book.tex 710 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401
  1. \documentclass[7x10,nocrop]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. % move binary subtraction from Lif to Lint
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \definecolor{lightgray}{gray}{1}
  18. \newcommand{\black}[1]{{\color{black} #1}}
  19. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  20. \newcommand{\gray}[1]{{\color{gray} #1}}
  21. \def\racketEd{0}
  22. \def\pythonEd{1}
  23. \def\edition{0}
  24. % material that is specific to the Racket edition of the book
  25. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  26. % would like a command for: \if\edition\racketEd\color{olive}
  27. % and : \fi\color{black}
  28. % material that is specific to the Python edition of the book
  29. \newcommand{\python}[1]{{\if\edition\pythonEd #1\fi}}
  30. %% For multiple indices:
  31. \usepackage{multind}
  32. \makeindex{subject}
  33. \makeindex{authors}
  34. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  35. \if\edition\racketEd
  36. \lstset{%
  37. language=Lisp,
  38. basicstyle=\ttfamily\small,
  39. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  40. deletekeywords={read,mapping,vector},
  41. escapechar=|,
  42. columns=flexible,
  43. moredelim=[is][\color{red}]{~}{~},
  44. showstringspaces=false
  45. }
  46. \fi
  47. \if\edition\pythonEd
  48. \lstset{%
  49. language=Python,
  50. basicstyle=\ttfamily\small,
  51. morekeywords={match,case,bool,int,let},
  52. deletekeywords={},
  53. escapechar=|,
  54. columns=flexible,
  55. moredelim=[is][\color{red}]{~}{~},
  56. showstringspaces=false
  57. }
  58. \fi
  59. %%% Any shortcut own defined macros place here
  60. %% sample of author macro:
  61. \input{defs}
  62. \newtheorem{exercise}[theorem]{Exercise}
  63. % Adjusted settings
  64. \setlength{\columnsep}{4pt}
  65. %% \begingroup
  66. %% \setlength{\intextsep}{0pt}%
  67. %% \setlength{\columnsep}{0pt}%
  68. %% \begin{wrapfigure}{r}{0.5\textwidth}
  69. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  70. %% \caption{Basic layout}
  71. %% \end{wrapfigure}
  72. %% \lipsum[1]
  73. %% \endgroup
  74. \newbox\oiintbox
  75. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  76. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  77. \def\oiint{\copy\oiintbox}
  78. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  79. %\usepackage{showframe}
  80. \def\ShowFrameLinethickness{0.125pt}
  81. \addbibresource{book.bib}
  82. \begin{document}
  83. \frontmatter
  84. \HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  85. \halftitlepage
  86. \Title{Essentials of Compilation}
  87. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  88. %\edition{First Edition}
  89. \BookAuthor{Jeremy G. Siek}
  90. \imprint{The MIT Press\\
  91. Cambridge, Massachusetts\\
  92. London, England}
  93. \begin{copyrightpage}
  94. \textcopyright\ 2021 Jeremy G. Siek. Available for free viewing
  95. or personal downloading under the
  96. \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  97. license.
  98. Copyright in this monograph has been licensed exclusively to The MIT
  99. Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  100. version to the public in 2022. All inquiries regarding rights should
  101. be addressed to The MIT Press, Rights and Permissions Department.
  102. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  103. %% All rights reserved. No part of this book may be reproduced in any
  104. %% form by any electronic or mechanical means (including photocopying,
  105. %% recording, or information storage and retrieval) without permission in
  106. %% writing from the publisher.
  107. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  108. %% United States of America.
  109. %% Library of Congress Cataloging-in-Publication Data is available.
  110. %% ISBN:
  111. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  112. \end{copyrightpage}
  113. \dedication{This book is dedicated to the programming language wonks
  114. at Indiana University.}
  115. %% \begin{epigraphpage}
  116. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  117. %% \textit{Book Name if any}}
  118. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  119. %% \end{epigraphpage}
  120. \tableofcontents
  121. %\listoffigures
  122. %\listoftables
  123. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  124. \chapter*{Preface}
  125. \addcontentsline{toc}{fmbm}{Preface}
  126. There is a magical moment when a programmer presses the ``run'' button
  127. and the software begins to execute. Somehow a program written in a
  128. high-level language is running on a computer that is only capable of
  129. shuffling bits. Here we reveal the wizardry that makes that moment
  130. possible. Beginning with the groundbreaking work of Backus and
  131. colleagues in the 1950s, computer scientists discovered techniques for
  132. constructing programs, called \emph{compilers}, that automatically
  133. translate high-level programs into machine code.
  134. We take you on a journey of constructing your own compiler for a small
  135. but powerful language. Along the way we explain the essential
  136. concepts, algorithms, and data structures that underlie compilers. We
  137. develop your understanding of how programs are mapped onto computer
  138. hardware, which is helpful when reasoning about properties at the
  139. junction between hardware and software such as execution time,
  140. software errors, and security vulnerabilities. For those interested
  141. in pursuing compiler construction as a career, our goal is to provide a
  142. stepping-stone to advanced topics such as just-in-time compilation,
  143. program analysis, and program optimization. For those interested in
  144. designing and implementing programming languages, we connect
  145. language design choices to their impact on the compiler and the generated
  146. code.
  147. A compiler is typically organized as a sequence of stages that
  148. progressively translate a program to the code that runs on
  149. hardware. We take this approach to the extreme by partitioning our
  150. compiler into a large number of \emph{nanopasses}, each of which
  151. performs a single task. This enables the testing of each pass in
  152. isolation and focuses our attention, making the compiler far easier to
  153. understand.
  154. The most familiar approach to describing compilers is with each
  155. chapter dedicated to one pass. The problem with that approach is it
  156. obfuscates how language features motivate design choices in a
  157. compiler. We instead take an \emph{incremental} approach in which we
  158. build a complete compiler in each chapter, starting with a small input
  159. language that includes only arithmetic and variables. We add new
  160. language features in subsequent chapters, extending the compiler as
  161. necessary.
  162. Our choice of language features is designed to elicit fundamental
  163. concepts and algorithms used in compilers.
  164. \begin{itemize}
  165. \item We begin with integer arithmetic and local variables in
  166. Chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  167. the fundamental tools of compiler construction: \emph{abstract
  168. syntax trees} and \emph{recursive functions}.
  169. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  170. \emph{graph coloring} to assign variables to machine registers.
  171. \item Chapter~\ref{ch:Lif} adds conditional expressions, which
  172. motivates an elegant recursive algorithm for translating them into
  173. conditional \code{goto}'s.
  174. \item Chapter~\ref{ch:Lwhile} adds loops\racket{ and mutable
  175. variables}. This elicits the need for \emph{dataflow
  176. analysis} in the register allocator.
  177. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  178. \emph{garbage collection}.
  179. \item Chapter~\ref{ch:Lfun} adds functions as first-class values but
  180. without lexical scoping, similar to functions in the C programming
  181. language~\citep{Kernighan:1988nx}. The reader learns about the
  182. procedure call stack and \emph{calling conventions} and how they interact
  183. with register allocation and garbage collection. The chapter also
  184. describes how to generate efficient tail calls.
  185. \item Chapter~\ref{ch:Llambda} adds anonymous functions with lexical
  186. scoping, i.e., \emph{lambda} expressions. The reader learns about
  187. \emph{closure conversion}, in which lambdas are translated into a
  188. combination of functions and tuples.
  189. % Chapter about classes and objects?
  190. \item Chapter~\ref{ch:Ldyn} adds \emph{dynamic typing}. Prior to this
  191. point the input languages are statically typed. The reader extends
  192. the statically typed language with an \code{Any} type which serves
  193. as a target for compiling the dynamically typed language.
  194. {\if\edition\pythonEd
  195. \item Chapter~\ref{ch:Lobject} adds support for \emph{objects} and
  196. \emph{classes}.
  197. \fi}
  198. \item Chapter~\ref{ch:Lgrad} uses the \code{Any} type of
  199. Chapter~\ref{ch:Ldyn} to implement a \emph{gradually typed language}
  200. in which different regions of a program may be static or dynamically
  201. typed. The reader implements runtime support for \emph{proxies} that
  202. allow values to safely move between regions.
  203. \item Chapter~\ref{ch:Lpoly} adds \emph{generics} with autoboxing,
  204. leveraging the \code{Any} type and type casts developed in Chapters
  205. \ref{ch:Ldyn} and \ref{ch:Lgrad}.
  206. \end{itemize}
  207. There are many language features that we do not include. Our choices
  208. balance the incidental complexity of a feature versus the fundamental
  209. concepts that it exposes. For example, we include tuples and not
  210. records because they both elicit the study of heap allocation and
  211. garbage collection but records come with more incidental complexity.
  212. Since 2009 drafts of this book have served as the textbook for 16-week
  213. compiler courses for upper-level undergraduates and first-year
  214. graduate students at the University of Colorado and Indiana
  215. University.
  216. %
  217. Students come into the course having learned the basics of
  218. programming, data structures and algorithms, and discrete
  219. mathematics.
  220. %
  221. At the beginning of the course, students form groups of 2-4 people.
  222. The groups complete one chapter every two weeks, starting with
  223. Chapter~\ref{ch:Lvar} and finishing with
  224. Chapter~\ref{ch:Llambda}. Many chapters include a challenge problem
  225. that we assign to the graduate students. The last two weeks of the
  226. course involve a final project in which students design and implement
  227. a compiler extension of their choosing. The later chapters can be
  228. used in support of these projects. For compiler courses at
  229. universities on the quarter system (about 10 weeks in length), we
  230. recommend completing up through Chapter~\ref{ch:Lvec} or
  231. Chapter~\ref{ch:Lfun} and providing some scafolding code to the
  232. students for each compiler pass.
  233. %
  234. The course can be adapted to emphasize functional languages by
  235. skipping Chapter~\ref{ch:Lwhile} (loops) and including
  236. Chapter~\ref{ch:Llambda} (lambda). The course can be adapted to
  237. dynamically typed languages by including Chapter~\ref{ch:Ldyn}.
  238. %
  239. \python{A course that emphasizes object-oriented languages would
  240. include Chapter~\ref{ch:Lobject}.}
  241. %
  242. Figure~\ref{fig:chapter-dependences} depicts the dependencies between
  243. chapters. Chapter~\ref{ch:Lfun} (functions) depends on
  244. Chapter~\ref{ch:Lvec} (tuples) only in the implementation of efficient
  245. tail calls.
  246. This book has been used in compiler courses at California Polytechnic
  247. State University, Portland State University, Rose–Hulman Institute of
  248. Technology, University of Freiburg, University of Massachusetts
  249. Lowell, and the University of Vermont.
  250. \begin{figure}[tp]
  251. {\if\edition\racketEd
  252. \begin{tikzpicture}[baseline=(current bounding box.center)]
  253. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  254. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  255. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  256. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  257. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  258. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  259. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  260. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  261. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  262. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  263. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  264. \path[->] (C1) edge [above] node {} (C2);
  265. \path[->] (C2) edge [above] node {} (C3);
  266. \path[->] (C3) edge [above] node {} (C4);
  267. \path[->] (C4) edge [above] node {} (C5);
  268. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  269. \path[->] (C5) edge [above] node {} (C7);
  270. \path[->] (C6) edge [above] node {} (C7);
  271. \path[->] (C4) edge [above] node {} (C8);
  272. \path[->] (C4) edge [above] node {} (C9);
  273. \path[->] (C7) edge [above] node {} (C10);
  274. \path[->] (C8) edge [above] node {} (C10);
  275. \path[->] (C10) edge [above] node {} (C11);
  276. \end{tikzpicture}
  277. \fi}
  278. {\if\edition\pythonEd
  279. \begin{tikzpicture}[baseline=(current bounding box.center)]
  280. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  281. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  282. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  283. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  284. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  285. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  286. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  287. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  288. \node (CO) at (0,-3) {\small Ch.~\ref{ch:Lobject} Objects};
  289. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  290. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  291. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  292. \path[->] (C1) edge [above] node {} (C2);
  293. \path[->] (C2) edge [above] node {} (C3);
  294. \path[->] (C3) edge [above] node {} (C4);
  295. \path[->] (C4) edge [above] node {} (C5);
  296. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  297. \path[->] (C5) edge [above] node {} (C7);
  298. \path[->] (C6) edge [above] node {} (C7);
  299. \path[->] (C4) edge [above] node {} (C8);
  300. \path[->] (C4) edge [above] node {} (C9);
  301. \path[->] (C7) edge [above] node {} (C10);
  302. \path[->] (C8) edge [above] node {} (C10);
  303. \path[->] (C8) edge [above] node {} (CO);
  304. \path[->] (C10) edge [above] node {} (C11);
  305. \end{tikzpicture}
  306. \fi}
  307. \caption{Diagram of chapter dependencies.}
  308. \label{fig:chapter-dependences}
  309. \end{figure}
  310. \racket{
  311. We use the \href{https://racket-lang.org/}{Racket} language both for
  312. the implementation of the compiler and for the input language, so the
  313. reader should be proficient with Racket or Scheme. There are many
  314. excellent resources for learning Scheme and
  315. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  316. }
  317. \python{
  318. This edition of the book uses \href{https://www.python.org/}{Python}
  319. both for the implementation of the compiler and for the input language, so the
  320. reader should be proficient with Python. There are many
  321. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.
  322. }
  323. The support code for this book is in the github repository at
  324. the following location:
  325. \if\edition\racketEd
  326. \begin{center}\small
  327. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  328. \end{center}
  329. \fi
  330. \if\edition\pythonEd
  331. \begin{center}\small
  332. \url{https://github.com/IUCompilerCourse/}
  333. \end{center}
  334. \fi
  335. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  336. is helpful but not necessary for the reader to have taken a computer
  337. systems course~\citep{Bryant:2010aa}. We introduce the parts of x86-64
  338. assembly language that are needed in the compiler.
  339. %
  340. We follow the System V calling
  341. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  342. that we generate works with the runtime system (written in C) when it
  343. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  344. operating systems on Intel hardware.
  345. %
  346. On the Windows operating system, \code{gcc} uses the Microsoft x64
  347. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  348. assembly code that we generate does \emph{not} work with the runtime
  349. system on Windows. One workaround is to use a virtual machine with
  350. Linux as the guest operating system.
  351. \section*{Acknowledgments}
  352. The tradition of compiler construction at Indiana University goes back
  353. to research and courses on programming languages by Daniel Friedman in
  354. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  355. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  356. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  357. the compiler course and continued the development of Chez Scheme.
  358. %
  359. The compiler course evolved to incorporate novel pedagogical ideas
  360. while also including elements of real-world compilers. One of
  361. Friedman's ideas was to split the compiler into many small
  362. passes. Another idea, called ``the game'', was to test the code
  363. generated by each pass using interpreters.
  364. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  365. developed infrastructure to support this approach and evolved the
  366. course to use even smaller
  367. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  368. design decisions in this book are inspired by the assignment
  369. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  370. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  371. organization of the course made it difficult for students to
  372. understand the rationale for the compiler design. Ghuloum proposed the
  373. incremental approach~\citep{Ghuloum:2006bh} that this book is based
  374. on.
  375. We thank the many students who served as teaching assistants for the
  376. compiler course at IU including Carl Factora, Ryan Scott, Cameron
  377. Swords, and Chris Wailes. We thank Andre Kuhlenschmidt for work on the
  378. garbage collector and x86 interpreter, Michael Vollmer for work on
  379. efficient tail calls, and Michael Vitousek for help with the first
  380. offering of the incremental compiler course at IU.
  381. We thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  382. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  383. Michael Wollowski for teaching courses based on drafts of this book
  384. and for their feedback.
  385. We thank Ronald Garcia for helping Jeremy survive Dybvig's compiler
  386. course in the early 2000's and especially for finding the bug that
  387. sent our garbage collector on a wild goose chase!
  388. \mbox{}\\
  389. \noindent Jeremy G. Siek \\
  390. Bloomington, Indiana
  391. \mainmatter
  392. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  393. \chapter{Preliminaries}
  394. \label{ch:trees-recur}
  395. In this chapter we review the basic tools that are needed to implement
  396. a compiler. Programs are typically input by a programmer as text,
  397. i.e., a sequence of characters. The program-as-text representation is
  398. called \emph{concrete syntax}. We use concrete syntax to concisely
  399. write down and talk about programs. Inside the compiler, we use
  400. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  401. that efficiently supports the operations that the compiler needs to
  402. perform.\index{subject}{concrete syntax}\index{subject}{abstract syntax}\index{subject}{abstract
  403. syntax tree}\index{subject}{AST}\index{subject}{program}\index{subject}{parse} The translation
  404. from concrete syntax to abstract syntax is a process called
  405. \emph{parsing}~\citep{Aho:2006wb}. We do not cover the theory and
  406. implementation of parsing in this book.
  407. %
  408. \racket{A parser is provided in the support code for translating from
  409. concrete to abstract syntax.}
  410. %
  411. \python{We use Python's \code{ast} module to translate from concrete
  412. to abstract syntax.}
  413. ASTs can be represented in many different ways inside the compiler,
  414. depending on the programming language used to write the compiler.
  415. %
  416. \racket{We use Racket's
  417. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  418. feature to represent ASTs (Section~\ref{sec:ast}).}
  419. %
  420. \python{We use Python classes and objects to represent ASTs, especially the
  421. classes defined in the standard \code{ast} module for the Python
  422. source language.}
  423. %
  424. We use grammars to define the abstract syntax of programming languages
  425. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  426. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  427. recursive functions to construct and deconstruct ASTs
  428. (Section~\ref{sec:recursion}). This chapter provides an brief
  429. introduction to these ideas.
  430. \racket{\index{subject}{struct}}
  431. \python{\index{subject}{class}\index{subject}{object}}
  432. \section{Abstract Syntax Trees}
  433. \label{sec:ast}
  434. Compilers use abstract syntax trees to represent programs because they
  435. often need to ask questions like: for a given part of a program, what
  436. kind of language feature is it? What are its sub-parts? Consider the
  437. program on the left and its AST on the right. This program is an
  438. addition operation and it has two sub-parts, a
  439. \racket{read}\python{input} operation and a negation. The negation has
  440. another sub-part, the integer constant \code{8}. By using a tree to
  441. represent the program, we can easily follow the links to go from one
  442. part of a program to its sub-parts.
  443. \begin{center}
  444. \begin{minipage}{0.4\textwidth}
  445. \if\edition\racketEd
  446. \begin{lstlisting}
  447. (+ (read) (- 8))
  448. \end{lstlisting}
  449. \fi
  450. \if\edition\pythonEd
  451. \begin{lstlisting}
  452. input_int() + -8
  453. \end{lstlisting}
  454. \fi
  455. \end{minipage}
  456. \begin{minipage}{0.4\textwidth}
  457. \begin{equation}
  458. \begin{tikzpicture}
  459. \node[draw] (plus) at (0 , 0) {\key{+}};
  460. \node[draw] (read) at (-1, -1.5) {{\if\edition\racketEd\footnotesize\key{read}\fi\if\edition\pythonEd\key{input\_int()}\fi}};
  461. \node[draw] (minus) at (1 , -1.5) {$\key{-}$};
  462. \node[draw] (8) at (1 , -3) {\key{8}};
  463. \draw[->] (plus) to (read);
  464. \draw[->] (plus) to (minus);
  465. \draw[->] (minus) to (8);
  466. \end{tikzpicture}
  467. \label{eq:arith-prog}
  468. \end{equation}
  469. \end{minipage}
  470. \end{center}
  471. We use the standard terminology for trees to describe ASTs: each
  472. rectangle above is called a \emph{node}. The arrows connect a node to its
  473. \emph{children} (which are also nodes). The top-most node is the
  474. \emph{root}. Every node except for the root has a \emph{parent} (the
  475. node it is the child of). If a node has no children, it is a
  476. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  477. \index{subject}{node}
  478. \index{subject}{children}
  479. \index{subject}{root}
  480. \index{subject}{parent}
  481. \index{subject}{leaf}
  482. \index{subject}{internal node}
  483. %% Recall that an \emph{symbolic expression} (S-expression) is either
  484. %% \begin{enumerate}
  485. %% \item an atom, or
  486. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  487. %% where $e_1$ and $e_2$ are each an S-expression.
  488. %% \end{enumerate}
  489. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  490. %% null value \code{'()}, etc. We can create an S-expression in Racket
  491. %% simply by writing a backquote (called a quasi-quote in Racket)
  492. %% followed by the textual representation of the S-expression. It is
  493. %% quite common to use S-expressions to represent a list, such as $a, b
  494. %% ,c$ in the following way:
  495. %% \begin{lstlisting}
  496. %% `(a . (b . (c . ())))
  497. %% \end{lstlisting}
  498. %% Each element of the list is in the first slot of a pair, and the
  499. %% second slot is either the rest of the list or the null value, to mark
  500. %% the end of the list. Such lists are so common that Racket provides
  501. %% special notation for them that removes the need for the periods
  502. %% and so many parenthesis:
  503. %% \begin{lstlisting}
  504. %% `(a b c)
  505. %% \end{lstlisting}
  506. %% The following expression creates an S-expression that represents AST
  507. %% \eqref{eq:arith-prog}.
  508. %% \begin{lstlisting}
  509. %% `(+ (read) (- 8))
  510. %% \end{lstlisting}
  511. %% When using S-expressions to represent ASTs, the convention is to
  512. %% represent each AST node as a list and to put the operation symbol at
  513. %% the front of the list. The rest of the list contains the children. So
  514. %% in the above case, the root AST node has operation \code{`+} and its
  515. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  516. %% diagram \eqref{eq:arith-prog}.
  517. %% To build larger S-expressions one often needs to splice together
  518. %% several smaller S-expressions. Racket provides the comma operator to
  519. %% splice an S-expression into a larger one. For example, instead of
  520. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  521. %% we could have first created an S-expression for AST
  522. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  523. %% S-expression.
  524. %% \begin{lstlisting}
  525. %% (define ast1.4 `(- 8))
  526. %% (define ast1_1 `(+ (read) ,ast1.4))
  527. %% \end{lstlisting}
  528. %% In general, the Racket expression that follows the comma (splice)
  529. %% can be any expression that produces an S-expression.
  530. {\if\edition\racketEd
  531. We define a Racket \code{struct} for each kind of node. For this
  532. chapter we require just two kinds of nodes: one for integer constants
  533. and one for primitive operations. The following is the \code{struct}
  534. definition for integer constants.\footnote{All of the AST structures are
  535. defined in the file \code{utilities.rkt} in the support code.}
  536. \begin{lstlisting}
  537. (struct Int (value))
  538. \end{lstlisting}
  539. An integer node includes just one thing: the integer value.
  540. To create an AST node for the integer $8$, we write \INT{8}.
  541. \begin{lstlisting}
  542. (define eight (Int 8))
  543. \end{lstlisting}
  544. We say that the value created by \INT{8} is an
  545. \emph{instance} of the
  546. \code{Int} structure.
  547. The following is the \code{struct} definition for primitive operations.
  548. \begin{lstlisting}
  549. (struct Prim (op args))
  550. \end{lstlisting}
  551. A primitive operation node includes an operator symbol \code{op} and a
  552. list of child \code{args}. For example, to create an AST that negates
  553. the number $8$, we write the following.
  554. \begin{lstlisting}
  555. (define neg-eight (Prim '- (list eight)))
  556. \end{lstlisting}
  557. Primitive operations may have zero or more children. The \code{read}
  558. operator has zero:
  559. \begin{lstlisting}
  560. (define rd (Prim 'read '()))
  561. \end{lstlisting}
  562. The addition operator has two children:
  563. \begin{lstlisting}
  564. (define ast1_1 (Prim '+ (list rd neg-eight)))
  565. \end{lstlisting}
  566. We have made a design choice regarding the \code{Prim} structure.
  567. Instead of using one structure for many different operations
  568. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  569. structure for each operation, as follows.
  570. \begin{lstlisting}
  571. (struct Read ())
  572. (struct Add (left right))
  573. (struct Neg (value))
  574. \end{lstlisting}
  575. The reason we choose to use just one structure is that in many parts
  576. of the compiler the code for the different primitive operators is the
  577. same, so we might as well just write that code once, which is enabled
  578. by using a single structure.
  579. \fi}
  580. {\if\edition\pythonEd
  581. We use a Python \code{class} for each kind of node.
  582. The following is the class definition for constants.
  583. \begin{lstlisting}
  584. class Constant:
  585. def __init__(self, value):
  586. self.value = value
  587. \end{lstlisting}
  588. An integer constant node includes just one thing: the integer value.
  589. To create an AST node for the integer $8$, we write \INT{8}.
  590. \begin{lstlisting}
  591. eight = Constant(8)
  592. \end{lstlisting}
  593. We say that the value created by \INT{8} is an
  594. \emph{instance} of the \code{Constant} class.
  595. The following is the class definition for unary operators.
  596. \begin{lstlisting}
  597. class UnaryOp:
  598. def __init__(self, op, operand):
  599. self.op = op
  600. self.operand = operand
  601. \end{lstlisting}
  602. The specific operation is specified by the \code{op} parameter. For
  603. example, the class \code{USub} is for unary subtraction. (More unary
  604. operators are introduced in later chapters.) To create an AST that
  605. negates the number $8$, we write the following.
  606. \begin{lstlisting}
  607. neg_eight = UnaryOp(USub(), eight)
  608. \end{lstlisting}
  609. The call to the \code{input\_int} function is represented by the
  610. \code{Call} and \code{Name} classes.
  611. \begin{lstlisting}
  612. class Call:
  613. def __init__(self, func, args):
  614. self.func = func
  615. self.args = args
  616. class Name:
  617. def __init__(self, id):
  618. self.id = id
  619. \end{lstlisting}
  620. To create an AST node that calls \code{input\_int}, we write
  621. \begin{lstlisting}
  622. read = Call(Name('input_int'), [])
  623. \end{lstlisting}
  624. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  625. the \code{BinOp} class for binary operators.
  626. \begin{lstlisting}
  627. class BinOp:
  628. def __init__(self, left, op, right):
  629. self.op = op
  630. self.left = left
  631. self.right = right
  632. \end{lstlisting}
  633. Similar to \code{UnaryOp}, the specific operation is specified by the
  634. \code{op} parameter, which for now is just an instance of the
  635. \code{Add} class. So to create the AST node that adds negative eight
  636. to some user input, we write the following.
  637. \begin{lstlisting}
  638. ast1_1 = BinOp(read, Add(), neg_eight)
  639. \end{lstlisting}
  640. \fi}
  641. When compiling a program such as \eqref{eq:arith-prog}, we need to
  642. know that the operation associated with the root node is addition and
  643. we need to be able to access its two children. \racket{Racket}\python{Python}
  644. provides pattern matching to support these kinds of queries, as we see in
  645. Section~\ref{sec:pattern-matching}.
  646. We often write down the concrete syntax of a program even when we
  647. really have in mind the AST because the concrete syntax is more
  648. concise. We recommend that, in your mind, you always think of
  649. programs as abstract syntax trees.
  650. \section{Grammars}
  651. \label{sec:grammar}
  652. \index{subject}{integer}
  653. \index{subject}{literal}
  654. \index{subject}{constant}
  655. A programming language can be thought of as a \emph{set} of programs.
  656. The set is typically infinite (one can always create larger and larger
  657. programs) so one cannot simply describe a language by listing all of
  658. the programs in the language. Instead we write down a set of rules, a
  659. \emph{grammar}, for building programs. Grammars are often used to
  660. define the concrete syntax of a language but they can also be used to
  661. describe the abstract syntax. We write our rules in a variant of
  662. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  663. \index{subject}{Backus-Naur Form}\index{subject}{BNF}
  664. As an example, we describe a small language, named \LangInt{}, that consists of
  665. integers and arithmetic operations.
  666. \index{subject}{grammar}
  667. The first grammar rule for the abstract syntax of \LangInt{} says that an
  668. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  669. \begin{equation}
  670. \Exp ::= \INT{\Int} \label{eq:arith-int}
  671. \end{equation}
  672. %
  673. Each rule has a left-hand-side and a right-hand-side.
  674. If you have an AST node that matches the
  675. right-hand-side, then you can categorize it according to the
  676. left-hand-side.
  677. %
  678. Symbols in typewriter font are \emph{terminal} symbols and must
  679. literally appear in the program for the rule to be applicable.
  680. \index{subject}{terminal}
  681. %
  682. Our grammars do not mention \emph{white-space}, that is, separating characters
  683. like spaces, tabulators, and newlines. White-space may be inserted
  684. between symbols for disambiguation and to improve readability.
  685. \index{subject}{white-space}
  686. %
  687. A name such as $\Exp$ that is defined by the grammar rules is a
  688. \emph{non-terminal}. \index{subject}{non-terminal}
  689. %
  690. The name $\Int$ is also a non-terminal, but instead of defining it
  691. with a grammar rule, we define it with the following explanation. An
  692. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  693. $-$ (for negative integers), such that the sequence of decimals
  694. represent an integer in range $-2^{62}$ to $2^{62}-1$. This enables
  695. the representation of integers using 63 bits, which simplifies several
  696. aspects of compilation. \racket{Thus, these integers correspond to
  697. the Racket \texttt{fixnum} datatype on a 64-bit machine.}
  698. \python{In contrast, integers in Python have unlimited precision, but
  699. the techniques needed to handle unlimited precision fall outside the
  700. scope of this book.}
  701. The second grammar rule is the \READOP{} operation that receives an
  702. input integer from the user of the program.
  703. \begin{equation}
  704. \Exp ::= \READ{} \label{eq:arith-read}
  705. \end{equation}
  706. The third rule categorizes the negation of an $\Exp$ node as an
  707. $\Exp$.
  708. \begin{equation}
  709. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  710. \end{equation}
  711. We can apply these rules to categorize the ASTs that are in the
  712. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  713. \INT{8} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  714. following AST is an $\Exp$.
  715. \begin{center}
  716. \begin{minipage}{0.5\textwidth}
  717. \NEG{\INT{\code{8}}}
  718. \end{minipage}
  719. \begin{minipage}{0.25\textwidth}
  720. \begin{equation}
  721. \begin{tikzpicture}
  722. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  723. \node[draw, circle] (8) at (0, -1.2) {$8$};
  724. \draw[->] (minus) to (8);
  725. \end{tikzpicture}
  726. \label{eq:arith-neg8}
  727. \end{equation}
  728. \end{minipage}
  729. \end{center}
  730. The next grammar rules are for addition and subtraction expressions:
  731. \begin{align}
  732. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  733. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  734. \end{align}
  735. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  736. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  737. \eqref{eq:arith-read} and we have already categorized
  738. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  739. to show that
  740. \[
  741. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  742. \]
  743. is an $\Exp$ in the \LangInt{} language.
  744. If you have an AST for which the above rules do not apply, then the
  745. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  746. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  747. because there is no rule for the \key{*} operator. Whenever we
  748. define a language with a grammar, the language only includes those
  749. programs that are justified by the grammar rules.
  750. {\if\edition\pythonEd
  751. The language \LangInt{} includes a second non-terminal $\Stmt$ for statements.
  752. There is a statement for printing the value of an expression
  753. \[
  754. \Stmt{} ::= \PRINT{\Exp}
  755. \]
  756. and a statement that evaluates an expression but ignores the result.
  757. \[
  758. \Stmt{} ::= \EXPR{\Exp}
  759. \]
  760. \fi}
  761. {\if\edition\racketEd
  762. The last grammar rule for \LangInt{} states that there is a
  763. \code{Program} node to mark the top of the whole program:
  764. \[
  765. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  766. \]
  767. The \code{Program} structure is defined as follows
  768. \begin{lstlisting}
  769. (struct Program (info body))
  770. \end{lstlisting}
  771. where \code{body} is an expression. In later chapters, the \code{info}
  772. part will be used to store auxiliary information but for now it is
  773. just the empty list.
  774. \fi}
  775. {\if\edition\pythonEd
  776. The last grammar rule for \LangInt{} states that there is a
  777. \code{Module} node to mark the top of the whole program:
  778. \[
  779. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  780. \]
  781. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  782. this case, a list of statements.
  783. %
  784. The \code{Module} class is defined as follows
  785. \begin{lstlisting}
  786. class Module:
  787. def __init__(self, body):
  788. self.body = body
  789. \end{lstlisting}
  790. where \code{body} is a list of statements.
  791. \fi}
  792. It is common to have many grammar rules with the same left-hand side
  793. but different right-hand sides, such as the rules for $\Exp$ in the
  794. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  795. combine several right-hand-sides into a single rule.
  796. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  797. in Figure~\ref{fig:r0-syntax}. The concrete syntax for \LangInt{} is
  798. defined in Figure~\ref{fig:r0-concrete-syntax}.
  799. \racket{The \code{read-program} function provided in
  800. \code{utilities.rkt} of the support code reads a program in from a
  801. file (the sequence of characters in the concrete syntax of Racket)
  802. and parses it into an abstract syntax tree. See the description of
  803. \code{read-program} in Appendix~\ref{appendix:utilities} for more
  804. details.}
  805. \python{The \code{parse} function in Python's \code{ast} module
  806. converts the concrete syntax (represented as a string) into an
  807. abstract syntax tree.}
  808. \newcommand{\LintGrammarRacket}{
  809. \begin{array}{rcl}
  810. \Type &::=& \key{Integer} \\
  811. \Exp{} &::=& \Int{} \MID \CREAD \RP \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  812. \MID \CSUB{\Exp}{\Exp}
  813. \end{array}
  814. }
  815. \newcommand{\LintASTRacket}{
  816. \begin{array}{rcl}
  817. \Type &::=& \key{Integer} \\
  818. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  819. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \SUB{\Exp}{\Exp}
  820. \end{array}
  821. }
  822. \newcommand{\LintGrammarPython}{
  823. \begin{array}{rcl}
  824. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  825. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  826. \end{array}
  827. }
  828. \newcommand{\LintASTPython}{
  829. \begin{array}{rcl}
  830. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  831. \itm{unaryop} &::= & \code{USub()} \\
  832. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  833. &\MID& \UNIOP{\itm{unaryop}}{\Exp} \MID \BINOP{\itm{binaryop}}{\Exp}{\Exp} \\
  834. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  835. \end{array}
  836. }
  837. \begin{figure}[tp]
  838. \fbox{
  839. \begin{minipage}{0.96\textwidth}
  840. {\if\edition\racketEd
  841. \[
  842. \begin{array}{l}
  843. \LintGrammarRacket \\
  844. \begin{array}{rcl}
  845. \LangInt{} &::=& \Exp
  846. \end{array}
  847. \end{array}
  848. \]
  849. \fi}
  850. {\if\edition\pythonEd
  851. \[
  852. \begin{array}{l}
  853. \LintGrammarPython \\
  854. \begin{array}{rcl}
  855. \LangInt{} &::=& \Stmt^{*}
  856. \end{array}
  857. \end{array}
  858. \]
  859. \fi}
  860. \end{minipage}
  861. }
  862. \caption{The concrete syntax of \LangInt{}.}
  863. \label{fig:r0-concrete-syntax}
  864. \end{figure}
  865. \begin{figure}[tp]
  866. \fbox{
  867. \begin{minipage}{0.96\textwidth}
  868. {\if\edition\racketEd
  869. \[
  870. \begin{array}{l}
  871. \LintASTRacket{} \\
  872. \begin{array}{rcl}
  873. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  874. \end{array}
  875. \end{array}
  876. \]
  877. \fi}
  878. {\if\edition\pythonEd
  879. \[
  880. \begin{array}{l}
  881. \LintASTPython\\
  882. \begin{array}{rcl}
  883. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  884. \end{array}
  885. \end{array}
  886. \]
  887. \fi}
  888. \end{minipage}
  889. }
  890. \caption{The abstract syntax of \LangInt{}.}
  891. \label{fig:r0-syntax}
  892. \end{figure}
  893. \section{Pattern Matching}
  894. \label{sec:pattern-matching}
  895. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  896. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python} provides the
  897. \texttt{match} feature to access the parts of a value.
  898. Consider the following example. \index{subject}{match} \index{subject}{pattern matching}
  899. \begin{center}
  900. \begin{minipage}{0.5\textwidth}
  901. {\if\edition\racketEd
  902. \begin{lstlisting}
  903. (match ast1_1
  904. [(Prim op (list child1 child2))
  905. (print op)])
  906. \end{lstlisting}
  907. \fi}
  908. {\if\edition\pythonEd
  909. \begin{lstlisting}
  910. match ast1_1:
  911. case BinOp(child1, op, child2):
  912. print(op)
  913. \end{lstlisting}
  914. \fi}
  915. \end{minipage}
  916. \end{center}
  917. {\if\edition\racketEd
  918. %
  919. In the above example, the \texttt{match} form checks whether the AST
  920. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  921. three pattern variables \texttt{op}, \texttt{child1}, and
  922. \texttt{child2}. In general, a match clause consists of a
  923. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  924. recursively defined to be either a pattern variable, a structure name
  925. followed by a pattern for each of the structure's arguments, or an
  926. S-expression (symbols, lists, etc.). (See Chapter 12 of The Racket
  927. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  928. and Chapter 9 of The Racket
  929. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  930. for complete descriptions of \code{match}.)
  931. %
  932. The body of a match clause may contain arbitrary Racket code. The
  933. pattern variables can be used in the scope of the body, such as
  934. \code{op} in \code{(print op)}.
  935. %
  936. \fi}
  937. %
  938. %
  939. {\if\edition\pythonEd
  940. %
  941. In the above example, the \texttt{match} form checks whether the AST
  942. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  943. three pattern variables \texttt{child1}, \texttt{op}, and
  944. \texttt{child2}, and then prints out the operator. In general, each
  945. \code{case} consists of a \emph{pattern} and a
  946. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  947. to be either a pattern variable, a class name followed by a pattern
  948. for each of its constructor's arguments, or other literals such as
  949. strings, lists, etc.
  950. %
  951. The body of each \code{case} may contain arbitrary Python code. The
  952. pattern variables can be used in the body, such as \code{op} in
  953. \code{print(op)}.
  954. %
  955. \fi}
  956. A \code{match} form may contain several clauses, as in the following
  957. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  958. the AST. The \code{match} proceeds through the clauses in order,
  959. checking whether the pattern can match the input AST. The body of the
  960. first clause that matches is executed. The output of \code{leaf} for
  961. several ASTs is shown on the right.
  962. \begin{center}
  963. \begin{minipage}{0.6\textwidth}
  964. {\if\edition\racketEd
  965. \begin{lstlisting}
  966. (define (leaf arith)
  967. (match arith
  968. [(Int n) #t]
  969. [(Prim 'read '()) #t]
  970. [(Prim '- (list e1)) #f]
  971. [(Prim '+ (list e1 e2)) #f]
  972. [(Prim '- (list e1 e2)) #f]))
  973. (leaf (Prim 'read '()))
  974. (leaf (Prim '- (list (Int 8))))
  975. (leaf (Int 8))
  976. \end{lstlisting}
  977. \fi}
  978. {\if\edition\pythonEd
  979. \begin{lstlisting}
  980. def leaf(arith):
  981. match arith:
  982. case Constant(n):
  983. return True
  984. case Call(Name('input_int'), []):
  985. return True
  986. case UnaryOp(USub(), e1):
  987. return False
  988. case BinOp(e1, Add(), e2):
  989. return False
  990. case BinOp(e1, Sub(), e2):
  991. return False
  992. print(leaf(Call(Name('input_int'), [])))
  993. print(leaf(UnaryOp(USub(), eight)))
  994. print(leaf(Constant(8)))
  995. \end{lstlisting}
  996. \fi}
  997. \end{minipage}
  998. \vrule
  999. \begin{minipage}{0.25\textwidth}
  1000. {\if\edition\racketEd
  1001. \begin{lstlisting}
  1002. #t
  1003. #f
  1004. #t
  1005. \end{lstlisting}
  1006. \fi}
  1007. {\if\edition\pythonEd
  1008. \begin{lstlisting}
  1009. True
  1010. False
  1011. True
  1012. \end{lstlisting}
  1013. \fi}
  1014. \end{minipage}
  1015. \end{center}
  1016. When constructing a \code{match} expression, we refer to the grammar
  1017. definition to identify which non-terminal we are expecting to match
  1018. against, then we make sure that 1) we have one
  1019. \racket{clause}\python{case} for each alternative of that non-terminal
  1020. and 2) that the pattern in each \racket{clause}\python{case}
  1021. corresponds to the corresponding right-hand side of a grammar
  1022. rule. For the \code{match} in the \code{leaf} function, we refer to
  1023. the grammar for \LangInt{} in Figure~\ref{fig:r0-syntax}. The $\Exp$
  1024. non-terminal has 4 alternatives, so the \code{match} has 4
  1025. \racket{clauses}\python{cases}. The pattern in each
  1026. \racket{clause}\python{case} corresponds to the right-hand side of a
  1027. grammar rule. For example, the pattern \ADDP{\code{e1}}{\code{e2}}
  1028. corresponds to the right-hand side $\ADD{\Exp}{\Exp}$. When
  1029. translating from grammars to patterns, replace non-terminals such as
  1030. $\Exp$ with pattern variables of your choice (e.g. \code{e1} and
  1031. \code{e2}).
  1032. \section{Recursive Functions}
  1033. \label{sec:recursion}
  1034. \index{subject}{recursive function}
  1035. Programs are inherently recursive. For example, an expression is often
  1036. made of smaller expressions. Thus, the natural way to process an
  1037. entire program is with a recursive function. As a first example of
  1038. such a recursive function, we define the function \code{is\_exp} in
  1039. Figure~\ref{fig:exp-predicate}, which takes an arbitrary value and
  1040. determines whether or not it is an expression in \LangInt{}.
  1041. %
  1042. We say that a function is defined by \emph{structural recursion} when
  1043. it is defined using a sequence of match \racket{clauses}\python{cases}
  1044. that correspond to a grammar, and the body of each
  1045. \racket{clause}\python{case} makes a recursive call on each child
  1046. node.\footnote{This principle of structuring code according to the
  1047. data definition is advocated in the book \emph{How to Design
  1048. Programs} by \citet{Felleisen:2001aa}.} \python{We define a
  1049. second function, named \code{stmt}, that recognizes whether a value
  1050. is a \LangInt{} statement.} \python{Finally, }
  1051. Figure~\ref{fig:exp-predicate} \racket{also} defines \code{is\_Lint},
  1052. which determines whether an AST is a program in \LangInt{}. In
  1053. general we can write one recursive function to handle each
  1054. non-terminal in a grammar.\index{subject}{structural recursion} Of the
  1055. two examples at the bottom of the figure, the first is in
  1056. \LangInt{} and the second is not.
  1057. \begin{figure}[tp]
  1058. {\if\edition\racketEd
  1059. \begin{lstlisting}
  1060. (define (is_exp ast)
  1061. (match ast
  1062. [(Int n) #t]
  1063. [(Prim 'read '()) #t]
  1064. [(Prim '- (list e)) (is_exp e)]
  1065. [(Prim '+ (list e1 e2))
  1066. (and (is_exp e1) (is_exp e2))]
  1067. [(Prim '- (list e1 e2))
  1068. (and (is_exp e1) (is_exp e2))]
  1069. [else #f]))
  1070. (define (is_Lint ast)
  1071. (match ast
  1072. [(Program '() e) (is_exp e)]
  1073. [else #f]))
  1074. (is_Lint (Program '() ast1_1)
  1075. (is_Lint (Program '()
  1076. (Prim '* (list (Prim 'read '())
  1077. (Prim '+ (list (Int 8)))))))
  1078. \end{lstlisting}
  1079. \fi}
  1080. {\if\edition\pythonEd
  1081. \begin{lstlisting}
  1082. def is_exp(e):
  1083. match e:
  1084. case Constant(n):
  1085. return True
  1086. case Call(Name('input_int'), []):
  1087. return True
  1088. case UnaryOp(USub(), e1):
  1089. return is_exp(e1)
  1090. case BinOp(e1, Add(), e2):
  1091. return is_exp(e1) and is_exp(e2)
  1092. case BinOp(e1, Sub(), e2):
  1093. return is_exp(e1) and is_exp(e2)
  1094. case _:
  1095. return False
  1096. def stmt(s):
  1097. match s:
  1098. case Expr(Call(Name('print'), [e])):
  1099. return is_exp(e)
  1100. case Expr(e):
  1101. return is_exp(e)
  1102. case _:
  1103. return False
  1104. def is_Lint(p):
  1105. match p:
  1106. case Module(body):
  1107. return all([stmt(s) for s in body])
  1108. case _:
  1109. return False
  1110. print(is_Lint(Module([Expr(ast1_1)])))
  1111. print(is_Lint(Module([Expr(BinOp(read, Sub(),
  1112. UnaryOp(Add(), Constant(8))))])))
  1113. \end{lstlisting}
  1114. \fi}
  1115. \caption{Example of recursive functions for \LangInt{}. These functions
  1116. recognize whether an AST is in \LangInt{}.}
  1117. \label{fig:exp-predicate}
  1118. \end{figure}
  1119. %% You may be tempted to merge the two functions into one, like this:
  1120. %% \begin{center}
  1121. %% \begin{minipage}{0.5\textwidth}
  1122. %% \begin{lstlisting}
  1123. %% (define (Lint ast)
  1124. %% (match ast
  1125. %% [(Int n) #t]
  1126. %% [(Prim 'read '()) #t]
  1127. %% [(Prim '- (list e)) (Lint e)]
  1128. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1129. %% [(Program '() e) (Lint e)]
  1130. %% [else #f]))
  1131. %% \end{lstlisting}
  1132. %% \end{minipage}
  1133. %% \end{center}
  1134. %% %
  1135. %% Sometimes such a trick will save a few lines of code, especially when
  1136. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1137. %% \emph{not} recommended because it can get you into trouble.
  1138. %% %
  1139. %% For example, the above function is subtly wrong:
  1140. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1141. %% returns true when it should return false.
  1142. \section{Interpreters}
  1143. \label{sec:interp_Lint}
  1144. \index{subject}{interpreter}
  1145. The behavior of a program is defined by the specification of the
  1146. programming language.
  1147. %
  1148. \racket{For example, the Scheme language is defined in the report by
  1149. \cite{SPERBER:2009aa}. The Racket language is defined in its
  1150. reference manual~\citep{plt-tr}.}
  1151. %
  1152. \python{For example, the Python language is defined in the Python
  1153. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1154. %
  1155. In this book we use interpreters to specify each language that we
  1156. consider. An interpreter that is designated as the definition of a
  1157. language is called a \emph{definitional
  1158. interpreter}~\citep{reynolds72:_def_interp}.
  1159. \index{subject}{definitional interpreter} We warm up by creating a
  1160. definitional interpreter for the \LangInt{} language. This interpreter
  1161. serves as a second example of structural recursion. The
  1162. \code{interp\_Lint} function is defined in
  1163. Figure~\ref{fig:interp_Lint}.
  1164. %
  1165. \racket{The body of the function is a match on the input program
  1166. followed by a call to the \lstinline{interp_exp} helper function,
  1167. which in turn has one match clause per grammar rule for \LangInt{}
  1168. expressions.}
  1169. %
  1170. \python{The body of the function matches on the \code{Module} AST node
  1171. and then invokes \code{interp\_stmt} on each statement in the
  1172. module. The \code{interp\_stmt} function includes a case for each
  1173. grammar rule of the \Stmt{} non-terminal and it calls
  1174. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1175. function includes a case for each grammar rule of the \Exp{}
  1176. non-terminal.}
  1177. \begin{figure}[tp]
  1178. {\if\edition\racketEd
  1179. \begin{lstlisting}
  1180. (define (interp_exp e)
  1181. (match e
  1182. [(Int n) n]
  1183. [(Prim 'read '())
  1184. (define r (read))
  1185. (cond [(fixnum? r) r]
  1186. [else (error 'interp_exp "read expected an integer" r)])]
  1187. [(Prim '- (list e))
  1188. (define v (interp_exp e))
  1189. (fx- 0 v)]
  1190. [(Prim '+ (list e1 e2))
  1191. (define v1 (interp_exp e1))
  1192. (define v2 (interp_exp e2))
  1193. (fx+ v1 v2)]
  1194. [(Prim '- (list e1 e2))
  1195. (define v1 ((interp-exp env) e1))
  1196. (define v2 ((interp-exp env) e2))
  1197. (fx- v1 v2)]))
  1198. (define (interp_Lint p)
  1199. (match p
  1200. [(Program '() e) (interp_exp e)]))
  1201. \end{lstlisting}
  1202. \fi}
  1203. {\if\edition\pythonEd
  1204. \begin{lstlisting}
  1205. def interp_exp(e):
  1206. match e:
  1207. case BinOp(left, Add(), right):
  1208. l = interp_exp(left); r = interp_exp(right)
  1209. return l + r
  1210. case BinOp(left, Sub(), right):
  1211. l = interp_exp(left); r = interp_exp(right)
  1212. return l - r
  1213. case UnaryOp(USub(), v):
  1214. return - interp_exp(v)
  1215. case Constant(value):
  1216. return value
  1217. case Call(Name('input_int'), []):
  1218. return int(input())
  1219. def interp_stmt(s):
  1220. match s:
  1221. case Expr(Call(Name('print'), [arg])):
  1222. print(interp_exp(arg))
  1223. case Expr(value):
  1224. interp_exp(value)
  1225. def interp_Lint(p):
  1226. match p:
  1227. case Module(body):
  1228. for s in body:
  1229. interp_stmt(s)
  1230. \end{lstlisting}
  1231. \fi}
  1232. \caption{Interpreter for the \LangInt{} language.}
  1233. \label{fig:interp_Lint}
  1234. \end{figure}
  1235. Let us consider the result of interpreting a few \LangInt{} programs. The
  1236. following program adds two integers.
  1237. {\if\edition\racketEd
  1238. \begin{lstlisting}
  1239. (+ 10 32)
  1240. \end{lstlisting}
  1241. \fi}
  1242. {\if\edition\pythonEd
  1243. \begin{lstlisting}
  1244. print(10 + 32)
  1245. \end{lstlisting}
  1246. \fi}
  1247. %
  1248. \noindent The result is \key{42}, the answer to life, the universe,
  1249. and everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to
  1250. the Galaxy} by Douglas Adams.}
  1251. %
  1252. We wrote the above program in concrete syntax whereas the parsed
  1253. abstract syntax is:
  1254. {\if\edition\racketEd
  1255. \begin{lstlisting}
  1256. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1257. \end{lstlisting}
  1258. \fi}
  1259. {\if\edition\pythonEd
  1260. \begin{lstlisting}
  1261. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1262. \end{lstlisting}
  1263. \fi}
  1264. The next example demonstrates that expressions may be nested within
  1265. each other, in this case nesting several additions and negations.
  1266. {\if\edition\racketEd
  1267. \begin{lstlisting}
  1268. (+ 10 (- (+ 12 20)))
  1269. \end{lstlisting}
  1270. \fi}
  1271. {\if\edition\pythonEd
  1272. \begin{lstlisting}
  1273. print(10 + -(12 + 20))
  1274. \end{lstlisting}
  1275. \fi}
  1276. %
  1277. \noindent What is the result of the above program?
  1278. {\if\edition\racketEd
  1279. As mentioned previously, the \LangInt{} language does not support
  1280. arbitrarily-large integers, but only $63$-bit integers, so we
  1281. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1282. in Racket.
  1283. Suppose
  1284. \[
  1285. n = 999999999999999999
  1286. \]
  1287. which indeed fits in $63$-bits. What happens when we run the
  1288. following program in our interpreter?
  1289. \begin{lstlisting}
  1290. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1291. \end{lstlisting}
  1292. It produces an error:
  1293. \begin{lstlisting}
  1294. fx+: result is not a fixnum
  1295. \end{lstlisting}
  1296. We establish the convention that if running the definitional
  1297. interpreter on a program produces an error then the meaning of that
  1298. program is \emph{unspecified}\index{subject}{unspecified behavior}, unless the
  1299. error is a \code{trapped-error}. A compiler for the language is under
  1300. no obligations regarding programs with unspecified behavior; it does
  1301. not have to produce an executable, and if it does, that executable can
  1302. do anything. On the other hand, if the error is a
  1303. \code{trapped-error}, then the compiler must produce an executable and
  1304. it is required to report that an error occurred. To signal an error,
  1305. exit with a return code of \code{255}. The interpreters in chapters
  1306. \ref{ch:Ldyn} and \ref{ch:Lgrad} use
  1307. \code{trapped-error}.
  1308. \fi}
  1309. % TODO: how to deal with too-large integers in the Python interpreter?
  1310. %% This convention applies to the languages defined in this
  1311. %% book, as a way to simplify the student's task of implementing them,
  1312. %% but this convention is not applicable to all programming languages.
  1313. %%
  1314. Moving on to the last feature of the \LangInt{} language, the
  1315. \READOP{} operation prompts the user of the program for an integer.
  1316. Recall that program \eqref{eq:arith-prog} requests an integer input
  1317. and then subtracts \code{8}. So if we run
  1318. {\if\edition\racketEd
  1319. \begin{lstlisting}
  1320. (interp_Lint (Program '() ast1_1))
  1321. \end{lstlisting}
  1322. \fi}
  1323. {\if\edition\pythonEd
  1324. \begin{lstlisting}
  1325. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1326. \end{lstlisting}
  1327. \fi}
  1328. \noindent and if the input is \code{50}, the result is \code{42}.
  1329. We include the \READOP{} operation in \LangInt{} so a clever student
  1330. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1331. during compilation to obtain the output and then generates the trivial
  1332. code to produce the output.\footnote{Yes, a clever student did this in the
  1333. first instance of this course!}
  1334. The job of a compiler is to translate a program in one language into a
  1335. program in another language so that the output program behaves the
  1336. same way as the input program. This idea is depicted in the
  1337. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1338. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1339. Given a compiler that translates from language $\mathcal{L}_1$ to
  1340. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1341. compiler must translate it into some program $P_2$ such that
  1342. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1343. same input $i$ yields the same output $o$.
  1344. \begin{equation} \label{eq:compile-correct}
  1345. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1346. \node (p1) at (0, 0) {$P_1$};
  1347. \node (p2) at (3, 0) {$P_2$};
  1348. \node (o) at (3, -2.5) {$o$};
  1349. \path[->] (p1) edge [above] node {compile} (p2);
  1350. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1351. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1352. \end{tikzpicture}
  1353. \end{equation}
  1354. In the next section we see our first example of a compiler.
  1355. \section{Example Compiler: a Partial Evaluator}
  1356. \label{sec:partial-evaluation}
  1357. In this section we consider a compiler that translates \LangInt{}
  1358. programs into \LangInt{} programs that may be more efficient. The
  1359. compiler eagerly computes the parts of the program that do not depend
  1360. on any inputs, a process known as \emph{partial
  1361. evaluation}~\citep{Jones:1993uq}. \index{subject}{partial evaluation}
  1362. For example, given the following program
  1363. {\if\edition\racketEd
  1364. \begin{lstlisting}
  1365. (+ (read) (- (+ 5 3)))
  1366. \end{lstlisting}
  1367. \fi}
  1368. {\if\edition\pythonEd
  1369. \begin{lstlisting}
  1370. print(input_int() + -(5 + 3) )
  1371. \end{lstlisting}
  1372. \fi}
  1373. \noindent our compiler translates it into the program
  1374. {\if\edition\racketEd
  1375. \begin{lstlisting}
  1376. (+ (read) -8)
  1377. \end{lstlisting}
  1378. \fi}
  1379. {\if\edition\pythonEd
  1380. \begin{lstlisting}
  1381. print(input_int() + -8)
  1382. \end{lstlisting}
  1383. \fi}
  1384. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1385. evaluator for the \LangInt{} language. The output of the partial evaluator
  1386. is a program in \LangInt{}. In Figure~\ref{fig:pe-arith}, the structural
  1387. recursion over $\Exp$ is captured in the \code{pe\_exp} function
  1388. whereas the code for partially evaluating the negation and addition
  1389. operations is factored into three auxiliary functions:
  1390. \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub}. The input to these
  1391. functions is the output of partially evaluating the children.
  1392. The \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub} functions check whether their
  1393. arguments are integers and if they are, perform the appropriate
  1394. arithmetic. Otherwise, they create an AST node for the arithmetic
  1395. operation.
  1396. \begin{figure}[tp]
  1397. {\if\edition\racketEd
  1398. \begin{lstlisting}
  1399. (define (pe_neg r)
  1400. (match r
  1401. [(Int n) (Int (fx- 0 n))]
  1402. [else (Prim '- (list r))]))
  1403. (define (pe_add r1 r2)
  1404. (match* (r1 r2)
  1405. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1406. [(_ _) (Prim '+ (list r1 r2))]))
  1407. (define (pe_sub r1 r2)
  1408. (match* (r1 r2)
  1409. [((Int n1) (Int n2)) (Int (fx- n1 n2))]
  1410. [(_ _) (Prim '- (list r1 r2))]))
  1411. (define (pe_exp e)
  1412. (match e
  1413. [(Int n) (Int n)]
  1414. [(Prim 'read '()) (Prim 'read '())]
  1415. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1416. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]
  1417. [(Prim '- (list e1 e2)) (pe_sub (pe_exp e1) (pe_exp e2))]))
  1418. (define (pe_Lint p)
  1419. (match p
  1420. [(Program '() e) (Program '() (pe_exp e))]))
  1421. \end{lstlisting}
  1422. \fi}
  1423. {\if\edition\pythonEd
  1424. \begin{lstlisting}
  1425. def pe_neg(r):
  1426. match r:
  1427. case Constant(n):
  1428. return Constant(-n)
  1429. case _:
  1430. return UnaryOp(USub(), r)
  1431. def pe_add(r1, r2):
  1432. match (r1, r2):
  1433. case (Constant(n1), Constant(n2)):
  1434. return Constant(n1 + n2)
  1435. case _:
  1436. return BinOp(r1, Add(), r2)
  1437. def pe_sub(r1, r2):
  1438. match (r1, r2):
  1439. case (Constant(n1), Constant(n2)):
  1440. return Constant(n1 - n2)
  1441. case _:
  1442. return BinOp(r1, Sub(), r2)
  1443. def pe_exp(e):
  1444. match e:
  1445. case BinOp(left, Add(), right):
  1446. return pe_add(pe_exp(left), pe_exp(right))
  1447. case BinOp(left, Sub(), right):
  1448. return pe_sub(pe_exp(left), pe_exp(right))
  1449. case UnaryOp(USub(), v):
  1450. return pe_neg(pe_exp(v))
  1451. case Constant(value):
  1452. return e
  1453. case Call(Name('input_int'), []):
  1454. return e
  1455. def pe_stmt(s):
  1456. match s:
  1457. case Expr(Call(Name('print'), [arg])):
  1458. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1459. case Expr(value):
  1460. return Expr(pe_exp(value))
  1461. def pe_P_int(p):
  1462. match p:
  1463. case Module(body):
  1464. new_body = [pe_stmt(s) for s in body]
  1465. return Module(new_body)
  1466. \end{lstlisting}
  1467. \fi}
  1468. \caption{A partial evaluator for \LangInt{}.}
  1469. \label{fig:pe-arith}
  1470. \end{figure}
  1471. To gain some confidence that the partial evaluator is correct, we can
  1472. test whether it produces programs that produce the same result as the
  1473. input programs. That is, we can test whether it satisfies Diagram
  1474. \ref{eq:compile-correct}.
  1475. %
  1476. {\if\edition\racketEd
  1477. The following code runs the partial evaluator on several examples and
  1478. tests the output program. The \texttt{parse-program} and
  1479. \texttt{assert} functions are defined in
  1480. Appendix~\ref{appendix:utilities}.\\
  1481. \begin{minipage}{1.0\textwidth}
  1482. \begin{lstlisting}
  1483. (define (test_pe p)
  1484. (assert "testing pe_Lint"
  1485. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1486. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1487. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1488. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1489. \end{lstlisting}
  1490. \end{minipage}
  1491. \fi}
  1492. % TODO: python version of testing the PE
  1493. \begin{exercise}\normalfont\normalsize
  1494. Create three programs in the \LangInt{} language and test whether
  1495. partially evaluating them with \code{pe\_Lint} and then
  1496. interpreting them with \code{interp\_Lint} gives the same result
  1497. as directly interpreting them with \code{interp\_Lint}.
  1498. \end{exercise}
  1499. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1500. \chapter{Integers and Variables}
  1501. \label{ch:Lvar}
  1502. This chapter is about compiling a subset of
  1503. \racket{Racket}\python{Python} to x86-64 assembly
  1504. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1505. integer arithmetic and local variables. We often refer to x86-64
  1506. simply as x86. The chapter begins with a description of the
  1507. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1508. to x86 assembly (Section~\ref{sec:x86}). The x86 assembly language is
  1509. large so we discuss only the instructions needed for compiling
  1510. \LangVar{}. We introduce more x86 instructions in later chapters.
  1511. After introducing \LangVar{} and x86, we reflect on their differences
  1512. and come up with a plan to break down the translation from \LangVar{}
  1513. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1514. rest of the sections in this chapter give detailed hints regarding
  1515. each step. We hope to give enough hints that the well-prepared
  1516. reader, together with a few friends, can implement a compiler from
  1517. \LangVar{} to x86 in a short time. To give the reader a feeling for
  1518. the scale of this first compiler, the instructor solution for the
  1519. \LangVar{} compiler is approximately \racket{500}\python{300} lines of
  1520. code.
  1521. \section{The \LangVar{} Language}
  1522. \label{sec:s0}
  1523. \index{subject}{variable}
  1524. The \LangVar{} language extends the \LangInt{} language with
  1525. variables. The concrete syntax of the \LangVar{} language is defined
  1526. by the grammar in Figure~\ref{fig:Lvar-concrete-syntax} and the
  1527. abstract syntax is defined in Figure~\ref{fig:Lvar-syntax}. The
  1528. non-terminal \Var{} may be any \racket{Racket}\python{Python} identifier.
  1529. As in \LangInt{}, \READOP{} is a nullary operator, \key{-} is a unary operator, and
  1530. \key{+} is a binary operator. Similar to \LangInt{}, the abstract
  1531. syntax of \LangVar{} includes the \racket{\key{Program}
  1532. struct}\python{\key{Module} instance} to mark the top of the
  1533. program.
  1534. %% The $\itm{info}$
  1535. %% field of the \key{Program} structure contains an \emph{association
  1536. %% list} (a list of key-value pairs) that is used to communicate
  1537. %% auxiliary data from one compiler pass the next.
  1538. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1539. exhibit several compilation techniques.
  1540. \newcommand{\LvarGrammarRacket}{
  1541. \begin{array}{rcl}
  1542. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1543. \end{array}
  1544. }
  1545. \newcommand{\LvarASTRacket}{
  1546. \begin{array}{rcl}
  1547. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1548. \end{array}
  1549. }
  1550. \newcommand{\LvarGrammarPython}{
  1551. \begin{array}{rcl}
  1552. \Exp &::=& \Var{} \\
  1553. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1554. \end{array}
  1555. }
  1556. \newcommand{\LvarASTPython}{
  1557. \begin{array}{rcl}
  1558. \Exp{} &::=& \VAR{\Var{}} \\
  1559. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1560. \end{array}
  1561. }
  1562. \begin{figure}[tp]
  1563. \centering
  1564. \fbox{
  1565. \begin{minipage}{0.96\textwidth}
  1566. {\if\edition\racketEd
  1567. \[
  1568. \begin{array}{l}
  1569. \gray{\LintGrammarRacket{}} \\ \hline
  1570. \LvarGrammarRacket{} \\
  1571. \begin{array}{rcl}
  1572. \LangVarM{} &::=& \Exp
  1573. \end{array}
  1574. \end{array}
  1575. \]
  1576. \fi}
  1577. {\if\edition\pythonEd
  1578. \[
  1579. \begin{array}{l}
  1580. \gray{\LintGrammarPython} \\ \hline
  1581. \LvarGrammarPython \\
  1582. \begin{array}{rcl}
  1583. \LangVarM{} &::=& \Stmt^{*}
  1584. \end{array}
  1585. \end{array}
  1586. \]
  1587. \fi}
  1588. \end{minipage}
  1589. }
  1590. \caption{The concrete syntax of \LangVar{}.}
  1591. \label{fig:Lvar-concrete-syntax}
  1592. \end{figure}
  1593. \begin{figure}[tp]
  1594. \centering
  1595. \fbox{
  1596. \begin{minipage}{0.96\textwidth}
  1597. {\if\edition\racketEd
  1598. \[
  1599. \begin{array}{l}
  1600. \gray{\LintASTRacket{}} \\ \hline
  1601. \LvarASTRacket \\
  1602. \begin{array}{rcl}
  1603. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1604. \end{array}
  1605. \end{array}
  1606. \]
  1607. \fi}
  1608. {\if\edition\pythonEd
  1609. \[
  1610. \begin{array}{l}
  1611. \gray{\LintASTPython}\\ \hline
  1612. \LvarASTPython \\
  1613. \begin{array}{rcl}
  1614. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1615. \end{array}
  1616. \end{array}
  1617. \]
  1618. \fi}
  1619. \end{minipage}
  1620. }
  1621. \caption{The abstract syntax of \LangVar{}.}
  1622. \label{fig:Lvar-syntax}
  1623. \end{figure}
  1624. {\if\edition\racketEd
  1625. Let us dive further into the syntax and semantics of the \LangVar{}
  1626. language. The \key{let} feature defines a variable for use within its
  1627. body and initializes the variable with the value of an expression.
  1628. The abstract syntax for \key{let} is defined in
  1629. Figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1630. \begin{lstlisting}
  1631. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1632. \end{lstlisting}
  1633. For example, the following program initializes \code{x} to $32$ and then
  1634. evaluates the body \code{(+ 10 x)}, producing $42$.
  1635. \begin{lstlisting}
  1636. (let ([x (+ 12 20)]) (+ 10 x))
  1637. \end{lstlisting}
  1638. \fi}
  1639. %
  1640. {\if\edition\pythonEd
  1641. %
  1642. The \LangVar{} language includes assignment statements, which define a
  1643. variable for use in later statements and initializes the variable with
  1644. the value of an expression. The abstract syntax for assignment is
  1645. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1646. assignment is
  1647. \begin{lstlisting}
  1648. |$\itm{var}$| = |$\itm{exp}$|
  1649. \end{lstlisting}
  1650. For example, the following program initializes the variable \code{x}
  1651. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1652. \begin{lstlisting}
  1653. x = 12 + 20
  1654. print(10 + x)
  1655. \end{lstlisting}
  1656. \fi}
  1657. {\if\edition\racketEd
  1658. %
  1659. When there are multiple \key{let}'s for the same variable, the closest
  1660. enclosing \key{let} is used. That is, variable definitions overshadow
  1661. prior definitions. Consider the following program with two \key{let}'s
  1662. that define two variables named \code{x}. Can you figure out the
  1663. result?
  1664. \begin{lstlisting}
  1665. (let ([x 32]) (+ (let ([x 10]) x) x))
  1666. \end{lstlisting}
  1667. For the purposes of depicting which variable occurences correspond to
  1668. which definitions, the following shows the \code{x}'s annotated with
  1669. subscripts to distinguish them. Double check that your answer for the
  1670. above is the same as your answer for this annotated version of the
  1671. program.
  1672. \begin{lstlisting}
  1673. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1674. \end{lstlisting}
  1675. The initializing expression is always evaluated before the body of the
  1676. \key{let}, so in the following, the \key{read} for \code{x} is
  1677. performed before the \key{read} for \code{y}. Given the input
  1678. $52$ then $10$, the following produces $42$ (not $-42$).
  1679. \begin{lstlisting}
  1680. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1681. \end{lstlisting}
  1682. \fi}
  1683. \subsection{Extensible Interpreters via Method Overriding}
  1684. \label{sec:extensible-interp}
  1685. To prepare for discussing the interpreter of \LangVar{}, we explain
  1686. why we implement it in an object-oriented style. Throughout this book
  1687. we define many interpreters, one for each of language that we
  1688. study. Because each language builds on the prior one, there is a lot
  1689. of commonality between these interpreters. We want to write down the
  1690. common parts just once instead of many times. A naive
  1691. interpreter for \LangVar{} would handle the
  1692. \racket{cases for variables and \code{let}}
  1693. \python{case for variables}
  1694. but dispatch to an interpreter for \LangInt{}
  1695. in the rest of the cases. The following code sketches this idea. (We
  1696. explain the \code{env} parameter soon, in
  1697. Section~\ref{sec:interp-Lvar}.)
  1698. \begin{center}
  1699. {\if\edition\racketEd
  1700. \begin{minipage}{0.45\textwidth}
  1701. \begin{lstlisting}
  1702. (define ((interp_Lint env) e)
  1703. (match e
  1704. [(Prim '- (list e1))
  1705. (fx- 0 ((interp_Lint env) e1))]
  1706. ...))
  1707. \end{lstlisting}
  1708. \end{minipage}
  1709. \begin{minipage}{0.45\textwidth}
  1710. \begin{lstlisting}
  1711. (define ((interp_Lvar env) e)
  1712. (match e
  1713. [(Var x)
  1714. (dict-ref env x)]
  1715. [(Let x e body)
  1716. (define v ((interp_exp env) e))
  1717. (define env^ (dict-set env x v))
  1718. ((interp_exp env^) body)]
  1719. [else ((interp_Lint env) e)]))
  1720. \end{lstlisting}
  1721. \end{minipage}
  1722. \fi}
  1723. {\if\edition\pythonEd
  1724. \begin{minipage}{0.45\textwidth}
  1725. \begin{lstlisting}
  1726. def interp_Lint(e, env):
  1727. match e:
  1728. case UnaryOp(USub(), e1):
  1729. return - interp_Lint(e1, env)
  1730. ...
  1731. \end{lstlisting}
  1732. \end{minipage}
  1733. \begin{minipage}{0.45\textwidth}
  1734. \begin{lstlisting}
  1735. def interp_Lvar(e, env):
  1736. match e:
  1737. case Name(id):
  1738. return env[id]
  1739. case _:
  1740. return interp_Lint(e, env)
  1741. \end{lstlisting}
  1742. \end{minipage}
  1743. \fi}
  1744. \end{center}
  1745. The problem with this naive approach is that it does not handle
  1746. situations in which an \LangVar{} feature, such as a variable, is
  1747. nested inside an \LangInt{} feature, like the \code{-} operator, as in
  1748. the following program.
  1749. %
  1750. {\if\edition\racketEd
  1751. \begin{lstlisting}
  1752. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1753. \end{lstlisting}
  1754. \fi}
  1755. {\if\edition\pythonEd
  1756. \begin{lstlisting}
  1757. y = 10
  1758. print(-y)
  1759. \end{lstlisting}
  1760. \fi}
  1761. %
  1762. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1763. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1764. then it recursively calls \code{interp\_Lint} again on its argument.
  1765. But there is no case for \code{Var} in \code{interp\_Lint} so we get
  1766. an error!
  1767. To make our interpreters extensible we need something called
  1768. \emph{open recursion}\index{subject}{open recursion}, where the tying of the
  1769. recursive knot is delayed to when the functions are
  1770. composed. Object-oriented languages provide open recursion via
  1771. method overriding\index{subject}{method overriding}. The
  1772. following code uses method overriding to interpret \LangInt{} and
  1773. \LangVar{} using
  1774. %
  1775. \racket{the
  1776. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1777. \index{subject}{class} feature of Racket.}
  1778. %
  1779. \python{a Python \code{class} definition.}
  1780. %
  1781. We define one class for each language and define a method for
  1782. interpreting expressions inside each class. The class for \LangVar{}
  1783. inherits from the class for \LangInt{} and the method
  1784. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1785. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1786. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1787. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1788. \code{interp\_exp} in \LangInt{}.
  1789. \begin{center}
  1790. \hspace{-20pt}
  1791. {\if\edition\racketEd
  1792. \begin{minipage}{0.45\textwidth}
  1793. \begin{lstlisting}
  1794. (define interp_Lint_class
  1795. (class object%
  1796. (define/public ((interp_exp env) e)
  1797. (match e
  1798. [(Prim '- (list e))
  1799. (fx- 0 ((interp_exp env) e))]
  1800. ...))
  1801. ...))
  1802. \end{lstlisting}
  1803. \end{minipage}
  1804. \begin{minipage}{0.45\textwidth}
  1805. \begin{lstlisting}
  1806. (define interp_Lvar_class
  1807. (class interp_Lint_class
  1808. (define/override ((interp_exp env) e)
  1809. (match e
  1810. [(Var x)
  1811. (dict-ref env x)]
  1812. [(Let x e body)
  1813. (define v ((interp_exp env) e))
  1814. (define env^ (dict-set env x v))
  1815. ((interp_exp env^) body)]
  1816. [else
  1817. (super (interp_exp env) e)]))
  1818. ...
  1819. ))
  1820. \end{lstlisting}
  1821. \end{minipage}
  1822. \fi}
  1823. {\if\edition\pythonEd
  1824. \begin{minipage}{0.45\textwidth}
  1825. \begin{lstlisting}
  1826. class InterpLint:
  1827. def interp_exp(e):
  1828. match e:
  1829. case UnaryOp(USub(), e1):
  1830. return -self.interp_exp(e1)
  1831. ...
  1832. ...
  1833. \end{lstlisting}
  1834. \end{minipage}
  1835. \begin{minipage}{0.45\textwidth}
  1836. \begin{lstlisting}
  1837. def InterpLvar(InterpLint):
  1838. def interp_exp(e):
  1839. match e:
  1840. case Name(id):
  1841. return env[id]
  1842. case _:
  1843. return super().interp_exp(e)
  1844. ...
  1845. \end{lstlisting}
  1846. \end{minipage}
  1847. \fi}
  1848. \end{center}
  1849. Getting back to the troublesome example, repeated here:
  1850. {\if\edition\racketEd
  1851. \begin{lstlisting}
  1852. (Let 'y (Int 10) (Prim '- (Var 'y)))
  1853. \end{lstlisting}
  1854. \fi}
  1855. {\if\edition\pythonEd
  1856. \begin{lstlisting}
  1857. y = 10
  1858. print(-y)
  1859. \end{lstlisting}
  1860. \fi}
  1861. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1862. \racket{on this expression,}
  1863. \python{on the \code{-y} expression,}
  1864. %
  1865. call it \code{e0}, by creating an object of the \LangVar{} class
  1866. and calling the \code{interp\_exp} method.
  1867. {\if\edition\racketEd
  1868. \begin{lstlisting}
  1869. ((send (new interp_Lvar_class) interp_exp '()) e0)
  1870. \end{lstlisting}
  1871. \fi}
  1872. {\if\edition\pythonEd
  1873. \begin{lstlisting}
  1874. InterpLvar().interp_exp(e0)
  1875. \end{lstlisting}
  1876. \fi}
  1877. \noindent To process the \code{-} operator, the default case of
  1878. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1879. method in \LangInt{}. But then for the recursive method call, it
  1880. dispatches back to \code{interp\_exp} in \LangVar{}, where the
  1881. \code{Var} node is handled correctly. Thus, method overriding gives us
  1882. the open recursion that we need to implement our interpreters in an
  1883. extensible way.
  1884. \subsection{Definitional Interpreter for \LangVar{}}
  1885. \label{sec:interp-Lvar}
  1886. {\if\edition\racketEd
  1887. \begin{figure}[tp]
  1888. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  1889. \small
  1890. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1891. An \emph{association list} (alist) is a list of key-value pairs.
  1892. For example, we can map people to their ages with an alist.
  1893. \index{subject}{alist}\index{subject}{association list}
  1894. \begin{lstlisting}[basicstyle=\ttfamily]
  1895. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  1896. \end{lstlisting}
  1897. The \emph{dictionary} interface is for mapping keys to values.
  1898. Every alist implements this interface. \index{subject}{dictionary} The package
  1899. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1900. provides many functions for working with dictionaries. Here
  1901. are a few of them:
  1902. \begin{description}
  1903. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1904. returns the value associated with the given $\itm{key}$.
  1905. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1906. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1907. but otherwise is the same as $\itm{dict}$.
  1908. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1909. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1910. of keys and values in $\itm{dict}$. For example, the following
  1911. creates a new alist in which the ages are incremented.
  1912. \end{description}
  1913. \vspace{-10pt}
  1914. \begin{lstlisting}[basicstyle=\ttfamily]
  1915. (for/list ([(k v) (in-dict ages)])
  1916. (cons k (add1 v)))
  1917. \end{lstlisting}
  1918. \end{tcolorbox}
  1919. %\end{wrapfigure}
  1920. \caption{Association lists implement the dictionary interface.}
  1921. \label{fig:alist}
  1922. \end{figure}
  1923. \fi}
  1924. Having justified the use of classes and methods to implement
  1925. interpreters, we revisit the definitional interpreter for \LangInt{}
  1926. in Figure~\ref{fig:interp-Lint-class} and then extend it to create an
  1927. interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}. The
  1928. interpreter for \LangVar{} adds two new \key{match} cases for
  1929. variables and \racket{\key{let}}\python{assignment}. For
  1930. \racket{\key{let}}\python{assignment} we need a way to communicate the
  1931. value bound to a variable to all the uses of the variable. To
  1932. accomplish this, we maintain a mapping from variables to values
  1933. called an \emph{environment}\index{subject}{environment}.
  1934. %
  1935. We use
  1936. %
  1937. \racket{an association list (alist) }%
  1938. %
  1939. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary} }%
  1940. %
  1941. to represent the environment.
  1942. %
  1943. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  1944. and the \code{racket/dict} package.}
  1945. %
  1946. The \code{interp\_exp} function takes the current environment,
  1947. \code{env}, as an extra parameter. When the interpreter encounters a
  1948. variable, it looks up the corresponding value in the dictionary.
  1949. %
  1950. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  1951. initializing expression, extends the environment with the result
  1952. value bound to the variable, using \code{dict-set}, then evaluates
  1953. the body of the \key{Let}.}
  1954. %
  1955. \python{When the interpreter encounters an assignment, it evaluates
  1956. the initializing expression and then associates the resulting value
  1957. with the variable in the environment.}
  1958. \begin{figure}[tp]
  1959. {\if\edition\racketEd
  1960. \begin{lstlisting}
  1961. (define interp_Lint_class
  1962. (class object%
  1963. (super-new)
  1964. (define/public ((interp_exp env) e)
  1965. (match e
  1966. [(Int n) n]
  1967. [(Prim 'read '())
  1968. (define r (read))
  1969. (cond [(fixnum? r) r]
  1970. [else (error 'interp_exp "expected an integer" r)])]
  1971. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  1972. [(Prim '+ (list e1 e2))
  1973. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  1974. [(Prim '- (list e1 e2))
  1975. (fx- ((interp_exp env) e1) ((interp_exp env) e2))]))
  1976. (define/public (interp_program p)
  1977. (match p
  1978. [(Program '() e) ((interp_exp '()) e)]))
  1979. ))
  1980. \end{lstlisting}
  1981. \fi}
  1982. {\if\edition\pythonEd
  1983. \begin{lstlisting}
  1984. class InterpLint:
  1985. def interp_exp(self, e, env):
  1986. match e:
  1987. case BinOp(left, Add(), right):
  1988. return self.interp_exp(left, env) + self.interp_exp(right, env)
  1989. case BinOp(left, Sub(), right):
  1990. return self.interp_exp(left, env) - self.interp_exp(right, env)
  1991. case UnaryOp(USub(), v):
  1992. return - self.interp_exp(v, env)
  1993. case Constant(value):
  1994. return value
  1995. case Call(Name('input_int'), []):
  1996. return int(input())
  1997. def interp_stmts(self, ss, env):
  1998. if len(ss) == 0:
  1999. return
  2000. match ss[0]:
  2001. case Expr(Call(Name('print'), [arg])):
  2002. print(self.interp_exp(arg, env), end='')
  2003. return self.interp_stmts(ss[1:], env)
  2004. case Expr(value):
  2005. self.interp_exp(value, env)
  2006. return self.interp_stmts(ss[1:], env)
  2007. def interp(self, p):
  2008. match p:
  2009. case Module(body):
  2010. self.interp_stmts(body, {})
  2011. def interp_Lint(p):
  2012. return InterpLint().interp(p)
  2013. \end{lstlisting}
  2014. \fi}
  2015. \caption{Interpreter for \LangInt{} as a class.}
  2016. \label{fig:interp-Lint-class}
  2017. \end{figure}
  2018. \begin{figure}[tp]
  2019. {\if\edition\racketEd
  2020. \begin{lstlisting}
  2021. (define interp_Lvar_class
  2022. (class interp_Lint_class
  2023. (super-new)
  2024. (define/override ((interp_exp env) e)
  2025. (match e
  2026. [(Var x) (dict-ref env x)]
  2027. [(Let x e body)
  2028. (define new-env (dict-set env x ((interp_exp env) e)))
  2029. ((interp_exp new-env) body)]
  2030. [else ((super interp-exp env) e)]))
  2031. ))
  2032. (define (interp_Lvar p)
  2033. (send (new interp_Lvar_class) interp_program p))
  2034. \end{lstlisting}
  2035. \fi}
  2036. {\if\edition\pythonEd
  2037. \begin{lstlisting}
  2038. class InterpLvar(InterpLint):
  2039. def interp_exp(self, e, env):
  2040. match e:
  2041. case Name(id):
  2042. return env[id]
  2043. case _:
  2044. return super().interp_exp(e, env)
  2045. def interp_stmts(self, ss, env):
  2046. if len(ss) == 0:
  2047. return
  2048. match ss[0]:
  2049. case Assign([lhs], value):
  2050. env[lhs.id] = self.interp_exp(value, env)
  2051. return self.interp_stmts(ss[1:], env)
  2052. case _:
  2053. return super().interp_stmts(ss, env)
  2054. def interp_Lvar(p):
  2055. return InterpLvar().interp(p)
  2056. \end{lstlisting}
  2057. \fi}
  2058. \caption{Interpreter for the \LangVar{} language.}
  2059. \label{fig:interp-Lvar}
  2060. \end{figure}
  2061. The goal for this chapter is to implement a compiler that translates
  2062. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2063. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2064. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2065. That is, they output the same integer $n$. We depict this correctness
  2066. criteria in the following diagram.
  2067. \[
  2068. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2069. \node (p1) at (0, 0) {$P_1$};
  2070. \node (p2) at (4, 0) {$P_2$};
  2071. \node (o) at (4, -2) {$n$};
  2072. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2073. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2074. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2075. \end{tikzpicture}
  2076. \]
  2077. Next we introduce the \LangXInt{} subset of x86 that suffices for
  2078. compiling \LangVar{}.
  2079. \section{The \LangXInt{} Assembly Language}
  2080. \label{sec:x86}
  2081. \index{subject}{x86}
  2082. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2083. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2084. assembler.
  2085. %
  2086. A program begins with a \code{main} label followed by a sequence of
  2087. instructions. The \key{globl} directive says that the \key{main}
  2088. procedure is externally visible, which is necessary so that the
  2089. operating system can call it.
  2090. %
  2091. An x86 program is stored in the computer's memory. For our purposes,
  2092. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2093. values. The computer has a \emph{program counter} (PC)\index{subject}{program
  2094. counter}\index{subject}{PC} stored in the \code{rip} register that points to
  2095. the address of the next instruction to be executed. For most
  2096. instructions, the program counter is incremented after the instruction
  2097. is executed, so it points to the next instruction in memory. Most x86
  2098. instructions take two operands, where each operand is either an
  2099. integer constant (called an \emph{immediate value}\index{subject}{immediate
  2100. value}), a \emph{register}\index{subject}{register}, or a memory location.
  2101. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2102. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2103. && \key{r8} \MID \key{r9} \MID \key{r10}
  2104. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2105. \MID \key{r14} \MID \key{r15}}
  2106. \newcommand{\GrammarXInt}{
  2107. \begin{array}{rcl}
  2108. \Reg &::=& \allregisters{} \\
  2109. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2110. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2111. \key{subq} \; \Arg\key{,} \Arg \MID
  2112. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2113. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2114. \key{callq} \; \mathit{label} \MID
  2115. \key{retq} \MID
  2116. \key{jmp}\,\itm{label} \MID \\
  2117. && \itm{label}\key{:}\; \Instr
  2118. \end{array}
  2119. }
  2120. \begin{figure}[tp]
  2121. \fbox{
  2122. \begin{minipage}{0.96\textwidth}
  2123. {\if\edition\racketEd
  2124. \[
  2125. \begin{array}{l}
  2126. \GrammarXInt \\
  2127. \begin{array}{lcl}
  2128. \LangXIntM{} &::= & \key{.globl main}\\
  2129. & & \key{main:} \; \Instr\ldots
  2130. \end{array}
  2131. \end{array}
  2132. \]
  2133. \fi}
  2134. {\if\edition\pythonEd
  2135. \[
  2136. \begin{array}{lcl}
  2137. \Reg &::=& \allregisters{} \\
  2138. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2139. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2140. \key{subq} \; \Arg\key{,} \Arg \MID
  2141. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2142. && \key{callq} \; \mathit{label} \MID
  2143. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2144. \LangXIntM{} &::= & \key{.globl main}\\
  2145. & & \key{main:} \; \Instr^{*}
  2146. \end{array}
  2147. \]
  2148. \fi}
  2149. \end{minipage}
  2150. }
  2151. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2152. \label{fig:x86-int-concrete}
  2153. \end{figure}
  2154. A register is a special kind of variable that holds a 64-bit
  2155. value. There are 16 general-purpose registers in the computer and
  2156. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  2157. is written with a \key{\%} followed by the register name, such as
  2158. \key{\%rax}.
  2159. An immediate value is written using the notation \key{\$}$n$ where $n$
  2160. is an integer.
  2161. %
  2162. %
  2163. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2164. which obtains the address stored in register $r$ and then adds $n$
  2165. bytes to the address. The resulting address is used to load or store
  2166. to memory depending on whether it occurs as a source or destination
  2167. argument of an instruction.
  2168. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  2169. source $s$ and destination $d$, applies the arithmetic operation, then
  2170. writes the result back to the destination $d$. \index{subject}{instruction}
  2171. %
  2172. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2173. stores the result in $d$.
  2174. %
  2175. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2176. specified by the label and $\key{retq}$ returns from a procedure to
  2177. its caller.
  2178. %
  2179. We discuss procedure calls in more detail later in this chapter and in
  2180. Chapter~\ref{ch:Lfun}.
  2181. %
  2182. The last letter \key{q} indicates that these instructions operate on
  2183. quadwords, i.e., 64-bit values.
  2184. %
  2185. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2186. counter to the address of the instruction after the specified
  2187. label.}
  2188. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  2189. all of the x86 instructions used in this book.
  2190. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2191. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2192. \lstinline{movq $10, %rax}
  2193. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  2194. adds $32$ to the $10$ in \key{rax} and
  2195. puts the result, $42$, back into \key{rax}.
  2196. %
  2197. The last instruction \key{retq} finishes the \key{main} function by
  2198. returning the integer in \key{rax} to the operating system. The
  2199. operating system interprets this integer as the program's exit
  2200. code. By convention, an exit code of 0 indicates that a program
  2201. completed successfully, and all other exit codes indicate various
  2202. errors.
  2203. %
  2204. \racket{Nevertheless, in this book we return the result of the program
  2205. as the exit code.}
  2206. \begin{figure}[tbp]
  2207. \begin{lstlisting}
  2208. .globl main
  2209. main:
  2210. movq $10, %rax
  2211. addq $32, %rax
  2212. retq
  2213. \end{lstlisting}
  2214. \caption{An x86 program that computes
  2215. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2216. \label{fig:p0-x86}
  2217. \end{figure}
  2218. We exhibit the use of memory for storing intermediate results in the
  2219. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2220. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2221. uses a region of memory called the \emph{procedure call stack} (or
  2222. \emph{stack} for
  2223. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2224. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2225. for each procedure call. The memory layout for an individual frame is
  2226. shown in Figure~\ref{fig:frame}. The register \key{rsp} is called the
  2227. \emph{stack pointer}\index{subject}{stack pointer} and it contains the
  2228. address of the item at the top of the stack. In general, we use the
  2229. term \emph{pointer}\index{subject}{pointer} for something that
  2230. contains an address. The stack grows downward in memory, so we
  2231. increase the size of the stack by subtracting from the stack pointer.
  2232. In the context of a procedure call, the \emph{return
  2233. address}\index{subject}{return address} is the instruction after the
  2234. call instruction on the caller side. The function call instruction,
  2235. \code{callq}, pushes the return address onto the stack prior to
  2236. jumping to the procedure. The register \key{rbp} is the \emph{base
  2237. pointer}\index{subject}{base pointer} and is used to access
  2238. variables that are stored in the frame of the current procedure call.
  2239. The base pointer of the caller is stored after the return address. In
  2240. Figure~\ref{fig:frame} we number the variables from $1$ to
  2241. $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$, variable $2$
  2242. at $-16\key{(\%rbp)}$, etc.
  2243. \begin{figure}[tbp]
  2244. {\if\edition\racketEd
  2245. \begin{lstlisting}
  2246. start:
  2247. movq $10, -8(%rbp)
  2248. negq -8(%rbp)
  2249. movq -8(%rbp), %rax
  2250. addq $52, %rax
  2251. jmp conclusion
  2252. .globl main
  2253. main:
  2254. pushq %rbp
  2255. movq %rsp, %rbp
  2256. subq $16, %rsp
  2257. jmp start
  2258. conclusion:
  2259. addq $16, %rsp
  2260. popq %rbp
  2261. retq
  2262. \end{lstlisting}
  2263. \fi}
  2264. {\if\edition\pythonEd
  2265. \begin{lstlisting}
  2266. .globl main
  2267. main:
  2268. pushq %rbp
  2269. movq %rsp, %rbp
  2270. subq $16, %rsp
  2271. movq $10, -8(%rbp)
  2272. negq -8(%rbp)
  2273. movq -8(%rbp), %rax
  2274. addq $52, %rax
  2275. addq $16, %rsp
  2276. popq %rbp
  2277. retq
  2278. \end{lstlisting}
  2279. \fi}
  2280. \caption{An x86 program that computes
  2281. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2282. \label{fig:p1-x86}
  2283. \end{figure}
  2284. \begin{figure}[tbp]
  2285. \centering
  2286. \begin{tabular}{|r|l|} \hline
  2287. Position & Contents \\ \hline
  2288. 8(\key{\%rbp}) & return address \\
  2289. 0(\key{\%rbp}) & old \key{rbp} \\
  2290. -8(\key{\%rbp}) & variable $1$ \\
  2291. -16(\key{\%rbp}) & variable $2$ \\
  2292. \ldots & \ldots \\
  2293. 0(\key{\%rsp}) & variable $n$\\ \hline
  2294. \end{tabular}
  2295. \caption{Memory layout of a frame.}
  2296. \label{fig:frame}
  2297. \end{figure}
  2298. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  2299. control is transferred from the operating system to the \code{main}
  2300. function. The operating system issues a \code{callq main} instruction
  2301. which pushes its return address on the stack and then jumps to
  2302. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2303. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2304. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  2305. alignment (because the \code{callq} pushed the return address). The
  2306. first three instructions are the typical
  2307. \emph{prelude}\index{subject}{prelude} for a procedure. The
  2308. instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2309. pointer \code{rsp} and then saves the base pointer of the caller at
  2310. address \code{rsp} on the stack. The next instruction \code{movq
  2311. \%rsp, \%rbp} sets the base pointer to the current stack pointer,
  2312. which is pointing at the location of the old base pointer. The
  2313. instruction \code{subq \$16, \%rsp} moves the stack pointer down to
  2314. make enough room for storing variables. This program needs one
  2315. variable ($8$ bytes) but we round up to 16 bytes so that \code{rsp} is
  2316. 16-byte aligned and we're ready to make calls to other functions.
  2317. \racket{The last instruction of the prelude is \code{jmp start}, which
  2318. transfers control to the instructions that were generated from the
  2319. expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2320. \racket{The first instruction under the \code{start} label is}
  2321. %
  2322. \python{The first instruction after the prelude is}
  2323. %
  2324. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2325. %
  2326. The instruction \code{negq -8(\%rbp)} changes the contents of variable
  2327. $1$ to $-10$.
  2328. %
  2329. The next instruction moves the $-10$ from variable $1$ into the
  2330. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2331. the value in \code{rax}, updating its contents to $42$.
  2332. \racket{The three instructions under the label \code{conclusion} are the
  2333. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2334. %
  2335. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2336. \code{main} function consists of the last three instructions.}
  2337. %
  2338. The first two restore the \code{rsp} and \code{rbp} registers to the
  2339. state they were in at the beginning of the procedure. In particular,
  2340. \key{addq \$16, \%rsp} moves the stack pointer back to point at the
  2341. old base pointer. Then \key{popq \%rbp} restores the old base pointer
  2342. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2343. \key{retq}, jumps back to the procedure that called this one and adds
  2344. $8$ to the stack pointer.
  2345. Our compiler needs a convenient representation for manipulating x86
  2346. programs, so we define an abstract syntax for x86 in
  2347. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  2348. \LangXInt{}.
  2349. %
  2350. {\if\edition\pythonEd%
  2351. The main difference compared to the concrete syntax of \LangXInt{}
  2352. (Figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2353. names, and register names are explicitly represented by strings.
  2354. \fi} %
  2355. {\if\edition\racketEd
  2356. The main difference compared to the concrete syntax of \LangXInt{}
  2357. (Figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2358. front of every instruction. Instead instructions are grouped into
  2359. \emph{blocks}\index{subject}{block} with a
  2360. label associated with every block, which is why the \key{X86Program}
  2361. struct includes an alist mapping labels to blocks. The reason for this
  2362. organization becomes apparent in Chapter~\ref{ch:Lif} when we
  2363. introduce conditional branching. The \code{Block} structure includes
  2364. an $\itm{info}$ field that is not needed for this chapter but becomes
  2365. useful in Chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2366. $\itm{info}$ field should contain an empty list.
  2367. \fi}
  2368. %
  2369. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2370. node includes an integer for representing the arity of the function,
  2371. i.e., the number of arguments, which is helpful to know during
  2372. register allocation (Chapter~\ref{ch:register-allocation-Lvar}).
  2373. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2374. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2375. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2376. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2377. \MID \skey{r14} \MID \skey{r15}}
  2378. \newcommand{\ASTXIntRacket}{
  2379. \begin{array}{lcl}
  2380. \Reg &::=& \allregisters{} \\
  2381. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2382. \MID \DEREF{\Reg}{\Int} \\
  2383. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2384. \MID \BININSTR{\code{subq}}{\Arg}{\Arg}
  2385. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2386. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2387. \MID \PUSHQ{\Arg}
  2388. \MID \POPQ{\Arg} \\
  2389. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2390. \MID \RETQ{}
  2391. \MID \JMP{\itm{label}} \\
  2392. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}
  2393. \end{array}
  2394. }
  2395. \begin{figure}[tp]
  2396. \fbox{
  2397. \begin{minipage}{0.94\textwidth}
  2398. \small
  2399. {\if\edition\racketEd
  2400. \[
  2401. \begin{array}{l}
  2402. \ASTXIntRacket \\
  2403. \begin{array}{lcl}
  2404. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2405. \end{array}
  2406. \end{array}
  2407. \]
  2408. \fi}
  2409. {\if\edition\pythonEd
  2410. \[
  2411. \begin{array}{lcl}
  2412. \Reg &::=& \allastregisters{} \\
  2413. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2414. \MID \DEREF{\Reg}{\Int} \\
  2415. \Instr &::=& \BININSTR{\scode{addq}}{\Arg}{\Arg}
  2416. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} \\
  2417. &\MID& \BININSTR{\scode{movq}}{\Arg}{\Arg}
  2418. \MID \UNIINSTR{\scode{negq}}{\Arg}\\
  2419. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2420. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{} \MID \JMP{\itm{label}} \\
  2421. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2422. \end{array}
  2423. \]
  2424. \fi}
  2425. \end{minipage}
  2426. }
  2427. \caption{The abstract syntax of \LangXInt{} assembly.}
  2428. \label{fig:x86-int-ast}
  2429. \end{figure}
  2430. \section{Planning the trip to x86}
  2431. \label{sec:plan-s0-x86}
  2432. To compile one language to another it helps to focus on the
  2433. differences between the two languages because the compiler will need
  2434. to bridge those differences. What are the differences between \LangVar{}
  2435. and x86 assembly? Here are some of the most important ones:
  2436. \begin{enumerate}
  2437. \item x86 arithmetic instructions typically have two arguments and
  2438. update the second argument in place. In contrast, \LangVar{}
  2439. arithmetic operations take two arguments and produce a new value.
