (vector-ref (map maybe_inc (vector 0 41)) 0)
  19061. \end{lstlisting}
  19062. \fi}
  19063. {\if\edition\pythonEd\pythonColor
  19064. \begin{lstlisting}
  19065. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19066. return f(v[0]), f(v[1])
  19067. def inc(x):
  19068. return x + 1
  19069. def true():
  19070. return True
  19071. def maybe_inc(x):
  19072. return inc(x) if input_int() == 0 else true()
  19073. t = map(maybe_inc, (0, 41))
  19074. print(t[1])
  19075. \end{lstlisting}
  19076. \fi}
  19077. \vspace{-5pt}
  19078. \end{tcolorbox}
  19079. \caption{A variant of the \code{map} example with an error.}
  19080. \label{fig:map-maybe_inc}
  19081. \end{figure}
  19082. Running this program with input \code{1} triggers an
  19083. error when the \code{maybe\_inc} function returns
  19084. \racket{\code{\#t}}\python{\code{True}}. The \LangGrad{} language
  19085. performs checking at runtime to ensure the integrity of the static
  19086. types, such as the
  19087. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}
  19088. annotation on
  19089. parameter \code{f} of \code{map}.
  19090. Here we give a preview of how the runtime checking is accomplished;
  19091. the following sections provide the details.
  19092. The runtime checking is carried out by a new \code{Cast} AST node that
  19093. is generated in a new pass named \code{cast\_insert}. The output of
  19094. \code{cast\_insert} is a program in the \LangCast{} language, which
  19095. simply adds \code{Cast} and \CANYTY{} to \LangLam{}.
  19096. %
  19097. Figure~\ref{fig:map-cast} shows the output of \code{cast\_insert} for
  19098. \code{map} and \code{maybe\_inc}. The idea is that \code{Cast} is
  19099. inserted every time the type checker encounters two types that are
  19100. consistent but not equal. In the \code{inc} function, \code{x} is
  19101. cast to \INTTY{} and the result of the \code{+} is cast to
  19102. \CANYTY{}. In the call to \code{map}, the \code{inc} argument
  19103. is cast from
  19104. \racket{\code{(Any -> Any)}}
  19105. \python{\code{Callable[[Any], Any]}}
  19106. to
  19107. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  19108. %
  19109. In the next section we see how to interpret the \code{Cast} node.
  19110. \begin{figure}[btp]
  19111. \begin{tcolorbox}[colback=white]
  19112. {\if\edition\racketEd
  19113. \begin{lstlisting}
  19114. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  19115. : (Vector Integer Integer)
  19116. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19117. (define (inc [x : Any]) : Any
  19118. (cast (+ (cast x Any Integer) 1) Integer Any))
  19119. (define (true) : Any (cast #t Boolean Any))
  19120. (define (maybe_inc [x : Any]) : Any
  19121. (if (eq? 0 (read)) (inc x) (true)))
  19122. (vector-ref (map (cast maybe_inc (Any -> Any) (Integer -> Integer))
  19123. (vector 0 41)) 0)
  19124. \end{lstlisting}
  19125. \fi}
  19126. {\if\edition\pythonEd\pythonColor
  19127. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19128. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19129. return f(v[0]), f(v[1])
  19130. def inc(x : Any) -> Any:
  19131. return Cast(Cast(x, Any, int) + 1, int, Any)
  19132. def true() -> Any:
  19133. return Cast(True, bool, Any)
  19134. def maybe_inc(x : Any) -> Any:
  19135. return inc(x) if input_int() == 0 else true()
  19136. t = map(Cast(maybe_inc, Callable[[Any], Any], Callable[[int], int]),
  19137. (0, 41))
  19138. print(t[1])
  19139. \end{lstlisting}
  19140. \fi}
  19141. \vspace{-5pt}
  19142. \end{tcolorbox}
  19143. \caption{Output of the \code{cast\_insert} pass for the \code{map}
  19144. and \code{maybe\_inc} example.}
  19145. \label{fig:map-cast}
  19146. \end{figure}
  19147. {\if\edition\pythonEd\pythonColor
  19148. \begin{figure}[tbp]
  19149. \begin{tcolorbox}[colback=white]
  19150. \begin{lstlisting}
  19151. class TypeCheckLgrad(TypeCheckLlambda):
  19152. def type_check_exp(self, e, env) -> Type:
  19153. match e:
  19154. case Name(id):
  19155. return env[id]
  19156. case Constant(value) if isinstance(value, bool):
  19157. return BoolType()
  19158. case Constant(value) if isinstance(value, int):
  19159. return IntType()
  19160. case Call(Name('input_int'), []):
  19161. return IntType()
  19162. case BinOp(left, op, right):
  19163. left_type = self.type_check_exp(left, env)
  19164. self.check_consistent(left_type, IntType(), left)
  19165. right_type = self.type_check_exp(right, env)
  19166. self.check_consistent(right_type, IntType(), right)
  19167. return IntType()
  19168. case IfExp(test, body, orelse):
  19169. test_t = self.type_check_exp(test, env)
  19170. self.check_consistent(test_t, BoolType(), test)
  19171. body_t = self.type_check_exp(body, env)
  19172. orelse_t = self.type_check_exp(orelse, env)
  19173. self.check_consistent(body_t, orelse_t, e)
  19174. return self.join_types(body_t, orelse_t)
  19175. case Call(func, args):
  19176. func_t = self.type_check_exp(func, env)
  19177. args_t = [self.type_check_exp(arg, env) for arg in args]
  19178. match func_t:
  19179. case FunctionType(params_t, return_t) \
  19180. if len(params_t) == len(args_t):
  19181. for (arg_t, param_t) in zip(args_t, params_t):
  19182. self.check_consistent(param_t, arg_t, e)
  19183. return return_t
  19184. case AnyType():
  19185. return AnyType()
  19186. case _:
  19187. raise Exception('type_check_exp: in call, unexpected '
  19188. + repr(func_t))
  19189. ...
  19190. case _:
  19191. raise Exception('type_check_exp: unexpected ' + repr(e))
  19192. \end{lstlisting}
  19193. \end{tcolorbox}
  19194. \caption{Type checking expressions in the \LangGrad{} language.}
  19195. \label{fig:type-check-Lgradual-1}
  19196. \end{figure}
  19197. \begin{figure}[tbp]
  19198. \begin{tcolorbox}[colback=white]
  19199. \begin{lstlisting}
  19200. def check_exp(self, e, expected_ty, env):
  19201. match e:
  19202. case Lambda(params, body):
  19203. match expected_ty:
  19204. case FunctionType(params_t, return_t):
  19205. new_env = env.copy().update(zip(params, params_t))
  19206. e.has_type = expected_ty
  19207. body_ty = self.type_check_exp(body, new_env)
  19208. self.check_consistent(body_ty, return_t)
  19209. case AnyType():
  19210. new_env = env.copy().update((p, AnyType()) for p in params)
  19211. e.has_type = FunctionType([AnyType()for _ in params],AnyType())
  19212. body_ty = self.type_check_exp(body, new_env)
  19213. case _:
  19214. raise Exception('lambda is not of type ' + str(expected_ty))
  19215. case _:
  19216. e_ty = self.type_check_exp(e, env)
  19217. self.check_consistent(e_ty, expected_ty, e)
  19218. \end{lstlisting}
  19219. \end{tcolorbox}
  19220. \caption{Checking expressions with respect to a type in the \LangGrad{} language.}
  19221. \label{fig:type-check-Lgradual-2}
  19222. \end{figure}
  19223. \begin{figure}[tbp]
  19224. \begin{tcolorbox}[colback=white]
  19225. \begin{lstlisting}
  19226. def type_check_stmt(self, s, env, return_type):
  19227. match s:
  19228. case Assign([Name(id)], value):
  19229. value_ty = self.type_check_exp(value, env)
  19230. if id in env:
  19231. self.check_consistent(env[id], value_ty, value)
  19232. else:
  19233. env[id] = value_ty
  19234. ...
  19235. case _:
  19236. raise Exception('type_check_stmts: unexpected ' + repr(ss))
  19237. def type_check_stmts(self, ss, env, return_type):
  19238. for s in ss:
  19239. self.type_check_stmt(s, env, return_type)
  19240. \end{lstlisting}
  19241. \end{tcolorbox}
  19242. \caption{Type checking statements in the \LangGrad{} language.}
  19243. \label{fig:type-check-Lgradual-3}
  19244. \end{figure}
  19245. \clearpage
  19246. \begin{figure}[tbp]
  19247. \begin{tcolorbox}[colback=white]
  19248. \begin{lstlisting}
  19249. def join_types(self, t1, t2):
  19250. match (t1, t2):
  19251. case (AnyType(), _):
  19252. return t2
  19253. case (_, AnyType()):
  19254. return t1
  19255. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19256. return FunctionType(list(map(self.join_types, ps1, ps2)),
  19257. self.join_types(rt1,rt2))
  19258. case (TupleType(ts1), TupleType(ts2)):
  19259. return TupleType(list(map(self.join_types, ts1, ts2)))
  19260. case (_, _):
  19261. return t1
  19262. def check_consistent(self, t1, t2, e):
  19263. if not self.consistent(t1, t2):
  19264. raise Exception('error: ' + repr(t1) + ' inconsistent with ' \
  19265. + repr(t2) + ' in ' + repr(e))
  19266. \end{lstlisting}
  19267. \end{tcolorbox}
  19268. \caption{Auxiliary methods for type checking \LangGrad{}.}
  19269. \label{fig:type-check-Lgradual-aux}
  19270. \end{figure}
  19271. \fi}
  19272. {\if\edition\racketEd
  19273. \begin{figure}[tbp]
  19274. \begin{tcolorbox}[colback=white]
  19275. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19276. (define/override (type-check-exp env)
  19277. (lambda (e)
  19278. (define recur (type-check-exp env))
  19279. (match e
  19280. [(Prim op es) #:when (not (set-member? explicit-prim-ops op))
  19281. (define-values (new-es ts)
  19282. (for/lists (exprs types) ([e es])
  19283. (recur e)))
  19284. (define t-ret (type-check-op op ts e))
  19285. (values (Prim op new-es) t-ret)]
  19286. [(Prim 'eq? (list e1 e2))
  19287. (define-values (e1^ t1) (recur e1))
  19288. (define-values (e2^ t2) (recur e2))
  19289. (check-consistent? t1 t2 e)
  19290. (define T (meet t1 t2))
  19291. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  19292. [(Prim 'and (list e1 e2))
  19293. (recur (If e1 e2 (Bool #f)))]
  19294. [(Prim 'or (list e1 e2))
  19295. (define tmp (gensym 'tmp))
  19296. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  19297. [(If e1 e2 e3)
  19298. (define-values (e1^ T1) (recur e1))
  19299. (define-values (e2^ T2) (recur e2))
  19300. (define-values (e3^ T3) (recur e3))
  19301. (check-consistent? T1 'Boolean e)
  19302. (check-consistent? T2 T3 e)
  19303. (define Tif (meet T2 T3))
  19304. (values (If e1^ e2^ e3^) Tif)]
  19305. [(SetBang x e1)
  19306. (define-values (e1^ T1) (recur e1))
  19307. (define varT (dict-ref env x))
  19308. (check-consistent? T1 varT e)
  19309. (values (SetBang x e1^) 'Void)]
  19310. [(WhileLoop e1 e2)
  19311. (define-values (e1^ T1) (recur e1))
  19312. (check-consistent? T1 'Boolean e)
  19313. (define-values (e2^ T2) ((type-check-exp env) e2))
  19314. (values (WhileLoop e1^ e2^) 'Void)]
  19315. [(Prim 'vector-length (list e1))
  19316. (define-values (e1^ t) (recur e1))
  19317. (match t
  19318. [`(Vector ,ts ...)
  19319. (values (Prim 'vector-length (list e1^)) 'Integer)]
  19320. ['Any (values (Prim 'vector-length (list e1^)) 'Integer)])]
  19321. \end{lstlisting}
  19322. \end{tcolorbox}
  19323. \caption{Type checker for the \LangGrad{} language, part 1.}
  19324. \label{fig:type-check-Lgradual-1}
  19325. \end{figure}
  19326. \begin{figure}[tbp]
  19327. \begin{tcolorbox}[colback=white]
  19328. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19329. [(Prim 'vector-ref (list e1 e2))
  19330. (define-values (e1^ t1) (recur e1))
  19331. (define-values (e2^ t2) (recur e2))
  19332. (check-consistent? t2 'Integer e)
  19333. (match t1
  19334. [`(Vector ,ts ...)
  19335. (match e2^
  19336. [(Int i)
  19337. (unless (and (0 . <= . i) (i . < . (length ts)))
  19338. (error 'type-check "invalid index ~a in ~a" i e))
  19339. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  19340. [else (values (Prim 'vector-ref (list e1^ e2^)) 'Any)])]
  19341. ['Any (values (Prim 'vector-ref (list e1^ e2^)) 'Any)]
  19342. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19343. [(Prim 'vector-set! (list e1 e2 e3) )
  19344. (define-values (e1^ t1) (recur e1))
  19345. (define-values (e2^ t2) (recur e2))
  19346. (define-values (e3^ t3) (recur e3))
  19347. (check-consistent? t2 'Integer e)
  19348. (match t1
  19349. [`(Vector ,ts ...)
  19350. (match e2^
  19351. [(Int i)
  19352. (unless (and (0 . <= . i) (i . < . (length ts)))
  19353. (error 'type-check "invalid index ~a in ~a" i e))
  19354. (check-consistent? (list-ref ts i) t3 e)
  19355. (values (Prim 'vector-set! (list e1^ (Int i) e3^)) 'Void)]
  19356. [else (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)])]
  19357. ['Any (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)]
  19358. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19359. [(Apply e1 e2s)
  19360. (define-values (e1^ T1) (recur e1))
  19361. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  19362. (match T1
  19363. [`(,T1ps ... -> ,T1rt)
  19364. (for ([T2 T2s] [Tp T1ps])
  19365. (check-consistent? T2 Tp e))
  19366. (values (Apply e1^ e2s^) T1rt)]
  19367. [`Any (values (Apply e1^ e2s^) 'Any)]
  19368. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  19369. [(Lambda params Tr e1)
  19370. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  19371. (match p
  19372. [`[,x : ,T] (values x T)]
  19373. [(? symbol? x) (values x 'Any)])))
  19374. (define-values (e1^ T1)
  19375. ((type-check-exp (append (map cons xs Ts) env)) e1))
  19376. (check-consistent? Tr T1 e)
  19377. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr e1^)
  19378. `(,@Ts -> ,Tr))]
  19379. [else ((super type-check-exp env) e)]
  19380. )))
  19381. \end{lstlisting}
  19382. \end{tcolorbox}
  19383. \caption{Type checker for the \LangGrad{} language, part 2.}
  19384. \label{fig:type-check-Lgradual-2}
  19385. \end{figure}
  19386. \begin{figure}[tbp]
  19387. \begin{tcolorbox}[colback=white]
  19388. \begin{lstlisting}
  19389. (define/override (type-check-def env)
  19390. (lambda (e)
  19391. (match e
  19392. [(Def f params rt info body)
  19393. (define-values (xs ps) (for/lists (l1 l2) ([p params])
  19394. (match p
  19395. [`[,x : ,T] (values x T)]
  19396. [(? symbol? x) (values x 'Any)])))
  19397. (define new-env (append (map cons xs ps) env))
  19398. (define-values (body^ ty^) ((type-check-exp new-env) body))
  19399. (check-consistent? ty^ rt e)
  19400. (Def f (for/list ([x xs] [T ps]) `[,x : ,T]) rt info body^)]
  19401. [else (error 'type-check "ill-formed function definition ~a" e)]
  19402. )))
  19403. (define/override (type-check-program e)
  19404. (match e
  19405. [(Program info body)
  19406. (define-values (body^ ty) ((type-check-exp '()) body))
  19407. (check-consistent? ty 'Integer e)
  19408. (ProgramDefsExp info '() body^)]
  19409. [(ProgramDefsExp info ds body)
  19410. (define new-env (for/list ([d ds])
  19411. (cons (Def-name d) (fun-def-type d))))
  19412. (define ds^ (for/list ([d ds])
  19413. ((type-check-def new-env) d)))
  19414. (define-values (body^ ty) ((type-check-exp new-env) body))
  19415. (check-consistent? ty 'Integer e)
  19416. (ProgramDefsExp info ds^ body^)]
  19417. [else (super type-check-program e)]))
  19418. \end{lstlisting}
  19419. \end{tcolorbox}
  19420. \caption{Type checker for the \LangGrad{} language, part 3.}
  19421. \label{fig:type-check-Lgradual-3}
  19422. \end{figure}
  19423. \begin{figure}[tbp]
  19424. \begin{tcolorbox}[colback=white]
  19425. \begin{lstlisting}
  19426. (define/public (join t1 t2)
  19427. (match* (t1 t2)
  19428. [('Integer 'Integer) 'Integer]
  19429. [('Boolean 'Boolean) 'Boolean]
  19430. [('Void 'Void) 'Void]
  19431. [('Any t2) t2]
  19432. [(t1 'Any) t1]
  19433. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19434. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  19435. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19436. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  19437. -> ,(join rt1 rt2))]))
  19438. (define/public (meet t1 t2)
  19439. (match* (t1 t2)
  19440. [('Integer 'Integer) 'Integer]
  19441. [('Boolean 'Boolean) 'Boolean]
  19442. [('Void 'Void) 'Void]
  19443. [('Any t2) 'Any]
  19444. [(t1 'Any) 'Any]
  19445. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19446. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  19447. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19448. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  19449. -> ,(meet rt1 rt2))]))
  19450. (define/public (check-consistent? t1 t2 e)
  19451. (unless (consistent? t1 t2)
  19452. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  19453. (define explicit-prim-ops
  19454. (set-union
  19455. (type-predicates)
  19456. (set 'procedure-arity 'eq? 'not 'and 'or
  19457. 'vector 'vector-length 'vector-ref 'vector-set!
