book.tex 678 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. % move binary subtraction from Lif to Lint
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \definecolor{lightgray}{gray}{1}
  18. \newcommand{\black}[1]{{\color{black} #1}}
  19. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  20. \newcommand{\gray}[1]{{\color{gray} #1}}
  21. \def\racketEd{0}
  22. \def\pythonEd{1}
  23. \def\edition{1}
  24. % material that is specific to the Racket edition of the book
  25. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  26. % would like a command for: \if\edition\racketEd\color{olive}
  27. % and : \fi\color{black}
  28. % material that is specific to the Python edition of the book
  29. \newcommand{\python}[1]{{\if\edition\pythonEd #1\fi}}
  30. %% For multiple indices:
  31. \usepackage{multind}
  32. \makeindex{subject}
  33. \makeindex{authors}
  34. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  35. \if\edition\racketEd
  36. \lstset{%
  37. language=Lisp,
  38. basicstyle=\ttfamily\small,
  39. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  40. deletekeywords={read,mapping,vector},
  41. escapechar=|,
  42. columns=flexible,
  43. moredelim=[is][\color{red}]{~}{~},
  44. showstringspaces=false
  45. }
  46. \fi
  47. \if\edition\pythonEd
  48. \lstset{%
  49. language=Python,
  50. basicstyle=\ttfamily\small,
  51. morekeywords={match,case,bool,int,let},
  52. deletekeywords={},
  53. escapechar=|,
  54. columns=flexible,
  55. moredelim=[is][\color{red}]{~}{~},
  56. showstringspaces=false
  57. }
  58. \fi
  59. %%% Any shortcut own defined macros place here
  60. %% sample of author macro:
  61. \input{defs}
  62. \newtheorem{exercise}[theorem]{Exercise}
  63. % Adjusted settings
  64. \setlength{\columnsep}{4pt}
  65. %% \begingroup
  66. %% \setlength{\intextsep}{0pt}%
  67. %% \setlength{\columnsep}{0pt}%
  68. %% \begin{wrapfigure}{r}{0.5\textwidth}
  69. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  70. %% \caption{Basic layout}
  71. %% \end{wrapfigure}
  72. %% \lipsum[1]
  73. %% \endgroup
  74. \newbox\oiintbox
  75. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  76. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  77. \def\oiint{\copy\oiintbox}
  78. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  79. %\usepackage{showframe}
  80. \def\ShowFrameLinethickness{0.125pt}
  81. \addbibresource{book.bib}
  82. \begin{document}
  83. \frontmatter
  84. \HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  85. \halftitlepage
  86. \Title{Essentials of Compilation}
  87. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  88. %\edition{First Edition}
  89. \BookAuthor{Jeremy G. Siek}
  90. \imprint{The MIT Press\\
  91. Cambridge, Massachusetts\\
  92. London, England}
  93. \begin{copyrightpage}
  94. \textcopyright\ 2021 Jeremy G. Siek. Available for free viewing
  95. or personal downloading under the
  96. \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  97. license.
  98. Copyright in this monograph has been licensed exclusively to The MIT
  99. Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  100. version to the public in 2022. All inquiries regarding rights should
  101. be addressed to The MIT Press, Rights and Permissions Department.
  102. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  103. %% All rights reserved. No part of this book may be reproduced in any
  104. %% form by any electronic or mechanical means (including photocopying,
  105. %% recording, or information storage and retrieval) without permission in
  106. %% writing from the publisher.
  107. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  108. %% United States of America.
  109. %% Library of Congress Cataloging-in-Publication Data is available.
  110. %% ISBN:
  111. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  112. \end{copyrightpage}
  113. \dedication{This book is dedicated to the programming language wonks
  114. at Indiana University.}
  115. %% \begin{epigraphpage}
  116. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  117. %% \textit{Book Name if any}}
  118. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  119. %% \end{epigraphpage}
  120. \tableofcontents
  121. %\listoffigures
  122. %\listoftables
  123. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  124. \chapter*{Preface}
  125. \addcontentsline{toc}{fmbm}{Preface}
  126. There is a magical moment when a programmer presses the ``run'' button
  127. and the software begins to execute. Somehow a program written in a
  128. high-level language is running on a computer that is only capable of
  129. shuffling bits. Here we reveal the wizardry that makes that moment
  130. possible. Beginning with the groundbreaking work of Backus and
  131. colleagues in the 1950s, computer scientists discovered techniques for
  132. constructing programs, called \emph{compilers}, that automatically
  133. translate high-level programs into machine code.
  134. We take you on a journey by constructing your own compiler for a small
  135. but powerful language. Along the way we explain the essential
  136. concepts, algorithms, and data structures that underlie compilers. We
  137. develop your understanding of how programs are mapped onto computer
  138. hardware, which is helpful when reasoning about properties at the
  139. junction between hardware and software such as execution time,
  140. software errors, and security vulnerabilities. For those interested
  141. in pursuing compiler construction as a career, our goal is to provide a
  142. stepping-stone to advanced topics such as just-in-time compilation,
  143. program analysis, and program optimization. For those interested in
  144. designing and implementing programming languages, we connect
  145. language design choices to their impact on the compiler and the generated
  146. code.
  147. A compiler is typically organized as a sequence of stages that
  148. progressively translate a program to the code that runs on
  149. hardware. We take this approach to the extreme by partitioning our
  150. compiler into a large number of \emph{nanopasses}, each of which
  151. performs a single task. This allows us to test the output of each pass
  152. in isolation, and furthermore, allows us to focus our attention which
  153. makes the compiler far easier to understand.
  154. The most familiar approach to describing compilers is with one pass
  155. per chapter. The problem with that approach is it obfuscates how
  156. language features motivate design choices in a compiler. We instead
  157. take an \emph{incremental} approach in which we build a complete
  158. compiler in each chapter, starting with a small input language that
  159. includes only arithmetic and variables and we add new language
  160. features in subsequent chapters.
  161. Our choice of language features is designed to elicit fundamental
  162. concepts and algorithms used in compilers.
  163. \begin{itemize}
  164. \item We begin with integer arithmetic and local variables in
  165. Chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  166. the fundamental tools of compiler construction: \emph{abstract
  167. syntax trees} and \emph{recursive functions}.
  168. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  169. \emph{graph coloring} to assign variables to machine registers.
  170. \item Chapter~\ref{ch:Lif} adds \code{if} expressions, which motivates
  171. an elegant recursive algorithm for translating them into conditional
  172. \code{goto}'s.
  173. \item Chapter~\ref{ch:Lwhile} fleshes out support for imperative
  174. programming languages with the addition of loops\racket{ and mutable
  175. variables}. This elicits the need for \emph{dataflow
  176. analysis} in the register allocator.
  177. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  178. \emph{garbage collection}.
  179. \item Chapter~\ref{ch:Lfun} adds functions that are first-class values
  180. but lack lexical scoping, similar to the C programming
  181. language~\citep{Kernighan:1988nx} except that we generate efficient
  182. tail calls. The reader learns about the procedure call stack,
  183. \emph{calling conventions}, and their interaction with register
  184. allocation and garbage collection.
  185. \item Chapter~\ref{ch:Llambda} adds anonymous functions with lexical
  186. scoping, i.e., \emph{lambda abstraction}. The reader learns about
  187. \emph{closure conversion}, in which lambdas are translated into a
  188. combination of functions and tuples.
  189. % Chapter about classes and objects?
  190. \item Chapter~\ref{ch:Ldyn} adds \emph{dynamic typing}. Prior to this
  191. point the input languages are statically typed. The reader extends
  192. the statically typed language with an \code{Any} type which serves
  193. as a target for compiling the dynamically typed language.
  194. {\if\edition\pythonEd
  195. \item Chapter~\ref{ch:Lobject} adds support for \emph{objects} and
  196. \emph{classes}.
  197. \fi}
  198. \item Chapter~\ref{ch:Lgrad} uses the \code{Any} type of
  199. Chapter~\ref{ch:Ldyn} to implement a \emph{gradually typed language}
  200. in which different regions of a program may be static or dynamically
  201. typed. The reader implements runtime support for \emph{proxies} that
  202. allow values to safely move between regions.
  203. \item Chapter~\ref{ch:Lpoly} adds \emph{generics} with autoboxing,
  204. leveraging the \code{Any} type and type casts developed in Chapters
  205. \ref{ch:Ldyn} and \ref{ch:Lgrad}.
  206. \end{itemize}
  207. There are many language features that we do not include. Our choices
  208. balance the incidental complexity of a feature versus the fundamental
  209. concepts that it exposes. For example, we include tuples and not
  210. records because they both elicit the study of heap allocation and
  211. garbage collection but records come with more incidental complexity.
  212. Since 2009 drafts of this book have served as the textbook for 16-week
  213. compiler courses for upper-level undergraduates and first-year
  214. graduate students at the University of Colorado and Indiana
  215. University.
  216. %
  217. Students come into the course having learned the basics of
  218. programming, data structures and algorithms, and discrete
  219. mathematics.
  220. %
  221. At the beginning of the course, students form groups of 2-4 people.
  222. The groups complete one chapter every two weeks, starting with
  223. Chapter~\ref{ch:Lvar} and finishing with
  224. Chapter~\ref{ch:Llambda}. Many chapters include a challenge problem
  225. that we assign to the graduate students. The last two weeks of the
  226. course involve a final project in which students design and implement
  227. a compiler extension of their choosing. The later chapters can be
  228. used in support of these projects. For compiler courses at
  229. universities on the quarter system that are about 10 weeks in length,
  230. we recommend completing up through Chapter~\ref{ch:Lvec} or
  231. Chapter~\ref{ch:Lfun} and providing some scafolding code to the
  232. students for each compiler pass.
  233. %
  234. The course can be adapted to emphasize functional languages by
  235. skipping Chapter~\ref{ch:Lwhile} (loops) and including
  236. Chapter~\ref{ch:Llambda} (lambda). The course can be adapted to
  237. dynamically typed languages by including Chapter~\ref{ch:Ldyn}.
  238. %
  239. \python{A course that emphasizes object-oriented languages would
  240. include Chapter~\ref{ch:Lobject}.}
  241. %
  242. Figure~\ref{fig:chapter-dependences} depicts the dependencies between
  243. chapters. Chapter~\ref{ch:Lfun} (functions) depends on
  244. Chapter~\ref{ch:Lvec} (tuples) in the implementation of efficient
  245. tail calls.
  246. This book has been used in compiler courses at California Polytechnic
  247. State University, Portland State University, Rose–Hulman Institute of
  248. Technology, University of Freiburg, University of Massachusetts
  249. Lowell, and the University of Vermont.
  250. \begin{figure}[tp]
  251. {\if\edition\racketEd
  252. \begin{tikzpicture}[baseline=(current bounding box.center)]
  253. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  254. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  255. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  256. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  257. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  258. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  259. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  260. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  261. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  262. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  263. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  264. \path[->] (C1) edge [above] node {} (C2);
  265. \path[->] (C2) edge [above] node {} (C3);
  266. \path[->] (C3) edge [above] node {} (C4);
  267. \path[->] (C4) edge [above] node {} (C5);
  268. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  269. \path[->] (C5) edge [above] node {} (C7);
  270. \path[->] (C6) edge [above] node {} (C7);
  271. \path[->] (C4) edge [above] node {} (C8);
  272. \path[->] (C4) edge [above] node {} (C9);
  273. \path[->] (C7) edge [above] node {} (C10);
  274. \path[->] (C8) edge [above] node {} (C10);
  275. \path[->] (C10) edge [above] node {} (C11);
  276. \end{tikzpicture}
  277. \fi}
  278. {\if\edition\pythonEd
  279. \begin{tikzpicture}[baseline=(current bounding box.center)]
  280. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  281. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  282. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  283. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  284. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  285. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  286. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  287. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  288. \node (CO) at (0,-3) {\small Ch.~\ref{ch:Lobject} Objects};
  289. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  290. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  291. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  292. \path[->] (C1) edge [above] node {} (C2);
  293. \path[->] (C2) edge [above] node {} (C3);
  294. \path[->] (C3) edge [above] node {} (C4);
  295. \path[->] (C4) edge [above] node {} (C5);
  296. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  297. \path[->] (C5) edge [above] node {} (C7);
  298. \path[->] (C6) edge [above] node {} (C7);
  299. \path[->] (C4) edge [above] node {} (C8);
  300. \path[->] (C4) edge [above] node {} (C9);
  301. \path[->] (C7) edge [above] node {} (C10);
  302. \path[->] (C8) edge [above] node {} (C10);
  303. \path[->] (C8) edge [above] node {} (CO);
  304. \path[->] (C10) edge [above] node {} (C11);
  305. \end{tikzpicture}
  306. \fi}
  307. \caption{Diagram of chapter dependencies.}
  308. \label{fig:chapter-dependences}
  309. \end{figure}
  310. \racket{
  311. We use the \href{https://racket-lang.org/}{Racket} language both for
  312. the implementation of the compiler and for the input language, so the
  313. reader should be proficient with Racket or Scheme. There are many
  314. excellent resources for learning Scheme and
  315. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  316. }
  317. \python{
  318. This edition of the book uses \href{https://www.python.org/}{Python}
  319. both for the implementation of the compiler and for the input language, so the
  320. reader should be proficient with Python. There are many
  321. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.