  2440. An x86 instruction may have at most one memory-accessing argument.
  2441. Furthermore, some x86 instructions place special restrictions on
  2442. their arguments.
  2443. \item An argument of an \LangVar{} operator can be a deeply-nested
  2444. expression, whereas x86 instructions restrict their arguments to be
  2445. integer constants, registers, and memory locations.
  2446. {\if\edition\racketEd
  2447. \item The order of execution in x86 is explicit in the syntax: a
  2448. sequence of instructions and jumps to labeled positions, whereas in
  2449. \LangVar{} the order of evaluation is a left-to-right depth-first
  2450. traversal of the abstract syntax tree.
  2451. \fi}
  2452. \item A program in \LangVar{} can have any number of variables
  2453. whereas x86 has 16 registers and the procedure call stack.
  2454. {\if\edition\racketEd
  2455. \item Variables in \LangVar{} can shadow other variables with the
  2456. same name. In x86, registers have unique names and memory locations
  2457. have unique addresses.
  2458. \fi}
  2459. \end{enumerate}
  2460. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2461. down the problem into several steps, dealing with the above
  2462. differences one at a time. Each of these steps is called a \emph{pass}
  2463. of the compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2464. %
  2465. This terminology comes from the way each step passes over, or
  2466. traverses, the AST of the program.
  2467. %
  2468. Furthermore, we follow the nanopass approach, which means we strive
  2469. for each pass to accomplish one clear objective (not two or three at
  2470. the same time).
  2471. %
  2472. We begin by sketching how we might implement each pass, and give them
  2473. names. We then figure out an ordering of the passes and the
  2474. input/output language for each pass. The very first pass has
  2475. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2476. its output language. In between we can choose whichever language is
  2477. most convenient for expressing the output of each pass, whether that
  2478. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2479. our own design. Finally, to implement each pass we write one
  2480. recursive function per non-terminal in the grammar of the input
  2481. language of the pass. \index{subject}{intermediate language}
  2482. Our compiler for \LangVar{} consists of the following passes.
  2483. %
  2484. \begin{description}
  2485. {\if\edition\racketEd
  2486. \item[\key{uniquify}] deals with the shadowing of variables by
  2487. renaming every variable to a unique name.
  2488. \fi}
  2489. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2490. of a primitive operation or function call is a variable or integer,
  2491. that is, an \emph{atomic} expression. We refer to non-atomic
  2492. expressions as \emph{complex}. This pass introduces temporary
  2493. variables to hold the results of complex
  2494. subexpressions.\index{subject}{atomic
  2495. expression}\index{subject}{complex expression}%
  2496. {\if\edition\racketEd
  2497. \item[\key{explicate\_control}] makes the execution order of the
  2498. program explicit. It converts the abstract syntax tree
  2499. representation into a graph in which each node contains a sequence
  2500. of statements and the edges between nodes say which nodes contain
  2501. jumps to other nodes.
  2502. \fi}
  2503. \item[\key{select\_instructions}] handles the difference between
  2504. \LangVar{} operations and x86 instructions. This pass converts each
  2505. \LangVar{} operation to a short sequence of instructions that
  2506. accomplishes the same task.
  2507. \item[\key{assign\_homes}] replaces variables with registers or stack
  2508. locations.
  2509. \end{description}
  2510. %
  2511. {\if\edition\racketEd
  2512. %
  2513. Our treatment of \code{remove\_complex\_operands} and
  2514. \code{explicate\_control} as separate passes is an example of the
  2515. nanopass approach\footnote{For analogous decompositions of the
  2516. translation into continuation passing style, see the work of
  2517. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.}. The traditional
  2518. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2519. %
  2520. \fi}
  2521. The next question is: in what order should we apply these passes? This
  2522. question can be challenging because it is difficult to know ahead of
  2523. time which orderings will be better (easier to implement, produce more
  2524. efficient code, etc.) so oftentimes trial-and-error is
  2525. involved. Nevertheless, we can plan ahead and make educated choices
  2526. regarding the ordering.
  2527. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2528. \key{uniquify}? The \key{uniquify} pass should come first because
  2529. \key{explicate\_control} changes all the \key{let}-bound variables to
  2530. become local variables whose scope is the entire program, which would
  2531. confuse variables with the same name.}
  2532. %
  2533. \racket{We place \key{remove\_complex\_operands} before \key{explicate\_control}
  2534. because the later removes the \key{let} form, but it is convenient to
  2535. use \key{let} in the output of \key{remove\_complex\_operands}.}
  2536. %
  2537. \racket{The ordering of \key{uniquify} with respect to
  2538. \key{remove\_complex\_operands} does not matter so we arbitrarily choose
  2539. \key{uniquify} to come first.}
  2540. The \key{select\_instructions} and \key{assign\_homes} passes are
  2541. intertwined.
  2542. %
  2543. In Chapter~\ref{ch:Lfun} we learn that, in x86, registers are used for
  2544. passing arguments to functions and it is preferable to assign
  2545. parameters to their corresponding registers. This suggests that it
  2546. would be better to start with the \key{select\_instructions} pass,
  2547. which generates the instructions for argument passing, before
  2548. performing register allocation.
  2549. %
  2550. On the other hand, by selecting instructions first we may run into a
  2551. dead end in \key{assign\_homes}. Recall that only one argument of an
  2552. x86 instruction may be a memory access but \key{assign\_homes} might
  2553. be forced to assign both arguments to memory locations.
  2554. %
  2555. A sophisticated approach is to iteratively repeat the two passes until
  2556. a solution is found. However, to reduce implementation complexity we
  2557. recommend placing \key{select\_instructions} first, followed by the
  2558. \key{assign\_homes}, then a third pass named \key{patch\_instructions}
  2559. that uses a reserved register to fix outstanding problems.
  2560. \begin{figure}[tbp]
  2561. {\if\edition\racketEd
  2562. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2563. \node (Lvar) at (0,2) {\large \LangVar{}};
  2564. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2565. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  2566. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2567. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2568. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2569. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2570. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2571. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2572. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2573. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  2574. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-2);
  2575. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  2576. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2577. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  2578. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  2579. \end{tikzpicture}
  2580. \fi}
  2581. {\if\edition\pythonEd
  2582. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2583. \node (Lvar) at (0,2) {\large \LangVar{}};
  2584. \node (Lvar-2) at (3,2) {\large \LangVarANF{}};
  2585. \node (x86-1) at (3,0) {\large \LangXVar{}};
  2586. \node (x86-2) at (6,0) {\large \LangXVar{}};
  2587. \node (x86-3) at (9,0) {\large \LangXInt{}};
  2588. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2589. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-2);
  2590. \path[->,bend right=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  2591. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2592. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  2593. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-4);
  2594. \end{tikzpicture}
  2595. \fi}
  2596. \caption{Diagram of the passes for compiling \LangVar{}. }
  2597. \label{fig:Lvar-passes}
  2598. \end{figure}
  2599. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2600. passes and identifies the input and output language of each pass.
  2601. %
  2602. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2603. language, which extends \LangXInt{} with an unbounded number of
  2604. program-scope variables and removes the restrictions regarding
  2605. instruction arguments.
  2606. %
  2607. The last pass, \key{prelude\_and\_conclusion}, places the program
  2608. instructions inside a \code{main} function with instructions for the
  2609. prelude and conclusion.
  2610. %
  2611. \racket{In the next section we discuss the \LangCVar{} intermediate
  2612. language that serves as the output of \code{explicate\_control}.}
  2613. %
  2614. The remainder of this chapter provides guidance on the implementation
  2615. of each of the compiler passes in Figure~\ref{fig:Lvar-passes}.
  2616. %% The output of \key{uniquify} and \key{remove-complex-operands}
  2617. %% are programs that are still in the \LangVar{} language, though the
  2618. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2619. %% (Section~\ref{sec:remove-complex-opera-Lvar}).
  2620. %% %
  2621. %% The output of \code{explicate\_control} is in an intermediate language
  2622. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2623. %% syntax, which we introduce in the next section. The
  2624. %% \key{select-instruction} pass translates from \LangCVar{} to
  2625. %% \LangXVar{}. The \key{assign-homes} and
  2626. %% \key{patch-instructions}
  2627. %% passes input and output variants of x86 assembly.
  2628. \newcommand{\CvarGrammarRacket}{
  2629. \begin{array}{lcl}
  2630. \Atm &::=& \Int \MID \Var \\
  2631. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2632. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2633. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2634. \end{array}
  2635. }
  2636. \newcommand{\CvarASTRacket}{
  2637. \begin{array}{lcl}
  2638. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2639. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2640. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2641. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2642. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2643. \end{array}
  2644. }
  2645. {\if\edition\racketEd
  2646. \subsection{The \LangCVar{} Intermediate Language}
  2647. The output of \code{explicate\_control} is similar to the $C$
  2648. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2649. categories for expressions and statements, so we name it \LangCVar{}.
  2650. This style of intermediate language is also known as
  2651. \emph{three-address code}, to emphasize that the typical form of a
  2652. statement such as \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2653. addresses: \code{x}, \code{y}, and \code{z}~\citep{Aho:2006wb}.
  2654. The concrete syntax for \LangCVar{} is defined in
  2655. Figure~\ref{fig:c0-concrete-syntax} and the abstract syntax for
  2656. \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2657. %
  2658. The \LangCVar{} language supports the same operators as \LangVar{} but
  2659. the arguments of operators are restricted to atomic
  2660. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2661. assignment statements which can be executed in sequence using the
  2662. \key{Seq} form. A sequence of statements always ends with
  2663. \key{Return}, a guarantee that is baked into the grammar rules for
  2664. \itm{tail}. The naming of this non-terminal comes from the term
  2665. \emph{tail position}\index{subject}{tail position}, which refers to an
  2666. expression that is the last one to execute within a function or
  2667. program.
  2668. A \LangCVar{} program consists of an alist mapping labels to
  2669. tails. This is more general than necessary for the present chapter, as
  2670. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2671. us from having to change the syntax in Chapter~\ref{ch:Lif}. For now
  2672. there will be just one label, \key{start}, and the whole program is
  2673. its tail.
  2674. %
  2675. The $\itm{info}$ field of the \key{CProgram} form, after the
  2676. \code{explicate\_control} pass, contains a mapping from the symbol
  2677. \key{locals} to a list of variables, that is, a list of all the
  2678. variables used in the program. At the start of the program, these
  2679. variables are uninitialized; they become initialized on their first
  2680. assignment.
  2681. \begin{figure}[tbp]
  2682. \fbox{
  2683. \begin{minipage}{0.96\textwidth}
  2684. \[
  2685. \begin{array}{l}
  2686. \CvarGrammarRacket \\
  2687. \begin{array}{lcl}
  2688. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2689. \end{array}
  2690. \end{array}
  2691. \]
  2692. \end{minipage}
  2693. }
  2694. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2695. \label{fig:c0-concrete-syntax}
  2696. \end{figure}
  2697. \begin{figure}[tbp]
  2698. \fbox{
  2699. \begin{minipage}{0.96\textwidth}
  2700. \[
  2701. \begin{array}{l}
  2702. \CvarASTRacket \\
  2703. \begin{array}{lcl}
  2704. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2705. \end{array}
  2706. \end{array}
  2707. \]
  2708. \end{minipage}
  2709. }
  2710. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2711. \label{fig:c0-syntax}
  2712. \end{figure}
  2713. The definitional interpreter for \LangCVar{} is in the support code,
  2714. in the file \code{interp-Cvar.rkt}.
  2715. \fi}
  2716. {\if\edition\racketEd
  2717. \section{Uniquify Variables}
  2718. \label{sec:uniquify-Lvar}
  2719. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2720. programs in which every \key{let} binds a unique variable name. For
  2721. example, the \code{uniquify} pass should translate the program on the
  2722. left into the program on the right.
  2723. \begin{transformation}
  2724. \begin{lstlisting}
  2725. (let ([x 32])
  2726. (+ (let ([x 10]) x) x))
  2727. \end{lstlisting}
  2728. \compilesto
  2729. \begin{lstlisting}
  2730. (let ([x.1 32])
  2731. (+ (let ([x.2 10]) x.2) x.1))
  2732. \end{lstlisting}
  2733. \end{transformation}
  2734. The following is another example translation, this time of a program
  2735. with a \key{let} nested inside the initializing expression of another
  2736. \key{let}.
  2737. \begin{transformation}
  2738. \begin{lstlisting}
  2739. (let ([x (let ([x 4])
  2740. (+ x 1))])
  2741. (+ x 2))
  2742. \end{lstlisting}
  2743. \compilesto
  2744. \begin{lstlisting}
  2745. (let ([x.2 (let ([x.1 4])
  2746. (+ x.1 1))])
  2747. (+ x.2 2))
  2748. \end{lstlisting}
  2749. \end{transformation}
  2750. We recommend implementing \code{uniquify} by creating a structurally
  2751. recursive function named \code{uniquify\_exp} that mostly just copies
  2752. an expression. However, when encountering a \key{let}, it should
  2753. generate a unique name for the variable and associate the old name
  2754. with the new name in an alist.\footnote{The Racket function
  2755. \code{gensym} is handy for generating unique variable names.} The
  2756. \code{uniquify\_exp} function needs to access this alist when it gets
  2757. to a variable reference, so we add a parameter to \code{uniquify\_exp}
  2758. for the alist.
  2759. The skeleton of the \code{uniquify\_exp} function is shown in
  2760. Figure~\ref{fig:uniquify-Lvar}.
  2761. %% The function is curried so that it is
  2762. %% convenient to partially apply it to an alist and then apply it to
  2763. %% different expressions, as in the last case for primitive operations in
  2764. %% Figure~\ref{fig:uniquify-Lvar}.
  2765. The
  2766. %
  2767. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2768. %
  2769. form of Racket is useful for transforming the element of a list to
  2770. produce a new list.\index{subject}{for/list}
  2771. \begin{figure}[tbp]
  2772. \begin{lstlisting}
  2773. (define (uniquify_exp env)
  2774. (lambda (e)
  2775. (match e
  2776. [(Var x) ___]
  2777. [(Int n) (Int n)]
  2778. [(Let x e body) ___]
  2779. [(Prim op es)
  2780. (Prim op (for/list ([e es]) ((uniquify_exp env) e)))])))
  2781. (define (uniquify p)
  2782. (match p
  2783. [(Program '() e) (Program '() ((uniquify_exp '()) e))]))
  2784. \end{lstlisting}
  2785. \caption{Skeleton for the \key{uniquify} pass.}
  2786. \label{fig:uniquify-Lvar}
  2787. \end{figure}
  2788. \begin{exercise}
  2789. \normalfont\normalsize % I don't like the italics for exercises. -Jeremy
  2790. Complete the \code{uniquify} pass by filling in the blanks in
  2791. Figure~\ref{fig:uniquify-Lvar}, that is, implement the cases for
  2792. variables and for the \key{let} form in the file \code{compiler.rkt}
  2793. in the support code.
  2794. \end{exercise}
  2795. \begin{exercise}
  2796. \normalfont\normalsize
  2797. \label{ex:Lvar}
  2798. Create five \LangVar{} programs that exercise the most interesting
  2799. parts of the \key{uniquify} pass, that is, the programs should include
  2800. \key{let} forms, variables, and variables that shadow each other.
  2801. The five programs should be placed in the subdirectory named
  2802. \key{tests} and the file names should start with \code{var\_test\_}
  2803. followed by a unique integer and end with the file extension
  2804. \key{.rkt}.
  2805. %
  2806. The \key{run-tests.rkt} script in the support code checks whether the
  2807. output programs produce the same result as the input programs. The
  2808. script uses the \key{interp-tests} function
  2809. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2810. your \key{uniquify} pass on the example programs. The \code{passes}
  2811. parameter of \key{interp-tests} is a list that should have one entry
  2812. for each pass in your compiler. For now, define \code{passes} to
  2813. contain just one entry for \code{uniquify} as shown below.
  2814. \begin{lstlisting}
  2815. (define passes
  2816. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2817. \end{lstlisting}
  2818. Run the \key{run-tests.rkt} script in the support code to check
  2819. whether the output programs produce the same result as the input
  2820. programs.
  2821. \end{exercise}
  2822. \fi}
  2823. \section{Remove Complex Operands}
  2824. \label{sec:remove-complex-opera-Lvar}
  2825. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2826. into a restricted form in which the arguments of operations are atomic
  2827. expressions. Put another way, this pass removes complex
  2828. operands\index{subject}{complex operand}, such as the expression
  2829. \racket{\code{(- 10)}}\python{\code{-10}}
  2830. in the program below. This is accomplished by introducing a new
  2831. temporary variable, assigning the complex operand to the new
  2832. variable, and then using the new variable in place of the complex
  2833. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2834. right.
  2835. {\if\edition\racketEd
  2836. \begin{transformation}
  2837. % var_test_19.rkt
  2838. \begin{lstlisting}
  2839. (let ([x (+ 42 (- 10))])
  2840. (+ x 10))
  2841. \end{lstlisting}
  2842. \compilesto
  2843. \begin{lstlisting}
  2844. (let ([x (let ([tmp.1 (- 10)])
  2845. (+ 42 tmp.1))])
  2846. (+ x 10))
  2847. \end{lstlisting}
  2848. \end{transformation}
  2849. \fi}
  2850. {\if\edition\pythonEd
  2851. \begin{transformation}
  2852. \begin{lstlisting}
  2853. x = 42 + -10
  2854. print(x + 10)
  2855. \end{lstlisting}
  2856. \compilesto
  2857. \begin{lstlisting}
  2858. tmp_0 = -10
  2859. x = 42 + tmp_0
  2860. tmp_1 = x + 10
  2861. print(tmp_1)
  2862. \end{lstlisting}
  2863. \end{transformation}
  2864. \fi}
  2865. \newcommand{\LvarMonadASTRacket}{
  2866. \begin{array}{rcl}
  2867. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2868. \Exp &::=& \Atm \MID \READ{} \\
  2869. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm} \\
  2870. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2871. \end{array}
  2872. }
  2873. \newcommand{\LvarMonadASTPython}{
  2874. \begin{array}{rcl}
  2875. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2876. \Exp{} &::=& \Atm \MID \READ{} \\
  2877. &\MID& \UNIOP{\itm{unaryop}}{\Atm} \MID \BINOP{\Atm}{\itm{binaryop}}{\Atm} \\
  2878. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  2879. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  2880. \end{array}
  2881. }
  2882. \begin{figure}[tp]
  2883. \centering
  2884. \fbox{
  2885. \begin{minipage}{0.96\textwidth}
  2886. {\if\edition\racketEd
  2887. \[
  2888. \begin{array}{l}
  2889. \LvarMonadASTRacket \\
  2890. \begin{array}{rcl}
  2891. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  2892. \end{array}
  2893. \end{array}
  2894. \]
  2895. \fi}
  2896. {\if\edition\pythonEd
  2897. \[
  2898. \begin{array}{l}
  2899. \LvarMonadASTPython \\
  2900. \begin{array}{rcl}
  2901. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  2902. \end{array}
  2903. \end{array}
  2904. \]
  2905. \fi}
  2906. \end{minipage}
  2907. }
  2908. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  2909. atomic expressions.}
  2910. \label{fig:Lvar-anf-syntax}
  2911. \end{figure}
  2912. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  2913. of this pass, the language \LangVarANF{}. The only difference is that
  2914. operator arguments are restricted to be atomic expressions that are
  2915. defined by the \Atm{} non-terminal. In particular, integer constants
  2916. and variables are atomic.
  2917. The atomic expressions are pure (they do not cause or depend on
  2918. side-effects) whereas complex expressions may have side effects, such
  2919. as \READ{}. A language with this separation between pure versus
  2920. side-effecting expressions is said to be in monadic normal
  2921. form~\citep{Moggi:1991in,Danvy:2003fk} which explains the \textit{mon}
  2922. in the name \LangVarANF{}. An important invariant of the
  2923. \code{remove\_complex\_operands} pass is that the relative ordering
  2924. among complex expressions is not changed, but the relative ordering
  2925. between atomic expressions and complex expressions can change and
  2926. often does. The reason that these changes are behaviour preserving is
  2927. that the atomic expressions are pure.
  2928. Another well-known form for intermediate languages is the
  2929. \emph{administrative normal form}
  2930. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2931. \index{subject}{administrative normal form} \index{subject}{ANF}
  2932. %
  2933. The \LangVarANF{} language is not quite in ANF because we allow the
  2934. right-hand side of a \code{let} to be a complex expression.
  2935. {\if\edition\racketEd
  2936. We recommend implementing this pass with two mutually recursive
  2937. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  2938. \code{rco\_atom} to subexpressions that need to become atomic and to
  2939. apply \code{rco\_exp} to subexpressions that do not. Both functions
  2940. take an \LangVar{} expression as input. The \code{rco\_exp} function
  2941. returns an expression. The \code{rco\_atom} function returns two
  2942. things: an atomic expression and an alist mapping temporary variables to
  2943. complex subexpressions. You can return multiple things from a function
  2944. using Racket's \key{values} form and you can receive multiple things
  2945. from a function call using the \key{define-values} form.
  2946. \fi}
  2947. %
  2948. {\if\edition\pythonEd
  2949. %
  2950. We recommend implementing this pass with an auxiliary method named
  2951. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  2952. Boolean that specifies whether the expression needs to become atomic
  2953. or not. The \code{rco\_exp} method should return a pair consisting of
  2954. the new expression and a list of pairs, associating new temporary
  2955. variables with their initializing expressions.
  2956. %
  2957. \fi}
  2958. {\if\edition\racketEd
  2959. %
  2960. Returning to the example program with the expression \code{(+ 42 (-
  2961. 10))}, the subexpression \code{(- 10)} should be processed using the
  2962. \code{rco\_atom} function because it is an argument of the \code{+}
  2963. operator and therefore needs to become atomic. The output of
  2964. \code{rco\_atom} applied to \code{(- 10)} is as follows.
  2965. \begin{transformation}
  2966. \begin{lstlisting}
  2967. (- 10)
  2968. \end{lstlisting}
  2969. \compilesto
  2970. \begin{lstlisting}
  2971. tmp.1
  2972. ((tmp.1 . (- 10)))
  2973. \end{lstlisting}
  2974. \end{transformation}
  2975. \fi}
  2976. %
  2977. {\if\edition\pythonEd
  2978. %
  2979. Returning to the example program with the expression \code{42 + -10},
  2980. the subexpression \code{-10} should be processed using the
  2981. \code{rco\_exp} function with \code{True} as the second argument
  2982. because \code{-10} is an argument of the \code{+} operator and
  2983. therefore needs to become atomic. The output of \code{rco\_exp}
  2984. applied to \code{-10} is as follows.
  2985. \begin{transformation}
  2986. \begin{lstlisting}
  2987. -10
  2988. \end{lstlisting}
  2989. \compilesto
  2990. \begin{lstlisting}
  2991. tmp_1
  2992. [(tmp_1, -10)]
  2993. \end{lstlisting}
  2994. \end{transformation}
  2995. %
  2996. \fi}
  2997. Take special care of programs such as the following that
  2998. %
  2999. \racket{bind a variable to an atomic expression.}
  3000. %
  3001. \python{assign an atomic expression to a variable.}
  3002. %
  3003. You should leave such \racket{variable bindings}\python{assignments}
  3004. unchanged, as shown in the program on the right\\
  3005. %
  3006. {\if\edition\racketEd
  3007. \begin{transformation}
  3008. % var_test_20.rkt
  3009. \begin{lstlisting}
  3010. (let ([a 42])
  3011. (let ([b a])
  3012. b))
  3013. \end{lstlisting}
  3014. \compilesto
  3015. \begin{lstlisting}
  3016. (let ([a 42])
  3017. (let ([b a])
  3018. b))
  3019. \end{lstlisting}
  3020. \end{transformation}
  3021. \fi}
  3022. {\if\edition\pythonEd
  3023. \begin{transformation}
  3024. \begin{lstlisting}
  3025. a = 42
  3026. b = a
  3027. print(b)
  3028. \end{lstlisting}
  3029. \compilesto
  3030. \begin{lstlisting}
  3031. a = 42
  3032. b = a
  3033. print(b)
  3034. \end{lstlisting}
  3035. \end{transformation}
  3036. \fi}
  3037. %
  3038. \noindent A careless implementation might produce the following output with
  3039. unnecessary temporary variables.
  3040. \begin{center}
  3041. \begin{minipage}{0.4\textwidth}
  3042. {\if\edition\racketEd
  3043. \begin{lstlisting}
  3044. (let ([tmp.1 42])
  3045. (let ([a tmp.1])
  3046. (let ([tmp.2 a])
  3047. (let ([b tmp.2])
  3048. b))))
  3049. \end{lstlisting}
  3050. \fi}
  3051. {\if\edition\pythonEd
  3052. \begin{lstlisting}
  3053. tmp_1 = 42
  3054. a = tmp_1
  3055. tmp_2 = a
  3056. b = tmp_2
  3057. print(b)
  3058. \end{lstlisting}
  3059. \fi}
  3060. \end{minipage}
  3061. \end{center}
  3062. \begin{exercise}
  3063. \normalfont\normalsize
  3064. {\if\edition\racketEd
  3065. Implement the \code{remove\_complex\_operands} function in
  3066. \code{compiler.rkt}.
  3067. %
  3068. Create three new \LangVar{} programs that exercise the interesting
  3069. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  3070. regarding file names described in Exercise~\ref{ex:Lvar}.
  3071. %
  3072. In the \code{run-tests.rkt} script, add the following entry to the
  3073. list of \code{passes} and then run the script to test your compiler.
  3074. \begin{lstlisting}
  3075. (list "remove-complex" remove_complex_operands interp_Lvar type-check-Lvar)
  3076. \end{lstlisting}
  3077. While debugging your compiler, it is often useful to see the
  3078. intermediate programs that are output from each pass. To print the
  3079. intermediate programs, place \lstinline{(debug-level 1)} before the call to
  3080. \code{interp-tests} in \code{run-tests.rkt}.
  3081. \fi}
  3082. %
  3083. {\if\edition\pythonEd
  3084. Implement the \code{remove\_complex\_operands} pass in
  3085. \code{compiler.py}, creating auxiliary functions for each
  3086. non-terminal in the grammar, i.e., \code{rco\_exp}
  3087. and \code{rco\_stmt}. We recommend you use the function
  3088. \code{utils.generate\_name()} to generate fresh names from a stub string.
  3089. \fi}
  3090. \end{exercise}
  3091. {\if\edition\pythonEd
  3092. \begin{exercise}
  3093. \normalfont\normalsize
  3094. \label{ex:Lvar}
  3095. Create five \LangVar{} programs that exercise the most interesting
  3096. parts of the \code{remove\_complex\_operands} pass. The five programs
  3097. should be placed in the subdirectory named \key{tests} and the file
  3098. names should start with \code{var\_test\_} followed by a unique
  3099. integer and end with the file extension \key{.py}.
  3100. %% The \key{run-tests.rkt} script in the support code checks whether the
  3101. %% output programs produce the same result as the input programs. The
  3102. %% script uses the \key{interp-tests} function
  3103. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  3104. %% your \key{uniquify} pass on the example programs. The \code{passes}
  3105. %% parameter of \key{interp-tests} is a list that should have one entry
  3106. %% for each pass in your compiler. For now, define \code{passes} to
  3107. %% contain just one entry for \code{uniquify} as shown below.
  3108. %% \begin{lstlisting}
  3109. %% (define passes
  3110. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3111. %% \end{lstlisting}
  3112. Run the \key{run-tests.py} script in the support code to check
  3113. whether the output programs produce the same result as the input
  3114. programs.
  3115. \end{exercise}
  3116. \fi}
  3117. {\if\edition\racketEd
  3118. \section{Explicate Control}
  3119. \label{sec:explicate-control-Lvar}
  3120. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3121. programs that make the order of execution explicit in their
  3122. syntax. For now this amounts to flattening \key{let} constructs into a
  3123. sequence of assignment statements. For example, consider the following
  3124. \LangVar{} program.\\
  3125. % var_test_11.rkt
  3126. \begin{minipage}{0.96\textwidth}
  3127. \begin{lstlisting}
  3128. (let ([y (let ([x 20])
  3129. (+ x (let ([x 22]) x)))])
  3130. y)
  3131. \end{lstlisting}
  3132. \end{minipage}\\
  3133. %
  3134. The output of the previous pass is shown below, on the left, and the
  3135. output of \code{explicate\_control} is on the right. Recall that the
  3136. right-hand-side of a \key{let} executes before its body, so the order
  3137. of evaluation for this program is to assign \code{20} to \code{x.1},
  3138. \code{22} to \code{x.2}, and \code{(+ x.1 x.2)} to \code{y}, then
  3139. return \code{y}. Indeed, the output of \code{explicate\_control} makes
  3140. this ordering explicit.
  3141. \begin{transformation}
  3142. \begin{lstlisting}
  3143. (let ([y (let ([x.1 20])
  3144. (let ([x.2 22])
  3145. (+ x.1 x.2)))])
  3146. y)
  3147. \end{lstlisting}
  3148. \compilesto
  3149. \begin{lstlisting}[language=C]
  3150. start:
  3151. x.1 = 20;
  3152. x.2 = 22;
  3153. y = (+ x.1 x.2);
  3154. return y;
  3155. \end{lstlisting}
  3156. \end{transformation}
  3157. \begin{figure}[tbp]
  3158. \begin{lstlisting}
  3159. (define (explicate_tail e)
  3160. (match e
  3161. [(Var x) ___]
  3162. [(Int n) (Return (Int n))]
  3163. [(Let x rhs body) ___]
  3164. [(Prim op es) ___]
  3165. [else (error "explicate_tail unhandled case" e)]))
  3166. (define (explicate_assign e x cont)
  3167. (match e
  3168. [(Var x) ___]
  3169. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3170. [(Let y rhs body) ___]
  3171. [(Prim op es) ___]
  3172. [else (error "explicate_assign unhandled case" e)]))
  3173. (define (explicate_control p)
  3174. (match p
  3175. [(Program info body) ___]))
  3176. \end{lstlisting}
  3177. \caption{Skeleton for the \code{explicate\_control} pass.}
  3178. \label{fig:explicate-control-Lvar}
  3179. \end{figure}
  3180. The organization of this pass depends on the notion of tail position
  3181. that we have alluded to earlier. Here is the definition.
  3182. \begin{definition}
  3183. The following rules define when an expression is in \textbf{\emph{tail
  3184. position}}\index{subject}{tail position} for the language \LangVar{}.
  3185. \begin{enumerate}
  3186. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3187. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3188. \end{enumerate}
  3189. \end{definition}
  3190. We recommend implementing \code{explicate\_control} using two
  3191. recursive functions, \code{explicate\_tail} and
  3192. \code{explicate\_assign}, as suggested in the skeleton code in
  3193. Figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3194. function should be applied to expressions in tail position whereas the
  3195. \code{explicate\_assign} should be applied to expressions that occur on
  3196. the right-hand-side of a \key{let}.
  3197. %
  3198. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3199. input and produces a \Tail{} in \LangCVar{} (see
  3200. Figure~\ref{fig:c0-syntax}).
  3201. %
  3202. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3203. the variable that it is to be assigned to, and a \Tail{} in
  3204. \LangCVar{} for the code that comes after the assignment. The
  3205. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3206. The \code{explicate\_assign} function is in accumulator-passing style:
  3207. the \code{cont} parameter is used for accumulating the output. This
  3208. accumulator-passing style plays an important role in how we generate
  3209. high-quality code for conditional expressions in Chapter~\ref{ch:Lif}.
  3210. The abbreviation \code{cont} is for continuation because it contains
  3211. the generated code that should come after the current assignment.
  3212. This code organization is also related to continuation-passing style,
  3213. except that \code{cont} is not what happens next during compilation,
  3214. but what happens next in the generated code.
  3215. \begin{exercise}\normalfont\normalsize
  3216. %
  3217. Implement the \code{explicate\_control} function in
  3218. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3219. exercise the code in \code{explicate\_control}.
  3220. %
  3221. In the \code{run-tests.rkt} script, add the following entry to the
  3222. list of \code{passes} and then run the script to test your compiler.
  3223. \begin{lstlisting}
  3224. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3225. \end{lstlisting}
  3226. \end{exercise}
  3227. \fi}
  3228. \section{Select Instructions}
  3229. \label{sec:select-Lvar}
  3230. \index{subject}{instruction selection}
  3231. In the \code{select\_instructions} pass we begin the work of
  3232. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3233. language of this pass is a variant of x86 that still uses variables,
  3234. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3235. non-terminal of the \LangXInt{} abstract syntax
  3236. (Figure~\ref{fig:x86-int-ast}).
  3237. \racket{We recommend implementing the
  3238. \code{select\_instructions} with three auxiliary functions, one for
  3239. each of the non-terminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3240. $\Tail$.}
  3241. \python{We recommend implementing an auxiliary function
  3242. named \code{select\_stmt} for the $\Stmt$ non-terminal.}
  3243. \racket{The cases for $\Atm$ are straightforward; variables stay the
  3244. same and integer constants change to immediates, that is, $\INT{n}$
  3245. changes to $\IMM{n}$.}
  3246. Next consider the cases for the $\Stmt$ non-terminal, starting with
  3247. arithmetic operations. For example, consider the addition operation
  3248. below, on the left side. There is an \key{addq} instruction in x86,
  3249. but it performs an in-place update. So we could move $\Arg_1$
  3250. into the left-hand side \itm{var} and then add $\Arg_2$ to
  3251. \itm{var}, where $\Arg_1$ and $\Arg_2$ are the translations of
  3252. $\Atm_1$ and $\Atm_2$ respectively.
  3253. \begin{transformation}
  3254. {\if\edition\racketEd
  3255. \begin{lstlisting}
  3256. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3257. \end{lstlisting}
  3258. \fi}
  3259. {\if\edition\pythonEd
  3260. \begin{lstlisting}
  3261. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3262. \end{lstlisting}
  3263. \fi}
  3264. \compilesto
  3265. \begin{lstlisting}
  3266. movq |$\Arg_1$|, |$\itm{var}$|
  3267. addq |$\Arg_2$|, |$\itm{var}$|
  3268. \end{lstlisting}
  3269. \end{transformation}
  3270. There are also cases that require special care to avoid generating
  3271. needlessly complicated code. For example, if one of the arguments of
  3272. the addition is the same variable as the left-hand side of the
  3273. assignment, as shown below, then there is no need for the extra move
  3274. instruction. The assignment statement can be translated into a single
  3275. \key{addq} instruction as follows.
  3276. \begin{transformation}
  3277. {\if\edition\racketEd
  3278. \begin{lstlisting}
  3279. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3280. \end{lstlisting}
  3281. \fi}
  3282. {\if\edition\pythonEd
  3283. \begin{lstlisting}
  3284. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3285. \end{lstlisting}
  3286. \fi}
  3287. \compilesto
  3288. \begin{lstlisting}
  3289. addq |$\Arg_1$|, |$\itm{var}$|
  3290. \end{lstlisting}
  3291. \end{transformation}
  3292. The \READOP{} operation does not have a direct counterpart in x86
  3293. assembly, so we provide this functionality with the function
  3294. \code{read\_int} in the file \code{runtime.c}, written in
  3295. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  3296. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3297. system}, or simply the \emph{runtime} for short. When compiling your
  3298. generated x86 assembly code, you need to compile \code{runtime.c} to
  3299. \code{runtime.o} (an ``object file'', using \code{gcc} with option
  3300. \code{-c}) and link it into the executable. For our purposes of code
  3301. generation, all you need to do is translate an assignment of
  3302. \READOP{} into a call to the \code{read\_int} function followed by a
  3303. move from \code{rax} to the left-hand-side variable. (Recall that the
  3304. return value of a function goes into \code{rax}.)
  3305. \begin{transformation}
  3306. {\if\edition\racketEd
  3307. \begin{lstlisting}
  3308. |$\itm{var}$| = (read);
  3309. \end{lstlisting}
  3310. \fi}
  3311. {\if\edition\pythonEd
  3312. \begin{lstlisting}
  3313. |$\itm{var}$| = input_int();
  3314. \end{lstlisting}
  3315. \fi}
  3316. \compilesto
  3317. \begin{lstlisting}
  3318. callq read_int
  3319. movq %rax, |$\itm{var}$|
  3320. \end{lstlisting}
  3321. \end{transformation}
  3322. {\if\edition\pythonEd
  3323. %
  3324. Similarly, we translate the \code{print} operation, shown below, into
  3325. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3326. In x86, the first six arguments to functions are passed in registers,
  3327. with the first argument passed in register \code{rdi}. So we move the
  3328. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3329. \code{callq} instruction.
  3330. \begin{transformation}
  3331. \begin{lstlisting}
  3332. print(|$\Atm$|)
  3333. \end{lstlisting}
  3334. \compilesto
  3335. \begin{lstlisting}
  3336. movq |$\Arg$|, %rdi
  3337. callq print_int
  3338. \end{lstlisting}
  3339. \end{transformation}
  3340. %
  3341. \fi}
  3342. {\if\edition\racketEd
  3343. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  3344. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3345. assignment to the \key{rax} register followed by a jump to the
  3346. conclusion of the program (so the conclusion needs to be labeled).
  3347. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3348. recursively and then append the resulting instructions.
  3349. \fi}
  3350. {\if\edition\pythonEd
  3351. We recommend that you use the function \code{utils.label\_name()} to
  3352. transform a string into an label argument suitably suitable for, e.g.,
  3353. the target of the \code{callq} instruction. This practice makes your
  3354. compiler portable across Linus and Mac OS X, which requires an underscore prefixed to
  3355. all labels.
  3356. \fi}
  3357. \begin{exercise}
  3358. \normalfont\normalsize
  3359. {\if\edition\racketEd
  3360. Implement the \code{select\_instructions} pass in
  3361. \code{compiler.rkt}. Create three new example programs that are
  3362. designed to exercise all of the interesting cases in this pass.
  3363. %
  3364. In the \code{run-tests.rkt} script, add the following entry to the
  3365. list of \code{passes} and then run the script to test your compiler.
  3366. \begin{lstlisting}
  3367. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3368. \end{lstlisting}
  3369. \fi}
  3370. {\if\edition\pythonEd
  3371. Implement the \key{select\_instructions} pass in
  3372. \code{compiler.py}. Create three new example programs that are
  3373. designed to exercise all of the interesting cases in this pass.
  3374. Run the \code{run-tests.py} script to to check
  3375. whether the output programs produce the same result as the input
  3376. programs.
  3377. \fi}
  3378. \end{exercise}
  3379. \section{Assign Homes}
  3380. \label{sec:assign-Lvar}
  3381. The \code{assign\_homes} pass compiles \LangXVar{} programs to
  3382. \LangXVar{} programs that no longer use program variables.
  3383. Thus, the \code{assign\_homes} pass is responsible for placing all of
  3384. the program variables in registers or on the stack. For runtime
  3385. efficiency, it is better to place variables in registers, but as there
  3386. are only 16 registers, some programs must necessarily resort to
  3387. placing some variables on the stack. In this chapter we focus on the
  3388. mechanics of placing variables on the stack. We study an algorithm for
  3389. placing variables in registers in
  3390. Chapter~\ref{ch:register-allocation-Lvar}.
  3391. Consider again the following \LangVar{} program from
  3392. Section~\ref{sec:remove-complex-opera-Lvar}.
  3393. % var_test_20.rkt
  3394. {\if\edition\racketEd
  3395. \begin{lstlisting}
  3396. (let ([a 42])
  3397. (let ([b a])
  3398. b))
  3399. \end{lstlisting}
  3400. \fi}
  3401. {\if\edition\pythonEd
  3402. \begin{lstlisting}
  3403. a = 42
  3404. b = a
  3405. print(b)
  3406. \end{lstlisting}
  3407. \fi}
  3408. %
  3409. The output of \code{select\_instructions} is shown below, on the left,
  3410. and the output of \code{assign\_homes} is on the right. In this
  3411. example, we assign variable \code{a} to stack location
  3412. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3413. \begin{transformation}
  3414. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3415. movq $42, a
  3416. movq a, b
  3417. movq b, %rax
  3418. \end{lstlisting}
  3419. \compilesto
  3420. %stack-space: 16
  3421. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3422. movq $42, -8(%rbp)
  3423. movq -8(%rbp), -16(%rbp)
  3424. movq -16(%rbp), %rax
  3425. \end{lstlisting}
  3426. \end{transformation}
  3427. \racket{
  3428. The \code{assign\_homes} pass should replace all variables
  3429. with stack locations.
  3430. The list of variables can be obtain from
  3431. the \code{locals-types} entry in the $\itm{info}$ of the
  3432. \code{X86Program} node. The \code{locals-types} entry is an alist
  3433. mapping all the variables in the program to their types
  3434. (for now just \code{Integer}).
  3435. As an aside, the \code{locals-types} entry is
  3436. computed by \code{type-check-Cvar} in the support code, which
  3437. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3438. which you should propagate to the \code{X86Program} node.}
  3439. %
  3440. \python{The \code{assign\_homes} pass should replace all uses of
  3441. variables with stack locations.}
  3442. %
  3443. In the process of assigning variables to stack locations, it is
  3444. convenient for you to compute and store the size of the frame (in
  3445. bytes) in
  3446. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space},}
  3447. %
  3448. \python{the field \code{stack\_space} of the \key{X86Program} node,}
  3449. %
  3450. which is needed later to generate the conclusion of the \code{main}
  3451. procedure. The x86-64 standard requires the frame size to be a
  3452. multiple of 16 bytes.\index{subject}{frame}
  3453. % TODO: store the number of variables instead? -Jeremy
  3454. \begin{exercise}\normalfont\normalsize
  3455. Implement the \code{assign\_homes} pass in
  3456. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3457. auxiliary functions for each of the non-terminals in the \LangXVar{}
  3458. grammar. We recommend that the auxiliary functions take an extra
  3459. parameter that maps variable names to homes (stack locations for now).
  3460. %
  3461. {\if\edition\racketEd
  3462. In the \code{run-tests.rkt} script, add the following entry to the
  3463. list of \code{passes} and then run the script to test your compiler.
  3464. \begin{lstlisting}
  3465. (list "assign homes" assign-homes interp_x86-0)
  3466. \end{lstlisting}
  3467. \fi}
  3468. {\if\edition\pythonEd
  3469. Run the \code{run-tests.py} script to to check
  3470. whether the output programs produce the same result as the input
  3471. programs.
  3472. \fi}
  3473. \end{exercise}
  3474. \section{Patch Instructions}
  3475. \label{sec:patch-s0}
  3476. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3477. \LangXInt{} by making sure that each instruction adheres to the
  3478. restriction that at most one argument of an instruction may be a
  3479. memory reference.
  3480. We return to the following example.\\
  3481. \begin{minipage}{0.5\textwidth}
  3482. % var_test_20.rkt
  3483. {\if\edition\racketEd
  3484. \begin{lstlisting}
  3485. (let ([a 42])
  3486. (let ([b a])
  3487. b))
  3488. \end{lstlisting}
  3489. \fi}
  3490. {\if\edition\pythonEd
  3491. \begin{lstlisting}
  3492. a = 42
  3493. b = a
  3494. print(b)
  3495. \end{lstlisting}
  3496. \fi}
  3497. \end{minipage}\\
  3498. The \code{assign\_homes} pass produces the following translation. \\
  3499. \begin{minipage}{0.5\textwidth}
  3500. {\if\edition\racketEd
  3501. \begin{lstlisting}
  3502. movq $42, -8(%rbp)
  3503. movq -8(%rbp), -16(%rbp)
  3504. movq -16(%rbp), %rax
  3505. \end{lstlisting}
  3506. \fi}
  3507. {\if\edition\pythonEd
  3508. \begin{lstlisting}
  3509. movq 42, -8(%rbp)
  3510. movq -8(%rbp), -16(%rbp)
  3511. movq -16(%rbp), %rdi
  3512. callq print_int
  3513. \end{lstlisting}
  3514. \fi}
  3515. \end{minipage}\\
  3516. The second \key{movq} instruction is problematic because both
  3517. arguments are stack locations. We suggest fixing this problem by
  3518. moving from the source location to the register \key{rax} and then
  3519. from \key{rax} to the destination location, as follows.
  3520. \begin{lstlisting}
  3521. movq -8(%rbp), %rax
  3522. movq %rax, -16(%rbp)
  3523. \end{lstlisting}
  3524. \begin{exercise}
  3525. \normalfont\normalsize Implement the \key{patch\_instructions} pass in
  3526. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3527. Create three new example programs that are
  3528. designed to exercise all of the interesting cases in this pass.
  3529. %
  3530. {\if\edition\racketEd
  3531. In the \code{run-tests.rkt} script, add the following entry to the
  3532. list of \code{passes} and then run the script to test your compiler.
  3533. \begin{lstlisting}
  3534. (list "patch instructions" patch_instructions interp_x86-0)
  3535. \end{lstlisting}
  3536. \fi}
  3537. {\if\edition\pythonEd
  3538. Run the \code{run-tests.py} script to to check
  3539. whether the output programs produce the same result as the input
  3540. programs.
  3541. \fi}
  3542. \end{exercise}
  3543. \section{Generate Prelude and Conclusion}
  3544. \label{sec:print-x86}
  3545. \index{subject}{prelude}\index{subject}{conclusion}
  3546. The last step of the compiler from \LangVar{} to x86 is to generate
  3547. the \code{main} function with a prelude and conclusion wrapped around
  3548. the rest of the program, as shown in Figure~\ref{fig:p1-x86} and
  3549. discussed in Section~\ref{sec:x86}.
  3550. When running on Mac OS X, your compiler should prefix an underscore to
  3551. all labels, e.g., changing \key{main} to \key{\_main}.
  3552. %
  3553. \racket{The Racket call \code{(system-type 'os)} is useful for
  3554. determining which operating system the compiler is running on. It
  3555. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3556. %
  3557. \python{The Python \code{platform} library includes a \code{system()}
  3558. function that returns \code{'Linux'}, \code{'Windows'}, or
  3559. \code{'Darwin'} (for Mac).}
  3560. \begin{exercise}\normalfont\normalsize
  3561. %
  3562. Implement the \key{prelude\_and\_conclusion} pass in
  3563. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3564. %
  3565. {\if\edition\racketEd
  3566. In the \code{run-tests.rkt} script, add the following entry to the
  3567. list of \code{passes} and then run the script to test your compiler.
  3568. \begin{lstlisting}
  3569. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3570. \end{lstlisting}
  3571. %
  3572. Uncomment the call to the \key{compiler-tests} function
  3573. (Appendix~\ref{appendix:utilities}), which tests your complete
  3574. compiler by executing the generated x86 code. It translates the x86
  3575. AST that you produce into a string by invoking the \code{print-x86}
  3576. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3577. the provided \key{runtime.c} file to \key{runtime.o} using
  3578. \key{gcc}. Run the script to test your compiler.
  3579. %
  3580. \fi}
  3581. {\if\edition\pythonEd
  3582. %
  3583. Run the \code{run-tests.py} script to to check whether the output
  3584. programs produce the same result as the input programs. That script
  3585. translates the x86 AST that you produce into a string by invoking the
  3586. \code{repr} method that is implemented by the x86 AST classes in
  3587. \code{x86\_ast.py}.
  3588. %
  3589. \fi}
  3590. \end{exercise}
  3591. \section{Challenge: Partial Evaluator for \LangVar{}}
  3592. \label{sec:pe-Lvar}
  3593. \index{subject}{partial evaluation}
  3594. This section describes two optional challenge exercises that involve
  3595. adapting and improving the partial evaluator for \LangInt{} that was
  3596. introduced in Section~\ref{sec:partial-evaluation}.
  3597. \begin{exercise}\label{ex:pe-Lvar}
  3598. \normalfont\normalsize
  3599. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  3600. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3601. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3602. %
  3603. \racket{\key{let} binding}\python{assignment}
  3604. %
  3605. to the \LangInt{} language, so you will need to add cases for them in
  3606. the \code{pe\_exp}
  3607. %
  3608. \racket{function.}
  3609. %
  3610. \python{and \code{pe\_stmt} functions.}
  3611. %
  3612. Once complete, add the partial evaluation pass to the front of your
  3613. compiler and make sure that your compiler still passes all of the
  3614. tests.
  3615. \end{exercise}
  3616. \begin{exercise}
  3617. \normalfont\normalsize
  3618. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3619. \code{pe\_add} auxiliary functions with functions that know more about
  3620. arithmetic. For example, your partial evaluator should translate
  3621. {\if\edition\racketEd
  3622. \[
  3623. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3624. \code{(+ 2 (read))}
  3625. \]
  3626. \fi}
  3627. {\if\edition\pythonEd
  3628. \[
  3629. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3630. \code{2 + input\_int()}
  3631. \]
  3632. \fi}
  3633. To accomplish this, the \code{pe\_exp} function should produce output
  3634. in the form of the $\itm{residual}$ non-terminal of the following
  3635. grammar. The idea is that when processing an addition expression, we
  3636. can always produce either 1) an integer constant, 2) an addition
  3637. expression with an integer constant on the left-hand side but not the
  3638. right-hand side, or 3) or an addition expression in which neither
  3639. subexpression is a constant.
  3640. {\if\edition\racketEd
  3641. \[
  3642. \begin{array}{lcl}
  3643. \itm{inert} &::=& \Var
  3644. \MID \LP\key{read}\RP
  3645. \MID \LP\key{-} ~\Var\RP
  3646. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3647. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3648. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3649. \itm{residual} &::=& \Int
  3650. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3651. \MID \itm{inert}
  3652. \end{array}
  3653. \]
  3654. \fi}
  3655. {\if\edition\pythonEd
  3656. \[
  3657. \begin{array}{lcl}
  3658. \itm{inert} &::=& \Var
  3659. \MID \key{input\_int}\LP\RP
  3660. \MID \key{-} \Var
  3661. \MID \key{-} \key{input\_int}\LP\RP
  3662. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3663. \itm{residual} &::=& \Int
  3664. \MID \Int ~ \key{+} ~ \itm{inert}
  3665. \MID \itm{inert}
  3666. \end{array}
  3667. \]
  3668. \fi}
  3669. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3670. inputs are $\itm{residual}$ expressions and they should return
  3671. $\itm{residual}$ expressions. Once the improvements are complete,
  3672. make sure that your compiler still passes all of the tests. After
  3673. all, fast code is useless if it produces incorrect results!
  3674. \end{exercise}
  3675. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3676. \chapter{Register Allocation}
  3677. \label{ch:register-allocation-Lvar}
  3678. \index{subject}{register allocation}
  3679. In Chapter~\ref{ch:Lvar} we compiled \LangVar{} to x86, storing
  3680. variables on the procedure call stack. It can take 10s to 100s of
  3681. cycles for the CPU to access locations on the stack whereas accessing
  3682. a register takes only a single cycle. In this chapter we improve the
  3683. efficiency of our generated code by storing some variables in
  3684. registers. The goal of register allocation is to fit as many variables
  3685. into registers as possible. Some programs have more variables than
  3686. registers so we cannot always map each variable to a different
  3687. register. Fortunately, it is common for different variables to be
  3688. in-use during different periods of time during program execution, and
  3689. in those cases we can map multiple variables to the same register.
  3690. The program in Figure~\ref{fig:reg-eg} serves as a running
  3691. example. The source program is on the left and the output of
  3692. instruction selection is on the right. The program is almost in the
  3693. x86 assembly language but it still uses variables. Consider variables
  3694. \code{x} and \code{z}. After the variable \code{x} is moved to
  3695. \code{z} it is no longer in-use. Variable \code{z}, on the other
  3696. hand, is used only after this point, so \code{x} and \code{z} could
  3697. share the same register.
  3698. \begin{figure}
  3699. \begin{minipage}{0.45\textwidth}
  3700. Example \LangVar{} program:
  3701. % var_test_28.rkt
  3702. {\if\edition\racketEd
  3703. \begin{lstlisting}
  3704. (let ([v 1])
  3705. (let ([w 42])
  3706. (let ([x (+ v 7)])
  3707. (let ([y x])
  3708. (let ([z (+ x w)])
  3709. (+ z (- y)))))))
  3710. \end{lstlisting}
  3711. \fi}
  3712. {\if\edition\pythonEd
  3713. \begin{lstlisting}
  3714. v = 1
  3715. w = 42
  3716. x = v + 7
  3717. y = x
  3718. z = x + w
  3719. print(z + (- y))
  3720. \end{lstlisting}
  3721. \fi}
  3722. \end{minipage}
  3723. \begin{minipage}{0.45\textwidth}
  3724. After instruction selection:
  3725. {\if\edition\racketEd
  3726. \begin{lstlisting}
  3727. locals-types:
  3728. x : Integer, y : Integer,
  3729. z : Integer, t : Integer,
  3730. v : Integer, w : Integer
  3731. start:
  3732. movq $1, v
  3733. movq $42, w
  3734. movq v, x
  3735. addq $7, x
  3736. movq x, y
  3737. movq x, z
  3738. addq w, z
  3739. movq y, t
  3740. negq t
  3741. movq z, %rax
  3742. addq t, %rax
  3743. jmp conclusion
  3744. \end{lstlisting}
  3745. \fi}
  3746. {\if\edition\pythonEd
  3747. \begin{lstlisting}
  3748. movq $1, v
  3749. movq $42, w
  3750. movq v, x
  3751. addq $7, x
  3752. movq x, y
  3753. movq x, z
  3754. addq w, z
  3755. movq y, tmp_0
  3756. negq tmp_0
  3757. movq z, tmp_1
  3758. addq tmp_0, tmp_1
  3759. movq tmp_1, %rdi
  3760. callq print_int
  3761. \end{lstlisting}
  3762. \fi}
  3763. \end{minipage}
  3764. \caption{A running example for register allocation.}
  3765. \label{fig:reg-eg}
  3766. \end{figure}
  3767. The topic of Section~\ref{sec:liveness-analysis-Lvar} is how to
  3768. compute where a variable is in-use. Once we have that information, we
  3769. compute which variables are in-use at the same time, i.e., which ones
  3770. \emph{interfere}\index{subject}{interfere} with each other, and
  3771. represent this relation as an undirected graph whose vertices are
  3772. variables and edges indicate when two variables interfere
  3773. (Section~\ref{sec:build-interference}). We then model register
  3774. allocation as a graph coloring problem
  3775. (Section~\ref{sec:graph-coloring}).
  3776. If we run out of registers despite these efforts, we place the
  3777. remaining variables on the stack, similar to what we did in
  3778. Chapter~\ref{ch:Lvar}. It is common to use the verb
  3779. \emph{spill}\index{subject}{spill} for assigning a variable to a stack
  3780. location. The decision to spill a variable is handled as part of the
  3781. graph coloring process.
  3782. We make the simplifying assumption that each variable is assigned to
  3783. one location (a register or stack address). A more sophisticated
  3784. approach is to assign a variable to one or more locations in different
  3785. regions of the program. For example, if a variable is used many times
  3786. in short sequence and then only used again after many other
  3787. instructions, it could be more efficient to assign the variable to a
  3788. register during the initial sequence and then move it to the stack for
  3789. the rest of its lifetime. We refer the interested reader to
  3790. \citet{Cooper:2011aa} (Chapter 13) for more information about that
  3791. approach.
  3792. % discuss prioritizing variables based on how much they are used.
  3793. \section{Registers and Calling Conventions}
  3794. \label{sec:calling-conventions}
  3795. \index{subject}{calling conventions}
  3796. As we perform register allocation, we must be aware of the
  3797. \emph{calling conventions} \index{subject}{calling conventions} that
  3798. govern how functions calls are performed in x86.
  3799. %
  3800. Even though \LangVar{} does not include programmer-defined functions,
  3801. our generated code includes a \code{main} function that is called by
  3802. the operating system and our generated code contains calls to the
  3803. \code{read\_int} function.
  3804. Function calls require coordination between two pieces of code that
  3805. may be written by different programmers or generated by different
  3806. compilers. Here we follow the System V calling conventions that are
  3807. used by the GNU C compiler on Linux and
  3808. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3809. %
  3810. The calling conventions include rules about how functions share the
  3811. use of registers. In particular, the caller is responsible for freeing
  3812. up some registers prior to the function call for use by the callee.
  3813. These are called the \emph{caller-saved registers}
  3814. \index{subject}{caller-saved registers}
  3815. and they are
  3816. \begin{lstlisting}
  3817. rax rcx rdx rsi rdi r8 r9 r10 r11
  3818. \end{lstlisting}
  3819. On the other hand, the callee is responsible for preserving the values
  3820. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  3821. which are
  3822. \begin{lstlisting}
  3823. rsp rbp rbx r12 r13 r14 r15
  3824. \end{lstlisting}
  3825. We can think about this caller/callee convention from two points of
  3826. view, the caller view and the callee view:
  3827. \begin{itemize}
  3828. \item The caller should assume that all the caller-saved registers get
  3829. overwritten with arbitrary values by the callee. On the other hand,
  3830. the caller can safely assume that all the callee-saved registers
  3831. retain their original values.
  3832. \item The callee can freely use any of the caller-saved registers.
  3833. However, if the callee wants to use a callee-saved register, the
  3834. callee must arrange to put the original value back in the register
  3835. prior to returning to the caller. This can be accomplished by saving
  3836. the value to the stack in the prelude of the function and restoring
  3837. the value in the conclusion of the function.
  3838. \end{itemize}
  3839. In x86, registers are also used for passing arguments to a function
  3840. and for the return value. In particular, the first six arguments of a
  3841. function are passed in the following six registers, in this order.
  3842. \index{subject}{argument-passing registers}
  3843. \index{subject}{parameter-passing registers}
  3844. \begin{lstlisting}
  3845. rdi rsi rdx rcx r8 r9
  3846. \end{lstlisting}
  3847. If there are more than six arguments, then the convention is to use
  3848. space on the frame of the caller for the rest of the
  3849. arguments. However, in Chapter~\ref{ch:Lfun} we arrange never to
  3850. need more than six arguments.
  3851. %
  3852. \racket{For now, the only function we care about is \code{read\_int}
  3853. and it takes zero arguments.}
  3854. %
  3855. \python{For now, the only functions we care about are \code{read\_int}
  3856. and \code{print\_int}, which take zero and one argument, respectively.}
  3857. %
  3858. The register \code{rax} is used for the return value of a function.
  3859. The next question is how these calling conventions impact register
  3860. allocation. Consider the \LangVar{} program in
  3861. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3862. example from the caller point of view and then from the callee point
  3863. of view. We refer to a variable that is in-use during a function call
  3864. as being a \emph{call-live variable}\index{subject}{call-live
  3865. variable}.
  3866. The program makes two calls to \READOP{}. The variable \code{x} is
  3867. call-live because it is in-use during the second call to \READOP{}; we
  3868. must ensure that the value in \code{x} does not get overwritten during
  3869. the call to \READOP{}. One obvious approach is to save all the values
  3870. that reside in caller-saved registers to the stack prior to each
  3871. function call, and restore them after each call. That way, if the
  3872. register allocator chooses to assign \code{x} to a caller-saved
  3873. register, its value will be preserved across the call to \READOP{}.
  3874. However, saving and restoring to the stack is relatively slow. If
  3875. \code{x} is not used many times, it may be better to assign \code{x}
  3876. to a stack location in the first place. Or better yet, if we can
  3877. arrange for \code{x} to be placed in a callee-saved register, then it
  3878. won't need to be saved and restored during function calls.
  3879. The approach that we recommend for call-live variables is to either
  3880. assign them to callee-saved registers or to spill them to the
  3881. stack. On the other hand, for variables that are not call-live, we try
  3882. the following alternatives in order 1) look for an available
  3883. caller-saved register (to leave room for other variables in the
  3884. callee-saved register), 2) look for a callee-saved register, and 3)
  3885. spill the variable to the stack.
  3886. It is straightforward to implement this approach in a graph coloring
  3887. register allocator. First, we know which variables are call-live
  3888. because we already need to compute which variables are in-use at every
  3889. instruction (Section~\ref{sec:liveness-analysis-Lvar}). Second, when
  3890. we build the interference graph
  3891. (Section~\ref{sec:build-interference}), we can place an edge between
  3892. each of the call-live variables and the caller-saved registers in the
  3893. interference graph. This will prevent the graph coloring algorithm
  3894. from assigning them to caller-saved registers.
  3895. Returning to the example in
  3896. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3897. generated x86 code on the right-hand side. Notice that variable
  3898. \code{x} is assigned to \code{rbx}, a callee-saved register. Thus, it
  3899. is already in a safe place during the second call to
  3900. \code{read\_int}. Next, notice that variable \code{y} is assigned to
  3901. \code{rcx}, a caller-saved register, because \code{y} is not a
  3902. call-live variable.
  3903. Next we analyze the example from the callee point of view, focusing on
  3904. the prelude and conclusion of the \code{main} function. As usual the
  3905. prelude begins with saving the \code{rbp} register to the stack and
  3906. setting the \code{rbp} to the current stack pointer. We now know why
  3907. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3908. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3909. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3910. (\code{x}). The other callee-saved registers are not saved in the
  3911. prelude because they are not used. The prelude subtracts 8 bytes from
  3912. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  3913. conclusion, we see that \code{rbx} is restored from the stack with a
  3914. \code{popq} instruction.
  3915. \index{subject}{prelude}\index{subject}{conclusion}
  3916. \begin{figure}[tp]
  3917. \begin{minipage}{0.45\textwidth}
  3918. Example \LangVar{} program:
  3919. %var_test_14.rkt
  3920. {\if\edition\racketEd
  3921. \begin{lstlisting}
  3922. (let ([x (read)])
  3923. (let ([y (read)])
  3924. (+ (+ x y) 42)))
  3925. \end{lstlisting}
  3926. \fi}
  3927. {\if\edition\pythonEd
  3928. \begin{lstlisting}
  3929. x = input_int()
  3930. y = input_int()
  3931. print((x + y) + 42)
  3932. \end{lstlisting}
  3933. \fi}
  3934. \end{minipage}
  3935. \begin{minipage}{0.45\textwidth}
  3936. Generated x86 assembly:
  3937. {\if\edition\racketEd
  3938. \begin{lstlisting}
  3939. start:
  3940. callq read_int
  3941. movq %rax, %rbx
  3942. callq read_int
  3943. movq %rax, %rcx
  3944. addq %rcx, %rbx
  3945. movq %rbx, %rax
  3946. addq $42, %rax
  3947. jmp _conclusion
  3948. .globl main
  3949. main:
  3950. pushq %rbp
  3951. movq %rsp, %rbp
  3952. pushq %rbx
  3953. subq $8, %rsp
  3954. jmp start
  3955. conclusion:
  3956. addq $8, %rsp
  3957. popq %rbx
  3958. popq %rbp
  3959. retq
  3960. \end{lstlisting}
  3961. \fi}
  3962. {\if\edition\pythonEd
  3963. \begin{lstlisting}
  3964. .globl main
  3965. main:
  3966. pushq %rbp
  3967. movq %rsp, %rbp
  3968. pushq %rbx
  3969. subq $8, %rsp
  3970. callq read_int
  3971. movq %rax, %rbx
  3972. callq read_int
  3973. movq %rax, %rcx
  3974. movq %rbx, %rdx
  3975. addq %rcx, %rdx
  3976. movq %rdx, %rcx
  3977. addq $42, %rcx
  3978. movq %rcx, %rdi
  3979. callq print_int
  3980. addq $8, %rsp
  3981. popq %rbx
  3982. popq %rbp
  3983. retq
  3984. \end{lstlisting}
  3985. \fi}
  3986. \end{minipage}
  3987. \caption{An example with function calls.}
  3988. \label{fig:example-calling-conventions}
  3989. \end{figure}
  3990. %\clearpage
  3991. \section{Liveness Analysis}
  3992. \label{sec:liveness-analysis-Lvar}
  3993. \index{subject}{liveness analysis}
  3994. The \code{uncover\_live} \racket{pass}\python{function} performs
  3995. \emph{liveness analysis}, that is, it discovers which variables are
  3996. in-use in different regions of a program.
  3997. %
  3998. A variable or register is \emph{live} at a program point if its
  3999. current value is used at some later point in the program. We refer to
  4000. variables, stack locations, and registers collectively as
  4001. \emph{locations}.
  4002. %
  4003. Consider the following code fragment in which there are two writes to
  4004. \code{b}. Are variables \code{a} and \code{b} both live at the same
  4005. time?
  4006. \begin{center}
  4007. \begin{minipage}{0.96\textwidth}
  4008. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4009. movq $5, a
  4010. movq $30, b
  4011. movq a, c
  4012. movq $10, b
  4013. addq b, c
  4014. \end{lstlisting}
  4015. \end{minipage}
  4016. \end{center}
  4017. The answer is no because \code{a} is live from line 1 to 3 and
  4018. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  4019. line 2 is never used because it is overwritten (line 4) before the
  4020. next read (line 5).
  4021. The live locations for each instruction can be computed by traversing
  4022. the instruction sequence back to front (i.e., backwards in execution
  4023. order). Let $I_1,\ldots, I_n$ be the instruction sequence. We write
  4024. $L_{\mathsf{after}}(k)$ for the set of live locations after
  4025. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  4026. locations before instruction $I_k$. \racket{We recommend representing
  4027. these sets with the Racket \code{set} data structure described in
  4028. Figure~\ref{fig:set}.} \python{We recommend representing these sets
  4029. with the Python
  4030. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  4031. data structure.}
  4032. {\if\edition\racketEd
  4033. \begin{figure}[tp]
  4034. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  4035. \small
  4036. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  4037. A \emph{set} is an unordered collection of elements without duplicates.
  4038. Here are some of the operations defined on sets.
  4039. \index{subject}{set}
  4040. \begin{description}
  4041. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  4042. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  4043. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  4044. difference of the two sets.
  4045. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  4046. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  4047. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  4048. \end{description}
  4049. \end{tcolorbox}
  4050. %\end{wrapfigure}
  4051. \caption{The \code{set} data structure.}
  4052. \label{fig:set}
  4053. \end{figure}
  4054. \fi}
  4055. The live locations after an instruction are always the same as the
  4056. live locations before the next instruction.
  4057. \index{subject}{live-after} \index{subject}{live-before}
  4058. \begin{equation} \label{eq:live-after-before-next}
  4059. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  4060. \end{equation}
  4061. To start things off, there are no live locations after the last
  4062. instruction, so
  4063. \begin{equation}\label{eq:live-last-empty}
  4064. L_{\mathsf{after}}(n) = \emptyset
  4065. \end{equation}
  4066. We then apply the following rule repeatedly, traversing the
  4067. instruction sequence back to front.
  4068. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  4069. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  4070. \end{equation}
  4071. where $W(k)$ are the locations written to by instruction $I_k$ and
  4072. $R(k)$ are the locations read by instruction $I_k$.
  4073. {\if\edition\racketEd
  4074. %
  4075. There is a special case for \code{jmp} instructions. The locations
  4076. that are live before a \code{jmp} should be the locations in
  4077. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  4078. maintaining an alist named \code{label->live} that maps each label to
  4079. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  4080. now the only \code{jmp} in a \LangXVar{} program is the jump to the
  4081. conclusion. (For example, see Figure~\ref{fig:reg-eg}.) The
  4082. conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should map
  4083. \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  4084. %
  4085. \fi}
  4086. Let us walk through the above example, applying these formulas
  4087. starting with the instruction on line 5. We collect the answers in
  4088. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  4089. \code{addq b, c} instruction is $\emptyset$ because it is the last
  4090. instruction (formula~\ref{eq:live-last-empty}). The
  4091. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  4092. because it reads from variables \code{b} and \code{c}
  4093. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  4094. \[
  4095. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  4096. \]
  4097. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  4098. the live-before set from line 5 to be the live-after set for this
  4099. instruction (formula~\ref{eq:live-after-before-next}).
  4100. \[
  4101. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  4102. \]
  4103. This move instruction writes to \code{b} and does not read from any
  4104. variables, so we have the following live-before set
  4105. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  4106. \[
  4107. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  4108. \]
  4109. The live-before for instruction \code{movq a, c}
  4110. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  4111. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  4112. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  4113. variable that is not live and does not read from a variable.
  4114. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  4115. because it writes to variable \code{a}.
  4116. \begin{figure}[tbp]
  4117. \begin{minipage}{0.45\textwidth}
  4118. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4119. movq $5, a
  4120. movq $30, b
  4121. movq a, c
  4122. movq $10, b
  4123. addq b, c
  4124. \end{lstlisting}
  4125. \end{minipage}
  4126. \vrule\hspace{10pt}
  4127. \begin{minipage}{0.45\textwidth}
  4128. \begin{align*}
  4129. L_{\mathsf{before}}(1)= \emptyset,
  4130. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  4131. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  4132. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  4133. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  4134. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  4135. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  4136. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  4137. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  4138. L_{\mathsf{after}}(5)= \emptyset
  4139. \end{align*}
  4140. \end{minipage}
  4141. \caption{Example output of liveness analysis on a short example.}
  4142. \label{fig:liveness-example-0}
  4143. \end{figure}
  4144. \begin{exercise}\normalfont\normalsize
  4145. Perform liveness analysis by hand on the running example in
  4146. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  4147. sets for each instruction. Compare your answers to the solution
  4148. shown in Figure~\ref{fig:live-eg}.
  4149. \end{exercise}
  4150. \begin{figure}[tp]
  4151. \hspace{20pt}
  4152. \begin{minipage}{0.45\textwidth}
  4153. {\if\edition\racketEd
  4154. \begin{lstlisting}
  4155. |$\{\ttm{rsp}\}$|
  4156. movq $1, v
  4157. |$\{\ttm{v},\ttm{rsp}\}$|
  4158. movq $42, w
  4159. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  4160. movq v, x
  4161. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4162. addq $7, x
  4163. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4164. movq x, y
  4165. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  4166. movq x, z
  4167. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4168. addq w, z
  4169. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4170. movq y, t
  4171. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4172. negq t
  4173. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4174. movq z, %rax
  4175. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  4176. addq t, %rax
  4177. |$\{\ttm{rax},\ttm{rsp}\}$|
  4178. jmp conclusion
  4179. \end{lstlisting}
  4180. \fi}
  4181. {\if\edition\pythonEd
  4182. \begin{lstlisting}
  4183. movq $1, v
  4184. |$\{\ttm{v}\}$|
  4185. movq $42, w
  4186. |$\{\ttm{w}, \ttm{v}\}$|
  4187. movq v, x
  4188. |$\{\ttm{w}, \ttm{x}\}$|
  4189. addq $7, x
  4190. |$\{\ttm{w}, \ttm{x}\}$|
  4191. movq x, y
  4192. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  4193. movq x, z
  4194. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  4195. addq w, z
  4196. |$\{\ttm{y}, \ttm{z}\}$|
  4197. movq y, tmp_0
  4198. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4199. negq tmp_0
  4200. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4201. movq z, tmp_1
  4202. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  4203. addq tmp_0, tmp_1
  4204. |$\{\ttm{tmp\_1}\}$|
  4205. movq tmp_1, %rdi
  4206. |$\{\ttm{rdi}\}$|
  4207. callq print_int
  4208. |$\{\}$|
  4209. \end{lstlisting}
  4210. \fi}
  4211. \end{minipage}
  4212. \caption{The running example annotated with live-after sets.}
  4213. \label{fig:live-eg}
  4214. \end{figure}
  4215. \begin{exercise}\normalfont\normalsize
  4216. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  4217. %
  4218. \racket{Store the sequence of live-after sets in the $\itm{info}$
  4219. field of the \code{Block} structure.}
  4220. %
  4221. \python{Return a dictionary that maps each instruction to its
  4222. live-after set.}
  4223. %
  4224. \racket{We recommend creating an auxiliary function that takes a list
  4225. of instructions and an initial live-after set (typically empty) and
  4226. returns the list of live-after sets.}
  4227. %
  4228. We recommend creating auxiliary functions to 1) compute the set
  4229. of locations that appear in an \Arg{}, 2) compute the locations read
  4230. by an instruction (the $R$ function), and 3) the locations written by
  4231. an instruction (the $W$ function). The \code{callq} instruction should
  4232. include all of the caller-saved registers in its write-set $W$ because
  4233. the calling convention says that those registers may be written to
  4234. during the function call. Likewise, the \code{callq} instruction
  4235. should include the appropriate argument-passing registers in its
  4236. read-set $R$, depending on the arity of the function being
  4237. called. (This is why the abstract syntax for \code{callq} includes the
  4238. arity.)
  4239. \end{exercise}
  4240. %\clearpage
  4241. \section{Build the Interference Graph}
  4242. \label{sec:build-interference}
  4243. {\if\edition\racketEd
  4244. \begin{figure}[tp]
  4245. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  4246. \small
  4247. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  4248. A \emph{graph} is a collection of vertices and edges where each
  4249. edge connects two vertices. A graph is \emph{directed} if each
  4250. edge points from a source to a target. Otherwise the graph is
  4251. \emph{undirected}.
  4252. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  4253. \begin{description}
  4254. %% We currently don't use directed graphs. We instead use
  4255. %% directed multi-graphs. -Jeremy
  4256. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  4257. directed graph from a list of edges. Each edge is a list
  4258. containing the source and target vertex.
  4259. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  4260. undirected graph from a list of edges. Each edge is represented by
  4261. a list containing two vertices.
  4262. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  4263. inserts a vertex into the graph.
  4264. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  4265. inserts an edge between the two vertices.
  4266. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  4267. returns a sequence of vertices adjacent to the vertex.
  4268. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  4269. returns a sequence of all vertices in the graph.
  4270. \end{description}
  4271. \end{tcolorbox}
  4272. %\end{wrapfigure}
  4273. \caption{The Racket \code{graph} package.}
  4274. \label{fig:graph}
  4275. \end{figure}
  4276. \fi}
  4277. Based on the liveness analysis, we know where each location is live.
  4278. However, during register allocation, we need to answer questions of
  4279. the specific form: are locations $u$ and $v$ live at the same time?
  4280. (And therefore cannot be assigned to the same register.) To make this
  4281. question more efficient to answer, we create an explicit data
  4282. structure, an \emph{interference graph}\index{subject}{interference
  4283. graph}. An interference graph is an undirected graph that has an
  4284. edge between two locations if they are live at the same time, that is,
  4285. if they interfere with each other.
  4286. %
  4287. \racket{We recommend using the Racket \code{graph} package
  4288. (Figure~\ref{fig:graph}) to represent the interference graph.}
  4289. %
  4290. \python{We provide implementations of directed and undirected graph
  4291. data structures in the file \code{graph.py} of the support code.}
  4292. A straightforward way to compute the interference graph is to look at
  4293. the set of live locations between each instruction and add an edge to
  4294. the graph for every pair of variables in the same set. This approach
  4295. is less than ideal for two reasons. First, it can be expensive because
  4296. it takes $O(n^2)$ time to consider every pair in a set of $n$ live
  4297. locations. Second, in the special case where two locations hold the
  4298. same value (because one was assigned to the other), they can be live
  4299. at the same time without interfering with each other.
  4300. A better way to compute the interference graph is to focus on
  4301. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  4302. must not overwrite something in a live location. So for each
  4303. instruction, we create an edge between the locations being written to
  4304. and the live locations. (Except that a location never interferes with
  4305. itself.) For the \key{callq} instruction, we consider all of the
  4306. caller-saved registers as being written to, so an edge is added
  4307. between every live variable and every caller-saved register. Also, for
  4308. \key{movq} there is the special case of two variables holding the same
  4309. value. If a live variable $v$ is the same as the source of the
  4310. \key{movq}, then there is no need to add an edge between $v$ and the
  4311. destination, because they both hold the same value.
  4312. %
  4313. So we have the following two rules.
  4314. \begin{enumerate}
  4315. \item If instruction $I_k$ is a move instruction of the form
  4316. \key{movq} $s$\key{,} $d$, then for every $v \in
  4317. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  4318. $(d,v)$.
  4319. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  4320. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  4321. $(d,v)$.
  4322. \end{enumerate}
  4323. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  4324. the above rules to each instruction. We highlight a few of the
  4325. instructions. \racket{The first instruction is \lstinline{movq $1, v}
  4326. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  4327. so \code{v} interferes with \code{rsp}.}
  4328. %
  4329. \python{The first instruction is \lstinline{movq $1, v} and the
  4330. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  4331. no interference because $\ttm{v}$ is the destination of the move.}
  4332. %
  4333. \racket{The fourth instruction is \lstinline{addq $7, x} and the
  4334. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  4335. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  4336. %
  4337. \python{The fourth instruction is \lstinline{addq $7, x} and the
  4338. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  4339. $\ttm{x}$ interferes with \ttm{w}.}
  4340. %
  4341. \racket{The next instruction is \lstinline{movq x, y} and the
  4342. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  4343. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  4344. \ttm{x} because \ttm{x} is the source of the move and therefore
  4345. \ttm{x} and \ttm{y} hold the same value.}
  4346. %
  4347. \python{The next instruction is \lstinline{movq x, y} and the
  4348. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  4349. applies, so \ttm{y} interferes with \ttm{w} but not
  4350. \ttm{x} because \ttm{x} is the source of the move and therefore
  4351. \ttm{x} and \ttm{y} hold the same value.}
  4352. %
  4353. Figure~\ref{fig:interference-results} lists the interference results
  4354. for all of the instructions and the resulting interference graph is
  4355. shown in Figure~\ref{fig:interfere}.
  4356. \begin{figure}[tbp]
  4357. \begin{quote}
  4358. {\if\edition\racketEd
  4359. \begin{tabular}{ll}
  4360. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  4361. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  4362. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4363. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4364. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  4365. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  4366. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  4367. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4368. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4369. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  4370. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  4371. \lstinline!jmp conclusion!& no interference.
  4372. \end{tabular}
  4373. \fi}
  4374. {\if\edition\pythonEd
  4375. \begin{tabular}{ll}
  4376. \lstinline!movq $1, v!& no interference\\
  4377. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  4378. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  4379. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  4380. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  4381. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  4382. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  4383. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  4384. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  4385. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  4386. \lstinline!addq tmp_0, tmp_1! & no interference\\
  4387. \lstinline!movq tmp_1, %rdi! & no interference \\
  4388. \lstinline!callq print_int!& no interference.
  4389. \end{tabular}
  4390. \fi}
  4391. \end{quote}
  4392. \caption{Interference results for the running example.}
  4393. \label{fig:interference-results}
  4394. \end{figure}
  4395. \begin{figure}[tbp]
  4396. \large
  4397. {\if\edition\racketEd
  4398. \[
  4399. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4400. \node (rax) at (0,0) {$\ttm{rax}$};
  4401. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4402. \node (t1) at (0,2) {$\ttm{t}$};
  4403. \node (z) at (3,2) {$\ttm{z}$};
  4404. \node (x) at (6,2) {$\ttm{x}$};
  4405. \node (y) at (3,0) {$\ttm{y}$};
  4406. \node (w) at (6,0) {$\ttm{w}$};
  4407. \node (v) at (9,0) {$\ttm{v}$};
  4408. \draw (t1) to (rax);
  4409. \draw (t1) to (z);
  4410. \draw (z) to (y);
  4411. \draw (z) to (w);
  4412. \draw (x) to (w);
  4413. \draw (y) to (w);
  4414. \draw (v) to (w);
  4415. \draw (v) to (rsp);
  4416. \draw (w) to (rsp);
  4417. \draw (x) to (rsp);
  4418. \draw (y) to (rsp);
  4419. \path[-.,bend left=15] (z) edge node {} (rsp);
  4420. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4421. \draw (rax) to (rsp);
  4422. \end{tikzpicture}
  4423. \]
  4424. \fi}
  4425. {\if\edition\pythonEd
  4426. \[
  4427. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4428. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  4429. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  4430. \node (z) at (3,2) {$\ttm{z}$};
  4431. \node (x) at (6,2) {$\ttm{x}$};
  4432. \node (y) at (3,0) {$\ttm{y}$};
  4433. \node (w) at (6,0) {$\ttm{w}$};
  4434. \node (v) at (9,0) {$\ttm{v}$};
  4435. \draw (t0) to (t1);
  4436. \draw (t0) to (z);
  4437. \draw (z) to (y);
  4438. \draw (z) to (w);
  4439. \draw (x) to (w);
  4440. \draw (y) to (w);
  4441. \draw (v) to (w);
  4442. \end{tikzpicture}
  4443. \]
  4444. \fi}
  4445. \caption{The interference graph of the example program.}
  4446. \label{fig:interfere}
  4447. \end{figure}
  4448. %% Our next concern is to choose a data structure for representing the
  4449. %% interference graph. There are many choices for how to represent a
  4450. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  4451. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  4452. %% data structure is to study the algorithm that uses the data structure,
  4453. %% determine what operations need to be performed, and then choose the
  4454. %% data structure that provide the most efficient implementations of
  4455. %% those operations. Often times the choice of data structure can have an
  4456. %% effect on the time complexity of the algorithm, as it does here. If
  4457. %% you skim the next section, you will see that the register allocation
  4458. %% algorithm needs to ask the graph for all of its vertices and, given a
  4459. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  4460. %% correct choice of graph representation is that of an adjacency
  4461. %% list. There are helper functions in \code{utilities.rkt} for
  4462. %% representing graphs using the adjacency list representation:
  4463. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  4464. %% (Appendix~\ref{appendix:utilities}).
  4465. %% %
  4466. %% \margincomment{\footnotesize To do: change to use the
  4467. %% Racket graph library. \\ --Jeremy}
  4468. %% %
  4469. %% In particular, those functions use a hash table to map each vertex to
  4470. %% the set of adjacent vertices, and the sets are represented using
  4471. %% Racket's \key{set}, which is also a hash table.
  4472. \begin{exercise}\normalfont\normalsize
  4473. \racket{Implement the compiler pass named \code{build\_interference} according
  4474. to the algorithm suggested above. We recommend using the Racket
  4475. \code{graph} package to create and inspect the interference graph.
  4476. The output graph of this pass should be stored in the $\itm{info}$ field of
  4477. the program, under the key \code{conflicts}.}
  4478. %
  4479. \python{Implement a function named \code{build\_interference}
  4480. according to the algorithm suggested above that
  4481. returns the interference graph.}
  4482. \end{exercise}
  4483. \section{Graph Coloring via Sudoku}
  4484. \label{sec:graph-coloring}
  4485. \index{subject}{graph coloring}
  4486. \index{subject}{Sudoku}
  4487. \index{subject}{color}
  4488. We come to the main event of this chapter, mapping variables to
  4489. registers and stack locations. Variables that interfere with each
  4490. other must be mapped to different locations. In terms of the
  4491. interference graph, this means that adjacent vertices must be mapped
  4492. to different locations. If we think of locations as colors, the
  4493. register allocation problem becomes the graph coloring
  4494. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  4495. The reader may be more familiar with the graph coloring problem than he
  4496. or she realizes; the popular game of Sudoku is an instance of the
  4497. graph coloring problem. The following describes how to build a graph
  4498. out of an initial Sudoku board.
  4499. \begin{itemize}
  4500. \item There is one vertex in the graph for each Sudoku square.
  4501. \item There is an edge between two vertices if the corresponding squares
  4502. are in the same row, in the same column, or if the squares are in
  4503. the same $3\times 3$ region.
  4504. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  4505. \item Based on the initial assignment of numbers to squares in the
  4506. Sudoku board, assign the corresponding colors to the corresponding
  4507. vertices in the graph.
  4508. \end{itemize}
  4509. If you can color the remaining vertices in the graph with the nine
  4510. colors, then you have also solved the corresponding game of Sudoku.
  4511. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  4512. the corresponding graph with colored vertices. We map the Sudoku
  4513. number 1 to black, 2 to white, and 3 to gray. We only show edges for a
  4514. sampling of the vertices (the colored ones) because showing edges for
  4515. all of the vertices would make the graph unreadable.
  4516. \begin{figure}[tbp]
  4517. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  4518. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  4519. \caption{A Sudoku game board and the corresponding colored graph.}
  4520. \label{fig:sudoku-graph}
  4521. \end{figure}
  4522. Some techniques for playing Sudoku correspond to heuristics used in
  4523. graph coloring algorithms. For example, one of the basic techniques
  4524. for Sudoku is called Pencil Marks. The idea is to use a process of
  4525. elimination to determine what numbers are no longer available for a
  4526. square and write down those numbers in the square (writing very
  4527. small). For example, if the number $1$ is assigned to a square, then
  4528. write the pencil mark $1$ in all the squares in the same row, column,
  4529. and region to indicate that $1$ is no longer an option for those other
  4530. squares.
  4531. %
  4532. The Pencil Marks technique corresponds to the notion of
  4533. \emph{saturation}\index{subject}{saturation} due to \cite{Brelaz:1979eu}. The
  4534. saturation of a vertex, in Sudoku terms, is the set of numbers that
  4535. are no longer available. In graph terminology, we have the following
  4536. definition:
  4537. \begin{equation*}
  4538. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  4539. \text{ and } \mathrm{color}(v) = c \}
  4540. \end{equation*}
  4541. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  4542. edge with $u$.
  4543. The Pencil Marks technique leads to a simple strategy for filling in
  4544. numbers: if there is a square with only one possible number left, then
  4545. choose that number! But what if there are no squares with only one
  4546. possibility left? One brute-force approach is to try them all: choose
  4547. the first one and if that ultimately leads to a solution, great. If
  4548. not, backtrack and choose the next possibility. One good thing about
  4549. Pencil Marks is that it reduces the degree of branching in the search
  4550. tree. Nevertheless, backtracking can be terribly time consuming. One
  4551. way to reduce the amount of backtracking is to use the
  4552. most-constrained-first heuristic (aka. minimum remaining
  4553. values)~\citep{Russell2003}. That is, when choosing a square, always
  4554. choose one with the fewest possibilities left (the vertex with the
  4555. highest saturation). The idea is that choosing highly constrained
  4556. squares earlier rather than later is better because later on there may
  4557. not be any possibilities left in the highly saturated squares.
  4558. However, register allocation is easier than Sudoku because the
  4559. register allocator can fall back to assigning variables to stack
  4560. locations when the registers run out. Thus, it makes sense to replace
  4561. backtracking with greedy search: make the best choice at the time and
  4562. keep going. We still wish to minimize the number of colors needed, so
  4563. we use the most-constrained-first heuristic in the greedy search.
  4564. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  4565. algorithm for register allocation based on saturation and the
  4566. most-constrained-first heuristic. It is roughly equivalent to the
  4567. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}.
  4568. %,Gebremedhin:1999fk,Omari:2006uq
  4569. Just as in Sudoku, the algorithm represents colors with integers. The
  4570. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  4571. for register allocation. The integers $k$ and larger correspond to
  4572. stack locations. The registers that are not used for register
  4573. allocation, such as \code{rax}, are assigned to negative integers. In
  4574. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  4575. %% One might wonder why we include registers at all in the liveness
  4576. %% analysis and interference graph. For example, we never allocate a
  4577. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  4578. %% leave them out. As we see in Chapter~\ref{ch:Lvec}, when we begin
  4579. %% to use register for passing arguments to functions, it will be
  4580. %% necessary for those registers to appear in the interference graph
  4581. %% because those registers will also be assigned to variables, and we
  4582. %% don't want those two uses to encroach on each other. Regarding
  4583. %% registers such as \code{rax} and \code{rsp} that are not used for
  4584. %% variables, we could omit them from the interference graph but that
  4585. %% would require adding special cases to our algorithm, which would
  4586. %% complicate the logic for little gain.
  4587. \begin{figure}[btp]
  4588. \centering
  4589. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  4590. Algorithm: DSATUR
  4591. Input: a graph |$G$|
  4592. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  4593. |$W \gets \mathrm{vertices}(G)$|
  4594. while |$W \neq \emptyset$| do
  4595. pick a vertex |$u$| from |$W$| with the highest saturation,
  4596. breaking ties randomly
  4597. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  4598. |$\mathrm{color}[u] \gets c$|
  4599. |$W \gets W - \{u\}$|
  4600. \end{lstlisting}
  4601. \caption{The saturation-based greedy graph coloring algorithm.}
  4602. \label{fig:satur-algo}
  4603. \end{figure}
  4604. {\if\edition\racketEd
  4605. With the DSATUR algorithm in hand, let us return to the running
  4606. example and consider how to color the interference graph in
  4607. Figure~\ref{fig:interfere}.
  4608. %
  4609. We start by assigning the register nodes to their own color. For
  4610. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  4611. assigned $-2$. The variables are not yet colored, so they are
  4612. annotated with a dash. We then update the saturation for vertices that
  4613. are adjacent to a register, obtaining the following annotated
  4614. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  4615. it interferes with both \code{rax} and \code{rsp}.
  4616. \[
  4617. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4618. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  4619. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  4620. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  4621. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  4622. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4623. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4624. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4625. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4626. \draw (t1) to (rax);
  4627. \draw (t1) to (z);
  4628. \draw (z) to (y);
  4629. \draw (z) to (w);
  4630. \draw (x) to (w);
  4631. \draw (y) to (w);
  4632. \draw (v) to (w);
  4633. \draw (v) to (rsp);
  4634. \draw (w) to (rsp);
  4635. \draw (x) to (rsp);
  4636. \draw (y) to (rsp);
  4637. \path[-.,bend left=15] (z) edge node {} (rsp);
  4638. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4639. \draw (rax) to (rsp);
  4640. \end{tikzpicture}
  4641. \]
  4642. The algorithm says to select a maximally saturated vertex. So we pick
  4643. $\ttm{t}$ and color it with the first available integer, which is
  4644. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4645. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4646. \[
  4647. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4648. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4649. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4650. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4651. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4652. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4653. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4654. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4655. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4656. \draw (t1) to (rax);
  4657. \draw (t1) to (z);
  4658. \draw (z) to (y);
  4659. \draw (z) to (w);
  4660. \draw (x) to (w);
  4661. \draw (y) to (w);
  4662. \draw (v) to (w);
  4663. \draw (v) to (rsp);
  4664. \draw (w) to (rsp);
  4665. \draw (x) to (rsp);
  4666. \draw (y) to (rsp);
  4667. \path[-.,bend left=15] (z) edge node {} (rsp);
  4668. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4669. \draw (rax) to (rsp);
  4670. \end{tikzpicture}
  4671. \]
  4672. We repeat the process, selecting a maximally saturated vertex,
  4673. choosing is \code{z}, and color it with the first available number, which
  4674. is $1$. We add $1$ to the saturation for the neighboring vertices
  4675. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4676. \[
  4677. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4678. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4679. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4680. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4681. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4682. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4683. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4684. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4685. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4686. \draw (t1) to (rax);
  4687. \draw (t1) to (z);
  4688. \draw (z) to (y);
  4689. \draw (z) to (w);
  4690. \draw (x) to (w);
  4691. \draw (y) to (w);
  4692. \draw (v) to (w);
  4693. \draw (v) to (rsp);
  4694. \draw (w) to (rsp);
  4695. \draw (x) to (rsp);
  4696. \draw (y) to (rsp);
  4697. \path[-.,bend left=15] (z) edge node {} (rsp);
  4698. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4699. \draw (rax) to (rsp);
  4700. \end{tikzpicture}
  4701. \]
  4702. The most saturated vertices are now \code{w} and \code{y}. We color
  4703. \code{w} with the first available color, which is $0$.
  4704. \[
  4705. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4706. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4707. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4708. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4709. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4710. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4711. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4712. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4713. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4714. \draw (t1) to (rax);
  4715. \draw (t1) to (z);
  4716. \draw (z) to (y);
  4717. \draw (z) to (w);
  4718. \draw (x) to (w);
  4719. \draw (y) to (w);
  4720. \draw (v) to (w);
  4721. \draw (v) to (rsp);
  4722. \draw (w) to (rsp);
  4723. \draw (x) to (rsp);
  4724. \draw (y) to (rsp);
  4725. \path[-.,bend left=15] (z) edge node {} (rsp);
  4726. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4727. \draw (rax) to (rsp);
  4728. \end{tikzpicture}
  4729. \]
  4730. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4731. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4732. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4733. and \code{z}, whose colors are $0$ and $1$ respectively.
  4734. \[
  4735. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4736. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4737. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4738. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4739. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4740. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4741. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4742. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4743. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4744. \draw (t1) to (rax);
  4745. \draw (t1) to (z);
  4746. \draw (z) to (y);
  4747. \draw (z) to (w);
  4748. \draw (x) to (w);
  4749. \draw (y) to (w);
  4750. \draw (v) to (w);
  4751. \draw (v) to (rsp);
  4752. \draw (w) to (rsp);
  4753. \draw (x) to (rsp);
  4754. \draw (y) to (rsp);
  4755. \path[-.,bend left=15] (z) edge node {} (rsp);
  4756. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4757. \draw (rax) to (rsp);
  4758. \end{tikzpicture}
  4759. \]
  4760. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4761. \[
  4762. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4763. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4764. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4765. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4766. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4767. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4768. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4769. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4770. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4771. \draw (t1) to (rax);
  4772. \draw (t1) to (z);
  4773. \draw (z) to (y);
  4774. \draw (z) to (w);
  4775. \draw (x) to (w);
  4776. \draw (y) to (w);
  4777. \draw (v) to (w);
  4778. \draw (v) to (rsp);
  4779. \draw (w) to (rsp);
  4780. \draw (x) to (rsp);
  4781. \draw (y) to (rsp);
  4782. \path[-.,bend left=15] (z) edge node {} (rsp);
  4783. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4784. \draw (rax) to (rsp);
  4785. \end{tikzpicture}
  4786. \]
  4787. In the last step of the algorithm, we color \code{x} with $1$.
  4788. \[
  4789. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4790. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4791. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4792. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4793. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4794. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4795. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4796. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4797. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4798. \draw (t1) to (rax);
  4799. \draw (t1) to (z);
  4800. \draw (z) to (y);
  4801. \draw (z) to (w);
  4802. \draw (x) to (w);
  4803. \draw (y) to (w);
  4804. \draw (v) to (w);
  4805. \draw (v) to (rsp);
  4806. \draw (w) to (rsp);
  4807. \draw (x) to (rsp);
  4808. \draw (y) to (rsp);
  4809. \path[-.,bend left=15] (z) edge node {} (rsp);
  4810. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4811. \draw (rax) to (rsp);
  4812. \end{tikzpicture}
  4813. \]
  4814. So we obtain the following coloring:
  4815. \[
  4816. \{
  4817. \ttm{rax} \mapsto -1,
  4818. \ttm{rsp} \mapsto -2,
  4819. \ttm{t} \mapsto 0,
  4820. \ttm{z} \mapsto 1,
  4821. \ttm{x} \mapsto 1,
  4822. \ttm{y} \mapsto 2,
  4823. \ttm{w} \mapsto 0,
  4824. \ttm{v} \mapsto 1
  4825. \}
  4826. \]
  4827. \fi}
  4828. %
  4829. {\if\edition\pythonEd
  4830. %
  4831. With the DSATUR algorithm in hand, let us return to the running
  4832. example and consider how to color the interference graph in
  4833. Figure~\ref{fig:interfere}. We annotate each variable node with a dash
  4834. to indicate that it has not yet been assigned a color. The saturation
  4835. sets are also shown for each node; all of them start as the empty set.
  4836. (We do not include the register nodes in the graph below because there
  4837. were no interference edges involving registers in this program, but in
  4838. general there can be.)
  4839. %
  4840. \[
  4841. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4842. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  4843. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  4844. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  4845. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4846. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4847. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4848. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4849. \draw (t0) to (t1);
  4850. \draw (t0) to (z);
  4851. \draw (z) to (y);
  4852. \draw (z) to (w);
  4853. \draw (x) to (w);
  4854. \draw (y) to (w);
  4855. \draw (v) to (w);
  4856. \end{tikzpicture}
  4857. \]
  4858. The algorithm says to select a maximally saturated vertex, but they
  4859. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  4860. then color it with the first available integer, which is $0$. We mark
  4861. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  4862. they interfere with $\ttm{tmp\_0}$.