  19458. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  19459. (define/override (fun-def-type d)
  19460. (match d
  19461. [(Def f params rt info body)
  19462. (define ps
  19463. (for/list ([p params])
  19464. (match p
  19465. [`[,x : ,T] T]
  19466. [(? symbol?) 'Any]
  19467. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  19468. `(,@ps -> ,rt)]
  19469. [else (error 'fun-def-type "ill-formed definition in ~a" d)]))
  19470. \end{lstlisting}
  19471. \end{tcolorbox}
  19472. \caption{Auxiliary functions for type checking \LangGrad{}.}
  19473. \label{fig:type-check-Lgradual-aux}
  19474. \end{figure}
  19475. \fi}
  19476. \section{Interpreting \LangCast{} }
  19477. \label{sec:interp-casts}
  19478. The runtime behavior of casts involving simple types such as
  19479. \INTTY{} and \BOOLTY{} is straightforward. For example, a
  19480. cast from \INTTY{} to \CANYTY{} can be accomplished with the
  19481. \code{Inject} operator of \LangAny{}, which puts the integer into a
  19482. tagged value (figure~\ref{fig:interp-Lany}). Similarly, a cast from
  19483. \CANYTY{} to \INTTY{} is accomplished with the \code{Project}
  19484. operator, by checking the value's tag and either retrieving
  19485. the underlying integer or signaling an error if the tag is not the
  19486. one for integers (figure~\ref{fig:interp-Lany-aux}).
  19487. %
  19488. Things get more interesting with casts involving
  19489. \racket{function and tuple types}\python{function, tuple, and array types}.
  19490. Consider the cast of the function \code{maybe\_inc} from
  19491. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any], Any]}}
  19492. to
  19493. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int], int]}}
  19494. shown in figure~\ref{fig:map-maybe_inc}.
  19495. When the \code{maybe\_inc} function flows through
  19496. this cast at runtime, we don't know whether it will return
  19497. an integer, because that depends on the input from the user.
  19498. The \LangCast{} interpreter therefore delays the checking
  19499. of the cast until the function is applied. To do so it
  19500. wraps \code{maybe\_inc} in a new function that casts its parameter
  19501. from \INTTY{} to \CANYTY{}, applies \code{maybe\_inc}, and then
  19502. casts the return value from \CANYTY{} to \INTTY{}.
  19503. {\if\edition\pythonEd\pythonColor
  19504. %
  19505. There are further complications regarding casts on mutable data,
  19506. such as the \code{list} type introduced in
  19507. the challenge assignment of section~\ref{sec:arrays}.
  19508. %
  19509. \fi}
  19510. %
  19511. Consider the example presented in figure~\ref{fig:map-bang} that
  19512. defines a partially typed version of \code{map} whose parameter
  19513. \code{v} has type
  19514. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}
  19515. and that updates \code{v} in place
  19516. instead of returning a new tuple. We name this function
  19517. \code{map\_inplace}. We apply \code{map\_inplace} to
  19518. \racket{a tuple}\python{an array} of integers, so the type checker
  19519. inserts a cast from
  19520. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}}
  19521. to
  19522. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}.
  19523. A naive way for the \LangCast{} interpreter to cast between
  19524. \racket{tuple}\python{array} types would be to build a new
  19525. \racket{tuple}\python{array} whose elements are the result
  19526. of casting each of the original elements to the target
  19527. type. However, this approach is not valid for mutable data structures.
  19528. In the example of figure~\ref{fig:map-bang},
  19529. if the cast created a new \racket{tuple}\python{array}, then the updates inside
  19530. \code{map\_inplace} would happen to the new \racket{tuple}\python{array} and not
  19531. the original one.
  19532. Instead the interpreter needs to create a new kind of value, a
  19533. \emph{proxy}, that intercepts every \racket{tuple}\python{array} operation.
  19534. On a read, the proxy reads from the underlying \racket{tuple}\python{array}
  19535. and then applies a
  19536. cast to the resulting value. On a write, the proxy casts the argument
  19537. value and then performs the write to the underlying \racket{tuple}\python{array}.
  19538. \racket{
  19539. For the first \code{(vector-ref v 0)} in \code{map\_inplace}, the proxy casts
  19540. \code{0} from \INTTY{} to \CANYTY{}.
  19541. For the first \code{vector-set!}, the proxy casts a tagged \code{1}
  19542. from \CANYTY{} to \INTTY{}.
  19543. }
  19544. \python{
  19545. For the subscript \code{v[i]} in \code{f(v[i])} of \code{map\_inplace},
  19546. the proxy casts the integer from \INTTY{} to \CANYTY{}.
  19547. For the subscript on the left of the assignment,
  19548. the proxy casts the tagged value from \CANYTY{} to \INTTY{}.
  19549. }
  19550. Finally we consider casts between the \CANYTY{} type and higher-order types
  19551. such as functions and \racket{tuples}\python{lists}. Figure~\ref{fig:map-any}
  19552. shows a variant of \code{map\_inplace} in which parameter \code{v} does not
  19553. have a type annotation, so it is given type \CANYTY{}. In the call to
  19554. \code{map\_inplace}, the \racket{tuple}\python{list} has type
  19555. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}},
  19556. so the type checker inserts a cast to \CANYTY{}. A first thought is to use
  19557. \code{Inject}, but that doesn't work because
  19558. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}} is not
  19559. a flat type. Instead, we must first cast to
  19560. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}, which is flat,
  19561. and then inject to \CANYTY{}.
  19562. \begin{figure}[tbp]
  19563. \begin{tcolorbox}[colback=white]
  19564. % gradual_test_11.rkt
  19565. {\if\edition\racketEd
  19566. \begin{lstlisting}
  19567. (define (map_inplace [f : (Any -> Any)]
  19568. [v : (Vector Any Any)]) : Void
  19569. (begin
  19570. (vector-set! v 0 (f (vector-ref v 0)))
  19571. (vector-set! v 1 (f (vector-ref v 1)))))
  19572. (define (inc x) (+ x 1))
  19573. (let ([v (vector 0 41)])
  19574. (begin (map_inplace inc v) (vector-ref v 1)))
  19575. \end{lstlisting}
  19576. \fi}
  19577. {\if\edition\pythonEd\pythonColor
  19578. \begin{lstlisting}
  19579. def map_inplace(f : Callable[[int], int], v : list[Any]) -> None:
  19580. i = 0
  19581. while i != len(v):
  19582. v[i] = f(v[i])
  19583. i = i + 1
  19584. def inc(x : int) -> int:
  19585. return x + 1
  19586. v = [0, 41]
  19587. map_inplace(inc, v)
  19588. print(v[1])
  19589. \end{lstlisting}
  19590. \fi}
  19591. \end{tcolorbox}
  19592. \caption{An example involving casts on arrays.}
  19593. \label{fig:map-bang}
  19594. \end{figure}
  19595. \begin{figure}[btp]
  19596. \begin{tcolorbox}[colback=white]
  19597. {\if\edition\racketEd
  19598. \begin{lstlisting}
  19599. (define (map_inplace [f : (Any -> Any)] v) : Void
  19600. (begin
  19601. (vector-set! v 0 (f (vector-ref v 0)))
  19602. (vector-set! v 1 (f (vector-ref v 1)))))
  19603. (define (inc x) (+ x 1))
  19604. (let ([v (vector 0 41)])
  19605. (begin (map_inplace inc v) (vector-ref v 1)))
  19606. \end{lstlisting}
  19607. \fi}
  19608. {\if\edition\pythonEd\pythonColor
  19609. \begin{lstlisting}
  19610. def map_inplace(f : Callable[[Any], Any], v) -> None:
  19611. i = 0
  19612. while i != len(v):
  19613. v[i] = f(v[i])
  19614. i = i + 1
  19615. def inc(x):
  19616. return x + 1
  19617. v = [0, 41]
  19618. map_inplace(inc, v)
  19619. print(v[1])
  19620. \end{lstlisting}
  19621. \fi}
  19622. \end{tcolorbox}
  19623. \caption{Casting \racket{a tuple}\python{an array} to \CANYTY{}.}
  19624. \label{fig:map-any}
  19625. \end{figure}
  19626. \begin{figure}[tbp]
  19627. \begin{tcolorbox}[colback=white]
  19628. {\if\edition\racketEd
  19629. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19630. (define/public (apply_cast v s t)
  19631. (match* (s t)
  19632. [(t1 t2) #:when (equal? t1 t2) v]
  19633. [('Any t2)
  19634. (match t2
  19635. [`(,ts ... -> ,rt)
  19636. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19637. (define v^ (apply-project v any->any))
  19638. (apply_cast v^ any->any `(,@ts -> ,rt))]
  19639. [`(Vector ,ts ...)
  19640. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19641. (define v^ (apply-project v vec-any))
  19642. (apply_cast v^ vec-any `(Vector ,@ts))]
  19643. [else (apply-project v t2)])]
  19644. [(t1 'Any)
  19645. (match t1
  19646. [`(,ts ... -> ,rt)
  19647. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19648. (define v^ (apply_cast v `(,@ts -> ,rt) any->any))
  19649. (apply-inject v^ (any-tag any->any))]
  19650. [`(Vector ,ts ...)
  19651. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19652. (define v^ (apply_cast v `(Vector ,@ts) vec-any))
  19653. (apply-inject v^ (any-tag vec-any))]
  19654. [else (apply-inject v (any-tag t1))])]
  19655. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19656. (define x (gensym 'x))
  19657. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  19658. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  19659. (define cast-writes
  19660. (for/list ([t1 ts1] [t2 ts2])
  19661. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  19662. `(vector-proxy ,(vector v (apply vector cast-reads)
  19663. (apply vector cast-writes)))]
  19664. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19665. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  19666. `(function ,xs ,(Cast
  19667. (Apply (Value v)
  19668. (for/list ([x xs][t1 ts1][t2 ts2])
  19669. (Cast (Var x) t2 t1)))
  19670. rt1 rt2) ())]
  19671. ))
  19672. \end{lstlisting}
  19673. \fi}
  19674. {\if\edition\pythonEd\pythonColor
  19675. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19676. def apply_cast(self, value, src, tgt):
  19677. match (src, tgt):
  19678. case (AnyType(), FunctionType(ps2, rt2)):
  19679. anyfun = FunctionType([AnyType() for p in ps2], AnyType())
  19680. return self.apply_cast(self.apply_project(value, anyfun), anyfun, tgt)
  19681. case (AnyType(), TupleType(ts2)):
  19682. anytup = TupleType([AnyType() for t1 in ts2])
  19683. return self.apply_cast(self.apply_project(value, anytup), anytup, tgt)
  19684. case (AnyType(), ListType(t2)):
  19685. anylist = ListType([AnyType() for t1 in ts2])
  19686. return self.apply_cast(self.apply_project(value, anylist), anylist, tgt)
  19687. case (AnyType(), AnyType()):
  19688. return value
  19689. case (AnyType(), _):
  19690. return self.apply_project(value, tgt)
  19691. case (FunctionType(ps1,rt1), AnyType()):
  19692. anyfun = FunctionType([AnyType() for p in ps1], AnyType())
  19693. return self.apply_inject(self.apply_cast(value, src, anyfun), anyfun)
  19694. case (TupleType(ts1), AnyType()):
  19695. anytup = TupleType([AnyType() for t1 in ts1])
  19696. return self.apply_inject(self.apply_cast(value, src, anytup), anytup)
  19697. case (ListType(t1), AnyType()):
  19698. anylist = ListType(AnyType())
  19699. return self.apply_inject(self.apply_cast(value,src,anylist), anylist)
  19700. case (_, AnyType()):
  19701. return self.apply_inject(value, src)
  19702. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19703. params = [generate_name('x') for p in ps2]
  19704. args = [Cast(Name(x), t2, t1)
  19705. for (x,t1,t2) in zip(params, ps1, ps2)]
  19706. body = Cast(Call(ValueExp(value), args), rt1, rt2)
  19707. return Function('cast', params, [Return(body)], {})
  19708. case (TupleType(ts1), TupleType(ts2)):
  19709. x = generate_name('x')
  19710. reads = [Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19711. for (t1,t2) in zip(ts1,ts2)]
  19712. return ProxiedTuple(value, reads)
  19713. case (ListType(t1), ListType(t2)):
  19714. x = generate_name('x')
  19715. read = Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19716. write = Function('cast', [x], [Return(Cast(Name(x), t2, t1))], {})
  19717. return ProxiedList(value, read, write)
  19718. case (t1, t2) if t1 == t2:
  19719. return value
  19720. case (t1, t2):
  19721. raise Exception('apply_cast unexpected ' + repr(src) + ' ' + repr(tgt))
  19722. def apply_inject(self, value, src):
  19723. return Tagged(value, self.type_to_tag(src))
  19724. def apply_project(self, value, tgt):
  19725. match value:
  19726. case Tagged(val, tag) if self.type_to_tag(tgt) == tag:
  19727. return val
  19728. case _:
  19729. raise Exception('apply_project, unexpected ' + repr(value))
  19730. \end{lstlisting}
  19731. \fi}
  19732. \end{tcolorbox}
  19733. \caption{The \code{apply\_cast} auxiliary method.}
  19734. \label{fig:apply_cast}
  19735. \end{figure}
  19736. The \LangCast{} interpreter uses an auxiliary function named
  19737. \code{apply\_cast} to cast a value from a source type to a target type,
  19738. shown in figure~\ref{fig:apply_cast}. You'll find that it handles all
  19739. the kinds of casts that we've discussed in this section.
  19740. %
  19741. The definition of the interpreter for \LangCast{} is shown in
  19742. figure~\ref{fig:interp-Lcast}, with the case for \code{Cast}
  19743. dispatching to \code{apply\_cast}.
  19744. \racket{To handle the addition of tuple
  19745. proxies, we update the tuple primitives in \code{interp-op} using the
  19746. functions given in figure~\ref{fig:guarded-tuple}.}
  19747. Next we turn to the individual passes needed for compiling \LangGrad{}.
  19748. \begin{figure}[tbp]
  19749. \begin{tcolorbox}[colback=white]
  19750. {\if\edition\racketEd
  19751. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19752. (define interp-Lcast-class
  19753. (class interp-Llambda-class
  19754. (super-new)
  19755. (inherit apply-fun apply-inject apply-project)
  19756. (define/override (interp-op op)
  19757. (match op
  19758. ['vector-length guarded-vector-length]
  19759. ['vector-ref guarded-vector-ref]
  19760. ['vector-set! guarded-vector-set!]
  19761. ['any-vector-ref (lambda (v i)
  19762. (match v [`(tagged ,v^ ,tg)
  19763. (guarded-vector-ref v^ i)]))]
  19764. ['any-vector-set! (lambda (v i a)
  19765. (match v [`(tagged ,v^ ,tg)
  19766. (guarded-vector-set! v^ i a)]))]
  19767. ['any-vector-length (lambda (v)
  19768. (match v [`(tagged ,v^ ,tg)
  19769. (guarded-vector-length v^)]))]
  19770. [else (super interp-op op)]
  19771. ))
  19772. (define/override ((interp-exp env) e)
  19773. (define (recur e) ((interp-exp env) e))
  19774. (match e
  19775. [(Value v) v]
  19776. [(Cast e src tgt) (apply_cast (recur e) src tgt)]
  19777. [else ((super interp-exp env) e)]))
  19778. ))
  19779. (define (interp-Lcast p)
  19780. (send (new interp-Lcast-class) interp-program p))
  19781. \end{lstlisting}
  19782. \fi}
  19783. {\if\edition\pythonEd\pythonColor
  19784. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19785. class InterpLcast(InterpLany):
  19786. def interp_exp(self, e, env):
  19787. match e:
  19788. case Cast(value, src, tgt):
  19789. v = self.interp_exp(value, env)
  19790. return self.apply_cast(v, src, tgt)
  19791. case ValueExp(value):
  19792. return value
  19793. ...
  19794. case _:
  19795. return super().interp_exp(e, env)
  19796. \end{lstlisting}
  19797. \fi}
  19798. \end{tcolorbox}
  19799. \caption{The interpreter for \LangCast{}.}
  19800. \label{fig:interp-Lcast}
  19801. \end{figure}
  19802. {\if\edition\racketEd
  19803. \begin{figure}[tbp]
  19804. \begin{tcolorbox}[colback=white]
  19805. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19806. (define (guarded-vector-ref vec i)
  19807. (match vec
  19808. [`(vector-proxy ,proxy)
  19809. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  19810. (define rd (vector-ref (vector-ref proxy 1) i))
  19811. (apply-fun rd (list val) 'guarded-vector-ref)]
  19812. [else (vector-ref vec i)]))
  19813. (define (guarded-vector-set! vec i arg)
  19814. (match vec
  19815. [`(vector-proxy ,proxy)
  19816. (define wr (vector-ref (vector-ref proxy 2) i))
  19817. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  19818. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  19819. [else (vector-set! vec i arg)]))
  19820. (define (guarded-vector-length vec)
  19821. (match vec
  19822. [`(vector-proxy ,proxy)
  19823. (guarded-vector-length (vector-ref proxy 0))]
  19824. [else (vector-length vec)]))
  19825. \end{lstlisting}
  19826. %% {\if\edition\pythonEd\pythonColor
  19827. %% \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19828. %% UNDER CONSTRUCTION
  19829. %% \end{lstlisting}
  19830. %% \fi}
  19831. \end{tcolorbox}
  19832. \caption{The \code{guarded-vector} auxiliary functions.}
  19833. \label{fig:guarded-tuple}
  19834. \end{figure}
  19835. \fi}
  19836. {\if\edition\pythonEd\pythonColor
  19837. \section{Overload Resolution }
  19838. \label{sec:gradual-resolution}
  19839. Recall that when we added support for arrays in
  19840. section~\ref{sec:arrays}, the syntax for the array operations were the
  19841. same as for tuple operations (for example, accessing an element and
  19842. getting the length). So we performed overload resolution, with a pass
  19843. named \code{resolve}, to separate the array and tuple operations. In
  19844. particular, we introduced the primitives \code{array\_load},
  19845. \code{array\_store}, and \code{array\_len}.
