book.tex 825 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912229132291422915229162291722918229192292022921229222292322924229252292622927229282292922930229312293222933229342293522936229372293822939229402294122942229432294422945229462294722948229492295022951229522295322954229552295622957229582295922960229612296222963229642296522966229672296822969229702297122972229732297422975229762297722978229792298022981229822298322984229852298622987229882298922990229912299222993229942299522996229972299822999230002300123002230032300423005230062300723008230092301023011230122301323014230152301623017230182301923020230212302223023230242302523026230272302823029230302303123032230332303423035230362303723038230392304023041230422304323044230452304623047230482304923050230512305223053230542305523056230572305823059230602306123062230632306423065230662306723068230692307023071230722307323074230752307623077230782307923080230812308223083230842308523086230872308823089230902309123092230932309423095230962309723098230992310023101231022310323104231052310623107231082310923110231112311223113231142311523116231172311823119231202312123122231232312423125231262312723128231292313023131231322313323134231352313623137231382313923140231412314223143231442314523146231472314823149231502315123152231532315423155231562315723158231592316023161231622316323164231652316623167231682316923170231712317223173231742317523176231772317823179231802318123182231832318423185231862318723188231892319023191231922319323194231952319623197231982319923200232012320223203232042320523206232072320823209232102321123212232132321423215232162321723218232192322023221232222322323224232252322623227232282322923230232312323223233232342323523236232372323823239232402324123242232432324423245232462324723248232492325023251232522325323254232552325623257232582325923260232612326223263232642326523266232672326823269232702327123272232732327423275232762327723278232792328023281232822328323284232852328623287232882328923290232912329223293232942329523296232972329823299233002330123302233032330423305233062330723308233092331023311233122331323314233152331623317233182331923320233212332223323233242332523326233272332823329233302333123332233332333423335233362333723338233392334023341233422334323344233452334623347233482334923350233512335223353233542335523356233572335823359233602336123362233632336423365233662336723368233692337023371233722337323374233752337623377233782337923380233812338223383233842338523386233872338823389233902339123392233932339423395233962339723398233992340023401234022340323404234052340623407234082340923410234112341223413234142341523416234172341823419234202342123422234232342423425234262342723428234292343023431234322343323434234352343623437234382343923440234412344223443234442344523446234472344823449234502345123452234532345423455234562345723458234592346023461234622346323464234652346623467234682346923470234712347223473234742347523476234772347823479234802348123482234832348423485234862348723488234892349023491234922349323494234952349623497234982349923500235012350223503235042350523506235072350823509235102351123512235132351423515235162351723518235192352023521235222352323524235252352623527235282352923530235312353223533235342353523536235372353823539235402354123542235432354423545235462354723548235492355023551235522355323554235552355623557235582355923560235612356223563235642356523566235672356823569235702357123572235732357423575235762357723578235792358023581235822358323584235852358623587235882358923590235912359223593235942359523596235972359823599236002360123602236032360423605236062360723608236092361023611
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. %
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \usepackage[all]{xy}
  18. \usepackage{url}
  19. \definecolor{lightgray}{gray}{1}
  20. \newcommand{\black}[1]{{\color{black} #1}}
  21. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  22. \newcommand{\gray}[1]{{\color{gray} #1}}
  23. \def\racketEd{0}
  24. \def\pythonEd{1}
  25. \def\edition{0}
  26. % material that is specific to the Racket edition of the book
  27. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  28. % would like a command for: \if\edition\racketEd\color{olive}
  29. % and : \fi\color{black}
  30. %\newcommand{\pythonColor}[0]{\color{purple}}
  31. \newcommand{\pythonColor}[0]{}
  32. % material that is specific to the Python edition of the book
  33. \newcommand{\python}[1]{{\if\edition\pythonEd\pythonColor #1\fi}}
  34. %% For multiple indices:
  35. %\usepackage{multind} moved this to the file TimesAPriori_MIT.cls. -Jeremy
  36. \makeindex{subject}
  37. %\makeindex{authors}
  38. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  39. \if\edition\racketEd
  40. \lstset{%
  41. language=Lisp,
  42. basicstyle=\ttfamily\small,
  43. morekeywords={lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  44. deletekeywords={read,mapping,vector},
  45. escapechar=|,
  46. columns=flexible,
  47. %moredelim=[is][\color{red}]{~}{~},
  48. showstringspaces=false
  49. }
  50. \fi
  51. \if\edition\pythonEd
  52. \lstset{%
  53. language=Python,
  54. basicstyle=\ttfamily\small,
  55. morekeywords={match,case,bool,int,let},
  56. deletekeywords={},
  57. escapechar=|,
  58. columns=flexible,
  59. %moredelim=[is][\color{red}]{~}{~},
  60. showstringspaces=false
  61. }
  62. \fi
  63. %%% Any shortcut own defined macros place here
  64. %% sample of author macro:
  65. \input{defs}
  66. \newtheorem{exercise}[theorem]{Exercise}
  67. \numberwithin{theorem}{chapter}
  68. \numberwithin{definition}{chapter}
  69. \numberwithin{equation}{chapter}
  70. % Adjusted settings
  71. \setlength{\columnsep}{4pt}
  72. %% \begingroup
  73. %% \setlength{\intextsep}{0pt}%
  74. %% \setlength{\columnsep}{0pt}%
  75. %% \begin{wrapfigure}{r}{0.5\textwidth}
  76. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  77. %% \caption{Basic layout}
  78. %% \end{wrapfigure}
  79. %% \lipsum[1]
  80. %% \endgroup
  81. \newbox\oiintbox
  82. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  83. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  84. \def\oiint{\copy\oiintbox}
  85. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  86. %\usepackage{showframe}
  87. \def\ShowFrameLinethickness{0.125pt}
  88. \addbibresource{book.bib}
  89. \if\edition\pythonEd
  90. \addbibresource{python.bib}
  91. \fi
  92. \begin{document}
  93. \frontmatter
  94. %\HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  95. \HalfTitle{Essentials of Compilation}
  96. \halftitlepage
  97. \clearemptydoublepage
  98. \Title{Essentials of Compilation}
  99. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  100. %\edition{First Edition}
  101. \BookAuthor{Jeremy G. Siek}
  102. \imprint{The MIT Press\\
  103. Cambridge, Massachusetts\\
  104. London, England}
  105. \begin{copyrightpage}
  106. \textcopyright\ 2023 Massachusetts Institute of Technology \\[2ex]
  107. This work is subject to a Creative Commons CC-BY-ND-NC license. \\[2ex]
  108. Subject to such license, all rights are reserved. \\[2ex]
  109. \includegraphics{CCBY-logo}
  110. The MIT Press would like to thank the anonymous peer reviewers who
  111. provided comments on drafts of this book. The generous work of
  112. academic experts is essential for establishing the authority and
  113. quality of our publications. We acknowledge with gratitude the
  114. contributions of these otherwise uncredited readers.
  115. This book was set in Times LT Std Roman by the author. Printed and
  116. bound in the United States of America.
  117. Library of Congress Cataloging-in-Publication Data\\
  118. \ \\
  119. Names: Siek, Jeremy, author. \\
  120. Title: Essentials of compilation : an incremental approach in Racket / Jeremy G. Siek. \\
  121. Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes bibliographical references and index. \\
  122. Identifiers: LCCN 2022015399 (print) | LCCN 2022015400 (ebook) | ISBN 9780262047760 (hardcover) | ISBN 9780262373272 (epub) | ISBN 9780262373289 (pdf) \\
  123. Subjects: LCSH: Racket (Computer program language) | Compilers (Computer programs) \\
  124. Classification: LCC QA76.73.R33 S54 2023 (print) | LCC QA76.73.R33 (ebook) | DDC 005.13/3--dc23/eng/20220705 \\
  125. LC record available at https://lccn.loc.gov/2022015399\\
  126. LC ebook record available at https://lccn.loc.gov/2022015400\\
  127. \ \\
  128. 10 9 8 7 6 5 4 3 2 1
  129. %% Jeremy G. Siek. Available for free viewing
  130. %% or personal downloading under the
  131. %% \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  132. %% license.
  133. %% Copyright in this monograph has been licensed exclusively to The MIT
  134. %% Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  135. %% version to the public in 2022. All inquiries regarding rights should
  136. %% be addressed to The MIT Press, Rights and Permissions Department.
  137. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  138. %% All rights reserved. No part of this book may be reproduced in any
  139. %% form by any electronic or mechanical means (including photocopying,
  140. %% recording, or information storage and retrieval) without permission in
  141. %% writing from the publisher.
  142. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  143. %% United States of America.
  144. %% Library of Congress Cataloging-in-Publication Data is available.
  145. %% ISBN:
  146. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  147. \end{copyrightpage}
  148. \dedication{This book is dedicated to Katie, my partner in everything,
  149. my children, who grew up during the writing of this book, and the
  150. programming language students at Indiana University, whose
  151. thoughtful questions made this a better book.}
  152. %% \begin{epigraphpage}
  153. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  154. %% \textit{Book Name if any}}
  155. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  156. %% \end{epigraphpage}
  157. \tableofcontents
  158. %\listoffigures
  159. %\listoftables
  160. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  161. \chapter*{Preface}
  162. \addcontentsline{toc}{fmbm}{Preface}
  163. There is a magical moment when a programmer presses the \emph{run}
  164. button and the software begins to execute. Somehow a program written
  165. in a high-level language is running on a computer that is capable only
  166. of shuffling bits. Here we reveal the wizardry that makes that moment
  167. possible. Beginning with the groundbreaking work of Backus and
  168. colleagues in the 1950s, computer scientists developed techniques for
  169. constructing programs called \emph{compilers} that automatically
  170. translate high-level programs into machine code.
  171. We take you on a journey through constructing your own compiler for a
  172. small but powerful language. Along the way we explain the essential
  173. concepts, algorithms, and data structures that underlie compilers. We
  174. develop your understanding of how programs are mapped onto computer
  175. hardware, which is helpful in reasoning about properties at the
  176. junction of hardware and software, such as execution time, software
  177. errors, and security vulnerabilities. For those interested in
  178. pursuing compiler construction as a career, our goal is to provide a
  179. stepping-stone to advanced topics such as just-in-time compilation,
  180. program analysis, and program optimization. For those interested in
  181. designing and implementing programming languages, we connect language
  182. design choices to their impact on the compiler and the generated code.
  183. A compiler is typically organized as a sequence of stages that
  184. progressively translate a program to the code that runs on
  185. hardware. We take this approach to the extreme by partitioning our
  186. compiler into a large number of \emph{nanopasses}, each of which
  187. performs a single task. This enables the testing of each pass in
  188. isolation and focuses our attention, making the compiler far easier to
  189. understand.
  190. The most familiar approach to describing compilers is to dedicate each
  191. chapter to one pass. The problem with that approach is that it
  192. obfuscates how language features motivate design choices in a
  193. compiler. We instead take an \emph{incremental} approach in which we
  194. build a complete compiler in each chapter, starting with a small input
  195. language that includes only arithmetic and variables. We add new
  196. language features in subsequent chapters, extending the compiler as
  197. necessary.
  198. Our choice of language features is designed to elicit fundamental
  199. concepts and algorithms used in compilers.
  200. \begin{itemize}
  201. \item We begin with integer arithmetic and local variables in
  202. chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  203. the fundamental tools of compiler construction: \emph{abstract
  204. syntax trees} and \emph{recursive functions}.
  205. {\if\edition\pythonEd\pythonColor
  206. \item In Chapter~\ref{ch:parsing} we learn how to use the Lark
  207. parser framework to create a parser for the language of integer
  208. arithmetic and local variables. We learn about the parsing
  209. algorithms inside Lark, including Earley and LALR(1).
  210. %
  211. \fi}
  212. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  213. \emph{graph coloring} to assign variables to machine registers.
  214. \item Chapter~\ref{ch:Lif} adds conditional expressions, which
  215. motivates an elegant recursive algorithm for translating them into
  216. conditional \code{goto} statements.
  217. \item Chapter~\ref{ch:Lwhile} adds loops\racket{ and mutable
  218. variables}. This elicits the need for \emph{dataflow
  219. analysis} in the register allocator.
  220. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  221. \emph{garbage collection}.
  222. \item Chapter~\ref{ch:Lfun} adds functions as first-class values
  223. without lexical scoping, similar to functions in the C programming
  224. language~\citep{Kernighan:1988nx}. The reader learns about the
  225. procedure call stack and \emph{calling conventions} and how they interact
  226. with register allocation and garbage collection. The chapter also
  227. describes how to generate efficient tail calls.
  228. \item Chapter~\ref{ch:Llambda} adds anonymous functions with lexical
  229. scoping, that is, \emph{lambda} expressions. The reader learns about
  230. \emph{closure conversion}, in which lambdas are translated into a
  231. combination of functions and tuples.
  232. % Chapter about classes and objects?
  233. \item Chapter~\ref{ch:Ldyn} adds \emph{dynamic typing}. Prior to this
  234. point the input languages are statically typed. The reader extends
  235. the statically typed language with an \code{Any} type that serves
  236. as a target for compiling the dynamically typed language.
  237. %% {\if\edition\pythonEd\pythonColor
  238. %% \item Chapter~\ref{ch:Lobject} adds support for \emph{objects} and
  239. %% \emph{classes}.
  240. %% \fi}
  241. \item Chapter~\ref{ch:Lgrad} uses the \code{Any} type introduced in
  242. chapter~\ref{ch:Ldyn} to implement a \emph{gradually typed language}
  243. in which different regions of a program may be static or dynamically
  244. typed. The reader implements runtime support for \emph{proxies} that
  245. allow values to safely move between regions.
  246. \item Chapter~\ref{ch:Lpoly} adds \emph{generics} with autoboxing,
  247. leveraging the \code{Any} type and type casts developed in chapters
  248. \ref{ch:Ldyn} and \ref{ch:Lgrad}.
  249. \end{itemize}
  250. There are many language features that we do not include. Our choices
  251. balance the incidental complexity of a feature versus the fundamental
  252. concepts that it exposes. For example, we include tuples and not
  253. records because although they both elicit the study of heap allocation and
  254. garbage collection, records come with more incidental complexity.
  255. Since 2009, drafts of this book have served as the textbook for
  256. sixteen-week compiler courses for upper-level undergraduates and
  257. first-year graduate students at the University of Colorado and Indiana
  258. University.
  259. %
  260. Students come into the course having learned the basics of
  261. programming, data structures and algorithms, and discrete
  262. mathematics.
  263. %
  264. At the beginning of the course, students form groups of two to four
  265. people. The groups complete approximately one chapter every two
  266. weeks, starting with chapter~\ref{ch:Lvar} and including chapters
  267. according to the students interests while respecting the dependencies
  268. between chapters shown in
  269. Figure~\ref{fig:chapter-dependences}. Chapter~\ref{ch:Lfun}
  270. (functions) depends on chapter~\ref{ch:Lvec} (tuples) only in the
  271. implementation of efficient tail calls.
  272. %
  273. The last two weeks of the course involve a final project in which
  274. students design and implement a compiler extension of their choosing.
  275. The last few chapters can be used in support of these projects. Many
  276. chapters include a challenge problem that we assign to the graduate
  277. students.
  278. For compiler courses at universities on the quarter system
  279. (about ten weeks in length), we recommend completing the course
  280. through chapter~\ref{ch:Lvec} or chapter~\ref{ch:Lfun} and providing
  281. some scaffolding code to the students for each compiler pass.
  282. %
  283. The course can be adapted to emphasize functional languages by
  284. skipping chapter~\ref{ch:Lwhile} (loops) and including
  285. chapter~\ref{ch:Llambda} (lambda). The course can be adapted to
  286. dynamically typed languages by including chapter~\ref{ch:Ldyn}.
  287. %
  288. %% \python{A course that emphasizes object-oriented languages would
  289. %% include Chapter~\ref{ch:Lobject}.}
  290. This book has been used in compiler courses at California Polytechnic
  291. State University, Portland State University, Rose–Hulman Institute of
  292. Technology, University of Freiburg, University of Massachusetts
  293. Lowell, and the University of Vermont.
  294. \begin{figure}[tp]
  295. \begin{tcolorbox}[colback=white]
  296. {\if\edition\racketEd
  297. \begin{tikzpicture}[baseline=(current bounding box.center)]
  298. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  299. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  300. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  301. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  302. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  303. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  304. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  305. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  306. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  307. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  308. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  309. \path[->] (C1) edge [above] node {} (C2);
  310. \path[->] (C2) edge [above] node {} (C3);
  311. \path[->] (C3) edge [above] node {} (C4);
  312. \path[->] (C4) edge [above] node {} (C5);
  313. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  314. \path[->] (C5) edge [above] node {} (C7);
  315. \path[->] (C6) edge [above] node {} (C7);
  316. \path[->] (C4) edge [above] node {} (C8);
  317. \path[->] (C4) edge [above] node {} (C9);
  318. \path[->] (C7) edge [above] node {} (C10);
  319. \path[->] (C8) edge [above] node {} (C10);
  320. \path[->] (C10) edge [above] node {} (C11);
  321. \end{tikzpicture}
  322. \fi}
  323. {\if\edition\pythonEd\pythonColor
  324. \begin{tikzpicture}[baseline=(current bounding box.center)]
  325. \node (Prelim) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  326. \node (Var) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  327. \node (Parse) at (8,1.5) {\small Ch.~\ref{ch:parsing} Parsing};
  328. \node (Reg) at (0,0) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  329. \node (Cond) at (4,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  330. \node (Loop) at (8,0) {\small Ch.~\ref{ch:Lwhile} Loops};
  331. \node (Fun) at (0,-1.5) {\small Ch.~\ref{ch:Lfun} Functions};
  332. \node (Tuple) at (4,-1.5) {\small Ch.~\ref{ch:Lvec} Tuples};
  333. \node (Dyn) at (8,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  334. % \node (CO) at (0,-3) {\small Ch.~\ref{ch:Lobject} Objects};
  335. \node (Lam) at (0,-3) {\small Ch.~\ref{ch:Llambda} Lambda};
  336. \node (Gradual) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  337. \node (Generic) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  338. \path[->] (Prelim) edge [above] node {} (Var);
  339. \path[->] (Var) edge [above] node {} (Reg);
  340. \path[->] (Var) edge [above] node {} (Parse);
  341. \path[->] (Reg) edge [above] node {} (Cond);
  342. \path[->] (Cond) edge [above] node {} (Tuple);
  343. \path[->,style=dotted] (Tuple) edge [above] node {} (Fun);
  344. \path[->] (Cond) edge [above] node {} (Fun);
  345. \path[->] (Tuple) edge [above] node {} (Lam);
  346. \path[->] (Fun) edge [above] node {} (Lam);
  347. \path[->] (Cond) edge [above] node {} (Dyn);
  348. \path[->] (Cond) edge [above] node {} (Loop);
  349. \path[->] (Lam) edge [above] node {} (Gradual);
  350. \path[->] (Dyn) edge [above] node {} (Gradual);
  351. % \path[->] (Dyn) edge [above] node {} (CO);
  352. \path[->] (Gradual) edge [above] node {} (Generic);
  353. \end{tikzpicture}
  354. \fi}
  355. \end{tcolorbox}
  356. \caption{Diagram of chapter dependencies.}
  357. \label{fig:chapter-dependences}
  358. \end{figure}
  359. \racket{We use the \href{https://racket-lang.org/}{Racket} language both for
  360. the implementation of the compiler and for the input language, so the
  361. reader should be proficient with Racket or Scheme. There are many
  362. excellent resources for learning Scheme and
  363. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.}
  364. %
  365. \python{This edition of the book uses \href{https://www.python.org/}{Python}
  366. both for the implementation of the compiler and for the input language, so the
  367. reader should be proficient with Python. There are many
  368. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.}%
  369. %
  370. The support code for this book is in the GitHub repository at
  371. the following location:
  372. \begin{center}\small\texttt
  373. https://github.com/IUCompilerCourse/
  374. \end{center}
  375. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  376. is helpful but not necessary for the reader to have taken a computer
  377. systems course~\citep{Bryant:2010aa}. We introduce the parts of x86-64
  378. assembly language that are needed in the compiler.
  379. %
  380. We follow the System V calling
  381. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  382. that we generate works with the runtime system (written in C) when it
  383. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  384. operating systems on Intel hardware.
  385. %
  386. On the Windows operating system, \code{gcc} uses the Microsoft x64
  387. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  388. assembly code that we generate does \emph{not} work with the runtime
  389. system on Windows. One workaround is to use a virtual machine with
  390. Linux as the guest operating system.
  391. \section*{Acknowledgments}
  392. The tradition of compiler construction at Indiana University goes back
  393. to research and courses on programming languages by Daniel Friedman in
  394. the 1970s and 1980s. One of his students, Kent Dybvig, implemented
  395. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  396. compiler for Scheme. Throughout the 1990s and 2000s, Dybvig taught
  397. the compiler course and continued the development of Chez Scheme.
  398. %
  399. The compiler course evolved to incorporate novel pedagogical ideas
  400. while also including elements of real-world compilers. One of
  401. Friedman's ideas was to split the compiler into many small
  402. passes. Another idea, called ``the game,'' was to test the code
  403. generated by each pass using interpreters.
  404. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  405. developed infrastructure to support this approach and evolved the
  406. course to use even smaller
  407. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  408. design decisions in this book are inspired by the assignment
  409. descriptions of \citet{Dybvig:2010aa}. In the mid 2000s, a student of
  410. Dybvig named Abdulaziz Ghuloum observed that the front-to-back
  411. organization of the course made it difficult for students to
  412. understand the rationale for the compiler design. Ghuloum proposed the
  413. incremental approach~\citep{Ghuloum:2006bh} on which this book is
  414. based.
  415. I thank the many students who served as teaching assistants for the
  416. compiler course at IU including Carl Factora, Ryan Scott, Cameron
  417. Swords, and Chris Wailes. I thank Andre Kuhlenschmidt for work on the
  418. garbage collector and x86 interpreter, Michael Vollmer for work on
  419. efficient tail calls, and Michael Vitousek for help with the first
  420. offering of the incremental compiler course at IU.
  421. I thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  422. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  423. Michael Wollowski for teaching courses based on drafts of this book
  424. and for their feedback. I thank the National Science Foundation for
  425. the grants that helped to support this work: Grant Numbers 1518844,
  426. 1763922, and 1814460.
  427. I thank Ronald Garcia for helping me survive Dybvig's compiler
  428. course in the early 2000s and especially for finding the bug that
  429. sent our garbage collector on a wild goose chase!
  430. \mbox{}\\
  431. \noindent Jeremy G. Siek \\
  432. Bloomington, Indiana
  433. \mainmatter
  434. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  435. \chapter{Preliminaries}
  436. \label{ch:trees-recur}
  437. \setcounter{footnote}{0}
  438. In this chapter we review the basic tools needed to implement a
  439. compiler. Programs are typically input by a programmer as text, that
  440. is, a sequence of characters. The program-as-text representation is
  441. called \emph{concrete syntax}. We use concrete syntax to concisely
  442. write down and talk about programs. Inside the compiler, we use
  443. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  444. that efficiently supports the operations that the compiler needs to
  445. perform.\index{subject}{concrete syntax}\index{subject}{abstract
  446. syntax}\index{subject}{abstract syntax
  447. tree}\index{subject}{AST}\index{subject}{program}
  448. The process of translating concrete syntax to abstract syntax is
  449. called \emph{parsing}\index{subject}{parsing}\python{\ and is studied in
  450. chapter~\ref{ch:parsing}}.
  451. \racket{This book does not cover the theory and implementation of parsing.
  452. We refer the readers interested in parsing to the thorough treatment
  453. of parsing by \citet{Aho:2006wb}.}%
  454. %
  455. \racket{A parser is provided in the support code for translating from
  456. concrete to abstract syntax.}%
  457. %
  458. \python{For now we use Python's \code{ast} module to translate from concrete
  459. to abstract syntax.}
  460. ASTs can be represented inside the compiler in many different ways,
  461. depending on the programming language used to write the compiler.
  462. %
  463. \racket{We use Racket's
  464. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  465. feature to represent ASTs (section~\ref{sec:ast}).}
  466. %
  467. \python{We use Python classes and objects to represent ASTs, especially the
  468. classes defined in the standard \code{ast} module for the Python
  469. source language.}%
  470. %
  471. We use grammars to define the abstract syntax of programming languages
  472. (section~\ref{sec:grammar}) and pattern matching to inspect individual
  473. nodes in an AST (section~\ref{sec:pattern-matching}). We use
  474. recursive functions to construct and deconstruct ASTs
  475. (section~\ref{sec:recursion}). This chapter provides a brief
  476. introduction to these components.
  477. \racket{\index{subject}{struct}}
  478. \python{\index{subject}{class}\index{subject}{object}}
  479. \section{Abstract Syntax Trees}
  480. \label{sec:ast}
  481. Compilers use abstract syntax trees to represent programs because they
  482. often need to ask questions such as, for a given part of a program,
  483. what kind of language feature is it? What are its subparts? Consider
  484. the program on the left and the diagram of its AST on the
  485. right~\eqref{eq:arith-prog}. This program is an addition operation
  486. that has two subparts, a \racket{read}\python{input} operation and a
  487. negation. The negation has another subpart, the integer constant
  488. \code{8}. By using a tree to represent the program, we can easily
  489. follow the links to go from one part of a program to its subparts.
  490. \begin{center}
  491. \begin{minipage}{0.4\textwidth}
  492. {\if\edition\racketEd
  493. \begin{lstlisting}
  494. (+ (read) (- 8))
  495. \end{lstlisting}
  496. \fi}
  497. {\if\edition\pythonEd\pythonColor
  498. \begin{lstlisting}
  499. input_int() + -8
  500. \end{lstlisting}
  501. \fi}
  502. \end{minipage}
  503. \begin{minipage}{0.4\textwidth}
  504. \begin{equation}
  505. \begin{tikzpicture}
  506. \node[draw] (plus) at (0 , 0) {\key{+}};
  507. \node[draw] (read) at (-1, -1) {\racket{\footnotesize\key{read}}\python{\key{input\_int()}}};
  508. \node[draw] (minus) at (1 , -1) {$\key{-}$};
  509. \node[draw] (8) at (1 , -2) {\key{8}};
  510. \draw[->] (plus) to (read);
  511. \draw[->] (plus) to (minus);
  512. \draw[->] (minus) to (8);
  513. \end{tikzpicture}
  514. \label{eq:arith-prog}
  515. \end{equation}
  516. \end{minipage}
  517. \end{center}
  518. We use the standard terminology for trees to describe ASTs: each
  519. rectangle above is called a \emph{node}. The arrows connect a node to its
  520. \emph{children}, which are also nodes. The top-most node is the
  521. \emph{root}. Every node except for the root has a \emph{parent} (the
  522. node of which it is the child). If a node has no children, it is a
  523. \emph{leaf} node; otherwise it is an \emph{internal} node.
  524. \index{subject}{node}
  525. \index{subject}{children}
  526. \index{subject}{root}
  527. \index{subject}{parent}
  528. \index{subject}{leaf}
  529. \index{subject}{internal node}
  530. %% Recall that an \emph{symbolic expression} (S-expression) is either
  531. %% \begin{enumerate}
  532. %% \item an atom, or
  533. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  534. %% where $e_1$ and $e_2$ are each an S-expression.
  535. %% \end{enumerate}
  536. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  537. %% null value \code{'()}, etc. We can create an S-expression in Racket
  538. %% simply by writing a backquote (called a quasi-quote in Racket)
  539. %% followed by the textual representation of the S-expression. It is
  540. %% quite common to use S-expressions to represent a list, such as $a, b
  541. %% ,c$ in the following way:
  542. %% \begin{lstlisting}
  543. %% `(a . (b . (c . ())))
  544. %% \end{lstlisting}
  545. %% Each element of the list is in the first slot of a pair, and the
  546. %% second slot is either the rest of the list or the null value, to mark
  547. %% the end of the list. Such lists are so common that Racket provides
  548. %% special notation for them that removes the need for the periods
  549. %% and so many parenthesis:
  550. %% \begin{lstlisting}
  551. %% `(a b c)
  552. %% \end{lstlisting}
  553. %% The following expression creates an S-expression that represents AST
  554. %% \eqref{eq:arith-prog}.
  555. %% \begin{lstlisting}
  556. %% `(+ (read) (- 8))
  557. %% \end{lstlisting}
  558. %% When using S-expressions to represent ASTs, the convention is to
  559. %% represent each AST node as a list and to put the operation symbol at
  560. %% the front of the list. The rest of the list contains the children. So
  561. %% in the above case, the root AST node has operation \code{`+} and its
  562. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  563. %% diagram \eqref{eq:arith-prog}.
  564. %% To build larger S-expressions one often needs to splice together
  565. %% several smaller S-expressions. Racket provides the comma operator to
  566. %% splice an S-expression into a larger one. For example, instead of
  567. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  568. %% we could have first created an S-expression for AST
  569. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  570. %% S-expression.
  571. %% \begin{lstlisting}
  572. %% (define ast1.4 `(- 8))
  573. %% (define ast1_1 `(+ (read) ,ast1.4))
  574. %% \end{lstlisting}
  575. %% In general, the Racket expression that follows the comma (splice)
  576. %% can be any expression that produces an S-expression.
  577. {\if\edition\racketEd
  578. We define a Racket \code{struct} for each kind of node. For this
  579. chapter we require just two kinds of nodes: one for integer constants
  580. (aka literals\index{subject}{literals})
  581. and one for primitive operations. The following is the \code{struct}
  582. definition for integer constants.\footnote{All the AST structures are
  583. defined in the file \code{utilities.rkt} in the support code.}
  584. \begin{lstlisting}
  585. (struct Int (value))
  586. \end{lstlisting}
  587. An integer node contains just one thing: the integer value.
  588. We establish the convention that \code{struct} names, such
  589. as \code{Int}, are capitalized.
  590. To create an AST node for the integer $8$, we write \INT{8}.
  591. \begin{lstlisting}
  592. (define eight (Int 8))
  593. \end{lstlisting}
  594. We say that the value created by \INT{8} is an
  595. \emph{instance} of the
  596. \code{Int} structure.
  597. The following is the \code{struct} definition for primitive operations.
  598. \begin{lstlisting}
  599. (struct Prim (op args))
  600. \end{lstlisting}
  601. A primitive operation node includes an operator symbol \code{op} and a
  602. list of child arguments called \code{args}. For example, to create an
  603. AST that negates the number $8$, we write the following.
  604. \begin{lstlisting}
  605. (define neg-eight (Prim '- (list eight)))
  606. \end{lstlisting}
  607. Primitive operations may have zero or more children. The \code{read}
  608. operator has zero:
  609. \begin{lstlisting}
  610. (define rd (Prim 'read '()))
  611. \end{lstlisting}
  612. The addition operator has two children:
  613. \begin{lstlisting}
  614. (define ast1_1 (Prim '+ (list rd neg-eight)))
  615. \end{lstlisting}
  616. We have made a design choice regarding the \code{Prim} structure.
  617. Instead of using one structure for many different operations
  618. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  619. structure for each operation, as follows:
  620. \begin{lstlisting}
  621. (struct Read ())
  622. (struct Add (left right))
  623. (struct Neg (value))
  624. \end{lstlisting}
  625. The reason that we choose to use just one structure is that many parts
  626. of the compiler can use the same code for the different primitive
  627. operators, so we might as well just write that code once by using a
  628. single structure.
  629. %
  630. \fi}
  631. {\if\edition\pythonEd\pythonColor
  632. We use a Python \code{class} for each kind of node.
  633. The following is the class definition for
  634. constants (aka literals\index{subject}{literals})
  635. from the Python \code{ast} module.
  636. \begin{lstlisting}
  637. class Constant:
  638. def __init__(self, value):
  639. self.value = value
  640. \end{lstlisting}
  641. An integer constant node includes just one thing: the integer value.
  642. To create an AST node for the integer $8$, we write \INT{8}.
  643. \begin{lstlisting}
  644. eight = Constant(8)
  645. \end{lstlisting}
  646. We say that the value created by \INT{8} is an
  647. \emph{instance} of the \code{Constant} class.
  648. The following is the class definition for unary operators.
  649. \begin{lstlisting}
  650. class UnaryOp:
  651. def __init__(self, op, operand):
  652. self.op = op
  653. self.operand = operand
  654. \end{lstlisting}
  655. The specific operation is specified by the \code{op} parameter. For
  656. example, the class \code{USub} is for unary subtraction.
  657. (More unary operators are introduced in later chapters.) To create an AST that
  658. negates the number $8$, we write the following.
  659. \begin{lstlisting}
  660. neg_eight = UnaryOp(USub(), eight)
  661. \end{lstlisting}
  662. The call to the \code{input\_int} function is represented by the
  663. \code{Call} and \code{Name} classes.
  664. \begin{lstlisting}
  665. class Call:
  666. def __init__(self, func, args):
  667. self.func = func
  668. self.args = args
  669. class Name:
  670. def __init__(self, id):
  671. self.id = id
  672. \end{lstlisting}
  673. To create an AST node that calls \code{input\_int}, we write
  674. \begin{lstlisting}
  675. read = Call(Name('input_int'), [])
  676. \end{lstlisting}
  677. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  678. the \code{BinOp} class for binary operators.
  679. \begin{lstlisting}
  680. class BinOp:
  681. def __init__(self, left, op, right):
  682. self.op = op
  683. self.left = left
  684. self.right = right
  685. \end{lstlisting}
  686. Similar to \code{UnaryOp}, the specific operation is specified by the
  687. \code{op} parameter, which for now is just an instance of the
  688. \code{Add} class. So to create the AST
  689. node that adds negative eight to some user input, we write the following.
  690. \begin{lstlisting}
  691. ast1_1 = BinOp(read, Add(), neg_eight)
  692. \end{lstlisting}
  693. \fi}
  694. To compile a program such as \eqref{eq:arith-prog}, we need to know
  695. that the operation associated with the root node is addition and we
  696. need to be able to access its two
  697. children. \racket{Racket}\python{Python} provides pattern matching to
  698. support these kinds of queries, as we see in
  699. section~\ref{sec:pattern-matching}.
  700. We often write down the concrete syntax of a program even when we
  701. actually have in mind the AST, because the concrete syntax is more
  702. concise. We recommend that you always think of programs as abstract
  703. syntax trees.
  704. \section{Grammars}
  705. \label{sec:grammar}
  706. \index{subject}{integer}
  707. %\index{subject}{constant}
  708. A programming language can be thought of as a \emph{set} of programs.
  709. The set is infinite (that is, one can always create larger programs),
  710. so one cannot simply describe a language by listing all the
  711. programs in the language. Instead we write down a set of rules, a
  712. \emph{context-free grammar}, for building programs. Grammars are often used to
  713. define the concrete syntax of a language, but they can also be used to
  714. describe the abstract syntax. We write our rules in a variant of
  715. Backus-Naur form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  716. \index{subject}{Backus-Naur form}\index{subject}{BNF} As an example,
  717. we describe a small language, named \LangInt{}, that consists of
  718. integers and arithmetic operations.\index{subject}{grammar}
  719. \index{subject}{context-free grammar}
  720. The first grammar rule for the abstract syntax of \LangInt{} says that an
  721. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  722. \begin{equation}
  723. \Exp ::= \INT{\Int} \label{eq:arith-int}
  724. \end{equation}
  725. %
  726. Each rule has a left-hand side and a right-hand side.
  727. If you have an AST node that matches the
  728. right-hand side, then you can categorize it according to the
  729. left-hand side.
  730. %
  731. Symbols in typewriter font, such as \racket{\code{Int}}\python{\code{Constant}},
  732. are \emph{terminal} symbols and must literally appear in the program for the
  733. rule to be applicable.\index{subject}{terminal}
  734. %
  735. Our grammars do not mention \emph{white space}, that is, delimiter
  736. characters like spaces, tabs, and new lines. White space may be
  737. inserted between symbols for disambiguation and to improve
  738. readability. \index{subject}{white space}
  739. %
  740. A name such as $\Exp$ that is defined by the grammar rules is a
  741. \emph{nonterminal}. \index{subject}{nonterminal}
  742. %
  743. The name $\Int$ is also a nonterminal, but instead of defining it with
  744. a grammar rule, we define it with the following explanation. An
  745. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  746. $-$ (for negative integers), such that the sequence of decimals
  747. %
  748. \racket{represents an integer in the range $-2^{62}$ to $2^{62}-1$. This
  749. enables the representation of integers using 63 bits, which simplifies
  750. several aspects of compilation.
  751. %
  752. Thus, these integers correspond to the Racket \texttt{fixnum}
  753. datatype on a 64-bit machine.}
  754. %
  755. \python{represents an integer in the range $-2^{63}$ to $2^{63}-1$. This
  756. enables the representation of integers using 64 bits, which simplifies
  757. several aspects of compilation. In contrast, integers in Python have
  758. unlimited precision, but the techniques needed to handle unlimited
  759. precision fall outside the scope of this book.}
  760. The second grammar rule is the \READOP{} operation, which receives an
  761. input integer from the user of the program.
  762. \begin{equation}
  763. \Exp ::= \READ{} \label{eq:arith-read}
  764. \end{equation}
  765. The third rule categorizes the negation of an $\Exp$ node as an
  766. $\Exp$.
  767. \begin{equation}
  768. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  769. \end{equation}
  770. We can apply these rules to categorize the ASTs that are in the
  771. \LangInt{} language. For example, by rule \eqref{eq:arith-int},
  772. \INT{8} is an $\Exp$, and then by rule \eqref{eq:arith-neg} the
  773. following AST is an $\Exp$.
  774. \begin{center}
  775. \begin{minipage}{0.5\textwidth}
  776. \NEG{\INT{\code{8}}}
  777. \end{minipage}
  778. \begin{minipage}{0.25\textwidth}
  779. \begin{equation}
  780. \begin{tikzpicture}
  781. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  782. \node[draw, circle] (8) at (0, -1.2) {$8$};
  783. \draw[->] (minus) to (8);
  784. \end{tikzpicture}
  785. \label{eq:arith-neg8}
  786. \end{equation}
  787. \end{minipage}
  788. \end{center}
  789. The next two grammar rules are for addition and subtraction expressions:
  790. \begin{align}
  791. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  792. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  793. \end{align}
  794. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  795. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  796. \eqref{eq:arith-read}, and we have already categorized
  797. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  798. to show that
  799. \[
  800. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  801. \]
  802. is an $\Exp$ in the \LangInt{} language.
  803. If you have an AST for which these rules do not apply, then the
  804. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  805. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  806. because there is no rule for the \key{*} operator. Whenever we
  807. define a language with a grammar, the language includes only those
  808. programs that are justified by the grammar rules.
  809. {\if\edition\pythonEd\pythonColor
  810. The language \LangInt{} includes a second nonterminal $\Stmt$ for statements.
  811. There is a statement for printing the value of an expression
  812. \[
  813. \Stmt{} ::= \PRINT{\Exp}
  814. \]
  815. and a statement that evaluates an expression but ignores the result.
  816. \[
  817. \Stmt{} ::= \EXPR{\Exp}
  818. \]
  819. \fi}
  820. {\if\edition\racketEd
  821. The last grammar rule for \LangInt{} states that there is a
  822. \code{Program} node to mark the top of the whole program:
  823. \[
  824. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  825. \]
  826. The \code{Program} structure is defined as follows:
  827. \begin{lstlisting}
  828. (struct Program (info body))
  829. \end{lstlisting}
  830. where \code{body} is an expression. In further chapters, the \code{info}
  831. part is used to store auxiliary information, but for now it is
  832. just the empty list.
  833. \fi}
  834. {\if\edition\pythonEd\pythonColor
  835. The last grammar rule for \LangInt{} states that there is a
  836. \code{Module} node to mark the top of the whole program:
  837. \[
  838. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  839. \]
  840. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  841. this case, a list of statements.
  842. %
  843. The \code{Module} class is defined as follows
  844. \begin{lstlisting}
  845. class Module:
  846. def __init__(self, body):
  847. self.body = body
  848. \end{lstlisting}
  849. where \code{body} is a list of statements.
  850. \fi}
  851. It is common to have many grammar rules with the same left-hand side
  852. but different right-hand sides, such as the rules for $\Exp$ in the
  853. grammar of \LangInt{}. As shorthand, a vertical bar can be used to
  854. combine several right-hand sides into a single rule.
  855. The concrete syntax for \LangInt{} is shown in
  856. figure~\ref{fig:r0-concrete-syntax} and the abstract syntax for
  857. \LangInt{} is shown in figure~\ref{fig:r0-syntax}.%
  858. %
  859. \racket{The \code{read-program} function provided in
  860. \code{utilities.rkt} of the support code reads a program from a file
  861. (the sequence of characters in the concrete syntax of Racket) and
  862. parses it into an abstract syntax tree. Refer to the description of
  863. \code{read-program} in appendix~\ref{appendix:utilities} for more
  864. details.}
  865. %
  866. \python{The \code{parse} function in Python's \code{ast} module
  867. converts the concrete syntax (represented as a string) into an
  868. abstract syntax tree.}
  869. \newcommand{\LintGrammarRacket}{
  870. \begin{array}{rcl}
  871. \Type &::=& \key{Integer} \\
  872. \Exp{} &::=& \Int{} \MID \CREAD \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  873. \MID \CSUB{\Exp}{\Exp}
  874. \end{array}
  875. }
  876. \newcommand{\LintASTRacket}{
  877. \begin{array}{rcl}
  878. \Type &::=& \key{Integer} \\
  879. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  880. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \SUB{\Exp}{\Exp}
  881. \end{array}
  882. }
  883. \newcommand{\LintGrammarPython}{
  884. \begin{array}{rcl}
  885. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  886. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  887. \end{array}
  888. }
  889. \newcommand{\LintASTPython}{
  890. \begin{array}{rcl}
  891. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  892. \itm{unaryop} &::= & \code{USub()} \\
  893. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  894. &\MID& \UNIOP{\itm{unaryop}}{\Exp} \MID \BINOP{\Exp}{\itm{binaryop}}{\Exp} \\
  895. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  896. \end{array}
  897. }
  898. \begin{figure}[tp]
  899. \begin{tcolorbox}[colback=white]
  900. {\if\edition\racketEd
  901. \[
  902. \begin{array}{l}
  903. \LintGrammarRacket \\
  904. \begin{array}{rcl}
  905. \LangInt{} &::=& \Exp
  906. \end{array}
  907. \end{array}
  908. \]
  909. \fi}
  910. {\if\edition\pythonEd\pythonColor
  911. \[
  912. \begin{array}{l}
  913. \LintGrammarPython \\
  914. \begin{array}{rcl}
  915. \LangInt{} &::=& \Stmt^{*}
  916. \end{array}
  917. \end{array}
  918. \]
  919. \fi}
  920. \end{tcolorbox}
  921. \caption{The concrete syntax of \LangInt{}.}
  922. \label{fig:r0-concrete-syntax}
  923. \end{figure}
  924. \begin{figure}[tp]
  925. \begin{tcolorbox}[colback=white]
  926. {\if\edition\racketEd
  927. \[
  928. \begin{array}{l}
  929. \LintASTRacket{} \\
  930. \begin{array}{rcl}
  931. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  932. \end{array}
  933. \end{array}
  934. \]
  935. \fi}
  936. {\if\edition\pythonEd\pythonColor
  937. \[
  938. \begin{array}{l}
  939. \LintASTPython\\
  940. \begin{array}{rcl}
  941. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  942. \end{array}
  943. \end{array}
  944. \]
  945. \fi}
  946. \end{tcolorbox}
  947. \python{
  948. \index{subject}{Constant@\texttt{Constant}}
  949. \index{subject}{UnaryOp@\texttt{UnaryOp}}
  950. \index{subject}{USub@\texttt{USub}}
  951. \index{subject}{inputint@\texttt{input\_int}}
  952. \index{subject}{Call@\texttt{Call}}
  953. \index{subject}{Name@\texttt{Name}}
  954. \index{subject}{BinOp@\texttt{BinOp}}
  955. \index{subject}{Add@\texttt{Add}}
  956. \index{subject}{Sub@\texttt{Sub}}
  957. \index{subject}{print@\texttt{print}}
  958. \index{subject}{Expr@\texttt{Expr}}
  959. \index{subject}{Module@\texttt{Module}}
  960. }
  961. \caption{The abstract syntax of \LangInt{}.}
  962. \label{fig:r0-syntax}
  963. \end{figure}
  964. \section{Pattern Matching}
  965. \label{sec:pattern-matching}
  966. As mentioned in section~\ref{sec:ast}, compilers often need to access
  967. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python}
  968. provides the \texttt{match} feature to access the parts of a value.
  969. Consider the following example: \index{subject}{match} \index{subject}{pattern matching}
  970. \begin{center}
  971. \begin{minipage}{0.5\textwidth}
  972. {\if\edition\racketEd
  973. \begin{lstlisting}
  974. (match ast1_1
  975. [(Prim op (list child1 child2))
  976. (print op)])
  977. \end{lstlisting}
  978. \fi}
  979. {\if\edition\pythonEd\pythonColor
  980. \begin{lstlisting}
  981. match ast1_1:
  982. case BinOp(child1, op, child2):
  983. print(op)
  984. \end{lstlisting}
  985. \fi}
  986. \end{minipage}
  987. \end{center}
  988. {\if\edition\racketEd
  989. %
  990. In this example, the \texttt{match} form checks whether the AST
  991. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  992. three pattern variables \texttt{op}, \texttt{child1}, and
  993. \texttt{child2}. In general, a match clause consists of a
  994. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  995. recursively defined to be a pattern variable, a structure name
  996. followed by a pattern for each of the structure's arguments, or an
  997. S-expression (a symbol, list, etc.). (See chapter 12 of The Racket
  998. Guide\footnote{See \url{https://docs.racket-lang.org/guide/match.html}.}
  999. and chapter 9 of The Racket
  1000. Reference\footnote{See \url{https://docs.racket-lang.org/reference/match.html}.}
  1001. for complete descriptions of \code{match}.)
  1002. %
  1003. The body of a match clause may contain arbitrary Racket code. The
  1004. pattern variables can be used in the scope of the body, such as
  1005. \code{op} in \code{(print op)}.
  1006. %
  1007. \fi}
  1008. %
  1009. %
  1010. {\if\edition\pythonEd\pythonColor
  1011. %
  1012. In the above example, the \texttt{match} form checks whether the AST
  1013. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  1014. three pattern variables \texttt{child1}, \texttt{op}, and
  1015. \texttt{child2}, and then prints out the operator. In general, each
  1016. \code{case} consists of a \emph{pattern} and a
  1017. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  1018. to be either a pattern variable, a class name followed by a pattern
  1019. for each of its constructor's arguments, or other
  1020. literals\index{subject}{literals} such as strings, lists, etc.
  1021. %
  1022. The body of each \code{case} may contain arbitrary Python code. The
  1023. pattern variables can be used in the body, such as \code{op} in
  1024. \code{print(op)}.
  1025. %
  1026. \fi}
  1027. A \code{match} form may contain several clauses, as in the following
  1028. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  1029. the AST. The \code{match} proceeds through the clauses in order,
  1030. checking whether the pattern can match the input AST. The body of the
  1031. first clause that matches is executed. The output of \code{leaf} for
  1032. several ASTs is shown on the right side of the following:
  1033. \begin{center}
  1034. \begin{minipage}{0.6\textwidth}
  1035. {\if\edition\racketEd
  1036. \begin{lstlisting}
  1037. (define (leaf arith)
  1038. (match arith
  1039. [(Int n) #t]
  1040. [(Prim 'read '()) #t]
  1041. [(Prim '- (list e1)) #f]
  1042. [(Prim '+ (list e1 e2)) #f]
  1043. [(Prim '- (list e1 e2)) #f]))
  1044. (leaf (Prim 'read '()))
  1045. (leaf (Prim '- (list (Int 8))))
  1046. (leaf (Int 8))
  1047. \end{lstlisting}
  1048. \fi}
  1049. {\if\edition\pythonEd\pythonColor
  1050. \begin{lstlisting}
  1051. def leaf(arith):
  1052. match arith:
  1053. case Constant(n):
  1054. return True
  1055. case Call(Name('input_int'), []):
  1056. return True
  1057. case UnaryOp(USub(), e1):
  1058. return False
  1059. case BinOp(e1, Add(), e2):
  1060. return False
  1061. case BinOp(e1, Sub(), e2):
  1062. return False
  1063. print(leaf(Call(Name('input_int'), [])))
  1064. print(leaf(UnaryOp(USub(), eight)))
  1065. print(leaf(Constant(8)))
  1066. \end{lstlisting}
  1067. \fi}
  1068. \end{minipage}
  1069. \vrule
  1070. \begin{minipage}{0.25\textwidth}
  1071. {\if\edition\racketEd
  1072. \begin{lstlisting}
  1073. #t
  1074. #f
  1075. #t
  1076. \end{lstlisting}
  1077. \fi}
  1078. {\if\edition\pythonEd\pythonColor
  1079. \begin{lstlisting}
  1080. True
  1081. False
  1082. True
  1083. \end{lstlisting}
  1084. \fi}
  1085. \end{minipage}
  1086. \index{subject}{True@\TRUE{}}
  1087. \index{subject}{False@\FALSE{}}
  1088. \end{center}
  1089. When constructing a \code{match} expression, we refer to the grammar
  1090. definition to identify which nonterminal we are expecting to match
  1091. against, and then we make sure that (1) we have one
  1092. \racket{clause}\python{case} for each alternative of that nonterminal
  1093. and (2) the pattern in each \racket{clause}\python{case}
  1094. corresponds to the corresponding right-hand side of a grammar
  1095. rule. For the \code{match} in the \code{leaf} function, we refer to
  1096. the grammar for \LangInt{} shown in figure~\ref{fig:r0-syntax}. The $\Exp$
  1097. nonterminal has four alternatives, so the \code{match} has four
  1098. \racket{clauses}\python{cases}. The pattern in each
  1099. \racket{clause}\python{case} corresponds to the right-hand side of a
  1100. grammar rule. For example, the pattern \ADDP{\code{e1}}{\code{e2}}
  1101. corresponds to the right-hand side $\ADD{\Exp}{\Exp}$. When
  1102. translating from grammars to patterns, replace nonterminals such as
  1103. $\Exp$ with pattern variables of your choice (for example, \code{e1} and
  1104. \code{e2}).
  1105. \section{Recursive Functions}
  1106. \label{sec:recursion}
  1107. \index{subject}{recursive function}
  1108. Programs are inherently recursive. For example, an expression is often
  1109. made of smaller expressions. Thus, the natural way to process an
  1110. entire program is to use a recursive function. As a first example of
  1111. such a recursive function, we define the function \code{is\_exp} as
  1112. shown in figure~\ref{fig:exp-predicate}, to take an arbitrary
  1113. value and determine whether or not it is an expression in \LangInt{}.
  1114. %
  1115. We say that a function is defined by \emph{structural recursion} if
  1116. it is defined using a sequence of match \racket{clauses}\python{cases}
  1117. that correspond to a grammar and the body of each
  1118. \racket{clause}\python{case} makes a recursive call on each child
  1119. node.\footnote{This principle of structuring code according to the
  1120. data definition is advocated in the book \emph{How to Design
  1121. Programs} by \citet{Felleisen:2001aa}.} \python{We define a
  1122. second function, named \code{stmt}, that recognizes whether a value
  1123. is a \LangInt{} statement.} \python{Finally, }
  1124. Figure~\ref{fig:exp-predicate} \racket{also} contains the definition of
  1125. \code{is\_Lint}, which determines whether an AST is a program in \LangInt{}.
  1126. In general, we can write one recursive function to handle each
  1127. nonterminal in a grammar.\index{subject}{structural recursion} Of the
  1128. two examples at the bottom of the figure, the first is in
  1129. \LangInt{} and the second is not.
  1130. \begin{figure}[tp]
  1131. \begin{tcolorbox}[colback=white]
  1132. {\if\edition\racketEd
  1133. \begin{lstlisting}
  1134. (define (is_exp ast)
  1135. (match ast
  1136. [(Int n) #t]
  1137. [(Prim 'read '()) #t]
  1138. [(Prim '- (list e)) (is_exp e)]
  1139. [(Prim '+ (list e1 e2))
  1140. (and (is_exp e1) (is_exp e2))]
  1141. [(Prim '- (list e1 e2))
  1142. (and (is_exp e1) (is_exp e2))]
  1143. [else #f]))
  1144. (define (is_Lint ast)
  1145. (match ast
  1146. [(Program '() e) (is_exp e)]
  1147. [else #f]))
  1148. (is_Lint (Program '() ast1_1)
  1149. (is_Lint (Program '()
  1150. (Prim '* (list (Prim 'read '())
  1151. (Prim '+ (list (Int 8)))))))
  1152. \end{lstlisting}
  1153. \fi}
  1154. {\if\edition\pythonEd\pythonColor
  1155. \begin{lstlisting}
  1156. def is_exp(e):
  1157. match e:
  1158. case Constant(n):
  1159. return True
  1160. case Call(Name('input_int'), []):
  1161. return True
  1162. case UnaryOp(USub(), e1):
  1163. return is_exp(e1)
  1164. case BinOp(e1, Add(), e2):
  1165. return is_exp(e1) and is_exp(e2)
  1166. case BinOp(e1, Sub(), e2):
  1167. return is_exp(e1) and is_exp(e2)
  1168. case _:
  1169. return False
  1170. def stmt(s):
  1171. match s:
  1172. case Expr(Call(Name('print'), [e])):
  1173. return is_exp(e)
  1174. case Expr(e):
  1175. return is_exp(e)
  1176. case _:
  1177. return False
  1178. def is_Lint(p):
  1179. match p:
  1180. case Module(body):
  1181. return all([stmt(s) for s in body])
  1182. case _:
  1183. return False
  1184. print(is_Lint(Module([Expr(ast1_1)])))
  1185. print(is_Lint(Module([Expr(BinOp(read, Sub(),
  1186. UnaryOp(Add(), Constant(8))))])))
  1187. \end{lstlisting}
  1188. \fi}
  1189. \end{tcolorbox}
  1190. \caption{Example of recursive functions for \LangInt{}. These functions
  1191. recognize whether an AST is in \LangInt{}.}
  1192. \label{fig:exp-predicate}
  1193. \end{figure}
  1194. %% You may be tempted to merge the two functions into one, like this:
  1195. %% \begin{center}
  1196. %% \begin{minipage}{0.5\textwidth}
  1197. %% \begin{lstlisting}
  1198. %% (define (Lint ast)
  1199. %% (match ast
  1200. %% [(Int n) #t]
  1201. %% [(Prim 'read '()) #t]
  1202. %% [(Prim '- (list e)) (Lint e)]
  1203. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1204. %% [(Program '() e) (Lint e)]
  1205. %% [else #f]))
  1206. %% \end{lstlisting}
  1207. %% \end{minipage}
  1208. %% \end{center}
  1209. %% %
  1210. %% Sometimes such a trick will save a few lines of code, especially when
  1211. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1212. %% \emph{not} recommended because it can get you into trouble.
  1213. %% %
  1214. %% For example, the above function is subtly wrong:
  1215. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1216. %% returns true when it should return false.
  1217. \section{Interpreters}
  1218. \label{sec:interp_Lint}
  1219. \index{subject}{interpreter}
  1220. The behavior of a program is defined by the specification of the
  1221. programming language.
  1222. %
  1223. \racket{For example, the Scheme language is defined in the report by
  1224. \citet{SPERBER:2009aa}. The Racket language is defined in its
  1225. reference manual~\citep{plt-tr}.}
  1226. %
  1227. \python{For example, the Python language is defined in the Python
  1228. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1229. %
  1230. In this book we use interpreters to specify each language that we
  1231. consider. An interpreter that is designated as the definition of a
  1232. language is called a \emph{definitional
  1233. interpreter}~\citep{reynolds72:_def_interp}.
  1234. \index{subject}{definitional interpreter} We warm up by creating a
  1235. definitional interpreter for the \LangInt{} language. This interpreter
  1236. serves as a second example of structural recursion. The definition of the
  1237. \code{interp\_Lint} function is shown in
  1238. figure~\ref{fig:interp_Lint}.
  1239. %
  1240. \racket{The body of the function is a match on the input program
  1241. followed by a call to the \lstinline{interp_exp} auxiliary function,
  1242. which in turn has one match clause per grammar rule for \LangInt{}
  1243. expressions.}
  1244. %
  1245. \python{The body of the function matches on the \code{Module} AST node
  1246. and then invokes \code{interp\_stmt} on each statement in the
  1247. module. The \code{interp\_stmt} function includes a case for each
  1248. grammar rule of the \Stmt{} nonterminal and it calls
  1249. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1250. function includes a case for each grammar rule of the \Exp{}
  1251. nonterminal. We use several auxiliary functions such as \code{add64}
  1252. and \code{input\_int} that are defined in the support code for this book.}
  1253. \begin{figure}[tp]
  1254. \begin{tcolorbox}[colback=white]
  1255. {\if\edition\racketEd
  1256. \begin{lstlisting}
  1257. (define (interp_exp e)
  1258. (match e
  1259. [(Int n) n]
  1260. [(Prim 'read '())
  1261. (define r (read))
  1262. (cond [(fixnum? r) r]
  1263. [else (error 'interp_exp "read expected an integer" r)])]
  1264. [(Prim '- (list e))
  1265. (define v (interp_exp e))
  1266. (fx- 0 v)]
  1267. [(Prim '+ (list e1 e2))
  1268. (define v1 (interp_exp e1))
  1269. (define v2 (interp_exp e2))
  1270. (fx+ v1 v2)]
  1271. [(Prim '- (list e1 e2))
  1272. (define v1 (interp_exp e1))
  1273. (define v2 (interp_exp e2))
  1274. (fx- v1 v2)]))
  1275. (define (interp_Lint p)
  1276. (match p
  1277. [(Program '() e) (interp_exp e)]))
  1278. \end{lstlisting}
  1279. \fi}
  1280. {\if\edition\pythonEd\pythonColor
  1281. \begin{lstlisting}
  1282. def interp_exp(e):
  1283. match e:
  1284. case BinOp(left, Add(), right):
  1285. l = interp_exp(left); r = interp_exp(right)
  1286. return add64(l, r)
  1287. case BinOp(left, Sub(), right):
  1288. l = interp_exp(left); r = interp_exp(right)
  1289. return sub64(l, r)
  1290. case UnaryOp(USub(), v):
  1291. return neg64(interp_exp(v))
  1292. case Constant(value):
  1293. return value
  1294. case Call(Name('input_int'), []):
  1295. return input_int()
  1296. def interp_stmt(s):
  1297. match s:
  1298. case Expr(Call(Name('print'), [arg])):
  1299. print(interp_exp(arg))
  1300. case Expr(value):
  1301. interp_exp(value)
  1302. def interp_Lint(p):
  1303. match p:
  1304. case Module(body):
  1305. for s in body:
  1306. interp_stmt(s)
  1307. \end{lstlisting}
  1308. \fi}
  1309. \end{tcolorbox}
  1310. \caption{Interpreter for the \LangInt{} language.}
  1311. \label{fig:interp_Lint}
  1312. \end{figure}
  1313. Let us consider the result of interpreting a few \LangInt{} programs. The
  1314. following program adds two integers:
  1315. {\if\edition\racketEd
  1316. \begin{lstlisting}
  1317. (+ 10 32)
  1318. \end{lstlisting}
  1319. \fi}
  1320. {\if\edition\pythonEd\pythonColor
  1321. \begin{lstlisting}
  1322. print(10 + 32)
  1323. \end{lstlisting}
  1324. \fi}
  1325. %
  1326. \noindent The result is \key{42}, the answer to life, the universe,
  1327. and everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to
  1328. the Galaxy} by Douglas Adams.}
  1329. %
  1330. We wrote this program in concrete syntax, whereas the parsed
  1331. abstract syntax is
  1332. {\if\edition\racketEd
  1333. \begin{lstlisting}
  1334. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1335. \end{lstlisting}
  1336. \fi}
  1337. {\if\edition\pythonEd\pythonColor
  1338. \begin{lstlisting}
  1339. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1340. \end{lstlisting}
  1341. \fi}
  1342. The following program demonstrates that expressions may be nested within
  1343. each other, in this case nesting several additions and negations.
  1344. {\if\edition\racketEd
  1345. \begin{lstlisting}
  1346. (+ 10 (- (+ 12 20)))
  1347. \end{lstlisting}
  1348. \fi}
  1349. {\if\edition\pythonEd\pythonColor
  1350. \begin{lstlisting}
  1351. print(10 + -(12 + 20))
  1352. \end{lstlisting}
  1353. \fi}
  1354. %
  1355. \noindent What is the result of this program?
  1356. {\if\edition\racketEd
  1357. As mentioned previously, the \LangInt{} language does not support
  1358. arbitrarily large integers but only $63$-bit integers, so we
  1359. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1360. in Racket.
  1361. Suppose that
  1362. \[
  1363. n = 999999999999999999
  1364. \]
  1365. which indeed fits in $63$ bits. What happens when we run the
  1366. following program in our interpreter?
  1367. \begin{lstlisting}
  1368. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1369. \end{lstlisting}
  1370. It produces the following error:
  1371. \begin{lstlisting}
  1372. fx+: result is not a fixnum
  1373. \end{lstlisting}
  1374. We establish the convention that if running the definitional
  1375. interpreter on a program produces an error, then the meaning of that
  1376. program is \emph{unspecified}\index{subject}{unspecified behavior} unless the
  1377. error is a \code{trapped-error}. A compiler for the language is under
  1378. no obligation regarding programs with unspecified behavior; it does
  1379. not have to produce an executable, and if it does, that executable can
  1380. do anything. On the other hand, if the error is a
  1381. \code{trapped-error}, then the compiler must produce an executable and
  1382. it is required to report that an error occurred. To signal an error,
  1383. exit with a return code of \code{255}. The interpreters in chapters
  1384. \ref{ch:Ldyn} and \ref{ch:Lgrad} and in section \ref{sec:arrays} use
  1385. \code{trapped-error}.
  1386. \fi}
  1387. % TODO: how to deal with too-large integers in the Python interpreter?
  1388. %% This convention applies to the languages defined in this
  1389. %% book, as a way to simplify the student's task of implementing them,
  1390. %% but this convention is not applicable to all programming languages.
  1391. %%
  1392. The last feature of the \LangInt{} language, the \READOP{} operation,
  1393. prompts the user of the program for an integer. Recall that program
  1394. \eqref{eq:arith-prog} requests an integer input and then subtracts
  1395. \code{8}. So, if we run {\if\edition\racketEd
  1396. \begin{lstlisting}
  1397. (interp_Lint (Program '() ast1_1))
  1398. \end{lstlisting}
  1399. \fi}
  1400. {\if\edition\pythonEd\pythonColor
  1401. \begin{lstlisting}
  1402. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1403. \end{lstlisting}
  1404. \fi}
  1405. \noindent and if the input is \code{50}, the result is \code{42}.
  1406. We include the \READOP{} operation in \LangInt{} so that a clever
  1407. student cannot implement a compiler for \LangInt{} that simply runs
  1408. the interpreter during compilation to obtain the output and then
  1409. generates the trivial code to produce the output.\footnote{Yes, a
  1410. clever student did this in the first instance of this course!}
  1411. The job of a compiler is to translate a program in one language into a
  1412. program in another language so that the output program behaves the
  1413. same way as the input program. This idea is depicted in the
  1414. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1415. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1416. Given a compiler that translates from language $\mathcal{L}_1$ to
  1417. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1418. compiler must translate it into some program $P_2$ such that
  1419. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1420. same input $i$ yields the same output $o$.
  1421. \begin{equation} \label{eq:compile-correct}
  1422. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1423. \node (p1) at (0, 0) {$P_1$};
  1424. \node (p2) at (3, 0) {$P_2$};
  1425. \node (o) at (3, -2.5) {$o$};
  1426. \path[->] (p1) edge [above] node {compile} (p2);
  1427. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1428. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1429. \end{tikzpicture}
  1430. \end{equation}
  1431. \python{We establish the convention that if running the definitional
  1432. interpreter on a program produces an error, then the meaning of that
  1433. program is \emph{unspecified}\index{subject}{unspecified behavior}
  1434. unless the exception raised is a \code{TrappedError}. A compiler for
  1435. the language is under no obligation regarding programs with
  1436. unspecified behavior; it does not have to produce an executable, and
  1437. if it does, that executable can do anything. On the other hand, if
  1438. the error is a \code{TrappedError}, then the compiler must produce
  1439. an executable and it is required to report that an error
  1440. occurred. To signal an error, exit with a return code of \code{255}.
  1441. The interpreters in chapters \ref{ch:Ldyn} and \ref{ch:Lgrad} and in
  1442. section \ref{sec:arrays} use \code{TrappedError}.}
  1443. In the next section we see our first example of a compiler.
  1444. \section{Example Compiler: A Partial Evaluator}
  1445. \label{sec:partial-evaluation}
  1446. In this section we consider a compiler that translates \LangInt{}
  1447. programs into \LangInt{} programs that may be more efficient. The
  1448. compiler eagerly computes the parts of the program that do not depend
  1449. on any inputs, a process known as \emph{partial
  1450. evaluation}~\citep{Jones:1993uq}.\index{subject}{partialevaluation@partial evaluation}
  1451. For example, given the following program
  1452. {\if\edition\racketEd
  1453. \begin{lstlisting}
  1454. (+ (read) (- (+ 5 3)))
  1455. \end{lstlisting}
  1456. \fi}
  1457. {\if\edition\pythonEd\pythonColor
  1458. \begin{lstlisting}
  1459. print(input_int() + -(5 + 3) )
  1460. \end{lstlisting}
  1461. \fi}
  1462. \noindent our compiler translates it into the program
  1463. {\if\edition\racketEd
  1464. \begin{lstlisting}
  1465. (+ (read) -8)
  1466. \end{lstlisting}
  1467. \fi}
  1468. {\if\edition\pythonEd\pythonColor
  1469. \begin{lstlisting}
  1470. print(input_int() + -8)
  1471. \end{lstlisting}
  1472. \fi}
  1473. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1474. evaluator for the \LangInt{} language. The output of the partial evaluator
  1475. is a program in \LangInt{}. In figure~\ref{fig:pe-arith}, the structural
  1476. recursion over $\Exp$ is captured in the \code{pe\_exp} function,
  1477. whereas the code for partially evaluating the negation and addition
  1478. operations is factored into three auxiliary functions:
  1479. \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub}. The input to these
  1480. functions is the output of partially evaluating the children.
  1481. The \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub} functions check whether their
  1482. arguments are integers and if they are, perform the appropriate
  1483. arithmetic. Otherwise, they create an AST node for the arithmetic
  1484. operation.
  1485. \begin{figure}[tp]
  1486. \begin{tcolorbox}[colback=white]
  1487. {\if\edition\racketEd
  1488. \begin{lstlisting}
  1489. (define (pe_neg r)
  1490. (match r
  1491. [(Int n) (Int (fx- 0 n))]
  1492. [else (Prim '- (list r))]))
  1493. (define (pe_add r1 r2)
  1494. (match* (r1 r2)
  1495. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1496. [(_ _) (Prim '+ (list r1 r2))]))
  1497. (define (pe_sub r1 r2)
  1498. (match* (r1 r2)
  1499. [((Int n1) (Int n2)) (Int (fx- n1 n2))]
  1500. [(_ _) (Prim '- (list r1 r2))]))
  1501. (define (pe_exp e)
  1502. (match e
  1503. [(Int n) (Int n)]
  1504. [(Prim 'read '()) (Prim 'read '())]
  1505. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1506. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]
  1507. [(Prim '- (list e1 e2)) (pe_sub (pe_exp e1) (pe_exp e2))]))
  1508. (define (pe_Lint p)
  1509. (match p
  1510. [(Program '() e) (Program '() (pe_exp e))]))
  1511. \end{lstlisting}
  1512. \fi}
  1513. {\if\edition\pythonEd\pythonColor
  1514. \begin{lstlisting}
  1515. def pe_neg(r):
  1516. match r:
  1517. case Constant(n):
  1518. return Constant(-n)
  1519. case _:
  1520. return UnaryOp(USub(), r)
  1521. def pe_add(r1, r2):
  1522. match (r1, r2):
  1523. case (Constant(n1), Constant(n2)):
  1524. return Constant(n1 + n2)
  1525. case _:
  1526. return BinOp(r1, Add(), r2)
  1527. def pe_sub(r1, r2):
  1528. match (r1, r2):
  1529. case (Constant(n1), Constant(n2)):
  1530. return Constant(n1 - n2)
  1531. case _:
  1532. return BinOp(r1, Sub(), r2)
  1533. def pe_exp(e):
  1534. match e:
  1535. case BinOp(left, Add(), right):
  1536. return pe_add(pe_exp(left), pe_exp(right))
  1537. case BinOp(left, Sub(), right):
  1538. return pe_sub(pe_exp(left), pe_exp(right))
  1539. case UnaryOp(USub(), v):
  1540. return pe_neg(pe_exp(v))
  1541. case Constant(value):
  1542. return e
  1543. case Call(Name('input_int'), []):
  1544. return e
  1545. def pe_stmt(s):
  1546. match s:
  1547. case Expr(Call(Name('print'), [arg])):
  1548. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1549. case Expr(value):
  1550. return Expr(pe_exp(value))
  1551. def pe_P_int(p):
  1552. match p:
  1553. case Module(body):
  1554. new_body = [pe_stmt(s) for s in body]
  1555. return Module(new_body)
  1556. \end{lstlisting}
  1557. \fi}
  1558. \end{tcolorbox}
  1559. \caption{A partial evaluator for \LangInt{}.}
  1560. \label{fig:pe-arith}
  1561. \end{figure}
  1562. To gain some confidence that the partial evaluator is correct, we can
  1563. test whether it produces programs that produce the same result as the
  1564. input programs. That is, we can test whether it satisfies the diagram
  1565. of \eqref{eq:compile-correct}.
  1566. %
  1567. {\if\edition\racketEd
  1568. The following code runs the partial evaluator on several examples and
  1569. tests the output program. The \texttt{parse-program} and
  1570. \texttt{assert} functions are defined in
  1571. appendix~\ref{appendix:utilities}.\\
  1572. \begin{minipage}{1.0\textwidth}
  1573. \begin{lstlisting}
  1574. (define (test_pe p)
  1575. (assert "testing pe_Lint"
  1576. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1577. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1578. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1579. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1580. \end{lstlisting}
  1581. \end{minipage}
  1582. \fi}
  1583. % TODO: python version of testing the PE
  1584. \begin{exercise}\normalfont\normalsize
  1585. Create three programs in the \LangInt{} language and test whether
  1586. partially evaluating them with \code{pe\_Lint} and then
  1587. interpreting them with \code{interp\_Lint} gives the same result
  1588. as directly interpreting them with \code{interp\_Lint}.
  1589. \end{exercise}
  1590. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1591. \chapter{Integers and Variables}
  1592. \label{ch:Lvar}
  1593. \setcounter{footnote}{0}
  1594. This chapter covers compiling a subset of
  1595. \racket{Racket}\python{Python} to x86-64 assembly
  1596. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1597. integer arithmetic and local variables. We often refer to x86-64
  1598. simply as x86. The chapter first describes the \LangVar{} language
  1599. (section~\ref{sec:s0}) and then introduces x86 assembly
  1600. (section~\ref{sec:x86}). Because x86 assembly language is large, we
  1601. discuss only the instructions needed for compiling \LangVar{}. We
  1602. introduce more x86 instructions in subsequent chapters. After
  1603. introducing \LangVar{} and x86, we reflect on their differences and
  1604. create a plan to break down the translation from \LangVar{} to x86
  1605. into a handful of steps (section~\ref{sec:plan-s0-x86}). The rest of
  1606. the chapter gives detailed hints regarding each step. We aim to give
  1607. enough hints that the well-prepared reader, together with a few
  1608. friends, can implement a compiler from \LangVar{} to x86 in a short
  1609. time. To suggest the scale of this first compiler, we note that the
  1610. instructor solution for the \LangVar{} compiler is approximately
  1611. \racket{500}\python{300} lines of code.
  1612. \section{The \LangVar{} Language}
  1613. \label{sec:s0}
  1614. \index{subject}{variable}
  1615. The \LangVar{} language extends the \LangInt{} language with
  1616. variables. The concrete syntax of the \LangVar{} language is defined
  1617. by the grammar presented in figure~\ref{fig:Lvar-concrete-syntax} and
  1618. the abstract syntax is presented in figure~\ref{fig:Lvar-syntax}. The
  1619. nonterminal \Var{} may be any \racket{Racket}\python{Python}
  1620. identifier. As in \LangInt{}, \READOP{} is a nullary operator,
  1621. \key{-} is a unary operator, and \key{+} is a binary operator.
  1622. Similarly to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1623. \racket{\key{Program} struct}\python{\key{Module} instance} to mark
  1624. the top of the program.
  1625. %% The $\itm{info}$
  1626. %% field of the \key{Program} structure contains an \emph{association
  1627. %% list} (a list of key-value pairs) that is used to communicate
  1628. %% auxiliary data from one compiler pass the next.
  1629. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1630. exhibit several compilation techniques.
  1631. \newcommand{\LvarGrammarRacket}{
  1632. \begin{array}{rcl}
  1633. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1634. \end{array}
  1635. }
  1636. \newcommand{\LvarASTRacket}{
  1637. \begin{array}{rcl}
  1638. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1639. \end{array}
  1640. }
  1641. \newcommand{\LvarGrammarPython}{
  1642. \begin{array}{rcl}
  1643. \Exp &::=& \Var{} \\
  1644. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1645. \end{array}
  1646. }
  1647. \newcommand{\LvarASTPython}{
  1648. \begin{array}{rcl}
  1649. \Exp{} &::=& \VAR{\Var{}} \\
  1650. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1651. \end{array}
  1652. }
  1653. \begin{figure}[tp]
  1654. \centering
  1655. \begin{tcolorbox}[colback=white]
  1656. {\if\edition\racketEd
  1657. \[
  1658. \begin{array}{l}
  1659. \gray{\LintGrammarRacket{}} \\ \hline
  1660. \LvarGrammarRacket{} \\
  1661. \begin{array}{rcl}
  1662. \LangVarM{} &::=& \Exp
  1663. \end{array}
  1664. \end{array}
  1665. \]
  1666. \fi}
  1667. {\if\edition\pythonEd\pythonColor
  1668. \[
  1669. \begin{array}{l}
  1670. \gray{\LintGrammarPython} \\ \hline
  1671. \LvarGrammarPython \\
  1672. \begin{array}{rcl}
  1673. \LangVarM{} &::=& \Stmt^{*}
  1674. \end{array}
  1675. \end{array}
  1676. \]
  1677. \fi}
  1678. \end{tcolorbox}
  1679. \caption{The concrete syntax of \LangVar{}.}
  1680. \label{fig:Lvar-concrete-syntax}
  1681. \end{figure}
  1682. \begin{figure}[tp]
  1683. \centering
  1684. \begin{tcolorbox}[colback=white]
  1685. {\if\edition\racketEd
  1686. \[
  1687. \begin{array}{l}
  1688. \gray{\LintASTRacket{}} \\ \hline
  1689. \LvarASTRacket \\
  1690. \begin{array}{rcl}
  1691. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1692. \end{array}
  1693. \end{array}
  1694. \]
  1695. \fi}
  1696. {\if\edition\pythonEd\pythonColor
  1697. \[
  1698. \begin{array}{l}
  1699. \gray{\LintASTPython}\\ \hline
  1700. \LvarASTPython \\
  1701. \begin{array}{rcl}
  1702. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1703. \end{array}
  1704. \end{array}
  1705. \]
  1706. \fi}
  1707. \end{tcolorbox}
  1708. \caption{The abstract syntax of \LangVar{}.}
  1709. \label{fig:Lvar-syntax}
  1710. \end{figure}
  1711. {\if\edition\racketEd
  1712. Let us dive further into the syntax and semantics of the \LangVar{}
  1713. language. The \key{let} feature defines a variable for use within its
  1714. body and initializes the variable with the value of an expression.
  1715. The abstract syntax for \key{let} is shown in
  1716. figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1717. \begin{lstlisting}
  1718. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1719. \end{lstlisting}
  1720. For example, the following program initializes \code{x} to $32$ and then
  1721. evaluates the body \code{(+ 10 x)}, producing $42$.
  1722. \begin{lstlisting}
  1723. (let ([x (+ 12 20)]) (+ 10 x))
  1724. \end{lstlisting}
  1725. \fi}
  1726. %
  1727. {\if\edition\pythonEd\pythonColor
  1728. %
  1729. The \LangVar{} language includes assignment statements, which define a
  1730. variable for use in later statements and initializes the variable with
  1731. the value of an expression. The abstract syntax for assignment is
  1732. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1733. assignment is \index{subject}{Assign@\texttt{Assign}}
  1734. \begin{lstlisting}
  1735. |$\itm{var}$| = |$\itm{exp}$|
  1736. \end{lstlisting}
  1737. For example, the following program initializes the variable \code{x}
  1738. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1739. \begin{lstlisting}
  1740. x = 12 + 20
  1741. print(10 + x)
  1742. \end{lstlisting}
  1743. \fi}
  1744. {\if\edition\racketEd
  1745. %
  1746. When there are multiple \key{let}s for the same variable, the closest
  1747. enclosing \key{let} is used. That is, variable definitions overshadow
  1748. prior definitions. Consider the following program with two \key{let}s
  1749. that define two variables named \code{x}. Can you figure out the
  1750. result?
  1751. \begin{lstlisting}
  1752. (let ([x 32]) (+ (let ([x 10]) x) x))
  1753. \end{lstlisting}
  1754. For the purposes of depicting which variable occurrences correspond to
  1755. which definitions, the following shows the \code{x}'s annotated with
  1756. subscripts to distinguish them. Double-check that your answer for the
  1757. previous program is the same as your answer for this annotated version
  1758. of the program.
  1759. \begin{lstlisting}
  1760. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1761. \end{lstlisting}
  1762. The initializing expression is always evaluated before the body of the
  1763. \key{let}, so in the following, the \key{read} for \code{x} is
  1764. performed before the \key{read} for \code{y}. Given the input
  1765. $52$ then $10$, the following produces $42$ (not $-42$).
  1766. \begin{lstlisting}
  1767. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1768. \end{lstlisting}
  1769. \fi}
  1770. \subsection{Extensible Interpreters via Method Overriding}
  1771. \label{sec:extensible-interp}
  1772. \index{subject}{method overriding}
  1773. To prepare for discussing the interpreter of \LangVar{}, we explain
  1774. why we implement it in an object-oriented style. Throughout this book
  1775. we define many interpreters, one for each language that we
  1776. study. Because each language builds on the prior one, there is a lot
  1777. of commonality between these interpreters. We want to write down the
  1778. common parts just once instead of many times. A naive interpreter for
  1779. \LangVar{} would handle the \racket{cases for variables and
  1780. \code{let}} \python{case for variables} but dispatch to an
  1781. interpreter for \LangInt{} in the rest of the cases. The following
  1782. code sketches this idea. (We explain the \code{env} parameter in
  1783. section~\ref{sec:interp-Lvar}.)
  1784. \begin{center}
  1785. {\if\edition\racketEd
  1786. \begin{minipage}{0.45\textwidth}
  1787. \begin{lstlisting}
  1788. (define ((interp_Lint env) e)
  1789. (match e
  1790. [(Prim '- (list e1))
  1791. (fx- 0 ((interp_Lint env) e1))]
  1792. ...))
  1793. \end{lstlisting}
  1794. \end{minipage}
  1795. \begin{minipage}{0.45\textwidth}
  1796. \begin{lstlisting}
  1797. (define ((interp_Lvar env) e)
  1798. (match e
  1799. [(Var x)
  1800. (dict-ref env x)]
  1801. [(Let x e body)
  1802. (define v ((interp_Lvar env) e))
  1803. (define env^ (dict-set env x v))
  1804. ((interp_Lvar env^) body)]
  1805. [else ((interp_Lint env) e)]))
  1806. \end{lstlisting}
  1807. \end{minipage}
  1808. \fi}
  1809. {\if\edition\pythonEd\pythonColor
  1810. \begin{minipage}{0.45\textwidth}
  1811. \begin{lstlisting}
  1812. def interp_Lint(e, env):
  1813. match e:
  1814. case UnaryOp(USub(), e1):
  1815. return - interp_Lint(e1, env)
  1816. ...
  1817. \end{lstlisting}
  1818. \end{minipage}
  1819. \begin{minipage}{0.45\textwidth}
  1820. \begin{lstlisting}
  1821. def interp_Lvar(e, env):
  1822. match e:
  1823. case Name(id):
  1824. return env[id]
  1825. case _:
  1826. return interp_Lint(e, env)
  1827. \end{lstlisting}
  1828. \end{minipage}
  1829. \fi}
  1830. \end{center}
  1831. The problem with this naive approach is that it does not handle
  1832. situations in which an \LangVar{} feature, such as a variable, is
  1833. nested inside an \LangInt{} feature, such as the \code{-} operator, as
  1834. in the following program.
  1835. {\if\edition\racketEd
  1836. \begin{lstlisting}
  1837. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1838. \end{lstlisting}
  1839. \fi}
  1840. {\if\edition\pythonEd\pythonColor
  1841. \begin{minipage}{0.96\textwidth}
  1842. \begin{lstlisting}
  1843. y = 10
  1844. print(-y)
  1845. \end{lstlisting}
  1846. \end{minipage}
  1847. \fi}
  1848. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1849. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1850. then it recursively calls \code{interp\_Lint} again on its argument.
  1851. Because there is no case for \code{Var} in \code{interp\_Lint}, we get
  1852. an error!
  1853. To make our interpreters extensible we need something called
  1854. \emph{open recursion}\index{subject}{open recursion}, in which the
  1855. tying of the recursive knot is delayed until the functions are
  1856. composed. Object-oriented languages provide open recursion via method
  1857. overriding. The following code uses
  1858. method overriding to interpret \LangInt{} and \LangVar{} using
  1859. %
  1860. \racket{the
  1861. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1862. \index{subject}{class} feature of Racket.}
  1863. %
  1864. \python{a Python \code{class} definition.}
  1865. %
  1866. We define one class for each language and define a method for
  1867. interpreting expressions inside each class. The class for \LangVar{}
  1868. inherits from the class for \LangInt{}, and the method
  1869. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1870. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1871. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1872. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1873. \code{interp\_exp} in \LangInt{}.
  1874. \begin{center}
  1875. \hspace{-20pt}
  1876. {\if\edition\racketEd
  1877. \begin{minipage}{0.45\textwidth}
  1878. \begin{lstlisting}
  1879. (define interp-Lint-class
  1880. (class object%
  1881. (define/public ((interp_exp env) e)
  1882. (match e
  1883. [(Prim '- (list e))
  1884. (fx- 0 ((interp_exp env) e))]
  1885. ...))
  1886. ...))
  1887. \end{lstlisting}
  1888. \end{minipage}
  1889. \begin{minipage}{0.45\textwidth}
  1890. \begin{lstlisting}
  1891. (define interp-Lvar-class
  1892. (class interp-Lint-class
  1893. (define/override ((interp_exp env) e)
  1894. (match e
  1895. [(Var x)
  1896. (dict-ref env x)]
  1897. [(Let x e body)
  1898. (define v ((interp_exp env) e))
  1899. (define env^ (dict-set env x v))
  1900. ((interp_exp env^) body)]
  1901. [else
  1902. (super (interp_exp env) e)]))
  1903. ...
  1904. ))
  1905. \end{lstlisting}
  1906. \end{minipage}
  1907. \fi}
  1908. {\if\edition\pythonEd\pythonColor
  1909. \begin{minipage}{0.45\textwidth}
  1910. \begin{lstlisting}
  1911. class InterpLint:
  1912. def interp_exp(e):
  1913. match e:
  1914. case UnaryOp(USub(), e1):
  1915. return -self.interp_exp(e1)
  1916. ...
  1917. ...
  1918. \end{lstlisting}
  1919. \end{minipage}
  1920. \begin{minipage}{0.45\textwidth}
  1921. \begin{lstlisting}
  1922. def InterpLvar(InterpLint):
  1923. def interp_exp(e):
  1924. match e:
  1925. case Name(id):
  1926. return env[id]
  1927. case _:
  1928. return super().interp_exp(e)
  1929. ...
  1930. \end{lstlisting}
  1931. \end{minipage}
  1932. \fi}
  1933. \end{center}
  1934. Getting back to the troublesome example, repeated here:
  1935. {\if\edition\racketEd
  1936. \begin{lstlisting}
  1937. (Let 'y (Int 10) (Prim '- (Var 'y)))
  1938. \end{lstlisting}
  1939. \fi}
  1940. {\if\edition\pythonEd\pythonColor
  1941. \begin{lstlisting}
  1942. y = 10
  1943. print(-y)
  1944. \end{lstlisting}
  1945. \fi}
  1946. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1947. \racket{on this expression,}
  1948. \python{on the \code{-y} expression,}%
  1949. %
  1950. which we call \code{e0}, by creating an object of the \LangVar{} class
  1951. and calling the \code{interp\_exp} method
  1952. {\if\edition\racketEd
  1953. \begin{lstlisting}
  1954. ((send (new interp-Lvar-class) interp_exp '()) e0)
  1955. \end{lstlisting}
  1956. \fi}
  1957. {\if\edition\pythonEd\pythonColor
  1958. \begin{lstlisting}
  1959. InterpLvar().interp_exp(e0)
  1960. \end{lstlisting}
  1961. \fi}
  1962. \noindent To process the \code{-} operator, the default case of
  1963. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1964. method in \LangInt{}. But then for the recursive method call, it
  1965. dispatches to \code{interp\_exp} in \LangVar{}, where the
  1966. \code{Var} node is handled correctly. Thus, method overriding gives us
  1967. the open recursion that we need to implement our interpreters in an
  1968. extensible way.
  1969. \subsection{Definitional Interpreter for \LangVar{}}
  1970. \label{sec:interp-Lvar}
  1971. Having justified the use of classes and methods to implement
  1972. interpreters, we revisit the definitional interpreter for \LangInt{}
  1973. shown in figure~\ref{fig:interp-Lint-class} and then extend it to
  1974. create an interpreter for \LangVar{}, shown in
  1975. figure~\ref{fig:interp-Lvar}.
  1976. %
  1977. \python{We change the \code{interp\_stmt} method in the interpreter
  1978. for \LangInt{} to take two extra parameters named \code{env}, which
  1979. we discuss in the next paragraph, and \code{cont} for
  1980. \emph{continuation}, which is the technical name for what comes
  1981. after a particular point in a program. The \code{cont} parameter is
  1982. the list of statements that that follow the current statement. Note
  1983. that \code{interp\_stmts} invokes \code{interp\_stmt} on the first
  1984. statement and passes the rest of the statements as the argument for
  1985. \code{cont}. This organization enables each statement to decide what
  1986. if anything should be evaluated after it, for example, allowing a
  1987. \code{return} statement to exit early from a function (see
  1988. Chapter~\ref{ch:Lfun}).}
  1989. The interpreter for \LangVar{} adds two new cases for
  1990. variables and \racket{\key{let}}\python{assignment}. For
  1991. \racket{\key{let}}\python{assignment}, we need a way to communicate the
  1992. value bound to a variable to all the uses of the variable. To
  1993. accomplish this, we maintain a mapping from variables to values called
  1994. an \emph{environment}\index{subject}{environment}.
  1995. %
  1996. We use
  1997. %
  1998. \racket{an association list (alist) }%
  1999. %
  2000. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary} }%
  2001. %
  2002. to represent the environment.
  2003. %
  2004. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  2005. and the \code{racket/dict} package.}
  2006. %
  2007. The \code{interp\_exp} function takes the current environment,
  2008. \code{env}, as an extra parameter. When the interpreter encounters a
  2009. variable, it looks up the corresponding value in the environment. If
  2010. the variable is not in the environment (because the variable was not
  2011. defined) then the lookup will fail and the interpreter will
  2012. halt with an error. Recall that the compiler is not obligated to
  2013. compile such programs (Section~\ref{sec:interp_Lint}).\footnote{In
  2014. Chapter~\ref{ch:Lif} we introduce type checking rules that
  2015. prohibit access to undefined variables.}
  2016. %
  2017. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  2018. initializing expression, extends the environment with the result
  2019. value bound to the variable, using \code{dict-set}, then evaluates
  2020. the body of the \key{Let}.}
  2021. %
  2022. \python{When the interpreter encounters an assignment, it evaluates
  2023. the initializing expression and then associates the resulting value
  2024. with the variable in the environment.}
  2025. \begin{figure}[tp]
  2026. \begin{tcolorbox}[colback=white]
  2027. {\if\edition\racketEd
  2028. \begin{lstlisting}
  2029. (define interp-Lint-class
  2030. (class object%
  2031. (super-new)
  2032. (define/public ((interp_exp env) e)
  2033. (match e
  2034. [(Int n) n]
  2035. [(Prim 'read '())
  2036. (define r (read))
  2037. (cond [(fixnum? r) r]
  2038. [else (error 'interp_exp "expected an integer" r)])]
  2039. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  2040. [(Prim '+ (list e1 e2))
  2041. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  2042. [(Prim '- (list e1 e2))
  2043. (fx- ((interp_exp env) e1) ((interp_exp env) e2))]))
  2044. (define/public (interp_program p)
  2045. (match p
  2046. [(Program '() e) ((interp_exp '()) e)]))
  2047. ))
  2048. \end{lstlisting}
  2049. \fi}
  2050. {\if\edition\pythonEd\pythonColor
  2051. \begin{lstlisting}
  2052. class InterpLint:
  2053. def interp_exp(self, e, env):
  2054. match e:
  2055. case BinOp(left, Add(), right):
  2056. return self.interp_exp(left, env) + self.interp_exp(right, env)
  2057. case BinOp(left, Sub(), right):
  2058. return self.interp_exp(left, env) - self.interp_exp(right, env)
  2059. case UnaryOp(USub(), v):
  2060. return - self.interp_exp(v, env)
  2061. case Constant(value):
  2062. return value
  2063. case Call(Name('input_int'), []):
  2064. return int(input())
  2065. def interp_stmt(self, s, env, cont):
  2066. match s:
  2067. case Expr(Call(Name('print'), [arg])):
  2068. val = self.interp_exp(arg, env)
  2069. print(val, end='')
  2070. return self.interp_stmts(cont, env)
  2071. case Expr(value):
  2072. self.interp_exp(value, env)
  2073. return self.interp_stmts(cont, env)
  2074. case _:
  2075. raise Exception('error in interp_stmt, unexpected ' + repr(s))
  2076. def interp_stmts(self, ss, env):
  2077. match ss:
  2078. case []:
  2079. return 0
  2080. case [s, *ss]:
  2081. return self.interp_stmt(s, env, ss)
  2082. def interp(self, p):
  2083. match p:
  2084. case Module(body):
  2085. self.interp_stmts(body, {})
  2086. def interp_Lint(p):
  2087. return InterpLint().interp(p)
  2088. \end{lstlisting}
  2089. \fi}
  2090. \end{tcolorbox}
  2091. \caption{Interpreter for \LangInt{} as a class.}
  2092. \label{fig:interp-Lint-class}
  2093. \end{figure}
  2094. \begin{figure}[tp]
  2095. \begin{tcolorbox}[colback=white]
  2096. {\if\edition\racketEd
  2097. \begin{lstlisting}
  2098. (define interp-Lvar-class
  2099. (class interp-Lint-class
  2100. (super-new)
  2101. (define/override ((interp_exp env) e)
  2102. (match e
  2103. [(Var x) (dict-ref env x)]
  2104. [(Let x e body)
  2105. (define new-env (dict-set env x ((interp_exp env) e)))
  2106. ((interp_exp new-env) body)]
  2107. [else ((super interp_exp env) e)]))
  2108. ))
  2109. (define (interp_Lvar p)
  2110. (send (new interp-Lvar-class) interp_program p))
  2111. \end{lstlisting}
  2112. \fi}
  2113. {\if\edition\pythonEd\pythonColor
  2114. \begin{lstlisting}
  2115. class InterpLvar(InterpLint):
  2116. def interp_exp(self, e, env):
  2117. match e:
  2118. case Name(id):
  2119. return env[id]
  2120. case _:
  2121. return super().interp_exp(e, env)
  2122. def interp_stmt(self, s, env, cont):
  2123. match s:
  2124. case Assign([lhs], value):
  2125. env[lhs.id] = self.interp_exp(value, env)
  2126. return self.interp_stmts(cont, env)
  2127. case _:
  2128. return super().interp_stmt(s, env, cont)
  2129. def interp_Lvar(p):
  2130. return InterpLvar().interp(p)
  2131. \end{lstlisting}
  2132. \fi}
  2133. \end{tcolorbox}
  2134. \caption{Interpreter for the \LangVar{} language.}
  2135. \label{fig:interp-Lvar}
  2136. \end{figure}
  2137. {\if\edition\racketEd
  2138. \begin{figure}[tp]
  2139. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  2140. \small
  2141. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  2142. An \emph{association list} (called an alist) is a list of key-value pairs.
  2143. For example, we can map people to their ages with an alist
  2144. \index{subject}{alist}\index{subject}{association list}
  2145. \begin{lstlisting}[basicstyle=\ttfamily]
  2146. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  2147. \end{lstlisting}
  2148. The \emph{dictionary} interface is for mapping keys to values.
  2149. Every alist implements this interface. \index{subject}{dictionary}
  2150. The package
  2151. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  2152. provides many functions for working with dictionaries, such as
  2153. \begin{description}
  2154. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  2155. returns the value associated with the given $\itm{key}$.
  2156. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  2157. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  2158. and otherwise is the same as $\itm{dict}$.
  2159. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  2160. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  2161. of keys and values in $\itm{dict}$. For example, the following
  2162. creates a new alist in which the ages are incremented:
  2163. \end{description}
  2164. \vspace{-10pt}
  2165. \begin{lstlisting}[basicstyle=\ttfamily]
  2166. (for/list ([(k v) (in-dict ages)])
  2167. (cons k (add1 v)))
  2168. \end{lstlisting}
  2169. \end{tcolorbox}
  2170. %\end{wrapfigure}
  2171. \caption{Association lists implement the dictionary interface.}
  2172. \label{fig:alist}
  2173. \end{figure}
  2174. \fi}
  2175. The goal for this chapter is to implement a compiler that translates
  2176. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2177. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2178. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2179. That is, they output the same integer $n$. We depict this correctness
  2180. criteria in the following diagram:
  2181. \[
  2182. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2183. \node (p1) at (0, 0) {$P_1$};
  2184. \node (p2) at (4, 0) {$P_2$};
  2185. \node (o) at (4, -2) {$n$};
  2186. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2187. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2188. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2189. \end{tikzpicture}
  2190. \]
  2191. Next we introduce the \LangXInt{} subset of x86 that suffices for
  2192. compiling \LangVar{}.
  2193. \section{The \LangXInt{} Assembly Language}
  2194. \label{sec:x86}
  2195. \index{subject}{x86}
  2196. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2197. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2198. assembler.
  2199. %
  2200. A program begins with a \code{main} label followed by a sequence of
  2201. instructions. The \key{globl} directive makes the \key{main} procedure
  2202. externally visible so that the operating system can call it.
  2203. %
  2204. An x86 program is stored in the computer's memory. For our purposes,
  2205. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2206. values. The computer has a \emph{program counter}
  2207. (PC)\index{subject}{program counter}\index{subject}{PC} stored in the
  2208. \code{rip} register that points to the address of the next instruction
  2209. to be executed. For most instructions, the program counter is
  2210. incremented after the instruction is executed so that it points to the
  2211. next instruction in memory. Most x86 instructions take two operands,
  2212. each of which is an integer constant (called an \emph{immediate
  2213. value}\index{subject}{immediate value}), a
  2214. \emph{register}\index{subject}{register}, or a memory location.
  2215. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2216. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2217. && \key{r8} \MID \key{r9} \MID \key{r10}
  2218. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2219. \MID \key{r14} \MID \key{r15}}
  2220. \newcommand{\GrammarXInt}{
  2221. \begin{array}{rcl}
  2222. \Reg &::=& \allregisters{} \\
  2223. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2224. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2225. \key{subq} \; \Arg\key{,} \Arg \MID
  2226. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2227. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2228. \key{callq} \; \mathit{label} \MID
  2229. \key{retq} \MID
  2230. \key{jmp}\,\itm{label} \MID \\
  2231. && \itm{label}\key{:}\; \Instr
  2232. \end{array}
  2233. }
  2234. \begin{figure}[tp]
  2235. \begin{tcolorbox}[colback=white]
  2236. {\if\edition\racketEd
  2237. \[
  2238. \begin{array}{l}
  2239. \GrammarXInt \\
  2240. \begin{array}{lcl}
  2241. \LangXIntM{} &::= & \key{.globl main}\\
  2242. & & \key{main:} \; \Instr\ldots
  2243. \end{array}
  2244. \end{array}
  2245. \]
  2246. \fi}
  2247. {\if\edition\pythonEd\pythonColor
  2248. \[
  2249. \begin{array}{lcl}
  2250. \Reg &::=& \allregisters{} \\
  2251. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2252. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2253. \key{subq} \; \Arg\key{,} \Arg \MID
  2254. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2255. && \key{callq} \; \mathit{label} \MID
  2256. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2257. \LangXIntM{} &::= & \key{.globl main}\\
  2258. & & \key{main:} \; \Instr^{*}
  2259. \end{array}
  2260. \]
  2261. \fi}
  2262. \end{tcolorbox}
  2263. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2264. \label{fig:x86-int-concrete}
  2265. \end{figure}
  2266. A register is a special kind of variable that holds a 64-bit
  2267. value. There are 16 general-purpose registers in the computer; their
  2268. names are given in figure~\ref{fig:x86-int-concrete}. A register is
  2269. written with a percent sign, \key{\%}, followed by the register name,
  2270. for example \key{\%rax}.
  2271. An immediate value is written using the notation \key{\$}$n$ where $n$
  2272. is an integer.
  2273. %
  2274. %
  2275. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2276. which obtains the address stored in register $r$ and then adds $n$
  2277. bytes to the address. The resulting address is used to load or to store
  2278. to memory depending on whether it occurs as a source or destination
  2279. argument of an instruction.
  2280. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from
  2281. the source $s$ and destination $d$, applies the arithmetic operation,
  2282. and then writes the result to the destination $d$. \index{subject}{instruction}
  2283. %
  2284. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2285. stores the result in $d$.
  2286. %
  2287. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2288. specified by the label, and $\key{retq}$ returns from a procedure to
  2289. its caller.
  2290. %
  2291. We discuss procedure calls in more detail further in this chapter and
  2292. in chapter~\ref{ch:Lfun}.
  2293. %
  2294. The last letter \key{q} indicates that these instructions operate on
  2295. quadwords, which are 64-bit values.
  2296. %
  2297. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2298. counter to the address of the instruction immediately after the
  2299. specified label.}
  2300. Appendix~\ref{sec:x86-quick-reference} contains a quick reference for
  2301. all the x86 instructions used in this book.
  2302. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2303. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2304. \lstinline{movq $10, %rax}
  2305. puts $10$ into register \key{rax}, and then \lstinline{addq $32, %rax}
  2306. adds $32$ to the $10$ in \key{rax} and
  2307. puts the result, $42$, into \key{rax}.
  2308. %
  2309. The last instruction \key{retq} finishes the \key{main} function by
  2310. returning the integer in \key{rax} to the operating system. The
  2311. operating system interprets this integer as the program's exit
  2312. code. By convention, an exit code of 0 indicates that a program has
  2313. completed successfully, and all other exit codes indicate various
  2314. errors.
  2315. %
  2316. \racket{However, in this book we return the result of the program
  2317. as the exit code.}
  2318. \begin{figure}[tbp]
  2319. \begin{minipage}{0.45\textwidth}
  2320. \begin{tcolorbox}[colback=white]
  2321. \begin{lstlisting}
  2322. .globl main
  2323. main:
  2324. movq $10, %rax
  2325. addq $32, %rax
  2326. retq
  2327. \end{lstlisting}
  2328. \end{tcolorbox}
  2329. \end{minipage}
  2330. \caption{An x86 program that computes
  2331. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2332. \label{fig:p0-x86}
  2333. \end{figure}
  2334. We exhibit the use of memory for storing intermediate results in the
  2335. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2336. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2337. uses a region of memory called the \emph{procedure call stack}
  2338. (\emph{stack} for
  2339. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2340. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2341. for each procedure call. The memory layout for an individual frame is
  2342. shown in figure~\ref{fig:frame}. The register \key{rsp} is called the
  2343. \emph{stack pointer}\index{subject}{stack pointer} and contains the
  2344. address of the item at the top of the stack. In general, we use the
  2345. term \emph{pointer}\index{subject}{pointer} for something that
  2346. contains an address. The stack grows downward in memory, so we
  2347. increase the size of the stack by subtracting from the stack pointer.
  2348. In the context of a procedure call, the \emph{return
  2349. address}\index{subject}{return address} is the location of the
  2350. instruction that immediately follows the call instruction on the
  2351. caller side. The function call instruction, \code{callq}, pushes the
  2352. return address onto the stack prior to jumping to the procedure. The
  2353. register \key{rbp} is the \emph{base pointer}\index{subject}{base
  2354. pointer} and is used to access variables that are stored in the
  2355. frame of the current procedure call. The base pointer of the caller
  2356. is stored immediately after the return address.
  2357. Figure~\ref{fig:frame} shows the memory layout of a frame with storage
  2358. for $n$ variables, which are numbered from $1$ to $n$. Variable $1$ is
  2359. stored at address $-8\key{(\%rbp)}$, variable $2$ at
  2360. $-16\key{(\%rbp)}$, and so on.
  2361. \begin{figure}[tbp]
  2362. \begin{minipage}{0.66\textwidth}
  2363. \begin{tcolorbox}[colback=white]
  2364. {\if\edition\racketEd
  2365. \begin{lstlisting}
  2366. start:
  2367. movq $10, -8(%rbp)
  2368. negq -8(%rbp)
  2369. movq -8(%rbp), %rax
  2370. addq $52, %rax
  2371. jmp conclusion
  2372. .globl main
  2373. main:
  2374. pushq %rbp
  2375. movq %rsp, %rbp
  2376. subq $16, %rsp
  2377. jmp start
  2378. conclusion:
  2379. addq $16, %rsp
  2380. popq %rbp
  2381. retq
  2382. \end{lstlisting}
  2383. \fi}
  2384. {\if\edition\pythonEd\pythonColor
  2385. \begin{lstlisting}
  2386. .globl main
  2387. main:
  2388. pushq %rbp
  2389. movq %rsp, %rbp
  2390. subq $16, %rsp
  2391. movq $10, -8(%rbp)
  2392. negq -8(%rbp)
  2393. movq -8(%rbp), %rax
  2394. addq $52, %rax
  2395. addq $16, %rsp
  2396. popq %rbp
  2397. retq
  2398. \end{lstlisting}
  2399. \fi}
  2400. \end{tcolorbox}
  2401. \end{minipage}
  2402. \caption{An x86 program that computes
  2403. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2404. \label{fig:p1-x86}
  2405. \end{figure}
  2406. \begin{figure}[tbp]
  2407. \begin{minipage}{0.66\textwidth}
  2408. \begin{tcolorbox}[colback=white]
  2409. \centering
  2410. \begin{tabular}{|r|l|} \hline
  2411. Position & Contents \\ \hline
  2412. $8$(\key{\%rbp}) & return address \\
  2413. $0$(\key{\%rbp}) & old \key{rbp} \\
  2414. $-8$(\key{\%rbp}) & variable $1$ \\
  2415. $-16$(\key{\%rbp}) & variable $2$ \\
  2416. \ldots & \ldots \\
  2417. $0$(\key{\%rsp}) & variable $n$\\ \hline
  2418. \end{tabular}
  2419. \end{tcolorbox}
  2420. \end{minipage}
  2421. \caption{Memory layout of a frame.}
  2422. \label{fig:frame}
  2423. \end{figure}
  2424. In the program shown in figure~\ref{fig:p1-x86}, consider how control
  2425. is transferred from the operating system to the \code{main} function.
  2426. The operating system issues a \code{callq main} instruction that
  2427. pushes its return address on the stack and then jumps to
  2428. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2429. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2430. that when control arrives at \code{main}, the \code{rsp} is 8 bytes
  2431. out of alignment (because the \code{callq} pushed the return address).
  2432. The first three instructions are the typical
  2433. \emph{prelude}\index{subject}{prelude} for a procedure. The
  2434. instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2435. pointer \code{rsp} and then saves the base pointer of the caller at
  2436. address \code{rsp} on the stack. The next instruction \code{movq
  2437. \%rsp, \%rbp} sets the base pointer to the current stack pointer,
  2438. which is pointing to the location of the old base pointer. The
  2439. instruction \code{subq \$16, \%rsp} moves the stack pointer down to
  2440. make enough room for storing variables. This program needs one
  2441. variable ($8$ bytes), but we round up to 16 bytes so that \code{rsp} is
  2442. 16-byte-aligned, and then we are ready to make calls to other functions.
  2443. \racket{The last instruction of the prelude is \code{jmp start}, which
  2444. transfers control to the instructions that were generated from the
  2445. expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2446. \racket{The first instruction under the \code{start} label is}
  2447. %
  2448. \python{The first instruction after the prelude is}
  2449. %
  2450. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2451. %
  2452. The instruction \code{negq -8(\%rbp)} changes the contents of variable
  2453. $1$ to $-10$.
  2454. %
  2455. The next instruction moves the $-10$ from variable $1$ into the
  2456. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2457. the value in \code{rax}, updating its contents to $42$.
  2458. \racket{The three instructions under the label \code{conclusion} are the
  2459. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2460. %
  2461. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2462. \code{main} function consists of the last three instructions.}
  2463. %
  2464. The first two restore the \code{rsp} and \code{rbp} registers to their
  2465. states at the beginning of the procedure. In particular,
  2466. \key{addq \$16, \%rsp} moves the stack pointer to point to the
  2467. old base pointer. Then \key{popq \%rbp} restores the old base pointer
  2468. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2469. \key{retq}, jumps back to the procedure that called this one and adds
  2470. $8$ to the stack pointer.
  2471. Our compiler needs a convenient representation for manipulating x86
  2472. programs, so we define an abstract syntax for x86, shown in
  2473. figure~\ref{fig:x86-int-ast}. We refer to this language as
  2474. \LangXInt{}.
  2475. %
  2476. {\if\edition\pythonEd\pythonColor%
  2477. The main difference between this and the concrete syntax of \LangXInt{}
  2478. (figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2479. names, and register names are explicitly represented by strings.
  2480. \fi} %
  2481. {\if\edition\racketEd
  2482. The main difference between this and the concrete syntax of \LangXInt{}
  2483. (figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2484. front of every instruction. Instead instructions are grouped into
  2485. \emph{basic blocks}\index{subject}{basic block} with a
  2486. label associated with every basic block; this is why the \key{X86Program}
  2487. struct includes an alist mapping labels to basic blocks. The reason for this
  2488. organization becomes apparent in chapter~\ref{ch:Lif} when we
  2489. introduce conditional branching. The \code{Block} structure includes
  2490. an $\itm{info}$ field that is not needed in this chapter but becomes
  2491. useful in chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2492. $\itm{info}$ field should contain an empty list.
  2493. \fi}
  2494. %
  2495. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2496. node includes an integer for representing the arity of the function,
  2497. that is, the number of arguments, which is helpful to know during
  2498. register allocation (chapter~\ref{ch:register-allocation-Lvar}).
  2499. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2500. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2501. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2502. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2503. \MID \skey{r14} \MID \skey{r15}}
  2504. \newcommand{\ASTXIntRacket}{
  2505. \begin{array}{lcl}
  2506. \Reg &::=& \allregisters{} \\
  2507. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2508. \MID \DEREF{\Reg}{\Int} \\
  2509. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2510. \MID \BININSTR{\code{subq}}{\Arg}{\Arg}\\
  2511. &\MID& \UNIINSTR{\code{negq}}{\Arg}
  2512. \MID \BININSTR{\code{movq}}{\Arg}{\Arg}\\
  2513. &\MID& \PUSHQ{\Arg}
  2514. \MID \POPQ{\Arg} \\
  2515. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2516. \MID \RETQ{}
  2517. \MID \JMP{\itm{label}} \\
  2518. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}
  2519. \end{array}
  2520. }
  2521. \begin{figure}[tp]
  2522. \begin{tcolorbox}[colback=white]
  2523. \small
  2524. {\if\edition\racketEd
  2525. \[\arraycolsep=3pt
  2526. \begin{array}{l}
  2527. \ASTXIntRacket \\
  2528. \begin{array}{lcl}
  2529. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2530. \end{array}
  2531. \end{array}
  2532. \]
  2533. \fi}
  2534. {\if\edition\pythonEd\pythonColor
  2535. \[
  2536. \begin{array}{lcl}
  2537. \Reg &::=& \allastregisters{} \\
  2538. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2539. \MID \DEREF{\Reg}{\Int} \\
  2540. \Instr &::=& \BININSTR{\scode{addq}}{\Arg}{\Arg}
  2541. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} \\
  2542. &\MID& \BININSTR{\scode{movq}}{\Arg}{\Arg}
  2543. \MID \UNIINSTR{\scode{negq}}{\Arg}\\
  2544. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2545. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{} \MID \JMP{\itm{label}} \\
  2546. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2547. \end{array}
  2548. \]
  2549. \fi}
  2550. \end{tcolorbox}
  2551. \caption{The abstract syntax of \LangXInt{} assembly.}
  2552. \label{fig:x86-int-ast}
  2553. \end{figure}
  2554. \section{Planning the Trip to x86}
  2555. \label{sec:plan-s0-x86}
  2556. To compile one language to another, it helps to focus on the
  2557. differences between the two languages because the compiler will need
  2558. to bridge those differences. What are the differences between \LangVar{}
  2559. and x86 assembly? Here are some of the most important ones:
  2560. \begin{enumerate}
  2561. \item x86 arithmetic instructions typically have two arguments and
  2562. update the second argument in place. In contrast, \LangVar{}
  2563. arithmetic operations take two arguments and produce a new value.
  2564. An x86 instruction may have at most one memory-accessing argument.
  2565. Furthermore, some x86 instructions place special restrictions on
  2566. their arguments.
  2567. \item An argument of an \LangVar{} operator can be a deeply nested
  2568. expression, whereas x86 instructions restrict their arguments to be
  2569. integer constants, registers, and memory locations.
  2570. {\if\edition\racketEd
  2571. \item The order of execution in x86 is explicit in the syntax, which
  2572. is a sequence of instructions and jumps to labeled positions,
  2573. whereas in \LangVar{} the order of evaluation is a left-to-right
  2574. depth-first traversal of the abstract syntax tree. \fi}
  2575. \item A program in \LangVar{} can have any number of variables,
  2576. whereas x86 has 16 registers and the procedure call stack.
  2577. {\if\edition\racketEd
  2578. \item Variables in \LangVar{} can shadow other variables with the
  2579. same name. In x86, registers have unique names, and memory locations
  2580. have unique addresses.
  2581. \fi}
  2582. \end{enumerate}
  2583. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2584. down the problem into several steps, which deal with these differences
  2585. one at a time. Each of these steps is called a \emph{pass} of the
  2586. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2587. %
  2588. This term indicates that each step passes over, or traverses, the AST
  2589. of the program.
  2590. %
  2591. Furthermore, we follow the nanopass approach, which means that we
  2592. strive for each pass to accomplish one clear objective rather than two
  2593. or three at the same time.
  2594. %
  2595. We begin by sketching how we might implement each pass and give each
  2596. pass a name. We then figure out an ordering of the passes and the
  2597. input/output language for each pass. The very first pass has
  2598. \LangVar{} as its input language, and the last pass has \LangXInt{} as
  2599. its output language. In between these two passes, we can choose
  2600. whichever language is most convenient for expressing the output of
  2601. each pass, whether that be \LangVar{}, \LangXInt{}, or a new
  2602. \emph{intermediate language} of our own design. Finally, to
  2603. implement each pass we write one recursive function per nonterminal in
  2604. the grammar of the input language of the pass.
  2605. \index{subject}{intermediate language}
  2606. Our compiler for \LangVar{} consists of the following passes:
  2607. %
  2608. \begin{description}
  2609. {\if\edition\racketEd
  2610. \item[\key{uniquify}] deals with the shadowing of variables by
  2611. renaming every variable to a unique name.
  2612. \fi}
  2613. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2614. of a primitive operation or function call is a variable or integer,
  2615. that is, an \emph{atomic} expression. We refer to nonatomic
  2616. expressions as \emph{complex}. This pass introduces temporary
  2617. variables to hold the results of complex
  2618. subexpressions.\index{subject}{atomic
  2619. expression}\index{subject}{complex expression}%
  2620. {\if\edition\racketEd
  2621. \item[\key{explicate\_control}] makes the execution order of the
  2622. program explicit. It converts the abstract syntax tree
  2623. representation into a graph in which each node is a labeled sequence
  2624. of statements and the edges are \code{goto} statements.
  2625. \fi}
  2626. \item[\key{select\_instructions}]\index{subject}{select instructions}
  2627. handles the difference between
  2628. \LangVar{} operations and x86 instructions. This pass converts each
  2629. \LangVar{} operation to a short sequence of instructions that
  2630. accomplishes the same task.
  2631. \item[\key{assign\_homes}] replaces variables with registers or stack
  2632. locations.
  2633. \end{description}
  2634. %
  2635. {\if\edition\racketEd
  2636. %
  2637. Our treatment of \code{remove\_complex\_operands} and
  2638. \code{explicate\_control} as separate passes is an example of the
  2639. nanopass approach.\footnote{For analogous decompositions of the
  2640. translation into continuation passing style, see the work of
  2641. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.} The traditional
  2642. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2643. %
  2644. \fi}
  2645. The next question is, in what order should we apply these passes? This
  2646. question can be challenging because it is difficult to know ahead of
  2647. time which orderings will be better (that is, will be easier to
  2648. implement, produce more efficient code, and so on), and therefore
  2649. ordering often involves trial and error. Nevertheless, we can plan
  2650. ahead and make educated choices regarding the ordering.
  2651. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2652. \key{uniquify}? The \key{uniquify} pass should come first because
  2653. \key{explicate\_control} changes all the \key{let}-bound variables to
  2654. become local variables whose scope is the entire program, which would
  2655. confuse variables with the same name.}
  2656. %
  2657. \racket{We place \key{remove\_complex\_operands} before \key{explicate\_control}
  2658. because the later removes the \key{let} form, but it is convenient to
  2659. use \key{let} in the output of \key{remove\_complex\_operands}.}
  2660. %
  2661. \racket{The ordering of \key{uniquify} with respect to
  2662. \key{remove\_complex\_operands} does not matter, so we arbitrarily choose
  2663. \key{uniquify} to come first.}
  2664. The \key{select\_instructions} and \key{assign\_homes} passes are
  2665. intertwined.
  2666. %
  2667. In chapter~\ref{ch:Lfun} we learn that in x86, registers are used for
  2668. passing arguments to functions and that it is preferable to assign
  2669. parameters to their corresponding registers. This suggests that it
  2670. would be better to start with the \key{select\_instructions} pass,
  2671. which generates the instructions for argument passing, before
  2672. performing register allocation.
  2673. %
  2674. On the other hand, by selecting instructions first we may run into a
  2675. dead end in \key{assign\_homes}. Recall that only one argument of an
  2676. x86 instruction may be a memory access, but \key{assign\_homes} might
  2677. be forced to assign both arguments to memory locations.
  2678. %
  2679. A sophisticated approach is to repeat the two passes until a solution
  2680. is found. However, to reduce implementation complexity we recommend
  2681. placing \key{select\_instructions} first, followed by the
  2682. \key{assign\_homes}, and then a third pass named \key{patch\_instructions}
  2683. that uses a reserved register to fix outstanding problems.
  2684. \begin{figure}[tbp]
  2685. \begin{tcolorbox}[colback=white]
  2686. {\if\edition\racketEd
  2687. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  2688. \node (Lvar) at (0,2) {\large \LangVar{}};
  2689. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2690. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  2691. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2692. \node (Cvar-2) at (0,0) {\large \LangCVar{}};
  2693. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  2694. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  2695. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  2696. \node (x86-5) at (11,-2) {\large \LangXInt{}};
  2697. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2698. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  2699. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize\ \ explicate\_control} (Cvar-2);
  2700. \path[->,bend right=15] (Cvar-2) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  2701. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2702. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  2703. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  2704. \end{tikzpicture}
  2705. \fi}
  2706. {\if\edition\pythonEd\pythonColor
  2707. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  2708. \node (Lvar) at (0,2) {\large \LangVar{}};
  2709. \node (Lvar-2) at (4,2) {\large \LangVarANF{}};
  2710. \node (x86-1) at (0,0) {\large \LangXVar{}};
  2711. \node (x86-2) at (4,0) {\large \LangXVar{}};
  2712. \node (x86-3) at (8,0) {\large \LangXInt{}};
  2713. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2714. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-2);
  2715. \path[->,bend left=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instructions\ \ } (x86-1);
  2716. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2717. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  2718. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  2719. \end{tikzpicture}
  2720. \fi}
  2721. \end{tcolorbox}
  2722. \caption{Diagram of the passes for compiling \LangVar{}. }
  2723. \label{fig:Lvar-passes}
  2724. \end{figure}
  2725. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2726. passes and identifies the input and output language of each pass.