  322. }
  323. The support code for this book is in the github repository at
  324. the following location:
  325. \if\edition\racketEd
  326. \begin{center}\small
  327. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  328. \end{center}
  329. \fi
  330. \if\edition\pythonEd
  331. \begin{center}\small
  332. \url{https://github.com/IUCompilerCourse/}
  333. \end{center}
  334. \fi
  335. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  336. is helpful but not necessary for the reader to have taken a computer
  337. systems course~\citep{Bryant:2010aa}. This book introduces the parts
  338. of x86-64 assembly language that are needed.
  339. %
  340. We follow the System V calling
  341. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  342. that we generate works with the runtime system (written in C) when it
  343. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  344. operating systems on Intel hardware.
  345. %
  346. On the Windows operating system, \code{gcc} uses the Microsoft x64
  347. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  348. assembly code that we generate does \emph{not} work with the runtime
  349. system on Windows. One workaround is to use a virtual machine with
  350. Linux as the guest operating system.
  351. \section*{Acknowledgments}
  352. The tradition of compiler construction at Indiana University goes back
  353. to research and courses on programming languages by Daniel Friedman in
  354. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  355. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  356. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  357. the compiler course and continued the development of Chez Scheme.
  358. %
  359. The compiler course evolved to incorporate novel pedagogical ideas
  360. while also including elements of real-world compilers. One of
  361. Friedman's ideas was to split the compiler into many small
  362. passes. Another idea, called ``the game'', was to test the code
  363. generated by each pass using interpreters.
  364. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  365. developed infrastructure to support this approach and evolved the
  366. course to use even smaller
  367. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  368. design decisions in this book are inspired by the assignment
  369. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  370. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  371. organization of the course made it difficult for students to
  372. understand the rationale for the compiler design. Ghuloum proposed the
  373. incremental approach~\citep{Ghuloum:2006bh} that this book is based
  374. on.
  375. We thank the many students who served as teaching assistants for the
  376. compiler course at IU and made suggestions for improving the book
  377. including Carl Factora, Ryan Scott, Cameron Swords, and Chris
  378. Wailes. We thank Andre Kuhlenschmidt for work on the garbage collector
  379. and x86 interpreter, Michael Vollmer for work on efficient tail calls,
  380. and Michael Vitousek for help running the first offering of the
  381. incremental compiler course at IU.
  382. We thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  383. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  384. Michael Wollowski for teaching courses based on drafts of this book
  385. and for their feedback.
  386. We thank Ronald Garcia for helping Jeremy survive Dybvig's compiler
  387. course in the early 2000's and especially for finding the bug that
  388. sent our garbage collector on a wild goose chase!
  389. \mbox{}\\
  390. \noindent Jeremy G. Siek \\
  391. Bloomington, Indiana
  392. \mainmatter
  393. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  394. \chapter{Preliminaries}
  395. \label{ch:trees-recur}
  396. In this chapter we review the basic tools that are needed to implement
  397. a compiler. Programs are typically input by a programmer as text,
  398. i.e., a sequence of characters. The program-as-text representation is
  399. called \emph{concrete syntax}. We use concrete syntax to concisely
  400. write down and talk about programs. Inside the compiler, we use
  401. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  402. that efficiently supports the operations that the compiler needs to
  403. perform.\index{subject}{concrete syntax}\index{subject}{abstract syntax}\index{subject}{abstract
  404. syntax tree}\index{subject}{AST}\index{subject}{program}\index{subject}{parse} The translation
  405. from concrete syntax to abstract syntax is a process called
  406. \emph{parsing}~\citep{Aho:2006wb}. We do not cover the theory and
  407. implementation of parsing in this book.
  408. %
  409. \racket{A parser is provided in the support code for translating from
  410. concrete to abstract syntax.}
  411. %
  412. \python{We use Python's \code{ast} module to translate from concrete
  413. to abstract syntax.}
  414. ASTs can be represented in many different ways inside the compiler,
  415. depending on the programming language used to write the compiler.
  416. %
  417. \racket{We use Racket's
  418. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  419. feature to represent ASTs (Section~\ref{sec:ast}).}
  420. %
  421. \python{We use Python classes and objects to represent ASTs, especially the
  422. classes defined in the standard \code{ast} module for the Python
  423. source language.}
  424. %
  425. We use grammars to define the abstract syntax of programming languages
  426. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  427. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  428. recursive functions to construct and deconstruct ASTs
  429. (Section~\ref{sec:recursion}). This chapter provides an brief
  430. introduction to these ideas.
  431. \racket{\index{subject}{struct}}
  432. \python{\index{subject}{class}\index{subject}{object}}
  433. \section{Abstract Syntax Trees}
  434. \label{sec:ast}
  435. Compilers use abstract syntax trees to represent programs because they
  436. often need to ask questions like: for a given part of a program, what
  437. kind of language feature is it? What are its sub-parts? Consider the
  438. program on the left and its AST on the right. This program is an
  439. addition operation and it has two sub-parts, a
  440. \racket{read}\python{input} operation and a negation. The negation has
  441. another sub-part, the integer constant \code{8}. By using a tree to
  442. represent the program, we can easily follow the links to go from one
  443. part of a program to its sub-parts.
  444. \begin{center}
  445. \begin{minipage}{0.4\textwidth}
  446. \if\edition\racketEd
  447. \begin{lstlisting}
  448. (+ (read) (- 8))
  449. \end{lstlisting}
  450. \fi
  451. \if\edition\pythonEd
  452. \begin{lstlisting}
  453. input_int() + -8
  454. \end{lstlisting}
  455. \fi
  456. \end{minipage}
  457. \begin{minipage}{0.4\textwidth}
  458. \begin{equation}
  459. \begin{tikzpicture}
  460. \node[draw] (plus) at (0 , 0) {\key{+}};
  461. \node[draw] (read) at (-1, -1.5) {{\if\edition\racketEd\footnotesize\key{read}\fi\if\edition\pythonEd\key{input\_int()}\fi}};
  462. \node[draw] (minus) at (1 , -1.5) {$\key{-}$};
  463. \node[draw] (8) at (1 , -3) {\key{8}};
  464. \draw[->] (plus) to (read);
  465. \draw[->] (plus) to (minus);
  466. \draw[->] (minus) to (8);
  467. \end{tikzpicture}
  468. \label{eq:arith-prog}
  469. \end{equation}
  470. \end{minipage}
  471. \end{center}
  472. We use the standard terminology for trees to describe ASTs: each
  473. rectangle above is called a \emph{node}. The arrows connect a node to its
  474. \emph{children} (which are also nodes). The top-most node is the
  475. \emph{root}. Every node except for the root has a \emph{parent} (the
  476. node it is the child of). If a node has no children, it is a
  477. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  478. \index{subject}{node}
  479. \index{subject}{children}
  480. \index{subject}{root}
  481. \index{subject}{parent}
  482. \index{subject}{leaf}
  483. \index{subject}{internal node}
  484. %% Recall that an \emph{symbolic expression} (S-expression) is either
  485. %% \begin{enumerate}
  486. %% \item an atom, or
  487. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  488. %% where $e_1$ and $e_2$ are each an S-expression.
  489. %% \end{enumerate}
  490. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  491. %% null value \code{'()}, etc. We can create an S-expression in Racket
  492. %% simply by writing a backquote (called a quasi-quote in Racket)
  493. %% followed by the textual representation of the S-expression. It is
  494. %% quite common to use S-expressions to represent a list, such as $a, b
  495. %% ,c$ in the following way:
  496. %% \begin{lstlisting}
  497. %% `(a . (b . (c . ())))
  498. %% \end{lstlisting}
  499. %% Each element of the list is in the first slot of a pair, and the
  500. %% second slot is either the rest of the list or the null value, to mark
  501. %% the end of the list. Such lists are so common that Racket provides
  502. %% special notation for them that removes the need for the periods
  503. %% and so many parenthesis:
  504. %% \begin{lstlisting}
  505. %% `(a b c)
  506. %% \end{lstlisting}
  507. %% The following expression creates an S-expression that represents AST
  508. %% \eqref{eq:arith-prog}.
  509. %% \begin{lstlisting}
  510. %% `(+ (read) (- 8))
  511. %% \end{lstlisting}
  512. %% When using S-expressions to represent ASTs, the convention is to
  513. %% represent each AST node as a list and to put the operation symbol at
  514. %% the front of the list. The rest of the list contains the children. So
  515. %% in the above case, the root AST node has operation \code{`+} and its
  516. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  517. %% diagram \eqref{eq:arith-prog}.
  518. %% To build larger S-expressions one often needs to splice together
  519. %% several smaller S-expressions. Racket provides the comma operator to
  520. %% splice an S-expression into a larger one. For example, instead of
  521. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  522. %% we could have first created an S-expression for AST
  523. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  524. %% S-expression.
  525. %% \begin{lstlisting}
  526. %% (define ast1.4 `(- 8))
  527. %% (define ast1_1 `(+ (read) ,ast1.4))
  528. %% \end{lstlisting}
  529. %% In general, the Racket expression that follows the comma (splice)
  530. %% can be any expression that produces an S-expression.
  531. {\if\edition\racketEd
  532. We define a Racket \code{struct} for each kind of node. For this
  533. chapter we require just two kinds of nodes: one for integer constants
  534. and one for primitive operations. The following is the \code{struct}
  535. definition for integer constants.
  536. \begin{lstlisting}
  537. (struct Int (value))
  538. \end{lstlisting}
  539. An integer node includes just one thing: the integer value.
  540. To create an AST node for the integer $8$, we write \INT{8}.
  541. \begin{lstlisting}
  542. (define eight (Int 8))
  543. \end{lstlisting}
  544. We say that the value created by \INT{8} is an
  545. \emph{instance} of the
  546. \code{Int} structure.
  547. The following is the \code{struct} definition for primitive operations.
  548. \begin{lstlisting}
  549. (struct Prim (op args))
  550. \end{lstlisting}
  551. A primitive operation node includes an operator symbol \code{op} and a
  552. list of child \code{args}. For example, to create an AST that negates
  553. the number $8$, we write \code{(Prim '- (list eight))}.
  554. \begin{lstlisting}
  555. (define neg-eight (Prim '- (list eight)))
  556. \end{lstlisting}
  557. Primitive operations may have zero or more children. The \code{read}
  558. operator has zero children:
  559. \begin{lstlisting}
  560. (define rd (Prim 'read '()))
  561. \end{lstlisting}
  562. whereas the addition operator has two children:
  563. \begin{lstlisting}
  564. (define ast1_1 (Prim '+ (list rd neg-eight)))
  565. \end{lstlisting}
  566. We have made a design choice regarding the \code{Prim} structure.
  567. Instead of using one structure for many different operations
  568. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  569. structure for each operation, as follows.
  570. \begin{lstlisting}
  571. (struct Read ())
  572. (struct Add (left right))
  573. (struct Neg (value))
  574. \end{lstlisting}
  575. The reason we choose to use just one structure is that in many parts
  576. of the compiler the code for the different primitive operators is the
  577. same, so we might as well just write that code once, which is enabled
  578. by using a single structure.