  19846. For gradual typing, we further overload these operators to work on
  19847. values of type \CANYTY{}. Thus, the \code{resolve} pass should be
  19848. updated with new cases for the \CANYTY{} type, translating the element
  19849. access and length operations to the primitives \code{any\_load},
  19850. \code{any\_store}, and \code{any\_len}.
  19851. \fi}
  19852. \section{Cast Insertion }
  19853. \label{sec:gradual-insert-casts}
  19854. In our discussion of type checking of \LangGrad{}, we mentioned how
  19855. the runtime aspect of type checking is carried out by the \code{Cast}
  19856. AST node, which is added to the program by a new pass named
  19857. \code{cast\_insert}. The target of this pass is the \LangCast{}
  19858. language. We now discuss the details of this pass.
  19859. The \code{cast\_insert} pass is closely related to the type checker
  19860. for \LangGrad{} (starting in figure~\ref{fig:type-check-Lgradual-1}).
  19861. In particular, the type checker allows implicit casts between
  19862. consistent types. The job of the \code{cast\_insert} pass is to make
  19863. those casts explicit. It does so by inserting
  19864. \code{Cast} nodes into the AST.
  19865. %
  19866. For the most part, the implicit casts occur in places where the type
  19867. checker checks two types for consistency. Consider the case for
  19868. binary operators in figure~\ref{fig:type-check-Lgradual-1}. The type
  19869. checker requires that the type of the left operand is consistent with
  19870. \INTTY{}. Thus, the \code{cast\_insert} pass should insert a
  19871. \code{Cast} around the left operand, converting from its type to
  19872. \INTTY{}. The story is similar for the right operand. It is not always
  19873. necessary to insert a cast, for example, if the left operand already has type
  19874. \INTTY{} then there is no need for a \code{Cast}.
  19875. Some of the implicit casts are not as straightforward. One such case
  19876. arises with the
  19877. conditional expression. In figure~\ref{fig:type-check-Lgradual-1} we
  19878. see that the type checker requires that the two branches have
  19879. consistent types and that type of the conditional expression is the
  19880. meet of the branches' types. In the target language \LangCast{}, both
  19881. branches will need to have the same type, and that type
  19882. will be the type of the conditional expression. Thus, each branch requires
  19883. a \code{Cast} to convert from its type to the meet of the branches' types.
  19884. The case for the function call exhibits another interesting situation. If
  19885. the function expression is of type \CANYTY{}, then it needs to be cast
  19886. to a function type so that it can be used in a function call in
  19887. \LangCast{}. Which function type should it be cast to? The parameter
  19888. and return types are unknown, so we can simply use \CANYTY{} for all
  19889. of them. Furthermore, in \LangCast{} the argument types will need to
  19890. exactly match the parameter types, so we must cast all the arguments
  19891. to type \CANYTY{} (if they are not already of that type).
  19892. {\if\edition\racketEd
  19893. %
  19894. Likewise, the cases for the tuple operators \code{vector-length},
  19895. \code{vector-ref}, and \code{vector-set!} need to handle the situation
  19896. where the tuple expression is of type \CANYTY{}. Instead of
  19897. handling these situations with casts, we recommend translating
  19898. the special-purpose variants of the tuple operators that handle
  19899. tuples of type \CANYTY{}: \code{any-vector-length},
  19900. \code{any-vector-ref}, and \code{any-vector-set!}.
  19901. %
  19902. \fi}
  19903. \section{Lower Casts }
  19904. \label{sec:lower_casts}
  19905. The next step in the journey toward x86 is the \code{lower\_casts}
  19906. pass that translates the casts in \LangCast{} to the lower-level
  19907. \code{Inject} and \code{Project} operators and new operators for
  19908. proxies, extending the \LangLam{} language to \LangProxy{}.
  19909. The \LangProxy{} language can also be described as an extension of
  19910. \LangAny{}, with the addition of proxies. We recommend creating an
  19911. auxiliary function named \code{lower\_cast} that takes an expression
  19912. (in \LangCast{}), a source type, and a target type and translates it
  19913. to an expression in \LangProxy{}.
  19914. The \code{lower\_cast} function can follow a code structure similar to
  19915. the \code{apply\_cast} function (figure~\ref{fig:apply_cast}) used in
  19916. the interpreter for \LangCast{}, because it must handle the same cases
  19917. as \code{apply\_cast} and it needs to mimic the behavior of
  19918. \code{apply\_cast}. The most interesting cases concern
  19919. the casts involving \racket{tuple and function types}\python{tuple, array, and function types}.
  19920. {\if\edition\racketEd
  19921. As mentioned in section~\ref{sec:interp-casts}, a cast from one tuple
  19922. type to another tuple type is accomplished by creating a proxy that
  19923. intercepts the operations on the underlying tuple. Here we make the
  19924. creation of the proxy explicit with the \code{vector-proxy} AST
  19925. node. It takes three arguments: the first is an expression for the
  19926. tuple, the second is a tuple of functions for casting an element that is
  19927. being read from the tuple, and the third is a tuple of functions for
  19928. casting an element that is being written to the array. You can create
  19929. the functions for reading and writing using lambda expressions. Also,
  19930. as we show in the next section, we need to differentiate these tuples
  19931. of functions from the user-created ones, so we recommend using a new
  19932. AST node named \code{raw-vector} instead of \code{vector}.
  19933. %
  19934. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19935. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19936. that involved casting a tuple of integers to a tuple of \CANYTY{}.
  19937. \fi}
  19938. {\if\edition\pythonEd\pythonColor
  19939. As mentioned in section~\ref{sec:interp-casts}, a cast from one array
  19940. type to another array type is accomplished by creating a proxy that
  19941. intercepts the operations on the underlying array. Here we make the
  19942. creation of the proxy explicit with the \code{ListProxy} AST node. It
  19943. takes fives arguments: the first is an expression for the array, the
  19944. second is a function for casting an element that is being read from
  19945. the array, the third is a function for casting an element that is
  19946. being written to the array, the fourth is the type of the underlying
  19947. array, and the fifth is the type of the proxied array. You can create
  19948. the functions for reading and writing using lambda expressions.
  19949. A cast between two tuple types can be handled in a similar manner. We
  19950. create a proxy with the \code{TupleProxy} AST node. Tuples are
  19951. immutable, so there is no need for a function to cast the value during
  19952. a write. Because there is a separate element type for each slot in
  19953. the tuple, we need more than one function for casting during a read:
  19954. we need a tuple of functions.
  19955. %
  19956. Also, as we show in the next section, we need to differentiate these
  19957. tuples from the user-created ones, so we recommend using a new AST
  19958. node named \code{RawTuple} instead of \code{Tuple} to create the
  19959. tuples of functions.
  19960. %
  19961. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19962. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19963. that involves casting an array of integers to an array of \CANYTY{}.
  19964. \fi}
  19965. \begin{figure}[tbp]
  19966. \begin{tcolorbox}[colback=white]
  19967. {\if\edition\racketEd
  19968. \begin{lstlisting}
  19969. (define (map_inplace [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  19970. (begin
  19971. (vector-set! v 0 (f (vector-ref v 0)))
  19972. (vector-set! v 1 (f (vector-ref v 1)))))
  19973. (define (inc [x : Any]) : Any
  19974. (inject (+ (project x Integer) 1) Integer))
  19975. (let ([v (vector 0 41)])
  19976. (begin
  19977. (map_inplace inc (vector-proxy v
  19978. (raw-vector (lambda: ([x9 : Integer]) : Any
  19979. (inject x9 Integer))
  19980. (lambda: ([x9 : Integer]) : Any
  19981. (inject x9 Integer)))
  19982. (raw-vector (lambda: ([x9 : Any]) : Integer
  19983. (project x9 Integer))
  19984. (lambda: ([x9 : Any]) : Integer
  19985. (project x9 Integer)))))
  19986. (vector-ref v 1)))
  19987. \end{lstlisting}
  19988. \fi}
  19989. {\if\edition\pythonEd\pythonColor
  19990. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19991. def map_inplace(f : Callable[[int], int], v : list[Any]) -> void:
  19992. i = 0
  19993. while i != array_len(v):
  19994. array_store(v, i, inject(f(project(array_load(v, i), int)), int))
  19995. i = (i + 1)
  19996. def inc(x : int) -> int:
  19997. return (x + 1)
  19998. def main() -> int:
  19999. v = [0, 41]
  20000. map_inplace(inc, array_proxy(v, list[int], list[Any]))
  20001. print(array_load(v, 1))
  20002. return 0
  20003. \end{lstlisting}
  20004. \fi}
  20005. \end{tcolorbox}
  20006. \caption{Output of \code{lower\_casts} on the example shown in
  20007. figure~\ref{fig:map-bang}.}
  20008. \label{fig:map-bang-lower-cast}
  20009. \end{figure}
  20010. A cast from one function type to another function type is accomplished
  20011. by generating a \code{lambda} whose parameter and return types match
  20012. the target function type. The body of the \code{lambda} should cast
  20013. the parameters from the target type to the source type. (Yes,
  20014. backward! Functions are contravariant\index{subject}{contravariant}
  20015. in the parameters.) Afterward, call the underlying function and then
  20016. cast the result from the source return type to the target return type.
  20017. Figure~\ref{fig:map-lower-cast} shows the output of the
  20018. \code{lower\_casts} pass on the \code{map} example given in
  20019. figure~\ref{fig:gradual-map}. Note that the \code{inc} argument in the
  20020. call to \code{map} is wrapped in a \code{lambda}.
  20021. \begin{figure}[tbp]
  20022. \begin{tcolorbox}[colback=white]
  20023. {\if\edition\racketEd
  20024. \begin{lstlisting}
  20025. (define (map [f : (Integer -> Integer)]
  20026. [v : (Vector Integer Integer)])
  20027. : (Vector Integer Integer)
  20028. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  20029. (define (inc [x : Any]) : Any
  20030. (inject (+ (project x Integer) 1) Integer))
  20031. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  20032. (project (inc (inject x9 Integer)) Integer))
  20033. (vector 0 41)) 1)
  20034. \end{lstlisting}
  20035. \fi}
  20036. {\if\edition\pythonEd\pythonColor
  20037. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  20038. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  20039. return (f(v[0]), f(v[1]),)
  20040. def inc(x : any) -> any:
  20041. return inject((project(x, int) + 1), int)
  20042. def main() -> int:
  20043. t = map(lambda x: project(inc(inject(x, int)), int), (0, 41,))
  20044. print(t[1])
  20045. return 0
  20046. \end{lstlisting}
  20047. \fi}
  20048. \end{tcolorbox}
  20049. \caption{Output of \code{lower\_casts} on the example shown in
  20050. figure~\ref{fig:gradual-map}.}
  20051. \label{fig:map-lower-cast}
  20052. \end{figure}
  20053. %\pagebreak
  20054. \section{Differentiate Proxies }
  20055. \label{sec:differentiate-proxies}
  20056. So far, the responsibility of differentiating tuples and tuple proxies
  20057. has been the job of the interpreter.
  20058. %
  20059. \racket{For example, the interpreter for \LangCast{} implements
  20060. \code{vector-ref} using the \code{guarded-vector-ref} function shown in
  20061. figure~\ref{fig:guarded-tuple}.}
  20062. %
  20063. In the \code{differentiate\_proxies} pass we shift this responsibility
  20064. to the generated code.
  20065. We begin by designing the output language \LangPVec{}. In \LangGrad{}
  20066. we used the type \TUPLETYPENAME{} for both
  20067. real tuples and tuple proxies.
  20068. \python{Similarly, we use the type \code{list} for both arrays and
  20069. array proxies.}
  20070. In \LangPVec{} we return the
  20071. \TUPLETYPENAME{} type to its original
  20072. meaning, as the type of just tuples, and we introduce a new type,
  20073. \PTUPLETYNAME{}, whose values
  20074. can be either real tuples or tuple
  20075. proxies.
  20076. %
  20077. {\if\edition\pythonEd\pythonColor
  20078. Likewise, we return the
  20079. \ARRAYTYPENAME{} type to its original
  20080. meaning, as the type of arrays, and we introduce a new type,
  20081. \PARRAYTYNAME{}, whose values
  20082. can be either arrays or array proxies.
  20083. These new types come with a suite of new primitive operations.
  20084. \fi}
  20085. {\if\edition\racketEd
  20086. A tuple proxy is represented by a tuple containing three things: (1) the
  20087. underlying tuple, (2) a tuple of functions for casting elements that
  20088. are read from the tuple, and (3) a tuple of functions for casting
  20089. values to be written to the tuple. So, we define the following
  20090. abbreviation for the type of a tuple proxy:
  20091. \[
  20092. \itm{TupleProxy} (T\ldots \Rightarrow T'\ldots)
  20093. = (\ttm{Vector}~\PTUPLETY{T\ldots} ~R~ W)
  20094. \]
  20095. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  20096. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  20097. %
  20098. Next we describe each of the new primitive operations.
  20099. \begin{description}
  20100. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  20101. (\key{PVector} $T \ldots$)]\ \\
  20102. %
  20103. This operation brands a vector as a value of the \code{PVector} type.
  20104. \item[\code{inject-proxy} : $\itm{TupleProxy}(T\ldots \Rightarrow T'\ldots)$
  20105. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  20106. %
  20107. This operation brands a vector proxy as value of the \code{PVector} type.
  20108. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  20109. \BOOLTY{}] \ \\
  20110. %
  20111. This returns true if the value is a tuple proxy and false if it is a
  20112. real tuple.
  20113. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  20114. (\key{Vector} $T \ldots$)]\ \\
  20115. %
  20116. Assuming that the input is a tuple, this operation returns the
  20117. tuple.
  20118. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  20119. $\to$ \INTTY{}]\ \\
  20120. %
  20121. Given a tuple proxy, this operation returns the length of the tuple.
  20122. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  20123. $\to$ ($i$ : \INTTY{}) $\to$ $T_i$]\ \\
  20124. %
  20125. Given a tuple proxy, this operation returns the $i$th element of the
  20126. tuple.
  20127. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  20128. : \INTTY{}) $\to$ $T_i$ $\to$ \key{Void}]\ \\
  20129. Given a tuple proxy, this operation writes a value to the $i$th element
  20130. of the tuple.
  20131. \end{description}
  20132. \fi}
  20133. {\if\edition\pythonEd\pythonColor
  20134. %
  20135. A tuple proxy is represented by a tuple containing (1) the underlying
  20136. tuple and (2) a tuple of functions for casting elements that are read
  20137. from the tuple. The \LangPVec{} language includes the following AST
  20138. classes and primitive functions.
  20139. \begin{description}
  20140. \item[\code{InjectTuple}] \ \\
  20141. %
  20142. This AST node brands a tuple as a value of the \PTUPLETYNAME{} type.
  20143. \item[\code{InjectTupleProxy}]\ \\
  20144. %
  20145. This AST node brands a tuple proxy as value of the \PTUPLETYNAME{} type.
  20146. \item[\code{is\_tuple\_proxy}]\ \\
  20147. %
  20148. This primitive returns true if the value is a tuple proxy and false
  20149. if it is a tuple.
  20150. \item[\code{project\_tuple}]\ \\
  20151. %
  20152. Converts a tuple that is branded as \PTUPLETYNAME{}
  20153. back to a tuple.
  20154. \item[\code{proxy\_tuple\_len}]\ \\
  20155. %
  20156. Given a tuple proxy, returns the length of the underlying tuple.
  20157. \item[\code{proxy\_tuple\_load}]\ \\
  20158. %
  20159. Given a tuple proxy, returns the $i$th element of the underlying
  20160. tuple.
  20161. \end{description}
  20162. An array proxy is represented by a tuple containing (1) the underlying
  20163. array, (2) a function for casting elements that are read from the
  20164. array, and (3) a function for casting elements that are written to the
  20165. array. The \LangPVec{} language includes the following AST classes
  20166. and primitive functions.
  20167. \begin{description}
  20168. \item[\code{InjectList}]\ \\
  20169. This AST node brands an array as a value of the \PARRAYTYNAME{} type.
  20170. \item[\code{InjectListProxy}]\ \\
  20171. %
  20172. This AST node brands an array proxy as a value of the \PARRAYTYNAME{} type.
  20173. \item[\code{is\_array\_proxy}]\ \\
  20174. %
  20175. Returns true if the value is an array proxy and false if it is an
  20176. array.
  20177. \item[\code{project\_array}]\ \\
  20178. %
  20179. Converts an array that is branded as \PARRAYTYNAME{} back to an
  20180. array.