  2727. %
  2728. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2729. language, which extends \LangXInt{} with an unbounded number of
  2730. program-scope variables and removes the restrictions regarding
  2731. instruction arguments.
  2732. %
  2733. The last pass, \key{prelude\_and\_conclusion}, places the program
  2734. instructions inside a \code{main} function with instructions for the
  2735. prelude and conclusion.
  2736. %
  2737. \racket{In the next section we discuss the \LangCVar{} intermediate
  2738. language that serves as the output of \code{explicate\_control}.}
  2739. %
  2740. The remainder of this chapter provides guidance on the implementation
  2741. of each of the compiler passes represented in
  2742. figure~\ref{fig:Lvar-passes}.
  2743. %% The output of \key{uniquify} and \key{remove-complex-operands}
  2744. %% are programs that are still in the \LangVar{} language, though the
  2745. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2746. %% (section~\ref{sec:remove-complex-opera-Lvar}).
  2747. %% %
  2748. %% The output of \code{explicate\_control} is in an intermediate language
  2749. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2750. %% syntax, which we introduce in the next section. The
  2751. %% \key{select-instruction} pass translates from \LangCVar{} to
  2752. %% \LangXVar{}. The \key{assign-homes} and
  2753. %% \key{patch-instructions}
  2754. %% passes input and output variants of x86 assembly.
  2755. \newcommand{\CvarGrammarRacket}{
  2756. \begin{array}{lcl}
  2757. \Atm &::=& \Int \MID \Var \\
  2758. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2759. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2760. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2761. \end{array}
  2762. }
  2763. \newcommand{\CvarASTRacket}{
  2764. \begin{array}{lcl}
  2765. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2766. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2767. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2768. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2769. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2770. \end{array}
  2771. }
  2772. {\if\edition\racketEd
  2773. \subsection{The \LangCVar{} Intermediate Language}
  2774. The output of \code{explicate\_control} is similar to the C
  2775. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2776. categories for expressions and statements, so we name it \LangCVar{}.
  2777. This style of intermediate language is also known as
  2778. \emph{three-address code}, to emphasize that the typical form of a
  2779. statement such as \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2780. addresses: \code{x}, \code{y}, and \code{z}~\citep{Aho:2006wb}.
  2781. The concrete syntax for \LangCVar{} is shown in
  2782. figure~\ref{fig:c0-concrete-syntax}, and the abstract syntax for
  2783. \LangCVar{} is shown in figure~\ref{fig:c0-syntax}.
  2784. %
  2785. The \LangCVar{} language supports the same operators as \LangVar{} but
  2786. the arguments of operators are restricted to atomic
  2787. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2788. assignment statements that can be executed in sequence using the
  2789. \key{Seq} form. A sequence of statements always ends with
  2790. \key{Return}, a guarantee that is baked into the grammar rules for
  2791. \itm{tail}. The naming of this nonterminal comes from the term
  2792. \emph{tail position}\index{subject}{tail position}, which refers to an
  2793. expression that is the last one to execute within a function or
  2794. program.
  2795. A \LangCVar{} program consists of an alist mapping labels to
  2796. tails. This is more general than necessary for the present chapter, as
  2797. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2798. us from having to change the syntax in chapter~\ref{ch:Lif}. For now
  2799. there is just one label, \key{start}, and the whole program is
  2800. its tail.
  2801. %
  2802. The $\itm{info}$ field of the \key{CProgram} form, after the
  2803. \code{explicate\_control} pass, contains an alist that associates the
  2804. symbol \key{locals} with a list of all the variables used in the
  2805. program. At the start of the program, these variables are
  2806. uninitialized; they become initialized on their first assignment.
  2807. \begin{figure}[tbp]
  2808. \begin{tcolorbox}[colback=white]
  2809. \[
  2810. \begin{array}{l}
  2811. \CvarGrammarRacket \\
  2812. \begin{array}{lcl}
  2813. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2814. \end{array}
  2815. \end{array}
  2816. \]
  2817. \end{tcolorbox}
  2818. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2819. \label{fig:c0-concrete-syntax}
  2820. \end{figure}
  2821. \begin{figure}[tbp]
  2822. \begin{tcolorbox}[colback=white]
  2823. \[
  2824. \begin{array}{l}
  2825. \CvarASTRacket \\
  2826. \begin{array}{lcl}
  2827. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2828. \end{array}
  2829. \end{array}
  2830. \]
  2831. \end{tcolorbox}
  2832. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2833. \label{fig:c0-syntax}
  2834. \end{figure}
  2835. The definitional interpreter for \LangCVar{} is in the support code,
  2836. in the file \code{interp-Cvar.rkt}.
  2837. \fi}
  2838. {\if\edition\racketEd
  2839. \section{Uniquify Variables}
  2840. \label{sec:uniquify-Lvar}
  2841. The \code{uniquify} pass replaces the variable bound by each \key{let}
  2842. with a unique name. Both the input and output of the \code{uniquify}
  2843. pass is the \LangVar{} language. For example, the \code{uniquify} pass
  2844. should translate the program on the left into the program on the
  2845. right.
  2846. \begin{transformation}
  2847. \begin{lstlisting}
  2848. (let ([x 32])
  2849. (+ (let ([x 10]) x) x))
  2850. \end{lstlisting}
  2851. \compilesto
  2852. \begin{lstlisting}
  2853. (let ([x.1 32])
  2854. (+ (let ([x.2 10]) x.2) x.1))
  2855. \end{lstlisting}
  2856. \end{transformation}
  2857. The following is another example translation, this time of a program
  2858. with a \key{let} nested inside the initializing expression of another
  2859. \key{let}.
  2860. \begin{transformation}
  2861. \begin{lstlisting}
  2862. (let ([x (let ([x 4])
  2863. (+ x 1))])
  2864. (+ x 2))
  2865. \end{lstlisting}
  2866. \compilesto
  2867. \begin{lstlisting}
  2868. (let ([x.2 (let ([x.1 4])
  2869. (+ x.1 1))])
  2870. (+ x.2 2))
  2871. \end{lstlisting}
  2872. \end{transformation}
  2873. We recommend implementing \code{uniquify} by creating a structurally
  2874. recursive function named \code{uniquify\_exp} that does little other
  2875. than copy an expression. However, when encountering a \key{let}, it
  2876. should generate a unique name for the variable and associate the old
  2877. name with the new name in an alist.\footnote{The Racket function
  2878. \code{gensym} is handy for generating unique variable names.} The
  2879. \code{uniquify\_exp} function needs to access this alist when it gets
  2880. to a variable reference, so we add a parameter to \code{uniquify\_exp}
  2881. for the alist.
  2882. The skeleton of the \code{uniquify\_exp} function is shown in
  2883. figure~\ref{fig:uniquify-Lvar}.
  2884. %% The function is curried so that it is
  2885. %% convenient to partially apply it to an alist and then apply it to
  2886. %% different expressions, as in the last case for primitive operations in
  2887. %% figure~\ref{fig:uniquify-Lvar}.
  2888. The
  2889. %
  2890. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2891. %
  2892. form of Racket is useful for transforming the element of a list to
  2893. produce a new list.\index{subject}{for/list}
  2894. \begin{figure}[tbp]
  2895. \begin{tcolorbox}[colback=white]
  2896. \begin{lstlisting}
  2897. (define (uniquify_exp env)
  2898. (lambda (e)
  2899. (match e
  2900. [(Var x) ___]
  2901. [(Int n) (Int n)]
  2902. [(Let x e body) ___]
  2903. [(Prim op es)
  2904. (Prim op (for/list ([e es]) ((uniquify_exp env) e)))])))
  2905. (define (uniquify p)
  2906. (match p
  2907. [(Program '() e) (Program '() ((uniquify_exp '()) e))]))
  2908. \end{lstlisting}
  2909. \end{tcolorbox}
  2910. \caption{Skeleton for the \key{uniquify} pass.}
  2911. \label{fig:uniquify-Lvar}
  2912. \end{figure}
  2913. \begin{exercise}
  2914. \normalfont\normalsize % I don't like the italics for exercises. -Jeremy
  2915. Complete the \code{uniquify} pass by filling in the blanks in
  2916. figure~\ref{fig:uniquify-Lvar}; that is, implement the cases for
  2917. variables and for the \key{let} form in the file \code{compiler.rkt}
  2918. in the support code.
  2919. \end{exercise}
  2920. \begin{exercise}
  2921. \normalfont\normalsize
  2922. \label{ex:Lvar}
  2923. Create five \LangVar{} programs that exercise the most interesting
  2924. parts of the \key{uniquify} pass; that is, the programs should include
  2925. \key{let} forms, variables, and variables that shadow each other.
  2926. The five programs should be placed in the subdirectory named
  2927. \key{tests}, and the file names should start with \code{var\_test\_}
  2928. followed by a unique integer and end with the file extension
  2929. \key{.rkt}.
  2930. %
  2931. The \key{run-tests.rkt} script in the support code checks whether the
  2932. output programs produce the same result as the input programs. The
  2933. script uses the \key{interp-tests} function
  2934. (appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2935. your \key{uniquify} pass on the example programs. The \code{passes}
  2936. parameter of \key{interp-tests} is a list that should have one entry
  2937. for each pass in your compiler. For now, define \code{passes} to
  2938. contain just one entry for \code{uniquify} as follows:
  2939. \begin{lstlisting}
  2940. (define passes
  2941. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2942. \end{lstlisting}
  2943. Run the \key{run-tests.rkt} script in the support code to check
  2944. whether the output programs produce the same result as the input
  2945. programs.
  2946. \end{exercise}
  2947. \fi}
  2948. \section{Remove Complex Operands}
  2949. \label{sec:remove-complex-opera-Lvar}
  2950. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2951. into a restricted form in which the arguments of operations are atomic
  2952. expressions. Put another way, this pass removes complex
  2953. operands\index{subject}{complex operand}, such as the expression
  2954. \racket{\code{(- 10)}}\python{\code{-10}}
  2955. in the following program. This is accomplished by introducing a new
  2956. temporary variable, assigning the complex operand to the new
  2957. variable, and then using the new variable in place of the complex
  2958. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2959. right.
  2960. {\if\edition\racketEd
  2961. \begin{transformation}
  2962. % var_test_19.rkt
  2963. \begin{lstlisting}
  2964. (let ([x (+ 42 (- 10))])
  2965. (+ x 10))
  2966. \end{lstlisting}
  2967. \compilesto
  2968. \begin{lstlisting}
  2969. (let ([x (let ([tmp.1 (- 10)])
  2970. (+ 42 tmp.1))])
  2971. (+ x 10))
  2972. \end{lstlisting}
  2973. \end{transformation}
  2974. \fi}
  2975. {\if\edition\pythonEd\pythonColor
  2976. \begin{transformation}
  2977. \begin{lstlisting}
  2978. x = 42 + -10
  2979. print(x + 10)
  2980. \end{lstlisting}
  2981. \compilesto
  2982. \begin{lstlisting}
  2983. tmp_0 = -10
  2984. x = 42 + tmp_0
  2985. tmp_1 = x + 10
  2986. print(tmp_1)
  2987. \end{lstlisting}
  2988. \end{transformation}
  2989. \fi}
  2990. \newcommand{\LvarMonadASTRacket}{
  2991. \begin{array}{rcl}
  2992. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2993. \Exp &::=& \Atm \MID \READ{} \\
  2994. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm} \\
  2995. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2996. \end{array}
  2997. }
  2998. \newcommand{\LvarMonadASTPython}{
  2999. \begin{array}{rcl}
  3000. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  3001. \Exp{} &::=& \Atm \MID \READ{} \\
  3002. &\MID& \UNIOP{\itm{unaryop}}{\Atm} \MID \BINOP{\Atm}{\itm{binaryop}}{\Atm} \\
  3003. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  3004. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  3005. \end{array}
  3006. }
  3007. \begin{figure}[tp]
  3008. \centering
  3009. \begin{tcolorbox}[colback=white]
  3010. {\if\edition\racketEd
  3011. \[
  3012. \begin{array}{l}
  3013. \LvarMonadASTRacket \\
  3014. \begin{array}{rcl}
  3015. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  3016. \end{array}
  3017. \end{array}
  3018. \]
  3019. \fi}
  3020. {\if\edition\pythonEd\pythonColor
  3021. \[
  3022. \begin{array}{l}
  3023. \LvarMonadASTPython \\
  3024. \begin{array}{rcl}
  3025. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  3026. \end{array}
  3027. \end{array}
  3028. \]
  3029. \fi}
  3030. \end{tcolorbox}
  3031. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  3032. atomic expressions.}
  3033. \label{fig:Lvar-anf-syntax}
  3034. \end{figure}
  3035. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  3036. of this pass, the language \LangVarANF{}. The only difference is that
  3037. operator arguments are restricted to be atomic expressions that are
  3038. defined by the \Atm{} nonterminal. In particular, integer constants
  3039. and variables are atomic.
  3040. The atomic expressions are pure (they do not cause or depend on side
  3041. effects) whereas complex expressions may have side effects, such as
  3042. \READ{}. A language with this separation between pure expressions
  3043. versus expressions with side effects is said to be in monadic normal
  3044. form~\citep{Moggi:1991in,Danvy:2003fk}, which explains the \textit{mon}
  3045. in the name \LangVarANF{}. An important invariant of the
  3046. \code{remove\_complex\_operands} pass is that the relative ordering
  3047. among complex expressions is not changed, but the relative ordering
  3048. between atomic expressions and complex expressions can change and
  3049. often does. The reason that these changes are behavior preserving is
  3050. that the atomic expressions are pure.
  3051. {\if\edition\racketEd
  3052. Another well-known form for intermediate languages is the
  3053. \emph{administrative normal form}
  3054. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  3055. \index{subject}{administrative normal form} \index{subject}{ANF}
  3056. %
  3057. The \LangVarANF{} language is not quite in ANF because it allows the
  3058. right-hand side of a \code{let} to be a complex expression, such as
  3059. another \code{let}. The flattening of nested \code{let} expressions is
  3060. instead one of the responsibilities of the \code{explicate\_control}
  3061. pass.
  3062. \fi}
  3063. {\if\edition\racketEd
  3064. We recommend implementing this pass with two mutually recursive
  3065. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  3066. \code{rco\_atom} to subexpressions that need to become atomic and to
  3067. apply \code{rco\_exp} to subexpressions that do not. Both functions
  3068. take an \LangVar{} expression as input. The \code{rco\_exp} function
  3069. returns an expression. The \code{rco\_atom} function returns two
  3070. things: an atomic expression and an alist mapping temporary variables to
  3071. complex subexpressions. You can return multiple things from a function
  3072. using Racket's \key{values} form, and you can receive multiple things
  3073. from a function call using the \key{define-values} form.
  3074. \fi}
  3075. %
  3076. {\if\edition\pythonEd\pythonColor
  3077. %
  3078. We recommend implementing this pass with an auxiliary method named
  3079. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  3080. Boolean that specifies whether the expression needs to become atomic
  3081. or not. The \code{rco\_exp} method should return a pair consisting of
  3082. the new expression and a list of pairs, associating new temporary
  3083. variables with their initializing expressions.
  3084. %
  3085. \fi}
  3086. {\if\edition\racketEd
  3087. %
  3088. Returning to the example program with the expression \code{(+ 42 (-
  3089. 10))}, the subexpression \code{(- 10)} should be processed using the
  3090. \code{rco\_atom} function because it is an argument of the \code{+}
  3091. operator and therefore needs to become atomic. The output of
  3092. \code{rco\_atom} applied to \code{(- 10)} is as follows:
  3093. \begin{transformation}
  3094. \begin{lstlisting}
  3095. (- 10)
  3096. \end{lstlisting}
  3097. \compilesto
  3098. \begin{lstlisting}
  3099. tmp.1
  3100. ((tmp.1 . (- 10)))
  3101. \end{lstlisting}
  3102. \end{transformation}
  3103. \fi}
  3104. %
  3105. {\if\edition\pythonEd\pythonColor
  3106. %
  3107. Returning to the example program with the expression \code{42 + -10},
  3108. the subexpression \code{-10} should be processed using the
  3109. \code{rco\_exp} function with \code{True} as the second argument
  3110. because \code{-10} is an argument of the \code{+} operator and
  3111. therefore needs to become atomic. The output of \code{rco\_exp}
  3112. applied to \code{-10} is as follows.
  3113. \begin{transformation}
  3114. \begin{lstlisting}
  3115. -10
  3116. \end{lstlisting}
  3117. \compilesto
  3118. \begin{lstlisting}
  3119. tmp_1
  3120. [(tmp_1, -10)]
  3121. \end{lstlisting}
  3122. \end{transformation}
  3123. %
  3124. \fi}
  3125. Take special care of programs, such as the following, that
  3126. %
  3127. \racket{bind a variable to an atomic expression.}
  3128. %
  3129. \python{assign an atomic expression to a variable.}
  3130. %
  3131. You should leave such \racket{variable bindings}\python{assignments}
  3132. unchanged, as shown in the program on the right:\\
  3133. %
  3134. {\if\edition\racketEd
  3135. \begin{transformation}
  3136. % var_test_20.rkt
  3137. \begin{lstlisting}
  3138. (let ([a 42])
  3139. (let ([b a])
  3140. b))
  3141. \end{lstlisting}
  3142. \compilesto
  3143. \begin{lstlisting}
  3144. (let ([a 42])
  3145. (let ([b a])
  3146. b))
  3147. \end{lstlisting}
  3148. \end{transformation}
  3149. \fi}
  3150. {\if\edition\pythonEd\pythonColor
  3151. \begin{transformation}
  3152. \begin{lstlisting}
  3153. a = 42
  3154. b = a
  3155. print(b)
  3156. \end{lstlisting}
  3157. \compilesto
  3158. \begin{lstlisting}
  3159. a = 42
  3160. b = a
  3161. print(b)
  3162. \end{lstlisting}
  3163. \end{transformation}
  3164. \fi}
  3165. %
  3166. \noindent A careless implementation might produce the following output with
  3167. unnecessary temporary variables.
  3168. \begin{center}
  3169. \begin{minipage}{0.4\textwidth}
  3170. {\if\edition\racketEd
  3171. \begin{lstlisting}
  3172. (let ([tmp.1 42])
  3173. (let ([a tmp.1])
  3174. (let ([tmp.2 a])
  3175. (let ([b tmp.2])
  3176. b))))
  3177. \end{lstlisting}
  3178. \fi}
  3179. {\if\edition\pythonEd\pythonColor
  3180. \begin{lstlisting}
  3181. tmp_1 = 42
  3182. a = tmp_1
  3183. tmp_2 = a
  3184. b = tmp_2
  3185. print(b)
  3186. \end{lstlisting}
  3187. \fi}
  3188. \end{minipage}
  3189. \end{center}
  3190. \begin{exercise}
  3191. \normalfont\normalsize
  3192. {\if\edition\racketEd
  3193. Implement the \code{remove\_complex\_operands} function in
  3194. \code{compiler.rkt}.
  3195. %
  3196. Create three new \LangVar{} programs that exercise the interesting
  3197. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  3198. regarding file names described in exercise~\ref{ex:Lvar}.
  3199. %
  3200. In the \code{run-tests.rkt} script, add the following entry to the
  3201. list of \code{passes}, and then run the script to test your compiler.
  3202. \begin{lstlisting}
  3203. (list "remove-complex" remove_complex_operands interp_Lvar type-check-Lvar)
  3204. \end{lstlisting}
  3205. In debugging your compiler, it is often useful to see the intermediate
  3206. programs that are output from each pass. To print the intermediate
  3207. programs, place \lstinline{(debug-level 1)} before the call to
  3208. \code{interp-tests} in \code{run-tests.rkt}. \fi}
  3209. %
  3210. {\if\edition\pythonEd\pythonColor
  3211. Implement the \code{remove\_complex\_operands} pass in
  3212. \code{compiler.py}, creating auxiliary functions for each
  3213. nonterminal in the grammar, i.e., \code{rco\_exp}
  3214. and \code{rco\_stmt}. We recommend you use the function
  3215. \code{utils.generate\_name()} to generate fresh names from a stub string.
  3216. \fi}
  3217. \end{exercise}
  3218. {\if\edition\pythonEd\pythonColor
  3219. \begin{exercise}
  3220. \normalfont\normalsize
  3221. \label{ex:Lvar}
  3222. Create five \LangVar{} programs that exercise the most interesting
  3223. parts of the \code{remove\_complex\_operands} pass. The five programs
  3224. should be placed in the subdirectory named \key{tests}, and the file
  3225. names should start with \code{var\_test\_} followed by a unique
  3226. integer and end with the file extension \key{.py}.
  3227. %% The \key{run-tests.rkt} script in the support code checks whether the
  3228. %% output programs produce the same result as the input programs. The
  3229. %% script uses the \key{interp-tests} function
  3230. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  3231. %% your \key{uniquify} pass on the example programs. The \code{passes}
  3232. %% parameter of \key{interp-tests} is a list that should have one entry
  3233. %% for each pass in your compiler. For now, define \code{passes} to
  3234. %% contain just one entry for \code{uniquify} as shown below.
  3235. %% \begin{lstlisting}
  3236. %% (define passes
  3237. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3238. %% \end{lstlisting}
  3239. Run the \key{run-tests.py} script in the support code to check
  3240. whether the output programs produce the same result as the input
  3241. programs.
  3242. \end{exercise}
  3243. \fi}
  3244. {\if\edition\racketEd
  3245. \section{Explicate Control}
  3246. \label{sec:explicate-control-Lvar}
  3247. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3248. programs that make the order of execution explicit in their
  3249. syntax. For now this amounts to flattening \key{let} constructs into a
  3250. sequence of assignment statements. For example, consider the following
  3251. \LangVar{} program:\\
  3252. % var_test_11.rkt
  3253. \begin{minipage}{0.96\textwidth}
  3254. \begin{lstlisting}
  3255. (let ([y (let ([x 20])
  3256. (+ x (let ([x 22]) x)))])
  3257. y)
  3258. \end{lstlisting}
  3259. \end{minipage}\\
  3260. %
  3261. The output of the previous pass is shown next, on the left, and the
  3262. output of \code{explicate\_control} is on the right. Recall that the
  3263. right-hand side of a \key{let} executes before its body, so that the order
  3264. of evaluation for this program is to assign \code{20} to \code{x.1},
  3265. \code{22} to \code{x.2}, and \code{(+ x.1 x.2)} to \code{y}, and then to
  3266. return \code{y}. Indeed, the output of \code{explicate\_control} makes
  3267. this ordering explicit.
  3268. \begin{transformation}
  3269. \begin{lstlisting}
  3270. (let ([y (let ([x.1 20])
  3271. (let ([x.2 22])
  3272. (+ x.1 x.2)))])
  3273. y)
  3274. \end{lstlisting}
  3275. \compilesto
  3276. \begin{lstlisting}[language=C]
  3277. start:
  3278. x.1 = 20;
  3279. x.2 = 22;
  3280. y = (+ x.1 x.2);
  3281. return y;
  3282. \end{lstlisting}
  3283. \end{transformation}
  3284. \begin{figure}[tbp]
  3285. \begin{tcolorbox}[colback=white]
  3286. \begin{lstlisting}
  3287. (define (explicate_tail e)
  3288. (match e
  3289. [(Var x) ___]
  3290. [(Int n) (Return (Int n))]
  3291. [(Let x rhs body) ___]
  3292. [(Prim op es) ___]
  3293. [else (error "explicate_tail unhandled case" e)]))
  3294. (define (explicate_assign e x cont)
  3295. (match e
  3296. [(Var x) ___]
  3297. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3298. [(Let y rhs body) ___]
  3299. [(Prim op es) ___]
  3300. [else (error "explicate_assign unhandled case" e)]))
  3301. (define (explicate_control p)
  3302. (match p
  3303. [(Program info body) ___]))
  3304. \end{lstlisting}
  3305. \end{tcolorbox}
  3306. \caption{Skeleton for the \code{explicate\_control} pass.}
  3307. \label{fig:explicate-control-Lvar}
  3308. \end{figure}
  3309. The organization of this pass depends on the notion of tail position
  3310. to which we have alluded. Here is the definition.
  3311. \begin{definition}\normalfont
  3312. The following rules define when an expression is in \emph{tail
  3313. position}\index{subject}{tail position} for the language \LangVar{}.
  3314. \begin{enumerate}
  3315. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3316. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3317. \end{enumerate}
  3318. \end{definition}
  3319. We recommend implementing \code{explicate\_control} using two
  3320. recursive functions, \code{explicate\_tail} and
  3321. \code{explicate\_assign}, as suggested in the skeleton code shown in
  3322. figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3323. function should be applied to expressions in tail position, whereas the
  3324. \code{explicate\_assign} should be applied to expressions that occur on
  3325. the right-hand side of a \key{let}.
  3326. %
  3327. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3328. input and produces a \Tail{} in \LangCVar{} (see
  3329. figure~\ref{fig:c0-syntax}).
  3330. %
  3331. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3332. the variable to which it is to be assigned, and a \Tail{} in
  3333. \LangCVar{} for the code that comes after the assignment. The
  3334. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3335. The \code{explicate\_assign} function is in accumulator-passing style:
  3336. the \code{cont} parameter is used for accumulating the output. This
  3337. accumulator-passing style plays an important role in the way that we
  3338. generate high-quality code for conditional expressions in
  3339. chapter~\ref{ch:Lif}. The abbreviation \code{cont} is for
  3340. continuation because it contains the generated code that should come
  3341. after the current assignment. This code organization is also related
  3342. to continuation-passing style, except that \code{cont} is not what
  3343. happens next during compilation but is what happens next in the
  3344. generated code.
  3345. \begin{exercise}\normalfont\normalsize
  3346. %
  3347. Implement the \code{explicate\_control} function in
  3348. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3349. exercise the code in \code{explicate\_control}.
  3350. %
  3351. In the \code{run-tests.rkt} script, add the following entry to the
  3352. list of \code{passes} and then run the script to test your compiler.
  3353. \begin{lstlisting}
  3354. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3355. \end{lstlisting}
  3356. \end{exercise}
  3357. \fi}
  3358. \section{Select Instructions}
  3359. \label{sec:select-Lvar}
  3360. \index{subject}{select instructions}
  3361. In the \code{select\_instructions} pass we begin the work of
  3362. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3363. language of this pass is a variant of x86 that still uses variables,
  3364. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3365. nonterminal of the \LangXInt{} abstract syntax
  3366. (figure~\ref{fig:x86-int-ast}).
  3367. \racket{We recommend implementing the
  3368. \code{select\_instructions} with three auxiliary functions, one for
  3369. each of the nonterminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3370. $\Tail$.}
  3371. \python{We recommend implementing an auxiliary function
  3372. named \code{select\_stmt} for the $\Stmt$ nonterminal.}
  3373. \racket{The cases for $\Atm$ are straightforward; variables stay the
  3374. same and integer constants change to immediates; that is, $\INT{n}$
  3375. changes to $\IMM{n}$.}
  3376. Next consider the cases for the $\Stmt$ nonterminal, starting with
  3377. arithmetic operations. For example, consider the following addition
  3378. operation, on the left side. (Let $\Arg_1$ and $\Arg_2$ be the
  3379. translations of $\Atm_1$ and $\Atm_2$, respectively.) There is an
  3380. \key{addq} instruction in x86, but it performs an in-place update.
  3381. %
  3382. So, we could move $\Arg_1$ into the \code{rax} register, then add
  3383. $\Arg_2$ to \code{rax}, and then finally move \code{rax} into the
  3384. left-hand \itm{var}.
  3385. \begin{transformation}
  3386. {\if\edition\racketEd
  3387. \begin{lstlisting}
  3388. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3389. \end{lstlisting}
  3390. \fi}
  3391. {\if\edition\pythonEd\pythonColor
  3392. \begin{lstlisting}
  3393. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3394. \end{lstlisting}
  3395. \fi}
  3396. \compilesto
  3397. \begin{lstlisting}
  3398. movq |$\Arg_1$|, %rax
  3399. addq |$\Arg_2$|, %rax
  3400. movq %rax, |$\itm{var}$|
  3401. \end{lstlisting}
  3402. \end{transformation}
  3403. %
  3404. However, with some care we can generate shorter sequences of
  3405. instructions. Suppose that one or more of the arguments of the
  3406. addition is the same variable as the left-hand side of the assignment.
  3407. Then the assignment statement can be translated into a single
  3408. \key{addq} instruction, as follows.
  3409. \begin{transformation}
  3410. {\if\edition\racketEd
  3411. \begin{lstlisting}
  3412. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3413. \end{lstlisting}
  3414. \fi}
  3415. {\if\edition\pythonEd\pythonColor
  3416. \begin{lstlisting}
  3417. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3418. \end{lstlisting}
  3419. \fi}
  3420. \compilesto
  3421. \begin{lstlisting}
  3422. addq |$\Arg_1$|, |$\itm{var}$|
  3423. \end{lstlisting}
  3424. \end{transformation}
  3425. %
  3426. On the other hand, if $\Atm_1$ is not the same variable as the
  3427. left-hand side, then we can move $\Arg_1$ into the left-hand \itm{var}
  3428. and then add $\Arg_2$ to \itm{var}.
  3429. %
  3430. \begin{transformation}
  3431. {\if\edition\racketEd
  3432. \begin{lstlisting}
  3433. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3434. \end{lstlisting}
  3435. \fi}
  3436. {\if\edition\pythonEd\pythonColor
  3437. \begin{lstlisting}
  3438. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3439. \end{lstlisting}
  3440. \fi}
  3441. \compilesto
  3442. \begin{lstlisting}
  3443. movq |$\Arg_1$|, |$\itm{var}$|
  3444. addq |$\Arg_2$|, |$\itm{var}$|
  3445. \end{lstlisting}
  3446. \end{transformation}
  3447. The \READOP{} operation does not have a direct counterpart in x86
  3448. assembly, so we provide this functionality with the function
  3449. \code{read\_int} in the file \code{runtime.c}, written in
  3450. C~\citep{Kernighan:1988nx}. In general, we refer to all the
  3451. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3452. system}, or simply the \emph{runtime} for short. When compiling your
  3453. generated x86 assembly code, you need to compile \code{runtime.c} to
  3454. \code{runtime.o} (an \emph{object file}, using \code{gcc} with option
  3455. \code{-c}) and link it into the executable. For our purposes of code
  3456. generation, all you need to do is translate an assignment of
  3457. \READOP{} into a call to the \code{read\_int} function followed by a
  3458. move from \code{rax} to the left-hand side variable. (Recall that the
  3459. return value of a function goes into \code{rax}.)
  3460. \begin{transformation}
  3461. {\if\edition\racketEd
  3462. \begin{lstlisting}
  3463. |$\itm{var}$| = (read);
  3464. \end{lstlisting}
  3465. \fi}
  3466. {\if\edition\pythonEd\pythonColor
  3467. \begin{lstlisting}
  3468. |$\itm{var}$| = input_int();
  3469. \end{lstlisting}
  3470. \fi}
  3471. \compilesto
  3472. \begin{lstlisting}
  3473. callq read_int
  3474. movq %rax, |$\itm{var}$|
  3475. \end{lstlisting}
  3476. \end{transformation}
  3477. {\if\edition\pythonEd\pythonColor
  3478. %
  3479. Similarly, we translate the \code{print} operation, shown below, into
  3480. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3481. In x86, the first six arguments to functions are passed in registers,
  3482. with the first argument passed in register \code{rdi}. So we move the
  3483. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3484. \code{callq} instruction.
  3485. \begin{transformation}
  3486. \begin{lstlisting}
  3487. print(|$\Atm$|)
  3488. \end{lstlisting}
  3489. \compilesto
  3490. \begin{lstlisting}
  3491. movq |$\Arg$|, %rdi
  3492. callq print_int
  3493. \end{lstlisting}
  3494. \end{transformation}
  3495. %
  3496. \fi}
  3497. {\if\edition\racketEd
  3498. There are two cases for the $\Tail$ nonterminal: \key{Return} and
  3499. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3500. assignment to the \key{rax} register followed by a jump to the
  3501. conclusion of the program (so the conclusion needs to be labeled).
  3502. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3503. recursively and then append the resulting instructions.
  3504. \fi}
  3505. {\if\edition\pythonEd\pythonColor
  3506. We recommend that you use the function \code{utils.label\_name()} to
  3507. transform strings into labels, for example, in
  3508. the target of the \code{callq} instruction. This practice makes your
  3509. compiler portable across Linus and Mac OS X, which requires an underscore
  3510. prefixed to all labels.
  3511. \fi}
  3512. \begin{exercise}
  3513. \normalfont\normalsize
  3514. {\if\edition\racketEd
  3515. Implement the \code{select\_instructions} pass in
  3516. \code{compiler.rkt}. Create three new example programs that are
  3517. designed to exercise all the interesting cases in this pass.
  3518. %
  3519. In the \code{run-tests.rkt} script, add the following entry to the
  3520. list of \code{passes} and then run the script to test your compiler.
  3521. \begin{lstlisting}
  3522. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3523. \end{lstlisting}
  3524. \fi}
  3525. {\if\edition\pythonEd\pythonColor
  3526. Implement the \key{select\_instructions} pass in
  3527. \code{compiler.py}. Create three new example programs that are
  3528. designed to exercise all the interesting cases in this pass.
  3529. Run the \code{run-tests.py} script to to check
  3530. whether the output programs produce the same result as the input
  3531. programs.
  3532. \fi}
  3533. \end{exercise}
  3534. \section{Assign Homes}
  3535. \label{sec:assign-Lvar}
  3536. The \code{assign\_homes} pass compiles \LangXVar{} programs to
  3537. \LangXVar{} programs that no longer use program variables. Thus, the
  3538. \code{assign\_homes} pass is responsible for placing all the program
  3539. variables in registers or on the stack. For runtime efficiency, it is
  3540. better to place variables in registers, but because there are only
  3541. sixteen registers, some programs must necessarily resort to placing
  3542. some variables on the stack. In this chapter we focus on the mechanics
  3543. of placing variables on the stack. We study an algorithm for placing
  3544. variables in registers in chapter~\ref{ch:register-allocation-Lvar}.
  3545. Consider again the following \LangVar{} program from
  3546. section~\ref{sec:remove-complex-opera-Lvar}:\\
  3547. % var_test_20.rkt
  3548. \begin{minipage}{0.96\textwidth}
  3549. {\if\edition\racketEd
  3550. \begin{lstlisting}
  3551. (let ([a 42])
  3552. (let ([b a])
  3553. b))
  3554. \end{lstlisting}
  3555. \fi}
  3556. {\if\edition\pythonEd\pythonColor
  3557. \begin{lstlisting}
  3558. a = 42
  3559. b = a
  3560. print(b)
  3561. \end{lstlisting}
  3562. \fi}
  3563. \end{minipage}\\
  3564. %
  3565. The output of \code{select\_instructions} is shown next, on the left,
  3566. and the output of \code{assign\_homes} is on the right. In this
  3567. example, we assign variable \code{a} to stack location
  3568. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3569. \begin{transformation}
  3570. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3571. movq $42, a
  3572. movq a, b
  3573. movq b, %rax
  3574. \end{lstlisting}
  3575. \compilesto
  3576. %stack-space: 16
  3577. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3578. movq $42, -8(%rbp)
  3579. movq -8(%rbp), -16(%rbp)
  3580. movq -16(%rbp), %rax
  3581. \end{lstlisting}
  3582. \end{transformation}
  3583. \racket{
  3584. The \code{assign\_homes} pass should replace all variables
  3585. with stack locations.
  3586. The list of variables can be obtained from
  3587. the \code{locals-types} entry in the $\itm{info}$ of the
  3588. \code{X86Program} node. The \code{locals-types} entry is an alist
  3589. mapping all the variables in the program to their types
  3590. (for now, just \code{Integer}).
  3591. As an aside, the \code{locals-types} entry is
  3592. computed by \code{type-check-Cvar} in the support code, which
  3593. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3594. which you should propagate to the \code{X86Program} node.}
  3595. %
  3596. \python{The \code{assign\_homes} pass should replace all uses of
  3597. variables with stack locations.}
  3598. %
  3599. In the process of assigning variables to stack locations, it is
  3600. convenient for you to compute and store the size of the frame (in
  3601. bytes) in
  3602. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space},}
  3603. %
  3604. \python{the field \code{stack\_space} of the \key{X86Program} node,}
  3605. %
  3606. which is needed later to generate the conclusion of the \code{main}
  3607. procedure. The x86-64 standard requires the frame size to be a
  3608. multiple of 16 bytes.\index{subject}{frame}
  3609. % TODO: store the number of variables instead? -Jeremy
  3610. \begin{exercise}\normalfont\normalsize
  3611. Implement the \code{assign\_homes} pass in
  3612. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3613. auxiliary functions for each of the nonterminals in the \LangXVar{}
  3614. grammar. We recommend that the auxiliary functions take an extra
  3615. parameter that maps variable names to homes (stack locations for now).
  3616. %
  3617. {\if\edition\racketEd
  3618. In the \code{run-tests.rkt} script, add the following entry to the
  3619. list of \code{passes} and then run the script to test your compiler.
  3620. \begin{lstlisting}
  3621. (list "assign homes" assign-homes interp_x86-0)
  3622. \end{lstlisting}
  3623. \fi}
  3624. {\if\edition\pythonEd\pythonColor
  3625. Run the \code{run-tests.py} script to to check
  3626. whether the output programs produce the same result as the input
  3627. programs.
  3628. \fi}
  3629. \end{exercise}
  3630. \section{Patch Instructions}
  3631. \label{sec:patch-s0}
  3632. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3633. \LangXInt{} by making sure that each instruction adheres to the
  3634. restriction that at most one argument of an instruction may be a
  3635. memory reference.
  3636. We return to the following example.\\
  3637. \begin{minipage}{0.5\textwidth}
  3638. % var_test_20.rkt
  3639. {\if\edition\racketEd
  3640. \begin{lstlisting}
  3641. (let ([a 42])
  3642. (let ([b a])
  3643. b))
  3644. \end{lstlisting}
  3645. \fi}
  3646. {\if\edition\pythonEd\pythonColor
  3647. \begin{lstlisting}
  3648. a = 42
  3649. b = a
  3650. print(b)
  3651. \end{lstlisting}
  3652. \fi}
  3653. \end{minipage}\\
  3654. The \code{assign\_homes} pass produces the following translation. \\
  3655. \begin{minipage}{0.5\textwidth}
  3656. {\if\edition\racketEd
  3657. \begin{lstlisting}
  3658. movq $42, -8(%rbp)
  3659. movq -8(%rbp), -16(%rbp)
  3660. movq -16(%rbp), %rax
  3661. \end{lstlisting}
  3662. \fi}
  3663. {\if\edition\pythonEd\pythonColor
  3664. \begin{lstlisting}
  3665. movq 42, -8(%rbp)
  3666. movq -8(%rbp), -16(%rbp)
  3667. movq -16(%rbp), %rdi
  3668. callq print_int
  3669. \end{lstlisting}
  3670. \fi}
  3671. \end{minipage}\\
  3672. The second \key{movq} instruction is problematic because both
  3673. arguments are stack locations. We suggest fixing this problem by
  3674. moving from the source location to the register \key{rax} and then
  3675. from \key{rax} to the destination location, as follows.
  3676. \begin{lstlisting}
  3677. movq -8(%rbp), %rax
  3678. movq %rax, -16(%rbp)
  3679. \end{lstlisting}
  3680. There is a similar corner case that also needs to be dealt with. If
  3681. one argument is an immediate integer larger than $2^{16}$ and the
  3682. other is a memory reference, then the instruction is invalid. One can
  3683. fix this, for example, by first moving the immediate integer into
  3684. \key{rax} and then using \key{rax} in place of the integer.
  3685. \begin{exercise}
  3686. \normalfont\normalsize Implement the \key{patch\_instructions} pass in
  3687. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3688. Create three new example programs that are
  3689. designed to exercise all the interesting cases in this pass.
  3690. %
  3691. {\if\edition\racketEd
  3692. In the \code{run-tests.rkt} script, add the following entry to the
  3693. list of \code{passes} and then run the script to test your compiler.
  3694. \begin{lstlisting}
  3695. (list "patch instructions" patch_instructions interp_x86-0)
  3696. \end{lstlisting}
  3697. \fi}
  3698. {\if\edition\pythonEd\pythonColor
  3699. Run the \code{run-tests.py} script to to check
  3700. whether the output programs produce the same result as the input
  3701. programs.
  3702. \fi}
  3703. \end{exercise}
  3704. \section{Generate Prelude and Conclusion}
  3705. \label{sec:print-x86}
  3706. \index{subject}{prelude}\index{subject}{conclusion}
  3707. The last step of the compiler from \LangVar{} to x86 is to generate
  3708. the \code{main} function with a prelude and conclusion wrapped around
  3709. the rest of the program, as shown in figure~\ref{fig:p1-x86} and
  3710. discussed in section~\ref{sec:x86}.
  3711. When running on Mac OS X, your compiler should prefix an underscore to
  3712. all labels (for example, changing \key{main} to \key{\_main}).
  3713. %
  3714. \racket{The Racket call \code{(system-type 'os)} is useful for
  3715. determining which operating system the compiler is running on. It
  3716. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3717. %
  3718. \python{The Python \code{platform} library includes a \code{system()}
  3719. function that returns \code{'Linux'}, \code{'Windows'}, or
  3720. \code{'Darwin'} (for Mac).}
  3721. \begin{exercise}\normalfont\normalsize
  3722. %
  3723. Implement the \key{prelude\_and\_conclusion} pass in
  3724. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3725. %
  3726. {\if\edition\racketEd
  3727. In the \code{run-tests.rkt} script, add the following entry to the
  3728. list of \code{passes} and then run the script to test your compiler.
  3729. \begin{lstlisting}
  3730. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3731. \end{lstlisting}
  3732. %
  3733. Uncomment the call to the \key{compiler-tests} function
  3734. (appendix~\ref{appendix:utilities}), which tests your complete
  3735. compiler by executing the generated x86 code. It translates the x86
  3736. AST that you produce into a string by invoking the \code{print-x86}
  3737. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3738. the provided \key{runtime.c} file to \key{runtime.o} using
  3739. \key{gcc}. Run the script to test your compiler.
  3740. %
  3741. \fi}
  3742. {\if\edition\pythonEd\pythonColor
  3743. %
  3744. Run the \code{run-tests.py} script to to check whether the output
  3745. programs produce the same result as the input programs. That script
  3746. translates the x86 AST that you produce into a string by invoking the
  3747. \code{repr} method that is implemented by the x86 AST classes in
  3748. \code{x86\_ast.py}.
  3749. %
  3750. \fi}
  3751. \end{exercise}
  3752. \section{Challenge: Partial Evaluator for \LangVar{}}
  3753. \label{sec:pe-Lvar}
  3754. \index{subject}{partialevaluation@partial evaluation}
  3755. This section describes two optional challenge exercises that involve
  3756. adapting and improving the partial evaluator for \LangInt{} that was
  3757. introduced in section~\ref{sec:partial-evaluation}.
  3758. \begin{exercise}\label{ex:pe-Lvar}
  3759. \normalfont\normalsize
  3760. Adapt the partial evaluator from section~\ref{sec:partial-evaluation}
  3761. (figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3762. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3763. %
  3764. \racket{\key{let} binding}\python{assignment}
  3765. %
  3766. to the \LangInt{} language, so you will need to add cases for them in
  3767. the \code{pe\_exp}
  3768. %
  3769. \racket{function.}
  3770. %
  3771. \python{and \code{pe\_stmt} functions.}
  3772. %
  3773. Once complete, add the partial evaluation pass to the front of your
  3774. compiler, and make sure that your compiler still passes all the
  3775. tests.
  3776. \end{exercise}
  3777. \begin{exercise}
  3778. \normalfont\normalsize
  3779. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3780. \code{pe\_add} auxiliary functions with functions that know more about
  3781. arithmetic. For example, your partial evaluator should translate
  3782. {\if\edition\racketEd
  3783. \[
  3784. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3785. \code{(+ 2 (read))}
  3786. \]
  3787. \fi}
  3788. {\if\edition\pythonEd\pythonColor
  3789. \[
  3790. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3791. \code{2 + input\_int()}
  3792. \]
  3793. \fi}
  3794. %
  3795. To accomplish this, the \code{pe\_exp} function should produce output
  3796. in the form of the $\itm{residual}$ nonterminal of the following
  3797. grammar. The idea is that when processing an addition expression, we
  3798. can always produce one of the following: (1) an integer constant, (2)
  3799. an addition expression with an integer constant on the left-hand side
  3800. but not the right-hand side, or (3) an addition expression in which
  3801. neither subexpression is a constant.
  3802. %
  3803. {\if\edition\racketEd
  3804. \[
  3805. \begin{array}{lcl}
  3806. \itm{inert} &::=& \Var
  3807. \MID \LP\key{read}\RP
  3808. \MID \LP\key{-} ~\Var\RP
  3809. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3810. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3811. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3812. \itm{residual} &::=& \Int
  3813. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3814. \MID \itm{inert}
  3815. \end{array}
  3816. \]
  3817. \fi}
  3818. {\if\edition\pythonEd\pythonColor
  3819. \[
  3820. \begin{array}{lcl}
  3821. \itm{inert} &::=& \Var
  3822. \MID \key{input\_int}\LP\RP
  3823. \MID \key{-} \Var
  3824. \MID \key{-} \key{input\_int}\LP\RP
  3825. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3826. \itm{residual} &::=& \Int
  3827. \MID \Int ~ \key{+} ~ \itm{inert}
  3828. \MID \itm{inert}
  3829. \end{array}
  3830. \]
  3831. \fi}
  3832. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3833. inputs are $\itm{residual}$ expressions and they should return
  3834. $\itm{residual}$ expressions. Once the improvements are complete,
  3835. make sure that your compiler still passes all the tests. After
  3836. all, fast code is useless if it produces incorrect results!
  3837. \end{exercise}
  3838. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3839. {\if\edition\pythonEd\pythonColor
  3840. \chapter{Parsing}
  3841. \label{ch:parsing}
  3842. \setcounter{footnote}{0}
  3843. \index{subject}{parsing}
  3844. In this chapter we learn how to use the Lark parser
  3845. framework~\citep{shinan20:_lark_docs} to translate the concrete syntax
  3846. of \LangInt{} (a sequence of characters) into an abstract syntax tree.
  3847. You will then be asked to use Lark to create a parser for \LangVar{}.
  3848. We also describe the parsing algorithms used inside Lark, studying the
  3849. \citet{Earley:1970ly} and LALR(1) algorithms~\citep{DeRemer69,Anderson73}.
  3850. A parser framework such as Lark takes in a specification of the
  3851. concrete syntax and an input program and produces a parse tree. Even
  3852. though a parser framework does most of the work for us, using one
  3853. properly requires some knowledge. In particular, we must learn about
  3854. its specification languages and we must learn how to deal with
  3855. ambiguity in our language specifications. Also, some algorithms, such
  3856. as LALR(1) place restrictions on the grammars they can handle, in
  3857. which case it helps to know the algorithm when trying to decipher the
  3858. error messages.
  3859. The process of parsing is traditionally subdivided into two phases:
  3860. \emph{lexical analysis} (also called scanning) and \emph{syntax
  3861. analysis} (also called parsing). The lexical analysis phase
  3862. translates the sequence of characters into a sequence of
  3863. \emph{tokens}, that is, words consisting of several characters. The
  3864. parsing phase organizes the tokens into a \emph{parse tree} that
  3865. captures how the tokens were matched by rules in the grammar of the
  3866. language. The reason for the subdivision into two phases is to enable
  3867. the use of a faster but less powerful algorithm for lexical analysis
  3868. and the use of a slower but more powerful algorithm for parsing.
  3869. %
  3870. %% Likewise, parser generators typical come in pairs, with separate
  3871. %% generators for the lexical analyzer (or lexer for short) and for the
  3872. %% parser. A particularly influential pair of generators were
  3873. %% \texttt{lex} and \texttt{yacc}. The \texttt{lex} generator was written
  3874. %% by \citet{Lesk:1975uq} at Bell Labs. The \texttt{yacc} generator was
  3875. %% written by \citet{Johnson:1979qy} at AT\&T and stands for Yet Another
  3876. %% Compiler Compiler.
  3877. %
  3878. The Lark parser framework that we use in this chapter includes both
  3879. lexical analyzers and parsers. The next section discusses lexical
  3880. analysis and the remainder of the chapter discusses parsing.
  3881. \section{Lexical Analysis and Regular Expressions}
  3882. \label{sec:lex}
  3883. The lexical analyzers produced by Lark turn a sequence of characters
  3884. (a string) into a sequence of token objects. For example, a Lark
  3885. generated lexer for \LangInt{} converts the string
  3886. \begin{lstlisting}
  3887. 'print(1 + 3)'
  3888. \end{lstlisting}
  3889. \noindent into the following sequence of token objects
  3890. \begin{center}
  3891. \begin{minipage}{0.95\textwidth}
  3892. \begin{lstlisting}
  3893. Token('PRINT', 'print')
  3894. Token('LPAR', '(')
  3895. Token('INT', '1')
  3896. Token('PLUS', '+')
  3897. Token('INT', '3')
  3898. Token('RPAR', ')')
  3899. Token('NEWLINE', '\n')
  3900. \end{lstlisting}
  3901. \end{minipage}
  3902. \end{center}
  3903. Each token includes a field for its \code{type}, such as \code{'INT'},
  3904. and a field for its \code{value}, such as \code{'1'}.
  3905. Following in the tradition of \code{lex}~\citep{Lesk:1975uq}, the
  3906. specification language for Lark's lexer is one regular expression for
  3907. each type of token. The term \emph{regular} comes from the term
  3908. \emph{regular languages}, which are the languages that can be
  3909. recognized by a finite state machine. A \emph{regular expression} is a
  3910. pattern formed of the following core elements:\index{subject}{regular
  3911. expression}\footnote{Regular expressions traditionally include the
  3912. empty regular expression that matches any zero-length part of a
  3913. string, but Lark does not support the empty regular expression.}
  3914. \begin{itemize}
  3915. \item A single character $c$ is a regular expression and it only
  3916. matches itself. For example, the regular expression \code{a} only
  3917. matches with the string \code{'a'}.
  3918. \item Two regular expressions separated by a vertical bar $R_1 \ttm{|}
  3919. R_2$ form a regular expression that matches any string that matches
  3920. $R_1$ or $R_2$. For example, the regular expression \code{a|c}
  3921. matches the string \code{'a'} and the string \code{'c'}.
  3922. \item Two regular expressions in sequence $R_1 R_2$ form a regular
  3923. expression that matches any string that can be formed by
  3924. concatenating two strings, where the first string matches $R_1$ and
  3925. the second string matches $R_2$. For example, the regular expression
  3926. \code{(a|c)b} matches the strings \code{'ab'} and \code{'cb'}.
  3927. (Parentheses can be used to control the grouping of operators within
  3928. a regular expression.)
  3929. \item A regular expression followed by an asterisks $R\ttm{*}$ (called
  3930. Kleene closure) is a regular expression that matches any string that
  3931. can be formed by concatenating zero or more strings that each match
  3932. the regular expression $R$. For example, the regular expression
  3933. \code{"((a|c)b)*"} matches the strings \code{'abcbab'} but not
  3934. \code{'abc'}.
  3935. \end{itemize}
  3936. For our convenience, Lark also accepts the following extended set of
  3937. regular expressions that are automatically translated into the core
  3938. regular expressions.
  3939. \begin{itemize}
  3940. \item A set of characters enclosed in square brackets $[c_1 c_2 \ldots
  3941. c_n]$ is a regular expression that matches any one of the
  3942. characters. So $[c_1 c_2 \ldots c_n]$ is equivalent to
  3943. the regular expression $c_1\mid c_2\mid \ldots \mid c_n$.
  3944. \item A range of characters enclosed in square brackets $[c_1\ttm{-}c_2]$ is
  3945. a regular expression that matches any character between $c_1$ and
  3946. $c_2$, inclusive. For example, \code{[a-z]} matches any lowercase
  3947. letter in the alphabet.
  3948. \item A regular expression followed by the plus symbol $R\ttm{+}$
  3949. is a regular expression that matches any string that can
  3950. be formed by concatenating one or more strings that each match $R$.
  3951. So $R+$ is equivalent to $R(R*)$. For example, \code{[a-z]+}
  3952. matches \code{'b'} and \code{'bzca'}.
  3953. \item A regular expression followed by a question mark $R\ttm{?}$
  3954. is a regular expression that matches any string that either
  3955. matches $R$ or that is the empty string.
  3956. For example, \code{a?b} matches both \code{'ab'} and \code{'b'}.
  3957. \item A string, such as \code{"hello"}, which matches itself,
  3958. that is, \code{'hello'}.
  3959. \end{itemize}
  3960. In a Lark grammar file, specify a name for each type of token followed
  3961. by a colon and then a regular expression surrounded by \code{/}
  3962. characters. For example, the \code{DIGIT}, \code{INT}, and
  3963. \code{NEWLINE} types of tokens are specified in the following way.
  3964. \begin{center}
  3965. \begin{minipage}{0.95\textwidth}
  3966. \begin{lstlisting}
  3967. DIGIT: /[0-9]/
  3968. INT: "-"? DIGIT+
  3969. NEWLINE: (/\r/? /\n/)+
  3970. \end{lstlisting}
  3971. \end{minipage}
  3972. \end{center}
  3973. \noindent In Lark, the regular expression operators can be used both
  3974. inside a regular expression, that is, between the \code{/} characters,
  3975. and they can be used to combine regular expressions, outside the
  3976. \code{/} characters.
  3977. \section{Grammars and Parse Trees}
  3978. \label{sec:CFG}
  3979. In section~\ref{sec:grammar} we learned how to use grammar rules to
  3980. specify the abstract syntax of a language. We now take a closer look
  3981. at using grammar rules to specify the concrete syntax. Recall that
  3982. each rule has a left-hand side and a right-hand side where the
  3983. left-hand side is a nonterminal and the right-hand side is a pattern
  3984. that defines what can be parsed as that nonterminal.
  3985. For concrete syntax, each right-hand side expresses a pattern for a
  3986. string, instead of a pattern for an abstract syntax tree. In
  3987. particular, each right-hand side is a sequence of
  3988. \emph{symbols}\index{subject}{symbol}, where a symbol is either a
  3989. terminal or nonterminal. A \emph{terminal}\index{subject}{terminal} is
  3990. a string. The nonterminals play the same role as in the abstract
  3991. syntax, defining categories of syntax. The nonterminals of a grammar
  3992. include the tokens defined in the lexer and all the nonterminals
  3993. defined by the grammar rules.
  3994. As an example, let us take a closer look at the concrete syntax of the
  3995. \LangInt{} language, repeated here.
  3996. \[
  3997. \begin{array}{l}
  3998. \LintGrammarPython \\
  3999. \begin{array}{rcl}
  4000. \LangInt{} &::=& \Stmt^{*}
  4001. \end{array}
  4002. \end{array}
  4003. \]
  4004. The Lark syntax for grammar rules differs slightly from the variant of
  4005. BNF that we use in this book. In particular, the notation $::=$ is
  4006. replaced by a single colon and the use of typewriter font for string
  4007. literals is replaced by quotation marks. The following grammar serves
  4008. as a first draft of a Lark grammar for \LangInt{}.
  4009. \begin{center}
  4010. \begin{minipage}{0.95\textwidth}
  4011. \begin{lstlisting}[escapechar=$]
  4012. exp: INT
  4013. | "input_int" "(" ")"
  4014. | "-" exp
  4015. | exp "+" exp
  4016. | exp "-" exp
  4017. | "(" exp ")"
  4018. stmt_list:
  4019. | stmt NEWLINE stmt_list
  4020. lang_int: stmt_list
  4021. \end{lstlisting}
  4022. \end{minipage}
  4023. \end{center}
  4024. Let us begin by discussing the rule \code{exp: INT} which says that if
  4025. the lexer matches a string to \code{INT}, then the parser also
  4026. categorizes the string as an \code{exp}. Recall that in
  4027. Section~\ref{sec:grammar} we defined the corresponding \Int{}
  4028. nonterminal with an English sentence. Here we specify \code{INT} more
  4029. formally using a type of token \code{INT} and its regular expression
  4030. \code{"-"? DIGIT+}.
  4031. The rule \code{exp: exp "+" exp} says that any string that matches
  4032. \code{exp}, followed by the \code{+} character, followed by another
  4033. string that matches \code{exp}, is itself an \code{exp}. For example,
  4034. the string \code{'1+3'} is an \code{exp} because \code{'1'} and
  4035. \code{'3'} are both \code{exp} by the rule \code{exp: INT}, and then
  4036. the rule for addition applies to categorize \code{'1+3'} as an
  4037. \code{exp}. We can visualize the application of grammar rules to parse
  4038. a string using a \emph{parse tree}\index{subject}{parse tree}. Each
  4039. internal node in the tree is an application of a grammar rule and is
  4040. labeled with its left-hand side nonterminal. Each leaf node is a
  4041. substring of the input program. The parse tree for \code{'1+3'} is
  4042. shown in figure~\ref{fig:simple-parse-tree}.
  4043. \begin{figure}[tbp]
  4044. \begin{tcolorbox}[colback=white]
  4045. \centering
  4046. \includegraphics[width=1.9in]{figs/simple-parse-tree}
  4047. \end{tcolorbox}
  4048. \caption{The parse tree for \code{'1+3'}.}
  4049. \label{fig:simple-parse-tree}
  4050. \end{figure}
  4051. The result of parsing \code{'1+3'} with this Lark grammar is the
  4052. following parse tree as represented by \code{Tree} and \code{Token}
  4053. objects.
  4054. \begin{lstlisting}
  4055. Tree('lang_int',
  4056. [Tree('stmt', [Tree('exp', [Tree('exp', [Token('INT', '1')]),
  4057. Tree('exp', [Token('INT', '3')])])]),
  4058. Token('NEWLINE', '\n')])
  4059. \end{lstlisting}
  4060. The nodes that come from the lexer are \code{Token} objects whereas
  4061. the nodes from the parser are \code{Tree} objects. Each \code{Tree}
  4062. object has a \code{data} field containing the name of the nonterminal
  4063. for the grammar rule that was applied. Each \code{Tree} object also
  4064. has a \code{children} field that is a list containing trees and/or
  4065. tokens. Note that Lark does not produce nodes for string literals in
  4066. the grammar. For example, the \code{Tree} node for the addition
  4067. expression has only two children for the two integers but is missing
  4068. its middle child for the \code{"+"} terminal. This would be
  4069. problematic except that Lark provides a mechanism for customizing the
  4070. \code{data} field of each \code{Tree} node based on which rule was
  4071. applied. Next to each alternative in a grammar rule, write \code{->}
  4072. followed by a string that you would like to appear in the \code{data}
  4073. field. The following is a second draft of a Lark grammar for
  4074. \LangInt{}, this time with more specific labels on the \code{Tree}
  4075. nodes.
  4076. \begin{center}
  4077. \begin{minipage}{0.95\textwidth}
  4078. \begin{lstlisting}[escapechar=$]
  4079. exp: INT -> int
  4080. | "input_int" "(" ")" -> input_int
  4081. | "-" exp -> usub
  4082. | exp "+" exp -> add
  4083. | exp "-" exp -> sub
  4084. | "(" exp ")" -> paren
  4085. stmt: "print" "(" exp ")" -> print
  4086. | exp -> expr
  4087. stmt_list: -> empty_stmt
  4088. | stmt NEWLINE stmt_list -> add_stmt
  4089. lang_int: stmt_list -> module
  4090. \end{lstlisting}
  4091. \end{minipage}
  4092. \end{center}
  4093. Here is the resulting parse tree.
  4094. \begin{lstlisting}
  4095. Tree('module',
  4096. [Tree('expr', [Tree('add', [Tree('int', [Token('INT', '1')]),
  4097. Tree('int', [Token('INT', '3')])])]),
  4098. Token('NEWLINE', '\n')])
  4099. \end{lstlisting}
  4100. \section{Ambiguous Grammars}
  4101. A grammar is \emph{ambiguous}\index{subject}{ambiguous} when a string
  4102. can be parsed in more than one way. For example, consider the string
  4103. \code{'1-2+3'}. This string can parsed in two different ways using
  4104. our draft grammar, resulting in the two parse trees shown in
  4105. figure~\ref{fig:ambig-parse-tree}. This example is problematic because
  4106. interpreting the second parse tree would yield \code{-4} even through
  4107. the correct answer is \code{2}.
  4108. \begin{figure}[tbp]
  4109. \begin{tcolorbox}[colback=white]
  4110. \centering
  4111. \includegraphics[width=0.95\textwidth]{figs/ambig-parse-tree}
  4112. \end{tcolorbox}
  4113. \caption{The two parse trees for \code{'1-2+3'}.}
  4114. \label{fig:ambig-parse-tree}
  4115. \end{figure}
  4116. To deal with this problem we can change the grammar by categorizing
  4117. the syntax in a more fine grained fashion. In this case we want to
  4118. disallow the application of the rule \code{exp: exp "-" exp} when the
  4119. child on the right is an addition. To do this we can replace the
  4120. \code{exp} after \code{"-"} with a nonterminal that categorizes all
  4121. the expressions except for addition, as in the following.
  4122. \begin{center}
  4123. \begin{minipage}{0.95\textwidth}
  4124. \begin{lstlisting}[escapechar=$]
  4125. exp: exp "-" exp_no_add -> sub
  4126. | exp "+" exp -> add
  4127. | exp_no_add
  4128. exp_no_add: INT -> int
  4129. | "input_int" "(" ")" -> input_int
  4130. | "-" exp -> usub
  4131. | exp "-" exp_no_add -> sub
  4132. | "(" exp ")" -> paren
  4133. \end{lstlisting}
  4134. \end{minipage}
  4135. \end{center}
  4136. However, there remains some ambiguity in the grammar. For example, the
  4137. string \code{'1-2-3'} can still be parsed in two different ways, as
  4138. \code{'(1-2)-3'} (correct) or \code{'1-(2-3)'} (incorrect). That is
  4139. to say, subtraction is left associative. Likewise, addition in Python
  4140. is left associative. We also need to consider the interaction of unary
  4141. subtraction with both addition and subtraction. How should we parse
  4142. \code{'-1+2'}? Unary subtraction has higher
  4143. \emph{precendence}\index{subject}{precedence} than addition and
  4144. subtraction, so \code{'-1+2'} should parse the same as \code{'(-1)+2'}
  4145. and not \code{'-(1+2)'}. The grammar in
  4146. figure~\ref{fig:Lint-lark-grammar} handles the associativity of
  4147. addition and subtraction by using the nonterminal \code{exp\_hi} for
  4148. all the other expressions, and uses \code{exp\_hi} for the second
  4149. child in the rules for addition and subtraction. Furthermore, unary
  4150. subtraction uses \code{exp\_hi} for its child.
  4151. For languages with more operators and more precedence levels, one must
  4152. refine the \code{exp} nonterminal into several nonterminals, one for
  4153. each precedence level.
  4154. \begin{figure}[tbp]
  4155. \begin{tcolorbox}[colback=white]
  4156. \centering
  4157. \begin{lstlisting}[escapechar=$]
  4158. exp: exp "+" exp_hi -> add
  4159. | exp "-" exp_hi -> sub
  4160. | exp_hi
  4161. exp_hi: INT -> int
  4162. | "input_int" "(" ")" -> input_int
  4163. | "-" exp_hi -> usub
  4164. | "(" exp ")" -> paren
  4165. stmt: "print" "(" exp ")" -> print
  4166. | exp -> expr
  4167. stmt_list: -> empty_stmt
  4168. | stmt NEWLINE stmt_list -> add_stmt
  4169. lang_int: stmt_list -> module
  4170. \end{lstlisting}
  4171. \end{tcolorbox}
  4172. \caption{An unambiguous Lark grammar for \LangInt{}.}
  4173. \label{fig:Lint-lark-grammar}
  4174. \end{figure}
  4175. \section{From Parse Trees to Abstract Syntax Trees}
  4176. As we have seen, the output of a Lark parser is a parse tree, that is,
  4177. a tree consisting of \code{Tree} and \code{Token} nodes. So the next
  4178. step is to convert the parse tree to an abstract syntax tree. This can
  4179. be accomplished with a recursive function that inspects the
  4180. \code{data} field of each node and then constructs the corresponding
  4181. AST node, using recursion to handle its children. The following is an
  4182. excerpt of the \code{parse\_tree\_to\_ast} function for \LangInt{}.
  4183. \begin{center}
  4184. \begin{minipage}{0.95\textwidth}
  4185. \begin{lstlisting}
  4186. def parse_tree_to_ast(e):
  4187. if e.data == 'int':
  4188. return Constant(int(e.children[0].value))
  4189. elif e.data == 'input_int':
  4190. return Call(Name('input_int'), [])
  4191. elif e.data == 'add':
  4192. e1, e2 = e.children
  4193. return BinOp(parse_tree_to_ast(e1), Add(), parse_tree_to_ast(e2))
  4194. ...
  4195. else:
  4196. raise Exception('unhandled parse tree', e)
  4197. \end{lstlisting}
  4198. \end{minipage}
  4199. \end{center}
  4200. \begin{exercise}
  4201. \normalfont\normalsize
  4202. %
  4203. Use Lark to create a lexer and parser for \LangVar{}. Use Lark's
  4204. default parsing algorithm (Earley) with the \code{ambiguity} option
  4205. set to \code{'explicit'} so that if your grammar is ambiguous, the
  4206. output will include multiple parse trees which will indicate to you
  4207. that there is a problem with your grammar. Your parser should ignore
  4208. white space so we recommend using Lark's \code{\%ignore} directive
  4209. as follows.
  4210. \begin{lstlisting}
  4211. WS: /[ \t\f\r\n]/+
  4212. %ignore WS
  4213. \end{lstlisting}
  4214. Change your compiler from chapter~\ref{ch:Lvar} to use your
  4215. Lark parser instead of using the \code{parse} function from
  4216. the \code{ast} module. Test your compiler on all of the \LangVar{}
  4217. programs that you have created and create four additional programs
  4218. that test for ambiguities in your grammar.
  4219. \end{exercise}
  4220. \section{The Earley Algorithm}
  4221. \label{sec:earley}
  4222. In this section we discuss the parsing algorithm of
  4223. \citet{Earley:1970ly}, the default algorithm used by Lark. The
  4224. algorithm is powerful in that it can handle any context-free grammar,
  4225. which makes it easy to use. However, it is not the most efficient
  4226. parsing algorithm: it is $O(n^3)$ for ambiguous grammars and $O(n^2)$
  4227. for unambiguous grammars, where $n$ is the number of tokens in the
  4228. input string~\citep{Hopcroft06:_automata}. In section~\ref{sec:lalr}
  4229. we learn about the LALR(1) algorithm, which is more efficient but
  4230. cannot handle all context-free grammars.
  4231. The Earley algorithm can be viewed as an interpreter; it treats the
  4232. grammar as the program being interpreted and it treats the concrete
  4233. syntax of the program-to-be-parsed as its input. The Earley algorithm
  4234. uses a data structure called a \emph{chart}\index{subject}{chart} to
  4235. keep track of its progress and to memoize its results. The chart is an
  4236. array with one slot for each position in the input string, where
  4237. position $0$ is before the first character and position $n$ is
  4238. immediately after the last character. So the array has length $n+1$
  4239. for an input string of length $n$. Each slot in the chart contains a
  4240. set of \emph{dotted rules}. A dotted rule is simply a grammar rule
  4241. with a period indicating how much of its right-hand side has already
  4242. been parsed. For example, the dotted rule
  4243. \begin{lstlisting}
  4244. exp: exp "+" . exp_hi
  4245. \end{lstlisting}
  4246. represents a partial parse that has matched an \code{exp} followed by
  4247. \code{+}, but has not yet parsed an \code{exp} to the right of
  4248. \code{+}.
  4249. %
  4250. The Earley algorithm starts with an initialization phase, and then
  4251. repeats three actions---prediction, scanning, and completion---for as
  4252. long as opportunities arise. We demonstrate the Earley algorithm on a
  4253. running example, parsing the following program:
  4254. \begin{lstlisting}
  4255. print(1 + 3)
  4256. \end{lstlisting}
  4257. The algorithm's initialization phase creates dotted rules for all the
  4258. grammar rules whose left-hand side is the start symbol and places them
  4259. in slot $0$ of the chart. We also record the starting position of the
  4260. dotted rule in parentheses on the right. For example, given the
  4261. grammar in figure~\ref{fig:Lint-lark-grammar}, we place
  4262. \begin{lstlisting}
  4263. lang_int: . stmt_list (0)
  4264. \end{lstlisting}
  4265. in slot $0$ of the chart. The algorithm then proceeds with
  4266. \emph{prediction} actions in which it adds more dotted rules to the
  4267. chart based on which nonterminals come immediately after a period. In
  4268. the above, the nonterminal \code{stmt\_list} appears after a period,
  4269. so we add all the rules for \code{stmt\_list} to slot $0$, with a
  4270. period at the beginning of their right-hand sides, as follows:
  4271. \begin{lstlisting}
  4272. stmt_list: . (0)
  4273. stmt_list: . stmt NEWLINE stmt_list (0)
  4274. \end{lstlisting}
  4275. We continue to perform prediction actions as more opportunities
  4276. arise. For example, the \code{stmt} nonterminal now appears after a
  4277. period, so we add all the rules for \code{stmt}.
  4278. \begin{lstlisting}
  4279. stmt: . "print" "(" exp ")" (0)
  4280. stmt: . exp (0)
  4281. \end{lstlisting}
  4282. This reveals yet more opportunities for prediction, so we add the grammar
  4283. rules for \code{exp} and \code{exp\_hi} to slot $0$.
  4284. \begin{lstlisting}[escapechar=$]
  4285. exp: . exp "+" exp_hi (0)
  4286. exp: . exp "-" exp_hi (0)
  4287. exp: . exp_hi (0)
  4288. exp_hi: . INT (0)
  4289. exp_hi: . "input_int" "(" ")" (0)
  4290. exp_hi: . "-" exp_hi (0)
  4291. exp_hi: . "(" exp ")" (0)
  4292. \end{lstlisting}
  4293. We have exhausted the opportunities for prediction, so the algorithm
  4294. proceeds to \emph{scanning}, in which we inspect the next input token
  4295. and look for a dotted rule at the current position that has a matching
  4296. terminal immediately following the period. In our running example, the
  4297. first input token is \code{"print"} so we identify the rule in slot
  4298. $0$ of the chart where \code{"print"} follows the period:
  4299. \begin{lstlisting}
  4300. stmt: . "print" "(" exp ")" (0)
  4301. \end{lstlisting}
  4302. We advance the period past \code{"print"} and add the resulting rule
  4303. to slot $1$ of the chart:
  4304. \begin{lstlisting}
  4305. stmt: "print" . "(" exp ")" (0)
  4306. \end{lstlisting}
  4307. If the new dotted rule had a nonterminal after the period, we would
  4308. need to carry out a prediction action, adding more dotted rules into
  4309. slot $1$. That is not the case, so we continue scanning. The next
  4310. input token is \code{"("}, so we add the following to slot $2$ of the
  4311. chart.
  4312. \begin{lstlisting}
  4313. stmt: "print" "(" . exp ")" (0)
  4314. \end{lstlisting}
  4315. Now we have a nonterminal after the period, so we carry out several
  4316. prediction actions, adding dotted rules for \code{exp} and
  4317. \code{exp\_hi} to slot $2$ with a period at the beginning and with
  4318. starting position $2$.
  4319. \begin{lstlisting}[escapechar=$]
  4320. exp: . exp "+" exp_hi (2)
  4321. exp: . exp "-" exp_hi (2)
  4322. exp: . exp_hi (2)
  4323. exp_hi: . INT (2)
  4324. exp_hi: . "input_int" "(" ")" (2)
  4325. exp_hi: . "-" exp_hi (2)
  4326. exp_hi: . "(" exp ")" (2)
  4327. \end{lstlisting}
  4328. With this prediction complete, we return to scanning, noting that the
  4329. next input token is \code{"1"} which the lexer parses as an
  4330. \code{INT}. There is a matching rule in slot $2$:
  4331. \begin{lstlisting}
  4332. exp_hi: . INT (2)
  4333. \end{lstlisting}
  4334. so we advance the period and put the following rule is slot $3$.
  4335. \begin{lstlisting}
  4336. exp_hi: INT . (2)
  4337. \end{lstlisting}
  4338. This brings us to \emph{completion} actions. When the period reaches
  4339. the end of a dotted rule, we recognize that the substring
  4340. has matched the nonterminal on the left-hand side of the rule, in this case
  4341. \code{exp\_hi}. We therefore need to advance the periods in any dotted
  4342. rules in slot $2$ (the starting position for the finished rule) if
  4343. the period is immediately followed by \code{exp\_hi}. So we identify
  4344. \begin{lstlisting}
  4345. exp: . exp_hi (2)
  4346. \end{lstlisting}
  4347. and add the following dotted rule to slot $3$
  4348. \begin{lstlisting}
  4349. exp: exp_hi . (2)
  4350. \end{lstlisting}
  4351. This triggers another completion step for the nonterminal \code{exp},
  4352. adding two more dotted rules to slot $3$.
  4353. \begin{lstlisting}[escapechar=$]
  4354. exp: exp . "+" exp_hi (2)
  4355. exp: exp . "-" exp_hi (2)
  4356. \end{lstlisting}
  4357. Returning to scanning, the next input token is \code{"+"}, so
  4358. we add the following to slot $4$.
  4359. \begin{lstlisting}[escapechar=$]
  4360. exp: exp "+" . exp_hi (2)
  4361. \end{lstlisting}
  4362. The period precedes the nonterminal \code{exp\_hi}, so prediction adds
  4363. the following dotted rules to slot $4$ of the chart.
  4364. \begin{lstlisting}[escapechar=$]
  4365. exp_hi: . INT (4)
  4366. exp_hi: . "input_int" "(" ")" (4)
  4367. exp_hi: . "-" exp_hi (4)
  4368. exp_hi: . "(" exp ")" (4)
  4369. \end{lstlisting}
  4370. The next input token is \code{"3"} which the lexer categorized as an
  4371. \code{INT}, so we advance the period past \code{INT} for the rules in
  4372. slot $4$, of which there is just one, and put the following in slot $5$.
  4373. \begin{lstlisting}[escapechar=$]
  4374. exp_hi: INT . (4)
  4375. \end{lstlisting}
  4376. The period at the end of the rule triggers a completion action for the
  4377. rules in slot $4$, one of which has a period before \code{exp\_hi}.
  4378. So we advance the period and put the following in slot $5$.
  4379. \begin{lstlisting}[escapechar=$]
  4380. exp: exp "+" exp_hi . (2)
  4381. \end{lstlisting}
  4382. This triggers another completion action for the rules in slot $2$ that
  4383. have a period before \code{exp}.
  4384. \begin{lstlisting}[escapechar=$]
  4385. stmt: "print" "(" exp . ")" (0)
  4386. exp: exp . "+" exp_hi (2)
  4387. exp: exp . "-" exp_hi (2)
  4388. \end{lstlisting}
  4389. We scan the next input token \code{")"}, placing the following dotted
  4390. rule in slot $6$.
  4391. \begin{lstlisting}[escapechar=$]
  4392. stmt: "print" "(" exp ")" . (0)
  4393. \end{lstlisting}
  4394. This triggers the completion of \code{stmt} in slot $0$
  4395. \begin{lstlisting}
  4396. stmt_list: stmt . NEWLINE stmt_list (0)
  4397. \end{lstlisting}
  4398. The last input token is a \code{NEWLINE}, so we advance the period
  4399. and place the new dotted rule in slot $7$.
  4400. \begin{lstlisting}
  4401. stmt_list: stmt NEWLINE . stmt_list (0)
  4402. \end{lstlisting}
  4403. We are close to the end of parsing the input!
  4404. The period is before the \code{stmt\_list} nonterminal, so we
  4405. apply prediction for \code{stmt\_list} and then \code{stmt}.
  4406. \begin{lstlisting}
  4407. stmt_list: . (7)
  4408. stmt_list: . stmt NEWLINE stmt_list (7)
  4409. stmt: . "print" "(" exp ")" (7)
  4410. stmt: . exp (7)
  4411. \end{lstlisting}
  4412. There is immediately an opportunity for completion of \code{stmt\_list},
  4413. so we add the following to slot $7$.
  4414. \begin{lstlisting}
  4415. stmt_list: stmt NEWLINE stmt_list . (0)
  4416. \end{lstlisting}
  4417. This triggers another completion action for \code{stmt\_list} in slot $0$
  4418. \begin{lstlisting}
  4419. lang_int: stmt_list . (0)
  4420. \end{lstlisting}
  4421. which in turn completes \code{lang\_int}, the start symbol of the
  4422. grammar, so the parsing of the input is complete.
  4423. For reference, we now give a general description of the Earley
  4424. algorithm.
  4425. \begin{enumerate}
  4426. \item The algorithm begins by initializing slot $0$ of the chart with the
  4427. grammar rule for the start symbol, placing a period at the beginning
  4428. of the right-hand side, and recording its starting position as $0$.
  4429. \item The algorithm repeatedly applies the following three kinds of
  4430. actions for as long as there are opportunities to do so.
  4431. \begin{itemize}
  4432. \item Prediction: if there is a rule in slot $k$ whose period comes
  4433. before a nonterminal, add the rules for that nonterminal into slot
  4434. $k$, placing a period at the beginning of their right-hand sides
  4435. and recording their starting position as $k$.
  4436. \item Scanning: If the token at position $k$ of the input string
  4437. matches the symbol after the period in a dotted rule in slot $k$
  4438. of the chart, advance the period in the dotted rule, adding
  4439. the result to slot $k+1$.
  4440. \item Completion: If a dotted rule in slot $k$ has a period at the
  4441. end, inspect the rules in the slot corresponding to the starting
  4442. position of the completed rule. If any of those rules have a
  4443. nonterminal following their period that matches the left-hand side
  4444. of the completed rule, then advance their period, placing the new
  4445. dotted rule in slot $k$.
  4446. \end{itemize}
  4447. While repeating these three actions, take care to never add
  4448. duplicate dotted rules to the chart.
  4449. \end{enumerate}
  4450. We have described how the Earley algorithm recognizes that an input
  4451. string matches a grammar, but we have not described how it builds a
  4452. parse tree. The basic idea is simple, but building parse trees in an
  4453. efficient way is more complex, requiring a data structure called a
  4454. shared packed parse forest~\citep{Tomita:1985qr}. The simple idea is
  4455. to attach a partial parse tree to every dotted rule in the chart.
  4456. Initially, the tree node associated with a dotted rule has no
  4457. children. As the period moves to the right, the nodes from the
  4458. subparses are added as children to the tree node.
  4459. As mentioned at the beginning of this section, the Earley algorithm is
  4460. $O(n^2)$ for unambiguous grammars, which means that it can parse input
  4461. files that contain thousands of tokens in a reasonable amount of time,
  4462. but not millions.
  4463. %
  4464. In the next section we discuss the LALR(1) parsing algorithm, which is
  4465. efficient enough to use with even the largest of input files.
  4466. \section{The LALR(1) Algorithm}
  4467. \label{sec:lalr}
  4468. The LALR(1) algorithm~\citep{DeRemer69,Anderson73} can be viewed as a
  4469. two phase approach in which it first compiles the grammar into a state
  4470. machine and then runs the state machine to parse an input string. The
  4471. second phase has time complexity $O(n)$ where $n$ is the number of
  4472. tokens in the input, so LALR(1) is the best one could hope for with
  4473. respect to efficiency.
  4474. %
  4475. A particularly influential implementation of LALR(1) is the
  4476. \texttt{yacc} parser generator by \citet{Johnson:1979qy}, which stands
  4477. for Yet Another Compiler Compiler.
  4478. %
  4479. The LALR(1) state machine uses a stack to record its progress in
  4480. parsing the input string. Each element of the stack is a pair: a
  4481. state number and a grammar symbol (a terminal or nonterminal). The
  4482. symbol characterizes the input that has been parsed so-far and the
  4483. state number is used to remember how to proceed once the next
  4484. symbol-worth of input has been parsed. Each state in the machine
  4485. represents where the parser stands in the parsing process with respect
  4486. to certain grammar rules. In particular, each state is associated with
  4487. a set of dotted rules.
  4488. Figure~\ref{fig:shift-reduce} shows an example LALR(1) state machine
  4489. (also called parse table) for the following simple but ambiguous
  4490. grammar:
  4491. \begin{lstlisting}[escapechar=$]
  4492. exp: INT
  4493. | exp "+" exp
  4494. stmt: "print" exp
  4495. start: stmt
  4496. \end{lstlisting}
  4497. Consider state 1 in Figure~\ref{fig:shift-reduce}. The parser has just
  4498. read in a \lstinline{"print"} token, so the top of the stack is
  4499. \lstinline{(1,"print")}. The parser is part of the way through parsing
  4500. the input according to grammar rule 1, which is signified by showing
  4501. rule 1 with a period after the \code{"print"} token and before the
  4502. \code{exp} nonterminal. There are several rules that could apply next,
  4503. both rule 2 and 3, so state 1 also shows those rules with a period at
  4504. the beginning of their right-hand sides. The edges between states
  4505. indicate which transitions the machine should make depending on the
  4506. next input token. So, for example, if the next input token is
  4507. \code{INT} then the parser will push \code{INT} and the target state 4
  4508. on the stack and transition to state 4. Suppose we are now at the end
  4509. of the input. In state 4 it says we should reduce by rule 3, so we pop
  4510. from the stack the same number of items as the number of symbols in
  4511. the right-hand side of the rule, in this case just one. We then
  4512. momentarily jump to the state at the top of the stack (state 1) and
  4513. then follow the goto edge that corresponds to the left-hand side of
  4514. the rule we just reduced by, in this case \code{exp}, so we arrive at
  4515. state 3. (A slightly longer example parse is shown in
  4516. Figure~\ref{fig:shift-reduce}.)
  4517. \begin{figure}[htbp]
  4518. \centering
  4519. \includegraphics[width=5.0in]{figs/shift-reduce-conflict}
  4520. \caption{An LALR(1) parse table and a trace of an example run.}
  4521. \label{fig:shift-reduce}
  4522. \end{figure}
  4523. In general, the algorithm works as follows. Set the current state to
  4524. state $0$. Then repeat the following, looking at the next input token.
  4525. \begin{itemize}
  4526. \item If there there is a shift edge for the input token in the
  4527. current state, push the edge's target state and the input token on
  4528. the stack and proceed to the edge's target state.
  4529. \item If there is a reduce action for the input token in the current
  4530. state, pop $k$ elements from the stack, where $k$ is the number of
  4531. symbols in the right-hand side of the rule being reduced. Jump to
  4532. the state at the top of the stack and then follow the goto edge for
  4533. the nonterminal that matches the left-hand side of the rule that we
  4534. reducing by. Push the edge's target state and the nonterminal on the
  4535. stack.
  4536. \end{itemize}
  4537. Notice that in state 6 of Figure~\ref{fig:shift-reduce} there is both
  4538. a shift and a reduce action for the token \lstinline{PLUS}, so the
  4539. algorithm does not know which action to take in this case. When a
  4540. state has both a shift and a reduce action for the same token, we say
  4541. there is a \emph{shift/reduce conflict}. In this case, the conflict
  4542. will arise, for example, when trying to parse the input
  4543. \lstinline{print 1 + 2 + 3}. After having consumed \lstinline{print 1 + 2}
  4544. the parser will be in state 6, and it will not know whether to
  4545. reduce to form an \code{exp} of \lstinline{1 + 2}, or whether it
  4546. should proceed by shifting the next \lstinline{+} from the input.
  4547. A similar kind of problem, known as a \emph{reduce/reduce} conflict,
  4548. arises when there are two reduce actions in a state for the same
  4549. token. To understand which grammars gives rise to shift/reduce and
  4550. reduce/reduce conflicts, it helps to know how the parse table is
  4551. generated from the grammar, which we discuss next.
  4552. The parse table is generated one state at a time. State 0 represents
  4553. the start of the parser. We add the grammar rule for the start symbol
  4554. to this state with a period at the beginning of the right-hand side,
  4555. similar to the initialization phase of the Earley parser. If the
  4556. period appears immediately before another nonterminal, we add all the
  4557. rules with that nonterminal on the left-hand side. Again, we place a
  4558. period at the beginning of the right-hand side of each the new
  4559. rules. This process, called \emph{state closure}, is continued
  4560. until there are no more rules to add (similar to the prediction
  4561. actions of an Earley parser). We then examine each dotted rule in the
  4562. current state $I$. Suppose a dotted rule has the form $A ::=
  4563. s_1.\,X s_2$, where $A$ and $X$ are symbols and $s_1$ and $s_2$
  4564. are sequences of symbols. We create a new state, call it $J$. If $X$
  4565. is a terminal, we create a shift edge from $I$ to $J$ (analogous to
  4566. scanning in Earley), whereas if $X$ is a nonterminal, we create a
  4567. goto edge from $I$ to $J$. We then need to add some dotted rules to
  4568. state $J$. We start by adding all dotted rules from state $I$ that
  4569. have the form $B ::= s_1.\,Xs_2$ (where $B$ is any nonterminal and
  4570. $s_1$ and $s_2$ are arbitrary sequences of symbols), but with
  4571. the period moved past the $X$. (This is analogous to completion in
  4572. the Earley algorithm.) We then perform state closure on $J$. This
  4573. process repeats until there are no more states or edges to add.
  4574. We then mark states as accepting states if they have a dotted rule
  4575. that is the start rule with a period at the end. Also, to add
  4576. in the reduce actions, we look for any state containing a dotted rule
  4577. with a period at the end. Let $n$ be the rule number for this dotted
  4578. rule. We then put a reduce $n$ action into that state for every token
  4579. $Y$. For example, in Figure~\ref{fig:shift-reduce} state 4 has an
  4580. dotted rule with a period at the end. We therefore put a reduce by
  4581. rule 3 action into state 4 for every
  4582. token.
  4583. When inserting reduce actions, take care to spot any shift/reduce or
  4584. reduce/reduce conflicts. If there are any, abort the construction of
  4585. the parse table.
  4586. \begin{exercise}
  4587. \normalfont\normalsize
  4588. %
  4589. On a piece of paper, walk through the parse table generation process
  4590. for the grammar at the top of figure~\ref{fig:shift-reduce} and check
  4591. your results against parse table in figure~\ref{fig:shift-reduce}.
  4592. \end{exercise}
  4593. \begin{exercise}
  4594. \normalfont\normalsize
  4595. %
  4596. Change the parser in your compiler for \LangVar{} to set the
  4597. \code{parser} option of Lark to \code{'lalr'}. Test your compiler on
  4598. all the \LangVar{} programs that you have created. In doing so, Lark
  4599. may signal an error due to shift/reduce or reduce/reduce conflicts
  4600. in your grammar. If so, change your Lark grammar for \LangVar{} to
  4601. remove those conflicts.
  4602. \end{exercise}
  4603. \section{Further Reading}
  4604. In this chapter we have just scratched the surface of the field of
  4605. parsing, with the study of a very general but less efficient algorithm
  4606. (Earley) and with a more limited but highly efficient algorithm
  4607. (LALR). There are many more algorithms, and classes of grammars, that
  4608. fall between these two ends of the spectrum. We recommend the reader
  4609. to \citet{Aho:2006wb} for a thorough treatment of parsing.
  4610. Regarding lexical analysis, we described the specification language,
  4611. the regular expressions, but not the algorithms for recognizing them.
  4612. In short, regular expressions can be translated to nondeterministic
  4613. finite automata, which in turn are translated to finite automata. We
  4614. refer the reader again to \citet{Aho:2006wb} for all the details on
  4615. lexical analysis.
  4616. \fi}
  4617. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4618. \chapter{Register Allocation}
  4619. \label{ch:register-allocation-Lvar}
  4620. \setcounter{footnote}{0}
  4621. \index{subject}{register allocation}
  4622. In chapter~\ref{ch:Lvar} we learned how to compile \LangVar{} to x86,
  4623. storing variables on the procedure call stack. The CPU may require tens
  4624. to hundreds of cycles to access a location on the stack, whereas
  4625. accessing a register takes only a single cycle. In this chapter we
  4626. improve the efficiency of our generated code by storing some variables
  4627. in registers. The goal of register allocation is to fit as many
  4628. variables into registers as possible. Some programs have more
  4629. variables than registers, so we cannot always map each variable to a
  4630. different register. Fortunately, it is common for different variables
  4631. to be in use during different periods of time during program
  4632. execution, and in those cases we can map multiple variables to the
  4633. same register.
  4634. The program shown in figure~\ref{fig:reg-eg} serves as a running
  4635. example. The source program is on the left and the output of
  4636. instruction selection\index{subject}{instruction selection}
  4637. is on the right. The program is almost
  4638. completely in the x86 assembly language, but it still uses variables.
  4639. Consider variables \code{x} and \code{z}. After the variable \code{x}
  4640. has been moved to \code{z}, it is no longer in use. Variable \code{z}, on
  4641. the other hand, is used only after this point, so \code{x} and
  4642. \code{z} could share the same register.
  4643. \begin{figure}
  4644. \begin{tcolorbox}[colback=white]
  4645. \begin{minipage}{0.45\textwidth}
  4646. Example \LangVar{} program:
  4647. % var_test_28.rkt
  4648. {\if\edition\racketEd
  4649. \begin{lstlisting}
  4650. (let ([v 1])
  4651. (let ([w 42])
  4652. (let ([x (+ v 7)])
  4653. (let ([y x])
  4654. (let ([z (+ x w)])
  4655. (+ z (- y)))))))
  4656. \end{lstlisting}
  4657. \fi}
  4658. {\if\edition\pythonEd\pythonColor
  4659. \begin{lstlisting}
  4660. v = 1
  4661. w = 42
  4662. x = v + 7
  4663. y = x
  4664. z = x + w
  4665. print(z + (- y))
  4666. \end{lstlisting}
  4667. \fi}
  4668. \end{minipage}
  4669. \begin{minipage}{0.45\textwidth}
  4670. After instruction selection:
  4671. {\if\edition\racketEd
  4672. \begin{lstlisting}
  4673. locals-types:
  4674. x : Integer, y : Integer,
  4675. z : Integer, t : Integer,
  4676. v : Integer, w : Integer
  4677. start:
  4678. movq $1, v
  4679. movq $42, w
  4680. movq v, x
  4681. addq $7, x
  4682. movq x, y
  4683. movq x, z
  4684. addq w, z
  4685. movq y, t
  4686. negq t
  4687. movq z, %rax
  4688. addq t, %rax
  4689. jmp conclusion
  4690. \end{lstlisting}
  4691. \fi}
  4692. {\if\edition\pythonEd\pythonColor
  4693. \begin{lstlisting}
  4694. movq $1, v
  4695. movq $42, w
  4696. movq v, x
  4697. addq $7, x
  4698. movq x, y
  4699. movq x, z
  4700. addq w, z
  4701. movq y, tmp_0
  4702. negq tmp_0
  4703. movq z, tmp_1
  4704. addq tmp_0, tmp_1
  4705. movq tmp_1, %rdi
  4706. callq print_int
  4707. \end{lstlisting}
  4708. \fi}
  4709. \end{minipage}
  4710. \end{tcolorbox}
  4711. \caption{A running example for register allocation.}
  4712. \label{fig:reg-eg}
  4713. \end{figure}
  4714. The topic of section~\ref{sec:liveness-analysis-Lvar} is how to
  4715. compute where a variable is in use. Once we have that information, we
  4716. compute which variables are in use at the same time, that is, which ones
  4717. \emph{interfere}\index{subject}{interfere} with each other, and
  4718. represent this relation as an undirected graph whose vertices are
  4719. variables and edges indicate when two variables interfere
  4720. (section~\ref{sec:build-interference}). We then model register
  4721. allocation as a graph coloring problem
  4722. (section~\ref{sec:graph-coloring}).
  4723. If we run out of registers despite these efforts, we place the
  4724. remaining variables on the stack, similarly to how we handled
  4725. variables in chapter~\ref{ch:Lvar}. It is common to use the verb
  4726. \emph{spill}\index{subject}{spill} for assigning a variable to a stack
  4727. location. The decision to spill a variable is handled as part of the
  4728. graph coloring process.
  4729. We make the simplifying assumption that each variable is assigned to
  4730. one location (a register or stack address). A more sophisticated
  4731. approach is to assign a variable to one or more locations in different
  4732. regions of the program. For example, if a variable is used many times
  4733. in short sequence and then used again only after many other
  4734. instructions, it could be more efficient to assign the variable to a
  4735. register during the initial sequence and then move it to the stack for
  4736. the rest of its lifetime. We refer the interested reader to
  4737. \citet{Cooper:2011aa} (chapter 13) for more information about that
  4738. approach.
  4739. % discuss prioritizing variables based on how much they are used.
  4740. \section{Registers and Calling Conventions}
  4741. \label{sec:calling-conventions}
  4742. \index{subject}{calling conventions}
  4743. As we perform register allocation, we must be aware of the
  4744. \emph{calling conventions} \index{subject}{calling conventions} that
  4745. govern how function calls are performed in x86.
  4746. %
  4747. Even though \LangVar{} does not include programmer-defined functions,
  4748. our generated code includes a \code{main} function that is called by
  4749. the operating system and our generated code contains calls to the
  4750. \code{read\_int} function.
  4751. Function calls require coordination between two pieces of code that
  4752. may be written by different programmers or generated by different
  4753. compilers. Here we follow the System V calling conventions that are
  4754. used by the GNU C compiler on Linux and
  4755. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  4756. %
  4757. The calling conventions include rules about how functions share the
  4758. use of registers. In particular, the caller is responsible for freeing
  4759. some registers prior to the function call for use by the callee.
  4760. These are called the \emph{caller-saved registers}
  4761. \index{subject}{caller-saved registers}
  4762. and they are
  4763. \begin{lstlisting}
  4764. rax rcx rdx rsi rdi r8 r9 r10 r11
  4765. \end{lstlisting}
  4766. On the other hand, the callee is responsible for preserving the values
  4767. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  4768. which are
  4769. \begin{lstlisting}
  4770. rsp rbp rbx r12 r13 r14 r15
  4771. \end{lstlisting}
  4772. We can think about this caller/callee convention from two points of
  4773. view, the caller view and the callee view, as follows:
  4774. \begin{itemize}
  4775. \item The caller should assume that all the caller-saved registers get
  4776. overwritten with arbitrary values by the callee. On the other hand,
  4777. the caller can safely assume that all the callee-saved registers
  4778. retain their original values.
  4779. \item The callee can freely use any of the caller-saved registers.
  4780. However, if the callee wants to use a callee-saved register, the
  4781. callee must arrange to put the original value back in the register
  4782. prior to returning to the caller. This can be accomplished by saving
  4783. the value to the stack in the prelude of the function and restoring
  4784. the value in the conclusion of the function.
  4785. \end{itemize}
  4786. In x86, registers are also used for passing arguments to a function
  4787. and for the return value. In particular, the first six arguments of a
  4788. function are passed in the following six registers, in this order.
  4789. \begin{lstlisting}
  4790. rdi rsi rdx rcx r8 r9
  4791. \end{lstlisting}
  4792. We refer to these six registers are the argument-passing registers
  4793. \index{subject}{argument-passing registers}.
  4794. If there are more than six arguments, the convention is to use space
  4795. on the frame of the caller for the rest of the arguments. In
  4796. chapter~\ref{ch:Lfun}, we instead pass a tuple containing the sixth
  4797. argument and the rest of the arguments, which simplifies the treatment
  4798. of efficient tail calls.
  4799. %
  4800. \racket{For now, the only function we care about is \code{read\_int},
  4801. which takes zero arguments.}
  4802. %
  4803. \python{For now, the only functions we care about are \code{read\_int}
  4804. and \code{print\_int}, which take zero and one argument, respectively.}
  4805. %
  4806. The register \code{rax} is used for the return value of a function.
  4807. The next question is how these calling conventions impact register
  4808. allocation. Consider the \LangVar{} program presented in
  4809. figure~\ref{fig:example-calling-conventions}. We first analyze this
  4810. example from the caller point of view and then from the callee point
  4811. of view. We refer to a variable that is in use during a function call
  4812. as a \emph{call-live variable}\index{subject}{call-live variable}.
  4813. The program makes two calls to \READOP{}. The variable \code{x} is
  4814. call-live because it is in use during the second call to \READOP{}; we
  4815. must ensure that the value in \code{x} does not get overwritten during
  4816. the call to \READOP{}. One obvious approach is to save all the values
  4817. that reside in caller-saved registers to the stack prior to each
  4818. function call and to restore them after each call. That way, if the
  4819. register allocator chooses to assign \code{x} to a caller-saved
  4820. register, its value will be preserved across the call to \READOP{}.
  4821. However, saving and restoring to the stack is relatively slow. If
  4822. \code{x} is not used many times, it may be better to assign \code{x}
  4823. to a stack location in the first place. Or better yet, if we can
  4824. arrange for \code{x} to be placed in a callee-saved register, then it
  4825. won't need to be saved and restored during function calls.
  4826. We recommend an approach that captures these issues in the
  4827. interference graph, without complicating the graph coloring algorithm.
  4828. During liveness analysis we know which variables are call-live because
  4829. we compute which variables are in use at every instruction
  4830. (section~\ref{sec:liveness-analysis-Lvar}). When we build the
  4831. interference graph (section~\ref{sec:build-interference}), we can
  4832. place an edge in the interference graph between each call-live
  4833. variable and the caller-saved registers. This will prevent the graph
  4834. coloring algorithm from assigning call-live variables to caller-saved
  4835. registers.
  4836. On the other hand, for variables that are not call-live, we prefer
  4837. placing them in caller-saved registers to leave more room for
  4838. call-live variables in the callee-saved registers. This can also be
  4839. implemented without complicating the graph coloring algorithm. We
  4840. recommend that the graph coloring algorithm assign variables to
  4841. natural numbers, choosing the lowest number for which there is no
  4842. interference. After the coloring is complete, we map the numbers to
  4843. registers and stack locations: mapping the lowest numbers to
  4844. caller-saved registers, the next lowest to callee-saved registers, and
  4845. the largest numbers to stack locations. This ordering gives preference
  4846. to registers over stack locations and to caller-saved registers over
  4847. callee-saved registers.
  4848. Returning to the example in
  4849. figure~\ref{fig:example-calling-conventions}, let us analyze the
  4850. generated x86 code on the right-hand side. Variable \code{x} is
  4851. assigned to \code{rbx}, a callee-saved register. Thus, it is already
  4852. in a safe place during the second call to \code{read\_int}. Next,
  4853. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  4854. because \code{y} is not a call-live variable.
  4855. We have completed the analysis from the caller point of view, so now
  4856. we switch to the callee point of view, focusing on the prelude and
  4857. conclusion of the \code{main} function. As usual, the prelude begins
  4858. with saving the \code{rbp} register to the stack and setting the
  4859. \code{rbp} to the current stack pointer. We now know why it is
  4860. necessary to save the \code{rbp}: it is a callee-saved register. The
  4861. prelude then pushes \code{rbx} to the stack because (1) \code{rbx} is
  4862. a callee-saved register and (2) \code{rbx} is assigned to a variable
  4863. (\code{x}). The other callee-saved registers are not saved in the
  4864. prelude because they are not used. The prelude subtracts 8 bytes from
  4865. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  4866. conclusion, we see that \code{rbx} is restored from the stack with a
  4867. \code{popq} instruction.
  4868. \index{subject}{prelude}\index{subject}{conclusion}
  4869. \begin{figure}[tp]
  4870. \begin{tcolorbox}[colback=white]
  4871. \begin{minipage}{0.45\textwidth}
  4872. Example \LangVar{} program:
  4873. %var_test_14.rkt
  4874. {\if\edition\racketEd
  4875. \begin{lstlisting}
  4876. (let ([x (read)])
  4877. (let ([y (read)])
  4878. (+ (+ x y) 42)))
  4879. \end{lstlisting}
  4880. \fi}
  4881. {\if\edition\pythonEd\pythonColor
  4882. \begin{lstlisting}
  4883. x = input_int()
  4884. y = input_int()
  4885. print((x + y) + 42)
  4886. \end{lstlisting}
  4887. \fi}
  4888. \end{minipage}
  4889. \begin{minipage}{0.45\textwidth}
  4890. Generated x86 assembly:
  4891. {\if\edition\racketEd
  4892. \begin{lstlisting}
  4893. start:
  4894. callq read_int
  4895. movq %rax, %rbx
  4896. callq read_int
  4897. movq %rax, %rcx
  4898. addq %rcx, %rbx
  4899. movq %rbx, %rax
  4900. addq $42, %rax
  4901. jmp _conclusion
  4902. .globl main
  4903. main:
  4904. pushq %rbp
  4905. movq %rsp, %rbp
  4906. pushq %rbx
  4907. subq $8, %rsp
  4908. jmp start
  4909. conclusion:
  4910. addq $8, %rsp
  4911. popq %rbx
  4912. popq %rbp
  4913. retq
  4914. \end{lstlisting}
  4915. \fi}
  4916. {\if\edition\pythonEd\pythonColor
  4917. \begin{lstlisting}
  4918. .globl main
  4919. main:
  4920. pushq %rbp
  4921. movq %rsp, %rbp
  4922. pushq %rbx
  4923. subq $8, %rsp
  4924. callq read_int
  4925. movq %rax, %rbx
  4926. callq read_int
  4927. movq %rax, %rcx
  4928. movq %rbx, %rdx
  4929. addq %rcx, %rdx
  4930. movq %rdx, %rcx
  4931. addq $42, %rcx
  4932. movq %rcx, %rdi
  4933. callq print_int
  4934. addq $8, %rsp
  4935. popq %rbx
  4936. popq %rbp
  4937. retq
  4938. \end{lstlisting}
  4939. \fi}
  4940. \end{minipage}
  4941. \end{tcolorbox}
  4942. \caption{An example with function calls.}
  4943. \label{fig:example-calling-conventions}
  4944. \end{figure}
  4945. %\clearpage
  4946. \section{Liveness Analysis}
  4947. \label{sec:liveness-analysis-Lvar}
  4948. \index{subject}{liveness analysis}
  4949. The \code{uncover\_live} \racket{pass}\python{function} performs
  4950. \emph{liveness analysis}; that is, it discovers which variables are
  4951. in use in different regions of a program.
  4952. %
  4953. A variable or register is \emph{live} at a program point if its
  4954. current value is used at some later point in the program. We refer to
  4955. variables, stack locations, and registers collectively as
  4956. \emph{locations}.
  4957. %
  4958. Consider the following code fragment in which there are two writes to
  4959. \code{b}. Are variables \code{a} and \code{b} both live at the same
  4960. time?
  4961. \begin{center}
  4962. \begin{minipage}{0.96\textwidth}
  4963. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4964. movq $5, a
  4965. movq $30, b
  4966. movq a, c
  4967. movq $10, b
  4968. addq b, c
  4969. \end{lstlisting}
  4970. \end{minipage}
  4971. \end{center}
  4972. The answer is no, because \code{a} is live from line 1 to 3 and
  4973. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  4974. line 2 is never used because it is overwritten (line 4) before the
  4975. next read (line 5).
  4976. The live locations for each instruction can be computed by traversing
  4977. the instruction sequence back to front (i.e., backward in execution
  4978. order). Let $I_1,\ldots, I_n$ be the instruction sequence. We write
  4979. $L_{\mathsf{after}}(k)$ for the set of live locations after
  4980. instruction $I_k$ and write $L_{\mathsf{before}}(k)$ for the set of live
  4981. locations before instruction $I_k$. \racket{We recommend representing
  4982. these sets with the Racket \code{set} data structure described in
  4983. figure~\ref{fig:set}.} \python{We recommend representing these sets
  4984. with the Python
  4985. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  4986. data structure.}
  4987. {\if\edition\racketEd
  4988. \begin{figure}[tp]
  4989. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  4990. \small
  4991. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  4992. A \emph{set} is an unordered collection of elements without duplicates.
  4993. Here are some of the operations defined on sets.
  4994. \index{subject}{set}
  4995. \begin{description}
  4996. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  4997. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  4998. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  4999. difference of the two sets.
  5000. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  5001. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  5002. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  5003. \end{description}
  5004. \end{tcolorbox}
  5005. %\end{wrapfigure}
  5006. \caption{The \code{set} data structure.}
  5007. \label{fig:set}
  5008. \end{figure}
  5009. \fi}
  5010. The locations that are live after an instruction are its
  5011. \emph{live-after}\index{subject}{live-after} set, and the locations
  5012. that are live before an instruction are its
  5013. \emph{live-before}\index{subject}{live-before} set. The live-after
  5014. set of an instruction is always the same as the live-before set of the
  5015. next instruction.
  5016. \begin{equation} \label{eq:live-after-before-next}
  5017. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  5018. \end{equation}
  5019. To start things off, there are no live locations after the last
  5020. instruction, so
  5021. \begin{equation}\label{eq:live-last-empty}
  5022. L_{\mathsf{after}}(n) = \emptyset
  5023. \end{equation}
  5024. We then apply the following rule repeatedly, traversing the
  5025. instruction sequence back to front.
  5026. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  5027. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  5028. \end{equation}
  5029. where $W(k)$ are the locations written to by instruction $I_k$, and
  5030. $R(k)$ are the locations read by instruction $I_k$.
  5031. {\if\edition\racketEd
  5032. %
  5033. There is a special case for \code{jmp} instructions. The locations
  5034. that are live before a \code{jmp} should be the locations in
  5035. $L_{\mathsf{before}}$ at the target of the jump. So, we recommend
  5036. maintaining an alist named \code{label->live} that maps each label to
  5037. the $L_{\mathsf{before}}$ for the first instruction in its block. For
  5038. now the only \code{jmp} in a \LangXVar{} program is the jump to the
  5039. conclusion. (For example, see figure~\ref{fig:reg-eg}.) The
  5040. conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should map
  5041. \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  5042. %
  5043. \fi}
  5044. Let us walk through the previous example, applying these formulas
  5045. starting with the instruction on line 5 of the code fragment. We
  5046. collect the answers in figure~\ref{fig:liveness-example-0}. The
  5047. $L_{\mathsf{after}}$ for the \code{addq b, c} instruction is
  5048. $\emptyset$ because it is the last instruction
  5049. (formula~\eqref{eq:live-last-empty}). The $L_{\mathsf{before}}$ for
  5050. this instruction is $\{\ttm{b},\ttm{c}\}$ because it reads from
  5051. variables \code{b} and \code{c}
  5052. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}):
  5053. \[
  5054. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  5055. \]
  5056. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  5057. the live-before set from line 5 to be the live-after set for this
  5058. instruction (formula~\eqref{eq:live-after-before-next}).
  5059. \[
  5060. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  5061. \]
  5062. This move instruction writes to \code{b} and does not read from any
  5063. variables, so we have the following live-before set
  5064. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}).
  5065. \[
  5066. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  5067. \]
  5068. The live-before for instruction \code{movq a, c}
  5069. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  5070. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}). The
  5071. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  5072. variable that is not live and does not read from a variable.
  5073. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  5074. because it writes to variable \code{a}.
  5075. \begin{figure}[tbp]
  5076. \centering
  5077. \begin{tcolorbox}[colback=white]
  5078. \hspace{10pt}
  5079. \begin{minipage}{0.4\textwidth}
  5080. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  5081. movq $5, a
  5082. movq $30, b
  5083. movq a, c
  5084. movq $10, b
  5085. addq b, c
  5086. \end{lstlisting}
  5087. \end{minipage}
  5088. \vrule\hspace{10pt}
  5089. \begin{minipage}{0.45\textwidth}
  5090. \begin{align*}
  5091. L_{\mathsf{before}}(1)= \emptyset,
  5092. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  5093. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  5094. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  5095. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  5096. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  5097. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  5098. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  5099. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  5100. L_{\mathsf{after}}(5)= \emptyset
  5101. \end{align*}
  5102. \end{minipage}
  5103. \end{tcolorbox}
  5104. \caption{Example output of liveness analysis on a short example.}
  5105. \label{fig:liveness-example-0}
  5106. \end{figure}
  5107. \begin{exercise}\normalfont\normalsize
  5108. Perform liveness analysis by hand on the running example in
  5109. figure~\ref{fig:reg-eg}, computing the live-before and live-after
  5110. sets for each instruction. Compare your answers to the solution
  5111. shown in figure~\ref{fig:live-eg}.
  5112. \end{exercise}
  5113. \begin{figure}[tp]
  5114. \hspace{20pt}
  5115. \begin{minipage}{0.55\textwidth}
  5116. \begin{tcolorbox}[colback=white]
  5117. {\if\edition\racketEd
  5118. \begin{lstlisting}
  5119. |$\{\ttm{rsp}\}$|
  5120. movq $1, v
  5121. |$\{\ttm{v},\ttm{rsp}\}$|
  5122. movq $42, w
  5123. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  5124. movq v, x
  5125. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5126. addq $7, x
  5127. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5128. movq x, y
  5129. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  5130. movq x, z
  5131. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5132. addq w, z
  5133. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5134. movq y, t
  5135. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5136. negq t
  5137. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5138. movq z, %rax
  5139. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  5140. addq t, %rax
  5141. |$\{\ttm{rax},\ttm{rsp}\}$|
  5142. jmp conclusion
  5143. \end{lstlisting}
  5144. \fi}
  5145. {\if\edition\pythonEd\pythonColor
  5146. \begin{lstlisting}
  5147. movq $1, v
  5148. |$\{\ttm{v}\}$|
  5149. movq $42, w
  5150. |$\{\ttm{w}, \ttm{v}\}$|
  5151. movq v, x
  5152. |$\{\ttm{w}, \ttm{x}\}$|
  5153. addq $7, x
  5154. |$\{\ttm{w}, \ttm{x}\}$|
  5155. movq x, y
  5156. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  5157. movq x, z
  5158. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  5159. addq w, z
  5160. |$\{\ttm{y}, \ttm{z}\}$|
  5161. movq y, tmp_0
  5162. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5163. negq tmp_0
  5164. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5165. movq z, tmp_1
  5166. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  5167. addq tmp_0, tmp_1
  5168. |$\{\ttm{tmp\_1}\}$|
  5169. movq tmp_1, %rdi
  5170. |$\{\ttm{rdi}\}$|
  5171. callq print_int
  5172. |$\{\}$|
  5173. \end{lstlisting}
  5174. \fi}
  5175. \end{tcolorbox}
  5176. \end{minipage}
  5177. \caption{The running example annotated with live-after sets.}
  5178. \label{fig:live-eg}
  5179. \end{figure}
  5180. \begin{exercise}\normalfont\normalsize
  5181. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  5182. %
  5183. \racket{Store the sequence of live-after sets in the $\itm{info}$
  5184. field of the \code{Block} structure.}
  5185. %
  5186. \python{Return a dictionary that maps each instruction to its
  5187. live-after set.}
  5188. %
  5189. \racket{We recommend creating an auxiliary function that takes a list
  5190. of instructions and an initial live-after set (typically empty) and
  5191. returns the list of live-after sets.}
  5192. %
  5193. We recommend creating auxiliary functions to (1) compute the set
  5194. of locations that appear in an \Arg{}, (2) compute the locations read
  5195. by an instruction (the $R$ function), and (3) the locations written by
  5196. an instruction (the $W$ function). The \code{callq} instruction should
  5197. include all the caller-saved registers in its write set $W$ because
  5198. the calling convention says that those registers may be written to
  5199. during the function call. Likewise, the \code{callq} instruction
  5200. should include the appropriate argument-passing registers in its
  5201. read set $R$, depending on the arity of the function being
  5202. called. (This is why the abstract syntax for \code{callq} includes the
  5203. arity.)
  5204. \end{exercise}
  5205. %\clearpage
  5206. \section{Build the Interference Graph}
  5207. \label{sec:build-interference}
  5208. {\if\edition\racketEd
  5209. \begin{figure}[tp]
  5210. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  5211. \small
  5212. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  5213. A \emph{graph} is a collection of vertices and edges where each
  5214. edge connects two vertices. A graph is \emph{directed} if each
  5215. edge points from a source to a target. Otherwise the graph is
  5216. \emph{undirected}.
  5217. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  5218. \begin{description}
  5219. %% We currently don't use directed graphs. We instead use
  5220. %% directed multi-graphs. -Jeremy
  5221. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  5222. directed graph from a list of edges. Each edge is a list
  5223. containing the source and target vertex.
  5224. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  5225. undirected graph from a list of edges. Each edge is represented by
  5226. a list containing two vertices.
  5227. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  5228. inserts a vertex into the graph.
  5229. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  5230. inserts an edge between the two vertices.
  5231. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  5232. returns a sequence of vertices adjacent to the vertex.
  5233. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  5234. returns a sequence of all vertices in the graph.
  5235. \end{description}
  5236. \end{tcolorbox}
  5237. %\end{wrapfigure}
  5238. \caption{The Racket \code{graph} package.}
  5239. \label{fig:graph}
  5240. \end{figure}
  5241. \fi}
  5242. On the basis of the liveness analysis, we know where each location is
  5243. live. However, during register allocation, we need to answer
  5244. questions of the specific form: are locations $u$ and $v$ live at the
  5245. same time? (If so, they cannot be assigned to the same register.) To
  5246. make this question more efficient to answer, we create an explicit
  5247. data structure, an \emph{interference
  5248. graph}\index{subject}{interference graph}. An interference graph is
  5249. an undirected graph that has a node for every variable and register
  5250. and has an edge between two nodes if they are
  5251. live at the same time, that is, if they interfere with each other.
  5252. %
  5253. \racket{We recommend using the Racket \code{graph} package
  5254. (figure~\ref{fig:graph}) to represent the interference graph.}
  5255. %
  5256. \python{We provide implementations of directed and undirected graph
  5257. data structures in the file \code{graph.py} of the support code.}
  5258. A straightforward way to compute the interference graph is to look at
  5259. the set of live locations between each instruction and add an edge to
  5260. the graph for every pair of variables in the same set. This approach
  5261. is less than ideal for two reasons. First, it can be expensive because
  5262. it takes $O(n^2)$ time to consider every pair in a set of $n$ live
  5263. locations. Second, in the special case in which two locations hold the
  5264. same value (because one was assigned to the other), they can be live
  5265. at the same time without interfering with each other.
  5266. A better way to compute the interference graph is to focus on
  5267. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  5268. must not overwrite something in a live location. So for each
  5269. instruction, we create an edge between the locations being written to
  5270. and the live locations. (However, a location never interferes with
  5271. itself.) For the \key{callq} instruction, we consider all the
  5272. caller-saved registers to have been written to, so an edge is added
  5273. between every live variable and every caller-saved register. Also, for
  5274. \key{movq} there is the special case of two variables holding the same
  5275. value. If a live variable $v$ is the same as the source of the
  5276. \key{movq}, then there is no need to add an edge between $v$ and the
  5277. destination, because they both hold the same value.
  5278. %
  5279. Hence we have the following two rules:
  5280. \begin{enumerate}
  5281. \item If instruction $I_k$ is a move instruction of the form
  5282. \key{movq} $s$\key{,} $d$, then for every $v \in
  5283. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  5284. $(d,v)$.
  5285. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  5286. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  5287. $(d,v)$.
  5288. \end{enumerate}
  5289. Working from the top to bottom of figure~\ref{fig:live-eg}, we apply
  5290. these rules to each instruction. We highlight a few of the
  5291. instructions. \racket{The first instruction is \lstinline{movq $1, v},
  5292. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  5293. so \code{v} interferes with \code{rsp}.}
  5294. %
  5295. \python{The first instruction is \lstinline{movq $1, v}, and the
  5296. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  5297. no interference because $\ttm{v}$ is the destination of the move.}
  5298. %
  5299. \racket{The fourth instruction is \lstinline{addq $7, x}, and the
  5300. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  5301. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  5302. %
  5303. \python{The fourth instruction is \lstinline{addq $7, x}, and the
  5304. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  5305. $\ttm{x}$ interferes with \ttm{w}.}
  5306. %
  5307. \racket{The next instruction is \lstinline{movq x, y}, and the
  5308. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  5309. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  5310. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5311. \ttm{x} and \ttm{y} hold the same value.}
  5312. %
  5313. \python{The next instruction is \lstinline{movq x, y}, and the
  5314. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  5315. applies, so \ttm{y} interferes with \ttm{w} but not
  5316. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5317. \ttm{x} and \ttm{y} hold the same value.}
  5318. %
  5319. Figure~\ref{fig:interference-results} lists the interference results
  5320. for all the instructions, and the resulting interference graph is
  5321. shown in figure~\ref{fig:interfere}. We elide the register nodes from
  5322. the interference graph in figure~\ref{fig:interfere} because there
  5323. were no interference edges involving registers and we did not wish to
  5324. clutter the graph, but in general one needs to include all the
  5325. registers in the interference graph.
  5326. \begin{figure}[tbp]
  5327. \begin{tcolorbox}[colback=white]
  5328. \begin{quote}
  5329. {\if\edition\racketEd
  5330. \begin{tabular}{ll}
  5331. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  5332. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  5333. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5334. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5335. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  5336. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  5337. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  5338. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5339. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5340. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  5341. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  5342. \lstinline!jmp conclusion!& no interference.
  5343. \end{tabular}
  5344. \fi}
  5345. {\if\edition\pythonEd\pythonColor
  5346. \begin{tabular}{ll}
  5347. \lstinline!movq $1, v!& no interference\\
  5348. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  5349. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  5350. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  5351. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  5352. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  5353. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  5354. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5355. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5356. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  5357. \lstinline!addq tmp_0, tmp_1! & no interference\\
  5358. \lstinline!movq tmp_1, %rdi! & no interference \\
  5359. \lstinline!callq print_int!& no interference.