  579. \fi}
  580. {\if\edition\pythonEd
  581. We use a Python \code{class} for each kind of node.
  582. The following is the class definition for constants.
  583. \begin{lstlisting}
  584. class Constant:
  585. def __init__(self, value):
  586. self.value = value
  587. \end{lstlisting}
  588. An integer constant node includes just one thing: the integer value.
  589. To create an AST node for the integer $8$, we write \INT{8}.
  590. \begin{lstlisting}
  591. eight = Constant(8)
  592. \end{lstlisting}
  593. We say that the value created by \INT{8} is an
  594. \emph{instance} of the \code{Constant} class.
  595. The following is the class definition for unary operators.
  596. \begin{lstlisting}
  597. class UnaryOp:
  598. def __init__(self, op, operand):
  599. self.op = op
  600. self.operand = operand
  601. \end{lstlisting}
  602. The specific operation is specified by the \code{op} parameter. For
  603. example, the class \code{USub} is for unary subtraction. (More unary
  604. operators are introduced in later chapters.) To create an AST that
  605. negates the number $8$, we write the following.
  606. \begin{lstlisting}
  607. neg_eight = UnaryOp(USub(), eight)
  608. \end{lstlisting}
  609. The call to the \code{input\_int} function is represented by the
  610. \code{Call} and \code{Name} classes.
  611. \begin{lstlisting}
  612. class Call:
  613. def __init__(self, func, args):
  614. self.func = func
  615. self.args = args
  616. class Name:
  617. def __init__(self, id):
  618. self.id = id
  619. \end{lstlisting}
  620. To create an AST node that calls \code{input\_int}, we write
  621. \begin{lstlisting}
  622. read = Call(Name('input_int'), [])
  623. \end{lstlisting}
  624. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  625. the \code{BinOp} class for binary operators.
  626. \begin{lstlisting}
  627. class BinOp:
  628. def __init__(self, left, op, right):
  629. self.op = op
  630. self.left = left
  631. self.right = right
  632. \end{lstlisting}
  633. Similar to \code{UnaryOp}, the specific operation is specified by the
  634. \code{op} parameter, which for now is just an instance of the
  635. \code{Add} class. So to create the AST node that adds negative eight
  636. to some user input, we write the following.
  637. \begin{lstlisting}
  638. ast1_1 = BinOp(read, Add(), neg_eight)
  639. \end{lstlisting}
  640. \fi}
  641. When compiling a program such as \eqref{eq:arith-prog}, we need to
  642. know that the operation associated with the root node is addition and
  643. we need to be able to access its two children. \racket{Racket}\python{Python}
  644. provides pattern matching to support these kinds of queries, as we see in
  645. Section~\ref{sec:pattern-matching}.
  646. In this book, we often write down the concrete syntax of a program
  647. even when we really have in mind the AST because the concrete syntax
  648. is more concise. We recommend that, in your mind, you always think of
  649. programs as abstract syntax trees.
  650. \section{Grammars}
  651. \label{sec:grammar}
  652. \index{subject}{integer}
  653. \index{subject}{literal}
  654. \index{subject}{constant}
  655. A programming language can be thought of as a \emph{set} of programs.
  656. The set is typically infinite (one can always create larger and larger
  657. programs), so one cannot simply describe a language by listing all of
  658. the programs in the language. Instead we write down a set of rules, a
  659. \emph{grammar}, for building programs. Grammars are often used to
  660. define the concrete syntax of a language, but they can also be used to
  661. describe the abstract syntax. We write our rules in a variant of
  662. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  663. \index{subject}{Backus-Naur Form}\index{subject}{BNF}
  664. As an example, we describe a small language, named \LangInt{}, that consists of
  665. integers and arithmetic operations.
  666. \index{subject}{grammar}
  667. The first grammar rule for the abstract syntax of \LangInt{} says that an
  668. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  669. \begin{equation}
  670. \Exp ::= \INT{\Int} \label{eq:arith-int}
  671. \end{equation}
  672. %
  673. Each rule has a left-hand-side and a right-hand-side.
  674. If you have an AST node that matches the
  675. right-hand-side, then you can categorize it according to the
  676. left-hand-side.
  677. %
  678. Symbols in typewriter font are \emph{terminal} symbols and must
  679. literally appear in the program for the rule to be applicable.
  680. \index{subject}{terminal}
  681. %
  682. Our grammars do not mention \emph{white-space}, that is, separating characters
  683. like spaces, tabulators, and newlines. White-space may be inserted
  684. between symbols for disambiguation and to improve readability.
  685. \index{subject}{white-space}
  686. %
  687. A name such as $\Exp$ that is defined by the grammar rules is a
  688. \emph{non-terminal}. \index{subject}{non-terminal}
  689. %
  690. The name $\Int$ is also a non-terminal, but instead of defining it
  691. with a grammar rule, we define it with the following explanation. An
  692. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  693. $-$ (for negative integers), such that the sequence of decimals
  694. represent an integer in range $-2^{62}$ to $2^{62}-1$. This enables
  695. the representation of integers using 63 bits, which simplifies several
  696. aspects of compilation. \racket{Thus, these integers corresponds to
  697. the Racket \texttt{fixnum} datatype on a 64-bit machine.}
  698. \python{In contrast, integers in Python have unlimited precision, but
  699. the techniques needed to handle unlimited precision fall outside the
  700. scope of this book.}
  701. The second grammar rule is the \READOP{} operation that receives an
  702. input integer from the user of the program.
  703. \begin{equation}
  704. \Exp ::= \READ{} \label{eq:arith-read}
  705. \end{equation}
  706. The third rule says that, given an $\Exp$ node, the negation of that
  707. node is also an $\Exp$.
  708. \begin{equation}
  709. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  710. \end{equation}
  711. We can apply these rules to categorize the ASTs that are in the
  712. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  713. \INT{8} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  714. following AST is an $\Exp$.
  715. \begin{center}
  716. \begin{minipage}{0.5\textwidth}
  717. \NEG{\INT{\code{8}}}
  718. \end{minipage}
  719. \begin{minipage}{0.25\textwidth}
  720. \begin{equation}
  721. \begin{tikzpicture}
  722. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  723. \node[draw, circle] (8) at (0, -1.2) {$8$};
  724. \draw[->] (minus) to (8);
  725. \end{tikzpicture}
  726. \label{eq:arith-neg8}
  727. \end{equation}
  728. \end{minipage}
  729. \end{center}
  730. The next grammar rules are for addition and subtraction expressions:
  731. \begin{align}
  732. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  733. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  734. \end{align}
  735. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  736. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  737. \eqref{eq:arith-read} and we have already categorized
  738. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  739. to show that
  740. \[
  741. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  742. \]
  743. is an $\Exp$ in the \LangInt{} language.
  744. If you have an AST for which the above rules do not apply, then the
  745. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  746. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  747. because there are no rules for the \key{*} operator. Whenever we
  748. define a language with a grammar, the language only includes those
  749. programs that are justified by the grammar rules.
  750. {\if\edition\pythonEd
  751. The language \LangInt{} includes a second non-terminal $\Stmt$ for statements.
  752. There is a statement for printing the value of an expression
  753. \[
  754. \Stmt{} ::= \PRINT{\Exp}
  755. \]
  756. and a statement that evaluates an expression but ignores the result.
  757. \[
  758. \Stmt{} ::= \EXPR{\Exp}
  759. \]
  760. \fi}
  761. {\if\edition\racketEd
  762. The last grammar rule for \LangInt{} states that there is a
  763. \code{Program} node to mark the top of the whole program:
  764. \[
  765. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  766. \]
  767. The \code{Program} structure is defined as follows
  768. \begin{lstlisting}
  769. (struct Program (info body))
  770. \end{lstlisting}
  771. where \code{body} is an expression. In later chapters, the \code{info}
  772. part will be used to store auxiliary information but for now it is
  773. just the empty list.
  774. \fi}
  775. {\if\edition\pythonEd
  776. The last grammar rule for \LangInt{} states that there is a
  777. \code{Module} node to mark the top of the whole program:
  778. \[
  779. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  780. \]
  781. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  782. this case, a list of statements.
  783. %
  784. The \code{Module} class is defined as follows
  785. \begin{lstlisting}
  786. class Module:
  787. def __init__(self, body):
  788. self.body = body
  789. \end{lstlisting}
  790. where \code{body} is a list of statements.
  791. \fi}
  792. It is common to have many grammar rules with the same left-hand side
  793. but different right-hand sides, such as the rules for $\Exp$ in the
  794. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  795. combine several right-hand-sides into a single rule.
  796. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  797. in Figure~\ref{fig:r0-syntax}. The concrete syntax for \LangInt{} is
  798. defined in Figure~\ref{fig:r0-concrete-syntax}.
  799. \racket{The \code{read-program} function provided in
  800. \code{utilities.rkt} of the support code reads a program in from a
  801. file (the sequence of characters in the concrete syntax of Racket)
  802. and parses it into an abstract syntax tree. See the description of
  803. \code{read-program} in Appendix~\ref{appendix:utilities} for more
  804. details.}
  805. \python{The \code{parse} function in Python's \code{ast} module
  806. converts the concrete syntax (represented as a string) into an
  807. abstract syntax tree.}
  808. \newcommand{\LintGrammarRacket}{
  809. \begin{array}{rcl}
  810. \Type &::=& \key{Integer} \\
  811. \Exp{} &::=& \Int{} \MID \CREAD \RP \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  812. \end{array}
  813. }
  814. \newcommand{\LintASTRacket}{
  815. \begin{array}{rcl}
  816. \Type &::=& \key{Integer} \\
  817. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  818. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp}
  819. \end{array}
  820. }
  821. \newcommand{\LintGrammarPython}{
  822. \begin{array}{rcl}
  823. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  824. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  825. \end{array}
  826. }
  827. \newcommand{\LintASTPython}{
  828. \begin{array}{rcl}
  829. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  830. \itm{unaryop} &::= & \code{USub()} \\
  831. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  832. &\MID& \UNIOP{\itm{unaryop}}{\Exp} \MID \BINOP{\itm{binaryop}}{\Exp}{\Exp} \\
  833. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  834. \end{array}
  835. }
  836. \begin{figure}[tp]
  837. \fbox{
  838. \begin{minipage}{0.96\textwidth}
  839. {\if\edition\racketEd
  840. \[
  841. \begin{array}{l}
  842. \LintGrammarRacket \\
  843. \begin{array}{rcl}
  844. \LangInt{} &::=& \Exp
  845. \end{array}
  846. \end{array}
  847. \]
  848. \fi}
  849. {\if\edition\pythonEd
  850. \[
  851. \begin{array}{l}
  852. \LintGrammarPython \\
  853. \begin{array}{rcl}
  854. \LangInt{} &::=& \Stmt^{*}
  855. \end{array}
  856. \end{array}
  857. \]
  858. \fi}
  859. \end{minipage}
  860. }
  861. \caption{The concrete syntax of \LangInt{}.}
  862. \label{fig:r0-concrete-syntax}
  863. \end{figure}
  864. \begin{figure}[tp]
  865. \fbox{
  866. \begin{minipage}{0.96\textwidth}
  867. {\if\edition\racketEd
  868. \[
  869. \begin{array}{l}
  870. \LintASTRacket{} \\
  871. \begin{array}{rcl}
  872. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  873. \end{array}
  874. \end{array}
  875. \]
  876. \fi}
  877. {\if\edition\pythonEd
  878. \[
  879. \begin{array}{l}
  880. \LintASTPython\\
  881. \begin{array}{rcl}
  882. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  883. \end{array}
  884. \end{array}
  885. \]
  886. \fi}
  887. \end{minipage}
  888. }
  889. \caption{The abstract syntax of \LangInt{}.}
  890. \label{fig:r0-syntax}
  891. \end{figure}
  892. \section{Pattern Matching}
  893. \label{sec:pattern-matching}
  894. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  895. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python} provides the
  896. \texttt{match} feature to access the parts of a value.