  20181. \item[\code{proxy\_array\_len}]\ \\
  20182. %
  20183. Given an array proxy, returns the length of the underlying array.
  20184. \item[\code{proxy\_array\_load}]\ \\
  20185. %
  20186. Given an array proxy, returns the $i$th element of the underlying
  20187. array.
  20188. \item[\code{proxy\_array\_store}]\ \\
  20189. %
  20190. Given an array proxy, writes a value to the $i$th element of the
  20191. underlying array.
  20192. \end{description}
  20193. \fi}
  20194. Now we discuss the translation that differentiates tuples and arrays
  20195. from proxies. First, every type annotation in the program is
  20196. translated (recursively) to replace \TUPLETYPENAME{} with \PTUPLETYNAME{}.
  20197. Next, we insert uses of \PTUPLETYNAME{} operations in the appropriate
  20198. places. For example, we wrap every tuple creation with an
  20199. \racket{\code{inject-vector}}\python{\code{InjectTuple}}.
  20200. %
  20201. {\if\edition\racketEd
  20202. \begin{minipage}{0.96\textwidth}
  20203. \begin{lstlisting}
  20204. (vector |$e_1 \ldots e_n$|)
  20205. |$\Rightarrow$|
  20206. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  20207. \end{lstlisting}
  20208. \end{minipage}
  20209. \fi}
  20210. {\if\edition\pythonEd\pythonColor
  20211. \begin{lstlisting}
  20212. Tuple(|$e_1, \ldots, e_n$|)
  20213. |$\Rightarrow$|
  20214. InjectTuple(Tuple(|$e'_1, \ldots, e'_n$|))
  20215. \end{lstlisting}
  20216. \fi}
  20217. The \racket{\code{raw-vector}}\python{\code{RawTuple}}
  20218. AST node that we introduced in the previous
  20219. section does not get injected.
  20220. {\if\edition\racketEd
  20221. \begin{lstlisting}
  20222. (raw-vector |$e_1 \ldots e_n$|)
  20223. |$\Rightarrow$|
  20224. (vector |$e'_1 \ldots e'_n$|)
  20225. \end{lstlisting}
  20226. \fi}
  20227. {\if\edition\pythonEd\pythonColor
  20228. \begin{lstlisting}
  20229. RawTuple(|$e_1, \ldots, e_n$|)
  20230. |$\Rightarrow$|
  20231. Tuple(|$e'_1, \ldots, e'_n$|)
  20232. \end{lstlisting}
  20233. \fi}
  20234. The \racket{\code{vector-proxy}}\python{\code{TupleProxy}} AST
  20235. translates as follows:
  20236. %
  20237. {\if\edition\racketEd
  20238. \begin{lstlisting}
  20239. (vector-proxy |$e_1~e_2~e_3$|)
  20240. |$\Rightarrow$|
  20241. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  20242. \end{lstlisting}
  20243. \fi}
  20244. {\if\edition\pythonEd\pythonColor
  20245. \begin{lstlisting}
  20246. TupleProxy(|$e_1, e_2, T_1, T_2$|)
  20247. |$\Rightarrow$|
  20248. InjectTupleProxy(Tuple(|$e'_1,e'_2, T'_1, T'_2$|))
  20249. \end{lstlisting}
  20250. \fi}
  20251. We translate the element access operations into conditional
  20252. expressions that check whether the value is a proxy and then dispatch
  20253. to either the appropriate proxy tuple operation or the regular tuple
  20254. operation.
  20255. {\if\edition\racketEd
  20256. \begin{lstlisting}
  20257. (vector-ref |$e_1$| |$i$|)
  20258. |$\Rightarrow$|
  20259. (let ([|$v~e_1$|])
  20260. (if (proxy? |$v$|)
  20261. (proxy-vector-ref |$v$| |$i$|)
  20262. (vector-ref (project-vector |$v$|) |$i$|)
  20263. \end{lstlisting}
  20264. \fi}
  20265. %
  20266. Note that in the branch for a tuple, we must apply
  20267. \racket{\code{project-vector}}\python{\code{project\_tuple}} before reading
  20268. from the tuple.
  20269. The translation of array operations is similar to the ones for tuples.
  20270. \section{Reveal Casts }
  20271. \label{sec:reveal-casts-gradual}
  20272. {\if\edition\racketEd
  20273. Recall that the \code{reveal\_casts} pass
  20274. (section~\ref{sec:reveal-casts-Lany}) is responsible for lowering
  20275. \code{Inject} and \code{Project} into lower-level operations.
  20276. %
  20277. In particular, \code{Project} turns into a conditional expression that
  20278. inspects the tag and retrieves the underlying value. Here we need to
  20279. augment the translation of \code{Project} to handle the situation in which
  20280. the target type is \code{PVector}. Instead of using
  20281. \code{vector-length} we need to use \code{proxy-vector-length}.
  20282. \begin{lstlisting}
  20283. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  20284. |$\Rightarrow$|
  20285. (let |$\itm{tmp}$| |$e'$|
  20286. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  20287. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  20288. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  20289. (exit)))
  20290. \end{lstlisting}
  20291. \fi}
  20292. %
  20293. {\if\edition\pythonEd\pythonColor
  20294. Recall that the $\itm{tagof}$ function determines the bits used to
  20295. identify values of different types, and it is used in the \code{reveal\_casts}
  20296. pass in the translation of \code{Project}. The \PTUPLETYNAME{} and
  20297. \PARRAYTYNAME{} types can be mapped to $010$ in binary ($2$ in
  20298. decimal), just like the tuple and array types.
  20299. \fi}
  20300. %
  20301. Otherwise, the only other changes are adding cases that copy the new AST nodes.
  20302. \pagebreak
  20303. \section{Closure Conversion }
  20304. \label{sec:closure-conversion-gradual}
  20305. The auxiliary function that translates type annotations needs to be
  20306. updated to handle the \PTUPLETYNAME{}
  20307. \racket{type}\python{and \PARRAYTYNAME{} types}.
  20308. %
  20309. Otherwise, the only other changes are adding cases that copy the new
  20310. AST nodes.
  20311. \section{Select Instructions }
  20312. \label{sec:select-instructions-gradual}
  20313. \index{subject}{select instructions}
  20314. Recall that the \code{select\_instructions} pass is responsible for
  20315. lowering the primitive operations into x86 instructions. So, we need
  20316. to translate the new operations on \PTUPLETYNAME{} \python{and \PARRAYTYNAME{}}
  20317. to x86. To do so, the first question we need to answer is how to
  20318. differentiate between tuple and tuple proxies\python{, and likewise for
  20319. arrays and array proxies}. We need just one bit to accomplish this;
  20320. we use the bit in position $63$ of the 64-bit tag at the front of
  20321. every tuple (see figure~\ref{fig:tuple-rep})\python{ or array
  20322. (section~\ref{sec:array-rep})}. So far, this bit has been set to $0$,
  20323. so for \racket{\code{inject-vector}}\python{\code{InjectTuple}} we leave
  20324. it that way.
  20325. {\if\edition\racketEd
  20326. \begin{lstlisting}
  20327. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  20328. |$\Rightarrow$|
  20329. movq |$e'_1$|, |$\itm{lhs'}$|
  20330. \end{lstlisting}
  20331. \fi}
  20332. {\if\edition\pythonEd\pythonColor
  20333. \begin{lstlisting}
  20334. Assign([|$\itm{lhs}$|], InjectTuple(|$e_1$|))
  20335. |$\Rightarrow$|
  20336. movq |$e'_1$|, |$\itm{lhs'}$|
  20337. \end{lstlisting}
  20338. \fi}
  20339. \python{The translation for \code{InjectList} is also a move instruction.}
  20340. \noindent On the other hand,
  20341. \racket{\code{inject-proxy}}\python{\code{InjectTupleProxy}} sets bit
  20342. $63$ to $1$.
  20343. %
  20344. {\if\edition\racketEd
  20345. \begin{lstlisting}
  20346. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  20347. |$\Rightarrow$|
  20348. movq |$e'_1$|, %r11
  20349. movq |$(1 << 63)$|, %rax
  20350. orq 0(%r11), %rax
  20351. movq %rax, 0(%r11)
  20352. movq %r11, |$\itm{lhs'}$|
  20353. \end{lstlisting}
  20354. \fi}
  20355. {\if\edition\pythonEd\pythonColor
  20356. \begin{lstlisting}
  20357. Assign([|$\itm{lhs}$|], InjectTupleProxy(|$e_1$|))
  20358. |$\Rightarrow$|
  20359. movq |$e'_1$|, %r11
  20360. movq |$(1 << 63)$|, %rax
  20361. orq 0(%r11), %rax
  20362. movq %rax, 0(%r11)
  20363. movq %r11, |$\itm{lhs'}$|
  20364. \end{lstlisting}
  20365. \fi}
  20366. \python{\noindent The translation for \code{InjectListProxy} should set bit $63$
  20367. of the tag and also bit $62$, to differentiate between arrays and tuples.}
  20368. The \racket{\code{proxy?} operation consumes}%
  20369. \python{\code{is\_tuple\_proxy} and \code{is\_array\_proxy} operations
  20370. consume}
  20371. the information so carefully stashed away by the injections. It
  20372. isolates bit $63$ to tell whether the value is a proxy.
  20373. %
  20374. {\if\edition\racketEd
  20375. \begin{lstlisting}
  20376. (Assign |$\itm{lhs}$| (Prim 'proxy? (list |$e_1$|)))
  20377. |$\Rightarrow$|
  20378. movq |$e_1'$|, %r11
  20379. movq 0(%r11), %rax
  20380. sarq $63, %rax
  20381. andq $1, %rax
  20382. movq %rax, |$\itm{lhs'}$|
  20383. \end{lstlisting}
  20384. \fi}%
  20385. %
  20386. {\if\edition\pythonEd\pythonColor
  20387. \begin{lstlisting}
  20388. Assign([|$\itm{lhs}$|], Call(Name('is_tuple_proxy'), [|$e_1$|]))
  20389. |$\Rightarrow$|
  20390. movq |$e_1'$|, %r11
  20391. movq 0(%r11), %rax
  20392. sarq $63, %rax
  20393. andq $1, %rax
  20394. movq %rax, |$\itm{lhs'}$|
  20395. \end{lstlisting}
  20396. \fi}%
  20397. %
  20398. The \racket{\code{project-vector} operation is}
  20399. \python{\code{project\_tuple} and \code{project\_array} operations are}
  20400. straightforward to translate, so we leave that to the reader.
  20401. Regarding the element access operations for tuples\python{ and arrays}, the
  20402. runtime provides procedures that implement them (they are recursive
  20403. functions!), so here we simply need to translate these tuple
  20404. operations into the appropriate function call. For example, here is
  20405. the translation for
  20406. \racket{\code{proxy-vector-ref}}\python{\code{proxy\_tuple\_load}}.
  20407. {\if\edition\racketEd
  20408. \begin{minipage}{0.96\textwidth}
  20409. \begin{lstlisting}
  20410. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  20411. |$\Rightarrow$|
  20412. movq |$e_1'$|, %rdi
  20413. movq |$e_2'$|, %rsi
  20414. callq proxy_vector_ref
  20415. movq %rax, |$\itm{lhs'}$|
  20416. \end{lstlisting}
  20417. \end{minipage}
  20418. \fi}
  20419. {\if\edition\pythonEd\pythonColor
  20420. \begin{lstlisting}
  20421. Assign([|$\itm{lhs}$|], Call(Name('proxy_tuple_load'), [|$e_1$|, |$e_2$|]))
  20422. |$\Rightarrow$|
  20423. movq |$e_1'$|, %rdi
  20424. movq |$e_2'$|, %rsi
  20425. callq proxy_vector_ref
  20426. movq %rax, |$\itm{lhs'}$|
  20427. \end{lstlisting}
  20428. \fi}
  20429. {\if\edition\pythonEd\pythonColor
  20430. % TODO: revisit the names vecof for python -Jeremy
  20431. We translate
  20432. \code{proxy\_array\_load} to \code{proxy\_vecof\_ref},
  20433. \code{proxy\_array\_store} to \code{proxy\_vecof\_set}, and
  20434. \code{proxy\_array\_len} to \code{proxy\_vecof\_length}.
  20435. \fi}
  20436. We have another batch of operations to deal with: those for the
  20437. \CANYTY{} type. Recall that we generate an
  20438. \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}} when
  20439. there is a element access on something of type \CANYTY{}, and
  20440. similarly for
  20441. \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}} and
  20442. \racket{\code{any-vector-length}}\python{\code{any\_len}}. In
  20443. section~\ref{sec:select-Lany} we selected instructions for these
  20444. operations on the basis of the idea that the underlying value was a tuple or
  20445. array. But in the current setting, the underlying value is of type
  20446. \PTUPLETYNAME{}\python{ or \PARRAYTYNAME{}}. We have added three runtime
  20447. functions to deal with this:
  20448. \code{proxy\_vector\_ref},
  20449. \code{proxy\_vector\_set}, and
  20450. \code{proxy\_vector\_length} that inspect bit $62$ of the tag
  20451. to determine whether the value is a proxy, and then
  20452. dispatches to the the appropriate code.
  20453. %
  20454. So \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}}
  20455. can be translated as follows.
  20456. We begin by projecting the underlying value out of the tagged value and
  20457. then call the \code{proxy\_vector\_ref} procedure in the runtime.
  20458. {\if\edition\racketEd
  20459. \begin{lstlisting}
  20460. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  20461. |$\Rightarrow$|
  20462. movq |$\neg 111$|, %rdi
  20463. andq |$e_1'$|, %rdi
  20464. movq |$e_2'$|, %rsi
  20465. callq proxy_vector_ref
  20466. movq %rax, |$\itm{lhs'}$|
  20467. \end{lstlisting}
  20468. \fi}
  20469. {\if\edition\pythonEd\pythonColor
  20470. \begin{lstlisting}
  20471. Assign([|$\itm{lhs}$|], Call(Name('any_load_unsafe'), [|$e_1$|, |$e_2$|]))
  20472. |$\Rightarrow$|
  20473. movq |$\neg 111$|, %rdi
  20474. andq |$e_1'$|, %rdi
  20475. movq |$e_2'$|, %rsi
  20476. callq proxy_vector_ref
  20477. movq %rax, |$\itm{lhs'}$|
  20478. \end{lstlisting}
  20479. \fi}
  20480. \noindent The \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}}
  20481. and \racket{\code{any-vector-length}}\python{\code{any\_len}} operators
  20482. are translated in a similar way. Alternatively, you could generate
  20483. instructions to open-code
  20484. the \code{proxy\_vector\_ref}, \code{proxy\_vector\_set},
  20485. and \code{proxy\_vector\_length} functions.
  20486. \begin{exercise}\normalfont\normalsize
  20487. Implement a compiler for the gradually typed \LangGrad{} language by
  20488. extending and adapting your compiler for \LangLam{}. Create ten new
  20489. partially typed test programs. In addition to testing with these
  20490. new programs, test your compiler on all the tests for \LangLam{}
  20491. and for \LangDyn{}.