  5360. \end{tabular}
  5361. \fi}
  5362. \end{quote}
  5363. \end{tcolorbox}
  5364. \caption{Interference results for the running example.}
  5365. \label{fig:interference-results}
  5366. \end{figure}
  5367. \begin{figure}[tbp]
  5368. \begin{tcolorbox}[colback=white]
  5369. \large
  5370. {\if\edition\racketEd
  5371. \[
  5372. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5373. \node (rax) at (0,0) {$\ttm{rax}$};
  5374. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5375. \node (t1) at (0,2) {$\ttm{t}$};
  5376. \node (z) at (3,2) {$\ttm{z}$};
  5377. \node (x) at (6,2) {$\ttm{x}$};
  5378. \node (y) at (3,0) {$\ttm{y}$};
  5379. \node (w) at (6,0) {$\ttm{w}$};
  5380. \node (v) at (9,0) {$\ttm{v}$};
  5381. \draw (t1) to (rax);
  5382. \draw (t1) to (z);
  5383. \draw (z) to (y);
  5384. \draw (z) to (w);
  5385. \draw (x) to (w);
  5386. \draw (y) to (w);
  5387. \draw (v) to (w);
  5388. \draw (v) to (rsp);
  5389. \draw (w) to (rsp);
  5390. \draw (x) to (rsp);
  5391. \draw (y) to (rsp);
  5392. \path[-.,bend left=15] (z) edge node {} (rsp);
  5393. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5394. \draw (rax) to (rsp);
  5395. \end{tikzpicture}
  5396. \]
  5397. \fi}
  5398. {\if\edition\pythonEd\pythonColor
  5399. \[
  5400. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5401. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5402. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5403. \node (z) at (3,2) {$\ttm{z}$};
  5404. \node (x) at (6,2) {$\ttm{x}$};
  5405. \node (y) at (3,0) {$\ttm{y}$};
  5406. \node (w) at (6,0) {$\ttm{w}$};
  5407. \node (v) at (9,0) {$\ttm{v}$};
  5408. \draw (t0) to (t1);
  5409. \draw (t0) to (z);
  5410. \draw (z) to (y);
  5411. \draw (z) to (w);
  5412. \draw (x) to (w);
  5413. \draw (y) to (w);
  5414. \draw (v) to (w);
  5415. \end{tikzpicture}
  5416. \]
  5417. \fi}
  5418. \end{tcolorbox}
  5419. \caption{The interference graph of the example program.}
  5420. \label{fig:interfere}
  5421. \end{figure}
  5422. \begin{exercise}\normalfont\normalsize
  5423. \racket{Implement the compiler pass named \code{build\_interference} according
  5424. to the algorithm suggested here. We recommend using the Racket
  5425. \code{graph} package to create and inspect the interference graph.
  5426. The output graph of this pass should be stored in the $\itm{info}$ field of
  5427. the program, under the key \code{conflicts}.}
  5428. %
  5429. \python{Implement a function named \code{build\_interference}
  5430. according to the algorithm suggested above that
  5431. returns the interference graph.}
  5432. \end{exercise}
  5433. \section{Graph Coloring via Sudoku}
  5434. \label{sec:graph-coloring}
  5435. \index{subject}{graph coloring}
  5436. \index{subject}{sudoku}
  5437. \index{subject}{color}
  5438. We come to the main event discussed in this chapter, mapping variables
  5439. to registers and stack locations. Variables that interfere with each
  5440. other must be mapped to different locations. In terms of the
  5441. interference graph, this means that adjacent vertices must be mapped
  5442. to different locations. If we think of locations as colors, the
  5443. register allocation problem becomes the graph coloring
  5444. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  5445. The reader may be more familiar with the graph coloring problem than he
  5446. or she realizes; the popular game of sudoku is an instance of the
  5447. graph coloring problem. The following describes how to build a graph
  5448. out of an initial sudoku board.
  5449. \begin{itemize}
  5450. \item There is one vertex in the graph for each sudoku square.
  5451. \item There is an edge between two vertices if the corresponding squares
  5452. are in the same row, in the same column, or in the same $3\times 3$ region.
  5453. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  5454. \item On the basis of the initial assignment of numbers to squares on the
  5455. sudoku board, assign the corresponding colors to the corresponding
  5456. vertices in the graph.
  5457. \end{itemize}
  5458. If you can color the remaining vertices in the graph with the nine
  5459. colors, then you have also solved the corresponding game of sudoku.
  5460. Figure~\ref{fig:sudoku-graph} shows an initial sudoku game board and
  5461. the corresponding graph with colored vertices. Here we use a
  5462. monochrome representation of colors, mapping the sudoku number 1 to
  5463. black, 2 to white, and 3 to gray. We show edges for only a sampling
  5464. of the vertices (the colored ones) because showing edges for all the
  5465. vertices would make the graph unreadable.
  5466. \begin{figure}[tbp]
  5467. \begin{tcolorbox}[colback=white]
  5468. \includegraphics[width=0.5\textwidth]{figs/sudoku}
  5469. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  5470. \end{tcolorbox}
  5471. \caption{A sudoku game board and the corresponding colored graph.}
  5472. \label{fig:sudoku-graph}
  5473. \end{figure}
  5474. Some techniques for playing sudoku correspond to heuristics used in
  5475. graph coloring algorithms. For example, one of the basic techniques
  5476. for sudoku is called Pencil Marks. The idea is to use a process of
  5477. elimination to determine what numbers are no longer available for a
  5478. square and to write those numbers in the square (writing very
  5479. small). For example, if the number $1$ is assigned to a square, then
  5480. write the pencil mark $1$ in all the squares in the same row, column,
  5481. and region to indicate that $1$ is no longer an option for those other
  5482. squares.
  5483. %
  5484. The Pencil Marks technique corresponds to the notion of
  5485. \emph{saturation}\index{subject}{saturation} due to \citet{Brelaz:1979eu}. The
  5486. saturation of a vertex, in sudoku terms, is the set of numbers that
  5487. are no longer available. In graph terminology, we have the following
  5488. definition:
  5489. \begin{equation*}
  5490. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  5491. \text{ and } \mathrm{color}(v) = c \}
  5492. \end{equation*}
  5493. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  5494. edge with $u$.
  5495. The Pencil Marks technique leads to a simple strategy for filling in
  5496. numbers: if there is a square with only one possible number left, then
  5497. choose that number! But what if there are no squares with only one
  5498. possibility left? One brute-force approach is to try them all: choose
  5499. the first one, and if that ultimately leads to a solution, great. If
  5500. not, backtrack and choose the next possibility. One good thing about
  5501. Pencil Marks is that it reduces the degree of branching in the search
  5502. tree. Nevertheless, backtracking can be terribly time consuming. One
  5503. way to reduce the amount of backtracking is to use the
  5504. most-constrained-first heuristic (aka minimum remaining
  5505. values)~\citep{Russell2003}. That is, in choosing a square, always
  5506. choose one with the fewest possibilities left (the vertex with the
  5507. highest saturation). The idea is that choosing highly constrained
  5508. squares earlier rather than later is better, because later on there may
  5509. not be any possibilities left in the highly saturated squares.
  5510. However, register allocation is easier than sudoku, because the
  5511. register allocator can fall back to assigning variables to stack
  5512. locations when the registers run out. Thus, it makes sense to replace
  5513. backtracking with greedy search: make the best choice at the time and
  5514. keep going. We still wish to minimize the number of colors needed, so
  5515. we use the most-constrained-first heuristic in the greedy search.
  5516. Figure~\ref{fig:satur-algo} gives the pseudocode for a simple greedy
  5517. algorithm for register allocation based on saturation and the
  5518. most-constrained-first heuristic. It is roughly equivalent to the
  5519. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}. Just as in
  5520. sudoku, the algorithm represents colors with integers. The integers
  5521. $0$ through $k-1$ correspond to the $k$ registers that we use for
  5522. register allocation. In particular, we recommend the following
  5523. correspondence, with $k=11$.
  5524. \begin{lstlisting}
  5525. 0: rcx, 1: rdx, 2: rsi, 3: rdi, 4: r8, 5: r9,
  5526. 6: r10, 7: rbx, 8: r12, 9: r13, 10: r14
  5527. \end{lstlisting}
  5528. The integers $k$ and larger correspond to stack locations. The
  5529. registers that are not used for register allocation, such as
  5530. \code{rax}, are assigned to negative integers. In particular, we
  5531. recommend the following correspondence.
  5532. \begin{lstlisting}
  5533. -1: rax, -2: rsp, -3: rbp, -4: r11, -5: r15
  5534. \end{lstlisting}
  5535. %% One might wonder why we include registers at all in the liveness
  5536. %% analysis and interference graph. For example, we never allocate a
  5537. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  5538. %% leave them out. As we see in chapter~\ref{ch:Lvec}, when we begin
  5539. %% to use register for passing arguments to functions, it will be
  5540. %% necessary for those registers to appear in the interference graph
  5541. %% because those registers will also be assigned to variables, and we
  5542. %% don't want those two uses to encroach on each other. Regarding
  5543. %% registers such as \code{rax} and \code{rsp} that are not used for
  5544. %% variables, we could omit them from the interference graph but that
  5545. %% would require adding special cases to our algorithm, which would
  5546. %% complicate the logic for little gain.
  5547. \begin{figure}[btp]
  5548. \begin{tcolorbox}[colback=white]
  5549. \centering
  5550. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  5551. Algorithm: DSATUR
  5552. Input: A graph |$G$|
  5553. Output: An assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  5554. |$W \gets \mathrm{vertices}(G)$|
  5555. while |$W \neq \emptyset$| do
  5556. pick a vertex |$u$| from |$W$| with the highest saturation,
  5557. breaking ties randomly
  5558. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  5559. |$\mathrm{color}[u] \gets c$|
  5560. |$W \gets W - \{u\}$|
  5561. \end{lstlisting}
  5562. \end{tcolorbox}
  5563. \caption{The saturation-based greedy graph coloring algorithm.}
  5564. \label{fig:satur-algo}
  5565. \end{figure}
  5566. {\if\edition\racketEd
  5567. With the DSATUR algorithm in hand, let us return to the running
  5568. example and consider how to color the interference graph shown in
  5569. figure~\ref{fig:interfere}.
  5570. %
  5571. We start by assigning each register node to its own color. For
  5572. example, \code{rax} is assigned the color $-1$, \code{rsp} is assign
  5573. $-2$, \code{rcx} is assigned $0$, and \code{rdx} is assigned $1$.
  5574. (To reduce clutter in the interference graph, we elide nodes
  5575. that do not have interference edges, such as \code{rcx}.)
  5576. The variables are not yet colored, so they are annotated with a dash. We
  5577. then update the saturation for vertices that are adjacent to a
  5578. register, obtaining the following annotated graph. For example, the
  5579. saturation for \code{t} is $\{-1,-2\}$ because it interferes with both
  5580. \code{rax} and \code{rsp}.
  5581. \[
  5582. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5583. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  5584. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  5585. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  5586. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  5587. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5588. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5589. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5590. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5591. \draw (t1) to (rax);
  5592. \draw (t1) to (z);
  5593. \draw (z) to (y);
  5594. \draw (z) to (w);
  5595. \draw (x) to (w);
  5596. \draw (y) to (w);
  5597. \draw (v) to (w);
  5598. \draw (v) to (rsp);
  5599. \draw (w) to (rsp);
  5600. \draw (x) to (rsp);
  5601. \draw (y) to (rsp);
  5602. \path[-.,bend left=15] (z) edge node {} (rsp);
  5603. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5604. \draw (rax) to (rsp);
  5605. \end{tikzpicture}
  5606. \]
  5607. The algorithm says to select a maximally saturated vertex. So, we pick
  5608. $\ttm{t}$ and color it with the first available integer, which is
  5609. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  5610. and \ttm{rsp} because they interfere with $\ttm{t}$.
  5611. \[
  5612. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5613. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5614. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  5615. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  5616. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  5617. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5618. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5619. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5620. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5621. \draw (t1) to (rax);
  5622. \draw (t1) to (z);
  5623. \draw (z) to (y);
  5624. \draw (z) to (w);
  5625. \draw (x) to (w);
  5626. \draw (y) to (w);
  5627. \draw (v) to (w);
  5628. \draw (v) to (rsp);
  5629. \draw (w) to (rsp);
  5630. \draw (x) to (rsp);
  5631. \draw (y) to (rsp);
  5632. \path[-.,bend left=15] (z) edge node {} (rsp);
  5633. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5634. \draw (rax) to (rsp);
  5635. \end{tikzpicture}
  5636. \]
  5637. We repeat the process, selecting a maximally saturated vertex,
  5638. choosing \code{z}, and coloring it with the first available number, which
  5639. is $1$. We add $1$ to the saturation for the neighboring vertices
  5640. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  5641. \[
  5642. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5643. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5644. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5645. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5646. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5647. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5648. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5649. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5650. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5651. \draw (t1) to (rax);
  5652. \draw (t1) to (z);
  5653. \draw (z) to (y);
  5654. \draw (z) to (w);
  5655. \draw (x) to (w);
  5656. \draw (y) to (w);
  5657. \draw (v) to (w);
  5658. \draw (v) to (rsp);
  5659. \draw (w) to (rsp);
  5660. \draw (x) to (rsp);
  5661. \draw (y) to (rsp);
  5662. \path[-.,bend left=15] (z) edge node {} (rsp);
  5663. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5664. \draw (rax) to (rsp);
  5665. \end{tikzpicture}
  5666. \]
  5667. The most saturated vertices are now \code{w} and \code{y}. We color
  5668. \code{w} with the first available color, which is $0$.
  5669. \[
  5670. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5671. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5672. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5673. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5674. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5675. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5676. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  5677. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  5678. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5679. \draw (t1) to (rax);
  5680. \draw (t1) to (z);
  5681. \draw (z) to (y);
  5682. \draw (z) to (w);
  5683. \draw (x) to (w);
  5684. \draw (y) to (w);
  5685. \draw (v) to (w);
  5686. \draw (v) to (rsp);
  5687. \draw (w) to (rsp);
  5688. \draw (x) to (rsp);
  5689. \draw (y) to (rsp);
  5690. \path[-.,bend left=15] (z) edge node {} (rsp);
  5691. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5692. \draw (rax) to (rsp);
  5693. \end{tikzpicture}
  5694. \]
  5695. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  5696. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  5697. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  5698. and \code{z}, whose colors are $0$ and $1$ respectively.
  5699. \[
  5700. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5701. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5702. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5703. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5704. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5705. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5706. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5707. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5708. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5709. \draw (t1) to (rax);
  5710. \draw (t1) to (z);
  5711. \draw (z) to (y);
  5712. \draw (z) to (w);
  5713. \draw (x) to (w);
  5714. \draw (y) to (w);
  5715. \draw (v) to (w);
  5716. \draw (v) to (rsp);
  5717. \draw (w) to (rsp);
  5718. \draw (x) to (rsp);
  5719. \draw (y) to (rsp);
  5720. \path[-.,bend left=15] (z) edge node {} (rsp);
  5721. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5722. \draw (rax) to (rsp);
  5723. \end{tikzpicture}
  5724. \]
  5725. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  5726. \[
  5727. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5728. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5729. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5730. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5731. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5732. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5733. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5734. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5735. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5736. \draw (t1) to (rax);
  5737. \draw (t1) to (z);
  5738. \draw (z) to (y);
  5739. \draw (z) to (w);
  5740. \draw (x) to (w);
  5741. \draw (y) to (w);
  5742. \draw (v) to (w);
  5743. \draw (v) to (rsp);
  5744. \draw (w) to (rsp);
  5745. \draw (x) to (rsp);
  5746. \draw (y) to (rsp);
  5747. \path[-.,bend left=15] (z) edge node {} (rsp);
  5748. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5749. \draw (rax) to (rsp);
  5750. \end{tikzpicture}
  5751. \]
  5752. In the last step of the algorithm, we color \code{x} with $1$.
  5753. \[
  5754. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5755. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5756. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5757. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5758. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5759. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  5760. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5761. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5762. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5763. \draw (t1) to (rax);
  5764. \draw (t1) to (z);
  5765. \draw (z) to (y);
  5766. \draw (z) to (w);
  5767. \draw (x) to (w);
  5768. \draw (y) to (w);
  5769. \draw (v) to (w);
  5770. \draw (v) to (rsp);
  5771. \draw (w) to (rsp);
  5772. \draw (x) to (rsp);
  5773. \draw (y) to (rsp);
  5774. \path[-.,bend left=15] (z) edge node {} (rsp);
  5775. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5776. \draw (rax) to (rsp);
  5777. \end{tikzpicture}
  5778. \]
  5779. So, we obtain the following coloring:
  5780. \[
  5781. \{
  5782. \ttm{rax} \mapsto -1,
  5783. \ttm{rsp} \mapsto -2,
  5784. \ttm{t} \mapsto 0,
  5785. \ttm{z} \mapsto 1,
  5786. \ttm{x} \mapsto 1,
  5787. \ttm{y} \mapsto 2,
  5788. \ttm{w} \mapsto 0,
  5789. \ttm{v} \mapsto 1
  5790. \}
  5791. \]
  5792. \fi}
  5793. %
  5794. {\if\edition\pythonEd\pythonColor
  5795. %
  5796. With the DSATUR algorithm in hand, let us return to the running
  5797. example and consider how to color the interference graph in
  5798. figure~\ref{fig:interfere}. We annotate each variable node with a dash
  5799. to indicate that it has not yet been assigned a color. Each register
  5800. node (not shown) should be assigned the number that the register
  5801. corresponds to, for example, color \code{rcx} with the number \code{0}
  5802. and \code{rdx} with \code{1}. The saturation sets are also shown for
  5803. each node; all of them start as the empty set. We do not show the
  5804. register nodes in the graph below because there were no interference
  5805. edges involving registers in this program, but in general there can
  5806. be.
  5807. %
  5808. \[
  5809. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5810. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  5811. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  5812. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  5813. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5814. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5815. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5816. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5817. \draw (t0) to (t1);
  5818. \draw (t0) to (z);
  5819. \draw (z) to (y);
  5820. \draw (z) to (w);
  5821. \draw (x) to (w);
  5822. \draw (y) to (w);
  5823. \draw (v) to (w);
  5824. \end{tikzpicture}
  5825. \]
  5826. The algorithm says to select a maximally saturated vertex, but they
  5827. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  5828. then color it with the first available integer, which is $0$. We mark
  5829. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  5830. they interfere with $\ttm{tmp\_0}$.
  5831. \[
  5832. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5833. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  5834. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5835. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  5836. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5837. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5838. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5839. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5840. \draw (t0) to (t1);
  5841. \draw (t0) to (z);
  5842. \draw (z) to (y);
  5843. \draw (z) to (w);
  5844. \draw (x) to (w);
  5845. \draw (y) to (w);
  5846. \draw (v) to (w);
  5847. \end{tikzpicture}
  5848. \]
  5849. We repeat the process. The most saturated vertices are \code{z} and
  5850. \code{tmp\_1}, so we choose \code{z} and color it with the first
  5851. available number, which is $1$. We add $1$ to the saturation for the
  5852. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  5853. \[
  5854. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5855. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5856. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5857. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5858. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5859. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5860. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5861. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5862. \draw (t0) to (t1);
  5863. \draw (t0) to (z);
  5864. \draw (z) to (y);
  5865. \draw (z) to (w);
  5866. \draw (x) to (w);
  5867. \draw (y) to (w);
  5868. \draw (v) to (w);
  5869. \end{tikzpicture}
  5870. \]
  5871. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  5872. \code{y}. We color \code{w} with the first available color, which
  5873. is $0$.
  5874. \[
  5875. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5876. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5877. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5878. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5879. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5880. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  5881. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  5882. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5883. \draw (t0) to (t1);
  5884. \draw (t0) to (z);
  5885. \draw (z) to (y);
  5886. \draw (z) to (w);
  5887. \draw (x) to (w);
  5888. \draw (y) to (w);
  5889. \draw (v) to (w);
  5890. \end{tikzpicture}
  5891. \]
  5892. Now \code{y} is the most saturated, so we color it with $2$.
  5893. \[
  5894. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5895. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5896. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5897. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5898. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5899. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5900. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5901. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5902. \draw (t0) to (t1);
  5903. \draw (t0) to (z);
  5904. \draw (z) to (y);
  5905. \draw (z) to (w);
  5906. \draw (x) to (w);
  5907. \draw (y) to (w);
  5908. \draw (v) to (w);
  5909. \end{tikzpicture}
  5910. \]
  5911. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  5912. We choose to color \code{v} with $1$.
  5913. \[
  5914. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5915. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5916. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5917. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5918. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5919. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5920. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5921. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5922. \draw (t0) to (t1);
  5923. \draw (t0) to (z);
  5924. \draw (z) to (y);
  5925. \draw (z) to (w);
  5926. \draw (x) to (w);
  5927. \draw (y) to (w);
  5928. \draw (v) to (w);
  5929. \end{tikzpicture}
  5930. \]
  5931. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  5932. \[
  5933. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5934. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5935. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5936. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5937. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  5938. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5939. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5940. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5941. \draw (t0) to (t1);
  5942. \draw (t0) to (z);
  5943. \draw (z) to (y);
  5944. \draw (z) to (w);
  5945. \draw (x) to (w);
  5946. \draw (y) to (w);
  5947. \draw (v) to (w);
  5948. \end{tikzpicture}
  5949. \]
  5950. So, we obtain the following coloring:
  5951. \[
  5952. \{ \ttm{tmp\_0} \mapsto 0,
  5953. \ttm{tmp\_1} \mapsto 1,
  5954. \ttm{z} \mapsto 1,
  5955. \ttm{x} \mapsto 1,
  5956. \ttm{y} \mapsto 2,
  5957. \ttm{w} \mapsto 0,
  5958. \ttm{v} \mapsto 1 \}
  5959. \]
  5960. \fi}
  5961. We recommend creating an auxiliary function named \code{color\_graph}
  5962. that takes an interference graph and a list of all the variables in
  5963. the program. This function should return a mapping of variables to
  5964. their colors (represented as natural numbers). By creating this helper
  5965. function, you will be able to reuse it in chapter~\ref{ch:Lfun}
  5966. when we add support for functions.
  5967. To prioritize the processing of highly saturated nodes inside the
  5968. \code{color\_graph} function, we recommend using the priority queue
  5969. data structure \racket{described in figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  5970. addition, you will need to maintain a mapping from variables to their
  5971. handles in the priority queue so that you can notify the priority
  5972. queue when their saturation changes.}
  5973. {\if\edition\racketEd
  5974. \begin{figure}[tp]
  5975. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  5976. \small
  5977. \begin{tcolorbox}[title=Priority Queue]
  5978. A \emph{priority queue}\index{subject}{priority queue}
  5979. is a collection of items in which the
  5980. removal of items is governed by priority. In a \emph{min} queue,
  5981. lower priority items are removed first. An implementation is in
  5982. \code{priority\_queue.rkt} of the support code.\index{subject}{min queue}
  5983. \begin{description}
  5984. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  5985. priority queue that uses the $\itm{cmp}$ predicate to determine
  5986. whether its first argument has lower or equal priority to its
  5987. second argument.
  5988. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  5989. items in the queue.
  5990. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  5991. the item into the queue and returns a handle for the item in the
  5992. queue.
  5993. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  5994. the lowest priority.
  5995. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  5996. notifies the queue that the priority has decreased for the item
  5997. associated with the given handle.
  5998. \end{description}
  5999. \end{tcolorbox}
  6000. %\end{wrapfigure}
  6001. \caption{The priority queue data structure.}
  6002. \label{fig:priority-queue}
  6003. \end{figure}
  6004. \fi}
  6005. With the coloring complete, we finalize the assignment of variables to
  6006. registers and stack locations. We map the first $k$ colors to the $k$
  6007. registers and the rest of the colors to stack locations. Suppose for
  6008. the moment that we have just one register to use for register
  6009. allocation, \key{rcx}. Then we have the following map from colors to
  6010. locations.
  6011. \[
  6012. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  6013. \]
  6014. Composing this mapping with the coloring, we arrive at the following
  6015. assignment of variables to locations.
  6016. {\if\edition\racketEd
  6017. \begin{gather*}
  6018. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6019. \ttm{w} \mapsto \key{\%rcx}, \,
  6020. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6021. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6022. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6023. \ttm{t} \mapsto \key{\%rcx} \}
  6024. \end{gather*}
  6025. \fi}
  6026. {\if\edition\pythonEd\pythonColor
  6027. \begin{gather*}
  6028. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6029. \ttm{w} \mapsto \key{\%rcx}, \,
  6030. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6031. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6032. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6033. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6034. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6035. \end{gather*}
  6036. \fi}
  6037. Adapt the code from the \code{assign\_homes} pass
  6038. (section~\ref{sec:assign-Lvar}) to replace the variables with their
  6039. assigned location. Applying this assignment to our running
  6040. example shown next, on the left, yields the program on the right.
  6041. % why frame size of 32? -JGS
  6042. \begin{center}
  6043. {\if\edition\racketEd
  6044. \begin{minipage}{0.35\textwidth}
  6045. \begin{lstlisting}
  6046. movq $1, v
  6047. movq $42, w
  6048. movq v, x
  6049. addq $7, x
  6050. movq x, y
  6051. movq x, z
  6052. addq w, z
  6053. movq y, t
  6054. negq t
  6055. movq z, %rax
  6056. addq t, %rax
  6057. jmp conclusion
  6058. \end{lstlisting}
  6059. \end{minipage}
  6060. $\Rightarrow\qquad$
  6061. \begin{minipage}{0.45\textwidth}
  6062. \begin{lstlisting}
  6063. movq $1, -8(%rbp)
  6064. movq $42, %rcx
  6065. movq -8(%rbp), -8(%rbp)
  6066. addq $7, -8(%rbp)
  6067. movq -8(%rbp), -16(%rbp)
  6068. movq -8(%rbp), -8(%rbp)
  6069. addq %rcx, -8(%rbp)
  6070. movq -16(%rbp), %rcx
  6071. negq %rcx
  6072. movq -8(%rbp), %rax
  6073. addq %rcx, %rax
  6074. jmp conclusion
  6075. \end{lstlisting}
  6076. \end{minipage}
  6077. \fi}
  6078. {\if\edition\pythonEd\pythonColor
  6079. \begin{minipage}{0.35\textwidth}
  6080. \begin{lstlisting}
  6081. movq $1, v
  6082. movq $42, w
  6083. movq v, x
  6084. addq $7, x
  6085. movq x, y
  6086. movq x, z
  6087. addq w, z
  6088. movq y, tmp_0
  6089. negq tmp_0
  6090. movq z, tmp_1
  6091. addq tmp_0, tmp_1
  6092. movq tmp_1, %rdi
  6093. callq print_int
  6094. \end{lstlisting}
  6095. \end{minipage}
  6096. $\Rightarrow\qquad$
  6097. \begin{minipage}{0.45\textwidth}
  6098. \begin{lstlisting}
  6099. movq $1, -8(%rbp)
  6100. movq $42, %rcx
  6101. movq -8(%rbp), -8(%rbp)
  6102. addq $7, -8(%rbp)
  6103. movq -8(%rbp), -16(%rbp)
  6104. movq -8(%rbp), -8(%rbp)
  6105. addq %rcx, -8(%rbp)
  6106. movq -16(%rbp), %rcx
  6107. negq %rcx
  6108. movq -8(%rbp), -8(%rbp)
  6109. addq %rcx, -8(%rbp)
  6110. movq -8(%rbp), %rdi
  6111. callq print_int
  6112. \end{lstlisting}
  6113. \end{minipage}
  6114. \fi}
  6115. \end{center}
  6116. \begin{exercise}\normalfont\normalsize
  6117. Implement the \code{allocate\_registers} pass.
  6118. Create five programs that exercise all aspects of the register
  6119. allocation algorithm, including spilling variables to the stack.
  6120. %
  6121. {\if\edition\racketEd
  6122. Replace \code{assign\_homes} in the list of \code{passes} in the
  6123. \code{run-tests.rkt} script with the three new passes:
  6124. \code{uncover\_live}, \code{build\_interference}, and
  6125. \code{allocate\_registers}.
  6126. Temporarily remove the call to \code{compiler-tests}.
  6127. Run the script to test the register allocator.
  6128. \fi}
  6129. %
  6130. {\if\edition\pythonEd\pythonColor
  6131. Run the \code{run-tests.py} script to to check whether the
  6132. output programs produce the same result as the input programs.
  6133. \fi}
  6134. \end{exercise}
  6135. \section{Patch Instructions}
  6136. \label{sec:patch-instructions}
  6137. The remaining step in the compilation to x86 is to ensure that the
  6138. instructions have at most one argument that is a memory access.
  6139. %
  6140. In the running example, the instruction \code{movq -8(\%rbp),
  6141. -16(\%rbp)} is problematic. Recall from section~\ref{sec:patch-s0}
  6142. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  6143. then move \code{rax} into \code{-16(\%rbp)}.
  6144. %
  6145. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  6146. problematic, but they can simply be deleted. In general, we recommend
  6147. deleting all the trivial moves whose source and destination are the
  6148. same location.
  6149. %
  6150. The following is the output of \code{patch\_instructions} on the
  6151. running example.
  6152. \begin{center}
  6153. {\if\edition\racketEd
  6154. \begin{minipage}{0.35\textwidth}
  6155. \begin{lstlisting}
  6156. movq $1, -8(%rbp)
  6157. movq $42, %rcx
  6158. movq -8(%rbp), -8(%rbp)
  6159. addq $7, -8(%rbp)
  6160. movq -8(%rbp), -16(%rbp)
  6161. movq -8(%rbp), -8(%rbp)
  6162. addq %rcx, -8(%rbp)
  6163. movq -16(%rbp), %rcx
  6164. negq %rcx
  6165. movq -8(%rbp), %rax
  6166. addq %rcx, %rax
  6167. jmp conclusion
  6168. \end{lstlisting}
  6169. \end{minipage}
  6170. $\Rightarrow\qquad$
  6171. \begin{minipage}{0.45\textwidth}
  6172. \begin{lstlisting}
  6173. movq $1, -8(%rbp)
  6174. movq $42, %rcx
  6175. addq $7, -8(%rbp)
  6176. movq -8(%rbp), %rax
  6177. movq %rax, -16(%rbp)
  6178. addq %rcx, -8(%rbp)
  6179. movq -16(%rbp), %rcx
  6180. negq %rcx
  6181. movq -8(%rbp), %rax
  6182. addq %rcx, %rax
  6183. jmp conclusion
  6184. \end{lstlisting}
  6185. \end{minipage}
  6186. \fi}
  6187. {\if\edition\pythonEd\pythonColor
  6188. \begin{minipage}{0.35\textwidth}
  6189. \begin{lstlisting}
  6190. movq $1, -8(%rbp)
  6191. movq $42, %rcx
  6192. movq -8(%rbp), -8(%rbp)
  6193. addq $7, -8(%rbp)
  6194. movq -8(%rbp), -16(%rbp)
  6195. movq -8(%rbp), -8(%rbp)
  6196. addq %rcx, -8(%rbp)
  6197. movq -16(%rbp), %rcx
  6198. negq %rcx
  6199. movq -8(%rbp), -8(%rbp)
  6200. addq %rcx, -8(%rbp)
  6201. movq -8(%rbp), %rdi
  6202. callq print_int
  6203. \end{lstlisting}
  6204. \end{minipage}
  6205. $\Rightarrow\qquad$
  6206. \begin{minipage}{0.45\textwidth}
  6207. \begin{lstlisting}
  6208. movq $1, -8(%rbp)
  6209. movq $42, %rcx
  6210. addq $7, -8(%rbp)
  6211. movq -8(%rbp), %rax
  6212. movq %rax, -16(%rbp)
  6213. addq %rcx, -8(%rbp)
  6214. movq -16(%rbp), %rcx
  6215. negq %rcx
  6216. addq %rcx, -8(%rbp)
  6217. movq -8(%rbp), %rdi
  6218. callq print_int
  6219. \end{lstlisting}
  6220. \end{minipage}
  6221. \fi}
  6222. \end{center}
  6223. \begin{exercise}\normalfont\normalsize
  6224. %
  6225. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  6226. %
  6227. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  6228. %in the \code{run-tests.rkt} script.
  6229. %
  6230. Run the script to test the \code{patch\_instructions} pass.
  6231. \end{exercise}
  6232. \section{Prelude and Conclusion}
  6233. \label{sec:print-x86-reg-alloc}
  6234. \index{subject}{calling conventions}
  6235. \index{subject}{prelude}\index{subject}{conclusion}
  6236. Recall that this pass generates the prelude and conclusion
  6237. instructions to satisfy the x86 calling conventions
  6238. (section~\ref{sec:calling-conventions}). With the addition of the
  6239. register allocator, the callee-saved registers used by the register
  6240. allocator must be saved in the prelude and restored in the conclusion.
  6241. In the \code{allocate\_registers} pass,
  6242. %
  6243. \racket{add an entry to the \itm{info}
  6244. of \code{X86Program} named \code{used\_callee}}
  6245. %
  6246. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  6247. %
  6248. that stores the set of callee-saved registers that were assigned to
  6249. variables. The \code{prelude\_and\_conclusion} pass can then access
  6250. this information to decide which callee-saved registers need to be
  6251. saved and restored.
  6252. %
  6253. When calculating the amount to adjust the \code{rsp} in the prelude,
  6254. make sure to take into account the space used for saving the
  6255. callee-saved registers. Also, remember that the frame needs to be a
  6256. multiple of 16 bytes! We recommend using the following equation for
  6257. the amount $A$ to subtract from the \code{rsp}. Let $S$ be the number
  6258. of stack locations used by spilled variables\footnote{Sometimes two or
  6259. more spilled variables are assigned to the same stack location, so
  6260. $S$ can be less than the number of spilled variables.} and $C$ be
  6261. the number of callee-saved registers that were
  6262. allocated\index{subject}{allocate} to
  6263. variables. The $\itm{align}$ function rounds a number up to the
  6264. nearest 16 bytes.
  6265. \[
  6266. \itm{A} = \itm{align}(8\itm{S} + 8\itm{C}) - 8\itm{C}
  6267. \]
  6268. The reason we subtract $8\itm{C}$ in this equation is that the
  6269. prelude uses \code{pushq} to save each of the callee-saved registers,
  6270. and \code{pushq} subtracts $8$ from the \code{rsp}.
  6271. \racket{An overview of all the passes involved in register
  6272. allocation is shown in figure~\ref{fig:reg-alloc-passes}.}
  6273. {\if\edition\racketEd
  6274. \begin{figure}[tbp]
  6275. \begin{tcolorbox}[colback=white]
  6276. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6277. \node (Lvar) at (0,2) {\large \LangVar{}};
  6278. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  6279. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  6280. \node (Cvar-1) at (0,0) {\large \LangCVar{}};
  6281. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  6282. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  6283. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  6284. \node (x86-5) at (7,-4) {\large \LangXInt{}};
  6285. \node (x86-2-1) at (0,-4) {\large \LangXVar{}};
  6286. \node (x86-2-2) at (3,-4) {\large \LangXVar{}};
  6287. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  6288. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  6289. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (Cvar-1);
  6290. \path[->,bend right=15] (Cvar-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  6291. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  6292. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  6293. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  6294. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  6295. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  6296. \end{tikzpicture}
  6297. \end{tcolorbox}
  6298. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  6299. \label{fig:reg-alloc-passes}
  6300. \end{figure}
  6301. \fi}
  6302. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  6303. the running example (figure~\ref{fig:reg-eg}). To demonstrate both the
  6304. use of registers and the stack, we limit the register allocator for
  6305. this example to use just two registers: \code{rcx} (color $0$) and
  6306. \code{rbx} (color $1$). In the prelude\index{subject}{prelude} of the
  6307. \code{main} function, we push \code{rbx} onto the stack because it is
  6308. a callee-saved register and it was assigned to a variable by the
  6309. register allocator. We subtract \code{8} from the \code{rsp} at the
  6310. end of the prelude to reserve space for the one spilled variable.
  6311. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  6312. Moving on to the program proper, we see how the registers were
  6313. allocated.
  6314. %
  6315. \racket{Variables \code{v}, \code{x}, and \code{z} were assigned to
  6316. \code{rbx}, and variables \code{w} and \code{t} was assigned to \code{rcx}.}
  6317. %
  6318. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  6319. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  6320. were assigned to \code{rbx}.}
  6321. %
  6322. Variable \racket{\code{y}}\python{\code{z}} was spilled to the stack
  6323. location \code{-16(\%rbp)}. Recall that the prelude saved the
  6324. callee-save register \code{rbx} onto the stack. The spilled variables
  6325. must be placed lower on the stack than the saved callee-save
  6326. registers, so in this case \racket{\code{y}}\python{z} is placed at
  6327. \code{-16(\%rbp)}.
  6328. In the conclusion\index{subject}{conclusion}, we undo the work that was
  6329. done in the prelude. We move the stack pointer up by \code{8} bytes
  6330. (the room for spilled variables), then pop the old values of
  6331. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  6332. \code{retq} to return control to the operating system.
  6333. \begin{figure}[tbp]
  6334. \begin{minipage}{0.55\textwidth}
  6335. \begin{tcolorbox}[colback=white]
  6336. % var_test_28.rkt
  6337. % (use-minimal-set-of-registers! #t)
  6338. % 0 -> rcx
  6339. % 1 -> rbx
  6340. %
  6341. % t 0 rcx
  6342. % z 1 rbx
  6343. % w 0 rcx
  6344. % y 2 rbp -16
  6345. % v 1 rbx
  6346. % x 1 rbx
  6347. {\if\edition\racketEd
  6348. \begin{lstlisting}
  6349. start:
  6350. movq $1, %rbx
  6351. movq $42, %rcx
  6352. addq $7, %rbx
  6353. movq %rbx, -16(%rbp)
  6354. addq %rcx, %rbx
  6355. movq -16(%rbp), %rcx
  6356. negq %rcx
  6357. movq %rbx, %rax
  6358. addq %rcx, %rax
  6359. jmp conclusion
  6360. .globl main
  6361. main:
  6362. pushq %rbp
  6363. movq %rsp, %rbp
  6364. pushq %rbx
  6365. subq $8, %rsp
  6366. jmp start
  6367. conclusion:
  6368. addq $8, %rsp
  6369. popq %rbx
  6370. popq %rbp
  6371. retq
  6372. \end{lstlisting}
  6373. \fi}
  6374. {\if\edition\pythonEd\pythonColor
  6375. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  6376. \begin{lstlisting}
  6377. .globl main
  6378. main:
  6379. pushq %rbp
  6380. movq %rsp, %rbp
  6381. pushq %rbx
  6382. subq $8, %rsp
  6383. movq $1, %rcx
  6384. movq $42, %rbx
  6385. addq $7, %rcx
  6386. movq %rcx, -16(%rbp)
  6387. addq %rbx, -16(%rbp)
  6388. negq %rcx
  6389. movq -16(%rbp), %rbx
  6390. addq %rcx, %rbx
  6391. movq %rbx, %rdi
  6392. callq print_int
  6393. addq $8, %rsp
  6394. popq %rbx
  6395. popq %rbp
  6396. retq
  6397. \end{lstlisting}
  6398. \fi}
  6399. \end{tcolorbox}
  6400. \end{minipage}
  6401. \caption{The x86 output from the running example
  6402. (figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  6403. and \code{rcx}.}
  6404. \label{fig:running-example-x86}
  6405. \end{figure}
  6406. \begin{exercise}\normalfont\normalsize
  6407. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  6408. %
  6409. \racket{
  6410. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  6411. list of passes and the call to \code{compiler-tests}.}
  6412. %
  6413. Run the script to test the complete compiler for \LangVar{} that
  6414. performs register allocation.
  6415. \end{exercise}
  6416. \section{Challenge: Move Biasing}
  6417. \label{sec:move-biasing}
  6418. \index{subject}{move biasing}
  6419. This section describes an enhancement to the register allocator,
  6420. called move biasing, for students who are looking for an extra
  6421. challenge.
  6422. {\if\edition\racketEd
  6423. To motivate the need for move biasing we return to the running example,
  6424. but this time we use all the general purpose registers. So, we have
  6425. the following mapping of color numbers to registers.
  6426. \[
  6427. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi}, \ldots \}
  6428. \]
  6429. Using the same assignment of variables to color numbers that was
  6430. produced by the register allocator described in the last section, we
  6431. get the following program.
  6432. \begin{center}
  6433. \begin{minipage}{0.35\textwidth}
  6434. \begin{lstlisting}
  6435. movq $1, v
  6436. movq $42, w
  6437. movq v, x
  6438. addq $7, x
  6439. movq x, y
  6440. movq x, z
  6441. addq w, z
  6442. movq y, t
  6443. negq t
  6444. movq z, %rax
  6445. addq t, %rax
  6446. jmp conclusion
  6447. \end{lstlisting}
  6448. \end{minipage}
  6449. $\Rightarrow\qquad$
  6450. \begin{minipage}{0.45\textwidth}
  6451. \begin{lstlisting}
  6452. movq $1, %rdx
  6453. movq $42, %rcx
  6454. movq %rdx, %rdx
  6455. addq $7, %rdx
  6456. movq %rdx, %rsi
  6457. movq %rdx, %rdx
  6458. addq %rcx, %rdx
  6459. movq %rsi, %rcx
  6460. negq %rcx
  6461. movq %rdx, %rax
  6462. addq %rcx, %rax
  6463. jmp conclusion
  6464. \end{lstlisting}
  6465. \end{minipage}
  6466. \end{center}
  6467. In this output code there are two \key{movq} instructions that
  6468. can be removed because their source and target are the same. However,
  6469. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  6470. register, we could instead remove three \key{movq} instructions. We
  6471. can accomplish this by taking into account which variables appear in
  6472. \key{movq} instructions with which other variables.
  6473. \fi}
  6474. {\if\edition\pythonEd\pythonColor
  6475. %
  6476. To motivate the need for move biasing we return to the running example
  6477. and recall that in section~\ref{sec:patch-instructions} we were able to
  6478. remove three trivial move instructions from the running
  6479. example. However, we could remove another trivial move if we were able
  6480. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  6481. We say that two variables $p$ and $q$ are \emph{move
  6482. related}\index{subject}{move related} if they participate together in
  6483. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  6484. \key{movq} $q$\key{,} $p$.
  6485. %
  6486. Recall that we color variables that are more saturated before coloring
  6487. variables that are less saturated, and in the case of equally
  6488. saturated variables, we choose randomly. Now we break such ties by
  6489. giving preference to variables that have an available color that is
  6490. the same as the color of a move-related variable.
  6491. %
  6492. Furthermore, when the register allocator chooses a color for a
  6493. variable, it should prefer a color that has already been used for a
  6494. move-related variable if one exists (and assuming that they do not
  6495. interfere). This preference should not override the preference for
  6496. registers over stack locations. So, this preference should be used as
  6497. a tie breaker in choosing between two registers or in choosing between
  6498. two stack locations.
  6499. We recommend representing the move relationships in a graph, similarly
  6500. to how we represented interference. The following is the \emph{move
  6501. graph} for our running example.
  6502. {\if\edition\racketEd
  6503. \[
  6504. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6505. \node (rax) at (0,0) {$\ttm{rax}$};
  6506. \node (rsp) at (9,2) {$\ttm{rsp}$};
  6507. \node (t) at (0,2) {$\ttm{t}$};
  6508. \node (z) at (3,2) {$\ttm{z}$};
  6509. \node (x) at (6,2) {$\ttm{x}$};
  6510. \node (y) at (3,0) {$\ttm{y}$};
  6511. \node (w) at (6,0) {$\ttm{w}$};
  6512. \node (v) at (9,0) {$\ttm{v}$};
  6513. \draw (v) to (x);
  6514. \draw (x) to (y);
  6515. \draw (x) to (z);
  6516. \draw (y) to (t);
  6517. \end{tikzpicture}
  6518. \]
  6519. \fi}
  6520. %
  6521. {\if\edition\pythonEd\pythonColor
  6522. \[
  6523. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6524. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  6525. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  6526. \node (z) at (3,2) {$\ttm{z}$};
  6527. \node (x) at (6,2) {$\ttm{x}$};
  6528. \node (y) at (3,0) {$\ttm{y}$};
  6529. \node (w) at (6,0) {$\ttm{w}$};
  6530. \node (v) at (9,0) {$\ttm{v}$};
  6531. \draw (y) to (t0);
  6532. \draw (z) to (x);
  6533. \draw (z) to (t1);
  6534. \draw (x) to (y);
  6535. \draw (x) to (v);
  6536. \end{tikzpicture}
  6537. \]
  6538. \fi}
  6539. {\if\edition\racketEd
  6540. Now we replay the graph coloring, pausing to see the coloring of
  6541. \code{y}. Recall the following configuration. The most saturated vertices
  6542. were \code{w} and \code{y}.
  6543. \[
  6544. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6545. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6546. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6547. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6548. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6549. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6550. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  6551. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  6552. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6553. \draw (t1) to (rax);
  6554. \draw (t1) to (z);
  6555. \draw (z) to (y);
  6556. \draw (z) to (w);
  6557. \draw (x) to (w);
  6558. \draw (y) to (w);
  6559. \draw (v) to (w);
  6560. \draw (v) to (rsp);
  6561. \draw (w) to (rsp);
  6562. \draw (x) to (rsp);
  6563. \draw (y) to (rsp);
  6564. \path[-.,bend left=15] (z) edge node {} (rsp);
  6565. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6566. \draw (rax) to (rsp);
  6567. \end{tikzpicture}
  6568. \]
  6569. %
  6570. The last time, we chose to color \code{w} with $0$. This time, we see
  6571. that \code{w} is not move-related to any vertex, but \code{y} is
  6572. move-related to \code{t}. So we choose to color \code{y} with $0$,
  6573. the same color as \code{t}.
  6574. \[
  6575. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6576. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6577. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6578. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6579. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6580. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6581. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  6582. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  6583. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6584. \draw (t1) to (rax);
  6585. \draw (t1) to (z);
  6586. \draw (z) to (y);
  6587. \draw (z) to (w);
  6588. \draw (x) to (w);
  6589. \draw (y) to (w);
  6590. \draw (v) to (w);
  6591. \draw (v) to (rsp);
  6592. \draw (w) to (rsp);
  6593. \draw (x) to (rsp);
  6594. \draw (y) to (rsp);
  6595. \path[-.,bend left=15] (z) edge node {} (rsp);
  6596. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6597. \draw (rax) to (rsp);
  6598. \end{tikzpicture}
  6599. \]
  6600. Now \code{w} is the most saturated, so we color it $2$.
  6601. \[
  6602. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6603. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6604. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6605. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6606. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6607. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  6608. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6609. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6610. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  6611. \draw (t1) to (rax);
  6612. \draw (t1) to (z);
  6613. \draw (z) to (y);
  6614. \draw (z) to (w);
  6615. \draw (x) to (w);
  6616. \draw (y) to (w);
  6617. \draw (v) to (w);
  6618. \draw (v) to (rsp);
  6619. \draw (w) to (rsp);
  6620. \draw (x) to (rsp);
  6621. \draw (y) to (rsp);
  6622. \path[-.,bend left=15] (z) edge node {} (rsp);
  6623. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6624. \draw (rax) to (rsp);
  6625. \end{tikzpicture}
  6626. \]
  6627. At this point, vertices \code{x} and \code{v} are most saturated, but
  6628. \code{x} is move related to \code{y} and \code{z}, so we color
  6629. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  6630. \[
  6631. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6632. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6633. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6634. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6635. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6636. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  6637. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6638. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6639. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  6640. \draw (t1) to (rax);
  6641. \draw (t) to (z);
  6642. \draw (z) to (y);
  6643. \draw (z) to (w);
  6644. \draw (x) to (w);
  6645. \draw (y) to (w);
  6646. \draw (v) to (w);
  6647. \draw (v) to (rsp);
  6648. \draw (w) to (rsp);
  6649. \draw (x) to (rsp);
  6650. \draw (y) to (rsp);
  6651. \path[-.,bend left=15] (z) edge node {} (rsp);
  6652. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6653. \draw (rax) to (rsp);
  6654. \end{tikzpicture}
  6655. \]
  6656. \fi}
  6657. %
  6658. {\if\edition\pythonEd\pythonColor
  6659. Now we replay the graph coloring, pausing before the coloring of
  6660. \code{w}. Recall the following configuration. The most saturated vertices
  6661. were \code{tmp\_1}, \code{w}, and \code{y}.
  6662. \[
  6663. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6664. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6665. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6666. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6667. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6668. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  6669. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  6670. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6671. \draw (t0) to (t1);
  6672. \draw (t0) to (z);
  6673. \draw (z) to (y);
  6674. \draw (z) to (w);
  6675. \draw (x) to (w);
  6676. \draw (y) to (w);
  6677. \draw (v) to (w);
  6678. \end{tikzpicture}
  6679. \]
  6680. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  6681. or \code{y}, but note that \code{w} is not move related to any
  6682. variables, whereas \code{y} and \code{tmp\_1} are move related to
  6683. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  6684. \code{y} and color it $0$, we can delete another move instruction.
  6685. \[
  6686. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6687. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6688. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6689. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6690. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6691. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  6692. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  6693. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6694. \draw (t0) to (t1);
  6695. \draw (t0) to (z);
  6696. \draw (z) to (y);
  6697. \draw (z) to (w);
  6698. \draw (x) to (w);
  6699. \draw (y) to (w);
  6700. \draw (v) to (w);
  6701. \end{tikzpicture}
  6702. \]
  6703. Now \code{w} is the most saturated, so we color it $2$.
  6704. \[
  6705. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6706. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6707. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6708. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6709. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  6710. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6711. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6712. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  6713. \draw (t0) to (t1);
  6714. \draw (t0) to (z);
  6715. \draw (z) to (y);
  6716. \draw (z) to (w);
  6717. \draw (x) to (w);
  6718. \draw (y) to (w);
  6719. \draw (v) to (w);
  6720. \end{tikzpicture}
  6721. \]
  6722. To finish the coloring, \code{x} and \code{v} get $0$ and
  6723. \code{tmp\_1} gets $1$.
  6724. \[
  6725. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6726. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6727. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  6728. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6729. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  6730. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6731. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6732. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  6733. \draw (t0) to (t1);
  6734. \draw (t0) to (z);
  6735. \draw (z) to (y);
  6736. \draw (z) to (w);
  6737. \draw (x) to (w);
  6738. \draw (y) to (w);
  6739. \draw (v) to (w);
  6740. \end{tikzpicture}
  6741. \]
  6742. \fi}
  6743. So, we have the following assignment of variables to registers.
  6744. {\if\edition\racketEd
  6745. \begin{gather*}
  6746. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6747. \ttm{w} \mapsto \key{\%rsi}, \,
  6748. \ttm{x} \mapsto \key{\%rcx}, \,
  6749. \ttm{y} \mapsto \key{\%rcx}, \,
  6750. \ttm{z} \mapsto \key{\%rdx}, \,
  6751. \ttm{t} \mapsto \key{\%rcx} \}
  6752. \end{gather*}
  6753. \fi}
  6754. {\if\edition\pythonEd\pythonColor
  6755. \begin{gather*}
  6756. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6757. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  6758. \ttm{x} \mapsto \key{\%rcx}, \,
  6759. \ttm{y} \mapsto \key{\%rcx}, \\
  6760. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6761. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6762. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6763. \end{gather*}
  6764. \fi}
  6765. %
  6766. We apply this register assignment to the running example shown next,
  6767. on the left, to obtain the code in the middle. The
  6768. \code{patch\_instructions} then deletes the trivial moves to obtain
  6769. the code on the right.
  6770. {\if\edition\racketEd
  6771. \begin{center}
  6772. \begin{minipage}{0.2\textwidth}
  6773. \begin{lstlisting}
  6774. movq $1, v
  6775. movq $42, w
  6776. movq v, x
  6777. addq $7, x
  6778. movq x, y
  6779. movq x, z
  6780. addq w, z
  6781. movq y, t
  6782. negq t
  6783. movq z, %rax
  6784. addq t, %rax
  6785. jmp conclusion
  6786. \end{lstlisting}
  6787. \end{minipage}
  6788. $\Rightarrow\qquad$
  6789. \begin{minipage}{0.25\textwidth}
  6790. \begin{lstlisting}
  6791. movq $1, %rcx
  6792. movq $42, %rsi
  6793. movq %rcx, %rcx
  6794. addq $7, %rcx
  6795. movq %rcx, %rcx
  6796. movq %rcx, %rdx
  6797. addq %rsi, %rdx
  6798. movq %rcx, %rcx
  6799. negq %rcx
  6800. movq %rdx, %rax
  6801. addq %rcx, %rax
  6802. jmp conclusion
  6803. \end{lstlisting}
  6804. \end{minipage}
  6805. $\Rightarrow\qquad$
  6806. \begin{minipage}{0.23\textwidth}
  6807. \begin{lstlisting}
  6808. movq $1, %rcx
  6809. movq $42, %rsi
  6810. addq $7, %rcx
  6811. movq %rcx, %rdx
  6812. addq %rsi, %rdx
  6813. negq %rcx
  6814. movq %rdx, %rax
  6815. addq %rcx, %rax
  6816. jmp conclusion
  6817. \end{lstlisting}
  6818. \end{minipage}
  6819. \end{center}
  6820. \fi}
  6821. {\if\edition\pythonEd\pythonColor
  6822. \begin{center}
  6823. \begin{minipage}{0.20\textwidth}
  6824. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6825. movq $1, v
  6826. movq $42, w
  6827. movq v, x
  6828. addq $7, x
  6829. movq x, y
  6830. movq x, z
  6831. addq w, z
  6832. movq y, tmp_0
  6833. negq tmp_0
  6834. movq z, tmp_1
  6835. addq tmp_0, tmp_1
  6836. movq tmp_1, %rdi
  6837. callq _print_int
  6838. \end{lstlisting}
  6839. \end{minipage}
  6840. ${\Rightarrow\qquad}$
  6841. \begin{minipage}{0.35\textwidth}
  6842. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6843. movq $1, %rcx
  6844. movq $42, -16(%rbp)
  6845. movq %rcx, %rcx
  6846. addq $7, %rcx
  6847. movq %rcx, %rcx
  6848. movq %rcx, -8(%rbp)
  6849. addq -16(%rbp), -8(%rbp)
  6850. movq %rcx, %rcx
  6851. negq %rcx
  6852. movq -8(%rbp), -8(%rbp)
  6853. addq %rcx, -8(%rbp)
  6854. movq -8(%rbp), %rdi
  6855. callq _print_int
  6856. \end{lstlisting}
  6857. \end{minipage}
  6858. ${\Rightarrow\qquad}$
  6859. \begin{minipage}{0.20\textwidth}
  6860. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6861. movq $1, %rcx
  6862. movq $42, -16(%rbp)
  6863. addq $7, %rcx
  6864. movq %rcx, -8(%rbp)
  6865. movq -16(%rbp), %rax
  6866. addq %rax, -8(%rbp)
  6867. negq %rcx
  6868. addq %rcx, -8(%rbp)
  6869. movq -8(%rbp), %rdi
  6870. callq print_int
  6871. \end{lstlisting}
  6872. \end{minipage}
  6873. \end{center}
  6874. \fi}
  6875. \begin{exercise}\normalfont\normalsize
  6876. Change your implementation of \code{allocate\_registers} to take move
  6877. biasing into account. Create two new tests that include at least one
  6878. opportunity for move biasing, and visually inspect the output x86
  6879. programs to make sure that your move biasing is working properly. Make
  6880. sure that your compiler still passes all the tests.
  6881. \end{exercise}
  6882. %To do: another neat challenge would be to do
  6883. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  6884. %% \subsection{Output of the Running Example}
  6885. %% \label{sec:reg-alloc-output}
  6886. % challenge: prioritize variables based on execution frequencies
  6887. % and the number of uses of a variable
  6888. % challenge: enhance the coloring algorithm using Chaitin's
  6889. % approach of prioritizing high-degree variables
  6890. % by removing low-degree variables (coloring them later)
  6891. % from the interference graph
  6892. \section{Further Reading}
  6893. \label{sec:register-allocation-further-reading}
  6894. Early register allocation algorithms were developed for Fortran
  6895. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  6896. of graph coloring began in the late 1970s and early 1980s with the
  6897. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  6898. algorithm is based on the following observation of
  6899. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  6900. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  6901. $v$ removed is also $k$ colorable. To see why, suppose that the
  6902. subgraph is $k$ colorable. At worst, the neighbors of $v$ are assigned
  6903. different colors, but because there are fewer than $k$ neighbors, there
  6904. will be one or more colors left over to use for coloring $v$ in $G$.
  6905. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  6906. less than $k$ from the graph and recursively colors the rest of the
  6907. graph. Upon returning from the recursion, it colors $v$ with one of
  6908. the available colors and returns. \citet{Chaitin:1982vn} augments
  6909. this algorithm to handle spilling as follows. If there are no vertices
  6910. of degree lower than $k$ then pick a vertex at random, spill it,
  6911. remove it from the graph, and proceed recursively to color the rest of
  6912. the graph.
  6913. Prior to coloring, \citet{Chaitin:1981vl} merged variables that are
  6914. move-related and that don't interfere with each other, in a process
  6915. called \emph{coalescing}. Although coalescing decreases the number of
  6916. moves, it can make the graph more difficult to
  6917. color. \citet{Briggs:1994kx} proposed \emph{conservative coalescing} in
  6918. which two variables are merged only if they have fewer than $k$
  6919. neighbors of high degree. \citet{George:1996aa} observes that
  6920. conservative coalescing is sometimes too conservative and made it more
  6921. aggressive by iterating the coalescing with the removal of low-degree
  6922. vertices.
  6923. %
  6924. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  6925. also proposed \emph{biased coloring}, in which a variable is assigned to
  6926. the same color as another move-related variable if possible, as
  6927. discussed in section~\ref{sec:move-biasing}.
  6928. %
  6929. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  6930. performs coalescing, graph coloring, and spill code insertion until
  6931. all variables have been assigned a location.
  6932. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  6933. spilled variables that don't have to be: a high-degree variable can be
  6934. colorable if many of its neighbors are assigned the same color.
  6935. \citet{Briggs:1994kx} proposed \emph{optimistic coloring}, in which a
  6936. high-degree vertex is not immediately spilled. Instead the decision is
  6937. deferred until after the recursive call, at which point it is apparent
  6938. whether there is actually an available color or not. We observe that
  6939. this algorithm is equivalent to the smallest-last ordering
  6940. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  6941. be registers and the rest to be stack locations.
  6942. %% biased coloring
  6943. Earlier editions of the compiler course at Indiana University
  6944. \citep{Dybvig:2010aa} were based on the algorithm of
  6945. \citet{Briggs:1994kx}.
  6946. The smallest-last ordering algorithm is one of many \emph{greedy}
  6947. coloring algorithms. A greedy coloring algorithm visits all the
  6948. vertices in a particular order and assigns each one the first
  6949. available color. An \emph{offline} greedy algorithm chooses the
  6950. ordering up front, prior to assigning colors. The algorithm of
  6951. \citet{Chaitin:1981vl} should be considered offline because the vertex
  6952. ordering does not depend on the colors assigned. Other orderings are
  6953. possible. For example, \citet{Chow:1984ys} ordered variables according
  6954. to an estimate of runtime cost.
  6955. An \emph{online} greedy coloring algorithm uses information about the
  6956. current assignment of colors to influence the order in which the
  6957. remaining vertices are colored. The saturation-based algorithm
  6958. described in this chapter is one such algorithm. We choose to use
  6959. saturation-based coloring because it is fun to introduce graph
  6960. coloring via sudoku!
  6961. A register allocator may choose to map each variable to just one
  6962. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  6963. variable to one or more locations. The latter can be achieved by
  6964. \emph{live range splitting}, where a variable is replaced by several
  6965. variables that each handle part of its live
  6966. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  6967. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  6968. %% replacement algorithm, bottom-up local
  6969. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  6970. %% Cooper: top-down (priority bassed), bottom-up
  6971. %% top-down
  6972. %% order variables by priority (estimated cost)
  6973. %% caveat: split variables into two groups:
  6974. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  6975. %% color the constrained ones first
  6976. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  6977. %% cite J. Cocke for an algorithm that colors variables
  6978. %% in a high-degree first ordering
  6979. %Register Allocation via Usage Counts, Freiburghouse CACM
  6980. \citet{Palsberg:2007si} observes that many of the interference graphs
  6981. that arise from Java programs in the JoeQ compiler are \emph{chordal};
  6982. that is, every cycle with four or more edges has an edge that is not
  6983. part of the cycle but that connects two vertices on the cycle. Such
  6984. graphs can be optimally colored by the greedy algorithm with a vertex
  6985. ordering determined by maximum cardinality search.
  6986. In situations in which compile time is of utmost importance, such as
  6987. in just-in-time compilers, graph coloring algorithms can be too
  6988. expensive, and the linear scan algorithm of \citet{Poletto:1999uq} may
  6989. be more appropriate.
  6990. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6991. {\if\edition\racketEd
  6992. \addtocontents{toc}{\newpage}
  6993. \fi}
  6994. \chapter{Booleans and Conditionals}
  6995. \label{ch:Lif}
  6996. \setcounter{footnote}{0}
  6997. The \LangVar{} language has only a single kind of value, the
  6998. integers. In this chapter we add a second kind of value, the Booleans,
  6999. to create the \LangIf{} language. In \racket{Racket}\python{Python},
  7000. the Boolean\index{subject}{Boolean} values \emph{true} and \emph{false}
  7001. are written
  7002. \TRUE{}\index{subject}{True@\TRUE{}} and
  7003. \FALSE{}\index{subject}{False@\FALSE{}}, respectively. The \LangIf{}
  7004. language includes several operations that involve Booleans
  7005. (\key{and}\index{subject}{and@\ANDNAME{}},
  7006. \key{or}\index{subject}{or@\ORNAME{}},
  7007. \key{not}\index{subject}{not@\NOTNAME{}},
  7008. \racket{\key{eq?}\index{subject}{equal@\EQNAME{}}}\python{==},
  7009. \key{<}\index{subject}{lessthan@\texttt{<}}, etc.) and the
  7010. \key{if}\index{subject}{IfExp@\IFNAME{}}
  7011. conditional expression\index{subject}{conditional expression}
  7012. \python{ and statement\index{subject}{IfStmt@\IFSTMTNAME{}}}.
  7013. With the addition of \key{if}, programs can have
  7014. nontrivial control flow\index{subject}{control flow} which
  7015. %
  7016. \racket{impacts \code{explicate\_control} and liveness analysis.}
  7017. %
  7018. \python{impacts liveness analysis and motivates a new pass named
  7019. \code{explicate\_control}.}%
  7020. %
  7021. Also, because we now have two kinds of values, we need to handle
  7022. programs that apply an operation to the wrong kind of value, such as
  7023. \racket{\code{(not 1)}}\python{\code{not 1}}.
  7024. There are two language design options for such situations. One option
  7025. is to signal an error and the other is to provide a wider
  7026. interpretation of the operation. \racket{The Racket
  7027. language}\python{Python} uses a mixture of these two options,
  7028. depending on the operation and the kind of value. For example, the
  7029. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  7030. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  7031. treats nonzero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  7032. %
  7033. \racket{On the other hand, \code{(car 1)} results in a runtime error
  7034. in Racket because \code{car} expects a pair.}
  7035. %
  7036. \python{On the other hand, \code{1[0]} results in a runtime error
  7037. in Python because an ``\code{int} object is not subscriptable''.}
  7038. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  7039. design choices as \racket{Racket}\python{Python}, except that much of the
  7040. error detection happens at compile time instead of runtime\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  7041. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  7042. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed Racket}
  7043. \python{MyPy} reports a compile-time error
  7044. %
  7045. \racket{because Racket expects the type of the argument to be of the form
  7046. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  7047. %
  7048. \python{stating that a ``value of type \code{int} is not indexable''.}
  7049. The \LangIf{} language performs type checking during compilation just as
  7050. \racket{Typed Racket}\python{MyPy}. In chapter~\ref{ch:Ldyn} we study
  7051. the alternative choice, that is, a dynamically typed language like
  7052. \racket{Racket}\python{Python}. The \LangIf{} language is a subset of
  7053. \racket{Typed Racket}\python{MyPy}; for some operations we are more
  7054. restrictive, for example, rejecting \racket{\code{(not
  7055. 1)}}\python{\code{not 1}}. We keep the type checker for \LangIf{}
  7056. fairly simple because the focus of this book is on compilation and not
  7057. type systems, about which there are already several excellent
  7058. books~\citep{Pierce:2002hj,Pierce:2004fk,Harper2016,Pierce:SF2}.
  7059. This chapter is organized as follows. We begin by defining the syntax
  7060. and interpreter for the \LangIf{} language
  7061. (section~\ref{sec:lang-if}). We then introduce the idea of type
  7062. checking (aka semantic analysis\index{subject}{semantic analysis})
  7063. and define a type checker for \LangIf{}
  7064. (section~\ref{sec:type-check-Lif}).
  7065. %
  7066. \racket{To compile \LangIf{} we need to enlarge the intermediate
  7067. language \LangCVar{} into \LangCIf{} (section~\ref{sec:Cif}) and
  7068. \LangXInt{} into \LangXIf{} (section~\ref{sec:x86-if}).}
  7069. %
  7070. The remaining sections of this chapter discuss how Booleans and
  7071. conditional control flow require changes to the existing compiler
  7072. passes and the addition of new ones. We introduce the \code{shrink}
  7073. pass to translate some operators into others, thereby reducing the
  7074. number of operators that need to be handled in later passes.
  7075. %
  7076. The main event of this chapter is the \code{explicate\_control} pass
  7077. that is responsible for translating \code{if}s into conditional
  7078. \code{goto}s (section~\ref{sec:explicate-control-Lif}).
  7079. %
  7080. Regarding register allocation, there is the interesting question of
  7081. how to handle conditional \code{goto}s during liveness analysis.
  7082. \section{The \LangIf{} Language}
  7083. \label{sec:lang-if}
  7084. Definitions of the concrete syntax and abstract syntax of the
  7085. \LangIf{} language are shown in figures~\ref{fig:Lif-concrete-syntax}
  7086. and~\ref{fig:Lif-syntax}, respectively. The \LangIf{} language
  7087. includes all of \LangVar{} {(shown in gray)}, the Boolean
  7088. literals\index{subject}{literals}
  7089. \TRUE{} and \FALSE{}, \racket{and} the \code{if} expression%
  7090. \python{, and the \code{if} statement}. We expand the set of
  7091. operators to include
  7092. \begin{enumerate}
  7093. \item the logical operators \key{and}, \key{or}, and \key{not},
  7094. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  7095. for comparing integers or Booleans for equality, and
  7096. \item the \key{<}, \key{<=}\index{subject}{lessthaneq@\texttt{<=}},
  7097. \key{>}\index{subject}{greaterthan@\texttt{>}}, and
  7098. \key{>=}\index{subject}{greaterthaneq@\texttt{>=}} operations for
  7099. comparing integers.
  7100. \end{enumerate}
  7101. \racket{We reorganize the abstract syntax for the primitive
  7102. operations given in figure~\ref{fig:Lif-syntax}, using only one grammar
  7103. rule for all of them. This means that the grammar no longer checks
  7104. whether the arity of an operator matches the number of
  7105. arguments. That responsibility is moved to the type checker for
  7106. \LangIf{} (section~\ref{sec:type-check-Lif}).}
  7107. \newcommand{\LifGrammarRacket}{
  7108. \begin{array}{lcl}
  7109. \Type &::=& \key{Boolean} \\
  7110. \itm{bool} &::=& \TRUE \MID \FALSE \\
  7111. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7112. \Exp &::=& \itm{bool}
  7113. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  7114. \MID (\key{not}\;\Exp) \\
  7115. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  7116. \end{array}
  7117. }
  7118. \newcommand{\LifASTRacket}{
  7119. \begin{array}{lcl}
  7120. \Type &::=& \key{Boolean} \\
  7121. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  7122. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7123. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  7124. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  7125. \end{array}
  7126. }
  7127. \newcommand{\LintOpAST}{
  7128. \begin{array}{rcl}
  7129. \Type &::=& \key{Integer} \\
  7130. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  7131. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  7132. \end{array}
  7133. }
  7134. \newcommand{\LifGrammarPython}{
  7135. \begin{array}{rcl}
  7136. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7137. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  7138. \MID \key{not}~\Exp \\
  7139. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  7140. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  7141. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  7142. \end{array}
  7143. }
  7144. \newcommand{\LifASTPython}{
  7145. \begin{array}{lcl}
  7146. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  7147. \itm{unaryop} &::=& \code{Not()} \\
  7148. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7149. \itm{bool} &::=& \code{True} \MID \code{False} \\
  7150. \Exp &::=& \BOOL{\itm{bool}}
  7151. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  7152. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  7153. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  7154. \end{array}
  7155. }
  7156. \begin{figure}[tp]
  7157. \centering
  7158. \begin{tcolorbox}[colback=white]
  7159. {\if\edition\racketEd
  7160. \[
  7161. \begin{array}{l}
  7162. \gray{\LintGrammarRacket{}} \\ \hline
  7163. \gray{\LvarGrammarRacket{}} \\ \hline
  7164. \LifGrammarRacket{} \\
  7165. \begin{array}{lcl}
  7166. \LangIfM{} &::=& \Exp
  7167. \end{array}
  7168. \end{array}
  7169. \]
  7170. \fi}
  7171. {\if\edition\pythonEd\pythonColor
  7172. \[
  7173. \begin{array}{l}
  7174. \gray{\LintGrammarPython} \\ \hline
  7175. \gray{\LvarGrammarPython} \\ \hline
  7176. \LifGrammarPython \\
  7177. \begin{array}{rcl}
  7178. \LangIfM{} &::=& \Stmt^{*}
  7179. \end{array}
  7180. \end{array}
  7181. \]
  7182. \fi}
  7183. \end{tcolorbox}
  7184. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  7185. (figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  7186. \label{fig:Lif-concrete-syntax}
  7187. \end{figure}
  7188. \begin{figure}[tp]
  7189. %\begin{minipage}{0.66\textwidth}
  7190. \begin{tcolorbox}[colback=white]
  7191. \centering
  7192. {\if\edition\racketEd
  7193. \[
  7194. \begin{array}{l}
  7195. \gray{\LintOpAST} \\ \hline
  7196. \gray{\LvarASTRacket{}} \\ \hline
  7197. \LifASTRacket{} \\
  7198. \begin{array}{lcl}
  7199. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  7200. \end{array}
  7201. \end{array}
  7202. \]
  7203. \fi}
  7204. {\if\edition\pythonEd\pythonColor
  7205. \[
  7206. \begin{array}{l}
  7207. \gray{\LintASTPython} \\ \hline
  7208. \gray{\LvarASTPython} \\ \hline
  7209. \LifASTPython \\
  7210. \begin{array}{lcl}
  7211. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  7212. \end{array}
  7213. \end{array}
  7214. \]
  7215. \fi}
  7216. \end{tcolorbox}
  7217. %\end{minipage}
  7218. \python{\index{subject}{not equal@\NOTEQNAME{}}}
  7219. \python{
  7220. \index{subject}{BoolOp@\texttt{BoolOp}}
  7221. \index{subject}{Compare@\texttt{Compare}}
  7222. \index{subject}{Lt@\texttt{Lt}}
  7223. \index{subject}{LtE@\texttt{LtE}}
  7224. \index{subject}{Gt@\texttt{Gt}}
  7225. \index{subject}{GtE@\texttt{GtE}}
  7226. }
  7227. \caption{The abstract syntax of \LangIf{}.}
  7228. \label{fig:Lif-syntax}
  7229. \end{figure}
  7230. Figure~\ref{fig:interp-Lif} shows the definition of the interpreter
  7231. for \LangIf{}, which inherits from the interpreter for \LangVar{}
  7232. (figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  7233. evaluate to the corresponding Boolean values. The conditional
  7234. expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates expression $e_1$ and
  7235. then either evaluates $e_2$ or $e_3$, depending on whether $e_1$
  7236. produced \TRUE{} or \FALSE{}. The logical operations \code{and},
  7237. \code{or}, and \code{not} behave according to propositional logic. In
  7238. addition, the \code{and} and \code{or} operations perform
  7239. \emph{short-circuit evaluation}.
  7240. %
  7241. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  7242. is not evaluated if $e_1$ evaluates to \FALSE{}.
  7243. %
  7244. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  7245. evaluated if $e_1$ evaluates to \TRUE{}.
  7246. \racket{With the increase in the number of primitive operations, the
  7247. interpreter would become repetitive without some care. We refactor
  7248. the case for \code{Prim}, moving the code that differs with each
  7249. operation into the \code{interp\_op} method shown in
  7250. figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  7251. \code{or} operations separately because of their short-circuiting
  7252. behavior.}
  7253. \begin{figure}[tbp]
  7254. \begin{tcolorbox}[colback=white]
  7255. {\if\edition\racketEd
  7256. \begin{lstlisting}
  7257. (define interp-Lif-class
  7258. (class interp-Lvar-class
  7259. (super-new)
  7260. (define/public (interp_op op) ...)
  7261. (define/override ((interp_exp env) e)
  7262. (define recur (interp_exp env))
  7263. (match e
  7264. [(Bool b) b]
  7265. [(If cnd thn els)
  7266. (match (recur cnd)
  7267. [#t (recur thn)]
  7268. [#f (recur els)])]
  7269. [(Prim 'and (list e1 e2))
  7270. (match (recur e1)
  7271. [#t (match (recur e2) [#t #t] [#f #f])]
  7272. [#f #f])]
  7273. [(Prim 'or (list e1 e2))
  7274. (define v1 (recur e1))
  7275. (match v1
  7276. [#t #t]
  7277. [#f (match (recur e2) [#t #t] [#f #f])])]
  7278. [(Prim op args)
  7279. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  7280. [else ((super interp_exp env) e)]))
  7281. ))
  7282. (define (interp_Lif p)
  7283. (send (new interp-Lif-class) interp_program p))
  7284. \end{lstlisting}
  7285. \fi}
  7286. {\if\edition\pythonEd\pythonColor
  7287. \begin{lstlisting}
  7288. class InterpLif(InterpLvar):
  7289. def interp_exp(self, e, env):
  7290. match e:
  7291. case IfExp(test, body, orelse):
  7292. if self.interp_exp(test, env):
  7293. return self.interp_exp(body, env)
  7294. else:
  7295. return self.interp_exp(orelse, env)
  7296. case UnaryOp(Not(), v):
  7297. return not self.interp_exp(v, env)
  7298. case BoolOp(And(), values):
  7299. if self.interp_exp(values[0], env):
  7300. return self.interp_exp(values[1], env)
  7301. else:
  7302. return False
  7303. case BoolOp(Or(), values):
  7304. if self.interp_exp(values[0], env):
  7305. return True
  7306. else:
  7307. return self.interp_exp(values[1], env)
  7308. case Compare(left, [cmp], [right]):
  7309. l = self.interp_exp(left, env)
  7310. r = self.interp_exp(right, env)
  7311. return self.interp_cmp(cmp)(l, r)
  7312. case _:
  7313. return super().interp_exp(e, env)
  7314. def interp_stmt(self, s, env, cont):
  7315. match s:
  7316. case If(test, body, orelse):
  7317. match self.interp_exp(test, env):
  7318. case True:
  7319. return self.interp_stmts(body + cont, env)
  7320. case False:
  7321. return self.interp_stmts(orelse + cont, env)
  7322. case _:
  7323. return super().interp_stmt(s, env, cont)
  7324. ...
  7325. \end{lstlisting}
  7326. \fi}
  7327. \end{tcolorbox}
  7328. \caption{Interpreter for the \LangIf{} language. \racket{(See
  7329. figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  7330. \python{(See figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  7331. \label{fig:interp-Lif}
  7332. \end{figure}
  7333. {\if\edition\racketEd
  7334. \begin{figure}[tbp]
  7335. \begin{tcolorbox}[colback=white]
  7336. \begin{lstlisting}
  7337. (define/public (interp_op op)
  7338. (match op
  7339. ['+ fx+]
  7340. ['- fx-]
  7341. ['read read-fixnum]
  7342. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  7343. ['eq? (lambda (v1 v2)
  7344. (cond [(or (and (fixnum? v1) (fixnum? v2))
  7345. (and (boolean? v1) (boolean? v2))
  7346. (and (vector? v1) (vector? v2)))
  7347. (eq? v1 v2)]))]
  7348. ['< (lambda (v1 v2)
  7349. (cond [(and (fixnum? v1) (fixnum? v2))
  7350. (< v1 v2)]))]
  7351. ['<= (lambda (v1 v2)
  7352. (cond [(and (fixnum? v1) (fixnum? v2))
  7353. (<= v1 v2)]))]
  7354. ['> (lambda (v1 v2)
  7355. (cond [(and (fixnum? v1) (fixnum? v2))
  7356. (> v1 v2)]))]
  7357. ['>= (lambda (v1 v2)
  7358. (cond [(and (fixnum? v1) (fixnum? v2))
  7359. (>= v1 v2)]))]
  7360. [else (error 'interp_op "unknown operator")]))
  7361. \end{lstlisting}
  7362. \end{tcolorbox}
  7363. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  7364. \label{fig:interp-op-Lif}
  7365. \end{figure}
  7366. \fi}
  7367. {\if\edition\pythonEd\pythonColor
  7368. \begin{figure}
  7369. \begin{tcolorbox}[colback=white]
  7370. \begin{lstlisting}
  7371. class InterpLif(InterpLvar):
  7372. ...
  7373. def interp_cmp(self, cmp):
  7374. match cmp:
  7375. case Lt():
  7376. return lambda x, y: x < y
  7377. case LtE():
  7378. return lambda x, y: x <= y
  7379. case Gt():
  7380. return lambda x, y: x > y
  7381. case GtE():
  7382. return lambda x, y: x >= y
  7383. case Eq():
  7384. return lambda x, y: x == y
  7385. case NotEq():
  7386. return lambda x, y: x != y
  7387. \end{lstlisting}
  7388. \end{tcolorbox}
  7389. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  7390. \label{fig:interp-cmp-Lif}
  7391. \end{figure}
  7392. \fi}
  7393. \section{Type Checking \LangIf{} Programs}
  7394. \label{sec:type-check-Lif}
  7395. It is helpful to think about type checking\index{subject}{type
  7396. checking} in two complementary ways. A type checker predicts the
  7397. type of value that will be produced by each expression in the program.
  7398. For \LangIf{}, we have just two types, \INTTY{} and \BOOLTY{}. So, a
  7399. type checker should predict that {\if\edition\racketEd
  7400. \begin{lstlisting}
  7401. (+ 10 (- (+ 12 20)))
  7402. \end{lstlisting}
  7403. \fi}
  7404. {\if\edition\pythonEd\pythonColor
  7405. \begin{lstlisting}
  7406. 10 + -(12 + 20)
  7407. \end{lstlisting}
  7408. \fi}
  7409. \noindent produces a value of type \INTTY{}, whereas
  7410. {\if\edition\racketEd
  7411. \begin{lstlisting}
  7412. (and (not #f) #t)
  7413. \end{lstlisting}
  7414. \fi}
  7415. {\if\edition\pythonEd\pythonColor
  7416. \begin{lstlisting}
  7417. (not False) and True
  7418. \end{lstlisting}
  7419. \fi}
  7420. \noindent produces a value of type \BOOLTY{}.
  7421. A second way to think about type checking is that it enforces a set of
  7422. rules about which operators can be applied to which kinds of
  7423. values. For example, our type checker for \LangIf{} signals an error
  7424. for the following expression:
  7425. %
  7426. {\if\edition\racketEd
  7427. \begin{lstlisting}
  7428. (not (+ 10 (- (+ 12 20))))
  7429. \end{lstlisting}
  7430. \fi}
  7431. {\if\edition\pythonEd\pythonColor
  7432. \begin{lstlisting}
  7433. not (10 + -(12 + 20))
  7434. \end{lstlisting}
  7435. \fi}
  7436. \noindent The subexpression
  7437. \racket{\code{(+ 10 (- (+ 12 20)))}}
  7438. \python{\code{(10 + -(12 + 20))}}
  7439. has type \INTTY{}, but the type checker enforces the rule that the
  7440. argument of \code{not} must be an expression of type \BOOLTY{}.
  7441. We implement type checking using classes and methods because they
  7442. provide the open recursion needed to reuse code as we extend the type
  7443. checker in subsequent chapters, analogous to the use of classes and methods
  7444. for the interpreters (section~\ref{sec:extensible-interp}).
  7445. We separate the type checker for the \LangVar{} subset into its own
  7446. class, shown in figure~\ref{fig:type-check-Lvar}. The type checker for
  7447. \LangIf{} is shown in figure~\ref{fig:type-check-Lif}, and it inherits
  7448. from the type checker for \LangVar{}. These type checkers are in the
  7449. files
  7450. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  7451. and
  7452. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  7453. of the support code.
  7454. %
  7455. Each type checker is a structurally recursive function over the AST.
  7456. Given an input expression \code{e}, the type checker either signals an
  7457. error or returns \racket{an expression and} its type.
  7458. %
  7459. \racket{It returns an expression because there are situations in which
  7460. we want to change or update the expression.}
  7461. Next we discuss the \code{type\_check\_exp} function of \LangVar{}
  7462. shown in figure~\ref{fig:type-check-Lvar}. The type of an integer
  7463. constant is \INTTY{}. To handle variables, the type checker uses the
  7464. environment \code{env} to map variables to types.
  7465. %
  7466. \racket{Consider the case for \key{let}. We type check the
  7467. initializing expression to obtain its type \key{T} and then
  7468. associate type \code{T} with the variable \code{x} in the
  7469. environment used to type check the body of the \key{let}. Thus,
  7470. when the type checker encounters a use of variable \code{x}, it can
  7471. find its type in the environment.}
  7472. %
  7473. \python{Consider the case for assignment. We type check the
  7474. initializing expression to obtain its type \key{t}. If the variable
  7475. \code{lhs.id} is already in the environment because there was a
  7476. prior assignment, we check that this initializer has the same type
  7477. as the prior one. If this is the first assignment to the variable,
  7478. we associate type \code{t} with the variable \code{lhs.id} in the
  7479. environment. Thus, when the type checker encounters a use of
  7480. variable \code{x}, it can find its type in the environment.}
  7481. %
  7482. \racket{Regarding primitive operators, we recursively analyze the
  7483. arguments and then invoke \code{type\_check\_op} to check whether
  7484. the argument types are allowed.}
  7485. %
  7486. \python{Regarding addition, subtraction, and negation, we recursively analyze the
  7487. arguments, check that they have type \INTTY{}, and return \INTTY{}.}
  7488. \racket{Several auxiliary methods are used in the type checker. The
  7489. method \code{operator-types} defines a dictionary that maps the
  7490. operator names to their parameter and return types. The
  7491. \code{type-equal?} method determines whether two types are equal,
  7492. which for now simply dispatches to \code{equal?} (deep
  7493. equality). The \code{check-type-equal?} method triggers an error if
  7494. the two types are not equal. The \code{type-check-op} method looks
  7495. up the operator in the \code{operator-types} dictionary and then
  7496. checks whether the argument types are equal to the parameter types.
  7497. The result is the return type of the operator.}
  7498. %
  7499. \python{The auxiliary method \code{check\_type\_equal} triggers
  7500. an error if the two types are not equal.}
  7501. \begin{figure}[tbp]
  7502. \begin{tcolorbox}[colback=white]
  7503. {\if\edition\racketEd
  7504. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7505. (define type-check-Lvar-class
  7506. (class object%
  7507. (super-new)
  7508. (define/public (operator-types)
  7509. '((+ . ((Integer Integer) . Integer))
  7510. (- . ((Integer Integer) . Integer))
  7511. (read . (() . Integer))))
  7512. (define/public (type-equal? t1 t2) (equal? t1 t2))
  7513. (define/public (check-type-equal? t1 t2 e)
  7514. (unless (type-equal? t1 t2)
  7515. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  7516. (define/public (type-check-op op arg-types e)
  7517. (match (dict-ref (operator-types) op)
  7518. [`(,param-types . ,return-type)
  7519. (for ([at arg-types] [pt param-types])
  7520. (check-type-equal? at pt e))
  7521. return-type]
  7522. [else (error 'type-check-op "unrecognized ~a" op)]))
  7523. (define/public (type-check-exp env)
  7524. (lambda (e)
  7525. (match e
  7526. [(Int n) (values (Int n) 'Integer)]
  7527. [(Var x) (values (Var x) (dict-ref env x))]
  7528. [(Let x e body)
  7529. (define-values (e^ Te) ((type-check-exp env) e))
  7530. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  7531. (values (Let x e^ b) Tb)]
  7532. [(Prim op es)
  7533. (define-values (new-es ts)
  7534. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  7535. (values (Prim op new-es) (type-check-op op ts e))]
  7536. [else (error 'type-check-exp "couldn't match" e)])))
  7537. (define/public (type-check-program e)
  7538. (match e
  7539. [(Program info body)
  7540. (define-values (body^ Tb) ((type-check-exp '()) body))
  7541. (check-type-equal? Tb 'Integer body)
  7542. (Program info body^)]
  7543. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  7544. ))
  7545. (define (type-check-Lvar p)
  7546. (send (new type-check-Lvar-class) type-check-program p))
  7547. \end{lstlisting}
  7548. \fi}
  7549. {\if\edition\pythonEd\pythonColor
  7550. \begin{lstlisting}[escapechar=`]
  7551. class TypeCheckLvar:
  7552. def check_type_equal(self, t1, t2, e):
  7553. if t1 != t2:
  7554. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  7555. raise Exception(msg)
  7556. def type_check_exp(self, e, env):
  7557. match e:
  7558. case BinOp(left, (Add() | Sub()), right):
  7559. l = self.type_check_exp(left, env)
  7560. check_type_equal(l, int, left)
  7561. r = self.type_check_exp(right, env)
  7562. check_type_equal(r, int, right)
  7563. return int
  7564. case UnaryOp(USub(), v):
  7565. t = self.type_check_exp(v, env)
  7566. check_type_equal(t, int, v)
  7567. return int
  7568. case Name(id):
  7569. return env[id]
  7570. case Constant(value) if isinstance(value, int):
  7571. return int
  7572. case Call(Name('input_int'), []):
  7573. return int
  7574. def type_check_stmts(self, ss, env):
  7575. if len(ss) == 0:
  7576. return
  7577. match ss[0]:
  7578. case Assign([lhs], value):
  7579. t = self.type_check_exp(value, env)
  7580. if lhs.id in env:
  7581. check_type_equal(env[lhs.id], t, value)
  7582. else:
  7583. env[lhs.id] = t
  7584. return self.type_check_stmts(ss[1:], env)
  7585. case Expr(Call(Name('print'), [arg])):
  7586. t = self.type_check_exp(arg, env)
  7587. check_type_equal(t, int, arg)
  7588. return self.type_check_stmts(ss[1:], env)
  7589. case Expr(value):
  7590. self.type_check_exp(value, env)
  7591. return self.type_check_stmts(ss[1:], env)
  7592. def type_check_P(self, p):
  7593. match p:
  7594. case Module(body):
  7595. self.type_check_stmts(body, {})
  7596. \end{lstlisting}
  7597. \fi}
  7598. \end{tcolorbox}
  7599. \caption{Type checker for the \LangVar{} language.}
  7600. \label{fig:type-check-Lvar}
  7601. \end{figure}
  7602. \begin{figure}[tbp]
  7603. \begin{tcolorbox}[colback=white]
  7604. {\if\edition\racketEd
  7605. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7606. (define type-check-Lif-class
  7607. (class type-check-Lvar-class
  7608. (super-new)
  7609. (inherit check-type-equal?)
  7610. (define/override (operator-types)
  7611. (append '((and . ((Boolean Boolean) . Boolean))
  7612. (or . ((Boolean Boolean) . Boolean))
  7613. (< . ((Integer Integer) . Boolean))
  7614. (<= . ((Integer Integer) . Boolean))
  7615. (> . ((Integer Integer) . Boolean))
  7616. (>= . ((Integer Integer) . Boolean))
  7617. (not . ((Boolean) . Boolean)))
  7618. (super operator-types)))
  7619. (define/override (type-check-exp env)
  7620. (lambda (e)
  7621. (match e
  7622. [(Bool b) (values (Bool b) 'Boolean)]
  7623. [(Prim 'eq? (list e1 e2))
  7624. (define-values (e1^ T1) ((type-check-exp env) e1))
  7625. (define-values (e2^ T2) ((type-check-exp env) e2))
  7626. (check-type-equal? T1 T2 e)
  7627. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  7628. [(If cnd thn els)
  7629. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  7630. (define-values (thn^ Tt) ((type-check-exp env) thn))
  7631. (define-values (els^ Te) ((type-check-exp env) els))
  7632. (check-type-equal? Tc 'Boolean e)
  7633. (check-type-equal? Tt Te e)
  7634. (values (If cnd^ thn^ els^) Te)]
  7635. [else ((super type-check-exp env) e)])))
  7636. ))
  7637. (define (type-check-Lif p)
  7638. (send (new type-check-Lif-class) type-check-program p))
  7639. \end{lstlisting}
  7640. \fi}
  7641. {\if\edition\pythonEd\pythonColor
  7642. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7643. class TypeCheckLif(TypeCheckLvar):
  7644. def type_check_exp(self, e, env):
  7645. match e:
  7646. case Constant(value) if isinstance(value, bool):
  7647. return bool
  7648. case BinOp(left, Sub(), right):
  7649. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7650. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7651. return int
  7652. case UnaryOp(Not(), v):
  7653. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  7654. return bool
  7655. case BoolOp(op, values):
  7656. left = values[0] ; right = values[1]
  7657. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  7658. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  7659. return bool
  7660. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  7661. or isinstance(cmp, NotEq):
  7662. l = self.type_check_exp(left, env)
  7663. r = self.type_check_exp(right, env)
  7664. check_type_equal(l, r, e)
  7665. return bool
  7666. case Compare(left, [cmp], [right]):
  7667. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7668. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7669. return bool
  7670. case IfExp(test, body, orelse):
  7671. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7672. b = self.type_check_exp(body, env)
  7673. o = self.type_check_exp(orelse, env)
  7674. check_type_equal(b, o, e)
  7675. return b
  7676. case _:
  7677. return super().type_check_exp(e, env)
  7678. def type_check_stmts(self, ss, env):
  7679. if len(ss) == 0:
  7680. return
  7681. match ss[0]:
  7682. case If(test, body, orelse):
  7683. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7684. b = self.type_check_stmts(body, env)
  7685. o = self.type_check_stmts(orelse, env)
  7686. check_type_equal(b, o, ss[0])
  7687. return self.type_check_stmts(ss[1:], env)
  7688. case _:
  7689. return super().type_check_stmts(ss, env)
  7690. \end{lstlisting}
  7691. \fi}
  7692. \end{tcolorbox}
  7693. \caption{Type checker for the \LangIf{} language.}
  7694. \label{fig:type-check-Lif}
  7695. \end{figure}
  7696. The definition of the type checker for \LangIf{} is shown in
  7697. figure~\ref{fig:type-check-Lif}.
  7698. %
  7699. The type of a Boolean constant is \BOOLTY{}.
  7700. %
  7701. \racket{The \code{operator-types} function adds dictionary entries for
  7702. the new operators.}
  7703. %
  7704. \python{Logical not requires its argument to be a \BOOLTY{} and
  7705. produces a \BOOLTY{}. Similarly for logical and and logical or. }
  7706. %
  7707. The equality operator requires the two arguments to have the same type,
  7708. and therefore we handle it separately from the other operators.
  7709. %
  7710. \python{The other comparisons (less-than, etc.) require their
  7711. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  7712. %
  7713. The condition of an \code{if} must
  7714. be of \BOOLTY{} type, and the two branches must have the same type.
  7715. \begin{exercise}\normalfont\normalsize
  7716. Create ten new test programs in \LangIf{}. Half the programs should
  7717. have a type error. For those programs, create an empty file with the
  7718. same base name and with file extension \code{.tyerr}. For example, if
  7719. the test
  7720. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  7721. is expected to error, then create
  7722. an empty file named \code{cond\_test\_14.tyerr}.
  7723. %
  7724. \racket{This indicates to \code{interp-tests} and
  7725. \code{compiler-tests} that a type error is expected. }
  7726. %
  7727. The other half of the test programs should not have type errors.
  7728. %
  7729. \racket{In the \code{run-tests.rkt} script, change the second argument
  7730. of \code{interp-tests} and \code{compiler-tests} to
  7731. \code{type-check-Lif}, which causes the type checker to run prior to
  7732. the compiler passes. Temporarily change the \code{passes} to an
  7733. empty list and run the script, thereby checking that the new test
  7734. programs either type check or do not, as intended.}
  7735. %
  7736. Run the test script to check that these test programs type check as
  7737. expected.
  7738. \end{exercise}
  7739. \clearpage
  7740. \section{The \LangCIf{} Intermediate Language}
  7741. \label{sec:Cif}
  7742. {\if\edition\racketEd
  7743. %
  7744. The \LangCIf{} language builds on \LangCVar{} by adding logical and
  7745. comparison operators to the \Exp{} nonterminal and the literals
  7746. \TRUE{} and \FALSE{} to the \Arg{} nonterminal. Regarding control
  7747. flow, \LangCIf{} adds \key{goto} and \code{if} statements to the
  7748. \Tail{} nonterminal. The condition of an \code{if} statement is a
  7749. comparison operation and the branches are \code{goto} statements,
  7750. making it straightforward to compile \code{if} statements to x86. The
  7751. \key{CProgram} construct contains an alist mapping labels to $\Tail$
  7752. expressions. A \code{goto} statement transfers control to the $\Tail$
  7753. expression corresponding to its label.
  7754. %
  7755. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  7756. \LangCIf{} intermediate language, and figure~\ref{fig:c1-syntax}
  7757. defines its abstract syntax.
  7758. %
  7759. \fi}
  7760. %
  7761. {\if\edition\pythonEd\pythonColor
  7762. %
  7763. The output of \key{explicate\_control} is a language similar to the
  7764. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  7765. \code{goto} statements, so we name it \LangCIf{}.
  7766. %
  7767. The \LangCIf{} language supports the same operators as \LangIf{} but
  7768. the arguments of operators are restricted to atomic expressions. The
  7769. \LangCIf{} language does not include \code{if} expressions but it does
  7770. include a restricted form of \code{if} statement. The condition must be
  7771. a comparison and the two branches may only contain \code{goto}
  7772. statements. These restrictions make it easier to translate \code{if}
  7773. statements to x86. The \LangCIf{} language also adds a \code{return}
  7774. statement to finish the program with a specified value.
  7775. %
  7776. The \key{CProgram} construct contains a dictionary mapping labels to
  7777. lists of statements that end with a \emph{tail} statement, which is
  7778. either a \code{return} statement, a \code{goto}, or an
  7779. \code{if} statement.
  7780. %
  7781. A \code{goto} transfers control to the sequence of statements
  7782. associated with its label.
  7783. %
  7784. The concrete syntax for \LangCIf{} is defined in
  7785. figure~\ref{fig:c1-concrete-syntax} and the abstract syntax is defined
  7786. in figure~\ref{fig:c1-syntax}.
  7787. %
  7788. \fi}
  7789. %
  7790. \newcommand{\CifGrammarRacket}{
  7791. \begin{array}{lcl}
  7792. \Atm &::=& \itm{bool} \\
  7793. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7794. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  7795. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  7796. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  7797. \end{array}
  7798. }
  7799. \newcommand{\CifASTRacket}{
  7800. \begin{array}{lcl}
  7801. \Atm &::=& \BOOL{\itm{bool}} \\
  7802. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7803. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  7804. \Tail &::= & \GOTO{\itm{label}} \\
  7805. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  7806. \end{array}
  7807. }
  7808. \newcommand{\CifGrammarPython}{
  7809. \begin{array}{lcl}
  7810. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  7811. \Exp &::= & \Atm \MID \CREAD{}
  7812. \MID \CBINOP{\itm{binaryop}}{\Atm}{\Atm}
  7813. \MID \CUNIOP{\itm{unaryop}}{\Atm} \\
  7814. &\MID& \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  7815. \Stmt &::=& \CPRINT{\Atm} \MID \Exp \MID \CASSIGN{\Var}{\Exp} \\
  7816. \Tail &::=& \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  7817. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  7818. \end{array}
  7819. }
  7820. \newcommand{\CifASTPython}{
  7821. \begin{array}{lcl}
  7822. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  7823. \Exp &::= & \Atm \MID \READ{} \\
  7824. &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  7825. \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  7826. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  7827. \Stmt &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  7828. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  7829. \Tail &::= & \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  7830. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  7831. \end{array}
  7832. }
  7833. \begin{figure}[tbp]
  7834. \begin{tcolorbox}[colback=white]
  7835. \small
  7836. {\if\edition\racketEd
  7837. \[
  7838. \begin{array}{l}
  7839. \gray{\CvarGrammarRacket} \\ \hline
  7840. \CifGrammarRacket \\
  7841. \begin{array}{lcl}
  7842. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  7843. \end{array}
  7844. \end{array}
  7845. \]
  7846. \fi}
  7847. {\if\edition\pythonEd\pythonColor
  7848. \[
  7849. \begin{array}{l}
  7850. \CifGrammarPython \\
  7851. \begin{array}{lcl}
  7852. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}\;\Tail) \ldots
  7853. \end{array}
  7854. \end{array}
  7855. \]
  7856. \fi}
  7857. \end{tcolorbox}
  7858. \caption{The concrete syntax of the \LangCIf{} intermediate language%
  7859. \racket{, an extension of \LangCVar{} (figure~\ref{fig:c0-concrete-syntax})}.}
  7860. \label{fig:c1-concrete-syntax}
  7861. \end{figure}
  7862. \begin{figure}[tp]
  7863. \begin{tcolorbox}[colback=white]
  7864. \small
  7865. {\if\edition\racketEd
  7866. \[
  7867. \begin{array}{l}
  7868. \gray{\CvarASTRacket} \\ \hline
  7869. \CifASTRacket \\
  7870. \begin{array}{lcl}
  7871. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  7872. \end{array}
  7873. \end{array}
  7874. \]
  7875. \fi}
  7876. {\if\edition\pythonEd\pythonColor
  7877. \[
  7878. \begin{array}{l}
  7879. \CifASTPython \\
  7880. \begin{array}{lcl}
  7881. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\LS\Stmt,\ldots,\Tail\RS, \ldots \RC}
  7882. \end{array}
  7883. \end{array}
  7884. \]
  7885. \fi}
  7886. \end{tcolorbox}
  7887. \racket{
  7888. \index{subject}{IfStmt@\IFSTMTNAME{}}
  7889. }
  7890. \index{subject}{Goto@\texttt{Goto}}
  7891. \index{subject}{Return@\texttt{Return}}
  7892. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  7893. (figure~\ref{fig:c0-syntax})}.}
  7894. \label{fig:c1-syntax}
  7895. \end{figure}
  7896. \section{The \LangXIf{} Language}
  7897. \label{sec:x86-if}
  7898. \index{subject}{x86} To implement the new logical operations, the
  7899. comparison operations, and the \key{if} expression\python{ and
  7900. statement}, we delve further into the x86
  7901. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} present
  7902. the definitions of the concrete and abstract syntax for the \LangXIf{}
  7903. subset of x86, which includes instructions for logical operations,
  7904. comparisons, and \racket{conditional} jumps.
  7905. %
  7906. \python{The abstract syntax for an \LangXIf{} program contains a
  7907. dictionary mapping labels to sequences of instructions, each of
  7908. which we refer to as a \emph{basic block}\index{subject}{basic
  7909. block}.}
  7910. One challenge is that x86 does not provide an instruction that
  7911. directly implements logical negation (\code{not} in \LangIf{} and
  7912. \LangCIf{}). However, the \code{xorq} instruction can be used to
  7913. encode \code{not}. The \key{xorq} instruction takes two arguments,
  7914. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  7915. bit of its arguments, and writes the results into its second argument.
  7916. Recall the following truth table for exclusive-or:
  7917. \begin{center}
  7918. \begin{tabular}{l|cc}
  7919. & 0 & 1 \\ \hline
  7920. 0 & 0 & 1 \\
  7921. 1 & 1 & 0
  7922. \end{tabular}
  7923. \end{center}
  7924. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  7925. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  7926. for the bit $1$, the result is the opposite of the second bit. Thus,
  7927. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  7928. the first argument, as follows, where $\Arg$ is the translation of
  7929. $\Atm$ to x86:
  7930. \[
  7931. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  7932. \qquad\Rightarrow\qquad
  7933. \begin{array}{l}
  7934. \key{movq}~ \Arg\key{,} \Var\\
  7935. \key{xorq}~ \key{\$1,} \Var
  7936. \end{array}
  7937. \]
  7938. \newcommand{\GrammarXIf}{
  7939. \begin{array}{lcl}
  7940. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7941. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7942. \Arg &::=& \key{\%}\itm{bytereg}\\
  7943. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7944. \Instr &::=& \key{xorq}~\Arg\key{,}~\Arg
  7945. \MID \key{cmpq}~\Arg\key{,}~\Arg
  7946. \MID \key{set}cc~\Arg
  7947. \MID \key{movzbq}~\Arg\key{,}~\Arg \\
  7948. &\MID& \key{j}cc~\itm{label} \\
  7949. \end{array}
  7950. }
  7951. \begin{figure}[tp]
  7952. \begin{tcolorbox}[colback=white]
  7953. \[
  7954. \begin{array}{l}
  7955. \gray{\GrammarXInt} \\ \hline
  7956. \GrammarXIf \\
  7957. \begin{array}{lcl}
  7958. \LangXIfM{} &::= & \key{.globl main} \\
  7959. & & \key{main:} \; \Instr\ldots
  7960. \end{array}
  7961. \end{array}
  7962. \]
  7963. \end{tcolorbox}
  7964. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of figure~\ref{fig:x86-int-concrete}).}
  7965. \label{fig:x86-1-concrete}
  7966. \end{figure}
  7967. \newcommand{\ASTXIfRacket}{
  7968. \begin{array}{lcl}
  7969. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7970. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7971. \Arg &::=& \BYTEREG{\itm{bytereg}} \\
  7972. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7973. \Instr &::=& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  7974. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  7975. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  7976. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  7977. &\MID& \JMPIF{\itm{cc}}{\itm{label}}
  7978. \end{array}
  7979. }
  7980. \begin{figure}[tp]
  7981. \begin{tcolorbox}[colback=white]
  7982. \small
  7983. {\if\edition\racketEd
  7984. \[\arraycolsep=3pt
  7985. \begin{array}{l}
  7986. \gray{\ASTXIntRacket} \\ \hline
  7987. \ASTXIfRacket \\
  7988. \begin{array}{lcl}
  7989. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  7990. \end{array}
  7991. \end{array}
  7992. \]
  7993. \fi}
  7994. %
  7995. {\if\edition\pythonEd\pythonColor
  7996. \[
  7997. \begin{array}{lcl}
  7998. \itm{bytereg} &::=& \skey{ah} \MID \skey{al} \MID \skey{bh} \MID \skey{bl}
  7999. \MID \skey{ch} \MID \skey{cl} \MID \skey{dh} \MID \skey{dl} \\
  8000. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  8001. \MID \BYTEREG{\itm{bytereg}} \\
  8002. \itm{cc} & ::= & \skey{e} \MID \skey{ne} \MID \skey{l} \MID \skey{le} \MID \skey{g} \MID \skey{ge} \\
  8003. \Instr &::=& \gray{ \BININSTR{\scode{addq}}{\Arg}{\Arg}
  8004. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} } \\
  8005. &\MID& \gray{ \BININSTR{\scode{movq}}{\Arg}{\Arg}
  8006. \MID \UNIINSTR{\scode{negq}}{\Arg} } \\
  8007. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  8008. \MID \PUSHQ{\Arg}} \\
  8009. &\MID& \gray{ \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  8010. &\MID& \BININSTR{\scode{xorq}}{\Arg}{\Arg}
  8011. \MID \BININSTR{\scode{cmpq}}{\Arg}{\Arg}\\
  8012. &\MID& \UNIINSTR{\scode{set}\code{+}\itm{cc}}{\Arg}
  8013. \MID \BININSTR{\scode{movzbq}}{\Arg}{\Arg}\\
  8014. &\MID& \JMPIF{\itm{cc}}{\itm{label}} \\
  8015. \Block &::= & \Instr^{+} \\
  8016. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  8017. \end{array}
  8018. \]
  8019. \fi}
  8020. \end{tcolorbox}
  8021. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} shown in figure~\ref{fig:x86-int-ast}).}
  8022. \label{fig:x86-1}
  8023. \end{figure}
  8024. Next we consider the x86 instructions that are relevant for compiling
  8025. the comparison operations. The \key{cmpq} instruction compares its two
  8026. arguments to determine whether one argument is less than, equal to, or
  8027. greater than the other argument. The \key{cmpq} instruction is unusual
  8028. regarding the order of its arguments and where the result is
  8029. placed. The argument order is backward: if you want to test whether
  8030. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  8031. \key{cmpq} is placed in the special EFLAGS register. This register
  8032. cannot be accessed directly, but it can be queried by a number of
  8033. instructions, including the \key{set} instruction. The instruction
  8034. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$,
  8035. depending on whether the contents of the EFLAGS register matches the
  8036. condition code \itm{cc}: \key{e} for equal, \key{l} for less, \key{le}
  8037. for less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal.
  8038. The \key{set} instruction has a quirk in that its destination argument
  8039. must be a single-byte register, such as \code{al} (\code{l} for lower bits) or
  8040. \code{ah} (\code{h} for higher bits), which are part of the \code{rax}
  8041. register. Thankfully, the \key{movzbq} instruction can be used to
  8042. move from a single-byte register to a normal 64-bit register. The
  8043. abstract syntax for the \code{set} instruction differs from the
  8044. concrete syntax in that it separates the instruction name from the
  8045. condition code.
  8046. \python{The x86 instructions for jumping are relevant to the
  8047. compilation of \key{if} expressions.}
  8048. %
  8049. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  8050. counter to the address of the instruction after the specified
  8051. label.}
  8052. %
  8053. \racket{The x86 instruction for conditional jump is relevant to the
  8054. compilation of \key{if} expressions.}
  8055. %
  8056. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  8057. counter to point to the instruction after \itm{label}, depending on
  8058. whether the result in the EFLAGS register matches the condition code
  8059. \itm{cc}; otherwise, the jump instruction falls through to the next
  8060. instruction. Like the abstract syntax for \code{set}, the abstract
  8061. syntax for conditional jump separates the instruction name from the
  8062. condition code. For example, \JMPIF{\QUOTE{\code{le}}}{\QUOTE{\code{foo}}}
  8063. corresponds to \code{jle foo}. Because the conditional jump instruction
  8064. relies on the EFLAGS register, it is common for it to be immediately preceded by
  8065. a \key{cmpq} instruction to set the EFLAGS register.
  8066. \section{Shrink the \LangIf{} Language}
  8067. \label{sec:shrink-Lif}
  8068. The \LangIf{} language includes several features that are easily
  8069. expressible with other features. For example, \code{and} and \code{or}
  8070. are expressible using \code{if} as follows.
  8071. \begin{align*}
  8072. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  8073. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  8074. \end{align*}
  8075. By performing these translations in the front end of the compiler,
  8076. subsequent passes of the compiler do not need to deal with these features,
  8077. thus making the passes shorter.
  8078. On the other hand, translations sometimes reduce the efficiency of the
  8079. generated code by increasing the number of instructions. For example,
  8080. expressing subtraction in terms of negation
  8081. \[
  8082. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  8083. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  8084. \]
  8085. produces code with two x86 instructions (\code{negq} and \code{addq})
  8086. instead of just one (\code{subq}).
  8087. \begin{exercise}\normalfont\normalsize
  8088. %
  8089. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  8090. the language by translating them to \code{if} expressions in \LangIf{}.
  8091. %
  8092. Create four test programs that involve these operators.
  8093. %
  8094. {\if\edition\racketEd
  8095. In the \code{run-tests.rkt} script, add the following entry for
  8096. \code{shrink} to the list of passes (it should be the only pass at
  8097. this point).
  8098. \begin{lstlisting}
  8099. (list "shrink" shrink interp_Lif type-check-Lif)
  8100. \end{lstlisting}
  8101. This instructs \code{interp-tests} to run the interpreter
  8102. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  8103. output of \code{shrink}.
  8104. \fi}
  8105. %
  8106. Run the script to test your compiler on all the test programs.
  8107. \end{exercise}
  8108. {\if\edition\racketEd
  8109. \section{Uniquify Variables}
  8110. \label{sec:uniquify-Lif}
  8111. Add cases to \code{uniquify\_exp} to handle Boolean constants and
  8112. \code{if} expressions.
  8113. \begin{exercise}\normalfont\normalsize
  8114. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  8115. entry to the list of \code{passes} in the \code{run-tests.rkt} script:
  8116. \begin{lstlisting}
  8117. (list "uniquify" uniquify interp_Lif type_check_Lif)
  8118. \end{lstlisting}
  8119. Run the script to test your compiler.
  8120. \end{exercise}
  8121. \fi}
  8122. \section{Remove Complex Operands}
  8123. \label{sec:remove-complex-opera-Lif}
  8124. The output language of \code{remove\_complex\_operands} is
  8125. \LangIfANF{} (figure~\ref{fig:Lif-anf-syntax}), the monadic
  8126. normal form of \LangIf{}. A Boolean constant is an atomic expression,
  8127. but the \code{if} expression is not. All three subexpressions of an
  8128. \code{if} are allowed to be complex expressions, but the operands of
  8129. the \code{not} operator and comparison operators must be atomic.
  8130. %
  8131. \python{We add a new language form, the \code{Begin} expression, to aid
  8132. in the translation of \code{if} expressions. When we recursively
  8133. process the two branches of the \code{if}, we generate temporary
  8134. variables and their initializing expressions. However, these
  8135. expressions may contain side effects and should only be executed
  8136. when the condition of the \code{if} is true (for the ``then''
  8137. branch) or false (for the ``else'' branch). The \code{Begin} provides
  8138. a way to initialize the temporary variables within the two branches
  8139. of the \code{if} expression. In general, the $\BEGIN{ss}{e}$
  8140. form execute the statements $ss$ and then returns the result of
  8141. expression $e$.}
  8142. Add cases to the \code{rco\_exp} and \code{rco\_atom} functions for
  8143. the new features in \LangIf{}. In recursively processing
  8144. subexpressions, recall that you should invoke \code{rco\_atom} when
  8145. the output needs to be an \Atm{} (as specified in the grammar for
  8146. \LangIfANF{}) and invoke \code{rco\_exp} when the output should be
  8147. \Exp{}. Regarding \code{if}, it is particularly important
  8148. \emph{not} to replace its condition with a temporary variable, because
  8149. that would interfere with the generation of high-quality output in the
  8150. upcoming \code{explicate\_control} pass.
  8151. \newcommand{\LifMonadASTRacket}{
  8152. \begin{array}{rcl}
  8153. \Atm &::=& \BOOL{\itm{bool}}\\
  8154. \Exp &::=& \UNIOP{\key{not}}{\Atm}
  8155. \MID \BINOP{\itm{cmp}}{\Atm}{\Atm}
  8156. \MID \IF{\Exp}{\Exp}{\Exp}
  8157. \end{array}
  8158. }
  8159. \newcommand{\LifMonadASTPython}{
  8160. \begin{array}{rcl}
  8161. %% \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  8162. %% \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  8163. %% \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  8164. %% \itm{bool} &::=& \code{True} \MID \code{False} \\
  8165. \Atm &::=& \BOOL{\itm{bool}}\\
  8166. \Exp &::=& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  8167. &\MID& \BEGIN{\Stmt^{*}}{\Exp}\\
  8168. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}
  8169. \end{array}
  8170. }
  8171. \begin{figure}[tp]
  8172. \centering
  8173. \begin{tcolorbox}[colback=white]
  8174. {\if\edition\racketEd
  8175. \[
  8176. \begin{array}{l}
  8177. \gray{\LvarMonadASTRacket} \\ \hline
  8178. \LifMonadASTRacket \\
  8179. \begin{array}{rcl}
  8180. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  8181. \end{array}
  8182. \end{array}
  8183. \]
  8184. \fi}
  8185. {\if\edition\pythonEd\pythonColor
  8186. \[
  8187. \begin{array}{l}
  8188. \gray{\LvarMonadASTPython} \\ \hline
  8189. \LifMonadASTPython \\
  8190. \begin{array}{rcl}
  8191. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  8192. \end{array}
  8193. \end{array}
  8194. \]
  8195. \fi}
  8196. \end{tcolorbox}
  8197. \python{\index{subject}{Begin@\texttt{Begin}}}
  8198. \caption{\LangIfANF{} is \LangIf{} in monadic normal form
  8199. (extends \LangVarANF in figure~\ref{fig:Lvar-anf-syntax}).}
  8200. \label{fig:Lif-anf-syntax}
  8201. \end{figure}
  8202. \begin{exercise}\normalfont\normalsize
  8203. %
  8204. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  8205. and \code{rco\_exp} functions in \code{compiler.rkt}.
  8206. %
  8207. Create three new \LangIf{} programs that exercise the interesting
  8208. code in this pass.
  8209. %
  8210. {\if\edition\racketEd
  8211. In the \code{run-tests.rkt} script, add the following entry to the
  8212. list of \code{passes} and then run the script to test your compiler.
  8213. \begin{lstlisting}
  8214. (list "remove-complex" remove_complex_operands interp-Lif type-check-Lif)
  8215. \end{lstlisting}
  8216. \fi}
  8217. \end{exercise}
  8218. \section{Explicate Control}
  8219. \label{sec:explicate-control-Lif}
  8220. \racket{Recall that the purpose of \code{explicate\_control} is to
  8221. make the order of evaluation explicit in the syntax of the program.
  8222. With the addition of \key{if}, this becomes more interesting.}
  8223. %
  8224. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  8225. %
  8226. The main challenge to overcome is that the condition of an \key{if}
  8227. can be an arbitrary expression in \LangIf{}, whereas in \LangCIf{} the
  8228. condition must be a comparison.
  8229. As a motivating example, consider the following program that has an
  8230. \key{if} expression nested in the condition of another \key{if}:%
  8231. \python{\footnote{Programmers rarely write nested \code{if}
  8232. expressions, but it is not uncommon for the condition of an
  8233. \code{if} statement to be a call of a function that also contains an
  8234. \code{if} statement. When such a function is inlined, the result is
  8235. a nested \code{if} that requires the techniques discussed in this
  8236. section.}}
  8237. % cond_test_41.rkt, if_lt_eq.py
  8238. \begin{center}
  8239. \begin{minipage}{0.96\textwidth}
  8240. {\if\edition\racketEd
  8241. \begin{lstlisting}
  8242. (let ([x (read)])
  8243. (let ([y (read)])
  8244. (if (if (< x 1) (eq? x 0) (eq? x 2))
  8245. (+ y 2)
  8246. (+ y 10))))
  8247. \end{lstlisting}
  8248. \fi}
  8249. {\if\edition\pythonEd\pythonColor
  8250. \begin{lstlisting}
  8251. x = input_int()
  8252. y = input_int()
  8253. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  8254. \end{lstlisting}
  8255. \fi}
  8256. \end{minipage}
  8257. \end{center}
  8258. %
  8259. The naive way to compile \key{if} and the comparison operations would
  8260. be to handle each of them in isolation, regardless of their context.
  8261. Each comparison would be translated into a \key{cmpq} instruction
  8262. followed by several instructions to move the result from the EFLAGS
  8263. register into a general purpose register or stack location. Each
  8264. \key{if} would be translated into a \key{cmpq} instruction followed by
  8265. a conditional jump. The generated code for the inner \key{if} in this
  8266. example would be as follows:
  8267. \begin{center}
  8268. \begin{minipage}{0.96\textwidth}
  8269. \begin{lstlisting}
  8270. cmpq $1, x
  8271. setl %al
  8272. movzbq %al, tmp
  8273. cmpq $1, tmp
  8274. je then_branch_1
  8275. jmp else_branch_1
  8276. \end{lstlisting}
  8277. \end{minipage}
  8278. \end{center}
  8279. Notice that the three instructions starting with \code{setl} are
  8280. redundant; the conditional jump could come immediately after the first
  8281. \code{cmpq}.
  8282. Our goal is to compile \key{if} expressions so that the relevant
  8283. comparison instruction appears directly before the conditional jump.