  4863. \[
  4864. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4865. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  4866. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4867. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  4868. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4869. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4870. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4871. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4872. \draw (t0) to (t1);
  4873. \draw (t0) to (z);
  4874. \draw (z) to (y);
  4875. \draw (z) to (w);
  4876. \draw (x) to (w);
  4877. \draw (y) to (w);
  4878. \draw (v) to (w);
  4879. \end{tikzpicture}
  4880. \]
  4881. We repeat the process. The most saturated vertices are \code{z} and
  4882. \code{tmp\_1}, so we choose \code{z} and color it with the first
  4883. available number, which is $1$. We add $1$ to the saturation for the
  4884. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  4885. \[
  4886. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4887. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4888. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4889. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4890. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4891. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  4892. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  4893. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4894. \draw (t0) to (t1);
  4895. \draw (t0) to (z);
  4896. \draw (z) to (y);
  4897. \draw (z) to (w);
  4898. \draw (x) to (w);
  4899. \draw (y) to (w);
  4900. \draw (v) to (w);
  4901. \end{tikzpicture}
  4902. \]
  4903. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  4904. \code{y}. We color \code{w} with the first available color, which
  4905. is $0$.
  4906. \[
  4907. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4908. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4909. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4910. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4911. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4912. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  4913. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  4914. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4915. \draw (t0) to (t1);
  4916. \draw (t0) to (z);
  4917. \draw (z) to (y);
  4918. \draw (z) to (w);
  4919. \draw (x) to (w);
  4920. \draw (y) to (w);
  4921. \draw (v) to (w);
  4922. \end{tikzpicture}
  4923. \]
  4924. Now \code{y} is the most saturated, so we color it with $2$.
  4925. \[
  4926. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4927. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4928. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4929. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4930. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4931. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4932. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4933. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4934. \draw (t0) to (t1);
  4935. \draw (t0) to (z);
  4936. \draw (z) to (y);
  4937. \draw (z) to (w);
  4938. \draw (x) to (w);
  4939. \draw (y) to (w);
  4940. \draw (v) to (w);
  4941. \end{tikzpicture}
  4942. \]
  4943. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  4944. We choose to color \code{v} with $1$.
  4945. \[
  4946. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4947. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4948. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4949. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4950. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4951. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4952. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4953. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4954. \draw (t0) to (t1);
  4955. \draw (t0) to (z);
  4956. \draw (z) to (y);
  4957. \draw (z) to (w);
  4958. \draw (x) to (w);
  4959. \draw (y) to (w);
  4960. \draw (v) to (w);
  4961. \end{tikzpicture}
  4962. \]
  4963. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  4964. \[
  4965. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4966. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4967. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  4968. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4969. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  4970. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4971. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4972. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4973. \draw (t0) to (t1);
  4974. \draw (t0) to (z);
  4975. \draw (z) to (y);
  4976. \draw (z) to (w);
  4977. \draw (x) to (w);
  4978. \draw (y) to (w);
  4979. \draw (v) to (w);
  4980. \end{tikzpicture}
  4981. \]
  4982. So we obtain the following coloring:
  4983. \[
  4984. \{ \ttm{tmp\_0} \mapsto 0,
  4985. \ttm{tmp\_1} \mapsto 1,
  4986. \ttm{z} \mapsto 1,
  4987. \ttm{x} \mapsto 1,
  4988. \ttm{y} \mapsto 2,
  4989. \ttm{w} \mapsto 0,
  4990. \ttm{v} \mapsto 1 \}
  4991. \]
  4992. \fi}
  4993. We recommend creating an auxiliary function named \code{color\_graph}
  4994. that takes an interference graph and a list of all the variables in
  4995. the program. This function should return a mapping of variables to
  4996. their colors (represented as natural numbers). By creating this helper
  4997. function, you will be able to reuse it in Chapter~\ref{ch:Lfun}
  4998. when we add support for functions.
  4999. To prioritize the processing of highly saturated nodes inside the
  5000. \code{color\_graph} function, we recommend using the priority queue
  5001. data structure \racket{described in Figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  5002. addition, you will need to maintain a mapping from variables to their
  5003. ``handles'' in the priority queue so that you can notify the priority
  5004. queue when their saturation changes.}
  5005. {\if\edition\racketEd
  5006. \begin{figure}[tp]
  5007. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  5008. \small
  5009. \begin{tcolorbox}[title=Priority Queue]
  5010. A \emph{priority queue} is a collection of items in which the
  5011. removal of items is governed by priority. In a ``min'' queue,
  5012. lower priority items are removed first. An implementation is in
  5013. \code{priority\_queue.rkt} of the support code. \index{subject}{priority
  5014. queue} \index{subject}{minimum priority queue}
  5015. \begin{description}
  5016. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  5017. priority queue that uses the $\itm{cmp}$ predicate to determine
  5018. whether its first argument has lower or equal priority to its
  5019. second argument.
  5020. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  5021. items in the queue.
  5022. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  5023. the item into the queue and returns a handle for the item in the
  5024. queue.
  5025. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  5026. the lowest priority.
  5027. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  5028. notifies the queue that the priority has decreased for the item
  5029. associated with the given handle.
  5030. \end{description}
  5031. \end{tcolorbox}
  5032. %\end{wrapfigure}
  5033. \caption{The priority queue data structure.}
  5034. \label{fig:priority-queue}
  5035. \end{figure}
  5036. \fi}
  5037. With the coloring complete, we finalize the assignment of variables to
  5038. registers and stack locations. We map the first $k$ colors to the $k$
  5039. registers and the rest of the colors to stack locations. Suppose for
  5040. the moment that we have just one register to use for register
  5041. allocation, \key{rcx}. Then we have the following map from colors to
  5042. locations.
  5043. \[
  5044. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  5045. \]
  5046. Composing this mapping with the coloring, we arrive at the following
  5047. assignment of variables to locations.
  5048. {\if\edition\racketEd
  5049. \begin{gather*}
  5050. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  5051. \ttm{w} \mapsto \key{\%rcx}, \,
  5052. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  5053. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  5054. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5055. \ttm{t} \mapsto \key{\%rcx} \}
  5056. \end{gather*}
  5057. \fi}
  5058. {\if\edition\pythonEd
  5059. \begin{gather*}
  5060. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  5061. \ttm{w} \mapsto \key{\%rcx}, \,
  5062. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  5063. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  5064. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5065. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5066. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5067. \end{gather*}
  5068. \fi}
  5069. Adapt the code from the \code{assign\_homes} pass
  5070. (Section~\ref{sec:assign-Lvar}) to replace the variables with their
  5071. assigned location. Applying the above assignment to our running
  5072. example, on the left, yields the program on the right.
  5073. % why frame size of 32? -JGS
  5074. \begin{center}
  5075. {\if\edition\racketEd
  5076. \begin{minipage}{0.3\textwidth}
  5077. \begin{lstlisting}
  5078. movq $1, v
  5079. movq $42, w
  5080. movq v, x
  5081. addq $7, x
  5082. movq x, y
  5083. movq x, z
  5084. addq w, z
  5085. movq y, t
  5086. negq t
  5087. movq z, %rax
  5088. addq t, %rax
  5089. jmp conclusion
  5090. \end{lstlisting}
  5091. \end{minipage}
  5092. $\Rightarrow\qquad$
  5093. \begin{minipage}{0.45\textwidth}
  5094. \begin{lstlisting}
  5095. movq $1, -8(%rbp)
  5096. movq $42, %rcx
  5097. movq -8(%rbp), -8(%rbp)
  5098. addq $7, -8(%rbp)
  5099. movq -8(%rbp), -16(%rbp)
  5100. movq -8(%rbp), -8(%rbp)
  5101. addq %rcx, -8(%rbp)
  5102. movq -16(%rbp), %rcx
  5103. negq %rcx
  5104. movq -8(%rbp), %rax
  5105. addq %rcx, %rax
  5106. jmp conclusion
  5107. \end{lstlisting}
  5108. \end{minipage}
  5109. \fi}
  5110. {\if\edition\pythonEd
  5111. \begin{minipage}{0.3\textwidth}
  5112. \begin{lstlisting}
  5113. movq $1, v
  5114. movq $42, w
  5115. movq v, x
  5116. addq $7, x
  5117. movq x, y
  5118. movq x, z
  5119. addq w, z
  5120. movq y, tmp_0
  5121. negq tmp_0
  5122. movq z, tmp_1
  5123. addq tmp_0, tmp_1
  5124. movq tmp_1, %rdi
  5125. callq print_int
  5126. \end{lstlisting}
  5127. \end{minipage}
  5128. $\Rightarrow\qquad$
  5129. \begin{minipage}{0.45\textwidth}
  5130. \begin{lstlisting}
  5131. movq $1, -8(%rbp)
  5132. movq $42, %rcx
  5133. movq -8(%rbp), -8(%rbp)
  5134. addq $7, -8(%rbp)
  5135. movq -8(%rbp), -16(%rbp)
  5136. movq -8(%rbp), -8(%rbp)
  5137. addq %rcx, -8(%rbp)
  5138. movq -16(%rbp), %rcx
  5139. negq %rcx
  5140. movq -8(%rbp), -8(%rbp)
  5141. addq %rcx, -8(%rbp)
  5142. movq -8(%rbp), %rdi
  5143. callq print_int
  5144. \end{lstlisting}
  5145. \end{minipage}
  5146. \fi}
  5147. \end{center}
  5148. \begin{exercise}\normalfont\normalsize
  5149. Implement the \code{allocate\_registers} pass.
  5150. Create five programs that exercise all aspects of the register
  5151. allocation algorithm, including spilling variables to the stack.
  5152. %
  5153. {\if\edition\racketEd
  5154. Replace \code{assign\_homes} in the list of \code{passes} in the
  5155. \code{run-tests.rkt} script with the three new passes:
  5156. \code{uncover\_live}, \code{build\_interference}, and
  5157. \code{allocate\_registers}.
  5158. Temporarily remove the call to \code{compiler-tests}.
  5159. Run the script to test the register allocator.
  5160. \fi}
  5161. %
  5162. {\if\edition\pythonEd
  5163. Run the \code{run-tests.py} script to to check whether the
  5164. output programs produce the same result as the input programs.
  5165. \fi}
  5166. \end{exercise}
  5167. \section{Patch Instructions}
  5168. \label{sec:patch-instructions}
  5169. The remaining step in the compilation to x86 is to ensure that the
  5170. instructions have at most one argument that is a memory access.
  5171. %
  5172. In the running example, the instruction \code{movq -8(\%rbp),
  5173. -16(\%rbp)} is problematic. Recall from Section~\ref{sec:patch-s0}
  5174. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  5175. then move \code{rax} into \code{-16(\%rbp)}.
  5176. %
  5177. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  5178. problematic, but they can simply be deleted. In general, we recommend
  5179. deleting all the trivial moves whose source and destination are the
  5180. same location.
  5181. %
  5182. The following is the output of \code{patch\_instructions} on the
  5183. running example.
  5184. \begin{center}
  5185. {\if\edition\racketEd
  5186. \begin{minipage}{0.4\textwidth}
  5187. \begin{lstlisting}
  5188. movq $1, -8(%rbp)
  5189. movq $42, %rcx
  5190. movq -8(%rbp), -8(%rbp)
  5191. addq $7, -8(%rbp)
  5192. movq -8(%rbp), -16(%rbp)
  5193. movq -8(%rbp), -8(%rbp)
  5194. addq %rcx, -8(%rbp)
  5195. movq -16(%rbp), %rcx
  5196. negq %rcx
  5197. movq -8(%rbp), %rax
  5198. addq %rcx, %rax
  5199. jmp conclusion
  5200. \end{lstlisting}
  5201. \end{minipage}
  5202. $\Rightarrow\qquad$
  5203. \begin{minipage}{0.45\textwidth}
  5204. \begin{lstlisting}
  5205. movq $1, -8(%rbp)
  5206. movq $42, %rcx
  5207. addq $7, -8(%rbp)
  5208. movq -8(%rbp), %rax
  5209. movq %rax, -16(%rbp)
  5210. addq %rcx, -8(%rbp)
  5211. movq -16(%rbp), %rcx
  5212. negq %rcx
  5213. movq -8(%rbp), %rax
  5214. addq %rcx, %rax
  5215. jmp conclusion
  5216. \end{lstlisting}
  5217. \end{minipage}
  5218. \fi}
  5219. {\if\edition\pythonEd
  5220. \begin{minipage}{0.4\textwidth}
  5221. \begin{lstlisting}
  5222. movq $1, -8(%rbp)
  5223. movq $42, %rcx
  5224. movq -8(%rbp), -8(%rbp)
  5225. addq $7, -8(%rbp)
  5226. movq -8(%rbp), -16(%rbp)
  5227. movq -8(%rbp), -8(%rbp)
  5228. addq %rcx, -8(%rbp)
  5229. movq -16(%rbp), %rcx
  5230. negq %rcx
  5231. movq -8(%rbp), -8(%rbp)
  5232. addq %rcx, -8(%rbp)
  5233. movq -8(%rbp), %rdi
  5234. callq print_int
  5235. \end{lstlisting}
  5236. \end{minipage}
  5237. $\Rightarrow\qquad$
  5238. \begin{minipage}{0.45\textwidth}
  5239. \begin{lstlisting}
  5240. movq $1, -8(%rbp)
  5241. movq $42, %rcx
  5242. addq $7, -8(%rbp)
  5243. movq -8(%rbp), %rax
  5244. movq %rax, -16(%rbp)
  5245. addq %rcx, -8(%rbp)
  5246. movq -16(%rbp), %rcx
  5247. negq %rcx
  5248. addq %rcx, -8(%rbp)
  5249. movq -8(%rbp), %rdi
  5250. callq print_int
  5251. \end{lstlisting}
  5252. \end{minipage}
  5253. \fi}
  5254. \end{center}
  5255. \begin{exercise}\normalfont\normalsize
  5256. %
  5257. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  5258. %
  5259. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  5260. %in the \code{run-tests.rkt} script.
  5261. %
  5262. Run the script to test the \code{patch\_instructions} pass.
  5263. \end{exercise}
  5264. \section{Prelude and Conclusion}
  5265. \label{sec:print-x86-reg-alloc}
  5266. \index{subject}{calling conventions}
  5267. \index{subject}{prelude}\index{subject}{conclusion}
  5268. Recall that this pass generates the prelude and conclusion
  5269. instructions to satisfy the x86 calling conventions
  5270. (Section~\ref{sec:calling-conventions}). With the addition of the
  5271. register allocator, the callee-saved registers used by the register
  5272. allocator must be saved in the prelude and restored in the conclusion.
  5273. In the \code{allocate\_registers} pass,
  5274. %
  5275. \racket{add an entry to the \itm{info}
  5276. of \code{X86Program} named \code{used\_callee}}
  5277. %
  5278. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  5279. %
  5280. that stores the set of callee-saved registers that were assigned to
  5281. variables. The \code{prelude\_and\_conclusion} pass can then access
  5282. this information to decide which callee-saved registers need to be
  5283. saved and restored.
  5284. %
  5285. When calculating the amount to adjust the \code{rsp} in the prelude,
  5286. make sure to take into account the space used for saving the
  5287. callee-saved registers. Also, don't forget that the frame needs to be
  5288. a multiple of 16 bytes! We recommend using the following equation for
  5289. the amount $A$ to subtract from the \code{rsp}. Let $S$ be the number
  5290. of spilled variables and $C$ be the number of callee-saved registers
  5291. that were allocated to variables. The $\itm{align}$ function rounds a
  5292. number up to the nearest 16 bytes.
  5293. \[
  5294. \itm{A} = \itm{align}(8\itm{S} + 8\itm{C}) - 8\itm{C}
  5295. \]
  5296. The reason we subtract $8\itm{C}$ in the above equation is because the
  5297. prelude uses \code{pushq} to save each of the callee-saved registers,
  5298. and \code{pushq} subtracts $8$ from the \code{rsp}.
  5299. \racket{An overview of all of the passes involved in register
  5300. allocation is shown in Figure~\ref{fig:reg-alloc-passes}.}
  5301. {\if\edition\racketEd
  5302. \begin{figure}[tbp]
  5303. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5304. \node (Lvar) at (0,2) {\large \LangVar{}};
  5305. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  5306. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  5307. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  5308. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  5309. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  5310. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  5311. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  5312. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  5313. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  5314. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  5315. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  5316. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-1);
  5317. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  5318. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  5319. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  5320. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  5321. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  5322. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  5323. \end{tikzpicture}
  5324. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  5325. \label{fig:reg-alloc-passes}
  5326. \end{figure}
  5327. \fi}
  5328. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  5329. the running example (Figure~\ref{fig:reg-eg}). To demonstrate both the
  5330. use of registers and the stack, we limit the register allocator for
  5331. this example to use just two registers: \code{rbx} and \code{rcx}. In
  5332. the prelude\index{subject}{prelude} of the \code{main} function, we
  5333. push \code{rbx} onto the stack because it is a callee-saved register
  5334. and it was assigned to a variable by the register allocator. We
  5335. subtract \code{8} from the \code{rsp} at the end of the prelude to
  5336. reserve space for the one spilled variable. After that subtraction,
  5337. the \code{rsp} is aligned to 16 bytes.
  5338. Moving on to the program proper, we see how the registers were
  5339. allocated.
  5340. %
  5341. \racket{Variables \code{v}, \code{x}, and \code{y} were assigned to
  5342. \code{rbx} and variable \code{z} was assigned to \code{rcx}.}
  5343. %
  5344. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  5345. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  5346. were assigned to \code{rbx}.}
  5347. %
  5348. Variable \racket{\code{w}}\python{\code{z}} was spilled to the stack
  5349. location \code{-16(\%rbp)}. Recall that the prelude saved the
  5350. callee-save register \code{rbx} onto the stack. The spilled variables
  5351. must be placed lower on the stack than the saved callee-save
  5352. registers, so in this case \racket{\code{w}}\python{z} is placed at
  5353. \code{-16(\%rbp)}.
  5354. In the conclusion\index{subject}{conclusion}, we undo the work that was
  5355. done in the prelude. We move the stack pointer up by \code{8} bytes
  5356. (the room for spilled variables), then we pop the old values of
  5357. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  5358. \code{retq} to return control to the operating system.
  5359. \begin{figure}[tbp]
  5360. % var_test_28.rkt
  5361. % (use-minimal-set-of-registers! #t)
  5362. % and only rbx rcx
  5363. % tmp 0 rbx
  5364. % z 1 rcx
  5365. % y 0 rbx
  5366. % w 2 16(%rbp)
  5367. % v 0 rbx
  5368. % x 0 rbx
  5369. {\if\edition\racketEd
  5370. \begin{lstlisting}
  5371. start:
  5372. movq $1, %rbx
  5373. movq $42, -16(%rbp)
  5374. addq $7, %rbx
  5375. movq %rbx, %rcx
  5376. addq -16(%rbp), %rcx
  5377. negq %rbx
  5378. movq %rcx, %rax
  5379. addq %rbx, %rax
  5380. jmp conclusion
  5381. .globl main
  5382. main:
  5383. pushq %rbp
  5384. movq %rsp, %rbp
  5385. pushq %rbx
  5386. subq $8, %rsp
  5387. jmp start
  5388. conclusion:
  5389. addq $8, %rsp
  5390. popq %rbx
  5391. popq %rbp
  5392. retq
  5393. \end{lstlisting}
  5394. \fi}
  5395. {\if\edition\pythonEd
  5396. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  5397. \begin{lstlisting}
  5398. .globl main
  5399. main:
  5400. pushq %rbp
  5401. movq %rsp, %rbp
  5402. pushq %rbx
  5403. subq $8, %rsp
  5404. movq $1, %rcx
  5405. movq $42, %rbx
  5406. addq $7, %rcx
  5407. movq %rcx, -16(%rbp)
  5408. addq %rbx, -16(%rbp)
  5409. negq %rcx
  5410. movq -16(%rbp), %rbx
  5411. addq %rcx, %rbx
  5412. movq %rbx, %rdi
  5413. callq print_int
  5414. addq $8, %rsp
  5415. popq %rbx
  5416. popq %rbp
  5417. retq
  5418. \end{lstlisting}
  5419. \fi}
  5420. \caption{The x86 output from the running example
  5421. (Figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  5422. and \code{rcx}.}
  5423. \label{fig:running-example-x86}
  5424. \end{figure}
  5425. \begin{exercise}\normalfont\normalsize
  5426. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  5427. %
  5428. \racket{
  5429. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  5430. list of passes and the call to \code{compiler-tests}.}
  5431. %
  5432. Run the script to test the complete compiler for \LangVar{} that
  5433. performs register allocation.
  5434. \end{exercise}
  5435. \section{Challenge: Move Biasing}
  5436. \label{sec:move-biasing}
  5437. \index{subject}{move biasing}
  5438. This section describes an enhancement to the register allocator,
  5439. called move biasing, for students who are looking for an extra
  5440. challenge.
  5441. {\if\edition\racketEd
  5442. To motivate the need for move biasing we return to the running example
  5443. but this time we use all of the general purpose registers. So we have
  5444. the following mapping of color numbers to registers.
  5445. \[
  5446. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi}, \ldots \}
  5447. \]
  5448. Using the same assignment of variables to color numbers that was
  5449. produced by the register allocator described in the last section, we
  5450. get the following program.
  5451. \begin{center}
  5452. \begin{minipage}{0.3\textwidth}
  5453. \begin{lstlisting}
  5454. movq $1, v
  5455. movq $42, w
  5456. movq v, x
  5457. addq $7, x
  5458. movq x, y
  5459. movq x, z
  5460. addq w, z
  5461. movq y, t
  5462. negq t
  5463. movq z, %rax
  5464. addq t, %rax
  5465. jmp conclusion
  5466. \end{lstlisting}
  5467. \end{minipage}
  5468. $\Rightarrow\qquad$
  5469. \begin{minipage}{0.45\textwidth}
  5470. \begin{lstlisting}
  5471. movq $1, %rdx
  5472. movq $42, %rcx
  5473. movq %rdx, %rdx
  5474. addq $7, %rdx
  5475. movq %rdx, %rsi
  5476. movq %rdx, %rdx
  5477. addq %rcx, %rdx
  5478. movq %rsi, %rcx
  5479. negq %rcx
  5480. movq %rdx, %rax
  5481. addq %rcx, %rax
  5482. jmp conclusion
  5483. \end{lstlisting}
  5484. \end{minipage}
  5485. \end{center}
  5486. In the above output code there are two \key{movq} instructions that
  5487. can be removed because their source and target are the same. However,
  5488. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  5489. register, we could instead remove three \key{movq} instructions. We
  5490. can accomplish this by taking into account which variables appear in
  5491. \key{movq} instructions with which other variables.
  5492. \fi}
  5493. {\if\edition\pythonEd
  5494. %
  5495. To motivate the need for move biasing we return to the running example
  5496. and recall that in Section~\ref{sec:patch-instructions} we were able to
  5497. remove three trivial move instructions from the running
  5498. example. However, we could remove another trivial move if we were able
  5499. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  5500. We say that two variables $p$ and $q$ are \emph{move
  5501. related}\index{subject}{move related} if they participate together in
  5502. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  5503. \key{movq} $q$\key{,} $p$. When deciding which variable to color next,
  5504. when there are multiple variables with the same saturation, prefer
  5505. variables that can be assigned to a color that is the same as the
  5506. color of a move related variable. Furthermore, when the register
  5507. allocator chooses a color for a variable, it should prefer a color
  5508. that has already been used for a move-related variable (assuming that
  5509. they do not interfere). Of course, this preference should not override
  5510. the preference for registers over stack locations. So this preference
  5511. should be used as a tie breaker when choosing between registers or
  5512. when choosing between stack locations.
  5513. We recommend representing the move relationships in a graph, similar
  5514. to how we represented interference. The following is the \emph{move
  5515. graph} for our running example.
  5516. {\if\edition\racketEd
  5517. \[
  5518. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5519. \node (rax) at (0,0) {$\ttm{rax}$};
  5520. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5521. \node (t) at (0,2) {$\ttm{t}$};
  5522. \node (z) at (3,2) {$\ttm{z}$};
  5523. \node (x) at (6,2) {$\ttm{x}$};
  5524. \node (y) at (3,0) {$\ttm{y}$};
  5525. \node (w) at (6,0) {$\ttm{w}$};
  5526. \node (v) at (9,0) {$\ttm{v}$};
  5527. \draw (v) to (x);
  5528. \draw (x) to (y);
  5529. \draw (x) to (z);
  5530. \draw (y) to (t);
  5531. \end{tikzpicture}
  5532. \]
  5533. \fi}
  5534. %
  5535. {\if\edition\pythonEd
  5536. \[
  5537. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5538. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5539. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5540. \node (z) at (3,2) {$\ttm{z}$};
  5541. \node (x) at (6,2) {$\ttm{x}$};
  5542. \node (y) at (3,0) {$\ttm{y}$};
  5543. \node (w) at (6,0) {$\ttm{w}$};
  5544. \node (v) at (9,0) {$\ttm{v}$};
  5545. \draw (y) to (t0);
  5546. \draw (z) to (x);
  5547. \draw (z) to (t1);
  5548. \draw (x) to (y);
  5549. \draw (x) to (v);
  5550. \end{tikzpicture}
  5551. \]
  5552. \fi}
  5553. {\if\edition\racketEd
  5554. Now we replay the graph coloring, pausing to see the coloring of
  5555. \code{y}. Recall the following configuration. The most saturated vertices
  5556. were \code{w} and \code{y}.
  5557. \[
  5558. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5559. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5560. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5561. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5562. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5563. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5564. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5565. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5566. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5567. \draw (t1) to (rax);
  5568. \draw (t1) to (z);
  5569. \draw (z) to (y);
  5570. \draw (z) to (w);
  5571. \draw (x) to (w);
  5572. \draw (y) to (w);
  5573. \draw (v) to (w);
  5574. \draw (v) to (rsp);
  5575. \draw (w) to (rsp);
  5576. \draw (x) to (rsp);
  5577. \draw (y) to (rsp);
  5578. \path[-.,bend left=15] (z) edge node {} (rsp);
  5579. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5580. \draw (rax) to (rsp);
  5581. \end{tikzpicture}
  5582. \]
  5583. %
  5584. Last time we chose to color \code{w} with $0$. But this time we see
  5585. that \code{w} is not move related to any vertex, but \code{y} is move
  5586. related to \code{t}. So we choose to color \code{y} with $0$, the
  5587. same color as \code{t}.
  5588. \[
  5589. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5590. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5591. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5592. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5593. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5594. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5595. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  5596. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  5597. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5598. \draw (t1) to (rax);
  5599. \draw (t1) to (z);
  5600. \draw (z) to (y);
  5601. \draw (z) to (w);
  5602. \draw (x) to (w);
  5603. \draw (y) to (w);
  5604. \draw (v) to (w);
  5605. \draw (v) to (rsp);
  5606. \draw (w) to (rsp);
  5607. \draw (x) to (rsp);
  5608. \draw (y) to (rsp);
  5609. \path[-.,bend left=15] (z) edge node {} (rsp);
  5610. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5611. \draw (rax) to (rsp);
  5612. \end{tikzpicture}
  5613. \]
  5614. Now \code{w} is the most saturated, so we color it $2$.
  5615. \[
  5616. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5617. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5618. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5619. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5620. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5621. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  5622. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5623. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5624. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  5625. \draw (t1) to (rax);
  5626. \draw (t1) to (z);
  5627. \draw (z) to (y);
  5628. \draw (z) to (w);
  5629. \draw (x) to (w);
  5630. \draw (y) to (w);
  5631. \draw (v) to (w);
  5632. \draw (v) to (rsp);
  5633. \draw (w) to (rsp);
  5634. \draw (x) to (rsp);
  5635. \draw (y) to (rsp);
  5636. \path[-.,bend left=15] (z) edge node {} (rsp);
  5637. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5638. \draw (rax) to (rsp);
  5639. \end{tikzpicture}
  5640. \]
  5641. At this point, vertices \code{x} and \code{v} are most saturated, but
  5642. \code{x} is move related to \code{y} and \code{z}, so we color
  5643. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  5644. \[
  5645. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5646. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5647. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5648. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5649. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5650. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  5651. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5652. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5653. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  5654. \draw (t1) to (rax);
  5655. \draw (t) to (z);
  5656. \draw (z) to (y);
  5657. \draw (z) to (w);
  5658. \draw (x) to (w);
  5659. \draw (y) to (w);
  5660. \draw (v) to (w);
  5661. \draw (v) to (rsp);
  5662. \draw (w) to (rsp);
  5663. \draw (x) to (rsp);
  5664. \draw (y) to (rsp);
  5665. \path[-.,bend left=15] (z) edge node {} (rsp);
  5666. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5667. \draw (rax) to (rsp);
  5668. \end{tikzpicture}
  5669. \]
  5670. \fi}
  5671. %
  5672. {\if\edition\pythonEd
  5673. Now we replay the graph coloring, pausing before the coloring of
  5674. \code{w}. Recall the following configuration. The most saturated vertices
  5675. were \code{tmp\_1}, \code{w}, and \code{y}.
  5676. \[
  5677. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5678. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5679. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5680. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5681. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5682. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5683. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5684. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5685. \draw (t0) to (t1);
  5686. \draw (t0) to (z);
  5687. \draw (z) to (y);
  5688. \draw (z) to (w);
  5689. \draw (x) to (w);
  5690. \draw (y) to (w);
  5691. \draw (v) to (w);
  5692. \end{tikzpicture}
  5693. \]
  5694. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  5695. or \code{y}, but note that \code{w} is not move related to any
  5696. variables, whereas \code{y} and \code{tmp\_1} are move related to
  5697. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  5698. \code{y} and color it $0$, we can delete another move instruction.
  5699. \[
  5700. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5701. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5702. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5703. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5704. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5705. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  5706. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  5707. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5708. \draw (t0) to (t1);
  5709. \draw (t0) to (z);
  5710. \draw (z) to (y);
  5711. \draw (z) to (w);
  5712. \draw (x) to (w);
  5713. \draw (y) to (w);
  5714. \draw (v) to (w);
  5715. \end{tikzpicture}
  5716. \]
  5717. Now \code{w} is the most saturated, so we color it $2$.
  5718. \[
  5719. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5720. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5721. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5722. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5723. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  5724. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5725. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5726. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  5727. \draw (t0) to (t1);
  5728. \draw (t0) to (z);
  5729. \draw (z) to (y);
  5730. \draw (z) to (w);
  5731. \draw (x) to (w);
  5732. \draw (y) to (w);
  5733. \draw (v) to (w);
  5734. \end{tikzpicture}
  5735. \]
  5736. To finish the coloring, \code{x} and \code{v} get $0$ and
  5737. \code{tmp\_1} gets $1$.
  5738. \[
  5739. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5740. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5741. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5742. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5743. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  5744. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5745. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5746. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  5747. \draw (t0) to (t1);
  5748. \draw (t0) to (z);
  5749. \draw (z) to (y);
  5750. \draw (z) to (w);
  5751. \draw (x) to (w);
  5752. \draw (y) to (w);
  5753. \draw (v) to (w);
  5754. \end{tikzpicture}
  5755. \]
  5756. \fi}
  5757. So we have the following assignment of variables to registers.
  5758. {\if\edition\racketEd
  5759. \begin{gather*}
  5760. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5761. \ttm{w} \mapsto \key{\%rsi}, \,
  5762. \ttm{x} \mapsto \key{\%rcx}, \,
  5763. \ttm{y} \mapsto \key{\%rcx}, \,
  5764. \ttm{z} \mapsto \key{\%rdx}, \,
  5765. \ttm{t} \mapsto \key{\%rcx} \}
  5766. \end{gather*}
  5767. \fi}
  5768. {\if\edition\pythonEd
  5769. \begin{gather*}
  5770. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5771. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  5772. \ttm{x} \mapsto \key{\%rcx}, \,
  5773. \ttm{y} \mapsto \key{\%rcx}, \\
  5774. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5775. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5776. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5777. \end{gather*}
  5778. \fi}
  5779. We apply this register assignment to the running example, on the left,
  5780. to obtain the code in the middle. The \code{patch\_instructions} then
  5781. deletes the trivial moves to obtain the code on the right.
  5782. {\if\edition\racketEd
  5783. \begin{minipage}{0.25\textwidth}
  5784. \begin{lstlisting}
  5785. movq $1, v
  5786. movq $42, w
  5787. movq v, x
  5788. addq $7, x
  5789. movq x, y
  5790. movq x, z
  5791. addq w, z
  5792. movq y, t
  5793. negq t
  5794. movq z, %rax
  5795. addq t, %rax
  5796. jmp conclusion
  5797. \end{lstlisting}
  5798. \end{minipage}
  5799. $\Rightarrow\qquad$
  5800. \begin{minipage}{0.25\textwidth}
  5801. \begin{lstlisting}
  5802. movq $1, %rcx
  5803. movq $42, %rsi
  5804. movq %rcx, %rcx
  5805. addq $7, %rcx
  5806. movq %rcx, %rcx
  5807. movq %rcx, %rdx
  5808. addq %rsi, %rdx
  5809. movq %rcx, %rcx
  5810. negq %rcx
  5811. movq %rdx, %rax
  5812. addq %rcx, %rax
  5813. jmp conclusion
  5814. \end{lstlisting}
  5815. \end{minipage}
  5816. $\Rightarrow\qquad$
  5817. \begin{minipage}{0.25\textwidth}
  5818. \begin{lstlisting}
  5819. movq $1, %rcx
  5820. movq $42, %rsi
  5821. addq $7, %rcx
  5822. movq %rcx, %rdx
  5823. addq %rsi, %rdx
  5824. negq %rcx
  5825. movq %rdx, %rax
  5826. addq %rcx, %rax
  5827. jmp conclusion
  5828. \end{lstlisting}
  5829. \end{minipage}
  5830. \fi}
  5831. {\if\edition\pythonEd
  5832. \begin{minipage}{0.20\textwidth}
  5833. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5834. movq $1, v
  5835. movq $42, w
  5836. movq v, x
  5837. addq $7, x
  5838. movq x, y
  5839. movq x, z
  5840. addq w, z
  5841. movq y, tmp_0
  5842. negq tmp_0
  5843. movq z, tmp_1
  5844. addq tmp_0, tmp_1
  5845. movq tmp_1, %rdi
  5846. callq _print_int
  5847. \end{lstlisting}
  5848. \end{minipage}
  5849. ${\Rightarrow\qquad}$
  5850. \begin{minipage}{0.30\textwidth}
  5851. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5852. movq $1, %rcx
  5853. movq $42, -16(%rbp)
  5854. movq %rcx, %rcx
  5855. addq $7, %rcx
  5856. movq %rcx, %rcx
  5857. movq %rcx, -8(%rbp)
  5858. addq -16(%rbp), -8(%rbp)
  5859. movq %rcx, %rcx
  5860. negq %rcx
  5861. movq -8(%rbp), -8(%rbp)
  5862. addq %rcx, -8(%rbp)
  5863. movq -8(%rbp), %rdi
  5864. callq _print_int
  5865. \end{lstlisting}
  5866. \end{minipage}
  5867. ${\Rightarrow\qquad}$
  5868. \begin{minipage}{0.20\textwidth}
  5869. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5870. movq $1, %rcx
  5871. movq $42, -16(%rbp)
  5872. addq $7, %rcx
  5873. movq %rcx, -8(%rbp)
  5874. movq -16(%rbp), %rax
  5875. addq %rax, -8(%rbp)
  5876. negq %rcx
  5877. addq %rcx, -8(%rbp)
  5878. movq -8(%rbp), %rdi
  5879. callq print_int
  5880. \end{lstlisting}
  5881. \end{minipage}
  5882. \fi}
  5883. \begin{exercise}\normalfont\normalsize
  5884. Change your implementation of \code{allocate\_registers} to take move
  5885. biasing into account. Create two new tests that include at least one
  5886. opportunity for move biasing and visually inspect the output x86
  5887. programs to make sure that your move biasing is working properly. Make
  5888. sure that your compiler still passes all of the tests.
  5889. \end{exercise}
  5890. %To do: another neat challenge would be to do
  5891. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  5892. %% \subsection{Output of the Running Example}
  5893. %% \label{sec:reg-alloc-output}
  5894. % challenge: prioritize variables based on execution frequencies
  5895. % and the number of uses of a variable
  5896. % challenge: enhance the coloring algorithm using Chaitin's
  5897. % approach of prioritizing high-degree variables
  5898. % by removing low-degree variables (coloring them later)
  5899. % from the interference graph
  5900. \section{Further Reading}
  5901. \label{sec:register-allocation-further-reading}
  5902. Early register allocation algorithms were developed for Fortran
  5903. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  5904. of graph coloring began in the late 1970s and early 1980s with the
  5905. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  5906. algorithm is based on the following observation of
  5907. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  5908. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  5909. $v$ removed is also $k$ colorable. To see why, suppose that the
  5910. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  5911. different colors, but since there are less than $k$ neighbors, there
  5912. will be one or more colors left over to use for coloring $v$ in $G$.
  5913. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  5914. less than $k$ from the graph and recursively colors the rest of the
  5915. graph. Upon returning from the recursion, it colors $v$ with one of
  5916. the available colors and returns. \citet{Chaitin:1982vn} augments
  5917. this algorithm to handle spilling as follows. If there are no vertices
  5918. of degree lower than $k$ then pick a vertex at random, spill it,
  5919. remove it from the graph, and proceed recursively to color the rest of
  5920. the graph.
  5921. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  5922. move-related and that don't interfere with each other, a process
  5923. called \emph{coalescing}. While coalescing decreases the number of
  5924. moves, it can make the graph more difficult to
  5925. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  5926. which two variables are merged only if they have fewer than $k$
  5927. neighbors of high degree. \citet{George:1996aa} observe that
  5928. conservative coalescing is sometimes too conservative and make it more
  5929. aggressive by iterating the coalescing with the removal of low-degree
  5930. vertices.
  5931. %
  5932. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  5933. also propose \emph{biased coloring} in which a variable is assigned to
  5934. the same color as another move-related variable if possible, as
  5935. discussed in Section~\ref{sec:move-biasing}.
  5936. %
  5937. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  5938. performs coalescing, graph coloring, and spill code insertion until
  5939. all variables have been assigned a location.
  5940. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  5941. spills variables that don't have to be: a high-degree variable can be
  5942. colorable if many of its neighbors are assigned the same color.
  5943. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  5944. high-degree vertex is not immediately spilled. Instead the decision is
  5945. deferred until after the recursive call, at which point it is apparent
  5946. whether there is actually an available color or not. We observe that
  5947. this algorithm is equivalent to the smallest-last ordering
  5948. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  5949. be registers and the rest to be stack locations.
  5950. %% biased coloring
  5951. Earlier editions of the compiler course at Indiana University
  5952. \citep{Dybvig:2010aa} were based on the algorithm of
  5953. \citet{Briggs:1994kx}.
  5954. The smallest-last ordering algorithm is one of many \emph{greedy}
  5955. coloring algorithms. A greedy coloring algorithm visits all the
  5956. vertices in a particular order and assigns each one the first
  5957. available color. An \emph{offline} greedy algorithm chooses the
  5958. ordering up-front, prior to assigning colors. The algorithm of
  5959. \citet{Chaitin:1981vl} should be considered offline because the vertex
  5960. ordering does not depend on the colors assigned. Other orderings are
  5961. possible. For example, \citet{Chow:1984ys} order variables according
  5962. to an estimate of runtime cost.
  5963. An \emph{online} greedy coloring algorithm uses information about the
  5964. current assignment of colors to influence the order in which the
  5965. remaining vertices are colored. The saturation-based algorithm
  5966. described in this chapter is one such algorithm. We choose to use
  5967. saturation-based coloring because it is fun to introduce graph
  5968. coloring via Sudoku!
  5969. A register allocator may choose to map each variable to just one
  5970. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  5971. variable to one or more locations. The later can be achieved by
  5972. \emph{live range splitting}, where a variable is replaced by several
  5973. variables that each handle part of its live
  5974. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  5975. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  5976. %% replacement algorithm, bottom-up local
  5977. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  5978. %% Cooper: top-down (priority bassed), bottom-up
  5979. %% top-down
  5980. %% order variables by priority (estimated cost)
  5981. %% caveat: split variables into two groups:
  5982. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  5983. %% color the constrained ones first
  5984. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  5985. %% cite J. Cocke for an algorithm that colors variables
  5986. %% in a high-degree first ordering
  5987. %Register Allocation via Usage Counts, Freiburghouse CACM
  5988. \citet{Palsberg:2007si} observe that many of the interference graphs
  5989. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  5990. that is, every cycle with four or more edges has an edge which is not
  5991. part of the cycle but which connects two vertices on the cycle. Such
  5992. graphs can be optimally colored by the greedy algorithm with a vertex
  5993. ordering determined by maximum cardinality search.
  5994. In situations where compile time is of utmost importance, such as in
  5995. just-in-time compilers, graph coloring algorithms can be too expensive
  5996. and the linear scan algorithm of \citet{Poletto:1999uq} may be more
  5997. appropriate.
  5998. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5999. \chapter{Booleans and Conditionals}
  6000. \label{ch:Lif}
  6001. \index{subject}{Boolean}
  6002. \index{subject}{control flow}
  6003. \index{subject}{conditional expression}
  6004. The \LangVar{} language only has a single kind of value, the
  6005. integers. In this chapter we add a second kind of value, the Booleans,
  6006. to create the \LangIf{} language. The Boolean values \emph{true} and
  6007. \emph{false} are written \TRUE{} and \FALSE{} respectively in
  6008. \racket{Racket}\python{Python}. The \LangIf{} language includes
  6009. several operations that involve Booleans (\key{and}, \key{not},
  6010. \racket{\key{eq?}}\python{==}, \key{<}, etc.) and the \key{if}
  6011. expression \python{and statement}. With the addition of \key{if},
  6012. programs can have non-trivial control flow which
  6013. %
  6014. \racket{impacts \code{explicate\_control} and liveness analysis}
  6015. %
  6016. \python{impacts liveness analysis and motivates a new pass named
  6017. \code{explicate\_control}}.
  6018. %
  6019. Also, because we now have two kinds of values, we need to handle
  6020. programs that apply an operation to the wrong kind of value, such as
  6021. \racket{\code{(not 1)}}\python{\code{not 1}}.
  6022. There are two language design options for such situations. One option
  6023. is to signal an error and the other is to provide a wider
  6024. interpretation of the operation. \racket{The Racket
  6025. language}\python{Python} uses a mixture of these two options,
  6026. depending on the operation and the kind of value. For example, the
  6027. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  6028. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  6029. treats non-zero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  6030. %
  6031. \racket{On the other hand, \code{(car 1)} results in a run-time error
  6032. in Racket because \code{car} expects a pair.}
  6033. %
  6034. \python{On the other hand, \code{1[0]} results in a run-time error
  6035. in Python because an ``\code{int} object is not subscriptable''.}
  6036. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  6037. design choices as \racket{Racket}\python{Python}, except much of the
  6038. error detection happens at compile time instead of run
  6039. time\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  6040. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  6041. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed
  6042. Racket}\python{MyPy} reports a compile-time error
  6043. %
  6044. \racket{because Racket expects the type of the argument to be of the form
  6045. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  6046. %
  6047. \python{stating that a ``value of type \code{int} is not indexable''.}
  6048. The \LangIf{} language performs type checking during compilation like
  6049. \racket{Typed Racket}\python{MyPy}. In Chapter~\ref{ch:Ldyn} we study
  6050. the alternative choice, that is, a dynamically typed language like
  6051. \racket{Racket}\python{Python}. The \LangIf{} language is a subset of
  6052. \racket{Typed Racket}\python{MyPy}; for some operations we are more
  6053. restrictive, for example, rejecting \racket{\code{(not
  6054. 1)}}\python{\code{not 1}}. We keep the type checker for \LangIf{}
  6055. fairly simple because the focus of this book is on compilation, not
  6056. type systems, about which there are already several excellent
  6057. books~\citep{Pierce:2002hj,Pierce:2004fk,Harper2016,Pierce:SF2}.
  6058. This chapter is organized as follows. We begin by defining the syntax
  6059. and interpreter for the \LangIf{} language
  6060. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  6061. checking and define a type checker for \LangIf{}
  6062. (Section~\ref{sec:type-check-Lif}).
  6063. %
  6064. \racket{To compile \LangIf{} we need to enlarge the intermediate
  6065. language \LangCVar{} into \LangCIf{} (Section~\ref{sec:Cif}) and
  6066. \LangXInt{} into \LangXIf{} (Section~\ref{sec:x86-if}).}
  6067. %
  6068. The remaining sections of this chapter discuss how Booleans and
  6069. conditional control flow require changes to the existing compiler
  6070. passes and the addition of new ones. We introduce the \code{shrink}
  6071. pass to translates some operators into others, thereby reducing the
  6072. number of operators that need to be handled in later passes.
  6073. %
  6074. The main event of this chapter is the \code{explicate\_control} pass
  6075. that is responsible for translating \code{if}'s into conditional
  6076. \code{goto}'s (Section~\ref{sec:explicate-control-Lif}).
  6077. %
  6078. Regarding register allocation, there is the interesting question of
  6079. how to handle conditional \code{goto}'s during liveness analysis.
  6080. \section{The \LangIf{} Language}
  6081. \label{sec:lang-if}
  6082. The concrete and abstract syntax of the \LangIf{} language are defined in
  6083. Figures~\ref{fig:Lif-concrete-syntax} and~\ref{fig:Lif-syntax},
  6084. respectively. The \LangIf{} language includes all of
  6085. \LangVar{} {(shown in gray)}, the Boolean literals \TRUE{} and
  6086. \FALSE{},\racket{ and} the \code{if} expression\python{, and the
  6087. \code{if} statement}. We expand the set of operators to include
  6088. \begin{enumerate}
  6089. \item the logical operators \key{and}, \key{or}, and \key{not},
  6090. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  6091. for comparing integers or Booleans for equality, and
  6092. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  6093. comparing integers.
  6094. \end{enumerate}
  6095. \racket{We reorganize the abstract syntax for the primitive
  6096. operations in Figure~\ref{fig:Lif-syntax}, using only one grammar
  6097. rule for all of them. This means that the grammar no longer checks
  6098. whether the arity of an operators matches the number of
  6099. arguments. That responsibility is moved to the type checker for
  6100. \LangIf{} (Section~\ref{sec:type-check-Lif}).}
  6101. \newcommand{\LifGrammarRacket}{
  6102. \begin{array}{lcl}
  6103. \Type &::=& \key{Boolean} \\
  6104. \itm{bool} &::=& \TRUE \MID \FALSE \\
  6105. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  6106. \Exp &::=& \itm{bool}
  6107. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  6108. \MID (\key{not}\;\Exp) \\
  6109. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  6110. \end{array}
  6111. }
  6112. \newcommand{\LifASTRacket}{
  6113. \begin{array}{lcl}
  6114. \Type &::=& \key{Boolean} \\
  6115. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  6116. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6117. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  6118. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  6119. \end{array}
  6120. }
  6121. \newcommand{\LintOpAST}{
  6122. \begin{array}{rcl}
  6123. \Type &::=& \key{Integer} \\
  6124. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  6125. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  6126. \end{array}
  6127. }
  6128. \newcommand{\LifGrammarPython}{
  6129. \begin{array}{rcl}
  6130. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  6131. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  6132. \MID \key{not}~\Exp \\
  6133. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  6134. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  6135. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  6136. \end{array}
  6137. }
  6138. \newcommand{\LifASTPython}{
  6139. \begin{array}{lcl}
  6140. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  6141. \itm{unaryop} &::=& \code{Not()} \\
  6142. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  6143. \itm{bool} &::=& \code{True} \MID \code{False} \\
  6144. \Exp &::=& \BOOL{\itm{bool}}
  6145. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  6146. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6147. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  6148. \end{array}
  6149. }
  6150. \begin{figure}[tp]
  6151. \centering
  6152. \fbox{
  6153. \begin{minipage}{0.96\textwidth}
  6154. {\if\edition\racketEd
  6155. \[
  6156. \begin{array}{l}
  6157. \gray{\LintGrammarRacket{}} \\ \hline
  6158. \gray{\LvarGrammarRacket{}} \\ \hline
  6159. \LifGrammarRacket{} \\
  6160. \begin{array}{lcl}
  6161. \LangIfM{} &::=& \Exp
  6162. \end{array}
  6163. \end{array}
  6164. \]
  6165. \fi}
  6166. {\if\edition\pythonEd
  6167. \[
  6168. \begin{array}{l}
  6169. \gray{\LintGrammarPython} \\ \hline
  6170. \gray{\LvarGrammarPython} \\ \hline
  6171. \LifGrammarPython \\
  6172. \begin{array}{rcl}
  6173. \LangIfM{} &::=& \Stmt^{*}
  6174. \end{array}
  6175. \end{array}
  6176. \]
  6177. \fi}
  6178. \end{minipage}
  6179. }
  6180. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  6181. (Figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  6182. \label{fig:Lif-concrete-syntax}
  6183. \end{figure}
  6184. \begin{figure}[tp]
  6185. \centering
  6186. \fbox{
  6187. \begin{minipage}{0.96\textwidth}
  6188. {\if\edition\racketEd
  6189. \[
  6190. \begin{array}{l}
  6191. \gray{\LintOpAST} \\ \hline
  6192. \gray{\LvarASTRacket{}} \\ \hline
  6193. \LifASTRacket{} \\
  6194. \begin{array}{lcl}
  6195. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  6196. \end{array}
  6197. \end{array}
  6198. \]
  6199. \fi}
  6200. {\if\edition\pythonEd
  6201. \[
  6202. \begin{array}{l}
  6203. \gray{\LintASTPython} \\ \hline
  6204. \gray{\LvarASTPython} \\ \hline
  6205. \LifASTPython \\
  6206. \begin{array}{lcl}
  6207. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  6208. \end{array}
  6209. \end{array}
  6210. \]
  6211. \fi}
  6212. \end{minipage}
  6213. }
  6214. \caption{The abstract syntax of \LangIf{}.}
  6215. \label{fig:Lif-syntax}
  6216. \end{figure}
  6217. Figure~\ref{fig:interp-Lif} defines the interpreter for \LangIf{},
  6218. which inherits from the interpreter for \LangVar{}
  6219. (Figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  6220. evaluate to the corresponding Boolean values. The conditional
  6221. expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates expression $e_1$
  6222. and then either evaluates $e_2$ or $e_3$ depending on whether
  6223. $e_1$ produced \TRUE{} or \FALSE{}. The logical operations
  6224. \code{and}, \code{or}, and \code{not} behave according to
  6225. propositional logic. In addition, the \code{and} and \code{or}
  6226. operations perform \emph{short-circuit evaluation}.
  6227. %
  6228. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  6229. is not evaluated if $e_1$ evaluates to \FALSE{}.
  6230. %
  6231. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  6232. evaluated if $e_1$ evaluates to \TRUE{}.
  6233. \racket{With the increase in the number of primitive operations, the
  6234. interpreter would become repetitive without some care. We refactor
  6235. the case for \code{Prim}, moving the code that differs with each
  6236. operation into the \code{interp\_op} method shown in in
  6237. Figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  6238. \code{or} operations separately because of their short-circuiting
  6239. behavior.}
  6240. \begin{figure}[tbp]
  6241. {\if\edition\racketEd
  6242. \begin{lstlisting}
  6243. (define interp_Lif_class
  6244. (class interp_Lvar_class
  6245. (super-new)
  6246. (define/public (interp_op op) ...)
  6247. (define/override ((interp_exp env) e)
  6248. (define recur (interp_exp env))
  6249. (match e
  6250. [(Bool b) b]
  6251. [(If cnd thn els)
  6252. (match (recur cnd)
  6253. [#t (recur thn)]
  6254. [#f (recur els)])]
  6255. [(Prim 'and (list e1 e2))
  6256. (match (recur e1)
  6257. [#t (match (recur e2) [#t #t] [#f #f])]
  6258. [#f #f])]
  6259. [(Prim 'or (list e1 e2))
  6260. (define v1 (recur e1))
  6261. (match v1
  6262. [#t #t]
  6263. [#f (match (recur e2) [#t #t] [#f #f])])]
  6264. [(Prim op args)
  6265. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  6266. [else ((super interp_exp env) e)]))
  6267. ))
  6268. (define (interp_Lif p)
  6269. (send (new interp_Lif_class) interp_program p))
  6270. \end{lstlisting}
  6271. \fi}
  6272. {\if\edition\pythonEd
  6273. \begin{lstlisting}
  6274. class InterpLif(InterpLvar):
  6275. def interp_exp(self, e, env):
  6276. match e:
  6277. case IfExp(test, body, orelse):
  6278. if self.interp_exp(test, env):
  6279. return self.interp_exp(body, env)
  6280. else:
  6281. return self.interp_exp(orelse, env)
  6282. case UnaryOp(Not(), v):
  6283. return not self.interp_exp(v, env)
  6284. case BoolOp(And(), values):
  6285. if self.interp_exp(values[0], env):
  6286. return self.interp_exp(values[1], env)
  6287. else:
  6288. return False
  6289. case BoolOp(Or(), values):
  6290. if self.interp_exp(values[0], env):
  6291. return True
  6292. else:
  6293. return self.interp_exp(values[1], env)
  6294. case Compare(left, [cmp], [right]):
  6295. l = self.interp_exp(left, env)
  6296. r = self.interp_exp(right, env)
  6297. return self.interp_cmp(cmp)(l, r)
  6298. case _:
  6299. return super().interp_exp(e, env)
  6300. def interp_stmts(self, ss, env):
  6301. if len(ss) == 0:
  6302. return
  6303. match ss[0]:
  6304. case If(test, body, orelse):
  6305. if self.interp_exp(test, env):
  6306. return self.interp_stmts(body + ss[1:], env)
  6307. else:
  6308. return self.interp_stmts(orelse + ss[1:], env)
  6309. case _:
  6310. return super().interp_stmts(ss, env)
  6311. ...
  6312. \end{lstlisting}
  6313. \fi}
  6314. \caption{Interpreter for the \LangIf{} language. \racket{(See
  6315. Figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  6316. \python{(See Figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  6317. \label{fig:interp-Lif}
  6318. \end{figure}
  6319. {\if\edition\racketEd
  6320. \begin{figure}[tbp]
  6321. \begin{lstlisting}
  6322. (define/public (interp_op op)
  6323. (match op
  6324. ['+ fx+]
  6325. ['- fx-]
  6326. ['read read-fixnum]
  6327. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  6328. ['eq? (lambda (v1 v2)
  6329. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6330. (and (boolean? v1) (boolean? v2))
  6331. (and (vector? v1) (vector? v2)))
  6332. (eq? v1 v2)]))]
  6333. ['< (lambda (v1 v2)
  6334. (cond [(and (fixnum? v1) (fixnum? v2))
  6335. (< v1 v2)]))]
  6336. ['<= (lambda (v1 v2)
  6337. (cond [(and (fixnum? v1) (fixnum? v2))
  6338. (<= v1 v2)]))]
  6339. ['> (lambda (v1 v2)
  6340. (cond [(and (fixnum? v1) (fixnum? v2))
  6341. (> v1 v2)]))]
  6342. ['>= (lambda (v1 v2)
  6343. (cond [(and (fixnum? v1) (fixnum? v2))
  6344. (>= v1 v2)]))]
  6345. [else (error 'interp_op "unknown operator")]))
  6346. \end{lstlisting}
  6347. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  6348. \label{fig:interp-op-Lif}
  6349. \end{figure}
  6350. \fi}
  6351. {\if\edition\pythonEd
  6352. \begin{figure}
  6353. \begin{lstlisting}
  6354. class InterpLif(InterpLvar):
  6355. ...
  6356. def interp_cmp(self, cmp):
  6357. match cmp:
  6358. case Lt():
  6359. return lambda x, y: x < y
  6360. case LtE():
  6361. return lambda x, y: x <= y
  6362. case Gt():
  6363. return lambda x, y: x > y
  6364. case GtE():
  6365. return lambda x, y: x >= y
  6366. case Eq():
  6367. return lambda x, y: x == y
  6368. case NotEq():
  6369. return lambda x, y: x != y
  6370. \end{lstlisting}
  6371. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  6372. \label{fig:interp-cmp-Lif}
  6373. \end{figure}
  6374. \fi}
  6375. \section{Type Checking \LangIf{} Programs}
  6376. \label{sec:type-check-Lif}
  6377. \index{subject}{type checking}
  6378. \index{subject}{semantic analysis}
  6379. It is helpful to think about type checking in two complementary
  6380. ways. A type checker predicts the type of value that will be produced
  6381. by each expression in the program. For \LangIf{}, we have just two types,
  6382. \INTTY{} and \BOOLTY{}. So a type checker should predict that
  6383. {\if\edition\racketEd
  6384. \begin{lstlisting}
  6385. (+ 10 (- (+ 12 20)))
  6386. \end{lstlisting}
  6387. \fi}
  6388. {\if\edition\pythonEd
  6389. \begin{lstlisting}
  6390. 10 + -(12 + 20)
  6391. \end{lstlisting}
  6392. \fi}
  6393. \noindent produces a value of type \INTTY{} while
  6394. {\if\edition\racketEd
  6395. \begin{lstlisting}
  6396. (and (not #f) #t)
  6397. \end{lstlisting}
  6398. \fi}
  6399. {\if\edition\pythonEd
  6400. \begin{lstlisting}
  6401. (not False) and True
  6402. \end{lstlisting}
  6403. \fi}
  6404. \noindent produces a value of type \BOOLTY{}.
  6405. A second way to think about type checking is that it enforces a set of
  6406. rules about which operators can be applied to which kinds of
  6407. values. For example, our type checker for \LangIf{} signals an error
  6408. for the below expression {\if\edition\racketEd
  6409. \begin{lstlisting}
  6410. (not (+ 10 (- (+ 12 20))))
  6411. \end{lstlisting}
  6412. \fi}
  6413. {\if\edition\pythonEd
  6414. \begin{lstlisting}
  6415. not (10 + -(12 + 20))
  6416. \end{lstlisting}
  6417. \fi}
  6418. \noindent The subexpression
  6419. \racket{\code{(+ 10 (- (+ 12 20)))}}
  6420. \python{\code{(10 + -(12 + 20))}}
  6421. has type \INTTY{} but the type checker enforces the rule that the
  6422. argument of \code{not} must be an expression of type \BOOLTY{}.
  6423. We implement type checking using classes and methods because they
  6424. provide the open recursion needed to reuse code as we extend the type
  6425. checker in later chapters, analogous to the use of classes and methods
  6426. for the interpreters (Section~\ref{sec:extensible-interp}).
  6427. We separate the type checker for the \LangVar{} subset into its own
  6428. class, shown in Figure~\ref{fig:type-check-Lvar}. The type checker for
  6429. \LangIf{} is shown in Figure~\ref{fig:type-check-Lif} and it inherits
  6430. from the type checker for \LangVar{}. These type checkers are in the
  6431. files
  6432. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  6433. and
  6434. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  6435. of the support code.
  6436. %
  6437. Each type checker is a structurally recursive function over the AST.
  6438. Given an input expression \code{e}, the type checker either signals an
  6439. error or returns \racket{an expression and} its type.
  6440. %
  6441. \racket{It returns an expression because there are situations in which
  6442. we want to change or update the expression.}
  6443. Next we discuss the \code{type\_check\_exp} function of \LangVar{} in
  6444. Figure~\ref{fig:type-check-Lvar}. The type of an integer constant is
  6445. \INTTY{}. To handle variables, the type checker uses the environment
  6446. \code{env} to map variables to types.
  6447. %
  6448. \racket{Consider the case for \key{let}. We type check the
  6449. initializing expression to obtain its type \key{T} and then
  6450. associate type \code{T} with the variable \code{x} in the
  6451. environment used to type check the body of the \key{let}. Thus,
  6452. when the type checker encounters a use of variable \code{x}, it can
  6453. find its type in the environment.}
  6454. %
  6455. \python{Consider the case for assignment. We type check the
  6456. initializing expression to obtain its type \key{t}. If the variable
  6457. \code{lhs.id} is already in the environment because there was a
  6458. prior assignment, we check that this initializer has the same type
  6459. as the prior one. If this is the first assignment to the variable,
  6460. we associate type \code{t} with the variable \code{lhs.id} in the
  6461. environment. Thus, when the type checker encounters a use of
  6462. variable \code{x}, it can find its type in the environment.}
  6463. %
  6464. \racket{Regarding primitive operators, we recursively analyze the
  6465. arguments and then invoke \code{type\_check\_op} to check whether
  6466. the argument types are allowed.}
  6467. %
  6468. \python{Regarding addition, subtraction, and negation, we recursively analyze the
  6469. arguments, check that they have type \INTTY{}, and return \INTTY{}.}
  6470. \racket{Several auxiliary methods are used in the type checker. The
  6471. method \code{operator-types} defines a dictionary that maps the
  6472. operator names to their parameter and return types. The
  6473. \code{type-equal?} method determines whether two types are equal,
  6474. which for now simply dispatches to \code{equal?} (deep
  6475. equality). The \code{check-type-equal?} method triggers an error if
  6476. the two types are not equal. The \code{type-check-op} method looks
  6477. up the operator in the \code{operator-types} dictionary and then
  6478. checks whether the argument types are equal to the parameter types.
  6479. The result is the return type of the operator.}
  6480. %
  6481. \python{The auxiliary method \code{check\_type\_equal} triggers
  6482. an error if the two types are not equal.}
  6483. \begin{figure}[tbp]
  6484. {\if\edition\racketEd
  6485. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6486. (define type-check-Lvar_class
  6487. (class object%
  6488. (super-new)
  6489. (define/public (operator-types)
  6490. '((+ . ((Integer Integer) . Integer))
  6491. (- . ((Integer Integer) . Integer))
  6492. (read . (() . Integer))))
  6493. (define/public (type-equal? t1 t2) (equal? t1 t2))
  6494. (define/public (check-type-equal? t1 t2 e)
  6495. (unless (type-equal? t1 t2)
  6496. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  6497. (define/public (type-check-op op arg-types e)
  6498. (match (dict-ref (operator-types) op)
  6499. [`(,param-types . ,return-type)
  6500. (for ([at arg-types] [pt param-types])
  6501. (check-type-equal? at pt e))
  6502. return-type]
  6503. [else (error 'type-check-op "unrecognized ~a" op)]))
  6504. (define/public (type-check-exp env)
  6505. (lambda (e)
  6506. (match e
  6507. [(Int n) (values (Int n) 'Integer)]
  6508. [(Var x) (values (Var x) (dict-ref env x))]
  6509. [(Let x e body)
  6510. (define-values (e^ Te) ((type-check-exp env) e))
  6511. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  6512. (values (Let x e^ b) Tb)]
  6513. [(Prim op es)
  6514. (define-values (new-es ts)
  6515. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  6516. (values (Prim op new-es) (type-check-op op ts e))]
  6517. [else (error 'type-check-exp "couldn't match" e)])))
  6518. (define/public (type-check-program e)
  6519. (match e
  6520. [(Program info body)
  6521. (define-values (body^ Tb) ((type-check-exp '()) body))
  6522. (check-type-equal? Tb 'Integer body)
  6523. (Program info body^)]
  6524. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  6525. ))
  6526. (define (type-check-Lvar p)
  6527. (send (new type-check-Lvar_class) type-check-program p))
  6528. \end{lstlisting}
  6529. \fi}
  6530. {\if\edition\pythonEd
  6531. \begin{lstlisting}[escapechar=`]
  6532. class TypeCheckLvar:
  6533. def check_type_equal(self, t1, t2, e):
  6534. if t1 != t2:
  6535. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  6536. raise Exception(msg)
  6537. def type_check_exp(self, e, env):
  6538. match e:
  6539. case BinOp(left, (Add() | Sub()), right):
  6540. l = self.type_check_exp(left, env)
  6541. check_type_equal(l, int, left)
  6542. r = self.type_check_exp(right, env)
  6543. check_type_equal(r, int, right)
  6544. return int
  6545. case UnaryOp(USub(), v):
  6546. t = self.type_check_exp(v, env)
  6547. check_type_equal(t, int, v)
  6548. return int
  6549. case Name(id):
  6550. return env[id]
  6551. case Constant(value) if isinstance(value, int):
  6552. return int
  6553. case Call(Name('input_int'), []):
  6554. return int
  6555. def type_check_stmts(self, ss, env):
  6556. if len(ss) == 0:
  6557. return
  6558. match ss[0]:
  6559. case Assign([lhs], value):
  6560. t = self.type_check_exp(value, env)
  6561. if lhs.id in env:
  6562. check_type_equal(env[lhs.id], t, value)
  6563. else:
  6564. env[lhs.id] = t
  6565. return self.type_check_stmts(ss[1:], env)
  6566. case Expr(Call(Name('print'), [arg])):
  6567. t = self.type_check_exp(arg, env)
  6568. check_type_equal(t, int, arg)
  6569. return self.type_check_stmts(ss[1:], env)
  6570. case Expr(value):
  6571. self.type_check_exp(value, env)
  6572. return self.type_check_stmts(ss[1:], env)
  6573. def type_check_P(self, p):
  6574. match p:
  6575. case Module(body):
  6576. self.type_check_stmts(body, {})
  6577. \end{lstlisting}
  6578. \fi}
  6579. \caption{Type checker for the \LangVar{} language.}
  6580. \label{fig:type-check-Lvar}
  6581. \end{figure}
  6582. \begin{figure}[tbp]
  6583. {\if\edition\racketEd
  6584. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6585. (define type-check-Lif_class
  6586. (class type-check-Lvar_class
  6587. (super-new)
  6588. (inherit check-type-equal?)
  6589. (define/override (operator-types)
  6590. (append '((and . ((Boolean Boolean) . Boolean))
  6591. (or . ((Boolean Boolean) . Boolean))
  6592. (< . ((Integer Integer) . Boolean))
  6593. (<= . ((Integer Integer) . Boolean))
  6594. (> . ((Integer Integer) . Boolean))
  6595. (>= . ((Integer Integer) . Boolean))
  6596. (not . ((Boolean) . Boolean)))
  6597. (super operator-types)))
  6598. (define/override (type-check-exp env)
  6599. (lambda (e)
  6600. (match e
  6601. [(Bool b) (values (Bool b) 'Boolean)]
  6602. [(Prim 'eq? (list e1 e2))
  6603. (define-values (e1^ T1) ((type-check-exp env) e1))
  6604. (define-values (e2^ T2) ((type-check-exp env) e2))
  6605. (check-type-equal? T1 T2 e)
  6606. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  6607. [(If cnd thn els)
  6608. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  6609. (define-values (thn^ Tt) ((type-check-exp env) thn))
  6610. (define-values (els^ Te) ((type-check-exp env) els))
  6611. (check-type-equal? Tc 'Boolean e)
  6612. (check-type-equal? Tt Te e)
  6613. (values (If cnd^ thn^ els^) Te)]
  6614. [else ((super type-check-exp env) e)])))
  6615. ))
  6616. (define (type-check-Lif p)
  6617. (send (new type-check-Lif_class) type-check-program p))
  6618. \end{lstlisting}
  6619. \fi}
  6620. {\if\edition\pythonEd
  6621. \begin{lstlisting}
  6622. class TypeCheckLif(TypeCheckLvar):
  6623. def type_check_exp(self, e, env):
  6624. match e:
  6625. case Constant(value) if isinstance(value, bool):
  6626. return bool
  6627. case BinOp(left, Sub(), right):
  6628. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6629. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6630. return int
  6631. case UnaryOp(Not(), v):
  6632. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  6633. return bool
  6634. case BoolOp(op, values):
  6635. left = values[0] ; right = values[1]
  6636. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  6637. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  6638. return bool
  6639. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  6640. or isinstance(cmp, NotEq):
  6641. l = self.type_check_exp(left, env)
  6642. r = self.type_check_exp(right, env)
  6643. check_type_equal(l, r, e)
  6644. return bool
  6645. case Compare(left, [cmp], [right]):
  6646. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6647. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6648. return bool
  6649. case IfExp(test, body, orelse):
  6650. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6651. b = self.type_check_exp(body, env)
  6652. o = self.type_check_exp(orelse, env)
  6653. check_type_equal(b, o, e)
  6654. return b
  6655. case _:
  6656. return super().type_check_exp(e, env)
  6657. def type_check_stmts(self, ss, env):
  6658. if len(ss) == 0:
  6659. return
  6660. match ss[0]:
  6661. case If(test, body, orelse):
  6662. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6663. b = self.type_check_stmts(body, env)
  6664. o = self.type_check_stmts(orelse, env)
  6665. check_type_equal(b, o, ss[0])
  6666. return self.type_check_stmts(ss[1:], env)
  6667. case _:
  6668. return super().type_check_stmts(ss, env)
  6669. \end{lstlisting}
  6670. \fi}
  6671. \caption{Type checker for the \LangIf{} language.}
  6672. \label{fig:type-check-Lif}
  6673. \end{figure}
  6674. The type checker for \LangIf{} is defined in
  6675. Figure~\ref{fig:type-check-Lif}.
  6676. %
  6677. The type of a Boolean constant is \BOOLTY{}.
  6678. %
  6679. \racket{The \code{operator-types} function adds dictionary entries for
  6680. the new operators.}
  6681. %
  6682. \python{Logical not requires its argument to be a \BOOLTY{} and
  6683. produces a \BOOLTY{}. Similarly for logical and and logical or. }
  6684. %
  6685. The equality operator requires the two arguments to have the same type
  6686. and therefore we handle it separately from the other operators.
  6687. %
  6688. \python{The other comparisons (less-than, etc.) require their
  6689. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  6690. %
  6691. The condition of an \code{if} must
  6692. be of \BOOLTY{} type and the two branches must have the same type.
  6693. \begin{exercise}\normalfont\normalsize
  6694. Create 10 new test programs in \LangIf{}. Half of the programs should
  6695. have a type error. For those programs, create an empty file with the
  6696. same base name but with file extension \code{.tyerr}. For example, if
  6697. the test
  6698. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  6699. is expected to error, then create
  6700. an empty file named \code{cond\_test\_14.tyerr}.
  6701. %
  6702. \racket{This indicates to \code{interp-tests} and
  6703. \code{compiler-tests} that a type error is expected. }
  6704. %
  6705. The other half of the test programs should not have type errors.
  6706. %
  6707. \racket{In the \code{run-tests.rkt} script, change the second argument
  6708. of \code{interp-tests} and \code{compiler-tests} to
  6709. \code{type-check-Lif}, which causes the type checker to run prior to
  6710. the compiler passes. Temporarily change the \code{passes} to an
  6711. empty list and run the script, thereby checking that the new test
  6712. programs either type check or not as intended.}
  6713. %
  6714. Run the test script to check that these test programs type check as
  6715. expected.
  6716. \end{exercise}
  6717. \clearpage
  6718. \section{The \LangCIf{} Intermediate Language}
  6719. \label{sec:Cif}
  6720. {\if\edition\racketEd
  6721. %
  6722. The \LangCIf{} language builds on \LangCVar{} by adding logical and
  6723. comparison operators to the \Exp{} non-terminal and the literals
  6724. \TRUE{} and \FALSE{} to the \Arg{} non-terminal. Regarding control
  6725. flow, \LangCIf{} adds \key{goto} and \code{if} statements to the
  6726. \Tail{} non-terminal. The condition of an \code{if} statement is a
  6727. comparison operation and the branches are \code{goto} statements,
  6728. making it straightforward to compile \code{if} statements to x86. The
  6729. \key{CProgram} construct contains an alist mapping labels to $\Tail$
  6730. expressions. A \code{goto} statement transfers control to the $\Tail$
  6731. expression corresponding to its label.
  6732. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  6733. \LangCIf{} intermediate language and Figure~\ref{fig:c1-syntax}
  6734. defines its abstract syntax.
  6735. %
  6736. \fi}
  6737. %
  6738. {\if\edition\pythonEd
  6739. %
  6740. The output of \key{explicate\_control} is a language similar to the
  6741. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  6742. \code{goto} statements, so we name it \LangCIf{}.
  6743. %
  6744. The \LangCIf{} language supports the same operators as \LangIf{} but
  6745. the arguments of operators are restricted to atomic expressions. The
  6746. \LangCIf{} language does not include \code{if} expressions but it does
  6747. include a restricted form of \code{if} statment. The condition must be
  6748. a comparison and the two branches may only contain \code{goto}
  6749. statements. These restrictions make it easier to translate \code{if}
  6750. statements to x86. The \LangCIf{} language also adds a \code{return}
  6751. statement to finish the program with a specified value.
  6752. %
  6753. The \key{CProgram} construct contains a dictionary mapping labels to
  6754. lists of statements that end with a \code{return} statement, a
  6755. \code{goto}, or a conditional \code{goto}. Statement lists of this
  6756. form are called \emph{basic blocks}\index{subject}{basic block}: there
  6757. is a control transfer at the end and control only enters at the
  6758. beginning of the list, which is marked by the label.
  6759. %
  6760. A \code{goto} statement transfers control to basic block corresponding
  6761. to its label.
  6762. %
  6763. The concrete syntax for \LangCIf{} is defined in
  6764. Figure~\ref{fig:c1-concrete-syntax} and the abstract syntax is defined
  6765. in Figure~\ref{fig:c1-syntax}.
  6766. %
  6767. \fi}
  6768. %
  6769. \newcommand{\CifGrammarRacket}{
  6770. \begin{array}{lcl}
  6771. \Atm &::=& \itm{bool} \\
  6772. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6773. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  6774. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  6775. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  6776. \end{array}
  6777. }
  6778. \newcommand{\CifASTRacket}{
  6779. \begin{array}{lcl}
  6780. \Atm &::=& \BOOL{\itm{bool}} \\
  6781. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6782. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  6783. \Tail &::= & \GOTO{\itm{label}} \\
  6784. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  6785. \end{array}
  6786. }
  6787. \newcommand{\CifGrammarPython}{
  6788. \begin{array}{lcl}
  6789. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  6790. \Exp &::= & \Atm \MID \CREAD{}
  6791. \MID \CBINOP{\itm{binaryop}}{\Atm}{\Atm}
  6792. \MID \CUNIOP{\itm{unaryop}}{\Atm} \\
  6793. &\MID& \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  6794. \Stmt &::=& \CPRINT{\Atm} \MID \Exp \\
  6795. &\MID& \CASSIGN{\Var}{\Exp}
  6796. \MID \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  6797. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  6798. \end{array}
  6799. }
  6800. \newcommand{\CifASTPython}{
  6801. \begin{array}{lcl}
  6802. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  6803. \Exp &::= & \Atm \MID \READ{} \\
  6804. &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  6805. \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  6806. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  6807. \Stmt &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  6808. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  6809. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  6810. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  6811. \end{array}
  6812. }
  6813. \begin{figure}[tbp]
  6814. \fbox{
  6815. \begin{minipage}{0.96\textwidth}
  6816. \small
  6817. {\if\edition\racketEd
  6818. \[
  6819. \begin{array}{l}
  6820. \gray{\CvarGrammarRacket} \\ \hline
  6821. \CifGrammarRacket \\
  6822. \begin{array}{lcl}
  6823. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  6824. \end{array}
  6825. \end{array}
  6826. \]
  6827. \fi}
  6828. {\if\edition\pythonEd
  6829. \[
  6830. \begin{array}{l}
  6831. \CifGrammarPython \\
  6832. \begin{array}{lcl}
  6833. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}) \ldots
  6834. \end{array}
  6835. \end{array}
  6836. \]
  6837. \fi}
  6838. \end{minipage}
  6839. }
  6840. \caption{The concrete syntax of the \LangCIf{} intermediate language,
  6841. an extension of \LangCVar{} (Figure~\ref{fig:c0-concrete-syntax}).}
  6842. \label{fig:c1-concrete-syntax}
  6843. \end{figure}
  6844. \begin{figure}[tp]
  6845. \fbox{
  6846. \begin{minipage}{0.96\textwidth}
  6847. \small
  6848. {\if\edition\racketEd
  6849. \[
  6850. \begin{array}{l}
  6851. \gray{\CvarASTRacket} \\ \hline
  6852. \CifASTRacket \\
  6853. \begin{array}{lcl}
  6854. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  6855. \end{array}
  6856. \end{array}
  6857. \]
  6858. \fi}
  6859. {\if\edition\pythonEd
  6860. \[
  6861. \begin{array}{l}
  6862. \CifASTPython \\
  6863. \begin{array}{lcl}
  6864. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  6865. \end{array}
  6866. \end{array}
  6867. \]
  6868. \fi}
  6869. \end{minipage}
  6870. }
  6871. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  6872. (Figure~\ref{fig:c0-syntax})}.}
  6873. \label{fig:c1-syntax}
  6874. \end{figure}
  6875. \section{The \LangXIf{} Language}
  6876. \label{sec:x86-if}
  6877. \index{subject}{x86} To implement the new logical operations, the
  6878. comparison operations, and the \key{if} expression\python{ and
  6879. statement}, we delve further into the x86
  6880. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} define
  6881. the concrete and abstract syntax for the \LangXIf{} subset of x86,
  6882. which includes instructions for logical operations, comparisons, and
  6883. \racket{conditional} jumps.
  6884. One challenge is that x86 does not provide an instruction that
  6885. directly implements logical negation (\code{not} in \LangIf{} and
  6886. \LangCIf{}). However, the \code{xorq} instruction can be used to
  6887. encode \code{not}. The \key{xorq} instruction takes two arguments,
  6888. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  6889. bit of its arguments, and writes the results into its second argument.
  6890. Recall the truth table for exclusive-or:
  6891. \begin{center}
  6892. \begin{tabular}{l|cc}
  6893. & 0 & 1 \\ \hline
  6894. 0 & 0 & 1 \\
  6895. 1 & 1 & 0
  6896. \end{tabular}
  6897. \end{center}
  6898. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  6899. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  6900. for the bit $1$, the result is the opposite of the second bit. Thus,
  6901. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  6902. the first argument as follows, where $\Arg$ is the translation of
  6903. $\Atm$ to x86.
  6904. \[
  6905. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  6906. \qquad\Rightarrow\qquad
  6907. \begin{array}{l}
  6908. \key{movq}~ \Arg\key{,} \Var\\
  6909. \key{xorq}~ \key{\$1,} \Var
  6910. \end{array}
  6911. \]
  6912. \newcommand{\GrammarXIf}{
  6913. \begin{array}{lcl}
  6914. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6915. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6916. \Arg &::=& \key{\%}\itm{bytereg}\\
  6917. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6918. \Instr &::=& \key{xorq}~\Arg\key{,}~\Arg
  6919. \MID \key{cmpq}~\Arg\key{,}~\Arg
  6920. \MID \key{set}cc~\Arg
  6921. \MID \key{movzbq}~\Arg\key{,}~\Arg \\
  6922. &\MID& \key{j}cc~\itm{label}
  6923. \end{array}
  6924. }
  6925. \begin{figure}[tp]
  6926. \fbox{
  6927. \begin{minipage}{0.96\textwidth}
  6928. \[
  6929. \begin{array}{l}
  6930. \gray{\GrammarXInt} \\ \hline
  6931. \GrammarXIf \\
  6932. \begin{array}{lcl}
  6933. \LangXIfM{} &::= & \key{.globl main} \\
  6934. & & \key{main:} \; \Instr\ldots
  6935. \end{array}
  6936. \end{array}
  6937. \]
  6938. \end{minipage}
  6939. }
  6940. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  6941. \label{fig:x86-1-concrete}
  6942. \end{figure}
  6943. \newcommand{\ASTXIfRacket}{
  6944. \begin{array}{lcl}
  6945. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6946. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6947. \Arg &::=& \BYTEREG{\itm{bytereg}} \\
  6948. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6949. \Instr &::=& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6950. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6951. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6952. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6953. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}}
  6954. \end{array}
  6955. }
  6956. \begin{figure}[tp]
  6957. \fbox{
  6958. \begin{minipage}{0.96\textwidth}
  6959. \small
  6960. {\if\edition\racketEd
  6961. \[
  6962. \begin{array}{l}
  6963. \gray{\ASTXIntRacket} \\ \hline
  6964. \ASTXIfRacket \\
  6965. \begin{array}{lcl}
  6966. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  6967. \end{array}
  6968. \end{array}
  6969. \]
  6970. \fi}
  6971. %
  6972. {\if\edition\pythonEd
  6973. \[
  6974. \begin{array}{lcl}
  6975. \itm{bytereg} &::=& \skey{ah} \MID \skey{al} \MID \skey{bh} \MID \skey{bl}
  6976. \MID \skey{ch} \MID \skey{cl} \MID \skey{dh} \MID \skey{dl} \\
  6977. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6978. \MID \BYTEREG{\itm{bytereg}} \\
  6979. \itm{cc} & ::= & \skey{e} \MID \skey{ne} \MID \skey{l} \MID \skey{le} \MID \skey{g} \MID \skey{ge} \\
  6980. \Instr &::=& \gray{ \BININSTR{\scode{addq}}{\Arg}{\Arg}
  6981. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} } \\
  6982. &\MID& \gray{ \BININSTR{\scode{movq}}{\Arg}{\Arg}
  6983. \MID \UNIINSTR{\scode{negq}}{\Arg} } \\
  6984. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6985. \MID \PUSHQ{\Arg}} \\
  6986. &\MID& \gray{ \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  6987. &\MID& \BININSTR{\scode{xorq}}{\Arg}{\Arg}
  6988. \MID \BININSTR{\scode{cmpq}}{\Arg}{\Arg}\\
  6989. &\MID& \BININSTR{\scode{set}}{\itm{cc}}{\Arg}
  6990. \MID \BININSTR{\scode{movzbq}}{\Arg}{\Arg}\\
  6991. &\MID& \JMPIF{\itm{cc}}{\itm{label}} \\
  6992. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Instr^{*} \key{,} \ldots \RC }
  6993. \end{array}
  6994. \]
  6995. \fi}
  6996. \end{minipage}
  6997. }
  6998. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  6999. \label{fig:x86-1}
  7000. \end{figure}
  7001. Next we consider the x86 instructions that are relevant for compiling
  7002. the comparison operations. The \key{cmpq} instruction compares its two
  7003. arguments to determine whether one argument is less than, equal, or
  7004. greater than the other argument. The \key{cmpq} instruction is unusual
  7005. regarding the order of its arguments and where the result is
  7006. placed. The argument order is backwards: if you want to test whether
  7007. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  7008. \key{cmpq} is placed in the special EFLAGS register. This register
  7009. cannot be accessed directly but it can be queried by a number of
  7010. instructions, including the \key{set} instruction. The instruction
  7011. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  7012. depending on whether the contents of the EFLAGS register matches the
  7013. condition code \itm{cc}: \key{e} for equal, \key{l} for less, \key{le}
  7014. for less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal.
  7015. The \key{set} instruction has a quirk in that its destination argument
  7016. must be single byte register, such as \code{al} (L for lower bits) or
  7017. \code{ah} (H for higher bits), which are part of the \code{rax}
  7018. register. Thankfully, the \key{movzbq} instruction can be used to
  7019. move from a single byte register to a normal 64-bit register. The
  7020. abstract syntax for the \code{set} instruction differs from the
  7021. concrete syntax in that it separates the instruction name from the
  7022. condition code.
  7023. \python{The x86 instructions for jumping are relevant to the
  7024. compilation of \key{if} expressions.}
  7025. %
  7026. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  7027. counter to the address of the instruction after the specified
  7028. label.}
  7029. %
  7030. \racket{The x86 instruction for conditional jump is relevant to the
  7031. compilation of \key{if} expressions.}
  7032. %
  7033. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  7034. counter to point to the instruction after \itm{label} depending on
  7035. whether the result in the EFLAGS register matches the condition code
  7036. \itm{cc}, otherwise the jump instruction falls through to the next
  7037. instruction. Like the abstract syntax for \code{set}, the abstract
  7038. syntax for conditional jump separates the instruction name from the
  7039. condition code. For example, \JMPIF{\QUOTE{\code{le}}}{\QUOTE{\code{foo}}}
  7040. corresponds to \code{jle foo}. Because the conditional jump instruction
  7041. relies on the EFLAGS register, it is common for it to be immediately preceded by
  7042. a \key{cmpq} instruction to set the EFLAGS register.
  7043. \section{Shrink the \LangIf{} Language}
  7044. \label{sec:shrink-Lif}
  7045. The \LangIf{} language includes several features that are easily
  7046. expressible with other features. For example, \code{and} and \code{or}
  7047. are expressible using \code{if} as follows.
  7048. \begin{align*}
  7049. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  7050. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  7051. \end{align*}
  7052. By performing these translations in the front-end of the compiler,
  7053. subsequent passes of the compiler do not need to deal with these features,
  7054. making the passes shorter.
  7055. On the other hand, sometimes translations reduce the efficiency of the
  7056. generated code by increasing the number of instructions. For example,
  7057. expressing subtraction in terms of negation
  7058. \[
  7059. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  7060. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  7061. \]
  7062. produces code with two x86 instructions (\code{negq} and \code{addq})
  7063. instead of just one (\code{subq}).
  7064. \begin{exercise}\normalfont\normalsize
  7065. %
  7066. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  7067. the language by translating them to \code{if} expressions in \LangIf{}.
  7068. %
  7069. Create four test programs that involve these operators.
  7070. %
  7071. {\if\edition\racketEd
  7072. In the \code{run-tests.rkt} script, add the following entry for
  7073. \code{shrink} to the list of passes (it should be the only pass at
  7074. this point).
  7075. \begin{lstlisting}
  7076. (list "shrink" shrink interp_Lif type-check-Lif)
  7077. \end{lstlisting}
  7078. This instructs \code{interp-tests} to run the intepreter
  7079. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  7080. output of \code{shrink}.
  7081. \fi}
  7082. %
  7083. Run the script to test your compiler on all the test programs.
  7084. \end{exercise}
  7085. {\if\edition\racketEd
  7086. \section{Uniquify Variables}
  7087. \label{sec:uniquify-Lif}
  7088. Add cases to \code{uniquify\_exp} to handle Boolean constants and
  7089. \code{if} expressions.
  7090. \begin{exercise}\normalfont\normalsize
  7091. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  7092. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  7093. \begin{lstlisting}
  7094. (list "uniquify" uniquify interp_Lif type_check_Lif)
  7095. \end{lstlisting}
  7096. Run the script to test your compiler.
  7097. \end{exercise}
  7098. \fi}
  7099. \section{Remove Complex Operands}
  7100. \label{sec:remove-complex-opera-Lif}
  7101. The output language of \code{remove\_complex\_operands} is
  7102. \LangIfANF{} (Figure~\ref{fig:Lif-anf-syntax}), the monadic
  7103. normal form of \LangIf{}. A Boolean constant is an atomic expressions
  7104. but the \code{if} expression is not. All three sub-expressions of an
  7105. \code{if} are allowed to be complex expressions but the operands of
  7106. \code{not} and the comparisons must be atomic.
  7107. %
  7108. \python{We add a new language form, the \code{Begin} expression, to aid
  7109. in the translation of \code{if} expressions. When we recursively
  7110. process the two branches of the \code{if}, we generate temporary
  7111. variables and their initializing expressions. However, these
  7112. expressions may contain side effects and should only be executed
  7113. when the condition of the \code{if} is true (for the ``then''
  7114. branch) or false (for the ``else'' branch). The \code{Begin} provides
  7115. a way to initialize the temporary variables within the two branches
  7116. of the \code{if} expression. In general, the $\BEGIN{ss}{e}$
  7117. form execute the statements $ss$ and then returns the result of
  7118. expression $e$.}
  7119. Add cases to the \code{rco\_exp} and \code{rco\_atom} functions for
  7120. the new features in \LangIf{}. When recursively processing
  7121. subexpressions, recall that you should invoke \code{rco\_atom} when
  7122. the output needs to be an \Atm{} (as specified in the grammar for
  7123. \LangIfANF{}) and invoke \code{rco\_exp} when the output should be
  7124. \Exp{}. Regarding \code{if}, it is particularly important to
  7125. \textbf{not} replace its condition with a temporary variable because
  7126. that would interfere with the generation of high-quality output in the
  7127. upcoming \code{explicate\_control} pass.
  7128. \newcommand{\LifMonadASTRacket}{
  7129. \begin{array}{rcl}
  7130. \Atm &::=& \BOOL{\itm{bool}}\\
  7131. \Exp &::=& \UNIOP{\key{not}}{\Atm}
  7132. \MID \BINOP{\itm{cmp}}{\Atm}{\Atm}
  7133. \MID \IF{\Exp}{\Exp}{\Exp}
  7134. \end{array}
  7135. }
  7136. \newcommand{\LifMonadASTPython}{
  7137. \begin{array}{rcl}
  7138. %% \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  7139. %% \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7140. %% \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  7141. %% \itm{bool} &::=& \code{True} \MID \code{False} \\
  7142. \Atm &::=& \BOOL{\itm{bool}}\\
  7143. \Exp &::=& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  7144. &\MID& \BEGIN{\Stmt^{*}}{\Exp}\\
  7145. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}
  7146. \end{array}
  7147. }
  7148. \begin{figure}[tp]
  7149. \centering
  7150. \fbox{
  7151. \begin{minipage}{0.96\textwidth}
  7152. {\if\edition\racketEd
  7153. \[
  7154. \begin{array}{l}
  7155. \gray{\LvarMonadASTRacket} \\ \hline
  7156. \LifMonadASTRacket \\
  7157. \begin{array}{rcl}
  7158. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  7159. \end{array}
  7160. \end{array}
  7161. \]
  7162. \fi}
  7163. {\if\edition\pythonEd
  7164. \[
  7165. \begin{array}{l}
  7166. \gray{\LvarMonadASTPython} \\ \hline
  7167. \LifMonadASTPython \\
  7168. \begin{array}{rcl}
  7169. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  7170. \end{array}
  7171. \end{array}
  7172. \]
  7173. \fi}
  7174. \end{minipage}
  7175. }
  7176. \caption{\LangIfANF{} is \LangIf{} in monadic normal form
  7177. (extends \LangVarANF in Figure~\ref{fig:Lvar-anf-syntax}).}
  7178. \label{fig:Lif-anf-syntax}
  7179. \end{figure}
  7180. \begin{exercise}\normalfont\normalsize
  7181. %
  7182. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  7183. and \code{rco\_exp} functions in \code{compiler.rkt}.
  7184. %
  7185. Create three new \LangIf{} programs that exercise the interesting
  7186. code in this pass.
  7187. %
  7188. {\if\edition\racketEd
  7189. In the \code{run-tests.rkt} script, add the following entry to the
  7190. list of \code{passes} and then run the script to test your compiler.
  7191. \begin{lstlisting}
  7192. (list "remove-complex" remove_complex_operands interp-Lif type-check-Lif)
  7193. \end{lstlisting}
  7194. \fi}
  7195. \end{exercise}
  7196. \section{Explicate Control}
  7197. \label{sec:explicate-control-Lif}
  7198. \racket{Recall that the purpose of \code{explicate\_control} is to
  7199. make the order of evaluation explicit in the syntax of the program.
  7200. With the addition of \key{if} this get more interesting.}
  7201. %
  7202. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  7203. %
  7204. The main challenge to overcome is that the condition of an \key{if}
  7205. can be an arbitrary expression in \LangIf{} whereas in \LangCIf{} the
  7206. condition must be a comparison.
  7207. As a motivating example, consider the following program that has an
  7208. \key{if} expression nested in the condition of another \key{if}.%
  7209. \python{\footnote{Programmers rarely write nested \code{if}
  7210. expressions, but it is not uncommon for the condition of an
  7211. \code{if} statement to be a call of a function that also contains an
  7212. \code{if} statement. When such a function is inlined, the result is
  7213. a nested \code{if} that requires the techniques discussed in this
  7214. section.}}
  7215. % cond_test_41.rkt, if_lt_eq.py
  7216. \begin{center}
  7217. \begin{minipage}{0.96\textwidth}
  7218. {\if\edition\racketEd
  7219. \begin{lstlisting}
  7220. (let ([x (read)])
  7221. (let ([y (read)])
  7222. (if (if (< x 1) (eq? x 0) (eq? x 2))
  7223. (+ y 2)
  7224. (+ y 10))))
  7225. \end{lstlisting}
  7226. \fi}
  7227. {\if\edition\pythonEd
  7228. \begin{lstlisting}
  7229. x = input_int()
  7230. y = input_int()
  7231. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  7232. \end{lstlisting}
  7233. \fi}
  7234. \end{minipage}
  7235. \end{center}
  7236. %
  7237. The naive way to compile \key{if} and the comparison operations would
  7238. be to handle each of them in isolation, regardless of their context.
  7239. Each comparison would be translated into a \key{cmpq} instruction
  7240. followed by several instructions to move the result from the EFLAGS
  7241. register into a general purpose register or stack location. Each
  7242. \key{if} would be translated into a \key{cmpq} instruction followed by
  7243. a conditional jump. The generated code for the inner \key{if} in the
  7244. above example would be as follows.
  7245. \begin{center}
  7246. \begin{minipage}{0.96\textwidth}
  7247. \begin{lstlisting}
  7248. cmpq $1, x
  7249. setl %al
  7250. movzbq %al, tmp
  7251. cmpq $1, tmp
  7252. je then_branch_1
  7253. jmp else_branch_1
  7254. \end{lstlisting}
  7255. \end{minipage}
  7256. \end{center}
  7257. However, if we take context into account we can do better and reduce
  7258. the use of \key{cmpq} instructions for accessing the EFLAG register.
  7259. Our goal will be to compile \key{if} expressions so that the relevant
  7260. comparison instruction appears directly before the conditional jump.
  7261. For example, we want to generate the following code for the inner
  7262. \code{if}.
  7263. \begin{center}
  7264. \begin{minipage}{0.96\textwidth}
  7265. \begin{lstlisting}
  7266. cmpq $1, x
  7267. jl then_branch_1
  7268. jmp else_branch_1
  7269. \end{lstlisting}
  7270. \end{minipage}
  7271. \end{center}
  7272. One way to achieve this goal is to reorganize the code at the level of
  7273. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  7274. the following code.
  7275. \begin{center}
  7276. \begin{minipage}{0.96\textwidth}
  7277. {\if\edition\racketEd
  7278. \begin{lstlisting}
  7279. (let ([x (read)])
  7280. (let ([y (read)])
  7281. (if (< x 1)
  7282. (if (eq? x 0)
  7283. (+ y 2)
  7284. (+ y 10))
  7285. (if (eq? x 2)
  7286. (+ y 2)
  7287. (+ y 10)))))
  7288. \end{lstlisting}
  7289. \fi}
  7290. {\if\edition\pythonEd
  7291. \begin{lstlisting}
  7292. x = input_int()
  7293. y = intput_int()
  7294. print(((y + 2) if x == 0 else (y + 10)) \
  7295. if (x < 1) \
  7296. else ((y + 2) if (x == 2) else (y + 10)))
  7297. \end{lstlisting}
  7298. \fi}
  7299. \end{minipage}
  7300. \end{center}
  7301. Unfortunately, this approach duplicates the two branches from the
  7302. outer \code{if} and a compiler must never duplicate code! After all,
  7303. the two branches could have been very large expressions.
  7304. We need a way to perform the above transformation but without
  7305. duplicating code. That is, we need a way for different parts of a
  7306. program to refer to the same piece of code.
  7307. %
  7308. Put another way, we need to move away from abstract syntax
  7309. \emph{trees} and instead use \emph{graphs}.
  7310. %
  7311. At the level of x86 assembly this is straightforward because we can
  7312. label the code for each branch and insert jumps in all the places that
  7313. need to execute the branch.
  7314. %
  7315. Likewise, our language \LangCIf{} provides the ability to label a
  7316. sequence of code and to jump to a label via \code{goto}.
  7317. %
  7318. %% In particular, we use a standard program representation called a
  7319. %% \emph{control flow graph} (CFG), due to Frances Elizabeth
  7320. %% \citet{Allen:1970uq}. \index{subject}{control-flow graph} Each vertex
  7321. %% is a labeled sequence of code, called a \emph{basic block}, and each
  7322. %% edge represents a jump to another block.