  897. Consider the following example. \index{subject}{match} \index{subject}{pattern matching}
  898. \begin{center}
  899. \begin{minipage}{0.5\textwidth}
  900. {\if\edition\racketEd
  901. \begin{lstlisting}
  902. (match ast1_1
  903. [(Prim op (list child1 child2))
  904. (print op)])
  905. \end{lstlisting}
  906. \fi}
  907. {\if\edition\pythonEd
  908. \begin{lstlisting}
  909. match ast1_1:
  910. case BinOp(child1, op, child2):
  911. print(op)
  912. \end{lstlisting}
  913. \fi}
  914. \end{minipage}
  915. \end{center}
  916. {\if\edition\racketEd
  917. %
  918. In the above example, the \texttt{match} form checks whether the AST
  919. \eqref{eq:arith-prog} is a binary operator, binds its parts to the
  920. three pattern variables \texttt{op}, \texttt{child1}, and
  921. \texttt{child2}, and then prints out the operator. In general, a match
  922. clause consists of a \emph{pattern} and a
  923. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  924. to be either a pattern variable, a structure name followed by a
  925. pattern for each of the structure's arguments, or an S-expression
  926. (symbols, lists, etc.). (See Chapter 12 of The Racket
  927. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  928. and Chapter 9 of The Racket
  929. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  930. for a complete description of \code{match}.)
  931. %
  932. The body of a match clause may contain arbitrary Racket code. The
  933. pattern variables can be used in the scope of the body, such as
  934. \code{op} in \code{(print op)}.
  935. %
  936. \fi}
  937. %
  938. %
  939. {\if\edition\pythonEd
  940. %
  941. In the above example, the \texttt{match} form checks whether the AST
  942. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  943. three pattern variables \texttt{child1}, \texttt{op}, and
  944. \texttt{child2}, and then prints out the operator. In general, each
  945. \code{case} consists of a \emph{pattern} and a
  946. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  947. to be either a pattern variable, a class name followed by a pattern
  948. for each of its constructor's arguments, or other literals such as
  949. strings, lists, etc.
  950. %
  951. The body of each \code{case} may contain arbitrary Python code. The
  952. pattern variables can be used in the body, such as \code{op} in
  953. \code{print(op)}.
  954. %
  955. \fi}
  956. A \code{match} form may contain several clauses, as in the following
  957. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  958. the AST. The \code{match} proceeds through the clauses in order,
  959. checking whether the pattern can match the input AST. The body of the
  960. first clause that matches is executed. The output of \code{leaf} for
  961. several ASTs is shown on the right.
  962. \begin{center}
  963. \begin{minipage}{0.6\textwidth}
  964. {\if\edition\racketEd
  965. \begin{lstlisting}
  966. (define (leaf arith)
  967. (match arith
  968. [(Int n) #t]
  969. [(Prim 'read '()) #t]
  970. [(Prim '- (list e1)) #f]
  971. [(Prim '+ (list e1 e2)) #f]))
  972. (leaf (Prim 'read '()))
  973. (leaf (Prim '- (list (Int 8))))
  974. (leaf (Int 8))
  975. \end{lstlisting}
  976. \fi}
  977. {\if\edition\pythonEd
  978. \begin{lstlisting}
  979. def leaf(arith):
  980. match arith:
  981. case Constant(n):
  982. return True
  983. case Call(Name('input_int'), []):
  984. return True
  985. case UnaryOp(USub(), e1):
  986. return False
  987. case BinOp(e1, Add(), e2):
  988. return False
  989. print(leaf(Call(Name('input_int'), [])))
  990. print(leaf(UnaryOp(USub(), eight)))
  991. print(leaf(Constant(8)))
  992. \end{lstlisting}
  993. \fi}
  994. \end{minipage}
  995. \vrule
  996. \begin{minipage}{0.25\textwidth}
  997. {\if\edition\racketEd
  998. \begin{lstlisting}
  999. #t
  1000. #f
  1001. #t
  1002. \end{lstlisting}
  1003. \fi}
  1004. {\if\edition\pythonEd
  1005. \begin{lstlisting}
  1006. True
  1007. False
  1008. True
  1009. \end{lstlisting}
  1010. \fi}
  1011. \end{minipage}
  1012. \end{center}
  1013. When writing a \code{match}, we refer to the grammar definition to
  1014. identify which non-terminal we are expecting to match against, then we
  1015. make sure that 1) we have one \racket{clause}\python{case} for each alternative of that
  1016. non-terminal and 2) that the pattern in each \racket{clause}\python{case} corresponds to the
  1017. corresponding right-hand side of a grammar rule. For the \code{match}
  1018. in the \code{leaf} function, we refer to the grammar for \LangInt{} in
  1019. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  1020. alternatives, so the \code{match} has 4 \racket{clauses}\python{cases}.
  1021. The pattern in each \racket{clause}\python{case} corresponds to the right-hand side
  1022. of a grammar rule. For example, the pattern \ADD{\code{e1}}{\code{e2}} corresponds to the
  1023. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  1024. patterns, replace non-terminals such as $\Exp$ with pattern variables
  1025. of your choice (e.g. \code{e1} and \code{e2}).
  1026. \section{Recursive Functions}
  1027. \label{sec:recursion}
  1028. \index{subject}{recursive function}
  1029. Programs are inherently recursive. For example, an expression is often
  1030. made of smaller expressions. Thus, the natural way to process an
  1031. entire program is with a recursive function. As a first example of
  1032. such a recursive function, we define the function \code{exp} in
  1033. Figure~\ref{fig:exp-predicate}, which takes an arbitrary value and
  1034. determines whether or not it is an expression in \LangInt{}.
  1035. %
  1036. We say that a function is defined by \emph{structural recursion} when
  1037. it is defined using a sequence of match \racket{clauses}\python{cases}
  1038. that correspond to a grammar, and the body of each
  1039. \racket{clause}\python{case} makes a recursive call on each child
  1040. node.\footnote{This principle of structuring code according to the
  1041. data definition is advocated in the book \emph{How to Design
  1042. Programs} \url{https://htdp.org/2020-8-1/Book/index.html}.}
  1043. \python{We define a second function, named \code{stmt}, that
  1044. recognizes whether a value is a \LangInt{} statement.}
  1045. \python{Finally, } Figure~\ref{fig:exp-predicate} \racket{also}
  1046. defines \code{Lint}, which determines whether an AST is a program in
  1047. \LangInt{}. In general we can expect to write one recursive function
  1048. to handle each non-terminal in a grammar.\index{subject}{structural
  1049. recursion} Of the two examples at the bottom of the figure, the
  1050. first is in \code{Lint} and the second is not.
  1051. \begin{figure}[tp]
  1052. {\if\edition\racketEd
  1053. \begin{lstlisting}
  1054. (define (exp ast)
  1055. (match ast
  1056. [(Int n) #t]
  1057. [(Prim 'read '()) #t]
  1058. [(Prim '- (list e)) (exp e)]
  1059. [(Prim '+ (list e1 e2))
  1060. (and (exp e1) (exp e2))]
  1061. [else #f]))
  1062. (define (Lint ast)
  1063. (match ast
  1064. [(Program '() e) (exp e)]
  1065. [else #f]))
  1066. (Lint (Program '() ast1_1)
  1067. (Lint (Program '()
  1068. (Prim '- (list (Prim 'read '())
  1069. (Prim '+ (list (Num 8)))))))
  1070. \end{lstlisting}
  1071. \fi}
  1072. {\if\edition\pythonEd
  1073. \begin{lstlisting}
  1074. def exp(e):
  1075. match e:
  1076. case Constant(n):
  1077. return True
  1078. case Call(Name('input_int'), []):
  1079. return True
  1080. case UnaryOp(USub(), e1):
  1081. return exp(e1)
  1082. case BinOp(e1, Add(), e2):
  1083. return exp(e1) and exp(e2)
  1084. case BinOp(e1, Sub(), e2):
  1085. return exp(e1) and exp(e2)
  1086. case _:
  1087. return False
  1088. def stmt(s):
  1089. match s:
  1090. case Expr(Call(Name('print'), [e])):
  1091. return exp(e)
  1092. case Expr(e):
  1093. return exp(e)
  1094. case _:
  1095. return False
  1096. def Lint(p):
  1097. match p:
  1098. case Module(body):
  1099. return all([stmt(s) for s in body])
  1100. case _:
  1101. return False
  1102. print(Lint(Module([Expr(ast1_1)])))
  1103. print(Lint(Module([Expr(BinOp(read, Sub(),
  1104. UnaryOp(Add(), Constant(8))))])))
  1105. \end{lstlisting}
  1106. \fi}
  1107. \caption{Example of recursive functions for \LangInt{}. These functions
  1108. recognize whether an AST is in \LangInt{}.}
  1109. \label{fig:exp-predicate}
  1110. \end{figure}
  1111. %% You may be tempted to merge the two functions into one, like this:
  1112. %% \begin{center}
  1113. %% \begin{minipage}{0.5\textwidth}
  1114. %% \begin{lstlisting}
  1115. %% (define (Lint ast)
  1116. %% (match ast
  1117. %% [(Int n) #t]
  1118. %% [(Prim 'read '()) #t]
  1119. %% [(Prim '- (list e)) (Lint e)]
  1120. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1121. %% [(Program '() e) (Lint e)]
  1122. %% [else #f]))
  1123. %% \end{lstlisting}
  1124. %% \end{minipage}
  1125. %% \end{center}
  1126. %% %
  1127. %% Sometimes such a trick will save a few lines of code, especially when
  1128. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1129. %% \emph{not} recommended because it can get you into trouble.
  1130. %% %
  1131. %% For example, the above function is subtly wrong:
  1132. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1133. %% returns true when it should return false.
  1134. \section{Interpreters}
  1135. \label{sec:interp_Lint}
  1136. \index{subject}{interpreter}
  1137. The behavior of a program is defined by the specification of the
  1138. programming language.
  1139. %
  1140. \racket{For example, the Scheme language is defined in the report by
  1141. \cite{SPERBER:2009aa}. The Racket language is defined in its
  1142. reference manual~\citep{plt-tr}.}
  1143. %
  1144. \python{For example, the Python language is defined in the Python
  1145. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1146. %
  1147. In this book we use interpreters
  1148. to specify each language that we consider. An interpreter that is
  1149. designated as the definition of a language is called a
  1150. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  1151. \index{subject}{definitional interpreter} We warm up by creating a
  1152. definitional interpreter for the \LangInt{} language, which serves as
  1153. a second example of structural recursion. The \code{interp\_Lint}
  1154. function is defined in Figure~\ref{fig:interp_Lint}.
  1155. %
  1156. \racket{The body of the function is a match on the input program
  1157. followed by a call to the \lstinline{interp_exp} helper function,
  1158. which in turn has one match clause per grammar rule for \LangInt{}
  1159. expressions.}
  1160. %
  1161. \python{The body of the function matches on the \code{Module} AST node
  1162. and then invokes \code{interp\_stmt} on each statement in the
  1163. module. The \code{interp\_stmt} function includes a case for each
  1164. grammar rule of the \Stmt{} non-terminal and it calls
  1165. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1166. function includes a case for each grammar rule of the \Exp{}
  1167. non-terminal.}
  1168. \begin{figure}[tp]
  1169. {\if\edition\racketEd
  1170. \begin{lstlisting}
  1171. (define (interp_exp e)
  1172. (match e
  1173. [(Int n) n]
  1174. [(Prim 'read '())
  1175. (define r (read))
  1176. (cond [(fixnum? r) r]
  1177. [else (error 'interp_exp "read expected an integer" r)])]
  1178. [(Prim '- (list e))
  1179. (define v (interp_exp e))
  1180. (fx- 0 v)]
  1181. [(Prim '+ (list e1 e2))
  1182. (define v1 (interp_exp e1))
  1183. (define v2 (interp_exp e2))
  1184. (fx+ v1 v2)]))
  1185. (define (interp_Lint p)
  1186. (match p
  1187. [(Program '() e) (interp_exp e)]))
  1188. \end{lstlisting}
  1189. \fi}
  1190. {\if\edition\pythonEd
  1191. \begin{lstlisting}
  1192. def interp_exp(e):
  1193. match e:
  1194. case BinOp(left, Add(), right):
  1195. l = interp_exp(left); r = interp_exp(right)
  1196. return l + r
  1197. case BinOp(left, Sub(), right):
  1198. l = interp_exp(left); r = interp_exp(right)
  1199. return l - r
  1200. case UnaryOp(USub(), v):
  1201. return - interp_exp(v)
  1202. case Constant(value):
  1203. return value
  1204. case Call(Name('input_int'), []):
  1205. return int(input())
  1206. def interp_stmt(s):
  1207. match s:
  1208. case Expr(Call(Name('print'), [arg])):
  1209. print(interp_exp(arg))
  1210. case Expr(value):
  1211. interp_exp(value)
  1212. def interp_Lint(p):
  1213. match p:
  1214. case Module(body):
  1215. for s in body:
  1216. interp_stmt(s)
  1217. \end{lstlisting}
  1218. \fi}
  1219. \caption{Interpreter for the \LangInt{} language.}
  1220. \label{fig:interp_Lint}
  1221. \end{figure}
  1222. Let us consider the result of interpreting a few \LangInt{} programs. The
  1223. following program adds two integers.