  8284. For example, we want to generate the following code for the inner
  8285. \code{if}:
  8286. \begin{center}
  8287. \begin{minipage}{0.96\textwidth}
  8288. \begin{lstlisting}
  8289. cmpq $1, x
  8290. jl then_branch_1
  8291. jmp else_branch_1
  8292. \end{lstlisting}
  8293. \end{minipage}
  8294. \end{center}
  8295. One way to achieve this goal is to reorganize the code at the level of
  8296. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  8297. the following code:
  8298. \begin{center}
  8299. \begin{minipage}{0.96\textwidth}
  8300. {\if\edition\racketEd
  8301. \begin{lstlisting}
  8302. (let ([x (read)])
  8303. (let ([y (read)])
  8304. (if (< x 1)
  8305. (if (eq? x 0)
  8306. (+ y 2)
  8307. (+ y 10))
  8308. (if (eq? x 2)
  8309. (+ y 2)
  8310. (+ y 10)))))
  8311. \end{lstlisting}
  8312. \fi}
  8313. {\if\edition\pythonEd\pythonColor
  8314. \begin{lstlisting}
  8315. x = input_int()
  8316. y = input_int()
  8317. print(((y + 2) if x == 0 else (y + 10)) \
  8318. if (x < 1) \
  8319. else ((y + 2) if (x == 2) else (y + 10)))
  8320. \end{lstlisting}
  8321. \fi}
  8322. \end{minipage}
  8323. \end{center}
  8324. Unfortunately, this approach duplicates the two branches from the
  8325. outer \code{if}, and a compiler must never duplicate code! After all,
  8326. the two branches could be very large expressions.
  8327. How can we apply this transformation without duplicating code? In
  8328. other words, how can two different parts of a program refer to one
  8329. piece of code?
  8330. %
  8331. The answer is that we must move away from abstract syntax \emph{trees}
  8332. and instead use \emph{graphs}.
  8333. %
  8334. At the level of x86 assembly, this is straightforward because we can
  8335. label the code for each branch and insert jumps in all the places that
  8336. need to execute the branch. In this way, jump instructions are edges
  8337. in the graph and the basic blocks are the nodes.
  8338. %
  8339. Likewise, our language \LangCIf{} provides the ability to label a
  8340. sequence of statements and to jump to a label via \code{goto}.
  8341. As a preview of what \code{explicate\_control} will do,
  8342. figure~\ref{fig:explicate-control-s1-38} shows the output of
  8343. \code{explicate\_control} on this example. Note how the condition of
  8344. every \code{if} is a comparison operation and that we have not
  8345. duplicated any code but instead have used labels and \code{goto} to
  8346. enable sharing of code.
  8347. \begin{figure}[tbp]
  8348. \begin{tcolorbox}[colback=white]
  8349. {\if\edition\racketEd
  8350. \begin{tabular}{lll}
  8351. \begin{minipage}{0.4\textwidth}
  8352. % cond_test_41.rkt
  8353. \begin{lstlisting}
  8354. (let ([x (read)])
  8355. (let ([y (read)])
  8356. (if (if (< x 1)
  8357. (eq? x 0)
  8358. (eq? x 2))
  8359. (+ y 2)
  8360. (+ y 10))))
  8361. \end{lstlisting}
  8362. \end{minipage}
  8363. &
  8364. $\Rightarrow$
  8365. &
  8366. \begin{minipage}{0.55\textwidth}
  8367. \begin{lstlisting}
  8368. start:
  8369. x = (read);
  8370. y = (read);
  8371. if (< x 1)
  8372. goto block_4;
  8373. else
  8374. goto block_5;
  8375. block_4:
  8376. if (eq? x 0)
  8377. goto block_2;
  8378. else
  8379. goto block_3;
  8380. block_5:
  8381. if (eq? x 2)
  8382. goto block_2;
  8383. else
  8384. goto block_3;
  8385. block_2:
  8386. return (+ y 2);
  8387. block_3:
  8388. return (+ y 10);
  8389. \end{lstlisting}
  8390. \end{minipage}
  8391. \end{tabular}
  8392. \fi}
  8393. {\if\edition\pythonEd\pythonColor
  8394. \begin{tabular}{lll}
  8395. \begin{minipage}{0.4\textwidth}
  8396. % cond_test_41.rkt
  8397. \begin{lstlisting}
  8398. x = input_int()
  8399. y = input_int()
  8400. print(y + 2 \
  8401. if (x == 0 \
  8402. if x < 1 \
  8403. else x == 2) \
  8404. else y + 10)
  8405. \end{lstlisting}
  8406. \end{minipage}
  8407. &
  8408. $\Rightarrow$
  8409. &
  8410. \begin{minipage}{0.55\textwidth}
  8411. \begin{lstlisting}
  8412. start:
  8413. x = input_int()
  8414. y = input_int()
  8415. if x < 1:
  8416. goto block_8
  8417. else:
  8418. goto block_9
  8419. block_8:
  8420. if x == 0:
  8421. goto block_4
  8422. else:
  8423. goto block_5
  8424. block_9:
  8425. if x == 2:
  8426. goto block_6
  8427. else:
  8428. goto block_7
  8429. block_4:
  8430. goto block_2
  8431. block_5:
  8432. goto block_3
  8433. block_6:
  8434. goto block_2
  8435. block_7:
  8436. goto block_3
  8437. block_2:
  8438. tmp_0 = y + 2
  8439. goto block_1
  8440. block_3:
  8441. tmp_0 = y + 10
  8442. goto block_1
  8443. block_1:
  8444. print(tmp_0)
  8445. return 0
  8446. \end{lstlisting}
  8447. \end{minipage}
  8448. \end{tabular}
  8449. \fi}
  8450. \end{tcolorbox}
  8451. \caption{Translation from \LangIf{} to \LangCIf{}
  8452. via the \code{explicate\_control}.}
  8453. \label{fig:explicate-control-s1-38}
  8454. \end{figure}
  8455. {\if\edition\racketEd
  8456. %
  8457. Recall that in section~\ref{sec:explicate-control-Lvar} we implement
  8458. \code{explicate\_control} for \LangVar{} using two recursive
  8459. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  8460. former function translates expressions in tail position, whereas the
  8461. latter function translates expressions on the right-hand side of a
  8462. \key{let}. With the addition of \key{if} expression to \LangIf{} we
  8463. have a new kind of position to deal with: the predicate position of
  8464. the \key{if}. We need another function, \code{explicate\_pred}, that
  8465. decides how to compile an \key{if} by analyzing its condition. So,
  8466. \code{explicate\_pred} takes an \LangIf{} expression and two
  8467. \LangCIf{} tails for the \emph{then} branch and \emph{else} branch
  8468. and outputs a tail. In the following paragraphs we discuss specific
  8469. cases in the \code{explicate\_tail}, \code{explicate\_assign}, and
  8470. \code{explicate\_pred} functions.
  8471. %
  8472. \fi}
  8473. %
  8474. {\if\edition\pythonEd\pythonColor
  8475. %
  8476. We recommend implementing \code{explicate\_control} using the
  8477. following four auxiliary functions.
  8478. \begin{description}
  8479. \item[\code{explicate\_effect}] generates code for expressions as
  8480. statements, so their result is ignored and only their side effects
  8481. matter.
  8482. \item[\code{explicate\_assign}] generates code for expressions
  8483. on the right-hand side of an assignment.
  8484. \item[\code{explicate\_pred}] generates code for an \code{if}
  8485. expression or statement by analyzing the condition expression.
  8486. \item[\code{explicate\_stmt}] generates code for statements.
  8487. \end{description}
  8488. These four functions should build the dictionary of basic blocks. The
  8489. following auxiliary function can be used to create a new basic block
  8490. from a list of statements. It returns a \code{goto} statement that
  8491. jumps to the new basic block.
  8492. \begin{center}
  8493. \begin{minipage}{\textwidth}
  8494. \begin{lstlisting}
  8495. def create_block(stmts, basic_blocks):
  8496. label = label_name(generate_name('block'))
  8497. basic_blocks[label] = stmts
  8498. return [Goto(label)]
  8499. \end{lstlisting}
  8500. \end{minipage}
  8501. \end{center}
  8502. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  8503. \code{explicate\_control} pass.
  8504. The \code{explicate\_effect} function has three parameters: 1) the
  8505. expression to be compiled, 2) the already-compiled code for this
  8506. expression's \emph{continuation}, that is, the list of statements that
  8507. should execute after this expression, and 3) the dictionary of
  8508. generated basic blocks. The \code{explicate\_effect} function returns
  8509. a list of \LangCIf{} statements and it may add to the dictionary of
  8510. basic blocks.
  8511. %
  8512. Let's consider a few of the cases for the expression to be compiled.
  8513. If the expression to be compiled is a constant, then it can be
  8514. discarded because it has no side effects. If it's a \CREAD{}, then it
  8515. has a side-effect and should be preserved. So the expression should be
  8516. translated into a statement using the \code{Expr} AST class. If the
  8517. expression to be compiled is an \code{if} expression, we translate the
  8518. two branches using \code{explicate\_effect} and then translate the
  8519. condition expression using \code{explicate\_pred}, which generates
  8520. code for the entire \code{if}.
  8521. The \code{explicate\_assign} function has four parameters: 1) the
  8522. right-hand side of the assignment, 2) the left-hand side of the
  8523. assignment (the variable), 3) the continuation, and 4) the dictionary
  8524. of basic blocks. The \code{explicate\_assign} function returns a list
  8525. of \LangCIf{} statements and it may add to the dictionary of basic
  8526. blocks.
  8527. When the right-hand side is an \code{if} expression, there is some
  8528. work to do. In particular, the two branches should be translated using
  8529. \code{explicate\_assign} and the condition expression should be
  8530. translated using \code{explicate\_pred}. Otherwise we can simply
  8531. generate an assignment statement, with the given left and right-hand
  8532. sides, concatenated with its continuation.
  8533. \begin{figure}[tbp]
  8534. \begin{tcolorbox}[colback=white]
  8535. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8536. def explicate_effect(e, cont, basic_blocks):
  8537. match e:
  8538. case IfExp(test, body, orelse):
  8539. ...
  8540. case Call(func, args):
  8541. ...
  8542. case Begin(body, result):
  8543. ...
  8544. case _:
  8545. ...
  8546. def explicate_assign(rhs, lhs, cont, basic_blocks):
  8547. match rhs:
  8548. case IfExp(test, body, orelse):
  8549. ...
  8550. case Begin(body, result):
  8551. ...
  8552. case _:
  8553. return [Assign([lhs], rhs)] + cont
  8554. def explicate_pred(cnd, thn, els, basic_blocks):
  8555. match cnd:
  8556. case Compare(left, [op], [right]):
  8557. goto_thn = create_block(thn, basic_blocks)
  8558. goto_els = create_block(els, basic_blocks)
  8559. return [If(cnd, goto_thn, goto_els)]
  8560. case Constant(True):
  8561. return thn;
  8562. case Constant(False):
  8563. return els;
  8564. case UnaryOp(Not(), operand):
  8565. ...
  8566. case IfExp(test, body, orelse):
  8567. ...
  8568. case Begin(body, result):
  8569. ...
  8570. case _:
  8571. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  8572. create_block(els, basic_blocks),
  8573. create_block(thn, basic_blocks))]
  8574. def explicate_stmt(s, cont, basic_blocks):
  8575. match s:
  8576. case Assign([lhs], rhs):
  8577. return explicate_assign(rhs, lhs, cont, basic_blocks)
  8578. case Expr(value):
  8579. return explicate_effect(value, cont, basic_blocks)
  8580. case If(test, body, orelse):
  8581. ...
  8582. def explicate_control(p):
  8583. match p:
  8584. case Module(body):
  8585. new_body = [Return(Constant(0))]
  8586. basic_blocks = {}
  8587. for s in reversed(body):
  8588. new_body = explicate_stmt(s, new_body, basic_blocks)
  8589. basic_blocks[label_name('start')] = new_body
  8590. return CProgram(basic_blocks)
  8591. \end{lstlisting}
  8592. \end{tcolorbox}
  8593. \caption{Skeleton for the \code{explicate\_control} pass.}
  8594. \label{fig:explicate-control-Lif}
  8595. \end{figure}
  8596. \fi}
  8597. {\if\edition\racketEd
  8598. \subsection{Explicate Tail and Assign}
  8599. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  8600. additional cases for Boolean constants and \key{if}. The cases for
  8601. \code{if} should recursively compile the two branches using either
  8602. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  8603. cases should then invoke \code{explicate\_pred} on the condition
  8604. expression, passing in the generated code for the two branches. For
  8605. example, consider the following program with an \code{if} in tail
  8606. position.
  8607. % cond_test_6.rkt
  8608. \begin{lstlisting}
  8609. (let ([x (read)])
  8610. (if (eq? x 0) 42 777))
  8611. \end{lstlisting}
  8612. The two branches are recursively compiled to return statements. We
  8613. then delegate to \code{explicate\_pred}, passing the condition
  8614. \code{(eq? x 0)} and the two return statements. We return to this
  8615. example shortly when we discuss \code{explicate\_pred}.
  8616. Next let us consider a program with an \code{if} on the right-hand
  8617. side of a \code{let}.
  8618. \begin{lstlisting}
  8619. (let ([y (read)])
  8620. (let ([x (if (eq? y 0) 40 777)])
  8621. (+ x 2)))
  8622. \end{lstlisting}
  8623. Note that the body of the inner \code{let} will have already been
  8624. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  8625. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  8626. to recursively process both branches of the \code{if}, and we do not
  8627. want to duplicate code, so we generate the following block using an
  8628. auxiliary function named \code{create\_block}, discussed in the next
  8629. section.
  8630. \begin{lstlisting}
  8631. block_6:
  8632. return (+ x 2)
  8633. \end{lstlisting}
  8634. We then use \code{goto block\_6;} as the \code{cont} argument for
  8635. compiling the branches. So the two branches compile to
  8636. \begin{center}
  8637. \begin{minipage}{0.2\textwidth}
  8638. \begin{lstlisting}
  8639. x = 40;
  8640. goto block_6;
  8641. \end{lstlisting}
  8642. \end{minipage}
  8643. \hspace{0.5in} and \hspace{0.5in}
  8644. \begin{minipage}{0.2\textwidth}
  8645. \begin{lstlisting}
  8646. x = 777;
  8647. goto block_6;
  8648. \end{lstlisting}
  8649. \end{minipage}
  8650. \end{center}
  8651. Finally, we delegate to \code{explicate\_pred}, passing the condition
  8652. \code{(eq? y 0)} and the previously presented code for the branches.
  8653. \subsection{Create Block}
  8654. We recommend implementing the \code{create\_block} auxiliary function
  8655. as follows, using a global variable \code{basic-blocks} to store a
  8656. dictionary that maps labels to $\Tail$ expressions. The main idea is
  8657. that \code{create\_block} generates a new label and then associates
  8658. the given \code{tail} with the new label in the \code{basic-blocks}
  8659. dictionary. The result of \code{create\_block} is a \code{Goto} to the
  8660. new label. However, if the given \code{tail} is already a \code{Goto},
  8661. then there is no need to generate a new label and entry in
  8662. \code{basic-blocks}; we can simply return that \code{Goto}.
  8663. %
  8664. \begin{lstlisting}
  8665. (define (create_block tail)
  8666. (match tail
  8667. [(Goto label) (Goto label)]
  8668. [else
  8669. (let ([label (gensym 'block)])
  8670. (set! basic-blocks (cons (cons label tail) basic-blocks))
  8671. (Goto label))]))
  8672. \end{lstlisting}
  8673. \fi}
  8674. {\if\edition\racketEd
  8675. \subsection{Explicate Predicate}
  8676. The skeleton for the \code{explicate\_pred} function is given in
  8677. figure~\ref{fig:explicate-pred}. It takes three parameters: (1)
  8678. \code{cnd}, the condition expression of the \code{if}; (2) \code{thn},
  8679. the code generated by explicate for the \emph{then} branch; and (3)
  8680. \code{els}, the code generated by explicate for the \emph{else}
  8681. branch. The \code{explicate\_pred} function should match on
  8682. \code{cnd} with a case for every kind of expression that can have type
  8683. \BOOLTY{}.
  8684. \begin{figure}[tbp]
  8685. \begin{tcolorbox}[colback=white]
  8686. \begin{lstlisting}
  8687. (define (explicate_pred cnd thn els)
  8688. (match cnd
  8689. [(Var x) ___]
  8690. [(Let x rhs body) ___]
  8691. [(Prim 'not (list e)) ___]
  8692. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  8693. (IfStmt (Prim op es) (create_block thn)
  8694. (create_block els))]
  8695. [(Bool b) (if b thn els)]
  8696. [(If cnd^ thn^ els^) ___]
  8697. [else (error "explicate_pred unhandled case" cnd)]))
  8698. \end{lstlisting}
  8699. \end{tcolorbox}
  8700. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  8701. \label{fig:explicate-pred}
  8702. \end{figure}
  8703. \fi}
  8704. %
  8705. {\if\edition\pythonEd\pythonColor
  8706. The \code{explicate\_pred} function has four parameters: 1) the
  8707. condition expression, 2) the generated statements for the ``then''
  8708. branch, 3) the generated statements for the ``else'' branch, and 4)
  8709. the dictionary of basic blocks. The \code{explicate\_pred} function
  8710. returns a list of \LangCIf{} statements and it may add to the
  8711. dictionary of basic blocks.
  8712. \fi}
  8713. Consider the case for comparison operators. We translate the
  8714. comparison to an \code{if} statement whose branches are \code{goto}
  8715. statements created by applying \code{create\_block} to the code
  8716. generated for the \code{thn} and \code{els} branches. Let us
  8717. illustrate this translation by returning to the program with an
  8718. \code{if} expression in tail position, shown next. We invoke
  8719. \code{explicate\_pred} on its condition
  8720. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}.
  8721. %
  8722. {\if\edition\racketEd
  8723. \begin{lstlisting}
  8724. (let ([x (read)])
  8725. (if (eq? x 0) 42 777))
  8726. \end{lstlisting}
  8727. \fi}
  8728. %
  8729. {\if\edition\pythonEd\pythonColor
  8730. \begin{lstlisting}
  8731. x = input_int()
  8732. 42 if x == 0 else 777
  8733. \end{lstlisting}
  8734. \fi}
  8735. %
  8736. \noindent The two branches \code{42} and \code{777} were already
  8737. compiled to \code{return} statements, from which we now create the
  8738. following blocks:
  8739. %
  8740. \begin{center}
  8741. \begin{minipage}{\textwidth}
  8742. \begin{lstlisting}
  8743. block_1:
  8744. return 42;
  8745. block_2:
  8746. return 777;
  8747. \end{lstlisting}
  8748. \end{minipage}
  8749. \end{center}
  8750. %
  8751. After that, \code{explicate\_pred} compiles the comparison
  8752. \racket{\code{(eq? x 0)}}
  8753. \python{\code{x == 0}}
  8754. to the following \code{if} statement:
  8755. %
  8756. {\if\edition\racketEd
  8757. \begin{center}
  8758. \begin{minipage}{\textwidth}
  8759. \begin{lstlisting}
  8760. if (eq? x 0)
  8761. goto block_1;
  8762. else
  8763. goto block_2;
  8764. \end{lstlisting}
  8765. \end{minipage}
  8766. \end{center}
  8767. \fi}
  8768. {\if\edition\pythonEd\pythonColor
  8769. \begin{center}
  8770. \begin{minipage}{\textwidth}
  8771. \begin{lstlisting}
  8772. if x == 0:
  8773. goto block_1;
  8774. else
  8775. goto block_2;
  8776. \end{lstlisting}
  8777. \end{minipage}
  8778. \end{center}
  8779. \fi}
  8780. Next consider the case for Boolean constants. We perform a kind of
  8781. partial evaluation\index{subject}{partialevaluation@partial evaluation} and output
  8782. either the \code{thn} or \code{els} branch, depending on whether the
  8783. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  8784. following program:
  8785. {\if\edition\racketEd
  8786. \begin{lstlisting}
  8787. (if #t 42 777)
  8788. \end{lstlisting}
  8789. \fi}
  8790. {\if\edition\pythonEd\pythonColor
  8791. \begin{lstlisting}
  8792. 42 if True else 777
  8793. \end{lstlisting}
  8794. \fi}
  8795. %
  8796. \noindent Again, the two branches \code{42} and \code{777} were
  8797. compiled to \code{return} statements, so \code{explicate\_pred}
  8798. compiles the constant \racket{\code{\#t}} \python{\code{True}} to the
  8799. code for the \emph{then} branch.
  8800. \begin{lstlisting}
  8801. return 42;
  8802. \end{lstlisting}
  8803. This case demonstrates that we sometimes discard the \code{thn} or
  8804. \code{els} blocks that are input to \code{explicate\_pred}.
  8805. The case for \key{if} expressions in \code{explicate\_pred} is
  8806. particularly illuminating because it deals with the challenges
  8807. discussed previously regarding nested \key{if} expressions
  8808. (figure~\ref{fig:explicate-control-s1-38}). The
  8809. \racket{\lstinline{thn^}}\python{\code{body}} and
  8810. \racket{\lstinline{els^}}\python{\code{orelse}} branches of the
  8811. \key{if} inherit their context from the current one, that is,
  8812. predicate context. So, you should recursively apply
  8813. \code{explicate\_pred} to the
  8814. \racket{\lstinline{thn^}}\python{\code{body}} and
  8815. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  8816. those recursive calls, pass \code{thn} and \code{els} as the extra
  8817. parameters. Thus, \code{thn} and \code{els} may be used twice, once
  8818. inside each recursive call. As discussed previously, to avoid
  8819. duplicating code, we need to add them to the dictionary of basic
  8820. blocks so that we can instead refer to them by name and execute them
  8821. with a \key{goto}.
  8822. {\if\edition\pythonEd\pythonColor
  8823. %
  8824. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  8825. three parameters: 1) the statement to be compiled, 2) the code for its
  8826. continuation, and 3) the dictionary of basic blocks. The
  8827. \code{explicate\_stmt} returns a list of statements and it may add to
  8828. the dictionary of basic blocks. The cases for assignment and an
  8829. expression-statement are given in full in the skeleton code: they
  8830. simply dispatch to \code{explicate\_assign} and
  8831. \code{explicate\_effect}, respectively. The case for \code{if}
  8832. statements is not given, and is similar to the case for \code{if}
  8833. expressions.
  8834. The \code{explicate\_control} function itself is given in
  8835. figure~\ref{fig:explicate-control-Lif}. It applies
  8836. \code{explicate\_stmt} to each statement in the program, from back to
  8837. front. Thus, the result so-far, stored in \code{new\_body}, can be
  8838. used as the continuation parameter in the next call to
  8839. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  8840. \code{Return} statement. Once complete, we add the \code{new\_body} to
  8841. the dictionary of basic blocks, labeling it as the ``start'' block.
  8842. %
  8843. \fi}
  8844. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  8845. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  8846. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  8847. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  8848. %% results from the two recursive calls. We complete the case for
  8849. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  8850. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  8851. %% the result $B_5$.
  8852. %% \[
  8853. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  8854. %% \quad\Rightarrow\quad
  8855. %% B_5
  8856. %% \]
  8857. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  8858. %% inherit the current context, so they are in tail position. Thus, the
  8859. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  8860. %% \code{explicate\_tail}.
  8861. %% %
  8862. %% We need to pass $B_0$ as the accumulator argument for both of these
  8863. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  8864. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  8865. %% to the control-flow graph and obtain a promised goto $G_0$.
  8866. %% %
  8867. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  8868. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  8869. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  8870. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  8871. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  8872. %% \[
  8873. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  8874. %% \]
  8875. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  8876. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  8877. %% should not be confused with the labels for the blocks that appear in
  8878. %% the generated code. We initially construct unlabeled blocks; we only
  8879. %% attach labels to blocks when we add them to the control-flow graph, as
  8880. %% we see in the next case.
  8881. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  8882. %% function. The context of the \key{if} is an assignment to some
  8883. %% variable $x$ and then the control continues to some promised block
  8884. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  8885. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  8886. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  8887. %% branches of the \key{if} inherit the current context, so they are in
  8888. %% assignment positions. Let $B_2$ be the result of applying
  8889. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  8890. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  8891. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  8892. %% the result of applying \code{explicate\_pred} to the predicate
  8893. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  8894. %% translates to the promise $B_4$.
  8895. %% \[
  8896. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  8897. %% \]
  8898. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  8899. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  8900. \code{remove\_complex\_operands} pass and then the
  8901. \code{explicate\_control} pass on the example program. We walk through
  8902. the output program.
  8903. %
  8904. Following the order of evaluation in the output of
  8905. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  8906. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  8907. in the predicate of the inner \key{if}. In the output of
  8908. \code{explicate\_control}, in the
  8909. block labeled \code{start}, two assignment statements are followed by an
  8910. \code{if} statement that branches to \code{block\_4} or
  8911. \code{block\_5}. The blocks associated with those labels contain the
  8912. translations of the code
  8913. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8914. and
  8915. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  8916. respectively. In particular, we start \code{block\_4} with the
  8917. comparison
  8918. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8919. and then branch to \code{block\_2} or \code{block\_3},
  8920. which correspond to the two branches of the outer \key{if}, that is,
  8921. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  8922. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  8923. %
  8924. The story for \code{block\_5} is similar to that of \code{block\_4}.
  8925. %
  8926. \python{The \code{block\_1} corresponds to the \code{print} statement
  8927. at the end of the program.}
  8928. {\if\edition\racketEd
  8929. \subsection{Interactions between Explicate and Shrink}
  8930. The way in which the \code{shrink} pass transforms logical operations
  8931. such as \code{and} and \code{or} can impact the quality of code
  8932. generated by \code{explicate\_control}. For example, consider the
  8933. following program:
  8934. % cond_test_21.rkt, and_eq_input.py
  8935. \begin{lstlisting}
  8936. (if (and (eq? (read) 0) (eq? (read) 1))
  8937. 0
  8938. 42)
  8939. \end{lstlisting}
  8940. The \code{and} operation should transform into something that the
  8941. \code{explicate\_pred} function can analyze and descend through to
  8942. reach the underlying \code{eq?} conditions. Ideally, for this program
  8943. your \code{explicate\_control} pass should generate code similar to
  8944. the following:
  8945. \begin{center}
  8946. \begin{minipage}{\textwidth}
  8947. \begin{lstlisting}
  8948. start:
  8949. tmp1 = (read);
  8950. if (eq? tmp1 0) goto block40;
  8951. else goto block39;
  8952. block40:
  8953. tmp2 = (read);
  8954. if (eq? tmp2 1) goto block38;
  8955. else goto block39;
  8956. block38:
  8957. return 0;
  8958. block39:
  8959. return 42;
  8960. \end{lstlisting}
  8961. \end{minipage}
  8962. \end{center}
  8963. \fi}
  8964. \begin{exercise}\normalfont\normalsize
  8965. \racket{
  8966. Implement the pass \code{explicate\_control} by adding the cases for
  8967. Boolean constants and \key{if} to the \code{explicate\_tail} and
  8968. \code{explicate\_assign} functions. Implement the auxiliary function
  8969. \code{explicate\_pred} for predicate contexts.}
  8970. \python{Implement \code{explicate\_control} pass with its
  8971. four auxiliary functions.}
  8972. %
  8973. Create test cases that exercise all the new cases in the code for
  8974. this pass.
  8975. %
  8976. {\if\edition\racketEd
  8977. Add the following entry to the list of \code{passes} in
  8978. \code{run-tests.rkt}:
  8979. \begin{lstlisting}
  8980. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  8981. \end{lstlisting}
  8982. and then run \code{run-tests.rkt} to test your compiler.
  8983. \fi}
  8984. \end{exercise}
  8985. \section{Select Instructions}
  8986. \label{sec:select-Lif}
  8987. \index{subject}{select instructions}
  8988. The \code{select\_instructions} pass translates \LangCIf{} to
  8989. \LangXIfVar{}.
  8990. %
  8991. \racket{Recall that we implement this pass using three auxiliary
  8992. functions, one for each of the nonterminals $\Atm$, $\Stmt$, and
  8993. $\Tail$ in \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  8994. %
  8995. \racket{For $\Atm$, we have new cases for the Booleans.}
  8996. %
  8997. \python{We begin with the Boolean constants.}
  8998. We take the usual approach of encoding them as integers.
  8999. \[
  9000. \TRUE{} \quad\Rightarrow\quad \key{1}
  9001. \qquad\qquad
  9002. \FALSE{} \quad\Rightarrow\quad \key{0}
  9003. \]
  9004. For translating statements, we discuss some of the cases. The
  9005. \code{not} operation can be implemented in terms of \code{xorq}, as we
  9006. discussed at the beginning of this section. Given an assignment, if
  9007. the left-hand-side variable is the same as the argument of \code{not},
  9008. then just the \code{xorq} instruction suffices.
  9009. \[
  9010. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  9011. \quad\Rightarrow\quad
  9012. \key{xorq}~\key{\$}1\key{,}~\Var
  9013. \]
  9014. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  9015. semantics of x86. In the following translation, let $\Arg$ be the
  9016. result of translating $\Atm$ to x86.
  9017. \[
  9018. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  9019. \quad\Rightarrow\quad
  9020. \begin{array}{l}
  9021. \key{movq}~\Arg\key{,}~\Var\\
  9022. \key{xorq}~\key{\$}1\key{,}~\Var
  9023. \end{array}
  9024. \]
  9025. Next consider the cases for equality comparisons. Translating this
  9026. operation to x86 is slightly involved due to the unusual nature of the
  9027. \key{cmpq} instruction that we discussed in section~\ref{sec:x86-if}.
  9028. We recommend translating an assignment with an equality on the
  9029. right-hand side into a sequence of three instructions. \\
  9030. \begin{tabular}{lll}
  9031. \begin{minipage}{0.4\textwidth}
  9032. $\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$
  9033. \end{minipage}
  9034. &
  9035. $\Rightarrow$
  9036. &
  9037. \begin{minipage}{0.4\textwidth}
  9038. \begin{lstlisting}
  9039. cmpq |$\Arg_2$|, |$\Arg_1$|
  9040. sete %al
  9041. movzbq %al, |$\Var$|
  9042. \end{lstlisting}
  9043. \end{minipage}
  9044. \end{tabular} \\
  9045. The translations for the other comparison operators are similar to
  9046. this but use different condition codes for the \code{set} instruction.
  9047. \racket{Regarding the $\Tail$ nonterminal, we have two new cases:
  9048. \key{goto} and \key{if} statements. Both are straightforward to
  9049. translate to x86.}
  9050. %
  9051. A \key{goto} statement becomes a jump instruction.
  9052. \[
  9053. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  9054. \]
  9055. %
  9056. An \key{if} statement becomes a compare instruction followed by a
  9057. conditional jump (for the \emph{then} branch), and the fall-through is to
  9058. a regular jump (for the \emph{else} branch).\\
  9059. \begin{tabular}{lll}
  9060. \begin{minipage}{0.4\textwidth}
  9061. \begin{lstlisting}
  9062. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  9063. goto |$\ell_1$||$\racket{\key{;}}$|
  9064. else|$\python{\key{:}}$|
  9065. goto |$\ell_2$||$\racket{\key{;}}$|
  9066. \end{lstlisting}
  9067. \end{minipage}
  9068. &
  9069. $\Rightarrow$
  9070. &
  9071. \begin{minipage}{0.4\textwidth}
  9072. \begin{lstlisting}
  9073. cmpq |$\Arg_2$|, |$\Arg_1$|
  9074. je |$\ell_1$|
  9075. jmp |$\ell_2$|
  9076. \end{lstlisting}
  9077. \end{minipage}
  9078. \end{tabular} \\
  9079. Again, the translations for the other comparison operators are similar to this
  9080. but use different condition codes for the conditional jump instruction.
  9081. \python{Regarding the \key{return} statement, we recommend treating it
  9082. as an assignment to the \key{rax} register followed by a jump to the
  9083. conclusion of the \code{main} function.}
  9084. \begin{exercise}\normalfont\normalsize
  9085. Expand your \code{select\_instructions} pass to handle the new
  9086. features of the \LangCIf{} language.
  9087. %
  9088. {\if\edition\racketEd
  9089. Add the following entry to the list of \code{passes} in
  9090. \code{run-tests.rkt}
  9091. \begin{lstlisting}
  9092. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  9093. \end{lstlisting}
  9094. \fi}
  9095. %
  9096. Run the script to test your compiler on all the test programs.
  9097. \end{exercise}
  9098. \section{Register Allocation}
  9099. \label{sec:register-allocation-Lif}
  9100. \index{subject}{register allocation}
  9101. The changes required for compiling \LangIf{} affect liveness analysis,
  9102. building the interference graph, and assigning homes, but the graph
  9103. coloring algorithm itself does not change.
  9104. \subsection{Liveness Analysis}
  9105. \label{sec:liveness-analysis-Lif}
  9106. \index{subject}{liveness analysis}
  9107. Recall that for \LangVar{} we implemented liveness analysis for a
  9108. single basic block (section~\ref{sec:liveness-analysis-Lvar}). With
  9109. the addition of \key{if} expressions to \LangIf{},
  9110. \code{explicate\_control} produces many basic blocks.
  9111. %% We recommend that you create a new auxiliary function named
  9112. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  9113. %% control-flow graph.
  9114. The first question is, in what order should we process the basic blocks?
  9115. Recall that to perform liveness analysis on a basic block we need to
  9116. know the live-after set for the last instruction in the block. If a
  9117. basic block has no successors (i.e., contains no jumps to other
  9118. blocks), then it has an empty live-after set and we can immediately
  9119. apply liveness analysis to it. If a basic block has some successors,
  9120. then we need to complete liveness analysis on those blocks
  9121. first. These ordering constraints are the reverse of a
  9122. \emph{topological order}\index{subject}{topological order} on a graph
  9123. representation of the program. In particular, the \emph{control flow
  9124. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  9125. of a program has a node for each basic block and an edge for each jump
  9126. from one block to another. It is straightforward to generate a CFG
  9127. from the dictionary of basic blocks. One then transposes the CFG and
  9128. applies the topological sort algorithm.
  9129. %
  9130. %
  9131. \racket{We recommend using the \code{tsort} and \code{transpose}
  9132. functions of the Racket \code{graph} package to accomplish this.}
  9133. %
  9134. \python{We provide implementations of \code{topological\_sort} and
  9135. \code{transpose} in the file \code{graph.py} of the support code.}
  9136. %
  9137. As an aside, a topological ordering is only guaranteed to exist if the
  9138. graph does not contain any cycles. This is the case for the
  9139. control-flow graphs that we generate from \LangIf{} programs.
  9140. However, in chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  9141. and learn how to handle cycles in the control-flow graph.
  9142. \racket{You need to construct a directed graph to represent the
  9143. control-flow graph. Do not use the \code{directed-graph} of the
  9144. \code{graph} package because that allows at most one edge
  9145. between each pair of vertices, whereas a control-flow graph may have
  9146. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  9147. file in the support code implements a graph representation that
  9148. allows multiple edges between a pair of vertices.}
  9149. {\if\edition\racketEd
  9150. The next question is how to analyze jump instructions. Recall that in
  9151. section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  9152. \code{label->live} that maps each label to the set of live locations
  9153. at the beginning of its block. We use \code{label->live} to determine
  9154. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  9155. that we have many basic blocks, \code{label->live} needs to be updated
  9156. as we process the blocks. In particular, after performing liveness
  9157. analysis on a block, we take the live-before set of its first
  9158. instruction and associate that with the block's label in the
  9159. \code{label->live} alist.
  9160. \fi}
  9161. %
  9162. {\if\edition\pythonEd\pythonColor
  9163. %
  9164. The next question is how to analyze jump instructions. The locations
  9165. that are live before a \code{jmp} should be the locations in
  9166. $L_{\mathsf{before}}$ at the target of the jump. So we recommend
  9167. maintaining a dictionary named \code{live\_before\_block} that maps each
  9168. label to the $L_{\mathsf{before}}$ for the first instruction in its
  9169. block. After performing liveness analysis on each block, we take the
  9170. live-before set of its first instruction and associate that with the
  9171. block's label in the \code{live\_before\_block} dictionary.
  9172. %
  9173. \fi}
  9174. In \LangXIfVar{} we also have the conditional jump
  9175. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  9176. this instruction is particularly interesting because during
  9177. compilation, we do not know which way a conditional jump will go. Thus
  9178. we do not know whether to use the live-before set for the block
  9179. associated with the $\itm{label}$ or the live-before set for the
  9180. following instruction. However, there is no harm to the correctness
  9181. of the generated code if we classify more locations as live than the
  9182. ones that are truly live during one particular execution of the
  9183. instruction. Thus, we can take the union of the live-before sets from
  9184. the following instruction and from the mapping for $\itm{label}$ in
  9185. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  9186. The auxiliary functions for computing the variables in an
  9187. instruction's argument and for computing the variables read-from ($R$)
  9188. or written-to ($W$) by an instruction need to be updated to handle the
  9189. new kinds of arguments and instructions in \LangXIfVar{}.
  9190. \begin{exercise}\normalfont\normalsize
  9191. {\if\edition\racketEd
  9192. %
  9193. Update the \code{uncover\_live} pass to apply liveness analysis to
  9194. every basic block in the program.
  9195. %
  9196. Add the following entry to the list of \code{passes} in the
  9197. \code{run-tests.rkt} script:
  9198. \begin{lstlisting}
  9199. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  9200. \end{lstlisting}
  9201. \fi}
  9202. {\if\edition\pythonEd\pythonColor
  9203. %
  9204. Update the \code{uncover\_live} function to perform liveness analysis,
  9205. in reverse topological order, on all the basic blocks in the
  9206. program.
  9207. %
  9208. \fi}
  9209. % Check that the live-after sets that you generate for
  9210. % example X matches the following... -Jeremy
  9211. \end{exercise}
  9212. \subsection{Build the Interference Graph}
  9213. \label{sec:build-interference-Lif}
  9214. Many of the new instructions in \LangXIfVar{} can be handled in the
  9215. same way as the instructions in \LangXVar{}.
  9216. % Thus, if your code was
  9217. % already quite general, it will not need to be changed to handle the
  9218. % new instructions. If your code is not general enough, we recommend that
  9219. % you change your code to be more general. For example, you can factor
  9220. % out the computing of the the read and write sets for each kind of
  9221. % instruction into auxiliary functions.
  9222. %
  9223. Some instructions, such as the \key{movzbq} instruction, require special care,
  9224. similar to the \key{movq} instruction. Refer to rule number 1 in
  9225. section~\ref{sec:build-interference}.
  9226. \begin{exercise}\normalfont\normalsize
  9227. Update the \code{build\_interference} pass for \LangXIfVar{}.
  9228. {\if\edition\racketEd
  9229. Add the following entries to the list of \code{passes} in the
  9230. \code{run-tests.rkt} script:
  9231. \begin{lstlisting}
  9232. (list "build_interference" build_interference interp-pseudo-x86-1)
  9233. (list "allocate_registers" allocate_registers interp-pseudo-x86-1)
  9234. \end{lstlisting}
  9235. \fi}
  9236. % Check that the interference graph that you generate for
  9237. % example X matches the following graph G... -Jeremy
  9238. \end{exercise}
  9239. \section{Patch Instructions}
  9240. The new instructions \key{cmpq} and \key{movzbq} have some special
  9241. restrictions that need to be handled in the \code{patch\_instructions}
  9242. pass.
  9243. %
  9244. The second argument of the \key{cmpq} instruction must not be an
  9245. immediate value (such as an integer). So, if you are comparing two
  9246. immediates, we recommend inserting a \key{movq} instruction to put the
  9247. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  9248. one memory reference.
  9249. %
  9250. The second argument of the \key{movzbq} must be a register.
  9251. \begin{exercise}\normalfont\normalsize
  9252. %
  9253. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  9254. %
  9255. {\if\edition\racketEd
  9256. Add the following entry to the list of \code{passes} in
  9257. \code{run-tests.rkt}, and then run this script to test your compiler.
  9258. \begin{lstlisting}
  9259. (list "patch_instructions" patch_instructions interp-x86-1)
  9260. \end{lstlisting}
  9261. \fi}
  9262. \end{exercise}
  9263. {\if\edition\pythonEd\pythonColor
  9264. \section{Prelude and Conclusion}
  9265. \label{sec:prelude-conclusion-cond}
  9266. The generation of the \code{main} function with its prelude and
  9267. conclusion must change to accommodate how the program now consists of
  9268. one or more basic blocks. After the prelude in \code{main}, jump to
  9269. the \code{start} block. Place the conclusion in a basic block labeled
  9270. with \code{conclusion}.
  9271. \fi}
  9272. Figure~\ref{fig:if-example-x86} shows a simple example program in
  9273. \LangIf{} translated to x86, showing the results of
  9274. \code{explicate\_control}, \code{select\_instructions}, and the final
  9275. x86 assembly.
  9276. \begin{figure}[tbp]
  9277. \begin{tcolorbox}[colback=white]
  9278. {\if\edition\racketEd
  9279. \begin{tabular}{lll}
  9280. \begin{minipage}{0.4\textwidth}
  9281. % cond_test_20.rkt, eq_input.py
  9282. \begin{lstlisting}
  9283. (if (eq? (read) 1) 42 0)
  9284. \end{lstlisting}
  9285. $\Downarrow$
  9286. \begin{lstlisting}
  9287. start:
  9288. tmp7951 = (read);
  9289. if (eq? tmp7951 1)
  9290. goto block7952;
  9291. else
  9292. goto block7953;
  9293. block7952:
  9294. return 42;
  9295. block7953:
  9296. return 0;
  9297. \end{lstlisting}
  9298. $\Downarrow$
  9299. \begin{lstlisting}
  9300. start:
  9301. callq read_int
  9302. movq %rax, tmp7951
  9303. cmpq $1, tmp7951
  9304. je block7952
  9305. jmp block7953
  9306. block7953:
  9307. movq $0, %rax
  9308. jmp conclusion
  9309. block7952:
  9310. movq $42, %rax
  9311. jmp conclusion
  9312. \end{lstlisting}
  9313. \end{minipage}
  9314. &
  9315. $\Rightarrow\qquad$
  9316. \begin{minipage}{0.4\textwidth}
  9317. \begin{lstlisting}
  9318. start:
  9319. callq read_int
  9320. movq %rax, %rcx
  9321. cmpq $1, %rcx
  9322. je block7952
  9323. jmp block7953
  9324. block7953:
  9325. movq $0, %rax
  9326. jmp conclusion
  9327. block7952:
  9328. movq $42, %rax
  9329. jmp conclusion
  9330. .globl main
  9331. main:
  9332. pushq %rbp
  9333. movq %rsp, %rbp
  9334. pushq %r13
  9335. pushq %r12
  9336. pushq %rbx
  9337. pushq %r14
  9338. subq $0, %rsp
  9339. jmp start
  9340. conclusion:
  9341. addq $0, %rsp
  9342. popq %r14
  9343. popq %rbx
  9344. popq %r12
  9345. popq %r13
  9346. popq %rbp
  9347. retq
  9348. \end{lstlisting}
  9349. \end{minipage}
  9350. \end{tabular}
  9351. \fi}
  9352. {\if\edition\pythonEd\pythonColor
  9353. \begin{tabular}{lll}
  9354. \begin{minipage}{0.4\textwidth}
  9355. % cond_test_20.rkt, eq_input.py
  9356. \begin{lstlisting}
  9357. print(42 if input_int() == 1 else 0)
  9358. \end{lstlisting}
  9359. $\Downarrow$
  9360. \begin{lstlisting}
  9361. start:
  9362. tmp_0 = input_int()
  9363. if tmp_0 == 1:
  9364. goto block_3
  9365. else:
  9366. goto block_4
  9367. block_3:
  9368. tmp_1 = 42
  9369. goto block_2
  9370. block_4:
  9371. tmp_1 = 0
  9372. goto block_2
  9373. block_2:
  9374. print(tmp_1)
  9375. return 0
  9376. \end{lstlisting}
  9377. $\Downarrow$
  9378. \begin{lstlisting}
  9379. start:
  9380. callq read_int
  9381. movq %rax, tmp_0
  9382. cmpq 1, tmp_0
  9383. je block_3
  9384. jmp block_4
  9385. block_3:
  9386. movq 42, tmp_1
  9387. jmp block_2
  9388. block_4:
  9389. movq 0, tmp_1
  9390. jmp block_2
  9391. block_2:
  9392. movq tmp_1, %rdi
  9393. callq print_int
  9394. movq 0, %rax
  9395. jmp conclusion
  9396. \end{lstlisting}
  9397. \end{minipage}
  9398. &
  9399. $\Rightarrow\qquad$
  9400. \begin{minipage}{0.4\textwidth}
  9401. \begin{lstlisting}
  9402. .globl main
  9403. main:
  9404. pushq %rbp
  9405. movq %rsp, %rbp
  9406. subq $0, %rsp
  9407. jmp start
  9408. start:
  9409. callq read_int
  9410. movq %rax, %rcx
  9411. cmpq $1, %rcx
  9412. je block_3
  9413. jmp block_4
  9414. block_3:
  9415. movq $42, %rcx
  9416. jmp block_2
  9417. block_4:
  9418. movq $0, %rcx
  9419. jmp block_2
  9420. block_2:
  9421. movq %rcx, %rdi
  9422. callq print_int
  9423. movq $0, %rax
  9424. jmp conclusion
  9425. conclusion:
  9426. addq $0, %rsp
  9427. popq %rbp
  9428. retq
  9429. \end{lstlisting}
  9430. \end{minipage}
  9431. \end{tabular}
  9432. \fi}
  9433. \end{tcolorbox}
  9434. \caption{Example compilation of an \key{if} expression to x86, showing
  9435. the results of \code{explicate\_control},
  9436. \code{select\_instructions}, and the final x86 assembly code. }
  9437. \label{fig:if-example-x86}
  9438. \end{figure}
  9439. \begin{figure}[tbp]
  9440. \begin{tcolorbox}[colback=white]
  9441. {\if\edition\racketEd
  9442. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9443. \node (Lif-2) at (0,2) {\large \LangIf{}};
  9444. \node (Lif-3) at (3,2) {\large \LangIf{}};
  9445. \node (Lif-4) at (6,2) {\large \LangIf{}};
  9446. \node (Lif-5) at (10,2) {\large \LangIfANF{}};
  9447. \node (C1-1) at (0,0) {\large \LangCIf{}};
  9448. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  9449. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  9450. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  9451. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  9452. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  9453. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  9454. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  9455. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  9456. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-5);
  9457. \path[->,bend left=10] (Lif-5) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C1-1);
  9458. \path[->,bend right=15] (C1-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  9459. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9460. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  9461. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  9462. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  9463. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion } (x86-5);
  9464. \end{tikzpicture}
  9465. \fi}
  9466. {\if\edition\pythonEd\pythonColor
  9467. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9468. \node (Lif-1) at (0,2) {\large \LangIf{}};
  9469. \node (Lif-2) at (4,2) {\large \LangIf{}};
  9470. \node (Lif-3) at (8,2) {\large \LangIfANF{}};
  9471. \node (C-1) at (0,0) {\large \LangCIf{}};
  9472. \node (x86-1) at (0,-2) {\large \LangXIfVar{}};
  9473. \node (x86-2) at (4,-2) {\large \LangXIfVar{}};
  9474. \node (x86-3) at (8,-2) {\large \LangXIf{}};
  9475. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  9476. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  9477. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-3);
  9478. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (C-1);
  9479. \path[->,bend right=15] (C-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-1);
  9480. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  9481. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  9482. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  9483. \end{tikzpicture}
  9484. \fi}
  9485. \end{tcolorbox}
  9486. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  9487. \label{fig:Lif-passes}
  9488. \end{figure}
  9489. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  9490. compilation of \LangIf{}.
  9491. \section{Challenge: Optimize Blocks and Remove Jumps}
  9492. \label{sec:opt-jumps}
  9493. We discuss two optional challenges that involve optimizing the
  9494. control-flow of the program.
  9495. \subsection{Optimize Blocks}
  9496. The algorithm for \code{explicate\_control} that we discussed in
  9497. section~\ref{sec:explicate-control-Lif} sometimes generates too many
  9498. blocks. It creates a basic block whenever a continuation \emph{might}
  9499. get used more than once (for example, whenever the \code{cont} parameter is
  9500. passed into two or more recursive calls). However, some continuation
  9501. arguments may not be used at all. For example, consider the case for
  9502. the constant \TRUE{} in \code{explicate\_pred}, in which we discard the
  9503. \code{els} continuation.
  9504. %
  9505. {\if\edition\racketEd
  9506. The following example program falls into this
  9507. case, and it creates two unused blocks.
  9508. \begin{center}
  9509. \begin{tabular}{lll}
  9510. \begin{minipage}{0.4\textwidth}
  9511. % cond_test_82.rkt
  9512. \begin{lstlisting}
  9513. (let ([y (if #t
  9514. (read)
  9515. (if (eq? (read) 0)
  9516. 777
  9517. (let ([x (read)])
  9518. (+ 1 x))))])
  9519. (+ y 2))
  9520. \end{lstlisting}
  9521. \end{minipage}
  9522. &
  9523. $\Rightarrow$
  9524. &
  9525. \begin{minipage}{0.55\textwidth}
  9526. \begin{lstlisting}
  9527. start:
  9528. y = (read);
  9529. goto block_5;
  9530. block_5:
  9531. return (+ y 2);
  9532. block_6:
  9533. y = 777;
  9534. goto block_5;
  9535. block_7:
  9536. x = (read);
  9537. y = (+ 1 x2);
  9538. goto block_5;
  9539. \end{lstlisting}
  9540. \end{minipage}
  9541. \end{tabular}
  9542. \end{center}
  9543. \fi}
  9544. The question is, how can we decide whether to create a basic block?
  9545. \emph{Lazy evaluation}\index{subject}{lazy
  9546. evaluation}~\citep{Friedman:1976aa} can solve this conundrum by
  9547. delaying the creation of a basic block until the point in time at which
  9548. we know that it will be used.
  9549. %
  9550. {\if\edition\racketEd
  9551. %
  9552. Racket provides support for
  9553. lazy evaluation with the
  9554. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  9555. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  9556. \index{subject}{delay} creates a
  9557. \emph{promise}\index{subject}{promise} in which the evaluation of the
  9558. expressions is postponed. When \key{(force}
  9559. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  9560. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  9561. result of $e_n$ is cached in the promise and returned. If \code{force}
  9562. is applied again to the same promise, then the cached result is
  9563. returned. If \code{force} is applied to an argument that is not a
  9564. promise, \code{force} simply returns the argument.
  9565. %
  9566. \fi}
  9567. %
  9568. {\if\edition\pythonEd\pythonColor
  9569. %
  9570. While Python does not provide direct support for lazy evaluation, it
  9571. is easy to mimic. We can \emph{delay} the evaluation of a computation
  9572. by wrapping it inside a function with no parameters. We can
  9573. \emph{force} its evaluation by calling the function. However, we might
  9574. need to force multiple times, so we should memoize the result of
  9575. calling the function. The following \code{Promise} class handles
  9576. this memoization.
  9577. %
  9578. \begin{lstlisting}
  9579. @dataclass
  9580. class Promise:
  9581. fun : types.Any
  9582. cache : list[Stmt] = None
  9583. def force(self):
  9584. if self.cache is None:
  9585. self.cache = self.fun()
  9586. return self.cache
  9587. else:
  9588. return self.cache
  9589. \end{lstlisting}
  9590. %
  9591. However, in some cases of \code{explicate\_pred}, etc., we will return
  9592. a list of statements and in other cases we will return a function that
  9593. computes a list of statements. To uniformly deal with both regular
  9594. data and promises, we define the following \code{force} function that
  9595. checks whether its input is delayed (i.e., whether it is a
  9596. \code{Promise}) and then either 1) forces the promise , or 2) returns
  9597. the input.
  9598. %
  9599. \begin{lstlisting}
  9600. def force(promise):
  9601. if isinstance(promise, Promise):
  9602. return promise.force()
  9603. else:
  9604. return promise
  9605. \end{lstlisting}
  9606. %
  9607. \fi}
  9608. We use promises for the input and output of the functions
  9609. \code{explicate\_pred}, \code{explicate\_assign},
  9610. %
  9611. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  9612. %
  9613. So, instead of taking and returning \racket{$\Tail$
  9614. expressions}\python{lists of statements}, they take and return
  9615. promises. Furthermore, when we come to a situation in which a
  9616. continuation might be used more than once, as in the case for
  9617. \code{if} in \code{explicate\_pred}, we create a delayed computation
  9618. that creates a basic block for each continuation (if there is not
  9619. already one) and then returns a \code{goto} statement to that basic
  9620. block. When we come to a situation in which we have a promise but need an
  9621. actual piece of code, for example, to create a larger piece of code with a
  9622. constructor such as \code{Seq}, then insert a call to \code{force}.
  9623. %
  9624. {\if\edition\racketEd
  9625. %
  9626. Also, we must modify the \code{create\_block} function to begin with
  9627. \code{delay} to create a promise. When forced, this promise forces the
  9628. original promise. If that returns a \code{Goto} (because the block was
  9629. already added to \code{basic-blocks}), then we return the
  9630. \code{Goto}. Otherwise, we add the block to \code{basic-blocks} and
  9631. return a \code{Goto} to the new label.
  9632. \begin{center}
  9633. \begin{minipage}{\textwidth}
  9634. \begin{lstlisting}
  9635. (define (create_block tail)
  9636. (delay
  9637. (define t (force tail))
  9638. (match t
  9639. [(Goto label) (Goto label)]
  9640. [else
  9641. (let ([label (gensym 'block)])
  9642. (set! basic-blocks (cons (cons label t) basic-blocks))
  9643. (Goto label))])))
  9644. \end{lstlisting}
  9645. \end{minipage}
  9646. \end{center}
  9647. \fi}
  9648. {\if\edition\pythonEd\pythonColor
  9649. %
  9650. Here is the new version of the \code{create\_block} auxiliary function
  9651. that works on promises and that checks whether the block consists of a
  9652. solitary \code{goto} statement.\\
  9653. \begin{minipage}{\textwidth}
  9654. \begin{lstlisting}
  9655. def create_block(promise, basic_blocks):
  9656. def delay():
  9657. stmts = force(promise)
  9658. match stmts:
  9659. case [Goto(l)]:
  9660. return [Goto(l)]
  9661. case _:
  9662. label = label_name(generate_name('block'))
  9663. basic_blocks[label] = stmts
  9664. return [Goto(label)]
  9665. return Promise(delay)
  9666. \end{lstlisting}
  9667. \end{minipage}
  9668. \fi}
  9669. Figure~\ref{fig:explicate-control-challenge} shows the output of
  9670. improved \code{explicate\_control} on this example. As you can
  9671. see, the number of basic blocks has been reduced from four blocks (see
  9672. figure~\ref{fig:explicate-control-s1-38}) to two blocks.
  9673. \begin{figure}[tbp]
  9674. \begin{tcolorbox}[colback=white]
  9675. {\if\edition\racketEd
  9676. \begin{tabular}{lll}
  9677. \begin{minipage}{0.4\textwidth}
  9678. % cond_test_82.rkt
  9679. \begin{lstlisting}
  9680. (let ([y (if #t
  9681. (read)
  9682. (if (eq? (read) 0)
  9683. 777
  9684. (let ([x (read)])
  9685. (+ 1 x))))])
  9686. (+ y 2))
  9687. \end{lstlisting}
  9688. \end{minipage}
  9689. &
  9690. $\Rightarrow$
  9691. &
  9692. \begin{minipage}{0.55\textwidth}
  9693. \begin{lstlisting}
  9694. start:
  9695. y = (read);
  9696. goto block_5;
  9697. block_5:
  9698. return (+ y 2);
  9699. \end{lstlisting}
  9700. \end{minipage}
  9701. \end{tabular}
  9702. \fi}
  9703. {\if\edition\pythonEd\pythonColor
  9704. \begin{tabular}{lll}
  9705. \begin{minipage}{0.4\textwidth}
  9706. % cond_test_41.rkt
  9707. \begin{lstlisting}
  9708. x = input_int()
  9709. y = input_int()
  9710. print(y + 2 \
  9711. if (x == 0 \
  9712. if x < 1 \
  9713. else x == 2) \
  9714. else y + 10)
  9715. \end{lstlisting}
  9716. \end{minipage}
  9717. &
  9718. $\Rightarrow$
  9719. &
  9720. \begin{minipage}{0.55\textwidth}
  9721. \begin{lstlisting}
  9722. start:
  9723. x = input_int()
  9724. y = input_int()
  9725. if x < 1:
  9726. goto block_4
  9727. else:
  9728. goto block_5
  9729. block_4:
  9730. if x == 0:
  9731. goto block_2
  9732. else:
  9733. goto block_3
  9734. block_5:
  9735. if x == 2:
  9736. goto block_2
  9737. else:
  9738. goto block_3
  9739. block_2:
  9740. tmp_0 = y + 2
  9741. goto block_1
  9742. block_3:
  9743. tmp_0 = y + 10
  9744. goto block_1
  9745. block_1:
  9746. print(tmp_0)
  9747. return 0
  9748. \end{lstlisting}
  9749. \end{minipage}
  9750. \end{tabular}
  9751. \fi}
  9752. \end{tcolorbox}
  9753. \caption{Translation from \LangIf{} to \LangCIf{}
  9754. via the improved \code{explicate\_control}.}
  9755. \label{fig:explicate-control-challenge}
  9756. \end{figure}
  9757. %% Recall that in the example output of \code{explicate\_control} in
  9758. %% figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  9759. %% \code{block60} are trivial blocks, they do nothing but jump to another
  9760. %% block. The first goal of this challenge assignment is to remove those
  9761. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  9762. %% \code{explicate\_control} on the left and shows the result of bypassing
  9763. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  9764. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  9765. %% \code{block55}. The optimized code on the right of
  9766. %% figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  9767. %% \code{then} branch jumping directly to \code{block55}. The story is
  9768. %% similar for the \code{else} branch, as well as for the two branches in
  9769. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  9770. %% have been optimized in this way, there are no longer any jumps to
  9771. %% blocks \code{block57} through \code{block60}, so they can be removed.
  9772. %% \begin{figure}[tbp]
  9773. %% \begin{tabular}{lll}
  9774. %% \begin{minipage}{0.4\textwidth}
  9775. %% \begin{lstlisting}
  9776. %% block62:
  9777. %% tmp54 = (read);
  9778. %% if (eq? tmp54 2) then
  9779. %% goto block59;
  9780. %% else
  9781. %% goto block60;
  9782. %% block61:
  9783. %% tmp53 = (read);
  9784. %% if (eq? tmp53 0) then
  9785. %% goto block57;
  9786. %% else
  9787. %% goto block58;
  9788. %% block60:
  9789. %% goto block56;
  9790. %% block59:
  9791. %% goto block55;
  9792. %% block58:
  9793. %% goto block56;
  9794. %% block57:
  9795. %% goto block55;
  9796. %% block56:
  9797. %% return (+ 700 77);
  9798. %% block55:
  9799. %% return (+ 10 32);
  9800. %% start:
  9801. %% tmp52 = (read);
  9802. %% if (eq? tmp52 1) then
  9803. %% goto block61;
  9804. %% else
  9805. %% goto block62;
  9806. %% \end{lstlisting}
  9807. %% \end{minipage}
  9808. %% &
  9809. %% $\Rightarrow$
  9810. %% &
  9811. %% \begin{minipage}{0.55\textwidth}
  9812. %% \begin{lstlisting}
  9813. %% block62:
  9814. %% tmp54 = (read);
  9815. %% if (eq? tmp54 2) then
  9816. %% goto block55;
  9817. %% else
  9818. %% goto block56;
  9819. %% block61:
  9820. %% tmp53 = (read);
  9821. %% if (eq? tmp53 0) then
  9822. %% goto block55;
  9823. %% else
  9824. %% goto block56;
  9825. %% block56:
  9826. %% return (+ 700 77);
  9827. %% block55:
  9828. %% return (+ 10 32);
  9829. %% start:
  9830. %% tmp52 = (read);
  9831. %% if (eq? tmp52 1) then
  9832. %% goto block61;
  9833. %% else
  9834. %% goto block62;
  9835. %% \end{lstlisting}
  9836. %% \end{minipage}
  9837. %% \end{tabular}
  9838. %% \caption{Optimize jumps by removing trivial blocks.}
  9839. %% \label{fig:optimize-jumps}
  9840. %% \end{figure}
  9841. %% The name of this pass is \code{optimize-jumps}. We recommend
  9842. %% implementing this pass in two phases. The first phrase builds a hash
  9843. %% table that maps labels to possibly improved labels. The second phase
  9844. %% changes the target of each \code{goto} to use the improved label. If
  9845. %% the label is for a trivial block, then the hash table should map the
  9846. %% label to the first non-trivial block that can be reached from this
  9847. %% label by jumping through trivial blocks. If the label is for a
  9848. %% non-trivial block, then the hash table should map the label to itself;
  9849. %% we do not want to change jumps to non-trivial blocks.
  9850. %% The first phase can be accomplished by constructing an empty hash
  9851. %% table, call it \code{short-cut}, and then iterating over the control
  9852. %% flow graph. Each time you encounter a block that is just a \code{goto},
  9853. %% then update the hash table, mapping the block's source to the target
  9854. %% of the \code{goto}. Also, the hash table may already have mapped some
  9855. %% labels to the block's source, to you must iterate through the hash
  9856. %% table and update all of those so that they instead map to the target
  9857. %% of the \code{goto}.
  9858. %% For the second phase, we recommend iterating through the $\Tail$ of
  9859. %% each block in the program, updating the target of every \code{goto}
  9860. %% according to the mapping in \code{short-cut}.
  9861. \begin{exercise}\normalfont\normalsize
  9862. Implement the improvements to the \code{explicate\_control} pass.
  9863. Check that it removes trivial blocks in a few example programs. Then
  9864. check that your compiler still passes all your tests.
  9865. \end{exercise}
  9866. \subsection{Remove Jumps}
  9867. There is an opportunity for removing jumps that is apparent in the
  9868. example of figure~\ref{fig:if-example-x86}. The \code{start} block
  9869. ends with a jump to \code{block\_5}, and there are no other jumps to
  9870. \code{block\_5} in the rest of the program. In this situation we can
  9871. avoid the runtime overhead of this jump by merging \code{block\_5}
  9872. into the preceding block, which in this case is the \code{start} block.
  9873. Figure~\ref{fig:remove-jumps} shows the output of
  9874. \code{allocate\_registers} on the left and the result of this
  9875. optimization on the right.
  9876. \begin{figure}[tbp]
  9877. \begin{tcolorbox}[colback=white]
  9878. {\if\edition\racketEd
  9879. \begin{tabular}{lll}
  9880. \begin{minipage}{0.5\textwidth}
  9881. % cond_test_82.rkt
  9882. \begin{lstlisting}
  9883. start:
  9884. callq read_int
  9885. movq %rax, %rcx
  9886. jmp block_5
  9887. block_5:
  9888. movq %rcx, %rax
  9889. addq $2, %rax
  9890. jmp conclusion
  9891. \end{lstlisting}
  9892. \end{minipage}
  9893. &
  9894. $\Rightarrow\qquad$
  9895. \begin{minipage}{0.4\textwidth}
  9896. \begin{lstlisting}
  9897. start:
  9898. callq read_int
  9899. movq %rax, %rcx
  9900. movq %rcx, %rax
  9901. addq $2, %rax
  9902. jmp conclusion
  9903. \end{lstlisting}
  9904. \end{minipage}
  9905. \end{tabular}
  9906. \fi}
  9907. {\if\edition\pythonEd\pythonColor
  9908. \begin{tabular}{lll}
  9909. \begin{minipage}{0.5\textwidth}
  9910. % cond_test_20.rkt
  9911. \begin{lstlisting}
  9912. start:
  9913. callq read_int
  9914. movq %rax, tmp_0
  9915. cmpq 1, tmp_0
  9916. je block_3
  9917. jmp block_4
  9918. block_3:
  9919. movq 42, tmp_1
  9920. jmp block_2
  9921. block_4:
  9922. movq 0, tmp_1
  9923. jmp block_2
  9924. block_2:
  9925. movq tmp_1, %rdi
  9926. callq print_int
  9927. movq 0, %rax
  9928. jmp conclusion
  9929. \end{lstlisting}
  9930. \end{minipage}
  9931. &
  9932. $\Rightarrow\qquad$
  9933. \begin{minipage}{0.4\textwidth}
  9934. \begin{lstlisting}
  9935. start:
  9936. callq read_int
  9937. movq %rax, tmp_0
  9938. cmpq 1, tmp_0
  9939. je block_3
  9940. movq 0, tmp_1
  9941. jmp block_2
  9942. block_3:
  9943. movq 42, tmp_1
  9944. jmp block_2
  9945. block_2:
  9946. movq tmp_1, %rdi
  9947. callq print_int
  9948. movq 0, %rax
  9949. jmp conclusion
  9950. \end{lstlisting}
  9951. \end{minipage}
  9952. \end{tabular}
  9953. \fi}
  9954. \end{tcolorbox}
  9955. \caption{Merging basic blocks by removing unnecessary jumps.}
  9956. \label{fig:remove-jumps}
  9957. \end{figure}
  9958. \begin{exercise}\normalfont\normalsize
  9959. %
  9960. Implement a pass named \code{remove\_jumps} that merges basic blocks
  9961. into their preceding basic block, when there is only one preceding
  9962. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  9963. %
  9964. {\if\edition\racketEd
  9965. In the \code{run-tests.rkt} script, add the following entry to the
  9966. list of \code{passes} between \code{allocate\_registers}
  9967. and \code{patch\_instructions}:
  9968. \begin{lstlisting}
  9969. (list "remove_jumps" remove_jumps interp-pseudo-x86-1)
  9970. \end{lstlisting}
  9971. \fi}
  9972. %
  9973. Run the script to test your compiler.
  9974. %
  9975. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  9976. blocks on several test programs.
  9977. \end{exercise}
  9978. \section{Further Reading}
  9979. \label{sec:cond-further-reading}
  9980. The algorithm for the \code{explicate\_control} pass is based on the
  9981. \code{expose-basic-blocks} pass in the course notes of
  9982. \citet{Dybvig:2010aa}.
  9983. %
  9984. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  9985. \citet{Appel:2003fk}, and is related to translations into continuation
  9986. passing
  9987. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  9988. %
  9989. The treatment of conditionals in the \code{explicate\_control} pass is
  9990. similar to short-cut Boolean
  9991. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  9992. and the case-of-case transformation~\citep{PeytonJones:1998}.
  9993. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9994. \chapter{Loops and Dataflow Analysis}
  9995. \label{ch:Lwhile}
  9996. \setcounter{footnote}{0}
  9997. % TODO: define R'_8
  9998. % TODO: multi-graph
  9999. {\if\edition\racketEd
  10000. %
  10001. In this chapter we study two features that are the hallmarks of
  10002. imperative programming languages: loops and assignments to local
  10003. variables. The following example demonstrates these new features by
  10004. computing the sum of the first five positive integers:
  10005. % similar to loop_test_1.rkt
  10006. \begin{lstlisting}
  10007. (let ([sum 0])
  10008. (let ([i 5])
  10009. (begin
  10010. (while (> i 0)
  10011. (begin
  10012. (set! sum (+ sum i))
  10013. (set! i (- i 1))))
  10014. sum)))
  10015. \end{lstlisting}
  10016. The \code{while} loop consists of a condition and a
  10017. body.\footnote{The \code{while} loop is not a built-in
  10018. feature of the Racket language, but Racket includes many looping
  10019. constructs and it is straightforward to define \code{while} as a
  10020. macro.} The body is evaluated repeatedly so long as the condition
  10021. remains true.
  10022. %
  10023. The \code{set!} consists of a variable and a right-hand side
  10024. expression. The \code{set!} updates value of the variable to the
  10025. value of the right-hand side.
  10026. %
  10027. The primary purpose of both the \code{while} loop and \code{set!} is
  10028. to cause side effects, so they do not give a meaningful result
  10029. value. Instead, their result is the \code{\#<void>} value. The
  10030. expression \code{(void)} is an explicit way to create the
  10031. \code{\#<void>} value, and it has type \code{Void}. The
  10032. \code{\#<void>} value can be passed around just like other values
  10033. inside an \LangLoop{} program, and it can be compared for equality with
  10034. another \code{\#<void>} value. However, there are no other operations
  10035. specific to the \code{\#<void>} value in \LangLoop{}. In contrast,
  10036. Racket defines the \code{void?} predicate that returns \code{\#t}
  10037. when applied to \code{\#<void>} and \code{\#f} otherwise.%
  10038. %
  10039. \footnote{Racket's \code{Void} type corresponds to what is often
  10040. called the \code{Unit} type. Racket's \code{Void} type is inhabited
  10041. by a single value \code{\#<void>}, which corresponds to \code{unit}
  10042. or \code{()} in the literature~\citep{Pierce:2002hj}.}
  10043. %
  10044. With the addition of side effect-producing features such as
  10045. \code{while} loop and \code{set!}, it is helpful to include a language
  10046. feature for sequencing side effects: the \code{begin} expression. It
  10047. consists of one or more subexpressions that are evaluated
  10048. left to right.
  10049. %
  10050. \fi}
  10051. {\if\edition\pythonEd\pythonColor
  10052. %
  10053. In this chapter we study loops, one of the hallmarks of imperative
  10054. programming languages. The following example demonstrates the
  10055. \code{while} loop by computing the sum of the first five positive
  10056. integers.
  10057. \begin{lstlisting}
  10058. sum = 0
  10059. i = 5
  10060. while i > 0:
  10061. sum = sum + i
  10062. i = i - 1
  10063. print(sum)
  10064. \end{lstlisting}
  10065. The \code{while} loop consists of a condition expression and a body (a
  10066. sequence of statements). The body is evaluated repeatedly so long as
  10067. the condition remains true.
  10068. %
  10069. \fi}
  10070. \section{The \LangLoop{} Language}
  10071. \newcommand{\LwhileGrammarRacket}{
  10072. \begin{array}{lcl}
  10073. \Type &::=& \key{Void}\\
  10074. \Exp &::=& \CSETBANG{\Var}{\Exp}
  10075. \MID \CBEGIN{\Exp^{*}}{\Exp}
  10076. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  10077. \end{array}
  10078. }
  10079. \newcommand{\LwhileASTRacket}{
  10080. \begin{array}{lcl}
  10081. \Type &::=& \key{Void}\\
  10082. \Exp &::=& \SETBANG{\Var}{\Exp}
  10083. \MID \BEGIN{\Exp^{*}}{\Exp}
  10084. \MID \WHILE{\Exp}{\Exp}
  10085. \MID \VOID{}
  10086. \end{array}
  10087. }
  10088. \newcommand{\LwhileGrammarPython}{
  10089. \begin{array}{rcl}
  10090. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  10091. \end{array}
  10092. }
  10093. \newcommand{\LwhileASTPython}{
  10094. \begin{array}{lcl}
  10095. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10096. \end{array}
  10097. }
  10098. \begin{figure}[tp]
  10099. \centering
  10100. \begin{tcolorbox}[colback=white]
  10101. \small
  10102. {\if\edition\racketEd
  10103. \[
  10104. \begin{array}{l}
  10105. \gray{\LintGrammarRacket{}} \\ \hline
  10106. \gray{\LvarGrammarRacket{}} \\ \hline
  10107. \gray{\LifGrammarRacket{}} \\ \hline
  10108. \LwhileGrammarRacket \\
  10109. \begin{array}{lcl}
  10110. \LangLoopM{} &::=& \Exp
  10111. \end{array}
  10112. \end{array}
  10113. \]
  10114. \fi}
  10115. {\if\edition\pythonEd\pythonColor
  10116. \[
  10117. \begin{array}{l}
  10118. \gray{\LintGrammarPython} \\ \hline
  10119. \gray{\LvarGrammarPython} \\ \hline
  10120. \gray{\LifGrammarPython} \\ \hline
  10121. \LwhileGrammarPython \\
  10122. \begin{array}{rcl}
  10123. \LangLoopM{} &::=& \Stmt^{*}
  10124. \end{array}
  10125. \end{array}
  10126. \]
  10127. \fi}
  10128. \end{tcolorbox}
  10129. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-concrete-syntax}).}
  10130. \label{fig:Lwhile-concrete-syntax}
  10131. \end{figure}
  10132. \begin{figure}[tp]
  10133. \centering
  10134. \begin{tcolorbox}[colback=white]
  10135. \small
  10136. {\if\edition\racketEd
  10137. \[
  10138. \begin{array}{l}
  10139. \gray{\LintOpAST} \\ \hline
  10140. \gray{\LvarASTRacket{}} \\ \hline
  10141. \gray{\LifASTRacket{}} \\ \hline
  10142. \LwhileASTRacket{} \\
  10143. \begin{array}{lcl}
  10144. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10145. \end{array}
  10146. \end{array}
  10147. \]
  10148. \fi}
  10149. {\if\edition\pythonEd\pythonColor
  10150. \[
  10151. \begin{array}{l}
  10152. \gray{\LintASTPython} \\ \hline
  10153. \gray{\LvarASTPython} \\ \hline
  10154. \gray{\LifASTPython} \\ \hline
  10155. \LwhileASTPython \\
  10156. \begin{array}{lcl}
  10157. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10158. \end{array}
  10159. \end{array}
  10160. \]
  10161. \fi}
  10162. \end{tcolorbox}
  10163. \python{
  10164. \index{subject}{While@\texttt{While}}
  10165. }
  10166. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-syntax}).}
  10167. \label{fig:Lwhile-syntax}
  10168. \end{figure}
  10169. Figure~\ref{fig:Lwhile-concrete-syntax} shows the definition of the
  10170. concrete syntax of \LangLoop{}, and figure~\ref{fig:Lwhile-syntax}
  10171. shows the definition of its abstract syntax.
  10172. %
  10173. The definitional interpreter for \LangLoop{} is shown in
  10174. figure~\ref{fig:interp-Lwhile}.
  10175. %
  10176. {\if\edition\racketEd
  10177. %
  10178. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  10179. and \code{Void}, and we make changes to the cases for \code{Var} and
  10180. \code{Let} regarding variables. To support assignment to variables and
  10181. to make their lifetimes indefinite (see the second example in
  10182. section~\ref{sec:assignment-scoping}), we box the value that is bound
  10183. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  10184. value.
  10185. %
  10186. Now we discuss the new cases. For \code{SetBang}, we find the
  10187. variable in the environment to obtain a boxed value, and then we change
  10188. it using \code{set-box!} to the result of evaluating the right-hand
  10189. side. The result value of a \code{SetBang} is \code{\#<void>}.
  10190. %
  10191. For the \code{WhileLoop}, we repeatedly (1) evaluate the condition, and
  10192. if the result is true, (2) evaluate the body.
  10193. The result value of a \code{while} loop is also \code{\#<void>}.
  10194. %
  10195. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  10196. subexpressions \itm{es} for their effects and then evaluates
  10197. and returns the result from \itm{body}.
  10198. %
  10199. The $\VOID{}$ expression produces the \code{\#<void>} value.
  10200. %
  10201. \fi}
  10202. {\if\edition\pythonEd\pythonColor
  10203. %
  10204. We add a new case for \code{While} in the \code{interp\_stmts}
  10205. function, where we repeatedly interpret the \code{body} so long as the
  10206. \code{test} expression remains true.
  10207. %
  10208. \fi}
  10209. \begin{figure}[tbp]
  10210. \begin{tcolorbox}[colback=white]
  10211. {\if\edition\racketEd
  10212. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10213. (define interp-Lwhile-class
  10214. (class interp-Lif-class
  10215. (super-new)
  10216. (define/override ((interp-exp env) e)
  10217. (define recur (interp-exp env))
  10218. (match e
  10219. [(Let x e body)
  10220. (define new-env (dict-set env x (box (recur e))))
  10221. ((interp-exp new-env) body)]
  10222. [(Var x) (unbox (dict-ref env x))]
  10223. [(SetBang x rhs)
  10224. (set-box! (dict-ref env x) (recur rhs))]
  10225. [(WhileLoop cnd body)
  10226. (define (loop)
  10227. (cond [(recur cnd) (recur body) (loop)]
  10228. [else (void)]))
  10229. (loop)]
  10230. [(Begin es body)
  10231. (for ([e es]) (recur e))
  10232. (recur body)]
  10233. [(Void) (void)]
  10234. [else ((super interp-exp env) e)]))
  10235. ))
  10236. (define (interp-Lwhile p)
  10237. (send (new interp-Lwhile-class) interp-program p))
  10238. \end{lstlisting}
  10239. \fi}
  10240. {\if\edition\pythonEd\pythonColor
  10241. \begin{lstlisting}
  10242. class InterpLwhile(InterpLif):
  10243. def interp_stmt(self, s, env, cont):
  10244. match s:
  10245. case While(test, body, []):
  10246. if self.interp_exp(test, env):
  10247. self.interp_stmts(body + [s] + cont, env)
  10248. else:
  10249. return self.interp_stmts(cont, env)
  10250. case _:
  10251. return super().interp_stmt(s, env, cont)
  10252. \end{lstlisting}
  10253. \fi}
  10254. \end{tcolorbox}
  10255. \caption{Interpreter for \LangLoop{}.}
  10256. \label{fig:interp-Lwhile}
  10257. \end{figure}
  10258. The definition of the type checker for \LangLoop{} is shown in
  10259. figure~\ref{fig:type-check-Lwhile}.
  10260. %
  10261. {\if\edition\racketEd
  10262. %
  10263. The type checking of the \code{SetBang} expression requires the type
  10264. of the variable and the right-hand side to agree. The result type is
  10265. \code{Void}. For \code{while}, the condition must be a \BOOLTY{}
  10266. and the result type is \code{Void}. For \code{Begin}, the result type
  10267. is the type of its last subexpression.
  10268. %
  10269. \fi}
  10270. %
  10271. {\if\edition\pythonEd\pythonColor
  10272. %
  10273. A \code{while} loop is well typed if the type of the \code{test}
  10274. expression is \code{bool} and the statements in the \code{body} are
  10275. well typed.
  10276. %
  10277. \fi}
  10278. \begin{figure}[tbp]
  10279. \begin{tcolorbox}[colback=white]
  10280. {\if\edition\racketEd
  10281. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10282. (define type-check-Lwhile-class
  10283. (class type-check-Lif-class
  10284. (super-new)
  10285. (inherit check-type-equal?)
  10286. (define/override (type-check-exp env)
  10287. (lambda (e)
  10288. (define recur (type-check-exp env))
  10289. (match e
  10290. [(SetBang x rhs)
  10291. (define-values (rhs^ rhsT) (recur rhs))
  10292. (define varT (dict-ref env x))
  10293. (check-type-equal? rhsT varT e)
  10294. (values (SetBang x rhs^) 'Void)]
  10295. [(WhileLoop cnd body)
  10296. (define-values (cnd^ Tc) (recur cnd))
  10297. (check-type-equal? Tc 'Boolean e)
  10298. (define-values (body^ Tbody) ((type-check-exp env) body))
  10299. (values (WhileLoop cnd^ body^) 'Void)]
  10300. [(Begin es body)
  10301. (define-values (es^ ts)
  10302. (for/lists (l1 l2) ([e es]) (recur e)))
  10303. (define-values (body^ Tbody) (recur body))
  10304. (values (Begin es^ body^) Tbody)]
  10305. [else ((super type-check-exp env) e)])))
  10306. ))
  10307. (define (type-check-Lwhile p)
  10308. (send (new type-check-Lwhile-class) type-check-program p))
  10309. \end{lstlisting}
  10310. \fi}
  10311. {\if\edition\pythonEd\pythonColor
  10312. \begin{lstlisting}
  10313. class TypeCheckLwhile(TypeCheckLif):
  10314. def type_check_stmts(self, ss, env):
  10315. if len(ss) == 0:
  10316. return
  10317. match ss[0]:
  10318. case While(test, body, []):
  10319. test_t = self.type_check_exp(test, env)
  10320. check_type_equal(bool, test_t, test)
  10321. body_t = self.type_check_stmts(body, env)
  10322. return self.type_check_stmts(ss[1:], env)
  10323. case _:
  10324. return super().type_check_stmts(ss, env)
  10325. \end{lstlisting}
  10326. \fi}
  10327. \end{tcolorbox}
  10328. \caption{Type checker for the \LangLoop{} language.}
  10329. \label{fig:type-check-Lwhile}
  10330. \end{figure}
  10331. {\if\edition\racketEd
  10332. %
  10333. At first glance, the translation of these language features to x86
  10334. seems straightforward because the \LangCIf{} intermediate language
  10335. already supports all the ingredients that we need: assignment,
  10336. \code{goto}, conditional branching, and sequencing. However, there are
  10337. complications that arise, which we discuss in the next section. After
  10338. that we introduce the changes necessary to the existing passes.
  10339. %
  10340. \fi}
  10341. {\if\edition\pythonEd\pythonColor
  10342. %
  10343. At first glance, the translation of \code{while} loops to x86 seems
  10344. straightforward because the \LangCIf{} intermediate language already
  10345. supports \code{goto} and conditional branching. However, there are
  10346. complications that arise which we discuss in the next section. After
  10347. that we introduce the changes necessary to the existing passes.
  10348. %
  10349. \fi}
  10350. \section{Cyclic Control Flow and Dataflow Analysis}
  10351. \label{sec:dataflow-analysis}
  10352. Up until this point, the programs generated in
  10353. \code{explicate\_control} were guaranteed to be acyclic. However, each
  10354. \code{while} loop introduces a cycle. Does that matter?
  10355. %
  10356. Indeed, it does. Recall that for register allocation, the compiler
  10357. performs liveness analysis to determine which variables can share the
  10358. same register. To accomplish this, we analyzed the control-flow graph
  10359. in reverse topological order
  10360. (section~\ref{sec:liveness-analysis-Lif}), but topological order is
  10361. well defined only for acyclic graphs.
  10362. Let us return to the example of computing the sum of the first five
  10363. positive integers. Here is the program after instruction
  10364. selection\index{subject}{instruction selection} but before register
  10365. allocation.
  10366. \begin{center}
  10367. {\if\edition\racketEd
  10368. \begin{minipage}{0.45\textwidth}
  10369. \begin{lstlisting}
  10370. (define (main) : Integer
  10371. mainstart:
  10372. movq $0, sum
  10373. movq $5, i
  10374. jmp block5
  10375. block5:
  10376. movq i, tmp3
  10377. cmpq tmp3, $0
  10378. jl block7
  10379. jmp block8
  10380. \end{lstlisting}
  10381. \end{minipage}
  10382. \begin{minipage}{0.45\textwidth}
  10383. \begin{lstlisting}
  10384. block7:
  10385. addq i, sum
  10386. movq $1, tmp4
  10387. negq tmp4
  10388. addq tmp4, i
  10389. jmp block5
  10390. block8:
  10391. movq $27, %rax
  10392. addq sum, %rax
  10393. jmp mainconclusion)
  10394. \end{lstlisting}
  10395. \end{minipage}
  10396. \fi}
  10397. {\if\edition\pythonEd\pythonColor
  10398. \begin{minipage}{0.45\textwidth}
  10399. \begin{lstlisting}
  10400. mainstart:
  10401. movq $0, sum
  10402. movq $5, i
  10403. jmp block5
  10404. block5:
  10405. cmpq $0, i
  10406. jg block7
  10407. jmp block8
  10408. \end{lstlisting}
  10409. \end{minipage}
  10410. \begin{minipage}{0.45\textwidth}
  10411. \begin{lstlisting}
  10412. block7:
  10413. addq i, sum
  10414. subq $1, i
  10415. jmp block5
  10416. block8:
  10417. movq sum, %rdi
  10418. callq print_int
  10419. movq $0, %rax
  10420. jmp mainconclusion
  10421. \end{lstlisting}
  10422. \end{minipage}
  10423. \fi}
  10424. \end{center}
  10425. Recall that liveness analysis works backward, starting at the end
  10426. of each function. For this example we could start with \code{block8}
  10427. because we know what is live at the beginning of the conclusion:
  10428. only \code{rax} and \code{rsp}. So the live-before set
  10429. for \code{block8} is \code{\{rsp,sum\}}.
  10430. %
  10431. Next we might try to analyze \code{block5} or \code{block7}, but
  10432. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  10433. we are stuck.
  10434. The way out of this impasse is to realize that we can compute an
  10435. underapproximation of each live-before set by starting with empty
  10436. live-after sets. By \emph{underapproximation}, we mean that the set
  10437. contains only variables that are live for some execution of the
  10438. program, but the set may be missing some variables that are live.
  10439. Next, the underapproximations for each block can be improved by (1)
  10440. updating the live-after set for each block using the approximate
  10441. live-before sets from the other blocks, and (2) performing liveness
  10442. analysis again on each block. In fact, by iterating this process, the
  10443. underapproximations eventually become the correct solutions!
  10444. %
  10445. This approach of iteratively analyzing a control-flow graph is
  10446. applicable to many static analysis problems and goes by the name
  10447. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  10448. \citet{Kildall:1973vn} in his PhD thesis at the University of
  10449. Washington.
  10450. Let us apply this approach to the previously presented example. We use
  10451. the empty set for the initial live-before set for each block. Let
  10452. $m_0$ be the following mapping from label names to sets of locations
  10453. (variables and registers):
  10454. \begin{center}
  10455. \begin{lstlisting}
  10456. mainstart: {}, block5: {}, block7: {}, block8: {}
  10457. \end{lstlisting}
  10458. \end{center}
  10459. Using the above live-before approximations, we determine the
  10460. live-after for each block and then apply liveness analysis to each
  10461. block. This produces our next approximation $m_1$ of the live-before
  10462. sets.
  10463. \begin{center}
  10464. \begin{lstlisting}
  10465. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  10466. \end{lstlisting}
  10467. \end{center}
  10468. For the second round, the live-after for \code{mainstart} is the
  10469. current live-before for \code{block5}, which is \code{\{i\}}. Therefore
  10470. the liveness analysis for \code{mainstart} computes the empty set. The
  10471. live-after for \code{block5} is the union of the live-before sets for
  10472. \code{block7} and \code{block8}, which is \code{\{i, rsp, sum\}}.
  10473. So the liveness analysis for \code{block5} computes \code{\{i, rsp,
  10474. sum\}}. The live-after for \code{block7} is the live-before for
  10475. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  10476. So the liveness analysis for \code{block7} remains \code{\{i, sum\}}.
  10477. Together these yield the following approximation $m_2$ of
  10478. the live-before sets:
  10479. \begin{center}
  10480. \begin{lstlisting}
  10481. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  10482. \end{lstlisting}
  10483. \end{center}
  10484. In the preceding iteration, only \code{block5} changed, so we can
  10485. limit our attention to \code{mainstart} and \code{block7}, the two
  10486. blocks that jump to \code{block5}. As a result, the live-before sets
  10487. for \code{mainstart} and \code{block7} are updated to include
  10488. \code{rsp}, yielding the following approximation $m_3$:
  10489. \begin{center}
  10490. \begin{lstlisting}
  10491. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  10492. \end{lstlisting}
  10493. \end{center}
  10494. Because \code{block7} changed, we analyze \code{block5} once more, but
  10495. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  10496. our approximations have converged, so $m_3$ is the solution.
  10497. This iteration process is guaranteed to converge to a solution by the
  10498. Kleene fixed-point theorem, a general theorem about functions on
  10499. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  10500. any collection that comes with a partial ordering\index{subject}{partialordering@partial ordering} $\sqsubseteq$ on its
  10501. elements, a least element $\bot$ (pronounced \emph{bottom}), and a
  10502. join operator
  10503. $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{join}\footnote{Technically speaking, we
  10504. will be working with join semilattices.} When two elements are
  10505. ordered $m_i \sqsubseteq m_j$, it means that $m_j$ contains at least
  10506. as much information as $m_i$, so we can think of $m_j$ as a
  10507. better-than-or-equal-to approximation in relation to $m_i$. The
  10508. bottom element $\bot$ represents the complete lack of information,
  10509. that is, the worst approximation. The join operator takes two lattice
  10510. elements and combines their information; that is, it produces the
  10511. least upper bound of the two.\index{subject}{least upper bound}
  10512. A dataflow analysis typically involves two lattices: one lattice to
  10513. represent abstract states and another lattice that aggregates the
  10514. abstract states of all the blocks in the control-flow graph. For
  10515. liveness analysis, an abstract state is a set of locations. We form
  10516. the lattice $L$ by taking its elements to be sets of locations, the
  10517. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  10518. set, and the join operator to be set union.
  10519. %
  10520. We form a second lattice $M$ by taking its elements to be mappings
  10521. from the block labels to sets of locations (elements of $L$). We
  10522. order the mappings point-wise, using the ordering of $L$. So, given any
  10523. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  10524. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  10525. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  10526. to the empty set; that is, $\bot_M(\ell) = \emptyset$.
  10527. We can think of one iteration of liveness analysis applied to the
  10528. whole program as being a function $f$ on the lattice $M$. It takes a
  10529. mapping as input and computes a new mapping.
  10530. \[
  10531. f(m_i) = m_{i+1}
  10532. \]
  10533. Next let us think for a moment about what a final solution $m_s$
  10534. should look like. If we perform liveness analysis using the solution
  10535. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  10536. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  10537. \[
  10538. f(m_s) = m_s
  10539. \]
  10540. Furthermore, the solution should include only locations that are
  10541. forced to be there by performing liveness analysis on the program, so
  10542. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  10543. The Kleene fixed-point theorem states that if a function $f$ is
  10544. monotone (better inputs produce better outputs), then the least fixed
  10545. point of $f$ is the least upper bound of the \emph{ascending Kleene
  10546. chain} obtained by starting at $\bot$ and iterating $f$, as
  10547. follows:\index{subject}{Kleene fixed-point theorem}
  10548. \[
  10549. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10550. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  10551. \]
  10552. When a lattice contains only finitely long ascending chains, then
  10553. every Kleene chain tops out at some fixed point after some number of
  10554. iterations of $f$.
  10555. \[
  10556. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10557. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  10558. \]
  10559. The liveness analysis is indeed a monotone function and the lattice
  10560. $M$ has finitely long ascending chains because there are only a
  10561. finite number of variables and blocks in the program. Thus we are
  10562. guaranteed that iteratively applying liveness analysis to all blocks
  10563. in the program will eventually produce the least fixed point solution.
  10564. Next let us consider dataflow analysis in general and discuss the
  10565. generic work list algorithm (figure~\ref{fig:generic-dataflow}).
  10566. %
  10567. The algorithm has four parameters: the control-flow graph \code{G}, a
  10568. function \code{transfer} that applies the analysis to one block, and the
  10569. \code{bottom} and \code{join} operators for the lattice of abstract
  10570. states. The \code{analyze\_dataflow} function is formulated as a
  10571. \emph{forward} dataflow analysis; that is, the inputs to the transfer
  10572. function come from the predecessor nodes in the control-flow
  10573. graph. However, liveness analysis is a \emph{backward} dataflow
  10574. analysis, so in that case one must supply the \code{analyze\_dataflow}
  10575. function with the transpose of the control-flow graph.
  10576. The algorithm begins by creating the bottom mapping, represented by a
  10577. hash table. It then pushes all the nodes in the control-flow graph
  10578. onto the work list (a queue). The algorithm repeats the \code{while}
  10579. loop as long as there are items in the work list. In each iteration, a
  10580. node is popped from the work list and processed. The \code{input} for
  10581. the node is computed by taking the join of the abstract states of all
  10582. the predecessor nodes. The \code{transfer} function is then applied to
  10583. obtain the \code{output} abstract state. If the output differs from
  10584. the previous state for this block, the mapping for this block is
  10585. updated and its successor nodes are pushed onto the work list.
  10586. \begin{figure}[tb]
  10587. \begin{tcolorbox}[colback=white]
  10588. {\if\edition\racketEd
  10589. \begin{lstlisting}
  10590. (define (analyze_dataflow G transfer bottom join)
  10591. (define mapping (make-hash))
  10592. (for ([v (in-vertices G)])
  10593. (dict-set! mapping v bottom))
  10594. (define worklist (make-queue))
  10595. (for ([v (in-vertices G)])
  10596. (enqueue! worklist v))
  10597. (define trans-G (transpose G))
  10598. (while (not (queue-empty? worklist))
  10599. (define node (dequeue! worklist))
  10600. (define input (for/fold ([state bottom])
  10601. ([pred (in-neighbors trans-G node)])
  10602. (join state (dict-ref mapping pred))))
  10603. (define output (transfer node input))
  10604. (cond [(not (equal? output (dict-ref mapping node)))
  10605. (dict-set! mapping node output)
  10606. (for ([v (in-neighbors G node)])
  10607. (enqueue! worklist v))]))
  10608. mapping)
  10609. \end{lstlisting}
  10610. \fi}
  10611. {\if\edition\pythonEd\pythonColor
  10612. \begin{lstlisting}
  10613. def analyze_dataflow(G, transfer, bottom, join):
  10614. trans_G = transpose(G)
  10615. mapping = dict((v, bottom) for v in G.vertices())
  10616. worklist = deque(G.vertices)
  10617. while worklist:
  10618. node = worklist.pop()
  10619. inputs = [mapping[v] for v in trans_G.adjacent(node)]
  10620. input = reduce(join, inputs, bottom)
  10621. output = transfer(node, input)
  10622. if output != mapping[node]:
  10623. mapping[node] = output
  10624. worklist.extend(G.adjacent(node))
  10625. \end{lstlisting}
  10626. \fi}
  10627. \end{tcolorbox}
  10628. \caption{Generic work list algorithm for dataflow analysis.}
  10629. \label{fig:generic-dataflow}
  10630. \end{figure}
  10631. {\if\edition\racketEd
  10632. \section{Mutable Variables and Remove Complex Operands}
  10633. There is a subtle interaction between the
  10634. \code{remove\_complex\_operands} pass, the addition of \code{set!},
  10635. and the left-to-right order of evaluation of Racket. Consider the
  10636. following example:
  10637. \begin{lstlisting}
  10638. (let ([x 2])
  10639. (+ x (begin (set! x 40) x)))
  10640. \end{lstlisting}
  10641. The result of this program is \code{42} because the first read from
  10642. \code{x} produces \code{2} and the second produces \code{40}. However,
  10643. if we naively apply the \code{remove\_complex\_operands} pass to this
  10644. example we obtain the following program whose result is \code{80}!
  10645. \begin{lstlisting}
  10646. (let ([x 2])
  10647. (let ([tmp (begin (set! x 40) x)])
  10648. (+ x tmp)))
  10649. \end{lstlisting}
  10650. The problem is that with mutable variables, the ordering between
  10651. reads and writes is important, and the
  10652. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  10653. before the first read of \code{x}.
  10654. We recommend solving this problem by giving special treatment to reads
  10655. from mutable variables, that is, variables that occur on the left-hand
  10656. side of a \code{set!}. We mark each read from a mutable variable with
  10657. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  10658. that the read operation is effectful in that it can produce different
  10659. results at different points in time. Let's apply this idea to the
  10660. following variation that also involves a variable that is not mutated:
  10661. % loop_test_24.rkt
  10662. \begin{lstlisting}
  10663. (let ([x 2])
  10664. (let ([y 0])
  10665. (+ y (+ x (begin (set! x 40) x)))))
  10666. \end{lstlisting}
  10667. We first analyze this program to discover that variable \code{x}
  10668. is mutable but \code{y} is not. We then transform the program as
  10669. follows, replacing each occurrence of \code{x} with \code{(get! x)}:
  10670. \begin{lstlisting}
  10671. (let ([x 2])
  10672. (let ([y 0])
  10673. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  10674. \end{lstlisting}
  10675. Now that we have a clear distinction between reads from mutable and
  10676. immutable variables, we can apply the \code{remove\_complex\_operands}
  10677. pass, where reads from immutable variables are still classified as
  10678. atomic expressions but reads from mutable variables are classified as
  10679. complex. Thus, \code{remove\_complex\_operands} yields the following
  10680. program:\\
  10681. \begin{minipage}{\textwidth}
  10682. \begin{lstlisting}
  10683. (let ([x 2])
  10684. (let ([y 0])
  10685. (let ([t1 x])
  10686. (let ([t2 (begin (set! x 40) x)])
  10687. (let ([t3 (+ t1 t2)])
  10688. (+ y t3))))))
  10689. \end{lstlisting}
  10690. \end{minipage}
  10691. The temporary variable \code{t1} gets the value of \code{x} before the
  10692. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  10693. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  10694. do not generate a temporary variable for the occurrence of \code{y}
  10695. because it's an immutable variable. We want to avoid such unnecessary
  10696. extra temporaries because they would needlessly increase the number of
  10697. variables, making it more likely for some of them to be spilled. The
  10698. result of this program is \code{42}, the same as the result prior to
  10699. \code{remove\_complex\_operands}.
  10700. The approach that we've sketched requires only a small
  10701. modification to \code{remove\_complex\_operands} to handle
  10702. \code{get!}. However, it requires a new pass, called
  10703. \code{uncover-get!}, that we discuss in
  10704. section~\ref{sec:uncover-get-bang}.
  10705. As an aside, this problematic interaction between \code{set!} and the
  10706. pass \code{remove\_complex\_operands} is particular to Racket and not
  10707. its predecessor, the Scheme language. The key difference is that
  10708. Scheme does not specify an order of evaluation for the arguments of an
  10709. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  10710. Scheme is free to choose any ordering: both \code{42} and \code{80}
  10711. would be correct results for the example program. Interestingly,
  10712. Racket is implemented on top of the Chez Scheme
  10713. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  10714. presented in this section (using extra \code{let} bindings to control
  10715. the order of evaluation) is used in the translation from Racket to
  10716. Scheme~\citep{Flatt:2019tb}.
  10717. \fi} % racket
  10718. Having discussed the complications that arise from adding support for
  10719. assignment and loops, we turn to discussing the individual compilation
  10720. passes.
  10721. {\if\edition\racketEd
  10722. \section{Uncover \texttt{get!}}
  10723. \label{sec:uncover-get-bang}
  10724. The goal of this pass is to mark uses of mutable variables so that
  10725. \code{remove\_complex\_operands} can treat them as complex expressions
  10726. and thereby preserve their ordering relative to the side effects in
  10727. other operands. So, the first step is to collect all the mutable
  10728. variables. We recommend creating an auxiliary function for this,
  10729. named \code{collect-set!}, that recursively traverses expressions,
  10730. returning the set of all variables that occur on the left-hand side of a
  10731. \code{set!}. Here's an excerpt of its implementation.
  10732. \begin{center}
  10733. \begin{minipage}{\textwidth}
  10734. \begin{lstlisting}
  10735. (define (collect-set! e)
  10736. (match e
  10737. [(Var x) (set)]
  10738. [(Int n) (set)]
  10739. [(Let x rhs body)
  10740. (set-union (collect-set! rhs) (collect-set! body))]
  10741. [(SetBang var rhs)
  10742. (set-union (set var) (collect-set! rhs))]
  10743. ...))
  10744. \end{lstlisting}
  10745. \end{minipage}
  10746. \end{center}
  10747. By placing this pass after \code{uniquify}, we need not worry about
  10748. variable shadowing, and our logic for \code{Let} can remain simple, as
  10749. in this excerpt.
  10750. The second step is to mark the occurrences of the mutable variables
  10751. with the new \code{GetBang} AST node (\code{get!} in concrete
  10752. syntax). The following is an excerpt of the \code{uncover-get!-exp}
  10753. function, which takes two parameters: the set of mutable variables
  10754. \code{set!-vars} and the expression \code{e} to be processed. The
  10755. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  10756. mutable variable or leaves it alone if not.
  10757. \begin{center}
  10758. \begin{minipage}{\textwidth}
  10759. \begin{lstlisting}
  10760. (define ((uncover-get!-exp set!-vars) e)
  10761. (match e
  10762. [(Var x)
  10763. (if (set-member? set!-vars x)
  10764. (GetBang x)
  10765. (Var x))]
  10766. ...))
  10767. \end{lstlisting}
  10768. \end{minipage}
  10769. \end{center}
  10770. To wrap things up, define the \code{uncover-get!} function for
  10771. processing a whole program, using \code{collect-set!} to obtain the
  10772. set of mutable variables and then \code{uncover-get!-exp} to replace
  10773. their occurrences with \code{GetBang}.
  10774. \fi}
  10775. \section{Remove Complex Operands}
  10776. \label{sec:rco-loop}
  10777. {\if\edition\racketEd
  10778. %
  10779. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  10780. \code{while} are all complex expressions. The subexpressions of
  10781. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  10782. %
  10783. \fi}
  10784. {\if\edition\pythonEd\pythonColor
  10785. %
  10786. The change needed for this pass is to add a case for the \code{while}
  10787. statement. The condition of a \code{while} loop is allowed to be a
  10788. complex expression, just like the condition of the \code{if}
  10789. statement.
  10790. %
  10791. \fi}
  10792. %
  10793. Figure~\ref{fig:Lwhile-anf-syntax} defines the output language
  10794. \LangLoopANF{} of this pass.
  10795. \newcommand{\LwhileMonadASTRacket}{
  10796. \begin{array}{rcl}
  10797. \Atm &::=& \VOID{} \\
  10798. \Exp &::=& \GETBANG{\Var}
  10799. \MID \SETBANG{\Var}{\Exp}
  10800. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  10801. &\MID& \WHILE{\Exp}{\Exp}
  10802. \end{array}
  10803. }
  10804. \newcommand{\LwhileMonadASTPython}{
  10805. \begin{array}{rcl}
  10806. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10807. \end{array}
  10808. }
  10809. \begin{figure}[tp]
  10810. \centering
  10811. \begin{tcolorbox}[colback=white]
  10812. \small
  10813. {\if\edition\racketEd
  10814. \[
  10815. \begin{array}{l}
  10816. \gray{\LvarMonadASTRacket} \\ \hline
  10817. \gray{\LifMonadASTRacket} \\ \hline
  10818. \LwhileMonadASTRacket \\
  10819. \begin{array}{rcl}
  10820. \LangLoopANF &::=& \PROGRAM{\code{'()}}{\Exp}
  10821. \end{array}
  10822. \end{array}
  10823. \]
  10824. \fi}
  10825. {\if\edition\pythonEd\pythonColor
  10826. \[
  10827. \begin{array}{l}
  10828. \gray{\LvarMonadASTPython} \\ \hline
  10829. \gray{\LifMonadASTPython} \\ \hline
  10830. \LwhileMonadASTPython \\
  10831. \begin{array}{rcl}
  10832. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  10833. \end{array}
  10834. \end{array}
  10835. %% \begin{array}{rcl}
  10836. %% \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  10837. %% \Exp &::=& \Atm \MID \READ{} \\
  10838. %% &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm} \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  10839. %% &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  10840. %% % &\MID& \LET{\Var}{\Exp}{\Exp}\\ % Why?
  10841. %% \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  10842. %% &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  10843. %% &\MID& \WHILESTMT{\Exp}{\Stmt^{+}} \\
  10844. %% \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  10845. %% \end{array}
  10846. \]
  10847. \fi}
  10848. \end{tcolorbox}
  10849. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  10850. \label{fig:Lwhile-anf-syntax}
  10851. \end{figure}
  10852. {\if\edition\racketEd
  10853. %
  10854. As usual, when a complex expression appears in a grammar position that
  10855. needs to be atomic, such as the argument of a primitive operator, we
  10856. must introduce a temporary variable and bind it to the complex
  10857. expression. This approach applies, unchanged, to handle the new
  10858. language forms. For example, in the following code there are two
  10859. \code{begin} expressions appearing as arguments to the \code{+}
  10860. operator. The output of \code{rco\_exp} is then shown, in which the
  10861. \code{begin} expressions have been bound to temporary
  10862. variables. Recall that \code{let} expressions in \LangLoopANF{} are
  10863. allowed to have arbitrary expressions in their right-hand side
  10864. expression, so it is fine to place \code{begin} there.
  10865. %
  10866. \begin{center}
  10867. \begin{tabular}{lcl}
  10868. \begin{minipage}{0.4\textwidth}
  10869. \begin{lstlisting}
  10870. (let ([x2 10])
  10871. (let ([y3 0])
  10872. (+ (+ (begin
  10873. (set! y3 (read))
  10874. (get! x2))
  10875. (begin
  10876. (set! x2 (read))
  10877. (get! y3)))
  10878. (get! x2))))
  10879. \end{lstlisting}
  10880. \end{minipage}
  10881. &
  10882. $\Rightarrow$
  10883. &
  10884. \begin{minipage}{0.4\textwidth}
  10885. \begin{lstlisting}
  10886. (let ([x2 10])
  10887. (let ([y3 0])
  10888. (let ([tmp4 (begin
  10889. (set! y3 (read))
  10890. x2)])
  10891. (let ([tmp5 (begin
  10892. (set! x2 (read))
  10893. y3)])
  10894. (let ([tmp6 (+ tmp4 tmp5)])
  10895. (let ([tmp7 x2])
  10896. (+ tmp6 tmp7)))))))
  10897. \end{lstlisting}
  10898. \end{minipage}
  10899. \end{tabular}
  10900. \end{center}
  10901. \fi}
  10902. \section{Explicate Control \racket{and \LangCLoop{}}}
  10903. \label{sec:explicate-loop}
  10904. \newcommand{\CloopASTRacket}{
  10905. \begin{array}{lcl}
  10906. \Atm &::=& \VOID \\
  10907. \Stmt &::=& \READ{}
  10908. \end{array}
  10909. }
  10910. {\if\edition\racketEd
  10911. Recall that in the \code{explicate\_control} pass we define one helper
  10912. function for each kind of position in the program. For the \LangVar{}
  10913. language of integers and variables, we needed assignment and tail
  10914. positions. The \code{if} expressions of \LangIf{} introduced predicate
  10915. positions. For \LangLoop{}, the \code{begin} expression introduces yet
  10916. another kind of position: effect position. Except for the last
  10917. subexpression, the subexpressions inside a \code{begin} are evaluated
  10918. only for their effect. Their result values are discarded. We can
  10919. generate better code by taking this fact into account.
  10920. The output language of \code{explicate\_control} is \LangCLoop{}
  10921. (figure~\ref{fig:c7-syntax}), which is nearly identical to
  10922. \LangCIf{}. The only syntactic differences are the addition of \VOID{}
  10923. and that \code{read} may appear as a statement. The most significant
  10924. difference between the programs generated by \code{explicate\_control}
  10925. in chapter~\ref{ch:Lif} versus \code{explicate\_control} in this
  10926. chapter is that the control-flow graphs of the latter may contain
  10927. cycles.
  10928. \begin{figure}[tp]
  10929. \begin{tcolorbox}[colback=white]
  10930. \small
  10931. \[
  10932. \begin{array}{l}
  10933. \gray{\CvarASTRacket} \\ \hline
  10934. \gray{\CifASTRacket} \\ \hline
  10935. \CloopASTRacket \\
  10936. \begin{array}{lcl}
  10937. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  10938. \end{array}
  10939. \end{array}
  10940. \]
  10941. \end{tcolorbox}
  10942. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  10943. \label{fig:c7-syntax}
  10944. \end{figure}
  10945. The new auxiliary function \code{explicate\_effect} takes an
  10946. expression (in an effect position) and the code for its
  10947. continuation. The function returns a $\Tail$ that includes the
  10948. generated code for the input expression followed by the
  10949. continuation. If the expression is obviously pure, that is, never
  10950. causes side effects, then the expression can be removed, so the result
  10951. is just the continuation.
  10952. %
  10953. The case for $\WHILE{\itm{cnd}}{\itm{body}}$ expressions is
  10954. interesting; the generated code is depicted in the following diagram:
  10955. \begin{center}
  10956. \begin{minipage}{0.3\textwidth}
  10957. \xymatrix{
  10958. *+[F=]{\txt{\code{goto} \itm{loop}}} \ar[r]
  10959. & *+[F]{\txt{\itm{loop}: \\ \itm{cnd'}}} \ar[r]^{else} \ar[d]^{then}
  10960. & *+[F]{\txt{\itm{cont}}} \\
  10961. & *+[F]{\txt{\itm{body'} \\ \code{goto} \itm{loop}}} \ar@/^50pt/[u]
  10962. }
  10963. \end{minipage}
  10964. \end{center}
  10965. We start by creating a fresh label $\itm{loop}$ for the top of the
  10966. loop. Next, recursively process the \itm{body} (in effect position)
  10967. with a \code{goto} to $\itm{loop}$ as the continuation, producing
  10968. \itm{body'}. Process the \itm{cnd} (in predicate position) with
  10969. \itm{body'} as the \emph{then} branch and the continuation block as the
  10970. \emph{else} branch. The result should be added to the dictionary of
  10971. \code{basic-blocks} with the label \itm{loop}. The result for the
  10972. whole \code{while} loop is a \code{goto} to the \itm{loop} label.
  10973. The auxiliary functions for tail, assignment, and predicate positions
  10974. need to be updated. The three new language forms, \code{while},
  10975. \code{set!}, and \code{begin}, can appear in assignment and tail
  10976. positions. Only \code{begin} may appear in predicate positions; the
  10977. other two have result type \code{Void}.
  10978. \fi}
  10979. %
  10980. {\if\edition\pythonEd\pythonColor
  10981. %
  10982. The output of this pass is the language \LangCIf{}. No new language
  10983. features are needed in the output because a \code{while} loop can be
  10984. expressed in terms of \code{goto} and \code{if} statements, which are
  10985. already in \LangCIf{}.
  10986. %
  10987. Add a case for the \code{while} statement to the
  10988. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  10989. the condition expression.
  10990. %
  10991. \fi}
  10992. {\if\edition\racketEd
  10993. \section{Select Instructions}
  10994. \label{sec:select-instructions-loop}
  10995. \index{subject}{select instructions}
  10996. Only two small additions are needed in the \code{select\_instructions}
  10997. pass to handle the changes to \LangCLoop{}. First, to handle the
  10998. addition of \VOID{} we simply translate it to \code{0}. Second,
  10999. \code{read} may appear as a stand-alone statement instead of
  11000. appearing only on the right-hand side of an assignment statement. The code
  11001. generation is nearly identical to the one for assignment; just leave
  11002. off the instruction for moving the result into the left-hand side.
  11003. \fi}
  11004. \section{Register Allocation}
  11005. \label{sec:register-allocation-loop}
  11006. As discussed in section~\ref{sec:dataflow-analysis}, the presence of
  11007. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  11008. which complicates the liveness analysis needed for register
  11009. allocation.
  11010. %
  11011. We recommend using the generic \code{analyze\_dataflow} function that
  11012. was presented at the end of section~\ref{sec:dataflow-analysis} to
  11013. perform liveness analysis, replacing the code in
  11014. \code{uncover\_live} that processed the basic blocks in topological
  11015. order (section~\ref{sec:liveness-analysis-Lif}).
  11016. The \code{analyze\_dataflow} function has the following four parameters.
  11017. \begin{enumerate}
  11018. \item The first parameter \code{G} should be passed the transpose
  11019. of the control-flow graph.
  11020. \item The second parameter \code{transfer} should be passed a function
  11021. that applies liveness analysis to a basic block. It takes two
  11022. parameters: the label for the block to analyze and the live-after
  11023. set for that block. The transfer function should return the
  11024. live-before set for the block.
  11025. %
  11026. \racket{Also, as a side effect, it should update the block's
  11027. $\itm{info}$ with the liveness information for each instruction.}
  11028. %
  11029. \python{Also, as a side-effect, it should update the live-before and
  11030. live-after sets for each instruction.}
  11031. %
  11032. To implement the \code{transfer} function, you should be able to
  11033. reuse the code you already have for analyzing basic blocks.
  11034. \item The third and fourth parameters of \code{analyze\_dataflow} are
  11035. \code{bottom} and \code{join} for the lattice of abstract states,
  11036. that is, sets of locations. For liveness analysis, the bottom of the
  11037. lattice is the empty set, and the join operator is set union.
  11038. \end{enumerate}
  11039. \begin{figure}[p]
  11040. \begin{tcolorbox}[colback=white]
  11041. {\if\edition\racketEd
  11042. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11043. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11044. \node (Lfun-2) at (3,2) {\large \LangLoop{}};
  11045. \node (F1-4) at (6,2) {\large \LangLoop{}};
  11046. \node (F1-5) at (9,2) {\large \LangLoop{}};
  11047. \node (F1-6) at (9,0) {\large \LangLoopANF{}};
  11048. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11049. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11050. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  11051. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  11052. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11053. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11054. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  11055. \path[->,bend left=15] (Lfun) edge [above] node
  11056. {\ttfamily\footnotesize shrink} (Lfun-2);
  11057. \path[->,bend left=15] (Lfun-2) edge [above] node
  11058. {\ttfamily\footnotesize uniquify} (F1-4);
  11059. \path[->,bend left=15] (F1-4) edge [above] node
  11060. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  11061. \path[->,bend left=15] (F1-5) edge [left] node
  11062. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11063. \path[->,bend left=10] (F1-6) edge [above] node
  11064. {\ttfamily\footnotesize explicate\_control} (C3-2);
  11065. \path[->,bend left=15] (C3-2) edge [right] node
  11066. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11067. \path[->,bend right=15] (x86-2) edge [right] node
  11068. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11069. \path[->,bend right=15] (x86-2-1) edge [below] node
  11070. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  11071. \path[->,bend right=15] (x86-2-2) edge [right] node
  11072. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  11073. \path[->,bend left=15] (x86-3) edge [above] node
  11074. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11075. \path[->,bend left=15] (x86-4) edge [right] node
  11076. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11077. \end{tikzpicture}
  11078. \fi}
  11079. {\if\edition\pythonEd\pythonColor
  11080. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11081. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11082. \node (Lfun-2) at (4,2) {\large \LangLoop{}};
  11083. \node (F1-6) at (8,2) {\large \LangLoopANF{}};
  11084. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11085. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11086. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11087. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11088. \node (x86-5) at (12,-2) {\large \LangXIf{}};
  11089. \path[->,bend left=15] (Lfun) edge [above] node
  11090. {\ttfamily\footnotesize shrink} (Lfun-2);
  11091. \path[->,bend left=15] (Lfun-2) edge [above] node
  11092. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11093. \path[->,bend left=10] (F1-6) edge [right] node
  11094. {\ttfamily\footnotesize \ \ explicate\_control} (C3-2);
  11095. \path[->,bend right=15] (C3-2) edge [right] node
  11096. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11097. \path[->,bend right=15] (x86-2) edge [below] node
  11098. {\ttfamily\footnotesize assign\_homes} (x86-3);
  11099. \path[->,bend left=15] (x86-3) edge [above] node
  11100. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11101. \path[->,bend right=15] (x86-4) edge [below] node
  11102. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11103. \end{tikzpicture}
  11104. \fi}
  11105. \end{tcolorbox}
  11106. \caption{Diagram of the passes for \LangLoop{}.}
  11107. \label{fig:Lwhile-passes}
  11108. \end{figure}
  11109. Figure~\ref{fig:Lwhile-passes} provides an overview of all the passes needed
  11110. for the compilation of \LangLoop{}.
  11111. % Further Reading: dataflow analysis
  11112. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11113. \chapter{Tuples and Garbage Collection}
  11114. \label{ch:Lvec}
  11115. \index{subject}{tuple}
  11116. \index{subject}{vector}
  11117. \setcounter{footnote}{0}
  11118. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  11119. %% all the IR grammars are spelled out! \\ --Jeremy}
  11120. %% \margincomment{\scriptsize Be more explicit about how to deal with
  11121. %% the root stack. \\ --Jeremy}
  11122. In this chapter we study the implementation of tuples\racket{, called
  11123. vectors in Racket}. A tuple is a fixed-length sequence of elements
  11124. in which each element may have a different type.
  11125. %
  11126. This language feature is the first to use the computer's
  11127. \emph{heap}\index{subject}{heap}, because the lifetime of a tuple is
  11128. indefinite; that is, a tuple lives forever from the programmer's
  11129. viewpoint. Of course, from an implementer's viewpoint, it is important
  11130. to reclaim the space associated with a tuple when it is no longer
  11131. needed, which is why we also study \emph{garbage collection}
  11132. \index{subject}{garbage collection} techniques in this chapter.
  11133. Section~\ref{sec:r3} introduces the \LangVec{} language, including its
  11134. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  11135. language (chapter~\ref{ch:Lwhile}) with tuples.
  11136. %
  11137. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  11138. copying live tuples back and forth between two halves of the heap. The
  11139. garbage collector requires coordination with the compiler so that it
  11140. can find all the live tuples.
  11141. %
  11142. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  11143. discuss the necessary changes and additions to the compiler passes,
  11144. including a new compiler pass named \code{expose\_allocation}.
  11145. \section{The \LangVec{} Language}
  11146. \label{sec:r3}
  11147. Figure~\ref{fig:Lvec-concrete-syntax} shows the definition of the
  11148. concrete syntax for \LangVec{}, and figure~\ref{fig:Lvec-syntax} shows
  11149. the definition of the abstract syntax.
  11150. %
  11151. \racket{The \LangVec{} language includes the forms \code{vector} for
  11152. creating a tuple, \code{vector-ref} for reading an element of a
  11153. tuple, \code{vector-set!} for writing to an element of a tuple, and
  11154. \code{vector-length} for obtaining the number of elements of a
  11155. tuple.}
  11156. %
  11157. \python{The \LangVec{} language adds 1) tuple creation via a
  11158. comma-separated list of expressions, 2) accessing an element of a
  11159. tuple with the square bracket notation, i.e., \code{t[n]} returns
  11160. the element at index \code{n} of tuple \code{t}, 3) the \code{is} comparison
  11161. operator, and 4) obtaining the number of elements (the length) of a
  11162. tuple. In this chapter, we restrict access indices to constant
  11163. integers.}
  11164. %
  11165. The following program shows an example use of tuples. It creates a tuple
  11166. \code{t} containing the elements \code{40},
  11167. \racket{\code{\#t}}\python{\code{True}}, and another tuple that
  11168. contains just \code{2}. The element at index $1$ of \code{t} is
  11169. \racket{\code{\#t}}\python{\code{True}}, so the \emph{then} branch of the
  11170. \key{if} is taken. The element at index $0$ of \code{t} is \code{40},
  11171. to which we add \code{2}, the element at index $0$ of the tuple.