  20492. %
  20493. \racket{Sometimes you may get a type-checking error on the
  20494. \LangDyn{} programs, but you can adapt them by inserting a cast to
  20495. the \CANYTY{} type around each subexpression that has caused a type
  20496. error. Although \LangDyn{} does not have explicit casts, you can
  20497. induce one by wrapping the subexpression \code{e} with a call to
  20498. an unannotated identity function, as follows: \code{((lambda (x) x) e)}.}
  20499. %
  20500. \python{Sometimes you may get a type-checking error on the
  20501. \LangDyn{} programs, but you can adapt them by inserting a
  20502. temporary variable of type \CANYTY{} that is initialized with the
  20503. troublesome expression.}
  20504. \end{exercise}
  20505. \begin{figure}[t]
  20506. \begin{tcolorbox}[colback=white]
  20507. {\if\edition\racketEd
  20508. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  20509. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20510. \node (Lgradual2) at (4,4) {\large \LangCast{}};
  20511. \node (Lgradual3) at (8,4) {\large \LangProxy{}};
  20512. \node (Lgradual4) at (12,4) {\large \LangPVec{}};
  20513. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20514. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20515. \node (Llambdapp) at (4,2) {\large \LangPVecFunRef{}};
  20516. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20517. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20518. %\node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20519. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20520. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20521. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  20522. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20523. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20524. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20525. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20526. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  20527. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  20528. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20529. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20530. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  20531. \path[->,bend left=15] (Lgradual) edge [above] node
  20532. {\ttfamily\footnotesize cast\_insert} (Lgradual2);
  20533. \path[->,bend left=15] (Lgradual2) edge [above] node
  20534. {\ttfamily\footnotesize lower\_casts} (Lgradual3);
  20535. \path[->,bend left=15] (Lgradual3) edge [above] node
  20536. {\ttfamily\footnotesize differentiate\_proxies} (Lgradual4);
  20537. \path[->,bend left=15] (Lgradual4) edge [left] node
  20538. {\ttfamily\footnotesize shrink} (Lgradualr);
  20539. \path[->,bend left=15] (Lgradualr) edge [above] node
  20540. {\ttfamily\footnotesize uniquify} (Lgradualp);
  20541. \path[->,bend right=15] (Lgradualp) edge [above] node
  20542. {\ttfamily\footnotesize reveal\_functions} (Llambdapp);
  20543. %% \path[->,bend left=15] (Llambdaproxy-4) edge [left] node
  20544. %% {\ttfamily\footnotesize resolve} (Lgradualr);
  20545. \path[->,bend right=15] (Llambdapp) edge [above] node
  20546. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-4);
  20547. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20548. {\ttfamily\footnotesize convert\_assignments} (Llambdaproxy-5);
  20549. \path[->,bend right=10] (Llambdaproxy-5) edge [above] node
  20550. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20551. \path[->,bend left=15] (F1-2) edge [above] node
  20552. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20553. \path[->,bend left=15] (F1-3) edge [left] node
  20554. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  20555. \path[->,bend left=15] (F1-4) edge [below] node
  20556. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  20557. \path[->,bend right=15] (F1-5) edge [above] node
  20558. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20559. \path[->,bend right=15] (F1-6) edge [above] node
  20560. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20561. \path[->,bend right=15] (C3-2) edge [right] node
  20562. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20563. \path[->,bend right=15] (x86-2) edge [right] node
  20564. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  20565. \path[->,bend right=15] (x86-2-1) edge [below] node
  20566. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  20567. \path[->,bend right=15] (x86-2-2) edge [right] node
  20568. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  20569. \path[->,bend left=15] (x86-3) edge [above] node
  20570. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20571. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20572. \end{tikzpicture}
  20573. \fi}
  20574. {\if\edition\pythonEd\pythonColor
  20575. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.80]
  20576. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20577. \node (Lgradual2) at (4,4) {\large \LangGrad{}};
  20578. \node (Lgradual3) at (8,4) {\large \LangCast{}};
  20579. \node (Lgradual4) at (12,4) {\large \LangProxy{}};
  20580. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20581. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20582. \node (Llambdapp) at (4,2) {\large \LangPVec{}};
  20583. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20584. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20585. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20586. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20587. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20588. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20589. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20590. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20591. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20592. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20593. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20594. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  20595. \path[->,bend left=15] (Lgradual) edge [above] node
  20596. {\ttfamily\footnotesize shrink} (Lgradual2);
  20597. \path[->,bend left=15] (Lgradual2) edge [above] node
  20598. {\ttfamily\footnotesize uniquify} (Lgradual3);
  20599. \path[->,bend left=15] (Lgradual3) edge [above] node
  20600. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  20601. \path[->,bend left=15] (Lgradual4) edge [left] node
  20602. {\ttfamily\footnotesize resolve} (Lgradualr);
  20603. \path[->,bend left=15] (Lgradualr) edge [below] node
  20604. {\ttfamily\footnotesize cast\_insert} (Lgradualp);
  20605. \path[->,bend right=15] (Lgradualp) edge [above] node
  20606. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  20607. \path[->,bend right=15] (Llambdapp) edge [above] node
  20608. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  20609. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20610. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  20611. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  20612. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  20613. \path[->,bend left=15] (F1-1) edge [above] node
  20614. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20615. \path[->,bend left=15] (F1-2) edge [above] node
  20616. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20617. \path[->,bend left=15] (F1-3) edge [right] node
  20618. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  20619. \path[->,bend right=15] (F1-5) edge [above] node
  20620. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20621. \path[->,bend right=15] (F1-6) edge [above] node
  20622. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20623. \path[->,bend right=15] (C3-2) edge [right] node
  20624. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20625. \path[->,bend right=15] (x86-2) edge [below] node
  20626. {\ttfamily\footnotesize assign\_homes} (x86-3);
  20627. \path[->,bend right=15] (x86-3) edge [below] node
  20628. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20629. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20630. \end{tikzpicture}
  20631. \fi}
  20632. \end{tcolorbox}
  20633. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  20634. \label{fig:Lgradual-passes}
  20635. \end{figure}
  20636. Figure~\ref{fig:Lgradual-passes} provides an overview of the passes
  20637. needed for the compilation of \LangGrad{}.
  20638. \section{Further Reading}
  20639. This chapter just scratches the surface of gradual typing. The basic
  20640. approach described here is missing two key ingredients that one would
  20641. want in an implementation of gradual typing: blame
  20642. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  20643. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  20644. problem addressed by blame tracking is that when a cast on a
  20645. higher-order value fails, it often does so at a point in the program
  20646. that is far removed from the original cast. Blame tracking is a
  20647. technique for propagating extra information through casts and proxies
  20648. so that when a cast fails, the error message can point back to the
  20649. original location of the cast in the source program.
  20650. The problem addressed by space-efficient casts also relates to
  20651. higher-order casts. It turns out that in partially typed programs, a
  20652. function or tuple can flow through a great many casts at runtime. With
  20653. the approach described in this chapter, each cast adds another
  20654. \code{lambda} wrapper or a tuple proxy. Not only does this take up
  20655. considerable space, but it also makes the function calls and tuple
  20656. operations slow. For example, a partially typed version of quicksort
  20657. could, in the worst case, build a chain of proxies of length $O(n)$
  20658. around the tuple, changing the overall time complexity of the
  20659. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  20660. solution to this problem by representing casts using the coercion
  20661. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  20662. long chains of proxies by compressing them into a concise normal
  20663. form. \citet{Siek:2015ab} give an algorithm for compressing coercions,
  20664. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  20665. the Grift compiler:
  20666. \begin{center}
  20667. \url{https://github.com/Gradual-Typing/Grift}
  20668. \end{center}
  20669. There are also interesting interactions between gradual typing and
  20670. other language features, such as generics, information-flow types, and
  20671. type inference, to name a few. We recommend to the reader the
  20672. online gradual typing bibliography for more material:
  20673. \begin{center}
  20674. \url{http://samth.github.io/gradual-typing-bib/}
  20675. \end{center}
  20676. % TODO: challenge problem:
  20677. % type analysis and type specialization?
  20678. % coercions?
  20679. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  20680. \chapter{Generics}
  20681. \label{ch:Lpoly}
  20682. \setcounter{footnote}{0}
  20683. This chapter studies the compilation of
  20684. generics\index{subject}{generics} (aka parametric
  20685. polymorphism\index{subject}{parametric polymorphism}), compiling the
  20686. \LangPoly{} subset of \racket{Typed Racket}\python{Python}. Generics
  20687. enable programmers to make code more reusable by parameterizing
  20688. functions and data structures with respect to the types on which they
  20689. operate. For example, figure~\ref{fig:map-poly} revisits the
  20690. \code{map} example and this time gives it a more fitting type. This
  20691. \code{map} function is parameterized with respect to the element type
  20692. of the tuple. The type of \code{map} is the following generic type
  20693. specified by the \code{All} type with parameter \code{T}:
  20694. {\if\edition\racketEd
  20695. \begin{lstlisting}
  20696. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  20697. \end{lstlisting}
  20698. \fi}
  20699. {\if\edition\pythonEd\pythonColor
  20700. \begin{lstlisting}
  20701. All[[T], Callable[[Callable[[T],T], tuple[T,T]], tuple[T,T]]]
  20702. \end{lstlisting}
  20703. \fi}
  20704. %
  20705. The idea is that \code{map} can be used at \emph{all} choices of a
  20706. type for parameter \code{T}. In the example shown in
  20707. figure~\ref{fig:map-poly} we apply \code{map} to a tuple of integers,
  20708. implicitly choosing \racket{\code{Integer}}\python{\code{int}} for
  20709. \code{T}, but we could have just as well applied \code{map} to a tuple
  20710. of Booleans.
  20711. %
  20712. A \emph{monomorphic} function is simply one that is not generic.
  20713. %
  20714. We use the term \emph{instantiation} for the process (within the
  20715. language implementation) of turning a generic function into a
  20716. monomorphic one, where the type parameters have been replaced by
  20717. types.
  20718. {\if\edition\pythonEd\pythonColor
  20719. %
  20720. In Python, when writing a generic function such as \code{map}, one
  20721. does not explicitly write its generic type (using \code{All}).
  20722. Instead, that the function is generic is implied by the use of type
  20723. variables (such as \code{T}) in the type annotations of its
  20724. parameters.
  20725. %
  20726. \fi}
  20727. \begin{figure}[tbp]
  20728. % poly_test_2.rkt
  20729. \begin{tcolorbox}[colback=white]
  20730. {\if\edition\racketEd
  20731. \begin{lstlisting}
  20732. (: map (All (T) ((T -> T) (Vector T T) -> (Vector T T))))
  20733. (define (map f v)
  20734. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  20735. (define (inc [x : Integer]) : Integer (+ x 1))
  20736. (vector-ref (map inc (vector 0 41)) 1)
  20737. \end{lstlisting}
  20738. \fi}
  20739. {\if\edition\pythonEd\pythonColor
  20740. \begin{lstlisting}
  20741. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  20742. return (f(tup[0]), f(tup[1]))
  20743. def add1(x : int) -> int:
  20744. return x + 1
  20745. t = map(add1, (0, 41))
  20746. print(t[1])
  20747. \end{lstlisting}
  20748. \fi}
  20749. \end{tcolorbox}
  20750. \caption{A generic version of the \code{map} function.}
  20751. \label{fig:map-poly}
  20752. \end{figure}
  20753. Figure~\ref{fig:Lpoly-concrete-syntax} presents the definition of the
  20754. concrete syntax of \LangPoly{}, and figure~\ref{fig:Lpoly-syntax}
  20755. shows the definition of the abstract syntax.
  20756. %
  20757. {\if\edition\racketEd
  20758. We add a second form for function definitions in which a type
  20759. declaration comes before the \code{define}. In the abstract syntax,
  20760. the return type in the \code{Def} is \CANYTY{}, but that should be
  20761. ignored in favor of the return type in the type declaration. (The
  20762. \CANYTY{} comes from using the same parser as discussed in
  20763. chapter~\ref{ch:Ldyn}.) The presence of a type declaration
  20764. enables the use of an \code{All} type for a function, thereby making
  20765. it generic.
  20766. \fi}
  20767. %
  20768. The grammar for types is extended to include the type of a generic
  20769. (\code{All}) and type variables\python{\ (\code{GenericVar} in the
  20770. abstract syntax)}.
  20771. \newcommand{\LpolyGrammarRacket}{
  20772. \begin{array}{lcl}
  20773. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20774. \Def &::=& \LP\key{:}~\Var~\Type\RP \\
  20775. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP
  20776. \end{array}
  20777. }
  20778. \newcommand{\LpolyASTRacket}{
  20779. \begin{array}{lcl}
  20780. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20781. \Def &::=& \DECL{\Var}{\Type} \\
  20782. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp}
  20783. \end{array}
  20784. }
  20785. \newcommand{\LpolyGrammarPython}{
  20786. \begin{array}{lcl}
  20787. \Type &::=& \key{All}\LS \LS\Var\ldots\RS,\Type\RS \MID \Var
  20788. \end{array}
  20789. }
  20790. \newcommand{\LpolyASTPython}{
  20791. \begin{array}{lcl}
  20792. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP
  20793. \MID \key{GenericVar}\LP\Var\RP
  20794. \end{array}
  20795. }
  20796. \begin{figure}[tp]
  20797. \centering
  20798. \begin{tcolorbox}[colback=white]
  20799. \footnotesize
  20800. {\if\edition\racketEd
  20801. \[
  20802. \begin{array}{l}
  20803. \gray{\LintGrammarRacket{}} \\ \hline
  20804. \gray{\LvarGrammarRacket{}} \\ \hline
  20805. \gray{\LifGrammarRacket{}} \\ \hline
  20806. \gray{\LwhileGrammarRacket} \\ \hline
  20807. \gray{\LtupGrammarRacket} \\ \hline
  20808. \gray{\LfunGrammarRacket} \\ \hline
  20809. \gray{\LlambdaGrammarRacket} \\ \hline
  20810. \LpolyGrammarRacket \\
  20811. \begin{array}{lcl}
  20812. \LangPoly{} &::=& \Def \ldots ~ \Exp
  20813. \end{array}
  20814. \end{array}
  20815. \]
  20816. \fi}
  20817. {\if\edition\pythonEd\pythonColor
  20818. \[
  20819. \begin{array}{l}
  20820. \gray{\LintGrammarPython{}} \\ \hline
  20821. \gray{\LvarGrammarPython{}} \\ \hline
  20822. \gray{\LifGrammarPython{}} \\ \hline
  20823. \gray{\LwhileGrammarPython} \\ \hline
  20824. \gray{\LtupGrammarPython} \\ \hline
  20825. \gray{\LfunGrammarPython} \\ \hline
  20826. \gray{\LlambdaGrammarPython} \\\hline
  20827. \LpolyGrammarPython \\
  20828. \begin{array}{lcl}
  20829. \LangPoly{} &::=& \Def\ldots \Stmt\ldots
  20830. \end{array}
  20831. \end{array}
  20832. \]
  20833. \fi}
  20834. \end{tcolorbox}
  20835. \caption{The concrete syntax of \LangPoly{}, extending \LangLam{}
  20836. (figure~\ref{fig:Llam-concrete-syntax}).}
  20837. \label{fig:Lpoly-concrete-syntax}
  20838. \index{subject}{Lgen@\LangPoly{} concrete syntax}
  20839. \end{figure}
  20840. \begin{figure}[tp]
  20841. \centering
  20842. \begin{tcolorbox}[colback=white]
  20843. \footnotesize
  20844. {\if\edition\racketEd
  20845. \[
  20846. \begin{array}{l}
  20847. \gray{\LintOpAST} \\ \hline
  20848. \gray{\LvarASTRacket{}} \\ \hline
  20849. \gray{\LifASTRacket{}} \\ \hline
  20850. \gray{\LwhileASTRacket{}} \\ \hline
  20851. \gray{\LtupASTRacket{}} \\ \hline
  20852. \gray{\LfunASTRacket} \\ \hline
  20853. \gray{\LlambdaASTRacket} \\ \hline
  20854. \LpolyASTRacket \\
  20855. \begin{array}{lcl}
  20856. \LangPoly{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  20857. \end{array}
  20858. \end{array}
  20859. \]
  20860. \fi}
  20861. {\if\edition\pythonEd\pythonColor
  20862. \[
  20863. \begin{array}{l}
  20864. \gray{\LintASTPython} \\ \hline
  20865. \gray{\LvarASTPython{}} \\ \hline
  20866. \gray{\LifASTPython{}} \\ \hline
  20867. \gray{\LwhileASTPython{}} \\ \hline
  20868. \gray{\LtupASTPython{}} \\ \hline
  20869. \gray{\LfunASTPython} \\ \hline
  20870. \gray{\LlambdaASTPython} \\ \hline
  20871. \LpolyASTPython \\
  20872. \begin{array}{lcl}
  20873. \LangPoly{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  20874. \end{array}
  20875. \end{array}
  20876. \]
  20877. \fi}
  20878. \end{tcolorbox}
  20879. \caption{The abstract syntax of \LangPoly{}, extending \LangLam{}
  20880. (figure~\ref{fig:Llam-syntax}).}
  20881. \label{fig:Lpoly-syntax}
  20882. \index{subject}{Lgen@\LangPoly{} abstract syntax}
  20883. \end{figure}
  20884. By including the \code{All} type in the $\Type$ nonterminal of the
  20885. grammar we choose to make generics first class, which has interesting
  20886. repercussions on the compiler.\footnote{The Python \code{typing} library does
  20887. not include syntax for the \code{All} type. It is inferred for functions whose
  20888. type annotations contain type variables.} Many languages with generics, such as
  20889. C++~\citep{stroustrup88:_param_types} and Standard
  20890. ML~\citep{Milner:1990fk}, support only second-class generics, so it
  20891. may be helpful to see an example of first-class generics in action. In
  20892. figure~\ref{fig:apply-twice} we define a function \code{apply\_twice}
  20893. whose parameter is a generic function. Indeed, because the grammar for
  20894. $\Type$ includes the \code{All} type, a generic function may also be
  20895. returned from a function or stored inside a tuple. The body of
  20896. \code{apply\_twice} applies the generic function \code{f} to a Boolean
  20897. and also to an integer, which would not be possible if \code{f} were
  20898. not generic.
  20899. \begin{figure}[tbp]
  20900. \begin{tcolorbox}[colback=white]
  20901. {\if\edition\racketEd
  20902. \begin{lstlisting}
  20903. (: apply_twice ((All (U) (U -> U)) -> Integer))
  20904. (define (apply_twice f)
  20905. (if (f #t) (f 42) (f 777)))
  20906. (: id (All (T) (T -> T)))
  20907. (define (id x) x)
  20908. (apply_twice id)
  20909. \end{lstlisting}
  20910. \fi}
  20911. {\if\edition\pythonEd\pythonColor
  20912. \begin{lstlisting}
  20913. def apply_twice(f : All[[U], Callable[[U],U]]) -> int:
  20914. if f(True):
  20915. return f(42)
  20916. else:
  20917. return f(777)
  20918. def id(x: T) -> T:
  20919. return x
  20920. print(apply_twice(id))
  20921. \end{lstlisting}
  20922. \fi}
  20923. \end{tcolorbox}
  20924. \caption{An example illustrating first-class generics.}
  20925. \label{fig:apply-twice}
  20926. \end{figure}
  20927. The type checker for \LangPoly{} shown in
  20928. figure~\ref{fig:type-check-Lpoly} has several new responsibilities
  20929. (compared to \LangLam{}) which we discuss in the following paragraphs.
  20930. {\if\edition\pythonEd\pythonColor
  20931. %
  20932. Regarding function definitions, if the type annotations on its
  20933. parameters contain generic variables, then the function is generic and
  20934. therefore its type is an \code{All} type wrapped around a function
  20935. type. Otherwise the function is monomorphic and its type is simply
  20936. a function type.
  20937. %
  20938. \fi}
  20939. The type checking of a function application is extended to handle the
  20940. case in which the operator expression is a generic function. In that case
  20941. the type arguments are deduced by matching the types of the parameters
  20942. with the types of the arguments.