  1224. {\if\edition\racketEd
  1225. \begin{lstlisting}
  1226. (+ 10 32)
  1227. \end{lstlisting}
  1228. \fi}
  1229. {\if\edition\pythonEd
  1230. \begin{lstlisting}
  1231. print(10 + 32)
  1232. \end{lstlisting}
  1233. \fi}
  1234. The result is \key{42}, the answer to life, the universe, and
  1235. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  1236. Galaxy} by Douglas Adams.}
  1237. %
  1238. We wrote the above program in concrete syntax whereas the parsed
  1239. abstract syntax is:
  1240. {\if\edition\racketEd
  1241. \begin{lstlisting}
  1242. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1243. \end{lstlisting}
  1244. \fi}
  1245. {\if\edition\pythonEd
  1246. \begin{lstlisting}
  1247. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1248. \end{lstlisting}
  1249. \fi}
  1250. The next example demonstrates that expressions may be nested within
  1251. each other, in this case nesting several additions and negations.
  1252. {\if\edition\racketEd
  1253. \begin{lstlisting}
  1254. (+ 10 (- (+ 12 20)))
  1255. \end{lstlisting}
  1256. \fi}
  1257. {\if\edition\pythonEd
  1258. \begin{lstlisting}
  1259. print(10 + -(12 + 20))
  1260. \end{lstlisting}
  1261. \fi}
  1262. %
  1263. \noindent What is the result of the above program?
  1264. {\if\edition\racketEd
  1265. As mentioned previously, the \LangInt{} language does not support
  1266. arbitrarily-large integers, but only $63$-bit integers, so we
  1267. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1268. in Racket.
  1269. Suppose
  1270. \[
  1271. n = 999999999999999999
  1272. \]
  1273. which indeed fits in $63$-bits. What happens when we run the
  1274. following program in our interpreter?
  1275. \begin{lstlisting}
  1276. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1277. \end{lstlisting}
  1278. It produces an error:
  1279. \begin{lstlisting}
  1280. fx+: result is not a fixnum
  1281. \end{lstlisting}
  1282. We establish the convention that if running the definitional
  1283. interpreter on a program produces an error then the meaning of that
  1284. program is \emph{unspecified}\index{subject}{unspecified behavior}, unless the
  1285. error is a \code{trapped-error}. A compiler for the language is under
  1286. no obligations regarding programs with unspecified behavior; it does
  1287. not have to produce an executable, and if it does, that executable can
  1288. do anything. On the other hand, if the error is a
  1289. \code{trapped-error}, then the compiler must produce an executable and
  1290. it is required to report that an error occurred. To signal an error,
  1291. exit with a return code of \code{255}. The interpreters in chapters
  1292. \ref{ch:Ldyn} and \ref{ch:Lgrad} use
  1293. \code{trapped-error}.
  1294. \fi}
  1295. % TODO: how to deal with too-large integers in the Python interpreter?
  1296. %% This convention applies to the languages defined in this
  1297. %% book, as a way to simplify the student's task of implementing them,
  1298. %% but this convention is not applicable to all programming languages.
  1299. %%
  1300. Moving on to the last feature of the \LangInt{} language, the
  1301. \READOP{} operation prompts the user of the program for an integer.
  1302. Recall that program \eqref{eq:arith-prog} requests an integer input
  1303. and then subtracts \code{8}. So if we run
  1304. {\if\edition\racketEd
  1305. \begin{lstlisting}
  1306. (interp_Lint (Program '() ast1_1))
  1307. \end{lstlisting}
  1308. \fi}
  1309. {\if\edition\pythonEd
  1310. \begin{lstlisting}
  1311. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1312. \end{lstlisting}
  1313. \fi}
  1314. \noindent and if the input is \code{50}, the result is \code{42}.
  1315. We include the \READOP{} operation in \LangInt{} so a clever student
  1316. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1317. during compilation to obtain the output and then generates the trivial
  1318. code to produce the output.\footnote{Yes, a clever student did this in the
  1319. first instance of this course!}
  1320. The job of a compiler is to translate a program in one language into a
  1321. program in another language so that the output program behaves the
  1322. same way as the input program. This idea is depicted in the
  1323. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1324. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1325. Given a compiler that translates from language $\mathcal{L}_1$ to
  1326. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1327. compiler must translate it into some program $P_2$ such that
  1328. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1329. same input $i$ yields the same output $o$.
  1330. \begin{equation} \label{eq:compile-correct}
  1331. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1332. \node (p1) at (0, 0) {$P_1$};
  1333. \node (p2) at (3, 0) {$P_2$};
  1334. \node (o) at (3, -2.5) {$o$};
  1335. \path[->] (p1) edge [above] node {compile} (p2);
  1336. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1337. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1338. \end{tikzpicture}
  1339. \end{equation}
  1340. In the next section we see our first example of a compiler.
  1341. \section{Example Compiler: a Partial Evaluator}
  1342. \label{sec:partial-evaluation}
  1343. In this section we consider a compiler that translates \LangInt{}
  1344. programs into \LangInt{} programs that may be more efficient. The
  1345. compiler eagerly computes the parts of the program that do not depend
  1346. on any inputs, a process known as \emph{partial
  1347. evaluation}~\citep{Jones:1993uq}. \index{subject}{partial evaluation}
  1348. For example, given the following program
  1349. {\if\edition\racketEd
  1350. \begin{lstlisting}
  1351. (+ (read) (- (+ 5 3)))
  1352. \end{lstlisting}
  1353. \fi}
  1354. {\if\edition\pythonEd
  1355. \begin{lstlisting}
  1356. print(input_int() + -(5 + 3) )
  1357. \end{lstlisting}
  1358. \fi}
  1359. \noindent our compiler translates it into the program
  1360. {\if\edition\racketEd
  1361. \begin{lstlisting}
  1362. (+ (read) -8)
  1363. \end{lstlisting}
  1364. \fi}
  1365. {\if\edition\pythonEd
  1366. \begin{lstlisting}
  1367. print(input_int() + -8)
  1368. \end{lstlisting}
  1369. \fi}
  1370. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1371. evaluator for the \LangInt{} language. The output of the partial evaluator
  1372. is a program in \LangInt{}. In Figure~\ref{fig:pe-arith}, the structural
  1373. recursion over $\Exp$ is captured in the \code{pe\_exp} function
  1374. whereas the code for partially evaluating the negation and addition
  1375. operations is factored into two auxiliary functions:
  1376. \code{pe\_neg} and \code{pe\_add}. The input to these
  1377. functions is the output of partially evaluating the children.
  1378. The \code{pe\_neg} and \code{pe\_add} functions check whether their
  1379. arguments are integers and if they are, perform the appropriate
  1380. arithmetic. Otherwise, they create an AST node for the arithmetic
  1381. operation.
  1382. \begin{figure}[tp]
  1383. {\if\edition\racketEd
  1384. \begin{lstlisting}
  1385. (define (pe_neg r)
  1386. (match r
  1387. [(Int n) (Int (fx- 0 n))]
  1388. [else (Prim '- (list r))]))
  1389. (define (pe_add r1 r2)
  1390. (match* (r1 r2)
  1391. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1392. [(_ _) (Prim '+ (list r1 r2))]))
  1393. (define (pe_exp e)
  1394. (match e
  1395. [(Int n) (Int n)]
  1396. [(Prim 'read '()) (Prim 'read '())]
  1397. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1398. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]))
  1399. (define (pe_Lint p)
  1400. (match p
  1401. [(Program '() e) (Program '() (pe_exp e))]))
  1402. \end{lstlisting}
  1403. \fi}
  1404. {\if\edition\pythonEd
  1405. \begin{lstlisting}
  1406. def pe_neg(r):
  1407. match r:
  1408. case Constant(n):
  1409. return Constant(-n)
  1410. case _:
  1411. return UnaryOp(USub(), r)
  1412. def pe_add(r1, r2):
  1413. match (r1, r2):
  1414. case (Constant(n1), Constant(n2)):
  1415. return Constant(n1 + n2)
  1416. case _:
  1417. return BinOp(r1, Add(), r2)
  1418. def pe_sub(r1, r2):
  1419. match (r1, r2):
  1420. case (Constant(n1), Constant(n2)):
  1421. return Constant(n1 - n2)
  1422. case _:
  1423. return BinOp(r1, Sub(), r2)
  1424. def pe_exp(e):
  1425. match e:
  1426. case BinOp(left, Add(), right):
  1427. return pe_add(pe_exp(left), pe_exp(right))
  1428. case BinOp(left, Sub(), right):
  1429. return pe_sub(pe_exp(left), pe_exp(right))
  1430. case UnaryOp(USub(), v):
  1431. return pe_neg(pe_exp(v))
  1432. case Constant(value):
  1433. return e
  1434. case Call(Name('input_int'), []):
  1435. return e
  1436. def pe_stmt(s):
  1437. match s:
  1438. case Expr(Call(Name('print'), [arg])):
  1439. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1440. case Expr(value):
  1441. return Expr(pe_exp(value))
  1442. def pe_P_int(p):
  1443. match p:
  1444. case Module(body):
  1445. new_body = [pe_stmt(s) for s in body]
  1446. return Module(new_body)
  1447. \end{lstlisting}
  1448. \fi}
  1449. \caption{A partial evaluator for \LangInt{}.}
  1450. \label{fig:pe-arith}
  1451. \end{figure}
  1452. To gain some confidence that the partial evaluator is correct, we can
  1453. test whether it produces programs that get the same result as the
  1454. input programs. That is, we can test whether it satisfies Diagram
  1455. \ref{eq:compile-correct}.
  1456. %
  1457. {\if\edition\racketEd
  1458. The following code runs the partial evaluator on several examples and
  1459. tests the output program. The \texttt{parse-program} and
  1460. \texttt{assert} functions are defined in
  1461. Appendix~\ref{appendix:utilities}.\\
  1462. \begin{minipage}{1.0\textwidth}
  1463. \begin{lstlisting}
  1464. (define (test_pe p)
  1465. (assert "testing pe_Lint"
  1466. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1467. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1468. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1469. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1470. \end{lstlisting}
  1471. \end{minipage}
  1472. \fi}
  1473. % TODO: python version of testing the PE
  1474. \begin{exercise}\normalfont
  1475. Create three programs in the \LangInt{} language and test whether
  1476. partially evaluating them with \code{pe\_Lint} and then
  1477. interpreting them with \code{interp\_Lint} gives the same result
  1478. as directly interpreting them with \code{interp\_Lint}.
  1479. \end{exercise}
  1480. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1481. \chapter{Integers and Variables}
  1482. \label{ch:Lvar}
  1483. This chapter is about compiling a subset of
  1484. \racket{Racket}\python{Python} to x86-64 assembly
  1485. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1486. integer arithmetic and local variables. We often refer to x86-64
  1487. simply as x86. The chapter begins with a description of the
  1488. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1489. to x86 assembly (Section~\ref{sec:x86}). The x86 assembly language is
  1490. large so we discuss only the instructions needed for compiling
  1491. \LangVar{}. We introduce more x86 instructions in later chapters.
  1492. After introducing \LangVar{} and x86, we reflect on their differences
  1493. and come up with a plan to break down the translation from \LangVar{}
  1494. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1495. rest of the sections in this chapter give detailed hints regarding
  1496. each step. We hope to give enough hints that the well-prepared
  1497. reader, together with a few friends, can implement a compiler from
  1498. \LangVar{} to x86 in a short time. To give the reader a feeling for
  1499. the scale of this first compiler, the instructor solution for the
  1500. \LangVar{} compiler is approximately \racket{500}\python{300} lines of
  1501. code.