  11172. The result of the program is \code{42}.
  11173. %
  11174. {\if\edition\racketEd
  11175. \begin{lstlisting}
  11176. (let ([t (vector 40 #t (vector 2))])
  11177. (if (vector-ref t 1)
  11178. (+ (vector-ref t 0)
  11179. (vector-ref (vector-ref t 2) 0))
  11180. 44))
  11181. \end{lstlisting}
  11182. \fi}
  11183. {\if\edition\pythonEd\pythonColor
  11184. \begin{lstlisting}
  11185. t = 40, True, (2,)
  11186. print( t[0] + t[2][0] if t[1] else 44 )
  11187. \end{lstlisting}
  11188. \fi}
  11189. \newcommand{\LtupGrammarRacket}{
  11190. \begin{array}{lcl}
  11191. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11192. \Exp &::=& \LP\key{vector}\;\Exp^{*}\RP
  11193. \MID \LP\key{vector-length}\;\Exp\RP \\
  11194. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  11195. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  11196. \end{array}
  11197. }
  11198. \newcommand{\LtupASTRacket}{
  11199. \begin{array}{lcl}
  11200. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11201. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  11202. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  11203. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp}
  11204. % &\MID& \LP\key{HasType}~\Exp~\Type \RP
  11205. \end{array}
  11206. }
  11207. \newcommand{\LtupGrammarPython}{
  11208. \begin{array}{rcl}
  11209. \itm{cmp} &::= & \key{is} \\
  11210. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Int} \MID \CLEN{\Exp}
  11211. \end{array}
  11212. }
  11213. \newcommand{\LtupASTPython}{
  11214. \begin{array}{lcl}
  11215. \itm{cmp} &::= & \code{Is()} \\
  11216. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\INT{\Int}} \\
  11217. &\MID& \LEN{\Exp}
  11218. \end{array}
  11219. }
  11220. \begin{figure}[tbp]
  11221. \centering
  11222. \begin{tcolorbox}[colback=white]
  11223. \small
  11224. {\if\edition\racketEd
  11225. \[
  11226. \begin{array}{l}
  11227. \gray{\LintGrammarRacket{}} \\ \hline
  11228. \gray{\LvarGrammarRacket{}} \\ \hline
  11229. \gray{\LifGrammarRacket{}} \\ \hline
  11230. \gray{\LwhileGrammarRacket} \\ \hline
  11231. \LtupGrammarRacket \\
  11232. \begin{array}{lcl}
  11233. \LangVecM{} &::=& \Exp
  11234. \end{array}
  11235. \end{array}
  11236. \]
  11237. \fi}
  11238. {\if\edition\pythonEd\pythonColor
  11239. \[
  11240. \begin{array}{l}
  11241. \gray{\LintGrammarPython{}} \\ \hline
  11242. \gray{\LvarGrammarPython{}} \\ \hline
  11243. \gray{\LifGrammarPython{}} \\ \hline
  11244. \gray{\LwhileGrammarPython} \\ \hline
  11245. \LtupGrammarPython \\
  11246. \begin{array}{rcl}
  11247. \LangVecM{} &::=& \Stmt^{*}
  11248. \end{array}
  11249. \end{array}
  11250. \]
  11251. \fi}
  11252. \end{tcolorbox}
  11253. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  11254. (figure~\ref{fig:Lwhile-concrete-syntax}).}
  11255. \label{fig:Lvec-concrete-syntax}
  11256. \end{figure}
  11257. \begin{figure}[tp]
  11258. \centering
  11259. \begin{tcolorbox}[colback=white]
  11260. \small
  11261. {\if\edition\racketEd
  11262. \[
  11263. \begin{array}{l}
  11264. \gray{\LintOpAST} \\ \hline
  11265. \gray{\LvarASTRacket{}} \\ \hline
  11266. \gray{\LifASTRacket{}} \\ \hline
  11267. \gray{\LwhileASTRacket{}} \\ \hline
  11268. \LtupASTRacket{} \\
  11269. \begin{array}{lcl}
  11270. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  11271. \end{array}
  11272. \end{array}
  11273. \]
  11274. \fi}
  11275. {\if\edition\pythonEd\pythonColor
  11276. \[
  11277. \begin{array}{l}
  11278. \gray{\LintASTPython} \\ \hline
  11279. \gray{\LvarASTPython} \\ \hline
  11280. \gray{\LifASTPython} \\ \hline
  11281. \gray{\LwhileASTPython} \\ \hline
  11282. \LtupASTPython \\
  11283. \begin{array}{lcl}
  11284. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  11285. \end{array}
  11286. \end{array}
  11287. \]
  11288. \fi}
  11289. \end{tcolorbox}
  11290. \caption{The abstract syntax of \LangVec{}.}
  11291. \label{fig:Lvec-syntax}
  11292. \end{figure}
  11293. Tuples raise several interesting new issues. First, variable binding
  11294. performs a shallow copy in dealing with tuples, which means that
  11295. different variables can refer to the same tuple; that is, two
  11296. variables can be \emph{aliases}\index{subject}{alias} for the same
  11297. entity. Consider the following example, in which \code{t1} and
  11298. \code{t2} refer to the same tuple value and \code{t3} refers to a
  11299. different tuple value with equal elements. The result of the
  11300. program is \code{42}.
  11301. \begin{center}
  11302. \begin{minipage}{0.96\textwidth}
  11303. {\if\edition\racketEd
  11304. \begin{lstlisting}
  11305. (let ([t1 (vector 3 7)])
  11306. (let ([t2 t1])
  11307. (let ([t3 (vector 3 7)])
  11308. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  11309. 42
  11310. 0))))
  11311. \end{lstlisting}
  11312. \fi}
  11313. {\if\edition\pythonEd\pythonColor
  11314. \begin{lstlisting}
  11315. t1 = 3, 7
  11316. t2 = t1
  11317. t3 = 3, 7
  11318. print( 42 if (t1 is t2) and not (t1 is t3) else 0 )
  11319. \end{lstlisting}
  11320. \fi}
  11321. \end{minipage}
  11322. \end{center}
  11323. {\if\edition\racketEd
  11324. Whether two variables are aliased or not affects what happens
  11325. when the underlying tuple is mutated\index{subject}{mutation}.
  11326. Consider the following example in which \code{t1} and \code{t2}
  11327. again refer to the same tuple value.
  11328. \begin{center}
  11329. \begin{minipage}{0.96\textwidth}
  11330. \begin{lstlisting}
  11331. (let ([t1 (vector 3 7)])
  11332. (let ([t2 t1])
  11333. (let ([_ (vector-set! t2 0 42)])
  11334. (vector-ref t1 0))))
  11335. \end{lstlisting}
  11336. \end{minipage}
  11337. \end{center}
  11338. The mutation through \code{t2} is visible in referencing the tuple
  11339. from \code{t1}, so the result of this program is \code{42}.
  11340. \fi}
  11341. The next issue concerns the lifetime of tuples. When does a tuple's
  11342. lifetime end? Notice that \LangVec{} does not include an operation
  11343. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  11344. to any notion of static scoping.
  11345. %
  11346. {\if\edition\racketEd
  11347. %
  11348. For example, the following program returns \code{42} even though the
  11349. variable \code{w} goes out of scope prior to the \code{vector-ref}
  11350. that reads from the vector to which it was bound.
  11351. \begin{center}
  11352. \begin{minipage}{0.96\textwidth}
  11353. \begin{lstlisting}
  11354. (let ([v (vector (vector 44))])
  11355. (let ([x (let ([w (vector 42)])
  11356. (let ([_ (vector-set! v 0 w)])
  11357. 0))])
  11358. (+ x (vector-ref (vector-ref v 0) 0))))
  11359. \end{lstlisting}
  11360. \end{minipage}
  11361. \end{center}
  11362. \fi}
  11363. %
  11364. {\if\edition\pythonEd\pythonColor
  11365. %
  11366. For example, the following program returns \code{42} even though the
  11367. variable \code{x} goes out of scope when the function returns, prior
  11368. to reading the tuple element at index zero. (We study the compilation
  11369. of functions in chapter~\ref{ch:Lfun}.)
  11370. %
  11371. \begin{center}
  11372. \begin{minipage}{0.96\textwidth}
  11373. \begin{lstlisting}
  11374. def f():
  11375. x = 42, 43
  11376. return x
  11377. t = f()
  11378. print( t[0] )
  11379. \end{lstlisting}
  11380. \end{minipage}
  11381. \end{center}
  11382. \fi}
  11383. %
  11384. From the perspective of programmer-observable behavior, tuples live
  11385. forever. However, if they really lived forever then many long-running
  11386. programs would run out of memory. To solve this problem, the
  11387. language's runtime system performs automatic garbage collection.
  11388. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  11389. \LangVec{} language.
  11390. %
  11391. \racket{We define the \code{vector}, \code{vector-ref},
  11392. \code{vector-set!}, and \code{vector-length} operations for
  11393. \LangVec{} in terms of the corresponding operations in Racket. One
  11394. subtle point is that the \code{vector-set!} operation returns the
  11395. \code{\#<void>} value.}
  11396. %
  11397. \python{We represent tuples with Python lists in the interpreter
  11398. because we need to write to them
  11399. (section~\ref{sec:expose-allocation}). (Python tuples are
  11400. immutable.) We define element access, the \code{is} operator, and
  11401. the \code{len} operator for \LangVec{} in terms of the corresponding
  11402. operations in Python.}
  11403. \begin{figure}[tbp]
  11404. \begin{tcolorbox}[colback=white]
  11405. {\if\edition\racketEd
  11406. \begin{lstlisting}
  11407. (define interp-Lvec-class
  11408. (class interp-Lwhile-class
  11409. (super-new)
  11410. (define/override (interp-op op)
  11411. (match op
  11412. ['eq? (lambda (v1 v2)
  11413. (cond [(or (and (fixnum? v1) (fixnum? v2))
  11414. (and (boolean? v1) (boolean? v2))
  11415. (and (vector? v1) (vector? v2))
  11416. (and (void? v1) (void? v2)))
  11417. (eq? v1 v2)]))]
  11418. ['vector vector]
  11419. ['vector-length vector-length]
  11420. ['vector-ref vector-ref]
  11421. ['vector-set! vector-set!]
  11422. [else (super interp-op op)]
  11423. ))
  11424. (define/override ((interp-exp env) e)
  11425. (match e
  11426. [(HasType e t) ((interp-exp env) e)]
  11427. [else ((super interp-exp env) e)]
  11428. ))
  11429. ))
  11430. (define (interp-Lvec p)
  11431. (send (new interp-Lvec-class) interp-program p))
  11432. \end{lstlisting}
  11433. \fi}
  11434. %
  11435. {\if\edition\pythonEd\pythonColor
  11436. \begin{lstlisting}
  11437. class InterpLtup(InterpLwhile):
  11438. def interp_cmp(self, cmp):
  11439. match cmp:
  11440. case Is():
  11441. return lambda x, y: x is y
  11442. case _:
  11443. return super().interp_cmp(cmp)
  11444. def interp_exp(self, e, env):
  11445. match e:
  11446. case Tuple(es, Load()):
  11447. return tuple([self.interp_exp(e, env) for e in es])
  11448. case Subscript(tup, index, Load()):
  11449. t = self.interp_exp(tup, env)
  11450. n = self.interp_exp(index, env)
  11451. return t[n]
  11452. case _:
  11453. return super().interp_exp(e, env)
  11454. \end{lstlisting}
  11455. \fi}
  11456. \end{tcolorbox}
  11457. \caption{Interpreter for the \LangVec{} language.}
  11458. \label{fig:interp-Lvec}
  11459. \end{figure}
  11460. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  11461. \LangVec{}.
  11462. %
  11463. The type of a tuple is a
  11464. \racket{\code{Vector}}\python{\code{TupleType}} type that contains a
  11465. type for each of its elements.
  11466. %
  11467. \racket{To create the s-expression for the \code{Vector} type, we use the
  11468. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  11469. operator} \code{,@} to insert the list \code{t*} without its usual
  11470. start and end parentheses. \index{subject}{unquote-splicing}}
  11471. %
  11472. The type of accessing the ith element of a tuple is the ith element
  11473. type of the tuple's type, if there is one. If not, an error is
  11474. signaled. Note that the index \code{i} is required to be a constant
  11475. integer (and not, for example, a call to
  11476. \racket{\code{read}}\python{input\_int}) so that the type checker
  11477. can determine the element's type given the tuple type.
  11478. %
  11479. \racket{
  11480. Regarding writing an element to a tuple, the element's type must
  11481. be equal to the ith element type of the tuple's type.
  11482. The result type is \code{Void}.}
  11483. %% When allocating a tuple,
  11484. %% we need to know which elements of the tuple are themselves tuples for
  11485. %% the purposes of garbage collection. We can obtain this information
  11486. %% during type checking. The type checker shown in
  11487. %% figure~\ref{fig:type-check-Lvec} not only computes the type of an
  11488. %% expression; it also
  11489. %% %
  11490. %% \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  11491. %% where $T$ is the tuple's type.
  11492. %
  11493. %records the type of each tuple expression in a new field named \code{has\_type}.
  11494. \begin{figure}[tp]
  11495. \begin{tcolorbox}[colback=white]
  11496. {\if\edition\racketEd
  11497. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11498. (define type-check-Lvec-class
  11499. (class type-check-Lif-class
  11500. (super-new)
  11501. (inherit check-type-equal?)
  11502. (define/override (type-check-exp env)
  11503. (lambda (e)
  11504. (define recur (type-check-exp env))
  11505. (match e
  11506. [(Prim 'vector es)
  11507. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  11508. (define t `(Vector ,@t*))
  11509. (values (Prim 'vector e*) t)]
  11510. [(Prim 'vector-ref (list e1 (Int i)))
  11511. (define-values (e1^ t) (recur e1))
  11512. (match t
  11513. [`(Vector ,ts ...)
  11514. (unless (and (0 . <= . i) (i . < . (length ts)))
  11515. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11516. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  11517. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11518. [(Prim 'vector-set! (list e1 (Int i) elt) )
  11519. (define-values (e-vec t-vec) (recur e1))
  11520. (define-values (e-elt^ t-elt) (recur elt))
  11521. (match t-vec
  11522. [`(Vector ,ts ...)
  11523. (unless (and (0 . <= . i) (i . < . (length ts)))
  11524. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11525. (check-type-equal? (list-ref ts i) t-elt e)
  11526. (values (Prim 'vector-set! (list e-vec (Int i) e-elt^)) 'Void)]
  11527. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  11528. [(Prim 'vector-length (list e))
  11529. (define-values (e^ t) (recur e))
  11530. (match t
  11531. [`(Vector ,ts ...)
  11532. (values (Prim 'vector-length (list e^)) 'Integer)]
  11533. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11534. [(Prim 'eq? (list arg1 arg2))
  11535. (define-values (e1 t1) (recur arg1))
  11536. (define-values (e2 t2) (recur arg2))
  11537. (match* (t1 t2)
  11538. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  11539. [(other wise) (check-type-equal? t1 t2 e)])
  11540. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  11541. [else ((super type-check-exp env) e)]
  11542. )))
  11543. ))
  11544. (define (type-check-Lvec p)
  11545. (send (new type-check-Lvec-class) type-check-program p))
  11546. \end{lstlisting}
  11547. \fi}
  11548. {\if\edition\pythonEd\pythonColor
  11549. \begin{lstlisting}
  11550. class TypeCheckLtup(TypeCheckLwhile):
  11551. def type_check_exp(self, e, env):
  11552. match e:
  11553. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  11554. l = self.type_check_exp(left, env)
  11555. r = self.type_check_exp(right, env)
  11556. check_type_equal(l, r, e)
  11557. return bool
  11558. case Tuple(es, Load()):
  11559. ts = [self.type_check_exp(e, env) for e in es]
  11560. e.has_type = TupleType(ts)
  11561. return e.has_type
  11562. case Subscript(tup, Constant(i), Load()):
  11563. tup_ty = self.type_check_exp(tup, env)
  11564. i_ty = self.type_check_exp(Constant(i), env)
  11565. check_type_equal(i_ty, int, i)
  11566. match tup_ty:
  11567. case TupleType(ts):
  11568. return ts[i]
  11569. case _:
  11570. raise Exception('error: expected a tuple, not ' + repr(tup_ty))
  11571. case _:
  11572. return super().type_check_exp(e, env)
  11573. \end{lstlisting}
  11574. \fi}
  11575. \end{tcolorbox}
  11576. \caption{Type checker for the \LangVec{} language.}
  11577. \label{fig:type-check-Lvec}
  11578. \end{figure}
  11579. \section{Garbage Collection}
  11580. \label{sec:GC}
  11581. Garbage collection is a runtime technique for reclaiming space on the
  11582. heap that will not be used in the future of the running program. We
  11583. use the term \emph{object}\index{subject}{object} to refer to any
  11584. value that is stored in the heap, which for now includes only
  11585. tuples.%
  11586. %
  11587. \footnote{The term \emph{object} as it is used in the context of
  11588. object-oriented programming has a more specific meaning than the
  11589. way in which we use the term here.}
  11590. %
  11591. Unfortunately, it is impossible to know precisely which objects will
  11592. be accessed in the future and which will not. Instead, garbage
  11593. collectors overapproximate the set of objects that will be accessed by
  11594. identifying which objects can possibly be accessed. The running
  11595. program can directly access objects that are in registers and on the
  11596. procedure call stack. It can also transitively access the elements of
  11597. tuples, starting with a tuple whose address is in a register or on the
  11598. procedure call stack. We define the \emph{root
  11599. set}\index{subject}{root set} to be all the tuple addresses that are
  11600. in registers or on the procedure call stack. We define the \emph{live
  11601. objects}\index{subject}{live objects} to be the objects that are
  11602. reachable from the root set. Garbage collectors reclaim the space that
  11603. is allocated to objects that are no longer live. \index{subject}{allocate}
  11604. That means that some objects may not get reclaimed as soon as they could be,
  11605. but at least
  11606. garbage collectors do not reclaim the space dedicated to objects that
  11607. will be accessed in the future! The programmer can influence which
  11608. objects get reclaimed by causing them to become unreachable.
  11609. So the goal of the garbage collector is twofold:
  11610. \begin{enumerate}
  11611. \item to preserve all the live objects, and
  11612. \item to reclaim the memory of everything else, that is, the \emph{garbage}.
  11613. \end{enumerate}
  11614. \subsection{Two-Space Copying Collector}
  11615. Here we study a relatively simple algorithm for garbage collection
  11616. that is the basis of many state-of-the-art garbage
  11617. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  11618. particular, we describe a two-space copying
  11619. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  11620. perform the copy~\citep{Cheney:1970aa}. \index{subject}{copying
  11621. collector} \index{subject}{two-space copying collector}
  11622. Figure~\ref{fig:copying-collector} gives a coarse-grained depiction of
  11623. what happens in a two-space collector, showing two time steps, prior
  11624. to garbage collection (on the top) and after garbage collection (on
  11625. the bottom). In a two-space collector, the heap is divided into two
  11626. parts named the FromSpace\index{subject}{FromSpace} and the
  11627. ToSpace\index{subject}{ToSpace}. Initially, all allocations go to the
  11628. FromSpace until there is not enough room for the next allocation
  11629. request. At that point, the garbage collector goes to work to make
  11630. room for the next allocation.
  11631. A copying collector makes more room by copying all the live objects
  11632. from the FromSpace into the ToSpace and then performs a sleight of
  11633. hand, treating the ToSpace as the new FromSpace and the old FromSpace
  11634. as the new ToSpace. In the example shown in
  11635. figure~\ref{fig:copying-collector}, the root set consists of three
  11636. pointers, one in a register and two on the stack. All the live
  11637. objects have been copied to the ToSpace (the right-hand side of
  11638. figure~\ref{fig:copying-collector}) in a way that preserves the
  11639. pointer relationships. For example, the pointer in the register still
  11640. points to a tuple that in turn points to two other tuples. There are
  11641. four tuples that are not reachable from the root set and therefore do
  11642. not get copied into the ToSpace.
  11643. The exact situation shown in figure~\ref{fig:copying-collector} cannot be
  11644. created by a well-typed program in \LangVec{} because it contains a
  11645. cycle. However, creating cycles will be possible once we get to
  11646. \LangDyn{} (chapter~\ref{ch:Ldyn}). We design the garbage collector
  11647. to deal with cycles to begin with, so we will not need to revisit this
  11648. issue.
  11649. \begin{figure}[tbp]
  11650. \centering
  11651. \begin{tcolorbox}[colback=white]
  11652. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-1}}
  11653. \python{\includegraphics[width=\textwidth]{figs/copy-collect-1-python}}
  11654. \\[5ex]
  11655. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-2}}
  11656. \python{\includegraphics[width=\textwidth]{figs/copy-collect-2-python}}
  11657. \end{tcolorbox}
  11658. \caption{A copying collector in action.}
  11659. \label{fig:copying-collector}
  11660. \end{figure}
  11661. \subsection{Graph Copying via Cheney's Algorithm}
  11662. \label{sec:cheney}
  11663. \index{subject}{Cheney's algorithm}
  11664. Let us take a closer look at the copying of the live objects. The
  11665. allocated\index{subject}{allocate} objects and pointers can be viewed
  11666. as a graph, and we need to copy the part of the graph that is
  11667. reachable from the root set. To make sure that we copy all the
  11668. reachable vertices in the graph, we need an exhaustive graph traversal
  11669. algorithm, such as depth-first search or breadth-first
  11670. search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that such algorithms
  11671. take into account the possibility of cycles by marking which vertices
  11672. have already been visited, so to ensure termination of the
  11673. algorithm. These search algorithms also use a data structure such as a
  11674. stack or queue as a to-do list to keep track of the vertices that need
  11675. to be visited. We use breadth-first search and a trick due to
  11676. \citet{Cheney:1970aa} for simultaneously representing the queue and
  11677. copying tuples into the ToSpace.
  11678. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  11679. copy progresses. The queue is represented by a chunk of contiguous
  11680. memory at the beginning of the ToSpace, using two pointers to track
  11681. the front and the back of the queue, called the \emph{free pointer}
  11682. and the \emph{scan pointer}, respectively. The algorithm starts by
  11683. copying all tuples that are immediately reachable from the root set
  11684. into the ToSpace to form the initial queue. When we copy a tuple, we
  11685. mark the old tuple to indicate that it has been visited. We discuss
  11686. how this marking is accomplished in section~\ref{sec:data-rep-gc}. Note
  11687. that any pointers inside the copied tuples in the queue still point
  11688. back to the FromSpace. Once the initial queue has been created, the
  11689. algorithm enters a loop in which it repeatedly processes the tuple at
  11690. the front of the queue and pops it off the queue. To process a tuple,
  11691. the algorithm copies all the objects that are directly reachable from it
  11692. to the ToSpace, placing them at the back of the queue. The algorithm
  11693. then updates the pointers in the popped tuple so that they point to the
  11694. newly copied objects.
  11695. \begin{figure}[tbp]
  11696. \centering
  11697. \begin{tcolorbox}[colback=white]
  11698. \racket{\includegraphics[width=0.9\textwidth]{figs/cheney}}
  11699. \python{\includegraphics[width=0.9\textwidth]{figs/cheney-python}}
  11700. \end{tcolorbox}
  11701. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  11702. \label{fig:cheney}
  11703. \end{figure}
  11704. As shown in figure~\ref{fig:cheney}, in the first step we copy the
  11705. tuple whose second element is $42$ to the back of the queue. The other
  11706. pointer goes to a tuple that has already been copied, so we do not
  11707. need to copy it again, but we do need to update the pointer to the new
  11708. location. This can be accomplished by storing a \emph{forwarding
  11709. pointer}\index{subject}{forwarding pointer} to the new location in the
  11710. old tuple, when we initially copied the tuple into the
  11711. ToSpace. This completes one step of the algorithm. The algorithm
  11712. continues in this way until the queue is empty; that is, when the scan
  11713. pointer catches up with the free pointer.
  11714. \subsection{Data Representation}
  11715. \label{sec:data-rep-gc}
  11716. The garbage collector places some requirements on the data
  11717. representations used by our compiler. First, the garbage collector
  11718. needs to distinguish between pointers and other kinds of data such as
  11719. integers. The following are several ways to accomplish this:
  11720. \begin{enumerate}
  11721. \item Attach a tag to each object that identifies what type of
  11722. object it is~\citep{McCarthy:1960dz}.
  11723. \item Store different types of objects in different
  11724. regions~\citep{Steele:1977ab}.
  11725. \item Use type information from the program to either (a) generate
  11726. type-specific code for collecting, or (b) generate tables that
  11727. guide the collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  11728. \end{enumerate}
  11729. Dynamically typed languages, such as \racket{Racket}\python{Python},
  11730. need to tag objects in any case, so option 1 is a natural choice for those
  11731. languages. However, \LangVec{} is a statically typed language, so it
  11732. would be unfortunate to require tags on every object, especially small
  11733. and pervasive objects like integers and Booleans. Option 3 is the
  11734. best-performing choice for statically typed languages, but it comes with
  11735. a relatively high implementation complexity. To keep this chapter
  11736. within a reasonable scope of complexity, we recommend a combination of options
  11737. 1 and 2, using separate strategies for the stack and the heap.
  11738. Regarding the stack, we recommend using a separate stack for pointers,
  11739. which we call the \emph{root stack}\index{subject}{root stack}
  11740. (aka \emph{shadow stack})~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}.
  11741. That is, when a local variable needs to be spilled and is of type
  11742. \racket{\code{Vector}}\python{\code{TupleType}}, we put it on the
  11743. root stack instead of putting it on the procedure call
  11744. stack. Furthermore, we always spill tuple-typed variables if they are
  11745. live during a call to the collector, thereby ensuring that no pointers
  11746. are in registers during a collection. Figure~\ref{fig:shadow-stack}
  11747. reproduces the example shown in figure~\ref{fig:copying-collector} and
  11748. contrasts it with the data layout using a root stack. The root stack
  11749. contains the two pointers from the regular stack and also the pointer
  11750. in the second register.
  11751. \begin{figure}[tbp]
  11752. \centering
  11753. \begin{tcolorbox}[colback=white]
  11754. \racket{\includegraphics[width=0.60\textwidth]{figs/root-stack}}
  11755. \python{\includegraphics[width=0.60\textwidth]{figs/root-stack-python}}
  11756. \end{tcolorbox}
  11757. \caption{Maintaining a root stack to facilitate garbage collection.}
  11758. \label{fig:shadow-stack}
  11759. \end{figure}
  11760. The problem of distinguishing between pointers and other kinds of data
  11761. also arises inside each tuple on the heap. We solve this problem by
  11762. attaching a tag, an extra 64 bits, to each
  11763. tuple. Figure~\ref{fig:tuple-rep} shows a zoomed-in view of the tags for
  11764. two of the tuples in the example given in figure~\ref{fig:copying-collector}.
  11765. Note that we have drawn the bits in a big-endian way, from right to left,
  11766. with bit location 0 (the least significant bit) on the far right,
  11767. which corresponds to the direction of the x86 shifting instructions
  11768. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  11769. is dedicated to specifying which elements of the tuple are pointers,
  11770. the part labeled \emph{pointer mask}. Within the pointer mask, a 1 bit
  11771. indicates that there is a pointer, and a 0 bit indicates some other kind of
  11772. data. The pointer mask starts at bit location 7. We limit tuples to a
  11773. maximum size of fifty elements, so we need 50 bits for the pointer
  11774. mask.%
  11775. %
  11776. \footnote{A production-quality compiler would handle
  11777. arbitrarily sized tuples and use a more complex approach.}
  11778. %
  11779. The tag also contains two other pieces of information. The length of
  11780. the tuple (number of elements) is stored in bits at locations 1 through
  11781. 6. Finally, the bit at location 0 indicates whether the tuple has yet
  11782. to be copied to the ToSpace. If the bit has value 1, then this tuple
  11783. has not yet been copied. If the bit has value 0, then the entire tag
  11784. is a forwarding pointer. (The lower 3 bits of a pointer are always
  11785. zero in any case, because our tuples are 8-byte aligned.)
  11786. \begin{figure}[tbp]
  11787. \centering
  11788. \begin{tcolorbox}[colback=white]
  11789. \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  11790. \end{tcolorbox}
  11791. \caption{Representation of tuples in the heap.}
  11792. \label{fig:tuple-rep}
  11793. \end{figure}
  11794. \subsection{Implementation of the Garbage Collector}
  11795. \label{sec:organize-gz}
  11796. \index{subject}{prelude}
  11797. An implementation of the copying collector is provided in the
  11798. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  11799. interface to the garbage collector that is used by the compiler. The
  11800. \code{initialize} function creates the FromSpace, ToSpace, and root
  11801. stack and should be called in the prelude of the \code{main}
  11802. function. The arguments of \code{initialize} are the root stack size
  11803. and the heap size. Both need to be multiples of sixty-four, and $16,384$ is a
  11804. good choice for both. The \code{initialize} function puts the address
  11805. of the beginning of the FromSpace into the global variable
  11806. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  11807. the address that is one past the last element of the FromSpace. We use
  11808. half-open intervals to represent chunks of
  11809. memory~\citep{Dijkstra:1982aa}. The \code{rootstack\_begin} variable
  11810. points to the first element of the root stack.
  11811. As long as there is room left in the FromSpace, your generated code
  11812. can allocate\index{subject}{allocate} tuples simply by moving the
  11813. \code{free\_ptr} forward.
  11814. %
  11815. The amount of room left in the FromSpace is the difference between the
  11816. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  11817. function should be called when there is not enough room left in the
  11818. FromSpace for the next allocation. The \code{collect} function takes
  11819. a pointer to the current top of the root stack (one past the last item
  11820. that was pushed) and the number of bytes that need to be
  11821. allocated. The \code{collect} function performs the copying collection
  11822. and leaves the heap in a state such that there is enough room for the
  11823. next allocation.
  11824. \begin{figure}[tbp]
  11825. \begin{tcolorbox}[colback=white]
  11826. \begin{lstlisting}
  11827. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  11828. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  11829. int64_t* free_ptr;
  11830. int64_t* fromspace_begin;
  11831. int64_t* fromspace_end;
  11832. int64_t** rootstack_begin;
  11833. \end{lstlisting}
  11834. \end{tcolorbox}
  11835. \caption{The compiler's interface to the garbage collector.}
  11836. \label{fig:gc-header}
  11837. \end{figure}
  11838. %% \begin{exercise}
  11839. %% In the file \code{runtime.c} you will find the implementation of
  11840. %% \code{initialize} and a partial implementation of \code{collect}.
  11841. %% The \code{collect} function calls another function, \code{cheney},
  11842. %% to perform the actual copy, and that function is left to the reader
  11843. %% to implement. The following is the prototype for \code{cheney}.
  11844. %% \begin{lstlisting}
  11845. %% static void cheney(int64_t** rootstack_ptr);
  11846. %% \end{lstlisting}
  11847. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  11848. %% rootstack (which is an array of pointers). The \code{cheney} function
  11849. %% also communicates with \code{collect} through the global
  11850. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  11851. %% mentioned in figure~\ref{fig:gc-header} as well as the pointers for
  11852. %% the ToSpace:
  11853. %% \begin{lstlisting}
  11854. %% static int64_t* tospace_begin;
  11855. %% static int64_t* tospace_end;
  11856. %% \end{lstlisting}
  11857. %% The job of the \code{cheney} function is to copy all the live
  11858. %% objects (reachable from the root stack) into the ToSpace, update
  11859. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  11860. %% update the root stack so that it points to the objects in the
  11861. %% ToSpace, and finally to swap the global pointers for the FromSpace
  11862. %% and ToSpace.
  11863. %% \end{exercise}
  11864. The introduction of garbage collection has a nontrivial impact on our
  11865. compiler passes. We introduce a new compiler pass named
  11866. \code{expose\_allocation} that elaborates the code for allocating
  11867. tuples. We also make significant changes to
  11868. \code{select\_instructions}, \code{build\_interference},
  11869. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  11870. make minor changes in several more passes.
  11871. The following program serves as our running example. It creates
  11872. two tuples, one nested inside the other. Both tuples have length
  11873. one. The program accesses the element in the inner tuple.
  11874. % tests/vectors_test_17.rkt
  11875. {\if\edition\racketEd
  11876. \begin{lstlisting}
  11877. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  11878. \end{lstlisting}
  11879. \fi}
  11880. {\if\edition\pythonEd\pythonColor
  11881. \begin{lstlisting}
  11882. print( ((42,),)[0][0] )
  11883. \end{lstlisting}
  11884. \fi}
  11885. %% {\if\edition\racketEd
  11886. %% \section{Shrink}
  11887. %% \label{sec:shrink-Lvec}
  11888. %% Recall that the \code{shrink} pass translates the primitives operators
  11889. %% into a smaller set of primitives.
  11890. %% %
  11891. %% This pass comes after type checking, and the type checker adds a
  11892. %% \code{HasType} AST node around each \code{vector} AST node, so you'll
  11893. %% need to add a case for \code{HasType} to the \code{shrink} pass.
  11894. %% \fi}
  11895. \section{Expose Allocation}
  11896. \label{sec:expose-allocation}
  11897. The pass \code{expose\_allocation} lowers tuple creation into making a
  11898. conditional call to the collector followed by allocating the
  11899. appropriate amount of memory and initializing it. We choose to place
  11900. the \code{expose\_allocation} pass before
  11901. \code{remove\_complex\_operands} because it generates
  11902. code that contains complex operands.
  11903. The output of \code{expose\_allocation} is a language \LangAlloc{}
  11904. that replaces tuple creation with new lower-level forms that we use in the
  11905. translation of tuple creation.
  11906. %
  11907. {\if\edition\racketEd
  11908. \[
  11909. \begin{array}{lcl}
  11910. \Exp &::=& \cdots
  11911. \MID (\key{collect} \,\itm{int})
  11912. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  11913. \MID (\key{global-value} \,\itm{name})
  11914. \end{array}
  11915. \]
  11916. \fi}
  11917. {\if\edition\pythonEd\pythonColor
  11918. \[
  11919. \begin{array}{lcl}
  11920. \Exp &::=& \cdots\\
  11921. &\MID& \key{collect}(\itm{int})
  11922. \MID \key{allocate}(\itm{int},\itm{type})
  11923. \MID \key{global\_value}(\itm{name}) \\
  11924. \Stmt &::= & \CASSIGN{\CPUT{\Exp}{\itm{int}}}{\Exp}
  11925. \end{array}
  11926. \]
  11927. \fi}
  11928. %
  11929. The \CCOLLECT{$n$} form runs the garbage collector, requesting that it
  11930. make sure that there are $n$ bytes ready to be allocated. During
  11931. instruction selection\index{subject}{instruction selection},
  11932. the \CCOLLECT{$n$} form will become a call to
  11933. the \code{collect} function in \code{runtime.c}.
  11934. %
  11935. The \CALLOCATE{$n$}{$\itm{type}$} form obtains memory for $n$ elements (and
  11936. space at the front for the 64-bit tag), but the elements are not
  11937. initialized. \index{subject}{allocate} The $\itm{type}$ parameter is the type
  11938. of the tuple:
  11939. %
  11940. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  11941. %
  11942. where $\Type_i$ is the type of the $i$th element.
  11943. %
  11944. The \CGLOBALVALUE{\itm{name}} form reads the value of a global
  11945. variable, such as \code{free\_ptr}.
  11946. \racket{
  11947. The type information that you need for \CALLOCATE{$n$}{$\itm{type}$}
  11948. can be obtained by running the
  11949. \code{type-check-Lvec-has-type} type checker immediately before the
  11950. \code{expose\_allocation} pass. This version of the type checker
  11951. places a special AST node of the form $(\key{HasType}~e~\itm{type})$
  11952. around each tuple creation. The concrete syntax
  11953. for \code{HasType} is \code{has-type}.}
  11954. The following shows the transformation of tuple creation into (1) a
  11955. sequence of temporary variable bindings for the initializing
  11956. expressions, (2) a conditional call to \code{collect}, (3) a call to
  11957. \code{allocate}, and (4) the initialization of the tuple. The
  11958. \itm{len} placeholder refers to the length of the tuple, and
  11959. \itm{bytes} is the total number of bytes that need to be allocated for
  11960. the tuple, which is 8 for the tag plus \itm{len} times 8.
  11961. %
  11962. \python{The \itm{type} needed for the second argument of the
  11963. \code{allocate} form can be obtained from the \code{has\_type} field
  11964. of the tuple AST node, which is stored there by running the type
  11965. checker for \LangVec{} immediately before this pass.}
  11966. %
  11967. \begin{center}
  11968. \begin{minipage}{\textwidth}
  11969. {\if\edition\racketEd
  11970. \begin{lstlisting}
  11971. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  11972. |$\Longrightarrow$|
  11973. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  11974. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  11975. (global-value fromspace_end))
  11976. (void)
  11977. (collect |\itm{bytes}|))])
  11978. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  11979. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  11980. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  11981. |$v$|) ... )))) ...)
  11982. \end{lstlisting}
  11983. \fi}
  11984. {\if\edition\pythonEd\pythonColor
  11985. \begin{lstlisting}
  11986. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  11987. |$\Longrightarrow$|
  11988. begin:
  11989. |$x_0$| = |$e_0$|
  11990. |$\vdots$|
  11991. |$x_{n-1}$| = |$e_{n-1}$|
  11992. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  11993. 0
  11994. else:
  11995. collect(|\itm{bytes}|)
  11996. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  11997. |$v$|[0] = |$x_0$|
  11998. |$\vdots$|
  11999. |$v$|[|$n-1$|] = |$x_{n-1}$|
  12000. |$v$|
  12001. \end{lstlisting}
  12002. \fi}
  12003. \end{minipage}
  12004. \end{center}
  12005. %
  12006. \noindent The sequencing of the initializing expressions
  12007. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important because
  12008. they may trigger garbage collection and we cannot have an allocated
  12009. but uninitialized tuple on the heap during a collection.
  12010. Figure~\ref{fig:expose-alloc-output} shows the output of the
  12011. \code{expose\_allocation} pass on our running example.
  12012. \begin{figure}[tbp]
  12013. \begin{tcolorbox}[colback=white]
  12014. % tests/s2_17.rkt
  12015. {\if\edition\racketEd
  12016. \begin{lstlisting}
  12017. (vector-ref
  12018. (vector-ref
  12019. (let ([vecinit6
  12020. (let ([_4 (if (< (+ (global-value free_ptr) 16)
  12021. (global-value fromspace_end))
  12022. (void)
  12023. (collect 16))])
  12024. (let ([alloc2 (allocate 1 (Vector Integer))])
  12025. (let ([_3 (vector-set! alloc2 0 42)])
  12026. alloc2)))])
  12027. (let ([_8 (if (< (+ (global-value free_ptr) 16)
  12028. (global-value fromspace_end))
  12029. (void)
  12030. (collect 16))])
  12031. (let ([alloc5 (allocate 1 (Vector (Vector Integer)))])
  12032. (let ([_7 (vector-set! alloc5 0 vecinit6)])
  12033. alloc5))))
  12034. 0)
  12035. 0)
  12036. \end{lstlisting}
  12037. \fi}
  12038. {\if\edition\pythonEd\pythonColor
  12039. \begin{lstlisting}
  12040. print( |$T_1$|[0][0] )
  12041. \end{lstlisting}
  12042. where $T_1$ is
  12043. \begin{lstlisting}
  12044. begin:
  12045. tmp.1 = |$T_2$|
  12046. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  12047. 0
  12048. else:
  12049. collect(16)
  12050. tmp.2 = allocate(1, TupleType(TupleType([int])))
  12051. tmp.2[0] = tmp.1
  12052. tmp.2
  12053. \end{lstlisting}
  12054. and $T_2$ is
  12055. \begin{lstlisting}
  12056. begin:
  12057. tmp.3 = 42
  12058. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  12059. 0
  12060. else:
  12061. collect(16)
  12062. tmp.4 = allocate(1, TupleType([int]))
  12063. tmp.4[0] = tmp.3
  12064. tmp.4
  12065. \end{lstlisting}
  12066. \fi}
  12067. \end{tcolorbox}
  12068. \caption{Output of the \code{expose\_allocation} pass.}
  12069. \label{fig:expose-alloc-output}
  12070. \end{figure}
  12071. \section{Remove Complex Operands}
  12072. \label{sec:remove-complex-opera-Lvec}
  12073. {\if\edition\racketEd
  12074. %
  12075. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  12076. should be treated as complex operands.
  12077. %
  12078. \fi}
  12079. %
  12080. {\if\edition\pythonEd\pythonColor
  12081. %
  12082. The expressions \code{allocate}, \code{global\_value}, \code{begin},
  12083. and tuple access should be treated as complex operands. The
  12084. sub-expressions of tuple access must be atomic.
  12085. %
  12086. \fi}
  12087. %% A new case for
  12088. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  12089. %% handled carefully to prevent the \code{Prim} node from being separated
  12090. %% from its enclosing \code{HasType}.
  12091. Figure~\ref{fig:Lvec-anf-syntax}
  12092. shows the grammar for the output language \LangAllocANF{} of this
  12093. pass, which is \LangAlloc{} in monadic normal form.
  12094. \newcommand{\LtupMonadASTRacket}{
  12095. \begin{array}{rcl}
  12096. \Exp &::=& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  12097. \MID \GLOBALVALUE{\Var}
  12098. \end{array}
  12099. }
  12100. \newcommand{\LtupMonadASTPython}{
  12101. \begin{array}{rcl}
  12102. \Exp &::=& \GET{\Atm}{\Atm} \\
  12103. &\MID& \LEN{\Atm}\\
  12104. &\MID& \ALLOCATE{\Int}{\Type}
  12105. \MID \GLOBALVALUE{\Var} \\
  12106. \Stmt{} &::=& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  12107. &\MID& \COLLECT{\Int}
  12108. \end{array}
  12109. }
  12110. \begin{figure}[tp]
  12111. \centering
  12112. \begin{tcolorbox}[colback=white]
  12113. \small
  12114. {\if\edition\racketEd
  12115. \[
  12116. \begin{array}{l}
  12117. \gray{\LvarMonadASTRacket} \\ \hline
  12118. \gray{\LifMonadASTRacket} \\ \hline
  12119. \gray{\LwhileMonadASTRacket} \\ \hline
  12120. \LtupMonadASTRacket \\
  12121. \begin{array}{rcl}
  12122. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  12123. \end{array}
  12124. \end{array}
  12125. \]
  12126. \fi}
  12127. {\if\edition\pythonEd\pythonColor
  12128. \[
  12129. \begin{array}{l}
  12130. \gray{\LvarMonadASTPython} \\ \hline
  12131. \gray{\LifMonadASTPython} \\ \hline
  12132. \gray{\LwhileMonadASTPython} \\ \hline
  12133. \LtupMonadASTPython \\
  12134. \begin{array}{rcl}
  12135. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  12136. \end{array}
  12137. \end{array}
  12138. \]
  12139. \fi}
  12140. \end{tcolorbox}
  12141. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  12142. \label{fig:Lvec-anf-syntax}
  12143. \end{figure}
  12144. \section{Explicate Control and the \LangCVec{} Language}
  12145. \label{sec:explicate-control-r3}
  12146. \newcommand{\CtupASTRacket}{
  12147. \begin{array}{lcl}
  12148. \Exp &::= & \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  12149. &\MID& \VECREF{\Atm}{\INT{\Int}} \\
  12150. &\MID& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12151. &\MID& \VECLEN{\Atm} \\
  12152. &\MID& \GLOBALVALUE{\Var} \\
  12153. \Stmt &::=& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12154. &\MID& \LP\key{Collect} \,\itm{int}\RP
  12155. \end{array}
  12156. }
  12157. \newcommand{\CtupASTPython}{
  12158. \begin{array}{lcl}
  12159. \Exp &::= & \GET{\Atm}{\Atm} \MID \ALLOCATE{\Int}{\Type} \\
  12160. &\MID& \GLOBALVALUE{\Var} \MID \LEN{\Atm} \\
  12161. \Stmt &::=& \COLLECT{\Int} \\
  12162. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  12163. \end{array}
  12164. }
  12165. \begin{figure}[tp]
  12166. \begin{tcolorbox}[colback=white]
  12167. \small
  12168. {\if\edition\racketEd
  12169. \[
  12170. \begin{array}{l}
  12171. \gray{\CvarASTRacket} \\ \hline
  12172. \gray{\CifASTRacket} \\ \hline
  12173. \gray{\CloopASTRacket} \\ \hline
  12174. \CtupASTRacket \\
  12175. \begin{array}{lcl}
  12176. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  12177. \end{array}
  12178. \end{array}
  12179. \]
  12180. \fi}
  12181. {\if\edition\pythonEd\pythonColor
  12182. \[
  12183. \begin{array}{l}
  12184. \gray{\CifASTPython} \\ \hline
  12185. \CtupASTPython \\
  12186. \begin{array}{lcl}
  12187. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}\;\Tail, \ldots \RC}
  12188. \end{array}
  12189. \end{array}
  12190. \]
  12191. \fi}
  12192. \end{tcolorbox}
  12193. \caption{The abstract syntax of \LangCVec{}, extending
  12194. \racket{\LangCLoop{} (figure~\ref{fig:c7-syntax})}\python{\LangCIf{}
  12195. (figure~\ref{fig:c1-syntax})}.}
  12196. \label{fig:c2-syntax}
  12197. \end{figure}
  12198. The output of \code{explicate\_control} is a program in the
  12199. intermediate language \LangCVec{}, for which figure~\ref{fig:c2-syntax}
  12200. shows the definition of the abstract syntax.
  12201. %
  12202. %% \racket{(The concrete syntax is defined in
  12203. %% figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  12204. %
  12205. The new expressions of \LangCVec{} include \key{allocate},
  12206. %
  12207. \racket{\key{vector-ref}, and \key{vector-set!},}
  12208. %
  12209. \python{accessing tuple elements,}
  12210. %
  12211. and \key{global\_value}.
  12212. %
  12213. \python{\LangCVec{} also includes the \code{collect} statement and
  12214. assignment to a tuple element.}
  12215. %
  12216. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  12217. %
  12218. The \code{explicate\_control} pass can treat these new forms much like
  12219. the other forms that we've already encountered. The output of the
  12220. \code{explicate\_control} pass on the running example is shown on the
  12221. left side of figure~\ref{fig:select-instr-output-gc} in the next
  12222. section.
  12223. \section{Select Instructions and the \LangXGlobal{} Language}
  12224. \label{sec:select-instructions-gc}
  12225. \index{subject}{select instructions}
  12226. %% void (rep as zero)
  12227. %% allocate
  12228. %% collect (callq collect)
  12229. %% vector-ref
  12230. %% vector-set!
  12231. %% vector-length
  12232. %% global (postpone)
  12233. In this pass we generate x86 code for most of the new operations that
  12234. are needed to compile tuples, including \code{Allocate},
  12235. \code{Collect}, and accessing tuple elements.
  12236. %
  12237. We compile \code{GlobalValue} to \code{Global} because the latter has a
  12238. different concrete syntax (see figures~\ref{fig:x86-2-concrete} and
  12239. \ref{fig:x86-2}). \index{subject}{x86}
  12240. The tuple read and write forms translate into \code{movq}
  12241. instructions. (The $+1$ in the offset serves to move past the tag at the
  12242. beginning of the tuple representation.)
  12243. %
  12244. \begin{center}
  12245. \begin{minipage}{\textwidth}
  12246. {\if\edition\racketEd
  12247. \begin{lstlisting}
  12248. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  12249. |$\Longrightarrow$|
  12250. movq |$\itm{tup}'$|, %r11
  12251. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12252. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  12253. |$\Longrightarrow$|
  12254. movq |$\itm{tup}'$|, %r11
  12255. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12256. movq $0, |$\itm{lhs'}$|
  12257. \end{lstlisting}
  12258. \fi}
  12259. {\if\edition\pythonEd\pythonColor
  12260. \begin{lstlisting}
  12261. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  12262. |$\Longrightarrow$|
  12263. movq |$\itm{tup}'$|, %r11
  12264. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12265. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  12266. |$\Longrightarrow$|
  12267. movq |$\itm{tup}'$|, %r11
  12268. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12269. \end{lstlisting}
  12270. \fi}
  12271. \end{minipage}
  12272. \end{center}
  12273. \racket{The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$}
  12274. \python{The $\itm{tup}'$ and $\itm{rhs}'$}
  12275. are obtained by translating from \LangCVec{} to x86.
  12276. %
  12277. The move of $\itm{tup}'$ to
  12278. register \code{r11} ensures that the offset expression
  12279. \code{$8(n+1)$(\%r11)} contains a register operand. This requires
  12280. removing \code{r11} from consideration by the register allocating.
  12281. Why not use \code{rax} instead of \code{r11}? Suppose that we instead used
  12282. \code{rax}. Then the generated code for tuple assignment would be
  12283. \begin{lstlisting}
  12284. movq |$\itm{tup}'$|, %rax
  12285. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  12286. \end{lstlisting}
  12287. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  12288. \code{patch\_instructions} would insert a move through \code{rax}
  12289. as follows:
  12290. \begin{lstlisting}
  12291. movq |$\itm{tup}'$|, %rax
  12292. movq |$\itm{rhs}'$|, %rax
  12293. movq %rax, |$8(n+1)$|(%rax)
  12294. \end{lstlisting}
  12295. However, this sequence of instructions does not work because we're
  12296. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  12297. $\itm{rhs}'$) at the same time!
  12298. The \racket{\code{vector-length}}\python{\code{len}} operation should
  12299. be translated into a sequence of instructions that read the tag of the
  12300. tuple and extract the 6 bits that represent the tuple length, which
  12301. are the bits starting at index 1 and going up to and including bit 6.
  12302. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  12303. (shift right) can be used to accomplish this.
  12304. We compile the \code{allocate} form to operations on the
  12305. \code{free\_ptr}, as shown next. This approach is called
  12306. \emph{inline allocation} because it implements allocation without a
  12307. function call by simply incrementing the allocation pointer. It is much
  12308. more efficient than calling a function for each allocation. The
  12309. address in the \code{free\_ptr} is the next free address in the
  12310. FromSpace, so we copy it into \code{r11} and then move it forward by
  12311. enough space for the tuple being allocated, which is $8(\itm{len}+1)$
  12312. bytes because each element is 8 bytes (64 bits) and we use 8 bytes for
  12313. the tag. We then initialize the \itm{tag} and finally copy the
  12314. address in \code{r11} to the left-hand side. Refer to
  12315. figure~\ref{fig:tuple-rep} to see how the tag is organized.
  12316. %
  12317. \racket{We recommend using the Racket operations
  12318. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  12319. during compilation.}
  12320. %
  12321. \python{We recommend using the bitwise-or operator \code{|} and the
  12322. shift-left operator \code{<<} to compute the tag during
  12323. compilation.}
  12324. %
  12325. The type annotation in the \code{allocate} form is used to determine
  12326. the pointer mask region of the tag.
  12327. %
  12328. The addressing mode \verb!free_ptr(%rip)! essentially stands for the
  12329. address of the \code{free\_ptr} global variable using a special
  12330. instruction-pointer-relative addressing mode of the x86-64 processor.
  12331. In particular, the assembler computes the distance $d$ between the
  12332. address of \code{free\_ptr} and where the \code{rip} would be at that
  12333. moment and then changes the \code{free\_ptr(\%rip)} argument to
  12334. \code{$d$(\%rip)}, which at runtime will compute the address of
  12335. \code{free\_ptr}.
  12336. %
  12337. {\if\edition\racketEd
  12338. \begin{lstlisting}
  12339. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  12340. |$\Longrightarrow$|
  12341. movq free_ptr(%rip), %r11
  12342. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12343. movq $|$\itm{tag}$|, 0(%r11)
  12344. movq %r11, |$\itm{lhs}'$|
  12345. \end{lstlisting}
  12346. \fi}
  12347. {\if\edition\pythonEd\pythonColor
  12348. \begin{lstlisting}
  12349. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  12350. |$\Longrightarrow$|
  12351. movq free_ptr(%rip), %r11
  12352. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12353. movq $|$\itm{tag}$|, 0(%r11)
  12354. movq %r11, |$\itm{lhs}'$|
  12355. \end{lstlisting}
  12356. \fi}
  12357. %
  12358. The \code{collect} form is compiled to a call to the \code{collect}
  12359. function in the runtime. The arguments to \code{collect} are (1) the
  12360. top of the root stack, and (2) the number of bytes that need to be
  12361. allocated. We use another dedicated register, \code{r15}, to store
  12362. the pointer to the top of the root stack. Therefore \code{r15} is not
  12363. available for use by the register allocator.
  12364. %
  12365. {\if\edition\racketEd
  12366. \begin{lstlisting}
  12367. (collect |$\itm{bytes}$|)
  12368. |$\Longrightarrow$|
  12369. movq %r15, %rdi
  12370. movq $|\itm{bytes}|, %rsi
  12371. callq collect
  12372. \end{lstlisting}
  12373. \fi}
  12374. {\if\edition\pythonEd\pythonColor
  12375. \begin{lstlisting}
  12376. collect(|$\itm{bytes}$|)
  12377. |$\Longrightarrow$|
  12378. movq %r15, %rdi
  12379. movq $|\itm{bytes}|, %rsi
  12380. callq collect
  12381. \end{lstlisting}
  12382. \fi}
  12383. \newcommand{\GrammarXGlobal}{
  12384. \begin{array}{lcl}
  12385. \Arg &::=& \itm{label} \key{(\%rip)}
  12386. \end{array}
  12387. }
  12388. \newcommand{\ASTXGlobalRacket}{
  12389. \begin{array}{lcl}
  12390. \Arg &::=& \GLOBAL{\itm{label}}
  12391. \end{array}
  12392. }
  12393. \begin{figure}[tp]
  12394. \begin{tcolorbox}[colback=white]
  12395. \[
  12396. \begin{array}{l}
  12397. \gray{\GrammarXInt} \\ \hline
  12398. \gray{\GrammarXIf} \\ \hline
  12399. \GrammarXGlobal \\
  12400. \begin{array}{lcl}
  12401. \LangXGlobalM{} &::= & \key{.globl main} \\
  12402. & & \key{main:} \; \Instr^{*}
  12403. \end{array}
  12404. \end{array}
  12405. \]
  12406. \end{tcolorbox}
  12407. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1-concrete}).}
  12408. \label{fig:x86-2-concrete}
  12409. \end{figure}
  12410. \begin{figure}[tp]
  12411. \begin{tcolorbox}[colback=white]
  12412. \small
  12413. \[
  12414. \begin{array}{l}
  12415. \gray{\ASTXIntRacket} \\ \hline
  12416. \gray{\ASTXIfRacket} \\ \hline
  12417. \ASTXGlobalRacket \\
  12418. \begin{array}{lcl}
  12419. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  12420. \end{array}
  12421. \end{array}
  12422. \]
  12423. \end{tcolorbox}
  12424. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1}).}
  12425. \label{fig:x86-2}
  12426. \end{figure}
  12427. The definitions of the concrete and abstract syntax of the
  12428. \LangXGlobal{} language are shown in figures~\ref{fig:x86-2-concrete}
  12429. and \ref{fig:x86-2}. It differs from \LangXIf{} only in the addition
  12430. of global variables.
  12431. %
  12432. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  12433. \code{select\_instructions} pass on the running example.
  12434. \begin{figure}[tbp]
  12435. \centering
  12436. \begin{tcolorbox}[colback=white]
  12437. % tests/s2_17.rkt
  12438. \begin{tabular}{lll}
  12439. \begin{minipage}{0.5\textwidth}
  12440. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12441. start:
  12442. tmp9 = (global-value free_ptr);
  12443. tmp0 = (+ tmp9 16);
  12444. tmp1 = (global-value fromspace_end);
  12445. if (< tmp0 tmp1)
  12446. goto block0;
  12447. else
  12448. goto block1;
  12449. block0:
  12450. _4 = (void);
  12451. goto block9;
  12452. block1:
  12453. (collect 16)
  12454. goto block9;
  12455. block9:
  12456. alloc2 = (allocate 1 (Vector Integer));
  12457. _3 = (vector-set! alloc2 0 42);
  12458. vecinit6 = alloc2;
  12459. tmp2 = (global-value free_ptr);
  12460. tmp3 = (+ tmp2 16);
  12461. tmp4 = (global-value fromspace_end);
  12462. if (< tmp3 tmp4)
  12463. goto block7;
  12464. else
  12465. goto block8;
  12466. block7:
  12467. _8 = (void);
  12468. goto block6;
  12469. block8:
  12470. (collect 16)
  12471. goto block6;
  12472. block6:
  12473. alloc5 = (allocate 1 (Vector (Vector Integer)));
  12474. _7 = (vector-set! alloc5 0 vecinit6);
  12475. tmp5 = (vector-ref alloc5 0);
  12476. return (vector-ref tmp5 0);
  12477. \end{lstlisting}
  12478. \end{minipage}
  12479. &$\Rightarrow$&
  12480. \begin{minipage}{0.4\textwidth}
  12481. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12482. start:
  12483. movq free_ptr(%rip), tmp9
  12484. movq tmp9, tmp0
  12485. addq $16, tmp0
  12486. movq fromspace_end(%rip), tmp1
  12487. cmpq tmp1, tmp0
  12488. jl block0
  12489. jmp block1
  12490. block0:
  12491. movq $0, _4
  12492. jmp block9
  12493. block1:
  12494. movq %r15, %rdi
  12495. movq $16, %rsi
  12496. callq collect
  12497. jmp block9
  12498. block9:
  12499. movq free_ptr(%rip), %r11
  12500. addq $16, free_ptr(%rip)
  12501. movq $3, 0(%r11)
  12502. movq %r11, alloc2
  12503. movq alloc2, %r11
  12504. movq $42, 8(%r11)
  12505. movq $0, _3
  12506. movq alloc2, vecinit6
  12507. movq free_ptr(%rip), tmp2
  12508. movq tmp2, tmp3
  12509. addq $16, tmp3
  12510. movq fromspace_end(%rip), tmp4
  12511. cmpq tmp4, tmp3
  12512. jl block7
  12513. jmp block8
  12514. block7:
  12515. movq $0, _8
  12516. jmp block6
  12517. block8:
  12518. movq %r15, %rdi
  12519. movq $16, %rsi
  12520. callq collect
  12521. jmp block6
  12522. block6:
  12523. movq free_ptr(%rip), %r11
  12524. addq $16, free_ptr(%rip)
  12525. movq $131, 0(%r11)
  12526. movq %r11, alloc5
  12527. movq alloc5, %r11
  12528. movq vecinit6, 8(%r11)
  12529. movq $0, _7
  12530. movq alloc5, %r11
  12531. movq 8(%r11), tmp5
  12532. movq tmp5, %r11
  12533. movq 8(%r11), %rax
  12534. jmp conclusion
  12535. \end{lstlisting}
  12536. \end{minipage}
  12537. \end{tabular}
  12538. \end{tcolorbox}
  12539. \caption{Output of the \code{explicate\_control} (\emph{left}) and
  12540. \code{select\_instructions} (\emph{right}) passes on the running
  12541. example.}
  12542. \label{fig:select-instr-output-gc}
  12543. \end{figure}
  12544. \clearpage
  12545. \section{Register Allocation}
  12546. \label{sec:reg-alloc-gc}
  12547. \index{subject}{register allocation}
  12548. As discussed previously in this chapter, the garbage collector needs to
  12549. access all the pointers in the root set, that is, all variables that
  12550. are tuples. It will be the responsibility of the register allocator
  12551. to make sure that
  12552. \begin{enumerate}
  12553. \item the root stack is used for spilling tuple-typed variables, and
  12554. \item if a tuple-typed variable is live during a call to the
  12555. collector, it must be spilled to ensure that it is visible to the
  12556. collector.
  12557. \end{enumerate}
  12558. The latter responsibility can be handled during construction of the
  12559. interference graph, by adding interference edges between the call-live
  12560. tuple-typed variables and all the callee-saved registers. (They
  12561. already interfere with the caller-saved registers.)
  12562. %
  12563. \racket{The type information for variables is in the \code{Program}
  12564. form, so we recommend adding another parameter to the
  12565. \code{build\_interference} function to communicate this alist.}
  12566. %
  12567. \python{The type information for variables is generated by the type
  12568. checker for \LangCVec{}, stored a field named \code{var\_types} in
  12569. the \code{CProgram} AST mode. You'll need to propagate that
  12570. information so that it is available in this pass.}
  12571. The spilling of tuple-typed variables to the root stack can be handled
  12572. after graph coloring, in choosing how to assign the colors
  12573. (integers) to registers and stack locations. The
  12574. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  12575. changes to also record the number of spills to the root stack.
  12576. % build-interference
  12577. %
  12578. % callq
  12579. % extra parameter for var->type assoc. list
  12580. % update 'program' and 'if'
  12581. % allocate-registers
  12582. % allocate spilled vectors to the rootstack
  12583. % don't change color-graph
  12584. % TODO:
  12585. %\section{Patch Instructions}
  12586. %[mention that global variables are memory references]
  12587. \section{Prelude and Conclusion}
  12588. \label{sec:print-x86-gc}
  12589. \label{sec:prelude-conclusion-x86-gc}
  12590. \index{subject}{prelude}\index{subject}{conclusion}
  12591. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  12592. \code{prelude\_and\_conclusion} pass on the running example. In the
  12593. prelude of the \code{main} function, we allocate space
  12594. on the root stack to make room for the spills of tuple-typed
  12595. variables. We do so by incrementing the root stack pointer (\code{r15}),
  12596. taking care that the root stack grows up instead of down. For the
  12597. running example, there was just one spill, so we increment \code{r15}
  12598. by 8 bytes. In the conclusion we subtract 8 bytes from \code{r15}.
  12599. One issue that deserves special care is that there may be a call to
  12600. \code{collect} prior to the initializing assignments for all the
  12601. variables in the root stack. We do not want the garbage collector to
  12602. mistakenly determine that some uninitialized variable is a pointer that
  12603. needs to be followed. Thus, we zero out all locations on the root
  12604. stack in the prelude of \code{main}. In
  12605. figure~\ref{fig:print-x86-output-gc}, the instruction
  12606. %
  12607. \lstinline{movq $0, 0(%r15)}
  12608. %
  12609. is sufficient to accomplish this task because there is only one spill.
  12610. In general, we have to clear as many words as there are spills of
  12611. tuple-typed variables. The garbage collector tests each root to see
  12612. if it is null prior to dereferencing it.
  12613. \begin{figure}[htbp]
  12614. % TODO: Python Version -Jeremy
  12615. \begin{tcolorbox}[colback=white]
  12616. \begin{minipage}[t]{0.5\textwidth}
  12617. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12618. .globl main
  12619. main:
  12620. pushq %rbp
  12621. movq %rsp, %rbp
  12622. subq $0, %rsp
  12623. movq $65536, %rdi
  12624. movq $65536, %rsi
  12625. callq initialize
  12626. movq rootstack_begin(%rip), %r15
  12627. movq $0, 0(%r15)
  12628. addq $8, %r15
  12629. jmp start
  12630. conclusion:
  12631. subq $8, %r15
  12632. addq $0, %rsp
  12633. popq %rbp
  12634. retq
  12635. \end{lstlisting}
  12636. \end{minipage}
  12637. \end{tcolorbox}
  12638. \caption{The prelude and conclusion generated by the \code{prelude\_and\_conclusion} pass for the running example.}
  12639. \label{fig:print-x86-output-gc}
  12640. \end{figure}
  12641. \begin{figure}[tbp]
  12642. \begin{tcolorbox}[colback=white]
  12643. {\if\edition\racketEd
  12644. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  12645. \node (Lvec) at (0,2) {\large \LangVec{}};
  12646. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  12647. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  12648. \node (Lvec-4) at (10,2) {\large \LangAlloc{}};
  12649. \node (Lvec-5) at (10,0) {\large \LangAlloc{}};
  12650. \node (Lvec-6) at (5,0) {\large \LangAllocANF{}};
  12651. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12652. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12653. \node (x86-2-1) at (0,-4) {\large \LangXGlobalVar{}};
  12654. \node (x86-2-2) at (4,-4) {\large \LangXGlobalVar{}};
  12655. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12656. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12657. \node (x86-5) at (8,-4) {\large \LangXGlobal{}};
  12658. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12659. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  12660. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-4);
  12661. \path[->,bend left=15] (Lvec-4) edge [right] node
  12662. {\ttfamily\footnotesize uncover\_get!} (Lvec-5);
  12663. \path[->,bend left=10] (Lvec-5) edge [below] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12664. \path[->,bend right=10] (Lvec-6) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  12665. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12666. \path[->,bend right=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  12667. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  12668. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  12669. \path[->,bend left=10] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12670. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12671. \end{tikzpicture}
  12672. \fi}
  12673. {\if\edition\pythonEd\pythonColor
  12674. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  12675. \node (Lvec) at (0,2) {\large \LangVec{}};
  12676. \node (Lvec-2) at (4,2) {\large \LangVec{}};
  12677. \node (Lvec-5) at (8,2) {\large \LangAlloc{}};
  12678. \node (Lvec-6) at (12,2) {\large \LangAllocANF{}};
  12679. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12680. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12681. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12682. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12683. \node (x86-5) at (12,-2) {\large \LangXGlobal{}};
  12684. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12685. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-5);
  12686. \path[->,bend left=15] (Lvec-5) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12687. \path[->,bend left=10] (Lvec-6) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C2-4);
  12688. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12689. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  12690. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12691. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12692. \end{tikzpicture}
  12693. \fi}
  12694. \end{tcolorbox}
  12695. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  12696. \label{fig:Lvec-passes}
  12697. \end{figure}
  12698. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  12699. for the compilation of \LangVec{}.
  12700. \clearpage
  12701. {\if\edition\racketEd
  12702. \section{Challenge: Simple Structures}
  12703. \label{sec:simple-structures}
  12704. \index{subject}{struct}
  12705. \index{subject}{structure}
  12706. The language \LangStruct{} extends \LangVec{} with support for simple
  12707. structures. The definition of its concrete syntax is shown in
  12708. figure~\ref{fig:Lstruct-concrete-syntax}, and the abstract syntax is
  12709. shown in figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct}
  12710. in Typed Racket is a user-defined data type that contains named fields
  12711. and that is heap allocated\index{subject}{heap allocated},
  12712. similarly to a vector. The following is an
  12713. example of a structure definition, in this case the definition of a
  12714. \code{point} type:
  12715. \begin{lstlisting}
  12716. (struct point ([x : Integer] [y : Integer]) #:mutable)
  12717. \end{lstlisting}
  12718. \newcommand{\LstructGrammarRacket}{
  12719. \begin{array}{lcl}
  12720. \Type &::=& \Var \\
  12721. \Exp &::=& (\Var\;\Exp \ldots)\\
  12722. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  12723. \end{array}
  12724. }
  12725. \newcommand{\LstructASTRacket}{
  12726. \begin{array}{lcl}
  12727. \Type &::=& \VAR{\Var} \\
  12728. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  12729. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  12730. \end{array}
  12731. }
  12732. \begin{figure}[tbp]
  12733. \centering
  12734. \begin{tcolorbox}[colback=white]
  12735. \[
  12736. \begin{array}{l}
  12737. \gray{\LintGrammarRacket{}} \\ \hline
  12738. \gray{\LvarGrammarRacket{}} \\ \hline
  12739. \gray{\LifGrammarRacket{}} \\ \hline
  12740. \gray{\LwhileGrammarRacket} \\ \hline
  12741. \gray{\LtupGrammarRacket} \\ \hline
  12742. \LstructGrammarRacket \\
  12743. \begin{array}{lcl}
  12744. \LangStruct{} &::=& \Def \ldots \; \Exp
  12745. \end{array}
  12746. \end{array}
  12747. \]
  12748. \end{tcolorbox}
  12749. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  12750. (figure~\ref{fig:Lvec-concrete-syntax}).}
  12751. \label{fig:Lstruct-concrete-syntax}
  12752. \end{figure}
  12753. \begin{figure}[tbp]
  12754. \centering
  12755. \begin{tcolorbox}[colback=white]
  12756. \small
  12757. \[
  12758. \begin{array}{l}
  12759. \gray{\LintASTRacket{}} \\ \hline
  12760. \gray{\LvarASTRacket{}} \\ \hline
  12761. \gray{\LifASTRacket{}} \\ \hline
  12762. \gray{\LwhileASTRacket} \\ \hline
  12763. \gray{\LtupASTRacket} \\ \hline
  12764. \LstructASTRacket \\
  12765. \begin{array}{lcl}
  12766. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  12767. \end{array}
  12768. \end{array}
  12769. \]
  12770. \end{tcolorbox}
  12771. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  12772. (figure~\ref{fig:Lvec-syntax}).}
  12773. \label{fig:Lstruct-syntax}
  12774. \end{figure}
  12775. An instance of a structure is created using function-call syntax, with
  12776. the name of the structure in the function position, as follows:
  12777. \begin{lstlisting}
  12778. (point 7 12)
  12779. \end{lstlisting}
  12780. Function-call syntax is also used to read a field of a structure. The
  12781. function name is formed by the structure name, a dash, and the field
  12782. name. The following example uses \code{point-x} and \code{point-y} to
  12783. access the \code{x} and \code{y} fields of two point instances:
  12784. \begin{center}
  12785. \begin{lstlisting}
  12786. (let ([pt1 (point 7 12)])
  12787. (let ([pt2 (point 4 3)])
  12788. (+ (- (point-x pt1) (point-x pt2))
  12789. (- (point-y pt1) (point-y pt2)))))
  12790. \end{lstlisting}
  12791. \end{center}
  12792. Similarly, to write to a field of a structure, use its set function,
  12793. whose name starts with \code{set-}, followed by the structure name,
  12794. then a dash, then the field name, and finally with an exclamation
  12795. mark. The following example uses \code{set-point-x!} to change the
  12796. \code{x} field from \code{7} to \code{42}:
  12797. \begin{center}
  12798. \begin{lstlisting}
  12799. (let ([pt (point 7 12)])
  12800. (let ([_ (set-point-x! pt 42)])
  12801. (point-x pt)))
  12802. \end{lstlisting}
  12803. \end{center}
  12804. \begin{exercise}\normalfont\normalsize
  12805. Create a type checker for \LangStruct{} by extending the type
  12806. checker for \LangVec{}. Extend your compiler with support for simple
  12807. structures, compiling \LangStruct{} to x86 assembly code. Create
  12808. five new test cases that use structures, and test your compiler.
  12809. \end{exercise}
  12810. % TODO: create an interpreter for L_struct
  12811. \clearpage
  12812. \fi}
  12813. \section{Challenge: Arrays}
  12814. \label{sec:arrays}
  12815. % TODO mention trapped-error
  12816. In this chapter we have studied tuples, that is, heterogeneous
  12817. sequences of elements whose length is determined at compile time. This
  12818. challenge is also about sequences, but this time the length is
  12819. determined at runtime and all the elements have the same type (they
  12820. are homogeneous). We use the term \emph{array} for this latter kind of
  12821. sequence.
  12822. %
  12823. \racket{
  12824. The Racket language does not distinguish between tuples and arrays;
  12825. they are both represented by vectors. However, Typed Racket
  12826. distinguishes between tuples and arrays: the \code{Vector} type is for
  12827. tuples, and the \code{Vectorof} type is for arrays.}%
  12828. \python{Arrays correspond to the \code{list} type in Python language.}
  12829. Figure~\ref{fig:Lvecof-concrete-syntax} presents the definition of the
  12830. concrete syntax for \LangArray{}, and figure~\ref{fig:Lvecof-syntax}
  12831. presents the definition of the abstract syntax, extending \LangVec{}
  12832. with the \racket{\code{Vectorof}}\python{\code{list}} type and the
  12833. %
  12834. \racket{\code{make-vector} primitive operator for creating an array,
  12835. whose arguments are the length of the array and an initial value for
  12836. all the elements in the array.}
  12837. \python{bracket notation for creating an array literal.}
  12838. \racket{The \code{vector-length},
  12839. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  12840. for tuples become overloaded for use with arrays.}
  12841. \python{
  12842. The subscript operator becomes overloaded for use with arrays and tuples
  12843. and now may appear on the left-hand side of an assignment.
  12844. Note that the index of the subscript, when applied to an array, may be an
  12845. arbitrary expression and not just a constant integer.
  12846. The \code{len} function is also applicable to arrays.
  12847. }
  12848. %
  12849. We include integer multiplication in \LangArray{} because it is
  12850. useful in many examples involving arrays such as computing the
  12851. inner product of two arrays (figure~\ref{fig:inner_product}).
  12852. \newcommand{\LarrayGrammarRacket}{
  12853. \begin{array}{lcl}
  12854. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  12855. \Exp &::=& \CMUL{\Exp}{\Exp}
  12856. \MID \CMAKEVEC{\Exp}{\Exp}
  12857. \end{array}
  12858. }
  12859. \newcommand{\LarrayASTRacket}{
  12860. \begin{array}{lcl}
  12861. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  12862. \Exp &::=& \MUL{\Exp}{\Exp}
  12863. \MID \MAKEVEC{\Exp}{\Exp}
  12864. \end{array}
  12865. }
  12866. \newcommand{\LarrayGrammarPython}{
  12867. \begin{array}{lcl}
  12868. \Type &::=& \key{list}\LS\Type\RS \\
  12869. \Exp &::=& \CMUL{\Exp}{\Exp}
  12870. \MID \CGET{\Exp}{\Exp}
  12871. \MID \LS \Exp \code{,} \ldots \RS \\
  12872. \Stmt &::= & \CGET{\Exp}{\Exp} \mathop{\key{=}}\Exp
  12873. \end{array}
  12874. }
  12875. \newcommand{\LarrayASTPython}{
  12876. \begin{array}{lcl}
  12877. \Type &::=& \key{ListType}\LP\Type\RP \\
  12878. \Exp &::=& \MUL{\Exp}{\Exp}
  12879. \MID \GET{\Exp}{\Exp} \\
  12880. &\MID& \key{List}\LP \Exp \code{,} \ldots \code{, } \code{Load()} \RP \\
  12881. \Stmt &::= & \ASSIGN{ \PUT{\Exp}{\Exp} }{\Exp}
  12882. \end{array}
  12883. }
  12884. \begin{figure}[tp]
  12885. \centering
  12886. \begin{tcolorbox}[colback=white]
  12887. \small
  12888. {\if\edition\racketEd
  12889. \[
  12890. \begin{array}{l}
  12891. \gray{\LintGrammarRacket{}} \\ \hline
  12892. \gray{\LvarGrammarRacket{}} \\ \hline
  12893. \gray{\LifGrammarRacket{}} \\ \hline
  12894. \gray{\LwhileGrammarRacket} \\ \hline
  12895. \gray{\LtupGrammarRacket} \\ \hline
  12896. \LarrayGrammarRacket \\
  12897. \begin{array}{lcl}
  12898. \LangArray{} &::=& \Exp
  12899. \end{array}
  12900. \end{array}
  12901. \]
  12902. \fi}
  12903. {\if\edition\pythonEd\pythonColor
  12904. \[
  12905. \begin{array}{l}
  12906. \gray{\LintGrammarPython{}} \\ \hline
  12907. \gray{\LvarGrammarPython{}} \\ \hline
  12908. \gray{\LifGrammarPython{}} \\ \hline
  12909. \gray{\LwhileGrammarPython} \\ \hline
  12910. \gray{\LtupGrammarPython} \\ \hline
  12911. \LarrayGrammarPython \\
  12912. \begin{array}{rcl}
  12913. \LangArrayM{} &::=& \Stmt^{*}
  12914. \end{array}
  12915. \end{array}
  12916. \]
  12917. \fi}
  12918. \end{tcolorbox}
  12919. \caption{The concrete syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  12920. \label{fig:Lvecof-concrete-syntax}
  12921. \end{figure}
  12922. \begin{figure}[tp]
  12923. \centering
  12924. \begin{tcolorbox}[colback=white]
  12925. \small
  12926. {\if\edition\racketEd
  12927. \[
  12928. \begin{array}{l}
  12929. \gray{\LintASTRacket{}} \\ \hline
  12930. \gray{\LvarASTRacket{}} \\ \hline
  12931. \gray{\LifASTRacket{}} \\ \hline
  12932. \gray{\LwhileASTRacket} \\ \hline
  12933. \gray{\LtupASTRacket} \\ \hline
  12934. \LarrayASTRacket \\
  12935. \begin{array}{lcl}
  12936. \LangArray{} &::=& \Exp
  12937. \end{array}
  12938. \end{array}
  12939. \]
  12940. \fi}
  12941. {\if\edition\pythonEd\pythonColor
  12942. \[
  12943. \begin{array}{l}
  12944. \gray{\LintASTPython{}} \\ \hline
  12945. \gray{\LvarASTPython{}} \\ \hline
  12946. \gray{\LifASTPython{}} \\ \hline
  12947. \gray{\LwhileASTPython} \\ \hline
  12948. \gray{\LtupASTPython} \\ \hline
  12949. \LarrayASTPython \\
  12950. \begin{array}{rcl}
  12951. \LangArrayM{} &::=& \Stmt^{*}
  12952. \end{array}
  12953. \end{array}
  12954. \]
  12955. \fi}
  12956. \end{tcolorbox}
  12957. \caption{The abstract syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  12958. \label{fig:Lvecof-syntax}
  12959. \end{figure}
  12960. \begin{figure}[tp]
  12961. \begin{tcolorbox}[colback=white]
  12962. {\if\edition\racketEd
  12963. % TODO: remove the function from the following example, like the python version -Jeremy
  12964. \begin{lstlisting}
  12965. (let ([A (make-vector 2 2)])
  12966. (let ([B (make-vector 2 3)])
  12967. (let ([i 0])
  12968. (let ([prod 0])
  12969. (begin
  12970. (while (< i n)
  12971. (begin
  12972. (set! prod (+ prod (* (vector-ref A i)
  12973. (vector-ref B i))))
  12974. (set! i (+ i 1))))
  12975. prod)))))
  12976. \end{lstlisting}
  12977. \fi}
  12978. {\if\edition\pythonEd\pythonColor
  12979. \begin{lstlisting}
  12980. A = [2, 2]
  12981. B = [3, 3]
  12982. i = 0
  12983. prod = 0
  12984. while i != len(A):
  12985. prod = prod + A[i] * B[i]
  12986. i = i + 1
  12987. print( prod )
  12988. \end{lstlisting}
  12989. \fi}
  12990. \end{tcolorbox}
  12991. \caption{Example program that computes the inner product.}
  12992. \label{fig:inner_product}
  12993. \end{figure}
  12994. {\if\edition\racketEd
  12995. %
  12996. Figure~\ref{fig:type-check-Lvecof} shows the definition of the type
  12997. checker for \LangArray{}. The result type of
  12998. \code{make-vector} is \code{(Vectorof T)}, where \code{T} is the type
  12999. of the initializing expression. The length expression is required to
  13000. have type \code{Integer}. The type checking of the operators
  13001. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  13002. updated to handle the situation in which the vector has type
  13003. \code{Vectorof}. In these cases we translate the operators to their
  13004. \code{vectorof} form so that later passes can easily distinguish
  13005. between operations on tuples versus arrays. We override the
  13006. \code{operator-types} method to provide the type signature for
  13007. multiplication: it takes two integers and returns an integer. \fi}
  13008. {\if\edition\pythonEd\pythonColor
  13009. %
  13010. The type checker for \LangArray{} is defined in
  13011. figure~\ref{fig:type-check-Lvecof}. The result type of a list literal
  13012. is \code{list[T]} where \code{T} is the type of the initializing
  13013. expressions. The type checking of the \code{len} function and the
  13014. subscript operator is updated to handle lists. The type checker now
  13015. also handles a subscript on the left-hand side of an assignment.
  13016. Regarding multiplication, it takes two integers and returns an
  13017. integer.
  13018. %
  13019. \fi}
  13020. \begin{figure}[tbp]
  13021. \begin{tcolorbox}[colback=white]
  13022. {\if\edition\racketEd
  13023. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13024. (define type-check-Lvecof-class
  13025. (class type-check-Lvec-class
  13026. (super-new)
  13027. (inherit check-type-equal?)
  13028. (define/override (operator-types)
  13029. (append '((* . ((Integer Integer) . Integer)))
  13030. (super operator-types)))
  13031. (define/override (type-check-exp env)
  13032. (lambda (e)
  13033. (define recur (type-check-exp env))
  13034. (match e
  13035. [(Prim 'make-vector (list e1 e2))
  13036. (define-values (e1^ t1) (recur e1))
  13037. (define-values (e2^ elt-type) (recur e2))
  13038. (define vec-type `(Vectorof ,elt-type))
  13039. (values (Prim 'make-vector (list e1^ e2^)) vec-type)]
  13040. [(Prim 'vector-ref (list e1 e2))
  13041. (define-values (e1^ t1) (recur e1))
  13042. (define-values (e2^ t2) (recur e2))
  13043. (match* (t1 t2)
  13044. [(`(Vectorof ,elt-type) 'Integer)
  13045. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  13046. [(other wise) ((super type-check-exp env) e)])]
  13047. [(Prim 'vector-set! (list e1 e2 e3) )
  13048. (define-values (e-vec t-vec) (recur e1))
  13049. (define-values (e2^ t2) (recur e2))
  13050. (define-values (e-arg^ t-arg) (recur e3))
  13051. (match t-vec
  13052. [`(Vectorof ,elt-type)
  13053. (check-type-equal? elt-type t-arg e)
  13054. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  13055. [else ((super type-check-exp env) e)])]
  13056. [(Prim 'vector-length (list e1))
  13057. (define-values (e1^ t1) (recur e1))
  13058. (match t1
  13059. [`(Vectorof ,t)
  13060. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  13061. [else ((super type-check-exp env) e)])]
  13062. [else ((super type-check-exp env) e)])))
  13063. ))
  13064. (define (type-check-Lvecof p)
  13065. (send (new type-check-Lvecof-class) type-check-program p))
  13066. \end{lstlisting}
  13067. \fi}
  13068. {\if\edition\pythonEd\pythonColor
  13069. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13070. class TypeCheckLarray(TypeCheckLtup):
  13071. def type_check_exp(self, e, env):
  13072. match e:
  13073. case ast.List(es, Load()):
  13074. ts = [self.type_check_exp(e, env) for e in es]
  13075. elt_ty = ts[0]
  13076. for (ty, elt) in zip(ts, es):
  13077. self.check_type_equal(elt_ty, ty, elt)
  13078. e.has_type = ListType(elt_ty)
  13079. return e.has_type
  13080. case Call(Name('len'), [tup]):
  13081. tup_t = self.type_check_exp(tup, env)
  13082. tup.has_type = tup_t
  13083. match tup_t:
  13084. case TupleType(ts):
  13085. return IntType()
  13086. case ListType(ty):
  13087. return IntType()
  13088. case _:
  13089. raise Exception('len expected a tuple, not ' + repr(tup_t))
  13090. case Subscript(tup, index, Load()):
  13091. tup_ty = self.type_check_exp(tup, env)
  13092. index_ty = self.type_check_exp(index, env)
  13093. self.check_type_equal(index_ty, IntType(), index)
  13094. match tup_ty:
  13095. case TupleType(ts):
  13096. match index:
  13097. case Constant(i):
  13098. return ts[i]
  13099. case _:
  13100. raise Exception('subscript required constant integer index')
  13101. case ListType(ty):
  13102. return ty
  13103. case _:
  13104. raise Exception('subscript expected a tuple, not ' + repr(tup_ty))
  13105. case BinOp(left, Mult(), right):
  13106. l = self.type_check_exp(left, env)
  13107. self.check_type_equal(l, IntType(), left)
  13108. r = self.type_check_exp(right, env)
  13109. self.check_type_equal(r, IntType(), right)
  13110. return IntType()
  13111. case _:
  13112. return super().type_check_exp(e, env)
  13113. def type_check_stmts(self, ss, env):
  13114. if len(ss) == 0:
  13115. return VoidType()
  13116. match ss[0]:
  13117. case Assign([Subscript(tup, index, Store())], value):
  13118. tup_t = self.type_check_exp(tup, env)
  13119. value_t = self.type_check_exp(value, env)
  13120. index_ty = self.type_check_exp(index, env)
  13121. self.check_type_equal(index_ty, IntType(), index)
  13122. match tup_t:
  13123. case ListType(ty):
  13124. self.check_type_equal(ty, value_t, ss[0])
  13125. case TupleType(ts):
  13126. return self.type_check_stmts(ss, env)
  13127. case _:
  13128. raise Exception('type_check_stmts: '
  13129. 'expected tuple or list, not ' + repr(tup_t))
  13130. return self.type_check_stmts(ss[1:], env)
  13131. case _:
  13132. return super().type_check_stmts(ss, env)
  13133. \end{lstlisting}
  13134. \fi}
  13135. \end{tcolorbox}
  13136. \caption{Type checker for the \LangArray{} language.}
  13137. \label{fig:type-check-Lvecof}
  13138. \end{figure}
  13139. The definition of the interpreter for \LangArray{} is shown in
  13140. figure~\ref{fig:interp-Lvecof}.
  13141. \racket{The \code{make-vector} operator is
  13142. interpreted using Racket's \code{make-vector} function,
  13143. and multiplication is interpreted using \code{fx*},
  13144. which is multiplication for \code{fixnum} integers.
  13145. In the \code{resolve} pass (section~\ref{sec:array-resolution})
  13146. we translate array access operations
  13147. into \code{vectorof-ref} and \code{vectorof-set!} operations,
  13148. which we interpret using \code{vector} operations with additional
  13149. bounds checks that signal a \code{trapped-error}.
  13150. }
  13151. %
  13152. \python{We implement list creation with a Python list comprehension
  13153. and multiplication is implemented with Python multiplication. We
  13154. add a case to handle a subscript on the left-hand side of
  13155. assignment. Other uses of subscript can be handled by the existing
  13156. code for tuples.}
  13157. \begin{figure}[tbp]
  13158. \begin{tcolorbox}[colback=white]
  13159. {\if\edition\racketEd
  13160. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13161. (define interp-Lvecof-class
  13162. (class interp-Lvec-class
  13163. (super-new)
  13164. (define/override (interp-op op)
  13165. (match op
  13166. ['make-vector make-vector]
  13167. ['vectorof-length vector-length]
  13168. ['vectorof-ref
  13169. (lambda (v i)
  13170. (if (< i (vector-length v))
  13171. (vector-ref v i)
  13172. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13173. ['vectorof-set!
  13174. (lambda (v i e)
  13175. (if (< i (vector-length v))
  13176. (vector-set! v i e)
  13177. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13178. [else (super interp-op op)]))
  13179. ))
  13180. (define (interp-Lvecof p)
  13181. (send (new interp-Lvecof-class) interp-program p))
  13182. \end{lstlisting}
  13183. \fi}
  13184. {\if\edition\pythonEd\pythonColor
  13185. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13186. class InterpLarray(InterpLtup):
  13187. def interp_exp(self, e, env):
  13188. match e:
  13189. case ast.List(es, Load()):
  13190. return [self.interp_exp(e, env) for e in es]
  13191. case BinOp(left, Mult(), right):
  13192. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  13193. return l * r
  13194. case Subscript(tup, index, Load()):
  13195. t = self.interp_exp(tup, env)
  13196. n = self.interp_exp(index, env)
  13197. if n < len(t):
  13198. return t[n]
  13199. else:
  13200. raise TrappedError('array index out of bounds')
  13201. case _:
  13202. return super().interp_exp(e, env)
  13203. def interp_stmt(self, s, env, cont):
  13204. match s:
  13205. case Assign([Subscript(tup, index)], value):
  13206. t = self.interp_exp(tup, env)
  13207. n = self.interp_exp(index, env)
  13208. if n < len(t):
  13209. t[n] = self.interp_exp(value, env)
  13210. else:
  13211. raise TrappedError('array index out of bounds')
  13212. return self.interp_stmts(cont, env)
  13213. case _:
  13214. return super().interp_stmt(s, env, cont)
  13215. \end{lstlisting}
  13216. \fi}
  13217. \end{tcolorbox}
  13218. \caption{Interpreter for \LangArray{}.}
  13219. \label{fig:interp-Lvecof}
  13220. \end{figure}
  13221. \subsection{Data Representation}
  13222. \label{sec:array-rep}
  13223. Just as with tuples, we store arrays on the heap, which means that the
  13224. garbage collector will need to inspect arrays. An immediate thought is
  13225. to use the same representation for arrays that we use for tuples.
  13226. However, we limit tuples to a length of fifty so that their length and
  13227. pointer mask can fit into the 64-bit tag at the beginning of each
  13228. tuple (section~\ref{sec:data-rep-gc}). We intend arrays to allow
  13229. millions of elements, so we need more bits to store the length.
  13230. However, because arrays are homogeneous, we need only 1 bit for the
  13231. pointer mask instead of 1 bit per array element. Finally, the
  13232. garbage collector must be able to distinguish between tuples
  13233. and arrays, so we need to reserve one bit for that purpose. We
  13234. arrive at the following layout for the 64-bit tag at the beginning of
  13235. an array:
  13236. \begin{itemize}
  13237. \item The right-most bit is the forwarding bit, just as in a tuple.
  13238. A $0$ indicates that it is a forwarding pointer, and a $1$ indicates
  13239. that it is not.
  13240. \item The next bit to the left is the pointer mask. A $0$ indicates
  13241. that none of the elements are pointers to the heap, and a $1$
  13242. indicates that all the elements are pointers.
  13243. \item The next $60$ bits store the length of the array.
  13244. \item The bit at position $62$ distinguishes between a tuple ($0$)
  13245. and an array ($1$).
  13246. \item The left-most bit is reserved as explained in
  13247. chapter~\ref{ch:Lgrad}.
  13248. \end{itemize}
  13249. %% Recall that in chapter~\ref{ch:Ldyn}, we use a $3$-bit tag to
  13250. %% differentiate the kinds of values that have been injected into the
  13251. %% \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  13252. %% to indicate that the value is an array.
  13253. In the following subsections we provide hints regarding how to update
  13254. the passes to handle arrays.
  13255. \subsection{Overload Resolution}
  13256. \label{sec:array-resolution}
  13257. As noted previously, with the addition of arrays, several operators
  13258. have become \emph{overloaded}; that is, they can be applied to values
  13259. of more than one type. In this case, the element access and length
  13260. operators can be applied to both tuples and arrays. This kind of
  13261. overloading is quite common in programming languages, so many
  13262. compilers perform \emph{overload resolution}\index{subject}{overload
  13263. resolution} to handle it. The idea is to translate each overloaded
  13264. operator into different operators for the different types.
  13265. Implement a new pass named \code{resolve}.
  13266. Translate the reading of an array element
  13267. into a call to
  13268. \racket{\code{vectorof-ref}}\python{\code{array\_load}}
  13269. and the writing of an array element to
  13270. \racket{\code{vectorof-set!}}\python{\code{array\_store}}
  13271. Translate calls to \racket{\code{vector-length}}\python{\code{len}}
  13272. into \racket{\code{vectorof-length}}\python{\code{array\_len}}.
  13273. When these operators are applied to tuples, leave them as is.
  13274. %
  13275. \python{The type checker for \LangArray{} adds a \code{has\_type}
  13276. field which can be inspected to determine whether the operator
  13277. is applied to a tuple or an array.}
  13278. \subsection{Bounds Checking}
  13279. Recall that the interpreter for \LangArray{} signals a
  13280. \code{trapped-error} when there is an array access that is out of
  13281. bounds. Therefore your compiler is obliged to also catch these errors
  13282. during execution and halt, signaling an error. We recommend inserting
  13283. a new pass named \code{check\_bounds} that inserts code around each
  13284. \racket{\code{vectorof-ref} and \code{vectorof-set!}}
  13285. \python{subscript} operation to ensure that the index is greater than
  13286. or equal to zero and less than the array's length. If not, the program
  13287. should halt, for which we recommend using a new primitive operation
  13288. named \code{exit}.
  13289. %% \subsection{Reveal Casts}
  13290. %% The array-access operators \code{vectorof-ref} and
  13291. %% \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  13292. %% \code{any-vector-set!} operators of chapter~\ref{ch:Ldyn} in
  13293. %% that the type checker cannot tell whether the index will be in bounds,
  13294. %% so the bounds check must be performed at run time. Recall that the
  13295. %% \code{reveal-casts} pass (section~\ref{sec:reveal-casts-Rany}) wraps
  13296. %% an \code{If} around a vector reference for update to check whether
  13297. %% the index is less than the length. You should do the same for
  13298. %% \code{vectorof-ref} and \code{vectorof-set!} .
  13299. %% In addition, the handling of the \code{any-vector} operators in
  13300. %% \code{reveal-casts} needs to be updated to account for arrays that are
  13301. %% injected to \code{Any}. For the \code{any-vector-length} operator, the
  13302. %% generated code should test whether the tag is for tuples (\code{010})
  13303. %% or arrays (\code{110}) and then dispatch to either
  13304. %% \code{any-vector-length} or \code{any-vectorof-length}. For the later
  13305. %% we add a case in \code{select\_instructions} to generate the
  13306. %% appropriate instructions for accessing the array length from the
  13307. %% header of an array.
  13308. %% For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  13309. %% the generated code needs to check that the index is less than the
  13310. %% vector length, so like the code for \code{any-vector-length}, check
  13311. %% the tag to determine whether to use \code{any-vector-length} or
  13312. %% \code{any-vectorof-length} for this purpose. Once the bounds checking
  13313. %% is complete, the generated code can use \code{any-vector-ref} and
  13314. %% \code{any-vector-set!} for both tuples and arrays because the
  13315. %% instructions used for those operators do not look at the tag at the
  13316. %% front of the tuple or array.
  13317. \subsection{Expose Allocation}
  13318. This pass should translate array creation into lower-level
  13319. operations. In particular, the new AST node \ALLOCARRAY{\Exp}{\Type}
  13320. is analogous to the \code{Allocate} AST node for tuples. The $\Type$
  13321. argument must be \ARRAYTY{T}, where $T$ is the element type for the
  13322. array. The \code{AllocateArray} AST node allocates an array of the
  13323. length specified by the $\Exp$ (of type \INTTY), but does not
  13324. initialize the elements of the array. Generate code in this pass to
  13325. initialize the elements analogous to the case for tuples.
  13326. {\if\edition\racketEd
  13327. \section{Uncover \texttt{get!}}
  13328. \label{sec:uncover-get-bang-vecof}
  13329. Add cases for \code{AllocateArray} to \code{collect-set!} and
  13330. \code{uncover-get!-exp}.
  13331. \fi}
  13332. \subsection{Remove Complex Operands}
  13333. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  13334. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  13335. complex, and its subexpression must be atomic.
  13336. \subsection{Explicate Control}
  13337. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  13338. \code{explicate\_assign}.
  13339. \subsection{Select Instructions}
  13340. \index{subject}{select instructions}
  13341. Generate instructions for \code{AllocateArray} similar to those for
  13342. \code{Allocate} given in section~\ref{sec:select-instructions-gc}
  13343. except that the tag at the front of the array should instead use the
  13344. representation discussed in section~\ref{sec:array-rep}.
  13345. Regarding \racket{\code{vectorof-length}}\python{\code{array\_len}},
  13346. extract the length from the tag.
  13347. The instructions generated for accessing an element of an array differ
  13348. from those for a tuple (section~\ref{sec:select-instructions-gc}) in
  13349. that the index is not a constant so you need to generate instructions
  13350. that compute the offset at runtime.
  13351. Compile the \code{exit} primitive into a call to the \code{exit}
  13352. function of the C standard library, with an argument of $255$.
  13353. %% Also, note that assignment to an array element may appear in
  13354. %% as a stand-alone statement, so make sure to handle that situation in
  13355. %% this pass.
  13356. %% Finally, the instructions for \code{any-vectorof-length} should be
  13357. %% similar to those for \code{vectorof-length}, except that one must
  13358. %% first project the array by writing zeroes into the $3$-bit tag
  13359. \begin{exercise}\normalfont\normalsize
  13360. Implement a compiler for the \LangArray{} language by extending your
  13361. compiler for \LangLoop{}. Test your compiler on a half dozen new
  13362. programs, including the one shown in figure~\ref{fig:inner_product}
  13363. and also a program that multiplies two matrices. Note that although
  13364. matrices are two-dimensional arrays, they can be encoded into
  13365. one-dimensional arrays by laying out each row in the array, one after
  13366. the next.
  13367. \end{exercise}
  13368. {\if\edition\racketEd
  13369. \section{Challenge: Generational Collection}
  13370. The copying collector described in section~\ref{sec:GC} can incur
  13371. significant runtime overhead because the call to \code{collect} takes
  13372. time proportional to all the live data. One way to reduce this
  13373. overhead is to reduce how much data is inspected in each call to
  13374. \code{collect}. In particular, researchers have observed that recently
  13375. allocated data is more likely to become garbage then data that has
  13376. survived one or more previous calls to \code{collect}. This insight
  13377. motivated the creation of \emph{generational garbage collectors}
  13378. \index{subject}{generational garbage collector} that
  13379. (1) segregate data according to its age into two or more generations;
  13380. (2) allocate less space for younger generations, so collecting them is
  13381. faster, and more space for the older generations; and (3) perform
  13382. collection on the younger generations more frequently than on older
  13383. generations~\citep{Wilson:1992fk}.
  13384. For this challenge assignment, the goal is to adapt the copying
  13385. collector implemented in \code{runtime.c} to use two generations, one
  13386. for young data and one for old data. Each generation consists of a
  13387. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  13388. \code{collect} function to use the two generations:
  13389. \begin{enumerate}
  13390. \item Copy the young generation's FromSpace to its ToSpace and then
  13391. switch the role of the ToSpace and FromSpace.
  13392. \item If there is enough space for the requested number of bytes in
  13393. the young FromSpace, then return from \code{collect}.
  13394. \item If there is not enough space in the young FromSpace for the
  13395. requested bytes, then move the data from the young generation to the
  13396. old one with the following steps:
  13397. \begin{enumerate}
  13398. \item[a.] If there is enough room in the old FromSpace, copy the young
  13399. FromSpace to the old FromSpace and then return.
  13400. \item[b.] If there is not enough room in the old FromSpace, then collect
  13401. the old generation by copying the old FromSpace to the old ToSpace
  13402. and swap the roles of the old FromSpace and ToSpace.
  13403. \item[c.] If there is enough room now, copy the young FromSpace to the
  13404. old FromSpace and return. Otherwise, allocate a larger FromSpace
  13405. and ToSpace for the old generation. Copy the young FromSpace and
  13406. the old FromSpace into the larger FromSpace for the old
  13407. generation and then return.
  13408. \end{enumerate}
  13409. \end{enumerate}
  13410. We recommend that you generalize the \code{cheney} function so that it
  13411. can be used for all the copies mentioned: between the young FromSpace
  13412. and ToSpace, between the old FromSpace and ToSpace, and between the
  13413. young FromSpace and old FromSpace. This can be accomplished by adding
  13414. parameters to \code{cheney} that replace its use of the global
  13415. variables \code{fromspace\_begin}, \code{fromspace\_end},
  13416. \code{tospace\_begin}, and \code{tospace\_end}.
  13417. Note that the collection of the young generation does not traverse the
  13418. old generation. This introduces a potential problem: there may be
  13419. young data that is reachable only through pointers in the old
  13420. generation. If these pointers are not taken into account, the
  13421. collector could throw away young data that is live! One solution,
  13422. called \emph{pointer recording}, is to maintain a set of all the
  13423. pointers from the old generation into the new generation and consider
  13424. this set as part of the root set. To maintain this set, the compiler
  13425. must insert extra instructions around every \code{vector-set!}. If the
  13426. vector being modified is in the old generation, and if the value being
  13427. written is a pointer into the new generation, then that pointer must
  13428. be added to the set. Also, if the value being overwritten was a
  13429. pointer into the new generation, then that pointer should be removed
  13430. from the set.
  13431. \begin{exercise}\normalfont\normalsize
  13432. Adapt the \code{collect} function in \code{runtime.c} to implement
  13433. generational garbage collection, as outlined in this section.
  13434. Update the code generation for \code{vector-set!} to implement
  13435. pointer recording. Make sure that your new compiler and runtime
  13436. execute without error on your test suite.
  13437. \end{exercise}
  13438. \fi}
  13439. \section{Further Reading}
  13440. \citet{Appel90} describes many data representation approaches
  13441. including the ones used in the compilation of Standard ML.
  13442. There are many alternatives to copying collectors (and their bigger
  13443. siblings, the generational collectors) with regard to garbage
  13444. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  13445. reference counting~\citep{Collins:1960aa}. The strengths of copying
  13446. collectors are that allocation is fast (just a comparison and pointer
  13447. increment), there is no fragmentation, cyclic garbage is collected,
  13448. and the time complexity of collection depends only on the amount of
  13449. live data and not on the amount of garbage~\citep{Wilson:1992fk}. The
  13450. main disadvantages of a two-space copying collector is that it uses a
  13451. lot of extra space and takes a long time to perform the copy, though
  13452. these problems are ameliorated in generational collectors.
  13453. \racket{Racket}\python{Object-oriented} programs tend to allocate many
  13454. small objects and generate a lot of garbage, so copying and
  13455. generational collectors are a good fit\python{~\citep{Dieckmann99}}.
  13456. Garbage collection is an active research topic, especially concurrent
  13457. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  13458. developing new techniques and revisiting old
  13459. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  13460. meet every year at the International Symposium on Memory Management to
  13461. present these findings.
  13462. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13463. \chapter{Functions}
  13464. \label{ch:Lfun}
  13465. \index{subject}{function}
  13466. \setcounter{footnote}{0}
  13467. This chapter studies the compilation of a subset of \racket{Typed
  13468. Racket}\python{Python} in which only top-level function definitions
  13469. are allowed. This kind of function appears in the C programming
  13470. language, and it serves as an important stepping-stone to implementing
  13471. lexically scoped functions in the form of \key{lambda}\index{subject}{lambda}
  13472. abstractions, which is the topic of chapter~\ref{ch:Llambda}.
  13473. \section{The \LangFun{} Language}
  13474. The concrete syntax and abstract syntax for function definitions and
  13475. function application are shown in
  13476. figures~\ref{fig:Lfun-concrete-syntax} and \ref{fig:Lfun-syntax}, with
  13477. which we define the \LangFun{} language. Programs in \LangFun{} begin
  13478. with zero or more function definitions. The function names from these
  13479. definitions are in scope for the entire program, including all the
  13480. function definitions, and therefore the ordering of function
  13481. definitions does not matter.
  13482. %
  13483. \python{The abstract syntax for function parameters in
  13484. figure~\ref{fig:Lfun-syntax} is a list of pairs, where each pair
  13485. consists of a parameter name and its type. This design differs from
  13486. Python's \code{ast} module, which has a more complex structure for
  13487. function parameters to handle keyword parameters,
  13488. defaults, and so on. The type checker in \code{type\_check\_Lfun} converts the
  13489. complex Python abstract syntax into the simpler syntax of
  13490. figure~\ref{fig:Lfun-syntax}. The fourth and sixth parameters of the
  13491. \code{FunctionDef} constructor are for decorators and a type
  13492. comment, neither of which are used by our compiler. We recommend
  13493. replacing them with \code{None} in the \code{shrink} pass.
  13494. }
  13495. %
  13496. The concrete syntax for function application
  13497. \index{subject}{function application}
  13498. is \python{$\CAPPLY{\Exp}{\Exp\code{,} \ldots}$}\racket{$\CAPPLY{\Exp}{\Exp \ldots}$},
  13499. where the first expression
  13500. must evaluate to a function and the remaining expressions are the arguments. The
  13501. abstract syntax for function application is
  13502. $\APPLY{\Exp}{\Exp^*}$.
  13503. %% The syntax for function application does not include an explicit
  13504. %% keyword, which is error prone when using \code{match}. To alleviate
  13505. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  13506. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  13507. Functions are first-class in the sense that a function pointer
  13508. \index{subject}{function pointer} is data and can be stored in memory or passed
  13509. as a parameter to another function. Thus, there is a function
  13510. type, written
  13511. {\if\edition\racketEd
  13512. \begin{lstlisting}
  13513. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  13514. \end{lstlisting}
  13515. \fi}
  13516. {\if\edition\pythonEd\pythonColor
  13517. \begin{lstlisting}
  13518. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_R$|]
  13519. \end{lstlisting}
  13520. \fi}
  13521. %
  13522. \noindent for a function whose $n$ parameters have the types $\Type_1$
  13523. through $\Type_n$ and whose return type is $\Type_R$. The main
  13524. limitation of these functions (with respect to
  13525. \racket{Racket}\python{Python} functions) is that they are not
  13526. lexically scoped. That is, the only external entities that can be
  13527. referenced from inside a function body are other globally defined
  13528. functions. The syntax of \LangFun{} prevents function definitions from
  13529. being nested inside each other.
  13530. \newcommand{\LfunGrammarRacket}{
  13531. \begin{array}{lcl}
  13532. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13533. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  13534. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  13535. \end{array}
  13536. }
  13537. \newcommand{\LfunASTRacket}{
  13538. \begin{array}{lcl}
  13539. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13540. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  13541. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  13542. \end{array}
  13543. }
  13544. \newcommand{\LfunGrammarPython}{
  13545. \begin{array}{lcl}
  13546. \Type &::=& \key{int}
  13547. \MID \key{bool} \MID \key{void}
  13548. \MID \key{tuple}\LS \Type^+ \RS
  13549. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  13550. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  13551. \Stmt &::=& \CRETURN{\Exp} \\
  13552. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  13553. \end{array}
  13554. }
  13555. \newcommand{\LfunASTPython}{
  13556. \begin{array}{lcl}
  13557. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  13558. \MID \key{TupleType}\LS\Type^+\RS\\
  13559. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  13560. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  13561. \Stmt &::=& \RETURN{\Exp} \\
  13562. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  13563. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  13564. \end{array}
  13565. }
  13566. \begin{figure}[tp]
  13567. \centering
  13568. \begin{tcolorbox}[colback=white]
  13569. \small
  13570. {\if\edition\racketEd
  13571. \[
  13572. \begin{array}{l}
  13573. \gray{\LintGrammarRacket{}} \\ \hline
  13574. \gray{\LvarGrammarRacket{}} \\ \hline
  13575. \gray{\LifGrammarRacket{}} \\ \hline
  13576. \gray{\LwhileGrammarRacket} \\ \hline
  13577. \gray{\LtupGrammarRacket} \\ \hline
  13578. \LfunGrammarRacket \\
  13579. \begin{array}{lcl}
  13580. \LangFunM{} &::=& \Def \ldots \; \Exp
  13581. \end{array}
  13582. \end{array}
  13583. \]
  13584. \fi}
  13585. {\if\edition\pythonEd\pythonColor
  13586. \[
  13587. \begin{array}{l}
  13588. \gray{\LintGrammarPython{}} \\ \hline
  13589. \gray{\LvarGrammarPython{}} \\ \hline
  13590. \gray{\LifGrammarPython{}} \\ \hline
  13591. \gray{\LwhileGrammarPython} \\ \hline
  13592. \gray{\LtupGrammarPython} \\ \hline
  13593. \LfunGrammarPython \\
  13594. \begin{array}{rcl}
  13595. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  13596. \end{array}
  13597. \end{array}
  13598. \]
  13599. \fi}
  13600. \end{tcolorbox}
  13601. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  13602. \label{fig:Lfun-concrete-syntax}
  13603. \end{figure}
  13604. \begin{figure}[tp]
  13605. \centering
  13606. \begin{tcolorbox}[colback=white]
  13607. \small
  13608. {\if\edition\racketEd
  13609. \[
  13610. \begin{array}{l}
  13611. \gray{\LintOpAST} \\ \hline
  13612. \gray{\LvarASTRacket{}} \\ \hline
  13613. \gray{\LifASTRacket{}} \\ \hline
  13614. \gray{\LwhileASTRacket{}} \\ \hline
  13615. \gray{\LtupASTRacket{}} \\ \hline
  13616. \LfunASTRacket \\
  13617. \begin{array}{lcl}
  13618. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  13619. \end{array}
  13620. \end{array}
  13621. \]
  13622. \fi}
  13623. {\if\edition\pythonEd\pythonColor
  13624. \[
  13625. \begin{array}{l}
  13626. \gray{\LintASTPython{}} \\ \hline
  13627. \gray{\LvarASTPython{}} \\ \hline
  13628. \gray{\LifASTPython{}} \\ \hline
  13629. \gray{\LwhileASTPython} \\ \hline
  13630. \gray{\LtupASTPython} \\ \hline
  13631. \LfunASTPython \\
  13632. \begin{array}{rcl}
  13633. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  13634. \end{array}
  13635. \end{array}
  13636. \]
  13637. \fi}
  13638. \end{tcolorbox}
  13639. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  13640. \label{fig:Lfun-syntax}
  13641. \end{figure}
  13642. The program shown in figure~\ref{fig:Lfun-function-example} is a
  13643. representative example of defining and using functions in \LangFun{}.
  13644. We define a function \code{map} that applies some other function
  13645. \code{f} to both elements of a tuple and returns a new tuple
  13646. containing the results. We also define a function \code{inc}. The
  13647. program applies \code{map} to \code{inc} and
  13648. %
  13649. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  13650. %
  13651. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  13652. %
  13653. from which we return \code{42}.
  13654. \begin{figure}[tbp]
  13655. \begin{tcolorbox}[colback=white]
  13656. {\if\edition\racketEd
  13657. \begin{lstlisting}
  13658. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  13659. : (Vector Integer Integer)
  13660. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13661. (define (inc [x : Integer]) : Integer
  13662. (+ x 1))
  13663. (vector-ref (map inc (vector 0 41)) 1)
  13664. \end{lstlisting}
  13665. \fi}
  13666. {\if\edition\pythonEd\pythonColor
  13667. \begin{lstlisting}
  13668. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  13669. return f(v[0]), f(v[1])
  13670. def inc(x : int) -> int:
  13671. return x + 1
  13672. print( map(inc, (0, 41))[1] )
  13673. \end{lstlisting}
  13674. \fi}
  13675. \end{tcolorbox}
  13676. \caption{Example of using functions in \LangFun{}.}
  13677. \label{fig:Lfun-function-example}
  13678. \end{figure}
  13679. The definitional interpreter for \LangFun{} is shown in
  13680. figure~\ref{fig:interp-Lfun}. The case for the
  13681. %
  13682. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  13683. %
  13684. AST is responsible for setting up the mutual recursion between the
  13685. top-level function definitions.
  13686. %
  13687. \racket{We use the classic back-patching
  13688. \index{subject}{back-patching} approach that uses mutable variables
  13689. and makes two passes over the function
  13690. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  13691. top-level environment using a mutable cons cell for each function
  13692. definition. Note that the \code{lambda}\index{subject}{lambda} value
  13693. for each function is incomplete; it does not yet include the environment.
  13694. Once the top-level environment has been constructed, we iterate over it and
  13695. update the \code{lambda} values to use the top-level environment.}
  13696. %
  13697. \python{We create a dictionary named \code{env} and fill it in
  13698. by mapping each function name to a new \code{Function} value,
  13699. each of which stores a reference to the \code{env}.
  13700. (We define the class \code{Function} for this purpose.)}
  13701. %
  13702. To interpret a function \racket{application}\python{call}, we match
  13703. the result of the function expression to obtain a function value. We
  13704. then extend the function's environment with the mapping of parameters to
  13705. argument values. Finally, we interpret the body of the function in
  13706. this extended environment.
  13707. \begin{figure}[tp]
  13708. \begin{tcolorbox}[colback=white]
  13709. {\if\edition\racketEd
  13710. \begin{lstlisting}
  13711. (define interp-Lfun-class
  13712. (class interp-Lvec-class
  13713. (super-new)
  13714. (define/override ((interp-exp env) e)
  13715. (define recur (interp-exp env))
  13716. (match e
  13717. [(Apply fun args)
  13718. (define fun-val (recur fun))
  13719. (define arg-vals (for/list ([e args]) (recur e)))
  13720. (match fun-val
  13721. [`(function (,xs ...) ,body ,fun-env)
  13722. (define params-args (for/list ([x xs] [arg arg-vals])
  13723. (cons x (box arg))))
  13724. (define new-env (append params-args fun-env))
  13725. ((interp-exp new-env) body)]
  13726. [else
  13727. (error 'interp-exp "expected function, not ~a" fun-val)])]
  13728. [else ((super interp-exp env) e)]
  13729. ))
  13730. (define/public (interp-def d)
  13731. (match d
  13732. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  13733. (cons f (box `(function ,xs ,body ())))]))
  13734. (define/override (interp-program p)
  13735. (match p
  13736. [(ProgramDefsExp info ds body)
  13737. (let ([top-level (for/list ([d ds]) (interp-def d))])
  13738. (for/list ([f (in-dict-values top-level)])
  13739. (set-box! f (match (unbox f)
  13740. [`(function ,xs ,body ())
  13741. `(function ,xs ,body ,top-level)])))
  13742. ((interp-exp top-level) body))]))
  13743. ))
  13744. (define (interp-Lfun p)
  13745. (send (new interp-Lfun-class) interp-program p))
  13746. \end{lstlisting}
  13747. \fi}
  13748. {\if\edition\pythonEd\pythonColor
  13749. \begin{lstlisting}
  13750. class InterpLfun(InterpLtup):
  13751. def apply_fun(self, fun, args, e):
  13752. match fun:
  13753. case Function(name, xs, body, env):
  13754. new_env = env.copy().update(zip(xs, args))
  13755. return self.interp_stmts(body, new_env)
  13756. case _:
  13757. raise Exception('apply_fun: unexpected: ' + repr(fun))
  13758. def interp_exp(self, e, env):
  13759. match e:
  13760. case Call(Name('input_int'), []):
  13761. return super().interp_exp(e, env)
  13762. case Call(func, args):
  13763. f = self.interp_exp(func, env)
  13764. vs = [self.interp_exp(arg, env) for arg in args]
  13765. return self.apply_fun(f, vs, e)
  13766. case _:
  13767. return super().interp_exp(e, env)
  13768. def interp_stmt(self, s, env, cont):
  13769. match s:
  13770. case Return(value):
  13771. return self.interp_exp(value, env)
  13772. case FunctionDef(name, params, bod, dl, returns, comment):
  13773. if isinstance(params, ast.arguments):
  13774. ps = [p.arg for p in params.args]
  13775. else:
  13776. ps = [x for (x,t) in params]
  13777. env[name] = Function(name, ps, bod, env)
  13778. return self.interp_stmts(cont, env)
  13779. case _:
  13780. return super().interp_stmt(s, env, cont)
  13781. def interp(self, p):
  13782. match p:
  13783. case Module(ss):
  13784. env = {}
  13785. self.interp_stmts(ss, env)
  13786. if 'main' in env.keys():
  13787. self.apply_fun(env['main'], [], None)
  13788. case _:
  13789. raise Exception('interp: unexpected ' + repr(p))
  13790. \end{lstlisting}
  13791. \fi}
  13792. \end{tcolorbox}
  13793. \caption{Interpreter for the \LangFun{} language.}
  13794. \label{fig:interp-Lfun}
  13795. \end{figure}
  13796. %\margincomment{TODO: explain type checker}
  13797. The type checker for \LangFun{} is shown in
  13798. figure~\ref{fig:type-check-Lfun}.
  13799. %
  13800. \python{(We omit the code that parses function parameters into the
  13801. simpler abstract syntax.)}
  13802. %
  13803. Similarly to the interpreter, the case for the
  13804. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  13805. %
  13806. AST is responsible for setting up the mutual recursion between the
  13807. top-level function definitions. We begin by create a mapping
  13808. \code{env} from every function name to its type. We then type check
  13809. the program using this mapping.
  13810. %
  13811. In the case for function \racket{application}\python{call}, we match
  13812. the type of the function expression to a function type and check that
  13813. the types of the argument expressions are equal to the function's
  13814. parameter types. The type of the \racket{application}\python{call} as
  13815. a whole is the return type from the function type.
  13816. \begin{figure}[tp]
  13817. \begin{tcolorbox}[colback=white]
  13818. {\if\edition\racketEd
  13819. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13820. (define type-check-Lfun-class
  13821. (class type-check-Lvec-class
  13822. (super-new)
  13823. (inherit check-type-equal?)