  20943. %
  20944. The \code{match\_types} auxiliary function
  20945. (figure~\ref{fig:type-check-Lpoly-aux}) carries out this deduction by
  20946. recursively descending through a parameter type \code{param\_ty} and
  20947. the corresponding argument type \code{arg\_ty}, making sure that they
  20948. are equal except when there is a type parameter in the parameter
  20949. type. Upon encountering a type parameter for the first time, the
  20950. algorithm deduces an association of the type parameter to the
  20951. corresponding part of the argument type. If it is not the first time
  20952. that the type parameter has been encountered, the algorithm looks up
  20953. its deduced type and makes sure that it is equal to the corresponding
  20954. part of the argument type. The return type of the application is the
  20955. return type of the generic function with the type parameters
  20956. replaced by the deduced type arguments, using the
  20957. \code{substitute\_type} auxiliary function, which is also listed in
  20958. figure~\ref{fig:type-check-Lpoly-aux}.
  20959. The type checker extends type equality to handle the \code{All} type.
  20960. This is not quite as simple as for other types, such as function and
  20961. tuple types, because two \code{All} types can be syntactically
  20962. different even though they are equivalent. For example,
  20963. \begin{center}
  20964. \racket{\code{(All (T) (T -> T))}}\python{\code{All[[T], Callable[[T], T]]}}
  20965. \end{center}
  20966. is equivalent to
  20967. \begin{center}
  20968. \racket{\code{(All (U) (U -> U))}}\python{\code{All[[U], Callable[[U], U]]}}.
  20969. \end{center}
  20970. Two generic types are equal if they differ only in
  20971. the choice of the names of the type parameters. The definition of type
  20972. equality shown in figure~\ref{fig:type-check-Lpoly-aux} renames the type
  20973. parameters in one type to match the type parameters of the other type.
  20974. {\if\edition\racketEd
  20975. %
  20976. The type checker also ensures that only defined type variables appear
  20977. in type annotations. The \code{check\_well\_formed} function for which
  20978. the definition is shown in figure~\ref{fig:well-formed-types}
  20979. recursively inspects a type, making sure that each type variable has
  20980. been defined.
  20981. %
  20982. \fi}
  20983. \begin{figure}[tbp]
  20984. \begin{tcolorbox}[colback=white]
  20985. {\if\edition\racketEd
  20986. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20987. (define type-check-poly-class
  20988. (class type-check-Llambda-class
  20989. (super-new)
  20990. (inherit check-type-equal?)
  20991. (define/override (type-check-apply env e1 es)
  20992. (define-values (e^ ty) ((type-check-exp env) e1))
  20993. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  20994. ((type-check-exp env) e)))
  20995. (match ty
  20996. [`(,ty^* ... -> ,rt)
  20997. (for ([arg-ty ty*] [param-ty ty^*])
  20998. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  20999. (values e^ es^ rt)]
  21000. [`(All ,xs (,tys ... -> ,rt))
  21001. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  21002. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  21003. (match_types env^^ param-ty arg-ty)))
  21004. (define targs
  21005. (for/list ([x xs])
  21006. (match (dict-ref env^^ x (lambda () #f))
  21007. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  21008. x (Apply e1 es))]
  21009. [ty ty])))
  21010. (values (Inst e^ ty targs) es^ (substitute_type env^^ rt))]
  21011. [else (error 'type-check "expected a function, not ~a" ty)]))
  21012. (define/override ((type-check-exp env) e)
  21013. (match e
  21014. [(Lambda `([,xs : ,Ts] ...) rT body)
  21015. (for ([T Ts]) ((check_well_formed env) T))
  21016. ((check_well_formed env) rT)
  21017. ((super type-check-exp env) e)]
  21018. [(HasType e1 ty)
  21019. ((check_well_formed env) ty)
  21020. ((super type-check-exp env) e)]
  21021. [else ((super type-check-exp env) e)]))
  21022. (define/override ((type-check-def env) d)
  21023. (verbose 'type-check "poly/def" d)
  21024. (match d
  21025. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  21026. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  21027. (for ([p ps]) ((check_well_formed ts-env) p))
  21028. ((check_well_formed ts-env) rt)
  21029. (define new-env (append ts-env (map cons xs ps) env))
  21030. (define-values (body^ ty^) ((type-check-exp new-env) body))
  21031. (check-type-equal? ty^ rt body)
  21032. (Generic ts (Def f p:t* rt info body^))]
  21033. [else ((super type-check-def env) d)]))
  21034. (define/override (type-check-program p)
  21035. (match p
  21036. [(Program info body)
  21037. (type-check-program (ProgramDefsExp info '() body))]
  21038. [(ProgramDefsExp info ds body)
  21039. (define ds^ (combine-decls-defs ds))
  21040. (define new-env (for/list ([d ds^])
  21041. (cons (def-name d) (fun-def-type d))))
  21042. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  21043. (define-values (body^ ty) ((type-check-exp new-env) body))
  21044. (check-type-equal? ty 'Integer body)
  21045. (ProgramDefsExp info ds^^ body^)]))
  21046. ))
  21047. \end{lstlisting}
  21048. \fi}
  21049. {\if\edition\pythonEd\pythonColor
  21050. \begin{lstlisting}[basicstyle=\ttfamily\small]
  21051. def type_check_exp(self, e, env):
  21052. match e:
  21053. case Call(Name(f), args) if f in builtin_functions:
  21054. return super().type_check_exp(e, env)
  21055. case Call(func, args):
  21056. func_t = self.type_check_exp(func, env)
  21057. func.has_type = func_t
  21058. match func_t:
  21059. case AllType(ps, FunctionType(p_tys, rt)):
  21060. for arg in args:
  21061. arg.has_type = self.type_check_exp(arg, env)
  21062. arg_tys = [arg.has_type for arg in args]
  21063. deduced = {}
  21064. for (p, a) in zip(p_tys, arg_tys):
  21065. self.match_types(p, a, deduced, e)
  21066. return self.substitute_type(rt, deduced)
  21067. case _:
  21068. return super().type_check_exp(e, env)
  21069. case _:
  21070. return super().type_check_exp(e, env)
  21071. def type_check(self, p):
  21072. match p:
  21073. case Module(body):
  21074. env = {}
  21075. for s in body:
  21076. match s:
  21077. case FunctionDef(name, params, bod, dl, returns, comment):
  21078. params_t = [t for (x,t) in params]
  21079. ty_params = set()
  21080. for t in params_t:
  21081. ty_params |$\mid$|= self.generic_variables(t)
  21082. ty = FunctionType(params_t, returns)
  21083. if len(ty_params) > 0:
  21084. ty = AllType(list(ty_params), ty)
  21085. env[name] = ty
  21086. self.check_stmts(body, IntType(), env)
  21087. case _:
  21088. raise Exception('type_check: unexpected ' + repr(p))
  21089. \end{lstlisting}
  21090. \fi}
  21091. \end{tcolorbox}
  21092. \caption{Type checker for the \LangPoly{} language.}
  21093. \label{fig:type-check-Lpoly}
  21094. \end{figure}
  21095. \begin{figure}[tbp]
  21096. \begin{tcolorbox}[colback=white]
  21097. {\if\edition\racketEd
  21098. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  21099. (define/override (type-equal? t1 t2)
  21100. (match* (t1 t2)
  21101. [(`(All ,xs ,T1) `(All ,ys ,T2))
  21102. (define env (map cons xs ys))
  21103. (type-equal? (substitute_type env T1) T2)]
  21104. [(other wise)
  21105. (super type-equal? t1 t2)]))
  21106. (define/public (match_types env pt at)
  21107. (match* (pt at)
  21108. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  21109. [('Void 'Void) env] [('Any 'Any) env]
  21110. [(`(Vector ,pts ...) `(Vector ,ats ...))
  21111. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  21112. (match_types env^ pt1 at1))]
  21113. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  21114. (define env^ (match_types env prt art))
  21115. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  21116. (match_types env^^ pt1 at1))]
  21117. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  21118. (define env^ (append (map cons pxs axs) env))
  21119. (match_types env^ pt1 at1)]
  21120. [((? symbol? x) at)
  21121. (match (dict-ref env x (lambda () #f))
  21122. [#f (error 'type-check "undefined type variable ~a" x)]
  21123. ['Type (cons (cons x at) env)]
  21124. [t^ (check-type-equal? at t^ 'matching) env])]
  21125. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  21126. (define/public (substitute_type env pt)
  21127. (match pt
  21128. ['Integer 'Integer] ['Boolean 'Boolean]
  21129. ['Void 'Void] ['Any 'Any]
  21130. [`(Vector ,ts ...)
  21131. `(Vector ,@(for/list ([t ts]) (substitute_type env t)))]
  21132. [`(,ts ... -> ,rt)
  21133. `(,@(for/list ([t ts]) (substitute_type env t)) -> ,(substitute_type env rt))]
  21134. [`(All ,xs ,t)
  21135. `(All ,xs ,(substitute_type (append (map cons xs xs) env) t))]
  21136. [(? symbol? x) (dict-ref env x)]
  21137. [else (error 'type-check "expected a type not ~a" pt)]))
  21138. (define/public (combine-decls-defs ds)
  21139. (match ds
  21140. ['() '()]
  21141. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  21142. (unless (equal? name f)
  21143. (error 'type-check "name mismatch, ~a != ~a" name f))
  21144. (match type
  21145. [`(All ,xs (,ps ... -> ,rt))
  21146. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  21147. (cons (Generic xs (Def name params^ rt info body))
  21148. (combine-decls-defs ds^))]
  21149. [`(,ps ... -> ,rt)
  21150. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  21151. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  21152. [else (error 'type-check "expected a function type, not ~a" type) ])]
  21153. [`(,(Def f params rt info body) . ,ds^)
  21154. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  21155. \end{lstlisting}
  21156. \fi}
  21157. {\if\edition\pythonEd\pythonColor
  21158. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  21159. def match_types(self, param_ty, arg_ty, deduced, e):
  21160. match (param_ty, arg_ty):
  21161. case (GenericVar(id), _):
  21162. if id in deduced:
  21163. self.check_type_equal(arg_ty, deduced[id], e)
  21164. else:
  21165. deduced[id] = arg_ty
  21166. case (AllType(ps, ty), AllType(arg_ps, arg_ty)):
  21167. rename = {ap:p for (ap,p) in zip(arg_ps, ps)}
  21168. new_arg_ty = self.substitute_type(arg_ty, rename)
  21169. self.match_types(ty, new_arg_ty, deduced, e)
  21170. case (TupleType(ps), TupleType(ts)):
  21171. for (p, a) in zip(ps, ts):
  21172. self.match_types(p, a, deduced, e)
  21173. case (ListType(p), ListType(a)):
  21174. self.match_types(p, a, deduced, e)
  21175. case (FunctionType(pps, prt), FunctionType(aps, art)):
  21176. for (pp, ap) in zip(pps, aps):
  21177. self.match_types(pp, ap, deduced, e)
  21178. self.match_types(prt, art, deduced, e)
  21179. case (IntType(), IntType()):
  21180. pass
  21181. case (BoolType(), BoolType()):
  21182. pass
  21183. case _:
  21184. raise Exception('mismatch: ' + str(param_ty) + '\n!= ' + str(arg_ty))
  21185. def substitute_type(self, ty, var_map):
  21186. match ty:
  21187. case GenericVar(id):
  21188. return var_map[id]
  21189. case AllType(ps, ty):
  21190. new_map = copy.deepcopy(var_map)
  21191. for p in ps:
  21192. new_map[p] = GenericVar(p)
  21193. return AllType(ps, self.substitute_type(ty, new_map))
  21194. case TupleType(ts):
  21195. return TupleType([self.substitute_type(t, var_map) for t in ts])
  21196. case ListType(ty):
  21197. return ListType(self.substitute_type(ty, var_map))
  21198. case FunctionType(pts, rt):
  21199. return FunctionType([self.substitute_type(p, var_map) for p in pts],
  21200. self.substitute_type(rt, var_map))
  21201. case IntType():
  21202. return IntType()
  21203. case BoolType():
  21204. return BoolType()
  21205. case _:
  21206. raise Exception('substitute_type: unexpected ' + repr(ty))
  21207. def check_type_equal(self, t1, t2, e):
  21208. match (t1, t2):
  21209. case (AllType(ps1, ty1), AllType(ps2, ty2)):
  21210. rename = {p2: GenericVar(p1) for (p1,p2) in zip(ps1,ps2)}
  21211. return self.check_type_equal(ty1, self.substitute_type(ty2, rename), e)
  21212. case (_, _):
  21213. return super().check_type_equal(t1, t2, e)
  21214. \end{lstlisting}
  21215. \fi}
  21216. \end{tcolorbox}
  21217. \caption{Auxiliary functions for type checking \LangPoly{}.}
  21218. \label{fig:type-check-Lpoly-aux}
  21219. \end{figure}
  21220. {\if\edition\racketEd
  21221. \begin{figure}[tbp]
  21222. \begin{tcolorbox}[colback=white]
  21223. \begin{lstlisting}
  21224. (define/public ((check_well_formed env) ty)
  21225. (match ty
  21226. ['Integer (void)]
  21227. ['Boolean (void)]
  21228. ['Void (void)]
  21229. [(? symbol? a)
  21230. (match (dict-ref env a (lambda () #f))
  21231. ['Type (void)]
  21232. [else (error 'type-check "undefined type variable ~a" a)])]
  21233. [`(Vector ,ts ...)
  21234. (for ([t ts]) ((check_well_formed env) t))]
  21235. [`(,ts ... -> ,t)
  21236. (for ([t ts]) ((check_well_formed env) t))
  21237. ((check_well_formed env) t)]
  21238. [`(All ,xs ,t)
  21239. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  21240. ((check_well_formed env^) t)]
  21241. [else (error 'type-check "unrecognized type ~a" ty)]))
  21242. \end{lstlisting}
  21243. \end{tcolorbox}
  21244. \caption{Well-formed types.}
  21245. \label{fig:well-formed-types}
  21246. \end{figure}
  21247. \fi}
  21248. % TODO: interpreter for R'_10
  21249. \clearpage
  21250. \section{Compiling Generics}
  21251. \label{sec:compiling-poly}
  21252. Broadly speaking, there are four approaches to compiling generics, as
  21253. follows:
  21254. \begin{description}
  21255. \item[Monomorphization] generates a different version of a generic
  21256. function for each set of type arguments with which it is used,
  21257. producing type-specialized code. This approach results in the most
  21258. efficient code but requires whole-program compilation (no separate
  21259. compilation) and may increase code size. Unfortunately,
  21260. monomorphization is incompatible with first-class generics because
  21261. it is not always possible to determine which generic functions are
  21262. used with which type arguments during compilation. (It can be done
  21263. at runtime with just-in-time compilation.) Monomorphization is
  21264. used to compile C++ templates~\citep{stroustrup88:_param_types} and
  21265. generic functions in NESL~\citep{Blelloch:1993aa} and
  21266. ML~\citep{Weeks:2006aa}.
  21267. \item[Uniform representation] generates one version of each generic
  21268. function and requires all values to have a common \emph{boxed} format,
  21269. such as the tagged values of type \CANYTY{} in \LangAny{}. Both
  21270. generic and monomorphic code is compiled similarly to code in a
  21271. dynamically typed language (like \LangDyn{}), in which primitive
  21272. operators require their arguments to be projected from \CANYTY{} and
  21273. their results to be injected into \CANYTY{}. (In object-oriented
  21274. languages, the projection is accomplished via virtual method
  21275. dispatch.) The uniform representation approach is compatible with
  21276. separate compilation and with first-class generics. However, it
  21277. produces the least efficient code because it introduces overhead in
  21278. the entire program. This approach is used in
  21279. Java~\citep{Bracha:1998fk},
  21280. CLU~\citep{liskov79:_clu_ref,Liskov:1993dk}, and some implementations
  21281. of ML~\citep{Cardelli:1984aa,Appel:1987aa}.
  21282. \item[Mixed representation] generates one version of each generic
  21283. function, using a boxed representation for type variables. However,
  21284. monomorphic code is compiled as usual (as in \LangLam{}), and
  21285. conversions are performed at the boundaries between monomorphic code
  21286. and polymorphic code (for example, when a generic function is instantiated
  21287. and called). This approach is compatible with separate compilation
  21288. and first-class generics and maintains efficiency in monomorphic
  21289. code. The trade-off is increased overhead at the boundary between
  21290. monomorphic and generic code. This approach is used in
  21291. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  21292. Java 5 with the addition of autoboxing.
  21293. \item[Type passing] uses the unboxed representation in both
  21294. monomorphic and generic code. Each generic function is compiled to a
  21295. single function with extra parameters that describe the type
  21296. arguments. The type information is used by the generated code to
  21297. determine how to access the unboxed values at runtime. This approach is
  21298. used in implementation of Napier88~\citep{Morrison:1991aa} and
  21299. ML~\citep{Harper:1995um}. Type passing is compatible with separate
  21300. compilation and first-class generics and maintains the
  21301. efficiency for monomorphic code. There is runtime overhead in
  21302. polymorphic code from dispatching on type information.
  21303. \end{description}
  21304. In this chapter we use the mixed representation approach, partly
  21305. because of its favorable attributes and partly because it is
  21306. straightforward to implement using the tools that we have already
  21307. built to support gradual typing. The work of compiling generic
  21308. functions is performed in two passes, \code{resolve} and
  21309. \code{erase\_types}, that we discuss next. The output of
  21310. \code{erase\_types} is \LangCast{}
  21311. (section~\ref{sec:gradual-insert-casts}), so the rest of the
  21312. compilation is handled by the compiler of chapter~\ref{ch:Lgrad}.