  7323. %
  7324. %% The nice thing about the output of \code{explicate\_control} is that
  7325. %% there are no unnecessary comparisons and every comparison is part of a
  7326. %% conditional jump.
  7327. %% The down-side of this output is that it includes
  7328. %% trivial blocks, such as the blocks labeled \code{block92} through
  7329. %% \code{block95}, that only jump to another block. We discuss a solution
  7330. %% to this problem in Section~\ref{sec:opt-jumps}.
  7331. {\if\edition\racketEd
  7332. %
  7333. Recall that in Section~\ref{sec:explicate-control-Lvar} we implement
  7334. \code{explicate\_control} for \LangVar{} using two mutually recursive
  7335. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  7336. former function translates expressions in tail position whereas the
  7337. later function translates expressions on the right-hand-side of a
  7338. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  7339. have a new kind of position to deal with: the predicate position of
  7340. the \key{if}. We need another function, \code{explicate\_pred}, that
  7341. decides how to compile an \key{if} by analyzing its predicate. So
  7342. \code{explicate\_pred} takes an \LangIf{} expression and two \LangCIf{}
  7343. tails for the then-branch and else-branch and outputs a tail. In the
  7344. following paragraphs we discuss specific cases in the
  7345. \code{explicate\_tail}, \code{explicate\_assign}, and
  7346. \code{explicate\_pred} functions.
  7347. %
  7348. \fi}
  7349. %
  7350. {\if\edition\pythonEd
  7351. %
  7352. We recommend implementing \code{explicate\_control} using the
  7353. following four auxiliary functions.
  7354. \begin{description}
  7355. \item[\code{explicate\_effect}] generates code for expressions as
  7356. statements, so their result is ignored and only their side effects
  7357. matter.
  7358. \item[\code{explicate\_assign}] generates code for expressions
  7359. on the right-hand side of an assignment.
  7360. \item[\code{explicate\_pred}] generates code for an \code{if}
  7361. expression or statement by analyzing the condition expression.
  7362. \item[\code{explicate\_stmt}] generates code for statements.
  7363. \end{description}
  7364. These four functions should build the dictionary of basic blocks. The
  7365. following auxiliary function can be used to create a new basic block
  7366. from a list of statements. It returns a \code{goto} statement that
  7367. jumps to the new basic block.
  7368. \begin{center}
  7369. \begin{minipage}{\textwidth}
  7370. \begin{lstlisting}
  7371. def create_block(stmts, basic_blocks):
  7372. label = label_name(generate_name('block'))
  7373. basic_blocks[label] = stmts
  7374. return Goto(label)
  7375. \end{lstlisting}
  7376. \end{minipage}
  7377. \end{center}
  7378. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  7379. \code{explicate\_control} pass.
  7380. The \code{explicate\_effect} function has three parameters: 1) the
  7381. expression to be compiled, 2) the already-compiled code for this
  7382. expression's \emph{continuation}, that is, the list of statements that
  7383. should execute after this expression, and 3) the dictionary of
  7384. generated basic blocks. The \code{explicate\_effect} function returns
  7385. a list of \LangCIf{} statements and it may add to the dictionary of
  7386. basic blocks.
  7387. %
  7388. Let's consider a few of the cases for the expression to be compiled.
  7389. If the expression to be compiled is a constant, then it can be
  7390. discarded because it has no side effects. If it's a \CREAD{}, then it
  7391. has a side-effect and should be preserved. So the expression should be
  7392. translated into a statement using the \code{Expr} AST class. If the
  7393. expression to be compiled is an \code{if} expression, we translate the
  7394. two branches using \code{explicate\_effect} and then translate the
  7395. condition expression using \code{explicate\_pred}, which generates
  7396. code for the entire \code{if}.
  7397. The \code{explicate\_assign} function has four parameters: 1) the
  7398. right-hand-side of the assignment, 2) the left-hand-side of the
  7399. assignment (the variable), 3) the continuation, and 4) the dictionary
  7400. of basic blocks. The \code{explicate\_assign} function returns a list
  7401. of \LangCIf{} statements and it may add to the dictionary of basic
  7402. blocks.
  7403. When the right-hand-side is an \code{if} expression, there is some
  7404. work to do. In particular, the two branches should be translated using
  7405. \code{explicate\_assign} and the condition expression should be
  7406. translated using \code{explicate\_pred}. Otherwise we can simply
  7407. generate an assignment statement, with the given left and right-hand
  7408. sides, concatenated with its continuation.
  7409. \begin{figure}[tbp]
  7410. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7411. def explicate_effect(e, cont, basic_blocks):
  7412. match e:
  7413. case IfExp(test, body, orelse):
  7414. ...
  7415. case Call(func, args):
  7416. ...
  7417. case Begin(body, result):
  7418. ...
  7419. case _:
  7420. ...
  7421. def explicate_assign(rhs, lhs, cont, basic_blocks):
  7422. match rhs:
  7423. case IfExp(test, body, orelse):
  7424. ...
  7425. case Begin(body, result):
  7426. ...
  7427. case _:
  7428. return [Assign([lhs], rhs)] + cont
  7429. def explicate_pred(cnd, thn, els, basic_blocks):
  7430. match cnd:
  7431. case Compare(left, [op], [right]):
  7432. goto_thn = create_block(thn, basic_blocks)
  7433. goto_els = create_block(els, basic_blocks)
  7434. return [If(cnd, [goto_thn], [goto_els])]
  7435. case Constant(True):
  7436. return thn;
  7437. case Constant(False):
  7438. return els;
  7439. case UnaryOp(Not(), operand):
  7440. ...
  7441. case IfExp(test, body, orelse):
  7442. ...
  7443. case Begin(body, result):
  7444. ...
  7445. case _:
  7446. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  7447. [create_block(els, basic_blocks)],
  7448. [create_block(thn, basic_blocks)])]
  7449. def explicate_stmt(s, cont, basic_blocks):
  7450. match s:
  7451. case Assign([lhs], rhs):
  7452. return explicate_assign(rhs, lhs, cont, basic_blocks)
  7453. case Expr(value):
  7454. return explicate_effect(value, cont, basic_blocks)
  7455. case If(test, body, orelse):
  7456. ...
  7457. def explicate_control(p):
  7458. match p:
  7459. case Module(body):
  7460. new_body = [Return(Constant(0))]
  7461. basic_blocks = {}
  7462. for s in reversed(body):
  7463. new_body = explicate_stmt(s, new_body, basic_blocks)
  7464. basic_blocks[label_name('start')] = new_body
  7465. return CProgram(basic_blocks)
  7466. \end{lstlisting}
  7467. \caption{Skeleton for the \code{explicate\_control} pass.}
  7468. \label{fig:explicate-control-Lif}
  7469. \end{figure}
  7470. \fi}
  7471. {\if\edition\racketEd
  7472. %
  7473. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  7474. additional cases for Boolean constants and \key{if}. The cases for
  7475. \code{if} should recursively compile the two branches using either
  7476. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  7477. cases should then invoke \code{explicate\_pred} on the condition
  7478. expression, passing in the generated code for the two branches. For
  7479. example, consider the following program with an \code{if} in tail
  7480. position.
  7481. \begin{lstlisting}
  7482. (let ([x (read)])
  7483. (if (eq? x 0) 42 777))
  7484. \end{lstlisting}
  7485. The two branches are recursively compiled to \code{return 42;} and
  7486. \code{return 777;}. We then delegate to \code{explicate\_pred},
  7487. passing the condition \code{(eq? x 0)} and the two return statements, which is
  7488. used as the result for \code{explicate\_tail}.
  7489. Next let us consider a program with an \code{if} on the right-hand
  7490. side of a \code{let}.
  7491. \begin{lstlisting}
  7492. (let ([y (read)])
  7493. (let ([x (if (eq? y 0) 40 777)])
  7494. (+ x 2)))
  7495. \end{lstlisting}
  7496. Note that the body of the inner \code{let} will have already been
  7497. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  7498. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  7499. to recursively process both branches of the \code{if}, so we generate
  7500. the following block using an auxiliary function named \code{create\_block}.
  7501. \begin{lstlisting}
  7502. block_6:
  7503. return (+ x 2)
  7504. \end{lstlisting}
  7505. and use \code{goto block\_6;} as the \code{cont} argument for
  7506. compiling the branches. So the two branches compile to
  7507. \begin{lstlisting}
  7508. x = 40;
  7509. goto block_6;
  7510. \end{lstlisting}
  7511. and
  7512. \begin{lstlisting}
  7513. x = 777;
  7514. goto block_6;
  7515. \end{lstlisting}
  7516. We then delegate to \code{explicate\_pred}, passing the condition \code{(eq? y
  7517. 0)} and the above code for the branches.
  7518. \fi}
  7519. {\if\edition\racketEd
  7520. \begin{figure}[tbp]
  7521. \begin{lstlisting}
  7522. (define (explicate_pred cnd thn els)
  7523. (match cnd
  7524. [(Var x) ___]
  7525. [(Let x rhs body) ___]
  7526. [(Prim 'not (list e)) ___]
  7527. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  7528. (IfStmt (Prim op es) (create_block thn)
  7529. (create_block els))]
  7530. [(Bool b) (if b thn els)]
  7531. [(If cnd^ thn^ els^) ___]
  7532. [else (error "explicate_pred unhandled case" cnd)]))
  7533. \end{lstlisting}
  7534. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  7535. \label{fig:explicate-pred}
  7536. \end{figure}
  7537. \fi}
  7538. \racket{The skeleton for the \code{explicate\_pred} function is given
  7539. in Figure~\ref{fig:explicate-pred}. It takes three parameters:
  7540. 1) \code{cnd}, the condition expression of the \code{if},
  7541. 2) \code{thn}, the code generated by explicate for the ``then'' branch,
  7542. and 3) \code{els}, the code generated by
  7543. explicate for the ``else'' branch. The \code{explicate\_pred}
  7544. function should match on \code{cnd} with a case for
  7545. every kind of expression that can have type \code{Boolean}.}
  7546. %
  7547. \python{The \code{explicate\_pred} function has four parameters: 1)
  7548. the condition expression, 2) the generated statements for the
  7549. ``then'' branch, 3) the generated statements for the ``else''
  7550. branch, and 4) the dictionary of basic blocks. The
  7551. \code{explicate\_pred} function returns a list of \LangCIf{}
  7552. statements and it may add to the dictionary of basic blocks.}
  7553. Consider the case for comparison operators. We translate the
  7554. comparison to an \code{if} statement whose branches are \code{goto}
  7555. statements created by applying \code{create\_block} to the code
  7556. generated for the \code{thn} and \code{els} branches. Let us
  7557. illustrate this translation with an example. Returning
  7558. to the program with an \code{if} expression in tail position,
  7559. we invoke \code{explicate\_pred} on its condition
  7560. \racket{\code{(eq? x 0)}}
  7561. \python{\code{x == 0}}
  7562. which happens to be a comparison operator.
  7563. {\if\edition\racketEd
  7564. \begin{lstlisting}
  7565. (let ([x (read)])
  7566. (if (eq? x 0) 42 777))
  7567. \end{lstlisting}
  7568. \fi}
  7569. {\if\edition\pythonEd
  7570. \begin{lstlisting}
  7571. x = input_int()
  7572. 42 if x == 0 else 777
  7573. \end{lstlisting}
  7574. \fi}
  7575. The two branches \code{42} and \code{777} were already compiled to \code{return}
  7576. statements, from which we now create the following blocks.
  7577. \begin{center}
  7578. \begin{minipage}{\textwidth}
  7579. \begin{lstlisting}
  7580. block_1:
  7581. return 42;
  7582. block_2:
  7583. return 777;
  7584. \end{lstlisting}
  7585. \end{minipage}
  7586. \end{center}
  7587. %
  7588. So \code{explicate\_pred} compiles the comparison
  7589. \racket{\code{(eq? x 0)}}
  7590. \python{\code{x == 0}}
  7591. to the following \code{if} statement.
  7592. %
  7593. {\if\edition\racketEd
  7594. \begin{center}
  7595. \begin{minipage}{\textwidth}
  7596. \begin{lstlisting}
  7597. if (eq? x 0)
  7598. goto block_1;
  7599. else
  7600. goto block_2;
  7601. \end{lstlisting}
  7602. \end{minipage}
  7603. \end{center}
  7604. \fi}
  7605. {\if\edition\pythonEd
  7606. \begin{center}
  7607. \begin{minipage}{\textwidth}
  7608. \begin{lstlisting}
  7609. if x == 0:
  7610. goto block_1;
  7611. else
  7612. goto block_2;
  7613. \end{lstlisting}
  7614. \end{minipage}
  7615. \end{center}
  7616. \fi}
  7617. Next consider the case for Boolean constants. We perform a kind of
  7618. partial evaluation\index{subject}{partial evaluation} and output
  7619. either the \code{thn} or \code{els} branch depending on whether the
  7620. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  7621. following program.
  7622. {\if\edition\racketEd
  7623. \begin{center}
  7624. \begin{minipage}{\textwidth}
  7625. \begin{lstlisting}
  7626. (if #t 42 777)
  7627. \end{lstlisting}
  7628. \end{minipage}
  7629. \end{center}
  7630. \fi}
  7631. {\if\edition\pythonEd
  7632. \begin{center}
  7633. \begin{minipage}{\textwidth}
  7634. \begin{lstlisting}
  7635. 42 if True else 777
  7636. \end{lstlisting}
  7637. \end{minipage}
  7638. \end{center}
  7639. \fi}
  7640. %
  7641. Again, the two branches \code{42} and \code{777} were compiled to
  7642. \code{return} statements, so \code{explicate\_pred} compiles the
  7643. constant
  7644. \racket{\code{\#t}}
  7645. \python{\code{True}}
  7646. to the code for the ``then'' branch.
  7647. \begin{center}
  7648. \begin{minipage}{\textwidth}
  7649. \begin{lstlisting}
  7650. return 42;
  7651. \end{lstlisting}
  7652. \end{minipage}
  7653. \end{center}
  7654. %
  7655. This case demonstrates that we sometimes discard the \code{thn} or
  7656. \code{els} blocks that are input to \code{explicate\_pred}.
  7657. The case for \key{if} expressions in \code{explicate\_pred} is
  7658. particularly illuminating because it deals with the challenges we
  7659. discussed above regarding nested \key{if} expressions
  7660. (Figure~\ref{fig:explicate-control-s1-38}). The
  7661. \racket{\lstinline{thn^}}\python{\code{body}} and
  7662. \racket{\lstinline{els^}}\python{\code{orelse}} branches of the
  7663. \key{if} inherit their context from the current one, that is,
  7664. predicate context. So you should recursively apply
  7665. \code{explicate\_pred} to the
  7666. \racket{\lstinline{thn^}}\python{\code{body}} and
  7667. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  7668. those recursive calls, pass \code{thn} and \code{els} as the extra
  7669. parameters. Thus, \code{thn} and \code{els} may get used twice, once
  7670. inside each recursive call. As discussed above, to avoid duplicating
  7671. code, we need to add them to the dictionary of basic blocks so that we
  7672. can instead refer to them by name and execute them with a \key{goto}.
  7673. {\if\edition\pythonEd
  7674. %
  7675. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  7676. three parameters: 1) the statement to be compiled, 2) the code for its
  7677. continuation, and 3) the dictionary of basic blocks. The
  7678. \code{explicate\_stmt} returns a list of statements and it may add to
  7679. the dictionary of basic blocks. The cases for assignment and an
  7680. expression-statement are given in full in the skeleton code: they
  7681. simply dispatch to \code{explicate\_assign} and
  7682. \code{explicate\_effect}, respectively. The case for \code{if}
  7683. statements is not given, and is similar to the case for \code{if}
  7684. expressions.
  7685. The \code{explicate\_control} function itself is given in
  7686. Figure~\ref{fig:explicate-control-Lif}. It applies
  7687. \code{explicate\_stmt} to each statement in the program, from back to
  7688. front. Thus, the result so-far, stored in \code{new\_body}, can be
  7689. used as the continuation parameter in the next call to
  7690. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  7691. \code{Return} statement. Once complete, we add the \code{new\_body} to
  7692. the dictionary of basic blocks, labeling it as the ``start'' block.
  7693. %
  7694. \fi}
  7695. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  7696. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  7697. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  7698. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  7699. %% results from the two recursive calls. We complete the case for
  7700. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  7701. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  7702. %% the result $B_5$.
  7703. %% \[
  7704. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  7705. %% \quad\Rightarrow\quad
  7706. %% B_5
  7707. %% \]
  7708. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  7709. %% inherit the current context, so they are in tail position. Thus, the
  7710. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  7711. %% \code{explicate\_tail}.
  7712. %% %
  7713. %% We need to pass $B_0$ as the accumulator argument for both of these
  7714. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  7715. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  7716. %% to the control-flow graph and obtain a promised goto $G_0$.
  7717. %% %
  7718. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  7719. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  7720. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  7721. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  7722. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  7723. %% \[
  7724. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  7725. %% \]
  7726. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  7727. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  7728. %% should not be confused with the labels for the blocks that appear in
  7729. %% the generated code. We initially construct unlabeled blocks; we only
  7730. %% attach labels to blocks when we add them to the control-flow graph, as
  7731. %% we see in the next case.
  7732. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  7733. %% function. The context of the \key{if} is an assignment to some
  7734. %% variable $x$ and then the control continues to some promised block
  7735. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  7736. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  7737. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  7738. %% branches of the \key{if} inherit the current context, so they are in
  7739. %% assignment positions. Let $B_2$ be the result of applying
  7740. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  7741. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  7742. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  7743. %% the result of applying \code{explicate\_pred} to the predicate
  7744. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  7745. %% translates to the promise $B_4$.
  7746. %% \[
  7747. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  7748. %% \]
  7749. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  7750. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  7751. \code{remove\_complex\_operands} pass and then the
  7752. \code{explicate\_control} pass on the example program. We walk through
  7753. the output program.
  7754. %
  7755. Following the order of evaluation in the output of
  7756. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  7757. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  7758. in the predicate of the inner \key{if}. In the output of
  7759. \code{explicate\_control}, in the
  7760. block labeled \code{start}, are two assignment statements followed by a
  7761. \code{if} statement that branches to \code{block\_8} or
  7762. \code{block\_9}. The blocks associated with those labels contain the
  7763. translations of the code
  7764. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7765. and
  7766. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  7767. respectively. In particular, we start \code{block\_8} with the
  7768. comparison
  7769. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7770. and then branch to \code{block\_4} or \code{block\_5}.
  7771. Here was see that our algorithm sometimes inserts unnecessary blocks:
  7772. \code{block\_4} is just a \code{goto} to \code{block\_2}
  7773. and \code{block\_5} is just a \code{goto} to \code{block\_3}.
  7774. It would be better to skip blocks \code{block\_4} and \code{block\_5}
  7775. and go directly to \code{block\_2} and \code{block\_3},
  7776. which we investigate in Section~\ref{sec:opt-jumps}.
  7777. Getting back to the example, \code{block\_2} and \code{block\_3},
  7778. corresponds to the two branches of the outer \key{if}, i.e.,
  7779. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  7780. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  7781. %
  7782. The story for \code{block\_9} is similar to that of \code{block\_8}.
  7783. %
  7784. \python{The \code{block\_1} corresponds to the \code{print} statment
  7785. at the end of the program.}
  7786. \begin{figure}[tbp]
  7787. {\if\edition\racketEd
  7788. \begin{tabular}{lll}
  7789. \begin{minipage}{0.4\textwidth}
  7790. % cond_test_41.rkt
  7791. \begin{lstlisting}
  7792. (let ([x (read)])
  7793. (let ([y (read)])
  7794. (if (if (< x 1)
  7795. (eq? x 0)
  7796. (eq? x 2))
  7797. (+ y 2)
  7798. (+ y 10))))
  7799. \end{lstlisting}
  7800. \end{minipage}
  7801. &
  7802. $\Rightarrow$
  7803. &
  7804. \begin{minipage}{0.55\textwidth}
  7805. \begin{lstlisting}
  7806. start:
  7807. x = (read);
  7808. y = (read);
  7809. if (< x 1)
  7810. goto block_8;
  7811. else
  7812. goto block_9;
  7813. block_8:
  7814. if (eq? x 0)
  7815. goto block_4;
  7816. else
  7817. goto block_5;
  7818. block_9:
  7819. if (eq? x 2)
  7820. goto block_6;
  7821. else
  7822. goto block_7;
  7823. block_4:
  7824. goto block_2;
  7825. block_5:
  7826. goto block_3;
  7827. block_6:
  7828. goto block_2;
  7829. block_7:
  7830. goto block_3;
  7831. block_2:
  7832. return (+ y 2);
  7833. block_3:
  7834. return (+ y 10);
  7835. \end{lstlisting}
  7836. \end{minipage}
  7837. \end{tabular}
  7838. \fi}
  7839. {\if\edition\pythonEd
  7840. \begin{tabular}{lll}
  7841. \begin{minipage}{0.4\textwidth}
  7842. % cond_test_41.rkt
  7843. \begin{lstlisting}
  7844. x = input_int()
  7845. y = input_int()
  7846. print(y + 2 \
  7847. if (x == 0 \
  7848. if x < 1 \
  7849. else x == 2) \
  7850. else y + 10)
  7851. \end{lstlisting}
  7852. \end{minipage}
  7853. &
  7854. $\Rightarrow$
  7855. &
  7856. \begin{minipage}{0.55\textwidth}
  7857. \begin{lstlisting}
  7858. start:
  7859. x = input_int()
  7860. y = input_int()
  7861. if x < 1:
  7862. goto block_8
  7863. else:
  7864. goto block_9
  7865. block_8:
  7866. if x == 0:
  7867. goto block_4
  7868. else:
  7869. goto block_5
  7870. block_9:
  7871. if x == 2:
  7872. goto block_6
  7873. else:
  7874. goto block_7
  7875. block_4:
  7876. goto block_2
  7877. block_5:
  7878. goto block_3
  7879. block_6:
  7880. goto block_2
  7881. block_7:
  7882. goto block_3
  7883. block_2:
  7884. tmp_0 = y + 2
  7885. goto block_1
  7886. block_3:
  7887. tmp_0 = y + 10
  7888. goto block_1
  7889. block_1:
  7890. print(tmp_0)
  7891. return 0
  7892. \end{lstlisting}
  7893. \end{minipage}
  7894. \end{tabular}
  7895. \fi}
  7896. \caption{Translation from \LangIf{} to \LangCIf{}
  7897. via the \code{explicate\_control}.}
  7898. \label{fig:explicate-control-s1-38}
  7899. \end{figure}
  7900. {\if\edition\racketEd
  7901. The way in which the \code{shrink} pass transforms logical operations
  7902. such as \code{and} and \code{or} can impact the quality of code
  7903. generated by \code{explicate\_control}. For example, consider the
  7904. following program.
  7905. % cond_test_21.rkt, and_eq_input.py
  7906. \begin{lstlisting}
  7907. (if (and (eq? (read) 0) (eq? (read) 1))
  7908. 0
  7909. 42)
  7910. \end{lstlisting}
  7911. The \code{and} operation should transform into something that the
  7912. \code{explicate\_pred} function can still analyze and descend through to
  7913. reach the underlying \code{eq?} conditions. Ideally, your
  7914. \code{explicate\_control} pass should generate code similar to the
  7915. following for the above program.
  7916. \begin{center}
  7917. \begin{lstlisting}
  7918. start:
  7919. tmp1 = (read);
  7920. if (eq? tmp1 0) goto block40;
  7921. else goto block39;
  7922. block40:
  7923. tmp2 = (read);
  7924. if (eq? tmp2 1) goto block38;
  7925. else goto block39;
  7926. block38:
  7927. return 0;
  7928. block39:
  7929. return 42;
  7930. \end{lstlisting}
  7931. \end{center}
  7932. \fi}
  7933. \begin{exercise}\normalfont\normalsize
  7934. \racket{
  7935. Implement the pass \code{explicate\_control} by adding the cases for
  7936. Boolean constants and \key{if} to the \code{explicate\_tail} and
  7937. \code{explicate\_assign} functions. Implement the auxiliary function
  7938. \code{explicate\_pred} for predicate contexts.}
  7939. \python{Implement \code{explicate\_control} pass with its
  7940. four auxiliary functions.}
  7941. %
  7942. Create test cases that exercise all of the new cases in the code for
  7943. this pass.
  7944. %
  7945. {\if\edition\racketEd
  7946. Add the following entry to the list of \code{passes} in
  7947. \code{run-tests.rkt} and then run this script to test your compiler.
  7948. \begin{lstlisting}
  7949. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  7950. \end{lstlisting}
  7951. \fi}
  7952. \end{exercise}
  7953. \clearpage
  7954. \section{Select Instructions}
  7955. \label{sec:select-Lif}
  7956. \index{subject}{instruction selection}
  7957. The \code{select\_instructions} pass translates \LangCIf{} to
  7958. \LangXIfVar{}.
  7959. %
  7960. \racket{Recall that we implement this pass using three auxiliary
  7961. functions, one for each of the non-terminals $\Atm$, $\Stmt$, and
  7962. $\Tail$.}
  7963. %
  7964. \racket{For $\Atm$, we have new cases for the Booleans.}
  7965. %
  7966. \python{We begin with the Boolean constants.}
  7967. We take the usual approach of encoding them as integers.
  7968. \[
  7969. \TRUE{} \quad\Rightarrow\quad \key{1}
  7970. \qquad\qquad
  7971. \FALSE{} \quad\Rightarrow\quad \key{0}
  7972. \]
  7973. For translating statements, we discuss a selection of cases. The \code{not}
  7974. operation can be implemented in terms of \code{xorq} as we discussed
  7975. at the beginning of this section. Given an assignment, if the
  7976. left-hand side variable is the same as the argument of \code{not},
  7977. then just the \code{xorq} instruction suffices.
  7978. \[
  7979. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  7980. \quad\Rightarrow\quad
  7981. \key{xorq}~\key{\$}1\key{,}~\Var
  7982. \]
  7983. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  7984. semantics of x86. In the following translation, let $\Arg$ be the
  7985. result of translating $\Atm$ to x86.
  7986. \[
  7987. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  7988. \quad\Rightarrow\quad
  7989. \begin{array}{l}
  7990. \key{movq}~\Arg\key{,}~\Var\\
  7991. \key{xorq}~\key{\$}1\key{,}~\Var
  7992. \end{array}
  7993. \]
  7994. Next consider the cases for equality. Translating this operation to
  7995. x86 is slightly involved due to the unusual nature of the \key{cmpq}
  7996. instruction discussed above. We recommend translating an assignment
  7997. with an equality on the right-hand side into a sequence of three
  7998. instructions. \\
  7999. \begin{tabular}{lll}
  8000. \begin{minipage}{0.4\textwidth}
  8001. \begin{lstlisting}
  8002. |$\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$|
  8003. \end{lstlisting}
  8004. \end{minipage}
  8005. &
  8006. $\Rightarrow$
  8007. &
  8008. \begin{minipage}{0.4\textwidth}
  8009. \begin{lstlisting}
  8010. cmpq |$\Arg_2$|, |$\Arg_1$|
  8011. sete %al
  8012. movzbq %al, |$\Var$|
  8013. \end{lstlisting}
  8014. \end{minipage}
  8015. \end{tabular} \\
  8016. The translations for the other comparison operators are similar to the
  8017. above but use different suffixes for the \code{set} instruction.
  8018. \racket{Regarding the $\Tail$ non-terminal, we have two new cases:
  8019. \key{goto} and \key{if} statements. Both are straightforward to
  8020. translate to x86.}
  8021. %
  8022. A \key{goto} statement becomes a jump instruction.
  8023. \[
  8024. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  8025. \]
  8026. %
  8027. An \key{if} statement becomes a compare instruction followed by a
  8028. conditional jump (for the ``then'' branch) and the fall-through is to
  8029. a regular jump (for the ``else'' branch).\\
  8030. \begin{tabular}{lll}
  8031. \begin{minipage}{0.4\textwidth}
  8032. \begin{lstlisting}
  8033. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  8034. goto |$\ell_1$||$\racket{\key{;}}$|
  8035. else|$\python{\key{:}}$|
  8036. goto |$\ell_2$||$\racket{\key{;}}$|
  8037. \end{lstlisting}
  8038. \end{minipage}
  8039. &
  8040. $\Rightarrow$
  8041. &
  8042. \begin{minipage}{0.4\textwidth}
  8043. \begin{lstlisting}
  8044. cmpq |$\Arg_2$|, |$\Arg_1$|
  8045. je |$\ell_1$|
  8046. jmp |$\ell_2$|
  8047. \end{lstlisting}
  8048. \end{minipage}
  8049. \end{tabular} \\
  8050. Again, the translations for the other comparison operators are similar to the
  8051. above but use different suffixes for the conditional jump instruction.
  8052. \python{Regarding the \key{return} statement, we recommend treating it
  8053. as an assignment to the \key{rax} register followed by a jump to the
  8054. conclusion of the \code{main} function.}
  8055. \begin{exercise}\normalfont\normalsize
  8056. Expand your \code{select\_instructions} pass to handle the new
  8057. features of the \LangIf{} language.
  8058. %
  8059. {\if\edition\racketEd
  8060. Add the following entry to the list of \code{passes} in
  8061. \code{run-tests.rkt}
  8062. \begin{lstlisting}
  8063. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  8064. \end{lstlisting}
  8065. \fi}
  8066. %
  8067. Run the script to test your compiler on all the test programs.
  8068. \end{exercise}
  8069. \section{Register Allocation}
  8070. \label{sec:register-allocation-Lif}
  8071. \index{subject}{register allocation}
  8072. The changes required for \LangIf{} affect liveness analysis, building the
  8073. interference graph, and assigning homes, but the graph coloring
  8074. algorithm itself does not change.
  8075. \subsection{Liveness Analysis}
  8076. \label{sec:liveness-analysis-Lif}
  8077. \index{subject}{liveness analysis}
  8078. Recall that for \LangVar{} we implemented liveness analysis for a
  8079. single basic block (Section~\ref{sec:liveness-analysis-Lvar}). With
  8080. the addition of \key{if} expressions to \LangIf{},
  8081. \code{explicate\_control} produces many basic blocks.
  8082. %% We recommend that you create a new auxiliary function named
  8083. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  8084. %% control-flow graph.
  8085. The first question is: in what order should we process the basic blocks?
  8086. Recall that to perform liveness analysis on a basic block we need to
  8087. know the live-after set for the last instruction in the block. If a
  8088. basic block has no successors (i.e. contains no jumps to other
  8089. blocks), then it has an empty live-after set and we can immediately
  8090. apply liveness analysis to it. If a basic block has some successors,
  8091. then we need to complete liveness analysis on those blocks
  8092. first. These ordering contraints are the reverse of a
  8093. \emph{topological order}\index{subject}{topological order} on a graph
  8094. representation of the program. In particular, the \emph{control flow
  8095. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  8096. of a program has a node for each basic block and an edge for each jump
  8097. from one block to another. It is straightforward to generate a CFG
  8098. from the dictionary of basic blocks. One then transposes the CFG and
  8099. applies the topological sort algorithm.
  8100. %
  8101. %
  8102. \racket{We recommend using the \code{tsort} and \code{transpose}
  8103. functions of the Racket \code{graph} package to accomplish this.}
  8104. %
  8105. \python{We provide implementations of \code{topological\_sort} and
  8106. \code{transpose} in the file \code{graph.py} of the support code.}
  8107. %
  8108. As an aside, a topological ordering is only guaranteed to exist if the
  8109. graph does not contain any cycles. This is the case for the
  8110. control-flow graphs that we generate from \LangIf{} programs.
  8111. However, in Chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  8112. and learn how to handle cycles in the control-flow graph.
  8113. \racket{You'll need to construct a directed graph to represent the
  8114. control-flow graph. Do not use the \code{directed-graph} of the
  8115. \code{graph} package because that only allows at most one edge
  8116. between each pair of vertices, but a control-flow graph may have
  8117. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  8118. file in the support code implements a graph representation that
  8119. allows multiple edges between a pair of vertices.}
  8120. {\if\edition\racketEd
  8121. The next question is how to analyze jump instructions. Recall that in
  8122. Section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  8123. \code{label->live} that maps each label to the set of live locations
  8124. at the beginning of its block. We use \code{label->live} to determine
  8125. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  8126. that we have many basic blocks, \code{label->live} needs to be updated
  8127. as we process the blocks. In particular, after performing liveness
  8128. analysis on a block, we take the live-before set of its first
  8129. instruction and associate that with the block's label in the
  8130. \code{label->live}.
  8131. \fi}
  8132. %
  8133. {\if\edition\pythonEd
  8134. %
  8135. The next question is how to analyze jump instructions. The locations
  8136. that are live before a \code{jmp} should be the locations in
  8137. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  8138. maintaining a dictionary named \code{live\_before\_block} that maps each
  8139. label to the $L_{\mathtt{before}}$ for the first instruction in its
  8140. block. After performing liveness analysis on each block, we take the
  8141. live-before set of its first instruction and associate that with the
  8142. block's label in the \code{live\_before\_block} dictionary.
  8143. %
  8144. \fi}
  8145. In \LangXIfVar{} we also have the conditional jump
  8146. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  8147. this instruction is particularly interesting because, during
  8148. compilation, we do not know which way a conditional jump will go. So
  8149. we do not know whether to use the live-before set for the following
  8150. instruction or the live-before set for the block associated with the
  8151. $\itm{label}$. However, there is no harm to the correctness of the
  8152. generated code if we classify more locations as live than the ones
  8153. that are truly live during one particular execution of the
  8154. instruction. Thus, we can take the union of the live-before sets from
  8155. the following instruction and from the mapping for $\itm{label}$ in
  8156. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  8157. The auxiliary functions for computing the variables in an
  8158. instruction's argument and for computing the variables read-from ($R$)
  8159. or written-to ($W$) by an instruction need to be updated to handle the
  8160. new kinds of arguments and instructions in \LangXIfVar{}.
  8161. \begin{exercise}\normalfont\normalsize
  8162. {\if\edition\racketEd
  8163. %
  8164. Update the \code{uncover\_live} pass to apply liveness analysis to
  8165. every basic block in the program.
  8166. %
  8167. Add the following entry to the list of \code{passes} in the
  8168. \code{run-tests.rkt} script.
  8169. \begin{lstlisting}
  8170. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  8171. \end{lstlisting}
  8172. \fi}
  8173. {\if\edition\pythonEd
  8174. %
  8175. Update the \code{uncover\_live} function to perform liveness analysis,
  8176. in reverse topological order, on all of the basic blocks in the
  8177. program.
  8178. %
  8179. \fi}
  8180. % Check that the live-after sets that you generate for
  8181. % example X matches the following... -Jeremy
  8182. \end{exercise}
  8183. \subsection{Build the Interference Graph}
  8184. \label{sec:build-interference-Lif}
  8185. Many of the new instructions in \LangXIfVar{} can be handled in the
  8186. same way as the instructions in \LangXVar{}.
  8187. % Thus, if your code was
  8188. % already quite general, it will not need to be changed to handle the
  8189. % new instructions. If your code is not general enough, we recommend that
  8190. % you change your code to be more general. For example, you can factor
  8191. % out the computing of the the read and write sets for each kind of
  8192. % instruction into auxiliary functions.
  8193. %
  8194. Some instructions, e.g., the \key{movzbq} instruction, require special care,
  8195. similar to the \key{movq} instruction. See rule number 1 in
  8196. Section~\ref{sec:build-interference}.
  8197. \begin{exercise}\normalfont\normalsize
  8198. Update the \code{build\_interference} pass for \LangXIfVar{}.
  8199. {\if\edition\racketEd
  8200. Add the following entries to the list of \code{passes} in the
  8201. \code{run-tests.rkt} script.
  8202. \begin{lstlisting}
  8203. (list "build_interference" build_interference interp-pseudo-x86-1)
  8204. (list "allocate_registers" allocate_registers interp-x86-1)
  8205. \end{lstlisting}
  8206. \fi}
  8207. % Check that the interference graph that you generate for
  8208. % example X matches the following graph G... -Jeremy
  8209. \end{exercise}
  8210. \section{Patch Instructions}
  8211. The new instructions \key{cmpq} and \key{movzbq} have some special
  8212. restrictions that need to be handled in the \code{patch\_instructions}
  8213. pass.
  8214. %
  8215. The second argument of the \key{cmpq} instruction must not be an
  8216. immediate value (such as an integer). So if you are comparing two
  8217. immediates, we recommend inserting a \key{movq} instruction to put the
  8218. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  8219. one memory reference.
  8220. %
  8221. The second argument of the \key{movzbq} must be a register.
  8222. \begin{exercise}\normalfont\normalsize
  8223. %
  8224. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  8225. %
  8226. {\if\edition\racketEd
  8227. Add the following entry to the list of \code{passes} in
  8228. \code{run-tests.rkt} and then run this script to test your compiler.
  8229. \begin{lstlisting}
  8230. (list "patch_instructions" patch_instructions interp-x86-1)
  8231. \end{lstlisting}
  8232. \fi}
  8233. \end{exercise}
  8234. {\if\edition\pythonEd
  8235. \section{Prelude and Conclusion}
  8236. \label{sec:prelude-conclusion-cond}
  8237. The generation of the \code{main} function with its prelude and
  8238. conclusion must change to accomodate how the program now consists of
  8239. one or more basic blocks. After the prelude in \code{main}, jump to
  8240. the \code{start} block. Place the conclusion in a basic block labelled
  8241. with \code{conclusion}.
  8242. \fi}
  8243. Figure~\ref{fig:if-example-x86} shows a simple example program in
  8244. \LangIf{} translated to x86, showing the results of
  8245. \code{explicate\_control}, \code{select\_instructions}, and the final
  8246. x86 assembly.
  8247. \begin{figure}[tbp]
  8248. {\if\edition\racketEd
  8249. \begin{tabular}{lll}
  8250. \begin{minipage}{0.4\textwidth}
  8251. % cond_test_20.rkt, eq_input.py
  8252. \begin{lstlisting}
  8253. (if (eq? (read) 1) 42 0)
  8254. \end{lstlisting}
  8255. $\Downarrow$
  8256. \begin{lstlisting}
  8257. start:
  8258. tmp7951 = (read);
  8259. if (eq? tmp7951 1)
  8260. goto block7952;
  8261. else
  8262. goto block7953;
  8263. block7952:
  8264. return 42;
  8265. block7953:
  8266. return 0;
  8267. \end{lstlisting}
  8268. $\Downarrow$
  8269. \begin{lstlisting}
  8270. start:
  8271. callq read_int
  8272. movq %rax, tmp7951
  8273. cmpq $1, tmp7951
  8274. je block7952
  8275. jmp block7953
  8276. block7953:
  8277. movq $0, %rax
  8278. jmp conclusion
  8279. block7952:
  8280. movq $42, %rax
  8281. jmp conclusion
  8282. \end{lstlisting}
  8283. \end{minipage}
  8284. &
  8285. $\Rightarrow\qquad$
  8286. \begin{minipage}{0.4\textwidth}
  8287. \begin{lstlisting}
  8288. start:
  8289. callq read_int
  8290. movq %rax, %rcx
  8291. cmpq $1, %rcx
  8292. je block7952
  8293. jmp block7953
  8294. block7953:
  8295. movq $0, %rax
  8296. jmp conclusion
  8297. block7952:
  8298. movq $42, %rax
  8299. jmp conclusion
  8300. .globl main
  8301. main:
  8302. pushq %rbp
  8303. movq %rsp, %rbp
  8304. pushq %r13
  8305. pushq %r12
  8306. pushq %rbx
  8307. pushq %r14
  8308. subq $0, %rsp
  8309. jmp start
  8310. conclusion:
  8311. addq $0, %rsp
  8312. popq %r14
  8313. popq %rbx
  8314. popq %r12
  8315. popq %r13
  8316. popq %rbp
  8317. retq
  8318. \end{lstlisting}
  8319. \end{minipage}
  8320. \end{tabular}
  8321. \fi}
  8322. {\if\edition\pythonEd
  8323. \begin{tabular}{lll}
  8324. \begin{minipage}{0.4\textwidth}
  8325. % cond_test_20.rkt, eq_input.py
  8326. \begin{lstlisting}
  8327. print(42 if input_int() == 1 else 0)
  8328. \end{lstlisting}
  8329. $\Downarrow$
  8330. \begin{lstlisting}
  8331. start:
  8332. tmp_0 = input_int()
  8333. if tmp_0 == 1:
  8334. goto block_3
  8335. else:
  8336. goto block_4
  8337. block_3:
  8338. tmp_1 = 42
  8339. goto block_2
  8340. block_4:
  8341. tmp_1 = 0
  8342. goto block_2
  8343. block_2:
  8344. print(tmp_1)
  8345. return 0
  8346. \end{lstlisting}
  8347. $\Downarrow$
  8348. \begin{lstlisting}
  8349. start:
  8350. callq read_int
  8351. movq %rax, tmp_0
  8352. cmpq 1, tmp_0
  8353. je block_3
  8354. jmp block_4
  8355. block_3:
  8356. movq 42, tmp_1
  8357. jmp block_2
  8358. block_4:
  8359. movq 0, tmp_1
  8360. jmp block_2
  8361. block_2:
  8362. movq tmp_1, %rdi
  8363. callq print_int
  8364. movq 0, %rax
  8365. jmp conclusion
  8366. \end{lstlisting}
  8367. \end{minipage}
  8368. &
  8369. $\Rightarrow\qquad$
  8370. \begin{minipage}{0.4\textwidth}
  8371. \begin{lstlisting}
  8372. .globl main
  8373. main:
  8374. pushq %rbp
  8375. movq %rsp, %rbp
  8376. subq $0, %rsp
  8377. jmp start
  8378. start:
  8379. callq read_int
  8380. movq %rax, %rcx
  8381. cmpq $1, %rcx
  8382. je block_3
  8383. jmp block_4
  8384. block_3:
  8385. movq $42, %rcx
  8386. jmp block_2
  8387. block_4:
  8388. movq $0, %rcx
  8389. jmp block_2
  8390. block_2:
  8391. movq %rcx, %rdi
  8392. callq print_int
  8393. movq $0, %rax
  8394. jmp conclusion
  8395. conclusion:
  8396. addq $0, %rsp
  8397. popq %rbp
  8398. retq
  8399. \end{lstlisting}
  8400. \end{minipage}
  8401. \end{tabular}
  8402. \fi}
  8403. \caption{Example compilation of an \key{if} expression to x86, showing
  8404. the results of \code{explicate\_control},
  8405. \code{select\_instructions}, and the final x86 assembly code. }
  8406. \label{fig:if-example-x86}
  8407. \end{figure}
  8408. \begin{figure}[tbp]
  8409. {\if\edition\racketEd
  8410. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8411. \node (Lif) at (0,2) {\large \LangIf{}};
  8412. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8413. \node (Lif-3) at (6,2) {\large \LangIf{}};
  8414. \node (Lif-4) at (9,2) {\large \LangIf{}};
  8415. \node (Lif-5) at (12,2) {\large \LangIfANF{}};
  8416. \node (C1-1) at (3,0) {\large \LangCIf{}};
  8417. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  8418. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  8419. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  8420. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  8421. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  8422. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  8423. \path[->,bend left=15] (Lif) edge [above] node {\ttfamily\footnotesize type\_check} (Lif-2);
  8424. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  8425. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  8426. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-5);
  8427. \path[->,bend left=15] (Lif-5) edge [left] node {\ttfamily\footnotesize explicate\_control} (C1-1);
  8428. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  8429. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  8430. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  8431. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  8432. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  8433. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86 } (x86-5);
  8434. \end{tikzpicture}
  8435. \fi}
  8436. {\if\edition\pythonEd
  8437. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8438. \node (Lif-1) at (0,2) {\large \LangIf{}};
  8439. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8440. \node (Lif-3) at (6,2) {\large \LangIfANF{}};
  8441. \node (C-1) at (3,0) {\large \LangCIf{}};
  8442. \node (x86-1) at (3,-2) {\large \LangXIfVar{}};
  8443. \node (x86-2) at (6,-2) {\large \LangXIfVar{}};
  8444. \node (x86-3) at (9,-2) {\large \LangXIf{}};
  8445. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  8446. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  8447. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-3);
  8448. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (C-1);
  8449. \path[->,bend right=15] (C-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  8450. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  8451. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  8452. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl. } (x86-4);
  8453. \end{tikzpicture}
  8454. \fi}
  8455. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  8456. \label{fig:Lif-passes}
  8457. \end{figure}
  8458. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  8459. compilation of \LangIf{}.
  8460. \section{Challenge: Optimize Blocks and Remove Jumps}
  8461. \label{sec:opt-jumps}
  8462. We discuss two optional challenges that involve optimizing the
  8463. control-flow of the program.
  8464. \subsection{Optimize Blocks}
  8465. The algorithm for \code{explicate\_control} that we discussed in
  8466. Section~\ref{sec:explicate-control-Lif} sometimes generates too many
  8467. blocks. It does so in two different ways.
  8468. %
  8469. First, recall how in Figure~\ref{fig:explicate-control-s1-38},
  8470. \code{block\_4} consists of just a jump to \code{block\_2}. We created
  8471. a new basic block from a single \code{goto} statement, whereas we
  8472. could have simply returned the \code{goto} statement. We can solve
  8473. this problem by modifying the \code{create\_block} function to
  8474. recognize this situation.
  8475. Second, \code{explicate\_control} creates a basic block whenever a
  8476. continuation \emph{might} get used more than once (whenever a
  8477. continuation is passed into two or more recursive calls). However,
  8478. some continuation parameters may not be used at all. For example, consider the
  8479. case for the constant \TRUE{} in \code{explicate\_pred}, where we
  8480. discard the \code{els} branch. So the question is how can we decide
  8481. whether to create a basic block?
  8482. The solution to this conundrum is to use \emph{lazy
  8483. evaluation}\index{subject}{lazy evaluation}~\citep{Friedman:1976aa}
  8484. to delay creating a basic block until the point in time where we know
  8485. it will be used.
  8486. %
  8487. {\if\edition\racketEd
  8488. %
  8489. Racket provides support for
  8490. lazy evaluation with the
  8491. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  8492. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  8493. \index{subject}{delay} creates a
  8494. \emph{promise}\index{subject}{promise} in which the evaluation of the
  8495. expressions is postponed. When \key{(force}
  8496. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  8497. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  8498. result of $e_n$ is cached in the promise and returned. If \code{force}
  8499. is applied again to the same promise, then the cached result is
  8500. returned. If \code{force} is applied to an argument that is not a
  8501. promise, \code{force} simply returns the argument.
  8502. %
  8503. \fi}
  8504. %
  8505. {\if\edition\pythonEd
  8506. %
  8507. While Python does not provide direct support for lazy evaluation, it
  8508. is easy to mimic. We can \emph{delay} the evaluation of a computation
  8509. by wrapping it inside a function with no parameters. We can
  8510. \emph{force} its evaluation by calling the function. However, in some
  8511. cases of \code{explicate\_pred}, etc., we will return a list of
  8512. statements and in other cases we will return a function that computes
  8513. a list of statements. We use the term \emph{promise} to refer to a
  8514. value that may be delayed. To uniformly deal with
  8515. promises, we define the following \code{force} function that checks
  8516. whether its input is delayed (i.e., whether it is a function) and then
  8517. either 1) calls the function, or 2) returns the input.
  8518. \begin{lstlisting}
  8519. def force(promise):
  8520. if isinstance(promise, types.FunctionType):
  8521. return promise()
  8522. else:
  8523. return promise
  8524. \end{lstlisting}
  8525. %
  8526. \fi}
  8527. We use promises for the input and output of the functions
  8528. \code{explicate\_pred}, \code{explicate\_assign},
  8529. %
  8530. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  8531. %
  8532. So instead of taking and returning lists of statments, they take and
  8533. return promises. Furthermore, when we come to a situation in which a
  8534. continuation might be used more than once, as in the case for
  8535. \code{if} in \code{explicate\_pred}, we create a delayed computation
  8536. that creates a basic block for each continuation (if there is not
  8537. already one) and then returns a \code{goto} statement to that basic
  8538. block.
  8539. %
  8540. {\if\edition\racketEd
  8541. %
  8542. The following auxiliary function named \code{create\_block} accomplishes
  8543. this task. It begins with \code{delay} to create a promise. When
  8544. forced, this promise will force the original promise. If that returns
  8545. a \code{goto} (because the block was already added to the control-flow
  8546. graph), then we return the \code{goto}. Otherwise we add the block to
  8547. the control-flow graph with another auxiliary function named
  8548. \code{add-node}. That function returns the label for the new block,
  8549. which we use to create a \code{goto}.
  8550. \begin{lstlisting}
  8551. (define (create_block tail)
  8552. (delay
  8553. (define t (force tail))
  8554. (match t
  8555. [(Goto label) (Goto label)]
  8556. [else (Goto (add-node t))])))
  8557. \end{lstlisting}
  8558. \fi}
  8559. {\if\edition\pythonEd
  8560. %
  8561. Here is the new version of the \code{create\_block} auxiliary function
  8562. that works on promises and that checks whether the block consists of a
  8563. solitary \code{goto} statement.\\
  8564. \begin{minipage}{\textwidth}
  8565. \begin{lstlisting}
  8566. def create_block(promise, basic_blocks):
  8567. stmts = force(promise)
  8568. match stmts:
  8569. case [Goto(l)]:
  8570. return Goto(l)
  8571. case _:
  8572. label = label_name(generate_name('block'))
  8573. basic_blocks[label] = stmts
  8574. return Goto(label)
  8575. \end{lstlisting}
  8576. \end{minipage}
  8577. \fi}
  8578. Figure~\ref{fig:explicate-control-challenge} shows the output of
  8579. \code{explicate\_control} on the example of the nested \code{if}
  8580. expressions with the two improvements discussed above. As you can
  8581. see, the number of basic blocks has been reduced from 10 blocks (see
  8582. Figure~\ref{fig:explicate-control-s1-38}) down to 6 blocks.
  8583. \begin{figure}[tbp]
  8584. {\if\edition\racketEd
  8585. \begin{tabular}{lll}
  8586. \begin{minipage}{0.4\textwidth}
  8587. % cond_test_41.rkt
  8588. \begin{lstlisting}
  8589. (let ([x (read)])
  8590. (let ([y (read)])
  8591. (if (if (< x 1)
  8592. (eq? x 0)
  8593. (eq? x 2))
  8594. (+ y 2)
  8595. (+ y 10))))
  8596. \end{lstlisting}
  8597. \end{minipage}
  8598. &
  8599. $\Rightarrow$
  8600. &
  8601. \begin{minipage}{0.55\textwidth}
  8602. \begin{lstlisting}
  8603. start:
  8604. x = (read);
  8605. y = (read);
  8606. if (< x 1) goto block40;
  8607. else goto block41;
  8608. block40:
  8609. if (eq? x 0) goto block38;
  8610. else goto block39;
  8611. block41:
  8612. if (eq? x 2) goto block38;
  8613. else goto block39;
  8614. block38:
  8615. return (+ y 2);
  8616. block39:
  8617. return (+ y 10);
  8618. \end{lstlisting}
  8619. \end{minipage}
  8620. \end{tabular}
  8621. \fi}
  8622. {\if\edition\pythonEd
  8623. \begin{tabular}{lll}
  8624. \begin{minipage}{0.4\textwidth}
  8625. % cond_test_41.rkt
  8626. \begin{lstlisting}
  8627. x = input_int()
  8628. y = input_int()
  8629. print(y + 2 \
  8630. if (x == 0 \
  8631. if x < 1 \
  8632. else x == 2) \
  8633. else y + 10)
  8634. \end{lstlisting}
  8635. \end{minipage}
  8636. &
  8637. $\Rightarrow$
  8638. &
  8639. \begin{minipage}{0.55\textwidth}
  8640. \begin{lstlisting}
  8641. start:
  8642. x = input_int()
  8643. y = input_int()
  8644. if x < 1:
  8645. goto block_4
  8646. else:
  8647. goto block_5
  8648. block_4:
  8649. if x == 0:
  8650. goto block_2
  8651. else:
  8652. goto block_3
  8653. block_5:
  8654. if x == 2:
  8655. goto block_2
  8656. else:
  8657. goto block_3
  8658. block_2:
  8659. tmp_0 = y + 2
  8660. goto block_1
  8661. block_3:
  8662. tmp_0 = y + 10
  8663. goto block_1
  8664. block_1:
  8665. print(tmp_0)
  8666. return 0
  8667. \end{lstlisting}
  8668. \end{minipage}
  8669. \end{tabular}
  8670. \fi}
  8671. \caption{Translation from \LangIf{} to \LangCIf{}
  8672. via the improved \code{explicate\_control}.}
  8673. \label{fig:explicate-control-challenge}
  8674. \end{figure}
  8675. %% Recall that in the example output of \code{explicate\_control} in
  8676. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  8677. %% \code{block60} are trivial blocks, they do nothing but jump to another
  8678. %% block. The first goal of this challenge assignment is to remove those
  8679. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  8680. %% \code{explicate\_control} on the left and shows the result of bypassing
  8681. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  8682. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  8683. %% \code{block55}. The optimized code on the right of
  8684. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  8685. %% \code{then} branch jumping directly to \code{block55}. The story is
  8686. %% similar for the \code{else} branch, as well as for the two branches in
  8687. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  8688. %% have been optimized in this way, there are no longer any jumps to
  8689. %% blocks \code{block57} through \code{block60}, so they can be removed.
  8690. %% \begin{figure}[tbp]
  8691. %% \begin{tabular}{lll}
  8692. %% \begin{minipage}{0.4\textwidth}
  8693. %% \begin{lstlisting}
  8694. %% block62:
  8695. %% tmp54 = (read);
  8696. %% if (eq? tmp54 2) then
  8697. %% goto block59;
  8698. %% else
  8699. %% goto block60;
  8700. %% block61:
  8701. %% tmp53 = (read);
  8702. %% if (eq? tmp53 0) then
  8703. %% goto block57;
  8704. %% else
  8705. %% goto block58;
  8706. %% block60:
  8707. %% goto block56;
  8708. %% block59:
  8709. %% goto block55;
  8710. %% block58:
  8711. %% goto block56;
  8712. %% block57:
  8713. %% goto block55;
  8714. %% block56:
  8715. %% return (+ 700 77);
  8716. %% block55:
  8717. %% return (+ 10 32);
  8718. %% start:
  8719. %% tmp52 = (read);
  8720. %% if (eq? tmp52 1) then
  8721. %% goto block61;
  8722. %% else
  8723. %% goto block62;
  8724. %% \end{lstlisting}
  8725. %% \end{minipage}
  8726. %% &
  8727. %% $\Rightarrow$
  8728. %% &
  8729. %% \begin{minipage}{0.55\textwidth}
  8730. %% \begin{lstlisting}
  8731. %% block62:
  8732. %% tmp54 = (read);
  8733. %% if (eq? tmp54 2) then
  8734. %% goto block55;
  8735. %% else
  8736. %% goto block56;
  8737. %% block61:
  8738. %% tmp53 = (read);
  8739. %% if (eq? tmp53 0) then
  8740. %% goto block55;
  8741. %% else
  8742. %% goto block56;
  8743. %% block56:
  8744. %% return (+ 700 77);
  8745. %% block55:
  8746. %% return (+ 10 32);
  8747. %% start:
  8748. %% tmp52 = (read);
  8749. %% if (eq? tmp52 1) then
  8750. %% goto block61;
  8751. %% else
  8752. %% goto block62;
  8753. %% \end{lstlisting}
  8754. %% \end{minipage}
  8755. %% \end{tabular}
  8756. %% \caption{Optimize jumps by removing trivial blocks.}
  8757. %% \label{fig:optimize-jumps}
  8758. %% \end{figure}
  8759. %% The name of this pass is \code{optimize-jumps}. We recommend
  8760. %% implementing this pass in two phases. The first phrase builds a hash
  8761. %% table that maps labels to possibly improved labels. The second phase
  8762. %% changes the target of each \code{goto} to use the improved label. If
  8763. %% the label is for a trivial block, then the hash table should map the
  8764. %% label to the first non-trivial block that can be reached from this
  8765. %% label by jumping through trivial blocks. If the label is for a
  8766. %% non-trivial block, then the hash table should map the label to itself;
  8767. %% we do not want to change jumps to non-trivial blocks.
  8768. %% The first phase can be accomplished by constructing an empty hash
  8769. %% table, call it \code{short-cut}, and then iterating over the control
  8770. %% flow graph. Each time you encouter a block that is just a \code{goto},
  8771. %% then update the hash table, mapping the block's source to the target
  8772. %% of the \code{goto}. Also, the hash table may already have mapped some
  8773. %% labels to the block's source, to you must iterate through the hash
  8774. %% table and update all of those so that they instead map to the target
  8775. %% of the \code{goto}.
  8776. %% For the second phase, we recommend iterating through the $\Tail$ of
  8777. %% each block in the program, updating the target of every \code{goto}
  8778. %% according to the mapping in \code{short-cut}.
  8779. \begin{exercise}\normalfont\normalsize
  8780. Implement the improvements to the \code{explicate\_control} pass.
  8781. Check that it removes trivial blocks in a few example programs. Then
  8782. check that your compiler still passes all of your tests.
  8783. \end{exercise}
  8784. \subsection{Remove Jumps}
  8785. There is an opportunity for removing jumps that is apparent in the
  8786. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  8787. ends with a jump to \code{block7953} and there are no other jumps to
  8788. \code{block7953} in the rest of the program. In this situation we can
  8789. avoid the runtime overhead of this jump by merging \code{block7953}
  8790. into the preceding block, in this case the \code{start} block.
  8791. Figure~\ref{fig:remove-jumps} shows the output of
  8792. \code{select\_instructions} on the left and the result of this
  8793. optimization on the right.
  8794. \begin{figure}[tbp]
  8795. {\if\edition\racketEd
  8796. \begin{tabular}{lll}
  8797. \begin{minipage}{0.5\textwidth}
  8798. % cond_test_20.rkt
  8799. \begin{lstlisting}
  8800. start:
  8801. callq read_int
  8802. movq %rax, tmp7951
  8803. cmpq $1, tmp7951
  8804. je block7952
  8805. jmp block7953
  8806. block7953:
  8807. movq $0, %rax
  8808. jmp conclusion
  8809. block7952:
  8810. movq $42, %rax
  8811. jmp conclusion
  8812. \end{lstlisting}
  8813. \end{minipage}
  8814. &
  8815. $\Rightarrow\qquad$
  8816. \begin{minipage}{0.4\textwidth}
  8817. \begin{lstlisting}
  8818. start:
  8819. callq read_int
  8820. movq %rax, tmp7951
  8821. cmpq $1, tmp7951
  8822. je block7952
  8823. movq $0, %rax
  8824. jmp conclusion
  8825. block7952:
  8826. movq $42, %rax
  8827. jmp conclusion
  8828. \end{lstlisting}
  8829. \end{minipage}
  8830. \end{tabular}
  8831. \fi}
  8832. {\if\edition\pythonEd
  8833. \begin{tabular}{lll}
  8834. \begin{minipage}{0.5\textwidth}
  8835. % cond_test_20.rkt
  8836. \begin{lstlisting}
  8837. start:
  8838. callq read_int
  8839. movq %rax, tmp_0
  8840. cmpq 1, tmp_0
  8841. je block_3
  8842. jmp block_4
  8843. block_3:
  8844. movq 42, tmp_1
  8845. jmp block_2
  8846. block_4:
  8847. movq 0, tmp_1
  8848. jmp block_2
  8849. block_2:
  8850. movq tmp_1, %rdi
  8851. callq print_int
  8852. movq 0, %rax
  8853. jmp conclusion
  8854. \end{lstlisting}
  8855. \end{minipage}
  8856. &
  8857. $\Rightarrow\qquad$
  8858. \begin{minipage}{0.4\textwidth}
  8859. \begin{lstlisting}
  8860. start:
  8861. callq read_int
  8862. movq %rax, tmp_0
  8863. cmpq 1, tmp_0
  8864. je block_3
  8865. movq 0, tmp_1
  8866. jmp block_2
  8867. block_3:
  8868. movq 42, tmp_1
  8869. jmp block_2
  8870. block_2:
  8871. movq tmp_1, %rdi
  8872. callq print_int
  8873. movq 0, %rax
  8874. jmp conclusion
  8875. \end{lstlisting}
  8876. \end{minipage}
  8877. \end{tabular}
  8878. \fi}
  8879. \caption{Merging basic blocks by removing unnecessary jumps.}
  8880. \label{fig:remove-jumps}
  8881. \end{figure}
  8882. \begin{exercise}\normalfont\normalsize
  8883. %
  8884. Implement a pass named \code{remove\_jumps} that merges basic blocks
  8885. into their preceding basic block, when there is only one preceding
  8886. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  8887. %
  8888. {\if\edition\racketEd
  8889. In the \code{run-tests.rkt} script, add the following entry to the
  8890. list of \code{passes} between \code{allocate\_registers}
  8891. and \code{patch\_instructions}.
  8892. \begin{lstlisting}
  8893. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  8894. \end{lstlisting}
  8895. \fi}
  8896. %
  8897. Run the script to test your compiler.
  8898. %
  8899. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  8900. blocks on several test programs.
  8901. \end{exercise}
  8902. \section{Further Reading}
  8903. \label{sec:cond-further-reading}
  8904. The algorithm for the \code{explicate\_control} pass is based on the
  8905. \code{explose-basic-blocks} pass in the course notes of
  8906. \citet{Dybvig:2010aa}.
  8907. %
  8908. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  8909. \citet{Appel:2003fk}, and is related to translations into continuation
  8910. passing
  8911. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  8912. %
  8913. The treatment of conditionals in the \code{explicate\_control} pass is
  8914. similar to short-cut boolean
  8915. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  8916. and the case-of-case transformation of \citet{PeytonJones:1998}.
  8917. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8918. \chapter{Loops and Dataflow Analysis}
  8919. \label{ch:Lwhile}
  8920. % TODO: define R'_8
  8921. % TODO: multi-graph
  8922. {\if\edition\racketEd
  8923. %
  8924. In this chapter we study two features that are the hallmarks of
  8925. imperative programming languages: loops and assignments to local
  8926. variables. The following example demonstrates these new features by
  8927. computing the sum of the first five positive integers.
  8928. % similar to loop_test_1.rkt
  8929. \begin{lstlisting}
  8930. (let ([sum 0])
  8931. (let ([i 5])
  8932. (begin
  8933. (while (> i 0)
  8934. (begin
  8935. (set! sum (+ sum i))
  8936. (set! i (- i 1))))
  8937. sum)))
  8938. \end{lstlisting}
  8939. The \code{while} loop consists of a condition and a
  8940. body\footnote{The \code{while} loop in particular is not a built-in
  8941. feature of the Racket language, but Racket includes many looping
  8942. constructs and it is straightforward to define \code{while} as a
  8943. macro.}. The body is evaluated repeatedly so long as the condition
  8944. remains true.
  8945. %
  8946. The \code{set!} consists of a variable and a right-hand-side
  8947. expression. The \code{set!} updates value of the variable to the
  8948. value of the right-hand-side.
  8949. %
  8950. The primary purpose of both the \code{while} loop and \code{set!} is
  8951. to cause side effects, so they do not have a meaningful result
  8952. value. Instead their result is the \code{\#<void>} value. The
  8953. expression \code{(void)} is an explicit way to create the
  8954. \code{\#<void>} value and it has type \code{Void}. The
  8955. \code{\#<void>} value can be passed around just like other values
  8956. inside an \LangLoop{} program and a \code{\#<void>} value can be
  8957. compared for equality with another \code{\#<void>} value. However,
  8958. there are no other operations specific to the the \code{\#<void>}
  8959. value in \LangLoop{}. In contrast, Racket defines the \code{void?}
  8960. predicate that returns \code{\#t} when applied to \code{\#<void>} and
  8961. \code{\#f} otherwise.
  8962. %
  8963. \footnote{Racket's \code{Void} type corresponds to what is called the
  8964. \code{Unit} type in the programming languages literature. Racket's
  8965. \code{Void} type is inhabited by a single value \code{\#<void>}
  8966. which corresponds to \code{unit} or \code{()} in the
  8967. literature~\citep{Pierce:2002hj}.}.
  8968. %
  8969. With the addition of side-effecting features such as \code{while} loop
  8970. and \code{set!}, it is helpful to also include in a language feature
  8971. for sequencing side effects: the \code{begin} expression. It consists
  8972. of one or more subexpressions that are evaluated left-to-right.
  8973. %
  8974. \fi}
  8975. {\if\edition\pythonEd
  8976. %
  8977. In this chapter we study loops, one of the hallmarks of imperative
  8978. programming languages. The following example demonstrates the
  8979. \code{while} loop by computing the sum of the first five positive
  8980. integers.
  8981. \begin{lstlisting}
  8982. sum = 0
  8983. i = 5
  8984. while i > 0:
  8985. sum = sum + i
  8986. i = i - 1
  8987. print(sum)
  8988. \end{lstlisting}
  8989. The \code{while} loop consists of a condition expression and a body (a
  8990. sequence of statements). The body is evaluated repeatedly so long as
  8991. the condition remains true.
  8992. %
  8993. \fi}
  8994. \section{The \LangLoop{} Language}
  8995. \newcommand{\LwhileGrammarRacket}{
  8996. \begin{array}{lcl}
  8997. \Type &::=& \key{Void}\\
  8998. \Exp &::=& \CSETBANG{\Var}{\Exp}
  8999. \MID \CBEGIN{\Exp\ldots}{\Exp}
  9000. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  9001. \end{array}
  9002. }
  9003. \newcommand{\LwhileASTRacket}{
  9004. \begin{array}{lcl}
  9005. \Type &::=& \key{Void}\\
  9006. \Exp &::=& \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp}\\
  9007. &\MID& \WHILE{\Exp}{\Exp} \MID \VOID{}
  9008. \end{array}
  9009. }
  9010. \newcommand{\LwhileGrammarPython}{
  9011. \begin{array}{rcl}
  9012. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  9013. \end{array}
  9014. }
  9015. \newcommand{\LwhileASTPython}{
  9016. \begin{array}{lcl}
  9017. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  9018. \end{array}
  9019. }
  9020. \begin{figure}[tp]
  9021. \centering
  9022. \fbox{
  9023. \begin{minipage}{0.96\textwidth}
  9024. \small
  9025. {\if\edition\racketEd
  9026. \[
  9027. \begin{array}{l}
  9028. \gray{\LintGrammarRacket{}} \\ \hline
  9029. \gray{\LvarGrammarRacket{}} \\ \hline
  9030. \gray{\LifGrammarRacket{}} \\ \hline
  9031. \LwhileGrammarRacket \\
  9032. \begin{array}{lcl}
  9033. \LangLoopM{} &::=& \Exp
  9034. \end{array}
  9035. \end{array}
  9036. \]
  9037. \fi}
  9038. {\if\edition\pythonEd
  9039. \[
  9040. \begin{array}{l}
  9041. \gray{\LintGrammarPython} \\ \hline
  9042. \gray{\LvarGrammarPython} \\ \hline
  9043. \gray{\LifGrammarPython} \\ \hline
  9044. \LwhileGrammarPython \\
  9045. \begin{array}{rcl}
  9046. \LangLoopM{} &::=& \Stmt^{*}
  9047. \end{array}
  9048. \end{array}
  9049. \]
  9050. \fi}
  9051. \end{minipage}
  9052. }
  9053. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-concrete-syntax}).}
  9054. \label{fig:Lwhile-concrete-syntax}
  9055. \end{figure}
  9056. \begin{figure}[tp]
  9057. \centering
  9058. \fbox{
  9059. \begin{minipage}{0.96\textwidth}
  9060. \small
  9061. {\if\edition\racketEd
  9062. \[
  9063. \begin{array}{l}
  9064. \gray{\LintOpAST} \\ \hline
  9065. \gray{\LvarASTRacket{}} \\ \hline
  9066. \gray{\LifASTRacket{}} \\ \hline
  9067. \LwhileASTRacket{} \\
  9068. \begin{array}{lcl}
  9069. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  9070. \end{array}
  9071. \end{array}
  9072. \]
  9073. \fi}
  9074. {\if\edition\pythonEd
  9075. \[
  9076. \begin{array}{l}
  9077. \gray{\LintASTPython} \\ \hline
  9078. \gray{\LvarASTPython} \\ \hline
  9079. \gray{\LifASTPython} \\ \hline
  9080. \LwhileASTPython \\
  9081. \begin{array}{lcl}
  9082. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  9083. \end{array}
  9084. \end{array}
  9085. \]
  9086. \fi}
  9087. \end{minipage}
  9088. }
  9089. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-syntax}).}
  9090. \label{fig:Lwhile-syntax}
  9091. \end{figure}
  9092. The concrete syntax of \LangLoop{} is defined in
  9093. Figure~\ref{fig:Lwhile-concrete-syntax} and its abstract syntax is defined
  9094. in Figure~\ref{fig:Lwhile-syntax}.
  9095. %
  9096. The definitional interpreter for \LangLoop{} is shown in
  9097. Figure~\ref{fig:interp-Rwhile}.
  9098. %
  9099. {\if\edition\racketEd
  9100. %
  9101. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  9102. and \code{Void} and we make changes to the cases for \code{Var} and
  9103. \code{Let} regarding variables. To support assignment to variables and
  9104. to make their lifetimes indefinite (see the second example in
  9105. Section~\ref{sec:assignment-scoping}), we box the value that is bound
  9106. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  9107. value.
  9108. %
  9109. Now to discuss the new cases. For \code{SetBang}, we lookup the
  9110. variable in the environment to obtain a boxed value and then we change
  9111. it using \code{set-box!} to the result of evaluating the right-hand
  9112. side. The result value of a \code{SetBang} is \code{void}.
  9113. %
  9114. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  9115. if the result is true, 2) evaluate the body.
  9116. The result value of a \code{while} loop is also \code{void}.
  9117. %
  9118. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  9119. subexpressions \itm{es} for their effects and then evaluates
  9120. and returns the result from \itm{body}.
  9121. %
  9122. The $\VOID{}$ expression produces the \code{void} value.
  9123. %
  9124. \fi}
  9125. {\if\edition\pythonEd
  9126. %
  9127. We add a new case for \code{While} in the \code{interp\_stmts}
  9128. function, where we repeatedly interpret the \code{body} so long as the
  9129. \code{test} expression remains true.
  9130. %
  9131. \fi}
  9132. \begin{figure}[tbp]
  9133. {\if\edition\racketEd
  9134. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9135. (define interp-Rwhile_class
  9136. (class interp-Rany_class
  9137. (super-new)
  9138. (define/override ((interp-exp env) e)
  9139. (define recur (interp-exp env))
  9140. (match e
  9141. [(SetBang x rhs)
  9142. (set-box! (lookup x env) (recur rhs))]
  9143. [(WhileLoop cnd body)
  9144. (define (loop)
  9145. (cond [(recur cnd) (recur body) (loop)]
  9146. [else (void)]))
  9147. (loop)]
  9148. [(Begin es body)
  9149. (for ([e es]) (recur e))
  9150. (recur body)]
  9151. [(Void) (void)]
  9152. [else ((super interp-exp env) e)]))
  9153. ))
  9154. (define (interp-Rwhile p)
  9155. (send (new interp-Rwhile_class) interp-program p))
  9156. \end{lstlisting}
  9157. \fi}
  9158. {\if\edition\pythonEd
  9159. \begin{lstlisting}
  9160. class InterpLwhile(InterpLif):
  9161. def interp_stmts(self, ss, env):
  9162. if len(ss) == 0:
  9163. return
  9164. match ss[0]:
  9165. case While(test, body, []):
  9166. while self.interp_exp(test, env):
  9167. self.interp_stmts(body, env)
  9168. return self.interp_stmts(ss[1:], env)
  9169. case _:
  9170. return super().interp_stmts(ss, env)
  9171. \end{lstlisting}
  9172. \fi}
  9173. \caption{Interpreter for \LangLoop{}.}
  9174. \label{fig:interp-Rwhile}
  9175. \end{figure}
  9176. The type checker for \LangLoop{} is defined in
  9177. Figure~\ref{fig:type-check-Rwhile}.
  9178. %
  9179. {\if\edition\racketEd
  9180. %
  9181. For \LangLoop{} we add a type named \code{Void} and the only value of
  9182. this type is the \code{void} value.
  9183. %
  9184. The type checking of the \code{SetBang} expression requires the type of
  9185. the variable and the right-hand-side to agree. The result type is
  9186. \code{Void}. For \code{while}, the condition must be a
  9187. \code{Boolean}. The result type is also \code{Void}. For
  9188. \code{Begin}, the result type is the type of its last subexpression.
  9189. %
  9190. \fi}
  9191. %
  9192. {\if\edition\pythonEd
  9193. %
  9194. A \code{while} loop is well typed if the type of the \code{test}
  9195. expression is \code{bool} and the statements in the \code{body} are
  9196. well typed.
  9197. %
  9198. \fi}
  9199. \begin{figure}[tbp]
  9200. {\if\edition\racketEd
  9201. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9202. (define type-check-Rwhile_class
  9203. (class type-check-Rany_class
  9204. (super-new)
  9205. (inherit check-type-equal?)
  9206. (define/override (type-check-exp env)
  9207. (lambda (e)
  9208. (define recur (type-check-exp env))
  9209. (match e
  9210. [(SetBang x rhs)
  9211. (define-values (rhs^ rhsT) (recur rhs))
  9212. (define varT (dict-ref env x))
  9213. (check-type-equal? rhsT varT e)
  9214. (values (SetBang x rhs^) 'Void)]
  9215. [(WhileLoop cnd body)
  9216. (define-values (cnd^ Tc) (recur cnd))
  9217. (check-type-equal? Tc 'Boolean e)
  9218. (define-values (body^ Tbody) ((type-check-exp env) body))
  9219. (values (WhileLoop cnd^ body^) 'Void)]
  9220. [(Begin es body)
  9221. (define-values (es^ ts)
  9222. (for/lists (l1 l2) ([e es]) (recur e)))
  9223. (define-values (body^ Tbody) (recur body))
  9224. (values (Begin es^ body^) Tbody)]
  9225. [else ((super type-check-exp env) e)])))
  9226. ))
  9227. (define (type-check-Rwhile p)
  9228. (send (new type-check-Rwhile_class) type-check-program p))
  9229. \end{lstlisting}
  9230. \fi}
  9231. {\if\edition\pythonEd
  9232. \begin{lstlisting}
  9233. class TypeCheckLwhile(TypeCheckLif):
  9234. def type_check_stmts(self, ss, env):
  9235. if len(ss) == 0:
  9236. return
  9237. match ss[0]:
  9238. case While(test, body, []):
  9239. test_t = self.type_check_exp(test, env)
  9240. check_type_equal(bool, test_t, test)
  9241. body_t = self.type_check_stmts(body, env)
  9242. return self.type_check_stmts(ss[1:], env)
  9243. case _:
  9244. return super().type_check_stmts(ss, env)
  9245. \end{lstlisting}
  9246. \fi}
  9247. \caption{Type checker for the \LangLoop{} language.}
  9248. \label{fig:type-check-Rwhile}
  9249. \end{figure}
  9250. {\if\edition\racketEd
  9251. %
  9252. At first glance, the translation of these language features to x86
  9253. seems straightforward because the \LangCIf{} intermediate language
  9254. already supports all of the ingredients that we need: assignment,
  9255. \code{goto}, conditional branching, and sequencing. However, there are
  9256. complications that arise which we discuss in the next section. After
  9257. that we introduce the changes necessary to the existing passes.
  9258. %
  9259. \fi}
  9260. {\if\edition\pythonEd
  9261. %
  9262. At first glance, the translation of \code{while} loops to x86 seems
  9263. straightforward because the \LangCIf{} intermediate language already
  9264. supports \code{goto} and conditional branching. However, there are
  9265. complications that arise which we discuss in the next section. After
  9266. that we introduce the changes necessary to the existing passes.
  9267. %
  9268. \fi}
  9269. \section{Cyclic Control Flow and Dataflow Analysis}
  9270. \label{sec:dataflow-analysis}
  9271. Up until this point the control-flow graphs of the programs generated
  9272. in \code{explicate\_control} were guaranteed to be acyclic. However,
  9273. each \code{while} loop introduces a cycle in the control-flow graph.
  9274. But does that matter?
  9275. %
  9276. Indeed it does. Recall that for register allocation, the compiler
  9277. performs liveness analysis to determine which variables can share the
  9278. same register. To accomplish this we analyzed the control-flow graph
  9279. in reverse topological order
  9280. (Section~\ref{sec:liveness-analysis-Lif}), but topological order is
  9281. only well-defined for acyclic graphs.
  9282. Let us return to the example of computing the sum of the first five
  9283. positive integers. Here is the program after instruction selection but
  9284. before register allocation.
  9285. \begin{center}
  9286. {\if\edition\racketEd
  9287. \begin{minipage}{0.45\textwidth}
  9288. \begin{lstlisting}
  9289. (define (main) : Integer
  9290. mainstart:
  9291. movq $0, sum
  9292. movq $5, i
  9293. jmp block5
  9294. block5:
  9295. movq i, tmp3
  9296. cmpq tmp3, $0
  9297. jl block7
  9298. jmp block8
  9299. \end{lstlisting}
  9300. \end{minipage}
  9301. \begin{minipage}{0.45\textwidth}
  9302. \begin{lstlisting}
  9303. block7:
  9304. addq i, sum
  9305. movq $1, tmp4
  9306. negq tmp4
  9307. addq tmp4, i
  9308. jmp block5
  9309. block8:
  9310. movq $27, %rax
  9311. addq sum, %rax
  9312. jmp mainconclusion
  9313. )
  9314. \end{lstlisting}
  9315. \end{minipage}
  9316. \fi}
  9317. {\if\edition\pythonEd
  9318. \begin{minipage}{0.45\textwidth}
  9319. \begin{lstlisting}
  9320. mainstart:
  9321. movq $0, sum
  9322. movq $5, i
  9323. jmp block5
  9324. block5:
  9325. cmpq $0, i
  9326. jg block7
  9327. jmp block8
  9328. \end{lstlisting}
  9329. \end{minipage}
  9330. \begin{minipage}{0.45\textwidth}
  9331. \begin{lstlisting}
  9332. block7:
  9333. addq i, sum
  9334. subq $1, i
  9335. jmp block5
  9336. block8:
  9337. movq sum, %rdi
  9338. callq print_int
  9339. movq $0, %rax
  9340. jmp mainconclusion
  9341. \end{lstlisting}
  9342. \end{minipage}
  9343. \fi}
  9344. \end{center}
  9345. Recall that liveness analysis works backwards, starting at the end
  9346. of each function. For this example we could start with \code{block8}
  9347. because we know what is live at the beginning of the conclusion,
  9348. just \code{rax} and \code{rsp}. So the live-before set
  9349. for \code{block8} is $\{\ttm{rsp},\ttm{sum}\}$.
  9350. %
  9351. Next we might try to analyze \code{block5} or \code{block7}, but
  9352. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  9353. we are stuck.
  9354. The way out of this impasse is to realize that we can compute an
  9355. under-approximation of the live-before set by starting with empty
  9356. live-after sets. By \emph{under-approximation}, we mean that the set
  9357. only contains variables that are live for some execution of the
  9358. program, but the set may be missing some variables. Next, the
  9359. under-approximations for each block can be improved by 1) updating the
  9360. live-after set for each block using the approximate live-before sets
  9361. from the other blocks and 2) perform liveness analysis again on each
  9362. block. In fact, by iterating this process, the under-approximations
  9363. eventually become the correct solutions!
  9364. %
  9365. This approach of iteratively analyzing a control-flow graph is
  9366. applicable to many static analysis problems and goes by the name
  9367. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  9368. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  9369. Washington.
  9370. Let us apply this approach to the above example. We use the empty set
  9371. for the initial live-before set for each block. Let $m_0$ be the
  9372. following mapping from label names to sets of locations (variables and
  9373. registers).
  9374. \begin{center}
  9375. \begin{lstlisting}
  9376. mainstart: {}, block5: {}, block7: {}, block8: {}
  9377. \end{lstlisting}
  9378. \end{center}
  9379. Using the above live-before approximations, we determine the
  9380. live-after for each block and then apply liveness analysis to each
  9381. block. This produces our next approximation $m_1$ of the live-before
  9382. sets.
  9383. \begin{center}
  9384. \begin{lstlisting}
  9385. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  9386. \end{lstlisting}
  9387. \end{center}
  9388. For the second round, the live-after for \code{mainstart} is the
  9389. current live-before for \code{block5}, which is \code{\{i\}}. So the
  9390. liveness analysis for \code{mainstart} computes the empty set. The
  9391. live-after for \code{block5} is the union of the live-before sets for
  9392. \code{block7} and \code{block8}, which is \code{\{i , rsp, sum\}}.
  9393. So the liveness analysis for \code{block5} computes \code{\{i , rsp,
  9394. sum\}}. The live-after for \code{block7} is the live-before for
  9395. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  9396. So the liveness analysis for \code{block7} remains \code{\{i,
  9397. sum\}}. Together these yield the following approximation $m_2$ of
  9398. the live-before sets.
  9399. \begin{center}
  9400. \begin{lstlisting}
  9401. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  9402. \end{lstlisting}
  9403. \end{center}
  9404. In the preceding iteration, only \code{block5} changed, so we can
  9405. limit our attention to \code{mainstart} and \code{block7}, the two
  9406. blocks that jump to \code{block5}. As a result, the live-before sets
  9407. for \code{mainstart} and \code{block7} are updated to include
  9408. \code{rsp}, yielding the following approximation $m_3$.
  9409. \begin{center}
  9410. \begin{lstlisting}
  9411. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  9412. \end{lstlisting}
  9413. \end{center}
  9414. Because \code{block7} changed, we analyze \code{block5} once more, but
  9415. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  9416. our approximations have converged, so $m_3$ is the solution.
  9417. This iteration process is guaranteed to converge to a solution by the
  9418. Kleene Fixed-Point Theorem, a general theorem about functions on
  9419. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  9420. any collection that comes with a partial ordering $\sqsubseteq$ on its
  9421. elements, a least element $\bot$ (pronounced bottom), and a join
  9422. operator $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{partial
  9423. ordering}\index{subject}{join}\footnote{Technically speaking, we will be
  9424. working with join semi-lattices.} When two elements are ordered $m_i
  9425. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  9426. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  9427. approximation than $m_i$. The bottom element $\bot$ represents the
  9428. complete lack of information, i.e., the worst approximation. The join
  9429. operator takes two lattice elements and combines their information,
  9430. i.e., it produces the least upper bound of the two.\index{subject}{least upper
  9431. bound}
  9432. A dataflow analysis typically involves two lattices: one lattice to
  9433. represent abstract states and another lattice that aggregates the
  9434. abstract states of all the blocks in the control-flow graph. For
  9435. liveness analysis, an abstract state is a set of locations. We form
  9436. the lattice $L$ by taking its elements to be sets of locations, the
  9437. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  9438. set, and the join operator to be set union.
  9439. %
  9440. We form a second lattice $M$ by taking its elements to be mappings
  9441. from the block labels to sets of locations (elements of $L$). We
  9442. order the mappings point-wise, using the ordering of $L$. So given any
  9443. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  9444. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  9445. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  9446. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  9447. We can think of one iteration of liveness analysis applied to the
  9448. whole program as being a function $f$ on the lattice $M$. It takes a
  9449. mapping as input and computes a new mapping.
  9450. \[
  9451. f(m_i) = m_{i+1}
  9452. \]
  9453. Next let us think for a moment about what a final solution $m_s$
  9454. should look like. If we perform liveness analysis using the solution
  9455. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  9456. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  9457. \[
  9458. f(m_s) = m_s
  9459. \]
  9460. Furthermore, the solution should only include locations that are
  9461. forced to be there by performing liveness analysis on the program, so
  9462. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  9463. The Kleene Fixed-Point Theorem states that if a function $f$ is
  9464. monotone (better inputs produce better outputs), then the least fixed
  9465. point of $f$ is the least upper bound of the \emph{ascending Kleene
  9466. chain} obtained by starting at $\bot$ and iterating $f$ as
  9467. follows.\index{subject}{Kleene Fixed-Point Theorem}
  9468. \[
  9469. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9470. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  9471. \]
  9472. When a lattice contains only finitely-long ascending chains, then
  9473. every Kleene chain tops out at some fixed point after some number of
  9474. iterations of $f$.
  9475. \[
  9476. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9477. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  9478. \]
  9479. The liveness analysis is indeed a monotone function and the lattice
  9480. $M$ only has finitely-long ascending chains because there are only a
  9481. finite number of variables and blocks in the program. Thus we are
  9482. guaranteed that iteratively applying liveness analysis to all blocks
  9483. in the program will eventually produce the least fixed point solution.
  9484. Next let us consider dataflow analysis in general and discuss the
  9485. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  9486. %
  9487. The algorithm has four parameters: the control-flow graph \code{G}, a
  9488. function \code{transfer} that applies the analysis to one block, the
  9489. \code{bottom} and \code{join} operator for the lattice of abstract
  9490. states. The \code{analyze\_dataflow} function is formulated as a
  9491. \emph{forward} dataflow analysis, that is, the inputs to the transfer
  9492. function come from the predecessor nodes in the control-flow
  9493. graph. However, liveness analysis is a \emph{backward} dataflow
  9494. analysis, so in that case one must supply the \code{analyze\_dataflow}
  9495. function with the transpose of the control-flow graph.
  9496. The algorithm begins by creating the bottom mapping, represented by a
  9497. hash table. It then pushes all of the nodes in the control-flow graph
  9498. onto the work list (a queue). The algorithm repeats the \code{while}
  9499. loop as long as there are items in the work list. In each iteration, a
  9500. node is popped from the work list and processed. The \code{input} for
  9501. the node is computed by taking the join of the abstract states of all
  9502. the predecessor nodes. The \code{transfer} function is then applied to
  9503. obtain the \code{output} abstract state. If the output differs from
  9504. the previous state for this block, the mapping for this block is
  9505. updated and its successor nodes are pushed onto the work list.
  9506. \begin{figure}[tb]
  9507. {\if\edition\racketEd
  9508. \begin{lstlisting}
  9509. (define (analyze_dataflow G transfer bottom join)
  9510. (define mapping (make-hash))
  9511. (for ([v (in-vertices G)])
  9512. (dict-set! mapping v bottom))
  9513. (define worklist (make-queue))
  9514. (for ([v (in-vertices G)])
  9515. (enqueue! worklist v))
  9516. (define trans-G (transpose G))
  9517. (while (not (queue-empty? worklist))
  9518. (define node (dequeue! worklist))
  9519. (define input (for/fold ([state bottom])
  9520. ([pred (in-neighbors trans-G node)])
  9521. (join state (dict-ref mapping pred))))
  9522. (define output (transfer node input))
  9523. (cond [(not (equal? output (dict-ref mapping node)))
  9524. (dict-set! mapping node output)
  9525. (for ([v (in-neighbors G node)])
  9526. (enqueue! worklist v))]))
  9527. mapping)
  9528. \end{lstlisting}
  9529. \fi}
  9530. {\if\edition\pythonEd
  9531. \begin{lstlisting}
  9532. def analyze_dataflow(G, transfer, bottom, join):
  9533. trans_G = transpose(G)
  9534. mapping = dict((v, bottom) for v in G.vertices())
  9535. worklist = deque(G.vertices)
  9536. while worklist:
  9537. node = worklist.pop()
  9538. input = reduce(join, [mapping[v] for v in trans_G.adjacent(node)], bottom)
  9539. output = transfer(node, input)
  9540. if output != mapping[node]:
  9541. mapping[node] = output
  9542. worklist.extend(G.adjacent(node))
  9543. \end{lstlisting}
  9544. \fi}
  9545. \caption{Generic work list algorithm for dataflow analysis}
  9546. \label{fig:generic-dataflow}
  9547. \end{figure}
  9548. {\if\edition\racketEd
  9549. \section{Mutable Variables \& Remove Complex Operands}
  9550. There is a subtle interaction between the addition of \code{set!}, the
  9551. \code{remove\_complex\_operands} pass, and the left-to-right order of
  9552. evaluation of Racket. Consider the following example.
  9553. \begin{lstlisting}
  9554. (let ([x 2])
  9555. (+ x (begin (set! x 40) x)))
  9556. \end{lstlisting}
  9557. The result of this program is \code{42} because the first read from
  9558. \code{x} produces \code{2} and the second produces \code{40}. However,
  9559. if we naively apply the \code{remove\_complex\_operands} pass to this
  9560. example we obtain the following program whose result is \code{80}!
  9561. \begin{lstlisting}
  9562. (let ([x 2])
  9563. (let ([tmp (begin (set! x 40) x)])
  9564. (+ x tmp)))
  9565. \end{lstlisting}
  9566. The problem is that, with mutable variables, the ordering between
  9567. reads and writes is important, and the
  9568. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  9569. before the first read of \code{x}.
  9570. We recommend solving this problem by giving special treatment to reads
  9571. from mutable variables, that is, variables that occur on the left-hand
  9572. side of a \code{set!}. We mark each read from a mutable variable with
  9573. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  9574. that the read operation is effectful in that it can produce different
  9575. results at different points in time. Let's apply this idea to the
  9576. following variation that also involves a variable that is not mutated.
  9577. % loop_test_24.rkt
  9578. \begin{lstlisting}
  9579. (let ([x 2])
  9580. (let ([y 0])
  9581. (+ y (+ x (begin (set! x 40) x)))))
  9582. \end{lstlisting}
  9583. We analyze the above program to discover that variable \code{x} is
  9584. mutable but \code{y} is not. We then transform the program as follows,
  9585. replacing each occurence of \code{x} with \code{(get! x)}.
  9586. \begin{lstlisting}
  9587. (let ([x 2])
  9588. (let ([y 0])
  9589. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  9590. \end{lstlisting}
  9591. Now that we have a clear distinction between reads from mutable and
  9592. immutable variables, we can apply the \code{remove\_complex\_operands}
  9593. pass, where reads from immutable variables are still classified as
  9594. atomic expressions but reads from mutable variables are classified as
  9595. complex. Thus, \code{remove\_complex\_operands} yields the following
  9596. program.
  9597. \begin{lstlisting}
  9598. (let ([x 2])
  9599. (let ([y 0])
  9600. (+ y (let ([t1 (get! x)])
  9601. (let ([t2 (begin (set! x 40) (get! x))])
  9602. (+ t1 t2))))))
  9603. \end{lstlisting}
  9604. The temporary variable \code{t1} gets the value of \code{x} before the
  9605. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  9606. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  9607. do not generate a temporary variable for the occurence of \code{y}
  9608. because it's an immutable variable. We want to avoid such unnecessary
  9609. extra temporaries because they would needless increase the number of
  9610. variables, making it more likely for some of them to be spilled. The
  9611. result of this program is \code{42}, the same as the result prior to
  9612. \code{remove\_complex\_operands}.
  9613. The approach that we've sketched above requires only a small
  9614. modification to \code{remove\_complex\_operands} to handle
  9615. \code{get!}. However, it requires a new pass, called
  9616. \code{uncover-get!}, that we discuss in
  9617. Section~\ref{sec:uncover-get-bang}.
  9618. As an aside, this problematic interaction between \code{set!} and the
  9619. pass \code{remove\_complex\_operands} is particular to Racket and not
  9620. its predecessor, the Scheme language. The key difference is that
  9621. Scheme does not specify an order of evaluation for the arguments of an
  9622. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  9623. Scheme is free to choose any ordering: both \code{42} and \code{80}
  9624. would be correct results for the example program. Interestingly,
  9625. Racket is implemented on top of the Chez Scheme
  9626. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  9627. presented in this section (using extra \code{let} bindings to control
  9628. the order of evaluation) is used in the translation from Racket to
  9629. Scheme~\citep{Flatt:2019tb}.
  9630. \fi} % racket
  9631. Having discussed the complications that arise from adding support for
  9632. assignment and loops, we turn to discussing the individual compilation
  9633. passes.
  9634. {\if\edition\racketEd
  9635. \section{Uncover \texttt{get!}}
  9636. \label{sec:uncover-get-bang}
  9637. The goal of this pass it to mark uses of mutable variables so that
  9638. \code{remove\_complex\_operands} can treat them as complex expressions
  9639. and thereby preserve their ordering relative to the side-effects in
  9640. other operands. So the first step is to collect all the mutable
  9641. variables. We recommend creating an auxilliary function for this,
  9642. named \code{collect-set!}, that recursively traverses expressions,
  9643. returning a set of all variables that occur on the left-hand side of a
  9644. \code{set!}. Here's an exerpt of its implementation.
  9645. \begin{center}
  9646. \begin{minipage}{\textwidth}
  9647. \begin{lstlisting}
  9648. (define (collect-set! e)
  9649. (match e
  9650. [(Var x) (set)]
  9651. [(Int n) (set)]
  9652. [(Let x rhs body)
  9653. (set-union (collect-set! rhs) (collect-set! body))]
  9654. [(SetBang var rhs)
  9655. (set-union (set var) (collect-set! rhs))]
  9656. ...))
  9657. \end{lstlisting}
  9658. \end{minipage}
  9659. \end{center}
  9660. By placing this pass after \code{uniquify}, we need not worry about
  9661. variable shadowing and our logic for \code{let} can remain simple, as
  9662. in the exerpt above.
  9663. The second step is to mark the occurences of the mutable variables
  9664. with the new \code{GetBang} AST node (\code{get!} in concrete
  9665. syntax). The following is an exerpt of the \code{uncover-get!-exp}
  9666. function, which takes two parameters: the set of mutable varaibles
  9667. \code{set!-vars}, and the expression \code{e} to be processed. The
  9668. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  9669. mutable variable or leaves it alone if not.
  9670. \begin{center}
  9671. \begin{minipage}{\textwidth}
  9672. \begin{lstlisting}
  9673. (define ((uncover-get!-exp set!-vars) e)
  9674. (match e
  9675. [(Var x)
  9676. (if (set-member? set!-vars x)
  9677. (GetBang x)
  9678. (Var x))]
  9679. ...))
  9680. \end{lstlisting}
  9681. \end{minipage}
  9682. \end{center}
  9683. To wrap things up, define the \code{uncover-get!} function for
  9684. processing a whole program, using \code{collect-set!} to obtain the
  9685. set of mutable variables and then \code{uncover-get!-exp} to replace
  9686. their occurences with \code{GetBang}.
  9687. \fi}
  9688. \section{Remove Complex Operands}
  9689. \label{sec:rco-loop}
  9690. {\if\edition\racketEd
  9691. %
  9692. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  9693. \code{while} are all complex expressions. The subexpressions of
  9694. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  9695. %
  9696. \fi}
  9697. {\if\edition\pythonEd
  9698. %
  9699. The change needed for this pass is to add a case for the \code{while}
  9700. statement. The condition of a \code{while} loop is allowed to be a
  9701. complex expression, just like the condition of the \code{if}
  9702. statement.
  9703. %
  9704. \fi}
  9705. %
  9706. Figure~\ref{fig:Rwhile-anf-syntax} defines the output language
  9707. \LangLoopANF{} of this pass.
  9708. \newcommand{\LwhileMonadASTPython}{
  9709. \begin{array}{rcl}
  9710. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  9711. \end{array}
  9712. }
  9713. \begin{figure}[tp]
  9714. \centering
  9715. \fbox{
  9716. \begin{minipage}{0.96\textwidth}
  9717. \small
  9718. {\if\edition\racketEd
  9719. \[
  9720. \begin{array}{rcl}
  9721. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} } \MID \VOID{} \\
  9722. \Exp &::=& \ldots \MID \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  9723. &\MID& \GETBANG{\Var}
  9724. \MID \SETBANG{\Var}{\Exp} \\
  9725. &\MID& \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  9726. \MID \WHILE{\Exp}{\Exp} \\
  9727. \LangLoopANF &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  9728. \end{array}
  9729. \]
  9730. \fi}
  9731. {\if\edition\pythonEd
  9732. \[
  9733. \begin{array}{l}
  9734. \gray{\LvarMonadASTPython} \\ \hline
  9735. \gray{\LifMonadASTPython} \\ \hline
  9736. \LwhileMonadASTPython \\
  9737. \begin{array}{rcl}
  9738. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  9739. \end{array}
  9740. \end{array}
  9741. %% \begin{array}{rcl}
  9742. %% \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  9743. %% \Exp &::=& \Atm \MID \READ{} \\
  9744. %% &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm} \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  9745. %% &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  9746. %% % &\MID& \LET{\Var}{\Exp}{\Exp}\\ % Why?