  13824. (define/public (type-check-apply env e es)
  13825. (define-values (e^ ty) ((type-check-exp env) e))
  13826. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  13827. ((type-check-exp env) e)))
  13828. (match ty
  13829. [`(,ty^* ... -> ,rt)
  13830. (for ([arg-ty ty*] [param-ty ty^*])
  13831. (check-type-equal? arg-ty param-ty (Apply e es)))
  13832. (values e^ e* rt)]))
  13833. (define/override (type-check-exp env)
  13834. (lambda (e)
  13835. (match e
  13836. [(FunRef f n)
  13837. (values (FunRef f n) (dict-ref env f))]
  13838. [(Apply e es)
  13839. (define-values (e^ es^ rt) (type-check-apply env e es))
  13840. (values (Apply e^ es^) rt)]
  13841. [(Call e es)
  13842. (define-values (e^ es^ rt) (type-check-apply env e es))
  13843. (values (Call e^ es^) rt)]
  13844. [else ((super type-check-exp env) e)])))
  13845. (define/public (type-check-def env)
  13846. (lambda (e)
  13847. (match e
  13848. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  13849. (define new-env (append (map cons xs ps) env))
  13850. (define-values (body^ ty^) ((type-check-exp new-env) body))
  13851. (check-type-equal? ty^ rt body)
  13852. (Def f p:t* rt info body^)])))
  13853. (define/public (fun-def-type d)
  13854. (match d
  13855. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  13856. (define/override (type-check-program e)
  13857. (match e
  13858. [(ProgramDefsExp info ds body)
  13859. (define env (for/list ([d ds])
  13860. (cons (Def-name d) (fun-def-type d))))
  13861. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  13862. (define-values (body^ ty) ((type-check-exp env) body))
  13863. (check-type-equal? ty 'Integer body)
  13864. (ProgramDefsExp info ds^ body^)]))))
  13865. (define (type-check-Lfun p)
  13866. (send (new type-check-Lfun-class) type-check-program p))
  13867. \end{lstlisting}
  13868. \fi}
  13869. {\if\edition\pythonEd\pythonColor
  13870. \begin{lstlisting}
  13871. class TypeCheckLfun(TypeCheckLtup):
  13872. def type_check_exp(self, e, env):
  13873. match e:
  13874. case Call(Name('input_int'), []):
  13875. return super().type_check_exp(e, env)
  13876. case Call(func, args):
  13877. func_t = self.type_check_exp(func, env)
  13878. args_t = [self.type_check_exp(arg, env) for arg in args]
  13879. match func_t:
  13880. case FunctionType(params_t, return_t):
  13881. for (arg_t, param_t) in zip(args_t, params_t):
  13882. check_type_equal(param_t, arg_t, e)
  13883. return return_t
  13884. case _:
  13885. raise Exception('type_check_exp: in call, unexpected ' +
  13886. repr(func_t))
  13887. case _:
  13888. return super().type_check_exp(e, env)
  13889. def type_check_stmts(self, ss, env):
  13890. if len(ss) == 0:
  13891. return
  13892. match ss[0]:
  13893. case FunctionDef(name, params, body, dl, returns, comment):
  13894. new_env = env.copy().update(params)
  13895. rt = self.type_check_stmts(body, new_env)
  13896. check_type_equal(returns, rt, ss[0])
  13897. return self.type_check_stmts(ss[1:], env)
  13898. case Return(value):
  13899. return self.type_check_exp(value, env)
  13900. case _:
  13901. return super().type_check_stmts(ss, env)
  13902. def type_check(self, p):
  13903. match p:
  13904. case Module(body):
  13905. env = {}
  13906. for s in body:
  13907. match s:
  13908. case FunctionDef(name, params, bod, dl, returns, comment):
  13909. if name in env:
  13910. raise Exception('type_check: function ' +
  13911. repr(name) + ' defined twice')
  13912. params_t = [t for (x,t) in params]
  13913. env[name] = FunctionType(params_t, returns)
  13914. self.type_check_stmts(body, env)
  13915. case _:
  13916. raise Exception('type_check: unexpected ' + repr(p))
  13917. \end{lstlisting}
  13918. \fi}
  13919. \end{tcolorbox}
  13920. \caption{Type checker for the \LangFun{} language.}
  13921. \label{fig:type-check-Lfun}
  13922. \end{figure}
  13923. \clearpage
  13924. \section{Functions in x86}
  13925. \label{sec:fun-x86}
  13926. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  13927. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  13928. %% \margincomment{\tiny Talk about the return address on the
  13929. %% stack and what callq and retq does.\\ --Jeremy }
  13930. The x86 architecture provides a few features to support the
  13931. implementation of functions. We have already seen that there are
  13932. labels in x86 so that one can refer to the location of an instruction,
  13933. as is needed for jump instructions. Labels can also be used to mark
  13934. the beginning of the instructions for a function. Going further, we
  13935. can obtain the address of a label by using the \key{leaq}
  13936. instruction. For example, the following puts the address of the
  13937. \code{inc} label into the \code{rbx} register:
  13938. \begin{lstlisting}
  13939. leaq inc(%rip), %rbx
  13940. \end{lstlisting}
  13941. Recall from section~\ref{sec:select-instructions-gc} that
  13942. \verb!inc(%rip)! is an example of instruction-pointer-relative
  13943. addressing.
  13944. In section~\ref{sec:x86} we used the \code{callq} instruction to jump
  13945. to functions whose locations were given by a label, such as
  13946. \code{read\_int}. To support function calls in this chapter we instead
  13947. jump to functions whose location are given by an address in
  13948. a register; that is, we use \emph{indirect function calls}. The
  13949. x86 syntax for this is a \code{callq} instruction that requires an asterisk
  13950. before the register name.\index{subject}{indirect function call}
  13951. \begin{lstlisting}
  13952. callq *%rbx
  13953. \end{lstlisting}
  13954. \subsection{Calling Conventions}
  13955. \label{sec:calling-conventions-fun}
  13956. \index{subject}{calling conventions}
  13957. The \code{callq} instruction provides partial support for implementing
  13958. functions: it pushes the return address on the stack and it jumps to
  13959. the target. However, \code{callq} does not handle
  13960. \begin{enumerate}
  13961. \item parameter passing,
  13962. \item pushing frames on the procedure call stack and popping them off,
  13963. or
  13964. \item determining how registers are shared by different functions.
  13965. \end{enumerate}
  13966. Regarding parameter passing, recall that the x86-64 calling
  13967. convention for Unix-based systems uses the following six registers to
  13968. pass arguments to a function, in the given order:
  13969. \begin{lstlisting}
  13970. rdi rsi rdx rcx r8 r9
  13971. \end{lstlisting}
  13972. If there are more than six arguments, then the calling convention
  13973. mandates using space on the frame of the caller for the rest of the
  13974. arguments. However, to ease the implementation of efficient tail calls
  13975. (section~\ref{sec:tail-call}), we arrange never to need more than six
  13976. arguments.
  13977. %
  13978. The return value of the function is stored in register \code{rax}.
  13979. Regarding frames \index{subject}{frame} and the procedure call stack,
  13980. \index{subject}{procedure call stack} recall from
  13981. section~\ref{sec:x86} that the stack grows down and each function call
  13982. uses a chunk of space on the stack called a frame. The caller sets the
  13983. stack pointer, register \code{rsp}, to the last data item in its
  13984. frame. The callee must not change anything in the caller's frame, that
  13985. is, anything that is at or above the stack pointer. The callee is free
  13986. to use locations that are below the stack pointer.
  13987. Recall that we store variables of tuple type on the root stack. So,
  13988. the prelude\index{subject}{prelude} of a function needs to move the
  13989. root stack pointer \code{r15} up according to the number of variables
  13990. of tuple type and the conclusion\index{subject}{conclusion} needs to
  13991. move the root stack pointer back down. Also, the prelude must
  13992. initialize to \code{0} this frame's slots in the root stack to signal
  13993. to the garbage collector that those slots do not yet contain a valid
  13994. pointer. Otherwise the garbage collector will interpret the garbage
  13995. bits in those slots as memory addresses and try to traverse them,
  13996. causing serious mayhem!
  13997. Regarding the sharing of registers between different functions, recall
  13998. from section~\ref{sec:calling-conventions} that the registers are
  13999. divided into two groups, the caller-saved registers and the
  14000. callee-saved registers. The caller should assume that all the
  14001. caller-saved registers are overwritten with arbitrary values by the
  14002. callee. For that reason we recommend in
  14003. section~\ref{sec:calling-conventions} that variables that are live
  14004. during a function call should not be assigned to caller-saved
  14005. registers.
  14006. On the flip side, if the callee wants to use a callee-saved register,
  14007. the callee must save the contents of those registers on their stack
  14008. frame and then put them back prior to returning to the caller. For
  14009. that reason we recommend in section~\ref{sec:calling-conventions} that if
  14010. the register allocator assigns a variable to a callee-saved register,
  14011. then the prelude of the \code{main} function must save that register
  14012. to the stack and the conclusion of \code{main} must restore it. This
  14013. recommendation now generalizes to all functions.
  14014. Recall that the base pointer, register \code{rbp}, is used as a
  14015. point of reference within a frame, so that each local variable can be
  14016. accessed at a fixed offset from the base pointer
  14017. (section~\ref{sec:x86}).
  14018. %
  14019. Figure~\ref{fig:call-frames} shows the general layout of the caller
  14020. and callee frames.
  14021. \begin{figure}[tbp]
  14022. \centering
  14023. \begin{tcolorbox}[colback=white]
  14024. \begin{tabular}{r|r|l|l} \hline
  14025. Caller View & Callee View & Contents & Frame \\ \hline
  14026. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  14027. 0(\key{\%rbp}) & & old \key{rbp} \\
  14028. -8(\key{\%rbp}) & & callee-saved $1$ \\
  14029. \ldots & & \ldots \\
  14030. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  14031. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  14032. \ldots & & \ldots \\
  14033. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  14034. %% & & \\
  14035. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  14036. %% & \ldots & \ldots \\
  14037. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  14038. \hline
  14039. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  14040. & 0(\key{\%rbp}) & old \key{rbp} \\
  14041. & -8(\key{\%rbp}) & callee-saved $1$ \\
  14042. & \ldots & \ldots \\
  14043. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  14044. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  14045. & \ldots & \ldots \\
  14046. & $-8(n+m)$(\key{\%rbp}) & local variable $m$\\ \hline
  14047. \end{tabular}
  14048. \end{tcolorbox}
  14049. \caption{Memory layout of caller and callee frames.}
  14050. \label{fig:call-frames}
  14051. \end{figure}
  14052. %% Recall from section~\ref{sec:x86} that the stack is also used for
  14053. %% local variables and for storing the values of callee-saved registers
  14054. %% (we shall refer to all of these collectively as ``locals''), and that
  14055. %% at the beginning of a function we move the stack pointer \code{rsp}
  14056. %% down to make room for them.
  14057. %% We recommend storing the local variables
  14058. %% first and then the callee-saved registers, so that the local variables
  14059. %% can be accessed using \code{rbp} the same as before the addition of
  14060. %% functions.
  14061. %% To make additional room for passing arguments, we shall
  14062. %% move the stack pointer even further down. We count how many stack
  14063. %% arguments are needed for each function call that occurs inside the
  14064. %% body of the function and find their maximum. Adding this number to the
  14065. %% number of locals gives us how much the \code{rsp} should be moved at
  14066. %% the beginning of the function. In preparation for a function call, we
  14067. %% offset from \code{rsp} to set up the stack arguments. We put the first
  14068. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  14069. %% so on.
  14070. %% Upon calling the function, the stack arguments are retrieved by the
  14071. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  14072. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  14073. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  14074. %% the layout of the caller and callee frames. Notice how important it is
  14075. %% that we correctly compute the maximum number of arguments needed for
  14076. %% function calls; if that number is too small then the arguments and
  14077. %% local variables will smash into each other!
  14078. \subsection{Efficient Tail Calls}
  14079. \label{sec:tail-call}
  14080. In general, the amount of stack space used by a program is determined
  14081. by the longest chain of nested function calls. That is, if function
  14082. $f_1$ calls $f_2$, $f_2$ calls $f_3$, and so on to $f_n$, then the
  14083. amount of stack space is linear in $n$. The depth $n$ can grow quite
  14084. large if functions are recursive. However, in some cases we can
  14085. arrange to use only a constant amount of space for a long chain of
  14086. nested function calls.
  14087. A \emph{tail call}\index{subject}{tail call} is a function call that
  14088. happens as the last action in a function body. For example, in the
  14089. following program, the recursive call to \code{tail\_sum} is a tail
  14090. call:
  14091. \begin{center}
  14092. {\if\edition\racketEd
  14093. \begin{lstlisting}
  14094. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  14095. (if (eq? n 0)
  14096. r
  14097. (tail_sum (- n 1) (+ n r))))
  14098. (+ (tail_sum 3 0) 36)
  14099. \end{lstlisting}
  14100. \fi}
  14101. {\if\edition\pythonEd\pythonColor
  14102. \begin{lstlisting}
  14103. def tail_sum(n : int, r : int) -> int:
  14104. if n == 0:
  14105. return r
  14106. else:
  14107. return tail_sum(n - 1, n + r)
  14108. print( tail_sum(3, 0) + 36)
  14109. \end{lstlisting}
  14110. \fi}
  14111. \end{center}
  14112. At a tail call, the frame of the caller is no longer needed, so we can
  14113. pop the caller's frame before making the tail call. With this
  14114. approach, a recursive function that makes only tail calls ends up
  14115. using a constant amount of stack space. Functional languages like
  14116. Racket rely heavily on recursive functions, so the definition of
  14117. Racket \emph{requires} that all tail calls be optimized in this way.
  14118. \index{subject}{frame}
  14119. Some care is needed with regard to argument passing in tail calls. As
  14120. mentioned, for arguments beyond the sixth, the convention is to use
  14121. space in the caller's frame for passing arguments. However, for a
  14122. tail call we pop the caller's frame and can no longer use it. An
  14123. alternative is to use space in the callee's frame for passing
  14124. arguments. However, this option is also problematic because the caller
  14125. and callee's frames overlap in memory. As we begin to copy the
  14126. arguments from their sources in the caller's frame, the target
  14127. locations in the callee's frame might collide with the sources for
  14128. later arguments! We solve this problem by using the heap instead of
  14129. the stack for passing more than six arguments
  14130. (section~\ref{sec:limit-functions-r4}).
  14131. As mentioned, for a tail call we pop the caller's frame prior to
  14132. making the tail call. The instructions for popping a frame are the
  14133. instructions that we usually place in the conclusion of a
  14134. function. Thus, we also need to place such code immediately before
  14135. each tail call. These instructions include restoring the callee-saved
  14136. registers, so it is fortunate that the argument passing registers are
  14137. all caller-saved registers.
  14138. One note remains regarding which instruction to use to make the tail
  14139. call. When the callee is finished, it should not return to the current
  14140. function but instead return to the function that called the current
  14141. one. Thus, the return address that is already on the stack is the
  14142. right one, and we should not use \key{callq} to make the tail call
  14143. because that would overwrite the return address. Instead we simply use
  14144. the \key{jmp} instruction. As with the indirect function call, we write
  14145. an \emph{indirect jump}\index{subject}{indirect jump} with a register
  14146. prefixed with an asterisk. We recommend using \code{rax} to hold the
  14147. jump target because the conclusion can overwrite just about everything
  14148. else.
  14149. \begin{lstlisting}
  14150. jmp *%rax
  14151. \end{lstlisting}
  14152. \section{Shrink \LangFun{}}
  14153. \label{sec:shrink-r4}
  14154. The \code{shrink} pass performs a minor modification to ease the
  14155. later passes. This pass introduces an explicit \code{main} function
  14156. that gobbles up all the top-level statements of the module.
  14157. %
  14158. \racket{It also changes the top \code{ProgramDefsExp} form to
  14159. \code{ProgramDefs}.}
  14160. {\if\edition\racketEd
  14161. \begin{lstlisting}
  14162. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  14163. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  14164. \end{lstlisting}
  14165. where $\itm{mainDef}$ is
  14166. \begin{lstlisting}
  14167. (Def 'main '() 'Integer '() |$\Exp'$|)
  14168. \end{lstlisting}
  14169. \fi}
  14170. {\if\edition\pythonEd\pythonColor
  14171. \begin{lstlisting}
  14172. Module(|$\Def\ldots\Stmt\ldots$|)
  14173. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  14174. \end{lstlisting}
  14175. where $\itm{mainDef}$ is
  14176. \begin{lstlisting}
  14177. FunctionDef('main', [], int, None, |$\Stmt\ldots$|Return(Constant(0)), None)
  14178. \end{lstlisting}
  14179. \fi}
  14180. \section{Reveal Functions and the \LangFunRef{} Language}
  14181. \label{sec:reveal-functions-r4}
  14182. The syntax of \LangFun{} is inconvenient for purposes of compilation
  14183. in that it conflates the use of function names and local
  14184. variables. This is a problem because we need to compile the use of a
  14185. function name differently from the use of a local variable. In
  14186. particular, we use \code{leaq} to convert the function name (a label
  14187. in x86) to an address in a register. Thus, we create a new pass that
  14188. changes function references from $\VAR{f}$ to $\FUNREF{f}{n}$ where
  14189. $n$ is the arity of the function.\python{\footnote{The arity is not
  14190. needed in this chapter but is used in chapter~\ref{ch:Ldyn}.}}
  14191. This pass is named \code{reveal\_functions} and the output language
  14192. is \LangFunRef{}.
  14193. %is defined in figure~\ref{fig:f1-syntax}.
  14194. %% The concrete syntax for a
  14195. %% function reference is $\CFUNREF{f}$.
  14196. %% \begin{figure}[tp]
  14197. %% \centering
  14198. %% \fbox{
  14199. %% \begin{minipage}{0.96\textwidth}
  14200. %% {\if\edition\racketEd
  14201. %% \[
  14202. %% \begin{array}{lcl}
  14203. %% \Exp &::=& \ldots \MID \FUNREF{\Var}{\Int}\\
  14204. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14205. %% \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  14206. %% \end{array}
  14207. %% \]
  14208. %% \fi}
  14209. %% {\if\edition\pythonEd\pythonColor
  14210. %% \[
  14211. %% \begin{array}{lcl}
  14212. %% \Exp &::=& \FUNREF{\Var}{\Int}\\
  14213. %% \LangFunRefM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  14214. %% \end{array}
  14215. %% \]
  14216. %% \fi}
  14217. %% \end{minipage}
  14218. %% }
  14219. %% \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  14220. %% (figure~\ref{fig:Lfun-syntax}).}
  14221. %% \label{fig:f1-syntax}
  14222. %% \end{figure}
  14223. %% Distinguishing between calls in tail position and non-tail position
  14224. %% requires the pass to have some notion of context. We recommend using
  14225. %% two mutually recursive functions, one for processing expressions in
  14226. %% tail position and another for the rest.
  14227. \racket{Placing this pass after \code{uniquify} will make sure that
  14228. there are no local variables and functions that share the same
  14229. name.}
  14230. %
  14231. The \code{reveal\_functions} pass should come before the
  14232. \code{remove\_complex\_operands} pass because function references
  14233. should be categorized as complex expressions.
  14234. \section{Limit Functions}
  14235. \label{sec:limit-functions-r4}
  14236. Recall that we wish to limit the number of function parameters to six
  14237. so that we do not need to use the stack for argument passing, which
  14238. makes it easier to implement efficient tail calls. However, because
  14239. the input language \LangFun{} supports arbitrary numbers of function
  14240. arguments, we have some work to do! The \code{limit\_functions} pass
  14241. transforms functions and function calls that involve more than six
  14242. arguments to pass the first five arguments as usual, but it packs the
  14243. rest of the arguments into a tuple and passes it as the sixth
  14244. argument.\footnote{The implementation this pass can be postponed to
  14245. last because you can test the rest of the passes on functions with
  14246. six or fewer parameters.}
  14247. Each function definition with seven or more parameters is transformed as
  14248. follows:
  14249. {\if\edition\racketEd
  14250. \begin{lstlisting}
  14251. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  14252. |$\Rightarrow$|
  14253. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  14254. \end{lstlisting}
  14255. \fi}
  14256. {\if\edition\pythonEd\pythonColor
  14257. \begin{lstlisting}
  14258. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, None, |$\itm{body}$|, None)
  14259. |$\Rightarrow$|
  14260. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))],
  14261. |$T_r$|, None, |$\itm{body}'$|, None)
  14262. \end{lstlisting}
  14263. \fi}
  14264. %
  14265. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  14266. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  14267. the $k$th element of the tuple, where $k = i - 6$.
  14268. %
  14269. {\if\edition\racketEd
  14270. \begin{lstlisting}
  14271. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  14272. \end{lstlisting}
  14273. \fi}
  14274. {\if\edition\pythonEd\pythonColor
  14275. \begin{lstlisting}
  14276. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|), Load())
  14277. \end{lstlisting}
  14278. \fi}
  14279. For function calls with too many arguments, the \code{limit\_functions}
  14280. pass transforms them in the following way:
  14281. \begin{tabular}{lll}
  14282. \begin{minipage}{0.3\textwidth}
  14283. {\if\edition\racketEd
  14284. \begin{lstlisting}
  14285. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  14286. \end{lstlisting}
  14287. \fi}
  14288. {\if\edition\pythonEd\pythonColor
  14289. \begin{lstlisting}
  14290. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  14291. \end{lstlisting}
  14292. \fi}
  14293. \end{minipage}
  14294. &
  14295. $\Rightarrow$
  14296. &
  14297. \begin{minipage}{0.5\textwidth}
  14298. {\if\edition\racketEd
  14299. \begin{lstlisting}
  14300. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  14301. \end{lstlisting}
  14302. \fi}
  14303. {\if\edition\pythonEd\pythonColor
  14304. \begin{lstlisting}
  14305. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  14306. \end{lstlisting}
  14307. \fi}
  14308. \end{minipage}
  14309. \end{tabular}
  14310. \section{Remove Complex Operands}
  14311. \label{sec:rco-r4}
  14312. The primary decisions to make for this pass are whether to classify
  14313. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  14314. atomic or complex expressions. Recall that an atomic expression
  14315. ends up as an immediate argument of an x86 instruction. Function
  14316. application translates to a sequence of instructions, so
  14317. \racket{\code{Apply}}\python{\code{Call}} must be classified as
  14318. a complex expression. On the other hand, the arguments of
  14319. \racket{\code{Apply}}\python{\code{Call}} should be atomic
  14320. expressions.
  14321. %
  14322. Regarding \code{FunRef}, as discussed previously, the function label
  14323. needs to be converted to an address using the \code{leaq}
  14324. instruction. Thus, even though \code{FunRef} seems rather simple, it
  14325. needs to be classified as a complex expression so that we generate an
  14326. assignment statement with a left-hand side that can serve as the
  14327. target of the \code{leaq}.
  14328. The output of this pass, \LangFunANF{} (figure~\ref{fig:Lfun-anf-syntax}),
  14329. extends \LangAllocANF{} (figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  14330. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions
  14331. and augments programs to include a list of function definitions.
  14332. %
  14333. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  14334. \newcommand{\LfunMonadASTRacket}{
  14335. \begin{array}{lcl}
  14336. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  14337. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14338. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  14339. \end{array}
  14340. }
  14341. \newcommand{\LfunMonadASTPython}{
  14342. \begin{array}{lcl}
  14343. \Type &::=& \key{IntType()} \MID \key{BoolType()} \key{VoidType()}
  14344. \MID \key{TupleType}\LS\Type^+\RS\\
  14345. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  14346. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}}\\
  14347. \Stmt &::=& \RETURN{\Exp} \\
  14348. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  14349. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  14350. \end{array}
  14351. }
  14352. \begin{figure}[tp]
  14353. \centering
  14354. \begin{tcolorbox}[colback=white]
  14355. \small
  14356. {\if\edition\racketEd
  14357. \[
  14358. \begin{array}{l}
  14359. \gray{\LvarMonadASTRacket} \\ \hline
  14360. \gray{\LifMonadASTRacket} \\ \hline
  14361. \gray{\LwhileMonadASTRacket} \\ \hline
  14362. \gray{\LtupMonadASTRacket} \\ \hline
  14363. \LfunMonadASTRacket \\
  14364. \begin{array}{rcl}
  14365. \LangFunANFM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  14366. \end{array}
  14367. \end{array}
  14368. \]
  14369. \fi}
  14370. {\if\edition\pythonEd\pythonColor
  14371. \[
  14372. \begin{array}{l}
  14373. \gray{\LvarMonadASTPython} \\ \hline
  14374. \gray{\LifMonadASTPython} \\ \hline
  14375. \gray{\LwhileMonadASTPython} \\ \hline
  14376. \gray{\LtupMonadASTPython} \\ \hline
  14377. \LfunMonadASTPython \\
  14378. \begin{array}{rcl}
  14379. \LangFunANFM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  14380. \end{array}
  14381. \end{array}
  14382. \]
  14383. \fi}
  14384. \end{tcolorbox}
  14385. \caption{\LangFunANF{} is \LangFunRef{} in monadic normal form.}
  14386. \label{fig:Lfun-anf-syntax}
  14387. \end{figure}
  14388. %% Figure~\ref{fig:Lfun-anf-syntax} defines the output language
  14389. %% \LangFunANF{} of this pass.
  14390. %% \begin{figure}[tp]
  14391. %% \centering
  14392. %% \fbox{
  14393. %% \begin{minipage}{0.96\textwidth}
  14394. %% \small
  14395. %% \[
  14396. %% \begin{array}{rcl}
  14397. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  14398. %% \MID \VOID{} } \\
  14399. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  14400. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  14401. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  14402. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  14403. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  14404. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  14405. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  14406. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14407. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14408. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  14409. %% \end{array}
  14410. %% \]
  14411. %% \end{minipage}
  14412. %% }
  14413. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  14414. %% \label{fig:Lfun-anf-syntax}
  14415. %% \end{figure}
  14416. \section{Explicate Control and the \LangCFun{} Language}
  14417. \label{sec:explicate-control-r4}
  14418. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  14419. output of \code{explicate\_control}.
  14420. %
  14421. %% \racket{(The concrete syntax is given in
  14422. %% figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  14423. %
  14424. The auxiliary functions for assignment\racket{ and tail contexts} should
  14425. be updated with cases for
  14426. \racket{\code{Apply}}\python{\code{Call}} and \code{FunRef} and the
  14427. function for predicate context should be updated for
  14428. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  14429. \code{FunRef} cannot be a Boolean.) In assignment and predicate
  14430. contexts, \code{Apply} becomes \code{Call}\racket{, whereas in tail position
  14431. \code{Apply} becomes \code{TailCall}}. We recommend defining a new
  14432. auxiliary function for processing function definitions. This code is
  14433. similar to the case for \code{Program} in \LangVec{}. The top-level
  14434. \code{explicate\_control} function that handles the \code{ProgramDefs}
  14435. form of \LangFun{} can then apply this new function to all the
  14436. function definitions.
  14437. {\if\edition\pythonEd\pythonColor
  14438. The translation of \code{Return} statements requires a new auxiliary
  14439. function to handle expressions in tail context, called
  14440. \code{explicate\_tail}. The function should take an expression and the
  14441. dictionary of basic blocks and produce a list of statements in the
  14442. \LangCFun{} language. The \code{explicate\_tail} function should
  14443. include cases for \code{Begin}, \code{IfExp}, \code{Let}, \code{Call},
  14444. and a default case for other kinds of expressions. The default case
  14445. should produce a \code{Return} statement. The case for \code{Call}
  14446. should change it into \code{TailCall}. The other cases should
  14447. recursively process their subexpressions and statements, choosing the
  14448. appropriate explicate functions for the various contexts.
  14449. \fi}
  14450. \newcommand{\CfunASTRacket}{
  14451. \begin{array}{lcl}
  14452. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  14453. \Tail &::= & \TAILCALL{\Atm}{\Atm\ldots} \\
  14454. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  14455. \end{array}
  14456. }
  14457. \newcommand{\CfunASTPython}{
  14458. \begin{array}{lcl}
  14459. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}} \\
  14460. \Tail &::= & \TAILCALL{\Atm}{\Atm^{*}} \\
  14461. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  14462. \Block &::=& \itm{label}\key{:} \Stmt^{*}\;\Tail \\
  14463. \Blocks &::=& \LC\Block\code{,}\ldots\RC \\
  14464. \Def &::=& \DEF{\itm{label}}{\Params}{\Blocks}{\key{None}}{\Type}{\key{None}}
  14465. \end{array}
  14466. }
  14467. \begin{figure}[tp]
  14468. \begin{tcolorbox}[colback=white]
  14469. \small
  14470. {\if\edition\racketEd
  14471. \[
  14472. \begin{array}{l}
  14473. \gray{\CvarASTRacket} \\ \hline
  14474. \gray{\CifASTRacket} \\ \hline
  14475. \gray{\CloopASTRacket} \\ \hline
  14476. \gray{\CtupASTRacket} \\ \hline
  14477. \CfunASTRacket \\
  14478. \begin{array}{lcl}
  14479. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14480. \end{array}
  14481. \end{array}
  14482. \]
  14483. \fi}
  14484. {\if\edition\pythonEd\pythonColor
  14485. \[
  14486. \begin{array}{l}
  14487. \gray{\CifASTPython} \\ \hline
  14488. \gray{\CtupASTPython} \\ \hline
  14489. \CfunASTPython \\
  14490. \begin{array}{lcl}
  14491. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14492. \end{array}
  14493. \end{array}
  14494. \]
  14495. \fi}
  14496. \end{tcolorbox}
  14497. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  14498. \label{fig:c3-syntax}
  14499. \end{figure}
  14500. \clearpage
  14501. \section{Select Instructions and the \LangXIndCall{} Language}
  14502. \label{sec:select-r4}
  14503. \index{subject}{select instructions}
  14504. The output of select instructions is a program in the \LangXIndCall{}
  14505. language; the definition of its concrete syntax is shown in
  14506. figure~\ref{fig:x86-3-concrete}, and the definition of its abstract
  14507. syntax is shown in figure~\ref{fig:x86-3}. We use the \code{align}
  14508. directive on the labels of function definitions to make sure the
  14509. bottom three bits are zero, which we put to use in
  14510. chapter~\ref{ch:Ldyn}. We discuss the new instructions as needed in
  14511. this section. \index{subject}{x86}
  14512. \newcommand{\GrammarXIndCall}{
  14513. \begin{array}{lcl}
  14514. \Instr &::=& \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  14515. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  14516. \Block &::= & \Instr^{+} \\
  14517. \Def &::= & \code{.globl}\,\code{.align 8}\,\itm{label}\; (\itm{label}\key{:}\, \Block)^{*}
  14518. \end{array}
  14519. }
  14520. \newcommand{\ASTXIndCallRacket}{
  14521. \begin{array}{lcl}
  14522. \Instr &::=& \INDCALLQ{\Arg}{\itm{int}}
  14523. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14524. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  14525. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  14526. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP}
  14527. \end{array}
  14528. }
  14529. \begin{figure}[tp]
  14530. \begin{tcolorbox}[colback=white]
  14531. \small
  14532. \[
  14533. \begin{array}{l}
  14534. \gray{\GrammarXInt} \\ \hline
  14535. \gray{\GrammarXIf} \\ \hline
  14536. \gray{\GrammarXGlobal} \\ \hline
  14537. \GrammarXIndCall \\
  14538. \begin{array}{lcl}
  14539. \LangXIndCallM{} &::= & \Def^{*}
  14540. \end{array}
  14541. \end{array}
  14542. \]
  14543. \end{tcolorbox}
  14544. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of figure~\ref{fig:x86-2-concrete}).}
  14545. \label{fig:x86-3-concrete}
  14546. \end{figure}
  14547. \begin{figure}[tp]
  14548. \begin{tcolorbox}[colback=white]
  14549. \small
  14550. {\if\edition\racketEd
  14551. \[\arraycolsep=3pt
  14552. \begin{array}{l}
  14553. \gray{\ASTXIntRacket} \\ \hline
  14554. \gray{\ASTXIfRacket} \\ \hline
  14555. \gray{\ASTXGlobalRacket} \\ \hline
  14556. \ASTXIndCallRacket \\
  14557. \begin{array}{lcl}
  14558. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14559. \end{array}
  14560. \end{array}
  14561. \]
  14562. \fi}
  14563. {\if\edition\pythonEd\pythonColor
  14564. \[
  14565. \begin{array}{lcl}
  14566. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  14567. \MID \BYTEREG{\Reg} } \\
  14568. &\MID& \gray{ \GLOBAL{\itm{label}} } \MID \FUNREF{\itm{label}}{\Int} \\
  14569. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  14570. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14571. &\MID& \BININSTR{\scode{leaq}}{\Arg}{\REG{\Reg}}\\
  14572. \Block &::=&\itm{label}\key{:}\,\Instr^{*} \\
  14573. \Blocks &::= & \LC\Block\code{,}\ldots\RC\\
  14574. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\Blocks}{\_}{\Type}{\_} \\
  14575. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14576. \end{array}
  14577. \]
  14578. \fi}
  14579. \end{tcolorbox}
  14580. \caption{The abstract syntax of \LangXIndCall{} (extends
  14581. \LangXGlobal{} of figure~\ref{fig:x86-2}).}
  14582. \label{fig:x86-3}
  14583. \end{figure}
  14584. An assignment of a function reference to a variable becomes a
  14585. load-effective-address instruction as follows, where $\itm{lhs}'$ is
  14586. the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{} to \Arg{} in
  14587. \LangXIndCallVar{}. The \code{FunRef} becomes a \code{Global} AST
  14588. node, whose concrete syntax is instruction-pointer-relative
  14589. addressing.
  14590. \begin{center}
  14591. \begin{tabular}{lcl}
  14592. \begin{minipage}{0.35\textwidth}
  14593. {\if\edition\racketEd
  14594. \begin{lstlisting}
  14595. |$\itm{lhs}$| = (fun-ref |$f$| |$n$|);
  14596. \end{lstlisting}
  14597. \fi}
  14598. {\if\edition\pythonEd\pythonColor
  14599. \begin{lstlisting}
  14600. |$\itm{lhs}$| = FunRef(|$f$| |$n$|);
  14601. \end{lstlisting}
  14602. \fi}
  14603. \end{minipage}
  14604. &
  14605. $\Rightarrow$\qquad\qquad
  14606. &
  14607. \begin{minipage}{0.3\textwidth}
  14608. \begin{lstlisting}
  14609. leaq |$f$|(%rip), |$\itm{lhs}'$|
  14610. \end{lstlisting}
  14611. \end{minipage}
  14612. \end{tabular}
  14613. \end{center}
  14614. Regarding function definitions, we need to remove the parameters and
  14615. instead perform parameter passing using the conventions discussed in
  14616. section~\ref{sec:fun-x86}. That is, the arguments are passed in
  14617. registers. We recommend turning the parameters into local variables
  14618. and generating instructions at the beginning of the function to move
  14619. from the argument-passing registers
  14620. (section~\ref{sec:calling-conventions-fun}) to these local variables.
  14621. {\if\edition\racketEd
  14622. \begin{lstlisting}
  14623. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  14624. |$\Rightarrow$|
  14625. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  14626. \end{lstlisting}
  14627. \fi}
  14628. {\if\edition\pythonEd\pythonColor
  14629. \begin{lstlisting}
  14630. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  14631. |$\Rightarrow$|
  14632. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  14633. \end{lstlisting}
  14634. \fi}
  14635. The basic blocks $B'$ are the same as $B$ except that the
  14636. \code{start} block is modified to add the instructions for moving from
  14637. the argument registers to the parameter variables. So the \code{start}
  14638. block of $B$ shown on the left of the following is changed to the code
  14639. on the right:
  14640. \begin{center}
  14641. \begin{minipage}{0.3\textwidth}
  14642. \begin{lstlisting}
  14643. start:
  14644. |$\itm{instr}_1$|
  14645. |$\cdots$|
  14646. |$\itm{instr}_n$|
  14647. \end{lstlisting}
  14648. \end{minipage}
  14649. $\Rightarrow$
  14650. \begin{minipage}{0.3\textwidth}
  14651. \begin{lstlisting}
  14652. |$f$|start:
  14653. movq %rdi, |$x_1$|
  14654. movq %rsi, |$x_2$|
  14655. |$\cdots$|
  14656. |$\itm{instr}_1$|
  14657. |$\cdots$|
  14658. |$\itm{instr}_n$|
  14659. \end{lstlisting}
  14660. \end{minipage}
  14661. \end{center}
  14662. Recall that we use the label \code{start} for the initial block of a
  14663. program, and in section~\ref{sec:select-Lvar} we recommend labeling
  14664. the conclusion of the program with \code{conclusion}, so that
  14665. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  14666. by a jump to \code{conclusion}. With the addition of function
  14667. definitions, there is a start block and conclusion for each function,
  14668. but their labels need to be unique. We recommend prepending the
  14669. function's name to \code{start} and \code{conclusion}, respectively,
  14670. to obtain unique labels.
  14671. \racket{The interpreter for \LangXIndCall{} needs to be given the
  14672. number of parameters the function expects, but the parameters are no
  14673. longer in the syntax of function definitions. Instead, add an entry
  14674. to $\itm{info}$ that maps \code{num-params} to the number of
  14675. parameters to construct $\itm{info}'$.}
  14676. By changing the parameters to local variables, we are giving the
  14677. register allocator control over which registers or stack locations to
  14678. use for them. If you implement the move-biasing challenge
  14679. (section~\ref{sec:move-biasing}), the register allocator will try to
  14680. assign the parameter variables to the corresponding argument register,
  14681. in which case the \code{patch\_instructions} pass will remove the
  14682. \code{movq} instruction. This happens in the example translation given
  14683. in figure~\ref{fig:add-fun} in section~\ref{sec:functions-example}, in
  14684. the \code{add} function.
  14685. %
  14686. Also, note that the register allocator will perform liveness analysis
  14687. on this sequence of move instructions and build the interference
  14688. graph. So, for example, $x_1$ will be marked as interfering with
  14689. \code{rsi}, and that will prevent the mapping of $x_1$ to \code{rsi},
  14690. which is good because otherwise the first \code{movq} would overwrite
  14691. the argument in \code{rsi} that is needed for $x_2$.
  14692. Next, consider the compilation of function calls. In the mirror image
  14693. of the handling of parameters in function definitions, the arguments
  14694. are moved to the argument-passing registers. Note that the function
  14695. is not given as a label, but its address is produced by the argument
  14696. $\itm{arg}_0$. So, we translate the call into an indirect function
  14697. call. The return value from the function is stored in \code{rax}, so
  14698. it needs to be moved into the \itm{lhs}.
  14699. \begin{lstlisting}
  14700. |\itm{lhs}| = |$\CALL{\itm{arg}_0}{\itm{arg}_1~\itm{arg}_2 \ldots}$|
  14701. |$\Rightarrow$|
  14702. movq |$\itm{arg}_1$|, %rdi
  14703. movq |$\itm{arg}_2$|, %rsi
  14704. |$\vdots$|
  14705. callq *|$\itm{arg}_0$|
  14706. movq %rax, |$\itm{lhs}$|
  14707. \end{lstlisting}
  14708. The \code{IndirectCallq} AST node includes an integer for the arity of
  14709. the function, that is, the number of parameters. That information is
  14710. useful in the \code{uncover\_live} pass for determining which
  14711. argument-passing registers are potentially read during the call.
  14712. For tail calls, the parameter passing is the same as non-tail calls:
  14713. generate instructions to move the arguments into the argument-passing
  14714. registers. After that we need to pop the frame from the procedure
  14715. call stack. However, we do not yet know how big the frame is; that
  14716. gets determined during register allocation. So, instead of generating
  14717. those instructions here, we invent a new instruction that means ``pop
  14718. the frame and then do an indirect jump,'' which we name
  14719. \code{TailJmp}. The abstract syntax for this instruction includes an
  14720. argument that specifies where to jump and an integer that represents
  14721. the arity of the function being called.
  14722. \section{Register Allocation}
  14723. \label{sec:register-allocation-r4}
  14724. The addition of functions requires some changes to all three aspects
  14725. of register allocation, which we discuss in the following subsections.
  14726. \subsection{Liveness Analysis}
  14727. \label{sec:liveness-analysis-r4}
  14728. \index{subject}{liveness analysis}
  14729. %% The rest of the passes need only minor modifications to handle the new
  14730. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  14731. %% \code{leaq}.
  14732. The \code{IndirectCallq} instruction should be treated like
  14733. \code{Callq} regarding its written locations $W$, in that they should
  14734. include all the caller-saved registers. Recall that the reason for
  14735. that is to force variables that are live across a function call to be assigned to callee-saved
  14736. registers or to be spilled to the stack.
  14737. Regarding the set of read locations $R$, the arity fields of
  14738. \code{TailJmp} and \code{IndirectCallq} determine how many of the
  14739. argument-passing registers should be considered as read by those
  14740. instructions. Also, the target field of \code{TailJmp} and
  14741. \code{IndirectCallq} should be included in the set of read locations
  14742. $R$.
  14743. \subsection{Build Interference Graph}
  14744. \label{sec:build-interference-r4}
  14745. With the addition of function definitions, we compute a separate interference
  14746. graph for each function (not just one for the whole program).
  14747. Recall that in section~\ref{sec:reg-alloc-gc} we discussed the need to
  14748. spill tuple-typed variables that are live during a call to
  14749. \code{collect}, the garbage collector. With the addition of functions
  14750. to our language, we need to revisit this issue. Functions that perform
  14751. allocation contain calls to the collector. Thus, we should not only
  14752. spill a tuple-typed variable when it is live during a call to
  14753. \code{collect}, but we should spill the variable if it is live during
  14754. a call to any user-defined function. Thus, in the
  14755. \code{build\_interference} pass, we recommend adding interference
  14756. edges between call-live tuple-typed variables and the callee-saved
  14757. registers (in addition to creating edges between
  14758. call-live variables and the caller-saved registers).
  14759. \subsection{Allocate Registers}
  14760. The primary change to the \code{allocate\_registers} pass is adding an
  14761. auxiliary function for handling definitions (the \Def{} nonterminal
  14762. shown in figure~\ref{fig:x86-3}) with one case for function
  14763. definitions. The logic is the same as described in
  14764. chapter~\ref{ch:register-allocation-Lvar} except that now register
  14765. allocation is performed many times, once for each function definition,
  14766. instead of just once for the whole program.
  14767. \section{Patch Instructions}
  14768. In \code{patch\_instructions}, you should deal with the x86
  14769. idiosyncrasy that the destination argument of \code{leaq} must be a
  14770. register. Additionally, you should ensure that the argument of
  14771. \code{TailJmp} is \itm{rax}, our reserved register---because we
  14772. trample many other registers before the tail call, as explained in the
  14773. next section.
  14774. \section{Prelude and Conclusion}
  14775. Now that register allocation is complete, we can translate the
  14776. \code{TailJmp} into a sequence of instructions. A naive translation of
  14777. \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}. However,
  14778. before the jump we need to pop the current frame to achieve efficient
  14779. tail calls. This sequence of instructions is the same as the code for
  14780. the conclusion of a function, except that the \code{retq} is replaced with
  14781. \code{jmp *$\itm{arg}$}.
  14782. Regarding function definitions, we generate a prelude and conclusion
  14783. for each one. This code is similar to the prelude and conclusion
  14784. generated for the \code{main} function presented in
  14785. chapter~\ref{ch:Lvec}. To review, the prelude of every function should
  14786. carry out the following steps:
  14787. % TODO: .align the functions!
  14788. \begin{enumerate}
  14789. %% \item Start with \code{.global} and \code{.align} directives followed
  14790. %% by the label for the function. (See figure~\ref{fig:add-fun} for an
  14791. %% example.)
  14792. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  14793. pointer.
  14794. \item Push to the stack all the callee-saved registers that were
  14795. used for register allocation.
  14796. \item Move the stack pointer \code{rsp} down to make room for the
  14797. regular spills (aligned to 16 bytes).
  14798. \item Move the root stack pointer \code{r15} up by the size of the
  14799. root-stack frame for this function, which depends on the number of
  14800. spilled tuple-typed variables. \label{root-stack-init}
  14801. \item Initialize to zero all new entries in the root-stack frame.
  14802. \item Jump to the start block.
  14803. \end{enumerate}
  14804. The prelude of the \code{main} function has an additional task: call
  14805. the \code{initialize} function to set up the garbage collector, and
  14806. then move the value of the global \code{rootstack\_begin} in
  14807. \code{r15}. This initialization should happen before step
  14808. \ref{root-stack-init}, which depends on \code{r15}.
  14809. The conclusion of every function should do the following:
  14810. \begin{enumerate}
  14811. \item Move the stack pointer back up past the regular spills.
  14812. \item Restore the callee-saved registers by popping them from the
  14813. stack.
  14814. \item Move the root stack pointer back down by the size of the
  14815. root-stack frame for this function.
  14816. \item Restore \code{rbp} by popping it from the stack.
  14817. \item Return to the caller with the \code{retq} instruction.
  14818. \end{enumerate}
  14819. The output of this pass is \LangXIndCallFlat{}, which differs from
  14820. \LangXIndCall{} in that there is no longer an AST node for function
  14821. definitions. Instead, a program is just an association list of basic
  14822. blocks, as in \LangXGlobal{}. So we have the following grammar rule:
  14823. \[
  14824. \LangXIndCallFlatM{} ::= \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  14825. \]
  14826. Figure~\ref{fig:Lfun-passes} gives an overview of the passes for
  14827. compiling \LangFun{} to x86.
  14828. \begin{exercise}\normalfont\normalsize
  14829. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  14830. Create eight new programs that use functions including examples that
  14831. pass functions and return functions from other functions, recursive
  14832. functions, functions that create vectors, and functions that make tail
  14833. calls. Test your compiler on these new programs and all your
  14834. previously created test programs.
  14835. \end{exercise}
  14836. \begin{figure}[tbp]
  14837. \begin{tcolorbox}[colback=white]
  14838. {\if\edition\racketEd
  14839. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  14840. \node (Lfun) at (0,2) {\large \LangFun{}};
  14841. \node (Lfun-1) at (4,2) {\large \LangFun{}};
  14842. \node (Lfun-2) at (7,2) {\large \LangFun{}};
  14843. \node (F1-1) at (11,2) {\large \LangFunRef{}};
  14844. \node (F1-2) at (11,0) {\large \LangFunRef{}};
  14845. \node (F1-3) at (7,0) {\large \LangFunRefAlloc{}};
  14846. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  14847. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  14848. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  14849. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  14850. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  14851. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  14852. \node (x86-5) at (8,-6) {\large \LangXIndCallFlat{}};
  14853. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  14854. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  14855. \path[->,bend left=15] (Lfun) edge [above] node
  14856. {\ttfamily\footnotesize shrink} (Lfun-1);
  14857. \path[->,bend left=15] (Lfun-1) edge [above] node
  14858. {\ttfamily\footnotesize uniquify} (Lfun-2);
  14859. \path[->,bend left=15] (Lfun-2) edge [above] node
  14860. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  14861. \path[->,bend left=15] (F1-1) edge [left] node
  14862. {\ttfamily\footnotesize limit\_functions} (F1-2);
  14863. \path[->,bend left=15] (F1-2) edge [below] node
  14864. {\ttfamily\footnotesize expose\_allocation} (F1-3);
  14865. \path[->,bend left=15] (F1-3) edge [below] node
  14866. {\ttfamily\footnotesize uncover\_get!} (F1-4);
  14867. \path[->,bend right=15] (F1-4) edge [above] node
  14868. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  14869. \path[->,bend right=15] (F1-5) edge [right] node
  14870. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14871. \path[->,bend right=15] (C3-2) edge [right] node
  14872. {\ttfamily\footnotesize select\_instructions} (x86-2);
  14873. \path[->,bend left=15] (x86-2) edge [right] node
  14874. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  14875. \path[->,bend right=15] (x86-2-1) edge [below] node
  14876. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  14877. \path[->,bend right=15] (x86-2-2) edge [right] node
  14878. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  14879. \path[->,bend left=15] (x86-3) edge [above] node
  14880. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  14881. \path[->,bend right=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  14882. \end{tikzpicture}
  14883. \fi}
  14884. {\if\edition\pythonEd\pythonColor
  14885. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  14886. \node (Lfun) at (0,2) {\large \LangFun{}};
  14887. \node (Lfun-2) at (4,2) {\large \LangFun{}};
  14888. \node (F1-1) at (8,2) {\large \LangFunRef{}};
  14889. \node (F1-2) at (12,2) {\large \LangFunRef{}};
  14890. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  14891. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  14892. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  14893. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  14894. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  14895. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  14896. \node (x86-5) at (12,-4) {\large \LangXIndCallFlat{}};
  14897. \path[->,bend left=15] (Lfun) edge [above] node
  14898. {\ttfamily\footnotesize shrink} (Lfun-2);
  14899. \path[->,bend left=15] (Lfun-2) edge [above] node
  14900. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  14901. \path[->,bend left=15] (F1-1) edge [above] node
  14902. {\ttfamily\footnotesize limit\_functions} (F1-2);
  14903. \path[->,bend left=15] (F1-2) edge [right] node
  14904. {\ttfamily\footnotesize \ \ expose\_allocation} (F1-4);
  14905. \path[->,bend right=15] (F1-4) edge [above] node
  14906. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  14907. \path[->,bend right=15] (F1-5) edge [right] node
  14908. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14909. \path[->,bend left=15] (C3-2) edge [right] node
  14910. {\ttfamily\footnotesize select\_instructions} (x86-2);
  14911. \path[->,bend right=15] (x86-2) edge [below] node
  14912. {\ttfamily\footnotesize assign\_homes} (x86-3);
  14913. \path[->,bend left=15] (x86-3) edge [above] node
  14914. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  14915. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  14916. \end{tikzpicture}
  14917. \fi}
  14918. \end{tcolorbox}
  14919. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  14920. \label{fig:Lfun-passes}
  14921. \end{figure}
  14922. \section{An Example Translation}
  14923. \label{sec:functions-example}
  14924. Figure~\ref{fig:add-fun} shows an example translation of a simple
  14925. function in \LangFun{} to x86. The figure also includes the results of the
  14926. \code{explicate\_control} and \code{select\_instructions} passes.
  14927. \begin{figure}[htbp]
  14928. \begin{tcolorbox}[colback=white]
  14929. \begin{tabular}{ll}
  14930. \begin{minipage}{0.4\textwidth}
  14931. % s3_2.rkt
  14932. {\if\edition\racketEd
  14933. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14934. (define (add [x : Integer]
  14935. [y : Integer])
  14936. : Integer
  14937. (+ x y))
  14938. (add 40 2)
  14939. \end{lstlisting}
  14940. \fi}
  14941. {\if\edition\pythonEd\pythonColor
  14942. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14943. def add(x:int, y:int) -> int:
  14944. return x + y
  14945. print(add(40, 2))
  14946. \end{lstlisting}
  14947. \fi}
  14948. $\Downarrow$
  14949. {\if\edition\racketEd
  14950. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14951. (define (add86 [x87 : Integer]
  14952. [y88 : Integer])
  14953. : Integer
  14954. add86start:
  14955. return (+ x87 y88);
  14956. )
  14957. (define (main) : Integer ()
  14958. mainstart:
  14959. tmp89 = (fun-ref add86 2);
  14960. (tail-call tmp89 40 2)
  14961. )
  14962. \end{lstlisting}
  14963. \fi}
  14964. {\if\edition\pythonEd\pythonColor
  14965. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14966. def add(x:int, y:int) -> int:
  14967. addstart:
  14968. return x + y
  14969. def main() -> int:
  14970. mainstart:
  14971. fun.0 = add
  14972. tmp.1 = fun.0(40, 2)
  14973. print(tmp.1)
  14974. return 0
  14975. \end{lstlisting}
  14976. \fi}
  14977. \end{minipage}
  14978. &
  14979. $\Rightarrow$
  14980. \begin{minipage}{0.5\textwidth}
  14981. {\if\edition\racketEd
  14982. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14983. (define (add86) : Integer
  14984. add86start:
  14985. movq %rdi, x87
  14986. movq %rsi, y88
  14987. movq x87, %rax
  14988. addq y88, %rax
  14989. jmp inc1389conclusion
  14990. )
  14991. (define (main) : Integer
  14992. mainstart:
  14993. leaq (fun-ref add86 2), tmp89
  14994. movq $40, %rdi
  14995. movq $2, %rsi
  14996. tail-jmp tmp89
  14997. )
  14998. \end{lstlisting}
  14999. \fi}
  15000. {\if\edition\pythonEd\pythonColor
  15001. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15002. def add() -> int:
  15003. addstart:
  15004. movq %rdi, x
  15005. movq %rsi, y
  15006. movq x, %rax
  15007. addq y, %rax
  15008. jmp addconclusion
  15009. def main() -> int:
  15010. mainstart:
  15011. leaq add, fun.0
  15012. movq $40, %rdi
  15013. movq $2, %rsi
  15014. callq *fun.0
  15015. movq %rax, tmp.1
  15016. movq tmp.1, %rdi
  15017. callq print_int
  15018. movq $0, %rax
  15019. jmp mainconclusion
  15020. \end{lstlisting}
  15021. \fi}
  15022. $\Downarrow$
  15023. \end{minipage}
  15024. \end{tabular}
  15025. \begin{tabular}{ll}
  15026. \begin{minipage}{0.3\textwidth}
  15027. {\if\edition\racketEd
  15028. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15029. .globl add86
  15030. .align 8
  15031. add86:
  15032. pushq %rbp
  15033. movq %rsp, %rbp
  15034. jmp add86start
  15035. add86start:
  15036. movq %rdi, %rax
  15037. addq %rsi, %rax
  15038. jmp add86conclusion
  15039. add86conclusion:
  15040. popq %rbp
  15041. retq
  15042. \end{lstlisting}
  15043. \fi}
  15044. {\if\edition\pythonEd\pythonColor
  15045. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15046. .align 8
  15047. add:
  15048. pushq %rbp
  15049. movq %rsp, %rbp
  15050. subq $0, %rsp
  15051. jmp addstart
  15052. addstart:
  15053. movq %rdi, %rdx
  15054. movq %rsi, %rcx
  15055. movq %rdx, %rax
  15056. addq %rcx, %rax
  15057. jmp addconclusion
  15058. addconclusion:
  15059. subq $0, %r15
  15060. addq $0, %rsp
  15061. popq %rbp
  15062. retq
  15063. \end{lstlisting}
  15064. \fi}
  15065. \end{minipage}
  15066. &
  15067. \begin{minipage}{0.5\textwidth}
  15068. {\if\edition\racketEd
  15069. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15070. .globl main
  15071. .align 8
  15072. main:
  15073. pushq %rbp
  15074. movq %rsp, %rbp
  15075. movq $16384, %rdi
  15076. movq $16384, %rsi
  15077. callq initialize
  15078. movq rootstack_begin(%rip), %r15
  15079. jmp mainstart
  15080. mainstart:
  15081. leaq add86(%rip), %rcx
  15082. movq $40, %rdi
  15083. movq $2, %rsi
  15084. movq %rcx, %rax
  15085. popq %rbp
  15086. jmp *%rax
  15087. mainconclusion:
  15088. popq %rbp
  15089. retq
  15090. \end{lstlisting}
  15091. \fi}
  15092. {\if\edition\pythonEd\pythonColor
  15093. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15094. .globl main
  15095. .align 8
  15096. main:
  15097. pushq %rbp
  15098. movq %rsp, %rbp
  15099. subq $0, %rsp
  15100. movq $65536, %rdi
  15101. movq $65536, %rsi
  15102. callq initialize
  15103. movq rootstack_begin(%rip), %r15
  15104. jmp mainstart
  15105. mainstart:
  15106. leaq add(%rip), %rcx
  15107. movq $40, %rdi
  15108. movq $2, %rsi
  15109. callq *%rcx
  15110. movq %rax, %rcx
  15111. movq %rcx, %rdi
  15112. callq print_int
  15113. movq $0, %rax
  15114. jmp mainconclusion
  15115. mainconclusion:
  15116. subq $0, %r15
  15117. addq $0, %rsp
  15118. popq %rbp
  15119. retq
  15120. \end{lstlisting}
  15121. \fi}
  15122. \end{minipage}
  15123. \end{tabular}
  15124. \end{tcolorbox}
  15125. \caption{Example compilation of a simple function to x86.}
  15126. \label{fig:add-fun}
  15127. \end{figure}
  15128. % Challenge idea: inlining! (simple version)
  15129. % Further Reading
  15130. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15131. \chapter{Lexically Scoped Functions}
  15132. \label{ch:Llambda}
  15133. \setcounter{footnote}{0}
  15134. This chapter studies lexically scoped functions. Lexical
  15135. scoping\index{subject}{lexical scoping} means that a function's body
  15136. may refer to variables whose binding site is outside of the function,
  15137. in an enclosing scope.
  15138. %
  15139. Consider the example shown in figure~\ref{fig:lexical-scoping} written
  15140. in \LangLam{}, which extends \LangFun{} with the
  15141. \key{lambda}\index{subject}{lambda} form for creating lexically scoped
  15142. functions. The body of the \key{lambda} refers to three variables:
  15143. \code{x}, \code{y}, and \code{z}. The binding sites for \code{x} and
  15144. \code{y} are outside of the \key{lambda}. Variable \code{y} is
  15145. \racket{bound by the enclosing \key{let}}\python{a local variable of
  15146. function \code{f}}, and \code{x} is a parameter of function
  15147. \code{f}. Note that function \code{f} returns the \key{lambda} as its
  15148. result value. The main expression of the program includes two calls to
  15149. \code{f} with different arguments for \code{x}: first \code{5} and
  15150. then \code{3}. The functions returned from \code{f} are bound to
  15151. variables \code{g} and \code{h}. Even though these two functions were
  15152. created by the same \code{lambda}, they are really different functions
  15153. because they use different values for \code{x}. Applying \code{g} to
  15154. \code{11} produces \code{20} whereas applying \code{h} to \code{15}
  15155. produces \code{22}, so the result of the program is \code{42}.
  15156. \begin{figure}[btp]
  15157. \begin{tcolorbox}[colback=white]
  15158. {\if\edition\racketEd
  15159. % lambda_test_21.rkt
  15160. \begin{lstlisting}
  15161. (define (f [x : Integer]) : (Integer -> Integer)
  15162. (let ([y 4])
  15163. (lambda: ([z : Integer]) : Integer
  15164. (+ x (+ y z)))))
  15165. (let ([g (f 5)])
  15166. (let ([h (f 3)])
  15167. (+ (g 11) (h 15))))
  15168. \end{lstlisting}
  15169. \fi}
  15170. {\if\edition\pythonEd\pythonColor
  15171. \begin{lstlisting}
  15172. def f(x : int) -> Callable[[int], int]:
  15173. y = 4
  15174. return lambda z: x + y + z
  15175. g = f(5)
  15176. h = f(3)
  15177. print( g(11) + h(15) )
  15178. \end{lstlisting}
  15179. \fi}
  15180. \end{tcolorbox}
  15181. \caption{Example of a lexically scoped function.}
  15182. \label{fig:lexical-scoping}
  15183. \end{figure}
  15184. The approach that we take for implementing lexically scoped functions
  15185. is to compile them into top-level function definitions, translating
  15186. from \LangLam{} into \LangFun{}. However, the compiler must give
  15187. special treatment to variable occurrences such as \code{x} and
  15188. \code{y} in the body of the \code{lambda} shown in
  15189. figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  15190. may not refer to variables defined outside of it. To identify such
  15191. variable occurrences, we review the standard notion of free variable.
  15192. \begin{definition}\normalfont
  15193. A variable is \emph{free in expression} $e$ if the variable occurs
  15194. inside $e$ but does not have an enclosing definition that is also in
  15195. $e$.\index{subject}{free variable}
  15196. \end{definition}
  15197. For example, in the expression
  15198. \racket{\code{(+ x (+ y z))}}\python{\code{x + y + z}}
  15199. the variables \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  15200. only \code{x} and \code{y} are free in the following expression,
  15201. because \code{z} is defined by the \code{lambda}
  15202. {\if\edition\racketEd
  15203. \begin{lstlisting}
  15204. (lambda: ([z : Integer]) : Integer
  15205. (+ x (+ y z)))
  15206. \end{lstlisting}
  15207. \fi}
  15208. {\if\edition\pythonEd\pythonColor
  15209. \begin{lstlisting}
  15210. lambda z: x + y + z
  15211. \end{lstlisting}
  15212. \fi}
  15213. %
  15214. \noindent Thus the free variables of a \code{lambda} are the ones that
  15215. need special treatment. We need to transport at runtime the values
  15216. of those variables from the point where the \code{lambda} was created
  15217. to the point where the \code{lambda} is applied. An efficient solution
  15218. to the problem, due to \citet{Cardelli:1983aa}, is to bundle the
  15219. values of the free variables together with a function pointer into a
  15220. tuple, an arrangement called a \emph{flat closure} (which we shorten
  15221. to just \emph{closure}).\index{subject}{closure}\index{subject}{flat
  15222. closure}
  15223. %
  15224. By design, we have all the ingredients to make closures:
  15225. chapter~\ref{ch:Lvec} gave us tuples, and chapter~\ref{ch:Lfun} gave us
  15226. function pointers. The function pointer resides at index $0$, and the
  15227. values for the free variables fill in the rest of the tuple.
  15228. Let us revisit the example shown in figure~\ref{fig:lexical-scoping}
  15229. to see how closures work. It is a three-step dance. The program calls
  15230. function \code{f}, which creates a closure for the \code{lambda}. The
  15231. closure is a tuple whose first element is a pointer to the top-level
  15232. function that we will generate for the \code{lambda}; the second
  15233. element is the value of \code{x}, which is \code{5}; and the third
  15234. element is \code{4}, the value of \code{y}. The closure does not
  15235. contain an element for \code{z} because \code{z} is not a free
  15236. variable of the \code{lambda}. Creating the closure is step 1 of the
  15237. dance. The closure is returned from \code{f} and bound to \code{g}, as
  15238. shown in figure~\ref{fig:closures}.
  15239. %
  15240. The second call to \code{f} creates another closure, this time with
  15241. \code{3} in the second slot (for \code{x}). This closure is also
  15242. returned from \code{f} but bound to \code{h}, which is also shown in
  15243. figure~\ref{fig:closures}.
  15244. \begin{figure}[tbp]
  15245. \centering
  15246. \begin{minipage}{0.65\textwidth}
  15247. \begin{tcolorbox}[colback=white]
  15248. \includegraphics[width=\textwidth]{figs/closures}
  15249. \end{tcolorbox}
  15250. \end{minipage}
  15251. \caption{Flat closure representations for the two functions
  15252. produced by the \key{lambda} in figure~\ref{fig:lexical-scoping}.}
  15253. \label{fig:closures}
  15254. \end{figure}
  15255. Continuing with the example, consider the application of \code{g} to
  15256. \code{11} shown in figure~\ref{fig:lexical-scoping}. To apply a
  15257. closure, we obtain the function pointer from the first element of the
  15258. closure and call it, passing in the closure itself and then the
  15259. regular arguments, in this case \code{11}. This technique for applying
  15260. a closure is step 2 of the dance.
  15261. %
  15262. But doesn't this \code{lambda} take only one argument, for parameter
  15263. \code{z}? The third and final step of the dance is generating a
  15264. top-level function for a \code{lambda}. We add an additional
  15265. parameter for the closure and insert an initialization at the beginning
  15266. of the function for each free variable, to bind those variables to the
  15267. appropriate elements from the closure parameter.
  15268. %
  15269. This three-step dance is known as \emph{closure
  15270. conversion}\index{subject}{closure conversion}. We discuss the
  15271. details of closure conversion in section~\ref{sec:closure-conversion}
  15272. and show the code generated from the example in
  15273. section~\ref{sec:example-lambda}. First, we define the syntax and
  15274. semantics of \LangLam{} in section~\ref{sec:r5}.
  15275. \section{The \LangLam{} Language}
  15276. \label{sec:r5}
  15277. The definitions of the concrete syntax and abstract syntax for
  15278. \LangLam{}, a language with anonymous functions and lexical scoping,
  15279. are shown in figures~\ref{fig:Llam-concrete-syntax} and
  15280. \ref{fig:Llam-syntax}. They add the \key{lambda} form to the grammar
  15281. for \LangFun{}, which already has syntax for function application.
  15282. %
  15283. \python{The syntax also includes an assignment statement that includes
  15284. a type annotation for the variable on the left-hand side, which
  15285. facilitates the type checking of \code{lambda} expressions that we
  15286. discuss later in this section.}
  15287. %
  15288. \racket{The \code{procedure-arity} operation returns the number of parameters
  15289. of a given function, an operation that we need for the translation
  15290. of dynamic typing in chapter~\ref{ch:Ldyn}.}
  15291. %
  15292. \python{The \code{arity} operation returns the number of parameters of
  15293. a given function, an operation that we need for the translation
  15294. of dynamic typing in chapter~\ref{ch:Ldyn}.
  15295. The \code{arity} operation is not in Python, but the same functionality
  15296. is available in a more complex form. We include \code{arity} in the
  15297. \LangLam{} source language to enable testing.}
  15298. \newcommand{\LlambdaGrammarRacket}{
  15299. \begin{array}{lcl}
  15300. \Exp &::=& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  15301. &\MID& \LP \key{procedure-arity}~\Exp\RP
  15302. \end{array}
  15303. }
  15304. \newcommand{\LlambdaASTRacket}{
  15305. \begin{array}{lcl}
  15306. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  15307. \itm{op} &::=& \code{procedure-arity}
  15308. \end{array}
  15309. }
  15310. \newcommand{\LlambdaGrammarPython}{
  15311. \begin{array}{lcl}
  15312. \Exp &::=& \CLAMBDA{\Var\code{, }\ldots}{\Exp} \MID \CARITY{\Exp} \\
  15313. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp}
  15314. \end{array}
  15315. }
  15316. \newcommand{\LlambdaASTPython}{
  15317. \begin{array}{lcl}
  15318. \Exp &::=& \LAMBDA{\Var^{*}}{\Exp} \MID \ARITY{\Exp} \\
  15319. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  15320. \end{array}
  15321. }
  15322. % include AnnAssign in ASTPython
  15323. \begin{figure}[tp]
  15324. \centering
  15325. \begin{tcolorbox}[colback=white]
  15326. \small
  15327. {\if\edition\racketEd
  15328. \[
  15329. \begin{array}{l}
  15330. \gray{\LintGrammarRacket{}} \\ \hline
  15331. \gray{\LvarGrammarRacket{}} \\ \hline
  15332. \gray{\LifGrammarRacket{}} \\ \hline
  15333. \gray{\LwhileGrammarRacket} \\ \hline
  15334. \gray{\LtupGrammarRacket} \\ \hline
  15335. \gray{\LfunGrammarRacket} \\ \hline
  15336. \LlambdaGrammarRacket \\
  15337. \begin{array}{lcl}
  15338. \LangLamM{} &::=& \Def\ldots \; \Exp
  15339. \end{array}
  15340. \end{array}
  15341. \]
  15342. \fi}
  15343. {\if\edition\pythonEd\pythonColor
  15344. \[
  15345. \begin{array}{l}
  15346. \gray{\LintGrammarPython{}} \\ \hline
  15347. \gray{\LvarGrammarPython{}} \\ \hline
  15348. \gray{\LifGrammarPython{}} \\ \hline
  15349. \gray{\LwhileGrammarPython} \\ \hline
  15350. \gray{\LtupGrammarPython} \\ \hline
  15351. \gray{\LfunGrammarPython} \\ \hline
  15352. \LlambdaGrammarPython \\
  15353. \begin{array}{lcl}
  15354. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  15355. \end{array}
  15356. \end{array}
  15357. \]
  15358. \fi}
  15359. \end{tcolorbox}
  15360. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-concrete-syntax})
  15361. with \key{lambda}.}
  15362. \label{fig:Llam-concrete-syntax}
  15363. \end{figure}
  15364. \begin{figure}[tp]
  15365. \centering
  15366. \begin{tcolorbox}[colback=white]
  15367. \small
  15368. {\if\edition\racketEd
  15369. \[\arraycolsep=3pt
  15370. \begin{array}{l}
  15371. \gray{\LintOpAST} \\ \hline
  15372. \gray{\LvarASTRacket{}} \\ \hline
  15373. \gray{\LifASTRacket{}} \\ \hline
  15374. \gray{\LwhileASTRacket{}} \\ \hline
  15375. \gray{\LtupASTRacket{}} \\ \hline
  15376. \gray{\LfunASTRacket} \\ \hline
  15377. \LlambdaASTRacket \\
  15378. \begin{array}{lcl}
  15379. \LangLamM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15380. \end{array}
  15381. \end{array}
  15382. \]
  15383. \fi}
  15384. {\if\edition\pythonEd\pythonColor
  15385. \[
  15386. \begin{array}{l}
  15387. \gray{\LintASTPython} \\ \hline
  15388. \gray{\LvarASTPython{}} \\ \hline
  15389. \gray{\LifASTPython{}} \\ \hline
  15390. \gray{\LwhileASTPython{}} \\ \hline
  15391. \gray{\LtupASTPython{}} \\ \hline
  15392. \gray{\LfunASTPython} \\ \hline
  15393. \LlambdaASTPython \\
  15394. \begin{array}{lcl}
  15395. \LangLamM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  15396. \end{array}
  15397. \end{array}
  15398. \]
  15399. \fi}
  15400. \end{tcolorbox}
  15401. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-syntax}).}
  15402. \label{fig:Llam-syntax}
  15403. \end{figure}
  15404. Figure~\ref{fig:interp-Llambda} shows the definitional
  15405. interpreter\index{subject}{interpreter} for \LangLam{}. The case for
  15406. \key{Lambda} saves the current environment inside the returned
  15407. function value. Recall that during function application, the
  15408. environment stored in the function value, extended with the mapping of
  15409. parameters to argument values, is used to interpret the body of the
  15410. function.
  15411. \begin{figure}[tbp]
  15412. \begin{tcolorbox}[colback=white]
  15413. {\if\edition\racketEd
  15414. \begin{lstlisting}
  15415. (define interp-Llambda-class
  15416. (class interp-Lfun-class
  15417. (super-new)
  15418. (define/override (interp-op op)
  15419. (match op
  15420. ['procedure-arity
  15421. (lambda (v)
  15422. (match v
  15423. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  15424. [else (error 'interp-op "expected a function, not ~a" v)]))]
  15425. [else (super interp-op op)]))
  15426. (define/override ((interp-exp env) e)
  15427. (define recur (interp-exp env))
  15428. (match e
  15429. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  15430. `(function ,xs ,body ,env)]
  15431. [else ((super interp-exp env) e)]))
  15432. ))
  15433. (define (interp-Llambda p)
  15434. (send (new interp-Llambda-class) interp-program p))
  15435. \end{lstlisting}
  15436. \fi}
  15437. {\if\edition\pythonEd\pythonColor
  15438. \begin{lstlisting}
  15439. class InterpLlambda(InterpLfun):
  15440. def arity(self, v):
  15441. match v:
  15442. case Function(name, params, body, env):
  15443. return len(params)
  15444. case _:
  15445. raise Exception('Llambda arity unexpected ' + repr(v))
  15446. def interp_exp(self, e, env):
  15447. match e:
  15448. case Call(Name('arity'), [fun]):
  15449. f = self.interp_exp(fun, env)
  15450. return self.arity(f)
  15451. case Lambda(params, body):
  15452. return Function('lambda', params, [Return(body)], env)
  15453. case _:
  15454. return super().interp_exp(e, env)
  15455. def interp_stmt(self, s, env, cont):
  15456. match s:
  15457. case AnnAssign(lhs, typ, value, simple):
  15458. env[lhs.id] = self.interp_exp(value, env)
  15459. return self.interp_stmts(cont, env)
  15460. case Pass():
  15461. return self.interp_stmts(cont, env)
  15462. case _:
  15463. return super().interp_stmt(s, env, cont)
  15464. \end{lstlisting}
  15465. \fi}
  15466. \end{tcolorbox}
  15467. \caption{Interpreter for \LangLam{}.}
  15468. \label{fig:interp-Llambda}
  15469. \end{figure}
  15470. {\if\edition\racketEd
  15471. %
  15472. Figure~\ref{fig:type-check-Llambda} shows how to type check the new
  15473. \key{lambda} form. The body of the \key{lambda} is checked in an
  15474. environment that includes the current environment (because it is
  15475. lexically scoped) and also includes the \key{lambda}'s parameters. We
  15476. require the body's type to match the declared return type.
  15477. %
  15478. \fi}
  15479. {\if\edition\pythonEd\pythonColor
  15480. %
  15481. Figures~\ref{fig:type-check-Llambda} and
  15482. \ref{fig:type-check-Llambda-part2} define the type checker for
  15483. \LangLam{}, which is more complex than one might expect. The reason
  15484. for the added complexity is that the syntax of \key{lambda} does not
  15485. include type annotations for the parameters or return type. Instead
  15486. they must be inferred. There are many approaches of type inference to
  15487. choose from of varying degrees of complexity. We choose one of the
  15488. simpler approaches, bidirectional type inference~\citep{Dunfield:2021}
  15489. (aka. local type inference~\citep{Pierce:2000}), because the focus of
  15490. this book is compilation, not type inference.
  15491. The main idea of bidirectional type inference is to add an auxiliary
  15492. function, here named \code{check\_exp}, that takes an expected type
  15493. and checks whether the given expression is of that type. Thus, in
  15494. \code{check\_exp}, type information flows in a top-down manner with
  15495. respect to the AST, in contrast to the regular \code{type\_check\_exp}
  15496. function, where type information flows in a primarily bottom-up
  15497. manner.
  15498. %
  15499. The idea then is to use \code{check\_exp} in all the places where we
  15500. already know what the type of an expression should be, such as in the
  15501. \code{return} statement of a top-level function definition, or on the
  15502. right-hand side of an annotated assignment statement.
  15503. Getting back to \code{lambda}, it is straightforward to check a
  15504. \code{lambda} inside \code{check\_exp} because the expected type
  15505. provides the parameter types and the return type. On the other hand,
  15506. inside \code{type\_check\_exp} we disallow \code{lambda}, which means
  15507. that we do not allow \code{lambda} in contexts where we don't already
  15508. know its type. This restriction does not incur a loss of
  15509. expressiveness for \LangLam{} because it is straightforward to modify
  15510. a program to sidestep the restriction, for example, by using an
  15511. annotated assignment statement to assign the \code{lambda} to a
  15512. temporary variable.
  15513. Note that for the \code{Name} and \code{Lambda} AST nodes, the type
  15514. checker records their type in a \code{has\_type} field. This type
  15515. information is used later in this chapter.
  15516. %
  15517. \fi}
  15518. \begin{figure}[tbp]
  15519. \begin{tcolorbox}[colback=white]
  15520. {\if\edition\racketEd
  15521. \begin{lstlisting}
  15522. (define (type-check-Llambda env)
  15523. (lambda (e)
  15524. (match e
  15525. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  15526. (define-values (new-body bodyT)
  15527. ((type-check-exp (append (map cons xs Ts) env)) body))
  15528. (define ty `(,@Ts -> ,rT))
  15529. (cond
  15530. [(equal? rT bodyT)
  15531. (values (HasType (Lambda params rT new-body) ty) ty)]
  15532. [else
  15533. (error "mismatch in return type" bodyT rT)])]
  15534. ...
  15535. )))
  15536. \end{lstlisting}
  15537. \fi}
  15538. {\if\edition\pythonEd\pythonColor
  15539. \begin{lstlisting}
  15540. class TypeCheckLlambda(TypeCheckLfun):
  15541. def type_check_exp(self, e, env):
  15542. match e:
  15543. case Name(id):
  15544. e.has_type = env[id]
  15545. return env[id]
  15546. case Lambda(params, body):
  15547. raise Exception('cannot synthesize a type for a lambda')
  15548. case Call(Name('arity'), [func]):
  15549. func_t = self.type_check_exp(func, env)
  15550. match func_t:
  15551. case FunctionType(params_t, return_t):
  15552. return IntType()
  15553. case _:
  15554. raise Exception('in arity, unexpected ' + repr(func_t))
  15555. case _:
  15556. return super().type_check_exp(e, env)
  15557. def check_exp(self, e, ty, env):
  15558. match e:
  15559. case Lambda(params, body):
  15560. e.has_type = ty
  15561. match ty:
  15562. case FunctionType(params_t, return_t):
  15563. new_env = env.copy().update(zip(params, params_t))
  15564. self.check_exp(body, return_t, new_env)
  15565. case _:
  15566. raise Exception('lambda does not have type ' + str(ty))
  15567. case Call(func, args):
  15568. func_t = self.type_check_exp(func, env)
  15569. match func_t:
  15570. case FunctionType(params_t, return_t):
  15571. for (arg, param_t) in zip(args, params_t):
  15572. self.check_exp(arg, param_t, env)
  15573. self.check_type_equal(return_t, ty, e)
  15574. case _:
  15575. raise Exception('type_check_exp: in call, unexpected ' + \
  15576. repr(func_t))
  15577. case _:
  15578. t = self.type_check_exp(e, env)
  15579. self.check_type_equal(t, ty, e)
  15580. \end{lstlisting}
  15581. \fi}
  15582. \end{tcolorbox}
  15583. \caption{Type checking \LangLam{}\python{, part 1}.}
  15584. \label{fig:type-check-Llambda}
  15585. \end{figure}
  15586. {\if\edition\pythonEd\pythonColor
  15587. \begin{figure}[tbp]
  15588. \begin{tcolorbox}[colback=white]
  15589. \begin{lstlisting}
  15590. def check_stmts(self, ss, return_ty, env):
  15591. if len(ss) == 0:
  15592. return
  15593. match ss[0]:
  15594. case FunctionDef(name, params, body, dl, returns, comment):
  15595. new_env = env.copy().update(params)
  15596. rt = self.check_stmts(body, returns, new_env)
  15597. self.check_stmts(ss[1:], return_ty, env)
  15598. case Return(value):
  15599. self.check_exp(value, return_ty, env)
  15600. case Assign([Name(id)], value):
  15601. if id in env:
  15602. self.check_exp(value, env[id], env)
  15603. else:
  15604. env[id] = self.type_check_exp(value, env)
  15605. self.check_stmts(ss[1:], return_ty, env)
  15606. case Assign([Subscript(tup, Constant(index), Store())], value):
  15607. tup_t = self.type_check_exp(tup, env)
  15608. match tup_t:
  15609. case TupleType(ts):
  15610. self.check_exp(value, ts[index], env)
  15611. case _:
  15612. raise Exception('expected a tuple, not ' + repr(tup_t))
  15613. self.check_stmts(ss[1:], return_ty, env)
  15614. case AnnAssign(Name(id), ty_annot, value, simple):
  15615. ss[0].annotation = ty_annot
  15616. if id in env:
  15617. self.check_type_equal(env[id], ty_annot)
  15618. else:
  15619. env[id] = ty_annot
  15620. self.check_exp(value, ty_annot, env)
  15621. self.check_stmts(ss[1:], return_ty, env)
  15622. case _:
  15623. self.type_check_stmts(ss, env)
  15624. def type_check(self, p):
  15625. match p:
  15626. case Module(body):
  15627. env = {}
  15628. for s in body:
  15629. match s:
  15630. case FunctionDef(name, params, bod, dl, returns, comment):
  15631. params_t = [t for (x,t) in params]
  15632. env[name] = FunctionType(params_t, returns)
  15633. self.check_stmts(body, int, env)
  15634. \end{lstlisting}
  15635. \end{tcolorbox}
  15636. \caption{Type checking the \key{lambda}'s in \LangLam{}, part 2.}
  15637. \label{fig:type-check-Llambda-part2}
  15638. \end{figure}
  15639. \fi}
  15640. \clearpage
  15641. \section{Assignment and Lexically Scoped Functions}
  15642. \label{sec:assignment-scoping}
  15643. The combination of lexically scoped functions and assignment to
  15644. variables raises a challenge with the flat-closure approach to
  15645. implementing lexically scoped functions. Consider the following
  15646. example in which function \code{f} has a free variable \code{x} that
  15647. is changed after \code{f} is created but before the call to \code{f}.
  15648. % loop_test_11.rkt
  15649. {\if\edition\racketEd
  15650. \begin{lstlisting}
  15651. (let ([x 0])
  15652. (let ([y 0])
  15653. (let ([z 20])
  15654. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  15655. (begin
  15656. (set! x 10)
  15657. (set! y 12)
  15658. (f y))))))
  15659. \end{lstlisting}
  15660. \fi}
  15661. {\if\edition\pythonEd\pythonColor
  15662. % box_free_assign.py
  15663. \begin{lstlisting}
  15664. def g(z : int) -> int:
  15665. x = 0
  15666. y = 0
  15667. f : Callable[[int],int] = lambda a: a + x + z
  15668. x = 10
  15669. y = 12
  15670. return f(y)
  15671. print( g(20) )
  15672. \end{lstlisting}
  15673. \fi} The correct output for this example is \code{42} because the call
  15674. to \code{f} is required to use the current value of \code{x} (which is
  15675. \code{10}). Unfortunately, the closure conversion pass
  15676. (section~\ref{sec:closure-conversion}) generates code for the
  15677. \code{lambda} that copies the old value of \code{x} into a
  15678. closure. Thus, if we naively applied closure conversion, the output of
  15679. this program would be \code{32}.
  15680. A first attempt at solving this problem would be to save a pointer to
  15681. \code{x} in the closure and change the occurrences of \code{x} inside
  15682. the lambda to dereference the pointer. Of course, this would require
  15683. assigning \code{x} to the stack and not to a register. However, the
  15684. problem goes a bit deeper.
  15685. Consider the following example that returns a function that refers to
  15686. a local variable of the enclosing function:
  15687. \begin{center}
  15688. \begin{minipage}{\textwidth}
  15689. {\if\edition\racketEd
  15690. \begin{lstlisting}
  15691. (define (f) : ( -> Integer)
  15692. (let ([x 0])
  15693. (let ([g (lambda: () : Integer x)])
  15694. (begin
  15695. (set! x 42)
  15696. g))))
  15697. ((f))
  15698. \end{lstlisting}
  15699. \fi}
  15700. {\if\edition\pythonEd\pythonColor
  15701. % counter.py
  15702. \begin{lstlisting}
  15703. def f():
  15704. x = 0
  15705. g = lambda: x
  15706. x = 42
  15707. return g
  15708. print( f()() )
  15709. \end{lstlisting}
  15710. \fi}
  15711. \end{minipage}
  15712. \end{center}
  15713. In this example, the lifetime of \code{x} extends beyond the lifetime
  15714. of the call to \code{f}. Thus, if we were to store \code{x} on the
  15715. stack frame for the call to \code{f}, it would be gone by the time we
  15716. called \code{g}, leaving us with dangling pointers for
  15717. \code{x}. This example demonstrates that when a variable occurs free
  15718. inside a function, its lifetime becomes indefinite. Thus, the value of
  15719. the variable needs to live on the heap. The verb
  15720. \emph{box}\index{subject}{box} is often used for allocating a single
  15721. value on the heap, producing a pointer, and
  15722. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  15723. %
  15724. We introduce a new pass named \code{convert\_assignments} to address
  15725. this challenge.
  15726. %
  15727. \python{But before diving into that, we have one more
  15728. problem to discuss.}
  15729. {\if\edition\pythonEd\pythonColor
  15730. \section{Uniquify Variables}
  15731. \label{sec:uniquify-lambda}
  15732. With the addition of \code{lambda} we have a complication to deal
  15733. with: name shadowing. Consider the following program with a function
  15734. \code{f} that has a parameter \code{x}. Inside \code{f} there are two
  15735. \code{lambda} expressions. The first \code{lambda} has a parameter
  15736. that is also named \code{x}.
  15737. \begin{lstlisting}
  15738. def f(x:int, y:int) -> Callable[[int], int]:
  15739. g : Callable[[int],int] = (lambda x: x + y)
  15740. h : Callable[[int],int] = (lambda y: x + y)
  15741. x = input_int()
  15742. return g
  15743. print(f(0, 10)(32))
  15744. \end{lstlisting}
  15745. Many of our compiler passes rely on being able to connect variable
  15746. uses with their definitions using just the name of the variable,
  15747. including new passes in this chapter. However, in the above example
  15748. the name of the variable does not uniquely determine its
  15749. definition. To solve this problem we recommend implementing a pass
  15750. named \code{uniquify} that renames every variable in the program to
  15751. make sure they are all unique.
  15752. The following shows the result of \code{uniquify} for the above
  15753. example. The \code{x} parameter of \code{f} is renamed to \code{x\_0}
  15754. and the \code{x} parameter of the \code{lambda} is renamed to
  15755. \code{x\_4}.
  15756. \begin{lstlisting}
  15757. def f(x_0:int, y_1:int) -> Callable[[int], int] :
  15758. g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
  15759. h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
  15760. x_0 = input_int()
  15761. return g_2
  15762. def main() -> int :
  15763. print(f(0, 10)(32))
  15764. return 0
  15765. \end{lstlisting}
  15766. \fi} % pythonEd
  15767. %% \section{Reveal Functions}
  15768. %% \label{sec:reveal-functions-r5}
  15769. %% \racket{To support the \code{procedure-arity} operator we need to
  15770. %% communicate the arity of a function to the point of closure
  15771. %% creation.}
  15772. %% %
  15773. %% \python{In chapter~\ref{ch:Ldyn} we need to access the arity of a
  15774. %% function at runtime. Thus, we need to communicate the arity of a
  15775. %% function to the point of closure creation.}
  15776. %% %
  15777. %% We can accomplish this by replacing the $\FUNREF{\Var}{\Int}$ AST node with
  15778. %% one that has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$.
  15779. %% \[
  15780. %% \begin{array}{lcl}
  15781. %% \Exp &::=& \FUNREFARITY{\Var}{\Int}
  15782. %% \end{array}
  15783. %% \]
  15784. \section{Assignment Conversion}
  15785. \label{sec:convert-assignments}
  15786. The purpose of the \code{convert\_assignments} pass is to address the
  15787. challenge regarding the interaction between variable assignments and
  15788. closure conversion. First we identify which variables need to be
  15789. boxed, and then we transform the program to box those variables. In
  15790. general, boxing introduces runtime overhead that we would like to
  15791. avoid, so we should box as few variables as possible. We recommend
  15792. boxing the variables in the intersection of the following two sets of
  15793. variables:
  15794. \begin{enumerate}
  15795. \item The variables that are free in a \code{lambda}.
  15796. \item The variables that appear on the left-hand side of an
  15797. assignment.
  15798. \end{enumerate}
  15799. The first condition is a must but the second condition is
  15800. conservative. It is possible to develop a more liberal condition using
  15801. static program analysis.
  15802. Consider again the first example from
  15803. section~\ref{sec:assignment-scoping}:
  15804. %
  15805. {\if\edition\racketEd
  15806. \begin{lstlisting}
  15807. (let ([x 0])
  15808. (let ([y 0])
  15809. (let ([z 20])
  15810. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  15811. (begin
  15812. (set! x 10)
  15813. (set! y 12)
  15814. (f y))))))
  15815. \end{lstlisting}
  15816. \fi}
  15817. {\if\edition\pythonEd\pythonColor
  15818. \begin{lstlisting}
  15819. def g(z : int) -> int:
  15820. x = 0
  15821. y = 0
  15822. f : Callable[[int],int] = lambda a: a + x + z
  15823. x = 10
  15824. y = 12
  15825. return f(y)
  15826. print( g(20) )
  15827. \end{lstlisting}
  15828. \fi}
  15829. %
  15830. \noindent The variables \code{x} and \code{y} appear on the left-hand
  15831. side of assignments. The variables \code{x} and \code{z} occur free
  15832. inside the \code{lambda}. Thus, variable \code{x} needs to be boxed
  15833. but not \code{y} or \code{z}. The boxing of \code{x} consists of
  15834. three transformations: initialize \code{x} with a tuple whose elements
  15835. are uninitialized, replace reads from \code{x} with tuple reads, and
  15836. replace each assignment to \code{x} with a tuple write. The output of
  15837. \code{convert\_assignments} for this example is as follows:
  15838. %
  15839. {\if\edition\racketEd
  15840. \begin{lstlisting}
  15841. (define (main) : Integer
  15842. (let ([x0 (vector 0)])
  15843. (let ([y1 0])
  15844. (let ([z2 20])
  15845. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  15846. (+ a3 (+ (vector-ref x0 0) z2)))])
  15847. (begin
  15848. (vector-set! x0 0 10)
  15849. (set! y1 12)
  15850. (f4 y1)))))))
  15851. \end{lstlisting}
  15852. \fi}
  15853. %
  15854. {\if\edition\pythonEd\pythonColor
  15855. \begin{lstlisting}
  15856. def g(z : int)-> int:
  15857. x = (uninitialized(int),)
  15858. x[0] = 0
  15859. y = 0
  15860. f : Callable[[int], int] = (lambda a: a + x[0] + z)
  15861. x[0] = 10
  15862. y = 12
  15863. return f(y)
  15864. def main() -> int:
  15865. print(g(20))
  15866. return 0
  15867. \end{lstlisting}
  15868. \fi}
  15869. To compute the free variables of all the \code{lambda} expressions, we
  15870. recommend defining the following two auxiliary functions:
  15871. \begin{enumerate}
  15872. \item \code{free\_variables} computes the free variables of an expression, and
  15873. \item \code{free\_in\_lambda} collects all the variables that are
  15874. free in any of the \code{lambda} expressions, using
  15875. \code{free\_variables} in the case for each \code{lambda}.
  15876. \end{enumerate}
  15877. {\if\edition\racketEd
  15878. %
  15879. To compute the variables that are assigned to, we recommend updating
  15880. the \code{collect-set!} function that we introduced in
  15881. section~\ref{sec:uncover-get-bang} to include the new AST forms such
  15882. as \code{Lambda}.
  15883. %
  15884. \fi}
  15885. {\if\edition\pythonEd\pythonColor
  15886. %
  15887. To compute the variables that are assigned to, we recommend defining
  15888. an auxiliary function named \code{assigned\_vars\_stmt} that returns
  15889. the set of variables that occur in the left-hand side of an assignment
  15890. statement, and otherwise returns the empty set.
  15891. %
  15892. \fi}
  15893. Let $\mathit{AF}$ be the intersection of the set of variables that are
  15894. free in a \code{lambda} and that are assigned to in the enclosing
  15895. function definition.
  15896. Next we discuss the \code{convert\_assignments} pass. In the case for
  15897. $\VAR{x}$, if $x$ is in $\mathit{AF}$, then unbox it by translating
  15898. $\VAR{x}$ to a tuple read.
  15899. %
  15900. {\if\edition\racketEd
  15901. \begin{lstlisting}
  15902. (Var |$x$|)
  15903. |$\Rightarrow$|
  15904. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  15905. \end{lstlisting}
  15906. \fi}
  15907. %
  15908. {\if\edition\pythonEd\pythonColor
  15909. \begin{lstlisting}
  15910. Name(|$x$|)
  15911. |$\Rightarrow$|
  15912. Subscript(Name(|$x$|), Constant(0), Load())
  15913. \end{lstlisting}
  15914. \fi}
  15915. %
  15916. \noindent In the case for assignment, recursively process the
  15917. right-hand side \itm{rhs} to obtain \itm{rhs'}. If the left-hand side
  15918. $x$ is in $\mathit{AF}$, translate the assignment into a tuple write
  15919. as follows:
  15920. %
  15921. {\if\edition\racketEd
  15922. \begin{lstlisting}
  15923. (SetBang |$x$| |$\itm{rhs}$|)
  15924. |$\Rightarrow$|
  15925. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  15926. \end{lstlisting}
  15927. \fi}
  15928. {\if\edition\pythonEd\pythonColor
  15929. \begin{lstlisting}
  15930. Assign([Name(|$x$|)],|$\itm{rhs}$|)
  15931. |$\Rightarrow$|
  15932. Assign([Subscript(Name(|$x$|), Constant(0), Store())], |$\itm{rhs'}$|)
  15933. \end{lstlisting}
  15934. \fi}
  15935. %
  15936. {\if\edition\racketEd
  15937. The case for \code{Lambda} is nontrivial, but it is similar to the
  15938. case for function definitions, which we discuss next.
  15939. \fi}
  15940. %
  15941. To translate a function definition, we first compute $\mathit{AF}$,
  15942. the intersection of the variables that are free in a \code{lambda} and
  15943. that are assigned to. We then apply assignment conversion to the body
  15944. of the function definition. Finally, we box the parameters of this
  15945. function definition that are in $\mathit{AF}$. For example,
  15946. the parameter \code{x} of the following function \code{g}
  15947. needs to be boxed:
  15948. {\if\edition\racketEd
  15949. \begin{lstlisting}
  15950. (define (g [x : Integer]) : Integer
  15951. (let ([f (lambda: ([a : Integer]) : Integer (+ a x))])
  15952. (begin
  15953. (set! x 10)
  15954. (f 32))))
  15955. \end{lstlisting}
  15956. \fi}
  15957. %
  15958. {\if\edition\pythonEd\pythonColor
  15959. \begin{lstlisting}
  15960. def g(x : int) -> int:
  15961. f : Callable[[int],int] = lambda a: a + x
  15962. x = 10
  15963. return f(32)
  15964. \end{lstlisting}
  15965. \fi}
  15966. %
  15967. \noindent We box parameter \code{x} by creating a local variable named
  15968. \code{x} that is initialized to a tuple whose contents is the value of
  15969. the parameter, which has been renamed to \code{x\_0}.
  15970. %
  15971. {\if\edition\racketEd
  15972. \begin{lstlisting}
  15973. (define (g [x_0 : Integer]) : Integer
  15974. (let ([x (vector x_0)])
  15975. (let ([f (lambda: ([a : Integer]) : Integer
  15976. (+ a (vector-ref x 0)))])
  15977. (begin
  15978. (vector-set! x 0 10)
  15979. (f 32)))))
  15980. \end{lstlisting}
  15981. \fi}
  15982. %
  15983. {\if\edition\pythonEd\pythonColor
  15984. \begin{lstlisting}
  15985. def g(x_0 : int)-> int:
  15986. x = (x_0,)
  15987. f : Callable[[int], int] = (lambda a: a + x[0])
  15988. x[0] = 10
  15989. return f(32)
  15990. \end{lstlisting}
  15991. \fi}
  15992. \section{Closure Conversion}
  15993. \label{sec:closure-conversion}
  15994. \index{subject}{closure conversion}
  15995. The compiling of lexically scoped functions into top-level function
  15996. definitions and flat closures is accomplished in the pass
  15997. \code{convert\_to\_closures} that comes after \code{reveal\_functions}
  15998. and before \code{limit\_functions}.
  15999. As usual, we implement the pass as a recursive function over the
  16000. AST. The interesting cases are for \key{lambda} and function
  16001. application. We transform a \key{lambda} expression into an expression
  16002. that creates a closure, that is, a tuple for which the first element
  16003. is a function pointer and the rest of the elements are the values of
  16004. the free variables of the \key{lambda}.
  16005. %
  16006. However, we use the \code{Closure} AST node instead of using a tuple
  16007. so that we can record the arity.
  16008. %
  16009. In the generated code that follows, \itm{fvs} is the free variables of
  16010. the lambda and \itm{name} is a unique symbol generated to identify the
  16011. lambda.
  16012. %
  16013. \racket{The \itm{arity} is the number of parameters (the length of
  16014. \itm{ps}).}
  16015. %
  16016. {\if\edition\racketEd
  16017. \begin{lstlisting}
  16018. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  16019. |$\Rightarrow$|
  16020. (Closure |\itm{arity}| (cons (FunRef |\itm{name}| |\itm{arity}|) |\itm{fvs}|))
  16021. \end{lstlisting}
  16022. \fi}
  16023. %
  16024. {\if\edition\pythonEd\pythonColor
  16025. \begin{lstlisting}
  16026. Lambda([|$x_1,\ldots,x_n$|], |\itm{body}|)
  16027. |$\Rightarrow$|
  16028. Closure(|$n$|, [FunRef(|\itm{name}|, |$n$|), |\itm{fvs}, \ldots|])
  16029. \end{lstlisting}
  16030. \fi}
  16031. %
  16032. In addition to transforming each \key{Lambda} AST node into a
  16033. tuple, we create a top-level function definition for each
  16034. \key{Lambda}, as shown next.\\
  16035. \begin{minipage}{0.8\textwidth}
  16036. {\if\edition\racketEd
  16037. \begin{lstlisting}
  16038. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  16039. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  16040. ...
  16041. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  16042. |\itm{body'}|)...))
  16043. \end{lstlisting}
  16044. \fi}
  16045. {\if\edition\pythonEd\pythonColor
  16046. \begin{lstlisting}
  16047. def |\itm{name}|(clos : |\itm{closTy}|, |\itm{ps'}, \ldots|) -> |\itm{rt'}|:
  16048. |$\itm{fvs}_1$| = clos[1]
  16049. |$\ldots$|
  16050. |$\itm{fvs}_n$| = clos[|$n$|]
  16051. |\itm{body'}|
  16052. \end{lstlisting}
  16053. \fi}
  16054. \end{minipage}\\
  16055. The \code{clos} parameter refers to the closure. Translate the type
  16056. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  16057. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The type
  16058. \itm{closTy} is a tuple type for which the first element type is
  16059. \python{\code{Bottom()}}\racket{\code{\_} (the dummy type)} and the rest of
  16060. the element types are the types of the free variables in the
  16061. lambda. We use \python{\code{Bottom()}}\racket{\code{\_}} because it
  16062. is nontrivial to give a type to the function in the closure's type.%
  16063. %
  16064. \footnote{To give an accurate type to a closure, we would need to add
  16065. existential types to the type checker~\citep{Minamide:1996ys}.}
  16066. %
  16067. %% The dummy type is considered to be equal to any other type during type
  16068. %% checking.
  16069. The free variables become local variables that are initialized with
  16070. their values in the closure.
  16071. Closure conversion turns every function into a tuple, so the type
  16072. annotations in the program must also be translated. We recommend
  16073. defining an auxiliary recursive function for this purpose. Function
  16074. types should be translated as follows:
  16075. %
  16076. {\if\edition\racketEd
  16077. \begin{lstlisting}
  16078. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  16079. |$\Rightarrow$|
  16080. (Vector ((Vector) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  16081. \end{lstlisting}
  16082. \fi}
  16083. {\if\edition\pythonEd\pythonColor
  16084. \begin{lstlisting}
  16085. FunctionType([|$T_1, \ldots, T_n$|], |$T_r$|)
  16086. |$\Rightarrow$|
  16087. TupleType([FunctionType([TupleType([]), |$T'_1, \ldots, T'_n$|], |$T'_r$|)])
  16088. \end{lstlisting}
  16089. \fi}
  16090. %
  16091. This type indicates that the first thing in the tuple is a
  16092. function. The first parameter of the function is a tuple (a closure)
  16093. and the rest of the parameters are the ones from the original
  16094. function, with types $T'_1, \ldots, T'_n$. The type for the closure
  16095. omits the types of the free variables because (1) those types are not
  16096. available in this context, and (2) we do not need them in the code that
  16097. is generated for function application. So this type describes only the
  16098. first component of the closure tuple. At runtime the tuple may have
  16099. more components, but we ignore them at this point.
  16100. We transform function application into code that retrieves the
  16101. function from the closure and then calls the function, passing the
  16102. closure as the first argument. We place $e'$ in a temporary variable
  16103. to avoid code duplication.
  16104. \begin{center}
  16105. \begin{minipage}{\textwidth}
  16106. {\if\edition\racketEd
  16107. \begin{lstlisting}
  16108. (Apply |$e$| |$\itm{es}$|)
  16109. |$\Rightarrow$|
  16110. (Let |$\itm{tmp}$| |$e'$|
  16111. (Apply (Prim 'vector-ref (list (Var |$\itm{tmp}$|) (Int 0))) (cons (Var |$\itm{tmp}$|) |$\itm{es'}$|)))
  16112. \end{lstlisting}
  16113. \fi}
  16114. %
  16115. {\if\edition\pythonEd\pythonColor
  16116. \begin{lstlisting}
  16117. Call(|$e$|, [|$e_1, \ldots, e_n$|])
  16118. |$\Rightarrow$|
  16119. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  16120. Call(Subscript(Name(|$\itm{tmp}$|), Constant(0)),
  16121. [|$\itm{tmp}$|, |$e'_1, \ldots, e'_n$|]))
  16122. \end{lstlisting}
  16123. \fi}
  16124. \end{minipage}
  16125. \end{center}
  16126. There is also the question of what to do with references to top-level
  16127. function definitions. To maintain a uniform translation of function
  16128. application, we turn function references into closures.
  16129. \begin{tabular}{lll}
  16130. \begin{minipage}{0.2\textwidth}
  16131. {\if\edition\racketEd
  16132. \begin{lstlisting}
  16133. (FunRef |$f$| |$n$|)
  16134. \end{lstlisting}
  16135. \fi}
  16136. {\if\edition\pythonEd\pythonColor
  16137. \begin{lstlisting}
  16138. FunRef(|$f$|, |$n$|)
  16139. \end{lstlisting}
  16140. \fi}
  16141. \end{minipage}
  16142. &
  16143. $\Rightarrow\qquad$
  16144. &
  16145. \begin{minipage}{0.5\textwidth}
  16146. {\if\edition\racketEd
  16147. \begin{lstlisting}
  16148. (Closure |$n$| (FunRef |$f$| |$n$|) '())
  16149. \end{lstlisting}
  16150. \fi}
  16151. {\if\edition\pythonEd\pythonColor
  16152. \begin{lstlisting}
  16153. Closure(|$n$|, [FunRef(|$f$| |$n$|)])
  16154. \end{lstlisting}
  16155. \fi}
  16156. \end{minipage}
  16157. \end{tabular} \\
  16158. We no longer need the annotated assignment statement \code{AnnAssign}
  16159. to support the type checking of \code{lambda} expressions, so we
  16160. translate it to a regular \code{Assign} statement.
  16161. The top-level function definitions need to be updated to take an extra
  16162. closure parameter, but that parameter is ignored in the body of those
  16163. functions.
  16164. \section{An Example Translation}
  16165. \label{sec:example-lambda}
  16166. Figure~\ref{fig:lexical-functions-example} shows the result of
  16167. \code{reveal\_functions} and \code{convert\_to\_closures} for the example
  16168. program demonstrating lexical scoping that we discussed at the
  16169. beginning of this chapter.
  16170. \begin{figure}[tbp]
  16171. \begin{tcolorbox}[colback=white]
  16172. \begin{minipage}{0.8\textwidth}
  16173. {\if\edition\racketEd
  16174. % tests/lambda_test_6.rkt
  16175. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16176. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  16177. (let ([y8 4])
  16178. (lambda: ([z9 : Integer]) : Integer
  16179. (+ x7 (+ y8 z9)))))
  16180. (define (main) : Integer
  16181. (let ([g0 ((fun-ref f6 1) 5)])
  16182. (let ([h1 ((fun-ref f6 1) 3)])
  16183. (+ (g0 11) (h1 15)))))
  16184. \end{lstlisting}
  16185. $\Rightarrow$
  16186. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16187. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  16188. (let ([y8 4])
  16189. (closure 1 (list (fun-ref lambda2 1) x7 y8))))
  16190. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  16191. (let ([x7 (vector-ref fvs3 1)])
  16192. (let ([y8 (vector-ref fvs3 2)])
  16193. (+ x7 (+ y8 z9)))))
  16194. (define (main) : Integer
  16195. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6 1)))])
  16196. ((vector-ref clos5 0) clos5 5))])
  16197. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6 1)))])
  16198. ((vector-ref clos6 0) clos6 3))])
  16199. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  16200. \end{lstlisting}
  16201. \fi}
  16202. %
  16203. {\if\edition\pythonEd\pythonColor
  16204. % free_var.py
  16205. \begin{lstlisting}
  16206. def f(x : int) -> Callable[[int], int]:
  16207. y = 4
  16208. return lambda z: x + y + z
  16209. g = f(5)
  16210. h = f(3)
  16211. print( g(11) + h(15) )
  16212. \end{lstlisting}
  16213. $\Rightarrow$
  16214. \begin{lstlisting}
  16215. def lambda_0(fvs_1:tuple[bot,int,tuple[int]],z:int) -> int:
  16216. x = fvs_1[1]
  16217. y = fvs_1[2]
  16218. return x + y[0] + z
  16219. def f(fvs_2:bot, x:int) -> tuple[Callable[[tuple[],int], int]]
  16220. y = (777,)
  16221. y[0] = 4
  16222. return (lambda_0, x, y)
  16223. def main() -> int:
  16224. g = (let clos_3 = (f,) in clos_3[0](clos_3, 5))
  16225. h = (let clos_4 = (f,) in clos_4[0](clos_4, 3))
  16226. print((let clos_5 = g in clos_5[0](clos_5, 11))
  16227. + (let clos_6 = h in clos_6[0](clos_6, 15)))
  16228. return 0
  16229. \end{lstlisting}
  16230. \fi}
  16231. \end{minipage}
  16232. \end{tcolorbox}
  16233. \caption{Example of closure conversion.}
  16234. \label{fig:lexical-functions-example}
  16235. \end{figure}
  16236. \begin{exercise}\normalfont\normalsize
  16237. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  16238. Create five new programs that use \key{lambda} functions and make use of
  16239. lexical scoping. Test your compiler on these new programs and all
  16240. your previously created test programs.
  16241. \end{exercise}
  16242. \section{Expose Allocation}
  16243. \label{sec:expose-allocation-r5}
  16244. Compile the $\CLOSURE{\itm{arity}}{\Exp^{*}}$ form into code
  16245. that allocates and initializes a tuple, similar to the translation of
  16246. the tuple creation in section~\ref{sec:expose-allocation}.
  16247. The only difference is replacing the use of
  16248. \ALLOC{\itm{len}}{\itm{type}} with
  16249. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  16250. \section{Explicate Control and \LangCLam{}}
  16251. \label{sec:explicate-r5}
  16252. The output language of \code{explicate\_control} is \LangCLam{}; the
  16253. definition of its abstract syntax is shown in
  16254. figure~\ref{fig:Clam-syntax}.
  16255. %
  16256. \racket{The only differences with respect to \LangCFun{} are the
  16257. addition of the \code{AllocateClosure} form to the grammar for
  16258. $\Exp$ and the \code{procedure-arity} operator. The handling of
  16259. \code{AllocateClosure} in the \code{explicate\_control} pass is
  16260. similar to the handling of other expressions such as primitive
  16261. operators.}
  16262. %
  16263. \python{The differences with respect to \LangCFun{} are the
  16264. additions of \code{Uninitialized}, \code{AllocateClosure},
  16265. and \code{arity} to the grammar for $\Exp$. The handling of them in the
  16266. \code{explicate\_control} pass is similar to the handling of other
  16267. expressions such as primitive operators.}
  16268. \newcommand{\ClambdaASTRacket}{
  16269. \begin{array}{lcl}
  16270. \Exp &::= & \ALLOCCLOS{\Int}{\Type}{\Int} \\
  16271. \itm{op} &::= & \code{procedure-arity}
  16272. \end{array}
  16273. }
  16274. \newcommand{\ClambdaASTPython}{
  16275. \begin{array}{lcl}
  16276. \Exp &::=& \key{Uninitialized}\LP \Type \RP
  16277. \MID \key{AllocateClosure}\LP\itm{len},\Type, \itm{arity}\RP \\
  16278. &\MID& \ARITY{\Atm}
  16279. \end{array}
  16280. }
  16281. \begin{figure}[tp]
  16282. \begin{tcolorbox}[colback=white]
  16283. \small
  16284. {\if\edition\racketEd
  16285. \[
  16286. \begin{array}{l}
  16287. \gray{\CvarASTRacket} \\ \hline
  16288. \gray{\CifASTRacket} \\ \hline
  16289. \gray{\CloopASTRacket} \\ \hline
  16290. \gray{\CtupASTRacket} \\ \hline
  16291. \gray{\CfunASTRacket} \\ \hline
  16292. \ClambdaASTRacket \\
  16293. \begin{array}{lcl}
  16294. \LangCLamM{} & ::= & \PROGRAMDEFS{\itm{info}}{\Def^{*}}
  16295. \end{array}
  16296. \end{array}
  16297. \]
  16298. \fi}
  16299. {\if\edition\pythonEd\pythonColor
  16300. \[
  16301. \begin{array}{l}
  16302. \gray{\CifASTPython} \\ \hline
  16303. \gray{\CtupASTPython} \\ \hline
  16304. \gray{\CfunASTPython} \\ \hline
  16305. \ClambdaASTPython \\
  16306. \begin{array}{lcl}
  16307. \LangCLamM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  16308. \end{array}
  16309. \end{array}
  16310. \]
  16311. \fi}
  16312. \end{tcolorbox}
  16313. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (figure~\ref{fig:c3-syntax}).}
  16314. \label{fig:Clam-syntax}
  16315. \end{figure}
  16316. \section{Select Instructions}
  16317. \label{sec:select-instructions-Llambda}
  16318. \index{subject}{select instructions}
  16319. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  16320. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  16321. (section~\ref{sec:select-instructions-gc}). The only difference is
  16322. that you should place the \itm{arity} in the tag that is stored at
  16323. position $0$ of the vector. Recall that in
  16324. section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  16325. was not used. We store the arity in the $5$ bits starting at position
  16326. $58$.
  16327. \racket{Compile the \code{procedure-arity} operator into a sequence of
  16328. instructions that access the tag from position $0$ of the vector and
  16329. extract the $5$ bits starting at position $58$ from the tag.}
  16330. %
  16331. \python{Compile a call to the \code{arity} operator to a sequence of
  16332. instructions that access the tag from position $0$ of the tuple
  16333. (representing a closure) and extract the $5$-bits starting at position
  16334. $58$ from the tag.}
  16335. \begin{figure}[p]
  16336. \begin{tcolorbox}[colback=white]
  16337. {\if\edition\racketEd
  16338. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16339. \node (Lfun) at (0,2) {\large \LangLam{}};
  16340. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16341. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16342. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16343. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16344. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16345. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16346. \node (F1-4) at (0,0) {\large \LangFunRefAlloc{}};
  16347. \node (F1-5) at (0,-2) {\large \LangFunRefAlloc{}};
  16348. \node (F1-6) at (4,-2) {\large \LangFunANF{}};
  16349. \node (C3-2) at (8,-2) {\large \LangCFun{}};
  16350. \node (x86-2) at (0,-5) {\large \LangXIndCallVar{}};
  16351. \node (x86-2-1) at (0,-7) {\large \LangXIndCallVar{}};
  16352. \node (x86-2-2) at (4,-7) {\large \LangXIndCallVar{}};
  16353. \node (x86-3) at (4,-5) {\large \LangXIndCallVar{}};
  16354. \node (x86-4) at (8,-5) {\large \LangXIndCall{}};
  16355. \node (x86-5) at (8,-7) {\large \LangXIndCall{}};
  16356. \path[->,bend left=15] (Lfun) edge [above] node
  16357. {\ttfamily\footnotesize shrink} (Lfun-2);
  16358. \path[->,bend left=15] (Lfun-2) edge [above] node
  16359. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16360. \path[->,bend left=15] (Lfun-3) edge [above] node
  16361. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16362. \path[->,bend left=15] (F1-0) edge [left] node
  16363. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16364. \path[->,bend left=15] (F1-1) edge [below] node
  16365. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16366. \path[->,bend right=15] (F1-2) edge [above] node
  16367. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16368. \path[->,bend right=15] (F1-3) edge [above] node
  16369. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  16370. \path[->,bend left=15] (F1-4) edge [right] node
  16371. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  16372. \path[->,bend right=15] (F1-5) edge [below] node
  16373. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16374. \path[->,bend left=15] (F1-6) edge [above] node
  16375. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16376. \path[->] (C3-2) edge [right] node
  16377. {\ttfamily\footnotesize \ \ select\_instructions} (x86-2);
  16378. \path[->,bend right=15] (x86-2) edge [right] node
  16379. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16380. \path[->,bend right=15] (x86-2-1) edge [below] node
  16381. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  16382. \path[->,bend right=15] (x86-2-2) edge [right] node
  16383. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  16384. \path[->,bend left=15] (x86-3) edge [above] node
  16385. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16386. \path[->,bend left=15] (x86-4) edge [right] node
  16387. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16388. \end{tikzpicture}
  16389. \fi}
  16390. {\if\edition\pythonEd\pythonColor
  16391. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16392. \node (Lfun) at (0,2) {\large \LangLam{}};
  16393. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16394. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16395. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16396. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16397. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16398. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16399. \node (F1-5) at (0,0) {\large \LangFunRefAlloc{}};
  16400. \node (F1-6) at (0,-2) {\large \LangFunANF{}};
  16401. \node (C3-2) at (0,-4) {\large \LangCFun{}};
  16402. \node (x86-2) at (0,-6) {\large \LangXIndCallVar{}};
  16403. \node (x86-3) at (4,-6) {\large \LangXIndCallVar{}};
  16404. \node (x86-4) at (8,-6) {\large \LangXIndCall{}};
  16405. \node (x86-5) at (12,-6) {\large \LangXIndCall{}};
  16406. \path[->,bend left=15] (Lfun) edge [above] node
  16407. {\ttfamily\footnotesize shrink} (Lfun-2);
  16408. \path[->,bend left=15] (Lfun-2) edge [above] node
  16409. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16410. \path[->,bend left=15] (Lfun-3) edge [above] node
  16411. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16412. \path[->,bend left=15] (F1-0) edge [left] node
  16413. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16414. \path[->,bend left=15] (F1-1) edge [below] node
  16415. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16416. \path[->,bend left=15] (F1-2) edge [below] node
  16417. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16418. \path[->,bend right=15] (F1-3) edge [above] node
  16419. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  16420. \path[->,bend right=15] (F1-5) edge [right] node
  16421. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16422. \path[->,bend left=15] (F1-6) edge [right] node
  16423. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16424. \path[->,bend right=15] (C3-2) edge [right] node
  16425. {\ttfamily\footnotesize select\_instructions} (x86-2);
  16426. \path[->,bend right=15] (x86-2) edge [below] node
  16427. {\ttfamily\footnotesize assign\_homes} (x86-3);
  16428. \path[->,bend right=15] (x86-3) edge [below] node
  16429. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16430. \path[->,bend left=15] (x86-4) edge [above] node
  16431. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16432. \end{tikzpicture}
  16433. \fi}
  16434. \end{tcolorbox}
  16435. \caption{Diagram of the passes for \LangLam{}, a language with lexically scoped
  16436. functions.}
  16437. \label{fig:Llambda-passes}
  16438. \end{figure}
  16439. Figure~\ref{fig:Llambda-passes} provides an overview of the passes
  16440. needed for the compilation of \LangLam{}.
  16441. \clearpage
  16442. \section{Challenge: Optimize Closures}
  16443. \label{sec:optimize-closures}
  16444. In this chapter we compile lexically scoped functions into a
  16445. relatively efficient representation: flat closures. However, even this
  16446. representation comes with some overhead. For example, consider the
  16447. following program with a function \code{tail\_sum} that does not have
  16448. any free variables and where all the uses of \code{tail\_sum} are in
  16449. applications in which we know that only \code{tail\_sum} is being applied
  16450. (and not any other functions):
  16451. \begin{center}
  16452. \begin{minipage}{0.95\textwidth}
  16453. {\if\edition\racketEd
  16454. \begin{lstlisting}
  16455. (define (tail_sum [n : Integer] [s : Integer]) : Integer
  16456. (if (eq? n 0)
  16457. s
  16458. (tail_sum (- n 1) (+ n s))))
  16459. (+ (tail_sum 3 0) 36)
  16460. \end{lstlisting}
  16461. \fi}
  16462. {\if\edition\pythonEd\pythonColor
  16463. \begin{lstlisting}
  16464. def tail_sum(n : int, s : int) -> int:
  16465. if n == 0:
  16466. return s
  16467. else:
  16468. return tail_sum(n - 1, n + s)
  16469. print( tail_sum(3, 0) + 36)
  16470. \end{lstlisting}
  16471. \fi}
  16472. \end{minipage}
  16473. \end{center}
  16474. As described in this chapter, we uniformly apply closure conversion to
  16475. all functions, obtaining the following output for this program:
  16476. \begin{center}
  16477. \begin{minipage}{0.95\textwidth}
  16478. {\if\edition\racketEd
  16479. \begin{lstlisting}
  16480. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
  16481. (if (eq? n2 0)
  16482. s3
  16483. (let ([clos4 (closure (list (fun-ref tail_sum1 2)))])
  16484. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))
  16485. (define (main) : Integer
  16486. (+ (let ([clos6 (closure (list (fun-ref tail_sum1 2)))])
  16487. ((vector-ref clos6 0) clos6 3 0)) 27))
  16488. \end{lstlisting}
  16489. \fi}
  16490. {\if\edition\pythonEd\pythonColor
  16491. \begin{lstlisting}
  16492. def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
  16493. if n_0 == 0:
  16494. return s_1
  16495. else:
  16496. return (let clos_2 = (tail_sum,)
  16497. in clos_2[0](clos_2, n_0 - 1, n_0 + s_1))
  16498. def main() -> int :
  16499. print((let clos_4 = (tail_sum,)
  16500. in clos_4[0](clos_4, 3, 0)) + 36)
  16501. return 0
  16502. \end{lstlisting}
  16503. \fi}
  16504. \end{minipage}
  16505. \end{center}
  16506. If this program were compiled according to the previous chapter, there
  16507. would be no allocation and the calls to \code{tail\_sum} would be
  16508. direct calls. In contrast, the program presented here allocates memory
  16509. for each closure and the calls to \code{tail\_sum} are indirect. These
  16510. two differences incur considerable overhead in a program such as this,
  16511. in which the allocations and indirect calls occur inside a tight loop.
  16512. One might think that this problem is trivial to solve: can't we just
  16513. recognize calls of the form \APPLY{\FUNREF{$f$}{$n$}}{$\mathit{args}$}
  16514. and compile them to direct calls instead of treating it like a call to
  16515. a closure? We would also drop the new \code{fvs} parameter of
  16516. \code{tail\_sum}.