  21313. \section{Resolve Instantiation}
  21314. \label{sec:generic-resolve}
  21315. Recall that the type checker for \LangPoly{} deduces the type
  21316. arguments at call sites to a generic function. The purpose of the
  21317. \code{resolve} pass is to turn this implicit instantiation into an
  21318. explicit one, by adding \code{inst} nodes to the syntax of the
  21319. intermediate language. An \code{inst} node records the mapping of
  21320. type parameters to type arguments. The semantics of the \code{inst}
  21321. node is to instantiate the result of its first argument, a generic
  21322. function, to produce a monomorphic function. However, because the
  21323. interpreter never analyzes type annotations, instantiation can be a
  21324. no-op and simply return the generic function.
  21325. %
  21326. The output language of the \code{resolve} pass is \LangInst{},
  21327. for which the definition is shown in figure~\ref{fig:Lpoly-prime-syntax}.
  21328. {\if\edition\racketEd
  21329. The \code{resolve} pass combines the type declaration and polymorphic
  21330. function into a single definition, using the \code{Poly} form, to make
  21331. polymorphic functions more convenient to process in the next pass of the
  21332. compiler.
  21333. \fi}
  21334. \newcommand{\LinstASTRacket}{
  21335. \begin{array}{lcl}
  21336. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  21337. \Exp &::=& \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  21338. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  21339. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP
  21340. \end{array}
  21341. }
  21342. \newcommand{\LinstASTPython}{
  21343. \begin{array}{lcl}
  21344. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP \MID \Var \\
  21345. \Exp &::=& \INST{\Exp}{\LC\Var\key{:}\Type\ldots\RC}
  21346. \end{array}
  21347. }
  21348. \begin{figure}[tp]
  21349. \centering
  21350. \begin{tcolorbox}[colback=white]
  21351. \small
  21352. {\if\edition\racketEd
  21353. \[
  21354. \begin{array}{l}
  21355. \gray{\LintOpAST} \\ \hline
  21356. \gray{\LvarASTRacket{}} \\ \hline
  21357. \gray{\LifASTRacket{}} \\ \hline
  21358. \gray{\LwhileASTRacket{}} \\ \hline
  21359. \gray{\LtupASTRacket{}} \\ \hline
  21360. \gray{\LfunASTRacket} \\ \hline
  21361. \gray{\LlambdaASTRacket} \\ \hline
  21362. \LinstASTRacket \\
  21363. \begin{array}{lcl}
  21364. \LangInst{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  21365. \end{array}
  21366. \end{array}
  21367. \]
  21368. \fi}
  21369. {\if\edition\pythonEd\pythonColor
  21370. \[
  21371. \begin{array}{l}
  21372. \gray{\LintASTPython} \\ \hline
  21373. \gray{\LvarASTPython{}} \\ \hline
  21374. \gray{\LifASTPython{}} \\ \hline
  21375. \gray{\LwhileASTPython{}} \\ \hline
  21376. \gray{\LtupASTPython{}} \\ \hline
  21377. \gray{\LfunASTPython} \\ \hline
  21378. \gray{\LlambdaASTPython} \\ \hline
  21379. \LinstASTPython \\
  21380. \begin{array}{lcl}
  21381. \LangInst{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  21382. \end{array}
  21383. \end{array}
  21384. \]
  21385. \fi}
  21386. \end{tcolorbox}
  21387. \caption{The abstract syntax of \LangInst{}, extending \LangLam{}
  21388. (figure~\ref{fig:Llam-syntax}).}
  21389. \label{fig:Lpoly-prime-syntax}
  21390. \index{subject}{Linst@\LangInst{} abstract syntax}
  21391. \end{figure}
  21392. The output of the \code{resolve} pass on the generic \code{map}
  21393. example is listed in figure~\ref{fig:map-resolve}. Note that the use
  21394. of \code{map} is wrapped in an \code{inst} node, with the parameter
  21395. \code{T} chosen to be \racket{\code{Integer}}\python{\code{int}}.
  21396. \begin{figure}[tbp]
  21397. % poly_test_2.rkt
  21398. \begin{tcolorbox}[colback=white]
  21399. {\if\edition\racketEd
  21400. \begin{lstlisting}
  21401. (poly (T) (define (map [f : (T -> T)] [v : (Vector T T)]) : (Vector T T)
  21402. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  21403. (define (inc [x : Integer]) : Integer (+ x 1))
  21404. (vector-ref ((inst map (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21405. (Integer))
  21406. inc (vector 0 41)) 1)
  21407. \end{lstlisting}
  21408. \fi}
  21409. {\if\edition\pythonEd\pythonColor
  21410. \begin{lstlisting}
  21411. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  21412. return (f(tup[0]), f(tup[1]))
  21413. def add1(x : int) -> int:
  21414. return x + 1
  21415. t = inst(map, {T: int})(add1, (0, 41))
  21416. print(t[1])
  21417. \end{lstlisting}
  21418. \fi}
  21419. \end{tcolorbox}
  21420. \caption{Output of the \code{resolve} pass on the \code{map} example.}
  21421. \label{fig:map-resolve}
  21422. \end{figure}
  21423. \section{Erase Generic Types}
  21424. \label{sec:erase_types}
  21425. We use the \CANYTY{} type presented in chapter~\ref{ch:Ldyn} to
  21426. represent type variables. For example, figure~\ref{fig:map-erase}
  21427. shows the output of the \code{erase\_types} pass on the generic
  21428. \code{map} (figure~\ref{fig:map-poly}). The occurrences of
  21429. type parameter \code{T} are replaced by \CANYTY{}, and the generic
  21430. \code{All} types are removed from the type of \code{map}.
  21431. \begin{figure}[tbp]
  21432. \begin{tcolorbox}[colback=white]
  21433. {\if\edition\racketEd
  21434. \begin{lstlisting}
  21435. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  21436. : (Vector Any Any)
  21437. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  21438. (define (inc [x : Integer]) : Integer (+ x 1))
  21439. (vector-ref ((cast map
  21440. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21441. ((Integer -> Integer) (Vector Integer Integer)
  21442. -> (Vector Integer Integer)))
  21443. inc (vector 0 41)) 1)
  21444. \end{lstlisting}
  21445. \fi}
  21446. {\if\edition\pythonEd\pythonColor
  21447. \begin{lstlisting}
  21448. def map(f : Callable[[Any],Any], tup : tuple[Any,Any])-> tuple[Any,Any]:
  21449. return (f(tup[0]), f(tup[1]))
  21450. def add1(x : int) -> int:
  21451. return (x + 1)
  21452. def main() -> int:
  21453. t = cast(map, |$T_1$|, |$T_2$|)(add1, (0, 41))
  21454. print(t[1])
  21455. return 0
  21456. \end{lstlisting}
  21457. {\small
  21458. where\\
  21459. $T_1 = $ \code{Callable[[Callable[[Any], Any],tuple[Any,Any]], tuple[Any,Any]]}\\
  21460. $T_2 = $ \code{Callable[[Callable[[int], int],tuple[int,int]], tuple[int,int]]}
  21461. }
  21462. \fi}
  21463. \end{tcolorbox}
  21464. \caption{The generic \code{map} example after type erasure.}
  21465. \label{fig:map-erase}
  21466. \end{figure}
  21467. This process of type erasure creates a challenge at points of
  21468. instantiation. For example, consider the instantiation of
  21469. \code{map} shown in figure~\ref{fig:map-resolve}.
  21470. The type of \code{map} is
  21471. %
  21472. {\if\edition\racketEd
  21473. \begin{lstlisting}
  21474. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21475. \end{lstlisting}
  21476. \fi}
  21477. {\if\edition\pythonEd\pythonColor
  21478. \begin{lstlisting}
  21479. All[[T], Callable[[Callable[[T], T], tuple[T, T]], tuple[T, T]]]
  21480. \end{lstlisting}
  21481. \fi}
  21482. %
  21483. \noindent and it is instantiated to
  21484. %
  21485. {\if\edition\racketEd
  21486. \begin{lstlisting}
  21487. ((Integer -> Integer) (Vector Integer Integer)
  21488. -> (Vector Integer Integer))
  21489. \end{lstlisting}
  21490. \fi}
  21491. {\if\edition\pythonEd\pythonColor
  21492. \begin{lstlisting}
  21493. Callable[[Callable[[int], int], tuple[int, int]], tuple[int, int]]
  21494. \end{lstlisting}
  21495. \fi}
  21496. %
  21497. \noindent After erasure, the type of \code{map} is
  21498. %
  21499. {\if\edition\racketEd
  21500. \begin{lstlisting}
  21501. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21502. \end{lstlisting}
  21503. \fi}
  21504. {\if\edition\pythonEd\pythonColor
  21505. \begin{lstlisting}
  21506. Callable[[Callable[[Any], Any], tuple[Any, Any]], tuple[Any, Any]]
  21507. \end{lstlisting}
  21508. \fi}
  21509. %
  21510. \noindent but we need to convert it to the instantiated type. This is
  21511. easy to do in the language \LangCast{} with a single \code{cast}. In
  21512. the example shown in figure~\ref{fig:map-erase}, the instantiation of
  21513. \code{map} has been compiled to a \code{cast} from the type of
  21514. \code{map} to the instantiated type. The source and the target type of
  21515. a cast must be consistent (figure~\ref{fig:consistent}), which indeed
  21516. is the case because both the source and target are obtained from the
  21517. same generic type of \code{map}, replacing the type parameters with
  21518. \CANYTY{} in the former and with the deduced type arguments in the
  21519. latter. (Recall that the \CANYTY{} type is consistent with any type.)
  21520. To implement the \code{erase\_types} pass, we first recommend defining
  21521. a recursive function that translates types, named
  21522. \code{erase\_type}. It replaces type variables with \CANYTY{} as
  21523. follows.
  21524. %
  21525. {\if\edition\racketEd
  21526. \begin{lstlisting}
  21527. |$T$|
  21528. |$\Rightarrow$|
  21529. Any
  21530. \end{lstlisting}
  21531. \fi}
  21532. {\if\edition\pythonEd\pythonColor
  21533. \begin{lstlisting}
  21534. GenericVar(|$T$|)
  21535. |$\Rightarrow$|
  21536. Any
  21537. \end{lstlisting}
  21538. \fi}
  21539. %
  21540. \noindent The \code{erase\_type} function also removes the generic
  21541. \code{All} types.
  21542. %
  21543. {\if\edition\racketEd
  21544. \begin{lstlisting}
  21545. (All |$xs$| |$T_1$|)
  21546. |$\Rightarrow$|
  21547. |$T'_1$|
  21548. \end{lstlisting}
  21549. \fi}
  21550. {\if\edition\pythonEd\pythonColor
  21551. \begin{lstlisting}
  21552. AllType(|$xs$|, |$T_1$|)
  21553. |$\Rightarrow$|
  21554. |$T'_1$|
  21555. \end{lstlisting}
  21556. \fi}
  21557. \noindent where $T'_1$ is the result of applying \code{erase\_type} to
  21558. $T_1$.
  21559. %
  21560. In this compiler pass, apply the \code{erase\_type} function to all
  21561. the type annotations in the program.
  21562. Regarding the translation of expressions, the case for \code{Inst} is
  21563. the interesting one. We translate it into a \code{Cast}, as shown
  21564. next.
  21565. The type of the subexpression $e$ is a generic type of the form
  21566. \racket{$\LP\key{All}~\itm{xs}~T\RP$}\python{$\key{AllType}\LP\itm{xs}, T\RP$}.
  21567. The source type of the cast is the erasure of $T$, the type $T_s$.
  21568. %
  21569. {\if\edition\racketEd
  21570. %
  21571. The target type $T_t$ is the result of substituting the argument types
  21572. $ts$ for the type parameters $xs$ in $T$ and then performing type
  21573. erasure.
  21574. %
  21575. \begin{lstlisting}
  21576. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  21577. |$\Rightarrow$|
  21578. (Cast |$e'$| |$T_s$| |$T_t$|)
  21579. \end{lstlisting}
  21580. %
  21581. where $T_t = \LP\code{erase\_type}~\LP\code{substitute\_type}~s~T\RP\RP$,
  21582. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  21583. \fi}
  21584. {\if\edition\pythonEd\pythonColor
  21585. %
  21586. The target type $T_t$ is the result of substituting the deduced
  21587. argument types $d$ in $T$ and then performing type erasure.
  21588. %
  21589. \begin{lstlisting}
  21590. Inst(|$e$|, |$d$|)
  21591. |$\Rightarrow$|
  21592. Cast(|$e'$|, |$T_s$|, |$T_t$|)
  21593. \end{lstlisting}
  21594. %
  21595. where
  21596. $T_t = \code{erase\_type}\LP\code{substitute\_type}\LP d, T\RP\RP$.
  21597. \fi}
  21598. Finally, each generic function is translated to a regular
  21599. function in which type erasure has been applied to all the type
  21600. annotations and the body.
  21601. %% \begin{lstlisting}
  21602. %% (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  21603. %% |$\Rightarrow$|
  21604. %% (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  21605. %% \end{lstlisting}
  21606. \begin{exercise}\normalfont\normalsize
  21607. Implement a compiler for the polymorphic language \LangPoly{} by
  21608. extending and adapting your compiler for \LangGrad{}. Create six new
  21609. test programs that use polymorphic functions. Some of them should
  21610. make use of first-class generics.
  21611. \end{exercise}
  21612. \begin{figure}[tbp]
  21613. \begin{tcolorbox}[colback=white]
  21614. {\if\edition\racketEd
  21615. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21616. \node (Lpoly) at (0,4) {\large \LangPoly{}};
  21617. \node (Lpolyp) at (4,4) {\large \LangInst{}};
  21618. \node (Lgradualp) at (8,4) {\large \LangCast{}};
  21619. \node (Llambdapp) at (12,4) {\large \LangProxy{}};
  21620. \node (Llambdaproxy) at (12,2) {\large \LangPVec{}};
  21621. \node (Llambdaproxy-2) at (8,2) {\large \LangPVec{}};
  21622. \node (Llambdaproxy-3) at (4,2) {\large \LangPVec{}};
  21623. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  21624. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  21625. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  21626. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  21627. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  21628. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  21629. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  21630. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  21631. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21632. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21633. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  21634. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  21635. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21636. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21637. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  21638. \path[->,bend left=15] (Lpoly) edge [above] node
  21639. {\ttfamily\footnotesize resolve} (Lpolyp);
  21640. \path[->,bend left=15] (Lpolyp) edge [above] node
  21641. {\ttfamily\footnotesize erase\_types} (Lgradualp);
  21642. \path[->,bend left=15] (Lgradualp) edge [above] node
  21643. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  21644. \path[->,bend left=15] (Llambdapp) edge [left] node
  21645. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy);
  21646. \path[->,bend left=15] (Llambdaproxy) edge [below] node
  21647. {\ttfamily\footnotesize shrink} (Llambdaproxy-2);
  21648. \path[->,bend right=15] (Llambdaproxy-2) edge [above] node
  21649. {\ttfamily\footnotesize uniquify} (Llambdaproxy-3);
  21650. \path[->,bend right=15] (Llambdaproxy-3) edge [above] node
  21651. {\ttfamily\footnotesize reveal\_functions} (Llambdaproxy-4);
  21652. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  21653. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21654. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  21655. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21656. \path[->,bend left=15] (F1-1) edge [above] node
  21657. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21658. \path[->,bend left=15] (F1-2) edge [above] node
  21659. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21660. \path[->,bend left=15] (F1-3) edge [left] node
  21661. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  21662. \path[->,bend left=15] (F1-4) edge [below] node
  21663. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  21664. \path[->,bend right=15] (F1-5) edge [above] node
  21665. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21666. \path[->,bend right=15] (F1-6) edge [above] node
  21667. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21668. \path[->,bend right=15] (C3-2) edge [right] node
  21669. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21670. \path[->,bend right=15] (x86-2) edge [right] node
  21671. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  21672. \path[->,bend right=15] (x86-2-1) edge [below] node
  21673. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  21674. \path[->,bend right=15] (x86-2-2) edge [right] node
  21675. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  21676. \path[->,bend left=15] (x86-3) edge [above] node
  21677. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21678. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21679. \end{tikzpicture}
  21680. \fi}
  21681. {\if\edition\pythonEd\pythonColor
  21682. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21683. \node (Lgradual) at (0,4) {\large \LangPoly{}};
  21684. \node (Lgradual2) at (4,4) {\large \LangPoly{}};
  21685. \node (Lgradual3) at (8,4) {\large \LangPoly{}};
  21686. \node (Lgradual4) at (12,4) {\large \LangPoly{}};
  21687. \node (Lgradualr) at (12,2) {\large \LangInst{}};
  21688. \node (Llambdapp) at (8,2) {\large \LangCast{}};
  21689. \node (Llambdaproxy-4) at (4,2) {\large \LangPVec{}};
  21690. \node (Llambdaproxy-5) at (0,2) {\large \LangPVec{}};
  21691. \node (F1-1) at (0,0) {\large \LangPVec{}};
  21692. \node (F1-2) at (4,0) {\large \LangPVec{}};
  21693. \node (F1-3) at (8,0) {\large \LangPVec{}};
  21694. \node (F1-5) at (12,0) {\large \LangPVecAlloc{}};
  21695. \node (F1-6) at (12,-2) {\large \LangPVecAlloc{}};
  21696. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21697. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21698. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21699. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21700. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  21701. \path[->,bend left=15] (Lgradual) edge [above] node
  21702. {\ttfamily\footnotesize shrink} (Lgradual2);
  21703. \path[->,bend left=15] (Lgradual2) edge [above] node
  21704. {\ttfamily\footnotesize uniquify} (Lgradual3);
  21705. \path[->,bend left=15] (Lgradual3) edge [above] node
  21706. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  21707. \path[->,bend left=15] (Lgradual4) edge [left] node
  21708. {\ttfamily\footnotesize resolve} (Lgradualr);
  21709. \path[->,bend left=15] (Lgradualr) edge [below] node
  21710. {\ttfamily\footnotesize erase\_types} (Llambdapp);
  21711. \path[->,bend right=15] (Llambdapp) edge [above] node
  21712. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  21713. \path[->,bend right=15] (Llambdaproxy-4) edge [above] node
  21714. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21715. \path[->,bend right=15] (Llambdaproxy-5) edge [right] node
  21716. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21717. \path[->,bend right=15] (F1-1) edge [below] node
  21718. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21719. \path[->,bend right=15] (F1-2) edge [below] node
  21720. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21721. \path[->,bend left=15] (F1-3) edge [above] node
  21722. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  21723. \path[->,bend left=15] (F1-5) edge [left] node
  21724. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21725. \path[->,bend left=5] (F1-6) edge [below] node
  21726. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21727. \path[->,bend right=15] (C3-2) edge [right] node
  21728. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21729. \path[->,bend right=15] (x86-2) edge [below] node
  21730. {\ttfamily\footnotesize assign\_homes} (x86-3);
  21731. \path[->,bend right=15] (x86-3) edge [below] node
  21732. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21733. \path[->,bend left=15] (x86-4) edge [above] node
  21734. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21735. \end{tikzpicture}
  21736. \fi}
  21737. \end{tcolorbox}
  21738. \caption{Diagram of the passes for \LangPoly{} (generics).}
  21739. \label{fig:Lpoly-passes}
  21740. \end{figure}
  21741. Figure~\ref{fig:Lpoly-passes} provides an overview of the passes
  21742. needed to compile \LangPoly{}.