  9747. %% \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  9748. %% &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  9749. %% &\MID& \WHILESTMT{\Exp}{\Stmt^{+}} \\
  9750. %% \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  9751. %% \end{array}
  9752. \]
  9753. \fi}
  9754. \end{minipage}
  9755. }
  9756. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  9757. \label{fig:Rwhile-anf-syntax}
  9758. \end{figure}
  9759. {\if\edition\racketEd
  9760. As usual, when a complex expression appears in a grammar position that
  9761. needs to be atomic, such as the argument of a primitive operator, we
  9762. must introduce a temporary variable and bind it to the complex
  9763. expression. This approach applies, unchanged, to handle the new
  9764. language forms. For example, in the following code there are two
  9765. \code{begin} expressions appearing as arguments to \code{+}. The
  9766. output of \code{rco\_exp} is shown below, in which the \code{begin}
  9767. expressions have been bound to temporary variables. Recall that
  9768. \code{let} expressions in \LangLoopANF{} are allowed to have
  9769. arbitrary expressions in their right-hand-side expression, so it is
  9770. fine to place \code{begin} there.
  9771. \begin{center}
  9772. \begin{minipage}{\textwidth}
  9773. \begin{lstlisting}
  9774. (let ([x0 10])
  9775. (let ([y1 0])
  9776. (+ (+ (begin (set! y1 (read)) x0)
  9777. (begin (set! x0 (read)) y1))
  9778. x0)))
  9779. |$\Rightarrow$|
  9780. (let ([x0 10])
  9781. (let ([y1 0])
  9782. (let ([tmp2 (begin (set! y1 (read)) x0)])
  9783. (let ([tmp3 (begin (set! x0 (read)) y1)])
  9784. (let ([tmp4 (+ tmp2 tmp3)])
  9785. (+ tmp4 x0))))))
  9786. \end{lstlisting}
  9787. \end{minipage}
  9788. \end{center}
  9789. \fi}
  9790. \section{Explicate Control \racket{and \LangCLoop{}}}
  9791. \label{sec:explicate-loop}
  9792. \newcommand{\CloopASTRacket}{
  9793. \begin{array}{lcl}
  9794. \Atm &::=& \VOID \\
  9795. \Stmt &::=& \READ{}
  9796. \end{array}
  9797. }
  9798. {\if\edition\racketEd
  9799. Recall that in the \code{explicate\_control} pass we define one helper
  9800. function for each kind of position in the program. For the \LangVar{}
  9801. language of integers and variables we needed kinds of positions:
  9802. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  9803. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  9804. yet another kind of position: effect position. Except for the last
  9805. subexpression, the subexpressions inside a \code{begin} are evaluated
  9806. only for their effect. Their result values are discarded. We can
  9807. generate better code by taking this fact into account.
  9808. The output language of \code{explicate\_control} is \LangCLoop{}
  9809. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  9810. \LangCIf{}. The only syntactic difference is that \code{read} may also
  9811. appear as a statement. The most significant difference between the
  9812. programs generated by \code{explicate\_control} in
  9813. Chapter~\ref{ch:Lif} versus \code{explicate\_control} in this chapter
  9814. is that the control-flow graphs of the later may contain cycles.
  9815. \begin{figure}[tp]
  9816. \fbox{
  9817. \begin{minipage}{0.96\textwidth}
  9818. \small
  9819. \[
  9820. \begin{array}{l}
  9821. \gray{\CvarASTRacket} \\ \hline
  9822. \gray{\CifASTRacket} \\ \hline
  9823. \CloopASTRacket \\
  9824. \begin{array}{lcl}
  9825. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  9826. \end{array}
  9827. \end{array}
  9828. \]
  9829. \end{minipage}
  9830. }
  9831. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (Figure~\ref{fig:c1-syntax}).}
  9832. \label{fig:c7-syntax}
  9833. \end{figure}
  9834. The new auxiliary function \code{explicate\_effect} takes an
  9835. expression (in an effect position) and a continuation. The function
  9836. returns a $\Tail$ that includes the generated code for the input
  9837. expression followed by the continuation. If the expression is
  9838. obviously pure, that is, never causes side effects, then the
  9839. expression can be removed, so the result is just the continuation.
  9840. %
  9841. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  9842. case. First, you will need a fresh label $\itm{loop}$ for the top of
  9843. the loop. Recursively process the \itm{body} (in effect position)
  9844. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  9845. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  9846. \itm{body'} as the then-branch and the continuation block as the
  9847. else-branch. The result should be added to the control-flow graph with
  9848. the label \itm{loop}. The result for the whole \code{while} loop is a
  9849. \code{goto} to the \itm{loop} label.
  9850. The auxiliary functions for tail, assignment, and predicate positions
  9851. need to be updated. The three new language forms, \code{while},
  9852. \code{set!}, and \code{begin}, can appear in assignment and tail
  9853. positions. Only \code{begin} may appear in predicate positions; the
  9854. other two have result type \code{Void}.
  9855. \fi}
  9856. %
  9857. {\if\edition\pythonEd
  9858. %
  9859. The output of this pass is the language \LangCIf{}. No new language
  9860. features are needed in the output because a \code{while} loop can be
  9861. expressed in terms of \code{goto} and \code{if} statements, which are
  9862. already in \LangCIf{}.
  9863. %
  9864. Add a case for the \code{while} statement to the
  9865. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  9866. the condition expression.
  9867. %
  9868. \fi}
  9869. {\if\edition\racketEd
  9870. \section{Select Instructions}
  9871. \label{sec:select-instructions-loop}
  9872. Only three small additions are needed in the
  9873. \code{select\_instructions} pass to handle the changes to
  9874. \LangCLoop{}. That is, a call to
  9875. \racket{\code{read}}\python{\code{input\_int}} may appear as a
  9876. stand-alone statement instead of only appearing on the right-hand side
  9877. of an assignment statement. The code generation is nearly identical;
  9878. just leave off the instruction for moving the result into the
  9879. left-hand side.
  9880. \fi}
  9881. \section{Register Allocation}
  9882. \label{sec:register-allocation-loop}
  9883. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  9884. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  9885. which complicates the liveness analysis needed for register
  9886. allocation.
  9887. \subsection{Liveness Analysis}
  9888. \label{sec:liveness-analysis-r8}
  9889. We recommend using the generic \code{analyze\_dataflow} function that
  9890. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  9891. perform liveness analysis, replacing the code in
  9892. \code{uncover\_live} that processed the basic blocks in topological
  9893. order (Section~\ref{sec:liveness-analysis-Lif}).
  9894. The \code{analyze\_dataflow} function has four parameters.
  9895. \begin{enumerate}
  9896. \item The first parameter \code{G} should be a directed graph from the
  9897. \racket{
  9898. \code{racket/graph} package (see the sidebar in
  9899. Section~\ref{sec:build-interference})}
  9900. \python{\code{graph.py} file in the support code}
  9901. that represents the
  9902. control-flow graph.
  9903. \item The second parameter \code{transfer} is a function that applies
  9904. liveness analysis to a basic block. It takes two parameters: the
  9905. label for the block to analyze and the live-after set for that
  9906. block. The transfer function should return the live-before set for
  9907. the block.
  9908. %
  9909. \racket{Also, as a side-effect, it should update the block's
  9910. $\itm{info}$ with the liveness information for each instruction.}
  9911. %
  9912. \python{Also, as a side-effect, it should update the live-before and
  9913. live-after sets for each instruction.}
  9914. %
  9915. To implement the \code{transfer} function, you should be able to
  9916. reuse the code you already have for analyzing basic blocks.
  9917. \item The third and fourth parameters of \code{analyze\_dataflow} are
  9918. \code{bottom} and \code{join} for the lattice of abstract states,
  9919. i.e. sets of locations. The bottom of the lattice is the empty set
  9920. and the join operator is set union.
  9921. \end{enumerate}
  9922. \begin{figure}[p]
  9923. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9924. \node (Rfun) at (0,2) {\large \LangLoop{}};
  9925. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  9926. %\node (Rfun-3) at (6,2) {\large \LangLoop{}};
  9927. %\node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  9928. %\node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  9929. %\node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  9930. %\node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  9931. \node (F1-4) at (6,2) {\large \LangLoop{}};
  9932. \node (F1-5) at (9,2) {\large \LangLoopANF{}};
  9933. \node (C3-2) at (3,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  9934. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  9935. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  9936. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  9937. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  9938. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  9939. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  9940. %% \path[->,bend left=15] (Rfun) edge [above] node
  9941. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  9942. \path[->,bend left=15] (Rfun) edge [above] node
  9943. {\ttfamily\footnotesize shrink} (Rfun-2);
  9944. \path[->,bend left=15] (Rfun-2) edge [above] node
  9945. {\ttfamily\footnotesize uniquify} (F1-4);
  9946. %% \path[->,bend left=15] (Rfun-3) edge [above] node
  9947. %% {\ttfamily\footnotesize reveal\_functions} (Rfun-4);
  9948. %% \path[->,bend left=15] (Rfun-4) edge [right] node
  9949. %% {\ttfamily\footnotesize convert\_assignments} (F1-1);
  9950. %% \path[->,bend left=15] (Rfun-4) edge [right] node
  9951. %% {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  9952. %% \path[->,bend right=15] (F1-2) edge [above] node
  9953. %% {\ttfamily\footnotesize limit\_fun.} (F1-3);
  9954. %% \path[->,bend right=15] (F1-3) edge [above] node
  9955. %% {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9956. \path[->,bend left=15] (F1-4) edge [above] node
  9957. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  9958. \path[->,bend left=15] (F1-5) edge [right] node
  9959. {\ttfamily\footnotesize explicate\_control} (C3-2);
  9960. \path[->,bend left=15] (C3-2) edge [left] node
  9961. {\ttfamily\footnotesize select\_instr.} (x86-2);
  9962. \path[->,bend right=15] (x86-2) edge [left] node
  9963. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9964. \path[->,bend right=15] (x86-2-1) edge [below] node
  9965. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  9966. \path[->,bend right=15] (x86-2-2) edge [left] node
  9967. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  9968. \path[->,bend left=15] (x86-3) edge [above] node
  9969. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  9970. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  9971. \end{tikzpicture}
  9972. \caption{Diagram of the passes for \LangLoop{}.}
  9973. \label{fig:Rwhile-passes}
  9974. \end{figure}
  9975. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  9976. for the compilation of \LangLoop{}.
  9977. % Further Reading: dataflow analysis
  9978. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9979. \chapter{Tuples and Garbage Collection}
  9980. \label{ch:Lvec}
  9981. \index{subject}{tuple}
  9982. \index{subject}{vector}
  9983. \index{subject}{allocate}
  9984. \index{subject}{heap allocate}
  9985. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  9986. %% all the IR grammars are spelled out! \\ --Jeremy}
  9987. %% \margincomment{\scriptsize Be more explicit about how to deal with
  9988. %% the root stack. \\ --Jeremy}
  9989. In this chapter we study the implementation of
  9990. tuples\racket{, called vectors in Racket}.
  9991. %
  9992. This language feature is the first to use the computer's
  9993. \emph{heap}\index{subject}{heap} because the lifetime of a tuple is
  9994. indefinite, that is, a tuple lives forever from the programmer's
  9995. viewpoint. Of course, from an implementer's viewpoint, it is important
  9996. to reclaim the space associated with a tuple when it is no longer
  9997. needed, which is why we also study \emph{garbage collection}
  9998. \index{garbage collection} techniques in this chapter.
  9999. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  10000. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  10001. language of Chapter~\ref{ch:Lwhile} with tuples.
  10002. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  10003. copying live tuples back and forth between two halves of the heap. The
  10004. garbage collector requires coordination with the compiler so that it
  10005. can find all of the live tuples.
  10006. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  10007. discuss the necessary changes and additions to the compiler passes,
  10008. including a new compiler pass named \code{expose\_allocation}.
  10009. \section{The \LangVec{} Language}
  10010. \label{sec:r3}
  10011. Figure~\ref{fig:Lvec-concrete-syntax} defines the concrete syntax for
  10012. \LangVec{} and Figure~\ref{fig:Lvec-syntax} defines the abstract syntax.
  10013. %
  10014. \racket{The \LangVec{} language includes the forms: \code{vector} for
  10015. creating a tuple, \code{vector-ref} for reading an element of a
  10016. tuple, \code{vector-set!} for writing to an element of a tuple, and
  10017. \code{vector-length} for obtaining the number of elements of a
  10018. tuple.}
  10019. %
  10020. \python{The \LangVec{} language adds 1) tuple creation via a
  10021. comma-separated list of expressions, 2) accessing an element of a
  10022. tuple with the square bracket notation, i.e., \code{t[n]} returns
  10023. the element at index \code{n} of tuple \code{t}, 3) the \code{is} comparison
  10024. operator, and 4) obtaining the number of elements (the length) of a
  10025. tuple. In this chapter, we restrict access indices to constant
  10026. integers.}
  10027. %
  10028. The program below shows an example use of tuples. It creates a tuple
  10029. \code{t} containing the elements \code{40},
  10030. \racket{\code{\#t}}\python{\code{True}}, and another tuple that
  10031. contains just \code{2}. The element at index $1$ of \code{t} is
  10032. \racket{\code{\#t}}\python{\code{True}}, so the ``then'' branch of the
  10033. \key{if} is taken. The element at index $0$ of \code{t} is \code{40},
  10034. to which we add \code{2}, the element at index $0$ of the tuple. So
  10035. the result of the program is \code{42}.
  10036. %
  10037. {\if\edition\racketEd
  10038. \begin{lstlisting}
  10039. (let ([t (vector 40 #t (vector 2))])
  10040. (if (vector-ref t 1)
  10041. (+ (vector-ref t 0)
  10042. (vector-ref (vector-ref t 2) 0))
  10043. 44))
  10044. \end{lstlisting}
  10045. \fi}
  10046. {\if\edition\pythonEd
  10047. \begin{lstlisting}
  10048. t = 40, True, (2,)
  10049. print( t[0] + t[2][0] if t[1] else 44 )
  10050. \end{lstlisting}
  10051. \fi}
  10052. \newcommand{\LtupGrammarRacket}{
  10053. \begin{array}{lcl}
  10054. \Type &::=& \LP\key{Vector}\;\Type\ldots\RP \\
  10055. \Exp &::=& \LP\key{vector}\;\Exp\ldots\RP
  10056. \MID \LP\key{vector-length}\;\Exp\RP \\
  10057. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  10058. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  10059. \end{array}
  10060. }
  10061. \newcommand{\LtupASTRacket}{
  10062. \begin{array}{lcl}
  10063. \Type &::=& \LP\key{Vector}\;\Type\ldots\RP \\
  10064. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  10065. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  10066. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  10067. &\MID& \LP\key{HasType}~\Exp~\Type \RP
  10068. \end{array}
  10069. }
  10070. \newcommand{\LtupGrammarPython}{
  10071. \begin{array}{rcl}
  10072. \itm{cmp} &::= & \key{is} \\
  10073. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Int} \MID \CLEN{\Exp}
  10074. \end{array}
  10075. }
  10076. \newcommand{\LtupASTPython}{
  10077. \begin{array}{lcl}
  10078. \itm{cmp} &::= & \code{Is()} \\
  10079. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\INT{\Int}} \\
  10080. &\MID& \LEN{\Exp}
  10081. \end{array}
  10082. }
  10083. \begin{figure}[tbp]
  10084. \centering
  10085. \fbox{
  10086. \begin{minipage}{0.96\textwidth}
  10087. {\if\edition\racketEd
  10088. \[
  10089. \begin{array}{l}
  10090. \gray{\LintGrammarRacket{}} \\ \hline
  10091. \gray{\LvarGrammarRacket{}} \\ \hline
  10092. \gray{\LifGrammarRacket{}} \\ \hline
  10093. \gray{\LwhileGrammarRacket} \\ \hline
  10094. \LtupGrammarRacket \\
  10095. \begin{array}{lcl}
  10096. \LangVecM{} &::=& \Exp
  10097. \end{array}
  10098. \end{array}
  10099. \]
  10100. \fi}
  10101. {\if\edition\pythonEd
  10102. \[
  10103. \begin{array}{l}
  10104. \gray{\LintGrammarPython{}} \\ \hline
  10105. \gray{\LvarGrammarPython{}} \\ \hline
  10106. \gray{\LifGrammarPython{}} \\ \hline
  10107. \gray{\LwhileGrammarPython} \\ \hline
  10108. \LtupGrammarPython \\
  10109. \begin{array}{rcl}
  10110. \LangVecM{} &::=& \Stmt^{*}
  10111. \end{array}
  10112. \end{array}
  10113. \]
  10114. \fi}
  10115. \end{minipage}
  10116. }
  10117. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  10118. (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  10119. \label{fig:Lvec-concrete-syntax}
  10120. \end{figure}
  10121. \begin{figure}[tp]
  10122. \centering
  10123. \fbox{
  10124. \begin{minipage}{0.96\textwidth}
  10125. {\if\edition\racketEd
  10126. \[
  10127. \begin{array}{l}
  10128. \gray{\LintOpAST} \\ \hline
  10129. \gray{\LvarASTRacket{}} \\ \hline
  10130. \gray{\LifASTRacket{}} \\ \hline
  10131. \gray{\LwhileASTRacket{}} \\ \hline
  10132. \LtupASTRacket{} \\
  10133. \begin{array}{lcl}
  10134. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  10135. \end{array}
  10136. \end{array}
  10137. \]
  10138. \fi}
  10139. {\if\edition\pythonEd
  10140. \[
  10141. \begin{array}{l}
  10142. \gray{\LintASTPython} \\ \hline
  10143. \gray{\LvarASTPython} \\ \hline
  10144. \gray{\LifASTPython} \\ \hline
  10145. \gray{\LwhileASTPython} \\ \hline
  10146. \LtupASTPython \\
  10147. \begin{array}{lcl}
  10148. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10149. \end{array}
  10150. \end{array}
  10151. \]
  10152. \fi}
  10153. \end{minipage}
  10154. }
  10155. \caption{The abstract syntax of \LangVec{}.}
  10156. \label{fig:Lvec-syntax}
  10157. \end{figure}
  10158. Tuples raise several interesting new issues. First, variable binding
  10159. performs a shallow-copy when dealing with tuples, which means that
  10160. different variables can refer to the same tuple, that is, two
  10161. variables can be \emph{aliases}\index{subject}{alias} for the same
  10162. entity. Consider the following example in which both \code{t1} and
  10163. \code{t2} refer to the same tuple value but \code{t3} refers to a
  10164. different tuple value but with equal elements. The result of the
  10165. program is \code{42}.
  10166. \begin{center}
  10167. \begin{minipage}{0.96\textwidth}
  10168. {\if\edition\racketEd
  10169. \begin{lstlisting}
  10170. (let ([t1 (vector 3 7)])
  10171. (let ([t2 t1])
  10172. (let ([t3 (vector 3 7)])
  10173. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  10174. 42
  10175. 0))))
  10176. \end{lstlisting}
  10177. \fi}
  10178. {\if\edition\pythonEd
  10179. \begin{lstlisting}
  10180. t1 = 3, 7
  10181. t2 = t1
  10182. t3 = 3, 7
  10183. print( 42 if (t1 is t2) and not (t1 is t3) else 0 )
  10184. \end{lstlisting}
  10185. \fi}
  10186. \end{minipage}
  10187. \end{center}
  10188. {\if\edition\racketEd
  10189. Whether two variables are aliased or not affects what happens
  10190. when the underlying tuple is mutated\index{subject}{mutation}.
  10191. Consider the following example in which \code{t1} and \code{t2}
  10192. again refer to the same tuple value.
  10193. \begin{center}
  10194. \begin{minipage}{0.96\textwidth}
  10195. \begin{lstlisting}
  10196. (let ([t1 (vector 3 7)])
  10197. (let ([t2 t1])
  10198. (let ([_ (vector-set! t2 0 42)])
  10199. (vector-ref t1 0))))
  10200. \end{lstlisting}
  10201. \end{minipage}
  10202. \end{center}
  10203. The mutation through \code{t2} is visible when referencing the tuple
  10204. from \code{t1}, so the result of this program is \code{42}.
  10205. \fi}
  10206. The next issue concerns the lifetime of tuples. When does their
  10207. lifetime end? Notice that \LangVec{} does not include an operation
  10208. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  10209. to any notion of static scoping.
  10210. %
  10211. {\if\edition\racketEd
  10212. %
  10213. For example, the following program returns \code{42} even though the
  10214. variable \code{w} goes out of scope prior to the \code{vector-ref}
  10215. that reads from the vector it was bound to.
  10216. \begin{center}
  10217. \begin{minipage}{0.96\textwidth}
  10218. \begin{lstlisting}
  10219. (let ([v (vector (vector 44))])
  10220. (let ([x (let ([w (vector 42)])
  10221. (let ([_ (vector-set! v 0 w)])
  10222. 0))])
  10223. (+ x (vector-ref (vector-ref v 0) 0))))
  10224. \end{lstlisting}
  10225. \end{minipage}
  10226. \end{center}
  10227. \fi}
  10228. %
  10229. {\if\edition\pythonEd
  10230. %
  10231. For example, the following program returns \code{42} even though the
  10232. variable \code{x} goes out of scope when the function returns, prior
  10233. to reading the tuple element at index zero. (We study the compilation
  10234. of functions in Chapter~\ref{ch:Lfun}.)
  10235. %
  10236. \begin{center}
  10237. \begin{minipage}{0.96\textwidth}
  10238. \begin{lstlisting}
  10239. def f():
  10240. x = 42, 43
  10241. return x
  10242. t = f()
  10243. print( t[0] )
  10244. \end{lstlisting}
  10245. \end{minipage}
  10246. \end{center}
  10247. \fi}
  10248. %
  10249. From the perspective of programmer-observable behavior, tuples live
  10250. forever. However, if they really lived forever then many long-running
  10251. programs would run out of memory. To solve this problem, the
  10252. language's runtime system performs automatic garbage collection.
  10253. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  10254. \LangVec{} language.
  10255. %
  10256. \racket{We define the \code{vector}, \code{vector-ref},
  10257. \code{vector-set!}, and \code{vector-length} operations for
  10258. \LangVec{} in terms of the corresponding operations in Racket. One
  10259. subtle point is that the \code{vector-set!} operation returns the
  10260. \code{\#<void>} value.}
  10261. %
  10262. \python{We represent tuples with Python lists in the interpreter
  10263. because we need to write to them
  10264. (Section~\ref{sec:expose-allocation}). (Python tuples are
  10265. immutable.) We define element access, the \code{is} operator, and
  10266. the \code{len} operator for \LangVec{} in terms of the corresponding
  10267. operations in Python.}
  10268. \begin{figure}[tbp]
  10269. {\if\edition\racketEd
  10270. \begin{lstlisting}
  10271. (define interp-Lvec_class
  10272. (class interp-Lif_class
  10273. (super-new)
  10274. (define/override (interp-op op)
  10275. (match op
  10276. ['eq? (lambda (v1 v2)
  10277. (cond [(or (and (fixnum? v1) (fixnum? v2))
  10278. (and (boolean? v1) (boolean? v2))
  10279. (and (vector? v1) (vector? v2))
  10280. (and (void? v1) (void? v2)))
  10281. (eq? v1 v2)]))]
  10282. ['vector vector]
  10283. ['vector-length vector-length]
  10284. ['vector-ref vector-ref]
  10285. ['vector-set! vector-set!]
  10286. [else (super interp-op op)]
  10287. ))
  10288. (define/override ((interp-exp env) e)
  10289. (define recur (interp-exp env))
  10290. (match e
  10291. [(HasType e t) (recur e)]
  10292. [(Void) (void)]
  10293. [else ((super interp-exp env) e)]
  10294. ))
  10295. ))
  10296. (define (interp-Lvec p)
  10297. (send (new interp-Lvec_class) interp-program p))
  10298. \end{lstlisting}
  10299. \fi}
  10300. %
  10301. {\if\edition\pythonEd
  10302. \begin{lstlisting}
  10303. class InterpLtup(InterpLwhile):
  10304. def interp_cmp(self, cmp):
  10305. match cmp:
  10306. case Is():
  10307. return lambda x, y: x is y
  10308. case _:
  10309. return super().interp_cmp(cmp)
  10310. def interp_exp(self, e, env):
  10311. match e:
  10312. case Tuple(es, Load()):
  10313. return tuple([self.interp_exp(e, env) for e in es])
  10314. case Subscript(tup, index, Load()):
  10315. t = self.interp_exp(tup, env)
  10316. n = self.interp_exp(index, env)
  10317. return t[n]
  10318. case _:
  10319. return super().interp_exp(e, env)
  10320. \end{lstlisting}
  10321. \fi}
  10322. \caption{Interpreter for the \LangVec{} language.}
  10323. \label{fig:interp-Lvec}
  10324. \end{figure}
  10325. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  10326. \LangVec{}, which deserves some explanation. When allocating a tuple,
  10327. we need to know which elements of the tuple are themselves tuples for
  10328. the purposes of garbage collection. We can obtain this information
  10329. during type checking. The type checker in
  10330. Figure~\ref{fig:type-check-Lvec} not only computes the type of an
  10331. expression, it also
  10332. %
  10333. \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  10334. where $T$ is the vector's type.
  10335. To create the s-expression for the \code{Vector} type in
  10336. Figure~\ref{fig:type-check-Lvec}, we use the
  10337. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  10338. operator} \code{,@} to insert the list \code{t*} without its usual
  10339. start and end parentheses. \index{subject}{unquote-slicing}}
  10340. %
  10341. \python{records the type of each tuple expression in a new field
  10342. named \code{has\_type}. Because the type checker has to compute the type
  10343. of each tuple access, the index must be a constant.}
  10344. \begin{figure}[tp]
  10345. {\if\edition\racketEd
  10346. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10347. (define type-check-Lvec_class
  10348. (class type-check-Lif_class
  10349. (super-new)
  10350. (inherit check-type-equal?)
  10351. (define/override (type-check-exp env)
  10352. (lambda (e)
  10353. (define recur (type-check-exp env))
  10354. (match e
  10355. [(Void) (values (Void) 'Void)]
  10356. [(Prim 'vector es)
  10357. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  10358. (define t `(Vector ,@t*))
  10359. (values (HasType (Prim 'vector e*) t) t)]
  10360. [(Prim 'vector-ref (list e1 (Int i)))
  10361. (define-values (e1^ t) (recur e1))
  10362. (match t
  10363. [`(Vector ,ts ...)
  10364. (unless (and (0 . <= . i) (i . < . (length ts)))
  10365. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10366. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  10367. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10368. [(Prim 'vector-set! (list e1 (Int i) arg) )
  10369. (define-values (e-vec t-vec) (recur e1))
  10370. (define-values (e-arg^ t-arg) (recur arg))
  10371. (match t-vec
  10372. [`(Vector ,ts ...)
  10373. (unless (and (0 . <= . i) (i . < . (length ts)))
  10374. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10375. (check-type-equal? (list-ref ts i) t-arg e)
  10376. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  10377. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  10378. [(Prim 'vector-length (list e))
  10379. (define-values (e^ t) (recur e))
  10380. (match t
  10381. [`(Vector ,ts ...)
  10382. (values (Prim 'vector-length (list e^)) 'Integer)]
  10383. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10384. [(Prim 'eq? (list arg1 arg2))
  10385. (define-values (e1 t1) (recur arg1))
  10386. (define-values (e2 t2) (recur arg2))
  10387. (match* (t1 t2)
  10388. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  10389. [(other wise) (check-type-equal? t1 t2 e)])
  10390. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  10391. [(HasType (Prim 'vector es) t)
  10392. ((type-check-exp env) (Prim 'vector es))]
  10393. [(HasType e1 t)
  10394. (define-values (e1^ t^) (recur e1))
  10395. (check-type-equal? t t^ e)
  10396. (values (HasType e1^ t) t)]
  10397. [else ((super type-check-exp env) e)]
  10398. )))
  10399. ))
  10400. (define (type-check-Lvec p)
  10401. (send (new type-check-Lvec_class) type-check-program p))
  10402. \end{lstlisting}
  10403. \fi}
  10404. {\if\edition\pythonEd
  10405. \begin{lstlisting}
  10406. class TypeCheckLtup(TypeCheckLwhile):
  10407. def type_check_exp(self, e, env):
  10408. match e:
  10409. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  10410. l = self.type_check_exp(left, env)
  10411. r = self.type_check_exp(right, env)
  10412. check_type_equal(l, r, e)
  10413. return bool
  10414. case Tuple(es, Load()):
  10415. ts = [self.type_check_exp(e, env) for e in es]
  10416. e.has_type = tuple(ts)
  10417. return e.has_type
  10418. case Subscript(tup, Constant(index), Load()):
  10419. tup_ty = self.type_check_exp(tup, env)
  10420. index_ty = self.type_check_exp(Constant(index), env)
  10421. check_type_equal(index_ty, int, index)
  10422. match tup_ty:
  10423. case tuple(ts):
  10424. return ts[index]
  10425. case _:
  10426. raise Exception('error: expected a tuple, not ' + repr(tup_ty))
  10427. case _:
  10428. return super().type_check_exp(e, env)
  10429. \end{lstlisting}
  10430. \fi}
  10431. \caption{Type checker for the \LangVec{} language.}
  10432. \label{fig:type-check-Lvec}
  10433. \end{figure}
  10434. \section{Garbage Collection}
  10435. \label{sec:GC}
  10436. Garbage collection is a runtime technique for reclaiming space on the
  10437. heap that will not be used in the future of the running program. We
  10438. use the term \emph{object}\index{subject}{object} to refer to any
  10439. value that is stored in the heap, which for now only includes
  10440. tuples.%
  10441. %
  10442. \footnote{The term ``object'' as used in the context of
  10443. object-oriented programming has a more specific meaning than how we
  10444. are using the term here.}
  10445. %
  10446. Unfortunately, it is impossible to know precisely which objects will
  10447. be accessed in the future and which will not. Instead, garbage
  10448. collectors overapproximate the set of objects that will be accessed by
  10449. identifying which objects can possibly be accessed. The running
  10450. program can directly access objects that are in registers and on the
  10451. procedure call stack. It can also transitively access the elements of
  10452. tuples, starting with a tuple whose address is in a register or on the
  10453. procedure call stack. We define the \emph{root
  10454. set}\index{subject}{root set} to be all the tuple addresses that are
  10455. in registers or on the procedure call stack. We define the \emph{live
  10456. objects}\index{subject}{live objects} to be the objects that are
  10457. reachable from the root set. Garbage collectors reclaim the space that
  10458. is allocated to objects that are no longer live. That means that some
  10459. objects may not get reclaimed as soon as they could be, but at least
  10460. garbage collectors do not reclaim the space dedicated to objects that
  10461. will be accessed in the future! The programmer can influence which
  10462. objects get reclaimed by causing them to become unreachable.
  10463. So the goal of the garbage collector is twofold:
  10464. \begin{enumerate}
  10465. \item preserve all the live objects, and
  10466. \item reclaim the memory of everything else, that is, the \emph{garbage}.
  10467. \end{enumerate}
  10468. \subsection{Two-Space Copying Collector}
  10469. Here we study a relatively simple algorithm for garbage collection
  10470. that is the basis of many state-of-the-art garbage
  10471. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  10472. particular, we describe a two-space copying
  10473. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  10474. perform the copy~\citep{Cheney:1970aa}. \index{subject}{copying
  10475. collector} \index{subject}{two-space copying collector}
  10476. Figure~\ref{fig:copying-collector} gives a coarse-grained depiction of
  10477. what happens in a two-space collector, showing two time steps, prior
  10478. to garbage collection (on the top) and after garbage collection (on
  10479. the bottom). In a two-space collector, the heap is divided into two
  10480. parts named the FromSpace\index{subject}{FromSpace} and the
  10481. ToSpace\index{subject}{ToSpace}. Initially, all allocations go to the
  10482. FromSpace until there is not enough room for the next allocation
  10483. request. At that point, the garbage collector goes to work to room for
  10484. the next allocation.
  10485. A copying collector makes more room by copying all of the live objects
  10486. from the FromSpace into the ToSpace and then performs a sleight of
  10487. hand, treating the ToSpace as the new FromSpace and the old FromSpace
  10488. as the new ToSpace. In the example of
  10489. Figure~\ref{fig:copying-collector}, there are three pointers in the
  10490. root set, one in a register and two on the stack. All of the live
  10491. objects have been copied to the ToSpace (the right-hand side of
  10492. Figure~\ref{fig:copying-collector}) in a way that preserves the
  10493. pointer relationships. For example, the pointer in the register still
  10494. points to a tuple that in turn points to two other tuples. There are
  10495. four tuples that are not reachable from the root set and therefore do
  10496. not get copied into the ToSpace.
  10497. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  10498. created by a well-typed program in \LangVec{} because it contains a
  10499. cycle. However, creating cycles will be possible once we get to
  10500. \LangDyn{}. We design the garbage collector to deal with cycles to
  10501. begin with so we will not need to revisit this issue.
  10502. \begin{figure}[tbp]
  10503. \centering
  10504. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-1}}
  10505. \python{\includegraphics[width=\textwidth]{figs/copy-collect-1-python}}
  10506. \\[5ex]
  10507. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-2}}
  10508. \python{\includegraphics[width=\textwidth]{figs/copy-collect-2-python}}
  10509. \caption{A copying collector in action.}
  10510. \label{fig:copying-collector}
  10511. \end{figure}
  10512. \subsection{Graph Copying via Cheney's Algorithm}
  10513. \label{sec:cheney}
  10514. \index{subject}{Cheney's algorithm}
  10515. Let us take a closer look at the copying of the live objects. The
  10516. allocated objects and pointers can be viewed as a graph and we need to
  10517. copy the part of the graph that is reachable from the root set. To
  10518. make sure we copy all of the reachable vertices in the graph, we need
  10519. an exhaustive graph traversal algorithm, such as depth-first search or
  10520. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  10521. such algorithms take into account the possibility of cycles by marking
  10522. which vertices have already been visited, so as to ensure termination
  10523. of the algorithm. These search algorithms also use a data structure
  10524. such as a stack or queue as a to-do list to keep track of the vertices
  10525. that need to be visited. We use breadth-first search and a trick
  10526. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  10527. and copying tuples into the ToSpace.
  10528. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  10529. copy progresses. The queue is represented by a chunk of contiguous
  10530. memory at the beginning of the ToSpace, using two pointers to track
  10531. the front and the back of the queue, called the \emph{free pointer}
  10532. and the \emph{scan pointer} respectively. The algorithm starts by
  10533. copying all tuples that are immediately reachable from the root set
  10534. into the ToSpace to form the initial queue. When we copy a tuple, we
  10535. mark the old tuple to indicate that it has been visited. We discuss
  10536. how this marking is accomplish in Section~\ref{sec:data-rep-gc}. Note
  10537. that any pointers inside the copied tuples in the queue still point
  10538. back to the FromSpace. Once the initial queue has been created, the
  10539. algorithm enters a loop in which it repeatedly processes the tuple at
  10540. the front of the queue and pops it off the queue. To process a tuple,
  10541. the algorithm copies all the tuple that are directly reachable from it
  10542. to the ToSpace, placing them at the back of the queue. The algorithm
  10543. then updates the pointers in the popped tuple so they point to the
  10544. newly copied tuples.
  10545. \begin{figure}[tbp]
  10546. \centering
  10547. \racket{\includegraphics[width=0.9\textwidth]{figs/cheney}}
  10548. \python{\includegraphics[width=0.9\textwidth]{figs/cheney-python}}
  10549. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  10550. \label{fig:cheney}
  10551. \end{figure}
  10552. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  10553. tuple whose second element is $42$ to the back of the queue. The other
  10554. pointer goes to a tuple that has already been copied, so we do not
  10555. need to copy it again, but we do need to update the pointer to the new
  10556. location. This can be accomplished by storing a \emph{forwarding
  10557. pointer}\index{subect}{forwarding pointer} to the new location in the
  10558. old tuple, back when we initially copied the tuple into the
  10559. ToSpace. This completes one step of the algorithm. The algorithm
  10560. continues in this way until the queue is empty, that is, when the scan
  10561. pointer catches up with the free pointer.
  10562. \subsection{Data Representation}
  10563. \label{sec:data-rep-gc}
  10564. The garbage collector places some requirements on the data
  10565. representations used by our compiler. First, the garbage collector
  10566. needs to distinguish between pointers and other kinds of data such as
  10567. integers. There are several ways to accomplish this.
  10568. \begin{enumerate}
  10569. \item Attached a tag to each object that identifies what type of
  10570. object it is~\citep{McCarthy:1960dz}.
  10571. \item Store different types of objects in different
  10572. regions~\citep{Steele:1977ab}.
  10573. \item Use type information from the program to either generate
  10574. type-specific code for collecting or to generate tables that can
  10575. guide the
  10576. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  10577. \end{enumerate}
  10578. Dynamically typed languages, such as \racket{Racket}\python{Python},
  10579. need to tag objects anyways, so option 1 is a natural choice for those
  10580. languages. However, \LangVec{} is a statically typed language, so it
  10581. would be unfortunate to require tags on every object, especially small
  10582. and pervasive objects like integers and Booleans. Option 3 is the
  10583. best-performing choice for statically typed languages, but comes with
  10584. a relatively high implementation complexity. To keep this chapter
  10585. within a reasonable time budget, we recommend a combination of options
  10586. 1 and 2, using separate strategies for the stack and the heap.
  10587. Regarding the stack, we recommend using a separate stack for pointers,
  10588. which we call the \emph{root stack}\index{subject}{root stack}
  10589. (a.k.a. ``shadow
  10590. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  10591. is, when a local variable needs to be spilled and is of type
  10592. \racket{\code{Vector}}\python{\code{TupleType}}, then we put it on the
  10593. root stack instead of putting it on the procedure call
  10594. stack. Furthermore, we always spill tuple-typed variables if they are
  10595. live during a call to the collector, thereby ensuring that no pointers
  10596. are in registers during a collection. Figure~\ref{fig:shadow-stack}
  10597. reproduces the example from Figure~\ref{fig:copying-collector} and
  10598. contrasts it with the data layout using a root stack. The root stack
  10599. contains the two pointers from the regular stack and also the pointer
  10600. in the second register.
  10601. \begin{figure}[tbp]
  10602. \centering
  10603. \racket{\includegraphics[width=0.60\textwidth]{figs/root-stack}}
  10604. \python{\includegraphics[width=0.60\textwidth]{figs/root-stack-python}}
  10605. \caption{Maintaining a root stack to facilitate garbage collection.}
  10606. \label{fig:shadow-stack}
  10607. \end{figure}
  10608. The problem of distinguishing between pointers and other kinds of data
  10609. also arises inside of each tuple on the heap. We solve this problem by
  10610. attaching a tag, an extra 64-bits, to each
  10611. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  10612. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  10613. that we have drawn the bits in a big-endian way, from right-to-left,
  10614. with bit location 0 (the least significant bit) on the far right,
  10615. which corresponds to the direction of the x86 shifting instructions
  10616. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  10617. is dedicated to specifying which elements of the tuple are pointers,
  10618. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  10619. indicates there is a pointer and a 0 bit indicates some other kind of
  10620. data. The pointer mask starts at bit location 7. We limit tuples to a
  10621. maximum size of 50 elements, so we just need 50 bits for the pointer
  10622. mask.%
  10623. %
  10624. \footnote{A production-quality compiler would handle
  10625. arbitrary-sized tuples and use a more complex approach.}
  10626. %
  10627. The tag also contains two other pieces of information. The length of
  10628. the tuple (number of elements) is stored in bits location 1 through
  10629. 6. Finally, the bit at location 0 indicates whether the tuple has yet
  10630. to be copied to the ToSpace. If the bit has value 1, then this tuple
  10631. has not yet been copied. If the bit has value 0 then the entire tag
  10632. is a forwarding pointer. (The lower 3 bits of a pointer are always
  10633. zero anyways because our tuples are 8-byte aligned.)
  10634. \begin{figure}[tbp]
  10635. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  10636. \caption{Representation of tuples in the heap.}
  10637. \label{fig:tuple-rep}
  10638. \end{figure}
  10639. \subsection{Implementation of the Garbage Collector}
  10640. \label{sec:organize-gz}
  10641. \index{subject}{prelude}
  10642. An implementation of the copying collector is provided in the
  10643. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  10644. interface to the garbage collector that is used by the compiler. The
  10645. \code{initialize} function creates the FromSpace, ToSpace, and root
  10646. stack and should be called in the prelude of the \code{main}
  10647. function. The arguments of \code{initialize} are the root stack size
  10648. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  10649. good choice for both. The \code{initialize} function puts the address
  10650. of the beginning of the FromSpace into the global variable
  10651. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  10652. the address that is 1-past the last element of the FromSpace. (We use
  10653. half-open intervals to represent chunks of
  10654. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  10655. points to the first element of the root stack.
  10656. As long as there is room left in the FromSpace, your generated code
  10657. can allocate tuples simply by moving the \code{free\_ptr} forward.
  10658. %
  10659. The amount of room left in FromSpace is the difference between the
  10660. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  10661. function should be called when there is not enough room left in the
  10662. FromSpace for the next allocation. The \code{collect} function takes
  10663. a pointer to the current top of the root stack (one past the last item
  10664. that was pushed) and the number of bytes that need to be
  10665. allocated. The \code{collect} function performs the copying collection
  10666. and leaves the heap in a state such that the next allocation will
  10667. succeed.
  10668. \begin{figure}[tbp]
  10669. \begin{lstlisting}
  10670. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  10671. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  10672. int64_t* free_ptr;
  10673. int64_t* fromspace_begin;
  10674. int64_t* fromspace_end;
  10675. int64_t** rootstack_begin;
  10676. \end{lstlisting}
  10677. \caption{The compiler's interface to the garbage collector.}
  10678. \label{fig:gc-header}
  10679. \end{figure}
  10680. %% \begin{exercise}
  10681. %% In the file \code{runtime.c} you will find the implementation of
  10682. %% \code{initialize} and a partial implementation of \code{collect}.
  10683. %% The \code{collect} function calls another function, \code{cheney},
  10684. %% to perform the actual copy, and that function is left to the reader
  10685. %% to implement. The following is the prototype for \code{cheney}.
  10686. %% \begin{lstlisting}
  10687. %% static void cheney(int64_t** rootstack_ptr);
  10688. %% \end{lstlisting}
  10689. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  10690. %% rootstack (which is an array of pointers). The \code{cheney} function
  10691. %% also communicates with \code{collect} through the global
  10692. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  10693. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  10694. %% the ToSpace:
  10695. %% \begin{lstlisting}
  10696. %% static int64_t* tospace_begin;
  10697. %% static int64_t* tospace_end;
  10698. %% \end{lstlisting}
  10699. %% The job of the \code{cheney} function is to copy all the live
  10700. %% objects (reachable from the root stack) into the ToSpace, update
  10701. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  10702. %% update the root stack so that it points to the objects in the
  10703. %% ToSpace, and finally to swap the global pointers for the FromSpace
  10704. %% and ToSpace.
  10705. %% \end{exercise}
  10706. The introduction of garbage collection has a non-trivial impact on our
  10707. compiler passes. We introduce a new compiler pass named
  10708. \code{expose\_allocation}. We make significant changes to
  10709. \code{select\_instructions}, \code{build\_interference},
  10710. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  10711. make minor changes in several more passes. The following program will
  10712. serve as our running example. It creates two tuples, one nested
  10713. inside the other. Both tuples have length one. The program accesses
  10714. the element in the inner tuple.
  10715. % tests/vectors_test_17.rkt
  10716. {\if\edition\racketEd
  10717. \begin{lstlisting}
  10718. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  10719. \end{lstlisting}
  10720. \fi}
  10721. {\if\edition\pythonEd
  10722. \begin{lstlisting}
  10723. print( ((42,),)[0][0] )
  10724. \end{lstlisting}
  10725. \fi}
  10726. {\if\edition\racketEd
  10727. \section{Shrink}
  10728. \label{sec:shrink-Lvec}
  10729. Recall that the \code{shrink} pass translates the primitives operators
  10730. into a smaller set of primitives.
  10731. %
  10732. This pass comes after type checking and the type checker adds a
  10733. \code{HasType} AST node around each \code{vector} AST node, so you'll
  10734. need to add a case for \code{HasType} to the \code{shrink} pass.
  10735. \fi}
  10736. \section{Expose Allocation}
  10737. \label{sec:expose-allocation}
  10738. The pass \code{expose\_allocation} lowers tuple creation into a
  10739. conditional call to the collector followed by allocating the
  10740. appropriate amount of memory and initializing it. We choose to place
  10741. the \code{expose\_allocation} pass before
  10742. \code{remove\_complex\_operands} because the code generated by
  10743. \code{expose\_allocation} contains complex operands.
  10744. The output of \code{expose\_allocation} is a language \LangAlloc{}
  10745. that extends \LangVec{} with new forms that we use in the translation
  10746. of tuple creation.
  10747. %
  10748. {\if\edition\racketEd
  10749. \[
  10750. \begin{array}{lcl}
  10751. \Exp &::=& \cdots
  10752. \MID (\key{collect} \,\itm{int})
  10753. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  10754. \MID (\key{global-value} \,\itm{name})
  10755. \end{array}
  10756. \]
  10757. \fi}
  10758. {\if\edition\pythonEd
  10759. \[
  10760. \begin{array}{lcl}
  10761. \Exp &::=& \cdots\\
  10762. &\MID& \key{collect}(\itm{int})
  10763. \MID \key{allocate}(\itm{int},\itm{type})
  10764. \MID \key{global\_value}(\itm{name}) \\
  10765. &\MID& \key{begin:} ~ \Stmt^{*} ~ \Exp \\
  10766. \Stmt &::= & \CASSIGN{\CPUT{\Exp}{\itm{int}}}{\Exp}
  10767. \end{array}
  10768. \]
  10769. \fi}
  10770. The \CCOLLECT{$n$} form runs the garbage collector, requesting that it
  10771. make sure that there are $n$ bytes ready to be allocated. During
  10772. instruction selection, the \CCOLLECT{$n$} form will become a call to
  10773. the \code{collect} function in \code{runtime.c}.
  10774. %
  10775. The \CALLOCATE{$n$}{$T$} form obtains memory for $n$ elements (and
  10776. space at the front for the 64 bit tag), but the elements are not
  10777. initialized. \index{subject}{allocate} The $T$ parameter is the type
  10778. of the tuple:
  10779. %
  10780. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  10781. %
  10782. where $\Type_i$ is the type of the $i$th element in the tuple. The
  10783. \CGLOBALVALUE{\itm{name}} form reads the value of a global variable, such
  10784. as \code{free\_ptr}.
  10785. %
  10786. \python{The \code{begin} form is an expression that executes a
  10787. sequence of statements and then produces the value of the expression
  10788. at the end.}
  10789. The following shows the transformation of tuple creation into 1) a
  10790. sequence of temporary variables bindings for the initializing
  10791. expressions, 2) a conditional call to \code{collect}, 3) a call to
  10792. \code{allocate}, and 4) the initialization of the tuple. The
  10793. \itm{len} placeholder refers to the length of the tuple and
  10794. \itm{bytes} is how many total bytes need to be allocated for the
  10795. tuple, which is 8 for the tag plus \itm{len} times 8.
  10796. %
  10797. \python{The \itm{type} needed for the second argument of the
  10798. \code{allocate} form can be obtained from the \code{has\_type} field
  10799. of the tuple AST node, which is stored there by running the type
  10800. checker for \LangVec{} immediately before this pass.}
  10801. %
  10802. \begin{center}
  10803. \begin{minipage}{\textwidth}
  10804. {\if\edition\racketEd
  10805. \begin{lstlisting}
  10806. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  10807. |$\Longrightarrow$|
  10808. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  10809. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  10810. (global-value fromspace_end))
  10811. (void)
  10812. (collect |\itm{bytes}|))])
  10813. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  10814. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  10815. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  10816. |$v$|) ... )))) ...)
  10817. \end{lstlisting}
  10818. \fi}
  10819. {\if\edition\pythonEd
  10820. \begin{lstlisting}
  10821. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  10822. |$\Longrightarrow$|
  10823. begin:
  10824. |$x_0$| = |$e_0$|
  10825. |$\vdots$|
  10826. |$x_{n-1}$| = |$e_{n-1}$|
  10827. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  10828. 0
  10829. else:
  10830. collect(|\itm{bytes}|)
  10831. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  10832. |$v$|[0] = |$x_0$|
  10833. |$\vdots$|
  10834. |$v$|[|$n-1$|] = |$x_{n-1}$|
  10835. |$v$|
  10836. \end{lstlisting}
  10837. \fi}
  10838. \end{minipage}
  10839. \end{center}
  10840. %
  10841. \noindent The sequencing of the initializing expressions
  10842. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important, as
  10843. they may trigger garbage collection and we cannot have an allocated
  10844. but uninitialized tuple on the heap during a collection.
  10845. Figure~\ref{fig:expose-alloc-output} shows the output of the
  10846. \code{expose\_allocation} pass on our running example.
  10847. \begin{figure}[tbp]
  10848. % tests/s2_17.rkt
  10849. {\if\edition\racketEd
  10850. \begin{lstlisting}
  10851. (vector-ref
  10852. (vector-ref
  10853. (let ([vecinit7976
  10854. (let ([vecinit7972 42])
  10855. (let ([collectret7974
  10856. (if (< (+ (global-value free_ptr) 16)
  10857. (global-value fromspace_end))
  10858. (void)
  10859. (collect 16)
  10860. )])
  10861. (let ([alloc7971 (allocate 1 (Vector Integer))])
  10862. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  10863. alloc7971))))])
  10864. (let ([collectret7978
  10865. (if (< (+ (global-value free_ptr) 16)
  10866. (global-value fromspace_end))
  10867. (void)
  10868. (collect 16)
  10869. )])
  10870. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  10871. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  10872. alloc7975))))
  10873. 0)
  10874. 0)
  10875. \end{lstlisting}
  10876. \fi}
  10877. {\if\edition\pythonEd
  10878. \begin{lstlisting}
  10879. print( |$T_1$|[0][0] )
  10880. \end{lstlisting}
  10881. where $T_1$ is
  10882. \begin{lstlisting}
  10883. begin:
  10884. tmp.1 = |$T_2$|
  10885. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  10886. 0
  10887. else:
  10888. collect(16)
  10889. tmp.2 = allocate(1, TupleType(TupleType([int])))
  10890. tmp.2[0] = tmp.1
  10891. tmp.2
  10892. \end{lstlisting}
  10893. and $T_2$ is
  10894. \begin{lstlisting}
  10895. begin:
  10896. tmp.3 = 42
  10897. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  10898. 0
  10899. else:
  10900. collect(16)
  10901. tmp.4 = allocate(1, TupleType([int]))
  10902. tmp.4[0] = tmp.3
  10903. tmp.4
  10904. \end{lstlisting}
  10905. \fi}
  10906. \caption{Output of the \code{expose\_allocation} pass.}
  10907. \label{fig:expose-alloc-output}
  10908. \end{figure}
  10909. \section{Remove Complex Operands}
  10910. \label{sec:remove-complex-opera-Lvec}
  10911. {\if\edition\racketEd
  10912. %
  10913. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  10914. should be treated as complex operands.
  10915. %
  10916. \fi}
  10917. %
  10918. {\if\edition\pythonEd
  10919. %
  10920. The expressions \code{allocate}, \code{global\_value}, \code{begin},
  10921. and tuple access should be treated as complex operands. The
  10922. sub-expressions of tuple access must be atomic.
  10923. %
  10924. \fi}
  10925. %% A new case for
  10926. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  10927. %% handled carefully to prevent the \code{Prim} node from being separated
  10928. %% from its enclosing \code{HasType}.
  10929. Figure~\ref{fig:Lvec-anf-syntax}
  10930. shows the grammar for the output language \LangAllocANF{} of this
  10931. pass, which is \LangAlloc{} in monadic normal form.
  10932. \newcommand{\LtupMonadASTPython}{
  10933. \begin{array}{rcl}
  10934. \Exp &::=& \GET{\Atm}{\Atm} \\
  10935. &\MID& \LEN{\Atm}\\
  10936. &\MID& \ALLOCATE{\Int}{\Type}
  10937. \MID \GLOBALVALUE{\Var} \\
  10938. \Stmt{} &::=& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  10939. &\MID& \COLLECT{\Int}
  10940. \end{array}
  10941. }
  10942. \begin{figure}[tp]
  10943. \centering
  10944. \fbox{
  10945. \begin{minipage}{0.96\textwidth}
  10946. \small
  10947. {\if\edition\racketEd
  10948. \[
  10949. \begin{array}{rcl}
  10950. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  10951. \MID \VOID{} } \\
  10952. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  10953. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  10954. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  10955. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  10956. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  10957. &\MID& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  10958. \MID \GLOBALVALUE{\Var}\\
  10959. % &\MID& \LP\key{HasType}~\Exp~\Type\RP \\
  10960. \LangAllocANFM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10961. \end{array}
  10962. \]
  10963. \fi}
  10964. {\if\edition\pythonEd
  10965. \[
  10966. \begin{array}{l}
  10967. \gray{\LvarMonadASTPython} \\ \hline
  10968. \gray{\LifMonadASTPython} \\ \hline
  10969. \gray{\LwhileMonadASTPython} \\ \hline
  10970. \LtupMonadASTPython \\
  10971. \begin{array}{rcl}
  10972. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10973. \end{array}
  10974. \end{array}
  10975. %% \begin{array}{lcl}
  10976. %% \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  10977. %% \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  10978. %% \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \MID \code{Is()} \\
  10979. %% \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  10980. %% \itm{bool} &::=& \code{True} \MID \code{False} \\
  10981. %% \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  10982. %% \Exp &::=& \Atm \MID \READ{} \MID \\
  10983. %% &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  10984. %% \MID \UNIOP{\itm{unaryop}}{\Atm}\\
  10985. %% &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  10986. %% % \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp} \\ % removed by RCO
  10987. %% &\MID& \IF{\Exp}{\Exp}{\Exp} \\
  10988. %% &\MID& \GET{\Atm}{\Atm} \\
  10989. %% &\MID& \LEN{\Exp}\\
  10990. %% &\MID& \ALLOCATE{\Int}{\Type}
  10991. %% \MID \GLOBALVALUE{\Var}\RP\\
  10992. %% &\MID& \BEGIN{\Stmt^{*}}{\Atm} \\ % can use this in place of \LET;
  10993. %% % why have \LET?
  10994. %% \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  10995. %% &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  10996. %% &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Exp} \\
  10997. %% &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  10998. %% &\MID& \WHILESTMT{\Exp}{\Stmt^{+}}
  10999. %% \MID \COLLECT{\Int} \\
  11000. %% \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  11001. %% \end{array}
  11002. \]
  11003. \fi}
  11004. \end{minipage}
  11005. }
  11006. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  11007. \label{fig:Lvec-anf-syntax}
  11008. \end{figure}
  11009. \section{Explicate Control and the \LangCVec{} language}
  11010. \label{sec:explicate-control-r3}
  11011. \newcommand{\CtupASTRacket}{
  11012. \begin{array}{lcl}
  11013. \Exp &::= & \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  11014. &\MID& \VECREF{\Atm}{\INT{\Int}} \\
  11015. &\MID& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  11016. &\MID& \VECLEN{\Atm} \\
  11017. &\MID& \GLOBALVALUE{\Var} \\
  11018. \Stmt &::=& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  11019. &\MID& \LP\key{Collect} \,\itm{int}\RP
  11020. \end{array}
  11021. }
  11022. \newcommand{\CtupASTPython}{
  11023. \begin{array}{lcl}
  11024. \Exp &::= & \GET{\Atm}{\Atm} \MID \ALLOCATE{\Int}{\Type} \\
  11025. &\MID& \GLOBALVALUE{\Var} \MID \LEN{\Atm} \\
  11026. \Stmt &::=& \COLLECT{\Int} \\
  11027. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  11028. \end{array}
  11029. }
  11030. \begin{figure}[tp]
  11031. \fbox{
  11032. \begin{minipage}{0.96\textwidth}
  11033. \small
  11034. {\if\edition\racketEd
  11035. \[
  11036. \begin{array}{l}
  11037. \gray{\CvarASTRacket} \\ \hline
  11038. \gray{\CifASTRacket} \\ \hline
  11039. \gray{\CloopASTRacket} \\ \hline
  11040. \CtupASTRacket \\
  11041. \begin{array}{lcl}
  11042. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  11043. \end{array}
  11044. \end{array}
  11045. \]
  11046. \fi}
  11047. {\if\edition\pythonEd
  11048. \[
  11049. \begin{array}{l}
  11050. \gray{\CifASTPython} \\ \hline
  11051. \CtupASTPython \\
  11052. \begin{array}{lcl}
  11053. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  11054. \end{array}
  11055. \end{array}
  11056. \]
  11057. \fi}
  11058. \end{minipage}
  11059. }
  11060. \caption{The abstract syntax of \LangCVec{}, extending
  11061. \racket{\LangCLoop{} (Figure~\ref{fig:c7-syntax})}\python{\LangCIf{}
  11062. (Figure~\ref{fig:c1-syntax})}.}
  11063. \label{fig:c2-syntax}
  11064. \end{figure}
  11065. The output of \code{explicate\_control} is a program in the
  11066. intermediate language \LangCVec{}, whose abstract syntax is defined in
  11067. Figure~\ref{fig:c2-syntax}.
  11068. %
  11069. \racket{(The concrete syntax is defined in
  11070. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  11071. %
  11072. The new expressions of \LangCVec{} include \key{allocate},
  11073. %
  11074. \racket{\key{vector-ref}, and \key{vector-set!},}
  11075. %
  11076. \python{accessing tuple elements,}
  11077. %
  11078. and \key{global\_value}.
  11079. %
  11080. \python{\LangCVec{} also includes the \code{collect} statement and
  11081. assignment to a tuple element.}
  11082. %
  11083. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  11084. %
  11085. The \code{explicate\_control} pass can treat these new forms much like
  11086. the other forms that we've already encoutered.
  11087. \section{Select Instructions and the \LangXGlobal{} Language}
  11088. \label{sec:select-instructions-gc}
  11089. \index{subject}{instruction selection}
  11090. %% void (rep as zero)
  11091. %% allocate
  11092. %% collect (callq collect)
  11093. %% vector-ref
  11094. %% vector-set!
  11095. %% vector-length
  11096. %% global (postpone)
  11097. In this pass we generate x86 code for most of the new operations that
  11098. were needed to compile tuples, including \code{Allocate},
  11099. \code{Collect}, and accessing tuple elements.
  11100. %
  11101. We compile \code{GlobalValue} to \code{Global} because the later has a
  11102. different concrete syntax (see Figures~\ref{fig:x86-2-concrete} and
  11103. \ref{fig:x86-2}). \index{subject}{x86}
  11104. The tuple read and write forms translate into \code{movq}
  11105. instructions. (The plus one in the offset is to get past the tag at
  11106. the beginning of the tuple representation.)
  11107. %
  11108. \begin{center}
  11109. \begin{minipage}{\textwidth}
  11110. {\if\edition\racketEd
  11111. \begin{lstlisting}
  11112. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  11113. |$\Longrightarrow$|
  11114. movq |$\itm{tup}'$|, %r11
  11115. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  11116. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  11117. |$\Longrightarrow$|
  11118. movq |$\itm{tup}'$|, %r11
  11119. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  11120. movq $0, |$\itm{lhs'}$|
  11121. \end{lstlisting}
  11122. \fi}
  11123. {\if\edition\pythonEd
  11124. \begin{lstlisting}
  11125. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  11126. |$\Longrightarrow$|
  11127. movq |$\itm{tup}'$|, %r11
  11128. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  11129. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  11130. |$\Longrightarrow$|
  11131. movq |$\itm{tup}'$|, %r11
  11132. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  11133. \end{lstlisting}
  11134. \fi}
  11135. \end{minipage}
  11136. \end{center}
  11137. \racket{The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$}
  11138. \python{The $\itm{tup}'$ and $\itm{rhs}'$}
  11139. are obtained by translating from \LangCVec{} to x86.
  11140. %
  11141. The move of $\itm{tup}'$ to
  11142. register \code{r11} ensures that offset expression
  11143. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  11144. removing \code{r11} from consideration by the register allocating.
  11145. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  11146. \code{rax}. Then the generated code for tuple assignment would be
  11147. \begin{lstlisting}
  11148. movq |$\itm{tup}'$|, %rax
  11149. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  11150. \end{lstlisting}
  11151. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  11152. \code{patch\_instructions} would insert a move through \code{rax}
  11153. as follows.
  11154. \begin{lstlisting}
  11155. movq |$\itm{tup}'$|, %rax
  11156. movq |$\itm{rhs}'$|, %rax
  11157. movq %rax, |$8(n+1)$|(%rax)
  11158. \end{lstlisting}
  11159. But the above sequence of instructions does not work because we're
  11160. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  11161. $\itm{rhs}'$) at the same time!
  11162. The \racket{\code{vector-length}}\python{\code{len}} operation should
  11163. be translated into a sequence of instructions that read the tag of the
  11164. tuple and extract the six bits that represent the tuple length, which
  11165. are the bits starting at index 1 and going up to and including bit 6.
  11166. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  11167. (shift right) can be used to accomplish this.
  11168. We compile the \code{allocate} form to operations on the
  11169. \code{free\_ptr}, as shown below. This approach is called \emph{inline
  11170. allocation} as it implements allocation without a function call, by
  11171. simply bumping the allocation pointer. It is much more efficient than
  11172. calling a function for each allocation. The address in the
  11173. \code{free\_ptr} is the next free address in the FromSpace, so we copy
  11174. it into \code{r11} and then move it forward by enough space for the
  11175. tuple being allocated, which is $8(\itm{len}+1)$ bytes because each
  11176. element is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  11177. initialize the \itm{tag} and finally copy the address in \code{r11} to
  11178. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  11179. tag is organized.
  11180. %
  11181. \racket{We recommend using the Racket operations
  11182. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  11183. during compilation.}
  11184. %
  11185. \python{We recommend using the bitwise-or operator \code{|} and the
  11186. shift-left operator \code{<<} to compute the tag during
  11187. compilation.}
  11188. %
  11189. The type annotation in the \code{allocate} form is used to determine
  11190. the pointer mask region of the tag.
  11191. %
  11192. The addressing mode \verb!free_ptr(%rip)! essentially stands for the
  11193. address of the \code{free\_ptr} global variable but uses a special
  11194. instruction-pointer relative addressing mode of the x86-64 processor.
  11195. In particular, the assembler computes the distance $d$ between the
  11196. address of \code{free\_ptr} and where the \code{rip} would be at that
  11197. moment and then changes the \code{free\_ptr(\%rip)} argument to
  11198. \code{$d$(\%rip)}, which at runtime will compute the address of
  11199. \code{free\_ptr}.
  11200. %
  11201. {\if\edition\racketEd
  11202. \begin{lstlisting}
  11203. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  11204. |$\Longrightarrow$|
  11205. movq free_ptr(%rip), %r11
  11206. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  11207. movq $|$\itm{tag}$|, 0(%r11)
  11208. movq %r11, |$\itm{lhs}'$|
  11209. \end{lstlisting}
  11210. \fi}
  11211. {\if\edition\pythonEd
  11212. \begin{lstlisting}
  11213. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  11214. |$\Longrightarrow$|
  11215. movq free_ptr(%rip), %r11
  11216. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  11217. movq $|$\itm{tag}$|, 0(%r11)
  11218. movq %r11, |$\itm{lhs}'$|
  11219. \end{lstlisting}
  11220. \fi}
  11221. The \code{collect} form is compiled to a call to the \code{collect}
  11222. function in the runtime. The arguments to \code{collect} are 1) the
  11223. top of the root stack and 2) the number of bytes that need to be
  11224. allocated. We use another dedicated register, \code{r15}, to
  11225. store the pointer to the top of the root stack. So \code{r15} is not
  11226. available for use by the register allocator.
  11227. {\if\edition\racketEd
  11228. \begin{lstlisting}
  11229. (collect |$\itm{bytes}$|)
  11230. |$\Longrightarrow$|
  11231. movq %r15, %rdi
  11232. movq $|\itm{bytes}|, %rsi
  11233. callq collect
  11234. \end{lstlisting}
  11235. \fi}
  11236. {\if\edition\pythonEd
  11237. \begin{lstlisting}
  11238. collect(|$\itm{bytes}$|)
  11239. |$\Longrightarrow$|
  11240. movq %r15, %rdi
  11241. movq $|\itm{bytes}|, %rsi
  11242. callq collect
  11243. \end{lstlisting}
  11244. \fi}
  11245. \begin{figure}[tp]
  11246. \fbox{
  11247. \begin{minipage}{0.96\textwidth}
  11248. \[
  11249. \begin{array}{lcl}
  11250. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)} \\
  11251. \LangXGlobalM{} &::= & \gray{ \key{.globl main} }\\
  11252. & & \gray{ \key{main:} \; \Instr^{*} }
  11253. \end{array}
  11254. \]
  11255. \end{minipage}
  11256. }
  11257. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  11258. \label{fig:x86-2-concrete}
  11259. \end{figure}
  11260. \begin{figure}[tp]
  11261. \fbox{
  11262. \begin{minipage}{0.96\textwidth}
  11263. \small
  11264. \[
  11265. \begin{array}{lcl}
  11266. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  11267. \MID \BYTEREG{\Reg}} \\
  11268. &\MID& \GLOBAL{\Var} \\
  11269. \LangXGlobalM{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  11270. \end{array}
  11271. \]
  11272. \end{minipage}
  11273. }
  11274. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  11275. \label{fig:x86-2}
  11276. \end{figure}
  11277. The concrete and abstract syntax of the \LangXGlobal{} language is
  11278. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  11279. differs from \LangXIf{} just in the addition of global variables.
  11280. %
  11281. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  11282. \code{select\_instructions} pass on the running example.
  11283. \begin{figure}[tbp]
  11284. \centering
  11285. % tests/s2_17.rkt
  11286. \begin{minipage}[t]{0.5\textwidth}
  11287. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11288. block35:
  11289. movq free_ptr(%rip), alloc9024
  11290. addq $16, free_ptr(%rip)
  11291. movq alloc9024, %r11
  11292. movq $131, 0(%r11)
  11293. movq alloc9024, %r11
  11294. movq vecinit9025, 8(%r11)
  11295. movq $0, initret9026
  11296. movq alloc9024, %r11
  11297. movq 8(%r11), tmp9034
  11298. movq tmp9034, %r11
  11299. movq 8(%r11), %rax
  11300. jmp conclusion
  11301. block36:
  11302. movq $0, collectret9027
  11303. jmp block35
  11304. block38:
  11305. movq free_ptr(%rip), alloc9020
  11306. addq $16, free_ptr(%rip)
  11307. movq alloc9020, %r11
  11308. movq $3, 0(%r11)
  11309. movq alloc9020, %r11
  11310. movq vecinit9021, 8(%r11)
  11311. movq $0, initret9022
  11312. movq alloc9020, vecinit9025
  11313. movq free_ptr(%rip), tmp9031
  11314. movq tmp9031, tmp9032
  11315. addq $16, tmp9032
  11316. movq fromspace_end(%rip), tmp9033
  11317. cmpq tmp9033, tmp9032
  11318. jl block36
  11319. jmp block37
  11320. block37:
  11321. movq %r15, %rdi
  11322. movq $16, %rsi
  11323. callq 'collect
  11324. jmp block35
  11325. block39:
  11326. movq $0, collectret9023
  11327. jmp block38
  11328. \end{lstlisting}
  11329. \end{minipage}
  11330. \begin{minipage}[t]{0.45\textwidth}
  11331. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11332. start:
  11333. movq $42, vecinit9021
  11334. movq free_ptr(%rip), tmp9028
  11335. movq tmp9028, tmp9029
  11336. addq $16, tmp9029
  11337. movq fromspace_end(%rip), tmp9030
  11338. cmpq tmp9030, tmp9029
  11339. jl block39
  11340. jmp block40
  11341. block40:
  11342. movq %r15, %rdi
  11343. movq $16, %rsi
  11344. callq 'collect
  11345. jmp block38
  11346. \end{lstlisting}
  11347. \end{minipage}
  11348. \caption{Output of the \code{select\_instructions} pass.}
  11349. \label{fig:select-instr-output-gc}
  11350. \end{figure}
  11351. \clearpage
  11352. \section{Register Allocation}
  11353. \label{sec:reg-alloc-gc}
  11354. \index{subject}{register allocation}
  11355. As discussed earlier in this chapter, the garbage collector needs to
  11356. access all the pointers in the root set, that is, all variables that
  11357. are tuples. It will be the responsibility of the register allocator
  11358. to make sure that:
  11359. \begin{enumerate}
  11360. \item the root stack is used for spilling tuple-typed variables, and
  11361. \item if a tuple-typed variable is live during a call to the
  11362. collector, it must be spilled to ensure it is visible to the
  11363. collector.
  11364. \end{enumerate}
  11365. The later responsibility can be handled during construction of the
  11366. interference graph, by adding interference edges between the call-live
  11367. tuple-typed variables and all the callee-saved registers. (They
  11368. already interfere with the caller-saved registers.)
  11369. %
  11370. \racket{The type information for variables is in the \code{Program}
  11371. form, so we recommend adding another parameter to the
  11372. \code{build\_interference} function to communicate this alist.}
  11373. %
  11374. \python{The type information for variables is generated by the type
  11375. checker for \LangCVec{}, stored a field named \code{var\_types} in
  11376. the \code{CProgram} AST mode. You'll need to propagate that
  11377. information so that it is available in this pass.}
  11378. The spilling of tuple-typed variables to the root stack can be handled
  11379. after graph coloring, when choosing how to assign the colors
  11380. (integers) to registers and stack locations. The
  11381. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  11382. changes to also record the number of spills to the root stack.
  11383. % build-interference
  11384. %
  11385. % callq
  11386. % extra parameter for var->type assoc. list
  11387. % update 'program' and 'if'
  11388. % allocate-registers
  11389. % allocate spilled vectors to the rootstack
  11390. % don't change color-graph
  11391. % TODO:
  11392. %\section{Patch Instructions}
  11393. %[mention that global variables are memory references]
  11394. \section{Prelude and Conclusion}
  11395. \label{sec:print-x86-gc}
  11396. \label{sec:prelude-conclusion-x86-gc}
  11397. \index{subject}{prelude}\index{subject}{conclusion}
  11398. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  11399. \code{prelude\_and\_conclusion} pass on the running example. In the
  11400. prelude and conclusion of the \code{main} function, we allocate space
  11401. on the root stack to make room for the spills of tuple-typed
  11402. variables. We do so by bumping the root stack
  11403. pointer (\code{r15}) taking care that the root stack grows up instead of down. For the running
  11404. example, there was just one spill so we increment \code{r15} by 8
  11405. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  11406. One issue that deserves special care is that there may be a call to
  11407. \code{collect} prior to the initializing assignments for all the
  11408. variables in the root stack. We do not want the garbage collector to
  11409. accidentally think that some uninitialized variable is a pointer that
  11410. needs to be followed. Thus, we zero-out all locations on the root
  11411. stack in the prelude of \code{main}. In
  11412. Figure~\ref{fig:print-x86-output-gc}, the instruction
  11413. %
  11414. \lstinline{movq $0, 0(%r15)}
  11415. %
  11416. is sufficient to accomplish this task because there is only one spill.
  11417. In general, we have to clear as many words as there are spills of
  11418. tuple-typed variables. The garbage collector tests each root to see
  11419. if it is null prior to dereferencing it.
  11420. \begin{figure}[htbp]
  11421. % TODO: Python Version -Jeremy
  11422. \begin{minipage}[t]{0.5\textwidth}
  11423. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11424. block35:
  11425. movq free_ptr(%rip), %rcx
  11426. addq $16, free_ptr(%rip)
  11427. movq %rcx, %r11
  11428. movq $131, 0(%r11)
  11429. movq %rcx, %r11
  11430. movq -8(%r15), %rax
  11431. movq %rax, 8(%r11)
  11432. movq $0, %rdx
  11433. movq %rcx, %r11
  11434. movq 8(%r11), %rcx
  11435. movq %rcx, %r11
  11436. movq 8(%r11), %rax
  11437. jmp conclusion
  11438. block36:
  11439. movq $0, %rcx
  11440. jmp block35
  11441. block38:
  11442. movq free_ptr(%rip), %rcx
  11443. addq $16, free_ptr(%rip)
  11444. movq %rcx, %r11
  11445. movq $3, 0(%r11)
  11446. movq %rcx, %r11
  11447. movq %rbx, 8(%r11)
  11448. movq $0, %rdx
  11449. movq %rcx, -8(%r15)
  11450. movq free_ptr(%rip), %rcx
  11451. addq $16, %rcx
  11452. movq fromspace_end(%rip), %rdx
  11453. cmpq %rdx, %rcx
  11454. jl block36
  11455. movq %r15, %rdi
  11456. movq $16, %rsi
  11457. callq collect
  11458. jmp block35
  11459. block39:
  11460. movq $0, %rcx
  11461. jmp block38
  11462. \end{lstlisting}
  11463. \end{minipage}
  11464. \begin{minipage}[t]{0.45\textwidth}
  11465. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11466. start:
  11467. movq $42, %rbx
  11468. movq free_ptr(%rip), %rdx
  11469. addq $16, %rdx
  11470. movq fromspace_end(%rip), %rcx
  11471. cmpq %rcx, %rdx
  11472. jl block39
  11473. movq %r15, %rdi
  11474. movq $16, %rsi
  11475. callq collect
  11476. jmp block38
  11477. .globl main
  11478. main:
  11479. pushq %rbp
  11480. movq %rsp, %rbp
  11481. pushq %r13
  11482. pushq %r12
  11483. pushq %rbx
  11484. pushq %r14
  11485. subq $0, %rsp
  11486. movq $16384, %rdi
  11487. movq $16384, %rsi
  11488. callq initialize
  11489. movq rootstack_begin(%rip), %r15
  11490. movq $0, 0(%r15)
  11491. addq $8, %r15
  11492. jmp start
  11493. conclusion:
  11494. subq $8, %r15
  11495. addq $0, %rsp
  11496. popq %r14
  11497. popq %rbx
  11498. popq %r12
  11499. popq %r13
  11500. popq %rbp
  11501. retq
  11502. \end{lstlisting}
  11503. \end{minipage}
  11504. \caption{Output of the \code{prelude\_and\_conclusion} pass.}
  11505. \label{fig:print-x86-output-gc}
  11506. \end{figure}
  11507. \begin{figure}[tbp]
  11508. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11509. \node (Lvec) at (0,2) {\large \LangVec{}};
  11510. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  11511. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  11512. \node (Lvec-4) at (9,2) {\large \LangVec{}};
  11513. \node (Lvec-5) at (9,0) {\large \LangAllocANF{}};
  11514. \node (C2-4) at (3,0) {\large \LangCVec{}};
  11515. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  11516. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  11517. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  11518. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  11519. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  11520. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  11521. %\path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize type-check} (Lvec-2);
  11522. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  11523. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  11524. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_alloc.} (Lvec-4);
  11525. \path[->,bend left=15] (Lvec-4) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvec-5);
  11526. \path[->,bend left=10] (Lvec-5) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  11527. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  11528. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11529. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  11530. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  11531. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  11532. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  11533. \end{tikzpicture}
  11534. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  11535. \label{fig:Lvec-passes}
  11536. \end{figure}
  11537. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  11538. for the compilation of \LangVec{}.
  11539. \clearpage
  11540. {\if\edition\racketEd
  11541. \section{Challenge: Simple Structures}
  11542. \label{sec:simple-structures}
  11543. \index{subject}{struct}
  11544. \index{subject}{structure}
  11545. The language \LangStruct{} extends \LangVec{} with support for simple
  11546. structures. Its concrete syntax is defined in
  11547. Figure~\ref{fig:Lstruct-concrete-syntax} and the abstract syntax is in
  11548. Figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct} in Typed
  11549. Racket is a user-defined data type that contains named fields and that
  11550. is heap allocated, similar to a vector. The following is an example of
  11551. a structure definition, in this case the definition of a \code{point}
  11552. type.
  11553. \begin{lstlisting}
  11554. (struct point ([x : Integer] [y : Integer]) #:mutable)
  11555. \end{lstlisting}
  11556. \newcommand{\LstructGrammarRacket}{
  11557. \begin{array}{lcl}
  11558. \Type &::=& \Var \\
  11559. \Exp &::=& (\Var\;\Exp \ldots)\\
  11560. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  11561. \end{array}
  11562. }
  11563. \newcommand{\LstructASTRacket}{
  11564. \begin{array}{lcl}
  11565. \Type &::=& \VAR{\Var} \\
  11566. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  11567. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  11568. \end{array}
  11569. }
  11570. \begin{figure}[tbp]
  11571. \centering
  11572. \fbox{
  11573. \begin{minipage}{0.96\textwidth}
  11574. \[
  11575. \begin{array}{l}
  11576. \gray{\LintGrammarRacket{}} \\ \hline
  11577. \gray{\LvarGrammarRacket{}} \\ \hline
  11578. \gray{\LifGrammarRacket{}} \\ \hline
  11579. \gray{\LwhileGrammarRacket} \\ \hline
  11580. \gray{\LtupGrammarRacket} \\ \hline
  11581. \LstructGrammarRacket \\
  11582. \begin{array}{lcl}
  11583. \LangStruct{} &::=& \Def \ldots \; \Exp
  11584. \end{array}
  11585. \end{array}
  11586. \]
  11587. \end{minipage}
  11588. }
  11589. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  11590. (Figure~\ref{fig:Lvec-concrete-syntax}).}
  11591. \label{fig:Lstruct-concrete-syntax}
  11592. \end{figure}
  11593. \begin{figure}[tbp]
  11594. \centering
  11595. \fbox{
  11596. \begin{minipage}{0.96\textwidth}
  11597. \[
  11598. \begin{array}{l}
  11599. \gray{\LintASTRacket{}} \\ \hline
  11600. \gray{\LvarASTRacket{}} \\ \hline
  11601. \gray{\LifASTRacket{}} \\ \hline
  11602. \gray{\LwhileASTRacket} \\ \hline
  11603. \gray{\LtupASTRacket} \\ \hline
  11604. \LstructASTRacket \\
  11605. \begin{array}{lcl}
  11606. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  11607. \end{array}
  11608. \end{array}
  11609. \]
  11610. \end{minipage}
  11611. }
  11612. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  11613. (Figure~\ref{fig:Lvec-syntax}).}
  11614. \label{fig:Lstruct-syntax}
  11615. \end{figure}
  11616. An instance of a structure is created using function call syntax, with
  11617. the name of the structure in the function position:
  11618. \begin{lstlisting}
  11619. (point 7 12)
  11620. \end{lstlisting}
  11621. Function-call syntax is also used to read the value in a field of a
  11622. structure. The function name is formed by the structure name, a dash,
  11623. and the field name. The following example uses \code{point-x} and
  11624. \code{point-y} to access the \code{x} and \code{y} fields of two point
  11625. instances.
  11626. \begin{center}
  11627. \begin{lstlisting}
  11628. (let ([pt1 (point 7 12)])
  11629. (let ([pt2 (point 4 3)])
  11630. (+ (- (point-x pt1) (point-x pt2))
  11631. (- (point-y pt1) (point-y pt2)))))
  11632. \end{lstlisting}
  11633. \end{center}
  11634. Similarly, to write to a field of a structure, use its set function,
  11635. whose name starts with \code{set-}, followed by the structure name,
  11636. then a dash, then the field name, and concluded with an exclamation
  11637. mark. The following example uses \code{set-point-x!} to change the
  11638. \code{x} field from \code{7} to \code{42}.
  11639. \begin{center}
  11640. \begin{lstlisting}
  11641. (let ([pt (point 7 12)])
  11642. (let ([_ (set-point-x! pt 42)])
  11643. (point-x pt)))
  11644. \end{lstlisting}
  11645. \end{center}
  11646. \begin{exercise}\normalfont\normalsize
  11647. Create a type checker for \LangStruct{} by extending the type
  11648. checker for \LangVec{}. Extend your compiler with support for simple
  11649. structures, compiling \LangStruct{} to x86 assembly code. Create
  11650. five new test cases that use structures and test your compiler.
  11651. \end{exercise}
  11652. % TODO: create an interpreter for L_struct
  11653. \clearpage
  11654. \section{Challenge: Arrays}
  11655. \label{sec:arrays}
  11656. In Chapter~\ref{ch:Lvec} we studied tuples, that is, sequences of
  11657. elements whose length is determined at compile-time and where each
  11658. element of a tuple may have a different type (they are
  11659. heterogeous). This challenge is also about sequences, but this time
  11660. the length is determined at run-time and all the elements have the same
  11661. type (they are homogeneous). We use the term ``array'' for this later
  11662. kind of sequence.
  11663. The Racket language does not distinguish between tuples and arrays,
  11664. they are both represented by vectors. However, Typed Racket
  11665. distinguishes between tuples and arrays: the \code{Vector} type is for
  11666. tuples and the \code{Vectorof} type is for arrays.
  11667. %
  11668. Figure~\ref{fig:Lvecof-concrete-syntax} defines the concrete syntax
  11669. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  11670. and the \code{make-vector} primitive operator for creating an array,
  11671. whose arguments are the length of the array and an initial value for
  11672. all the elements in the array. The \code{vector-length},
  11673. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  11674. for tuples become overloaded for use with arrays.
  11675. %
  11676. We also include integer multiplication in \LangArray{}, as it is
  11677. useful in many examples involving arrays such as computing the
  11678. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  11679. \begin{figure}[tp]
  11680. \centering
  11681. \fbox{
  11682. \begin{minipage}{0.96\textwidth}
  11683. \small
  11684. {\if\edition\racketEd
  11685. \[
  11686. \begin{array}{lcl}
  11687. \Type &::=& \ldots \MID \LP \key{Vectorof}~\Type \RP \\
  11688. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  11689. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \MID \CMUL{\Exp}{\Exp}\\
  11690. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  11691. &\MID& \gray{\key{\#t} \MID \key{\#f}
  11692. \MID \LP\key{and}\;\Exp\;\Exp\RP
  11693. \MID \LP\key{or}\;\Exp\;\Exp\RP
  11694. \MID \LP\key{not}\;\Exp\RP } \\
  11695. &\MID& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  11696. &\MID& \gray{ \LP\key{vector}\;\Exp\ldots\RP \MID
  11697. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  11698. &\MID& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\MID \LP\key{void}\RP
  11699. \MID \LP\Exp \; \Exp\ldots\RP } \\
  11700. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP
  11701. \MID \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  11702. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  11703. \MID \CBEGIN{\Exp\ldots}{\Exp}
  11704. \MID \CWHILE{\Exp}{\Exp} } \\
  11705. &\MID& \CMAKEVEC{\Exp}{\Exp} \\
  11706. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11707. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  11708. \end{array}
  11709. \]
  11710. \fi}
  11711. {\if\edition\pythonEd
  11712. UNDER CONSTRUCTION
  11713. \fi}
  11714. \end{minipage}
  11715. }
  11716. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  11717. \label{fig:Lvecof-concrete-syntax}
  11718. \end{figure}
  11719. \begin{figure}[tp]
  11720. \begin{lstlisting}
  11721. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  11722. [n : Integer]) : Integer
  11723. (let ([i 0])
  11724. (let ([prod 0])
  11725. (begin
  11726. (while (< i n)
  11727. (begin
  11728. (set! prod (+ prod (* (vector-ref A i)
  11729. (vector-ref B i))))
  11730. (set! i (+ i 1))
  11731. ))
  11732. prod))))
  11733. (let ([A (make-vector 2 2)])
  11734. (let ([B (make-vector 2 3)])
  11735. (+ (inner-product A B 2)
  11736. 30)))
  11737. \end{lstlisting}
  11738. \caption{Example program that computes the inner-product.}
  11739. \label{fig:inner-product}
  11740. \end{figure}
  11741. The type checker for \LangArray{} is define in
  11742. Figure~\ref{fig:type-check-Lvecof}. The result type of
  11743. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  11744. of the intializing expression. The length expression is required to
  11745. have type \code{Integer}. The type checking of the operators
  11746. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  11747. updated to handle the situation where the vector has type
  11748. \code{Vectorof}. In these cases we translate the operators to their
  11749. \code{vectorof} form so that later passes can easily distinguish
  11750. between operations on tuples versus arrays. We override the
  11751. \code{operator-types} method to provide the type signature for
  11752. multiplication: it takes two integers and returns an integer. To
  11753. support injection and projection of arrays to the \code{Any} type
  11754. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  11755. predicate.
  11756. \begin{figure}[tbp]
  11757. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11758. (define type-check-Lvecof_class
  11759. (class type-check-Rwhile_class
  11760. (super-new)
  11761. (inherit check-type-equal?)
  11762. (define/override (flat-ty? ty)
  11763. (match ty
  11764. ['(Vectorof Any) #t]
  11765. [else (super flat-ty? ty)]))
  11766. (define/override (operator-types)
  11767. (append '((* . ((Integer Integer) . Integer)))
  11768. (super operator-types)))
  11769. (define/override (type-check-exp env)
  11770. (lambda (e)
  11771. (define recur (type-check-exp env))
  11772. (match e
  11773. [(Prim 'make-vector (list e1 e2))
  11774. (define-values (e1^ t1) (recur e1))
  11775. (define-values (e2^ elt-type) (recur e2))
  11776. (define vec-type `(Vectorof ,elt-type))
  11777. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  11778. vec-type)]
  11779. [(Prim 'vector-ref (list e1 e2))
  11780. (define-values (e1^ t1) (recur e1))
  11781. (define-values (e2^ t2) (recur e2))
  11782. (match* (t1 t2)
  11783. [(`(Vectorof ,elt-type) 'Integer)
  11784. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  11785. [(other wise) ((super type-check-exp env) e)])]
  11786. [(Prim 'vector-set! (list e1 e2 e3) )
  11787. (define-values (e-vec t-vec) (recur e1))
  11788. (define-values (e2^ t2) (recur e2))
  11789. (define-values (e-arg^ t-arg) (recur e3))
  11790. (match t-vec
  11791. [`(Vectorof ,elt-type)
  11792. (check-type-equal? elt-type t-arg e)
  11793. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  11794. [else ((super type-check-exp env) e)])]
  11795. [(Prim 'vector-length (list e1))
  11796. (define-values (e1^ t1) (recur e1))
  11797. (match t1
  11798. [`(Vectorof ,t)
  11799. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  11800. [else ((super type-check-exp env) e)])]
  11801. [else ((super type-check-exp env) e)])))
  11802. ))
  11803. (define (type-check-Lvecof p)
  11804. (send (new type-check-Lvecof_class) type-check-program p))
  11805. \end{lstlisting}
  11806. \caption{Type checker for the \LangArray{} language.}
  11807. \label{fig:type-check-Lvecof}
  11808. \end{figure}
  11809. The interpreter for \LangArray{} is defined in
  11810. Figure~\ref{fig:interp-Lvecof}. The \code{make-vector} operator is
  11811. implemented with Racket's \code{make-vector} function and
  11812. multiplication is \code{fx*}, multiplication for \code{fixnum}
  11813. integers.
  11814. \begin{figure}[tbp]
  11815. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11816. (define interp-Lvecof_class
  11817. (class interp-Rwhile_class
  11818. (super-new)
  11819. (define/override (interp-op op)
  11820. (verbose "Lvecof/interp-op" op)
  11821. (match op
  11822. ['make-vector make-vector]
  11823. ['* fx*]
  11824. [else (super interp-op op)]))
  11825. ))
  11826. (define (interp-Lvecof p)
  11827. (send (new interp-Lvecof_class) interp-program p))
  11828. \end{lstlisting}
  11829. \caption{Interpreter for \LangArray{}.}
  11830. \label{fig:interp-Lvecof}
  11831. \end{figure}
  11832. \subsection{Data Representation}
  11833. \label{sec:array-rep}
  11834. Just like tuples, we store arrays on the heap which means that the
  11835. garbage collector will need to inspect arrays. An immediate thought is
  11836. to use the same representation for arrays that we use for tuples.
  11837. However, we limit tuples to a length of $50$ so that their length and
  11838. pointer mask can fit into the 64-bit tag at the beginning of each
  11839. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  11840. millions of elements, so we need more bits to store the length.
  11841. However, because arrays are homogeneous, we only need $1$ bit for the
  11842. pointer mask instead of one bit per array elements. Finally, the
  11843. garbage collector will need to be able to distinguish between tuples
  11844. and arrays, so we need to reserve $1$ bit for that purpose. So we
  11845. arrive at the following layout for the 64-bit tag at the beginning of
  11846. an array:
  11847. \begin{itemize}
  11848. \item The right-most bit is the forwarding bit, just like in a tuple.
  11849. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  11850. it is not.
  11851. \item The next bit to the left is the pointer mask. A $0$ indicates
  11852. that none of the elements are pointers to the heap and a $1$
  11853. indicates that all of the elements are pointers.
  11854. \item The next $61$ bits store the length of the array.
  11855. \item The left-most bit distinguishes between a tuple ($0$) versus an
  11856. array ($1$).
  11857. \end{itemize}
  11858. Recall that in Chapter~\ref{ch:Ldyn}, we use a $3$-bit tag to
  11859. differentiate the kinds of values that have been injected into the
  11860. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  11861. to indicate that the value is an array.
  11862. In the following subsections we provide hints regarding how to update
  11863. the passes to handle arrays.
  11864. \subsection{Reveal Casts}
  11865. The array-access operators \code{vectorof-ref} and
  11866. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  11867. \code{any-vector-set!} operators of Chapter~\ref{ch:Ldyn} in
  11868. that the type checker cannot tell whether the index will be in bounds,
  11869. so the bounds check must be performed at run time. Recall that the
  11870. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  11871. an \code{If} arround a vector reference for update to check whether
  11872. the index is less than the length. You should do the same for
  11873. \code{vectorof-ref} and \code{vectorof-set!} .
  11874. In addition, the handling of the \code{any-vector} operators in
  11875. \code{reveal-casts} needs to be updated to account for arrays that are
  11876. injected to \code{Any}. For the \code{any-vector-length} operator, the
  11877. generated code should test whether the tag is for tuples (\code{010})
  11878. or arrays (\code{110}) and then dispatch to either
  11879. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  11880. we add a case in \code{select\_instructions} to generate the
  11881. appropriate instructions for accessing the array length from the
  11882. header of an array.
  11883. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  11884. the generated code needs to check that the index is less than the
  11885. vector length, so like the code for \code{any-vector-length}, check
  11886. the tag to determine whether to use \code{any-vector-length} or
  11887. \code{any-vectorof-length} for this purpose. Once the bounds checking
  11888. is complete, the generated code can use \code{any-vector-ref} and
  11889. \code{any-vector-set!} for both tuples and arrays because the
  11890. instructions used for those operators do not look at the tag at the
  11891. front of the tuple or array.
  11892. \subsection{Expose Allocation}
  11893. This pass should translate the \code{make-vector} operator into
  11894. lower-level operations. In particular, the new AST node
  11895. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  11896. length specified by the $\Exp$, but does not initialize the elements
  11897. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  11898. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  11899. element type for the array. Regarding the initialization of the array,
  11900. we recommend generated a \code{while} loop that uses
  11901. \code{vector-set!} to put the initializing value into every element of
  11902. the array.
  11903. \subsection{Remove Complex Operands}
  11904. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  11905. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  11906. complex and its subexpression must be atomic.
  11907. \subsection{Explicate Control}
  11908. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  11909. \code{explicate\_assign}.
  11910. \subsection{Select Instructions}
  11911. Generate instructions for \code{AllocateArray} similar to those for
  11912. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  11913. that the tag at the front of the array should instead use the
  11914. representation discussed in Section~\ref{sec:array-rep}.
  11915. Regarding \code{vectorof-length}, extract the length from the tag
  11916. according to the representation discussed in
  11917. Section~\ref{sec:array-rep}.
  11918. The instructions generated for \code{vectorof-ref} differ from those
  11919. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  11920. that the index is not a constant so the offset must be computed at
  11921. runtime, similar to the instructions generated for
  11922. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). The same is
  11923. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  11924. appear in an assignment and as a stand-alone statement, so make sure
  11925. to handle both situations in this pass.
  11926. Finally, the instructions for \code{any-vectorof-length} should be
  11927. similar to those for \code{vectorof-length}, except that one must
  11928. first project the array by writing zeroes into the $3$-bit tag
  11929. \begin{exercise}\normalfont\normalsize
  11930. Implement a compiler for the \LangArray{} language by extending your
  11931. compiler for \LangLoop{}. Test your compiler on a half dozen new
  11932. programs, including the one in Figure~\ref{fig:inner-product} and also
  11933. a program that multiplies two matrices. Note that matrices are
  11934. 2-dimensional arrays, but those can be encoded into 1-dimensional
  11935. arrays by laying out each row in the array, one after the next.
  11936. \end{exercise}
  11937. \section{Challenge: Generational Collection}
  11938. The copying collector described in Section~\ref{sec:GC} can incur
  11939. significant runtime overhead because the call to \code{collect} takes
  11940. time proportional to all of the live data. One way to reduce this
  11941. overhead is to reduce how much data is inspected in each call to
  11942. \code{collect}. In particular, researchers have observed that recently
  11943. allocated data is more likely to become garbage then data that has
  11944. survived one or more previous calls to \code{collect}. This insight
  11945. motivated the creation of \emph{generational garbage collectors}
  11946. \index{subject}{generational garbage collector} that
  11947. 1) segregates data according to its age into two or more generations,
  11948. 2) allocates less space for younger generations, so collecting them is
  11949. faster, and more space for the older generations, and 3) performs
  11950. collection on the younger generations more frequently then for older
  11951. generations~\citep{Wilson:1992fk}.
  11952. For this challenge assignment, the goal is to adapt the copying
  11953. collector implemented in \code{runtime.c} to use two generations, one
  11954. for young data and one for old data. Each generation consists of a
  11955. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  11956. \code{collect} function to use the two generations.
  11957. \begin{enumerate}
  11958. \item Copy the young generation's FromSpace to its ToSpace then switch
  11959. the role of the ToSpace and FromSpace
  11960. \item If there is enough space for the requested number of bytes in
  11961. the young FromSpace, then return from \code{collect}.
  11962. \item If there is not enough space in the young FromSpace for the
  11963. requested bytes, then move the data from the young generation to the
  11964. old one with the following steps:
  11965. \begin{enumerate}
  11966. \item If there is enough room in the old FromSpace, copy the young
  11967. FromSpace to the old FromSpace and then return.
  11968. \item If there is not enough room in the old FromSpace, then collect
  11969. the old generation by copying the old FromSpace to the old ToSpace
  11970. and swap the roles of the old FromSpace and ToSpace.
  11971. \item If there is enough room now, copy the young FromSpace to the
  11972. old FromSpace and return. Otherwise, allocate a larger FromSpace
  11973. and ToSpace for the old generation. Copy the young FromSpace and
  11974. the old FromSpace into the larger FromSpace for the old
  11975. generation and then return.
  11976. \end{enumerate}
  11977. \end{enumerate}
  11978. We recommend that you generalize the \code{cheney} function so that it
  11979. can be used for all the copies mentioned above: between the young
  11980. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  11981. between the young FromSpace and old FromSpace. This can be
  11982. accomplished by adding parameters to \code{cheney} that replace its
  11983. use of the global variables \code{fromspace\_begin},
  11984. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  11985. Note that the collection of the young generation does not traverse the
  11986. old generation. This introduces a potential problem: there may be
  11987. young data that is only reachable through pointers in the old
  11988. generation. If these pointers are not taken into account, the
  11989. collector could throw away young data that is live! One solution,
  11990. called \emph{pointer recording}, is to maintain a set of all the
  11991. pointers from the old generation into the new generation and consider
  11992. this set as part of the root set. To maintain this set, the compiler
  11993. must insert extra instructions around every \code{vector-set!}. If the
  11994. vector being modified is in the old generation, and if the value being
  11995. written is a pointer into the new generation, than that pointer must
  11996. be added to the set. Also, if the value being overwritten was a
  11997. pointer into the new generation, then that pointer should be removed
  11998. from the set.