  16517. %
  16518. However, this problem is not so trivial, because a global function may
  16519. \emph{escape} and become involved in applications that also involve
  16520. closures. Consider the following example in which the application
  16521. \CAPPLY{\code{f}}{\code{41}} needs to be compiled into a closure
  16522. application because the \code{lambda} may flow into \code{f}, but the
  16523. \code{inc} function might also flow into \code{f}:
  16524. \begin{center}
  16525. \begin{minipage}{\textwidth}
  16526. % lambda_test_30.rkt
  16527. {\if\edition\racketEd
  16528. \begin{lstlisting}
  16529. (define (inc [x : Integer]) : Integer
  16530. (+ x 1))
  16531. (let ([y (read)])
  16532. (let ([f (if (eq? (read) 0)
  16533. inc
  16534. (lambda: ([x : Integer]) : Integer (- x y)))])
  16535. (f 41)))
  16536. \end{lstlisting}
  16537. \fi}
  16538. {\if\edition\pythonEd\pythonColor
  16539. \begin{lstlisting}
  16540. def add1(x : int) -> int:
  16541. return x + 1
  16542. y = input_int()
  16543. g : Callable[[int], int] = lambda x: x - y
  16544. f = add1 if input_int() == 0 else g
  16545. print( f(41) )
  16546. \end{lstlisting}
  16547. \fi}
  16548. \end{minipage}
  16549. \end{center}
  16550. If a global function name is used in any way other than as the
  16551. operator in a direct call, then we say that the function
  16552. \emph{escapes}. If a global function does not escape, then we do not
  16553. need to perform closure conversion on the function.
  16554. \begin{exercise}\normalfont\normalsize
  16555. Implement an auxiliary function for detecting which global
  16556. functions escape. Using that function, implement an improved version
  16557. of closure conversion that does not apply closure conversion to
  16558. global functions that do not escape but instead compiles them as
  16559. regular functions. Create several new test cases that check whether
  16560. your compiler properly detects whether global functions escape or not.
  16561. \end{exercise}
  16562. So far we have reduced the overhead of calling global functions, but
  16563. it would also be nice to reduce the overhead of calling a
  16564. \code{lambda} when we can determine at compile time which
  16565. \code{lambda} will be called. We refer to such calls as \emph{known
  16566. calls}. Consider the following example in which a \code{lambda} is
  16567. bound to \code{f} and then applied.
  16568. {\if\edition\racketEd
  16569. % lambda_test_9.rkt
  16570. \begin{lstlisting}
  16571. (let ([y (read)])
  16572. (let ([f (lambda: ([x : Integer]) : Integer
  16573. (+ x y))])
  16574. (f 21)))
  16575. \end{lstlisting}
  16576. \fi}
  16577. {\if\edition\pythonEd\pythonColor
  16578. \begin{lstlisting}
  16579. y = input_int()
  16580. f : Callable[[int],int] = lambda x: x + y
  16581. print( f(21) )
  16582. \end{lstlisting}
  16583. \fi}
  16584. %
  16585. \noindent Closure conversion compiles the application
  16586. \CAPPLY{\code{f}}{\code{21}} into an indirect call, as follows:
  16587. %
  16588. {\if\edition\racketEd
  16589. \begin{lstlisting}
  16590. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  16591. (let ([y2 (vector-ref fvs6 1)])
  16592. (+ x3 y2)))
  16593. (define (main) : Integer
  16594. (let ([y2 (read)])
  16595. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16596. ((vector-ref f4 0) f4 21))))
  16597. \end{lstlisting}
  16598. \fi}
  16599. {\if\edition\pythonEd\pythonColor
  16600. \begin{lstlisting}
  16601. def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
  16602. y_1 = fvs_4[1]
  16603. return x_2 + y_1[0]
  16604. def main() -> int:
  16605. y_1 = (777,)
  16606. y_1[0] = input_int()
  16607. f_0 = (lambda_3, y_1)
  16608. print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
  16609. return 0
  16610. \end{lstlisting}
  16611. \fi}
  16612. %
  16613. \noindent However, we can instead compile the application
  16614. \CAPPLY{\code{f}}{\code{21}} into a direct call, as follows:
  16615. %
  16616. {\if\edition\racketEd
  16617. \begin{lstlisting}
  16618. (define (main) : Integer
  16619. (let ([y2 (read)])
  16620. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16621. ((fun-ref lambda5 1) f4 21))))
  16622. \end{lstlisting}
  16623. \fi}
  16624. {\if\edition\pythonEd\pythonColor
  16625. \begin{lstlisting}
  16626. def main() -> int:
  16627. y_1 = (777,)
  16628. y_1[0] = input_int()
  16629. f_0 = (lambda_3, y_1)
  16630. print(lambda_3(f_0, 21))
  16631. return 0
  16632. \end{lstlisting}
  16633. \fi}
  16634. The problem of determining which \code{lambda} will be called from a
  16635. particular application is quite challenging in general and the topic
  16636. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  16637. following exercise we recommend that you compile an application to a
  16638. direct call when the operator is a variable and \racket{the variable
  16639. is \code{let}-bound to a closure}\python{the previous assignment to
  16640. the variable is a closure}. This can be accomplished by maintaining
  16641. an environment that maps variables to function names. Extend the
  16642. environment whenever you encounter a closure on the right-hand side of
  16643. a \racket{\code{let}}\python{assignment}, mapping the variable to the
  16644. name of the global function for the closure. This pass should come
  16645. after closure conversion.
  16646. \begin{exercise}\normalfont\normalsize
  16647. Implement a compiler pass, named \code{optimize\_known\_calls}, that
  16648. compiles known calls into direct calls. Verify that your compiler is
  16649. successful in this regard on several example programs.
  16650. \end{exercise}
  16651. These exercises only scratch the surface of closure optimization. A
  16652. good next step for the interested reader is to look at the work of
  16653. \citet{Keep:2012ab}.
  16654. \section{Further Reading}
  16655. The notion of lexically scoped functions predates modern computers by
  16656. about a decade. They were invented by \citet{Church:1932aa}, who
  16657. proposed the lambda calculus as a foundation for logic. Anonymous
  16658. functions were included in the LISP~\citep{McCarthy:1960dz}
  16659. programming language but were initially dynamically scoped. The Scheme
  16660. dialect of LISP adopted lexical scoping, and
  16661. \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently compile
  16662. Scheme programs. However, environments were represented as linked
  16663. lists, so variable look-up was linear in the size of the
  16664. environment. \citet{Appel91} gives a detailed description of several
  16665. closure representations. In this chapter we represent environments
  16666. using flat closures, which were invented by
  16667. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purpose of compiling
  16668. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  16669. closures, variable look-up is constant time but the time to create a
  16670. closure is proportional to the number of its free variables. Flat
  16671. closures were reinvented by \citet{Dybvig:1987ab} in his PhD thesis
  16672. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  16673. % todo: related work on assignment conversion (e.g. orbit and rabbit
  16674. % compilers)
  16675. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16676. \chapter{Dynamic Typing}
  16677. \label{ch:Ldyn}
  16678. \index{subject}{dynamic typing}
  16679. \setcounter{footnote}{0}
  16680. In this chapter we learn how to compile \LangDyn{}, a dynamically
  16681. typed language that is a subset of \racket{Racket}\python{Python}. The
  16682. focus on dynamic typing is in contrast to the previous chapters, which
  16683. have studied the compilation of statically typed languages. In
  16684. dynamically typed languages such as \LangDyn{}, a particular
  16685. expression may produce a value of a different type each time it is
  16686. executed. Consider the following example with a conditional \code{if}
  16687. expression that may return a Boolean or an integer depending on the
  16688. input to the program:
  16689. % part of dynamic_test_25.rkt
  16690. {\if\edition\racketEd
  16691. \begin{lstlisting}
  16692. (not (if (eq? (read) 1) #f 0))
  16693. \end{lstlisting}
  16694. \fi}
  16695. {\if\edition\pythonEd\pythonColor
  16696. \begin{lstlisting}
  16697. not (False if input_int() == 1 else 0)
  16698. \end{lstlisting}
  16699. \fi}
  16700. Languages that allow expressions to produce different kinds of values
  16701. are called \emph{polymorphic}, a word composed of the Greek roots
  16702. \emph{poly}, meaning \emph{many}, and \emph{morph}, meaning \emph{form}.
  16703. There are several kinds of polymorphism in programming languages, such as
  16704. subtype polymorphism\index{subject}{subtype polymorphism} and
  16705. parametric polymorphism\index{subject}{parametric polymorphism}
  16706. (aka generics)~\citep{Cardelli:1985kx}. The kind of polymorphism that we
  16707. study in this chapter does not have a special name; it is the kind
  16708. that arises in dynamically typed languages.
  16709. Another characteristic of dynamically typed languages is that
  16710. their primitive operations, such as \code{not}, are often defined to operate
  16711. on many different types of values. In fact, in
  16712. \racket{Racket}\python{Python}, the \code{not} operator produces a
  16713. result for any kind of value: given \FALSE{} it returns \TRUE{}, and
  16714. given anything else it returns \FALSE{}.
  16715. Furthermore, even when primitive operations restrict their inputs to
  16716. values of a certain type, this restriction is enforced at runtime
  16717. instead of during compilation. For example, the tuple read
  16718. operation \racket{\code{(vector-ref \#t 0)}}\python{\code{True[0]}}
  16719. results in a runtime error because the first argument must
  16720. be a tuple, not a Boolean.
  16721. \section{The \LangDyn{} Language}
  16722. \newcommand{\LdynGrammarRacket}{
  16723. \begin{array}{rcl}
  16724. \Exp &::=& \LP\Exp \; \Exp\ldots\RP
  16725. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  16726. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  16727. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  16728. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP
  16729. \end{array}
  16730. }
  16731. \newcommand{\LdynASTRacket}{
  16732. \begin{array}{lcl}
  16733. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  16734. \MID \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  16735. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp}
  16736. \end{array}
  16737. }
  16738. \begin{figure}[tp]
  16739. \centering
  16740. \begin{tcolorbox}[colback=white]
  16741. \small
  16742. {\if\edition\racketEd
  16743. \[
  16744. \begin{array}{l}
  16745. \gray{\LintGrammarRacket{}} \\ \hline
  16746. \gray{\LvarGrammarRacket{}} \\ \hline
  16747. \gray{\LifGrammarRacket{}} \\ \hline
  16748. \gray{\LwhileGrammarRacket} \\ \hline
  16749. \gray{\LtupGrammarRacket} \\ \hline
  16750. \LdynGrammarRacket \\
  16751. \begin{array}{rcl}
  16752. \LangDynM{} &::=& \Def\ldots\; \Exp
  16753. \end{array}
  16754. \end{array}
  16755. \]
  16756. \fi}
  16757. {\if\edition\pythonEd\pythonColor
  16758. \[
  16759. \begin{array}{rcl}
  16760. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \MID \key{is} \\
  16761. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  16762. &\MID& \Var{} \MID \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp}
  16763. \MID \COR{\Exp}{\Exp} \MID \key{not}~\Exp \\
  16764. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  16765. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  16766. &\MID& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp}
  16767. \MID \CLEN{\Exp} \\
  16768. &\MID& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  16769. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}\\
  16770. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  16771. \MID \Var\mathop{\key{=}}\Exp \\
  16772. &\MID& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  16773. \MID \key{while}~ \Exp \key{:}~ \Stmt^{+} \\
  16774. &\MID& \CRETURN{\Exp} \\
  16775. \Def &::=& \CDEFU{\Var}{\Var{,} \ldots}{\Stmt^{+}} \\
  16776. \LangDynM{} &::=& \Def\ldots \Stmt\ldots
  16777. \end{array}
  16778. \]
  16779. \fi}
  16780. \end{tcolorbox}
  16781. \caption{Syntax of \LangDyn{}, an untyped language (a subset of \racket{Racket}\python{Python}).}
  16782. \label{fig:r7-concrete-syntax}
  16783. \end{figure}
  16784. \begin{figure}[tp]
  16785. \centering
  16786. \begin{tcolorbox}[colback=white]
  16787. \small
  16788. {\if\edition\racketEd
  16789. \[
  16790. \begin{array}{l}
  16791. \gray{\LintASTRacket{}} \\ \hline
  16792. \gray{\LvarASTRacket{}} \\ \hline
  16793. \gray{\LifASTRacket{}} \\ \hline
  16794. \gray{\LwhileASTRacket} \\ \hline
  16795. \gray{\LtupASTRacket} \\ \hline
  16796. \LdynASTRacket \\
  16797. \begin{array}{lcl}
  16798. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  16799. \end{array}
  16800. \end{array}
  16801. \]
  16802. \fi}
  16803. {\if\edition\pythonEd\pythonColor
  16804. \[
  16805. \begin{array}{rcl}
  16806. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  16807. \itm{unaryop} &::= & \code{USub()} \MID \code{Not()} \\
  16808. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  16809. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()}
  16810. \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  16811. &\MID & \code{Is()} \\
  16812. \itm{bool} &::=& \code{True} \MID \code{False} \\
  16813. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  16814. &\MID& \UNIOP{\itm{unaryop}}{\Exp}
  16815. \MID \BINOP{\Exp}{\itm{binaryop}}{\Exp}
  16816. \MID \VAR{\Var{}} \\
  16817. &\MID& \BOOL{\itm{bool}}
  16818. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  16819. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  16820. &\MID& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  16821. &\MID& \LEN{\Exp} \\
  16822. &\MID& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp} \\
  16823. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  16824. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  16825. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  16826. \MID \WHILESTMT{\Exp}{\Stmt^{+}}\\
  16827. &\MID& \RETURN{\Exp} \\
  16828. \Params &::=& \LP\Var\key{,}\code{AnyType()}\RP^* \\
  16829. \Def &::=& \FUNDEF{\Var}{\Params}{\code{AnyType()}}{}{\Stmt^{+}} \\
  16830. \LangDynM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  16831. \end{array}
  16832. \]
  16833. \fi}
  16834. \end{tcolorbox}
  16835. \caption{The abstract syntax of \LangDyn{}.}
  16836. \label{fig:r7-syntax}
  16837. \end{figure}
  16838. The definitions of the concrete and abstract syntax of \LangDyn{} are
  16839. shown in figures~\ref{fig:r7-concrete-syntax} and \ref{fig:r7-syntax}.
  16840. %
  16841. There is no type checker for \LangDyn{} because it checks types only
  16842. at runtime.
  16843. The definitional interpreter for \LangDyn{} is presented in
  16844. \racket{figure~\ref{fig:interp-Ldyn}}\python{figures~\ref{fig:interp-Ldyn} and \ref{fig:interp-Ldyn-2}}, and definitions of its auxiliary functions
  16845. are shown in figure~\ref{fig:interp-Ldyn-aux}. Consider the match case for
  16846. \INT{n}. Instead of simply returning the integer \code{n} (as
  16847. in the interpreter for \LangVar{} in figure~\ref{fig:interp-Lvar}), the
  16848. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  16849. value} that combines an underlying value with a tag that identifies
  16850. what kind of value it is. We define the following \racket{struct}\python{class}
  16851. to represent tagged values:
  16852. %
  16853. {\if\edition\racketEd
  16854. \begin{lstlisting}
  16855. (struct Tagged (value tag) #:transparent)
  16856. \end{lstlisting}
  16857. \fi}
  16858. {\if\edition\pythonEd\pythonColor
  16859. \begin{minipage}{\textwidth}
  16860. \begin{lstlisting}
  16861. @dataclass(eq=True)
  16862. class Tagged(Value):
  16863. value : Value
  16864. tag : str
  16865. def __str__(self):
  16866. return str(self.value)
  16867. \end{lstlisting}
  16868. \end{minipage}
  16869. \fi}
  16870. %
  16871. \racket{The tags are \code{Integer}, \BOOLTY{}, \code{Void},
  16872. \code{Vector}, and \code{Procedure}.}
  16873. %
  16874. \python{The tags are \code{'int'}, \code{'bool'}, \code{'none'},
  16875. \code{'tuple'}, and \code{'function'}.}
  16876. %
  16877. Tags are closely related to types but do not always capture all the
  16878. information that a type does.
  16879. %
  16880. \racket{For example, a vector of type \code{(Vector Any Any)} is
  16881. tagged with \code{Vector}, and a procedure of type \code{(Any Any ->
  16882. Any)} is tagged with \code{Procedure}.}
  16883. %
  16884. \python{For example, a tuple of type \code{TupleType([AnyType(),AnyType()])}
  16885. is tagged with \code{'tuple'} and a function of type
  16886. \code{FunctionType([AnyType(), AnyType()], AnyType())}
  16887. is tagged with \code{'function'}.}
  16888. Next consider the match case for accessing the element of a tuple.
  16889. The \racket{\code{check-tag}}\python{\code{untag}} auxiliary function
  16890. (figure~\ref{fig:interp-Ldyn-aux}) is used to ensure that the first
  16891. argument is a tuple and the second is an integer.
  16892. \racket{
  16893. If they are not, a \code{trapped-error} is raised. Recall from
  16894. section~\ref{sec:interp_Lint} that when a definition interpreter
  16895. raises a \code{trapped-error} error, the compiled code must also
  16896. signal an error by exiting with return code \code{255}. A
  16897. \code{trapped-error} is also raised if the index is not less than the
  16898. length of the vector.
  16899. }
  16900. %
  16901. \python{If they are not, an exception is raised. The compiled code
  16902. must also signal an error by exiting with return code \code{255}. A
  16903. exception is also raised if the index is not less than the length of the
  16904. tuple or if it is negative.}
  16905. \begin{figure}[tbp]
  16906. \begin{tcolorbox}[colback=white]
  16907. {\if\edition\racketEd
  16908. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16909. (define ((interp-Ldyn-exp env) ast)
  16910. (define recur (interp-Ldyn-exp env))
  16911. (match ast
  16912. [(Var x) (dict-ref env x)]
  16913. [(Int n) (Tagged n 'Integer)]
  16914. [(Bool b) (Tagged b 'Boolean)]
  16915. [(Lambda xs rt body)
  16916. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  16917. [(Prim 'vector es)
  16918. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  16919. [(Prim 'vector-ref (list e1 e2))
  16920. (define vec (recur e1)) (define i (recur e2))
  16921. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  16922. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  16923. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  16924. (vector-ref (Tagged-value vec) (Tagged-value i))]
  16925. [(Prim 'vector-set! (list e1 e2 e3))
  16926. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  16927. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  16928. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  16929. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  16930. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  16931. (Tagged (void) 'Void)]
  16932. [(Let x e body) ((interp-Ldyn-exp (cons (cons x (recur e)) env)) body)]
  16933. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  16934. [(Prim 'or (list e1 e2))
  16935. (define v1 (recur e1))
  16936. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  16937. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  16938. [(Prim op (list e1))
  16939. #:when (set-member? type-predicates op)
  16940. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  16941. [(Prim op es)
  16942. (define args (map recur es))
  16943. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  16944. (unless (for/or ([expected-tags (op-tags op)])
  16945. (equal? expected-tags tags))
  16946. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  16947. (tag-value
  16948. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  16949. [(If q t f)
  16950. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  16951. [(Apply f es)
  16952. (define new-f (recur f)) (define args (map recur es))
  16953. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  16954. (match f-val
  16955. [`(function ,xs ,body ,lam-env)
  16956. (unless (eq? (length xs) (length args))
  16957. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  16958. (define new-env (append (map cons xs args) lam-env))
  16959. ((interp-Ldyn-exp new-env) body)]
  16960. [else (error "interp-Ldyn-exp, expected function, not" f-val)])]))
  16961. \end{lstlisting}
  16962. \fi}
  16963. {\if\edition\pythonEd\pythonColor
  16964. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16965. class InterpLdyn(InterpLlambda):
  16966. def interp_exp(self, e, env):
  16967. match e:
  16968. case Constant(n):
  16969. return self.tag(super().interp_exp(e, env))
  16970. case Tuple(es, Load()):
  16971. return self.tag(super().interp_exp(e, env))
  16972. case Lambda(params, body):
  16973. return self.tag(super().interp_exp(e, env))
  16974. case Call(Name('input_int'), []):
  16975. return self.tag(super().interp_exp(e, env))
  16976. case BinOp(left, Add(), right):
  16977. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  16978. return self.tag(self.untag(l, 'int', e) + self.untag(r, 'int', e))
  16979. case BinOp(left, Sub(), right):
  16980. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  16981. return self.tag(self.untag(l, 'int', e) - self.untag(r, 'int', e))
  16982. case UnaryOp(USub(), e1):
  16983. v = self.interp_exp(e1, env)
  16984. return self.tag(- self.untag(v, 'int', e))
  16985. case IfExp(test, body, orelse):
  16986. v = self.interp_exp(test, env)
  16987. if self.untag(v, 'bool', e):
  16988. return self.interp_exp(body, env)
  16989. else:
  16990. return self.interp_exp(orelse, env)
  16991. case UnaryOp(Not(), e1):
  16992. v = self.interp_exp(e1, env)
  16993. return self.tag(not self.untag(v, 'bool', e))
  16994. case BoolOp(And(), values):
  16995. left = values[0]; right = values[1]
  16996. l = self.interp_exp(left, env)
  16997. if self.untag(l, 'bool', e):
  16998. return self.interp_exp(right, env)
  16999. else:
  17000. return self.tag(False)
  17001. case BoolOp(Or(), values):
  17002. left = values[0]; right = values[1]
  17003. l = self.interp_exp(left, env)
  17004. if self.untag(l, 'bool', e):
  17005. return self.tag(True)
  17006. else:
  17007. return self.interp_exp(right, env)
  17008. case Compare(left, [cmp], [right]):
  17009. l = self.interp_exp(left, env)
  17010. r = self.interp_exp(right, env)
  17011. if l.tag == r.tag:
  17012. return self.tag(self.interp_cmp(cmp)(l.value, r.value))
  17013. else:
  17014. raise Exception('interp Compare unexpected '
  17015. + repr(l) + ' ' + repr(r))
  17016. case Subscript(tup, index, Load()):
  17017. t = self.interp_exp(tup, env)
  17018. n = self.interp_exp(index, env)
  17019. return self.untag(t, 'tuple', e)[self.untag(n, 'int', e)]
  17020. case Call(Name('len'), [tup]):
  17021. t = self.interp_exp(tup, env)
  17022. return self.tag(len(self.untag(t, 'tuple', e)))
  17023. case _:
  17024. return self.tag(super().interp_exp(e, env))
  17025. \end{lstlisting}
  17026. \fi}
  17027. \end{tcolorbox}
  17028. \caption{Interpreter for the \LangDyn{} language\python{, part 1}.}
  17029. \label{fig:interp-Ldyn}
  17030. \end{figure}
  17031. {\if\edition\pythonEd\pythonColor
  17032. \begin{figure}[tbp]
  17033. \begin{tcolorbox}[colback=white]
  17034. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17035. class InterpLdyn(InterpLlambda):
  17036. def interp_stmt(self, s, env, cont):
  17037. match s:
  17038. case If(test, body, orelse):
  17039. v = self.interp_exp(test, env)
  17040. match self.untag(v, 'bool', s):
  17041. case True:
  17042. return self.interp_stmts(body + cont, env)
  17043. case False:
  17044. return self.interp_stmts(orelse + cont, env)
  17045. case While(test, body, []):
  17046. v = self.interp_exp(test, env)
  17047. if self.untag(v, 'bool', test):
  17048. self.interp_stmts(body + [s] + cont, env)
  17049. else:
  17050. return self.interp_stmts(cont, env)
  17051. case Assign([Subscript(tup, index)], value):
  17052. tup = self.interp_exp(tup, env)
  17053. index = self.interp_exp(index, env)
  17054. tup_v = self.untag(tup, 'tuple', s)
  17055. index_v = self.untag(index, 'int', s)
  17056. tup_v[index_v] = self.interp_exp(value, env)
  17057. return self.interp_stmts(cont, env)
  17058. case FunctionDef(name, params, bod, dl, returns, comment):
  17059. if isinstance(params, ast.arguments):
  17060. ps = [p.arg for p in params.args]
  17061. else:
  17062. ps = [x for (x,t) in params]
  17063. env[name] = self.tag(Function(name, ps, bod, env))
  17064. return self.interp_stmts(cont, env)
  17065. case _:
  17066. return super().interp_stmt(s, env, cont)
  17067. \end{lstlisting}
  17068. \end{tcolorbox}
  17069. \caption{Interpreter for the \LangDyn{} language\python{, part 2}.}
  17070. \label{fig:interp-Ldyn-2}
  17071. \end{figure}
  17072. \fi}
  17073. \begin{figure}[tbp]
  17074. \begin{tcolorbox}[colback=white]
  17075. {\if\edition\racketEd
  17076. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17077. (define (interp-op op)
  17078. (match op
  17079. ['+ fx+]
  17080. ['- fx-]
  17081. ['read read-fixnum]
  17082. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  17083. ['< (lambda (v1 v2)
  17084. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  17085. ['<= (lambda (v1 v2)
  17086. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  17087. ['> (lambda (v1 v2)
  17088. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  17089. ['>= (lambda (v1 v2)
  17090. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  17091. ['boolean? boolean?]
  17092. ['integer? fixnum?]
  17093. ['void? void?]
  17094. ['vector? vector?]
  17095. ['vector-length vector-length]
  17096. ['procedure? (match-lambda
  17097. [`(functions ,xs ,body ,env) #t] [else #f])]
  17098. [else (error 'interp-op "unknown operator" op)]))
  17099. (define (op-tags op)
  17100. (match op
  17101. ['+ '((Integer Integer))]
  17102. ['- '((Integer Integer) (Integer))]
  17103. ['read '(())]
  17104. ['not '((Boolean))]
  17105. ['< '((Integer Integer))]
  17106. ['<= '((Integer Integer))]
  17107. ['> '((Integer Integer))]
  17108. ['>= '((Integer Integer))]
  17109. ['vector-length '((Vector))]))
  17110. (define type-predicates
  17111. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17112. (define (tag-value v)
  17113. (cond [(boolean? v) (Tagged v 'Boolean)]
  17114. [(fixnum? v) (Tagged v 'Integer)]
  17115. [(procedure? v) (Tagged v 'Procedure)]
  17116. [(vector? v) (Tagged v 'Vector)]
  17117. [(void? v) (Tagged v 'Void)]
  17118. [else (error 'tag-value "unidentified value ~a" v)]))
  17119. (define (check-tag val expected ast)
  17120. (define tag (Tagged-tag val))
  17121. (unless (eq? tag expected)
  17122. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  17123. \end{lstlisting}
  17124. \fi}
  17125. {\if\edition\pythonEd\pythonColor
  17126. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17127. class InterpLdyn(InterpLlambda):
  17128. def tag(self, v):
  17129. if v is True or v is False:
  17130. return Tagged(v, 'bool')
  17131. elif isinstance(v, int):
  17132. return Tagged(v, 'int')
  17133. elif isinstance(v, Function):
  17134. return Tagged(v, 'function')
  17135. elif isinstance(v, tuple):
  17136. return Tagged(v, 'tuple')
  17137. elif isinstance(v, type(None)):
  17138. return Tagged(v, 'none')
  17139. else:
  17140. raise Exception('tag: unexpected ' + repr(v))
  17141. def untag(self, v, expected_tag, ast):
  17142. match v:
  17143. case Tagged(val, tag) if tag == expected_tag:
  17144. return val
  17145. case _:
  17146. raise TrappedError('expected Tagged value with '
  17147. + expected_tag + ', not ' + ' ' + repr(v))
  17148. def apply_fun(self, fun, args, e):
  17149. f = self.untag(fun, 'function', e)
  17150. return super().apply_fun(f, args, e)
  17151. \end{lstlisting}
  17152. \fi}
  17153. \end{tcolorbox}
  17154. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  17155. \label{fig:interp-Ldyn-aux}
  17156. \end{figure}
  17157. \clearpage
  17158. \section{Representation of Tagged Values}
  17159. The interpreter for \LangDyn{} introduced a new kind of value: the
  17160. tagged value. To compile \LangDyn{} to x86 we must decide how to
  17161. represent tagged values at the bit level. Because almost every
  17162. operation in \LangDyn{} involves manipulating tagged values, the
  17163. representation must be efficient. Recall that all our values are 64
  17164. bits. We shall steal the right-most $3$ bits to encode the tag. We use
  17165. $001$ to identify integers, $100$ for Booleans, $010$ for tuples,
  17166. $011$ for procedures, and $101$ for the void value\python{,
  17167. \key{None}}. We define the following auxiliary function for mapping
  17168. types to tag codes:
  17169. %
  17170. {\if\edition\racketEd
  17171. \begin{align*}
  17172. \itm{tagof}(\key{Integer}) &= 001 \\
  17173. \itm{tagof}(\key{Boolean}) &= 100 \\
  17174. \itm{tagof}(\LP\key{Vector} \ldots\RP) &= 010 \\
  17175. \itm{tagof}(\LP\ldots \key{->} \ldots\RP) &= 011 \\
  17176. \itm{tagof}(\key{Void}) &= 101
  17177. \end{align*}
  17178. \fi}
  17179. {\if\edition\pythonEd\pythonColor
  17180. \begin{align*}
  17181. \itm{tagof}(\key{IntType()}) &= 001 \\
  17182. \itm{tagof}(\key{BoolType()}) &= 100 \\
  17183. \itm{tagof}(\key{TupleType(ts)}) &= 010 \\
  17184. \itm{tagof}(\key{FunctionType(ps, rt)}) &= 011 \\
  17185. \itm{tagof}(\key{type(None)}) &= 101
  17186. \end{align*}
  17187. \fi}
  17188. %
  17189. This stealing of 3 bits comes at some price: integers are now restricted
  17190. to the range $-2^{60}$ to $2^{60}-1$. The stealing does not adversely
  17191. affect tuples and procedures because those values are addresses, and
  17192. our addresses are 8-byte aligned so the rightmost 3 bits are unused;
  17193. they are always $000$. Thus, we do not lose information by overwriting
  17194. the rightmost 3 bits with the tag, and we can simply zero out the tag
  17195. to recover the original address.
  17196. To make tagged values into first-class entities, we can give them a
  17197. type called \racket{\code{Any}}\python{\code{AnyType()}} and define
  17198. operations such as \code{Inject} and \code{Project} for creating and
  17199. using them, yielding the statically typed \LangAny{} intermediate
  17200. language. We describe how to compile \LangDyn{} to \LangAny{} in
  17201. section~\ref{sec:compile-r7}; in the next section we describe the
  17202. \LangAny{} language in greater detail.
  17203. \section{The \LangAny{} Language}
  17204. \label{sec:Rany-lang}
  17205. \newcommand{\LanyASTRacket}{
  17206. \begin{array}{lcl}
  17207. \Type &::= & \ANYTY \\
  17208. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  17209. \MID \LP\key{Vector}\; \ANYTY\ldots\RP
  17210. \MID \LP\ANYTY\ldots \; \key{->}\; \ANYTY\RP\\
  17211. \itm{op} &::= & \code{any-vector-length}
  17212. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  17213. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  17214. \MID \code{procedure?} \MID \code{void?} \\
  17215. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  17216. \end{array}
  17217. }
  17218. \newcommand{\LanyASTPython}{
  17219. \begin{array}{lcl}
  17220. \Type &::= & \key{AnyType()} \\
  17221. \FType &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  17222. \MID \key{TupleType}\LS\key{AnyType()}^+\RS \\
  17223. &\MID& \key{FunctionType}\LP \key{AnyType()}^{*}\key{, }\key{AnyType()}\RP \\
  17224. \Exp & ::= & \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  17225. &\MID& \CALL{\VAR{\key{'any\_tuple\_load'}}}{\LS\Exp\key{, }\Exp\RS}\\
  17226. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS\Exp\RS} \\
  17227. &\MID& \CALL{\VAR{\key{'arity'}}}{\LS\Exp\RS} \\
  17228. &\MID& \CALL{\VAR{\key{'make\_any'}}}{\LS\Exp\key{, }\INT{\Int}\RS}
  17229. %% &\MID& \CALL{\VAR{\key{'is\_int'}}}{\Exp}
  17230. %% \MID \CALL{\VAR{\key{'is\_bool'}}}{\Exp} \\
  17231. %% &\MID& \CALL{\VAR{\key{'is\_none'}}}{\Exp}
  17232. %% \MID \CALL{\VAR{\key{'is\_tuple'}}}{\Exp} \\
  17233. %% &\MID& \CALL{\VAR{\key{'is\_function'}}}{\Exp}
  17234. \end{array}
  17235. }
  17236. \begin{figure}[tp]
  17237. \centering
  17238. \begin{tcolorbox}[colback=white]
  17239. \small
  17240. {\if\edition\racketEd
  17241. \[
  17242. \begin{array}{l}
  17243. \gray{\LintOpAST} \\ \hline
  17244. \gray{\LvarASTRacket{}} \\ \hline
  17245. \gray{\LifASTRacket{}} \\ \hline
  17246. \gray{\LwhileASTRacket{}} \\ \hline
  17247. \gray{\LtupASTRacket{}} \\ \hline
  17248. \gray{\LfunASTRacket} \\ \hline
  17249. \gray{\LlambdaASTRacket} \\ \hline
  17250. \LanyASTRacket \\
  17251. \begin{array}{lcl}
  17252. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17253. \end{array}
  17254. \end{array}
  17255. \]
  17256. \fi}
  17257. {\if\edition\pythonEd\pythonColor
  17258. \[
  17259. \begin{array}{l}
  17260. \gray{\LintASTPython} \\ \hline
  17261. \gray{\LvarASTPython{}} \\ \hline
  17262. \gray{\LifASTPython{}} \\ \hline
  17263. \gray{\LwhileASTPython{}} \\ \hline
  17264. \gray{\LtupASTPython{}} \\ \hline
  17265. \gray{\LfunASTPython} \\ \hline
  17266. \gray{\LlambdaASTPython} \\ \hline
  17267. \LanyASTPython \\
  17268. \begin{array}{lcl}
  17269. \LangAnyM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17270. \end{array}
  17271. \end{array}
  17272. \]
  17273. \fi}
  17274. \end{tcolorbox}
  17275. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (figure~\ref{fig:Llam-syntax}).}
  17276. \label{fig:Lany-syntax}
  17277. \end{figure}
  17278. The definition of the abstract syntax of \LangAny{} is given in
  17279. figure~\ref{fig:Lany-syntax}.
  17280. %% \racket{(The concrete syntax of \LangAny{} is in the Appendix,
  17281. %% figure~\ref{fig:Lany-concrete-syntax}.)}
  17282. The $\INJECT{e}{T}$ form converts the value produced by expression $e$
  17283. of type $T$ into a tagged value. The $\PROJECT{e}{T}$ form either
  17284. converts the tagged value produced by expression $e$ into a value of
  17285. type $T$ or halts the program if the type tag does not match $T$.
  17286. %
  17287. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  17288. restricted to be a flat type (the nonterminal $\FType$) which
  17289. simplifies the implementation and complies with the needs for
  17290. compiling \LangDyn{}.
  17291. The \racket{\code{any-vector}} operators
  17292. \python{\code{any\_tuple\_load} and \code{any\_len}} adapt the tuple
  17293. operations so that they can be applied to a value of type
  17294. \racket{\code{Any}}\python{\code{AnyType}}. They also generalize the
  17295. tuple operations in that the index is not restricted to a literal
  17296. integer in the grammar but is allowed to be any expression.
  17297. \racket{The type predicates such as
  17298. \racket{\key{boolean?}}\python{\key{is\_bool}} expect their argument
  17299. to produce a tagged value; they return {\TRUE} if the tag corresponds to
  17300. the predicate and return {\FALSE} otherwise.}
  17301. The type checker for \LangAny{} is shown in
  17302. figure~\ref{fig:type-check-Lany}
  17303. %
  17304. \racket{ and uses the auxiliary functions presented in
  17305. figure~\ref{fig:type-check-Lany-aux}}.
  17306. %
  17307. The interpreter for \LangAny{} is shown in figure~\ref{fig:interp-Lany} and
  17308. its auxiliary functions are shown in figure~\ref{fig:interp-Lany-aux}.
  17309. \begin{figure}[btp]
  17310. \begin{tcolorbox}[colback=white]
  17311. {\if\edition\racketEd
  17312. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17313. (define type-check-Lany-class
  17314. (class type-check-Llambda-class
  17315. (super-new)
  17316. (inherit check-type-equal?)
  17317. (define/override (type-check-exp env)
  17318. (lambda (e)
  17319. (define recur (type-check-exp env))
  17320. (match e
  17321. [(Inject e1 ty)
  17322. (unless (flat-ty? ty)
  17323. (error 'type-check "may only inject from flat type, not ~a" ty))
  17324. (define-values (new-e1 e-ty) (recur e1))
  17325. (check-type-equal? e-ty ty e)
  17326. (values (Inject new-e1 ty) 'Any)]
  17327. [(Project e1 ty)
  17328. (unless (flat-ty? ty)
  17329. (error 'type-check "may only project to flat type, not ~a" ty))
  17330. (define-values (new-e1 e-ty) (recur e1))
  17331. (check-type-equal? e-ty 'Any e)
  17332. (values (Project new-e1 ty) ty)]
  17333. [(Prim 'any-vector-length (list e1))
  17334. (define-values (e1^ t1) (recur e1))
  17335. (check-type-equal? t1 'Any e)
  17336. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  17337. [(Prim 'any-vector-ref (list e1 e2))
  17338. (define-values (e1^ t1) (recur e1))
  17339. (define-values (e2^ t2) (recur e2))
  17340. (check-type-equal? t1 'Any e)
  17341. (check-type-equal? t2 'Integer e)
  17342. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  17343. [(Prim 'any-vector-set! (list e1 e2 e3))
  17344. (define-values (e1^ t1) (recur e1))
  17345. (define-values (e2^ t2) (recur e2))
  17346. (define-values (e3^ t3) (recur e3))
  17347. (check-type-equal? t1 'Any e)
  17348. (check-type-equal? t2 'Integer e)
  17349. (check-type-equal? t3 'Any e)
  17350. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  17351. [(Prim pred (list e1))
  17352. #:when (set-member? (type-predicates) pred)
  17353. (define-values (new-e1 e-ty) (recur e1))
  17354. (check-type-equal? e-ty 'Any e)
  17355. (values (Prim pred (list new-e1)) 'Boolean)]
  17356. [(Prim 'eq? (list arg1 arg2))
  17357. (define-values (e1 t1) (recur arg1))
  17358. (define-values (e2 t2) (recur arg2))
  17359. (match* (t1 t2)
  17360. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  17361. [(other wise) (check-type-equal? t1 t2 e)])
  17362. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  17363. [else ((super type-check-exp env) e)])))
  17364. ))
  17365. \end{lstlisting}
  17366. \fi}
  17367. {\if\edition\pythonEd\pythonColor
  17368. \begin{lstlisting}
  17369. class TypeCheckLany(TypeCheckLlambda):
  17370. def type_check_exp(self, e, env):
  17371. match e:
  17372. case Inject(value, typ):
  17373. self.check_exp(value, typ, env)
  17374. return AnyType()
  17375. case Project(value, typ):
  17376. self.check_exp(value, AnyType(), env)
  17377. return typ
  17378. case Call(Name('any_tuple_load'), [tup, index]):
  17379. self.check_exp(tup, AnyType(), env)
  17380. self.check_exp(index, IntType(), env)
  17381. return AnyType()
  17382. case Call(Name('any_len'), [tup]):
  17383. self.check_exp(tup, AnyType(), env)
  17384. return IntType()
  17385. case Call(Name('arity'), [fun]):
  17386. ty = self.type_check_exp(fun, env)
  17387. match ty:
  17388. case FunctionType(ps, rt):
  17389. return IntType()
  17390. case TupleType([FunctionType(ps,rs)]):
  17391. return IntType()
  17392. case _:
  17393. raise Exception('type_check_exp arity unexpected ' + repr(ty))
  17394. case Call(Name('make_any'), [value, tag]):
  17395. self.type_check_exp(value, env)
  17396. self.check_exp(tag, IntType(), env)
  17397. return AnyType()
  17398. case AnnLambda(params, returns, body):
  17399. new_env = {x:t for (x,t) in env.items()}
  17400. for (x,t) in params:
  17401. new_env[x] = t
  17402. return_t = self.type_check_exp(body, new_env)
  17403. self.check_type_equal(returns, return_t, e)
  17404. return FunctionType([t for (x,t) in params], return_t)
  17405. case _:
  17406. return super().type_check_exp(e, env)
  17407. \end{lstlisting}
  17408. \fi}
  17409. \end{tcolorbox}
  17410. \caption{Type checker for the \LangAny{} language.}
  17411. \label{fig:type-check-Lany}
  17412. \end{figure}
  17413. {\if\edition\racketEd
  17414. \begin{figure}[tbp]
  17415. \begin{tcolorbox}[colback=white]
  17416. \begin{lstlisting}
  17417. (define/override (operator-types)
  17418. (append
  17419. '((integer? . ((Any) . Boolean))
  17420. (vector? . ((Any) . Boolean))
  17421. (procedure? . ((Any) . Boolean))
  17422. (void? . ((Any) . Boolean)))
  17423. (super operator-types)))
  17424. (define/public (type-predicates)
  17425. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17426. (define/public (flat-ty? ty)
  17427. (match ty
  17428. [(or `Integer `Boolean `Void) #t]
  17429. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  17430. [`(,ts ... -> ,rt)
  17431. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  17432. [else #f]))
  17433. \end{lstlisting}
  17434. \end{tcolorbox}
  17435. \caption{Auxiliary methods for type checking \LangAny{}.}
  17436. \label{fig:type-check-Lany-aux}
  17437. \end{figure}
  17438. \fi}
  17439. \begin{figure}[btp]
  17440. \begin{tcolorbox}[colback=white]
  17441. {\if\edition\racketEd
  17442. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17443. (define interp-Lany-class
  17444. (class interp-Llambda-class
  17445. (super-new)
  17446. (define/override (interp-op op)
  17447. (match op
  17448. ['boolean? (match-lambda
  17449. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  17450. [else #f])]
  17451. ['integer? (match-lambda
  17452. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  17453. [else #f])]
  17454. ['vector? (match-lambda
  17455. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  17456. [else #f])]
  17457. ['procedure? (match-lambda
  17458. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  17459. [else #f])]
  17460. ['eq? (match-lambda*
  17461. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  17462. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  17463. [ls (apply (super interp-op op) ls)])]
  17464. ['any-vector-ref (lambda (v i)
  17465. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  17466. ['any-vector-set! (lambda (v i a)
  17467. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  17468. ['any-vector-length (lambda (v)
  17469. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  17470. [else (super interp-op op)]))
  17471. (define/override ((interp-exp env) e)
  17472. (define recur (interp-exp env))
  17473. (match e
  17474. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  17475. [(Project e ty2) (apply-project (recur e) ty2)]
  17476. [else ((super interp-exp env) e)]))
  17477. ))
  17478. (define (interp-Lany p)
  17479. (send (new interp-Lany-class) interp-program p))
  17480. \end{lstlisting}
  17481. \fi}
  17482. {\if\edition\pythonEd\pythonColor
  17483. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17484. class InterpLany(InterpLlambda):
  17485. def interp_exp(self, e, env):
  17486. match e:
  17487. case Inject(value, typ):
  17488. v = self.interp_exp(value, env)
  17489. return Tagged(v, self.type_to_tag(typ))
  17490. case Project(value, typ):
  17491. v = self.interp_exp(value, env)
  17492. match v:
  17493. case Tagged(val, tag) if self.type_to_tag(typ) == tag:
  17494. return val
  17495. case _:
  17496. raise Exception('interp project to ' + repr(typ)
  17497. + ' unexpected ' + repr(v))
  17498. case Call(Name('any_tuple_load'), [tup, index]):
  17499. tv = self.interp_exp(tup, env)
  17500. n = self.interp_exp(index, env)
  17501. match tv:
  17502. case Tagged(v, tag):
  17503. return v[n]
  17504. case _:
  17505. raise Exception('interp any_tuple_load unexpected ' + repr(tv))
  17506. case Call(Name('any_len'), [value]):
  17507. v = self.interp_exp(value, env)
  17508. match v:
  17509. case Tagged(value, tag):
  17510. return len(value)
  17511. case _:
  17512. raise Exception('interp any_len unexpected ' + repr(v))
  17513. case Call(Name('arity'), [fun]):
  17514. f = self.interp_exp(fun, env)
  17515. return self.arity(f)
  17516. case _:
  17517. return super().interp_exp(e, env)
  17518. \end{lstlisting}
  17519. \fi}
  17520. \end{tcolorbox}
  17521. \caption{Interpreter for \LangAny{}.}
  17522. \label{fig:interp-Lany}
  17523. \end{figure}
  17524. \begin{figure}[tbp]
  17525. \begin{tcolorbox}[colback=white]
  17526. {\if\edition\racketEd
  17527. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17528. (define/public (apply-inject v tg) (Tagged v tg))
  17529. (define/public (apply-project v ty2)
  17530. (define tag2 (any-tag ty2))
  17531. (match v
  17532. [(Tagged v1 tag1)
  17533. (cond
  17534. [(eq? tag1 tag2)
  17535. (match ty2
  17536. [`(Vector ,ts ...)
  17537. (define l1 ((interp-op 'vector-length) v1))
  17538. (cond
  17539. [(eq? l1 (length ts)) v1]
  17540. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  17541. l1 (length ts))])]
  17542. [`(,ts ... -> ,rt)
  17543. (match v1
  17544. [`(function ,xs ,body ,env)
  17545. (cond [(eq? (length xs) (length ts)) v1]
  17546. [else
  17547. (error 'apply-project "arity mismatch ~a != ~a"
  17548. (length xs) (length ts))])]
  17549. [else (error 'apply-project "expected function not ~a" v1)])]
  17550. [else v1])]
  17551. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  17552. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  17553. \end{lstlisting}
  17554. \fi}
  17555. {\if\edition\pythonEd\pythonColor
  17556. \begin{lstlisting}
  17557. class InterpLany(InterpLlambda):
  17558. def type_to_tag(self, typ):
  17559. match typ:
  17560. case FunctionType(params, rt):
  17561. return 'function'
  17562. case TupleType(fields):
  17563. return 'tuple'
  17564. case t if t == int:
  17565. return 'int'
  17566. case t if t == bool:
  17567. return 'bool'
  17568. case IntType():
  17569. return 'int'
  17570. case BoolType():
  17571. return 'int'
  17572. case _:
  17573. raise Exception('type_to_tag unexpected ' + repr(typ))
  17574. def arity(self, v):
  17575. match v:
  17576. case Function(name, params, body, env):
  17577. return len(params)
  17578. case ClosureTuple(args, arity):
  17579. return arity
  17580. case _:
  17581. raise Exception('Lany arity unexpected ' + repr(v))
  17582. \end{lstlisting}
  17583. \fi}
  17584. \end{tcolorbox}
  17585. \caption{Auxiliary functions for interpreting \LangAny{}.}
  17586. \label{fig:interp-Lany-aux}
  17587. \end{figure}
  17588. \clearpage
  17589. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  17590. \label{sec:compile-r7}
  17591. The \code{cast\_insert} pass compiles from \LangDyn{} to \LangAny{}.
  17592. Figure~\ref{fig:compile-r7-Lany} shows the compilation of many of the
  17593. \LangDyn{} forms into \LangAny{}. An important invariant of this pass
  17594. is that given any subexpression $e$ in the \LangDyn{} program, the
  17595. pass will produce an expression $e'$ in \LangAny{} that has type
  17596. \ANYTY{}. For example, the first row in
  17597. figure~\ref{fig:compile-r7-Lany} shows the compilation of the Boolean
  17598. \TRUE{}, which must be injected to produce an expression of type
  17599. \ANYTY{}.
  17600. %
  17601. The compilation of addition is shown in the second row of
  17602. figure~\ref{fig:compile-r7-Lany}. The compilation of addition is
  17603. representative of many primitive operations: the arguments have type
  17604. \ANYTY{} and must be projected to \INTTYPE{} before the addition can
  17605. be performed.
  17606. The compilation of \key{lambda} (third row of
  17607. figure~\ref{fig:compile-r7-Lany}) shows what happens when we need to
  17608. produce type annotations: we simply use \ANYTY{}.
  17609. %
  17610. % TODO:update the following for python, and the tests and interpreter. -Jeremy
  17611. \racket{The compilation of \code{if} and \code{eq?} demonstrate how
  17612. this pass has to account for some differences in behavior between
  17613. \LangDyn{} and \LangAny{}. The \LangDyn{} language is more
  17614. permissive than \LangAny{} regarding what kind of values can be used
  17615. in various places. For example, the condition of an \key{if} does
  17616. not have to be a Boolean. For \key{eq?}, the arguments need not be
  17617. of the same type (in that case the result is \code{\#f}).}
  17618. \begin{figure}[btp]
  17619. \centering
  17620. \begin{tcolorbox}[colback=white]
  17621. {\if\edition\racketEd
  17622. \begin{tabular}{lll}
  17623. \begin{minipage}{0.27\textwidth}
  17624. \begin{lstlisting}
  17625. #t
  17626. \end{lstlisting}
  17627. \end{minipage}
  17628. &
  17629. $\Rightarrow$
  17630. &
  17631. \begin{minipage}{0.65\textwidth}
  17632. \begin{lstlisting}
  17633. (inject #t Boolean)
  17634. \end{lstlisting}
  17635. \end{minipage}
  17636. \\[2ex]\hline
  17637. \begin{minipage}{0.27\textwidth}
  17638. \begin{lstlisting}
  17639. (+ |$e_1$| |$e_2$|)
  17640. \end{lstlisting}
  17641. \end{minipage}
  17642. &
  17643. $\Rightarrow$
  17644. &
  17645. \begin{minipage}{0.65\textwidth}
  17646. \begin{lstlisting}
  17647. (inject
  17648. (+ (project |$e'_1$| Integer)
  17649. (project |$e'_2$| Integer))
  17650. Integer)
  17651. \end{lstlisting}
  17652. \end{minipage}
  17653. \\[2ex]\hline
  17654. \begin{minipage}{0.27\textwidth}
  17655. \begin{lstlisting}
  17656. (lambda (|$x_1 \ldots$|) |$e$|)
  17657. \end{lstlisting}
  17658. \end{minipage}
  17659. &
  17660. $\Rightarrow$
  17661. &
  17662. \begin{minipage}{0.65\textwidth}
  17663. \begin{lstlisting}
  17664. (inject
  17665. (lambda: ([|$x_1$|:Any]|$\ldots$|):Any |$e'$|)
  17666. (Any|$\ldots$|Any -> Any))
  17667. \end{lstlisting}
  17668. \end{minipage}
  17669. \\[2ex]\hline
  17670. \begin{minipage}{0.27\textwidth}
  17671. \begin{lstlisting}
  17672. (|$e_0$| |$e_1 \ldots e_n$|)
  17673. \end{lstlisting}
  17674. \end{minipage}
  17675. &
  17676. $\Rightarrow$
  17677. &
  17678. \begin{minipage}{0.65\textwidth}
  17679. \begin{lstlisting}
  17680. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  17681. \end{lstlisting}
  17682. \end{minipage}
  17683. \\[2ex]\hline
  17684. \begin{minipage}{0.27\textwidth}
  17685. \begin{lstlisting}
  17686. (vector-ref |$e_1$| |$e_2$|)
  17687. \end{lstlisting}
  17688. \end{minipage}
  17689. &
  17690. $\Rightarrow$
  17691. &
  17692. \begin{minipage}{0.65\textwidth}
  17693. \begin{lstlisting}
  17694. (any-vector-ref |$e_1'$| (project |$e'_2$| Integer))
  17695. \end{lstlisting}
  17696. \end{minipage}
  17697. \\[2ex]\hline
  17698. \begin{minipage}{0.27\textwidth}
  17699. \begin{lstlisting}
  17700. (if |$e_1$| |$e_2$| |$e_3$|)
  17701. \end{lstlisting}
  17702. \end{minipage}
  17703. &
  17704. $\Rightarrow$
  17705. &
  17706. \begin{minipage}{0.65\textwidth}
  17707. \begin{lstlisting}
  17708. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  17709. \end{lstlisting}
  17710. \end{minipage}
  17711. \\[2ex]\hline
  17712. \begin{minipage}{0.27\textwidth}
  17713. \begin{lstlisting}
  17714. (eq? |$e_1$| |$e_2$|)
  17715. \end{lstlisting}
  17716. \end{minipage}
  17717. &
  17718. $\Rightarrow$
  17719. &
  17720. \begin{minipage}{0.65\textwidth}
  17721. \begin{lstlisting}
  17722. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  17723. \end{lstlisting}
  17724. \end{minipage}
  17725. \\[2ex]\hline
  17726. \begin{minipage}{0.27\textwidth}
  17727. \begin{lstlisting}
  17728. (not |$e_1$|)
  17729. \end{lstlisting}
  17730. \end{minipage}
  17731. &
  17732. $\Rightarrow$
  17733. &
  17734. \begin{minipage}{0.65\textwidth}
  17735. \begin{lstlisting}
  17736. (if (eq? |$e'_1$| (inject #f Boolean))
  17737. (inject #t Boolean) (inject #f Boolean))
  17738. \end{lstlisting}
  17739. \end{minipage}
  17740. \end{tabular}
  17741. \fi}
  17742. {\if\edition\pythonEd\pythonColor
  17743. \hspace{-0.8em}\begin{tabular}{|lll|} \hline
  17744. \begin{minipage}{0.23\textwidth}
  17745. \begin{lstlisting}
  17746. True
  17747. \end{lstlisting}
  17748. \end{minipage}
  17749. &
  17750. $\Rightarrow$
  17751. &
  17752. \begin{minipage}{0.7\textwidth}
  17753. \begin{lstlisting}
  17754. Inject(True, BoolType())
  17755. \end{lstlisting}
  17756. \end{minipage}
  17757. \\[2ex]\hline
  17758. \begin{minipage}{0.23\textwidth}
  17759. \begin{lstlisting}
  17760. |$e_1$| + |$e_2$|
  17761. \end{lstlisting}
  17762. \end{minipage}
  17763. &
  17764. $\Rightarrow$
  17765. &
  17766. \begin{minipage}{0.7\textwidth}
  17767. \begin{lstlisting}
  17768. Inject(Project(|$e'_1$|, IntType())
  17769. + Project(|$e'_2$|, IntType()),
  17770. IntType())
  17771. \end{lstlisting}
  17772. \end{minipage}
  17773. \\[2ex]\hline
  17774. \begin{minipage}{0.23\textwidth}
  17775. \begin{lstlisting}
  17776. lambda |$x_1 \ldots$|: |$e$|
  17777. \end{lstlisting}
  17778. \end{minipage}
  17779. &
  17780. $\Rightarrow$
  17781. &
  17782. \begin{minipage}{0.7\textwidth}
  17783. \begin{lstlisting}
  17784. Inject(Lambda([(|$x_1$|,AnyType),|$\ldots$|], |$e'$|)
  17785. FunctionType([AnyType(),|$\ldots$|], AnyType()))
  17786. \end{lstlisting}
  17787. \end{minipage}
  17788. \\[2ex]\hline
  17789. \begin{minipage}{0.23\textwidth}
  17790. \begin{lstlisting}
  17791. |$e_0$|(|$e_1 \ldots e_n$|)
  17792. \end{lstlisting}
  17793. \end{minipage}
  17794. &
  17795. $\Rightarrow$
  17796. &
  17797. \begin{minipage}{0.7\textwidth}
  17798. \begin{lstlisting}
  17799. Call(Project(|$e'_0$|, FunctionType([AnyType(),|$\ldots$|],
  17800. AnyType())), |$e'_1, \ldots, e'_n$|)
  17801. \end{lstlisting}
  17802. \end{minipage}
  17803. \\[2ex]\hline
  17804. \begin{minipage}{0.23\textwidth}
  17805. \begin{lstlisting}
  17806. |$e_1$|[|$e_2$|]
  17807. \end{lstlisting}
  17808. \end{minipage}
  17809. &
  17810. $\Rightarrow$
  17811. &
  17812. \begin{minipage}{0.7\textwidth}
  17813. \begin{lstlisting}
  17814. Call(Name('any_tuple_load'),
  17815. [|$e_1'$|, Project(|$e_2'$|, IntType())])
  17816. \end{lstlisting}
  17817. \end{minipage}
  17818. %% \begin{minipage}{0.23\textwidth}
  17819. %% \begin{lstlisting}
  17820. %% |$e_2$| if |$e_1$| else |$e_3$|
  17821. %% \end{lstlisting}
  17822. %% \end{minipage}
  17823. %% &
  17824. %% $\Rightarrow$
  17825. %% &
  17826. %% \begin{minipage}{0.7\textwidth}
  17827. %% \begin{lstlisting}
  17828. %% (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  17829. %% \end{lstlisting}
  17830. %% \end{minipage}
  17831. %% \\[2ex]\hline
  17832. %% \begin{minipage}{0.23\textwidth}
  17833. %% \begin{lstlisting}
  17834. %% (eq? |$e_1$| |$e_2$|)
  17835. %% \end{lstlisting}
  17836. %% \end{minipage}
  17837. %% &
  17838. %% $\Rightarrow$
  17839. %% &
  17840. %% \begin{minipage}{0.7\textwidth}
  17841. %% \begin{lstlisting}
  17842. %% (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  17843. %% \end{lstlisting}
  17844. %% \end{minipage}
  17845. %% \\[2ex]\hline
  17846. %% \begin{minipage}{0.23\textwidth}
  17847. %% \begin{lstlisting}
  17848. %% (not |$e_1$|)
  17849. %% \end{lstlisting}
  17850. %% \end{minipage}
  17851. %% &
  17852. %% $\Rightarrow$
  17853. %% &
  17854. %% \begin{minipage}{0.7\textwidth}
  17855. %% \begin{lstlisting}
  17856. %% (if (eq? |$e'_1$| (inject #f Boolean))
  17857. %% (inject #t Boolean) (inject #f Boolean))
  17858. %% \end{lstlisting}
  17859. %% \end{minipage}
  17860. %% \\[2ex]\hline
  17861. \\\hline
  17862. \end{tabular}
  17863. \fi}
  17864. \end{tcolorbox}
  17865. \caption{Cast insertion.}
  17866. \label{fig:compile-r7-Lany}
  17867. \end{figure}
  17868. \section{Reveal Casts}
  17869. \label{sec:reveal-casts-Lany}
  17870. % TODO: define R'_6
  17871. In the \code{reveal\_casts} pass, we recommend compiling
  17872. \code{Project} into a conditional expression that checks whether the
  17873. value's tag matches the target type; if it does, the value is
  17874. converted to a value of the target type by removing the tag; if it
  17875. does not, the program exits.
  17876. %
  17877. {\if\edition\racketEd
  17878. %
  17879. To perform these actions we need a new primitive operation,
  17880. \code{tag-of-any}, and a new form, \code{ValueOf}.
  17881. The \code{tag-of-any} operation retrieves the type tag from a tagged
  17882. value of type \code{Any}. The \code{ValueOf} form retrieves the
  17883. underlying value from a tagged value. The \code{ValueOf} form
  17884. includes the type for the underlying value that is used by the type
  17885. checker.
  17886. %
  17887. \fi}
  17888. %
  17889. {\if\edition\pythonEd\pythonColor
  17890. %
  17891. To perform these actions we need two new AST classes: \code{TagOf} and
  17892. \code{ValueOf}. The \code{TagOf} operation retrieves the type tag from a
  17893. tagged value of type \ANYTY{}. The \code{ValueOf} operation retrieves
  17894. the underlying value from a tagged value. The \code{ValueOf}
  17895. operation includes the type for the underlying value which is used by
  17896. the type checker.
  17897. %
  17898. \fi}
  17899. If the target type of the projection is \BOOLTY{} or \INTTY{}, then
  17900. \code{Project} can be translated as follows:
  17901. \begin{center}
  17902. \begin{minipage}{1.0\textwidth}
  17903. {\if\edition\racketEd
  17904. \begin{lstlisting}
  17905. (Project |$e$| |$\FType$|)
  17906. |$\Rightarrow$|
  17907. (Let |$\itm{tmp}$| |$e'$|
  17908. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  17909. (Int |$\itm{tagof}(\FType)$|)))
  17910. (ValueOf |$\itm{tmp}$| |$\FType$|)
  17911. (Exit)))
  17912. \end{lstlisting}
  17913. \fi}
  17914. {\if\edition\pythonEd\pythonColor
  17915. \begin{lstlisting}
  17916. Project(|$e$|, |$\FType$|)
  17917. |$\Rightarrow$|
  17918. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  17919. IfExp(Compare(TagOf(|$\itm{tmp}$|),[Eq()],
  17920. [Constant(|$\itm{tagof}(\FType)$|)]),
  17921. ValueOf(|$\itm{tmp}$|, |$\FType$|)
  17922. Call(Name('exit'), [])))
  17923. \end{lstlisting}
  17924. \fi}
  17925. \end{minipage}
  17926. \end{center}
  17927. If the target type of the projection is a tuple or function type, then
  17928. there is a bit more work to do. For tuples, check that the length of
  17929. the tuple type matches the length of the tuple. For functions, check
  17930. that the number of parameters in the function type matches the
  17931. function's arity.
  17932. Regarding \code{Inject}, we recommend compiling it to a slightly
  17933. lower-level primitive operation named \racket{\code{make-any}}\python{\code{make\_any}}. This operation
  17934. takes a tag instead of a type.
  17935. \begin{center}
  17936. \begin{minipage}{1.0\textwidth}
  17937. {\if\edition\racketEd
  17938. \begin{lstlisting}
  17939. (Inject |$e$| |$\FType$|)
  17940. |$\Rightarrow$|
  17941. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  17942. \end{lstlisting}
  17943. \fi}
  17944. {\if\edition\pythonEd\pythonColor
  17945. \begin{lstlisting}
  17946. Inject(|$e$|, |$\FType$|)
  17947. |$\Rightarrow$|
  17948. Call(Name('make_any'), [|$e'$|, Constant(|$\itm{tagof}(\FType)$|)])
  17949. \end{lstlisting}
  17950. \fi}
  17951. \end{minipage}
  17952. \end{center}
  17953. {\if\edition\pythonEd\pythonColor
  17954. %
  17955. The introduction of \code{make\_any} makes it difficult to use
  17956. bidirectional type checking because we no longer have an expected type
  17957. to use for type checking the expression $e'$. Thus, we run into
  17958. difficulty if $e'$ is a \code{Lambda} expression. We recommend
  17959. translating \code{Lambda} to a new AST class \code{AnnLambda} (for
  17960. annotated lambda) whose parameters have type annotations and that
  17961. records the return type.
  17962. %
  17963. \fi}
  17964. \racket{The type predicates (\code{boolean?}, etc.) can be translated into
  17965. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  17966. translation of \code{Project}.}
  17967. {\if\edition\racketEd
  17968. The \code{any-vector-ref} and \code{any-vector-set!} operations
  17969. combine the projection action with the vector operation. Also, the
  17970. read and write operations allow arbitrary expressions for the index, so
  17971. the type checker for \LangAny{} (figure~\ref{fig:type-check-Lany})
  17972. cannot guarantee that the index is within bounds. Thus, we insert code
  17973. to perform bounds checking at runtime. The translation for
  17974. \code{any-vector-ref} is as follows, and the other two operations are
  17975. translated in a similar way:
  17976. \begin{center}
  17977. \begin{minipage}{0.95\textwidth}
  17978. \begin{lstlisting}
  17979. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  17980. |$\Rightarrow$|
  17981. (Let |$v$| |$e'_1$|
  17982. (Let |$i$| |$e'_2$|
  17983. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  17984. (If (Prim '< (list (Var |$i$|) (Prim 'any-vector-length (list (Var |$v$|)))))
  17985. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  17986. (Exit))
  17987. (Exit))))
  17988. \end{lstlisting}
  17989. \end{minipage}
  17990. \end{center}
  17991. \fi}
  17992. %
  17993. {\if\edition\pythonEd\pythonColor
  17994. %
  17995. The \code{any\_tuple\_load} operation combines the projection action
  17996. with the load operation. Also, the load operation allows arbitrary
  17997. expressions for the index so the type checker for \LangAny{}
  17998. (figure~\ref{fig:type-check-Lany}) cannot guarantee that the index is
  17999. within bounds. Thus, we insert code to perform bounds checking at
  18000. runtime. The translation for \code{any\_tuple\_load} is as follows.
  18001. \begin{lstlisting}
  18002. Call(Name('any_tuple_load'), [|$e_1$|,|$e_2$|])
  18003. |$\Rightarrow$|
  18004. Block([Assign([|$t$|], |$e'_1$|), Assign([|$i$|], |$e'_2$|)],
  18005. IfExp(Compare(TagOf(|$t$|), [Eq()], [Constant(2)]),
  18006. IfExp(Compare(|$i$|, [Lt()], [Call(Name('any_len'), [|$t$|])]),
  18007. Call(Name('any_tuple_load_unsafe'), [|$t$|, |$i$|]),
  18008. Call(Name('exit'), [])),
  18009. Call(Name('exit'), [])))
  18010. \end{lstlisting}
  18011. \fi}
  18012. {\if\edition\pythonEd\pythonColor
  18013. \section{Assignment Conversion}
  18014. \label{sec:convert-assignments-Lany}
  18015. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  18016. \code{AnnLambda} AST classes.
  18017. \section{Closure Conversion}
  18018. \label{sec:closure-conversion-Lany}
  18019. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  18020. \code{AnnLambda} AST classes.
  18021. \fi}
  18022. \section{Remove Complex Operands}
  18023. \label{sec:rco-Lany}
  18024. \racket{The \code{ValueOf} and \code{Exit} forms are both complex
  18025. expressions. The subexpression of \code{ValueOf} must be atomic.}
  18026. %
  18027. \python{The \code{ValueOf} and \code{TagOf} operations are both
  18028. complex expressions. Their subexpressions must be atomic.}
  18029. \section{Explicate Control and \LangCAny{}}
  18030. \label{sec:explicate-Lany}
  18031. The output of \code{explicate\_control} is the \LangCAny{} language,
  18032. whose syntax definition is shown in figure~\ref{fig:c5-syntax}.
  18033. %
  18034. \racket{The \code{ValueOf} form that we added to \LangAny{} remains an
  18035. expression and the \code{Exit} expression becomes a $\Tail$. Also,
  18036. note that the index argument of \code{vector-ref} and
  18037. \code{vector-set!} is an $\Atm$, instead of an integer as it was in
  18038. \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  18039. %
  18040. \python{
  18041. Update the auxiliary functions \code{explicate\_tail}, \code{explicate\_effect},
  18042. and \code{explicate\_pred} as appropriately to handle the new expressions
  18043. in \LangCAny{}.
  18044. }
  18045. \newcommand{\CanyASTPython}{
  18046. \begin{array}{lcl}
  18047. \Exp &::=& \CALL{\VAR{\key{'make\_any'}}}{\LS \Atm,\Atm \RS}\\
  18048. &\MID& \key{TagOf}\LP \Atm \RP
  18049. \MID \key{ValueOf}\LP \Atm , \FType \RP \\
  18050. &\MID& \CALL{\VAR{\key{'any\_tuple\_load\_unsafe'}}}{\LS \Atm,\Atm \RS}\\
  18051. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS \Atm \RS} \\
  18052. &\MID& \CALL{\VAR{\key{'exit'}}}{\LS\RS}
  18053. \end{array}
  18054. }
  18055. \newcommand{\CanyASTRacket}{
  18056. \begin{array}{lcl}
  18057. \Exp &::= & \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  18058. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  18059. &\MID& \VALUEOF{\Atm}{\FType} \\
  18060. \Tail &::= & \LP\key{Exit}\RP
  18061. \end{array}
  18062. }
  18063. \begin{figure}[tp]
  18064. \begin{tcolorbox}[colback=white]
  18065. \small
  18066. {\if\edition\racketEd
  18067. \[
  18068. \begin{array}{l}
  18069. \gray{\CvarASTRacket} \\ \hline
  18070. \gray{\CifASTRacket} \\ \hline
  18071. \gray{\CloopASTRacket} \\ \hline
  18072. \gray{\CtupASTRacket} \\ \hline
  18073. \gray{\CfunASTRacket} \\ \hline
  18074. \gray{\ClambdaASTRacket} \\ \hline
  18075. \CanyASTRacket \\
  18076. \begin{array}{lcl}
  18077. \LangCAnyM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  18078. \end{array}
  18079. \end{array}
  18080. \]
  18081. \fi}
  18082. {\if\edition\pythonEd\pythonColor
  18083. \[
  18084. \begin{array}{l}
  18085. \gray{\CifASTPython} \\ \hline
  18086. \gray{\CtupASTPython} \\ \hline
  18087. \gray{\CfunASTPython} \\ \hline
  18088. \gray{\ClambdaASTPython} \\ \hline
  18089. \CanyASTPython \\
  18090. \begin{array}{lcl}
  18091. \LangCAnyM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  18092. \end{array}
  18093. \end{array}
  18094. \]
  18095. \fi}
  18096. \end{tcolorbox}
  18097. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (figure~\ref{fig:Clam-syntax}).}
  18098. \label{fig:c5-syntax}
  18099. \end{figure}
  18100. \section{Select Instructions}
  18101. \label{sec:select-Lany}
  18102. \index{subject}{select instructions}
  18103. In the \code{select\_instructions} pass, we translate the primitive
  18104. operations on the \ANYTY{} type to x86 instructions that manipulate
  18105. the three tag bits of the tagged value. In the following descriptions,
  18106. given an atom $e$ we use a primed variable $e'$ to refer to the result
  18107. of translating $e$ into an x86 argument:
  18108. \paragraph{\racket{\code{make-any}}\python{\code{make\_any}}}
  18109. We recommend compiling the
  18110. \racket{\code{make-any}}\python{\code{make\_any}} operation as follows
  18111. if the tag is for \INTTY{} or \BOOLTY{}. The \key{salq} instruction
  18112. shifts the destination to the left by the number of bits specified by its
  18113. source argument (in this case three, the length of the tag), and it
  18114. preserves the sign of the integer. We use the \key{orq} instruction to
  18115. combine the tag and the value to form the tagged value.
  18116. {\if\edition\racketEd
  18117. \begin{lstlisting}
  18118. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18119. |$\Rightarrow$|
  18120. movq |$e'$|, |\itm{lhs'}|
  18121. salq $3, |\itm{lhs'}|
  18122. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18123. \end{lstlisting}
  18124. \fi}
  18125. %
  18126. {\if\edition\pythonEd\pythonColor
  18127. \begin{lstlisting}
  18128. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18129. |$\Rightarrow$|
  18130. movq |$e'$|, |\itm{lhs'}|
  18131. salq $3, |\itm{lhs'}|
  18132. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18133. \end{lstlisting}
  18134. \fi}
  18135. %
  18136. The instruction selection\index{subject}{instruction selection} for
  18137. tuples and procedures is different because there is no need to shift
  18138. them to the left. The rightmost 3 bits are already zeros, so we simply
  18139. combine the value and the tag using \key{orq}. \\
  18140. %
  18141. {\if\edition\racketEd
  18142. \begin{center}
  18143. \begin{minipage}{\textwidth}
  18144. \begin{lstlisting}
  18145. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18146. |$\Rightarrow$|
  18147. movq |$e'$|, |\itm{lhs'}|
  18148. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18149. \end{lstlisting}
  18150. \end{minipage}
  18151. \end{center}
  18152. \fi}
  18153. %
  18154. {\if\edition\pythonEd\pythonColor
  18155. \begin{lstlisting}
  18156. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18157. |$\Rightarrow$|
  18158. movq |$e'$|, |\itm{lhs'}|
  18159. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18160. \end{lstlisting}
  18161. \fi}
  18162. \paragraph{\racket{\code{tag-of-any}}\python{\code{TagOf}}}
  18163. Recall that the \racket{\code{tag-of-any}}\python{\code{TagOf}}
  18164. operation extracts the type tag from a value of type \ANYTY{}. The
  18165. type tag is the bottom $3$ bits, so we obtain the tag by taking the
  18166. bitwise-and of the value with $111$ ($7$ decimal).
  18167. %
  18168. {\if\edition\racketEd
  18169. \begin{lstlisting}
  18170. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  18171. |$\Rightarrow$|
  18172. movq |$e'$|, |\itm{lhs'}|
  18173. andq $7, |\itm{lhs'}|
  18174. \end{lstlisting}
  18175. \fi}
  18176. %
  18177. {\if\edition\pythonEd\pythonColor
  18178. \begin{lstlisting}
  18179. Assign([|\itm{lhs}|], TagOf(|$e$|))
  18180. |$\Rightarrow$|
  18181. movq |$e'$|, |\itm{lhs'}|
  18182. andq $7, |\itm{lhs'}|
  18183. \end{lstlisting}
  18184. \fi}
  18185. \paragraph{\code{ValueOf}}
  18186. The instructions for \key{ValueOf} also differ, depending on whether
  18187. the type $T$ is a pointer (tuple or function) or not (integer or
  18188. Boolean). The following shows the instruction
  18189. selection for integers and
  18190. Booleans, in which we produce an untagged value by shifting it to the
  18191. right by 3 bits:
  18192. %
  18193. {\if\edition\racketEd
  18194. \begin{lstlisting}
  18195. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18196. |$\Rightarrow$|
  18197. movq |$e'$|, |\itm{lhs'}|
  18198. sarq $3, |\itm{lhs'}|
  18199. \end{lstlisting}
  18200. \fi}
  18201. %
  18202. {\if\edition\pythonEd\pythonColor
  18203. \begin{lstlisting}
  18204. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18205. |$\Rightarrow$|
  18206. movq |$e'$|, |\itm{lhs'}|
  18207. sarq $3, |\itm{lhs'}|
  18208. \end{lstlisting}
  18209. \fi}
  18210. %
  18211. In the case for tuples and procedures, we zero out the rightmost 3
  18212. bits. We accomplish this by creating the bit pattern $\ldots 0111$
  18213. ($7$ decimal) and apply bitwise-not to obtain $\ldots 11111000$ (-8
  18214. decimal), which we \code{movq} into the destination $\itm{lhs'}$.
  18215. Finally, we apply \code{andq} with the tagged value to get the desired
  18216. result.
  18217. %
  18218. {\if\edition\racketEd
  18219. \begin{lstlisting}
  18220. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18221. |$\Rightarrow$|
  18222. movq $|$-8$|, |\itm{lhs'}|
  18223. andq |$e'$|, |\itm{lhs'}|
  18224. \end{lstlisting}
  18225. \fi}
  18226. %
  18227. {\if\edition\pythonEd\pythonColor
  18228. \begin{lstlisting}
  18229. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18230. |$\Rightarrow$|
  18231. movq $|$-8$|, |\itm{lhs'}|
  18232. andq |$e'$|, |\itm{lhs'}|
  18233. \end{lstlisting}
  18234. \fi}
  18235. %% \paragraph{Type Predicates} We leave it to the reader to
  18236. %% devise a sequence of instructions to implement the type predicates
  18237. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  18238. \paragraph{\racket{\code{any-vector-length}}\python{\code{any\_len}}}
  18239. The \racket{\code{any-vector-length}}\python{\code{any\_len}}
  18240. operation combines the effect of \code{ValueOf} with accessing the
  18241. length of a tuple from the tag stored at the zero index of the tuple.
  18242. {\if\edition\racketEd
  18243. \begin{lstlisting}
  18244. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$e_1$|)))
  18245. |$\Longrightarrow$|
  18246. movq $|$-8$|, %r11
  18247. andq |$e_1'$|, %r11
  18248. movq 0(%r11), %r11
  18249. andq $126, %r11
  18250. sarq $1, %r11
  18251. movq %r11, |$\itm{lhs'}$|
  18252. \end{lstlisting}
  18253. \fi}
  18254. {\if\edition\pythonEd\pythonColor
  18255. \begin{lstlisting}
  18256. Assign([|$\itm{lhs}$|], Call(Name('any_len'), [|$e_1$|]))
  18257. |$\Longrightarrow$|
  18258. movq $|$-8$|, %r11
  18259. andq |$e_1'$|, %r11
  18260. movq 0(%r11), %r11
  18261. andq $126, %r11
  18262. sarq $1, %r11
  18263. movq %r11, |$\itm{lhs'}$|
  18264. \end{lstlisting}
  18265. \fi}
  18266. \paragraph{\racket{\code{any-vector-ref}}\python{\code{\code{any\_tuple\_load\_unsafe}}}}
  18267. This operation combines the effect of \code{ValueOf} with reading an
  18268. element of the tuple (see
  18269. section~\ref{sec:select-instructions-gc}). However, the index may be
  18270. an arbitrary atom, so instead of computing the offset at compile time,
  18271. we must generate instructions to compute the offset at runtime as
  18272. follows. Note the use of the new instruction \code{imulq}.
  18273. \begin{center}
  18274. \begin{minipage}{0.96\textwidth}
  18275. {\if\edition\racketEd
  18276. \begin{lstlisting}
  18277. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  18278. |$\Longrightarrow$|
  18279. movq |$\neg 111$|, %r11
  18280. andq |$e_1'$|, %r11
  18281. movq |$e_2'$|, %rax
  18282. addq $1, %rax
  18283. imulq $8, %rax
  18284. addq %rax, %r11
  18285. movq 0(%r11) |$\itm{lhs'}$|
  18286. \end{lstlisting}
  18287. \fi}
  18288. %
  18289. {\if\edition\pythonEd\pythonColor
  18290. \begin{lstlisting}
  18291. Assign([|$\itm{lhs}$|], Call(Name('any_tuple_load_unsafe'), [|$e_1$|,|$e_2$|]))
  18292. |$\Longrightarrow$|
  18293. movq $|$-8$|, %r11
  18294. andq |$e_1'$|, %r11
  18295. movq |$e_2'$|, %rax
  18296. addq $1, %rax
  18297. imulq $8, %rax
  18298. addq %rax, %r11
  18299. movq 0(%r11) |$\itm{lhs'}$|
  18300. \end{lstlisting}
  18301. \fi}
  18302. \end{minipage}
  18303. \end{center}
  18304. % $ pacify font lock
  18305. %% \paragraph{\racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}}}
  18306. %% The code generation for
  18307. %% \racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}} is
  18308. %% analogous to the above translation for reading from a tuple.
  18309. \section{Register Allocation for \LangAny{}}
  18310. \label{sec:register-allocation-Lany}
  18311. \index{subject}{register allocation}
  18312. There is an interesting interaction between tagged values and garbage
  18313. collection that has an impact on register allocation. A variable of
  18314. type \ANYTY{} might refer to a tuple, and therefore it might be a root
  18315. that needs to be inspected and copied during garbage collection. Thus,
  18316. we need to treat variables of type \ANYTY{} in a similar way to
  18317. variables of tuple type for purposes of register allocation,
  18318. with particular attention to the following:
  18319. \begin{itemize}
  18320. \item If a variable of type \ANYTY{} is live during a function call,
  18321. then it must be spilled. This can be accomplished by changing
  18322. \code{build\_interference} to mark all variables of type \ANYTY{}
  18323. that are live after a \code{callq} to be interfering with all the
  18324. registers.
  18325. \item If a variable of type \ANYTY{} is spilled, it must be spilled to
  18326. the root stack instead of the normal procedure call stack.
  18327. \end{itemize}
  18328. Another concern regarding the root stack is that the garbage collector
  18329. needs to differentiate among (1) plain old pointers to tuples, (2) a
  18330. tagged value that points to a tuple, and (3) a tagged value that is
  18331. not a tuple. We enable this differentiation by choosing not to use the
  18332. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  18333. reserved for identifying plain old pointers to tuples. That way, if
  18334. one of the first three bits is set, then we have a tagged value and
  18335. inspecting the tag can differentiate between tuples ($010$) and the
  18336. other kinds of values.
  18337. %% \begin{exercise}\normalfont
  18338. %% Expand your compiler to handle \LangAny{} as discussed in the last few
  18339. %% sections. Create 5 new programs that use the \ANYTY{} type and the
  18340. %% new operations (\code{Inject}, \code{Project}, etc.). Test your
  18341. %% compiler on these new programs and all of your previously created test
  18342. %% programs.
  18343. %% \end{exercise}
  18344. \begin{exercise}\normalfont\normalsize
  18345. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  18346. Create tests for \LangDyn{} by adapting ten of your previous test programs
  18347. by removing type annotations. Add five more test programs that
  18348. specifically rely on the language being dynamically typed. That is,
  18349. they should not be legal programs in a statically typed language, but
  18350. nevertheless they should be valid \LangDyn{} programs that run to
  18351. completion without error.
  18352. \end{exercise}
  18353. \begin{figure}[p]
  18354. \begin{tcolorbox}[colback=white]
  18355. {\if\edition\racketEd
  18356. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18357. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18358. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18359. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18360. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18361. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18362. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18363. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18364. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18365. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18366. \node (F1-4) at (4,0) {\large \LangAnyAlloc{}};
  18367. \node (F1-5) at (8,0) {\large \LangAnyAlloc{}};
  18368. \node (F1-6) at (12,0) {\large \LangAnyAlloc{}};
  18369. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18370. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18371. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  18372. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  18373. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18374. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18375. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  18376. \path[->,bend left=15] (Lfun) edge [above] node
  18377. {\ttfamily\footnotesize shrink} (Lfun-2);
  18378. \path[->,bend left=15] (Lfun-2) edge [above] node
  18379. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18380. \path[->,bend left=15] (Lfun-3) edge [above] node
  18381. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18382. \path[->,bend left=15] (Lfun-4) edge [left] node
  18383. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18384. \path[->,bend left=15] (Lfun-5) edge [below] node
  18385. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18386. \path[->,bend left=15] (Lfun-6) edge [below] node
  18387. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18388. \path[->,bend right=15] (Lfun-7) edge [above] node
  18389. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18390. \path[->,bend right=15] (F1-2) edge [right] node
  18391. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18392. \path[->,bend right=15] (F1-3) edge [below] node
  18393. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  18394. \path[->,bend right=15] (F1-4) edge [below] node
  18395. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  18396. \path[->,bend left=15] (F1-5) edge [above] node
  18397. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18398. \path[->,bend left=10] (F1-6) edge [below] node
  18399. {\ttfamily\footnotesize \ \ \ \ \ explicate\_control} (C3-2);
  18400. \path[->,bend left=15] (C3-2) edge [right] node
  18401. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18402. \path[->,bend right=15] (x86-2) edge [right] node
  18403. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  18404. \path[->,bend right=15] (x86-2-1) edge [below] node
  18405. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  18406. \path[->,bend right=15] (x86-2-2) edge [right] node
  18407. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  18408. \path[->,bend left=15] (x86-3) edge [above] node
  18409. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18410. \path[->,bend left=15] (x86-4) edge [right] node
  18411. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18412. \end{tikzpicture}
  18413. \fi}
  18414. {\if\edition\pythonEd\pythonColor
  18415. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18416. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18417. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18418. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18419. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18420. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18421. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18422. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18423. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18424. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18425. \node (F1-5) at (4,0) {\large \LangAnyAlloc{}};
  18426. \node (F1-6) at (8,0) {\large \LangAnyAlloc{}};
  18427. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18428. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18429. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18430. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18431. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  18432. \path[->,bend left=15] (Lfun) edge [above] node
  18433. {\ttfamily\footnotesize shrink} (Lfun-2);
  18434. \path[->,bend left=15] (Lfun-2) edge [above] node
  18435. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18436. \path[->,bend left=15] (Lfun-3) edge [above] node
  18437. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18438. \path[->,bend left=15] (Lfun-4) edge [left] node
  18439. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18440. \path[->,bend left=15] (Lfun-5) edge [below] node
  18441. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18442. \path[->,bend right=15] (Lfun-6) edge [above] node
  18443. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18444. \path[->,bend right=15] (Lfun-7) edge [above] node
  18445. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18446. \path[->,bend right=15] (F1-2) edge [right] node
  18447. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18448. \path[->,bend right=15] (F1-3) edge [below] node
  18449. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  18450. \path[->,bend left=15] (F1-5) edge [above] node
  18451. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18452. \path[->,bend left=10] (F1-6) edge [below] node
  18453. {\ttfamily\footnotesize \ \ \ \ \ \ \ \ explicate\_control} (C3-2);
  18454. \path[->,bend right=15] (C3-2) edge [right] node
  18455. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18456. \path[->,bend right=15] (x86-2) edge [below] node
  18457. {\ttfamily\footnotesize assign\_homes} (x86-3);
  18458. \path[->,bend right=15] (x86-3) edge [below] node
  18459. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18460. \path[->,bend left=15] (x86-4) edge [above] node
  18461. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18462. \end{tikzpicture}
  18463. \fi}
  18464. \end{tcolorbox}
  18465. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  18466. \label{fig:Ldyn-passes}
  18467. \end{figure}
  18468. Figure~\ref{fig:Ldyn-passes} provides an overview of the passes needed
  18469. for the compilation of \LangDyn{}.
  18470. % Further Reading
  18471. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18472. %% {\if\edition\pythonEd\pythonColor
  18473. %% \chapter{Objects}
  18474. %% \label{ch:Lobject}
  18475. %% \index{subject}{objects}
  18476. %% \index{subject}{classes}
  18477. %% \setcounter{footnote}{0}
  18478. %% \fi}
  18479. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18480. \chapter{Gradual Typing}
  18481. \label{ch:Lgrad}
  18482. \index{subject}{gradual typing}
  18483. \setcounter{footnote}{0}
  18484. This chapter studies the language \LangGrad{}, in which the programmer
  18485. can choose between static and dynamic type checking in different parts
  18486. of a program, thereby mixing the statically typed \LangLam{} language
  18487. with the dynamically typed \LangDyn{}. There are several approaches to
  18488. mixing static and dynamic typing, including multilanguage
  18489. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  18490. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  18491. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  18492. programmer controls the amount of static versus dynamic checking by
  18493. adding or removing type annotations on parameters and
  18494. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  18495. The definition of the concrete syntax of \LangGrad{} is shown in
  18496. figure~\ref{fig:Lgrad-concrete-syntax}, and the definition of its
  18497. abstract syntax is shown in figure~\ref{fig:Lgrad-syntax}. The main
  18498. syntactic difference between \LangLam{} and \LangGrad{} is that type
  18499. annotations are optional, which is specified in the grammar using the
  18500. \Param{} and \itm{ret} nonterminals. In the abstract syntax, type
  18501. annotations are not optional, but we use the \CANYTY{} type when a type
  18502. annotation is absent.
  18503. %
  18504. Both the type checker and the interpreter for \LangGrad{} require some
  18505. interesting changes to enable gradual typing, which we discuss in the
  18506. next two sections.
  18507. \newcommand{\LgradGrammarRacket}{
  18508. \begin{array}{lcl}
  18509. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18510. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18511. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  18512. \Exp &::=& \LP\Exp \; \Exp \ldots\RP
  18513. \MID \CGLAMBDA{\LP\Param\ldots\RP}{\itm{ret}}{\Exp} \\
  18514. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  18515. \Def &::=& \CGDEF{\Var}{\Param\ldots}{\itm{ret}}{\Exp}
  18516. \end{array}
  18517. }
  18518. \newcommand{\LgradASTRacket}{
  18519. \begin{array}{lcl}
  18520. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18521. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18522. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  18523. \MID \LAMBDA{\LP\Param\ldots\RP}{\Type}{\Exp} \\
  18524. \itm{op} &::=& \code{procedure-arity} \\
  18525. \Def &::=& \FUNDEF{\Var}{\LP\Param\ldots\RP}{\Type}{\code{'()}}{\Exp}
  18526. \end{array}
  18527. }
  18528. \newcommand{\LgradGrammarPython}{
  18529. \begin{array}{lcl}
  18530. \Type &::=& \key{Any}
  18531. \MID \key{int}
  18532. \MID \key{bool}
  18533. \MID \key{tuple}\LS \Type \code{, } \ldots \RS
  18534. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  18535. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  18536. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}
  18537. \MID \CARITY{\Exp} \\
  18538. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp} \MID \CRETURN{\Exp} \\
  18539. \Param &::=& \Var \MID \Var \key{:} \Type \\
  18540. \itm{ret} &::=& \epsilon \MID \key{->}~\Type \\
  18541. \Def &::=& \CGDEF{\Var}{\Param\key{, }\ldots}{\itm{ret}}{\Stmt^{+}}
  18542. \end{array}
  18543. }
  18544. \newcommand{\LgradASTPython}{
  18545. \begin{array}{lcl}
  18546. \Type &::=& \key{AnyType()} \MID \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}\\
  18547. &\MID& \key{TupleType}\LP\Type^{*}\RP
  18548. \MID \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  18549. \Exp &::=& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp}\\
  18550. &\MID& \ARITY{\Exp} \\
  18551. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  18552. \MID \RETURN{\Exp} \\
  18553. \Param &::=& \LP\Var\key{,}\Type\RP \\
  18554. \Def &::=& \FUNDEF{\Var}{\Param^{*}}{\Type}{}{\Stmt^{+}}
  18555. \end{array}
  18556. }
  18557. \begin{figure}[tp]
  18558. \centering
  18559. \begin{tcolorbox}[colback=white]
  18560. \small
  18561. {\if\edition\racketEd
  18562. \[
  18563. \begin{array}{l}
  18564. \gray{\LintGrammarRacket{}} \\ \hline
  18565. \gray{\LvarGrammarRacket{}} \\ \hline
  18566. \gray{\LifGrammarRacket{}} \\ \hline
  18567. \gray{\LwhileGrammarRacket} \\ \hline
  18568. \gray{\LtupGrammarRacket} \\ \hline
  18569. \LgradGrammarRacket \\
  18570. \begin{array}{lcl}
  18571. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  18572. \end{array}
  18573. \end{array}
  18574. \]
  18575. \fi}
  18576. {\if\edition\pythonEd\pythonColor
  18577. \[
  18578. \begin{array}{l}
  18579. \gray{\LintGrammarPython{}} \\ \hline
  18580. \gray{\LvarGrammarPython{}} \\ \hline
  18581. \gray{\LifGrammarPython{}} \\ \hline
  18582. \gray{\LwhileGrammarPython} \\ \hline
  18583. \gray{\LtupGrammarPython} \\ \hline
  18584. \LgradGrammarPython \\
  18585. \begin{array}{lcl}
  18586. \LangGradM{} &::=& \Def\ldots \Stmt\ldots
  18587. \end{array}
  18588. \end{array}
  18589. \]
  18590. \fi}
  18591. \end{tcolorbox}
  18592. \caption{The concrete syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  18593. \label{fig:Lgrad-concrete-syntax}
  18594. \end{figure}
  18595. \begin{figure}[tp]
  18596. \centering
  18597. \begin{tcolorbox}[colback=white]
  18598. \small
  18599. {\if\edition\racketEd
  18600. \[
  18601. \begin{array}{l}
  18602. \gray{\LintOpAST} \\ \hline
  18603. \gray{\LvarASTRacket{}} \\ \hline
  18604. \gray{\LifASTRacket{}} \\ \hline
  18605. \gray{\LwhileASTRacket{}} \\ \hline
  18606. \gray{\LtupASTRacket{}} \\ \hline
  18607. \LgradASTRacket \\
  18608. \begin{array}{lcl}
  18609. \LangGradM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  18610. \end{array}
  18611. \end{array}
  18612. \]
  18613. \fi}
  18614. {\if\edition\pythonEd\pythonColor
  18615. \[
  18616. \begin{array}{l}
  18617. \gray{\LintASTPython{}} \\ \hline
  18618. \gray{\LvarASTPython{}} \\ \hline
  18619. \gray{\LifASTPython{}} \\ \hline
  18620. \gray{\LwhileASTPython} \\ \hline
  18621. \gray{\LtupASTPython} \\ \hline
  18622. \LgradASTPython \\
  18623. \begin{array}{lcl}
  18624. \LangGradM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  18625. \end{array}
  18626. \end{array}
  18627. \]
  18628. \fi}
  18629. \end{tcolorbox}
  18630. \caption{The abstract syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  18631. \label{fig:Lgrad-syntax}
  18632. \end{figure}
  18633. % TODO: more road map -Jeremy
  18634. %\clearpage
  18635. \section{Type Checking \LangGrad{}}
  18636. \label{sec:gradual-type-check}
  18637. We begin by discussing the type checking of a partially typed variant
  18638. of the \code{map} example from chapter~\ref{ch:Lfun}, shown in
  18639. figure~\ref{fig:gradual-map}. The \code{map} function itself is
  18640. statically typed, so there is nothing special happening there with
  18641. respect to type checking. On the other hand, the \code{inc} function
  18642. does not have type annotations, so the type checker assigns the type
  18643. \CANYTY{} to parameter \code{x} and the return type. Now consider the
  18644. \code{+} operator inside \code{inc}. It expects both arguments to have
  18645. type \INTTY{}, but its first argument \code{x} has type \CANYTY{}. In
  18646. a gradually typed language, such differences are allowed so long as
  18647. the types are \emph{consistent}; that is, they are equal except in
  18648. places where there is an \CANYTY{} type. That is, the type \CANYTY{}
  18649. is consistent with every other type. Figure~\ref{fig:consistent}
  18650. shows the definition of the
  18651. \racket{\code{consistent?}}\python{\code{consistent}} method.
  18652. %
  18653. So the type checker allows the \code{+} operator to be applied
  18654. to \code{x} because \CANYTY{} is consistent with \INTTY{}.
  18655. %
  18656. Next consider the call to the \code{map} function shown in
  18657. figure~\ref{fig:gradual-map} with the arguments \code{inc} and a
  18658. tuple. The \code{inc} function has type
  18659. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}},
  18660. but parameter \code{f} of \code{map} has type
  18661. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18662. The type checker for \LangGrad{} accepts this call because the two types are
  18663. consistent.
  18664. \begin{figure}[btp]
  18665. % gradual_test_9.rkt
  18666. \begin{tcolorbox}[colback=white]
  18667. {\if\edition\racketEd
  18668. \begin{lstlisting}
  18669. (define (map [f : (Integer -> Integer)]
  18670. [v : (Vector Integer Integer)])
  18671. : (Vector Integer Integer)
  18672. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18673. (define (inc x) (+ x 1))
  18674. (vector-ref (map inc (vector 0 41)) 1)
  18675. \end{lstlisting}
  18676. \fi}
  18677. {\if\edition\pythonEd\pythonColor
  18678. \begin{lstlisting}
  18679. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18680. return f(v[0]), f(v[1])
  18681. def inc(x):
  18682. return x + 1
  18683. t = map(inc, (0, 41))
  18684. print(t[1])
  18685. \end{lstlisting}
  18686. \fi}
  18687. \end{tcolorbox}
  18688. \caption{A partially typed version of the \code{map} example.}
  18689. \label{fig:gradual-map}
  18690. \end{figure}
  18691. \begin{figure}[tbp]
  18692. \begin{tcolorbox}[colback=white]
  18693. {\if\edition\racketEd
  18694. \begin{lstlisting}
  18695. (define/public (consistent? t1 t2)
  18696. (match* (t1 t2)
  18697. [('Integer 'Integer) #t]
  18698. [('Boolean 'Boolean) #t]
  18699. [('Void 'Void) #t]
  18700. [('Any t2) #t]
  18701. [(t1 'Any) #t]
  18702. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  18703. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  18704. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  18705. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  18706. (consistent? rt1 rt2))]
  18707. [(other wise) #f]))
  18708. \end{lstlisting}
  18709. \fi}
  18710. {\if\edition\pythonEd\pythonColor
  18711. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18712. def consistent(self, t1, t2):
  18713. match (t1, t2):
  18714. case (AnyType(), _):
  18715. return True
  18716. case (_, AnyType()):
  18717. return True
  18718. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  18719. return all(map(self.consistent, ps1, ps2)) and consistent(rt1, rt2)
  18720. case (TupleType(ts1), TupleType(ts2)):
  18721. return all(map(self.consistent, ts1, ts2))
  18722. case (_, _):
  18723. return t1 == t2
  18724. \end{lstlisting}
  18725. \fi}
  18726. \end{tcolorbox}
  18727. \caption{The consistency method on types.}
  18728. \label{fig:consistent}
  18729. \end{figure}
  18730. It is also helpful to consider how gradual typing handles programs with an
  18731. error, such as applying \code{map} to a function that sometimes
  18732. returns a Boolean, as shown in figure~\ref{fig:map-maybe_inc}. The
  18733. type checker for \LangGrad{} accepts this program because the type of
  18734. \code{maybe\_inc} is consistent with the type of parameter \code{f} of
  18735. \code{map}; that is,
  18736. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}}
  18737. is consistent with
  18738. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18739. One might say that a gradual type checker is optimistic in that it
  18740. accepts programs that might execute without a runtime type error.
  18741. %
  18742. The definition of the type checker for \LangGrad{} is shown in
  18743. figures~\ref{fig:type-check-Lgradual-1}, \ref{fig:type-check-Lgradual-2},
  18744. and \ref{fig:type-check-Lgradual-3}.
  18745. %% \begin{figure}[tp]
  18746. %% \centering
  18747. %% \fbox{
  18748. %% \begin{minipage}{0.96\textwidth}
  18749. %% \small
  18750. %% \[
  18751. %% \begin{array}{lcl}
  18752. %% \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  18753. %% \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  18754. %% \end{array}
  18755. %% \]
  18756. %% \end{minipage}
  18757. %% }
  18758. %% \caption{The abstract syntax of \LangCast{}, extending \LangLam{} (figure~\ref{fig:Lwhile-syntax}).}
  18759. %% \label{fig:Lgrad-prime-syntax}
  18760. %% \end{figure}
  18761. \begin{figure}[tbp]
  18762. \begin{tcolorbox}[colback=white]
  18763. {\if\edition\racketEd
  18764. \begin{lstlisting}
  18765. (define (map [f : (Integer -> Integer)]
  18766. [v : (Vector Integer Integer)])
  18767. : (Vector Integer Integer)
  18768. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18769. (define (inc x) (+ x 1))
  18770. (define (true) #t)
  18771. (define (maybe_inc x) (if (eq? 0 (read)) (inc x) (true)))
  18772. (vector-ref (map maybe_inc (vector 0 41)) 0)
  18773. \end{lstlisting}
  18774. \fi}
  18775. {\if\edition\pythonEd\pythonColor
  18776. \begin{lstlisting}
  18777. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18778. return f(v[0]), f(v[1])
  18779. def inc(x):
  18780. return x + 1
  18781. def true():
  18782. return True
  18783. def maybe_inc(x):
  18784. return inc(x) if input_int() == 0 else true()
  18785. t = map(maybe_inc, (0, 41))
  18786. print( t[1] )
  18787. \end{lstlisting}
  18788. \fi}
  18789. \end{tcolorbox}
  18790. \caption{A variant of the \code{map} example with an error.}
  18791. \label{fig:map-maybe_inc}
  18792. \end{figure}
  18793. Running this program with input \code{1} triggers an
  18794. error when the \code{maybe\_inc} function returns
  18795. \racket{\code{\#t}}\python{\code{True}}. The \LangGrad{} language
  18796. performs checking at runtime to ensure the integrity of the static
  18797. types, such as the
  18798. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}
  18799. annotation on
  18800. parameter \code{f} of \code{map}.
  18801. Here we give a preview of how the runtime checking is accomplished;
  18802. the following sections provide the details.
  18803. The runtime checking is carried out by a new \code{Cast} AST node that
  18804. is generated in a new pass named \code{cast\_insert}. The output of
  18805. \code{cast\_insert} is a program in the \LangCast{} language, which
  18806. simply adds \code{Cast} and \CANYTY{} to \LangLam{}.
  18807. %
  18808. Figure~\ref{fig:map-cast} shows the output of \code{cast\_insert} for
  18809. \code{map} and \code{maybe\_inc}. The idea is that \code{Cast} is
  18810. inserted every time the type checker encounters two types that are
  18811. consistent but not equal. In the \code{inc} function, \code{x} is
  18812. cast to \INTTY{} and the result of the \code{+} is cast to
  18813. \CANYTY{}. In the call to \code{map}, the \code{inc} argument
  18814. is cast from
  18815. \racket{\code{(Any -> Any)}}
  18816. \python{\code{Callable[[Any], Any]}}
  18817. to
  18818. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18819. %
  18820. In the next section we see how to interpret the \code{Cast} node.
  18821. \begin{figure}[btp]
  18822. \begin{tcolorbox}[colback=white]
  18823. {\if\edition\racketEd
  18824. \begin{lstlisting}
  18825. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  18826. : (Vector Integer Integer)
  18827. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18828. (define (inc [x : Any]) : Any
  18829. (cast (+ (cast x Any Integer) 1) Integer Any))
  18830. (define (true) : Any (cast #t Boolean Any))
  18831. (define (maybe_inc [x : Any]) : Any
  18832. (if (eq? 0 (read)) (inc x) (true)))
  18833. (vector-ref (map (cast maybe_inc (Any -> Any) (Integer -> Integer))
  18834. (vector 0 41)) 0)
  18835. \end{lstlisting}
  18836. \fi}
  18837. {\if\edition\pythonEd\pythonColor
  18838. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18839. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18840. return f(v[0]), f(v[1])
  18841. def inc(x : Any) -> Any:
  18842. return Cast(Cast(x, Any, int) + 1, int, Any)
  18843. def true() -> Any:
  18844. return Cast(True, bool, Any)
  18845. def maybe_inc(x : Any) -> Any:
  18846. return inc(x) if input_int() == 0 else true()
  18847. t = map(Cast(maybe_inc, Callable[[Any], Any], Callable[[int], int]),
  18848. (0, 41))
  18849. print(t[1])
  18850. \end{lstlisting}
  18851. \fi}
  18852. \end{tcolorbox}
  18853. \caption{Output of the \code{cast\_insert} pass for the \code{map}
  18854. and \code{maybe\_inc} example.}
  18855. \label{fig:map-cast}
  18856. \end{figure}
  18857. {\if\edition\pythonEd\pythonColor
  18858. \begin{figure}[tbp]
  18859. \begin{tcolorbox}[colback=white]
  18860. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18861. class TypeCheckLgrad(TypeCheckLlambda):
  18862. def type_check_exp(self, e, env) -> Type:
  18863. match e:
  18864. case Name(id):
  18865. return env[id]
  18866. case Constant(value) if isinstance(value, bool):
  18867. return BoolType()
  18868. case Constant(value) if isinstance(value, int):
  18869. return IntType()
  18870. case Call(Name('input_int'), []):
  18871. return IntType()
  18872. case BinOp(left, op, right):
  18873. left_type = self.type_check_exp(left, env)
  18874. self.check_consistent(left_type, IntType(), left)
  18875. right_type = self.type_check_exp(right, env)
  18876. self.check_consistent(right_type, IntType(), right)
  18877. return IntType()
  18878. case IfExp(test, body, orelse):
  18879. test_t = self.type_check_exp(test, env)
  18880. self.check_consistent(test_t, BoolType(), test)
  18881. body_t = self.type_check_exp(body, env)
  18882. orelse_t = self.type_check_exp(orelse, env)
  18883. self.check_consistent(body_t, orelse_t, e)
  18884. return self.join_types(body_t, orelse_t)
  18885. case Call(func, args):
  18886. func_t = self.type_check_exp(func, env)
  18887. args_t = [self.type_check_exp(arg, env) for arg in args]
  18888. match func_t:
  18889. case FunctionType(params_t, return_t) if len(params_t) == len(args_t):
  18890. for (arg_t, param_t) in zip(args_t, params_t):
  18891. self.check_consistent(param_t, arg_t, e)
  18892. return return_t
  18893. case AnyType():
  18894. return AnyType()
  18895. case _:
  18896. raise Exception('type_check_exp: in call, unexpected ' + repr(func_t))
  18897. ...
  18898. case _:
  18899. raise Exception('type_check_exp: unexpected ' + repr(e))
  18900. \end{lstlisting}
  18901. \end{tcolorbox}
  18902. \caption{Type checking expressions in the \LangGrad{} language.}
  18903. \label{fig:type-check-Lgradual-1}
  18904. \end{figure}
  18905. \begin{figure}[tbp]
  18906. \begin{tcolorbox}[colback=white]
  18907. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18908. def check_exp(self, e, expected_ty, env):
  18909. match e:
  18910. case Lambda(params, body):
  18911. match expected_ty:
  18912. case FunctionType(params_t, return_t):
  18913. new_env = env.copy().update(zip(params, params_t))
  18914. e.has_type = expected_ty
  18915. body_ty = self.type_check_exp(body, new_env)
  18916. self.check_consistent(body_ty, return_t)
  18917. case AnyType():
  18918. new_env = env.copy().update((p, AnyType()) for p in params)
  18919. e.has_type = FunctionType([AnyType() for _ in params], AnyType())
  18920. body_ty = self.type_check_exp(body, new_env)
  18921. case _:
  18922. raise Exception('lambda does not have type ' + str(expected_ty))
  18923. case _:
  18924. e_ty = self.type_check_exp(e, env)
  18925. self.check_consistent(e_ty, expected_ty, e)
  18926. \end{lstlisting}
  18927. \end{tcolorbox}
  18928. \caption{Checking expressions with respect to a type in the \LangGrad{} language.}
  18929. \label{fig:type-check-Lgradual-2}
  18930. \end{figure}
  18931. \begin{figure}[tbp]
  18932. \begin{tcolorbox}[colback=white]
  18933. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18934. def type_check_stmt(self, s, env, return_type):
  18935. match s:
  18936. case Assign([Name(id)], value):
  18937. value_ty = self.type_check_exp(value, env)
  18938. if id in env:
  18939. self.check_consistent(env[id], value_ty, value)
  18940. else:
  18941. env[id] = value_ty
  18942. ...
  18943. case _:
  18944. raise Exception('type_check_stmts: unexpected ' + repr(ss))
  18945. def type_check_stmts(self, ss, env, return_type):
  18946. for s in ss:
  18947. self.type_check_stmt(s, env, return_type)
  18948. \end{lstlisting}
  18949. \end{tcolorbox}
  18950. \caption{Type checking statements in the \LangGrad{} language.}
  18951. \label{fig:type-check-Lgradual-3}
  18952. \end{figure}
  18953. \begin{figure}[tbp]
  18954. \begin{tcolorbox}[colback=white]
  18955. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  18956. def join_types(self, t1, t2):
  18957. match (t1, t2):
  18958. case (AnyType(), _):
  18959. return t2
  18960. case (_, AnyType()):
  18961. return t1
  18962. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  18963. return FunctionType(list(map(self.join_types, ps1, ps2)),
  18964. self.join_types(rt1,rt2))
  18965. case (TupleType(ts1), TupleType(ts2)):
  18966. return TupleType(list(map(self.join_types, ts1, ts2)))
  18967. case (_, _):
  18968. return t1
  18969. def check_consistent(self, t1, t2, e):
  18970. if not self.consistent(t1, t2):
  18971. raise Exception('error: ' + repr(t1) + ' inconsistent with ' + repr(t2) \
  18972. + ' in ' + repr(e))
  18973. \end{lstlisting}
  18974. \end{tcolorbox}
  18975. \caption{Auxiliary methods for type checking \LangGrad{}.}
  18976. \label{fig:type-check-Lgradual-aux}
  18977. \end{figure}
  18978. \fi}
  18979. {\if\edition\racketEd
  18980. \begin{figure}[tbp]
  18981. \begin{tcolorbox}[colback=white]
  18982. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18983. (define/override (type-check-exp env)
  18984. (lambda (e)
  18985. (define recur (type-check-exp env))
  18986. (match e
  18987. [(Prim op es) #:when (not (set-member? explicit-prim-ops op))
  18988. (define-values (new-es ts)
  18989. (for/lists (exprs types) ([e es])
  18990. (recur e)))
  18991. (define t-ret (type-check-op op ts e))
  18992. (values (Prim op new-es) t-ret)]
  18993. [(Prim 'eq? (list e1 e2))
  18994. (define-values (e1^ t1) (recur e1))
  18995. (define-values (e2^ t2) (recur e2))
  18996. (check-consistent? t1 t2 e)
  18997. (define T (meet t1 t2))
  18998. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  18999. [(Prim 'and (list e1 e2))
  19000. (recur (If e1 e2 (Bool #f)))]
  19001. [(Prim 'or (list e1 e2))
  19002. (define tmp (gensym 'tmp))
  19003. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  19004. [(If e1 e2 e3)
  19005. (define-values (e1^ T1) (recur e1))
  19006. (define-values (e2^ T2) (recur e2))
  19007. (define-values (e3^ T3) (recur e3))
  19008. (check-consistent? T1 'Boolean e)
  19009. (check-consistent? T2 T3 e)
  19010. (define Tif (meet T2 T3))
  19011. (values (If e1^ e2^ e3^) Tif)]
  19012. [(SetBang x e1)
  19013. (define-values (e1^ T1) (recur e1))
  19014. (define varT (dict-ref env x))
  19015. (check-consistent? T1 varT e)
  19016. (values (SetBang x e1^) 'Void)]
  19017. [(WhileLoop e1 e2)
  19018. (define-values (e1^ T1) (recur e1))
  19019. (check-consistent? T1 'Boolean e)
  19020. (define-values (e2^ T2) ((type-check-exp env) e2))
  19021. (values (WhileLoop e1^ e2^) 'Void)]
  19022. [(Prim 'vector-length (list e1))
  19023. (define-values (e1^ t) (recur e1))
  19024. (match t
  19025. [`(Vector ,ts ...)
  19026. (values (Prim 'vector-length (list e1^)) 'Integer)]
  19027. ['Any (values (Prim 'vector-length (list e1^)) 'Integer)])]
  19028. \end{lstlisting}
  19029. \end{tcolorbox}
  19030. \caption{Type checker for the \LangGrad{} language, part 1.}
  19031. \label{fig:type-check-Lgradual-1}
  19032. \end{figure}
  19033. \begin{figure}[tbp]
  19034. \begin{tcolorbox}[colback=white]
  19035. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19036. [(Prim 'vector-ref (list e1 e2))
  19037. (define-values (e1^ t1) (recur e1))
  19038. (define-values (e2^ t2) (recur e2))
  19039. (check-consistent? t2 'Integer e)
  19040. (match t1
  19041. [`(Vector ,ts ...)
  19042. (match e2^
  19043. [(Int i)
  19044. (unless (and (0 . <= . i) (i . < . (length ts)))
  19045. (error 'type-check "invalid index ~a in ~a" i e))
  19046. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  19047. [else (values (Prim 'vector-ref (list e1^ e2^)) 'Any)])]
  19048. ['Any (values (Prim 'vector-ref (list e1^ e2^)) 'Any)]
  19049. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19050. [(Prim 'vector-set! (list e1 e2 e3) )
  19051. (define-values (e1^ t1) (recur e1))
  19052. (define-values (e2^ t2) (recur e2))
  19053. (define-values (e3^ t3) (recur e3))
  19054. (check-consistent? t2 'Integer e)
  19055. (match t1
  19056. [`(Vector ,ts ...)
  19057. (match e2^
  19058. [(Int i)
  19059. (unless (and (0 . <= . i) (i . < . (length ts)))
  19060. (error 'type-check "invalid index ~a in ~a" i e))
  19061. (check-consistent? (list-ref ts i) t3 e)
  19062. (values (Prim 'vector-set! (list e1^ (Int i) e3^)) 'Void)]
  19063. [else (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)])]
  19064. ['Any (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)]
  19065. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19066. [(Apply e1 e2s)
  19067. (define-values (e1^ T1) (recur e1))
  19068. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  19069. (match T1
  19070. [`(,T1ps ... -> ,T1rt)
  19071. (for ([T2 T2s] [Tp T1ps])
  19072. (check-consistent? T2 Tp e))
  19073. (values (Apply e1^ e2s^) T1rt)]
  19074. [`Any (values (Apply e1^ e2s^) 'Any)]
  19075. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  19076. [(Lambda params Tr e1)
  19077. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  19078. (match p
  19079. [`[,x : ,T] (values x T)]
  19080. [(? symbol? x) (values x 'Any)])))
  19081. (define-values (e1^ T1)
  19082. ((type-check-exp (append (map cons xs Ts) env)) e1))
  19083. (check-consistent? Tr T1 e)
  19084. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr e1^)
  19085. `(,@Ts -> ,Tr))]
  19086. [else ((super type-check-exp env) e)]
  19087. )))
  19088. \end{lstlisting}
  19089. \end{tcolorbox}
  19090. \caption{Type checker for the \LangGrad{} language, part 2.}
  19091. \label{fig:type-check-Lgradual-2}
  19092. \end{figure}
  19093. \begin{figure}[tbp]
  19094. \begin{tcolorbox}[colback=white]
  19095. \begin{lstlisting}
  19096. (define/override (type-check-def env)
  19097. (lambda (e)
  19098. (match e
  19099. [(Def f params rt info body)
  19100. (define-values (xs ps) (for/lists (l1 l2) ([p params])
  19101. (match p
  19102. [`[,x : ,T] (values x T)]
  19103. [(? symbol? x) (values x 'Any)])))
  19104. (define new-env (append (map cons xs ps) env))
  19105. (define-values (body^ ty^) ((type-check-exp new-env) body))
  19106. (check-consistent? ty^ rt e)
  19107. (Def f (for/list ([x xs] [T ps]) `[,x : ,T]) rt info body^)]
  19108. [else (error 'type-check "ill-formed function definition ~a" e)]
  19109. )))
  19110. (define/override (type-check-program e)
  19111. (match e
  19112. [(Program info body)
  19113. (define-values (body^ ty) ((type-check-exp '()) body))
  19114. (check-consistent? ty 'Integer e)
  19115. (ProgramDefsExp info '() body^)]
  19116. [(ProgramDefsExp info ds body)
  19117. (define new-env (for/list ([d ds])
  19118. (cons (Def-name d) (fun-def-type d))))
  19119. (define ds^ (for/list ([d ds])
  19120. ((type-check-def new-env) d)))
  19121. (define-values (body^ ty) ((type-check-exp new-env) body))
  19122. (check-consistent? ty 'Integer e)
  19123. (ProgramDefsExp info ds^ body^)]
  19124. [else (super type-check-program e)]))
  19125. \end{lstlisting}
  19126. \end{tcolorbox}
  19127. \caption{Type checker for the \LangGrad{} language, part 3.}
  19128. \label{fig:type-check-Lgradual-3}
  19129. \end{figure}
  19130. \begin{figure}[tbp]
  19131. \begin{tcolorbox}[colback=white]
  19132. \begin{lstlisting}
  19133. (define/public (join t1 t2)
  19134. (match* (t1 t2)
  19135. [('Integer 'Integer) 'Integer]
  19136. [('Boolean 'Boolean) 'Boolean]
  19137. [('Void 'Void) 'Void]
  19138. [('Any t2) t2]
  19139. [(t1 'Any) t1]
  19140. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19141. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  19142. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19143. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  19144. -> ,(join rt1 rt2))]))
  19145. (define/public (meet t1 t2)
  19146. (match* (t1 t2)
  19147. [('Integer 'Integer) 'Integer]
  19148. [('Boolean 'Boolean) 'Boolean]
  19149. [('Void 'Void) 'Void]
  19150. [('Any t2) 'Any]
  19151. [(t1 'Any) 'Any]
  19152. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19153. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  19154. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19155. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  19156. -> ,(meet rt1 rt2))]))
  19157. (define/public (check-consistent? t1 t2 e)
  19158. (unless (consistent? t1 t2)
  19159. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  19160. (define explicit-prim-ops
  19161. (set-union
  19162. (type-predicates)
  19163. (set 'procedure-arity 'eq? 'not 'and 'or
  19164. 'vector 'vector-length 'vector-ref 'vector-set!
  19165. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  19166. (define/override (fun-def-type d)
  19167. (match d
  19168. [(Def f params rt info body)
  19169. (define ps
  19170. (for/list ([p params])
  19171. (match p
  19172. [`[,x : ,T] T]
  19173. [(? symbol?) 'Any]
  19174. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  19175. `(,@ps -> ,rt)]
  19176. [else (error 'fun-def-type "ill-formed definition in ~a" d)]))
  19177. \end{lstlisting}
  19178. \end{tcolorbox}
  19179. \caption{Auxiliary functions for type checking \LangGrad{}.}
  19180. \label{fig:type-check-Lgradual-aux}
  19181. \end{figure}
  19182. \fi}
  19183. \clearpage
  19184. \section{Interpreting \LangCast{}}
  19185. \label{sec:interp-casts}
  19186. The runtime behavior of casts involving simple types such as
  19187. \INTTY{} and \BOOLTY{} is straightforward. For example, a
  19188. cast from \INTTY{} to \CANYTY{} can be accomplished with the
  19189. \code{Inject} operator of \LangAny{}, which puts the integer into a
  19190. tagged value (figure~\ref{fig:interp-Lany}). Similarly, a cast from
  19191. \CANYTY{} to \INTTY{} is accomplished with the \code{Project}
  19192. operator, by checking the value's tag and either retrieving
  19193. the underlying integer or signaling an error if the tag is not the
  19194. one for integers (figure~\ref{fig:interp-Lany-aux}).
  19195. %
  19196. Things get more interesting with casts involving
  19197. \racket{function and tuple types}\python{function, tuple, and array types}.
  19198. Consider the cast of the function \code{maybe\_inc} from
  19199. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any], Any]}}
  19200. to
  19201. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int], int]}}
  19202. shown in figure~\ref{fig:map-maybe_inc}.
  19203. When the \code{maybe\_inc} function flows through
  19204. this cast at runtime, we don't know whether it will return
  19205. an integer, because that depends on the input from the user.
  19206. The \LangCast{} interpreter therefore delays the checking
  19207. of the cast until the function is applied. To do so it
  19208. wraps \code{maybe\_inc} in a new function that casts its parameter
  19209. from \INTTY{} to \CANYTY{}, applies \code{maybe\_inc}, and then
  19210. casts the return value from \CANYTY{} to \INTTY{}.
  19211. {\if\edition\pythonEd\pythonColor
  19212. %
  19213. There are further complications regarding casts on mutable data
  19214. such as the \code{list} type introduced in
  19215. the challenge assignment of section~\ref{sec:arrays}.