  1502. \section{The \LangVar{} Language}
  1503. \label{sec:s0}
  1504. \index{subject}{variable}
  1505. The \LangVar{} language extends the \LangInt{} language with
  1506. variables. The concrete syntax of the \LangVar{} language is defined
  1507. by the grammar in Figure~\ref{fig:Lvar-concrete-syntax} and the
  1508. abstract syntax is defined in Figure~\ref{fig:Lvar-syntax}. The
  1509. non-terminal \Var{} may be any \racket{Racket}\python{Python} identifier.
  1510. As in \LangInt{}, \READOP{} is a nullary operator, \key{-} is a unary operator, and
  1511. \key{+} is a binary operator. Similar to \LangInt{}, the abstract
  1512. syntax of \LangVar{} includes the \racket{\key{Program}
  1513. struct}\python{\key{Module} instance} to mark the top of the
  1514. program.
  1515. %% The $\itm{info}$
  1516. %% field of the \key{Program} structure contains an \emph{association
  1517. %% list} (a list of key-value pairs) that is used to communicate
  1518. %% auxiliary data from one compiler pass the next.
  1519. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1520. exhibit several compilation techniques.
  1521. \newcommand{\LvarGrammarRacket}{
  1522. \begin{array}{rcl}
  1523. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1524. \end{array}
  1525. }
  1526. \newcommand{\LvarASTRacket}{
  1527. \begin{array}{rcl}
  1528. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1529. \end{array}
  1530. }
  1531. \newcommand{\LvarGrammarPython}{
  1532. \begin{array}{rcl}
  1533. \Exp &::=& \Var{} \\
  1534. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1535. \end{array}
  1536. }
  1537. \newcommand{\LvarASTPython}{
  1538. \begin{array}{rcl}
  1539. \Exp{} &::=& \VAR{\Var{}} \\
  1540. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1541. \end{array}
  1542. }
  1543. \begin{figure}[tp]
  1544. \centering
  1545. \fbox{
  1546. \begin{minipage}{0.96\textwidth}
  1547. {\if\edition\racketEd
  1548. \[
  1549. \begin{array}{l}
  1550. \gray{\LintGrammarRacket{}} \\ \hline
  1551. \LvarGrammarRacket{} \\
  1552. \begin{array}{rcl}
  1553. \LangVarM{} &::=& \Exp
  1554. \end{array}
  1555. \end{array}
  1556. \]
  1557. \fi}
  1558. {\if\edition\pythonEd
  1559. \[
  1560. \begin{array}{l}
  1561. \gray{\LintGrammarPython} \\ \hline
  1562. \LvarGrammarPython \\
  1563. \begin{array}{rcl}
  1564. \LangVarM{} &::=& \Stmt^{*}
  1565. \end{array}
  1566. \end{array}
  1567. \]
  1568. \fi}
  1569. \end{minipage}
  1570. }
  1571. \caption{The concrete syntax of \LangVar{}.}
  1572. \label{fig:Lvar-concrete-syntax}
  1573. \end{figure}
  1574. \begin{figure}[tp]
  1575. \centering
  1576. \fbox{
  1577. \begin{minipage}{0.96\textwidth}
  1578. {\if\edition\racketEd
  1579. \[
  1580. \begin{array}{l}
  1581. \gray{\LintASTRacket{}} \\ \hline
  1582. \LvarASTRacket \\
  1583. \begin{array}{rcl}
  1584. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1585. \end{array}
  1586. \end{array}
  1587. \]
  1588. \fi}
  1589. {\if\edition\pythonEd
  1590. \[
  1591. \begin{array}{l}
  1592. \gray{\LintASTPython}\\ \hline
  1593. \LvarASTPython \\
  1594. \begin{array}{rcl}
  1595. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1596. \end{array}
  1597. \end{array}
  1598. \]
  1599. \fi}
  1600. \end{minipage}
  1601. }
  1602. \caption{The abstract syntax of \LangVar{}.}
  1603. \label{fig:Lvar-syntax}
  1604. \end{figure}
  1605. {\if\edition\racketEd
  1606. Let us dive further into the syntax and semantics of the \LangVar{}
  1607. language. The \key{let} feature defines a variable for use within its
  1608. body and initializes the variable with the value of an expression.
  1609. The abstract syntax for \key{let} is defined in
  1610. Figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1611. \begin{lstlisting}
  1612. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1613. \end{lstlisting}
  1614. For example, the following program initializes \code{x} to $32$ and then
  1615. evaluates the body \code{(+ 10 x)}, producing $42$.
  1616. \begin{lstlisting}
  1617. (let ([x (+ 12 20)]) (+ 10 x))
  1618. \end{lstlisting}
  1619. \fi}
  1620. %
  1621. {\if\edition\pythonEd
  1622. %
  1623. The \LangVar{} language includes assignment statements, which define a
  1624. variable for use in later statements and initializes the variable with
  1625. the value of an expression. The abstract syntax for assignment is
  1626. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1627. assignment is
  1628. \begin{lstlisting}
  1629. |$\itm{var}$| = |$\itm{exp}$|
  1630. \end{lstlisting}
  1631. For example, the following program initializes the variable \code{x}
  1632. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1633. \begin{lstlisting}
  1634. x = 12 + 20
  1635. print(10 + x)
  1636. \end{lstlisting}
  1637. \fi}
  1638. {\if\edition\racketEd
  1639. %
  1640. When there are multiple \key{let}'s for the same variable, the closest
  1641. enclosing \key{let} is used. That is, variable definitions overshadow
  1642. prior definitions. Consider the following program with two \key{let}'s
  1643. that define variables named \code{x}. Can you figure out the result?
  1644. \begin{lstlisting}
  1645. (let ([x 32]) (+ (let ([x 10]) x) x))
  1646. \end{lstlisting}
  1647. For the purposes of depicting which variable uses correspond to which
  1648. definitions, the following shows the \code{x}'s annotated with
  1649. subscripts to distinguish them. Double check that your answer for the
  1650. above is the same as your answer for this annotated version of the
  1651. program.
  1652. \begin{lstlisting}
  1653. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1654. \end{lstlisting}
  1655. The initializing expression is always evaluated before the body of the
  1656. \key{let}, so in the following, the \key{read} for \code{x} is
  1657. performed before the \key{read} for \code{y}. Given the input
  1658. $52$ then $10$, the following produces $42$ (not $-42$).
  1659. \begin{lstlisting}
  1660. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1661. \end{lstlisting}
  1662. \fi}
  1663. \subsection{Extensible Interpreters via Method Overriding}
  1664. \label{sec:extensible-interp}
  1665. To prepare for discussing the interpreter of \LangVar{}, we explain
  1666. why we implement it in an object-oriented style. Throughout this book
  1667. we define many interpreters, one for each of language that we
  1668. study. Because each language builds on the prior one, there is a lot
  1669. of commonality between these interpreters. We want to write down the
  1670. common parts just once instead of many times. A naive approach would
  1671. be for the interpreter of \LangVar{} to handle the
  1672. \racket{cases for variables and \code{let}}
  1673. \python{case for variables}
  1674. but dispatch to \LangInt{}
  1675. for the rest of the cases. The following code sketches this idea. (We
  1676. explain the \code{env} parameter soon, in
  1677. Section~\ref{sec:interp-Lvar}.)
  1678. \begin{center}
  1679. {\if\edition\racketEd
  1680. \begin{minipage}{0.45\textwidth}
  1681. \begin{lstlisting}
  1682. (define ((interp_Lint env) e)
  1683. (match e
  1684. [(Prim '- (list e1))
  1685. (fx- 0 ((interp_Lint env) e1))]
  1686. ...))
  1687. \end{lstlisting}
  1688. \end{minipage}
  1689. \begin{minipage}{0.45\textwidth}
  1690. \begin{lstlisting}
  1691. (define ((interp_Lvar env) e)
  1692. (match e
  1693. [(Var x)
  1694. (dict-ref env x)]
  1695. [(Let x e body)
  1696. (define v ((interp_exp env) e))
  1697. (define env^ (dict-set env x v))
  1698. ((interp_exp env^) body)]
  1699. [else ((interp_Lint env) e)]))
  1700. \end{lstlisting}
  1701. \end{minipage}
  1702. \fi}
  1703. {\if\edition\pythonEd
  1704. \begin{minipage}{0.45\textwidth}
  1705. \begin{lstlisting}
  1706. def interp_Lint(e, env):
  1707. match e:
  1708. case UnaryOp(USub(), e1):
  1709. return - interp_Lint(e1, env)
  1710. ...
  1711. \end{lstlisting}
  1712. \end{minipage}
  1713. \begin{minipage}{0.45\textwidth}
  1714. \begin{lstlisting}
  1715. def interp_Lvar(e, env):
  1716. match e:
  1717. case Name(id):
  1718. return env[id]
  1719. case _:
  1720. return interp_Lint(e, env)
  1721. \end{lstlisting}
  1722. \end{minipage}
  1723. \fi}
  1724. \end{center}
  1725. The problem with this approach is that it does not handle situations
  1726. in which an \LangVar{} feature, such as a variable, is nested inside
  1727. an \LangInt{} feature, like the \code{-} operator, as in the following
  1728. program.
  1729. %
  1730. {\if\edition\racketEd
  1731. \begin{lstlisting}
  1732. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1733. \end{lstlisting}
  1734. \fi}
  1735. {\if\edition\pythonEd
  1736. \begin{lstlisting}
  1737. y = 10
  1738. print(-y)
  1739. \end{lstlisting}
  1740. \fi}
  1741. %
  1742. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1743. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1744. then it recursively calls \code{interp\_Lint} again on its argument.
  1745. But there is no case for \code{Var} in \code{interp\_Lint} so we get
  1746. an error!
  1747. To make our interpreters extensible we need something called
  1748. \emph{open recursion}\index{subject}{open recursion}, where the tying of the
  1749. recursive knot is delayed to when the functions are
  1750. composed. Object-oriented languages provide open recursion via
  1751. method overriding\index{subject}{method overriding}. The
  1752. following code uses method overriding to interpret \LangInt{} and
  1753. \LangVar{} using
  1754. %
  1755. \racket{the
  1756. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1757. \index{subject}{class} feature of Racket}
  1758. %
  1759. \python{a Python \code{class} definition}.
  1760. %
  1761. We define one class for each language and define a method for
  1762. interpreting expressions inside each class. The class for \LangVar{}
  1763. inherits from the class for \LangInt{} and the method
  1764. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1765. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1766. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1767. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1768. \code{interp\_exp} in \LangInt{}.
  1769. \begin{center}
  1770. \hspace{-20pt}
  1771. {\if\edition\racketEd
  1772. \begin{minipage}{0.45\textwidth}
  1773. \begin{lstlisting}
  1774. (define interp_Lint_class
  1775. (class object%
  1776. (define/public ((interp_exp env) e)
  1777. (match e
  1778. [(Prim '- (list e))
  1779. (fx- 0 ((interp_exp env) e))]
  1780. ...))
  1781. ...))
  1782. \end{lstlisting}
  1783. \end{minipage}
  1784. \begin{minipage}{0.45\textwidth}
  1785. \begin{lstlisting}
  1786. (define interp_Lvar_class
  1787. (class interp_Lint_class
  1788. (define/override ((interp_exp env) e)
  1789. (match e
  1790. [(Var x)
  1791. (dict-ref env x)]
  1792. [(Let x e body)
  1793. (define v ((interp_exp env) e))
  1794. (define env^ (dict-set env x v))
  1795. ((interp_exp env^) body)]
  1796. [else
  1797. (super (interp_exp env) e)]))
  1798. ...
  1799. ))
  1800. \end{lstlisting}
  1801. \end{minipage}
  1802. \fi}
  1803. {\if\edition\pythonEd
  1804. \begin{minipage}{0.45\textwidth}
  1805. \begin{lstlisting}
  1806. class InterpLint:
  1807. def interp_exp(e):
  1808. match e:
  1809. case UnaryOp(USub(), e1):
  1810. return -self.interp_exp(e1)
  1811. ...
  1812. ...
  1813. \end{lstlisting}
  1814. \end{minipage}
  1815. \begin{minipage}{0.45\textwidth}
  1816. \begin{lstlisting}
  1817. def InterpLvar(InterpLint):
  1818. def interp_exp(e):
  1819. match e:
  1820. case Name(id):
  1821. return env[id]
  1822. case _:
  1823. return super().interp_exp(e)
  1824. ...