  11999. \begin{exercise}\normalfont\normalsize
  12000. Adapt the \code{collect} function in \code{runtime.c} to implement
  12001. generational garbage collection, as outlined in this section.
  12002. Update the code generation for \code{vector-set!} to implement
  12003. pointer recording. Make sure that your new compiler and runtime
  12004. passes your test suite.
  12005. \end{exercise}
  12006. \fi}
  12007. \section{Further Reading}
  12008. \citet{Appel90} describes many data representation approaches,
  12009. including the ones used in the compilation of Standard ML.
  12010. There are many alternatives to copying collectors (and their bigger
  12011. siblings, the generational collectors) when its comes to garbage
  12012. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  12013. reference counting~\citep{Collins:1960aa}. The strengths of copying
  12014. collectors are that allocation is fast (just a comparison and pointer
  12015. increment), there is no fragmentation, cyclic garbage is collected,
  12016. and the time complexity of collection only depends on the amount of
  12017. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  12018. main disadvantages of a two-space copying collector is that it uses a
  12019. lot of extra space and takes a long time to perform the copy, though
  12020. these problems are ameliorated in generational collectors.
  12021. \racket{Racket}\python{Object-oriented} programs tend to allocate many
  12022. small objects and generate a lot of garbage, so copying and
  12023. generational collectors are a good fit\python{~\citep{Dieckmann99}}.
  12024. Garbage collection is an active research topic, especially concurrent
  12025. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  12026. developing new techniques and revisiting old
  12027. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  12028. meet every year at the International Symposium on Memory Management to
  12029. present these findings.
  12030. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12031. \chapter{Functions}
  12032. \label{ch:Lfun}
  12033. \index{subject}{function}
  12034. This chapter studies the compilation of a subset of \racket{Typed
  12035. Racket}\python{Python} in which only top-level function definitions
  12036. are allowed..
  12037. This kind of function is a realistic example as the C language imposes
  12038. similar restrictions. It is also an important stepping stone to
  12039. implementing lexically-scoped functions in the form of \key{lambda}
  12040. abstractions, which is the topic of Chapter~\ref{ch:Llambda}.
  12041. \section{The \LangFun{} Language}
  12042. The concrete and abstract syntax for function definitions and function
  12043. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  12044. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  12045. \LangFun{} begin with zero or more function definitions. The function
  12046. names from these definitions are in-scope for the entire program,
  12047. including all other function definitions (so the ordering of function
  12048. definitions does not matter).
  12049. %
  12050. \python{The abstract syntax for function parameters in
  12051. Figure~\ref{fig:Rfun-syntax} is a list of pairs, where each pair
  12052. consists of a parameter name and its type. This design differs from
  12053. Python's \code{ast} module, which has a more complex structure for
  12054. function parameters to handle keyword parameters,
  12055. defaults, and so on. The type checker in \code{type\_check\_Lfun} converts the
  12056. complex Python abstract syntax into the simpler syntax of
  12057. Figure~\ref{fig:Rfun-syntax}. The fourth and sixth parameters of the
  12058. \code{FunctionDef} constructor are for decorators and a type
  12059. comment, neither of which are used by our compiler. We recommend
  12060. replacing them with \code{None} in the \code{shrink} pass.
  12061. }
  12062. %
  12063. The concrete syntax for function application\index{subject}{function
  12064. application} is
  12065. \python{$\CAPPLY{\Exp}{\Exp\code{,} \ldots}$}
  12066. \racket{$\CAPPLY{\Exp}{\Exp \ldots}$}
  12067. where the first expression
  12068. must evaluate to a function and the remaining expressions are the arguments. The
  12069. abstract syntax for function application is
  12070. $\APPLY{\Exp}{\Exp^*}$.
  12071. %% The syntax for function application does not include an explicit
  12072. %% keyword, which is error prone when using \code{match}. To alleviate
  12073. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  12074. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  12075. Functions are first-class in the sense that a function pointer
  12076. \index{subject}{function pointer} is data and can be stored in memory or passed
  12077. as a parameter to another function. Thus, there is a function
  12078. type, written
  12079. {\if\edition\racketEd
  12080. \begin{lstlisting}
  12081. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  12082. \end{lstlisting}
  12083. \fi}
  12084. {\if\edition\pythonEd
  12085. \begin{lstlisting}
  12086. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_R$|]
  12087. \end{lstlisting}
  12088. \fi}
  12089. %
  12090. \noindent for a function whose $n$ parameters have the types $\Type_1$
  12091. through $\Type_n$ and whose return type is $\Type_R$. The main
  12092. limitation of these functions (with respect to
  12093. \racket{Racket}\python{Python} functions) is that they are not
  12094. lexically scoped. That is, the only external entities that can be
  12095. referenced from inside a function body are other globally-defined
  12096. functions. The syntax of \LangFun{} prevents function definitions from being
  12097. nested inside each other.
  12098. \newcommand{\LfunGrammarRacket}{
  12099. \begin{array}{lcl}
  12100. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  12101. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  12102. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  12103. \end{array}
  12104. }
  12105. \newcommand{\LfunASTRacket}{
  12106. \begin{array}{lcl}
  12107. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  12108. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  12109. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  12110. \end{array}
  12111. }
  12112. \newcommand{\LfunGrammarPython}{
  12113. \begin{array}{lcl}
  12114. \Type &::=& \key{int}
  12115. \MID \key{bool}
  12116. \MID \key{tuple}\LS \Type^+ \RS
  12117. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  12118. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  12119. \Stmt &::=& \CRETURN{\Exp} \\
  12120. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  12121. \end{array}
  12122. }
  12123. \newcommand{\LfunASTPython}{
  12124. \begin{array}{lcl}
  12125. \Type &::=& \key{IntType()} \MID \key{BoolType()} \key{VoidType()}
  12126. \MID \key{TupleType}\LS\Type^+\RS\\
  12127. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  12128. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  12129. \Stmt &::=& \RETURN{\Exp} \\
  12130. \Params &::=& \LP\Var\key{,}\Type\RP^*
  12131. \\
  12132. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  12133. \end{array}
  12134. }
  12135. \begin{figure}[tp]
  12136. \centering
  12137. \fbox{
  12138. \begin{minipage}{0.96\textwidth}
  12139. \small
  12140. {\if\edition\racketEd
  12141. \[
  12142. \begin{array}{l}
  12143. \gray{\LintGrammarRacket{}} \\ \hline
  12144. \gray{\LvarGrammarRacket{}} \\ \hline
  12145. \gray{\LifGrammarRacket{}} \\ \hline
  12146. \gray{\LwhileGrammarRacket} \\ \hline
  12147. \gray{\LtupGrammarRacket} \\ \hline
  12148. \LfunGrammarRacket \\
  12149. \begin{array}{lcl}
  12150. \LangFunM{} &::=& \Def \ldots \; \Exp
  12151. \end{array}
  12152. \end{array}
  12153. \]
  12154. \fi}
  12155. {\if\edition\pythonEd
  12156. \[
  12157. \begin{array}{l}
  12158. \gray{\LintGrammarPython{}} \\ \hline
  12159. \gray{\LvarGrammarPython{}} \\ \hline
  12160. \gray{\LifGrammarPython{}} \\ \hline
  12161. \gray{\LwhileGrammarPython} \\ \hline
  12162. \gray{\LtupGrammarPython} \\ \hline
  12163. \LfunGrammarPython \\
  12164. \begin{array}{rcl}
  12165. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  12166. \end{array}
  12167. \end{array}
  12168. \]
  12169. \fi}
  12170. \end{minipage}
  12171. }
  12172. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-concrete-syntax}).}
  12173. \label{fig:Rfun-concrete-syntax}
  12174. \end{figure}
  12175. \begin{figure}[tp]
  12176. \centering
  12177. \fbox{
  12178. \begin{minipage}{0.96\textwidth}
  12179. \small
  12180. {\if\edition\racketEd
  12181. \[
  12182. \begin{array}{l}
  12183. \gray{\LintOpAST} \\ \hline
  12184. \gray{\LvarASTRacket{}} \\ \hline
  12185. \gray{\LifASTRacket{}} \\ \hline
  12186. \gray{\LwhileASTRacket{}} \\ \hline
  12187. \gray{\LtupASTRacket{}} \\ \hline
  12188. \LfunASTRacket \\
  12189. \begin{array}{lcl}
  12190. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  12191. \end{array}
  12192. \end{array}
  12193. \]
  12194. \fi}
  12195. {\if\edition\pythonEd
  12196. \[
  12197. \begin{array}{l}
  12198. \gray{\LintASTPython{}} \\ \hline
  12199. \gray{\LvarASTPython{}} \\ \hline
  12200. \gray{\LifASTPython{}} \\ \hline
  12201. \gray{\LwhileASTPython} \\ \hline
  12202. \gray{\LtupASTPython} \\ \hline
  12203. \LfunASTPython \\
  12204. \begin{array}{rcl}
  12205. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  12206. \end{array}
  12207. \end{array}
  12208. \]
  12209. \fi}
  12210. \end{minipage}
  12211. }
  12212. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-syntax}).}
  12213. \label{fig:Rfun-syntax}
  12214. \end{figure}
  12215. The program in Figure~\ref{fig:Rfun-function-example} is a
  12216. representative example of defining and using functions in \LangFun{}.
  12217. We define a function \code{map} that applies some other function
  12218. \code{f} to both elements of a tuple and returns a new tuple
  12219. containing the results. We also define a function \code{inc}. The
  12220. program applies \code{map} to \code{inc} and
  12221. %
  12222. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  12223. %
  12224. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  12225. %
  12226. from which we return the \code{42}.
  12227. \begin{figure}[tbp]
  12228. {\if\edition\racketEd
  12229. \begin{lstlisting}
  12230. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  12231. : (Vector Integer Integer)
  12232. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12233. (define (inc [x : Integer]) : Integer
  12234. (+ x 1))
  12235. (vector-ref (map inc (vector 0 41)) 1)
  12236. \end{lstlisting}
  12237. \fi}
  12238. {\if\edition\pythonEd
  12239. \begin{lstlisting}
  12240. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  12241. return f(v[0]), f(v[1])
  12242. def inc(x : int) -> int:
  12243. return x + 1
  12244. print( map(inc, (0, 41))[1] )
  12245. \end{lstlisting}
  12246. \fi}
  12247. \caption{Example of using functions in \LangFun{}.}
  12248. \label{fig:Rfun-function-example}
  12249. \end{figure}
  12250. The definitional interpreter for \LangFun{} is in
  12251. Figure~\ref{fig:interp-Rfun}. The case for the
  12252. %
  12253. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  12254. %
  12255. AST is responsible for setting up the mutual recursion between the
  12256. top-level function definitions.
  12257. %
  12258. \racket{We use the classic back-patching
  12259. \index{subject}{back-patching} approach that uses mutable variables
  12260. and makes two passes over the function
  12261. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  12262. top-level environment using a mutable cons cell for each function
  12263. definition. Note that the \code{lambda} value for each function is
  12264. incomplete; it does not yet include the environment. Once the
  12265. top-level environment is constructed, we then iterate over it and
  12266. update the \code{lambda} values to use the top-level environment.}
  12267. %
  12268. \python{We create a dictionary named \code{env} and fill it in
  12269. by mapping each function name to a new \code{Function} value,
  12270. each of which stores a reference to the \code{env}.
  12271. (We define the class \code{Function} for this purpose.)}
  12272. %
  12273. To interpret a function \racket{application}\python{call}, we match
  12274. the result of the function expression to obtain a function value. We
  12275. then extend the function's environment with mapping of parameters to
  12276. argument values. Finally, we interpret the body of the function in
  12277. this extended environment.
  12278. \begin{figure}[tp]
  12279. {\if\edition\racketEd
  12280. \begin{lstlisting}
  12281. (define interp-Rfun_class
  12282. (class interp-Lvec_class
  12283. (super-new)
  12284. (define/override ((interp-exp env) e)
  12285. (define recur (interp-exp env))
  12286. (match e
  12287. [(Var x) (unbox (dict-ref env x))]
  12288. [(Let x e body)
  12289. (define new-env (dict-set env x (box (recur e))))
  12290. ((interp-exp new-env) body)]
  12291. [(Apply fun args)
  12292. (define fun-val (recur fun))
  12293. (define arg-vals (for/list ([e args]) (recur e)))
  12294. (match fun-val
  12295. [`(function (,xs ...) ,body ,fun-env)
  12296. (define params-args (for/list ([x xs] [arg arg-vals])
  12297. (cons x (box arg))))
  12298. (define new-env (append params-args fun-env))
  12299. ((interp-exp new-env) body)]
  12300. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  12301. [else ((super interp-exp env) e)]
  12302. ))
  12303. (define/public (interp-def d)
  12304. (match d
  12305. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  12306. (cons f (box `(function ,xs ,body ())))]))
  12307. (define/override (interp-program p)
  12308. (match p
  12309. [(ProgramDefsExp info ds body)
  12310. (let ([top-level (for/list ([d ds]) (interp-def d))])
  12311. (for/list ([f (in-dict-values top-level)])
  12312. (set-box! f (match (unbox f)
  12313. [`(function ,xs ,body ())
  12314. `(function ,xs ,body ,top-level)])))
  12315. ((interp-exp top-level) body))]))
  12316. ))
  12317. (define (interp-Rfun p)
  12318. (send (new interp-Rfun_class) interp-program p))
  12319. \end{lstlisting}
  12320. \fi}
  12321. {\if\edition\pythonEd
  12322. \begin{lstlisting}
  12323. class InterpLfun(InterpLtup):
  12324. def apply_fun(self, fun, args, e):
  12325. match fun:
  12326. case Function(name, xs, body, env):
  12327. new_env = env.copy().update(zip(xs, args))
  12328. return self.interp_stmts(body, new_env)
  12329. case _:
  12330. raise Exception('apply_fun: unexpected: ' + repr(fun))
  12331. def interp_exp(self, e, env):
  12332. match e:
  12333. case Call(Name('input_int'), []):
  12334. return super().interp_exp(e, env)
  12335. case Call(func, args):
  12336. f = self.interp_exp(func, env)
  12337. vs = [self.interp_exp(arg, env) for arg in args]
  12338. return self.apply_fun(f, vs, e)
  12339. case _:
  12340. return super().interp_exp(e, env)
  12341. def interp_stmts(self, ss, env):
  12342. if len(ss) == 0:
  12343. return
  12344. match ss[0]:
  12345. case Return(value):
  12346. return self.interp_exp(value, env)
  12347. case FunctionDef(name, params, bod, dl, returns, comment):
  12348. ps = [x for (x,t) in params]
  12349. env[name] = Function(name, ps, bod, env)
  12350. return self.interp_stmts(ss[1:], env)
  12351. case _:
  12352. return super().interp_stmts(ss, env)
  12353. def interp(self, p):
  12354. match p:
  12355. case Module(ss):
  12356. env = {}
  12357. self.interp_stmts(ss, env)
  12358. if 'main' in env.keys():
  12359. self.apply_fun(env['main'], [], None)
  12360. case _:
  12361. raise Exception('interp: unexpected ' + repr(p))
  12362. \end{lstlisting}
  12363. \fi}
  12364. \caption{Interpreter for the \LangFun{} language.}
  12365. \label{fig:interp-Rfun}
  12366. \end{figure}
  12367. %\margincomment{TODO: explain type checker}
  12368. The type checker for \LangFun{} is in
  12369. Figure~\ref{fig:type-check-Rfun}. (We omit the code that parses
  12370. function parameters into the simpler abstract syntax.) Similar to the
  12371. interpreter, the case for the
  12372. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  12373. %
  12374. AST is responsible for setting up the mutual recursion between the
  12375. top-level function definitions. We begin by create a mapping
  12376. \code{env} from every function name to its type. We then type check
  12377. the program using this mapping.
  12378. %
  12379. In the case for function \racket{application}\python{call}, we match
  12380. the type of the function expression to a function type and check that
  12381. the types of the argument expressions are equal to the function's
  12382. parameter types. The type of the \racket{application}\python{call} as
  12383. a whole is the return type from the function type.
  12384. \begin{figure}[tp]
  12385. {\if\edition\racketEd
  12386. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12387. (define type-check-Rfun_class
  12388. (class type-check-Lvec_class
  12389. (super-new)
  12390. (inherit check-type-equal?)
  12391. (define/public (type-check-apply env e es)
  12392. (define-values (e^ ty) ((type-check-exp env) e))
  12393. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  12394. ((type-check-exp env) e)))
  12395. (match ty
  12396. [`(,ty^* ... -> ,rt)
  12397. (for ([arg-ty ty*] [param-ty ty^*])
  12398. (check-type-equal? arg-ty param-ty (Apply e es)))
  12399. (values e^ e* rt)]))
  12400. (define/override (type-check-exp env)
  12401. (lambda (e)
  12402. (match e
  12403. [(FunRef f n)
  12404. (values (FunRef f n) (dict-ref env f))]
  12405. [(Apply e es)
  12406. (define-values (e^ es^ rt) (type-check-apply env e es))
  12407. (values (Apply e^ es^) rt)]
  12408. [(Call e es)
  12409. (define-values (e^ es^ rt) (type-check-apply env e es))
  12410. (values (Call e^ es^) rt)]
  12411. [else ((super type-check-exp env) e)])))
  12412. (define/public (type-check-def env)
  12413. (lambda (e)
  12414. (match e
  12415. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  12416. (define new-env (append (map cons xs ps) env))
  12417. (define-values (body^ ty^) ((type-check-exp new-env) body))
  12418. (check-type-equal? ty^ rt body)
  12419. (Def f p:t* rt info body^)])))
  12420. (define/public (fun-def-type d)
  12421. (match d
  12422. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  12423. (define/override (type-check-program e)
  12424. (match e
  12425. [(ProgramDefsExp info ds body)
  12426. (define env (for/list ([d ds])
  12427. (cons (Def-name d) (fun-def-type d))))
  12428. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  12429. (define-values (body^ ty) ((type-check-exp env) body))
  12430. (check-type-equal? ty 'Integer body)
  12431. (ProgramDefsExp info ds^ body^)]))))
  12432. (define (type-check-Rfun p)
  12433. (send (new type-check-Rfun_class) type-check-program p))
  12434. \end{lstlisting}
  12435. \fi}
  12436. {\if\edition\pythonEd
  12437. \begin{lstlisting}
  12438. class TypeCheckLfun(TypeCheckLtup):
  12439. def type_check_exp(self, e, env):
  12440. match e:
  12441. case Call(Name('input_int'), []):
  12442. return super().type_check_exp(e, env)
  12443. case Call(func, args):
  12444. func_t = self.type_check_exp(func, env)
  12445. args_t = [self.type_check_exp(arg, env) for arg in args]
  12446. match func_t:
  12447. case FunctionType(params_t, return_t):
  12448. for (arg_t, param_t) in zip(args_t, params_t):
  12449. check_type_equal(param_t, arg_t, e)
  12450. return return_t
  12451. case _:
  12452. raise Exception('type_check_exp: in call, unexpected ' +
  12453. repr(func_t))
  12454. case _:
  12455. return super().type_check_exp(e, env)
  12456. def type_check_stmts(self, ss, env):
  12457. if len(ss) == 0:
  12458. return
  12459. match ss[0]:
  12460. case FunctionDef(name, params, body, dl, returns, comment):
  12461. new_env = env.copy().update(params)
  12462. rt = self.type_check_stmts(body, new_env)
  12463. check_type_equal(returns, rt, ss[0])
  12464. return self.type_check_stmts(ss[1:], env)
  12465. case Return(value):
  12466. return self.type_check_exp(value, env)
  12467. case _:
  12468. return super().type_check_stmts(ss, env)
  12469. def type_check(self, p):
  12470. match p:
  12471. case Module(body):
  12472. env = {}
  12473. for s in body:
  12474. match s:
  12475. case FunctionDef(name, params, bod, dl, returns, comment):
  12476. if name in env:
  12477. raise Exception('type_check: function ' +
  12478. repr(name) + ' defined twice')
  12479. params_t = [t for (x,t) in params]
  12480. env[name] = FunctionType(params_t, returns)
  12481. self.type_check_stmts(body, env)
  12482. case _:
  12483. raise Exception('type_check: unexpected ' + repr(p))
  12484. \end{lstlisting}
  12485. \fi}
  12486. \caption{Type checker for the \LangFun{} language.}
  12487. \label{fig:type-check-Rfun}
  12488. \end{figure}
  12489. \clearpage
  12490. \section{Functions in x86}
  12491. \label{sec:fun-x86}
  12492. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  12493. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  12494. %% \margincomment{\tiny Talk about the return address on the
  12495. %% stack and what callq and retq does.\\ --Jeremy }
  12496. The x86 architecture provides a few features to support the
  12497. implementation of functions. We have already seen that there are
  12498. labels in x86 so that one can refer to the location of an instruction,
  12499. as is needed for jump instructions. Labels can also be used to mark
  12500. the beginning of the instructions for a function. Going further, we
  12501. can obtain the address of a label by using the \key{leaq} instruction
  12502. and instruction-pointer relative addressing. For example, the
  12503. following puts the address of the \code{inc} label into the \code{rbx}
  12504. register.
  12505. \begin{lstlisting}
  12506. leaq inc(%rip), %rbx
  12507. \end{lstlisting}
  12508. Recall from Section~\ref{sec:select-instructions-gc} that
  12509. \verb!inc(%rip)! is an example of instruction-pointer relative
  12510. addressing. It computes the address of \code{inc}.
  12511. In Section~\ref{sec:x86} we used the \code{callq} instruction to jump
  12512. to functions whose locations were given by a label, such as
  12513. \code{read\_int}. To support function calls in this chapter we instead
  12514. will be jumping to functions whose location are given by an address in
  12515. a register, that is, we need to make an \emph{indirect function
  12516. call}. The x86 syntax for this is a \code{callq} instruction but with
  12517. an asterisk before the register name.\index{subject}{indirect function
  12518. call}
  12519. \begin{lstlisting}
  12520. callq *%rbx
  12521. \end{lstlisting}
  12522. \subsection{Calling Conventions}
  12523. \index{subject}{calling conventions}
  12524. The \code{callq} instruction provides partial support for implementing
  12525. functions: it pushes the return address on the stack and it jumps to
  12526. the target. However, \code{callq} does not handle
  12527. \begin{enumerate}
  12528. \item parameter passing,
  12529. \item pushing frames on the procedure call stack and popping them off,
  12530. or
  12531. \item determining how registers are shared by different functions.
  12532. \end{enumerate}
  12533. Regarding (1) parameter passing, recall that the x86-64 calling convention
  12534. for Unix-based system uses the following six
  12535. registers to pass arguments to a function, in this order.
  12536. \begin{lstlisting}
  12537. rdi rsi rdx rcx r8 r9
  12538. \end{lstlisting}
  12539. If there are
  12540. more than six arguments, then the calling convention mandates to use space on the
  12541. frame of the caller for the rest of the arguments. However, to ease
  12542. the implementation of efficient tail calls
  12543. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  12544. arguments.
  12545. %
  12546. Also recall that the register \code{rax} is for the return value of
  12547. the function.
  12548. \index{subject}{prelude}\index{subject}{conclusion}
  12549. Regarding (2) frames \index{subject}{frame} and the procedure call
  12550. stack, \index{subject}{procedure call stack} recall from
  12551. Section~\ref{sec:x86} that the stack grows down and each function call
  12552. uses a chunk of space on the stack called a frame. The caller sets the
  12553. stack pointer, register \code{rsp}, to the last data item in its
  12554. frame. The callee must not change anything in the caller's frame, that
  12555. is, anything that is at or above the stack pointer. The callee is free
  12556. to use locations that are below the stack pointer.
  12557. Recall that we are storing variables of tuple type on the root stack.
  12558. So the prelude needs to move the root stack pointer \code{r15} up
  12559. according to the number of variables of tuple type and
  12560. the conclusion needs to move the root stack pointer back down. Also,
  12561. the prelude must initialize to \code{0} this frame's slots in the root
  12562. stack to signal to the garbage collector that those slots do not yet
  12563. contain a pointer to a vector. Otherwise the garbage collector will
  12564. interpret the garbage bits in those slots as memory addresses and try
  12565. to traverse them, causing serious mayhem!
  12566. Regarding (3) the sharing of registers between different functions,
  12567. recall from Section~\ref{sec:calling-conventions} that the registers
  12568. are divided into two groups, the caller-saved registers and the
  12569. callee-saved registers. The caller should assume that all the
  12570. caller-saved registers get overwritten with arbitrary values by the
  12571. callee. For that reason we recommend in
  12572. Section~\ref{sec:calling-conventions} that variables that are live
  12573. during a function call should not be assigned to caller-saved
  12574. registers.
  12575. On the flip side, if the callee wants to use a callee-saved register,
  12576. the callee must save the contents of those registers on their stack
  12577. frame and then put them back prior to returning to the caller. For
  12578. that reason we recommend in Section~\ref{sec:calling-conventions} that if
  12579. the register allocator assigns a variable to a callee-saved register,
  12580. then the prelude of the \code{main} function must save that register
  12581. to the stack and the conclusion of \code{main} must restore it. This
  12582. recommendation now generalizes to all functions.
  12583. Recall that the base pointer, register \code{rbp}, is used as a
  12584. point-of-reference within a frame, so that each local variable can be
  12585. accessed at a fixed offset from the base pointer
  12586. (Section~\ref{sec:x86}).
  12587. %
  12588. Figure~\ref{fig:call-frames} shows the general layout of the caller
  12589. and callee frames.
  12590. \begin{figure}[tbp]
  12591. \centering
  12592. \begin{tabular}{r|r|l|l} \hline
  12593. Caller View & Callee View & Contents & Frame \\ \hline
  12594. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  12595. 0(\key{\%rbp}) & & old \key{rbp} \\
  12596. -8(\key{\%rbp}) & & callee-saved $1$ \\
  12597. \ldots & & \ldots \\
  12598. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  12599. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  12600. \ldots & & \ldots \\
  12601. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  12602. %% & & \\
  12603. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  12604. %% & \ldots & \ldots \\
  12605. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  12606. \hline
  12607. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  12608. & 0(\key{\%rbp}) & old \key{rbp} \\
  12609. & -8(\key{\%rbp}) & callee-saved $1$ \\
  12610. & \ldots & \ldots \\
  12611. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  12612. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  12613. & \ldots & \ldots \\
  12614. & $-8(n+m)$(\key{\%rbp}) & local variable $m$\\ \hline
  12615. \end{tabular}
  12616. \caption{Memory layout of caller and callee frames.}
  12617. \label{fig:call-frames}
  12618. \end{figure}
  12619. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  12620. %% local variables and for storing the values of callee-saved registers
  12621. %% (we shall refer to all of these collectively as ``locals''), and that
  12622. %% at the beginning of a function we move the stack pointer \code{rsp}
  12623. %% down to make room for them.
  12624. %% We recommend storing the local variables
  12625. %% first and then the callee-saved registers, so that the local variables
  12626. %% can be accessed using \code{rbp} the same as before the addition of
  12627. %% functions.
  12628. %% To make additional room for passing arguments, we shall
  12629. %% move the stack pointer even further down. We count how many stack
  12630. %% arguments are needed for each function call that occurs inside the
  12631. %% body of the function and find their maximum. Adding this number to the
  12632. %% number of locals gives us how much the \code{rsp} should be moved at
  12633. %% the beginning of the function. In preparation for a function call, we
  12634. %% offset from \code{rsp} to set up the stack arguments. We put the first
  12635. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  12636. %% so on.
  12637. %% Upon calling the function, the stack arguments are retrieved by the
  12638. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  12639. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  12640. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  12641. %% the layout of the caller and callee frames. Notice how important it is
  12642. %% that we correctly compute the maximum number of arguments needed for
  12643. %% function calls; if that number is too small then the arguments and
  12644. %% local variables will smash into each other!
  12645. \subsection{Efficient Tail Calls}
  12646. \label{sec:tail-call}
  12647. In general, the amount of stack space used by a program is determined
  12648. by the longest chain of nested function calls. That is, if function
  12649. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, $f_n$, then the amount
  12650. of stack space is linear in $n$. The depth $n$ can grow quite large
  12651. if functions are (mutually) recursive. However, in
  12652. some cases we can arrange to use only a constant amount of space for a
  12653. long chain of nested function calls.
  12654. A \emph{tail call}\index{subject}{tail call} is a function call that
  12655. happens as the last action in a function body.
  12656. For example, in the following
  12657. program, the recursive call to \code{tail\_sum} is a tail call.
  12658. \begin{center}
  12659. {\if\edition\racketEd
  12660. \begin{lstlisting}
  12661. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  12662. (if (eq? n 0)
  12663. r
  12664. (tail_sum (- n 1) (+ n r))))
  12665. (+ (tail_sum 3 0) 36)
  12666. \end{lstlisting}
  12667. \fi}
  12668. {\if\edition\pythonEd
  12669. \begin{lstlisting}
  12670. def tail_sum(n : int, r : int) -> int:
  12671. if n == 0:
  12672. return r
  12673. else:
  12674. return tail_sum(n - 1, n + r)
  12675. print( tail_sum(3, 0) + 36)
  12676. \end{lstlisting}
  12677. \fi}
  12678. \end{center}
  12679. At a tail call, the frame of the caller is no longer needed, so we can
  12680. pop the caller's frame before making the tail call. With this
  12681. approach, a recursive function that only makes tail calls ends up
  12682. using a constant amount of stack space. Functional languages like
  12683. Racket rely heavily on recursive functions, so the definition of
  12684. Racket \emph{requires} that all tail calls be optimized in this way.
  12685. \index{subject}{frame}
  12686. Some care is needed with regards to argument passing in tail calls.
  12687. As mentioned above, for arguments beyond the sixth, the convention is
  12688. to use space in the caller's frame for passing arguments. But for a
  12689. tail call we pop the caller's frame and can no longer use it. An
  12690. alternative is to use space in the callee's frame for passing
  12691. arguments. However, this option is also problematic because the caller
  12692. and callee's frames overlap in memory. As we begin to copy the
  12693. arguments from their sources in the caller's frame, the target
  12694. locations in the callee's frame might collide with the sources for
  12695. later arguments! We solve this problem by using the heap instead of
  12696. the stack for passing more than six arguments, which we describe in
  12697. the Section~\ref{sec:limit-functions-r4}.
  12698. As mentioned above, for a tail call we pop the caller's frame prior to
  12699. making the tail call. The instructions for popping a frame are the
  12700. instructions that we usually place in the conclusion of a
  12701. function. Thus, we also need to place such code immediately before
  12702. each tail call. These instructions include restoring the callee-saved
  12703. registers, so it is fortunate that the argument passing registers are
  12704. all caller-saved registers!
  12705. One last note regarding which instruction to use to make the tail
  12706. call. When the callee is finished, it should not return to the current
  12707. function, but it should return to the function that called the current
  12708. one. Thus, the return address that is already on the stack is the
  12709. right one, and we should not use \key{callq} to make the tail call, as
  12710. that would unnecessarily overwrite the return address. Instead we can
  12711. simply use the \key{jmp} instruction. Like the indirect function call,
  12712. we write an \emph{indirect jump}\index{subject}{indirect jump} with a
  12713. register prefixed with an asterisk. We recommend using \code{rax} to
  12714. hold the jump target because the preceding conclusion can overwrite
  12715. just about everything else.
  12716. \begin{lstlisting}
  12717. jmp *%rax
  12718. \end{lstlisting}
  12719. \section{Shrink \LangFun{}}
  12720. \label{sec:shrink-r4}
  12721. The \code{shrink} pass performs a minor modification to ease the
  12722. later passes. This pass introduces an explicit \code{main} function
  12723. that gobbles up all the top-level statements of the module.
  12724. %
  12725. \racket{It also changes the top \code{ProgramDefsExp} form to
  12726. \code{ProgramDefs}.}
  12727. {\if\edition\racketEd
  12728. \begin{lstlisting}
  12729. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  12730. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  12731. \end{lstlisting}
  12732. where $\itm{mainDef}$ is
  12733. \begin{lstlisting}
  12734. (Def 'main '() 'Integer '() |$\Exp'$|)
  12735. \end{lstlisting}
  12736. \fi}
  12737. {\if\edition\pythonEd
  12738. \begin{lstlisting}
  12739. Module(|$\Def\ldots\Stmt\ldots$|)
  12740. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  12741. \end{lstlisting}
  12742. where $\itm{mainDef}$ is
  12743. \begin{lstlisting}
  12744. FunctionDef('main', [], int, None, |$\Stmt\ldots$|Return(Constant(0)), None)
  12745. \end{lstlisting}
  12746. \fi}
  12747. \section{Reveal Functions and the \LangFunRef{} language}
  12748. \label{sec:reveal-functions-r4}
  12749. The syntax of \LangFun{} is inconvenient for purposes of compilation
  12750. in that it conflates the use of function names and local
  12751. variables. This is a problem because we need to compile the use of a
  12752. function name differently than the use of a local variable; we need to
  12753. use \code{leaq} to convert the function name (a label in x86) to an
  12754. address in a register. Thus, we create a new pass that changes
  12755. function references from $\VAR{f}$ to $\FUNREF{f}{n}$ where $n$ is the
  12756. arity of the function.\python{\footnote{The arity is not needed in this
  12757. chapter but is used in Chapter~\ref{ch:Ldyn}.}} This pass is
  12758. named \code{reveal\_functions} and the output language, \LangFunRef{},
  12759. is defined in Figure~\ref{fig:f1-syntax}.
  12760. %% The concrete syntax for a
  12761. %% function reference is $\CFUNREF{f}$.
  12762. \begin{figure}[tp]
  12763. \centering
  12764. \fbox{
  12765. \begin{minipage}{0.96\textwidth}
  12766. {\if\edition\racketEd
  12767. \[
  12768. \begin{array}{lcl}
  12769. \Exp &::=& \ldots \MID \FUNREF{\Var}{\Int}\\
  12770. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12771. \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  12772. \end{array}
  12773. \]
  12774. \fi}
  12775. {\if\edition\pythonEd
  12776. \[
  12777. \begin{array}{lcl}
  12778. \Exp &::=& \FUNREF{\Var}{\Int}\\
  12779. \LangFunRefM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  12780. \end{array}
  12781. \]
  12782. \fi}
  12783. \end{minipage}
  12784. }
  12785. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  12786. (Figure~\ref{fig:Rfun-syntax}).}
  12787. \label{fig:f1-syntax}
  12788. \end{figure}
  12789. %% Distinguishing between calls in tail position and non-tail position
  12790. %% requires the pass to have some notion of context. We recommend using
  12791. %% two mutually recursive functions, one for processing expressions in
  12792. %% tail position and another for the rest.
  12793. \racket{Placing this pass after \code{uniquify} will make sure that
  12794. there are no local variables and functions that share the same
  12795. name.}
  12796. %
  12797. The \code{reveal\_functions} pass should come before the
  12798. \code{remove\_complex\_operands} pass because function references
  12799. should be categorized as complex expressions.
  12800. \section{Limit Functions}
  12801. \label{sec:limit-functions-r4}
  12802. Recall that we wish to limit the number of function parameters to six
  12803. so that we do not need to use the stack for argument passing, which
  12804. makes it easier to implement efficient tail calls. However, because
  12805. the input language \LangFun{} supports arbitrary numbers of function
  12806. arguments, we have some work to do!
  12807. This pass transforms functions and function calls that involve more
  12808. than six arguments to pass the first five arguments as usual, but it
  12809. packs the rest of the arguments into a vector and passes it as the
  12810. sixth argument.
  12811. Each function definition with seven or more parameters is transformed as
  12812. follows.
  12813. {\if\edition\racketEd
  12814. \begin{lstlisting}
  12815. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  12816. |$\Rightarrow$|
  12817. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  12818. \end{lstlisting}
  12819. \fi}
  12820. {\if\edition\pythonEd
  12821. \begin{lstlisting}
  12822. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, None, |$\itm{body}$|, None)
  12823. |$\Rightarrow$|
  12824. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))],
  12825. |$T_r$|, None, |$\itm{body}'$|, None)
  12826. \end{lstlisting}
  12827. \fi}
  12828. %
  12829. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  12830. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  12831. the $k$th element of the tuple, where $k = i - 6$.
  12832. %
  12833. {\if\edition\racketEd
  12834. \begin{lstlisting}
  12835. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  12836. \end{lstlisting}
  12837. \fi}
  12838. {\if\edition\pythonEd
  12839. \begin{lstlisting}
  12840. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|), Load())
  12841. \end{lstlisting}
  12842. \fi}
  12843. For function calls with too many arguments, the \code{limit\_functions}
  12844. pass transforms them in the following way.
  12845. \begin{tabular}{lll}
  12846. \begin{minipage}{0.3\textwidth}
  12847. {\if\edition\racketEd
  12848. \begin{lstlisting}
  12849. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  12850. \end{lstlisting}
  12851. \fi}
  12852. {\if\edition\pythonEd
  12853. \begin{lstlisting}
  12854. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  12855. \end{lstlisting}
  12856. \fi}
  12857. \end{minipage}
  12858. &
  12859. $\Rightarrow$
  12860. &
  12861. \begin{minipage}{0.5\textwidth}
  12862. {\if\edition\racketEd
  12863. \begin{lstlisting}
  12864. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  12865. \end{lstlisting}
  12866. \fi}
  12867. {\if\edition\pythonEd
  12868. \begin{lstlisting}
  12869. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  12870. \end{lstlisting}
  12871. \fi}
  12872. \end{minipage}
  12873. \end{tabular}
  12874. \section{Remove Complex Operands}
  12875. \label{sec:rco-r4}
  12876. The primary decisions to make for this pass is whether to classify
  12877. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  12878. atomic or complex expressions. Recall that a simple expression will
  12879. eventually end up as just an immediate argument of an x86
  12880. instruction. Function application will be translated to a sequence of
  12881. instructions, so \racket{\code{Apply}}\python{\code{Call}} must be
  12882. classified as complex expression. On the other hand, the arguments of
  12883. \racket{\code{Apply}}\python{\code{Call}} should be atomic expressions.
  12884. %
  12885. Regarding \code{FunRef}, as discussed above, the function label needs
  12886. to be converted to an address using the \code{leaq} instruction. Thus,
  12887. even though \code{FunRef} seems rather simple, it needs to be
  12888. classified as a complex expression so that we generate an assignment
  12889. statement with a left-hand side that can serve as the target of the
  12890. \code{leaq}.
  12891. The output of this pass, \LangFunANF{}, extends \LangAllocANF{}
  12892. (Figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  12893. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions.
  12894. %
  12895. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  12896. % TODO: Return?
  12897. %% Figure~\ref{fig:Rfun-anf-syntax} defines the output language
  12898. %% \LangFunANF{} of this pass.
  12899. %% \begin{figure}[tp]
  12900. %% \centering
  12901. %% \fbox{
  12902. %% \begin{minipage}{0.96\textwidth}
  12903. %% \small
  12904. %% \[
  12905. %% \begin{array}{rcl}
  12906. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  12907. %% \MID \VOID{} } \\
  12908. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  12909. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  12910. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  12911. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  12912. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  12913. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  12914. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  12915. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  12916. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12917. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  12918. %% \end{array}
  12919. %% \]
  12920. %% \end{minipage}
  12921. %% }
  12922. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  12923. %% \label{fig:Rfun-anf-syntax}
  12924. %% \end{figure}
  12925. \section{Explicate Control and the \LangCFun{} language}
  12926. \label{sec:explicate-control-r4}
  12927. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  12928. output of \code{explicate\_control}.
  12929. %
  12930. \racket{(The concrete syntax is given in
  12931. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  12932. %
  12933. The auxiliary functions for assignment\racket{and tail contexts} should
  12934. be updated with cases for
  12935. \racket{\code{Apply}}\python{\code{Call}} and \code{FunRef} and the
  12936. function for predicate context should be updated for
  12937. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  12938. \code{FunRef} cannot be a Boolean.) In assignment and predicate
  12939. contexts, \code{Apply} becomes \code{Call}\racket{, whereas in tail position
  12940. \code{Apply} becomes \code{TailCall}}. We recommend defining a new
  12941. auxiliary function for processing function definitions. This code is
  12942. similar to the case for \code{Program} in \LangVec{}. The top-level
  12943. \code{explicate\_control} function that handles the \code{ProgramDefs}
  12944. form of \LangFun{} can then apply this new function to all the
  12945. function definitions.
  12946. {\if\edition\pythonEd
  12947. The translation of \code{Return} statements requires a new auxiliary
  12948. function to handle expressions in tail context, called
  12949. \code{explicate\_tail}. The function should take an expression and the
  12950. dictionary of basic blocks and produce a list of statements in the
  12951. \LangCFun{} language. The \code{explicate\_tail} function should
  12952. include cases for \code{Begin}, \code{IfExp}, \code{Let}, \code{Call},
  12953. and a default case for other kinds of expressions. The default case
  12954. should produce a \code{Return} statement. The case for \code{Call}
  12955. should change it into \code{TailCall}. The other cases should
  12956. recursively process their subexpressions and statements, choosing the
  12957. appropriate explicate functions for the various contexts.
  12958. \fi}
  12959. \newcommand{\CfunASTRacket}{
  12960. \begin{array}{lcl}
  12961. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  12962. \Tail &::= & \TAILCALL{\Atm}{\Atm\ldots} \\
  12963. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  12964. \end{array}
  12965. }
  12966. \newcommand{\CfunASTPython}{
  12967. \begin{array}{lcl}
  12968. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}} \\
  12969. \Stmt &::= & \TAILCALL{\Atm}{\Atm^{*}} \\
  12970. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  12971. \Block &::=& \itm{label}\key{:} \Stmt^{*} \\
  12972. \Blocks &::=& \LC\Block\code{,}\ldots\RC \\
  12973. \Def &::=& \DEF{\itm{label}}{\Params}{\Blocks}{\key{None}}{\Type}{\key{None}}
  12974. \end{array}
  12975. }
  12976. \begin{figure}[tp]
  12977. \fbox{
  12978. \begin{minipage}{0.96\textwidth}
  12979. \small
  12980. {\if\edition\racketEd
  12981. \[
  12982. \begin{array}{l}
  12983. \gray{\CvarASTRacket} \\ \hline
  12984. \gray{\CifASTRacket} \\ \hline
  12985. \gray{\CloopASTRacket} \\ \hline
  12986. \gray{\CtupASTRacket} \\ \hline
  12987. \CfunASTRacket \\
  12988. \begin{array}{lcl}
  12989. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  12990. \end{array}
  12991. \end{array}
  12992. \]
  12993. \fi}
  12994. {\if\edition\pythonEd
  12995. \[
  12996. \begin{array}{l}
  12997. \gray{\CifASTPython} \\ \hline
  12998. \gray{\CtupASTPython} \\ \hline
  12999. \CfunASTPython \\
  13000. \begin{array}{lcl}
  13001. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  13002. \end{array}
  13003. \end{array}
  13004. \]
  13005. \fi}
  13006. \end{minipage}
  13007. }
  13008. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  13009. \label{fig:c3-syntax}
  13010. \end{figure}
  13011. \section{Select Instructions and the \LangXIndCall{} Language}
  13012. \label{sec:select-r4}
  13013. \index{subject}{instruction selection}
  13014. The output of select instructions is a program in the \LangXIndCall{}
  13015. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  13016. \index{subject}{x86}
  13017. \begin{figure}[tp]
  13018. \fbox{
  13019. \begin{minipage}{0.96\textwidth}
  13020. \small
  13021. \[
  13022. \begin{array}{lcl}
  13023. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)} \\
  13024. \itm{cc} & ::= & \gray{ \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} } \\
  13025. \Instr &::=& \ldots
  13026. \MID \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  13027. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  13028. \Block &::= & \itm{label}\key{:}\, \Instr^{*} \\
  13029. \Def &::= & \key{.globl}\,\itm{label}\; \Block^{*} \\
  13030. \LangXIndCallM{} &::= & \Def\ldots
  13031. \end{array}
  13032. \]
  13033. \end{minipage}
  13034. }
  13035. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  13036. \label{fig:x86-3-concrete}
  13037. \end{figure}
  13038. \begin{figure}[tp]
  13039. \fbox{
  13040. \begin{minipage}{0.96\textwidth}
  13041. \small
  13042. {\if\edition\racketEd
  13043. \[
  13044. \begin{array}{lcl}
  13045. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  13046. \MID \BYTEREG{\Reg} } \\
  13047. &\MID& \gray{ \GLOBAL{\Var} } \MID \FUNREF{\itm{label}}{\Int} \\
  13048. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  13049. \MID \TAILJMP{\Arg}{\itm{int}}\\
  13050. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  13051. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  13052. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  13053. \LangXIndCallM{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  13054. \end{array}
  13055. \]
  13056. \fi}
  13057. {\if\edition\pythonEd
  13058. \[
  13059. \begin{array}{lcl}
  13060. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  13061. \MID \BYTEREG{\Reg} } \\
  13062. &\MID& \gray{ \GLOBAL{\Var} } \MID \FUNREF{\itm{label}}{\Int} \\
  13063. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  13064. \MID \TAILJMP{\Arg}{\itm{int}}\\
  13065. &\MID& \BININSTR{\scode{leaq}}{\Arg}{\REG{\Reg}}\\
  13066. \Block &::=&\itm{label}\key{:}\,\Instr^{*} \\
  13067. \Blocks &::= & \LC\Block\code{,}\ldots\RC\\
  13068. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\Blocks}{\_}{\Type}{\_} \\
  13069. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  13070. \end{array}
  13071. \]
  13072. \fi}
  13073. \end{minipage}
  13074. }
  13075. \caption{The abstract syntax of \LangXIndCall{} (extends
  13076. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  13077. \label{fig:x86-3}
  13078. \end{figure}
  13079. An assignment of a function reference to a variable becomes a
  13080. load-effective-address instruction as follows, where $\itm{lhs}'$
  13081. is the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{}
  13082. to \Arg{} in \LangXIndCallVar{}. \\
  13083. \begin{tabular}{lcl}
  13084. \begin{minipage}{0.35\textwidth}
  13085. {\if\edition\racketEd
  13086. \begin{lstlisting}
  13087. |$\itm{lhs}$| = (fun-ref |$f$| |$n$|);
  13088. \end{lstlisting}
  13089. \fi}
  13090. {\if\edition\pythonEd
  13091. \begin{lstlisting}
  13092. |$\itm{lhs}$| = FunRef(|$f$|, |$n$|);
  13093. \end{lstlisting}
  13094. \fi}
  13095. \end{minipage}
  13096. &
  13097. $\Rightarrow$\qquad\qquad
  13098. &
  13099. \begin{minipage}{0.3\textwidth}
  13100. {\if\edition\racketEd
  13101. \begin{lstlisting}
  13102. leaq (fun-ref |$f$| |$n$|), |$\itm{lhs}'$|
  13103. \end{lstlisting}
  13104. \fi}
  13105. {\if\edition\pythonEd
  13106. \begin{lstlisting}
  13107. leaq |$f$|(%rip), |$\itm{lhs}'$|
  13108. \end{lstlisting}
  13109. \fi}
  13110. \end{minipage}
  13111. \end{tabular} \\
  13112. Regarding function definitions, we need to remove the parameters and
  13113. instead perform parameter passing using the conventions discussed in
  13114. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  13115. registers. We recommend turning the parameters into local variables
  13116. and generating instructions at the beginning of the function to move
  13117. from the argument passing registers to these local variables.
  13118. {\if\edition\racketEd
  13119. \begin{lstlisting}
  13120. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  13121. |$\Rightarrow$|
  13122. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  13123. \end{lstlisting}
  13124. \fi}
  13125. {\if\edition\pythonEd
  13126. \begin{lstlisting}
  13127. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  13128. |$\Rightarrow$|
  13129. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  13130. \end{lstlisting}
  13131. \fi}
  13132. The basic blocks $B'$ are the same as $B$ except that the
  13133. \code{start} block is modified to add the instructions for moving from
  13134. the argument registers to the parameter variables. So the \code{start}
  13135. block of $B$ shown on the left is changed to the code on the right.
  13136. \begin{center}
  13137. \begin{minipage}{0.3\textwidth}
  13138. \begin{lstlisting}
  13139. start:
  13140. |$\itm{instr}_1$|
  13141. |$\cdots$|
  13142. |$\itm{instr}_n$|
  13143. \end{lstlisting}
  13144. \end{minipage}
  13145. $\Rightarrow$
  13146. \begin{minipage}{0.3\textwidth}
  13147. \begin{lstlisting}
  13148. start:
  13149. movq %rdi, |$x_1$|
  13150. |$\cdots$|
  13151. |$\itm{instr}_1$|
  13152. |$\cdots$|
  13153. |$\itm{instr}_n$|
  13154. \end{lstlisting}
  13155. \end{minipage}
  13156. \end{center}
  13157. \racket{The interpreter for \LangXIndCall{} needs to know how many
  13158. parameters the function expects, but the parameters are no longer in
  13159. the syntax of function definitions. Instead, add an entry to
  13160. $\itm{info}$ that maps \code{num-params} to the number of parameters
  13161. to construct $\itm{info}'$.}
  13162. By changing the parameters to local variables, we are giving the
  13163. register allocator control over which registers or stack locations to
  13164. use for them. If you implemented the move-biasing challenge
  13165. (Section~\ref{sec:move-biasing}), the register allocator will try to
  13166. assign the parameter variables to the corresponding argument register,
  13167. in which case the \code{patch\_instructions} pass will remove the
  13168. \code{movq} instruction. This happens in the example translation in
  13169. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  13170. the \code{add} function.
  13171. %
  13172. Also, note that the register allocator will perform liveness analysis
  13173. on this sequence of move instructions and build the interference
  13174. graph. So, for example, $x_1$ will be marked as interfering with
  13175. \code{rsi} and that will prevent the assignment of $x_1$ to
  13176. \code{rsi}, which is good, because that would overwrite the argument
  13177. that needs to move into $x_2$.
  13178. Next, consider the compilation of function calls. In the mirror image
  13179. of handling the parameters of function definitions, the arguments need
  13180. to be moved to the argument passing registers. The function call
  13181. itself is performed with an indirect function call. The return value
  13182. from the function is stored in \code{rax}, so it needs to be moved
  13183. into the \itm{lhs}.
  13184. \begin{lstlisting}
  13185. |\itm{lhs}| = |$\CALL{\itm{fun}}{\itm{arg}_1\ldots}$|
  13186. |$\Rightarrow$|
  13187. movq |$\itm{arg}_1$|, %rdi
  13188. movq |$\itm{arg}_2$|, %rsi
  13189. |$\vdots$|
  13190. callq *|\itm{fun}|
  13191. movq %rax, |\itm{lhs}|
  13192. \end{lstlisting}
  13193. The \code{IndirectCallq} AST node includes an integer for the arity of
  13194. the function, i.e., the number of parameters. That information is
  13195. useful in the \code{uncover\_live} pass for determining which
  13196. argument-passing registers are potentially read during the call.
  13197. For tail calls, the parameter passing is the same as non-tail calls:
  13198. generate instructions to move the arguments into the argument
  13199. passing registers. After that we need to pop the frame from the
  13200. procedure call stack. However, we do not yet know how big the frame
  13201. is; that gets determined during register allocation. So instead of
  13202. generating those instructions here, we invent a new instruction that
  13203. means ``pop the frame and then do an indirect jump'', which we name
  13204. \code{TailJmp}. The abstract syntax for this instruction includes an
  13205. argument that specifies where to jump and an integer that represents
  13206. the arity of the function being called.
  13207. Recall that we use the label \code{start} for the initial block of a
  13208. program, and in Section~\ref{sec:select-Lvar} we recommend labeling
  13209. the conclusion of the program with \code{conclusion}, so that
  13210. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  13211. by a jump to \code{conclusion}. With the addition of function
  13212. definitions, there is a start block and conclusion for each function,
  13213. but their labels need to be unique. We recommend prepending the
  13214. function's name to \code{start} and \code{conclusion}, respectively,
  13215. to obtain unique labels.
  13216. \section{Register Allocation}
  13217. \label{sec:register-allocation-r4}
  13218. \subsection{Liveness Analysis}
  13219. \label{sec:liveness-analysis-r4}
  13220. \index{subject}{liveness analysis}
  13221. %% The rest of the passes need only minor modifications to handle the new
  13222. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  13223. %% \code{leaq}.
  13224. The \code{IndirectCallq} instruction should be treated like
  13225. \code{Callq} regarding its written locations $W$, in that they should
  13226. include all the caller-saved registers. Recall that the reason for
  13227. that is to force variables that are live across a function call to be assigned to callee-saved
  13228. registers or to be spilled to the stack.
  13229. Regarding the set of read locations $R$, the arity field of
  13230. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  13231. argument-passing registers should be considered as read by those
  13232. instructions. Also, the target field of \code{TailJmp} and
  13233. \code{IndirectCallq} should be included in the set of read locations
  13234. $R$.
  13235. \subsection{Build Interference Graph}
  13236. \label{sec:build-interference-r4}
  13237. With the addition of function definitions, we compute a separate interference
  13238. graph for each function (not just one for the whole program).
  13239. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  13240. spill vector-typed variables that are live during a call to
  13241. \code{collect}, the garbage collector. With the addition of functions to our language, we
  13242. need to revisit this issue. Functions that perform allocation contain
  13243. calls to the collector. Thus, we should
  13244. not only spill a vector-typed variable when it is live during a call
  13245. to \code{collect}, but we should spill the variable if it is live
  13246. during call to a user-defined function. Thus, in the \code{build\_interference} pass,
  13247. we recommend adding interference edges between call-live vector-typed
  13248. variables and the callee-saved registers (in addition to the usual
  13249. addition of edges between call-live variables and the caller-saved
  13250. registers).
  13251. \subsection{Allocate Registers}
  13252. The primary change to the \code{allocate\_registers} pass is adding an
  13253. auxiliary function for handling definitions (the \Def{} non-terminal
  13254. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  13255. logic is the same as described in
  13256. Chapter~\ref{ch:register-allocation-Lvar}, except now register
  13257. allocation is performed many times, once for each function definition,
  13258. instead of just once for the whole program.
  13259. \section{Patch Instructions}
  13260. In \code{patch\_instructions}, you should deal with the x86
  13261. idiosyncrasy that the destination argument of \code{leaq} must be a
  13262. register. Additionally, you should ensure that the argument of
  13263. \code{TailJmp} is \itm{rax}, our reserved register---mostly to make
  13264. code generation more convenient, because we trample many registers
  13265. before the tail call (as explained in the next section).
  13266. \section{Prelude and Conclusion}
  13267. %% For the \code{print\_x86} pass, the cases for \code{FunRef} and
  13268. %% \code{IndirectCallq} are straightforward: output their concrete
  13269. %% syntax.
  13270. %% \begin{lstlisting}
  13271. %% (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  13272. %% (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  13273. %% \end{lstlisting}
  13274. Now that register allocation is complete, we can translate the
  13275. \code{TailJmp} into a sequence of instructions. A straightforward
  13276. translation of \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}.
  13277. However, before the jump we need to pop the current frame. This
  13278. sequence of instructions is the same as the code for the conclusion of
  13279. a function, except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  13280. Regarding function definitions, you need to generate a prelude
  13281. and conclusion for each one. This code is similar to the prelude and
  13282. conclusion generated for the \code{main} function in
  13283. Chapter~\ref{ch:Lvec}. To review, the prelude of every function
  13284. should carry out the following steps.
  13285. % TODO: .align the functions!
  13286. \begin{enumerate}
  13287. %% \item Start with \code{.global} and \code{.align} directives followed
  13288. %% by the label for the function. (See Figure~\ref{fig:add-fun} for an
  13289. %% example.)
  13290. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  13291. pointer.
  13292. \item Push to the stack all of the callee-saved registers that were
  13293. used for register allocation.
  13294. \item Move the stack pointer \code{rsp} down by the size of the stack
  13295. frame for this function, which depends on the number of regular
  13296. spills. (Aligned to 16 bytes.)
  13297. \item Move the root stack pointer \code{r15} up by the size of the
  13298. root-stack frame for this function, which depends on the number of
  13299. spilled vectors. \label{root-stack-init}
  13300. \item Initialize to zero all new entries in the root-stack frame.
  13301. \item Jump to the start block.
  13302. \end{enumerate}
  13303. The prelude of the \code{main} function has one additional task: call
  13304. the \code{initialize} function to set up the garbage collector and
  13305. move the value of the global \code{rootstack\_begin} in
  13306. \code{r15}. This initialization should happen before step \ref{root-stack-init}
  13307. above, which depends on \code{r15}.
  13308. The conclusion of every function should do the following.
  13309. \begin{enumerate}
  13310. \item Move the stack pointer back up by the size of the stack frame
  13311. for this function.
  13312. \item Restore the callee-saved registers by popping them from the
  13313. stack.
  13314. \item Move the root stack pointer back down by the size of the
  13315. root-stack frame for this function.
  13316. \item Restore \code{rbp} by popping it from the stack.
  13317. \item Return to the caller with the \code{retq} instruction.
  13318. \end{enumerate}
  13319. \begin{exercise}\normalfont\normalsize
  13320. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  13321. Create 5 new programs that use functions, including examples that pass
  13322. functions and return functions from other functions, recursive
  13323. functions, functions that create vectors, and functions that make tail
  13324. calls. Test your compiler on these new programs and all of your
  13325. previously created test programs.
  13326. \end{exercise}
  13327. \begin{figure}[tbp]
  13328. \begin{tikzpicture}[baseline=(current bounding box.center)]
  13329. \node (Rfun) at (0,2) {\large \LangFun{}};
  13330. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  13331. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  13332. \node (F1-1) at (9,2) {\large \LangFunRef{}};
  13333. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  13334. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  13335. \node (F1-4) at (3,0) {\large \LangFunANF{}};
  13336. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  13337. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  13338. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  13339. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  13340. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  13341. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  13342. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  13343. \path[->,bend left=15] (Rfun) edge [above] node
  13344. {\ttfamily\footnotesize shrink} (Rfun-1);
  13345. \path[->,bend left=15] (Rfun-1) edge [above] node
  13346. {\ttfamily\footnotesize uniquify} (Rfun-2);
  13347. \path[->,bend left=15] (Rfun-2) edge [above] node
  13348. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  13349. \path[->,bend left=15] (F1-1) edge [right] node
  13350. {\ttfamily\footnotesize limit\_functions} (F1-2);
  13351. \path[->,bend right=15] (F1-2) edge [above] node
  13352. {\ttfamily\footnotesize expose\_alloc.} (F1-3);
  13353. \path[->,bend right=15] (F1-3) edge [above] node
  13354. {\ttfamily\footnotesize remove\_complex.} (F1-4);
  13355. \path[->,bend left=15] (F1-4) edge [right] node
  13356. {\ttfamily\footnotesize explicate\_control} (C3-2);
  13357. \path[->,bend right=15] (C3-2) edge [left] node
  13358. {\ttfamily\footnotesize select\_instr.} (x86-2);
  13359. \path[->,bend left=15] (x86-2) edge [left] node
  13360. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  13361. \path[->,bend right=15] (x86-2-1) edge [below] node
  13362. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  13363. \path[->,bend right=15] (x86-2-2) edge [left] node
  13364. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  13365. \path[->,bend left=15] (x86-3) edge [above] node
  13366. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  13367. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  13368. \end{tikzpicture}
  13369. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  13370. \label{fig:Rfun-passes}
  13371. \end{figure}
  13372. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  13373. compiling \LangFun{} to x86.
  13374. \section{An Example Translation}
  13375. \label{sec:functions-example}
  13376. Figure~\ref{fig:add-fun} shows an example translation of a simple
  13377. function in \LangFun{} to x86. The figure also includes the results of the
  13378. \code{explicate\_control} and \code{select\_instructions} passes.
  13379. \begin{figure}[htbp]
  13380. \begin{tabular}{ll}
  13381. \begin{minipage}{0.4\textwidth}
  13382. % s3_2.rkt
  13383. {\if\edition\racketEd
  13384. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13385. (define (add [x : Integer] [y : Integer])
  13386. : Integer
  13387. (+ x y))
  13388. (add 40 2)
  13389. \end{lstlisting}
  13390. \fi}
  13391. {\if\edition\pythonEd
  13392. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13393. def add(x:int, y:int) -> int:
  13394. return x + y
  13395. print(add(40, 2))
  13396. \end{lstlisting}
  13397. \fi}
  13398. $\Downarrow$
  13399. {\if\edition\racketEd
  13400. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13401. (define (add86 [x87 : Integer]
  13402. [y88 : Integer]) : Integer
  13403. add86start:
  13404. return (+ x87 y88);
  13405. )
  13406. (define (main) : Integer ()
  13407. mainstart:
  13408. tmp89 = (fun-ref add86 2);
  13409. (tail-call tmp89 40 2)
  13410. )
  13411. \end{lstlisting}
  13412. \fi}
  13413. {\if\edition\pythonEd
  13414. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13415. def add(x:int, y:int) -> int:
  13416. addstart:
  13417. return x + y
  13418. def main() -> int:
  13419. mainstart:
  13420. fun.0 = add
  13421. tmp.1 = fun.0(40, 2)
  13422. print(tmp.1)
  13423. return 0
  13424. \end{lstlisting}
  13425. \fi}
  13426. \end{minipage}
  13427. &
  13428. $\Rightarrow$
  13429. \begin{minipage}{0.5\textwidth}
  13430. {\if\edition\racketEd
  13431. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13432. (define (add86) : Integer
  13433. add86start:
  13434. movq %rdi, x87
  13435. movq %rsi, y88
  13436. movq x87, %rax
  13437. addq y88, %rax
  13438. jmp inc1389conclusion
  13439. )
  13440. (define (main) : Integer
  13441. mainstart:
  13442. leaq (fun-ref add86 2), tmp89
  13443. movq $40, %rdi
  13444. movq $2, %rsi
  13445. tail-jmp tmp89
  13446. )
  13447. \end{lstlisting}
  13448. \fi}
  13449. {\if\edition\pythonEd
  13450. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13451. def add() -> int:
  13452. addstart:
  13453. movq %rdi, x
  13454. movq %rsi, y
  13455. movq x, %rax
  13456. addq y, %rax
  13457. jmp addconclusion
  13458. def main() -> int:
  13459. mainstart:
  13460. leaq add, fun.0
  13461. movq $40, %rdi
  13462. movq $2, %rsi
  13463. callq *fun.0
  13464. movq %rax, tmp.1
  13465. movq tmp.1, %rdi
  13466. callq print_int
  13467. movq $0, %rax
  13468. jmp mainconclusion
  13469. \end{lstlisting}
  13470. \fi}
  13471. $\Downarrow$
  13472. \end{minipage}
  13473. \end{tabular}
  13474. \begin{tabular}{ll}
  13475. \begin{minipage}{0.3\textwidth}
  13476. {\if\edition\racketEd
  13477. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13478. .globl add86
  13479. .align 16
  13480. add86:
  13481. pushq %rbp
  13482. movq %rsp, %rbp
  13483. jmp add86start
  13484. add86start:
  13485. movq %rdi, %rax
  13486. addq %rsi, %rax
  13487. jmp add86conclusion
  13488. add86conclusion:
  13489. popq %rbp
  13490. retq
  13491. \end{lstlisting}
  13492. \fi}
  13493. {\if\edition\pythonEd
  13494. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13495. .align 16
  13496. add:
  13497. pushq %rbp
  13498. movq %rsp, %rbp
  13499. subq $0, %rsp
  13500. jmp addstart
  13501. addstart:
  13502. movq %rdi, %rdx
  13503. movq %rsi, %rcx
  13504. movq %rdx, %rax
  13505. addq %rcx, %rax
  13506. jmp addconclusion
  13507. addconclusion:
  13508. subq $0, %r15
  13509. addq $0, %rsp
  13510. popq %rbp
  13511. retq
  13512. \end{lstlisting}
  13513. \fi}
  13514. \end{minipage}
  13515. &
  13516. \begin{minipage}{0.5\textwidth}
  13517. {\if\edition\racketEd
  13518. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13519. .globl main
  13520. .align 16
  13521. main:
  13522. pushq %rbp
  13523. movq %rsp, %rbp
  13524. movq $16384, %rdi
  13525. movq $16384, %rsi
  13526. callq initialize
  13527. movq rootstack_begin(%rip), %r15
  13528. jmp mainstart
  13529. mainstart:
  13530. leaq add86(%rip), %rcx
  13531. movq $40, %rdi
  13532. movq $2, %rsi
  13533. movq %rcx, %rax
  13534. popq %rbp
  13535. jmp *%rax
  13536. mainconclusion:
  13537. popq %rbp
  13538. retq
  13539. \end{lstlisting}
  13540. \fi}
  13541. {\if\edition\pythonEd
  13542. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13543. .globl main
  13544. .align 16
  13545. main:
  13546. pushq %rbp
  13547. movq %rsp, %rbp
  13548. subq $0, %rsp
  13549. movq $65536, %rdi
  13550. movq $65536, %rsi
  13551. callq initialize
  13552. movq rootstack_begin(%rip), %r15
  13553. jmp mainstart
  13554. mainstart:
  13555. leaq add(%rip), %rcx
  13556. movq $40, %rdi
  13557. movq $2, %rsi
  13558. callq *%rcx
  13559. movq %rax, %rcx
  13560. movq %rcx, %rdi
  13561. callq print_int
  13562. movq $0, %rax
  13563. jmp mainconclusion
  13564. mainconclusion:
  13565. subq $0, %r15
  13566. addq $0, %rsp
  13567. popq %rbp
  13568. retq
  13569. \end{lstlisting}
  13570. \fi}
  13571. \end{minipage}
  13572. \end{tabular}
  13573. \caption{Example compilation of a simple function to x86.}
  13574. \label{fig:add-fun}
  13575. \end{figure}
  13576. % Challenge idea: inlining! (simple version)
  13577. % Further Reading
  13578. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13579. \chapter{Lexically Scoped Functions}
  13580. \label{ch:Llambda}
  13581. \index{subject}{lambda}
  13582. \index{subject}{lexical scoping}
  13583. This chapter studies lexically scoped functions. Lexical scoping means
  13584. that a function's body may refer to variables whose binding site is
  13585. outside of the function, in an enclosing scope.
  13586. %
  13587. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  13588. \LangLam{}, which extends \LangFun{} with lexically scoped functions
  13589. using the \key{lambda} form. The body of the \key{lambda} refers to
  13590. three variables: \code{x}, \code{y}, and \code{z}. The binding sites
  13591. for \code{x} and \code{y} are outside of the \key{lambda}. Variable
  13592. \code{y} is \racket{bound by the enclosing \key{let}}\python{a local
  13593. variable of function \code{f}} and \code{x} is a parameter of
  13594. function \code{f}. The \key{lambda} is returned from the function
  13595. \code{f}. The main expression of the program includes two calls to
  13596. \code{f} with different arguments for \code{x}, first \code{5} then
  13597. \code{3}. The functions returned from \code{f} are bound to variables
  13598. \code{g} and \code{h}. Even though these two functions were created by
  13599. the same \code{lambda}, they are really different functions because
  13600. they use different values for \code{x}. Applying \code{g} to \code{11}
  13601. produces \code{20} whereas applying \code{h} to \code{15} produces
  13602. \code{22}. The result of this program is \code{42}.
  13603. \begin{figure}[btp]
  13604. {\if\edition\racketEd
  13605. % lambda_test_21.rkt
  13606. \begin{lstlisting}
  13607. (define (f [x : Integer]) : (Integer -> Integer)
  13608. (let ([y 4])
  13609. (lambda: ([z : Integer]) : Integer
  13610. (+ x (+ y z)))))
  13611. (let ([g (f 5)])
  13612. (let ([h (f 3)])
  13613. (+ (g 11) (h 15))))
  13614. \end{lstlisting}
  13615. \fi}
  13616. {\if\edition\pythonEd
  13617. \begin{lstlisting}
  13618. def f(x : int) -> Callable[[int], int]:
  13619. y = 4
  13620. return lambda z: x + y + z
  13621. g = f(5)
  13622. h = f(3)
  13623. print( g(11) + h(15) )
  13624. \end{lstlisting}
  13625. \fi}
  13626. \caption{Example of a lexically scoped function.}
  13627. \label{fig:lexical-scoping}
  13628. \end{figure}
  13629. The approach that we take for implementing lexically scoped functions
  13630. is to compile them into top-level function definitions, translating
  13631. from \LangLam{} into \LangFun{}. However, the compiler must give
  13632. special treatment to variable occurrences such as \code{x} and
  13633. \code{y} in the body of the \code{lambda} of
  13634. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  13635. may not refer to variables defined outside of it. To identify such
  13636. variable occurrences, we review the standard notion of free variable.
  13637. \begin{definition}
  13638. A variable is \textbf{free in expression} $e$ if the variable occurs
  13639. inside $e$ but does not have an enclosing definition that is also in
  13640. $e$.\index{subject}{free variable}
  13641. \end{definition}
  13642. For example, in the expression
  13643. \racket{\code{(+ x (+ y z))}}\python{\code{x + y + z}}
  13644. the variables \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  13645. only \code{x} and \code{y} are free in the following expression
  13646. because \code{z} is defined by the \code{lambda}.
  13647. {\if\edition\racketEd
  13648. \begin{lstlisting}
  13649. (lambda: ([z : Integer]) : Integer
  13650. (+ x (+ y z)))
  13651. \end{lstlisting}
  13652. \fi}
  13653. {\if\edition\pythonEd
  13654. \begin{lstlisting}
  13655. lambda z: x + y + z
  13656. \end{lstlisting}
  13657. \fi}
  13658. %
  13659. So the free variables of a \code{lambda} are the ones that need
  13660. special treatment. We need to transport, at runtime, the values of
  13661. those variables from the point where the \code{lambda} was created to
  13662. the point where the \code{lambda} is applied. An efficient solution to
  13663. the problem, due to \citet{Cardelli:1983aa}, is to bundle the values
  13664. of the free variables together with a function pointer into a tuple,
  13665. an arrangement called a \emph{flat closure} (which we shorten to just
  13666. ``closure'').\index{subject}{closure}\index{subject}{flat closure}
  13667. %
  13668. Fortunately, we have all the ingredients to make closures:
  13669. Chapter~\ref{ch:Lvec} gave us tuples and Chapter~\ref{ch:Lfun} gave us
  13670. function pointers. The function pointer resides at index $0$ and the
  13671. values for the free variables fill in the rest of the tuple.
  13672. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  13673. how closures work. It's a three-step dance. The program calls function
  13674. \code{f}, which creates a closure for the \code{lambda}. The closure
  13675. is a tuple whose first element is a pointer to the top-level function
  13676. that we will generate for the \code{lambda}, the second element is the
  13677. value of \code{x}, which is \code{5}, and the third element is
  13678. \code{4}, the value of \code{y}. The closure does not contain an
  13679. element for \code{z} because \code{z} is not a free variable of the
  13680. \code{lambda}. Creating the closure is step 1 of the dance. The
  13681. closure is returned from \code{f} and bound to \code{g}, as shown in
  13682. Figure~\ref{fig:closures}.
  13683. %
  13684. The second call to \code{f} creates another closure, this time with
  13685. \code{3} in the second slot (for \code{x}). This closure is also
  13686. returned from \code{f} but bound to \code{h}, which is also shown in
  13687. Figure~\ref{fig:closures}.
  13688. \begin{figure}[tbp]
  13689. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  13690. \caption{Flat closure representations for the two functions
  13691. produced by the \key{lambda} in Figure~\ref{fig:lexical-scoping}.}
  13692. \label{fig:closures}
  13693. \end{figure}
  13694. Continuing with the example, consider the application of \code{g} to
  13695. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  13696. obtain the function pointer in the first element of the closure and
  13697. call it, passing in the closure itself and then the regular arguments,
  13698. in this case \code{11}. This technique for applying a closure is step
  13699. 2 of the dance.
  13700. %
  13701. But doesn't this \code{lambda} only take 1 argument, for parameter
  13702. \code{z}? The third and final step of the dance is generating a
  13703. top-level function for a \code{lambda}. We add an additional
  13704. parameter for the closure and we insert an initialization at the beginning
  13705. of the function for each free variable, to bind those variables to the
  13706. appropriate elements from the closure parameter.
  13707. %
  13708. This three-step dance is known as \emph{closure conversion}. We
  13709. discuss the details of closure conversion in
  13710. Section~\ref{sec:closure-conversion} and the code generated from the
  13711. example in Section~\ref{sec:example-lambda}. But first we define the
  13712. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  13713. \section{The \LangLam{} Language}
  13714. \label{sec:r5}
  13715. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  13716. functions and lexical scoping, is defined in
  13717. Figures~\ref{fig:Rlam-concrete-syntax} and \ref{fig:Rlam-syntax}. It adds
  13718. the \key{lambda} form to the grammar for \LangFun{}, which already has
  13719. syntax for function application.
  13720. %
  13721. \python{The syntax also includes an assignment statement that includes
  13722. a type annotation for the variable on the left-hand side, which
  13723. facilitates the type checking of \code{lambda} expressions that we
  13724. discuss later in this section.}
  13725. %
  13726. \python{The \code{arity} operation returns the number of parameters of
  13727. a given function, an operation that we need for the translation
  13728. of dynamic typing in Chapter~\ref{ch:Ldyn}.
  13729. The \code{arity} operation is not in Python, but the same functionality
  13730. is available in a more complex form. We include \code{arity} in the
  13731. \LangLam{} source language to enable testing.}
  13732. \newcommand{\LlambdaGrammarRacket}{
  13733. \begin{array}{lcl}
  13734. \Exp &::=& \LP \key{procedure-arity}~\Exp\RP \\
  13735. &\MID& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp}
  13736. \end{array}
  13737. }
  13738. \newcommand{\LlambdaASTRacket}{
  13739. \begin{array}{lcl}
  13740. \itm{op} &::=& \code{procedure-arity} \\
  13741. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}
  13742. \end{array}
  13743. }
  13744. \newcommand{\LlambdaGrammarPython}{
  13745. \begin{array}{lcl}
  13746. \Exp &::=& \CLAMBDA{\Var\code{, }\ldots}{\Exp} \MID \CARITY{\Exp} \\
  13747. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp}
  13748. \end{array}
  13749. }
  13750. \newcommand{\LlambdaASTPython}{
  13751. \begin{array}{lcl}
  13752. \Exp &::=& \LAMBDA{\Var^{*}}{\Exp} \MID \ARITY{\Exp} \\
  13753. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  13754. \end{array}
  13755. }
  13756. % include AnnAssign in ASTPython
  13757. \begin{figure}[tp]
  13758. \centering
  13759. \fbox{
  13760. \begin{minipage}{0.96\textwidth}
  13761. \small
  13762. {\if\edition\racketEd
  13763. \[
  13764. \begin{array}{l}
  13765. \gray{\LintGrammarRacket{}} \\ \hline
  13766. \gray{\LvarGrammarRacket{}} \\ \hline
  13767. \gray{\LifGrammarRacket{}} \\ \hline
  13768. \gray{\LwhileGrammarRacket} \\ \hline
  13769. \gray{\LtupGrammarRacket} \\ \hline
  13770. \gray{\LfunGrammarRacket} \\ \hline
  13771. \LlambdaGrammarRacket \\
  13772. \begin{array}{lcl}
  13773. \LangLamM{} &::=& \Def\ldots \; \Exp
  13774. \end{array}
  13775. \end{array}
  13776. \]
  13777. \fi}
  13778. {\if\edition\pythonEd
  13779. \[
  13780. \begin{array}{l}
  13781. \gray{\LintGrammarPython{}} \\ \hline
  13782. \gray{\LvarGrammarPython{}} \\ \hline
  13783. \gray{\LifGrammarPython{}} \\ \hline
  13784. \gray{\LwhileGrammarPython} \\ \hline
  13785. \gray{\LtupGrammarPython} \\ \hline
  13786. \gray{\LfunGrammarPython} \\ \hline
  13787. \LlambdaGrammarPython \\
  13788. \begin{array}{lcl}
  13789. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  13790. \end{array}
  13791. \end{array}
  13792. \]
  13793. \fi}
  13794. \end{minipage}
  13795. }
  13796. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  13797. with \key{lambda}.}
  13798. \label{fig:Rlam-concrete-syntax}
  13799. \end{figure}
  13800. \begin{figure}[tp]
  13801. \centering
  13802. \fbox{
  13803. \begin{minipage}{0.96\textwidth}
  13804. \small
  13805. {\if\edition\racketEd
  13806. \[
  13807. \begin{array}{l}
  13808. \gray{\LintOpAST} \\ \hline
  13809. \gray{\LvarASTRacket{}} \\ \hline
  13810. \gray{\LifASTRacket{}} \\ \hline
  13811. \gray{\LwhileASTRacket{}} \\ \hline
  13812. \gray{\LtupASTRacket{}} \\ \hline
  13813. \gray{\LfunASTRacket} \\ \hline
  13814. \LlambdaASTRacket \\
  13815. \begin{array}{lcl}
  13816. \LangLamM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  13817. \end{array}
  13818. \end{array}
  13819. \]
  13820. \fi}
  13821. {\if\edition\pythonEd
  13822. \[
  13823. \begin{array}{l}
  13824. \gray{\LintASTPython} \\ \hline
  13825. \gray{\LvarASTPython{}} \\ \hline
  13826. \gray{\LifASTPython{}} \\ \hline
  13827. \gray{\LwhileASTPython{}} \\ \hline
  13828. \gray{\LtupASTPython{}} \\ \hline
  13829. \gray{\LfunASTPython} \\ \hline
  13830. \LlambdaASTPython \\
  13831. \begin{array}{lcl}
  13832. \LangLamM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  13833. \end{array}
  13834. \end{array}
  13835. \]
  13836. \fi}
  13837. \end{minipage}
  13838. }
  13839. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  13840. \label{fig:Rlam-syntax}
  13841. \end{figure}
  13842. \index{subject}{interpreter}
  13843. \label{sec:interp-Rlambda}
  13844. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  13845. \LangLam{}. The case for \key{Lambda} saves the current environment
  13846. inside the returned function value. Recall that during function
  13847. application, the environment stored in the function value, extended
  13848. with the mapping of parameters to argument values, is used to
  13849. interpret the body of the function.
  13850. \begin{figure}[tbp]
  13851. {\if\edition\racketEd
  13852. \begin{lstlisting}
  13853. (define interp-Rlambda_class
  13854. (class interp-Rfun_class
  13855. (super-new)
  13856. (define/override (interp-op op)
  13857. (match op
  13858. ['procedure-arity
  13859. (lambda (v)
  13860. (match v
  13861. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  13862. [else (error 'interp-op "expected a function, not ~a" v)]))]
  13863. [else (super interp-op op)]))
  13864. (define/override ((interp-exp env) e)
  13865. (define recur (interp-exp env))
  13866. (match e
  13867. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  13868. `(function ,xs ,body ,env)]
  13869. [else ((super interp-exp env) e)]))
  13870. ))
  13871. (define (interp-Rlambda p)
  13872. (send (new interp-Rlambda_class) interp-program p))
  13873. \end{lstlisting}
  13874. \fi}
  13875. {\if\edition\pythonEd
  13876. \begin{lstlisting}
  13877. class InterpLlambda(InterpLfun):
  13878. def arity(self, v):
  13879. match v:
  13880. case Function(name, params, body, env):
  13881. return len(params)
  13882. case _:
  13883. raise Exception('Llambda arity unexpected ' + repr(v))
  13884. def interp_exp(self, e, env):
  13885. match e:
  13886. case Call(Name('arity'), [fun]):
  13887. f = self.interp_exp(fun, env)
  13888. return self.arity(f)
  13889. case Lambda(params, body):
  13890. return Function('lambda', params, [Return(body)], env)
  13891. case _:
  13892. return super().interp_exp(e, env)
  13893. def interp_stmts(self, ss, env):
  13894. if len(ss) == 0:
  13895. return
  13896. match ss[0]:
  13897. case AnnAssign(lhs, typ, value, simple):
  13898. env[lhs.id] = self.interp_exp(value, env)
  13899. return self.interp_stmts(ss[1:], env)
  13900. case _:
  13901. return super().interp_stmts(ss, env)
  13902. \end{lstlisting}
  13903. \fi}
  13904. \caption{Interpreter for \LangLam{}.}
  13905. \label{fig:interp-Rlambda}
  13906. \end{figure}
  13907. \label{sec:type-check-r5}
  13908. \index{subject}{type checking}
  13909. {\if\edition\racketEd
  13910. %
  13911. Figure~\ref{fig:type-check-Llambda} shows how to type check the new
  13912. \key{lambda} form. The body of the \key{lambda} is checked in an
  13913. environment that includes the current environment (because it is
  13914. lexically scoped) and also includes the \key{lambda}'s parameters. We
  13915. require the body's type to match the declared return type.
  13916. %
  13917. \fi}
  13918. {\if\edition\pythonEd
  13919. %
  13920. Figures~\ref{fig:type-check-Llambda} and
  13921. \ref{fig:type-check-Llambda-part2} define the type checker for
  13922. \LangLam{}, which is more complex than one might expect. The reason
  13923. for the added complexity is that the syntax of \key{lambda} does not
  13924. include type annotations for the parameters or return type. Instead
  13925. they must be inferred. There are many approaches of type inference to
  13926. choose from of varying degrees of complexity. We choose one of the
  13927. simpler approaches, bidirectional type inference~\citep{Dunfield:2021}
  13928. (aka. local type inference~\citep{Pierce:2000}), because the focus of
  13929. this book is compilation, not type inference.
  13930. The main idea of bidirectional type inference is to add an auxilliary
  13931. function, here named \code{check\_exp}, that takes an expected type
  13932. and checks whether the given expression is of that type. Thus, in
  13933. \code{check\_exp}, type information flows in a top-down manner with
  13934. respect to the AST, in contrast to the regular \code{type\_check\_exp}
  13935. function, where type information flows in a primarily bottom-up
  13936. manner.
  13937. %
  13938. The idea then is to use \code{check\_exp} in all the places where we
  13939. already know what the type of an expression should be, such as in the
  13940. \code{return} statement of a top-level function definition, or on the
  13941. right-hand side of an annotated assignment statement.
  13942. Getting back to \code{lambda}, it is straightforward to check a
  13943. \code{lambda} inside \code{check\_exp} because the expected type
  13944. provides the parameter types and the return type. On the other hand,
  13945. inside \code{type\_check\_exp} we disallow \code{lambda}, which means
  13946. that we do not allow \code{lambda} in contexts where we don't already
  13947. know its type. This restriction does not incur a loss of
  13948. expressiveness for \LangLam{} because it is straightforward to modify
  13949. a program to sidestep the restriction, for example, by using an
  13950. annotated assignment statement to assign the \code{lambda} to a
  13951. temporary variable.
  13952. Note that for the \code{Name} and \code{Lambda} AST nodes, the type
  13953. checker records their type in a \code{has\_type} field. This type
  13954. information is used later in this chapter.
  13955. %
  13956. \fi}
  13957. \begin{figure}[tbp]
  13958. {\if\edition\racketEd
  13959. \begin{lstlisting}
  13960. (define (type-check-Rlambda env)
  13961. (lambda (e)
  13962. (match e
  13963. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  13964. (define-values (new-body bodyT)
  13965. ((type-check-exp (append (map cons xs Ts) env)) body))
  13966. (define ty `(,@Ts -> ,rT))
  13967. (cond
  13968. [(equal? rT bodyT)
  13969. (values (HasType (Lambda params rT new-body) ty) ty)]
  13970. [else
  13971. (error "mismatch in return type" bodyT rT)])]
  13972. ...
  13973. )))
  13974. \end{lstlisting}
  13975. \fi}
  13976. {\if\edition\pythonEd
  13977. \begin{lstlisting}
  13978. class TypeCheckLlambda(TypeCheckLfun):
  13979. def type_check_exp(self, e, env):
  13980. match e:
  13981. case Name(id):
  13982. e.has_type = env[id]
  13983. return env[id]
  13984. case Lambda(params, body):
  13985. raise Exception('cannot synthesize a type for a lambda')
  13986. case Call(Name('arity'), [func]):
  13987. func_t = self.type_check_exp(func, env)
  13988. match func_t:
  13989. case FunctionType(params_t, return_t):
  13990. return IntType()
  13991. case _:
  13992. raise Exception('in arity, unexpected ' + repr(func_t))
  13993. case _:
  13994. return super().type_check_exp(e, env)
  13995. def check_exp(self, e, ty, env):
  13996. match e:
  13997. case Lambda(params, body):
  13998. e.has_type = ty
  13999. match ty:
  14000. case FunctionType(params_t, return_t):
  14001. new_env = env.copy().update(zip(params, params_t))
  14002. self.check_exp(body, return_t, new_env)
  14003. case _:
  14004. raise Exception('lambda does not have type ' + str(ty))
  14005. case Call(func, args):
  14006. func_t = self.type_check_exp(func, env)
  14007. match func_t:
  14008. case FunctionType(params_t, return_t):
  14009. for (arg, param_t) in zip(args, params_t):
  14010. self.check_exp(arg, param_t, env)
  14011. self.check_type_equal(return_t, ty, e)
  14012. case _:
  14013. raise Exception('type_check_exp: in call, unexpected ' + \
  14014. repr(func_t))
  14015. case _:
  14016. t = self.type_check_exp(e, env)
  14017. self.check_type_equal(t, ty, e)
  14018. \end{lstlisting}
  14019. \fi}
  14020. \caption{Type checking \LangLam{}\python{, part 1}.}
  14021. \label{fig:type-check-Llambda}
  14022. \end{figure}
  14023. {\if\edition\pythonEd
  14024. \begin{figure}[tbp]
  14025. \begin{lstlisting}
  14026. def check_stmts(self, ss, return_ty, env):
  14027. if len(ss) == 0:
  14028. return
  14029. match ss[0]:
  14030. case FunctionDef(name, params, body, dl, returns, comment):
  14031. new_env = env.copy().update(params)
  14032. rt = self.check_stmts(body, returns, new_env)
  14033. self.check_stmts(ss[1:], return_ty, env)
  14034. case Return(value):
  14035. self.check_exp(value, return_ty, env)
  14036. case Assign([Name(id)], value):
  14037. if id in env:
  14038. self.check_exp(value, env[id], env)
  14039. else:
  14040. env[id] = self.type_check_exp(value, env)
  14041. self.check_stmts(ss[1:], return_ty, env)
  14042. case Assign([Subscript(tup, Constant(index), Store())], value):
  14043. tup_t = self.type_check_exp(tup, env)
  14044. match tup_t:
  14045. case TupleType(ts):
  14046. self.check_exp(value, ts[index], env)
  14047. case _:
  14048. raise Exception('expected a tuple, not ' + repr(tup_t))
  14049. self.check_stmts(ss[1:], return_ty, env)
  14050. case AnnAssign(Name(id), ty_annot, value, simple):
  14051. ss[0].annotation = ty_annot
  14052. if id in env:
  14053. self.check_type_equal(env[id], ty_annot)
  14054. else:
  14055. env[id] = ty_annot
  14056. self.check_exp(value, ty_annot, env)
  14057. self.check_stmts(ss[1:], return_ty, env)
  14058. case _:
  14059. self.type_check_stmts(ss, env)
  14060. def type_check(self, p):
  14061. match p:
  14062. case Module(body):
  14063. env = {}
  14064. for s in body:
  14065. match s:
  14066. case FunctionDef(name, params, bod, dl, returns, comment):
  14067. params_t = [t for (x,t) in params]
  14068. env[name] = FunctionType(params_t, returns)
  14069. self.check_stmts(body, int, env)
  14070. \end{lstlisting}
  14071. \caption{Type checking the \key{lambda}'s in \LangLam{}, part 2.}
  14072. \label{fig:type-check-Llambda-part2}
  14073. \end{figure}
  14074. \fi}
  14075. \clearpage
  14076. \section{Assignment and Lexically Scoped Functions}
  14077. \label{sec:assignment-scoping}
  14078. The combination of lexically-scoped functions and assignment to
  14079. variables raises a challenge with our approach to implementing
  14080. lexically-scoped functions. Consider the following example in which
  14081. function \code{f} has a free variable \code{x} that is changed after
  14082. \code{f} is created but before the call to \code{f}.
  14083. % loop_test_11.rkt
  14084. {\if\edition\racketEd
  14085. \begin{lstlisting}
  14086. (let ([x 0])
  14087. (let ([y 0])
  14088. (let ([z 20])
  14089. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  14090. (begin
  14091. (set! x 10)
  14092. (set! y 12)
  14093. (f y))))))
  14094. \end{lstlisting}
  14095. \fi}
  14096. {\if\edition\pythonEd
  14097. % box_free_assign.py
  14098. \begin{lstlisting}
  14099. def g(z : int) -> int:
  14100. x = 0
  14101. y = 0
  14102. f : Callable[[int],int] = lambda a: a + x + z
  14103. x = 10
  14104. y = 12
  14105. return f(y)
  14106. print( g(20) )
  14107. \end{lstlisting}
  14108. \fi}
  14109. The correct output for this example is \code{42} because the call to
  14110. \code{f} is required to use the current value of \code{x} (which is
  14111. \code{10}). Unfortunately, the closure conversion pass
  14112. (Section~\ref{sec:closure-conversion}) generates code for the
  14113. \code{lambda} that copies the old value of \code{x} into a
  14114. closure. Thus, if we naively add support for assignment to our current
  14115. compiler, the output of this program would be \code{32}.
  14116. A first attempt at solving this problem would be to save a pointer to
  14117. \code{x} in the closure and change the occurrences of \code{x} inside
  14118. the lambda to dereference the pointer. Of course, this would require
  14119. assigning \code{x} to the stack and not to a register. However, the
  14120. problem goes a bit deeper.
  14121. %% Consider the following example in which we
  14122. %% create a counter abstraction by creating a pair of functions that
  14123. %% share the free variable \code{x}.
  14124. Consider the following example that returns a function that refers to
  14125. a local variable of the enclosing function.
  14126. \begin{center}
  14127. \begin{minipage}{\textwidth}
  14128. {\if\edition\racketEd
  14129. % similar to loop_test_10.rkt
  14130. %% \begin{lstlisting}
  14131. %% (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  14132. %% (vector
  14133. %% (lambda: () : Integer x)
  14134. %% (lambda: () : Void (set! x (+ 1 x)))))
  14135. %% (let ([counter (f 0)])
  14136. %% (let ([get (vector-ref counter 0)])
  14137. %% (let ([inc (vector-ref counter 1)])
  14138. %% (begin
  14139. %% (inc)
  14140. %% (get)))))
  14141. %% \end{lstlisting}
  14142. \begin{lstlisting}
  14143. (define (f []) : Integer
  14144. (let ([x 0])
  14145. (let ([g (lambda: () : Integer x)])
  14146. (begin
  14147. (set! x 42)
  14148. g))))
  14149. ((f))
  14150. \end{lstlisting}
  14151. \fi}
  14152. {\if\edition\pythonEd
  14153. % counter.py
  14154. \begin{lstlisting}
  14155. def f():
  14156. x = 0
  14157. g = lambda: x
  14158. x = 42
  14159. return g
  14160. print( f()() )
  14161. \end{lstlisting}
  14162. \fi}
  14163. \end{minipage}
  14164. \end{center}
  14165. In this example, the lifetime of \code{x} extends beyond the lifetime
  14166. of the call to \code{f}. Thus, if we were to store \code{x} on the
  14167. stack frame for the call to \code{f}, it would be gone by the time we
  14168. call \code{g}, leaving us with dangling pointers for
  14169. \code{x}. This example demonstrates that when a variable occurs free
  14170. inside a function, its lifetime becomes indefinite. Thus, the value of
  14171. the variable needs to live on the heap. The verb
  14172. \emph{box}\index{subject}{box} is often used for allocating a single
  14173. value on the heap, producing a pointer, and
  14174. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  14175. %% {\if\edition\racketEd
  14176. %% We recommend solving these problems by boxing the local variables that
  14177. %% are in the intersection of 1) variables that appear on the
  14178. %% left-hand-side of a \code{set!} and 2) variables that occur free
  14179. %% inside a \code{lambda}.
  14180. %% \fi}
  14181. %% {\if\edition\pythonEd
  14182. %% We recommend solving these problems by boxing the local variables that
  14183. %% are in the intersection of 1) variables whose values may change and 2)
  14184. %% variables that occur free inside a \code{lambda}.
  14185. %% \fi}
  14186. We shall introduce a new pass named
  14187. \code{convert\_assignments} in Section~\ref{sec:convert-assignments}
  14188. to address this challenge.
  14189. %
  14190. \racket{But before diving into the compiler passes, we have one more
  14191. problem to discuss.}
  14192. \if\edition\pythonEd
  14193. \section{Uniquify Variables}
  14194. \label{sec:uniquify-lambda}
  14195. With the addition of \code{lambda} we have a complication to deal
  14196. with: name shadowing. Consider the following program with a function
  14197. \code{f} that has a parameter \code{x}. Inside \code{f} there are two
  14198. \code{lambda} expressions. The first \code{lambda} has a parameter
  14199. that is also named \code{x}.
  14200. \begin{lstlisting}
  14201. def f(x:int, y:int) -> Callable[[int], int]:
  14202. g : Callable[[int],int] = (lambda x: x + y)
  14203. h : Callable[[int],int] = (lambda y: x + y)
  14204. x = input_int()
  14205. return g
  14206. print(f(0, 10)(32))
  14207. \end{lstlisting}
  14208. Many of our compiler passes rely on being able to connect variable
  14209. uses with their definitions using just the name of the variable,
  14210. including new passes in this chapter. However, in the above example
  14211. the name of the variable does not uniquely determine its
  14212. definition. To solve this problem we recommend implementing a pass
  14213. named \code{uniquify} that renames every variable in the program to
  14214. make sure they are all unique.
  14215. The following shows the result of \code{uniquify} for the above
  14216. example. The \code{x} parameter of \code{f} is renamed to \code{x\_0}
  14217. and the \code{x} parameter of the \code{lambda} is renamed to
  14218. \code{x\_4}.
  14219. \begin{lstlisting}
  14220. def f(x_0:int, y_1:int) -> Callable[[int], int] :
  14221. g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
  14222. h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
  14223. x_0 = input_int()
  14224. return g_2
  14225. def main() -> int :
  14226. print(f(0, 10)(32))
  14227. return 0
  14228. \end{lstlisting}
  14229. \fi
  14230. %% \section{Reveal Functions}
  14231. %% \label{sec:reveal-functions-r5}
  14232. %% \racket{To support the \code{procedure-arity} operator we need to
  14233. %% communicate the arity of a function to the point of closure
  14234. %% creation.}
  14235. %% %
  14236. %% \python{In Chapter~\ref{ch:Ldyn} we need to access the arity of a
  14237. %% function at runtime. Thus, we need to communicate the arity of a
  14238. %% function to the point of closure creation.}
  14239. %% %
  14240. %% We can accomplish this by replacing the $\FUNREF{\Var}{\Int}$ AST node with
  14241. %% one that has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$.
  14242. %% \[
  14243. %% \begin{array}{lcl}
  14244. %% \Exp &::=& \FUNREFARITY{\Var}{\Int}
  14245. %% \end{array}
  14246. %% \]
  14247. \section{Assignment Conversion}
  14248. \label{sec:convert-assignments}
  14249. The purpose of the \code{convert\_assignments} pass is to address the
  14250. challenge posed in Section~\ref{sec:assignment-scoping} regarding the
  14251. interaction between variable assignments and closure conversion.
  14252. First we identify which variables need to be boxed, then we transform
  14253. the program to box those variables. In general, boxing introduces
  14254. runtime overhead that we would like to avoid, so we should box as few
  14255. variables as possible. We recommend boxing the variables in the
  14256. intersection of the following two sets of variables:
  14257. \begin{enumerate}
  14258. \item The variables that are free in a \code{lambda}.