  21743. % TODO: challenge problem: specialization of instantiations
  21744. % Further Reading
  21745. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  21746. \clearpage
  21747. \appendix
  21748. \chapter{Appendix}
  21749. \setcounter{footnote}{0}
  21750. {\if\edition\racketEd
  21751. \section{Interpreters}
  21752. \label{appendix:interp}
  21753. \index{subject}{interpreter}
  21754. We provide interpreters for each of the source languages \LangInt{},
  21755. \LangVar{}, $\ldots$ in the files \code{interp-Lint.rkt},
  21756. \code{interp-Lvar.rkt}, and so on. The interpreters for the
  21757. intermediate languages \LangCVar{} and \LangCIf{} are in
  21758. \code{interp-Cvar.rkt} and \code{interp-C1.rkt}. The interpreters for
  21759. \LangCVec{}, \LangCFun{}, pseudo-x86, and x86 are in the
  21760. \key{interp.rkt} file.
  21761. \section{Utility Functions}
  21762. \label{appendix:utilities}
  21763. The utility functions described in this section are in the
  21764. \key{utilities.rkt} file of the support code.
  21765. \paragraph{\code{interp-tests}}
  21766. This function runs the compiler passes and the interpreters on each of
  21767. the specified tests to check whether each pass is correct. The
  21768. \key{interp-tests} function has the following parameters:
  21769. \begin{description}
  21770. \item[name (a string)] A name to identify the compiler.
  21771. \item[typechecker] A function of exactly one argument that either
  21772. raises an error using the \code{error} function when it encounters a
  21773. type error, or returns \code{\#f} when it encounters a type
  21774. error. If there is no type error, the type checker returns the
  21775. program.
  21776. \item[passes] A list with one entry per pass. An entry is a list
  21777. consisting of four things:
  21778. \begin{enumerate}
  21779. \item a string giving the name of the pass;
  21780. \item the function that implements the pass (a translator from AST
  21781. to AST);
  21782. \item a function that implements the interpreter (a function from
  21783. AST to result value) for the output language; and,
  21784. \item a type checker for the output language. Type checkers for
  21785. all the $\Lang{}$ and $\CLang{}$ languages are provided in the support code.
  21786. For example, the type checkers for \LangVar{} and \LangCVar{} are in
  21787. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  21788. type checker entry is optional. The support code does not provide
  21789. type checkers for the x86 languages.
  21790. \end{enumerate}
  21791. \item[source-interp] An interpreter for the source language. The
  21792. interpreters from appendix~\ref{appendix:interp} make a good choice.
  21793. \item[test-family (a string)] For example, \code{"var"} or \code{"cond"}.
  21794. \item[tests] A list of test numbers that specifies which tests to
  21795. run (explained next).
  21796. \end{description}
  21797. %
  21798. The \key{interp-tests} function assumes that the subdirectory
  21799. \key{tests} has a collection of Racket programs whose names all start
  21800. with the family name, followed by an underscore and then the test
  21801. number, and ending with the file extension \key{.rkt}. Also, for each test
  21802. program that calls \code{read} one or more times, there is a file with
  21803. the same name except that the file extension is \key{.in}, which
  21804. provides the input for the Racket program. If the test program is
  21805. expected to fail type checking, then there should be an empty file of
  21806. the same name with extension \key{.tyerr}.
  21807. \paragraph{\code{compiler-tests}}
  21808. This function runs the compiler passes to generate x86 (a \key{.s}
  21809. file) and then runs the GNU C compiler (gcc) to generate machine code.
  21810. It runs the machine code and checks that the output is $42$. The
  21811. parameters to the \code{compiler-tests} function are similar to those
  21812. of the \code{interp-tests} function, and they consist of
  21813. \begin{itemize}
  21814. \item a compiler name (a string),
  21815. \item a type checker,
  21816. \item description of the passes,
  21817. \item name of a test-family, and
  21818. \item a list of test numbers.
  21819. \end{itemize}
  21820. \paragraph{\code{compile-file}}
  21821. This function takes a description of the compiler passes (see the
  21822. comment for \key{interp-tests}) and returns a function that, given a
  21823. program file name (a string ending in \key{.rkt}), applies all the
  21824. passes and writes the output to a file whose name is the same as the
  21825. program file name with extension \key{.rkt} replaced by \key{.s}.
  21826. \paragraph{\code{read-program}}
  21827. This function takes a file path and parses that file (it must be a
  21828. Racket program) into an abstract syntax tree.
  21829. \paragraph{\code{parse-program}}
  21830. This function takes an S-expression representation of an abstract
  21831. syntax tree and converts it into the struct-based representation.
  21832. \paragraph{\code{assert}}
  21833. This function takes two parameters, a string (\code{msg}) and Boolean
  21834. (\code{bool}), and displays the message \key{msg} if the Boolean
  21835. \key{bool} is false.
  21836. \paragraph{\code{lookup}}
  21837. % remove discussion of lookup? -Jeremy
  21838. This function takes a key and an alist and returns the first value that is
  21839. associated with the given key, if there is one. If not, an error is
  21840. triggered. The alist may contain both immutable pairs (built with
  21841. \key{cons}) and mutable pairs (built with \key{mcons}).
  21842. %The \key{map2} function ...
  21843. \fi} %\racketEd
  21844. \section{x86 Instruction Set Quick Reference}
  21845. \label{sec:x86-quick-reference}
  21846. \index{subject}{x86}
  21847. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  21848. do. We write $A \to B$ to mean that the value of $A$ is written into
  21849. location $B$. Address offsets are given in bytes. The instruction
  21850. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  21851. registers (such as \code{\%rax}), or memory references (such as
  21852. \code{-4(\%ebp)}). Most x86 instructions allow at most one memory
  21853. reference per instruction. Other operands must be immediates or
  21854. registers.
  21855. \begin{table}[tbp]
  21856. \captionabove{Quick reference for the x86 instructions used in this book.}
  21857. \label{tab:x86-instr}
  21858. \centering
  21859. \begin{tabular}{l|l}
  21860. \textbf{Instruction} & \textbf{Operation} \\ \hline
  21861. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  21862. \texttt{negq} $A$ & $- A \to A$ \\
  21863. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  21864. \texttt{imulq} $A$, $B$ & $A \times B \to B$ ($B$ must be a register).\\
  21865. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$. \\
  21866. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  21867. \texttt{retq} & Pops the return address and jumps to it. \\
  21868. \texttt{popq} $A$ & $*\texttt{rsp} \to A;\, \texttt{rsp} + 8 \to \texttt{rsp}$ \\
  21869. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp};\, A \to *\texttt{rsp}$\\
  21870. \texttt{leaq} $A$, $B$ & $A \to B$ ($B$ must be a register.) \\
  21871. \texttt{cmpq} $A$, $B$ & \multirow{2}{3.7in}{Compare $A$ and $B$ and set the flag register ($B$ must not be an immediate).} \\
  21872. & \\
  21873. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  21874. matches the condition code of the instruction; otherwise go to the
  21875. next instructions. The condition codes are \key{e} for \emph{equal},
  21876. \key{l} for \emph{less}, \key{le} for \emph{less or equal}, \key{g}
  21877. for \emph{greater}, and \key{ge} for \emph{greater or equal}.} \\
  21878. \texttt{jl} $L$ & \\
  21879. \texttt{jle} $L$ & \\
  21880. \texttt{jg} $L$ & \\
  21881. \texttt{jge} $L$ & \\
  21882. \texttt{jmp} $L$ & Jump to label $L$. \\
  21883. \texttt{movq} $A$, $B$ & $A \to B$ \\
  21884. \texttt{movzbq} $A$, $B$ &
  21885. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  21886. (e.g., \texttt{al} or \texttt{cl}), $B$ is an 8-byte register,
  21887. and the extra bytes of $B$ are set to zero.} \\
  21888. & \\
  21889. & \\
  21890. \texttt{notq} $A$ & $\sim A \to A$ (bitwise complement)\\
  21891. \texttt{orq} $A$, $B$ & $A \mid B \to B$ (bitwise-or)\\
  21892. \texttt{andq} $A$, $B$ & $A \& B \to B$ (bitwise-and)\\
  21893. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  21894. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  21895. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  21896. then $1 \to A$; else $0 \to A$. Refer to \texttt{je} for the
  21897. description of the condition codes. $A$ must be a single byte register
  21898. (e.g., \texttt{al} or \texttt{cl}).} \\
  21899. \texttt{setl} $A$ & \\
  21900. \texttt{setle} $A$ & \\
  21901. \texttt{setg} $A$ & \\
  21902. \texttt{setge} $A$ &
  21903. \end{tabular}
  21904. \end{table}
  21905. \backmatter
  21906. \addtocontents{toc}{\vspace{11pt}}
  21907. \cleardoublepage % needed for right page number in TOC for References
  21908. %% \nocite{*} is a way to get all the entries in the .bib file to
  21909. %% print in the bibliography:
  21910. \nocite{*}\let\bibname\refname
  21911. \addcontentsline{toc}{fmbm}{\refname}
  21912. \printbibliography
  21913. %\printindex{authors}{Author Index}
  21914. \printindex{subject}{Index}
  21915. \end{document}
  21916. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  21917. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  21918. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  21919. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  21920. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  21921. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  21922. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  21923. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  21924. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  21925. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  21926. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  21927. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  21928. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  21929. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  21930. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  21931. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  21932. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  21933. % LocalWords: numberstyle Cormen sudoku Balakrishnan ve aka DSATUR
  21934. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS wb
  21935. % LocalWords: morekeywords fullflexible goto allocator tuples Wailes
  21936. % LocalWords: Kernighan runtime Freiburg Thiemann Bloomington unary
  21937. % LocalWords: eq prog rcl definitional Evaluator os Earley's mul
  21938. % LocalWords: subexpression evaluator InterpLint lcl quadwords concl
  21939. % LocalWords: nanopass subexpressions decompositions Lawall Hatcliff
  21940. % LocalWords: subdirectory monadic Moggi mon utils macosx unix repr
  21941. % LocalWords: Uncomment undirected vertices callee Liveness liveness
  21942. % LocalWords: frozenset unordered Appel Rosen pqueue cmp Fortran vl
  21943. % LocalWords: Horwitz Kempe colorable subgraph kx iteratively Matula
  21944. % LocalWords: ys ly Palsberg si JoeQ cardinality Poletto Booleans hj
  21945. % LocalWords: subscriptable MyPy Lehtosalo Listof Pairof indexable
  21946. % LocalWords: bool boolop NotEq LtE GtE refactor els orelse BoolOp
  21947. % LocalWords: boolean initializer param exprs TypeCheckLvar msg Tt
  21948. % LocalWords: isinstance TypeCheckLif tyerr xorq bytereg al dh dl ne
  21949. % LocalWords: le ge cmpq movzbq EFLAGS jle inlined setl je jl Cif
  21950. % LocalWords: lll pred IfStmt sete CFG tsort multigraph FunctionType
  21951. % LocalWords: Wijngaarden Plotkin Logothetis PeytonJones SetBang Ph
  21952. % LocalWords: WhileLoop unboxes Lwhile unbox InterpLwhile rhsT varT
  21953. % LocalWords: Tbody TypeCheckLwhile acyclic mainstart mainconclusion
  21954. % LocalWords: versa Kildall Kleene worklist enqueue dequeue deque tb
  21955. % LocalWords: GetBang effectful SPERBER Lfun tuple implementer's tup
  21956. % LocalWords: indices HasType Lvec InterpLtup tuple's vec ty Ungar
  21957. % LocalWords: TypeCheckLtup Detlefs Tene FromSpace ToSpace Diwan ptr
  21958. % LocalWords: Siebert TupleType endian salq sarq fromspace rootstack
  21959. % LocalWords: uint th vecinit alloc GlobalValue andq bitwise ior elt
  21960. % LocalWords: dereferencing StructDef Vectorof vectorof Lvecof Jacek
  21961. % LocalWords: AllocateArray cheney tospace Dieckmann Shahriyar di xs
  21962. % LocalWords: Shidal Osterlund Gamari lexically FunctionDef IntType
  21963. % LocalWords: BoolType VoidType ProgramDefsExp vals params ps ds num
  21964. % LocalWords: InterpLfun FunRef TypeCheckLfun leaq callee's mainDef
  21965. % LocalWords: ProgramDefs TailCall tailjmp IndirectCallq TailJmp rT
  21966. % LocalWords: prepending addstart addconclusion Cardelli Llambda typ
  21967. % LocalWords: Llambda InterpLlambda AnnAssign Dunfield bodyT str fvs
  21968. % LocalWords: TypeCheckLlambda annot dereference clos fvts closTy tg
  21969. % LocalWords: Minamide AllocateClosure Gilray Milner morphos subtype
  21970. % LocalWords: polymorphism untyped AnyType dataclass untag Ldyn conc
  21971. % LocalWords: lookup InterpLdyn elif tagof Lany TypeCheckLany tv orq
  21972. % LocalWords: AnnLambda InterpLany ClosureTuple ValueOf TagOf imulq
  21973. % LocalWords: untagged multi Tobin Hochstadt zr mn Gronski kd ret Tp
  21974. % LocalWords: Tif src tgt Lcast wr contravariant PVector un Lgradual
  21975. % LocalWords: Lgradualp Llambdapp Llambdaproxy Wadler qv quicksort
  21976. % LocalWords: Henglein nz coercions Grift parametetric parameterized
  21977. % LocalWords: parameterizing stroustrup subst tys targs decls defs
  21978. % LocalWords: pts ats prt pxs axs Decl Monomorphization NESL CLU qb
  21979. % LocalWords: monomorphization Blelloch monomorphic Bracha unboxed
  21980. % LocalWords: instantiation Lpoly Lpolyp typechecker mcons ebp jge
  21981. % LocalWords: notq setle setg setge uncredited LT Std groundbreaking
  21982. % LocalWords: colback GitHub inputint nonatomic ea tcolorbox bassed
  21983. % LocalWords: tikzpicture Chaitin's Belady's Cocke Freiburghouse Lt
  21984. % LocalWords: lessthan lessthaneq greaterthan greaterthaneq Gt pt Te
  21985. % LocalWords: ts escapechar Tc bl ch cl cc foo lt metavariables vars
  21986. % LocalWords: trans naively IR rep assoc ListType TypeCheckLarray dz
  21987. % LocalWords: Mult InterpLarray lst array's generation's Collins inc
  21988. % LocalWords: Cutler Kelsey val rt bod conflates reg inlining lam AF
  21989. % LocalWords: ASTPython body's bot todo rs ls TypeCheckLgrad ops ab
  21990. % LocalWords: value's inplace anyfun anytup anylist ValueExp proxied
  21991. % LocalWords: ProxiedTuple ProxiedList InterpLcast ListProxy vectof
  21992. % LocalWords: TupleProxy RawTuple InjectTuple InjectTupleProxy vecof
  21993. % LocalWords: InjectList InjectListProxy unannotated Lgradualr poly
  21994. % LocalWords: GenericVar AllType Inst builtin ap pps aps pp deepcopy
  21995. % LocalWords: liskov clu Liskov dk Napier um inst popl jg seq ith qy
  21996. % LocalWords: racketEd subparts subpart nonterminal nonterminals Dyn
  21997. % LocalWords: pseudocode underapproximation underapproximations LALR
  21998. % LocalWords: semilattices overapproximate incrementing Earley docs
  21999. % LocalWords: multilanguage Prelim shinan DeRemer lexer Lesk LPAR cb
  22000. % LocalWords: RPAR abcbab abc bzca usub paren expr lang WS Tomita qr
  22001. % LocalWords: subparses LCCN ebook hardcover epub pdf LCSH LCC DDC
  22002. % LocalWords: LC partialevaluation pythonEd TOC TrappedError