  1825. \end{lstlisting}
  1826. \end{minipage}
  1827. \fi}
  1828. \end{center}
  1829. Getting back to the troublesome example, repeated here:
  1830. {\if\edition\racketEd
  1831. \begin{lstlisting}
  1832. (Let 'y (Int 10) (Prim '- (Var 'y)))
  1833. \end{lstlisting}
  1834. \fi}
  1835. {\if\edition\pythonEd
  1836. \begin{lstlisting}
  1837. y = 10
  1838. print(-y)
  1839. \end{lstlisting}
  1840. \fi}
  1841. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1842. \racket{on this expression,}
  1843. \python{on the \code{-y} expression,}
  1844. %
  1845. call it \code{e0}, by creating an object of the \LangVar{} class
  1846. and calling the \code{interp\_exp} method.
  1847. {\if\edition\racketEd
  1848. \begin{lstlisting}
  1849. (send (new interp_Lvar_class) interp_exp e0)
  1850. \end{lstlisting}
  1851. \fi}
  1852. {\if\edition\pythonEd
  1853. \begin{lstlisting}
  1854. InterpLvar().interp_exp(e0)
  1855. \end{lstlisting}
  1856. \fi}
  1857. \noindent To process the \code{-} operator, the default case of
  1858. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1859. method in \LangInt{}. But then for the recursive method call, it
  1860. dispatches back to \code{interp\_exp} in \LangVar{}, where the
  1861. \code{Var} node is handled correctly. Thus, method overriding gives us
  1862. the open recursion that we need to implement our interpreters in an
  1863. extensible way.
  1864. \subsection{Definitional Interpreter for \LangVar{}}
  1865. \label{sec:interp-Lvar}
  1866. {\if\edition\racketEd
  1867. \begin{figure}[tp]
  1868. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  1869. \small
  1870. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1871. An \emph{association list} (alist) is a list of key-value pairs.
  1872. For example, we can map people to their ages with an alist.
  1873. \index{subject}{alist}\index{subject}{association list}
  1874. \begin{lstlisting}[basicstyle=\ttfamily]
  1875. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  1876. \end{lstlisting}
  1877. The \emph{dictionary} interface is for mapping keys to values.
  1878. Every alist implements this interface. \index{subject}{dictionary} The package
  1879. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1880. provides many functions for working with dictionaries. Here
  1881. are a few of them:
  1882. \begin{description}
  1883. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1884. returns the value associated with the given $\itm{key}$.
  1885. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1886. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1887. but otherwise is the same as $\itm{dict}$.
  1888. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1889. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1890. of keys and values in $\itm{dict}$. For example, the following
  1891. creates a new alist in which the ages are incremented.
  1892. \end{description}
  1893. \vspace{-10pt}
  1894. \begin{lstlisting}[basicstyle=\ttfamily]
  1895. (for/list ([(k v) (in-dict ages)])
  1896. (cons k (add1 v)))
  1897. \end{lstlisting}
  1898. \end{tcolorbox}
  1899. %\end{wrapfigure}
  1900. \caption{Association lists implement the dictionary interface.}
  1901. \label{fig:alist}
  1902. \end{figure}
  1903. \fi}
  1904. Having justified the use of classes and methods to implement
  1905. interpreters, we revisit the definitional interpreter for \LangInt{}
  1906. in Figure~\ref{fig:interp-Lint-class} and then extend it to create an
  1907. interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}. The
  1908. interpreter for \LangVar{} adds two new \key{match} cases for
  1909. variables and \racket{\key{let}}\python{assignment}. For
  1910. \racket{\key{let}}\python{assignment} we need a way to communicate the
  1911. value bound to a variable to all the uses of the variable. To
  1912. accomplish this, we maintain a mapping from variables to values
  1913. called an \emph{environment}\index{subject}{environment}.
  1914. %
  1915. We use%
  1916. %
  1917. \racket{an association list (alist)}
  1918. %
  1919. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary}}
  1920. %
  1921. to represent the environment.
  1922. %
  1923. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  1924. and the \code{racket/dict} package.}
  1925. %
  1926. The \code{interp\_exp} function takes the current environment,
  1927. \code{env}, as an extra parameter. When the interpreter encounters a
  1928. variable, it looks up the corresponding value in the dictionary.
  1929. %
  1930. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  1931. initializing expression, extends the environment with the result
  1932. value bound to the variable, using \code{dict-set}, then evaluates
  1933. the body of the \key{Let}.}
  1934. %
  1935. \python{When the interpreter encounters an assignment, it evaluates
  1936. the initializing expression and then associates the resulting value
  1937. with the variable in the environment.}
  1938. \begin{figure}[tp]
  1939. {\if\edition\racketEd
  1940. \begin{lstlisting}
  1941. (define interp_Lint_class
  1942. (class object%
  1943. (super-new)
  1944. (define/public ((interp_exp env) e)
  1945. (match e
  1946. [(Int n) n]
  1947. [(Prim 'read '())
  1948. (define r (read))
  1949. (cond [(fixnum? r) r]
  1950. [else (error 'interp_exp "expected an integer" r)])]
  1951. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  1952. [(Prim '+ (list e1 e2))
  1953. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]))
  1954. (define/public (interp_program p)
  1955. (match p
  1956. [(Program '() e) ((interp_exp '()) e)]))
  1957. ))
  1958. \end{lstlisting}
  1959. \fi}
  1960. {\if\edition\pythonEd
  1961. \begin{lstlisting}
  1962. class InterpLint:
  1963. def interp_exp(self, e, env):
  1964. match e:
  1965. case BinOp(left, Add(), right):
  1966. return self.interp_exp(left, env) + self.interp_exp(right, env)
  1967. case UnaryOp(USub(), v):
  1968. return - self.interp_exp(v, env)
  1969. case Constant(value):
  1970. return value
  1971. case Call(Name('input_int'), []):
  1972. return int(input())
  1973. def interp_stmts(self, ss, env):
  1974. if len(ss) == 0:
  1975. return
  1976. match ss[0]:
  1977. case Expr(Call(Name('print'), [arg])):
  1978. print(self.interp_exp(arg, env), end='')
  1979. return self.interp_stmts(ss[1:], env)
  1980. case Expr(value):
  1981. self.interp_exp(value, env)
  1982. return self.interp_stmts(ss[1:], env)
  1983. def interp(self, p):
  1984. match p:
  1985. case Module(body):
  1986. self.interp_stmts(body, {})
  1987. def interp_Lint(p):
  1988. return InterpLint().interp(p)
  1989. \end{lstlisting}
  1990. \fi}
  1991. \caption{Interpreter for \LangInt{} as a class.}
  1992. \label{fig:interp-Lint-class}
  1993. \end{figure}
  1994. \begin{figure}[tp]
  1995. {\if\edition\racketEd
  1996. \begin{lstlisting}
  1997. (define interp_Lvar_class
  1998. (class interp_Lint_class
  1999. (super-new)
  2000. (define/override ((interp_exp env) e)
  2001. (match e
  2002. [(Var x) (dict-ref env x)]
  2003. [(Let x e body)
  2004. (define new-env (dict-set env x ((interp_exp env) e)))
  2005. ((interp_exp new-env) body)]
  2006. [else ((super interp-exp env) e)]))
  2007. ))
  2008. (define (interp_Lvar p)
  2009. (send (new interp_Lvar_class) interp_program p))
  2010. \end{lstlisting}
  2011. \fi}
  2012. {\if\edition\pythonEd
  2013. \begin{lstlisting}
  2014. class InterpLvar(InterpLint):
  2015. def interp_exp(self, e, env):
  2016. match e:
  2017. case Name(id):
  2018. return env[id]
  2019. case _:
  2020. return super().interp_exp(e, env)
  2021. def interp_stmts(self, ss, env):
  2022. if len(ss) == 0:
  2023. return
  2024. match ss[0]:
  2025. case Assign([lhs], value):
  2026. env[lhs.id] = self.interp_exp(value, env)
  2027. return self.interp_stmts(ss[1:], env)
  2028. case _:
  2029. return super().interp_stmts(ss, env)
  2030. def interp_Lvar(p):
  2031. return InterpLvar().interp(p)
  2032. \end{lstlisting}
  2033. \fi}
  2034. \caption{Interpreter for the \LangVar{} language.}
  2035. \label{fig:interp-Lvar}
  2036. \end{figure}
  2037. The goal for this chapter is to implement a compiler that translates
  2038. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2039. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2040. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2041. That is, they output the same integer $n$. We depict this correctness
  2042. criteria in the following diagram.
  2043. \[
  2044. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2045. \node (p1) at (0, 0) {$P_1$};
  2046. \node (p2) at (4, 0) {$P_2$};
  2047. \node (o) at (4, -2) {$n$};
  2048. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2049. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2050. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2051. \end{tikzpicture}
  2052. \]
  2053. In the next section we introduce the \LangXInt{} subset of x86 that
  2054. suffices for compiling \LangVar{}.
  2055. \section{The \LangXInt{} Assembly Language}
  2056. \label{sec:x86}
  2057. \index{subject}{x86}
  2058. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2059. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2060. assembler.
  2061. %
  2062. A program begins with a \code{main} label followed by a sequence of
  2063. instructions. The \key{globl} directive says that the \key{main}
  2064. procedure is externally visible, which is necessary so that the
  2065. operating system can call it.
  2066. %
  2067. An x86 program is stored in the computer's memory. For our purposes,
  2068. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2069. values. The computer has a \emph{program counter} (PC)\index{subject}{program
  2070. counter}\index{subject}{PC} stored in the \code{rip} register that points to
  2071. the address of the next instruction to be executed. For most
  2072. instructions, the program counter is incremented after the instruction
  2073. is executed, so it points to the next instruction in memory. Most x86
  2074. instructions take two operands, where each operand is either an
  2075. integer constant (called an \emph{immediate value}\index{subject}{immediate
  2076. value}), a \emph{register}\index{subject}{register}, or a memory location.
  2077. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2078. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2079. && \key{r8} \MID \key{r9} \MID \key{r10}
  2080. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2081. \MID \key{r14} \MID \key{r15}}
  2082. \begin{figure}[tp]
  2083. \fbox{
  2084. \begin{minipage}{0.96\textwidth}
  2085. {\if\edition\racketEd
  2086. \[
  2087. \begin{array}{lcl}
  2088. \Reg &::=& \allregisters{} \\
  2089. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2090. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2091. \key{subq} \; \Arg\key{,} \Arg \MID
  2092. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2093. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2094. \key{callq} \; \mathit{label} \MID
  2095. \key{retq} \MID
  2096. \key{jmp}\,\itm{label} \MID \\
  2097. && \itm{label}\key{:}\; \Instr \\
  2098. \LangXIntM{} &::= & \key{.globl main}\\
  2099. & & \key{main:} \; \Instr\ldots
  2100. \end{array}
  2101. \]
  2102. \fi}
  2103. {\if\edition\pythonEd
  2104. \[
  2105. \begin{array}{lcl}
  2106. \Reg &::=& \allregisters{} \\
  2107. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2108. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2109. \key{subq} \; \Arg\key{,} \Arg \MID
  2110. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2111. && \key{callq} \; \mathit{label} \MID
  2112. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2113. \LangXIntM{} &::= & \key{.globl main}\\
  2114. & & \key{main:} \; \Instr^{*}
  2115. \end{array}
  2116. \]
  2117. \fi}
  2118. \end{minipage}
  2119. }
  2120. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2121. \label{fig:x86-int-concrete}
  2122. \end{figure}
  2123. A register is a special kind of variable that holds a 64-bit
  2124. value. There are 16 general-purpose registers in the computer and
  2125. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  2126. is written with a \key{\%} followed by the register name, such as
  2127. \key{\%rax}.
  2128. An immediate value is written using the notation \key{\$}$n$ where $n$
  2129. is an integer.
  2130. %
  2131. %
  2132. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2133. which obtains the address stored in register $r$ and then adds $n$
  2134. bytes to the address. The resulting address is used to load or store
  2135. to memory depending on whether it occurs as a source or destination
  2136. argument of an instruction.