  14259. \item The variables that appear on the left-hand side of an
  14260. assignment.
  14261. \end{enumerate}
  14262. The first condition is a must, but the second condition is quite conservative and it is possible to
  14263. develop a more liberal condition.
  14264. Consider again the first example from
  14265. Section~\ref{sec:assignment-scoping}:
  14266. %
  14267. {\if\edition\racketEd
  14268. \begin{lstlisting}
  14269. (let ([x 0])
  14270. (let ([y 0])
  14271. (let ([z 20])
  14272. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  14273. (begin
  14274. (set! x 10)
  14275. (set! y 12)
  14276. (f y))))))
  14277. \end{lstlisting}
  14278. \fi}
  14279. {\if\edition\pythonEd
  14280. \begin{lstlisting}
  14281. def g(z : int) -> int:
  14282. x = 0
  14283. y = 0
  14284. f : Callable[[int],int] = lambda a: a + x + z
  14285. x = 10
  14286. y = 12
  14287. return f(y)
  14288. print( g(20) )
  14289. \end{lstlisting}
  14290. \fi}
  14291. %
  14292. \noindent The variables \code{x} and \code{y} are assigned-to. The
  14293. variables \code{x} and \code{z} occur free inside the
  14294. \code{lambda}. Thus, variable \code{x} needs to be boxed but not
  14295. \code{y} or \code{z}. The boxing of \code{x} consists of three
  14296. transformations: initialize \code{x} with a tuple whose elements are uninitialized,
  14297. replace reads from \code{x} with tuple reads, and replace each assignment to \code{x}
  14298. with a tuple write. The output of \code{convert\_assignments} for
  14299. this example is as follows.
  14300. %
  14301. {\if\edition\racketEd
  14302. \begin{lstlisting}
  14303. (define (main) : Integer
  14304. (let ([x0 (vector 0)])
  14305. (let ([y1 0])
  14306. (let ([z2 20])
  14307. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  14308. (+ a3 (+ (vector-ref x0 0) z2)))])
  14309. (begin
  14310. (vector-set! x0 0 10)
  14311. (set! y1 12)
  14312. (f4 y1)))))))
  14313. \end{lstlisting}
  14314. \fi}
  14315. %
  14316. {\if\edition\pythonEd
  14317. \begin{lstlisting}
  14318. def g(z : int)-> int:
  14319. x = (uninitialized(int),)
  14320. x[0] = 0
  14321. y = 0
  14322. f : Callable[[int], int] = (lambda a: a + x[0] + z)
  14323. x[0] = 10
  14324. y = 12
  14325. return f(y)
  14326. def main() -> int:
  14327. print(g(20))
  14328. return 0
  14329. \end{lstlisting}
  14330. \fi}
  14331. To compute the free variables of all the \code{lambda} expressions, we
  14332. recommend defining two auxiliary functions:
  14333. \begin{enumerate}
  14334. \item \code{free\_variables} computes the free variables of an expression, and
  14335. \item \code{free\_in\_lambda} collects all of the variables that are
  14336. free in any of the \code{lambda} expressions, using
  14337. \code{free\_variables} in the case for each \code{lambda}.
  14338. \end{enumerate}
  14339. {\if\edition\racketEd
  14340. %
  14341. To compute the variables that are assigned-to, we recommend using the
  14342. \code{collect-set!} function that we introduced in
  14343. Section~\ref{sec:uncover-get-bang}, but updated to include the new AST
  14344. forms such as \code{Lambda}.
  14345. %
  14346. \fi}
  14347. {\if\edition\pythonEd
  14348. %
  14349. To compute the variables that are assigned-to, we recommend defining
  14350. an auxiliary function named \code{assigned\_vars\_stmt} that returns
  14351. the set of variables that occur in the left-hand side of an assignment
  14352. statement, and otherwise returns the empty set.
  14353. %
  14354. \fi}
  14355. Let $\mathit{AF}$ be the intersection of the set of variables that are
  14356. free in a \code{lambda} and that are assigned-to in the enclosing
  14357. function definition.
  14358. Next we discuss the \code{convert\_assignments} pass. In the case for
  14359. $\VAR{x}$, if $x$ is in $\mathit{AF}$, then unbox it by translating
  14360. $\VAR{x}$ to a tuple read.
  14361. %
  14362. {\if\edition\racketEd
  14363. \begin{lstlisting}
  14364. (Var |$x$|)
  14365. |$\Rightarrow$|
  14366. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  14367. \end{lstlisting}
  14368. \fi}
  14369. %
  14370. {\if\edition\pythonEd
  14371. \begin{lstlisting}
  14372. Name(|$x$|)
  14373. |$\Rightarrow$|
  14374. Subscript(Name(|$x$|), Constant(0), Load())
  14375. \end{lstlisting}
  14376. \fi}
  14377. %
  14378. %
  14379. In the case for assignment, recursively process the right-hand side
  14380. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in $\mathit{AF}$, translate
  14381. the assignment into a tuple-write as follows.
  14382. %
  14383. {\if\edition\racketEd
  14384. \begin{lstlisting}
  14385. (SetBang |$x$| |$\itm{rhs}$|)
  14386. |$\Rightarrow$|
  14387. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  14388. \end{lstlisting}
  14389. \fi}
  14390. {\if\edition\pythonEd
  14391. \begin{lstlisting}
  14392. Assign([Name(|$x$|)],|$\itm{rhs}$|)
  14393. |$\Rightarrow$|
  14394. Assign([Subscript(Name(|$x$|), Constant(0), Store())], |$\itm{rhs'}$|)
  14395. \end{lstlisting}
  14396. \fi}
  14397. %
  14398. {\if\edition\racketEd
  14399. The case for \code{Lambda} is non-trivial, but it is similar to the
  14400. case for function definitions, which we discuss next.
  14401. \fi}
  14402. To translate a function definition, we first compute $\mathit{AF}$,
  14403. the intersection of the variables that are free in a \code{lambda} and
  14404. that are assigned-to. We then apply assignment conversion to the body
  14405. of the function definition. Finally, we box the parameters of this
  14406. function definition that are in $\mathit{AF}$. For example,
  14407. the parameter \code{x} of the following function \code{g}
  14408. needs to be boxed.
  14409. {\if\edition\racketEd
  14410. \begin{lstlisting}
  14411. (define (g [x : Integer]) : Integer
  14412. (let ([f (lambda: ([a : Integer]) : Integer (+ a x))])
  14413. (begin
  14414. (set! x 10)
  14415. (f 32))))
  14416. \end{lstlisting}
  14417. \fi}
  14418. %
  14419. {\if\edition\pythonEd
  14420. \begin{lstlisting}
  14421. def g(x : int) -> int:
  14422. f : Callable[[int],int] = lambda a: a + x
  14423. x = 10
  14424. return f(32)
  14425. \end{lstlisting}
  14426. \fi}
  14427. %
  14428. \noindent We box parameter \code{x} by creating a local variable named
  14429. \code{x} that is initialized to a tuple whose contents is the value of
  14430. the parameter, which we has been renamed.
  14431. %
  14432. {\if\edition\racketEd
  14433. \begin{lstlisting}
  14434. (define (g [x_0 : Integer]) : Integer
  14435. (let ([x (vector x_0)])
  14436. (let ([f (lambda: ([a : Integer]) : Integer
  14437. (+ a (vector-ref x 0)))])
  14438. (begin
  14439. (vector-set! x 0 10)
  14440. (f 32)))))
  14441. \end{lstlisting}
  14442. \fi}
  14443. %
  14444. {\if\edition\pythonEd
  14445. \begin{lstlisting}
  14446. def g(x_0 : int)-> int:
  14447. x = (x_0,)
  14448. f : Callable[[int], int] = (lambda a: a + x[0])
  14449. x[0] = 10
  14450. return f(32)
  14451. \end{lstlisting}
  14452. \fi}
  14453. %% Recall the second example in Section~\ref{sec:assignment-scoping}
  14454. %% involving a counter abstraction. The following is the output of
  14455. %% assignment version for function \code{f}.
  14456. %% \begin{lstlisting}
  14457. %% (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  14458. %% (vector
  14459. %% (lambda: () : Integer x1)
  14460. %% (lambda: () : Void (set! x1 (+ 1 x1)))))
  14461. %% |$\Rightarrow$|
  14462. %% (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  14463. %% (let ([x1 (vector param_x1)])
  14464. %% (vector (lambda: () : Integer (vector-ref x1 0))
  14465. %% (lambda: () : Void
  14466. %% (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  14467. %% \end{lstlisting}
  14468. \section{Closure Conversion}
  14469. \label{sec:closure-conversion}
  14470. \index{subject}{closure conversion}
  14471. The compiling of lexically-scoped functions into top-level function
  14472. definitions is accomplished in the pass \code{convert\_to\_closures}
  14473. that comes after \code{reveal\_functions} and before
  14474. \code{limit\_functions}.
  14475. As usual, we implement the pass as a recursive function over the
  14476. AST. The interesting cases are the ones for \key{lambda} and function
  14477. application. We transform a \key{lambda} expression into an expression
  14478. that creates a closure, that is, a tuple whose first element is a
  14479. function pointer and the rest of the elements are the values of the
  14480. free variables of the \key{lambda}.
  14481. %
  14482. However, we use the \code{Closure} AST node instead of using a tuple
  14483. so that we can record the arity.
  14484. %
  14485. In the generated code below, \itm{fvs} is the free variables of the
  14486. lambda and \itm{name} is a unique symbol generated to identify the lambda.
  14487. %
  14488. \racket{The \itm{arity} is the number of parameters (the length of
  14489. \itm{ps}).}
  14490. %
  14491. {\if\edition\racketEd
  14492. \begin{lstlisting}
  14493. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  14494. |$\Rightarrow$|
  14495. (Closure |\itm{arity}| (cons (FunRef |\itm{name}| |\itm{arity}|) |\itm{fvs}|))
  14496. \end{lstlisting}
  14497. \fi}
  14498. %
  14499. {\if\edition\pythonEd
  14500. \begin{lstlisting}
  14501. Lambda([|$x_1,\ldots,x_n$|], |\itm{body}|)
  14502. |$\Rightarrow$|
  14503. Closure(|$n$|, [FunRef(|\itm{name}|, |$n$|), |\itm{fvs}, \ldots|])
  14504. \end{lstlisting}
  14505. \fi}
  14506. %
  14507. In addition to transforming each \key{Lambda} AST node into a
  14508. tuple, we create a top-level function definition for each
  14509. \key{Lambda}, as shown below.\\
  14510. \begin{minipage}{0.8\textwidth}
  14511. {\if\edition\racketEd
  14512. \begin{lstlisting}
  14513. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  14514. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  14515. ...
  14516. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  14517. |\itm{body'}|)...))
  14518. \end{lstlisting}
  14519. \fi}
  14520. {\if\edition\pythonEd
  14521. \begin{lstlisting}
  14522. def |\itm{name}|(clos : |\itm{closTy}|, |\itm{ps'}, \ldots|) -> |\itm{rt'}|:
  14523. |$\itm{fvs}_1$| = clos[1]
  14524. |$\ldots$|
  14525. |$\itm{fvs}_n$| = clos[|$n$|]
  14526. |\itm{body'}|
  14527. \end{lstlisting}
  14528. \fi}
  14529. \end{minipage}\\
  14530. The \code{clos} parameter refers to the closure. Translate the type
  14531. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  14532. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The type
  14533. \itm{closTy} is a tuple type whose first element type is
  14534. \python{\code{Bottom()}}\racket{\code{\_} (the dummy type)} and the rest of
  14535. the element types are the types of the free variables in the
  14536. lambda. We use \python{\code{Bottom()}}\racket{\code{\_}} because it
  14537. is non-trivial to give a type to the function in the closure's type.%
  14538. %
  14539. \footnote{To give an accurate type to a closure, we would need to add
  14540. existential types to the type checker~\citep{Minamide:1996ys}.}
  14541. %
  14542. %% The dummy type is considered to be equal to any other type during type
  14543. %% checking.
  14544. The free variables become local variables that are initialized with
  14545. their values in the closure.
  14546. Closure conversion turns every function into a tuple, so the type
  14547. annotations in the program must also be translated. We recommend
  14548. defining an auxiliary recursive function for this purpose. Function
  14549. types should be translated as follows.
  14550. %
  14551. {\if\edition\racketEd
  14552. \begin{lstlisting}
  14553. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  14554. |$\Rightarrow$|
  14555. (Vector ((Vector) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  14556. \end{lstlisting}
  14557. \fi}
  14558. {\if\edition\pythonEd
  14559. \begin{lstlisting}
  14560. FunctionType([|$T_1, \ldots, T_n$|], |$T_r$|)
  14561. |$\Rightarrow$|
  14562. TupleType([FunctionType([TupleType([]), |$T'_1, \ldots, T'_n$|], |$T'_r$|)])
  14563. \end{lstlisting}
  14564. \fi}
  14565. %
  14566. The above type says that the first thing in the tuple is a
  14567. function. The first parameter of the function is a tuple (a closure)
  14568. and the rest of the parameters are the ones from the original
  14569. function, with types $T'_1, \ldots, T'_n$. The type for the closure
  14570. omits the types of the free variables because 1) those types are not
  14571. available in this context and 2) we do not need them in the code that
  14572. is generated for function application. So this type only describes the
  14573. first component of the closure tuple. At runtime the tuple may have
  14574. more components, but we ignore them at this point.
  14575. We transform function application into code that retrieves the
  14576. function from the closure and then calls the function, passing the
  14577. closure as the first argument. We place $e'$ in a temporary variable
  14578. to avoid code duplication.
  14579. \begin{center}
  14580. \begin{minipage}{\textwidth}
  14581. {\if\edition\racketEd
  14582. \begin{lstlisting}
  14583. (Apply |$e$| |$\itm{es}$|)
  14584. |$\Rightarrow$|
  14585. (Let |$\itm{tmp}$| |$e'$|
  14586. (Apply (Prim 'vector-ref (list (Var |$\itm{tmp}$|) (Int 0))) (cons |$\itm{tmp}$| |$\itm{es'}$|)))
  14587. \end{lstlisting}
  14588. \fi}
  14589. %
  14590. {\if\edition\pythonEd
  14591. \begin{lstlisting}
  14592. Call(|$e$|, [|$e_1, \ldots, e_n$|])
  14593. |$\Rightarrow$|
  14594. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  14595. Call(Subscript(Name(|$\itm{tmp}$|), Constant(0)),
  14596. [|$\itm{tmp}$|, |$e'_1, \ldots, e'_n$|]))
  14597. \end{lstlisting}
  14598. \fi}
  14599. \end{minipage}
  14600. \end{center}
  14601. There is also the question of what to do with references to top-level
  14602. function definitions. To maintain a uniform translation of function
  14603. application, we turn function references into closures.
  14604. \begin{tabular}{lll}
  14605. \begin{minipage}{0.3\textwidth}
  14606. {\if\edition\racketEd
  14607. \begin{lstlisting}
  14608. (FunRef |$f$| |$n$|)
  14609. \end{lstlisting}
  14610. \fi}
  14611. {\if\edition\pythonEd
  14612. \begin{lstlisting}
  14613. FunRef(|$f$|, |$n$|)
  14614. \end{lstlisting}
  14615. \fi}
  14616. \end{minipage}
  14617. &
  14618. $\Rightarrow$
  14619. &
  14620. \begin{minipage}{0.5\textwidth}
  14621. {\if\edition\racketEd
  14622. \begin{lstlisting}
  14623. (Closure |$n$| (FunRef |$f$| |$n$|) '())
  14624. \end{lstlisting}
  14625. \fi}
  14626. {\if\edition\pythonEd
  14627. \begin{lstlisting}
  14628. Closure(|$n$|, [FunRef(|$f$| |$n$|)])
  14629. \end{lstlisting}
  14630. \fi}
  14631. \end{minipage}
  14632. \end{tabular} \\
  14633. We no longer need the annotated assignment statement \code{AnnAssign}
  14634. to support the type checking of \code{lambda} expressions, so we
  14635. translate it to a regular \code{Assign} statement.
  14636. The top-level function definitions need to be updated to take an extra
  14637. closure parameter.
  14638. \section{An Example Translation}
  14639. \label{sec:example-lambda}
  14640. Figure~\ref{fig:lexical-functions-example} shows the result of
  14641. \code{reveal\_functions} and \code{convert\_to\_closures} for the example
  14642. program demonstrating lexical scoping that we discussed at the
  14643. beginning of this chapter.
  14644. \begin{figure}[tbp]
  14645. \begin{minipage}{0.8\textwidth}
  14646. {\if\edition\racketEd
  14647. % tests/lambda_test_6.rkt
  14648. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14649. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  14650. (let ([y8 4])
  14651. (lambda: ([z9 : Integer]) : Integer
  14652. (+ x7 (+ y8 z9)))))
  14653. (define (main) : Integer
  14654. (let ([g0 ((fun-ref f6 1) 5)])
  14655. (let ([h1 ((fun-ref f6 1) 3)])
  14656. (+ (g0 11) (h1 15)))))
  14657. \end{lstlisting}
  14658. $\Rightarrow$
  14659. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14660. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  14661. (let ([y8 4])
  14662. (closure 1 (list (fun-ref lambda2 1) x7 y8))))
  14663. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  14664. (let ([x7 (vector-ref fvs3 1)])
  14665. (let ([y8 (vector-ref fvs3 2)])
  14666. (+ x7 (+ y8 z9)))))
  14667. (define (main) : Integer
  14668. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6 1)))])
  14669. ((vector-ref clos5 0) clos5 5))])
  14670. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6 1)))])
  14671. ((vector-ref clos6 0) clos6 3))])
  14672. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  14673. \end{lstlisting}
  14674. \fi}
  14675. %
  14676. {\if\edition\pythonEd
  14677. % free_var.py
  14678. \begin{lstlisting}
  14679. def f(x : int) -> Callable[[int], int]:
  14680. y = 4
  14681. return lambda z: x + y + z
  14682. g = f(5)
  14683. h = f(3)
  14684. print( g(11) + h(15) )
  14685. \end{lstlisting}
  14686. $\Rightarrow$
  14687. \begin{lstlisting}
  14688. def lambda_0(fvs_1:tuple[bot,int,tuple[int]],z:int) -> int:
  14689. x = fvs_1[1]
  14690. y = fvs_1[2]
  14691. return x + y[0] + z
  14692. def f(fvs_2:bot, x:int) -> tuple[Callable[[tuple[],int], int]]
  14693. y = (777,)
  14694. y[0] = 4
  14695. return (lambda_0, x, y)
  14696. def main() -> int:
  14697. g = (let clos_3 = (f,) in clos_3[0](clos_3, 5))
  14698. h = (let clos_4 = (f,) in clos_4[0](clos_4, 3))
  14699. print((let clos_5 = g in clos_5[0](clos_5, 11))
  14700. + (let clos_6 = h in clos_6[0](clos_6, 15)))
  14701. return 0
  14702. \end{lstlisting}
  14703. \fi}
  14704. \end{minipage}
  14705. \caption{Example of closure conversion.}
  14706. \label{fig:lexical-functions-example}
  14707. \end{figure}
  14708. \begin{exercise}\normalfont\normalsize
  14709. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  14710. Create 5 new programs that use \key{lambda} functions and make use of
  14711. lexical scoping. Test your compiler on these new programs and all of
  14712. your previously created test programs.
  14713. \end{exercise}
  14714. \section{Expose Allocation}
  14715. \label{sec:expose-allocation-r5}
  14716. Compile the $\CLOSURE{\itm{arity}}{\Exp^{*}}$ form into code
  14717. that allocates and initializes a tuple, similar to the translation of
  14718. the tuple creation in Section~\ref{sec:expose-allocation}.
  14719. The only difference is replacing the use of
  14720. \ALLOC{\itm{len}}{\itm{type}} with
  14721. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  14722. \section{Explicate Control and \LangCLam{}}
  14723. \label{sec:explicate-r5}
  14724. The output language of \code{explicate\_control} is \LangCLam{} whose
  14725. abstract syntax is defined in Figure~\ref{fig:Clam-syntax}.
  14726. %
  14727. \racket{The only difference with respect to \LangCFun{} is the
  14728. addition of the \code{AllocateClosure} form to the grammar for
  14729. $\Exp$. The handling of \code{AllocateClosure} in the
  14730. \code{explicate\_control} pass is similar to the handling of other
  14731. expressions such as primitive operators.}
  14732. %
  14733. \python{The differences with respect to \LangCFun{} are the
  14734. additions of \code{Uninitialized}, \code{AllocateClosure},
  14735. and \code{arity} to the grammar for $\Exp$. The handling of them in the
  14736. \code{explicate\_control} pass is similar to the handling of other
  14737. expressions such as primitive operators.}
  14738. \newcommand{\ClambdaASTPython}{
  14739. \begin{array}{lcl}
  14740. \Exp &::=& \key{Uninitialized}\LP \Type \RP
  14741. \MID \key{AllocateClosure}\LP\itm{len},\Type, \itm{arity}\RP \\
  14742. &\MID& \ARITY{\Atm}
  14743. \end{array}
  14744. }
  14745. \begin{figure}[tp]
  14746. \fbox{
  14747. \begin{minipage}{0.96\textwidth}
  14748. \small
  14749. {\if\edition\racketEd
  14750. \[
  14751. \begin{array}{lcl}
  14752. \Exp &::= & \ldots
  14753. \MID \ALLOCCLOS{\Int}{\Type}{\Int} \\
  14754. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  14755. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  14756. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  14757. \MID \GOTO{\itm{label}} } \\
  14758. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  14759. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  14760. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  14761. \LangCLamM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  14762. \end{array}
  14763. \]
  14764. \fi}
  14765. {\if\edition\pythonEd
  14766. \[
  14767. \begin{array}{l}
  14768. \gray{\CifASTPython} \\ \hline
  14769. \gray{\CtupASTPython} \\ \hline
  14770. \gray{\CfunASTPython} \\ \hline
  14771. \ClambdaASTPython \\
  14772. \begin{array}{lcl}
  14773. \LangCLamM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14774. \end{array}
  14775. \end{array}
  14776. \]
  14777. \fi}
  14778. \end{minipage}
  14779. }
  14780. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  14781. \label{fig:Clam-syntax}
  14782. \end{figure}
  14783. \section{Select Instructions}
  14784. \label{sec:select-instructions-Rlambda}
  14785. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  14786. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  14787. (Section~\ref{sec:select-instructions-gc}). The only difference is
  14788. that you should place the \itm{arity} in the tag that is stored at
  14789. position $0$ of the vector. Recall that in
  14790. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  14791. was not used. We store the arity in the $5$ bits starting at position
  14792. $58$.
  14793. \racket{Compile the \code{procedure-arity} operator into a sequence of
  14794. instructions that access the tag from position $0$ of the vector and
  14795. extract the $5$-bits starting at position $58$ from the tag.}
  14796. %
  14797. \python{Compile a call to the \code{arity} operator to a sequence of
  14798. instructions that access the tag from position $0$ of the tuple
  14799. (representing a closure) and extract the $5$-bits starting at position
  14800. $58$ from the tag.}
  14801. \begin{figure}[p]
  14802. \begin{tikzpicture}[baseline=(current bounding box.center)]
  14803. \node (Rfun) at (0,2) {\large \LangLam{}};
  14804. \node (Rfun-2) at (3,2) {\large \LangLam{}};
  14805. \node (Rfun-3) at (6,2) {\large \LangLam{}};
  14806. \node (F1-0) at (9,2) {\large \LangLamFunRef{}};
  14807. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  14808. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  14809. \node (F1-3) at (6,0) {\large \LangFunRef{}};
  14810. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  14811. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  14812. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  14813. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  14814. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  14815. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  14816. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  14817. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  14818. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  14819. \path[->,bend left=15] (Rfun) edge [above] node
  14820. {\ttfamily\footnotesize shrink} (Rfun-2);
  14821. \path[->,bend left=15] (Rfun-2) edge [above] node
  14822. {\ttfamily\footnotesize uniquify} (Rfun-3);
  14823. \path[->,bend left=15] (Rfun-3) edge [above] node
  14824. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  14825. \path[->,bend left=15] (F1-0) edge [right] node
  14826. {\ttfamily\footnotesize convert\_assign.} (F1-1);
  14827. \path[->,bend left=15] (F1-1) edge [below] node
  14828. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  14829. \path[->,bend right=15] (F1-2) edge [above] node
  14830. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  14831. \path[->,bend right=15] (F1-3) edge [above] node
  14832. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  14833. \path[->,bend right=15] (F1-4) edge [above] node
  14834. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  14835. \path[->,bend right=15] (F1-5) edge [right] node
  14836. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14837. \path[->,bend left=15] (C3-2) edge [left] node
  14838. {\ttfamily\footnotesize select\_instr.} (x86-2);
  14839. \path[->,bend right=15] (x86-2) edge [left] node
  14840. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  14841. \path[->,bend right=15] (x86-2-1) edge [below] node
  14842. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  14843. \path[->,bend right=15] (x86-2-2) edge [left] node
  14844. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  14845. \path[->,bend left=15] (x86-3) edge [above] node
  14846. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  14847. \path[->,bend left=15] (x86-4) edge [right] node
  14848. {\ttfamily\footnotesize print\_x86} (x86-5);
  14849. \end{tikzpicture}
  14850. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  14851. functions.}
  14852. \label{fig:Rlambda-passes}
  14853. \end{figure}
  14854. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  14855. for the compilation of \LangLam{}.
  14856. \clearpage
  14857. \section{Challenge: Optimize Closures}
  14858. \label{sec:optimize-closures}
  14859. In this chapter we compiled lexically-scoped functions into a
  14860. relatively efficient representation: flat closures. However, even this
  14861. representation comes with some overhead. For example, consider the
  14862. following program with a function \code{tail\_sum} that does not have
  14863. any free variables and where all the uses of \code{tail\_sum} are in
  14864. applications where we know that only \code{tail\_sum} is being applied
  14865. (and not any other functions).
  14866. \begin{center}
  14867. \begin{minipage}{0.95\textwidth}
  14868. {\if\edition\racketEd
  14869. \begin{lstlisting}
  14870. (define (tail_sum [n : Integer] [s : Integer]) : Integer
  14871. (if (eq? n 0)
  14872. s
  14873. (tail_sum (- n 1) (+ n s))))
  14874. (+ (tail_sum 3 0) 36)
  14875. \end{lstlisting}
  14876. \fi}
  14877. {\if\edition\pythonEd
  14878. \begin{lstlisting}
  14879. def tail_sum(n : int, s : int) -> int:
  14880. if n == 0:
  14881. return s
  14882. else:
  14883. return tail_sum(n - 1, n + s)
  14884. print( tail_sum(3, 0) + 36)
  14885. \end{lstlisting}
  14886. \fi}
  14887. \end{minipage}
  14888. \end{center}
  14889. As described in this chapter, we uniformly apply closure conversion to
  14890. all functions, obtaining the following output for this program.
  14891. \begin{center}
  14892. \begin{minipage}{0.95\textwidth}
  14893. {\if\edition\racketEd
  14894. \begin{lstlisting}
  14895. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
  14896. (if (eq? n2 0)
  14897. s3
  14898. (let ([clos4 (closure (list (fun-ref tail_sum1 2)))])
  14899. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))
  14900. (define (main) : Integer
  14901. (+ (let ([clos6 (closure (list (fun-ref tail_sum1 2)))])
  14902. ((vector-ref clos6 0) clos6 3 0)) 27))
  14903. \end{lstlisting}
  14904. \fi}
  14905. {\if\edition\pythonEd
  14906. \begin{lstlisting}
  14907. def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
  14908. if n_0 == 0:
  14909. return s_1
  14910. else:
  14911. return (let clos_2 = (tail_sum,)
  14912. in clos_2[0](clos_2, n_0 - 1, n_0 + s_1))
  14913. def main() -> int :
  14914. print((let clos_4 = (tail_sum,)
  14915. in clos_4[0](clos_4, 3, 0)) + 36)
  14916. return 0
  14917. \end{lstlisting}
  14918. \fi}
  14919. \end{minipage}
  14920. \end{center}
  14921. In the previous chapter, there would be no allocation in the program
  14922. and the calls to \code{tail\_sum} would be direct calls. In contrast,
  14923. the above program allocates memory for each closure and the calls to
  14924. \code{tail\_sum} are indirect. These two differences incur
  14925. considerable overhead in a program such as this one, where the
  14926. allocations and indirect calls occur inside a tight loop.
  14927. One might think that this problem is trivial to solve: can't we just
  14928. recognize calls of the form \APPLY{\FUNREF{$f$}{$n$}}{$\mathit{args}$}
  14929. and compile them to direct calls instead of treating it like a call to
  14930. a closure? We would also drop the new \code{fvs} parameter of
  14931. \code{tail\_sum}.
  14932. %
  14933. However, this problem is not so trivial because a global function may
  14934. ``escape'' and become involved in applications that also involve
  14935. closures. Consider the following example in which the application
  14936. \CAPPLY{\code{f}}{\code{41}} needs to be compiled into a closure
  14937. application, because the \code{lambda} may flow into \code{f}, but the
  14938. \code{inc} function might also flow into \code{f}.
  14939. \begin{center}
  14940. \begin{minipage}{\textwidth}
  14941. % lambda_test_30.rkt
  14942. {\if\edition\racketEd
  14943. \begin{lstlisting}
  14944. (define (inc [x : Integer]) : Integer
  14945. (+ x 1))
  14946. (let ([y (read)])
  14947. (let ([f (if (eq? (read) 0)
  14948. inc
  14949. (lambda: ([x : Integer]) : Integer (- x y)))])
  14950. (f 41)))
  14951. \end{lstlisting}
  14952. \fi}
  14953. {\if\edition\pythonEd
  14954. \begin{lstlisting}
  14955. def add1(x : int) -> int:
  14956. return x + 1
  14957. y = input_int()
  14958. g : Callable[[int], int] = lambda x: x - y
  14959. f = add1 if input_int() == 0 else g
  14960. print( f(41) )
  14961. \end{lstlisting}
  14962. \fi}
  14963. \end{minipage}
  14964. \end{center}
  14965. If a global function name is used in any way other than as the
  14966. operator in a direct call, then we say that the function
  14967. \emph{escapes}. If a global function does not escape, then we do not
  14968. need to perform closure conversion on the function.
  14969. \begin{exercise}\normalfont\normalsize
  14970. Implement an auxiliary function for detecting which global
  14971. functions escape. Using that function, implement an improved version
  14972. of closure conversion that does not apply closure conversion to
  14973. global functions that do not escape but instead compiles them as
  14974. regular functions. Create several new test cases that check whether
  14975. you properly detect whether global functions escape or not.
  14976. \end{exercise}
  14977. So far we have reduced the overhead of calling global functions, but
  14978. it would also be nice to reduce the overhead of calling a
  14979. \code{lambda} when we can determine at compile time which
  14980. \code{lambda} will be called. We refer to such calls as \emph{known
  14981. calls}. Consider the following example in which a \code{lambda} is
  14982. bound to \code{f} and then applied.
  14983. {\if\edition\racketEd
  14984. % lambda_test_9.rkt
  14985. \begin{lstlisting}
  14986. (let ([y (read)])
  14987. (let ([f (lambda: ([x : Integer]) : Integer
  14988. (+ x y))])
  14989. (f 21)))
  14990. \end{lstlisting}
  14991. \fi}
  14992. {\if\edition\pythonEd
  14993. \begin{lstlisting}
  14994. y = input_int()
  14995. f : Callable[[int],int] = lambda x: x + y
  14996. print( f(21) )
  14997. \end{lstlisting}
  14998. \fi}
  14999. %
  15000. \noindent Closure conversion compiles the application
  15001. \CAPPLY{\code{f}}{\code{21}} into an indirect call:
  15002. %
  15003. {\if\edition\racketEd
  15004. \begin{lstlisting}
  15005. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  15006. (let ([y2 (vector-ref fvs6 1)])
  15007. (+ x3 y2)))
  15008. (define (main) : Integer
  15009. (let ([y2 (read)])
  15010. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  15011. ((vector-ref f4 0) f4 21))))
  15012. \end{lstlisting}
  15013. \fi}
  15014. {\if\edition\pythonEd
  15015. \begin{lstlisting}
  15016. def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
  15017. y_1 = fvs_4[1]
  15018. return x_2 + y_1[0]
  15019. def main() -> int:
  15020. y_1 = (777,)
  15021. y_1[0] = input_int()
  15022. f_0 = (lambda_3, y_1)
  15023. print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
  15024. return 0
  15025. \end{lstlisting}
  15026. \fi}
  15027. %
  15028. \noindent but we can instead compile the application
  15029. \CAPPLY{\code{f}}{\code{21}} into a direct call:
  15030. %
  15031. {\if\edition\racketEd
  15032. \begin{lstlisting}
  15033. (define (main) : Integer
  15034. (let ([y2 (read)])
  15035. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  15036. ((fun-ref lambda5 1) f4 21))))
  15037. \end{lstlisting}
  15038. \fi}
  15039. {\if\edition\pythonEd
  15040. \begin{lstlisting}
  15041. def main() -> int:
  15042. y_1 = (777,)
  15043. y_1[0] = input_int()
  15044. f_0 = (lambda_3, y_1)
  15045. print(lambda_3(f_0, 21))
  15046. return 0
  15047. \end{lstlisting}
  15048. \fi}
  15049. The problem of determining which \code{lambda} will be called from a
  15050. particular application is quite challenging in general and the topic
  15051. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  15052. following exercise we recommend that you compile an application to a
  15053. direct call when the operator is a variable and \racket{the variable
  15054. is \code{let}-bound to a closure} \python{the previous assignment to
  15055. the variable is a closure}. This can be accomplished by maintaining
  15056. an environment mapping variables to function names. Extend the
  15057. environment whenever you encounter a closure on the right-hand side of
  15058. a \racket{\code{let}}\python{assignment}, mapping the variable to the
  15059. name of the global function for the closure. This pass should come
  15060. after closure conversion.
  15061. \begin{exercise}\normalfont\normalsize
  15062. Implement a compiler pass, named \code{optimize\_known\_calls}, that
  15063. compiles known calls into direct calls. Verify that your compiler is
  15064. successful in this regard on several example programs.
  15065. \end{exercise}
  15066. These exercises only scratches the surface of optimizing of
  15067. closures. A good next step for the interested reader is to look at the
  15068. work of \citet{Keep:2012ab}.
  15069. \section{Further Reading}
  15070. The notion of lexically scoped functions predates modern computers by
  15071. about a decade. They were invented by \citet{Church:1932aa}, who
  15072. proposed the lambda calculus as a foundation for logic. Anonymous
  15073. functions were included in the LISP~\citep{McCarthy:1960dz}
  15074. programming language but were initially dynamically scoped. The Scheme
  15075. dialect of LISP adopted lexical scoping and
  15076. \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently compile
  15077. Scheme programs. However, environments were represented as linked
  15078. lists, so variable lookup was linear in the size of the
  15079. environment. \citet{Appel91} gives a detailed description of several
  15080. closure representations. In this chapter we represent environments
  15081. using flat closures, which were invented by
  15082. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  15083. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  15084. closures, variable lookup is constant time but the time to create a
  15085. closure is proportional to the number of its free variables. Flat
  15086. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  15087. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  15088. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15089. \chapter{Dynamic Typing}
  15090. \label{ch:Ldyn}
  15091. \index{subject}{dynamic typing}
  15092. In this chapter we discuss the compilation of \LangDyn{}, a
  15093. dynamically typed language that is a subset of
  15094. \racket{Racket}\python{Python}. The dynamic typing is in contrast to
  15095. the previous chapters, which have studied the compilation of
  15096. statically typed languages. In dynamically typed languages such as
  15097. \LangDyn{}, a particular expression may produce a value of a different
  15098. type each time it is executed. Consider the following example with a
  15099. conditional \code{if} expression that may return a Boolean or an
  15100. integer depending on the input to the program.
  15101. % part of dynamic_test_25.rkt
  15102. {\if\edition\racketEd
  15103. \begin{lstlisting}
  15104. (not (if (eq? (read) 1) #f 0))
  15105. \end{lstlisting}
  15106. \fi}
  15107. {\if\edition\pythonEd
  15108. \begin{lstlisting}
  15109. not (False if input_int() == 1 else 0)
  15110. \end{lstlisting}
  15111. \fi}
  15112. Languages that allow expressions to produce different kinds of values
  15113. are called \emph{polymorphic}, a word composed of the Greek roots
  15114. ``poly'', meaning ``many'', and ``morphos'', meaning ``form''. There
  15115. are several kinds of polymorphism in programming languages, such as
  15116. subtype polymorphism and parametric
  15117. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  15118. study in this chapter does not have a special name but it is the kind
  15119. that arises in dynamically typed languages.
  15120. Another characteristic of dynamically typed languages is that
  15121. primitive operations, such as \code{not}, are often defined to operate
  15122. on many different types of values. In fact, in
  15123. \racket{Racket}\python{Python}, the \code{not} operator produces a
  15124. result for any kind of value: given \FALSE{} it returns \TRUE{} and
  15125. given anything else it returns \FALSE{}.
  15126. Furthermore, even when primitive operations restrict their inputs to
  15127. values of a certain type, this restriction is enforced at runtime
  15128. instead of during compilation. For example, the tuple read
  15129. operation
  15130. \racket{\code{(vector-ref \#t 0)}}
  15131. \python{\code{True[0]}}
  15132. results in a run-time error because the first argument must
  15133. be a tuple, not a Boolean.
  15134. \begin{figure}[tp]
  15135. \centering
  15136. \fbox{
  15137. \begin{minipage}{0.97\textwidth}
  15138. {\if\edition\racketEd
  15139. \[
  15140. \begin{array}{rcl}
  15141. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  15142. \Exp &::=& \Int \MID \CREAD{} \MID \CNEG{\Exp}
  15143. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} \\
  15144. &\MID& \Var \MID \CLET{\Var}{\Exp}{\Exp} \\
  15145. &\MID& \key{\#t} \MID \key{\#f}
  15146. \MID \CBINOP{\key{and}}{\Exp}{\Exp}
  15147. \MID \CBINOP{\key{or}}{\Exp}{\Exp}
  15148. \MID \CUNIOP{\key{not}}{\Exp} \\
  15149. &\MID& \LP\itm{cmp}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} \\
  15150. &\MID& \LP\key{vector}\;\Exp\ldots\RP \MID
  15151. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  15152. &\MID& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \MID \LP\key{void}\RP \\
  15153. &\MID& \LP\Exp \; \Exp\ldots\RP
  15154. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  15155. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  15156. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  15157. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  15158. \LangDynM{} &::=& \Def\ldots\; \Exp
  15159. \end{array}
  15160. \]
  15161. \fi}
  15162. {\if\edition\pythonEd
  15163. \[
  15164. \begin{array}{rcl}
  15165. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \MID \key{is} \\
  15166. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  15167. &\MID& \Var{} \MID \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp}
  15168. \MID \COR{\Exp}{\Exp} \MID \key{not}~\Exp \\
  15169. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  15170. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  15171. &\MID& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp}
  15172. \MID \CLEN{\Exp} \\
  15173. &\MID& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  15174. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}\\
  15175. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  15176. \MID \Var\mathop{\key{=}}\Exp \\
  15177. &\MID& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  15178. \MID \key{while}~ \Exp \key{:}~ \Stmt^{+} \\
  15179. &\MID& \CRETURN{\Exp} \\
  15180. \Def &::=& \CDEFU{\Var}{\Var{,} \ldots}{\Stmt^{+}} \\
  15181. \LangDynM{} &::=& \Def\ldots \Stmt\ldots
  15182. \end{array}
  15183. \]
  15184. \fi}
  15185. \end{minipage}
  15186. }
  15187. \caption{Syntax of \LangDyn{}, an untyped language (a subset of \racket{Racket}\python{Python}).}
  15188. \label{fig:r7-concrete-syntax}
  15189. \end{figure}
  15190. \begin{figure}[tp]
  15191. \centering
  15192. \fbox{
  15193. \begin{minipage}{0.96\textwidth}
  15194. \small
  15195. {\if\edition\racketEd
  15196. \[
  15197. \begin{array}{lcl}
  15198. \Exp &::=& \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  15199. &\MID& \PRIM{\itm{op}}{\Exp\ldots} \\
  15200. &\MID& \BOOL{\itm{bool}}
  15201. \MID \IF{\Exp}{\Exp}{\Exp} \\
  15202. &\MID& \VOID{} \MID \APPLY{\Exp}{\Exp\ldots} \\
  15203. &\MID& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  15204. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  15205. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15206. \end{array}
  15207. \]
  15208. \fi}
  15209. {\if\edition\pythonEd
  15210. \[
  15211. \begin{array}{rcl}
  15212. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  15213. \itm{unaryop} &::= & \code{USub()} \MID \code{Not()} \\
  15214. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  15215. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()}
  15216. \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  15217. &\MID & \code{Is()} \\
  15218. \itm{bool} &::=& \code{True} \MID \code{False} \\
  15219. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  15220. &\MID& \UNIOP{\itm{unaryop}}{\Exp}
  15221. \MID \BINOP{\Exp}{\itm{binaryop}}{\Exp}
  15222. \MID \VAR{\Var{}} \\
  15223. &\MID& \BOOL{\itm{bool}}
  15224. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  15225. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  15226. &\MID& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  15227. &\MID& \LEN{\Exp} \\
  15228. &\MID& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp} \\
  15229. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  15230. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  15231. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  15232. \MID \WHILESTMT{\Exp}{\Stmt^{+}}\\
  15233. &\MID& \RETURN{\Exp} \\
  15234. \Params &::=& \LP\Var\key{,}\code{AnyType()}\RP^* \\
  15235. \Def &::=& \FUNDEF{\Var}{\Params}{\code{AnyType()}}{}{\Stmt^{+}} \\
  15236. \LangDynM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  15237. \end{array}
  15238. \]
  15239. \fi}
  15240. \end{minipage}
  15241. }
  15242. \caption{The abstract syntax of \LangDyn{}.}
  15243. \label{fig:r7-syntax}
  15244. \end{figure}
  15245. The concrete and abstract syntax of \LangDyn{} is defined in
  15246. Figures~\ref{fig:r7-concrete-syntax} and \ref{fig:r7-syntax}.
  15247. %
  15248. There is no type checker for \LangDyn{} because dynamically typed
  15249. languages check types at runtime.
  15250. The definitional interpreter for \LangDyn{} is presented in
  15251. \racket{Figure~\ref{fig:interp-Ldyn}}
  15252. \python{Figures~\ref{fig:interp-Ldyn} and \ref{fig:interp-Ldyn-2}}
  15253. and its auxiliary functions are defined in
  15254. Figure~\ref{fig:interp-Ldyn-aux}. Consider the match case for
  15255. \INT{n}. Instead of simply returning the integer \code{n} (as
  15256. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}), the
  15257. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  15258. value} that combines an underlying value with a tag that identifies
  15259. what kind of value it is. We define the following \racket{struct}\python{class}
  15260. to represented tagged values.
  15261. %
  15262. {\if\edition\racketEd
  15263. \begin{lstlisting}
  15264. (struct Tagged (value tag) #:transparent)
  15265. \end{lstlisting}
  15266. \fi}
  15267. {\if\edition\pythonEd
  15268. \begin{minipage}{\textwidth}
  15269. \begin{lstlisting}
  15270. @dataclass(eq=True)
  15271. class Tagged(Value):
  15272. value : Value
  15273. tag : str
  15274. def __str__(self):
  15275. return str(self.value)
  15276. \end{lstlisting}
  15277. \end{minipage}
  15278. \fi}
  15279. %
  15280. \racket{The tags are \code{Integer}, \code{Boolean}, \code{Void},
  15281. \code{Vector}, and \code{Procedure}.}
  15282. %
  15283. \python{The tags are \code{'int'}, \code{'bool'}, \code{'none'},
  15284. \code{'tuple'}, and \code{'function'}.}
  15285. %
  15286. Tags are closely related to types but don't always capture all the
  15287. information that a type does.
  15288. %
  15289. \racket{For example, a vector of type \code{(Vector Any Any)} is
  15290. tagged with \code{Vector} and a procedure of type \code{(Any Any ->
  15291. Any)} is tagged with \code{Procedure}.}
  15292. %
  15293. \python{For example, a tuple of type \code{TupleType([AnyType(),AnyType()])}
  15294. is tagged with \code{'tuple'} and a function of type
  15295. \code{FunctionType([AnyType(), AnyType()], AnyType())}
  15296. is tagged with \code{'function'}.}
  15297. Next consider the match case for accessing the element of a tuple.
  15298. The \racket{\code{check-tag}}\python{\code{untag}} auxiliary function
  15299. (Figure~\ref{fig:interp-Ldyn-aux}) is used to ensure that the first
  15300. argument is a tuple and the second is an integer.
  15301. \racket{
  15302. If they are not, a \code{trapped-error} is raised. Recall from
  15303. Section~\ref{sec:interp_Lint} that when a definition interpreter
  15304. raises a \code{trapped-error} error, the compiled code must also
  15305. signal an error by exiting with return code \code{255}. A
  15306. \code{trapped-error} is also raised if the index is not less than the
  15307. length of the vector.
  15308. }
  15309. %
  15310. \python{If they are not, an exception is raised. The compiled code
  15311. must also signal an error by exiting with return code \code{255}. A
  15312. exception is also raised if the index is not less than the length of the
  15313. tuple or if it is negative.}
  15314. \begin{figure}[tbp]
  15315. {\if\edition\racketEd
  15316. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15317. (define ((interp-Rdyn-exp env) ast)
  15318. (define recur (interp-Rdyn-exp env))
  15319. (match ast
  15320. [(Var x) (lookup x env)]
  15321. [(Int n) (Tagged n 'Integer)]
  15322. [(Bool b) (Tagged b 'Boolean)]
  15323. [(Lambda xs rt body)
  15324. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  15325. [(Prim 'vector es)
  15326. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  15327. [(Prim 'vector-ref (list e1 e2))
  15328. (define vec (recur e1)) (define i (recur e2))
  15329. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  15330. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  15331. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  15332. (vector-ref (Tagged-value vec) (Tagged-value i))]
  15333. [(Prim 'vector-set! (list e1 e2 e3))
  15334. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  15335. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  15336. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  15337. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  15338. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  15339. (Tagged (void) 'Void)]
  15340. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  15341. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  15342. [(Prim 'or (list e1 e2))
  15343. (define v1 (recur e1))
  15344. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  15345. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  15346. [(Prim op (list e1))
  15347. #:when (set-member? type-predicates op)
  15348. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  15349. [(Prim op es)
  15350. (define args (map recur es))
  15351. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  15352. (unless (for/or ([expected-tags (op-tags op)])
  15353. (equal? expected-tags tags))
  15354. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  15355. (tag-value
  15356. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  15357. [(If q t f)
  15358. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  15359. [(Apply f es)
  15360. (define new-f (recur f)) (define args (map recur es))
  15361. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  15362. (match f-val
  15363. [`(function ,xs ,body ,lam-env)
  15364. (unless (eq? (length xs) (length args))
  15365. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  15366. (define new-env (append (map cons xs args) lam-env))
  15367. ((interp-Rdyn-exp new-env) body)]
  15368. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  15369. \end{lstlisting}
  15370. \fi}
  15371. {\if\edition\pythonEd
  15372. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15373. class InterpLdyn(InterpLlambda):
  15374. def interp_exp(self, e, env):
  15375. match e:
  15376. case Constant(n):
  15377. return self.tag(super().interp_exp(e, env))
  15378. case Tuple(es, Load()):
  15379. return self.tag(super().interp_exp(e, env))
  15380. case Lambda(params, body):
  15381. return self.tag(super().interp_exp(e, env))
  15382. case Call(Name('input_int'), []):
  15383. return self.tag(super().interp_exp(e, env))
  15384. case BinOp(left, Add(), right):
  15385. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  15386. return self.tag(self.untag(l, 'int', e) + self.untag(r, 'int', e))
  15387. case BinOp(left, Sub(), right):
  15388. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  15389. return self.tag(self.untag(l, 'int', e) - self.untag(r, 'int', e))
  15390. case UnaryOp(USub(), e1):
  15391. v = self.interp_exp(e1, env)
  15392. return self.tag(- self.untag(v, 'int', e))
  15393. case IfExp(test, body, orelse):
  15394. v = self.interp_exp(test, env)
  15395. if self.untag(v, 'bool', e):
  15396. return self.interp_exp(body, env)
  15397. else:
  15398. return self.interp_exp(orelse, env)
  15399. case UnaryOp(Not(), e1):
  15400. v = self.interp_exp(e1, env)
  15401. return self.tag(not self.untag(v, 'bool', e))
  15402. case BoolOp(And(), values):
  15403. left = values[0]; right = values[1]
  15404. l = self.interp_exp(left, env)
  15405. if self.untag(l, 'bool', e):
  15406. return self.interp_exp(right, env)
  15407. else:
  15408. return self.tag(False)
  15409. case BoolOp(Or(), values):
  15410. left = values[0]; right = values[1]
  15411. l = self.interp_exp(left, env)
  15412. if self.untag(l, 'bool', e):
  15413. return self.tag(True)
  15414. else:
  15415. return self.interp_exp(right, env)
  15416. case Compare(left, [cmp], [right]):
  15417. l = self.interp_exp(left, env)
  15418. r = self.interp_exp(right, env)
  15419. if l.tag == r.tag:
  15420. return self.tag(self.interp_cmp(cmp)(l.value, r.value))
  15421. else:
  15422. raise Exception('interp Compare unexpected ' \
  15423. + repr(l) + ' ' + repr(r))
  15424. case Subscript(tup, index, Load()):
  15425. t = self.interp_exp(tup, env)
  15426. n = self.interp_exp(index, env)
  15427. return self.untag(t, 'tuple', e)[self.untag(n, 'int', e)]
  15428. case Call(Name('len'), [tup]):
  15429. t = self.interp_exp(tup, env)
  15430. return self.tag(len(self.untag(t, 'tuple', e)))
  15431. case _:
  15432. return self.tag(super().interp_exp(e, env))
  15433. \end{lstlisting}
  15434. \fi}
  15435. \caption{Interpreter for the \LangDyn{} language\python{, part 1}.}
  15436. \label{fig:interp-Ldyn}
  15437. \end{figure}
  15438. \begin{figure}[tbp]
  15439. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15440. class InterpLdyn(InterpLlambda):
  15441. def interp_stmts(self, ss, env):
  15442. if len(ss) == 0:
  15443. return
  15444. match ss[0]:
  15445. case If(test, body, orelse):
  15446. v = self.interp_exp(test, env)
  15447. if self.untag(v, 'bool', ss[0]):
  15448. return self.interp_stmts(body + ss[1:], env)
  15449. else:
  15450. return self.interp_stmts(orelse + ss[1:], env)
  15451. case While(test, body, []):
  15452. while self.untag(self.interp_exp(test, env), 'bool', ss[0]):
  15453. self.interp_stmts(body, env)
  15454. return self.interp_stmts(ss[1:], env)
  15455. case Assign([Subscript(tup, index)], value):
  15456. tup = self.interp_exp(tup, env)
  15457. index = self.interp_exp(index, env)
  15458. tup_v = self.untag(tup, 'tuple', ss[0])
  15459. index_v = self.untag(index, 'int', ss[0])
  15460. tup_v[index_v] = self.interp_exp(value, env)
  15461. return self.interp_stmts(ss[1:], env)
  15462. case FunctionDef(name, params, bod, dl, returns, comment):
  15463. ps = [x for (x,t) in params]
  15464. env[name] = self.tag(Function(name, ps, bod, env))
  15465. return self.interp_stmts(ss[1:], env)
  15466. case _:
  15467. return super().interp_stmts(ss, env)
  15468. \end{lstlisting}
  15469. \caption{Interpreter for the \LangDyn{} language\python{, part 2}.}
  15470. \label{fig:interp-Ldyn-2}
  15471. \end{figure}
  15472. \begin{figure}[tbp]
  15473. {\if\edition\racketEd
  15474. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15475. (define (interp-op op)
  15476. (match op
  15477. ['+ fx+]
  15478. ['- fx-]
  15479. ['read read-fixnum]
  15480. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  15481. ['< (lambda (v1 v2)
  15482. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  15483. ['<= (lambda (v1 v2)
  15484. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  15485. ['> (lambda (v1 v2)
  15486. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  15487. ['>= (lambda (v1 v2)
  15488. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  15489. ['boolean? boolean?]
  15490. ['integer? fixnum?]
  15491. ['void? void?]
  15492. ['vector? vector?]
  15493. ['vector-length vector-length]
  15494. ['procedure? (match-lambda
  15495. [`(functions ,xs ,body ,env) #t] [else #f])]
  15496. [else (error 'interp-op "unknown operator" op)]))
  15497. (define (op-tags op)
  15498. (match op
  15499. ['+ '((Integer Integer))]
  15500. ['- '((Integer Integer) (Integer))]
  15501. ['read '(())]
  15502. ['not '((Boolean))]
  15503. ['< '((Integer Integer))]
  15504. ['<= '((Integer Integer))]
  15505. ['> '((Integer Integer))]
  15506. ['>= '((Integer Integer))]
  15507. ['vector-length '((Vector))]))
  15508. (define type-predicates
  15509. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  15510. (define (tag-value v)
  15511. (cond [(boolean? v) (Tagged v 'Boolean)]
  15512. [(fixnum? v) (Tagged v 'Integer)]
  15513. [(procedure? v) (Tagged v 'Procedure)]
  15514. [(vector? v) (Tagged v 'Vector)]
  15515. [(void? v) (Tagged v 'Void)]
  15516. [else (error 'tag-value "unidentified value ~a" v)]))
  15517. (define (check-tag val expected ast)
  15518. (define tag (Tagged-tag val))
  15519. (unless (eq? tag expected)
  15520. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  15521. \end{lstlisting}
  15522. \fi}
  15523. {\if\edition\pythonEd
  15524. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15525. class InterpLdyn(InterpLlambda):
  15526. def tag(self, v):
  15527. if v is True or v is False:
  15528. return Tagged(v, 'bool')
  15529. elif isinstance(v, int):
  15530. return Tagged(v, 'int')
  15531. elif isinstance(v, Function):
  15532. return Tagged(v, 'function')
  15533. elif isinstance(v, tuple):
  15534. return Tagged(v, 'tuple')
  15535. elif isinstance(v, type(None)):
  15536. return Tagged(v, 'none')
  15537. else:
  15538. raise Exception('tag: unexpected ' + repr(v))
  15539. def untag(self, v, expected_tag, ast):
  15540. match v:
  15541. case Tagged(val, tag) if tag == expected_tag:
  15542. return val
  15543. case _:
  15544. raise Exception('expected Tagged value with ' + expected_tag + ', not ' + ' ' + repr(v))
  15545. def apply_fun(self, fun, args, e):
  15546. f = self.untag(fun, 'function', e)
  15547. return super().apply_fun(f, args, e)
  15548. \end{lstlisting}
  15549. \fi}
  15550. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  15551. \label{fig:interp-Ldyn-aux}
  15552. \end{figure}
  15553. \clearpage
  15554. \section{Representation of Tagged Values}
  15555. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  15556. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  15557. values at the bit level. Because almost every operation in \LangDyn{}
  15558. involves manipulating tagged values, the representation must be
  15559. efficient. Recall that all of our values are 64 bits. We shall steal
  15560. the 3 right-most bits to encode the tag. We use $001$ to identify
  15561. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  15562. and $101$ for the void value\python{, \key{None}}. We define the following auxiliary
  15563. function for mapping types to tag codes.
  15564. {\if\edition\racketEd
  15565. \begin{align*}
  15566. \itm{tagof}(\key{Integer}) &= 001 \\
  15567. \itm{tagof}(\key{Boolean}) &= 100 \\
  15568. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  15569. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  15570. \itm{tagof}(\key{Void}) &= 101
  15571. \end{align*}
  15572. \fi}
  15573. {\if\edition\pythonEd
  15574. \begin{align*}
  15575. \itm{tagof}(\key{IntType()}) &= 001 \\
  15576. \itm{tagof}(\key{BoolType()}) &= 100 \\
  15577. \itm{tagof}(\key{TupleType(ts)}) &= 010 \\
  15578. \itm{tagof}(\key{FunctionType(ps, rt)}) &= 011 \\
  15579. \itm{tagof}(\key{type(None)}) &= 101
  15580. \end{align*}
  15581. \fi}
  15582. This stealing of 3 bits comes at some price: integers are now restricted
  15583. to the range from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  15584. affect vectors and procedures because those values are addresses, and
  15585. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  15586. they are always $000$. Thus, we do not lose information by overwriting
  15587. the rightmost 3 bits with the tag and we can simply zero-out the tag
  15588. to recover the original address.
  15589. To make tagged values into first-class entities, we can give them a
  15590. type, called \racket{\code{Any}}\python{\code{AnyType()}}, and define operations
  15591. such as \code{Inject} and \code{Project} for creating and using them,
  15592. yielding the \LangAny{} intermediate language. We describe how to
  15593. compile \LangDyn{} to \LangAny{} in Section~\ref{sec:compile-r7}
  15594. but first we describe the \LangAny{} language in greater detail.
  15595. \section{The \LangAny{} Language}
  15596. \label{sec:Rany-lang}
  15597. \newcommand{\LanyASTRacket}{
  15598. \begin{array}{lcl}
  15599. \Type &::= & \key{Any} \\
  15600. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  15601. \MID \LP\key{Vector}\; \key{Any}\ldots\RP \\
  15602. &\MID& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  15603. \itm{op} &::= & \code{any-vector-length}
  15604. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  15605. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  15606. \MID \code{procedure?} \MID \code{void?} \\
  15607. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  15608. \end{array}
  15609. }
  15610. \newcommand{\LanyASTPython}{
  15611. \begin{array}{lcl}
  15612. \Type &::= & \key{AnyType()} \\
  15613. \FType &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  15614. \MID \key{TupleType}\LS\key{AnyType()}^+\RS \\
  15615. &\MID& \key{FunctionType}\LP \key{AnyType()}^{*}\key{, }\key{AnyType()}\RP \\
  15616. \Exp & ::= & \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  15617. &\MID& \CALL{\VAR{\key{'any\_tuple\_load'}}}{\LS\Exp\key{, }\INT{n}\RS}\\
  15618. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS\Exp\RS}
  15619. %% &\MID& \CALL{\VAR{\key{'is\_int'}}}{\Exp}
  15620. %% \MID \CALL{\VAR{\key{'is\_bool'}}}{\Exp} \\
  15621. %% &\MID& \CALL{\VAR{\key{'is\_none'}}}{\Exp}
  15622. %% \MID \CALL{\VAR{\key{'is\_tuple'}}}{\Exp} \\
  15623. %% &\MID& \CALL{\VAR{\key{'is\_function'}}}{\Exp}
  15624. \end{array}
  15625. }
  15626. \begin{figure}[tp]
  15627. \centering
  15628. \fbox{
  15629. \begin{minipage}{0.96\textwidth}
  15630. \small
  15631. {\if\edition\racketEd
  15632. \[
  15633. \begin{array}{l}
  15634. \gray{\LintOpAST} \\ \hline
  15635. \gray{\LvarASTRacket{}} \\ \hline
  15636. \gray{\LifASTRacket{}} \\ \hline
  15637. \gray{\LwhileASTRacket{}} \\ \hline
  15638. \gray{\LtupASTRacket{}} \\ \hline
  15639. \gray{\LfunASTRacket} \\ \hline
  15640. \gray{\LlambdaASTRacket} \\ \hline
  15641. \LanyASTRacket \\
  15642. \begin{array}{lcl}
  15643. %% \Type &::= & \ldots \MID \key{Any} \\
  15644. %% \itm{op} &::= & \ldots \MID \code{any-vector-length}
  15645. %% \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  15646. %% &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  15647. %% \MID \code{procedure?} \MID \code{void?} \\
  15648. %% \Exp &::=& \ldots
  15649. %% \MID \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  15650. %% &\MID& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  15651. %% \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  15652. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15653. \end{array}
  15654. \end{array}
  15655. \]
  15656. \fi}
  15657. {\if\edition\pythonEd
  15658. \[
  15659. \begin{array}{l}
  15660. \gray{\LintASTPython} \\ \hline
  15661. \gray{\LvarASTPython{}} \\ \hline
  15662. \gray{\LifASTPython{}} \\ \hline
  15663. \gray{\LwhileASTPython{}} \\ \hline
  15664. \gray{\LtupASTPython{}} \\ \hline
  15665. \gray{\LfunASTPython} \\ \hline
  15666. \gray{\LlambdaASTPython} \\ \hline
  15667. \LanyASTPython \\
  15668. \begin{array}{lcl}
  15669. \LangAnyM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  15670. \end{array}
  15671. \end{array}
  15672. \]
  15673. \fi}
  15674. \end{minipage}
  15675. }
  15676. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  15677. \label{fig:Rany-syntax}
  15678. \end{figure}
  15679. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  15680. \racket{(The concrete syntax of \LangAny{} is in the Appendix,
  15681. Figure~\ref{fig:Rany-concrete-syntax}.)} The $\INJECT{e}{T}$ form
  15682. converts the value produced by expression $e$ of type $T$ into a
  15683. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  15684. produced by expression $e$ into a value of type $T$ or halts the
  15685. program if the type tag does not match $T$.
  15686. %
  15687. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  15688. restricted to a flat type $\FType$, which simplifies the
  15689. implementation and corresponds with the needs for compiling \LangDyn{}.
  15690. The \racket{\code{any-vector}} operators
  15691. \python{\code{any\_tuple\_load} and \code{any\_len}}
  15692. adapt the tuple operations so that they can be applied to a value of
  15693. type \racket{\code{Any}}\python{\code{AnyType}}. They also generalize the
  15694. tuple operations in that the index is not restricted to be a literal
  15695. integer in the grammar but is allowed to be any expression.
  15696. \racket{The type predicates such as
  15697. \racket{\key{boolean?}}\python{\key{is\_bool}} expect their argument
  15698. to produce a tagged value; they return {\TRUE} if the tag corresponds to
  15699. the predicate and they return {\FALSE} otherwise.}
  15700. The type checker for \LangAny{} is shown in
  15701. Figure~\ref{fig:type-check-Rany}
  15702. %
  15703. \racket{ and uses the auxiliary functions in
  15704. Figure~\ref{fig:type-check-Rany-aux}}.
  15705. %
  15706. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and
  15707. its auxiliary functions are in Figure~\ref{fig:interp-Rany-aux}.
  15708. \begin{figure}[btp]
  15709. {\if\edition\racketEd
  15710. \begin{lstlisting}[basicstyle=\ttfamily\small]
  15711. (define type-check-Rany_class
  15712. (class type-check-Rlambda_class
  15713. (super-new)
  15714. (inherit check-type-equal?)
  15715. (define/override (type-check-exp env)
  15716. (lambda (e)
  15717. (define recur (type-check-exp env))
  15718. (match e
  15719. [(Inject e1 ty)
  15720. (unless (flat-ty? ty)
  15721. (error 'type-check "may only inject from flat type, not ~a" ty))
  15722. (define-values (new-e1 e-ty) (recur e1))
  15723. (check-type-equal? e-ty ty e)
  15724. (values (Inject new-e1 ty) 'Any)]
  15725. [(Project e1 ty)
  15726. (unless (flat-ty? ty)
  15727. (error 'type-check "may only project to flat type, not ~a" ty))
  15728. (define-values (new-e1 e-ty) (recur e1))
  15729. (check-type-equal? e-ty 'Any e)
  15730. (values (Project new-e1 ty) ty)]
  15731. [(Prim 'any-vector-length (list e1))
  15732. (define-values (e1^ t1) (recur e1))
  15733. (check-type-equal? t1 'Any e)
  15734. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  15735. [(Prim 'any-vector-ref (list e1 e2))
  15736. (define-values (e1^ t1) (recur e1))
  15737. (define-values (e2^ t2) (recur e2))
  15738. (check-type-equal? t1 'Any e)
  15739. (check-type-equal? t2 'Integer e)
  15740. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  15741. [(Prim 'any-vector-set! (list e1 e2 e3))
  15742. (define-values (e1^ t1) (recur e1))
  15743. (define-values (e2^ t2) (recur e2))
  15744. (define-values (e3^ t3) (recur e3))
  15745. (check-type-equal? t1 'Any e)
  15746. (check-type-equal? t2 'Integer e)
  15747. (check-type-equal? t3 'Any e)
  15748. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  15749. [(ValueOf e ty)
  15750. (define-values (new-e e-ty) (recur e))
  15751. (values (ValueOf new-e ty) ty)]
  15752. [(Prim pred (list e1))
  15753. #:when (set-member? (type-predicates) pred)
  15754. (define-values (new-e1 e-ty) (recur e1))
  15755. (check-type-equal? e-ty 'Any e)
  15756. (values (Prim pred (list new-e1)) 'Boolean)]
  15757. [(If cnd thn els)
  15758. (define-values (cnd^ Tc) (recur cnd))
  15759. (define-values (thn^ Tt) (recur thn))
  15760. (define-values (els^ Te) (recur els))
  15761. (check-type-equal? Tc 'Boolean cnd)
  15762. (check-type-equal? Tt Te e)
  15763. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  15764. [(Exit) (values (Exit) '_)]
  15765. [(Prim 'eq? (list arg1 arg2))
  15766. (define-values (e1 t1) (recur arg1))
  15767. (define-values (e2 t2) (recur arg2))
  15768. (match* (t1 t2)
  15769. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  15770. [(other wise) (check-type-equal? t1 t2 e)])
  15771. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  15772. [else ((super type-check-exp env) e)])))
  15773. ))
  15774. \end{lstlisting}
  15775. \fi}
  15776. {\if\edition\pythonEd
  15777. \begin{lstlisting}
  15778. class TypeCheckLany(TypeCheckLlambda):
  15779. def type_check_exp(self, e, env):
  15780. match e:
  15781. case Inject(value, typ):
  15782. self.check_exp(value, typ, env)
  15783. return AnyType()
  15784. case Project(value, typ):
  15785. self.check_exp(value, AnyType(), env)
  15786. return typ
  15787. case Call(Name('any_tuple_load'), [tup, index]):
  15788. self.check_exp(tup, AnyType(), env)
  15789. return AnyType()
  15790. case Call(Name('any_len'), [tup]):
  15791. self.check_exp(tup, AnyType(), env)
  15792. return IntType()
  15793. case Call(Name('arity'), [fun]):
  15794. ty = self.type_check_exp(fun, env)
  15795. match ty:
  15796. case FunctionType(ps, rt):
  15797. return IntType()
  15798. case TupleType([FunctionType(ps,rs)]):
  15799. return IntType()
  15800. case _:
  15801. raise Exception('type_check_exp arity unexpected ' + repr(ty))
  15802. case Call(Name('make_any'), [value, tag]):
  15803. self.type_check_exp(value, env)
  15804. self.check_exp(tag, IntType(), env)
  15805. return AnyType()
  15806. case ValueOf(value, typ):
  15807. self.check_exp(value, AnyType(), env)
  15808. return typ
  15809. case TagOf(value):
  15810. self.check_exp(value, AnyType(), env)
  15811. return IntType()
  15812. case Call(Name('exit'), []):
  15813. return Bottom()
  15814. case AnnLambda(params, returns, body):
  15815. new_env = {x:t for (x,t) in env.items()}
  15816. for (x,t) in params:
  15817. new_env[x] = t
  15818. return_t = self.type_check_exp(body, new_env)
  15819. self.check_type_equal(returns, return_t, e)
  15820. return FunctionType([t for (x,t) in params], return_t)
  15821. case _:
  15822. return super().type_check_exp(e, env)
  15823. \end{lstlisting}
  15824. \fi}
  15825. \caption{Type checker for the \LangAny{} language.}
  15826. \label{fig:type-check-Rany}
  15827. \end{figure}
  15828. {\if\edition\racketEd
  15829. \begin{figure}[tbp]
  15830. {\if\edition\racketEd
  15831. \begin{lstlisting}
  15832. (define/override (operator-types)
  15833. (append
  15834. '((integer? . ((Any) . Boolean))
  15835. (vector? . ((Any) . Boolean))
  15836. (procedure? . ((Any) . Boolean))
  15837. (void? . ((Any) . Boolean))
  15838. (tag-of-any . ((Any) . Integer))
  15839. (make-any . ((_ Integer) . Any)))
  15840. (super operator-types)))
  15841. (define/public (type-predicates)
  15842. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  15843. (define/public (combine-types t1 t2)
  15844. (match (list t1 t2)
  15845. [(list '_ t2) t2]
  15846. [(list t1 '_) t1]
  15847. [(list `(Vector ,ts1 ...)
  15848. `(Vector ,ts2 ...))
  15849. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  15850. (combine-types t1 t2)))]
  15851. [(list `(,ts1 ... -> ,rt1)
  15852. `(,ts2 ... -> ,rt2))
  15853. `(,@(for/list ([t1 ts1] [t2 ts2])
  15854. (combine-types t1 t2))
  15855. -> ,(combine-types rt1 rt2))]
  15856. [else t1]))
  15857. (define/public (flat-ty? ty)
  15858. (match ty
  15859. [(or `Integer `Boolean '_ `Void) #t]
  15860. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  15861. [`(,ts ... -> ,rt)
  15862. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  15863. [else #f]))
  15864. \end{lstlisting}
  15865. \fi}
  15866. \caption{Auxiliary methods for type checking \LangAny{}.}
  15867. \label{fig:type-check-Rany-aux}
  15868. \end{figure}
  15869. \fi}
  15870. \begin{figure}[btp]
  15871. {\if\edition\racketEd
  15872. \begin{lstlisting}
  15873. (define interp-Rany_class
  15874. (class interp-Rlambda_class
  15875. (super-new)
  15876. (define/override (interp-op op)
  15877. (match op
  15878. ['boolean? (match-lambda
  15879. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  15880. [else #f])]
  15881. ['integer? (match-lambda
  15882. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  15883. [else #f])]
  15884. ['vector? (match-lambda
  15885. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  15886. [else #f])]
  15887. ['procedure? (match-lambda
  15888. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  15889. [else #f])]
  15890. ['eq? (match-lambda*
  15891. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  15892. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  15893. [ls (apply (super interp-op op) ls)])]
  15894. ['any-vector-ref (lambda (v i)
  15895. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  15896. ['any-vector-set! (lambda (v i a)
  15897. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  15898. ['any-vector-length (lambda (v)
  15899. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  15900. [else (super interp-op op)]))
  15901. (define/override ((interp-exp env) e)
  15902. (define recur (interp-exp env))
  15903. (match e
  15904. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  15905. [(Project e ty2) (apply-project (recur e) ty2)]
  15906. [else ((super interp-exp env) e)]))
  15907. ))
  15908. (define (interp-Rany p)
  15909. (send (new interp-Rany_class) interp-program p))
  15910. \end{lstlisting}
  15911. \fi}
  15912. {\if\edition\pythonEd
  15913. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15914. class InterpLany(InterpLlambda):
  15915. def interp_exp(self, e, env):
  15916. match e:
  15917. case Inject(value, typ):
  15918. v = self.interp_exp(value, env)
  15919. return Tagged(v, self.type_to_tag(typ))
  15920. case Project(value, typ):
  15921. v = self.interp_exp(value, env)
  15922. match v:
  15923. case Tagged(val, tag) if self.type_to_tag(typ) == tag:
  15924. return val
  15925. case _:
  15926. raise Exception('interp project to ' + repr(typ) \
  15927. + ' unexpected ' + repr(v))
  15928. case Call(Name('any_tuple_load'), [tup, index]):
  15929. tv = self.interp_exp(tup, env)
  15930. n = self.interp_exp(index, env)
  15931. match tv:
  15932. case Tagged(v, tag):
  15933. return v[n]
  15934. case _:
  15935. raise Exception('interp any_tuple_load unexpected ' + repr(tv))
  15936. case Call(Name('any_tuple_store'), [tup, index, value]):
  15937. tv = self.interp_exp(tup, env)
  15938. n = self.interp_exp(index, env)
  15939. val = self.interp_exp(value, env)
  15940. match tv:
  15941. case Tagged(v, tag):
  15942. v[n] = val
  15943. return None
  15944. case _:
  15945. raise Exception('interp any_tuple_load unexpected ' + repr(tv))
  15946. case Call(Name('any_len'), [value]):
  15947. v = self.interp_exp(value, env)
  15948. match v:
  15949. case Tagged(value, tag):
  15950. return len(value)
  15951. case _:
  15952. raise Exception('interp any_len unexpected ' + repr(v))
  15953. case Call(Name('make_any'), [value, tag]):
  15954. v = self.interp_exp(value, env)
  15955. t = self.interp_exp(tag, env)
  15956. return Tagged(v, t)
  15957. case Call(Name('arity'), [fun]):
  15958. f = self.interp_exp(fun, env)
  15959. return self.arity(f)
  15960. case Call(Name('exit'), []):
  15961. trace('exiting!')
  15962. exit(0)
  15963. case TagOf(value):
  15964. v = self.interp_exp(value, env)
  15965. match v:
  15966. case Tagged(val, tag):
  15967. return tag
  15968. case _:
  15969. raise Exception('interp TagOf unexpected ' + repr(v))
  15970. case ValueOf(value, typ):
  15971. v = self.interp_exp(value, env)
  15972. match v:
  15973. case Tagged(val, tag):
  15974. return val
  15975. case _:
  15976. raise Exception('interp ValueOf unexpected ' + repr(v))
  15977. case AnnLambda(params, returns, body):
  15978. return Function('lambda', [x for (x,t) in params], [Return(body)], env)
  15979. case _:
  15980. return super().interp_exp(e, env)
  15981. \end{lstlisting}
  15982. \fi}
  15983. \caption{Interpreter for \LangAny{}.}
  15984. \label{fig:interp-Rany}
  15985. \end{figure}
  15986. \begin{figure}[tbp]
  15987. {\if\edition\racketEd
  15988. \begin{lstlisting}
  15989. (define/public (apply-inject v tg) (Tagged v tg))
  15990. (define/public (apply-project v ty2)
  15991. (define tag2 (any-tag ty2))
  15992. (match v
  15993. [(Tagged v1 tag1)
  15994. (cond
  15995. [(eq? tag1 tag2)
  15996. (match ty2
  15997. [`(Vector ,ts ...)
  15998. (define l1 ((interp-op 'vector-length) v1))
  15999. (cond
  16000. [(eq? l1 (length ts)) v1]
  16001. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  16002. l1 (length ts))])]
  16003. [`(,ts ... -> ,rt)
  16004. (match v1
  16005. [`(function ,xs ,body ,env)
  16006. (cond [(eq? (length xs) (length ts)) v1]
  16007. [else
  16008. (error 'apply-project "arity mismatch ~a != ~a"
  16009. (length xs) (length ts))])]
  16010. [else (error 'apply-project "expected function not ~a" v1)])]
  16011. [else v1])]
  16012. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  16013. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  16014. \end{lstlisting}
  16015. \fi}
  16016. {\if\edition\pythonEd
  16017. \begin{lstlisting}
  16018. class InterpLany(InterpLlambda):
  16019. def type_to_tag(self, typ):
  16020. match typ:
  16021. case FunctionType(params, rt):
  16022. return 'function'
  16023. case TupleType(fields):
  16024. return 'tuple'
  16025. case t if t == int:
  16026. return 'int'
  16027. case t if t == bool:
  16028. return 'bool'
  16029. case IntType():
  16030. return 'int'
  16031. case BoolType():
  16032. return 'int'
  16033. case _:
  16034. raise Exception('type_to_tag unexpected ' + repr(typ))
  16035. def arity(self, v):
  16036. match v:
  16037. case Function(name, params, body, env):
  16038. return len(params)
  16039. case ClosureTuple(args, arity):
  16040. return arity
  16041. case _:
  16042. raise Exception('Lany arity unexpected ' + repr(v))
  16043. \end{lstlisting}
  16044. \fi}
  16045. \caption{Auxiliary functions for interpreting \LangAny{}.}
  16046. \label{fig:interp-Rany-aux}
  16047. \end{figure}
  16048. \clearpage
  16049. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  16050. \label{sec:compile-r7}
  16051. The \code{cast\_insert} pass compiles from \LangDyn{} to \LangAny{}.
  16052. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  16053. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  16054. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  16055. an expression $e'$ in \LangAny{} that has type \ANYTY{}. For example, the
  16056. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  16057. the Boolean \TRUE{}, which must be injected to produce an
  16058. expression of type \ANYTY{}.
  16059. %
  16060. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  16061. addition, is representative of compilation for many primitive
  16062. operations: the arguments have type \ANYTY{} and must be projected to
  16063. \INTTYPE{} before the addition can be performed.
  16064. The compilation of \key{lambda} (third row of
  16065. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  16066. produce type annotations: we simply use \ANYTY{}.
  16067. %
  16068. % TODO:update the following for python, and the tests and interpreter. -Jeremy
  16069. \racket{The compilation of \code{if} and \code{eq?} demonstrate how
  16070. this pass has to account for some differences in behavior between
  16071. \LangDyn{} and \LangAny{}. The \LangDyn{} language is more
  16072. permissive than \LangAny{} regarding what kind of values can be used
  16073. in various places. For example, the condition of an \key{if} does
  16074. not have to be a Boolean. For \key{eq?}, the arguments need not be
  16075. of the same type (in that case the result is \code{\#f}).}
  16076. \begin{figure}[btp]
  16077. \centering
  16078. {\if\edition\racketEd
  16079. \begin{tabular}{|lll|} \hline
  16080. \begin{minipage}{0.27\textwidth}
  16081. \begin{lstlisting}
  16082. #t
  16083. \end{lstlisting}
  16084. \end{minipage}
  16085. &
  16086. $\Rightarrow$
  16087. &
  16088. \begin{minipage}{0.65\textwidth}
  16089. \begin{lstlisting}
  16090. (inject #t Boolean)
  16091. \end{lstlisting}
  16092. \end{minipage}
  16093. \\[2ex]\hline
  16094. \begin{minipage}{0.27\textwidth}
  16095. \begin{lstlisting}
  16096. (+ |$e_1$| |$e_2$|)
  16097. \end{lstlisting}
  16098. \end{minipage}
  16099. &
  16100. $\Rightarrow$
  16101. &
  16102. \begin{minipage}{0.65\textwidth}
  16103. \begin{lstlisting}
  16104. (inject
  16105. (+ (project |$e'_1$| Integer)
  16106. (project |$e'_2$| Integer))
  16107. Integer)
  16108. \end{lstlisting}
  16109. \end{minipage}
  16110. \\[2ex]\hline
  16111. \begin{minipage}{0.27\textwidth}
  16112. \begin{lstlisting}
  16113. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  16114. \end{lstlisting}
  16115. \end{minipage}
  16116. &
  16117. $\Rightarrow$
  16118. &
  16119. \begin{minipage}{0.65\textwidth}
  16120. \begin{lstlisting}
  16121. (inject
  16122. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  16123. (Any|$\ldots$|Any -> Any))
  16124. \end{lstlisting}
  16125. \end{minipage}
  16126. \\[2ex]\hline
  16127. \begin{minipage}{0.27\textwidth}
  16128. \begin{lstlisting}
  16129. (|$e_0$| |$e_1 \ldots e_n$|)
  16130. \end{lstlisting}
  16131. \end{minipage}
  16132. &
  16133. $\Rightarrow$
  16134. &
  16135. \begin{minipage}{0.65\textwidth}
  16136. \begin{lstlisting}
  16137. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  16138. \end{lstlisting}
  16139. \end{minipage}
  16140. \\[2ex]\hline
  16141. \begin{minipage}{0.27\textwidth}
  16142. \begin{lstlisting}
  16143. (vector-ref |$e_1$| |$e_2$|)
  16144. \end{lstlisting}
  16145. \end{minipage}
  16146. &
  16147. $\Rightarrow$
  16148. &
  16149. \begin{minipage}{0.65\textwidth}
  16150. \begin{lstlisting}
  16151. (any-vector-ref |$e_1'$| |$e_2'$|)
  16152. \end{lstlisting}
  16153. \end{minipage}
  16154. \\[2ex]\hline
  16155. \begin{minipage}{0.27\textwidth}
  16156. \begin{lstlisting}
  16157. (if |$e_1$| |$e_2$| |$e_3$|)
  16158. \end{lstlisting}
  16159. \end{minipage}
  16160. &
  16161. $\Rightarrow$
  16162. &
  16163. \begin{minipage}{0.65\textwidth}
  16164. \begin{lstlisting}
  16165. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  16166. \end{lstlisting}
  16167. \end{minipage}
  16168. \\[2ex]\hline
  16169. \begin{minipage}{0.27\textwidth}
  16170. \begin{lstlisting}
  16171. (eq? |$e_1$| |$e_2$|)
  16172. \end{lstlisting}
  16173. \end{minipage}
  16174. &
  16175. $\Rightarrow$
  16176. &
  16177. \begin{minipage}{0.65\textwidth}
  16178. \begin{lstlisting}
  16179. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  16180. \end{lstlisting}
  16181. \end{minipage}
  16182. \\[2ex]\hline
  16183. \begin{minipage}{0.27\textwidth}
  16184. \begin{lstlisting}
  16185. (not |$e_1$|)
  16186. \end{lstlisting}
  16187. \end{minipage}
  16188. &
  16189. $\Rightarrow$
  16190. &
  16191. \begin{minipage}{0.65\textwidth}
  16192. \begin{lstlisting}
  16193. (if (eq? |$e'_1$| (inject #f Boolean))
  16194. (inject #t Boolean) (inject #f Boolean))
  16195. \end{lstlisting}
  16196. \end{minipage}
  16197. \\[2ex]\hline
  16198. \end{tabular}
  16199. \fi}
  16200. {\if\edition\pythonEd
  16201. \begin{tabular}{|lll|} \hline
  16202. \begin{minipage}{0.22\textwidth}
  16203. \begin{lstlisting}
  16204. True
  16205. \end{lstlisting}
  16206. \end{minipage}
  16207. &
  16208. $\Rightarrow$
  16209. &
  16210. \begin{minipage}{0.7\textwidth}
  16211. \begin{lstlisting}
  16212. Inject(True, BoolType())
  16213. \end{lstlisting}
  16214. \end{minipage}
  16215. \\[2ex]\hline
  16216. \begin{minipage}{0.22\textwidth}
  16217. \begin{lstlisting}
  16218. |$e_1$| + |$e_2$|
  16219. \end{lstlisting}
  16220. \end{minipage}
  16221. &
  16222. $\Rightarrow$
  16223. &
  16224. \begin{minipage}{0.7\textwidth}
  16225. \begin{lstlisting}
  16226. Inject(Project(|$e'_1$|, IntType())
  16227. + Project(|$e'_2$|, IntType()),
  16228. IntType())
  16229. \end{lstlisting}
  16230. \end{minipage}
  16231. \\[2ex]\hline
  16232. \begin{minipage}{0.22\textwidth}
  16233. \begin{lstlisting}
  16234. lambda |$x_1 \ldots x_n$|: |$e$|
  16235. \end{lstlisting}
  16236. \end{minipage}
  16237. &
  16238. $\Rightarrow$
  16239. &
  16240. \begin{minipage}{0.7\textwidth}
  16241. \begin{lstlisting}
  16242. Inject(Lambda([(|$x_1$|,AnyType),|$\ldots$|,(|$x_n$|,AnyType)], |$e'$|)
  16243. FunctionType([AnyType(),|$\ldots$|], AnyType()))
  16244. \end{lstlisting}
  16245. \end{minipage}
  16246. \\[2ex]\hline
  16247. \begin{minipage}{0.22\textwidth}
  16248. \begin{lstlisting}
  16249. |$e_0$|(|$e_1 \ldots e_n$|)
  16250. \end{lstlisting}
  16251. \end{minipage}
  16252. &
  16253. $\Rightarrow$
  16254. &
  16255. \begin{minipage}{0.7\textwidth}
  16256. \begin{lstlisting}
  16257. Call(Project(|$e'_0$|, FunctionType([AnyType(),|$\ldots$|],
  16258. AnyType())), |$e'_1, \ldots, e'_n$|)
  16259. \end{lstlisting}
  16260. \end{minipage}
  16261. \\[2ex]\hline
  16262. \begin{minipage}{0.22\textwidth}
  16263. \begin{lstlisting}
  16264. |$e_1$|[|$e_2$|]
  16265. \end{lstlisting}
  16266. \end{minipage}
  16267. &
  16268. $\Rightarrow$
  16269. &
  16270. \begin{minipage}{0.7\textwidth}
  16271. \begin{lstlisting}
  16272. Call(Name('any_tuple_load'),[|$e_1'$|, |$e_2'$|])
  16273. \end{lstlisting}
  16274. \end{minipage}
  16275. \\[2ex]\hline
  16276. %% \begin{minipage}{0.22\textwidth}
  16277. %% \begin{lstlisting}
  16278. %% |$e_2$| if |$e_1$| else |$e_3$|
  16279. %% \end{lstlisting}
  16280. %% \end{minipage}
  16281. %% &
  16282. %% $\Rightarrow$
  16283. %% &
  16284. %% \begin{minipage}{0.7\textwidth}
  16285. %% \begin{lstlisting}
  16286. %% (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  16287. %% \end{lstlisting}
  16288. %% \end{minipage}
  16289. %% \\[2ex]\hline
  16290. %% \begin{minipage}{0.22\textwidth}
  16291. %% \begin{lstlisting}
  16292. %% (eq? |$e_1$| |$e_2$|)
  16293. %% \end{lstlisting}
  16294. %% \end{minipage}
  16295. %% &
  16296. %% $\Rightarrow$
  16297. %% &
  16298. %% \begin{minipage}{0.7\textwidth}
  16299. %% \begin{lstlisting}
  16300. %% (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  16301. %% \end{lstlisting}
  16302. %% \end{minipage}
  16303. %% \\[2ex]\hline
  16304. %% \begin{minipage}{0.22\textwidth}
  16305. %% \begin{lstlisting}
  16306. %% (not |$e_1$|)
  16307. %% \end{lstlisting}
  16308. %% \end{minipage}
  16309. %% &
  16310. %% $\Rightarrow$
  16311. %% &
  16312. %% \begin{minipage}{0.7\textwidth}
  16313. %% \begin{lstlisting}
  16314. %% (if (eq? |$e'_1$| (inject #f Boolean))
  16315. %% (inject #t Boolean) (inject #f Boolean))
  16316. %% \end{lstlisting}
  16317. %% \end{minipage}
  16318. %% \\[2ex]\hline
  16319. \end{tabular}
  16320. \fi}
  16321. \caption{Cast Insertion}
  16322. \label{fig:compile-r7-Rany}
  16323. \end{figure}
  16324. \section{Reveal Casts}
  16325. \label{sec:reveal-casts-Rany}
  16326. % TODO: define R'_6
  16327. In the \code{reveal\_casts} pass we recommend compiling \code{Project}
  16328. into a conditional expression that checks whether the value's tag
  16329. matches the target type; if it does, the value is converted to a value
  16330. of the target type by removing the tag; if it does not, the program
  16331. exits.
  16332. %
  16333. {\if\edition\racketEd
  16334. %
  16335. To perform these actions we need a new primitive operation,
  16336. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  16337. The \code{tag-of-any} operation retrieves the type tag from a tagged
  16338. value of type \code{Any}. The \code{ValueOf} form retrieves the
  16339. underlying value from a tagged value. The \code{ValueOf} form
  16340. includes the type for the underlying value which is used by the type
  16341. checker. Finally, the \code{Exit} form ends the execution of the
  16342. program.
  16343. %
  16344. \fi}
  16345. %
  16346. {\if\edition\pythonEd
  16347. %
  16348. To perform these actions we need the \code{exit} function (from the C
  16349. standard library) and two new AST classes: \code{TagOf} and
  16350. \code{ValueOf}. The \code{exit} function ends the execution of the
  16351. program. The \code{TagOf} operation retrieves the type tag from a
  16352. tagged value of type \ANYTY{}. The \code{ValueOf} operation retrieves
  16353. the underlying value from a tagged value. The \code{ValueOf}
  16354. operation includes the type for the underlying value which is used by
  16355. the type checker.
  16356. %
  16357. \fi}
  16358. If the target type of the projection is \BOOLTY{} or \INTTY{}, then
  16359. \code{Project} can be translated as follows.
  16360. \begin{center}
  16361. \begin{minipage}{1.0\textwidth}
  16362. {\if\edition\racketEd
  16363. \begin{lstlisting}
  16364. (Project |$e$| |$\FType$|)
  16365. |$\Rightarrow$|
  16366. (Let |$\itm{tmp}$| |$e'$|
  16367. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  16368. (Int |$\itm{tagof}(\FType)$|)))
  16369. (ValueOf |$\itm{tmp}$| |$\FType$|)
  16370. (Exit)))
  16371. \end{lstlisting}
  16372. \fi}
  16373. {\if\edition\pythonEd
  16374. \begin{lstlisting}
  16375. Project(|$e$|, |$\FType$|)
  16376. |$\Rightarrow$|
  16377. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  16378. IfExp(Compare(TagOf(|$\itm{tmp}$|),[Eq()],
  16379. [Constant(|$\itm{tagof}(\FType)$|)]),
  16380. ValueOf(|$\itm{tmp}$|, |$\FType$|)
  16381. Call(Name('exit'), [])))
  16382. \end{lstlisting}
  16383. \fi}
  16384. \end{minipage}
  16385. \end{center}
  16386. If the target type of the projection is a tuple or function type, then
  16387. there is a bit more work to do. For tuples, check that the length of
  16388. the tuple type matches the length of the tuple. For functions, check
  16389. that the number of parameters in the function type matches the
  16390. function's arity.
  16391. Regarding \code{Inject}, we recommend compiling it to a slightly
  16392. lower-level primitive operation named \code{make\_any}. This operation
  16393. takes a tag instead of a type.
  16394. \begin{center}
  16395. \begin{minipage}{1.0\textwidth}
  16396. {\if\edition\racketEd
  16397. \begin{lstlisting}
  16398. (Inject |$e$| |$\FType$|)
  16399. |$\Rightarrow$|
  16400. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  16401. \end{lstlisting}
  16402. \fi}
  16403. {\if\edition\pythonEd
  16404. \begin{lstlisting}
  16405. Inject(|$e$|, |$\FType$|)
  16406. |$\Rightarrow$|
  16407. Call(Name('make_any'), [|$e'$|, Constant(|$\itm{tagof}(\FType)$|)])
  16408. \end{lstlisting}
  16409. \fi}
  16410. \end{minipage}
  16411. \end{center}
  16412. {\if\edition\pythonEd
  16413. %
  16414. The introduction of \code{make\_any} makes it difficult to use
  16415. bidirectional type checking because we no longer have an expected type
  16416. to use for type checking the expression $e'$. Thus, we run into
  16417. difficulty if $e'$ is a \code{Lambda} expression. We recommend
  16418. translating \code{Lambda} to a new AST class \code{AnnLambda} (for
  16419. annotated lambda) whose parameters have type annotations and that
  16420. records the return type.
  16421. %
  16422. \fi}
  16423. \racket{The type predicates (\code{boolean?}, etc.) can be translated into
  16424. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  16425. translation of \code{Project}.}
  16426. {\if\edition\racketEd
  16427. The \code{any-vector-ref} and \code{any-vector-set!} operations
  16428. combine the projection action with the vector operation. Also, the
  16429. read and write operations allow arbitrary expressions for the index so
  16430. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany})
  16431. cannot guarantee that the index is within bounds. Thus, we insert code
  16432. to perform bounds checking at runtime. The translation for
  16433. \code{any-vector-ref} is as follows and the other two operations are
  16434. translated in a similar way.
  16435. \begin{lstlisting}
  16436. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  16437. |$\Rightarrow$|
  16438. (Let |$v$| |$e'_1$|
  16439. (Let |$i$| |$e'_2$|
  16440. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  16441. (If (Prim '< (list (Var |$i$|)
  16442. (Prim 'any-vector-length (list (Var |$v$|)))))
  16443. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  16444. (Exit))
  16445. (Exit))))
  16446. \end{lstlisting}
  16447. \fi}
  16448. %
  16449. {\if\edition\pythonEd
  16450. %
  16451. The \code{any\_tuple\_load} operation combines the projection action
  16452. with the load operation. Also, the load operation allows arbitrary
  16453. expressions for the index so the type checker for \LangAny{}
  16454. (Figure~\ref{fig:type-check-Rany}) cannot guarantee that the index is
  16455. within bounds. Thus, we insert code to perform bounds checking at
  16456. runtime. The translation for \code{any\_tuple\_load} is as follows.
  16457. \begin{lstlisting}
  16458. Call(Name('any_tuple_load'), [|$e_1$|,|$e_2$|])
  16459. |$\Rightarrow$|
  16460. Block([Assign([|$t$|], |$e'_1$|), Assign([|$i$|], |$e'_2$|)],
  16461. IfExp(Compare(TagOf(|$t$|), [Eq()], [Constant(2)]),
  16462. IfExp(Compare(|$i$|, [Lt()], [Call(Name('any_len'), [|$t$|])]),
  16463. Call(Name('any_tuple_load'), [|$t$|, |$i$|]),
  16464. Call(Name('exit'), [])),
  16465. Call(Name('exit'), [])))
  16466. \end{lstlisting}
  16467. \fi}
  16468. {\if\edition\pythonEd
  16469. \section{Assignment Conversion}
  16470. \label{sec:convert-assignments-Lany}
  16471. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  16472. \code{AnnLambda} AST classes.
  16473. \section{Closure Conversion}
  16474. \label{sec:closure-conversion-Lany}
  16475. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  16476. \code{AnnLambda} AST classes.
  16477. \fi}
  16478. \section{Remove Complex Operands}
  16479. \label{sec:rco-Rany}
  16480. \racket{The \code{ValueOf} and \code{Exit} forms are both complex
  16481. expressions. The subexpression of \code{ValueOf} must be atomic.}
  16482. %
  16483. \python{The \code{ValueOf} and \code{TagOf} operations are both
  16484. complex expressions. Their subexpressions must be atomic.}
  16485. \section{Explicate Control and \LangCAny{}}
  16486. \label{sec:explicate-Rany}
  16487. The output of \code{explicate\_control} is the \LangCAny{} language
  16488. whose syntax is defined in Figure~\ref{fig:c5-syntax}.
  16489. %
  16490. \racket{The \code{ValueOf} form that we added to \LangAny{} remains an
  16491. expression and the \code{Exit} expression becomes a $\Tail$. Also,
  16492. note that the index argument of \code{vector-ref} and
  16493. \code{vector-set!} is an $\Atm$ instead of an integer, as in
  16494. \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  16495. %
  16496. \python{
  16497. Update the auxiliary functions \code{explicate\_tail}, \code{explicate\_effect},
  16498. and \code{explicate\_pred} as appropriately to handle the new expressions
  16499. in \LangCAny{}.