  19216. %
  19217. \fi}
  19218. %
  19219. Consider the example presented in figure~\ref{fig:map-bang} that
  19220. defines a partially typed version of \code{map} whose parameter
  19221. \code{v} has type
  19222. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}
  19223. and that updates \code{v} in place
  19224. instead of returning a new tuple. We name this function
  19225. \code{map\_inplace}. We apply \code{map\_inplace} to
  19226. \racket{a tuple}\python{an array} of integers, so the type checker
  19227. inserts a cast from
  19228. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}}
  19229. to
  19230. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}.
  19231. A naive way for the \LangCast{} interpreter to cast between
  19232. \racket{tuple}\python{array} types would be to build a new
  19233. \racket{tuple}\python{array} whose elements are the result
  19234. of casting each of the original elements to the appropriate target
  19235. type. However, this approach is not valid for mutable data structures.
  19236. In the example of figure~\ref{fig:map-bang},
  19237. if the cast created a new \racket{tuple}\python{array}, then the updates inside
  19238. \code{map\_inplace} would happen to the new \racket{tuple}\python{array} and not
  19239. the original one.
  19240. \begin{figure}[tbp]
  19241. \begin{tcolorbox}[colback=white]
  19242. % gradual_test_11.rkt
  19243. {\if\edition\racketEd
  19244. \begin{lstlisting}
  19245. (define (map_inplace [f : (Any -> Any)]
  19246. [v : (Vector Any Any)]) : Void
  19247. (begin
  19248. (vector-set! v 0 (f (vector-ref v 0)))
  19249. (vector-set! v 1 (f (vector-ref v 1)))))
  19250. (define (inc x) (+ x 1))
  19251. (let ([v (vector 0 41)])
  19252. (begin (map_inplace inc v) (vector-ref v 1)))
  19253. \end{lstlisting}
  19254. \fi}
  19255. {\if\edition\pythonEd\pythonColor
  19256. \begin{lstlisting}
  19257. def map_inplace(f : Callable[[int], int], v : list[Any]) -> None:
  19258. i = 0
  19259. while i != len(v):
  19260. v[i] = f(v[i])
  19261. i = i + 1
  19262. def inc(x : int) -> int:
  19263. return x + 1
  19264. v = [0, 41]
  19265. map_inplace(inc, v)
  19266. print( v[1] )
  19267. \end{lstlisting}
  19268. \fi}
  19269. \end{tcolorbox}
  19270. \caption{An example involving casts on arrays.}
  19271. \label{fig:map-bang}
  19272. \end{figure}
  19273. Instead the interpreter needs to create a new kind of value, a
  19274. \emph{proxy}, that intercepts every \racket{tuple}\python{array} operation.
  19275. On a read, the proxy reads from the underlying \racket{tuple}\python{array}
  19276. and then applies a
  19277. cast to the resulting value. On a write, the proxy casts the argument
  19278. value and then performs the write to the underlying \racket{tuple}\python{array}.
  19279. \racket{
  19280. For the first \code{(vector-ref v 0)} in \code{map\_inplace}, the proxy casts
  19281. \code{0} from \INTTY{} to \CANYTY{}.
  19282. For the first \code{vector-set!}, the proxy casts a tagged \code{1}
  19283. from \CANYTY{} to \INTTY{}.
  19284. }
  19285. \python{
  19286. For the subscript \code{v[i]} in \code{f(v[i])} of \code{map\_inplace},
  19287. the proxy casts the integer from \INTTY{} to \CANYTY{}.
  19288. For the subscript on the left of the assignment,
  19289. the proxy casts the tagged value from \CANYTY{} to \INTTY{}.
  19290. }
  19291. Finally we consider casts between the \CANYTY{} type and higher-order types
  19292. such as functions and \racket{tuples}\python{lists}. Figure~\ref{fig:map-any}
  19293. shows a variant of \code{map\_inplace} in which parameter \code{v} does not
  19294. have a type annotation, so it is given type \CANYTY{}. In the call to
  19295. \code{map\_inplace}, the \racket{tuple}\python{list} has type
  19296. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}},
  19297. so the type checker inserts a cast to \CANYTY{}. A first thought is to use
  19298. \code{Inject}, but that doesn't work because
  19299. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}} is not
  19300. a flat type. Instead, we must first cast to
  19301. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}, which is flat,
  19302. and then inject to \CANYTY{}.
  19303. \begin{figure}[tbp]
  19304. \begin{tcolorbox}[colback=white]
  19305. {\if\edition\racketEd
  19306. \begin{lstlisting}
  19307. (define (map_inplace [f : (Any -> Any)] v) : Void
  19308. (begin
  19309. (vector-set! v 0 (f (vector-ref v 0)))
  19310. (vector-set! v 1 (f (vector-ref v 1)))))
  19311. (define (inc x) (+ x 1))
  19312. (let ([v (vector 0 41)])
  19313. (begin (map_inplace inc v) (vector-ref v 1)))
  19314. \end{lstlisting}
  19315. \fi}
  19316. {\if\edition\pythonEd\pythonColor
  19317. \begin{lstlisting}
  19318. def map_inplace(f : Callable[[Any], Any], v) -> None:
  19319. i = 0
  19320. while i != len(v):
  19321. v[i] = f(v[i])
  19322. i = i + 1
  19323. def inc(x):
  19324. return x + 1
  19325. v = [0, 41]
  19326. map_inplace(inc, v)
  19327. print( v[1] )
  19328. \end{lstlisting}
  19329. \fi}
  19330. \end{tcolorbox}
  19331. \caption{Casting \racket{a tuple}\python{an array} to \CANYTY{}.}
  19332. \label{fig:map-any}
  19333. \end{figure}
  19334. \begin{figure}[tbp]
  19335. \begin{tcolorbox}[colback=white]
  19336. {\if\edition\racketEd
  19337. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19338. (define/public (apply_cast v s t)
  19339. (match* (s t)
  19340. [(t1 t2) #:when (equal? t1 t2) v]
  19341. [('Any t2)
  19342. (match t2
  19343. [`(,ts ... -> ,rt)
  19344. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19345. (define v^ (apply-project v any->any))
  19346. (apply_cast v^ any->any `(,@ts -> ,rt))]
  19347. [`(Vector ,ts ...)
  19348. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19349. (define v^ (apply-project v vec-any))
  19350. (apply_cast v^ vec-any `(Vector ,@ts))]
  19351. [else (apply-project v t2)])]
  19352. [(t1 'Any)
  19353. (match t1
  19354. [`(,ts ... -> ,rt)
  19355. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19356. (define v^ (apply_cast v `(,@ts -> ,rt) any->any))
  19357. (apply-inject v^ (any-tag any->any))]
  19358. [`(Vector ,ts ...)
  19359. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19360. (define v^ (apply_cast v `(Vector ,@ts) vec-any))
  19361. (apply-inject v^ (any-tag vec-any))]
  19362. [else (apply-inject v (any-tag t1))])]
  19363. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19364. (define x (gensym 'x))
  19365. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  19366. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  19367. (define cast-writes
  19368. (for/list ([t1 ts1] [t2 ts2])
  19369. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  19370. `(vector-proxy ,(vector v (apply vector cast-reads)
  19371. (apply vector cast-writes)))]
  19372. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19373. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  19374. `(function ,xs ,(Cast
  19375. (Apply (Value v)
  19376. (for/list ([x xs][t1 ts1][t2 ts2])
  19377. (Cast (Var x) t2 t1)))
  19378. rt1 rt2) ())]
  19379. ))
  19380. \end{lstlisting}
  19381. \fi}
  19382. {\if\edition\pythonEd\pythonColor
  19383. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19384. def apply_cast(self, value, src, tgt):
  19385. match (src, tgt):
  19386. case (AnyType(), FunctionType(ps2, rt2)):
  19387. anyfun = FunctionType([AnyType() for p in ps2], AnyType())
  19388. return self.apply_cast(self.apply_project(value, anyfun), anyfun, tgt)
  19389. case (AnyType(), TupleType(ts2)):
  19390. anytup = TupleType([AnyType() for t1 in ts2])
  19391. return self.apply_cast(self.apply_project(value, anytup), anytup, tgt)
  19392. case (AnyType(), ListType(t2)):
  19393. anylist = ListType([AnyType() for t1 in ts2])
  19394. return self.apply_cast(self.apply_project(value, anylist), anylist, tgt)
  19395. case (AnyType(), AnyType()):
  19396. return value
  19397. case (AnyType(), _):
  19398. return self.apply_project(value, tgt)
  19399. case (FunctionType(ps1,rt1), AnyType()):
  19400. anyfun = FunctionType([AnyType() for p in ps1], AnyType())
  19401. return self.apply_inject(self.apply_cast(value, src, anyfun), anyfun)
  19402. case (TupleType(ts1), AnyType()):
  19403. anytup = TupleType([AnyType() for t1 in ts1])
  19404. return self.apply_inject(self.apply_cast(value, src, anytup), anytup)
  19405. case (ListType(t1), AnyType()):
  19406. anylist = ListType(AnyType())
  19407. return self.apply_inject(self.apply_cast(value,src,anylist), anylist)
  19408. case (_, AnyType()):
  19409. return self.apply_inject(value, src)
  19410. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19411. params = [generate_name('x') for p in ps2]
  19412. args = [Cast(Name(x), t2, t1)
  19413. for (x,t1,t2) in zip(params, ps1, ps2)]
  19414. body = Cast(Call(ValueExp(value), args), rt1, rt2)
  19415. return Function('cast', params, [Return(body)], {})
  19416. case (TupleType(ts1), TupleType(ts2)):
  19417. x = generate_name('x')
  19418. reads = [Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19419. for (t1,t2) in zip(ts1,ts2)]
  19420. return ProxiedTuple(value, reads)
  19421. case (ListType(t1), ListType(t2)):
  19422. x = generate_name('x')
  19423. read = Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19424. write = Function('cast', [x], [Return(Cast(Name(x), t2, t1))], {})
  19425. return ProxiedList(value, read, write)
  19426. case (t1, t2) if t1 == t2:
  19427. return value
  19428. case (t1, t2):
  19429. raise Exception('apply_cast unexpected ' + repr(src) + ' ' + repr(tgt))
  19430. def apply_inject(self, value, src):
  19431. return Tagged(value, self.type_to_tag(src))
  19432. def apply_project(self, value, tgt):
  19433. match value:
  19434. case Tagged(val, tag) if self.type_to_tag(tgt) == tag:
  19435. return val
  19436. case _:
  19437. raise Exception('apply_project, unexpected ' + repr(value))
  19438. \end{lstlisting}
  19439. \fi}
  19440. \end{tcolorbox}
  19441. \caption{The \code{apply\_cast} auxiliary method.}
  19442. \label{fig:apply_cast}
  19443. \end{figure}
  19444. The \LangCast{} interpreter uses an auxiliary function named
  19445. \code{apply\_cast} to cast a value from a source type to a target type,
  19446. shown in figure~\ref{fig:apply_cast}. You'll find that it handles all
  19447. the kinds of casts that we've discussed in this section.
  19448. %
  19449. The definition of the interpreter for \LangCast{} is shown in
  19450. figure~\ref{fig:interp-Lcast}, with the case for \code{Cast}
  19451. dispatching to \code{apply\_cast}.
  19452. \racket{To handle the addition of tuple
  19453. proxies, we update the tuple primitives in \code{interp-op} using the
  19454. functions given in figure~\ref{fig:guarded-tuple}.}
  19455. Next we turn to the individual passes needed for compiling \LangGrad{}.
  19456. \begin{figure}[tbp]
  19457. \begin{tcolorbox}[colback=white]
  19458. {\if\edition\racketEd
  19459. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19460. (define interp-Lcast-class
  19461. (class interp-Llambda-class
  19462. (super-new)
  19463. (inherit apply-fun apply-inject apply-project)
  19464. (define/override (interp-op op)
  19465. (match op
  19466. ['vector-length guarded-vector-length]
  19467. ['vector-ref guarded-vector-ref]
  19468. ['vector-set! guarded-vector-set!]
  19469. ['any-vector-ref (lambda (v i)
  19470. (match v [`(tagged ,v^ ,tg)
  19471. (guarded-vector-ref v^ i)]))]
  19472. ['any-vector-set! (lambda (v i a)
  19473. (match v [`(tagged ,v^ ,tg)
  19474. (guarded-vector-set! v^ i a)]))]
  19475. ['any-vector-length (lambda (v)
  19476. (match v [`(tagged ,v^ ,tg)
  19477. (guarded-vector-length v^)]))]
  19478. [else (super interp-op op)]
  19479. ))
  19480. (define/override ((interp-exp env) e)
  19481. (define (recur e) ((interp-exp env) e))
  19482. (match e
  19483. [(Value v) v]
  19484. [(Cast e src tgt) (apply_cast (recur e) src tgt)]
  19485. [else ((super interp-exp env) e)]))
  19486. ))
  19487. (define (interp-Lcast p)
  19488. (send (new interp-Lcast-class) interp-program p))
  19489. \end{lstlisting}
  19490. \fi}
  19491. {\if\edition\pythonEd\pythonColor
  19492. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19493. class InterpLcast(InterpLany):
  19494. def interp_exp(self, e, env):
  19495. match e:
  19496. case Cast(value, src, tgt):
  19497. v = self.interp_exp(value, env)
  19498. return self.apply_cast(v, src, tgt)
  19499. case ValueExp(value):
  19500. return value
  19501. ...
  19502. case _:
  19503. return super().interp_exp(e, env)
  19504. \end{lstlisting}
  19505. \fi}
  19506. \end{tcolorbox}
  19507. \caption{The interpreter for \LangCast{}.}
  19508. \label{fig:interp-Lcast}
  19509. \end{figure}
  19510. {\if\edition\racketEd
  19511. \begin{figure}[tbp]
  19512. \begin{tcolorbox}[colback=white]
  19513. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19514. (define (guarded-vector-ref vec i)
  19515. (match vec
  19516. [`(vector-proxy ,proxy)
  19517. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  19518. (define rd (vector-ref (vector-ref proxy 1) i))
  19519. (apply-fun rd (list val) 'guarded-vector-ref)]
  19520. [else (vector-ref vec i)]))
  19521. (define (guarded-vector-set! vec i arg)
  19522. (match vec
  19523. [`(vector-proxy ,proxy)
  19524. (define wr (vector-ref (vector-ref proxy 2) i))
  19525. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  19526. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  19527. [else (vector-set! vec i arg)]))
  19528. (define (guarded-vector-length vec)
  19529. (match vec
  19530. [`(vector-proxy ,proxy)
  19531. (guarded-vector-length (vector-ref proxy 0))]
  19532. [else (vector-length vec)]))
  19533. \end{lstlisting}
  19534. %% {\if\edition\pythonEd\pythonColor
  19535. %% \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19536. %% UNDER CONSTRUCTION
  19537. %% \end{lstlisting}
  19538. %% \fi}
  19539. \end{tcolorbox}
  19540. \caption{The \code{guarded-vector} auxiliary functions.}
  19541. \label{fig:guarded-tuple}
  19542. \end{figure}
  19543. \fi}
  19544. {\if\edition\pythonEd\pythonColor
  19545. \section{Overload Resolution}
  19546. \label{sec:gradual-resolution}
  19547. Recall that when we added support for arrays in
  19548. section~\ref{sec:arrays}, the syntax for the array operations were the
  19549. same as for tuple operations (for example, accessing an element, getting the
  19550. length). So we performed overload resolution, with a pass named
  19551. \code{resolve}, to separate the array and tuple operations. In
  19552. particular, we introduced the primitives \code{array\_load},
  19553. \code{array\_store}, and \code{array\_len}.
  19554. For gradual typing, we further overload these operators to work on
  19555. values of type \CANYTY{}. Thus, the \code{resolve} pass should be
  19556. updated with new cases for the \CANYTY{} type, translating the element
  19557. access and length operations to the primitives \code{any\_load},
  19558. \code{any\_store}, and \code{any\_len}.
  19559. \fi}
  19560. \section{Cast Insertion}
  19561. \label{sec:gradual-insert-casts}
  19562. In our discussion of type checking of \LangGrad{}, we mentioned how
  19563. the runtime aspect of type checking is carried out by the \code{Cast}
  19564. AST node, which is added to the program by a new pass named
  19565. \code{cast\_insert}. The target of this pass is the \LangCast{}
  19566. language. We now discuss the details of this pass.
  19567. The \code{cast\_insert} pass is closely related to the type checker
  19568. for \LangGrad{} (starting in figure~\ref{fig:type-check-Lgradual-1}).
  19569. In particular, the type checker allows implicit casts between
  19570. consistent types. The job of the \code{cast\_insert} pass is to make
  19571. those casts explicit. It does so by inserting
  19572. \code{Cast} nodes into the AST.
  19573. %
  19574. For the most part, the implicit casts occur in places where the type
  19575. checker checks two types for consistency. Consider the case for
  19576. binary operators in figure~\ref{fig:type-check-Lgradual-1}. The type
  19577. checker requires that the type of the left operand is consistent with
  19578. \INTTY{}. Thus, the \code{cast\_insert} pass should insert a
  19579. \code{Cast} around the left operand, converting from its type to
  19580. \INTTY{}. The story is similar for the right operand. It is not always
  19581. necessary to insert a cast, for example, if the left operand already has type
  19582. \INTTY{} then there is no need for a \code{Cast}.
  19583. Some of the implicit casts are not as straightforward. One such case
  19584. arises with the
  19585. conditional expression. In figure~\ref{fig:type-check-Lgradual-1} we
  19586. see that the type checker requires that the two branches have
  19587. consistent types and that type of the conditional expression is the
  19588. meet of the branches' types. In the target language \LangCast{}, both
  19589. branches will need to have the same type, and that type
  19590. will be the type of the conditional expression. Thus, each branch requires
  19591. a \code{Cast} to convert from its type to the meet of the branches' types.
  19592. The case for the function call exhibits another interesting situation. If
  19593. the function expression is of type \CANYTY{}, then it needs to be cast
  19594. to a function type so that it can be used in a function call in
  19595. \LangCast{}. Which function type should it be cast to? The parameter
  19596. and return types are unknown, so we can simply use \CANYTY{} for all
  19597. of them. Furthermore, in \LangCast{} the argument types will need to
  19598. exactly match the parameter types, so we must cast all the arguments
  19599. to type \CANYTY{} (if they are not already of that type).
  19600. {\if\edition\racketEd
  19601. %
  19602. Likewise, the cases for the tuple operators \code{vector-length},
  19603. \code{vector-ref}, and \code{vector-set!} need to handle the situation
  19604. where the tuple expression is of type \CANYTY{}. Instead of
  19605. handling these situations with casts, we recommend translating
  19606. the special-purpose variants of the tuple operators that handle
  19607. tuples of type \CANYTY{}: \code{any-vector-length},
  19608. \code{any-vector-ref}, and \code{any-vector-set!}.
  19609. %
  19610. \fi}
  19611. \section{Lower Casts}
  19612. \label{sec:lower_casts}
  19613. The next step in the journey toward x86 is the \code{lower\_casts}
  19614. pass that translates the casts in \LangCast{} to the lower-level
  19615. \code{Inject} and \code{Project} operators and new operators for
  19616. proxies, extending the \LangLam{} language to \LangProxy{}.
  19617. The \LangProxy{} language can also be described as an extension of
  19618. \LangAny{}, with the addition of proxies. We recommend creating an
  19619. auxiliary function named \code{lower\_cast} that takes an expression
  19620. (in \LangCast{}), a source type, and a target type and translates it
  19621. to an expression in \LangProxy{}.
  19622. The \code{lower\_cast} function can follow a code structure similar to
  19623. the \code{apply\_cast} function (figure~\ref{fig:apply_cast}) used in
  19624. the interpreter for \LangCast{}, because it must handle the same cases
  19625. as \code{apply\_cast} and it needs to mimic the behavior of
  19626. \code{apply\_cast}. The most interesting cases concern
  19627. the casts involving \racket{tuple and function types}\python{tuple, array, and function types}.
  19628. {\if\edition\racketEd
  19629. As mentioned in section~\ref{sec:interp-casts}, a cast from one tuple
  19630. type to another tuple type is accomplished by creating a proxy that
  19631. intercepts the operations on the underlying tuple. Here we make the
  19632. creation of the proxy explicit with the \code{vector-proxy} AST
  19633. node. It takes three arguments: the first is an expression for the
  19634. tuple, the second is a tuple of functions for casting an element that is
  19635. being read from the tuple, and the third is a tuple of functions for
  19636. casting an element that is being written to the array. You can create
  19637. the functions for reading and writing using lambda expressions. Also,
  19638. as we show in the next section, we need to differentiate these tuples
  19639. of functions from the user-created ones, so we recommend using a new
  19640. AST node named \code{raw-vector} instead of \code{vector}.
  19641. %
  19642. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19643. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19644. that involved casting a tuple of integers to a tuple of \CANYTY{}.
  19645. \fi}
  19646. {\if\edition\pythonEd\pythonColor
  19647. As mentioned in section~\ref{sec:interp-casts}, a cast from one array
  19648. type to another array type is accomplished by creating a proxy that
  19649. intercepts the operations on the underlying array. Here we make the
  19650. creation of the proxy explicit with the \code{ListProxy} AST node. It
  19651. takes fives arguments: the first is an expression for the array, the
  19652. second is a function for casting an element that is being read from
  19653. the array, the third is a function for casting an element that is
  19654. being written to the array, the fourth is the type of the underlying
  19655. array, and the fifth is the type of the proxied array. You can create
  19656. the functions for reading and writing using lambda expressions.
  19657. A cast between two tuple types can be handled in a similar manner. We
  19658. create a proxy with the \code{TupleProxy} AST node. Tuples are
  19659. immutable, so there is no need for a function to cast the value during
  19660. a write. Because there is a separate element type for each slot in
  19661. the tuple, we need not just one function for casting during a read,
  19662. but instead a tuple of functions.
  19663. %
  19664. Also, as we show in the next section, we need to differentiate these
  19665. tuples from the user-created ones, so we recommend using a new AST
  19666. node named \code{RawTuple} instead of \code{Tuple} to create the
  19667. tuples of functions.
  19668. %
  19669. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19670. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19671. that involved casting an array of integers to an array of \CANYTY{}.
  19672. \fi}
  19673. \begin{figure}[tbp]
  19674. \begin{tcolorbox}[colback=white]
  19675. {\if\edition\racketEd
  19676. \begin{lstlisting}
  19677. (define (map_inplace [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  19678. (begin
  19679. (vector-set! v 0 (f (vector-ref v 0)))
  19680. (vector-set! v 1 (f (vector-ref v 1)))))
  19681. (define (inc [x : Any]) : Any
  19682. (inject (+ (project x Integer) 1) Integer))
  19683. (let ([v (vector 0 41)])
  19684. (begin
  19685. (map_inplace inc (vector-proxy v
  19686. (raw-vector (lambda: ([x9 : Integer]) : Any
  19687. (inject x9 Integer))
  19688. (lambda: ([x9 : Integer]) : Any
  19689. (inject x9 Integer)))
  19690. (raw-vector (lambda: ([x9 : Any]) : Integer
  19691. (project x9 Integer))
  19692. (lambda: ([x9 : Any]) : Integer
  19693. (project x9 Integer)))))
  19694. (vector-ref v 1)))
  19695. \end{lstlisting}
  19696. \fi}
  19697. {\if\edition\pythonEd\pythonColor
  19698. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19699. def map_inplace(f : Callable[[int], int], v : list[Any]) -> void:
  19700. i = 0
  19701. while i != array_len(v):
  19702. array_store(v, i, inject(f(project(array_load(v, i), int)), int))
  19703. i = (i + 1)
  19704. def inc(x : int) -> int:
  19705. return (x + 1)
  19706. def main() -> int:
  19707. v = [0, 41]
  19708. map_inplace(inc, array_proxy(v, list[int], list[Any]))
  19709. print(array_load(v, 1))
  19710. return 0
  19711. \end{lstlisting}
  19712. \fi}
  19713. \end{tcolorbox}
  19714. \caption{Output of \code{lower\_casts} on the example shown in
  19715. figure~\ref{fig:map-bang}.}
  19716. \label{fig:map-bang-lower-cast}
  19717. \end{figure}
  19718. A cast from one function type to another function type is accomplished
  19719. by generating a \code{lambda} whose parameter and return types match
  19720. the target function type. The body of the \code{lambda} should cast
  19721. the parameters from the target type to the source type. (Yes,
  19722. backward! Functions are contravariant\index{subject}{contravariant}
  19723. in the parameters.) Afterward, call the underlying function and then
  19724. cast the result from the source return type to the target return type.
  19725. Figure~\ref{fig:map-lower-cast} shows the output of the
  19726. \code{lower\_casts} pass on the \code{map} example give in
  19727. figure~\ref{fig:gradual-map}. Note that the \code{inc} argument in the
  19728. call to \code{map} is wrapped in a \code{lambda}.
  19729. \begin{figure}[tbp]
  19730. \begin{tcolorbox}[colback=white]
  19731. {\if\edition\racketEd
  19732. \begin{lstlisting}
  19733. (define (map [f : (Integer -> Integer)]
  19734. [v : (Vector Integer Integer)])
  19735. : (Vector Integer Integer)
  19736. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19737. (define (inc [x : Any]) : Any
  19738. (inject (+ (project x Integer) 1) Integer))
  19739. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  19740. (project (inc (inject x9 Integer)) Integer))
  19741. (vector 0 41)) 1)
  19742. \end{lstlisting}
  19743. \fi}
  19744. {\if\edition\pythonEd\pythonColor
  19745. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19746. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19747. return (f(v[0]), f(v[1]),)
  19748. def inc(x : any) -> any:
  19749. return inject((project(x, int) + 1), int)
  19750. def main() -> int:
  19751. t = map(lambda x: project(inc(inject(x, int)), int), (0, 41,))
  19752. print(t[1])
  19753. return 0
  19754. \end{lstlisting}
  19755. \fi}
  19756. \end{tcolorbox}
  19757. \caption{Output of \code{lower\_casts} on the example shown in
  19758. figure~\ref{fig:gradual-map}.}
  19759. \label{fig:map-lower-cast}
  19760. \end{figure}
  19761. \section{Differentiate Proxies}
  19762. \label{sec:differentiate-proxies}
  19763. So far, the responsibility of differentiating tuples and tuple proxies
  19764. has been the job of the interpreter.
  19765. %
  19766. \racket{For example, the interpreter for \LangCast{} implements
  19767. \code{vector-ref} using the \code{guarded-vector-ref} function shown in
  19768. figure~\ref{fig:guarded-tuple}.}
  19769. %
  19770. In the \code{differentiate\_proxies} pass we shift this responsibility
  19771. to the generated code.
  19772. We begin by designing the output language \LangPVec{}. In \LangGrad{}
  19773. we used the type \TUPLETYPENAME{} for both
  19774. real tuples and tuple proxies.
  19775. \python{Similarly, we use the type \code{list} for both arrays and
  19776. array proxies.}
  19777. In \LangPVec{} we return the
  19778. \TUPLETYPENAME{} type to its original
  19779. meaning, as the type of just tuples, and we introduce a new type,
  19780. \PTUPLETYNAME{}, whose values
  19781. can be either real tuples or tuple
  19782. proxies.
  19783. %
  19784. {\if\edition\pythonEd\pythonColor
  19785. Likewise, we return the
  19786. \ARRAYTYPENAME{} type to its original
  19787. meaning, as the type of arrays, and we introduce a new type,
  19788. \PARRAYTYNAME{}, whose values
  19789. can be either arrays or array proxies.
  19790. These new types come with a suite of new primitive operations.
  19791. \fi}
  19792. {\if\edition\racketEd
  19793. A tuple proxy is represented by a tuple containing three things: (1) the
  19794. underlying tuple, (2) a tuple of functions for casting elements that
  19795. are read from the tuple, and (3) a tuple of functions for casting
  19796. values to be written to the tuple. So, we define the following
  19797. abbreviation for the type of a tuple proxy:
  19798. \[
  19799. \itm{TupleProxy} (T\ldots \Rightarrow T'\ldots)
  19800. = (\ttm{Vector}~\PTUPLETY{T\ldots} ~R~ W) \to \PTUPLETY{T' \ldots})
  19801. \]
  19802. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  19803. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  19804. %
  19805. Next we describe each of the new primitive operations.
  19806. \begin{description}
  19807. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  19808. (\key{PVector} $T \ldots$)]\ \\
  19809. %
  19810. This operation brands a vector as a value of the \code{PVector} type.
  19811. \item[\code{inject-proxy} : $\itm{TupleProxy}(T\ldots \Rightarrow T'\ldots)$
  19812. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  19813. %
  19814. This operation brands a vector proxy as value of the \code{PVector} type.
  19815. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  19816. \BOOLTY{}] \ \\
  19817. %
  19818. This returns true if the value is a tuple proxy and false if it is a
  19819. real tuple.
  19820. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  19821. (\key{Vector} $T \ldots$)]\ \\
  19822. %
  19823. Assuming that the input is a tuple, this operation returns the
  19824. tuple.
  19825. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  19826. $\to$ \BOOLTY{}]\ \\
  19827. %
  19828. Given a tuple proxy, this operation returns the length of the tuple.
  19829. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  19830. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  19831. %
  19832. Given a tuple proxy, this operation returns the $i$th element of the
  19833. tuple.
  19834. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  19835. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\
  19836. Given a tuple proxy, this operation writes a value to the $i$th element
  19837. of the tuple.
  19838. \end{description}
  19839. \fi}
  19840. {\if\edition\pythonEd\pythonColor
  19841. %
  19842. A tuple proxy is represented by a tuple containing 1) the underlying
  19843. tuple and 2) a tuple of functions for casting elements that are read
  19844. from the tuple. The \LangPVec{} language includes the following AST
  19845. classes and primitive functions.
  19846. \begin{description}
  19847. \item[\code{InjectTuple}] \ \\
  19848. %
  19849. This AST node brands a tuple as a value of the \PTUPLETYNAME{} type.
  19850. \item[\code{InjectTupleProxy}]\ \\
  19851. %
  19852. This AST node brands a tuple proxy as value of the \PTUPLETYNAME{} type.
  19853. \item[\code{is\_tuple\_proxy}]\ \\
  19854. %
  19855. This primitive returns true if the value is a tuple proxy and false
  19856. if it is a tuple.
  19857. \item[\code{project\_tuple}]\ \\
  19858. %
  19859. Converts a tuple that is branded as \PTUPLETYNAME{}
  19860. back to a tuple.
  19861. \item[\code{proxy\_tuple\_len}]\ \\
  19862. %
  19863. Given a tuple proxy, returns the length of the underlying tuple.
  19864. \item[\code{proxy\_tuple\_load}]\ \\
  19865. %
  19866. Given a tuple proxy, returns the $i$th element of the underlying
  19867. tuple.
  19868. \end{description}
  19869. An array proxy is represented by a tuple containing 1) the underlying
  19870. array, 2) a function for casting elements that are read from the
  19871. array, and 3) a function for casting elements that are written to the
  19872. array. The \LangPVec{} language includes the following AST classes
  19873. and primitive functions.
  19874. \begin{description}
  19875. \item[\code{InjectList}]\ \\
  19876. This AST node brands an array as a value of the \PARRAYTYNAME{} type.
  19877. \item[\code{InjectListProxy}]\ \\
  19878. %
  19879. This AST node brands a array proxy as value of the \PARRAYTYNAME{} type.
  19880. \item[\code{is\_array\_proxy}]\ \\
  19881. %
  19882. Returns true if the value is a array proxy and false if it is an
  19883. array.
  19884. \item[\code{project\_array}]\ \\
  19885. %
  19886. Converts an array that is branded as \PARRAYTYNAME{} back to an
  19887. array.
  19888. \item[\code{proxy\_array\_len}]\ \\
  19889. %
  19890. Given a array proxy, returns the length of the underlying array.
  19891. \item[\code{proxy\_array\_load}]\ \\
  19892. %
  19893. Given a array proxy, returns the $i$th element of the underlying
  19894. array.
  19895. \item[\code{proxy\_array\_store}]\ \\
  19896. %
  19897. Given an array proxy, writes a value to the $i$th element of the
  19898. underlying array.
  19899. \end{description}
  19900. \fi}
  19901. Now we discuss the translation that differentiates tuples and arrays
  19902. from proxies. First, every type annotation in the program is
  19903. translated (recursively) to replace \TUPLETYPENAME{} with \PTUPLETYNAME{}.
  19904. Next, we insert uses of \PTUPLETYNAME{} operations in the appropriate
  19905. places. For example, we wrap every tuple creation with an
  19906. \racket{\code{inject-vector}}\python{\code{InjectTuple}}.
  19907. %
  19908. {\if\edition\racketEd
  19909. \begin{minipage}{0.96\textwidth}
  19910. \begin{lstlisting}
  19911. (vector |$e_1 \ldots e_n$|)
  19912. |$\Rightarrow$|
  19913. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  19914. \end{lstlisting}
  19915. \end{minipage}
  19916. \fi}
  19917. {\if\edition\pythonEd\pythonColor
  19918. \begin{lstlisting}
  19919. Tuple(|$e_1, \ldots, e_n$|)
  19920. |$\Rightarrow$|
  19921. InjectTuple(Tuple(|$e'_1, \ldots, e'_n$|))
  19922. \end{lstlisting}
  19923. \fi}
  19924. The \racket{\code{raw-vector}}\python{\code{RawTuple}}
  19925. AST node that we introduced in the previous
  19926. section does not get injected.
  19927. {\if\edition\racketEd
  19928. \begin{lstlisting}
  19929. (raw-vector |$e_1 \ldots e_n$|)
  19930. |$\Rightarrow$|
  19931. (vector |$e'_1 \ldots e'_n$|)
  19932. \end{lstlisting}
  19933. \fi}
  19934. {\if\edition\pythonEd\pythonColor
  19935. \begin{lstlisting}
  19936. RawTuple(|$e_1, \ldots, e_n$|)
  19937. |$\Rightarrow$|
  19938. Tuple(|$e'_1, \ldots, e'_n$|)
  19939. \end{lstlisting}
  19940. \fi}
  19941. The \racket{\code{vector-proxy}}\python{\code{TupleProxy}} AST
  19942. translates as follows:
  19943. %
  19944. {\if\edition\racketEd
  19945. \begin{lstlisting}
  19946. (vector-proxy |$e_1~e_2~e_3$|)
  19947. |$\Rightarrow$|
  19948. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  19949. \end{lstlisting}
  19950. \fi}
  19951. {\if\edition\pythonEd\pythonColor
  19952. \begin{lstlisting}
  19953. TupleProxy(|$e_1, e_2, T_1, T_2$|)
  19954. |$\Rightarrow$|
  19955. InjectTupleProxy(Tuple(|$e'_1,e'_2, T'_1, T'_2$|))
  19956. \end{lstlisting}
  19957. \fi}
  19958. We translate the element access operations into conditional
  19959. expressions that check whether the value is a proxy and then dispatch
  19960. to either the appropriate proxy tuple operation or the regular tuple
  19961. operation.
  19962. {\if\edition\racketEd
  19963. \begin{lstlisting}
  19964. (vector-ref |$e_1$| |$i$|)
  19965. |$\Rightarrow$|
  19966. (let ([|$v~e_1$|])
  19967. (if (proxy? |$v$|)
  19968. (proxy-vector-ref |$v$| |$i$|)
  19969. (vector-ref (project-vector |$v$|) |$i$|)
  19970. \end{lstlisting}
  19971. \fi}
  19972. %
  19973. Note that in the branch for a tuple, we must apply
  19974. \racket{\code{project-vector}}\python{\code{project\_tuple}} before reading
  19975. from the tuple.
  19976. The translation of array operations is similar to the ones for tuples.
  19977. \section{Reveal Casts}
  19978. \label{sec:reveal-casts-gradual}
  19979. {\if\edition\racketEd
  19980. Recall that the \code{reveal\_casts} pass
  19981. (section~\ref{sec:reveal-casts-Lany}) is responsible for lowering
  19982. \code{Inject} and \code{Project} into lower-level operations.
  19983. %
  19984. In particular, \code{Project} turns into a conditional expression that
  19985. inspects the tag and retrieves the underlying value. Here we need to
  19986. augment the translation of \code{Project} to handle the situation in which
  19987. the target type is \code{PVector}. Instead of using
  19988. \code{vector-length} we need to use \code{proxy-vector-length}.
  19989. \begin{lstlisting}
  19990. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  19991. |$\Rightarrow$|
  19992. (let |$\itm{tmp}$| |$e'$|
  19993. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  19994. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  19995. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  19996. (exit)))
  19997. \end{lstlisting}
  19998. \fi}
  19999. %
  20000. {\if\edition\pythonEd\pythonColor
  20001. Recall that the $\itm{tagof}$ function determines the bits used to
  20002. identify values of different types and it is used in the \code{reveal\_casts}
  20003. pass in the translation of \code{Project}. The \PTUPLETYNAME{} and
  20004. \PARRAYTYNAME{} types can be mapped to $010$ in binary ($2$ is
  20005. decimal), just like the tuple and array types.
  20006. \fi}
  20007. %
  20008. Otherwise, the only other changes are adding cases that copy the new AST nodes.
  20009. \section{Closure Conversion}
  20010. \label{sec:closure-conversion-gradual}
  20011. The auxiliary function that translates type annotations needs to be
  20012. updated to handle the \PTUPLETYNAME{}
  20013. \racket{type}\python{and \PARRAYTYNAME{} types}.
  20014. %
  20015. Otherwise, the only other changes are adding cases that copy the new
  20016. AST nodes.
  20017. \section{Select Instructions}
  20018. \label{sec:select-instructions-gradual}
  20019. \index{subject}{select instructions}
  20020. Recall that the \code{select\_instructions} pass is responsible for
  20021. lowering the primitive operations into x86 instructions. So, we need
  20022. to translate the new operations on \PTUPLETYNAME{} \python{and \PARRAYTYNAME{}}
  20023. to x86. To do so, the first question we need to answer is how to
  20024. differentiate between tuple and tuple proxies\python{, and likewise for
  20025. arrays and array proxies}. We need just one bit to accomplish this;
  20026. we use the bit in position $63$ of the 64-bit tag at the front of
  20027. every tuple (see figure~\ref{fig:tuple-rep})\python{ or array
  20028. (section~\ref{sec:array-rep})}. So far, this bit has been set to $0$,
  20029. so for \racket{\code{inject-vector}}\python{\code{InjectTuple}} we leave
  20030. it that way.
  20031. {\if\edition\racketEd
  20032. \begin{lstlisting}
  20033. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  20034. |$\Rightarrow$|
  20035. movq |$e'_1$|, |$\itm{lhs'}$|
  20036. \end{lstlisting}
  20037. \fi}
  20038. {\if\edition\pythonEd\pythonColor
  20039. \begin{lstlisting}
  20040. Assign([|$\itm{lhs}$|], InjectTuple(|$e_1$|))
  20041. |$\Rightarrow$|
  20042. movq |$e'_1$|, |$\itm{lhs'}$|
  20043. \end{lstlisting}
  20044. \fi}
  20045. \python{The translation for \code{InjectList} is also a move instruction.}
  20046. \noindent On the other hand,
  20047. \racket{\code{inject-proxy}}\python{\code{InjectTupleProxy}} sets bit
  20048. $63$ to $1$.
  20049. %
  20050. {\if\edition\racketEd
  20051. \begin{lstlisting}
  20052. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  20053. |$\Rightarrow$|
  20054. movq |$e'_1$|, %r11
  20055. movq |$(1 << 63)$|, %rax
  20056. orq 0(%r11), %rax
  20057. movq %rax, 0(%r11)
  20058. movq %r11, |$\itm{lhs'}$|
  20059. \end{lstlisting}
  20060. \fi}
  20061. {\if\edition\pythonEd\pythonColor
  20062. \begin{lstlisting}
  20063. Assign([|$\itm{lhs}$|], InjectTupleProxy(|$e_1$|))
  20064. |$\Rightarrow$|
  20065. movq |$e'_1$|, %r11
  20066. movq |$(1 << 63)$|, %rax
  20067. orq 0(%r11), %rax
  20068. movq %rax, 0(%r11)
  20069. movq %r11, |$\itm{lhs'}$|
  20070. \end{lstlisting}
  20071. \fi}
  20072. \python{\noindent The translation for \code{InjectListProxy} should set bit $63$
  20073. of the tag and also bit $62$, to differentiate between arrays and tuples.}
  20074. The \racket{\code{proxy?} operation consumes}%
  20075. \python{\code{is\_tuple\_proxy} and \code{is\_array\_proxy} operations
  20076. consume}
  20077. the information so carefully stashed away by the injections. It
  20078. isolates bit $63$ to tell whether the value is a proxy.
  20079. %
  20080. {\if\edition\racketEd
  20081. \begin{lstlisting}
  20082. (Assign |$\itm{lhs}$| (Prim 'proxy? (list |$e_1$|)))
  20083. |$\Rightarrow$|
  20084. movq |$e_1'$|, %r11
  20085. movq 0(%r11), %rax
  20086. sarq $63, %rax
  20087. andq $1, %rax
  20088. movq %rax, |$\itm{lhs'}$|
  20089. \end{lstlisting}
  20090. \fi}%
  20091. %
  20092. {\if\edition\pythonEd\pythonColor
  20093. \begin{lstlisting}
  20094. Assign([|$\itm{lhs}$|], Call(Name('is_tuple_proxy'), [|$e_1$|]))
  20095. |$\Rightarrow$|
  20096. movq |$e_1'$|, %r11
  20097. movq 0(%r11), %rax
  20098. sarq $63, %rax
  20099. andq $1, %rax
  20100. movq %rax, |$\itm{lhs'}$|
  20101. \end{lstlisting}
  20102. \fi}%
  20103. %
  20104. The \racket{\code{project-vector} operation is}
  20105. \python{\code{project\_tuple} and \code{project\_array} operations are}
  20106. straightforward to translate, so we leave that to the reader.
  20107. Regarding the element access operations for tuples\python{ and arrays}, the
  20108. runtime provides procedures that implement them (they are recursive
  20109. functions!), so here we simply need to translate these tuple
  20110. operations into the appropriate function call. For example, here is
  20111. the translation for
  20112. \racket{\code{proxy-vector-ref}}\python{\code{proxy\_tuple\_load}}.
  20113. {\if\edition\racketEd
  20114. \begin{minipage}{0.96\textwidth}
  20115. \begin{lstlisting}
  20116. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  20117. |$\Rightarrow$|
  20118. movq |$e_1'$|, %rdi
  20119. movq |$e_2'$|, %rsi
  20120. callq proxy_vector_ref
  20121. movq %rax, |$\itm{lhs'}$|
  20122. \end{lstlisting}
  20123. \end{minipage}
  20124. \fi}
  20125. {\if\edition\pythonEd\pythonColor
  20126. \begin{lstlisting}
  20127. Assign([|$\itm{lhs}$|], Call(Name('proxy_tuple_load'), [|$e_1$|, |$e_2$|]))
  20128. |$\Rightarrow$|
  20129. movq |$e_1'$|, %rdi
  20130. movq |$e_2'$|, %rsi
  20131. callq proxy_vector_ref
  20132. movq %rax, |$\itm{lhs'}$|
  20133. \end{lstlisting}
  20134. \fi}
  20135. {\if\edition\pythonEd\pythonColor
  20136. % TODO: revisit the names vecof for python -Jeremy
  20137. We translate
  20138. \code{proxy\_array\_load} to \code{proxy\_vecof\_ref},
  20139. \code{proxy\_array\_store} to \code{proxy\_vecof\_set}, and
  20140. \code{proxy\_array\_len} to \code{proxy\_vecof\_length}.
  20141. \fi}
  20142. We have another batch of operations to deal with: those for the
  20143. \CANYTY{} type. Recall that we generate an
  20144. \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}} when
  20145. there is a element access on something of type \CANYTY{}, and
  20146. similarly for
  20147. \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}} and
  20148. \racket{\code{any-vector-length}}\python{\code{any\_len}}. In
  20149. section~\ref{sec:select-Lany} we selected instructions for these
  20150. operations on the basis of the idea that the underlying value was a tuple or
  20151. array. But in the current setting, the underlying value is of type
  20152. \PTUPLETYNAME{}\python{ or \PARRAYTYNAME{}}. We have added three runtime
  20153. functions to deal with this:
  20154. \code{proxy\_vector\_ref},
  20155. \code{proxy\_vector\_set}, and
  20156. \code{proxy\_vector\_length} that inspect bit $62$ of the tag
  20157. to determine whether the value is a proxy, and then
  20158. dispatches to the the appropriate code.
  20159. %
  20160. So \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}}
  20161. can be translated as follows.
  20162. We begin by projecting the underlying value out of the tagged value and
  20163. then call the \code{proxy\_vector\_ref} procedure in the runtime.
  20164. {\if\edition\racketEd
  20165. \begin{lstlisting}
  20166. (Assign |$\itm{lhs}$| (Prim 'any-vec-ref (list |$e_1$| |$e_2$|)))
  20167. |$\Rightarrow$|
  20168. movq |$\neg 111$|, %rdi
  20169. andq |$e_1'$|, %rdi
  20170. movq |$e_2'$|, %rsi
  20171. callq proxy_vector_ref
  20172. movq %rax, |$\itm{lhs'}$|
  20173. \end{lstlisting}
  20174. \fi}
  20175. {\if\edition\pythonEd\pythonColor
  20176. \begin{lstlisting}
  20177. Assign([|$\itm{lhs}$|], Call(Name('any_load_unsafe'), [|$e_1$|, |$e_2$|]))
  20178. |$\Rightarrow$|
  20179. movq |$\neg 111$|, %rdi
  20180. andq |$e_1'$|, %rdi
  20181. movq |$e_2'$|, %rsi
  20182. callq proxy_vector_ref
  20183. movq %rax, |$\itm{lhs'}$|
  20184. \end{lstlisting}
  20185. \fi}
  20186. \noindent The \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}}
  20187. and \racket{\code{any-vector-length}}\python{\code{any\_len}} operators
  20188. are translated in a similar way. Alternatively, you could generate
  20189. instructions to open-code
  20190. the \code{proxy\_vector\_ref}, \code{proxy\_vector\_set},
  20191. and \code{proxy\_vector\_length} functions.
  20192. \begin{exercise}\normalfont\normalsize
  20193. Implement a compiler for the gradually typed \LangGrad{} language by
  20194. extending and adapting your compiler for \LangLam{}. Create ten new
  20195. partially typed test programs. In addition to testing with these
  20196. new programs, test your compiler on all the tests for \LangLam{}
  20197. and for \LangDyn{}.
  20198. %
  20199. \racket{Sometimes you may get a type checking error on the
  20200. \LangDyn{} programs, but you can adapt them by inserting a cast to
  20201. the \CANYTY{} type around each subexpression that has caused a type
  20202. error. Although \LangDyn{} does not have explicit casts, you can
  20203. induce one by wrapping the subexpression \code{e} with a call to
  20204. an unannotated identity function, as follows: \code{((lambda (x) x) e)}.}
  20205. %
  20206. \python{Sometimes you may get a type checking error on the
  20207. \LangDyn{} programs but you can adapt them by inserting a
  20208. temporary variable of type \CANYTY{} that is initialized with the
  20209. troublesome expression.}
  20210. \end{exercise}
  20211. \begin{figure}[p]
  20212. \begin{tcolorbox}[colback=white]
  20213. {\if\edition\racketEd
  20214. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  20215. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20216. \node (Lgradual2) at (4,4) {\large \LangCast{}};
  20217. \node (Lgradual3) at (8,4) {\large \LangProxy{}};
  20218. \node (Lgradual4) at (12,4) {\large \LangPVec{}};
  20219. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20220. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20221. \node (Llambdapp) at (4,2) {\large \LangPVecFunRef{}};
  20222. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20223. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20224. %\node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20225. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20226. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20227. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  20228. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20229. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20230. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20231. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20232. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  20233. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  20234. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20235. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20236. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  20237. \path[->,bend left=15] (Lgradual) edge [above] node
  20238. {\ttfamily\footnotesize cast\_insert} (Lgradual2);
  20239. \path[->,bend left=15] (Lgradual2) edge [above] node
  20240. {\ttfamily\footnotesize lower\_casts} (Lgradual3);
  20241. \path[->,bend left=15] (Lgradual3) edge [above] node
  20242. {\ttfamily\footnotesize differentiate\_proxies} (Lgradual4);
  20243. \path[->,bend left=15] (Lgradual4) edge [left] node
  20244. {\ttfamily\footnotesize shrink} (Lgradualr);
  20245. \path[->,bend left=15] (Lgradualr) edge [above] node
  20246. {\ttfamily\footnotesize uniquify} (Lgradualp);
  20247. \path[->,bend right=15] (Lgradualp) edge [above] node
  20248. {\ttfamily\footnotesize reveal\_functions} (Llambdapp);
  20249. %% \path[->,bend left=15] (Llambdaproxy-4) edge [left] node
  20250. %% {\ttfamily\footnotesize resolve} (Lgradualr);
  20251. \path[->,bend right=15] (Llambdapp) edge [above] node
  20252. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-4);
  20253. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20254. {\ttfamily\footnotesize convert\_assignments} (Llambdaproxy-5);
  20255. \path[->,bend right=10] (Llambdaproxy-5) edge [above] node
  20256. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20257. \path[->,bend left=15] (F1-2) edge [above] node
  20258. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20259. \path[->,bend left=15] (F1-3) edge [left] node
  20260. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  20261. \path[->,bend left=15] (F1-4) edge [below] node
  20262. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  20263. \path[->,bend right=15] (F1-5) edge [above] node
  20264. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20265. \path[->,bend right=15] (F1-6) edge [above] node
  20266. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20267. \path[->,bend right=15] (C3-2) edge [right] node
  20268. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20269. \path[->,bend right=15] (x86-2) edge [right] node
  20270. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  20271. \path[->,bend right=15] (x86-2-1) edge [below] node
  20272. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  20273. \path[->,bend right=15] (x86-2-2) edge [right] node
  20274. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  20275. \path[->,bend left=15] (x86-3) edge [above] node
  20276. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20277. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20278. \end{tikzpicture}
  20279. \fi}
  20280. {\if\edition\pythonEd\pythonColor
  20281. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.80]
  20282. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20283. \node (Lgradual2) at (4,4) {\large \LangGrad{}};
  20284. \node (Lgradual3) at (8,4) {\large \LangCast{}};
  20285. \node (Lgradual4) at (12,4) {\large \LangProxy{}};
  20286. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20287. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20288. \node (Llambdapp) at (4,2) {\large \LangPVec{}};
  20289. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20290. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20291. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20292. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20293. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20294. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20295. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20296. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20297. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20298. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20299. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20300. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  20301. \path[->,bend left=15] (Lgradual) edge [above] node
  20302. {\ttfamily\footnotesize shrink} (Lgradual2);
  20303. \path[->,bend left=15] (Lgradual2) edge [above] node
  20304. {\ttfamily\footnotesize uniquify} (Lgradual3);
  20305. \path[->,bend left=15] (Lgradual3) edge [above] node
  20306. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  20307. \path[->,bend left=15] (Lgradual4) edge [left] node
  20308. {\ttfamily\footnotesize resolve} (Lgradualr);
  20309. \path[->,bend left=15] (Lgradualr) edge [below] node
  20310. {\ttfamily\footnotesize cast\_insert} (Lgradualp);
  20311. \path[->,bend right=15] (Lgradualp) edge [above] node
  20312. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  20313. \path[->,bend right=15] (Llambdapp) edge [above] node
  20314. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  20315. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20316. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  20317. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  20318. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  20319. \path[->,bend left=15] (F1-1) edge [above] node
  20320. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20321. \path[->,bend left=15] (F1-2) edge [above] node
  20322. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20323. \path[->,bend left=15] (F1-3) edge [right] node
  20324. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  20325. \path[->,bend right=15] (F1-5) edge [above] node
  20326. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20327. \path[->,bend right=15] (F1-6) edge [above] node
  20328. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20329. \path[->,bend right=15] (C3-2) edge [right] node
  20330. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20331. \path[->,bend right=15] (x86-2) edge [below] node
  20332. {\ttfamily\footnotesize assign\_homes} (x86-3);
  20333. \path[->,bend right=15] (x86-3) edge [below] node
  20334. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20335. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20336. \end{tikzpicture}
  20337. \fi}
  20338. \end{tcolorbox}
  20339. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  20340. \label{fig:Lgradual-passes}
  20341. \end{figure}
  20342. Figure~\ref{fig:Lgradual-passes} provides an overview of the passes
  20343. needed for the compilation of \LangGrad{}.
  20344. \section{Further Reading}
  20345. This chapter just scratches the surface of gradual typing. The basic
  20346. approach described here is missing two key ingredients that one would
  20347. want in a implementation of gradual typing: blame
  20348. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  20349. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  20350. problem addressed by blame tracking is that when a cast on a
  20351. higher-order value fails, it often does so at a point in the program
  20352. that is far removed from the original cast. Blame tracking is a
  20353. technique for propagating extra information through casts and proxies
  20354. so that when a cast fails, the error message can point back to the
  20355. original location of the cast in the source program.
  20356. The problem addressed by space-efficient casts also relates to
  20357. higher-order casts. It turns out that in partially typed programs, a
  20358. function or tuple can flow through a great many casts at runtime. With
  20359. the approach described in this chapter, each cast adds another
  20360. \code{lambda} wrapper or a tuple proxy. Not only does this take up
  20361. considerable space, but it also makes the function calls and tuple
  20362. operations slow. For example, a partially typed version of quicksort
  20363. could, in the worst case, build a chain of proxies of length $O(n)$
  20364. around the tuple, changing the overall time complexity of the
  20365. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  20366. solution to this problem by representing casts using the coercion
  20367. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  20368. long chains of proxies by compressing them into a concise normal
  20369. form. \citet{Siek:2015ab} give an algorithm for compressing coercions,
  20370. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  20371. the Grift compiler:
  20372. \begin{center}
  20373. \url{https://github.com/Gradual-Typing/Grift}
  20374. \end{center}
  20375. There are also interesting interactions between gradual typing and
  20376. other language features, such as generics, information-flow types, and
  20377. type inference, to name a few. We recommend to the reader the
  20378. online gradual typing bibliography for more material:
  20379. \begin{center}
  20380. \url{http://samth.github.io/gradual-typing-bib/}
  20381. \end{center}
  20382. % TODO: challenge problem:
  20383. % type analysis and type specialization?
  20384. % coercions?
  20385. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  20386. \chapter{Generics}
  20387. \label{ch:Lpoly}
  20388. \setcounter{footnote}{0}
  20389. This chapter studies the compilation of
  20390. generics\index{subject}{generics} (aka parametric
  20391. polymorphism\index{subject}{parametric polymorphism}), compiling the
  20392. \LangPoly{} subset of \racket{Typed Racket}\python{Python}. Generics
  20393. enable programmers to make code more reusable by parameterizing
  20394. functions and data structures with respect to the types on which they
  20395. operate. For example, figure~\ref{fig:map-poly} revisits the
  20396. \code{map} example and this time gives it a more fitting type. This
  20397. \code{map} function is parameterized with respect to the element type
  20398. of the tuple. The type of \code{map} is the following generic type
  20399. specified by the \code{All} type with parameter \code{T}:
  20400. {\if\edition\racketEd
  20401. \begin{lstlisting}
  20402. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  20403. \end{lstlisting}
  20404. \fi}
  20405. {\if\edition\pythonEd\pythonColor
  20406. \begin{lstlisting}
  20407. All[[T], Callable[[Callable[[T],T], tuple[T,T]], tuple[T,T]]]
  20408. \end{lstlisting}
  20409. \fi}
  20410. %
  20411. The idea is that \code{map} can be used at \emph{all} choices of a
  20412. type for parameter \code{T}. In the example shown in
  20413. figure~\ref{fig:map-poly} we apply \code{map} to a tuple of integers,
  20414. implicitly choosing \racket{\code{Integer}}\python{\code{int}} for
  20415. \code{T}, but we could have just as well applied \code{map} to a tuple
  20416. of Booleans.
  20417. %
  20418. A \emph{monomorphic} function is simply one that is not generic.
  20419. %
  20420. We use the term \emph{instantiation} for the process (within the
  20421. language implementation) of turning a generic function into a
  20422. monomorphic one, where the type parameters have been replaced by
  20423. types.
  20424. {\if\edition\pythonEd\pythonColor
  20425. %
  20426. In Python, when writing a generic function such as \code{map}, one
  20427. does not explicitly write down its generic type (using \code{All}).
  20428. Instead, the fact that it is generic is implied by the use of type
  20429. variables (such as \code{T}) in the type annotations of its
  20430. parameters.
  20431. %
  20432. \fi}
  20433. \begin{figure}[tbp]
  20434. % poly_test_2.rkt
  20435. \begin{tcolorbox}[colback=white]
  20436. {\if\edition\racketEd
  20437. \begin{lstlisting}
  20438. (: map (All (T) ((T -> T) (Vector T T) -> (Vector T T))))
  20439. (define (map f v)
  20440. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  20441. (define (inc [x : Integer]) : Integer (+ x 1))
  20442. (vector-ref (map inc (vector 0 41)) 1)
  20443. \end{lstlisting}
  20444. \fi}
  20445. {\if\edition\pythonEd\pythonColor
  20446. \begin{lstlisting}
  20447. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  20448. return (f(tup[0]), f(tup[1]))
  20449. def add1(x : int) -> int:
  20450. return x + 1
  20451. t = map(add1, (0, 41))
  20452. print(t[1])
  20453. \end{lstlisting}
  20454. \fi}
  20455. \end{tcolorbox}
  20456. \caption{A generic version of the \code{map} function.}
  20457. \label{fig:map-poly}
  20458. \end{figure}
  20459. Figure~\ref{fig:Lpoly-concrete-syntax} presents the definition of the
  20460. concrete syntax of \LangPoly{}, and figure~\ref{fig:Lpoly-syntax}
  20461. shows the definition of the abstract syntax.
  20462. %
  20463. {\if\edition\racketEd
  20464. We add a second form for function definitions in which a type
  20465. declaration comes before the \code{define}. In the abstract syntax,
  20466. the return type in the \code{Def} is \CANYTY{}, but that should be
  20467. ignored in favor of the return type in the type declaration. (The
  20468. \CANYTY{} comes from using the same parser as discussed in
  20469. chapter~\ref{ch:Ldyn}.) The presence of a type declaration
  20470. enables the use of an \code{All} type for a function, thereby making
  20471. it generic.
  20472. \fi}
  20473. %
  20474. The grammar for types is extended to include the type of a generic
  20475. (\code{All}) and type variables\python{\ (\code{GenericVar} in the
  20476. abstract syntax)}.
  20477. \newcommand{\LpolyGrammarRacket}{
  20478. \begin{array}{lcl}
  20479. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20480. \Def &::=& \LP\key{:}~\Var~\Type\RP \\
  20481. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP
  20482. \end{array}
  20483. }
  20484. \newcommand{\LpolyASTRacket}{
  20485. \begin{array}{lcl}
  20486. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20487. \Def &::=& \DECL{\Var}{\Type} \\
  20488. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp}
  20489. \end{array}
  20490. }
  20491. \newcommand{\LpolyGrammarPython}{
  20492. \begin{array}{lcl}
  20493. \Type &::=& \key{All}\LS \LS\Var\ldots\RS,\Type\RS \MID \Var
  20494. \end{array}
  20495. }
  20496. \newcommand{\LpolyASTPython}{
  20497. \begin{array}{lcl}
  20498. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP
  20499. \MID \key{GenericVar}\LP\Var\RP
  20500. \end{array}
  20501. }
  20502. \begin{figure}[tp]
  20503. \centering
  20504. \begin{tcolorbox}[colback=white]
  20505. \footnotesize
  20506. {\if\edition\racketEd
  20507. \[
  20508. \begin{array}{l}
  20509. \gray{\LintGrammarRacket{}} \\ \hline
  20510. \gray{\LvarGrammarRacket{}} \\ \hline
  20511. \gray{\LifGrammarRacket{}} \\ \hline
  20512. \gray{\LwhileGrammarRacket} \\ \hline
  20513. \gray{\LtupGrammarRacket} \\ \hline
  20514. \gray{\LfunGrammarRacket} \\ \hline
  20515. \gray{\LlambdaGrammarRacket} \\ \hline
  20516. \LpolyGrammarRacket \\
  20517. \begin{array}{lcl}
  20518. \LangPoly{} &::=& \Def \ldots ~ \Exp
  20519. \end{array}
  20520. \end{array}
  20521. \]
  20522. \fi}
  20523. {\if\edition\pythonEd\pythonColor
  20524. \[
  20525. \begin{array}{l}
  20526. \gray{\LintGrammarPython{}} \\ \hline
  20527. \gray{\LvarGrammarPython{}} \\ \hline
  20528. \gray{\LifGrammarPython{}} \\ \hline
  20529. \gray{\LwhileGrammarPython} \\ \hline
  20530. \gray{\LtupGrammarPython} \\ \hline
  20531. \gray{\LfunGrammarPython} \\ \hline
  20532. \gray{\LlambdaGrammarPython} \\\hline
  20533. \LpolyGrammarPython \\
  20534. \begin{array}{lcl}
  20535. \LangPoly{} &::=& \Def\ldots \Stmt\ldots
  20536. \end{array}
  20537. \end{array}
  20538. \]
  20539. \fi}
  20540. \end{tcolorbox}
  20541. \caption{The concrete syntax of \LangPoly{}, extending \LangLam{}
  20542. (figure~\ref{fig:Llam-concrete-syntax}).}
  20543. \label{fig:Lpoly-concrete-syntax}
  20544. \end{figure}
  20545. \begin{figure}[tp]
  20546. \centering
  20547. \begin{tcolorbox}[colback=white]
  20548. \footnotesize
  20549. {\if\edition\racketEd
  20550. \[
  20551. \begin{array}{l}
  20552. \gray{\LintOpAST} \\ \hline
  20553. \gray{\LvarASTRacket{}} \\ \hline
  20554. \gray{\LifASTRacket{}} \\ \hline
  20555. \gray{\LwhileASTRacket{}} \\ \hline
  20556. \gray{\LtupASTRacket{}} \\ \hline
  20557. \gray{\LfunASTRacket} \\ \hline
  20558. \gray{\LlambdaASTRacket} \\ \hline
  20559. \LpolyASTRacket \\
  20560. \begin{array}{lcl}
  20561. \LangPoly{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  20562. \end{array}
  20563. \end{array}
  20564. \]
  20565. \fi}
  20566. {\if\edition\pythonEd\pythonColor
  20567. \[
  20568. \begin{array}{l}
  20569. \gray{\LintASTPython} \\ \hline
  20570. \gray{\LvarASTPython{}} \\ \hline
  20571. \gray{\LifASTPython{}} \\ \hline
  20572. \gray{\LwhileASTPython{}} \\ \hline
  20573. \gray{\LtupASTPython{}} \\ \hline
  20574. \gray{\LfunASTPython} \\ \hline
  20575. \gray{\LlambdaASTPython} \\ \hline
  20576. \LpolyASTPython \\
  20577. \begin{array}{lcl}
  20578. \LangPoly{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  20579. \end{array}
  20580. \end{array}
  20581. \]
  20582. \fi}
  20583. \end{tcolorbox}
  20584. \caption{The abstract syntax of \LangPoly{}, extending \LangLam{}
  20585. (figure~\ref{fig:Llam-syntax}).}
  20586. \label{fig:Lpoly-syntax}
  20587. \end{figure}
  20588. By including the \code{All} type in the $\Type$ nonterminal of the
  20589. grammar we choose to make generics first class, which has interesting
  20590. repercussions on the compiler.\footnote{The Python \code{typing} library does
  20591. not include syntax for the \code{All} type. It is inferred for functions whose
  20592. type annotations contain type variables.} Many languages with generics, such as
  20593. C++~\citep{stroustrup88:_param_types} and Standard
  20594. ML~\citep{Milner:1990fk}, support only second-class generics, so it
  20595. may be helpful to see an example of first-class generics in action. In
  20596. figure~\ref{fig:apply-twice} we define a function \code{apply\_twice}
  20597. whose parameter is a generic function. Indeed, because the grammar for
  20598. $\Type$ includes the \code{All} type, a generic function may also be
  20599. returned from a function or stored inside a tuple. The body of
  20600. \code{apply\_twice} applies the generic function \code{f} to a Boolean
  20601. and also to an integer, which would not be possible if \code{f} were
  20602. not generic.
  20603. \begin{figure}[tbp]
  20604. \begin{tcolorbox}[colback=white]
  20605. {\if\edition\racketEd
  20606. \begin{lstlisting}
  20607. (: apply_twice ((All (U) (U -> U)) -> Integer))
  20608. (define (apply_twice f)
  20609. (if (f #t) (f 42) (f 777)))
  20610. (: id (All (T) (T -> T)))
  20611. (define (id x) x)
  20612. (apply_twice id)
  20613. \end{lstlisting}
  20614. \fi}
  20615. {\if\edition\pythonEd\pythonColor
  20616. \begin{lstlisting}
  20617. def apply_twice(f : All[[U], Callable[[U],U]]) -> int:
  20618. if f(True):
  20619. return f(42)
  20620. else:
  20621. return f(777)
  20622. def id(x: T) -> T:
  20623. return x
  20624. print(apply_twice(id))
  20625. \end{lstlisting}
  20626. \fi}
  20627. \end{tcolorbox}
  20628. \caption{An example illustrating first-class generics.}
  20629. \label{fig:apply-twice}
  20630. \end{figure}
  20631. The type checker for \LangPoly{} shown in
  20632. figure~\ref{fig:type-check-Lpoly} has several new responsibilities
  20633. (compared to \LangLam{}) which we discuss in the following paragraphs.
  20634. {\if\edition\pythonEd\pythonColor
  20635. %
  20636. Regarding function definitions, if the type annotations on its
  20637. parameters contain generic variables, then the function is generic and
  20638. therefore its type is an \code{All} type wrapped around a function
  20639. type. Otherwise the function is monomorphic and its type is simply
  20640. a function type.
  20641. %
  20642. \fi}
  20643. The type checking of a function application is extended to handle the
  20644. case in which the operator expression is a generic function. In that case
  20645. the type arguments are deduced by matching the types of the parameters
  20646. with the types of the arguments.
  20647. %
  20648. The \code{match\_types} auxiliary function
  20649. (figure~\ref{fig:type-check-Lpoly-aux}) carries out this deduction by
  20650. recursively descending through a parameter type \code{param\_ty} and
  20651. the corresponding argument type \code{arg\_ty}, making sure that they
  20652. are equal except when there is a type parameter in the parameter
  20653. type. Upon encountering a type parameter for the first time, the
  20654. algorithm deduces an association of the type parameter to the
  20655. corresponding part of the argument type. If it is not the first time
  20656. that the type parameter has been encountered, the algorithm looks up
  20657. its deduced type and makes sure that it is equal to the corresponding
  20658. part of the argument type. The return type of the application is the
  20659. return type of the generic function with the type parameters
  20660. replaced by the deduced type arguments, using the
  20661. \code{substitute\_type} auxiliary function, which is also listed in
  20662. figure~\ref{fig:type-check-Lpoly-aux}.
  20663. The type checker extends type equality to handle the \code{All} type.
  20664. This is not quite as simple as for other types, such as function and
  20665. tuple types, because two \code{All} types can be syntactically
  20666. different even though they are equivalent. For example,
  20667. \begin{center}
  20668. \racket{\code{(All (T) (T -> T))}}\python{\code{All[[T], Callable[[T], T]]}}
  20669. \end{center}
  20670. is equivalent to
  20671. \begin{center}
  20672. \racket{\code{(All (U) (U -> U))}}\python{\code{All[[U], Callable[[U], U]]}}.
  20673. \end{center}
  20674. Two generic types are equal if they differ only in
  20675. the choice of the names of the type parameters. The definition of type
  20676. equality shown in figure~\ref{fig:type-check-Lpoly-aux} renames the type
  20677. parameters in one type to match the type parameters of the other type.
  20678. {\if\edition\racketEd
  20679. %
  20680. The type checker also ensures that only defined type variables appear
  20681. in type annotations. The \code{check\_well\_formed} function for which
  20682. the definition is shown in figure~\ref{fig:well-formed-types}
  20683. recursively inspects a type, making sure that each type variable has
  20684. been defined.
  20685. %
  20686. \fi}
  20687. \begin{figure}[tbp]
  20688. \begin{tcolorbox}[colback=white]
  20689. {\if\edition\racketEd
  20690. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20691. (define type-check-poly-class
  20692. (class type-check-Llambda-class
  20693. (super-new)
  20694. (inherit check-type-equal?)
  20695. (define/override (type-check-apply env e1 es)
  20696. (define-values (e^ ty) ((type-check-exp env) e1))
  20697. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  20698. ((type-check-exp env) e)))
  20699. (match ty
  20700. [`(,ty^* ... -> ,rt)
  20701. (for ([arg-ty ty*] [param-ty ty^*])
  20702. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  20703. (values e^ es^ rt)]
  20704. [`(All ,xs (,tys ... -> ,rt))
  20705. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  20706. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  20707. (match_types env^^ param-ty arg-ty)))
  20708. (define targs
  20709. (for/list ([x xs])
  20710. (match (dict-ref env^^ x (lambda () #f))
  20711. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  20712. x (Apply e1 es))]
  20713. [ty ty])))
  20714. (values (Inst e^ ty targs) es^ (substitute_type env^^ rt))]
  20715. [else (error 'type-check "expected a function, not ~a" ty)]))
  20716. (define/override ((type-check-exp env) e)
  20717. (match e
  20718. [(Lambda `([,xs : ,Ts] ...) rT body)
  20719. (for ([T Ts]) ((check_well_formed env) T))
  20720. ((check_well_formed env) rT)
  20721. ((super type-check-exp env) e)]
  20722. [(HasType e1 ty)
  20723. ((check_well_formed env) ty)
  20724. ((super type-check-exp env) e)]
  20725. [else ((super type-check-exp env) e)]))
  20726. (define/override ((type-check-def env) d)
  20727. (verbose 'type-check "poly/def" d)
  20728. (match d
  20729. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  20730. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  20731. (for ([p ps]) ((check_well_formed ts-env) p))
  20732. ((check_well_formed ts-env) rt)
  20733. (define new-env (append ts-env (map cons xs ps) env))
  20734. (define-values (body^ ty^) ((type-check-exp new-env) body))
  20735. (check-type-equal? ty^ rt body)
  20736. (Generic ts (Def f p:t* rt info body^))]
  20737. [else ((super type-check-def env) d)]))
  20738. (define/override (type-check-program p)
  20739. (match p
  20740. [(Program info body)
  20741. (type-check-program (ProgramDefsExp info '() body))]
  20742. [(ProgramDefsExp info ds body)
  20743. (define ds^ (combine-decls-defs ds))
  20744. (define new-env (for/list ([d ds^])
  20745. (cons (def-name d) (fun-def-type d))))
  20746. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  20747. (define-values (body^ ty) ((type-check-exp new-env) body))
  20748. (check-type-equal? ty 'Integer body)
  20749. (ProgramDefsExp info ds^^ body^)]))
  20750. ))
  20751. \end{lstlisting}
  20752. \fi}
  20753. {\if\edition\pythonEd\pythonColor
  20754. \begin{lstlisting}[basicstyle=\ttfamily\small]
  20755. def type_check_exp(self, e, env):
  20756. match e:
  20757. case Call(Name(f), args) if f in builtin_functions:
  20758. return super().type_check_exp(e, env)
  20759. case Call(func, args):
  20760. func_t = self.type_check_exp(func, env)
  20761. func.has_type = func_t
  20762. match func_t:
  20763. case AllType(ps, FunctionType(p_tys, rt)):
  20764. for arg in args:
  20765. arg.has_type = self.type_check_exp(arg, env)
  20766. arg_tys = [arg.has_type for arg in args]
  20767. deduced = {}
  20768. for (p, a) in zip(p_tys, arg_tys):
  20769. self.match_types(p, a, deduced, e)
  20770. return self.substitute_type(rt, deduced)
  20771. case _:
  20772. return super().type_check_exp(e, env)
  20773. case _:
  20774. return super().type_check_exp(e, env)
  20775. def type_check(self, p):
  20776. match p:
  20777. case Module(body):
  20778. env = {}
  20779. for s in body:
  20780. match s:
  20781. case FunctionDef(name, params, bod, dl, returns, comment):
  20782. params_t = [t for (x,t) in params]
  20783. ty_params = set()
  20784. for t in params_t:
  20785. ty_params |$\mid$|= self.generic_variables(t)
  20786. ty = FunctionType(params_t, returns)
  20787. if len(ty_params) > 0:
  20788. ty = AllType(list(ty_params), ty)
  20789. env[name] = ty
  20790. self.check_stmts(body, IntType(), env)
  20791. case _:
  20792. raise Exception('type_check: unexpected ' + repr(p))
  20793. \end{lstlisting}
  20794. \fi}
  20795. \end{tcolorbox}
  20796. \caption{Type checker for the \LangPoly{} language.}
  20797. \label{fig:type-check-Lpoly}
  20798. \end{figure}
  20799. \begin{figure}[tbp]
  20800. \begin{tcolorbox}[colback=white]
  20801. {\if\edition\racketEd
  20802. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20803. (define/override (type-equal? t1 t2)
  20804. (match* (t1 t2)
  20805. [(`(All ,xs ,T1) `(All ,ys ,T2))
  20806. (define env (map cons xs ys))
  20807. (type-equal? (substitute_type env T1) T2)]
  20808. [(other wise)
  20809. (super type-equal? t1 t2)]))
  20810. (define/public (match_types env pt at)
  20811. (match* (pt at)
  20812. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  20813. [('Void 'Void) env] [('Any 'Any) env]
  20814. [(`(Vector ,pts ...) `(Vector ,ats ...))
  20815. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  20816. (match_types env^ pt1 at1))]
  20817. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  20818. (define env^ (match_types env prt art))
  20819. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  20820. (match_types env^^ pt1 at1))]
  20821. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  20822. (define env^ (append (map cons pxs axs) env))
  20823. (match_types env^ pt1 at1)]
  20824. [((? symbol? x) at)
  20825. (match (dict-ref env x (lambda () #f))
  20826. [#f (error 'type-check "undefined type variable ~a" x)]
  20827. ['Type (cons (cons x at) env)]
  20828. [t^ (check-type-equal? at t^ 'matching) env])]
  20829. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  20830. (define/public (substitute_type env pt)
  20831. (match pt
  20832. ['Integer 'Integer] ['Boolean 'Boolean]
  20833. ['Void 'Void] ['Any 'Any]
  20834. [`(Vector ,ts ...)
  20835. `(Vector ,@(for/list ([t ts]) (substitute_type env t)))]
  20836. [`(,ts ... -> ,rt)
  20837. `(,@(for/list ([t ts]) (substitute_type env t)) -> ,(substitute_type env rt))]
  20838. [`(All ,xs ,t)
  20839. `(All ,xs ,(substitute_type (append (map cons xs xs) env) t))]
  20840. [(? symbol? x) (dict-ref env x)]
  20841. [else (error 'type-check "expected a type not ~a" pt)]))
  20842. (define/public (combine-decls-defs ds)
  20843. (match ds
  20844. ['() '()]
  20845. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  20846. (unless (equal? name f)
  20847. (error 'type-check "name mismatch, ~a != ~a" name f))
  20848. (match type
  20849. [`(All ,xs (,ps ... -> ,rt))
  20850. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  20851. (cons (Generic xs (Def name params^ rt info body))
  20852. (combine-decls-defs ds^))]
  20853. [`(,ps ... -> ,rt)
  20854. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  20855. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  20856. [else (error 'type-check "expected a function type, not ~a" type) ])]
  20857. [`(,(Def f params rt info body) . ,ds^)
  20858. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  20859. \end{lstlisting}
  20860. \fi}
  20861. {\if\edition\pythonEd\pythonColor
  20862. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20863. def match_types(self, param_ty, arg_ty, deduced, e):
  20864. match (param_ty, arg_ty):
  20865. case (GenericVar(id), _):
  20866. if id in deduced:
  20867. self.check_type_equal(arg_ty, deduced[id], e)
  20868. else:
  20869. deduced[id] = arg_ty
  20870. case (AllType(ps, ty), AllType(arg_ps, arg_ty)):
  20871. rename = {ap:p for (ap,p) in zip(arg_ps, ps)}
  20872. new_arg_ty = self.substitute_type(arg_ty, rename)
  20873. self.match_types(ty, new_arg_ty, deduced, e)
  20874. case (TupleType(ps), TupleType(ts)):
  20875. for (p, a) in zip(ps, ts):
  20876. self.match_types(p, a, deduced, e)
  20877. case (ListType(p), ListType(a)):
  20878. self.match_types(p, a, deduced, e)
  20879. case (FunctionType(pps, prt), FunctionType(aps, art)):
  20880. for (pp, ap) in zip(pps, aps):
  20881. self.match_types(pp, ap, deduced, e)
  20882. self.match_types(prt, art, deduced, e)
  20883. case (IntType(), IntType()):
  20884. pass
  20885. case (BoolType(), BoolType()):
  20886. pass
  20887. case _:
  20888. raise Exception('mismatch: ' + str(param_ty) + '\n!= ' + str(arg_ty))
  20889. def substitute_type(self, ty, var_map):
  20890. match ty:
  20891. case GenericVar(id):
  20892. return var_map[id]
  20893. case AllType(ps, ty):
  20894. new_map = copy.deepcopy(var_map)
  20895. for p in ps:
  20896. new_map[p] = GenericVar(p)
  20897. return AllType(ps, self.substitute_type(ty, new_map))
  20898. case TupleType(ts):
  20899. return TupleType([self.substitute_type(t, var_map) for t in ts])
  20900. case ListType(ty):
  20901. return ListType(self.substitute_type(ty, var_map))
  20902. case FunctionType(pts, rt):
  20903. return FunctionType([self.substitute_type(p, var_map) for p in pts],
  20904. self.substitute_type(rt, var_map))
  20905. case IntType():
  20906. return IntType()
  20907. case BoolType():
  20908. return BoolType()
  20909. case _:
  20910. raise Exception('substitute_type: unexpected ' + repr(ty))
  20911. def check_type_equal(self, t1, t2, e):
  20912. match (t1, t2):
  20913. case (AllType(ps1, ty1), AllType(ps2, ty2)):
  20914. rename = {p2: GenericVar(p1) for (p1,p2) in zip(ps1,ps2)}
  20915. return self.check_type_equal(ty1, self.substitute_type(ty2, rename), e)
  20916. case (_, _):
  20917. return super().check_type_equal(t1, t2, e)
  20918. \end{lstlisting}
  20919. \fi}
  20920. \end{tcolorbox}
  20921. \caption{Auxiliary functions for type checking \LangPoly{}.}
  20922. \label{fig:type-check-Lpoly-aux}
  20923. \end{figure}
  20924. {\if\edition\racketEd
  20925. \begin{figure}[tbp]
  20926. \begin{tcolorbox}[colback=white]
  20927. \begin{lstlisting}
  20928. (define/public ((check_well_formed env) ty)
  20929. (match ty
  20930. ['Integer (void)]
  20931. ['Boolean (void)]
  20932. ['Void (void)]
  20933. [(? symbol? a)
  20934. (match (dict-ref env a (lambda () #f))
  20935. ['Type (void)]
  20936. [else (error 'type-check "undefined type variable ~a" a)])]
  20937. [`(Vector ,ts ...)
  20938. (for ([t ts]) ((check_well_formed env) t))]
  20939. [`(,ts ... -> ,t)
  20940. (for ([t ts]) ((check_well_formed env) t))
  20941. ((check_well_formed env) t)]
  20942. [`(All ,xs ,t)
  20943. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  20944. ((check_well_formed env^) t)]
  20945. [else (error 'type-check "unrecognized type ~a" ty)]))
  20946. \end{lstlisting}
  20947. \end{tcolorbox}
  20948. \caption{Well-formed types.}
  20949. \label{fig:well-formed-types}
  20950. \end{figure}
  20951. \fi}
  20952. % TODO: interpreter for R'_10
  20953. \clearpage
  20954. \section{Compiling Generics}
  20955. \label{sec:compiling-poly}
  20956. Broadly speaking, there are four approaches to compiling generics, as
  20957. follows:
  20958. \begin{description}
  20959. \item[Monomorphization] generates a different version of a generic
  20960. function for each set of type arguments with which it is used,
  20961. producing type-specialized code. This approach results in the most
  20962. efficient code but requires whole-program compilation (no separate
  20963. compilation) and may increase code size. Unfortunately,
  20964. monomorphization is incompatible with first-class generics because
  20965. it is not always possible to determine which generic functions are
  20966. used with which type arguments during compilation. (It can be done
  20967. at runtime with just-in-time compilation.) Monomorphization is
  20968. used to compile C++ templates~\citep{stroustrup88:_param_types} and
  20969. generic functions in NESL~\citep{Blelloch:1993aa} and
  20970. ML~\citep{Weeks:2006aa}.
  20971. \item[Uniform representation] generates one version of each generic
  20972. function and requires all values to have a common \emph{boxed} format,
  20973. such as the tagged values of type \CANYTY{} in \LangAny{}. Both
  20974. generic and monomorphic code is compiled similarly to code in a
  20975. dynamically typed language (like \LangDyn{}), in which primitive
  20976. operators require their arguments to be projected from \CANYTY{} and
  20977. their results to be injected into \CANYTY{}. (In object-oriented
  20978. languages, the projection is accomplished via virtual method
  20979. dispatch.) The uniform representation approach is compatible with
  20980. separate compilation and with first-class generics. However, it
  20981. produces the least efficient code because it introduces overhead in
  20982. the entire program. This approach is used in
  20983. Java~\citep{Bracha:1998fk},
  20984. CLU~\citep{liskov79:_clu_ref,Liskov:1993dk}, and some implementations
  20985. of ML~\citep{Cardelli:1984aa,Appel:1987aa}.
  20986. \item[Mixed representation] generates one version of each generic
  20987. function, using a boxed representation for type variables. However,
  20988. monomorphic code is compiled as usual (as in \LangLam{}), and
  20989. conversions are performed at the boundaries between monomorphic code
  20990. and polymorphic code (for example, when a generic function is instantiated
  20991. and called). This approach is compatible with separate compilation
  20992. and first-class generics and maintains efficiency in monomorphic
  20993. code. The trade-off is increased overhead at the boundary between
  20994. monomorphic and generic code. This approach is used in
  20995. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  20996. Java 5 with the addition of autoboxing.
  20997. \item[Type passing] uses the unboxed representation in both
  20998. monomorphic and generic code. Each generic function is compiled to a
  20999. single function with extra parameters that describe the type
  21000. arguments. The type information is used by the generated code to
  21001. determine how to access the unboxed values at runtime. This approach is
  21002. used in implementation of Napier88~\citep{Morrison:1991aa} and
  21003. ML~\citep{Harper:1995um}. Type passing is compatible with separate
  21004. compilation and first-class generics and maintains the
  21005. efficiency for monomorphic code. There is runtime overhead in
  21006. polymorphic code from dispatching on type information.
  21007. \end{description}
  21008. In this chapter we use the mixed representation approach, partly
  21009. because of its favorable attributes and partly because it is
  21010. straightforward to implement using the tools that we have already
  21011. built to support gradual typing. The work of compiling generic
  21012. functions is performed in two passes, \code{resolve} and
  21013. \code{erase\_types}, that we discuss next. The output of
  21014. \code{erase\_types} is \LangCast{}
  21015. (section~\ref{sec:gradual-insert-casts}), so the rest of the
  21016. compilation is handled by the compiler of chapter~\ref{ch:Lgrad}.
  21017. \section{Resolve Instantiation}
  21018. \label{sec:generic-resolve}
  21019. Recall that the type checker for \LangPoly{} deduces the type
  21020. arguments at call sites to a generic function. The purpose of the
  21021. \code{resolve} pass is to turn this implicit instantiation into an
  21022. explicit one, by adding \code{inst} nodes to the syntax of the
  21023. intermediate language. An \code{inst} node records the mapping of
  21024. type parameters to type arguments. The semantics of the \code{inst}
  21025. node is to instantiate the result of its first argument, a generic
  21026. function, to produce a monomorphic function. However, because the
  21027. interpreter never analyzes type annotations, instantiation can be a
  21028. no-op and simply return the generic function.
  21029. %
  21030. The output language of the \code{resolve} pass is \LangInst{},
  21031. for which the definition is shown in figure~\ref{fig:Lpoly-prime-syntax}.
  21032. {\if\edition\racketEd
  21033. The \code{resolve} pass combines the type declaration and polymorphic
  21034. function into a single definition, using the \code{Poly} form, to make
  21035. polymorphic functions more convenient to process in the next pass of the
  21036. compiler.
  21037. \fi}
  21038. \newcommand{\LinstASTRacket}{
  21039. \begin{array}{lcl}
  21040. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  21041. \Exp &::=& \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  21042. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  21043. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP
  21044. \end{array}
  21045. }
  21046. \newcommand{\LinstASTPython}{
  21047. \begin{array}{lcl}
  21048. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP \MID \Var \\
  21049. \Exp &::=& \INST{\Exp}{\LC\Var\key{:}\Type\ldots\RC}
  21050. \end{array}
  21051. }
  21052. \begin{figure}[tp]
  21053. \centering
  21054. \begin{tcolorbox}[colback=white]
  21055. \small
  21056. {\if\edition\racketEd
  21057. \[
  21058. \begin{array}{l}
  21059. \gray{\LintOpAST} \\ \hline
  21060. \gray{\LvarASTRacket{}} \\ \hline
  21061. \gray{\LifASTRacket{}} \\ \hline
  21062. \gray{\LwhileASTRacket{}} \\ \hline
  21063. \gray{\LtupASTRacket{}} \\ \hline
  21064. \gray{\LfunASTRacket} \\ \hline
  21065. \gray{\LlambdaASTRacket} \\ \hline
  21066. \LinstASTRacket \\
  21067. \begin{array}{lcl}
  21068. \LangInst{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  21069. \end{array}
  21070. \end{array}
  21071. \]
  21072. \fi}
  21073. {\if\edition\pythonEd\pythonColor
  21074. \[
  21075. \begin{array}{l}
  21076. \gray{\LintASTPython} \\ \hline
  21077. \gray{\LvarASTPython{}} \\ \hline
  21078. \gray{\LifASTPython{}} \\ \hline
  21079. \gray{\LwhileASTPython{}} \\ \hline
  21080. \gray{\LtupASTPython{}} \\ \hline
  21081. \gray{\LfunASTPython} \\ \hline
  21082. \gray{\LlambdaASTPython} \\ \hline
  21083. \LinstASTPython \\
  21084. \begin{array}{lcl}
  21085. \LangInst{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  21086. \end{array}
  21087. \end{array}
  21088. \]
  21089. \fi}
  21090. \end{tcolorbox}
  21091. \caption{The abstract syntax of \LangInst{}, extending \LangLam{}
  21092. (figure~\ref{fig:Llam-syntax}).}
  21093. \label{fig:Lpoly-prime-syntax}
  21094. \end{figure}
  21095. The output of the \code{resolve} pass on the generic \code{map}
  21096. example is listed in figure~\ref{fig:map-resolve}. Note that the use
  21097. of \code{map} is wrapped in an \code{inst} node, with the parameter
  21098. \code{T} chosen to be \racket{\code{Integer}}\python{\code{int}}.
  21099. \begin{figure}[tbp]
  21100. % poly_test_2.rkt
  21101. \begin{tcolorbox}[colback=white]
  21102. {\if\edition\racketEd
  21103. \begin{lstlisting}
  21104. (poly (T) (define (map [f : (T -> T)] [v : (Vector T T)]) : (Vector T T)
  21105. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  21106. (define (inc [x : Integer]) : Integer (+ x 1))
  21107. (vector-ref ((inst map (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21108. (Integer))
  21109. inc (vector 0 41)) 1)
  21110. \end{lstlisting}
  21111. \fi}
  21112. {\if\edition\pythonEd\pythonColor
  21113. \begin{lstlisting}
  21114. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  21115. return (f(tup[0]), f(tup[1]))
  21116. def add1(x : int) -> int:
  21117. return x + 1
  21118. t = inst(map, {T: int})(add1, (0, 41))
  21119. print(t[1])
  21120. \end{lstlisting}
  21121. \fi}
  21122. \end{tcolorbox}
  21123. \caption{Output of the \code{resolve} pass on the \code{map} example.}
  21124. \label{fig:map-resolve}
  21125. \end{figure}
  21126. \section{Erase Generic Types}
  21127. \label{sec:erase_types}
  21128. We use the \CANYTY{} type presented in chapter~\ref{ch:Ldyn} to
  21129. represent type variables. For example, figure~\ref{fig:map-erase}
  21130. shows the output of the \code{erase\_types} pass on the generic
  21131. \code{map} (figure~\ref{fig:map-poly}). The occurrences of
  21132. type parameter \code{a} are replaced by \CANYTY{}, and the generic
  21133. \code{All} types are removed from the type of \code{map}.
  21134. \begin{figure}[tbp]
  21135. \begin{tcolorbox}[colback=white]
  21136. {\if\edition\racketEd
  21137. \begin{lstlisting}
  21138. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  21139. : (Vector Any Any)
  21140. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  21141. (define (inc [x : Integer]) : Integer (+ x 1))
  21142. (vector-ref ((cast map
  21143. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21144. ((Integer -> Integer) (Vector Integer Integer)
  21145. -> (Vector Integer Integer)))
  21146. inc (vector 0 41)) 1)
  21147. \end{lstlisting}
  21148. \fi}
  21149. {\if\edition\pythonEd\pythonColor
  21150. \begin{lstlisting}
  21151. def map(f : Callable[[Any],Any], tup : tuple[Any,Any])-> tuple[Any,Any]:
  21152. return (f(tup[0]), f(tup[1]))
  21153. def add1(x : int) -> int:
  21154. return (x + 1)
  21155. def main() -> int:
  21156. t = cast(map, |$T_1$|, |$T_2$|)(add1, (0, 41))
  21157. print(t[1])
  21158. return 0
  21159. \end{lstlisting}
  21160. {\small
  21161. where\\
  21162. $T_1 = $ \code{Callable[[Callable[[Any], Any],tuple[Any,Any]], tuple[Any,Any]]}\\
  21163. $T_2 = $ \code{Callable[[Callable[[int], int],tuple[int,int]], tuple[int,int]]}
  21164. }
  21165. \fi}
  21166. \end{tcolorbox}
  21167. \caption{The generic \code{map} example after type erasure.}
  21168. \label{fig:map-erase}
  21169. \end{figure}
  21170. This process of type erasure creates a challenge at points of
  21171. instantiation. For example, consider the instantiation of
  21172. \code{map} shown in figure~\ref{fig:map-resolve}.
  21173. The type of \code{map} is
  21174. %
  21175. {\if\edition\racketEd
  21176. \begin{lstlisting}
  21177. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21178. \end{lstlisting}
  21179. \fi}
  21180. {\if\edition\pythonEd\pythonColor
  21181. \begin{lstlisting}
  21182. All[[T], Callable[[Callable[[T], T], tuple[T, T]], tuple[T, T]]]
  21183. \end{lstlisting}
  21184. \fi}
  21185. %
  21186. and it is instantiated to
  21187. %
  21188. {\if\edition\racketEd
  21189. \begin{lstlisting}
  21190. ((Integer -> Integer) (Vector Integer Integer)
  21191. -> (Vector Integer Integer))
  21192. \end{lstlisting}
  21193. \fi}
  21194. {\if\edition\pythonEd\pythonColor
  21195. \begin{lstlisting}
  21196. Callable[[Callable[[int], int], tuple[int, int]], tuple[int, int]]
  21197. \end{lstlisting}
  21198. \fi}
  21199. %
  21200. After erasure, the type of \code{map} is
  21201. %
  21202. {\if\edition\racketEd
  21203. \begin{lstlisting}
  21204. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21205. \end{lstlisting}
  21206. \fi}
  21207. {\if\edition\pythonEd\pythonColor
  21208. \begin{lstlisting}
  21209. Callable[[Callable[[Any], Any], tuple[Any, Any]], tuple[Any, Any]]
  21210. \end{lstlisting}
  21211. \fi}
  21212. %
  21213. but we need to convert it to the instantiated type. This is easy to
  21214. do in the language \LangCast{} with a single \code{cast}. In the
  21215. example shown in figure~\ref{fig:map-erase}, the instantiation of
  21216. \code{map} has been compiled to a \code{cast} from the type of
  21217. \code{map} to the instantiated type. The source and the target type of a
  21218. cast must be consistent (figure~\ref{fig:consistent}), which indeed is
  21219. the case because both the source and target are obtained from the same
  21220. generic type of \code{map}, replacing the type parameters with
  21221. \CANYTY{} in the former and with the deduced type arguments in the
  21222. latter. (Recall that the \CANYTY{} type is consistent with any type.)
  21223. To implement the \code{erase\_types} pass, we first recommend defining
  21224. a recursive function that translates types, named
  21225. \code{erase\_type}. It replaces type variables with \CANYTY{} as
  21226. follows.
  21227. %
  21228. {\if\edition\racketEd
  21229. \begin{lstlisting}
  21230. |$T$|
  21231. |$\Rightarrow$|
  21232. Any
  21233. \end{lstlisting}
  21234. \fi}
  21235. {\if\edition\pythonEd\pythonColor
  21236. \begin{lstlisting}
  21237. GenericVar(|$T$|)
  21238. |$\Rightarrow$|
  21239. Any
  21240. \end{lstlisting}
  21241. \fi}
  21242. %
  21243. \noindent The \code{erase\_type} function also removes the generic
  21244. \code{All} types.
  21245. %
  21246. {\if\edition\racketEd
  21247. \begin{lstlisting}
  21248. (All |$xs$| |$T_1$|)
  21249. |$\Rightarrow$|
  21250. |$T'_1$|
  21251. \end{lstlisting}
  21252. \fi}
  21253. {\if\edition\pythonEd\pythonColor
  21254. \begin{lstlisting}
  21255. AllType(|$xs$|, |$T_1$|)
  21256. |$\Rightarrow$|
  21257. |$T'_1$|
  21258. \end{lstlisting}
  21259. \fi}
  21260. where $T'_1$ is the result of applying \code{erase\_type} to $T_1$.
  21261. %
  21262. In this compiler pass, apply the \code{erase\_type} function to all
  21263. the type annotations in the program.
  21264. Regarding the translation of expressions, the case for \code{Inst} is
  21265. the interesting one. We translate it into a \code{Cast}, as shown
  21266. next.
  21267. The type of the subexpression $e$ is a generic type of the form
  21268. \racket{$\LP\key{All}~\itm{xs}~T\RP$}\python{$\key{AllType}\LP\itm{xs}, T\RP$}.
  21269. The source type of the cast is the erasure of $T$, the type $T_s$.
  21270. %
  21271. {\if\edition\racketEd
  21272. %
  21273. The target type $T_t$ is the result of substituting the argument types
  21274. $ts$ for the type parameters $xs$ in $T$ followed by doing type
  21275. erasure.
  21276. %
  21277. \begin{lstlisting}
  21278. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  21279. |$\Rightarrow$|
  21280. (Cast |$e'$| |$T_s$| |$T_t$|)
  21281. \end{lstlisting}
  21282. %
  21283. where $T_t = \LP\code{erase\_type}~\LP\code{substitute\_type}~s~T\RP\RP$,
  21284. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  21285. \fi}
  21286. {\if\edition\pythonEd\pythonColor
  21287. %
  21288. The target type $T_t$ is the result of substituting the deduced
  21289. argument types $d$ in $T$ followed by doing type erasure.
  21290. %
  21291. \begin{lstlisting}
  21292. Inst(|$e$|, |$d$|)
  21293. |$\Rightarrow$|
  21294. Cast(|$e'$|, |$T_s$|, |$T_t$|)
  21295. \end{lstlisting}
  21296. %
  21297. where
  21298. $T_t = \code{erase\_type}\LP\code{substitute\_type}\LP d, T\RP\RP$.
  21299. \fi}
  21300. Finally, each generic function is translated to a regular
  21301. function in which type erasure has been applied to all the type
  21302. annotations and the body.
  21303. %% \begin{lstlisting}
  21304. %% (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  21305. %% |$\Rightarrow$|
  21306. %% (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  21307. %% \end{lstlisting}
  21308. \begin{exercise}\normalfont\normalsize
  21309. Implement a compiler for the polymorphic language \LangPoly{} by
  21310. extending and adapting your compiler for \LangGrad{}. Create six new
  21311. test programs that use polymorphic functions. Some of them should
  21312. make use of first-class generics.
  21313. \end{exercise}
  21314. \begin{figure}[tbp]
  21315. \begin{tcolorbox}[colback=white]
  21316. {\if\edition\racketEd
  21317. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21318. \node (Lpoly) at (0,4) {\large \LangPoly{}};
  21319. \node (Lpolyp) at (4,4) {\large \LangInst{}};
  21320. \node (Lgradualp) at (8,4) {\large \LangCast{}};
  21321. \node (Llambdapp) at (12,4) {\large \LangProxy{}};
  21322. \node (Llambdaproxy) at (12,2) {\large \LangPVec{}};
  21323. \node (Llambdaproxy-2) at (8,2) {\large \LangPVec{}};
  21324. \node (Llambdaproxy-3) at (4,2) {\large \LangPVec{}};
  21325. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  21326. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  21327. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  21328. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  21329. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  21330. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  21331. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  21332. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  21333. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21334. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21335. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  21336. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  21337. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21338. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21339. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  21340. \path[->,bend left=15] (Lpoly) edge [above] node
  21341. {\ttfamily\footnotesize resolve} (Lpolyp);
  21342. \path[->,bend left=15] (Lpolyp) edge [above] node
  21343. {\ttfamily\footnotesize erase\_types} (Lgradualp);
  21344. \path[->,bend left=15] (Lgradualp) edge [above] node
  21345. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  21346. \path[->,bend left=15] (Llambdapp) edge [left] node
  21347. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy);
  21348. \path[->,bend left=15] (Llambdaproxy) edge [below] node
  21349. {\ttfamily\footnotesize shrink} (Llambdaproxy-2);
  21350. \path[->,bend right=15] (Llambdaproxy-2) edge [above] node
  21351. {\ttfamily\footnotesize uniquify} (Llambdaproxy-3);
  21352. \path[->,bend right=15] (Llambdaproxy-3) edge [above] node
  21353. {\ttfamily\footnotesize reveal\_functions} (Llambdaproxy-4);
  21354. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  21355. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21356. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  21357. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21358. \path[->,bend left=15] (F1-1) edge [above] node
  21359. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21360. \path[->,bend left=15] (F1-2) edge [above] node
  21361. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21362. \path[->,bend left=15] (F1-3) edge [left] node
  21363. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  21364. \path[->,bend left=15] (F1-4) edge [below] node
  21365. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  21366. \path[->,bend right=15] (F1-5) edge [above] node
  21367. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21368. \path[->,bend right=15] (F1-6) edge [above] node
  21369. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21370. \path[->,bend right=15] (C3-2) edge [right] node
  21371. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21372. \path[->,bend right=15] (x86-2) edge [right] node
  21373. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  21374. \path[->,bend right=15] (x86-2-1) edge [below] node
  21375. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  21376. \path[->,bend right=15] (x86-2-2) edge [right] node
  21377. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  21378. \path[->,bend left=15] (x86-3) edge [above] node
  21379. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21380. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21381. \end{tikzpicture}
  21382. \fi}
  21383. {\if\edition\pythonEd\pythonColor
  21384. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21385. \node (Lgradual) at (0,4) {\large \LangPoly{}};
  21386. \node (Lgradual2) at (4,4) {\large \LangPoly{}};
  21387. \node (Lgradual3) at (8,4) {\large \LangPoly{}};
  21388. \node (Lgradual4) at (12,4) {\large \LangPoly{}};
  21389. \node (Lgradualr) at (12,2) {\large \LangInst{}};
  21390. \node (Llambdapp) at (8,2) {\large \LangCast{}};
  21391. \node (Llambdaproxy-4) at (4,2) {\large \LangPVec{}};
  21392. \node (Llambdaproxy-5) at (0,2) {\large \LangPVec{}};
  21393. \node (F1-1) at (0,0) {\large \LangPVec{}};
  21394. \node (F1-2) at (4,0) {\large \LangPVec{}};
  21395. \node (F1-3) at (8,0) {\large \LangPVec{}};
  21396. \node (F1-5) at (12,0) {\large \LangPVecAlloc{}};
  21397. \node (F1-6) at (12,-2) {\large \LangPVecAlloc{}};
  21398. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21399. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21400. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21401. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21402. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  21403. \path[->,bend left=15] (Lgradual) edge [above] node
  21404. {\ttfamily\footnotesize shrink} (Lgradual2);
  21405. \path[->,bend left=15] (Lgradual2) edge [above] node
  21406. {\ttfamily\footnotesize uniquify} (Lgradual3);
  21407. \path[->,bend left=15] (Lgradual3) edge [above] node
  21408. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  21409. \path[->,bend left=15] (Lgradual4) edge [left] node
  21410. {\ttfamily\footnotesize resolve} (Lgradualr);
  21411. \path[->,bend left=15] (Lgradualr) edge [below] node
  21412. {\ttfamily\footnotesize erase\_types} (Llambdapp);
  21413. \path[->,bend right=15] (Llambdapp) edge [above] node
  21414. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  21415. \path[->,bend right=15] (Llambdaproxy-4) edge [above] node
  21416. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21417. \path[->,bend right=15] (Llambdaproxy-5) edge [right] node
  21418. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21419. \path[->,bend right=15] (F1-1) edge [below] node
  21420. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21421. \path[->,bend right=15] (F1-2) edge [below] node
  21422. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21423. \path[->,bend left=15] (F1-3) edge [above] node
  21424. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  21425. \path[->,bend left=15] (F1-5) edge [left] node
  21426. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21427. \path[->,bend left=5] (F1-6) edge [below] node
  21428. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21429. \path[->,bend right=15] (C3-2) edge [right] node
  21430. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21431. \path[->,bend right=15] (x86-2) edge [below] node
  21432. {\ttfamily\footnotesize assign\_homes} (x86-3);
  21433. \path[->,bend right=15] (x86-3) edge [below] node
  21434. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21435. \path[->,bend left=15] (x86-4) edge [above] node
  21436. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21437. \end{tikzpicture}
  21438. \fi}
  21439. \end{tcolorbox}
  21440. \caption{Diagram of the passes for \LangPoly{} (generics).}
  21441. \label{fig:Lpoly-passes}
  21442. \end{figure}
  21443. Figure~\ref{fig:Lpoly-passes} provides an overview of the passes
  21444. needed to compile \LangPoly{}.
  21445. % TODO: challenge problem: specialization of instantiations
  21446. % Further Reading
  21447. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  21448. \clearpage
  21449. \appendix
  21450. \chapter{Appendix}
  21451. \setcounter{footnote}{0}
  21452. {\if\edition\racketEd
  21453. \section{Interpreters}
  21454. \label{appendix:interp}
  21455. \index{subject}{interpreter}
  21456. We provide interpreters for each of the source languages \LangInt{},
  21457. \LangVar{}, $\ldots$ in the files \code{interp-Lint.rkt},
  21458. \code{interp-Lvar.rkt}, and so on. The interpreters for the
  21459. intermediate languages \LangCVar{} and \LangCIf{} are in
  21460. \code{interp-Cvar.rkt} and \code{interp-C1.rkt}. The interpreters for
  21461. \LangCVec{}, \LangCFun{}, pseudo-x86, and x86 are in the
  21462. \key{interp.rkt} file.
  21463. \section{Utility Functions}
  21464. \label{appendix:utilities}
  21465. The utility functions described in this section are in the
  21466. \key{utilities.rkt} file of the support code.
  21467. \paragraph{\code{interp-tests}}
  21468. This function runs the compiler passes and the interpreters on each of
  21469. the specified tests to check whether each pass is correct. The
  21470. \key{interp-tests} function has the following parameters:
  21471. \begin{description}
  21472. \item[name (a string)] A name to identify the compiler.
  21473. \item[typechecker] A function of exactly one argument that either
  21474. raises an error using the \code{error} function when it encounters a
  21475. type error, or returns \code{\#f} when it encounters a type
  21476. error. If there is no type error, the type checker returns the
  21477. program.
  21478. \item[passes] A list with one entry per pass. An entry is a list
  21479. consisting of four things:
  21480. \begin{enumerate}
  21481. \item a string giving the name of the pass;
  21482. \item the function that implements the pass (a translator from AST
  21483. to AST);
  21484. \item a function that implements the interpreter (a function from
  21485. AST to result value) for the output language; and,
  21486. \item a type checker for the output language. Type checkers for
  21487. all the $\Lang{}$ and $\CLang{}$ languages are provided in the support code.
  21488. For example, the type checkers for \LangVar{} and \LangCVar{} are in
  21489. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  21490. type checker entry is optional. The support code does not provide
  21491. type checkers for the x86 languages.
  21492. \end{enumerate}
  21493. \item[source-interp] An interpreter for the source language. The
  21494. interpreters from appendix~\ref{appendix:interp} make a good choice.
  21495. \item[test-family (a string)] For example, \code{"var"} or \code{"cond"}.
  21496. \item[tests] A list of test numbers that specifies which tests to
  21497. run (explained next).
  21498. \end{description}
  21499. %
  21500. The \key{interp-tests} function assumes that the subdirectory
  21501. \key{tests} has a collection of Racket programs whose names all start
  21502. with the family name, followed by an underscore and then the test
  21503. number, and ending with the file extension \key{.rkt}. Also, for each test
  21504. program that calls \code{read} one or more times, there is a file with
  21505. the same name except that the file extension is \key{.in}, which
  21506. provides the input for the Racket program. If the test program is
  21507. expected to fail type checking, then there should be an empty file of
  21508. the same name with extension \key{.tyerr}.
  21509. \paragraph{\code{compiler-tests}}
  21510. This function runs the compiler passes to generate x86 (a \key{.s}
  21511. file) and then runs the GNU C compiler (gcc) to generate machine code.
  21512. It runs the machine code and checks that the output is $42$. The
  21513. parameters to the \code{compiler-tests} function are similar to those
  21514. of the \code{interp-tests} function, and they consist of
  21515. \begin{itemize}
  21516. \item a compiler name (a string),
  21517. \item a type checker,
  21518. \item description of the passes,
  21519. \item name of a test-family, and
  21520. \item a list of test numbers.
  21521. \end{itemize}
  21522. \paragraph{\code{compile-file}}
  21523. This function takes a description of the compiler passes (see the
  21524. comment for \key{interp-tests}) and returns a function that, given a
  21525. program file name (a string ending in \key{.rkt}), applies all the
  21526. passes and writes the output to a file whose name is the same as the
  21527. program file name with extension \key{.rkt} replaced by \key{.s}.
  21528. \paragraph{\code{read-program}}
  21529. This function takes a file path and parses that file (it must be a
  21530. Racket program) into an abstract syntax tree.
  21531. \paragraph{\code{parse-program}}
  21532. This function takes an S-expression representation of an abstract
  21533. syntax tree and converts it into the struct-based representation.
  21534. \paragraph{\code{assert}}
  21535. This function takes two parameters, a string (\code{msg}) and Boolean
  21536. (\code{bool}), and displays the message \key{msg} if the Boolean
  21537. \key{bool} is false.
  21538. \paragraph{\code{lookup}}
  21539. % remove discussion of lookup? -Jeremy
  21540. This function takes a key and an alist and returns the first value that is
  21541. associated with the given key, if there is one. If not, an error is
  21542. triggered. The alist may contain both immutable pairs (built with
  21543. \key{cons}) and mutable pairs (built with \key{mcons}).
  21544. %The \key{map2} function ...
  21545. \fi} %\racketEd
  21546. \section{x86 Instruction Set Quick Reference}
  21547. \label{sec:x86-quick-reference}
  21548. \index{subject}{x86}
  21549. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  21550. do. We write $A \to B$ to mean that the value of $A$ is written into
  21551. location $B$. Address offsets are given in bytes. The instruction
  21552. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  21553. registers (such as \code{\%rax}), or memory references (such as
  21554. \code{-4(\%ebp)}). Most x86 instructions allow at most one memory
  21555. reference per instruction. Other operands must be immediates or
  21556. registers.
  21557. \begin{table}[tbp]
  21558. \centering
  21559. \begin{tabular}{l|l}
  21560. \textbf{Instruction} & \textbf{Operation} \\ \hline
  21561. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  21562. \texttt{negq} $A$ & $- A \to A$ \\
  21563. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  21564. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  21565. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  21566. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$ \\
  21567. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  21568. \texttt{retq} & Pops the return address and jumps to it \\
  21569. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  21570. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  21571. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  21572. \texttt{cmpq} $A$, $B$ & Compare $A$ and $B$ and set the flag register ($B$ must not
  21573. be an immediate) \\
  21574. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  21575. matches the condition code of the instruction; otherwise go to the
  21576. next instructions. The condition codes are \key{e} for \emph{equal},
  21577. \key{l} for \emph{less}, \key{le} for \emph{less or equal}, \key{g}
  21578. for \emph{greater}, and \key{ge} for \emph{greater or equal}.} \\
  21579. \texttt{jl} $L$ & \\
  21580. \texttt{jle} $L$ & \\
  21581. \texttt{jg} $L$ & \\
  21582. \texttt{jge} $L$ & \\
  21583. \texttt{jmp} $L$ & Jump to label $L$ \\
  21584. \texttt{movq} $A$, $B$ & $A \to B$ \\
  21585. \texttt{movzbq} $A$, $B$ &
  21586. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  21587. (e.g., \texttt{al} or \texttt{cl}), $B$ is an 8-byte register,
  21588. and the extra bytes of $B$ are set to zero.} \\
  21589. & \\
  21590. & \\
  21591. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  21592. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  21593. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  21594. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  21595. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  21596. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  21597. then $1 \to A$; else $0 \to A$. Refer to \texttt{je} for the
  21598. description of the condition codes. $A$ must be a single byte register
  21599. (e.g., \texttt{al} or \texttt{cl}).} \\
  21600. \texttt{setl} $A$ & \\
  21601. \texttt{setle} $A$ & \\
  21602. \texttt{setg} $A$ & \\
  21603. \texttt{setge} $A$ &
  21604. \end{tabular}
  21605. \vspace{5pt}
  21606. \caption{Quick reference for the x86 instructions used in this book.}
  21607. \label{tab:x86-instr}
  21608. \end{table}
  21609. \backmatter
  21610. \addtocontents{toc}{\vspace{11pt}}
  21611. \cleardoublepage % needed for right page number in TOC for References
  21612. %% \nocite{*} is a way to get all the entries in the .bib file to
  21613. %% print in the bibliography:
  21614. \nocite{*}\let\bibname\refname
  21615. \addcontentsline{toc}{fmbm}{\refname}
  21616. \printbibliography
  21617. %\printindex{authors}{Author Index}
  21618. \printindex{subject}{Index}
  21619. \end{document}
  21620. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  21621. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  21622. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  21623. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  21624. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  21625. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  21626. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  21627. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  21628. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  21629. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  21630. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  21631. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  21632. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  21633. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  21634. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  21635. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  21636. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  21637. % LocalWords: numberstyle Cormen sudoku Balakrishnan ve aka DSATUR
  21638. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS wb
  21639. % LocalWords: morekeywords fullflexible goto allocator tuples Wailes
  21640. % LocalWords: Kernighan runtime Freiburg Thiemann Bloomington unary
  21641. % LocalWords: eq prog rcl binaryop unaryop definitional Evaluator os
  21642. % LocalWords: subexpression evaluator InterpLint lcl quadwords concl
  21643. % LocalWords: nanopass subexpressions decompositions Lawall Hatcliff
  21644. % LocalWords: subdirectory monadic Moggi mon utils macosx unix repr
  21645. % LocalWords: Uncomment undirected vertices callee Liveness liveness
  21646. % LocalWords: frozenset unordered Appel Rosen pqueue cmp Fortran vl
  21647. % LocalWords: Horwitz Kempe colorable subgraph kx iteratively Matula
  21648. % LocalWords: ys ly Palsberg si JoeQ cardinality Poletto Booleans hj
  21649. % LocalWords: subscriptable MyPy Lehtosalo Listof Pairof indexable
  21650. % LocalWords: bool boolop NotEq LtE GtE refactor els orelse BoolOp
  21651. % LocalWords: boolean initializer param exprs TypeCheckLvar msg Tt
  21652. % LocalWords: isinstance TypeCheckLif tyerr xorq bytereg al dh dl ne
  21653. % LocalWords: le ge cmpq movzbq EFLAGS jle inlined setl je jl Cif
  21654. % LocalWords: lll pred IfStmt sete CFG tsort multigraph FunctionType
  21655. % LocalWords: Wijngaarden Plotkin Logothetis PeytonJones SetBang Ph
  21656. % LocalWords: WhileLoop unboxes Lwhile unbox InterpLwhile rhsT varT
  21657. % LocalWords: Tbody TypeCheckLwhile acyclic mainstart mainconclusion
  21658. % LocalWords: versa Kildall Kleene worklist enqueue dequeue deque tb
  21659. % LocalWords: GetBang effectful SPERBER Lfun tuple implementer's tup
  21660. % LocalWords: indices HasType Lvec InterpLtup tuple's vec ty Ungar
  21661. % LocalWords: TypeCheckLtup Detlefs Tene FromSpace ToSpace Diwan ptr
  21662. % LocalWords: Siebert TupleType endian salq sarq fromspace rootstack
  21663. % LocalWords: uint th vecinit alloc GlobalValue andq bitwise ior elt
  21664. % LocalWords: dereferencing StructDef Vectorof vectorof Lvecof Jacek
  21665. % LocalWords: AllocateArray cheney tospace Dieckmann Shahriyar di xs
  21666. % LocalWords: Shidal Osterlund Gamari lexically FunctionDef IntType
  21667. % LocalWords: BoolType VoidType ProgramDefsExp vals params ps ds num
  21668. % LocalWords: InterpLfun FunRef TypeCheckLfun leaq callee's mainDef
  21669. % LocalWords: ProgramDefs TailCall tailjmp IndirectCallq TailJmp rT
  21670. % LocalWords: prepending addstart addconclusion Cardelli Llambda typ
  21671. % LocalWords: Llambda InterpLlambda AnnAssign Dunfield bodyT str fvs
  21672. % LocalWords: TypeCheckLlambda annot dereference clos fvts closTy tg
  21673. % LocalWords: Minamide AllocateClosure Gilray Milner morphos subtype
  21674. % LocalWords: polymorphism untyped AnyType dataclass untag Ldyn conc
  21675. % LocalWords: lookup InterpLdyn elif tagof Lany TypeCheckLany tv orq
  21676. % LocalWords: AnnLambda InterpLany ClosureTuple ValueOf TagOf imulq
  21677. % LocalWords: untagged multi Tobin Hochstadt zr mn Gronski kd ret Tp
  21678. % LocalWords: Tif src tgt Lcast wr contravariant PVector un Lgradual
  21679. % LocalWords: Lgradualp Llambdapp Llambdaproxy Wadler qv quicksort
  21680. % LocalWords: Henglein nz coercions Grift parametetric parameterized
  21681. % LocalWords: parameterizing stroustrup subst tys targs decls defs
  21682. % LocalWords: pts ats prt pxs axs Decl Monomorphization NESL CLU qb
  21683. % LocalWords: monomorphization Blelloch monomorphic Bracha unboxed
  21684. % LocalWords: instantiation Lpoly Lpolyp typechecker mcons ebp jge
  21685. % LocalWords: notq setle setg setge uncredited LT Std groundbreaking
  21686. % LocalWords: colback GitHub inputint nonatomic ea tcolorbox bassed
  21687. % LocalWords: tikzpicture Chaitin's Belady's Cocke Freiburghouse Lt
  21688. % LocalWords: lessthan lessthaneq greaterthan greaterthaneq Gt pt Te
  21689. % LocalWords: ts escapechar Tc bl ch cl cc foo lt metavariables vars
  21690. % LocalWords: trans naively IR rep assoc ListType TypeCheckLarray dz
  21691. % LocalWords: Mult InterpLarray lst array's generation's Collins inc
  21692. % LocalWords: Cutler Kelsey val rt bod conflates reg inlining lam AF
  21693. % LocalWords: ASTPython body's bot todo rs ls TypeCheckLgrad ops ab
  21694. % LocalWords: value's inplace anyfun anytup anylist ValueExp proxied
  21695. % LocalWords: ProxiedTuple ProxiedList InterpLcast ListProxy vectof
  21696. % LocalWords: TupleProxy RawTuple InjectTuple InjectTupleProxy vecof
  21697. % LocalWords: InjectList InjectListProxy unannotated Lgradualr poly
  21698. % LocalWords: GenericVar AllType Inst builtin ap pps aps pp deepcopy
  21699. % LocalWords: liskov clu Liskov dk Napier um inst popl jg seq ith qy
  21700. % LocalWords: racketEd subparts subpart nonterminal nonterminals Dyn
  21701. % LocalWords: pseudocode underapproximation underapproximations LALR
  21702. % LocalWords: semilattices overapproximate incrementing Earley docs
  21703. % LocalWords: multilanguage Prelim shinan DeRemer lexer Lesk LPAR cb
  21704. % LocalWords: RPAR abcbab abc bzca usub paren expr lang WS Tomita qr
  21705. % LocalWords: subparses LCCN ebook hardcover epub pdf LCSH LCC DDC
  21706. % LocalWords: LC partialevaluation pythonEd TOC