  16500. }
  16501. \newcommand{\CanyASTPython}{
  16502. \begin{array}{lcl}
  16503. \Exp &::=& \CALL{\VAR{\key{'make\_any'}}}{\LS \Atm,\Atm \RS}\\
  16504. &\MID& \key{TagOf}\LP \Atm \RP
  16505. \MID \key{ValueOf}\LP \Atm , \FType \RP \\
  16506. &\MID& \CALL{\VAR{\key{'any\_tuple\_load'}}}{\LS \Atm,\Atm \RS}\\
  16507. &\MID& \CALL{\VAR{\key{'any\_tuple\_store'}}}{\LS \Atm,\Atm,\Atm \RS}\\
  16508. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS \Atm \RS} \\
  16509. &\MID& \CALL{\VAR{\key{'exit'}}}{\LS\RS}
  16510. \end{array}
  16511. }
  16512. \begin{figure}[tp]
  16513. \fbox{
  16514. \begin{minipage}{0.96\textwidth}
  16515. \small
  16516. {\if\edition\racketEd
  16517. \[
  16518. \begin{array}{lcl}
  16519. \Exp &::= & \ldots
  16520. \MID \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  16521. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  16522. &\MID& \VALUEOF{\Exp}{\FType} \\
  16523. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  16524. \MID \LP\key{Collect} \,\itm{int}\RP }\\
  16525. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  16526. \MID \GOTO{\itm{label}} } \\
  16527. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  16528. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  16529. \MID \LP\key{Exit}\RP \\
  16530. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  16531. \LangCAnyM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  16532. \end{array}
  16533. \]
  16534. \fi}
  16535. {\if\edition\pythonEd
  16536. \[
  16537. \begin{array}{l}
  16538. \gray{\CifASTPython} \\ \hline
  16539. \gray{\CtupASTPython} \\ \hline
  16540. \gray{\CfunASTPython} \\ \hline
  16541. \gray{\ClambdaASTPython} \\ \hline
  16542. \CanyASTPython \\
  16543. \begin{array}{lcl}
  16544. \LangCAnyM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  16545. \end{array}
  16546. \end{array}
  16547. \]
  16548. \fi}
  16549. \end{minipage}
  16550. }
  16551. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:Clam-syntax}).}
  16552. \label{fig:c5-syntax}
  16553. \end{figure}
  16554. \section{Select Instructions}
  16555. \label{sec:select-Rany}
  16556. In the \code{select\_instructions} pass we translate the primitive
  16557. operations on the \ANYTY{} type to x86 instructions that manipulate
  16558. the 3 tag bits of the tagged value. In the following descriptions,
  16559. given an atom $e$ we use a primed variable $e'$ to refer to the result
  16560. of translating $e$ into an x86 argument.
  16561. \paragraph{\code{make\_any}}
  16562. We recommend compiling the \code{make\_any} operation as follows if
  16563. the tag is for \INTTY{} or \BOOLTY{}. The \key{salq} instruction
  16564. shifts the destination to the left by the number of bits specified its
  16565. source argument (in this case $3$, the length of the tag) and it
  16566. preserves the sign of the integer. We use the \key{orq} instruction to
  16567. combine the tag and the value to form the tagged value. \\
  16568. %
  16569. {\if\edition\racketEd
  16570. \begin{lstlisting}
  16571. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  16572. |$\Rightarrow$|
  16573. movq |$e'$|, |\itm{lhs'}|
  16574. salq $3, |\itm{lhs'}|
  16575. orq $|$\itm{tag}$|, |\itm{lhs'}|
  16576. \end{lstlisting}
  16577. \fi}
  16578. %
  16579. {\if\edition\pythonEd
  16580. \begin{lstlisting}
  16581. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  16582. |$\Rightarrow$|
  16583. movq |$e'$|, |\itm{lhs'}|
  16584. salq $3, |\itm{lhs'}|
  16585. orq $|$\itm{tag}$|, |\itm{lhs'}|
  16586. \end{lstlisting}
  16587. \fi}
  16588. %
  16589. The instruction selection for tuples and procedures is different
  16590. because their is no need to shift them to the left. The rightmost 3
  16591. bits are already zeros so we simply combine the value and the tag
  16592. using \key{orq}. \\
  16593. %
  16594. {\if\edition\racketEd
  16595. \begin{lstlisting}
  16596. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  16597. |$\Rightarrow$|
  16598. movq |$e'$|, |\itm{lhs'}|
  16599. orq $|$\itm{tag}$|, |\itm{lhs'}|
  16600. \end{lstlisting}
  16601. \fi}
  16602. %
  16603. {\if\edition\pythonEd
  16604. \begin{lstlisting}
  16605. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  16606. |$\Rightarrow$|
  16607. movq |$e'$|, |\itm{lhs'}|
  16608. orq $|$\itm{tag}$|, |\itm{lhs'}|
  16609. \end{lstlisting}
  16610. \fi}
  16611. \paragraph{\code{TagOf}}
  16612. Recall that the \code{TagOf} operation extracts the type tag from a
  16613. value of type \ANYTY{}. The type tag is the bottom three bits, so we
  16614. obtain the tag by taking the bitwise-and of the value with $111$ ($7$
  16615. in decimal).
  16616. %
  16617. {\if\edition\racketEd
  16618. \begin{lstlisting}
  16619. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  16620. |$\Rightarrow$|
  16621. movq |$e'$|, |\itm{lhs'}|
  16622. andq $7, |\itm{lhs'}|
  16623. \end{lstlisting}
  16624. \fi}
  16625. %
  16626. {\if\edition\pythonEd
  16627. \begin{lstlisting}
  16628. Assign([|\itm{lhs}|], TagOf(|$e$|))
  16629. |$\Rightarrow$|
  16630. movq |$e'$|, |\itm{lhs'}|
  16631. andq $7, |\itm{lhs'}|
  16632. \end{lstlisting}
  16633. \fi}
  16634. \paragraph{\code{ValueOf}}
  16635. Like \code{make\_any}, the instructions for \key{ValueOf} are
  16636. different depending on whether the type $T$ is a pointer (tuple or
  16637. function) or not (integer or Boolean). The following shows the
  16638. instruction selection for integers and Booleans. We produce an
  16639. untagged value by shifting it to the right by 3 bits.
  16640. %
  16641. {\if\edition\racketEd
  16642. \begin{lstlisting}
  16643. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  16644. |$\Rightarrow$|
  16645. movq |$e'$|, |\itm{lhs'}|
  16646. sarq $3, |\itm{lhs'}|
  16647. \end{lstlisting}
  16648. \fi}
  16649. %
  16650. {\if\edition\pythonEd
  16651. \begin{lstlisting}
  16652. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  16653. |$\Rightarrow$|
  16654. movq |$e'$|, |\itm{lhs'}|
  16655. sarq $3, |\itm{lhs'}|
  16656. \end{lstlisting}
  16657. \fi}
  16658. %
  16659. In the case for tuples and procedures, we just need to zero-out the
  16660. rightmost 3 bits. We accomplish this by creating the bit pattern
  16661. $\ldots 0111$ ($7$ in decimal) and apply bitwise-not to obtain $\ldots
  16662. 11111000$ (-8 in decimal) which we \code{movq} into the destination
  16663. $\itm{lhs'}$. Finally, we apply \code{andq} with the tagged value to
  16664. get the desired result.
  16665. %
  16666. {\if\edition\racketEd
  16667. \begin{lstlisting}
  16668. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  16669. |$\Rightarrow$|
  16670. movq $|$-8$|, |\itm{lhs'}|
  16671. andq |$e'$|, |\itm{lhs'}|
  16672. \end{lstlisting}
  16673. \fi}
  16674. %
  16675. {\if\edition\pythonEd
  16676. \begin{lstlisting}
  16677. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  16678. |$\Rightarrow$|
  16679. movq $|$-8$|, |\itm{lhs'}|
  16680. andq |$e'$|, |\itm{lhs'}|
  16681. \end{lstlisting}
  16682. \fi}
  16683. %% \paragraph{Type Predicates} We leave it to the reader to
  16684. %% devise a sequence of instructions to implement the type predicates
  16685. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  16686. \paragraph{\racket{Any-vector-length}\python{\code{any\_len}}}
  16687. The \racket{\code{any-vector-length}}\python{\code{any\_len}}
  16688. operation combines the effect of \code{ValueOf} with accessing the
  16689. length of a tuple from the tag stored at the zero index of the tuple.
  16690. {\if\edition\racketEd
  16691. \begin{lstlisting}
  16692. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$e_1$|)))
  16693. |$\Longrightarrow$|
  16694. movq $|$-8$|, %r11
  16695. andq |$e_1'$|, %r11
  16696. movq 0(%r11), %r11
  16697. andq $126, %r11
  16698. sarq $1, %r11
  16699. movq %r11, |$\itm{lhs'}$|
  16700. \end{lstlisting}
  16701. \fi}
  16702. {\if\edition\pythonEd
  16703. \begin{lstlisting}
  16704. Assign([|$\itm{lhs}$|], Call(Name('any_len'), [|$e_1$|]))
  16705. |$\Longrightarrow$|
  16706. movq $|$-8$|, %r11
  16707. andq |$e_1'$|, %r11
  16708. movq 0(%r11), %r11
  16709. andq $126, %r11
  16710. sarq $1, %r11
  16711. movq %r11, |$\itm{lhs'}$|
  16712. \end{lstlisting}
  16713. \fi}
  16714. \paragraph{\racket{Any-vector-ref}\python{\code{\code{any\_tuple\_load}}}}
  16715. This operation combines the effect of \code{ValueOf} with reading an
  16716. element of the tuple (see
  16717. Section~\ref{sec:select-instructions-gc}). However, the index may be
  16718. an arbitrary atom so instead of computing the offset at compile time,
  16719. we must generate instructions to compute the offset at runtime as
  16720. follows. Note the use of the new instruction \code{imulq}.
  16721. \begin{center}
  16722. \begin{minipage}{0.96\textwidth}
  16723. {\if\edition\racketEd
  16724. \begin{lstlisting}
  16725. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  16726. |$\Longrightarrow$|
  16727. movq |$\neg 111$|, %r11
  16728. andq |$e_1'$|, %r11
  16729. movq |$e_2'$|, %rax
  16730. addq $1, %rax
  16731. imulq $8, %rax
  16732. addq %rax, %r11
  16733. movq 0(%r11) |$\itm{lhs'}$|
  16734. \end{lstlisting}
  16735. \fi}
  16736. %
  16737. {\if\edition\pythonEd
  16738. \begin{lstlisting}
  16739. Assign([|$\itm{lhs}$|], Call(Name('any_tuple_load'), [|$e_1$|,|$e_2$|]))
  16740. |$\Longrightarrow$|
  16741. movq $|$-8$|, %r11
  16742. andq |$e_1'$|, %r11
  16743. movq |$e_2'$|, %rax
  16744. addq $1, %rax
  16745. imulq $8, %rax
  16746. addq %rax, %r11
  16747. movq 0(%r11) |$\itm{lhs'}$|
  16748. \end{lstlisting}
  16749. \fi}
  16750. \end{minipage}
  16751. \end{center}
  16752. \paragraph{\racket{Any-vector-set!}\python{\code{any\_tuple\_store}}}
  16753. The code generation for
  16754. \racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}} is
  16755. analogous to the above translation for reading from a tuple.
  16756. \section{Register Allocation for \LangAny{}}
  16757. \label{sec:register-allocation-Rany}
  16758. \index{subject}{register allocation}
  16759. There is an interesting interaction between tagged values and garbage
  16760. collection that has an impact on register allocation. A variable of
  16761. type \ANYTY{} might refer to a tuple and therefore it might be a root
  16762. that needs to be inspected and copied during garbage collection. Thus,
  16763. we need to treat variables of type \ANYTY{} in a similar way to
  16764. variables of tuple type for purposes of register allocation. In
  16765. particular,
  16766. \begin{itemize}
  16767. \item If a variable of type \ANYTY{} is live during a function call,
  16768. then it must be spilled. This can be accomplished by changing
  16769. \code{build\_interference} to mark all variables of type \ANYTY{}
  16770. that are live after a \code{callq} as interfering with all the
  16771. registers.
  16772. \item If a variable of type \ANYTY{} is spilled, it must be spilled to
  16773. the root stack instead of the normal procedure call stack.
  16774. \end{itemize}
  16775. Another concern regarding the root stack is that the garbage collector
  16776. needs to differentiate between (1) plain old pointers to tuples, (2) a
  16777. tagged value that points to a tuple, and (3) a tagged value that is
  16778. not a tuple. We enable this differentiation by choosing not to use the
  16779. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  16780. reserved for identifying plain old pointers to tuples. That way, if
  16781. one of the first three bits is set, then we have a tagged value and
  16782. inspecting the tag can differentiate between tuples ($010$) and the
  16783. other kinds of values.
  16784. %% \begin{exercise}\normalfont
  16785. %% Expand your compiler to handle \LangAny{} as discussed in the last few
  16786. %% sections. Create 5 new programs that use the \ANYTY{} type and the
  16787. %% new operations (\code{Inject}, \code{Project}, etc.). Test your
  16788. %% compiler on these new programs and all of your previously created test
  16789. %% programs.
  16790. %% \end{exercise}
  16791. \begin{exercise}\normalfont\normalsize
  16792. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  16793. Create tests for \LangDyn{} by adapting ten of your previous test programs
  16794. by removing type annotations. Add 5 more tests programs that
  16795. specifically rely on the language being dynamically typed. That is,
  16796. they should not be legal programs in a statically typed language, but
  16797. nevertheless, they should be valid \LangDyn{} programs that run to
  16798. completion without error.
  16799. \end{exercise}
  16800. \begin{figure}[p]
  16801. \begin{tikzpicture}[baseline=(current bounding box.center)]
  16802. \node (Rfun) at (0,4) {\large \LangDyn{}};
  16803. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  16804. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  16805. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  16806. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  16807. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  16808. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  16809. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  16810. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  16811. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  16812. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  16813. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  16814. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  16815. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  16816. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  16817. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  16818. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  16819. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  16820. \path[->,bend left=15] (Rfun) edge [above] node
  16821. {\ttfamily\footnotesize shrink} (Rfun-2);
  16822. \path[->,bend left=15] (Rfun-2) edge [above] node
  16823. {\ttfamily\footnotesize uniquify} (Rfun-3);
  16824. \path[->,bend left=15] (Rfun-3) edge [above] node
  16825. {\ttfamily\footnotesize reveal\_functions} (Rfun-4);
  16826. \path[->,bend right=15] (Rfun-4) edge [left] node
  16827. {\ttfamily\footnotesize cast\_insert} (Rfun-5);
  16828. \path[->,bend left=15] (Rfun-5) edge [above] node
  16829. {\ttfamily\footnotesize reveal\_casts} (Rfun-6);
  16830. \path[->,bend left=15] (Rfun-6) edge [left] node
  16831. {\ttfamily\footnotesize convert\_assign.} (Rfun-7);
  16832. \path[->,bend left=15] (Rfun-7) edge [below] node
  16833. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  16834. \path[->,bend right=15] (F1-2) edge [above] node
  16835. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  16836. \path[->,bend right=15] (F1-3) edge [above] node
  16837. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  16838. \path[->,bend right=15] (F1-4) edge [above] node
  16839. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  16840. \path[->,bend right=15] (F1-5) edge [right] node
  16841. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16842. \path[->,bend left=15] (C3-2) edge [left] node
  16843. {\ttfamily\footnotesize select\_instr.} (x86-2);
  16844. \path[->,bend right=15] (x86-2) edge [left] node
  16845. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16846. \path[->,bend right=15] (x86-2-1) edge [below] node
  16847. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  16848. \path[->,bend right=15] (x86-2-2) edge [left] node
  16849. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  16850. \path[->,bend left=15] (x86-3) edge [above] node
  16851. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  16852. \path[->,bend left=15] (x86-4) edge [right] node
  16853. {\ttfamily\footnotesize print\_x86} (x86-5);
  16854. \end{tikzpicture}
  16855. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  16856. \label{fig:Rdyn-passes}
  16857. \end{figure}
  16858. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  16859. for the compilation of \LangDyn{}.
  16860. % Further Reading
  16861. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16862. %% {\if\edition\pythonEd
  16863. %% \chapter{Objects}
  16864. %% \label{ch:Lobject}
  16865. %% \index{subject}{objects}
  16866. %% \index{subject}{classes}
  16867. %% \fi}
  16868. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16869. \chapter{Gradual Typing}
  16870. \label{ch:Lgrad}
  16871. \index{subject}{gradual typing}
  16872. \if\edition\pythonEd
  16873. UNDER CONSTRUCTION
  16874. \fi
  16875. \if\edition\racketEd
  16876. This chapter studies a language, \LangGrad{}, in which the programmer
  16877. can choose between static and dynamic type checking in different parts
  16878. of a program, thereby mixing the statically typed \LangLoop{} language
  16879. with the dynamically typed \LangDyn{}. There are several approaches to
  16880. mixing static and dynamic typing, including multi-language
  16881. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  16882. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  16883. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  16884. programmer controls the amount of static versus dynamic checking by
  16885. adding or removing type annotations on parameters and
  16886. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  16887. %
  16888. The concrete syntax of \LangGrad{} is defined in
  16889. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  16890. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  16891. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  16892. non-terminals that make type annotations optional. The return types
  16893. are not optional in the abstract syntax; the parser fills in
  16894. \code{Any} when the return type is not specified in the concrete
  16895. syntax.
  16896. \begin{figure}[tp]
  16897. \centering
  16898. \fbox{
  16899. \begin{minipage}{0.96\textwidth}
  16900. \small
  16901. \[
  16902. \begin{array}{lcl}
  16903. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  16904. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  16905. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  16906. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  16907. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  16908. &\MID& \gray{\key{\#t} \MID \key{\#f}
  16909. \MID (\key{and}\;\Exp\;\Exp)
  16910. \MID (\key{or}\;\Exp\;\Exp)
  16911. \MID (\key{not}\;\Exp) } \\
  16912. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  16913. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  16914. (\key{vector-ref}\;\Exp\;\Int)} \\
  16915. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  16916. \MID (\Exp \; \Exp\ldots) } \\
  16917. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  16918. \MID \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  16919. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  16920. \MID \CBEGIN{\Exp\ldots}{\Exp}
  16921. \MID \CWHILE{\Exp}{\Exp} } \\
  16922. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  16923. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  16924. \end{array}
  16925. \]
  16926. \end{minipage}
  16927. }
  16928. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  16929. \label{fig:Rgrad-concrete-syntax}
  16930. \end{figure}
  16931. \begin{figure}[tp]
  16932. \centering
  16933. \fbox{
  16934. \begin{minipage}{0.96\textwidth}
  16935. \small
  16936. \[
  16937. \begin{array}{lcl}
  16938. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  16939. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  16940. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  16941. &\MID& \gray{ \BOOL{\itm{bool}}
  16942. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  16943. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  16944. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  16945. &\MID& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  16946. &\MID& \gray{ \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  16947. &\MID& \gray{ \WHILE{\Exp}{\Exp} } \\
  16948. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  16949. \LangGradM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  16950. \end{array}
  16951. \]
  16952. \end{minipage}
  16953. }
  16954. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-syntax}).}
  16955. \label{fig:Rgrad-syntax}
  16956. \end{figure}
  16957. Both the type checker and the interpreter for \LangGrad{} require some
  16958. interesting changes to enable gradual typing, which we discuss in the
  16959. next two sections in the context of the \code{map} example from
  16960. Chapter~\ref{ch:Lfun}. In Figure~\ref{fig:gradual-map} we
  16961. revised the \code{map} example, omitting the type annotations from
  16962. the \code{inc} function.
  16963. \begin{figure}[btp]
  16964. % gradual_test_9.rkt
  16965. \begin{lstlisting}
  16966. (define (map [f : (Integer -> Integer)]
  16967. [v : (Vector Integer Integer)])
  16968. : (Vector Integer Integer)
  16969. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  16970. (define (inc x) (+ x 1))
  16971. (vector-ref (map inc (vector 0 41)) 1)
  16972. \end{lstlisting}
  16973. \caption{A partially-typed version of the \code{map} example.}
  16974. \label{fig:gradual-map}
  16975. \end{figure}
  16976. \section{Type Checking \LangGrad{} and \LangCast{}}
  16977. \label{sec:gradual-type-check}
  16978. The type checker for \LangGrad{} uses the \code{Any} type for missing
  16979. parameter and return types. For example, the \code{x} parameter of
  16980. \code{inc} in Figure~\ref{fig:gradual-map} is given the type
  16981. \code{Any} and the return type of \code{inc} is \code{Any}. Next
  16982. consider the \code{+} operator inside \code{inc}. It expects both
  16983. arguments to have type \code{Integer}, but its first argument \code{x}
  16984. has type \code{Any}. In a gradually typed language, such differences
  16985. are allowed so long as the types are \emph{consistent}, that is, they
  16986. are equal except in places where there is an \code{Any} type. The type
  16987. \code{Any} is consistent with every other type.
  16988. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  16989. \begin{figure}[tbp]
  16990. \begin{lstlisting}
  16991. (define/public (consistent? t1 t2)
  16992. (match* (t1 t2)
  16993. [('Integer 'Integer) #t]
  16994. [('Boolean 'Boolean) #t]
  16995. [('Void 'Void) #t]
  16996. [('Any t2) #t]
  16997. [(t1 'Any) #t]
  16998. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  16999. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  17000. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  17001. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  17002. (consistent? rt1 rt2))]
  17003. [(other wise) #f]))
  17004. \end{lstlisting}
  17005. \caption{The consistency predicate on types.}
  17006. \label{fig:consistent}
  17007. \end{figure}
  17008. Returning to the \code{map} example of
  17009. Figure~\ref{fig:gradual-map}, the \code{inc} function has type
  17010. \code{(Any -> Any)} but parameter \code{f} of \code{map} has type
  17011. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  17012. because the two types are consistent. In particular, \code{->} is
  17013. equal to \code{->} and because \code{Any} is consistent with
  17014. \code{Integer}.
  17015. Next consider a program with an error, such as applying the
  17016. \code{map} to a function that sometimes returns a Boolean, as
  17017. shown in Figure~\ref{fig:map-maybe-inc}. The type checker for
  17018. \LangGrad{} accepts this program because the type of \code{maybe-inc} is
  17019. consistent with the type of parameter \code{f} of \code{map}, that
  17020. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  17021. Integer)}. One might say that a gradual type checker is optimistic
  17022. in that it accepts programs that might execute without a runtime type
  17023. error.
  17024. %
  17025. Unfortunately, running this program with input \code{1} triggers an
  17026. error when the \code{maybe-inc} function returns \code{\#t}. \LangGrad{}
  17027. performs checking at runtime to ensure the integrity of the static
  17028. types, such as the \code{(Integer -> Integer)} annotation on parameter
  17029. \code{f} of \code{map}. This runtime checking is carried out by a
  17030. new \code{Cast} form that is inserted by the type checker. Thus, the
  17031. output of the type checker is a program in the \LangCast{} language, which
  17032. adds \code{Cast} to \LangLoop{}, as shown in
  17033. Figure~\ref{fig:Rgrad-prime-syntax}.
  17034. \begin{figure}[tp]
  17035. \centering
  17036. \fbox{
  17037. \begin{minipage}{0.96\textwidth}
  17038. \small
  17039. \[
  17040. \begin{array}{lcl}
  17041. \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  17042. \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  17043. \end{array}
  17044. \]
  17045. \end{minipage}
  17046. }
  17047. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-syntax}).}
  17048. \label{fig:Rgrad-prime-syntax}
  17049. \end{figure}
  17050. \begin{figure}[tbp]
  17051. \begin{lstlisting}
  17052. (define (map [f : (Integer -> Integer)]
  17053. [v : (Vector Integer Integer)])
  17054. : (Vector Integer Integer)
  17055. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  17056. (define (inc x) (+ x 1))
  17057. (define (true) #t)
  17058. (define (maybe-inc x) (if (eq? 0 (read)) (inc x) (true)))
  17059. (vector-ref (map maybe-inc (vector 0 41)) 0)
  17060. \end{lstlisting}
  17061. \caption{A variant of the \code{map} example with an error.}
  17062. \label{fig:map-maybe-inc}
  17063. \end{figure}
  17064. Figure~\ref{fig:map-cast} shows the output of the type checker for
  17065. \code{map} and \code{maybe-inc}. The idea is that \code{Cast} is
  17066. inserted every time the type checker sees two types that are
  17067. consistent but not equal. In the \code{inc} function, \code{x} is
  17068. cast to \code{Integer} and the result of the \code{+} is cast to
  17069. \code{Any}. In the call to \code{map}, the \code{inc} argument
  17070. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  17071. \begin{figure}[btp]
  17072. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17073. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  17074. : (Vector Integer Integer)
  17075. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  17076. (define (inc [x : Any]) : Any
  17077. (cast (+ (cast x Any Integer) 1) Integer Any))
  17078. (define (true) : Any (cast #t Boolean Any))
  17079. (define (maybe-inc [x : Any]) : Any
  17080. (if (eq? 0 (read)) (inc x) (true)))
  17081. (vector-ref (map (cast maybe-inc (Any -> Any) (Integer -> Integer))
  17082. (vector 0 41)) 0)
  17083. \end{lstlisting}
  17084. \caption{Output of type checking \code{map}
  17085. and \code{maybe-inc}.}
  17086. \label{fig:map-cast}
  17087. \end{figure}
  17088. The type checker for \LangGrad{} is defined in
  17089. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  17090. and \ref{fig:type-check-Rgradual-3}.
  17091. \begin{figure}[tbp]
  17092. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17093. (define type-check-gradual_class
  17094. (class type-check-Rwhile_class
  17095. (super-new)
  17096. (inherit operator-types type-predicates)
  17097. (define/override (type-check-exp env)
  17098. (lambda (e)
  17099. (define recur (type-check-exp env))
  17100. (match e
  17101. [(Prim 'vector-length (list e1))
  17102. (define-values (e1^ t) (recur e1))
  17103. (match t
  17104. [`(Vector ,ts ...)
  17105. (values (Prim 'vector-length (list e1^)) 'Integer)]
  17106. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  17107. [(Prim 'vector-ref (list e1 e2))
  17108. (define-values (e1^ t1) (recur e1))
  17109. (define-values (e2^ t2) (recur e2))
  17110. (check-consistent? t2 'Integer e)
  17111. (match t1
  17112. [`(Vector ,ts ...)
  17113. (match e2^
  17114. [(Int i)
  17115. (unless (and (0 . <= . i) (i . < . (length ts)))
  17116. (error 'type-check "invalid index ~a in ~a" i e))
  17117. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  17118. [else (define e1^^ (make-cast e1^ t1 'Any))
  17119. (define e2^^ (make-cast e2^ t2 'Integer))
  17120. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  17121. ['Any
  17122. (define e2^^ (make-cast e2^ t2 'Integer))
  17123. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  17124. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  17125. [(Prim 'vector-set! (list e1 e2 e3) )
  17126. (define-values (e1^ t1) (recur e1))
  17127. (define-values (e2^ t2) (recur e2))
  17128. (define-values (e3^ t3) (recur e3))
  17129. (check-consistent? t2 'Integer e)
  17130. (match t1
  17131. [`(Vector ,ts ...)
  17132. (match e2^
  17133. [(Int i)
  17134. (unless (and (0 . <= . i) (i . < . (length ts)))
  17135. (error 'type-check "invalid index ~a in ~a" i e))
  17136. (check-consistent? (list-ref ts i) t3 e)
  17137. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  17138. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  17139. [else
  17140. (define e1^^ (make-cast e1^ t1 'Any))
  17141. (define e2^^ (make-cast e2^ t2 'Integer))
  17142. (define e3^^ (make-cast e3^ t3 'Any))
  17143. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  17144. ['Any
  17145. (define e2^^ (make-cast e2^ t2 'Integer))
  17146. (define e3^^ (make-cast e3^ t3 'Any))
  17147. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  17148. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  17149. \end{lstlisting}
  17150. \caption{Type checker for the \LangGrad{} language, part 1.}
  17151. \label{fig:type-check-Rgradual-1}
  17152. \end{figure}
  17153. \begin{figure}[tbp]
  17154. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17155. [(Prim 'eq? (list e1 e2))
  17156. (define-values (e1^ t1) (recur e1))
  17157. (define-values (e2^ t2) (recur e2))
  17158. (check-consistent? t1 t2 e)
  17159. (define T (meet t1 t2))
  17160. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  17161. 'Boolean)]
  17162. [(Prim 'not (list e1))
  17163. (define-values (e1^ t1) (recur e1))
  17164. (match t1
  17165. ['Any
  17166. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  17167. (Bool #t) (Bool #f)))]
  17168. [else
  17169. (define-values (t-ret new-es^)
  17170. (type-check-op 'not (list t1) (list e1^) e))
  17171. (values (Prim 'not new-es^) t-ret)])]
  17172. [(Prim 'and (list e1 e2))
  17173. (recur (If e1 e2 (Bool #f)))]
  17174. [(Prim 'or (list e1 e2))
  17175. (define tmp (gensym 'tmp))
  17176. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  17177. [(Prim op es)
  17178. #:when (not (set-member? explicit-prim-ops op))
  17179. (define-values (new-es ts)
  17180. (for/lists (exprs types) ([e es])
  17181. (recur e)))
  17182. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  17183. (values (Prim op new-es^) t-ret)]
  17184. [(If e1 e2 e3)
  17185. (define-values (e1^ T1) (recur e1))
  17186. (define-values (e2^ T2) (recur e2))
  17187. (define-values (e3^ T3) (recur e3))
  17188. (check-consistent? T2 T3 e)
  17189. (match T1
  17190. ['Boolean
  17191. (define Tif (join T2 T3))
  17192. (values (If e1^ (make-cast e2^ T2 Tif)
  17193. (make-cast e3^ T3 Tif)) Tif)]
  17194. ['Any
  17195. (define Tif (meet T2 T3))
  17196. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  17197. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  17198. Tif)]
  17199. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  17200. [(HasType e1 T)
  17201. (define-values (e1^ T1) (recur e1))
  17202. (check-consistent? T1 T)
  17203. (values (make-cast e1^ T1 T) T)]
  17204. [(SetBang x e1)
  17205. (define-values (e1^ T1) (recur e1))
  17206. (define varT (dict-ref env x))
  17207. (check-consistent? T1 varT e)
  17208. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  17209. [(WhileLoop e1 e2)
  17210. (define-values (e1^ T1) (recur e1))
  17211. (check-consistent? T1 'Boolean e)
  17212. (define-values (e2^ T2) ((type-check-exp env) e2))
  17213. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  17214. \end{lstlisting}
  17215. \caption{Type checker for the \LangGrad{} language, part 2.}
  17216. \label{fig:type-check-Rgradual-2}
  17217. \end{figure}
  17218. \begin{figure}[tbp]
  17219. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17220. [(Apply e1 e2s)
  17221. (define-values (e1^ T1) (recur e1))
  17222. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  17223. (match T1
  17224. [`(,T1ps ... -> ,T1rt)
  17225. (for ([T2 T2s] [Tp T1ps])
  17226. (check-consistent? T2 Tp e))
  17227. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  17228. (make-cast e2 src tgt)))
  17229. (values (Apply e1^ e2s^^) T1rt)]
  17230. [`Any
  17231. (define e1^^ (make-cast e1^ 'Any
  17232. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  17233. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  17234. (make-cast e2 src 'Any)))
  17235. (values (Apply e1^^ e2s^^) 'Any)]
  17236. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  17237. [(Lambda params Tr e1)
  17238. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  17239. (match p
  17240. [`[,x : ,T] (values x T)]
  17241. [(? symbol? x) (values x 'Any)])))
  17242. (define-values (e1^ T1)
  17243. ((type-check-exp (append (map cons xs Ts) env)) e1))
  17244. (check-consistent? Tr T1 e)
  17245. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  17246. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  17247. [else ((super type-check-exp env) e)]
  17248. )))
  17249. \end{lstlisting}
  17250. \caption{Type checker for the \LangGrad{} language, part 3.}
  17251. \label{fig:type-check-Rgradual-3}
  17252. \end{figure}
  17253. \begin{figure}[tbp]
  17254. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17255. (define/public (join t1 t2)
  17256. (match* (t1 t2)
  17257. [('Integer 'Integer) 'Integer]
  17258. [('Boolean 'Boolean) 'Boolean]
  17259. [('Void 'Void) 'Void]
  17260. [('Any t2) t2]
  17261. [(t1 'Any) t1]
  17262. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  17263. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  17264. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  17265. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  17266. -> ,(join rt1 rt2))]))
  17267. (define/public (meet t1 t2)
  17268. (match* (t1 t2)
  17269. [('Integer 'Integer) 'Integer]
  17270. [('Boolean 'Boolean) 'Boolean]
  17271. [('Void 'Void) 'Void]
  17272. [('Any t2) 'Any]
  17273. [(t1 'Any) 'Any]
  17274. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  17275. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  17276. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  17277. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  17278. -> ,(meet rt1 rt2))]))
  17279. (define/public (make-cast e src tgt)
  17280. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  17281. (define/public (check-consistent? t1 t2 e)
  17282. (unless (consistent? t1 t2)
  17283. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  17284. (define/override (type-check-op op arg-types args e)
  17285. (match (dict-ref (operator-types) op)
  17286. [`(,param-types . ,return-type)
  17287. (for ([at arg-types] [pt param-types])
  17288. (check-consistent? at pt e))
  17289. (values return-type
  17290. (for/list ([e args] [s arg-types] [t param-types])
  17291. (make-cast e s t)))]
  17292. [else (error 'type-check-op "unrecognized ~a" op)]))
  17293. (define explicit-prim-ops
  17294. (set-union
  17295. (type-predicates)
  17296. (set 'procedure-arity 'eq?
  17297. 'vector 'vector-length 'vector-ref 'vector-set!
  17298. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  17299. (define/override (fun-def-type d)
  17300. (match d
  17301. [(Def f params rt info body)
  17302. (define ps
  17303. (for/list ([p params])
  17304. (match p
  17305. [`[,x : ,T] T]
  17306. [(? symbol?) 'Any]
  17307. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  17308. `(,@ps -> ,rt)]
  17309. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  17310. \end{lstlisting}
  17311. \caption{Auxiliary functions for type checking \LangGrad{}.}
  17312. \label{fig:type-check-Rgradual-aux}
  17313. \end{figure}
  17314. \clearpage
  17315. \section{Interpreting \LangCast{}}
  17316. \label{sec:interp-casts}
  17317. The runtime behavior of first-order casts is straightforward, that is,
  17318. casts involving simple types such as \code{Integer} and
  17319. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  17320. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  17321. puts the integer into a tagged value
  17322. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  17323. \code{Integer} is accomplished with the \code{Project} operator, that
  17324. is, by checking the value's tag and either retrieving the underlying
  17325. integer or signaling an error if it the tag is not the one for
  17326. integers (Figure~\ref{fig:interp-Rany-aux}).
  17327. %
  17328. Things get more interesting for higher-order casts, that is, casts
  17329. involving function or vector types.
  17330. Consider the cast of the function \code{maybe-inc} from \code{(Any ->
  17331. Any)} to \code{(Integer -> Integer)}. When a function flows through
  17332. this cast at runtime, we can't know in general whether the function
  17333. will always return an integer.\footnote{Predicting the return value of
  17334. a function is equivalent to the halting problem, which is
  17335. undecidable.} The \LangCast{} interpreter therefore delays the checking
  17336. of the cast until the function is applied. This is accomplished by
  17337. wrapping \code{maybe-inc} in a new function that casts its parameter
  17338. from \code{Integer} to \code{Any}, applies \code{maybe-inc}, and then
  17339. casts the return value from \code{Any} to \code{Integer}.
  17340. Turning our attention to casts involving vector types, we consider the
  17341. example in Figure~\ref{fig:map-bang} that defines a
  17342. partially-typed version of \code{map} whose parameter \code{v} has
  17343. type \code{(Vector Any Any)} and that updates \code{v} in place
  17344. instead of returning a new vector. So we name this function
  17345. \code{map!}. We apply \code{map!} to a vector of integers, so
  17346. the type checker inserts a cast from \code{(Vector Integer Integer)}
  17347. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  17348. cast between vector types would be a build a new vector whose elements
  17349. are the result of casting each of the original elements to the
  17350. appropriate target type. However, this approach is only valid for
  17351. immutable vectors; and our vectors are mutable. In the example of
  17352. Figure~\ref{fig:map-bang}, if the cast created a new vector, then
  17353. the updates inside of \code{map!} would happen to the new vector
  17354. and not the original one.
  17355. \begin{figure}[tbp]
  17356. % gradual_test_11.rkt
  17357. \begin{lstlisting}
  17358. (define (map! [f : (Any -> Any)]
  17359. [v : (Vector Any Any)]) : Void
  17360. (begin
  17361. (vector-set! v 0 (f (vector-ref v 0)))
  17362. (vector-set! v 1 (f (vector-ref v 1)))))
  17363. (define (inc x) (+ x 1))
  17364. (let ([v (vector 0 41)])
  17365. (begin (map! inc v) (vector-ref v 1)))
  17366. \end{lstlisting}
  17367. \caption{An example involving casts on vectors.}
  17368. \label{fig:map-bang}
  17369. \end{figure}
  17370. Instead the interpreter needs to create a new kind of value, a
  17371. \emph{vector proxy}, that intercepts every vector operation. On a
  17372. read, the proxy reads from the underlying vector and then applies a
  17373. cast to the resulting value. On a write, the proxy casts the argument
  17374. value and then performs the write to the underlying vector. For the
  17375. first \code{(vector-ref v 0)} in \code{map!}, the proxy casts
  17376. \code{0} from \code{Integer} to \code{Any}. For the first
  17377. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  17378. to \code{Integer}.
  17379. The final category of cast that we need to consider are casts between
  17380. the \code{Any} type and either a function or a vector
  17381. type. Figure~\ref{fig:map-any} shows a variant of \code{map!}
  17382. in which parameter \code{v} does not have a type annotation, so it is
  17383. given type \code{Any}. In the call to \code{map!}, the vector has
  17384. type \code{(Vector Integer Integer)} so the type checker inserts a
  17385. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  17386. thought is to use \code{Inject}, but that doesn't work because
  17387. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  17388. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  17389. to \code{Any}.
  17390. \begin{figure}[tbp]
  17391. \begin{lstlisting}
  17392. (define (map! [f : (Any -> Any)] v) : Void
  17393. (begin
  17394. (vector-set! v 0 (f (vector-ref v 0)))
  17395. (vector-set! v 1 (f (vector-ref v 1)))))
  17396. (define (inc x) (+ x 1))
  17397. (let ([v (vector 0 41)])
  17398. (begin (map! inc v) (vector-ref v 1)))
  17399. \end{lstlisting}
  17400. \caption{Casting a vector to \code{Any}.}
  17401. \label{fig:map-any}
  17402. \end{figure}
  17403. The \LangCast{} interpreter uses an auxiliary function named
  17404. \code{apply-cast} to cast a value from a source type to a target type,
  17405. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  17406. of the kinds of casts that we've discussed in this section.
  17407. \begin{figure}[tbp]
  17408. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17409. (define/public (apply-cast v s t)
  17410. (match* (s t)
  17411. [(t1 t2) #:when (equal? t1 t2) v]
  17412. [('Any t2)
  17413. (match t2
  17414. [`(,ts ... -> ,rt)
  17415. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  17416. (define v^ (apply-project v any->any))
  17417. (apply-cast v^ any->any `(,@ts -> ,rt))]
  17418. [`(Vector ,ts ...)
  17419. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  17420. (define v^ (apply-project v vec-any))
  17421. (apply-cast v^ vec-any `(Vector ,@ts))]
  17422. [else (apply-project v t2)])]
  17423. [(t1 'Any)
  17424. (match t1
  17425. [`(,ts ... -> ,rt)
  17426. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  17427. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  17428. (apply-inject v^ (any-tag any->any))]
  17429. [`(Vector ,ts ...)
  17430. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  17431. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  17432. (apply-inject v^ (any-tag vec-any))]
  17433. [else (apply-inject v (any-tag t1))])]
  17434. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  17435. (define x (gensym 'x))
  17436. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  17437. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  17438. (define cast-writes
  17439. (for/list ([t1 ts1] [t2 ts2])
  17440. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  17441. `(vector-proxy ,(vector v (apply vector cast-reads)
  17442. (apply vector cast-writes)))]
  17443. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  17444. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  17445. `(function ,xs ,(Cast
  17446. (Apply (Value v)
  17447. (for/list ([x xs][t1 ts1][t2 ts2])
  17448. (Cast (Var x) t2 t1)))
  17449. rt1 rt2) ())]
  17450. ))
  17451. \end{lstlisting}
  17452. \caption{The \code{apply-cast} auxiliary method.}
  17453. \label{fig:apply-cast}
  17454. \end{figure}
  17455. The interpreter for \LangCast{} is defined in
  17456. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  17457. dispatching to \code{apply-cast}. To handle the addition of vector
  17458. proxies, we update the vector primitives in \code{interp-op} using the
  17459. functions in Figure~\ref{fig:guarded-vector}.
  17460. \begin{figure}[tbp]
  17461. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17462. (define interp-Rcast_class
  17463. (class interp-Rwhile_class
  17464. (super-new)
  17465. (inherit apply-fun apply-inject apply-project)
  17466. (define/override (interp-op op)
  17467. (match op
  17468. ['vector-length guarded-vector-length]
  17469. ['vector-ref guarded-vector-ref]
  17470. ['vector-set! guarded-vector-set!]
  17471. ['any-vector-ref (lambda (v i)
  17472. (match v [`(tagged ,v^ ,tg)
  17473. (guarded-vector-ref v^ i)]))]
  17474. ['any-vector-set! (lambda (v i a)
  17475. (match v [`(tagged ,v^ ,tg)
  17476. (guarded-vector-set! v^ i a)]))]
  17477. ['any-vector-length (lambda (v)
  17478. (match v [`(tagged ,v^ ,tg)
  17479. (guarded-vector-length v^)]))]
  17480. [else (super interp-op op)]
  17481. ))
  17482. (define/override ((interp-exp env) e)
  17483. (define (recur e) ((interp-exp env) e))
  17484. (match e
  17485. [(Value v) v]
  17486. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  17487. [else ((super interp-exp env) e)]))
  17488. ))
  17489. (define (interp-Rcast p)
  17490. (send (new interp-Rcast_class) interp-program p))
  17491. \end{lstlisting}
  17492. \caption{The interpreter for \LangCast{}.}
  17493. \label{fig:interp-Rcast}
  17494. \end{figure}
  17495. \begin{figure}[tbp]
  17496. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17497. (define (guarded-vector-ref vec i)
  17498. (match vec
  17499. [`(vector-proxy ,proxy)
  17500. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  17501. (define rd (vector-ref (vector-ref proxy 1) i))
  17502. (apply-fun rd (list val) 'guarded-vector-ref)]
  17503. [else (vector-ref vec i)]))
  17504. (define (guarded-vector-set! vec i arg)
  17505. (match vec
  17506. [`(vector-proxy ,proxy)
  17507. (define wr (vector-ref (vector-ref proxy 2) i))
  17508. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  17509. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  17510. [else (vector-set! vec i arg)]))
  17511. (define (guarded-vector-length vec)
  17512. (match vec
  17513. [`(vector-proxy ,proxy)
  17514. (guarded-vector-length (vector-ref proxy 0))]
  17515. [else (vector-length vec)]))
  17516. \end{lstlisting}
  17517. \caption{The guarded-vector auxiliary functions.}
  17518. \label{fig:guarded-vector}
  17519. \end{figure}
  17520. \section{Lower Casts}
  17521. \label{sec:lower-casts}
  17522. The next step in the journey towards x86 is the \code{lower-casts}
  17523. pass that translates the casts in \LangCast{} to the lower-level
  17524. \code{Inject} and \code{Project} operators and a new operator for
  17525. creating vector proxies, extending the \LangLoop{} language to create
  17526. \LangProxy{}. We recommend creating an auxiliary function named
  17527. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  17528. and a target type, and translates it to expression in \LangProxy{} that has
  17529. the same behavior as casting the expression from the source to the
  17530. target type in the interpreter.
  17531. The \code{lower-cast} function can follow a code structure similar to
  17532. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  17533. the interpreter for \LangCast{} because it must handle the same cases as
  17534. \code{apply-cast} and it needs to mimic the behavior of
  17535. \code{apply-cast}. The most interesting cases are those concerning the
  17536. casts between two vector types and between two function types.
  17537. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  17538. type to another vector type is accomplished by creating a proxy that
  17539. intercepts the operations on the underlying vector. Here we make the
  17540. creation of the proxy explicit with the \code{vector-proxy} primitive
  17541. operation. It takes three arguments, the first is an expression for
  17542. the vector, the second is a vector of functions for casting an element
  17543. that is being read from the vector, and the third is a vector of
  17544. functions for casting an element that is being written to the vector.
  17545. You can create the functions using \code{Lambda}. Also, as we shall
  17546. see in the next section, we need to differentiate these vectors from
  17547. the user-created ones, so we recommend using a new primitive operator
  17548. named \code{raw-vector} instead of \code{vector} to create these
  17549. vectors of functions. Figure~\ref{fig:map-bang-lower-cast} shows
  17550. the output of \code{lower-casts} on the example in
  17551. Figure~\ref{fig:map-bang} that involved casting a vector of
  17552. integers to a vector of \code{Any}.
  17553. \begin{figure}[tbp]
  17554. \begin{lstlisting}
  17555. (define (map! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  17556. (begin
  17557. (vector-set! v 0 (f (vector-ref v 0)))
  17558. (vector-set! v 1 (f (vector-ref v 1)))))
  17559. (define (inc [x : Any]) : Any
  17560. (inject (+ (project x Integer) 1) Integer))
  17561. (let ([v (vector 0 41)])
  17562. (begin
  17563. (map! inc (vector-proxy v
  17564. (raw-vector (lambda: ([x9 : Integer]) : Any
  17565. (inject x9 Integer))
  17566. (lambda: ([x9 : Integer]) : Any
  17567. (inject x9 Integer)))
  17568. (raw-vector (lambda: ([x9 : Any]) : Integer
  17569. (project x9 Integer))
  17570. (lambda: ([x9 : Any]) : Integer
  17571. (project x9 Integer)))))
  17572. (vector-ref v 1)))
  17573. \end{lstlisting}
  17574. \caption{Output of \code{lower-casts} on the example in
  17575. Figure~\ref{fig:map-bang}.}
  17576. \label{fig:map-bang-lower-cast}
  17577. \end{figure}
  17578. A cast from one function type to another function type is accomplished
  17579. by generating a \code{Lambda} whose parameter and return types match
  17580. the target function type. The body of the \code{Lambda} should cast
  17581. the parameters from the target type to the source type (yes,
  17582. backwards! functions are contravariant\index{subject}{contravariant} in the
  17583. parameters), then call the underlying function, and finally cast the
  17584. result from the source return type to the target return type.
  17585. Figure~\ref{fig:map-lower-cast} shows the output of the
  17586. \code{lower-casts} pass on the \code{map} example in
  17587. Figure~\ref{fig:gradual-map}. Note that the \code{inc} argument
  17588. in the call to \code{map} is wrapped in a \code{lambda}.
  17589. \begin{figure}[tbp]
  17590. \begin{lstlisting}
  17591. (define (map [f : (Integer -> Integer)]
  17592. [v : (Vector Integer Integer)])
  17593. : (Vector Integer Integer)
  17594. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  17595. (define (inc [x : Any]) : Any
  17596. (inject (+ (project x Integer) 1) Integer))
  17597. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  17598. (project (inc (inject x9 Integer)) Integer))
  17599. (vector 0 41)) 1)
  17600. \end{lstlisting}
  17601. \caption{Output of \code{lower-casts} on the example in
  17602. Figure~\ref{fig:gradual-map}.}
  17603. \label{fig:map-lower-cast}
  17604. \end{figure}
  17605. \section{Differentiate Proxies}
  17606. \label{sec:differentiate-proxies}
  17607. So far the job of differentiating vectors and vector proxies has been
  17608. the job of the interpreter. For example, the interpreter for \LangCast{}
  17609. implements \code{vector-ref} using the \code{guarded-vector-ref}
  17610. function in Figure~\ref{fig:guarded-vector}. In the
  17611. \code{differentiate-proxies} pass we shift this responsibility to the
  17612. generated code.
  17613. We begin by designing the output language $R^p_8$. In
  17614. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  17615. proxies. In $R^p_8$ we return the \code{Vector} type to
  17616. its original meaning, as the type of real vectors, and we introduce a
  17617. new type, \code{PVector}, whose values can be either real vectors or
  17618. vector proxies. This new type comes with a suite of new primitive
  17619. operations for creating and using values of type \code{PVector}. We
  17620. don't need to introduce a new type to represent vector proxies. A
  17621. proxy is represented by a vector containing three things: 1) the
  17622. underlying vector, 2) a vector of functions for casting elements that
  17623. are read from the vector, and 3) a vector of functions for casting
  17624. values to be written to the vector. So we define the following
  17625. abbreviation for the type of a vector proxy:
  17626. \[
  17627. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  17628. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  17629. \to (\key{PVector}~ T' \ldots)
  17630. \]
  17631. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  17632. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  17633. %
  17634. Next we describe each of the new primitive operations.
  17635. \begin{description}
  17636. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  17637. (\key{PVector} $T \ldots$)]\ \\
  17638. %
  17639. This operation brands a vector as a value of the \code{PVector} type.
  17640. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  17641. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  17642. %
  17643. This operation brands a vector proxy as value of the \code{PVector} type.
  17644. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  17645. \code{Boolean}] \ \\
  17646. %
  17647. returns true if the value is a vector proxy and false if it is a
  17648. real vector.
  17649. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  17650. (\key{Vector} $T \ldots$)]\ \\
  17651. %
  17652. Assuming that the input is a vector (and not a proxy), this
  17653. operation returns the vector.
  17654. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  17655. $\to$ \code{Boolean}]\ \\
  17656. %
  17657. Given a vector proxy, this operation returns the length of the
  17658. underlying vector.
  17659. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  17660. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  17661. %
  17662. Given a vector proxy, this operation returns the $i$th element of
  17663. the underlying vector.
  17664. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  17665. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  17666. proxy, this operation writes a value to the $i$th element of the
  17667. underlying vector.
  17668. \end{description}
  17669. Now to discuss the translation that differentiates vectors from
  17670. proxies. First, every type annotation in the program must be
  17671. translated (recursively) to replace \code{Vector} with \code{PVector}.
  17672. Next, we must insert uses of \code{PVector} operations in the
  17673. appropriate places. For example, we wrap every vector creation with an
  17674. \code{inject-vector}.
  17675. \begin{lstlisting}
  17676. (vector |$e_1 \ldots e_n$|)
  17677. |$\Rightarrow$|
  17678. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  17679. \end{lstlisting}
  17680. The \code{raw-vector} operator that we introduced in the previous
  17681. section does not get injected.
  17682. \begin{lstlisting}
  17683. (raw-vector |$e_1 \ldots e_n$|)
  17684. |$\Rightarrow$|
  17685. (vector |$e'_1 \ldots e'_n$|)
  17686. \end{lstlisting}
  17687. The \code{vector-proxy} primitive translates as follows.
  17688. \begin{lstlisting}
  17689. (vector-proxy |$e_1~e_2~e_3$|)
  17690. |$\Rightarrow$|
  17691. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  17692. \end{lstlisting}
  17693. We translate the vector operations into conditional expressions that
  17694. check whether the value is a proxy and then dispatch to either the
  17695. appropriate proxy vector operation or the regular vector operation.
  17696. For example, the following is the translation for \code{vector-ref}.
  17697. \begin{lstlisting}
  17698. (vector-ref |$e_1$| |$i$|)
  17699. |$\Rightarrow$|
  17700. (let ([|$v~e_1$|])
  17701. (if (proxy? |$v$|)
  17702. (proxy-vector-ref |$v$| |$i$|)
  17703. (vector-ref (project-vector |$v$|) |$i$|)
  17704. \end{lstlisting}
  17705. Note in the case of a real vector, we must apply \code{project-vector}
  17706. before the \code{vector-ref}.
  17707. \section{Reveal Casts}
  17708. \label{sec:reveal-casts-gradual}
  17709. Recall that the \code{reveal-casts} pass
  17710. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  17711. \code{Inject} and \code{Project} into lower-level operations. In
  17712. particular, \code{Project} turns into a conditional expression that
  17713. inspects the tag and retrieves the underlying value. Here we need to
  17714. augment the translation of \code{Project} to handle the situation when
  17715. the target type is \code{PVector}. Instead of using
  17716. \code{vector-length} we need to use \code{proxy-vector-length}.
  17717. \begin{lstlisting}
  17718. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  17719. |$\Rightarrow$|
  17720. (let |$\itm{tmp}$| |$e'$|
  17721. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  17722. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  17723. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  17724. (exit)))
  17725. \end{lstlisting}
  17726. \section{Closure Conversion}
  17727. \label{sec:closure-conversion-gradual}
  17728. The closure conversion pass only requires one minor adjustment. The
  17729. auxiliary function that translates type annotations needs to be
  17730. updated to handle the \code{PVector} type.
  17731. \section{Explicate Control}
  17732. \label{sec:explicate-control-gradual}
  17733. Update the \code{explicate\_control} pass to handle the new primitive
  17734. operations on the \code{PVector} type.
  17735. \section{Select Instructions}
  17736. \label{sec:select-instructions-gradual}
  17737. Recall that the \code{select\_instructions} pass is responsible for
  17738. lowering the primitive operations into x86 instructions. So we need
  17739. to translate the new \code{PVector} operations to x86. To do so, the
  17740. first question we need to answer is how will we differentiate the two
  17741. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  17742. We need just one bit to accomplish this, and use the bit in position
  17743. $57$ of the 64-bit tag at the front of every vector (see
  17744. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  17745. for \code{inject-vector} we leave it that way.
  17746. \begin{lstlisting}
  17747. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  17748. |$\Rightarrow$|
  17749. movq |$e'_1$|, |$\itm{lhs'}$|
  17750. \end{lstlisting}
  17751. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  17752. \begin{lstlisting}
  17753. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  17754. |$\Rightarrow$|
  17755. movq |$e'_1$|, %r11
  17756. movq |$(1 << 57)$|, %rax
  17757. orq 0(%r11), %rax
  17758. movq %rax, 0(%r11)
  17759. movq %r11, |$\itm{lhs'}$|
  17760. \end{lstlisting}
  17761. The \code{proxy?} operation consumes the information so carefully
  17762. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  17763. isolates the $57$th bit to tell whether the value is a real vector or
  17764. a proxy.
  17765. \begin{lstlisting}
  17766. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  17767. |$\Rightarrow$|
  17768. movq |$e_1'$|, %r11
  17769. movq 0(%r11), %rax
  17770. sarq $57, %rax
  17771. andq $1, %rax
  17772. movq %rax, |$\itm{lhs'}$|
  17773. \end{lstlisting}
  17774. The \code{project-vector} operation is straightforward to translate,
  17775. so we leave it up to the reader.
  17776. Regarding the \code{proxy-vector} operations, the runtime provides
  17777. procedures that implement them (they are recursive functions!) so
  17778. here we simply need to translate these vector operations into the
  17779. appropriate function call. For example, here is the translation for
  17780. \code{proxy-vector-ref}.
  17781. \begin{lstlisting}
  17782. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  17783. |$\Rightarrow$|
  17784. movq |$e_1'$|, %rdi
  17785. movq |$e_2'$|, %rsi
  17786. callq proxy_vector_ref
  17787. movq %rax, |$\itm{lhs'}$|
  17788. \end{lstlisting}
  17789. We have another batch of vector operations to deal with, those for the
  17790. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  17791. \code{any-vector-ref} when there is a \code{vector-ref} on something
  17792. of type \code{Any}, and similarly for \code{any-vector-set!} and
  17793. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  17794. Section~\ref{sec:select-Rany} we selected instructions for these
  17795. operations based on the idea that the underlying value was a real
  17796. vector. But in the current setting, the underlying value is of type
  17797. \code{PVector}. So \code{any-vector-ref} can be translates to
  17798. pseudo-x86 as follows. We begin by projecting the underlying value out
  17799. of the tagged value and then call the \code{proxy\_vector\_ref}
  17800. procedure in the runtime.
  17801. \begin{lstlisting}
  17802. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  17803. movq |$\neg 111$|, %rdi
  17804. andq |$e_1'$|, %rdi
  17805. movq |$e_2'$|, %rsi
  17806. callq proxy_vector_ref
  17807. movq %rax, |$\itm{lhs'}$|
  17808. \end{lstlisting}
  17809. The \code{any-vector-set!} and \code{any-vector-length} operators can
  17810. be translated in a similar way.
  17811. \begin{exercise}\normalfont\normalsize
  17812. Implement a compiler for the gradually-typed \LangGrad{} language by
  17813. extending and adapting your compiler for \LangLoop{}. Create 10 new
  17814. partially-typed test programs. In addition to testing with these
  17815. new programs, also test your compiler on all the tests for \LangLoop{}
  17816. and tests for \LangDyn{}. Sometimes you may get a type checking error
  17817. on the \LangDyn{} programs but you can adapt them by inserting
  17818. a cast to the \code{Any} type around each subexpression
  17819. causing a type error. While \LangDyn{} does not have explicit casts,
  17820. you can induce one by wrapping the subexpression \code{e}
  17821. with a call to an un-annotated identity function, like this:
  17822. \code{((lambda (x) x) e)}.
  17823. \end{exercise}
  17824. \begin{figure}[p]
  17825. \begin{tikzpicture}[baseline=(current bounding box.center)]
  17826. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  17827. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  17828. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  17829. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  17830. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  17831. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  17832. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  17833. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  17834. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  17835. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  17836. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  17837. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  17838. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  17839. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  17840. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  17841. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  17842. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  17843. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  17844. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  17845. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  17846. \path[->,bend right=15] (Rgradual) edge [above] node
  17847. {\ttfamily\footnotesize type\_check} (Rgradualp);
  17848. \path[->,bend right=15] (Rgradualp) edge [above] node
  17849. {\ttfamily\footnotesize lower\_casts} (Rwhilepp);
  17850. \path[->,bend right=15] (Rwhilepp) edge [right] node
  17851. {\ttfamily\footnotesize differentiate\_proxies} (Rwhileproxy);
  17852. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  17853. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  17854. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  17855. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  17856. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  17857. {\ttfamily\footnotesize reveal\_functions} (Rwhileproxy-4);
  17858. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  17859. {\ttfamily\footnotesize reveal\_casts} (Rwhileproxy-5);
  17860. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  17861. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  17862. \path[->,bend left=15] (F1-1) edge [below] node
  17863. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  17864. \path[->,bend right=15] (F1-2) edge [above] node
  17865. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  17866. \path[->,bend right=15] (F1-3) edge [above] node
  17867. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  17868. \path[->,bend right=15] (F1-4) edge [above] node
  17869. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  17870. \path[->,bend right=15] (F1-5) edge [right] node
  17871. {\ttfamily\footnotesize explicate\_control} (C3-2);
  17872. \path[->,bend left=15] (C3-2) edge [left] node
  17873. {\ttfamily\footnotesize select\_instr.} (x86-2);
  17874. \path[->,bend right=15] (x86-2) edge [left] node
  17875. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  17876. \path[->,bend right=15] (x86-2-1) edge [below] node
  17877. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  17878. \path[->,bend right=15] (x86-2-2) edge [left] node
  17879. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  17880. \path[->,bend left=15] (x86-3) edge [above] node
  17881. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  17882. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  17883. \end{tikzpicture}
  17884. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  17885. \label{fig:Rgradual-passes}
  17886. \end{figure}
  17887. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  17888. for the compilation of \LangGrad{}.
  17889. \section{Further Reading}
  17890. This chapter just scratches the surface of gradual typing. The basic
  17891. approach described here is missing two key ingredients that one would
  17892. want in a implementation of gradual typing: blame
  17893. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  17894. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  17895. problem addressed by blame tracking is that when a cast on a
  17896. higher-order value fails, it often does so at a point in the program
  17897. that is far removed from the original cast. Blame tracking is a
  17898. technique for propagating extra information through casts and proxies
  17899. so that when a cast fails, the error message can point back to the
  17900. original location of the cast in the source program.
  17901. The problem addressed by space-efficient casts also relates to
  17902. higher-order casts. It turns out that in partially typed programs, a
  17903. function or vector can flow through very-many casts at runtime. With
  17904. the approach described in this chapter, each cast adds another
  17905. \code{lambda} wrapper or a vector proxy. Not only does this take up
  17906. considerable space, but it also makes the function calls and vector
  17907. operations slow. For example, a partially-typed version of quicksort
  17908. could, in the worst case, build a chain of proxies of length $O(n)$
  17909. around the vector, changing the overall time complexity of the
  17910. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  17911. solution to this problem by representing casts using the coercion
  17912. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  17913. long chains of proxies by compressing them into a concise normal
  17914. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  17915. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  17916. the Grift compiler.
  17917. \begin{center}
  17918. \url{https://github.com/Gradual-Typing/Grift}
  17919. \end{center}
  17920. There are also interesting interactions between gradual typing and
  17921. other language features, such as parametetric polymorphism,
  17922. information-flow types, and type inference, to name a few. We
  17923. recommend the reader to the online gradual typing bibliography:
  17924. \begin{center}
  17925. \url{http://samth.github.io/gradual-typing-bib/}
  17926. \end{center}
  17927. % TODO: challenge problem:
  17928. % type analysis and type specialization?
  17929. % coercions?
  17930. \fi
  17931. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  17932. \chapter{Parametric Polymorphism}
  17933. \label{ch:Lpoly}
  17934. \index{subject}{parametric polymorphism}
  17935. \index{subject}{generics}
  17936. \if\edition\pythonEd
  17937. UNDER CONSTRUCTION
  17938. \fi
  17939. \if\edition\racketEd
  17940. This chapter studies the compilation of parametric
  17941. polymorphism\index{subject}{parametric polymorphism}
  17942. (aka. generics\index{subject}{generics}) in the subset \LangPoly{} of Typed
  17943. Racket. Parametric polymorphism enables improved code reuse by
  17944. parameterizing functions and data structures with respect to the types
  17945. that they operate on. For example, Figure~\ref{fig:map-poly}
  17946. revisits the \code{map} example but this time gives it a more
  17947. fitting type. This \code{map} function is parameterized with
  17948. respect to the element type of the vector. The type of \code{map}
  17949. is the following polymorphic type as specified by the \code{All} and
  17950. the type parameter \code{a}.
  17951. \begin{lstlisting}
  17952. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  17953. \end{lstlisting}
  17954. The idea is that \code{map} can be used at \emph{all} choices of a
  17955. type for parameter \code{a}. In Figure~\ref{fig:map-poly} we apply
  17956. \code{map} to a vector of integers, a choice of \code{Integer} for
  17957. \code{a}, but we could have just as well applied \code{map} to a
  17958. vector of Booleans (and a function on Booleans).
  17959. \begin{figure}[tbp]
  17960. % poly_test_2.rkt
  17961. \begin{lstlisting}
  17962. (: map (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  17963. (define (map f v)
  17964. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  17965. (define (inc [x : Integer]) : Integer (+ x 1))
  17966. (vector-ref (map inc (vector 0 41)) 1)
  17967. \end{lstlisting}
  17968. \caption{The \code{map} example using parametric polymorphism.}
  17969. \label{fig:map-poly}
  17970. \end{figure}
  17971. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  17972. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  17973. syntax. We add a second form for function definitions in which a type
  17974. declaration comes before the \code{define}. In the abstract syntax,
  17975. the return type in the \code{Def} is \code{Any}, but that should be
  17976. ignored in favor of the return type in the type declaration. (The
  17977. \code{Any} comes from using the same parser as in
  17978. Chapter~\ref{ch:Ldyn}.) The presence of a type declaration
  17979. enables the use of an \code{All} type for a function, thereby making
  17980. it polymorphic. The grammar for types is extended to include
  17981. polymorphic types and type variables.
  17982. \begin{figure}[tp]
  17983. \centering
  17984. \fbox{
  17985. \begin{minipage}{0.96\textwidth}
  17986. \small
  17987. \[
  17988. \begin{array}{lcl}
  17989. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  17990. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  17991. &\MID& \LP\key{:}~\Var~\Type\RP \\
  17992. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  17993. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  17994. \end{array}
  17995. \]
  17996. \end{minipage}
  17997. }
  17998. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  17999. (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  18000. \label{fig:Rpoly-concrete-syntax}
  18001. \end{figure}
  18002. \begin{figure}[tp]
  18003. \centering
  18004. \fbox{
  18005. \begin{minipage}{0.96\textwidth}
  18006. \small
  18007. \[
  18008. \begin{array}{lcl}
  18009. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  18010. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  18011. &\MID& \DECL{\Var}{\Type} \\
  18012. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  18013. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  18014. \end{array}
  18015. \]
  18016. \end{minipage}
  18017. }
  18018. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  18019. (Figure~\ref{fig:Lwhile-syntax}).}
  18020. \label{fig:Rpoly-syntax}
  18021. \end{figure}
  18022. By including polymorphic types in the $\Type$ non-terminal we choose
  18023. to make them first-class which has interesting repercussions on the
  18024. compiler. Many languages with polymorphism, such as
  18025. C++~\citep{stroustrup88:_param_types} and Standard
  18026. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  18027. it is useful to see an example of first-class polymorphism. In
  18028. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  18029. whose parameter is a polymorphic function. The occurrence of a
  18030. polymorphic type underneath a function type is enabled by the normal
  18031. recursive structure of the grammar for $\Type$ and the categorization
  18032. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  18033. applies the polymorphic function to a Boolean and to an integer.
  18034. \begin{figure}[tbp]
  18035. \begin{lstlisting}
  18036. (: apply-twice ((All (b) (b -> b)) -> Integer))
  18037. (define (apply-twice f)
  18038. (if (f #t) (f 42) (f 777)))
  18039. (: id (All (a) (a -> a)))
  18040. (define (id x) x)
  18041. (apply-twice id)
  18042. \end{lstlisting}
  18043. \caption{An example illustrating first-class polymorphism.}
  18044. \label{fig:apply-twice}
  18045. \end{figure}
  18046. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Lvar0} has
  18047. three new responsibilities (compared to \LangLoop{}). The type checking of
  18048. function application is extended to handle the case where the operator
  18049. expression is a polymorphic function. In that case the type arguments
  18050. are deduced by matching the type of the parameters with the types of
  18051. the arguments.
  18052. %
  18053. The \code{match-types} auxiliary function carries out this deduction
  18054. by recursively descending through a parameter type \code{pt} and the
  18055. corresponding argument type \code{at}, making sure that they are equal
  18056. except when there is a type parameter on the left (in the parameter
  18057. type). If it is the first time that the type parameter has been
  18058. encountered, then the algorithm deduces an association of the type
  18059. parameter to the corresponding type on the right (in the argument
  18060. type). If it is not the first time that the type parameter has been
  18061. encountered, the algorithm looks up its deduced type and makes sure
  18062. that it is equal to the type on the right.
  18063. %
  18064. Once the type arguments are deduced, the operator expression is
  18065. wrapped in an \code{Inst} AST node (for instantiate) that records the
  18066. type of the operator, but more importantly, records the deduced type
  18067. arguments. The return type of the application is the return type of
  18068. the polymorphic function, but with the type parameters replaced by the
  18069. deduced type arguments, using the \code{subst-type} function.
  18070. The second responsibility of the type checker is extending the
  18071. function \code{type-equal?} to handle the \code{All} type. This is
  18072. not quite a simple as equal on other types, such as function and
  18073. vector types, because two polymorphic types can be syntactically
  18074. different even though they are equivalent types. For example,
  18075. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  18076. Two polymorphic types should be considered equal if they differ only
  18077. in the choice of the names of the type parameters. The
  18078. \code{type-equal?} function in Figure~\ref{fig:type-check-Lvar0-aux}
  18079. renames the type parameters of the first type to match the type
  18080. parameters of the second type.
  18081. The third responsibility of the type checker is making sure that only
  18082. defined type variables appear in type annotations. The
  18083. \code{check-well-formed} function defined in
  18084. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  18085. sure that each type variable has been defined.
  18086. The output language of the type checker is \LangInst{}, defined in
  18087. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  18088. declaration and polymorphic function into a single definition, using
  18089. the \code{Poly} form, to make polymorphic functions more convenient to
  18090. process in next pass of the compiler.
  18091. \begin{figure}[tp]
  18092. \centering
  18093. \fbox{
  18094. \begin{minipage}{0.96\textwidth}
  18095. \small
  18096. \[
  18097. \begin{array}{lcl}
  18098. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  18099. \Exp &::=& \ldots \MID \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  18100. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  18101. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  18102. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  18103. \end{array}
  18104. \]
  18105. \end{minipage}
  18106. }
  18107. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  18108. (Figure~\ref{fig:Lwhile-syntax}).}
  18109. \label{fig:Rpoly-prime-syntax}
  18110. \end{figure}
  18111. The output of the type checker on the polymorphic \code{map}
  18112. example is listed in Figure~\ref{fig:map-type-check}.
  18113. \begin{figure}[tbp]
  18114. % poly_test_2.rkt
  18115. \begin{lstlisting}
  18116. (poly (a) (define (map [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  18117. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  18118. (define (inc [x : Integer]) : Integer (+ x 1))
  18119. (vector-ref ((inst map (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  18120. (Integer))
  18121. inc (vector 0 41)) 1)
  18122. \end{lstlisting}
  18123. \caption{Output of the type checker on the \code{map} example.}
  18124. \label{fig:map-type-check}
  18125. \end{figure}
  18126. \begin{figure}[tbp]
  18127. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  18128. (define type-check-poly-class
  18129. (class type-check-Rwhile-class
  18130. (super-new)
  18131. (inherit check-type-equal?)
  18132. (define/override (type-check-apply env e1 es)
  18133. (define-values (e^ ty) ((type-check-exp env) e1))
  18134. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  18135. ((type-check-exp env) e)))
  18136. (match ty
  18137. [`(,ty^* ... -> ,rt)
  18138. (for ([arg-ty ty*] [param-ty ty^*])
  18139. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  18140. (values e^ es^ rt)]
  18141. [`(All ,xs (,tys ... -> ,rt))
  18142. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  18143. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  18144. (match-types env^^ param-ty arg-ty)))
  18145. (define targs
  18146. (for/list ([x xs])
  18147. (match (dict-ref env^^ x (lambda () #f))
  18148. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  18149. x (Apply e1 es))]
  18150. [ty ty])))
  18151. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  18152. [else (error 'type-check "expected a function, not ~a" ty)]))
  18153. (define/override ((type-check-exp env) e)
  18154. (match e
  18155. [(Lambda `([,xs : ,Ts] ...) rT body)
  18156. (for ([T Ts]) ((check-well-formed env) T))
  18157. ((check-well-formed env) rT)
  18158. ((super type-check-exp env) e)]
  18159. [(HasType e1 ty)
  18160. ((check-well-formed env) ty)
  18161. ((super type-check-exp env) e)]
  18162. [else ((super type-check-exp env) e)]))
  18163. (define/override ((type-check-def env) d)
  18164. (verbose 'type-check "poly/def" d)
  18165. (match d
  18166. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  18167. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  18168. (for ([p ps]) ((check-well-formed ts-env) p))
  18169. ((check-well-formed ts-env) rt)
  18170. (define new-env (append ts-env (map cons xs ps) env))
  18171. (define-values (body^ ty^) ((type-check-exp new-env) body))
  18172. (check-type-equal? ty^ rt body)
  18173. (Generic ts (Def f p:t* rt info body^))]
  18174. [else ((super type-check-def env) d)]))
  18175. (define/override (type-check-program p)
  18176. (match p
  18177. [(Program info body)
  18178. (type-check-program (ProgramDefsExp info '() body))]
  18179. [(ProgramDefsExp info ds body)
  18180. (define ds^ (combine-decls-defs ds))
  18181. (define new-env (for/list ([d ds^])
  18182. (cons (def-name d) (fun-def-type d))))
  18183. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  18184. (define-values (body^ ty) ((type-check-exp new-env) body))
  18185. (check-type-equal? ty 'Integer body)
  18186. (ProgramDefsExp info ds^^ body^)]))
  18187. ))
  18188. \end{lstlisting}
  18189. \caption{Type checker for the \LangPoly{} language.}
  18190. \label{fig:type-check-Lvar0}
  18191. \end{figure}
  18192. \begin{figure}[tbp]
  18193. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  18194. (define/override (type-equal? t1 t2)
  18195. (match* (t1 t2)
  18196. [(`(All ,xs ,T1) `(All ,ys ,T2))
  18197. (define env (map cons xs ys))
  18198. (type-equal? (subst-type env T1) T2)]
  18199. [(other wise)
  18200. (super type-equal? t1 t2)]))
  18201. (define/public (match-types env pt at)
  18202. (match* (pt at)
  18203. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  18204. [('Void 'Void) env] [('Any 'Any) env]
  18205. [(`(Vector ,pts ...) `(Vector ,ats ...))
  18206. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  18207. (match-types env^ pt1 at1))]
  18208. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  18209. (define env^ (match-types env prt art))
  18210. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  18211. (match-types env^^ pt1 at1))]
  18212. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  18213. (define env^ (append (map cons pxs axs) env))
  18214. (match-types env^ pt1 at1)]
  18215. [((? symbol? x) at)
  18216. (match (dict-ref env x (lambda () #f))
  18217. [#f (error 'type-check "undefined type variable ~a" x)]
  18218. ['Type (cons (cons x at) env)]
  18219. [t^ (check-type-equal? at t^ 'matching) env])]
  18220. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  18221. (define/public (subst-type env pt)
  18222. (match pt
  18223. ['Integer 'Integer] ['Boolean 'Boolean]
  18224. ['Void 'Void] ['Any 'Any]
  18225. [`(Vector ,ts ...)
  18226. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  18227. [`(,ts ... -> ,rt)
  18228. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  18229. [`(All ,xs ,t)
  18230. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  18231. [(? symbol? x) (dict-ref env x)]
  18232. [else (error 'type-check "expected a type not ~a" pt)]))
  18233. (define/public (combine-decls-defs ds)
  18234. (match ds
  18235. ['() '()]
  18236. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  18237. (unless (equal? name f)
  18238. (error 'type-check "name mismatch, ~a != ~a" name f))
  18239. (match type
  18240. [`(All ,xs (,ps ... -> ,rt))
  18241. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  18242. (cons (Generic xs (Def name params^ rt info body))
  18243. (combine-decls-defs ds^))]
  18244. [`(,ps ... -> ,rt)
  18245. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  18246. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  18247. [else (error 'type-check "expected a function type, not ~a" type) ])]
  18248. [`(,(Def f params rt info body) . ,ds^)
  18249. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  18250. \end{lstlisting}
  18251. \caption{Auxiliary functions for type checking \LangPoly{}.}
  18252. \label{fig:type-check-Lvar0-aux}
  18253. \end{figure}
  18254. \begin{figure}[tbp]
  18255. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  18256. (define/public ((check-well-formed env) ty)
  18257. (match ty
  18258. ['Integer (void)]
  18259. ['Boolean (void)]
  18260. ['Void (void)]
  18261. [(? symbol? a)
  18262. (match (dict-ref env a (lambda () #f))
  18263. ['Type (void)]
  18264. [else (error 'type-check "undefined type variable ~a" a)])]
  18265. [`(Vector ,ts ...)
  18266. (for ([t ts]) ((check-well-formed env) t))]
  18267. [`(,ts ... -> ,t)
  18268. (for ([t ts]) ((check-well-formed env) t))
  18269. ((check-well-formed env) t)]
  18270. [`(All ,xs ,t)
  18271. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  18272. ((check-well-formed env^) t)]
  18273. [else (error 'type-check "unrecognized type ~a" ty)]))
  18274. \end{lstlisting}
  18275. \caption{Well-formed types.}
  18276. \label{fig:well-formed-types}
  18277. \end{figure}
  18278. % TODO: interpreter for R'_10
  18279. \section{Compiling Polymorphism}
  18280. \label{sec:compiling-poly}
  18281. Broadly speaking, there are four approaches to compiling parametric
  18282. polymorphism, which we describe below.
  18283. \begin{description}
  18284. \item[Monomorphization] generates a different version of a polymorphic
  18285. function for each set of type arguments that it is used with,
  18286. producing type-specialized code. This approach results in the most
  18287. efficient code but requires whole-program compilation (no separate
  18288. compilation) and increases code size. For our current purposes
  18289. monomorphization is a non-starter because, with first-class
  18290. polymorphism, it is sometimes not possible to determine which
  18291. generic functions are used with which type arguments during
  18292. compilation. (It can be done at runtime, with just-in-time
  18293. compilation.) This approach is used to compile C++
  18294. templates~\citep{stroustrup88:_param_types} and polymorphic
  18295. functions in NESL~\citep{Blelloch:1993aa} and
  18296. ML~\citep{Weeks:2006aa}.
  18297. \item[Uniform representation] generates one version of each
  18298. polymorphic function but requires all values have a common ``boxed''
  18299. format, such as the tagged values of type \code{Any} in
  18300. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  18301. similarly to code in a dynamically typed language (like \LangDyn{}),
  18302. in which primitive operators require their arguments to be projected
  18303. from \code{Any} and their results are injected into \code{Any}. (In
  18304. object-oriented languages, the projection is accomplished via
  18305. virtual method dispatch.) The uniform representation approach is
  18306. compatible with separate compilation and with first-class
  18307. polymorphism. However, it produces the least-efficient code because
  18308. it introduces overhead in the entire program, including
  18309. non-polymorphic code. This approach is used in implementations of
  18310. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  18311. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  18312. Java~\citep{Bracha:1998fk}.
  18313. \item[Mixed representation] generates one version of each polymorphic
  18314. function, using a boxed representation for type
  18315. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  18316. and conversions are performed at the boundaries between monomorphic
  18317. and polymorphic (e.g. when a polymorphic function is instantiated
  18318. and called). This approach is compatible with separate compilation
  18319. and first-class polymorphism and maintains the efficiency of
  18320. monomorphic code. The tradeoff is increased overhead at the boundary
  18321. between monomorphic and polymorphic code. This approach is used in
  18322. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  18323. Java 5 with the addition of autoboxing.
  18324. \item[Type passing] uses the unboxed representation in both
  18325. monomorphic and polymorphic code. Each polymorphic function is
  18326. compiled to a single function with extra parameters that describe
  18327. the type arguments. The type information is used by the generated
  18328. code to know how to access the unboxed values at runtime. This
  18329. approach is used in implementation of the Napier88
  18330. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  18331. passing is compatible with separate compilation and first-class
  18332. polymorphism and maintains the efficiency for monomorphic
  18333. code. There is runtime overhead in polymorphic code from dispatching
  18334. on type information.
  18335. \end{description}
  18336. In this chapter we use the mixed representation approach, partly
  18337. because of its favorable attributes, and partly because it is
  18338. straightforward to implement using the tools that we have already
  18339. built to support gradual typing. To compile polymorphic functions, we
  18340. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  18341. \LangCast{}.
  18342. \section{Erase Types}
  18343. \label{sec:erase-types}
  18344. We use the \code{Any} type from Chapter~\ref{ch:Ldyn} to
  18345. represent type variables. For example, Figure~\ref{fig:map-erase}
  18346. shows the output of the \code{erase-types} pass on the polymorphic
  18347. \code{map} (Figure~\ref{fig:map-poly}). The occurrences of
  18348. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  18349. \code{All} types are removed from the type of \code{map}.
  18350. \begin{figure}[tbp]
  18351. \begin{lstlisting}
  18352. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  18353. : (Vector Any Any)
  18354. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18355. (define (inc [x : Integer]) : Integer (+ x 1))
  18356. (vector-ref ((cast map
  18357. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  18358. ((Integer -> Integer) (Vector Integer Integer)
  18359. -> (Vector Integer Integer)))
  18360. inc (vector 0 41)) 1)
  18361. \end{lstlisting}
  18362. \caption{The polymorphic \code{map} example after type erasure.}
  18363. \label{fig:map-erase}
  18364. \end{figure}
  18365. This process of type erasure creates a challenge at points of
  18366. instantiation. For example, consider the instantiation of
  18367. \code{map} in Figure~\ref{fig:map-type-check}.
  18368. The type of \code{map} is
  18369. \begin{lstlisting}
  18370. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  18371. \end{lstlisting}
  18372. and it is instantiated to
  18373. \begin{lstlisting}
  18374. ((Integer -> Integer) (Vector Integer Integer)
  18375. -> (Vector Integer Integer))
  18376. \end{lstlisting}
  18377. After erasure, the type of \code{map} is
  18378. \begin{lstlisting}
  18379. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  18380. \end{lstlisting}
  18381. but we need to convert it to the instantiated type. This is easy to
  18382. do in the target language \LangCast{} with a single \code{cast}. In
  18383. Figure~\ref{fig:map-erase}, the instantiation of \code{map}
  18384. has been compiled to a \code{cast} from the type of \code{map} to
  18385. the instantiated type. The source and target type of a cast must be
  18386. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  18387. because both the source and target are obtained from the same
  18388. polymorphic type of \code{map}, replacing the type parameters with
  18389. \code{Any} in the former and with the deduced type arguments in the
  18390. later. (Recall that the \code{Any} type is consistent with any type.)
  18391. To implement the \code{erase-types} pass, we recommend defining a
  18392. recursive auxiliary function named \code{erase-type} that applies the
  18393. following two transformations. It replaces type variables with
  18394. \code{Any}
  18395. \begin{lstlisting}
  18396. |$x$|
  18397. |$\Rightarrow$|
  18398. Any
  18399. \end{lstlisting}
  18400. and it removes the polymorphic \code{All} types.
  18401. \begin{lstlisting}
  18402. (All |$xs$| |$T_1$|)
  18403. |$\Rightarrow$|
  18404. |$T'_1$|
  18405. \end{lstlisting}
  18406. Apply the \code{erase-type} function to all of the type annotations in
  18407. the program.
  18408. Regarding the translation of expressions, the case for \code{Inst} is
  18409. the interesting one. We translate it into a \code{Cast}, as shown
  18410. below. The type of the subexpression $e$ is the polymorphic type
  18411. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  18412. $T$, the type $T'$. The target type $T''$ is the result of
  18413. substituting the arguments types $ts$ for the type parameters $xs$ in
  18414. $T$ followed by doing type erasure.
  18415. \begin{lstlisting}
  18416. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  18417. |$\Rightarrow$|
  18418. (Cast |$e'$| |$T'$| |$T''$|)
  18419. \end{lstlisting}
  18420. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  18421. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  18422. Finally, each polymorphic function is translated to a regular
  18423. functions in which type erasure has been applied to all the type
  18424. annotations and the body.
  18425. \begin{lstlisting}
  18426. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  18427. |$\Rightarrow$|
  18428. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  18429. \end{lstlisting}
  18430. \begin{exercise}\normalfont\normalsize
  18431. Implement a compiler for the polymorphic language \LangPoly{} by
  18432. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  18433. programs that use polymorphic functions. Some of them should make
  18434. use of first-class polymorphism.
  18435. \end{exercise}
  18436. \begin{figure}[p]
  18437. \begin{tikzpicture}[baseline=(current bounding box.center)]
  18438. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  18439. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  18440. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  18441. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  18442. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  18443. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  18444. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  18445. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  18446. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  18447. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  18448. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  18449. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  18450. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  18451. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  18452. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  18453. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  18454. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  18455. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  18456. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  18457. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  18458. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  18459. \path[->,bend right=15] (Rpoly) edge [above] node
  18460. {\ttfamily\footnotesize type\_check} (Rpolyp);
  18461. \path[->,bend right=15] (Rpolyp) edge [above] node
  18462. {\ttfamily\footnotesize erase\_types} (Rgradualp);
  18463. \path[->,bend right=15] (Rgradualp) edge [above] node
  18464. {\ttfamily\footnotesize lower\_casts} (Rwhilepp);
  18465. \path[->,bend right=15] (Rwhilepp) edge [right] node
  18466. {\ttfamily\footnotesize differentiate\_proxies} (Rwhileproxy);
  18467. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  18468. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  18469. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  18470. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  18471. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  18472. {\ttfamily\footnotesize reveal\_functions} (Rwhileproxy-4);
  18473. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  18474. {\ttfamily\footnotesize reveal\_casts} (Rwhileproxy-5);
  18475. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  18476. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  18477. \path[->,bend left=15] (F1-1) edge [below] node
  18478. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  18479. \path[->,bend right=15] (F1-2) edge [above] node
  18480. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  18481. \path[->,bend right=15] (F1-3) edge [above] node
  18482. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  18483. \path[->,bend right=15] (F1-4) edge [above] node
  18484. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  18485. \path[->,bend right=15] (F1-5) edge [right] node
  18486. {\ttfamily\footnotesize explicate\_control} (C3-2);
  18487. \path[->,bend left=15] (C3-2) edge [left] node
  18488. {\ttfamily\footnotesize select\_instr.} (x86-2);
  18489. \path[->,bend right=15] (x86-2) edge [left] node
  18490. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  18491. \path[->,bend right=15] (x86-2-1) edge [below] node
  18492. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  18493. \path[->,bend right=15] (x86-2-2) edge [left] node
  18494. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  18495. \path[->,bend left=15] (x86-3) edge [above] node
  18496. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  18497. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  18498. \end{tikzpicture}
  18499. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  18500. \label{fig:Rpoly-passes}
  18501. \end{figure}
  18502. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  18503. for the compilation of \LangPoly{}.
  18504. % TODO: challenge problem: specialization of instantiations
  18505. % Further Reading
  18506. \fi
  18507. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18508. \clearpage
  18509. \appendix
  18510. \chapter{Appendix}
  18511. \if\edition\racketEd
  18512. \section{Interpreters}
  18513. \label{appendix:interp}
  18514. \index{subject}{interpreter}
  18515. We provide interpreters for each of the source languages \LangInt{},
  18516. \LangVar{}, $\ldots$ in the files \code{interp\_Lint.rkt},
  18517. \code{interp-Lvar.rkt}, etc. The interpreters for the intermediate
  18518. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  18519. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  18520. and x86 are in the \key{interp.rkt} file.
  18521. \section{Utility Functions}
  18522. \label{appendix:utilities}
  18523. The utility functions described in this section are in the
  18524. \key{utilities.rkt} file of the support code.
  18525. \paragraph{\code{interp-tests}}
  18526. The \key{interp-tests} function runs the compiler passes and the
  18527. interpreters on each of the specified tests to check whether each pass
  18528. is correct. The \key{interp-tests} function has the following
  18529. parameters:
  18530. \begin{description}
  18531. \item[name (a string)] a name to identify the compiler,
  18532. \item[typechecker] a function of exactly one argument that either
  18533. raises an error using the \code{error} function when it encounters a
  18534. type error, or returns \code{\#f} when it encounters a type
  18535. error. If there is no type error, the type checker returns the
  18536. program.
  18537. \item[passes] a list with one entry per pass. An entry is a list with
  18538. four things:
  18539. \begin{enumerate}
  18540. \item a string giving the name of the pass,
  18541. \item the function that implements the pass (a translator from AST
  18542. to AST),
  18543. \item a function that implements the interpreter (a function from
  18544. AST to result value) for the output language,
  18545. \item and a type checker for the output language. Type checkers for
  18546. the $R$ and $C$ languages are provided in the support code. For
  18547. example, the type checkers for \LangVar{} and \LangCVar{} are in
  18548. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  18549. type checker entry is optional. The support code does not provide
  18550. type checkers for the x86 languages.
  18551. \end{enumerate}
  18552. \item[source-interp] an interpreter for the source language. The
  18553. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  18554. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  18555. \item[tests] a list of test numbers that specifies which tests to
  18556. run. (see below)
  18557. \end{description}
  18558. %
  18559. The \key{interp-tests} function assumes that the subdirectory
  18560. \key{tests} has a collection of Racket programs whose names all start
  18561. with the family name, followed by an underscore and then the test
  18562. number, ending with the file extension \key{.rkt}. Also, for each test
  18563. program that calls \code{read} one or more times, there is a file with
  18564. the same name except that the file extension is \key{.in} that
  18565. provides the input for the Racket program. If the test program is
  18566. expected to fail type checking, then there should be an empty file of
  18567. the same name but with extension \key{.tyerr}.
  18568. \paragraph{\code{compiler-tests}}
  18569. runs the compiler passes to generate x86 (a \key{.s} file) and then
  18570. runs the GNU C compiler (gcc) to generate machine code. It runs the
  18571. machine code and checks that the output is $42$. The parameters to the
  18572. \code{compiler-tests} function are similar to those of the
  18573. \code{interp-tests} function, and consist of
  18574. \begin{itemize}
  18575. \item a compiler name (a string),
  18576. \item a type checker,
  18577. \item description of the passes,
  18578. \item name of a test-family, and
  18579. \item a list of test numbers.
  18580. \end{itemize}
  18581. \paragraph{\code{compile-file}}
  18582. takes a description of the compiler passes (see the comment for
  18583. \key{interp-tests}) and returns a function that, given a program file
  18584. name (a string ending in \key{.rkt}), applies all of the passes and
  18585. writes the output to a file whose name is the same as the program file
  18586. name but with \key{.rkt} replaced with \key{.s}.
  18587. \paragraph{\code{read-program}}
  18588. takes a file path and parses that file (it must be a Racket program)
  18589. into an abstract syntax tree.
  18590. \paragraph{\code{parse-program}}
  18591. takes an S-expression representation of an abstract syntax tree and converts it into
  18592. the struct-based representation.
  18593. \paragraph{\code{assert}}
  18594. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  18595. and displays the message \key{msg} if the Boolean \key{bool} is false.
  18596. \paragraph{\code{lookup}}
  18597. % remove discussion of lookup? -Jeremy
  18598. takes a key and an alist, and returns the first value that is
  18599. associated with the given key, if there is one. If not, an error is
  18600. triggered. The alist may contain both immutable pairs (built with
  18601. \key{cons}) and mutable pairs (built with \key{mcons}).
  18602. %The \key{map2} function ...
  18603. \fi %\racketEd
  18604. \section{x86 Instruction Set Quick-Reference}
  18605. \label{sec:x86-quick-reference}
  18606. \index{subject}{x86}
  18607. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  18608. do. We write $A \to B$ to mean that the value of $A$ is written into
  18609. location $B$. Address offsets are given in bytes. The instruction
  18610. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  18611. registers (such as \code{\%rax}), or memory references (such as
  18612. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  18613. reference per instruction. Other operands must be immediates or
  18614. registers.
  18615. \begin{table}[tbp]
  18616. \centering
  18617. \begin{tabular}{l|l}
  18618. \textbf{Instruction} & \textbf{Operation} \\ \hline
  18619. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  18620. \texttt{negq} $A$ & $- A \to A$ \\
  18621. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  18622. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  18623. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  18624. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  18625. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  18626. \texttt{retq} & Pops the return address and jumps to it \\
  18627. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  18628. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  18629. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  18630. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  18631. be an immediate) \\
  18632. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  18633. matches the condition code of the instruction, otherwise go to the
  18634. next instructions. The condition codes are \key{e} for ``equal'',
  18635. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  18636. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  18637. \texttt{jl} $L$ & \\
  18638. \texttt{jle} $L$ & \\
  18639. \texttt{jg} $L$ & \\
  18640. \texttt{jge} $L$ & \\
  18641. \texttt{jmp} $L$ & Jump to label $L$ \\
  18642. \texttt{movq} $A$, $B$ & $A \to B$ \\
  18643. \texttt{movzbq} $A$, $B$ &
  18644. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  18645. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  18646. and the extra bytes of $B$ are set to zero.} \\
  18647. & \\
  18648. & \\
  18649. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  18650. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  18651. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  18652. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  18653. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  18654. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  18655. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  18656. description of the condition codes. $A$ must be a single byte register
  18657. (e.g., \texttt{al} or \texttt{cl}).} \\
  18658. \texttt{setl} $A$ & \\
  18659. \texttt{setle} $A$ & \\
  18660. \texttt{setg} $A$ & \\
  18661. \texttt{setge} $A$ &
  18662. \end{tabular}
  18663. \vspace{5pt}
  18664. \caption{Quick-reference for the x86 instructions used in this book.}
  18665. \label{tab:x86-instr}
  18666. \end{table}
  18667. \if\edition\racketEd
  18668. \cleardoublepage
  18669. \section{Concrete Syntax for Intermediate Languages}
  18670. The concrete syntax of \LangAny{} is defined in
  18671. Figure~\ref{fig:Rany-concrete-syntax}.
  18672. \begin{figure}[tp]
  18673. \centering
  18674. \fbox{
  18675. \begin{minipage}{0.97\textwidth}\small
  18676. \[
  18677. \begin{array}{lcl}
  18678. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  18679. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}} \\
  18680. &\MID& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \MID \ANYTY{} \\
  18681. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  18682. \MID \LP\key{Vector}\; \ANYTY{}\ldots\RP \\
  18683. &\MID& \LP\ANYTY{}\ldots \; \key{->}\; \ANYTY{}\RP\\
  18684. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \MID \CPROJECT{\Exp}{\FType}\\
  18685. &\MID& \LP\key{any-vector-length}\;\Exp\RP
  18686. \MID \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  18687. &\MID& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  18688. &\MID& \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP
  18689. \MID \LP\key{void?}\;\Exp\RP \\
  18690. &\MID& \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \\
  18691. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  18692. \LangAnyM{} &::=& \gray{\Def\ldots \; \Exp}
  18693. \end{array}
  18694. \]
  18695. \end{minipage}
  18696. }
  18697. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  18698. (Figure~\ref{fig:Rlam-syntax}).}
  18699. \label{fig:Rany-concrete-syntax}
  18700. \end{figure}
  18701. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and
  18702. \LangCFun{} is defined in Figures~\ref{fig:c0-concrete-syntax},
  18703. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax}, and
  18704. \ref{fig:c3-concrete-syntax}, respectively.
  18705. \begin{figure}[tbp]
  18706. \fbox{
  18707. \begin{minipage}{0.96\textwidth}
  18708. \small
  18709. \[
  18710. \begin{array}{lcl}
  18711. \Atm &::=& \gray{ \Int \MID \Var \MID \itm{bool} } \\
  18712. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  18713. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  18714. &\MID& \gray{ \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP } \\
  18715. &\MID& \LP \key{allocate}~\Int~\Type \RP \\
  18716. &\MID& (\key{vector-ref}\;\Atm\;\Int) \MID (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  18717. &\MID& \LP \key{global-value}~\Var \RP \MID \LP \key{void} \RP \\
  18718. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \MID \LP\key{collect}~\Int \RP\\
  18719. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  18720. \MID \gray{ \key{goto}~\itm{label}\key{;} }\\
  18721. &\MID& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  18722. \LangCVecM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  18723. \end{array}
  18724. \]
  18725. \end{minipage}
  18726. }
  18727. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  18728. \label{fig:c2-concrete-syntax}
  18729. \end{figure}
  18730. \begin{figure}[tp]
  18731. \fbox{
  18732. \begin{minipage}{0.96\textwidth}
  18733. \small
  18734. \[
  18735. \begin{array}{lcl}
  18736. \Atm &::=& \gray{ \Int \MID \Var \MID \key{\#t} \MID \key{\#f} }
  18737. \\
  18738. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  18739. \Exp &::= & \gray{ \Atm \MID \LP\key{read}\RP \MID \LP\key{-}\;\Atm\RP \MID \LP\key{+} \; \Atm\;\Atm\RP
  18740. \MID \LP\key{not}\;\Atm\RP \MID \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  18741. &\MID& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  18742. \MID \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  18743. &\MID& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \MID \LP\key{global-value} \,\itm{name}\RP \MID \LP\key{void}\RP } \\
  18744. &\MID& \LP\key{fun-ref}~\itm{label}~\Int\RP \MID \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  18745. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \MID \RETURN{\Exp}
  18746. \MID \LP\key{collect} \,\itm{int}\RP }\\
  18747. \Tail &::= & \gray{\RETURN{\Exp} \MID \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  18748. &\MID& \gray{\LP\key{goto}\,\itm{label}\RP
  18749. \MID \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  18750. &\MID& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  18751. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  18752. \LangCFunM{} & ::= & \Def\ldots
  18753. \end{array}
  18754. \]
  18755. \end{minipage}
  18756. }
  18757. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  18758. \label{fig:c3-concrete-syntax}
  18759. \end{figure}
  18760. \fi % racketEd
  18761. \backmatter
  18762. \addtocontents{toc}{\vspace{11pt}}
  18763. %% \addtocontents{toc}{\vspace{11pt}}
  18764. %% \nocite{*} is a way to get all the entries in the .bib file to print in the bibliography:
  18765. \nocite{*}\let\bibname\refname
  18766. \addcontentsline{toc}{fmbm}{\refname}
  18767. \printbibliography
  18768. \printindex{authors}{Author Index}
  18769. \printindex{subject}{Subject Index}
  18770. \end{document}
  18771. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  18772. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  18773. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  18774. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  18775. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  18776. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  18777. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  18778. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  18779. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  18780. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  18781. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  18782. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  18783. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  18784. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  18785. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  18786. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  18787. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  18788. % LocalWords: numberstyle Cormen Sudoku Balakrishnan ve aka DSATUR
  18789. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS
  18790. % LocalWords: morekeywords fullflexible