  2137. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  2138. source $s$ and destination $d$, applies the arithmetic operation, then
  2139. writes the result back to the destination $d$. \index{subject}{instruction}
  2140. %
  2141. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2142. stores the result in $d$.
  2143. %
  2144. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2145. specified by the label and $\key{retq}$ returns from a procedure to
  2146. its caller.
  2147. %
  2148. We discuss procedure calls in more detail later in this chapter and in
  2149. Chapter~\ref{ch:Lfun}.
  2150. %
  2151. The last letter \key{q} indicates that these instructions operate on
  2152. quadwords, i.e., 64-bit values.
  2153. %
  2154. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2155. counter to the address of the instruction after the specified
  2156. label.}
  2157. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  2158. all of the x86 instructions used in this book.
  2159. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2160. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2161. \lstinline{movq $10, %rax}
  2162. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  2163. adds $32$ to the $10$ in \key{rax} and
  2164. puts the result, $42$, back into \key{rax}.
  2165. %
  2166. The last instruction, \key{retq}, finishes the \key{main} function by
  2167. returning the integer in \key{rax} to the operating system. The
  2168. operating system interprets this integer as the program's exit
  2169. code. By convention, an exit code of 0 indicates that a program
  2170. completed successfully, and all other exit codes indicate various
  2171. errors.
  2172. %
  2173. \racket{Nevertheless, in this book we return the result of the program
  2174. as the exit code.}
  2175. \begin{figure}[tbp]
  2176. \begin{lstlisting}
  2177. .globl main
  2178. main:
  2179. movq $10, %rax
  2180. addq $32, %rax
  2181. retq
  2182. \end{lstlisting}
  2183. \caption{An x86 program that computes
  2184. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2185. \label{fig:p0-x86}
  2186. \end{figure}
  2187. We exhibit the use of memory for storing intermediate results in the
  2188. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2189. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2190. uses a region of memory called the \emph{procedure call stack} (or
  2191. \emph{stack} for
  2192. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2193. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2194. for each procedure call. The memory layout for an individual frame is
  2195. shown in Figure~\ref{fig:frame}. The register \key{rsp} is called the
  2196. \emph{stack pointer}\index{subject}{stack pointer} and points to the
  2197. item at the top of the stack. The stack grows downward in memory, so
  2198. we increase the size of the stack by subtracting from the stack
  2199. pointer. In the context of a procedure call, the \emph{return
  2200. address}\index{subject}{return address} is the instruction after the
  2201. call instruction on the caller side. The function call instruction,
  2202. \code{callq}, pushes the return address onto the stack prior to
  2203. jumping to the procedure. The register \key{rbp} is the \emph{base
  2204. pointer}\index{subject}{base pointer} and is used to access variables
  2205. that are stored in the frame of the current procedure call. The base
  2206. pointer of the caller is store after the return address. In
  2207. Figure~\ref{fig:frame} we number the variables from $1$ to
  2208. $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$, variable $2$
  2209. at $-16\key{(\%rbp)}$, etc.
  2210. \begin{figure}[tbp]
  2211. {\if\edition\racketEd
  2212. \begin{lstlisting}
  2213. start:
  2214. movq $10, -8(%rbp)
  2215. negq -8(%rbp)
  2216. movq -8(%rbp), %rax
  2217. addq $52, %rax
  2218. jmp conclusion
  2219. .globl main
  2220. main:
  2221. pushq %rbp
  2222. movq %rsp, %rbp
  2223. subq $16, %rsp
  2224. jmp start
  2225. conclusion:
  2226. addq $16, %rsp
  2227. popq %rbp
  2228. retq
  2229. \end{lstlisting}
  2230. \fi}
  2231. {\if\edition\pythonEd
  2232. \begin{lstlisting}
  2233. .globl main
  2234. main:
  2235. pushq %rbp
  2236. movq %rsp, %rbp
  2237. subq $16, %rsp
  2238. movq $10, -8(%rbp)
  2239. negq -8(%rbp)
  2240. movq -8(%rbp), %rax
  2241. addq $52, %rax
  2242. addq $16, %rsp
  2243. popq %rbp
  2244. retq
  2245. \end{lstlisting}
  2246. \fi}
  2247. \caption{An x86 program that computes
  2248. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2249. \label{fig:p1-x86}
  2250. \end{figure}
  2251. \begin{figure}[tbp]
  2252. \centering
  2253. \begin{tabular}{|r|l|} \hline
  2254. Position & Contents \\ \hline
  2255. 8(\key{\%rbp}) & return address \\
  2256. 0(\key{\%rbp}) & old \key{rbp} \\
  2257. -8(\key{\%rbp}) & variable $1$ \\
  2258. -16(\key{\%rbp}) & variable $2$ \\
  2259. \ldots & \ldots \\
  2260. 0(\key{\%rsp}) & variable $n$\\ \hline
  2261. \end{tabular}
  2262. \caption{Memory layout of a frame.}
  2263. \label{fig:frame}
  2264. \end{figure}
  2265. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  2266. control is transferred from the operating system to the \code{main}
  2267. function. The operating system issues a \code{callq main} instruction
  2268. which pushes its return address on the stack and then jumps to
  2269. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2270. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2271. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  2272. alignment (because the \code{callq} pushed the return address). The
  2273. first three instructions are the typical \emph{prelude}\index{subject}{prelude}
  2274. for a procedure. The instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2275. pointer and then saves the base pointer of the caller at address
  2276. \code{rsp} on the stack. The next instruction \code{movq \%rsp, \%rbp} sets the
  2277. base pointer to the current stack pointer, which is pointing at the location
  2278. of the old base pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  2279. pointer down to make enough room for storing variables. This program
  2280. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  2281. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  2282. functions.
  2283. \racket{The last instruction of the prelude is \code{jmp start},
  2284. which transfers control to the instructions that were generated from
  2285. the expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2286. \racket{The first instruction under the \code{start} label is}
  2287. %
  2288. \python{The first instruction after the prelude is}
  2289. %
  2290. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2291. %
  2292. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  2293. %
  2294. The next instruction moves the $-10$ from variable $1$ into the
  2295. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2296. the value in \code{rax}, updating its contents to $42$.
  2297. \racket{The three instructions under the label \code{conclusion} are the
  2298. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2299. %
  2300. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2301. \code{main} function consists of the last three instructions.}
  2302. %
  2303. The first two restore the \code{rsp} and \code{rbp} registers to the
  2304. state they were in at the beginning of the procedure. In particular,
  2305. \key{addq \$16, \%rsp} moves the stack pointer back to point at the
  2306. old base pointer. Then \key{popq \%rbp} returns the old base pointer
  2307. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2308. \key{retq}, jumps back to the procedure that called this one and adds
  2309. $8$ to the stack pointer.
  2310. Our compiler needs a convenient representation for manipulating x86
  2311. programs, so we define an abstract syntax for x86 in
  2312. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  2313. \LangXInt{}.
  2314. %
  2315. {\if\edition\pythonEd%
  2316. The main difference compared to the concrete syntax of \LangXInt{}
  2317. (Figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2318. names, and register names are explicitly represented by strings.
  2319. \fi} %
  2320. {\if\edition\racketEd
  2321. The main difference compared to the concrete syntax of \LangXInt{}
  2322. (Figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2323. front of every instruction. Instead instructions are grouped into
  2324. \emph{blocks}\index{subject}{block} with a
  2325. label associated with every block, which is why the \key{X86Program}
  2326. struct includes an alist mapping labels to blocks. The reason for this
  2327. organization becomes apparent in Chapter~\ref{ch:Lif} when we
  2328. introduce conditional branching. The \code{Block} structure includes
  2329. an $\itm{info}$ field that is not needed for this chapter, but becomes
  2330. useful in Chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2331. $\itm{info}$ field should contain an empty list.
  2332. \fi}
  2333. %
  2334. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2335. node includes an integer for representing the arity of the function,
  2336. i.e., the number of arguments, which is helpful to know during
  2337. register allocation (Chapter~\ref{ch:register-allocation-Lvar}).
  2338. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2339. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2340. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2341. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2342. \MID \skey{r14} \MID \skey{r15}}
  2343. \begin{figure}[tp]
  2344. \fbox{
  2345. \begin{minipage}{0.98\textwidth}
  2346. \small
  2347. {\if\edition\racketEd
  2348. \[
  2349. \begin{array}{lcl}
  2350. \Reg &::=& \allregisters{} \\
  2351. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2352. \MID \DEREF{\Reg}{\Int} \\
  2353. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2354. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2355. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2356. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2357. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2358. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2359. \MID \RETQ{}
  2360. \MID \JMP{\itm{label}} \\
  2361. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  2362. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2363. \end{array}
  2364. \]
  2365. \fi}
  2366. {\if\edition\pythonEd
  2367. \[
  2368. \begin{array}{lcl}
  2369. \Reg &::=& \allastregisters{} \\
  2370. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2371. \MID \DEREF{\Reg}{\Int} \\
  2372. \Instr &::=& \BININSTR{\scode{addq}}{\Arg}{\Arg}
  2373. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} \\
  2374. &\MID& \BININSTR{\scode{movq}}{\Arg}{\Arg}
  2375. \MID \UNIINSTR{\scode{negq}}{\Arg}\\
  2376. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2377. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{} \MID \JMP{\itm{label}} \\
  2378. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2379. \end{array}
  2380. \]
  2381. \fi}
  2382. \end{minipage}
  2383. }
  2384. \caption{The abstract syntax of \LangXInt{} assembly.}
  2385. \label{fig:x86-int-ast}
  2386. \end{figure}
  2387. \section{Planning the trip to x86}
  2388. \label{sec:plan-s0-x86}
  2389. To compile one language to another it helps to focus on the
  2390. differences between the two languages because the compiler will need
  2391. to bridge those differences. What are the differences between \LangVar{}
  2392. and x86 assembly? Here are some of the most important ones:
  2393. \begin{enumerate}
  2394. \item x86 arithmetic instructions typically have two arguments and
  2395. update the second argument in place. In contrast, \LangVar{}
  2396. arithmetic operations take two arguments and produce a new value.
  2397. An x86 instruction may have at most one memory-accessing argument.
  2398. Furthermore, some x86 instructions place special restrictions on
  2399. their arguments.
  2400. \item An argument of an \LangVar{} operator can be a deeply-nested
  2401. expression, whereas x86 instructions restrict their arguments to be
  2402. integer constants, registers, and memory locations.
  2403. {\if\edition\racketEd
  2404. \item The order of execution in x86 is explicit in the syntax: a
  2405. sequence of instructions and jumps to labeled positions, whereas in
  2406. \LangVar{} the order of evaluation is a left-to-right depth-first
  2407. traversal of the abstract syntax tree.
  2408. \fi}
  2409. \item A program in \LangVar{} can have any number of variables
  2410. whereas x86 has 16 registers and the procedure call stack.
  2411. {\if\edition\racketEd
  2412. \item Variables in \LangVar{} can shadow other variables with the
  2413. same name. In x86, registers have unique names and memory locations
  2414. have unique addresses.
  2415. \fi}
  2416. \end{enumerate}
  2417. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2418. down the problem into several steps, dealing with the above
  2419. differences one at a time. Each of these steps is called a \emph{pass}
  2420. of the compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2421. %
  2422. This terminology comes from the way each step passes over, that is,
  2423. traverses the AST of the program.
  2424. %
  2425. Furthermore, we follow the nanopass approach, which means we strive
  2426. for each pass to accomplish one clear objective (not two or three at
  2427. the same time).
  2428. %
  2429. We begin by sketching how we might implement each pass, and give them
  2430. names. We then figure out an ordering of the passes and the
  2431. input/output language for each pass. The very first pass has
  2432. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2433. its output language. In between we can choose whichever language is
  2434. most convenient for expressing the output of each pass, whether that
  2435. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2436. our own design. Finally, to implement each pass we write one
  2437. recursive function per non-terminal in the grammar of the input
  2438. language of the pass. \index{subject}{intermediate language}
  2439. Our compiler for \LangVar{} consists of the following passes.
  2440. %
  2441. \begin{description}
  2442. {\if\edition\racketEd
  2443. \item[\key{uniquify}] deals with the shadowing of variables by
  2444. renaming every variable to a unique name.
  2445. \fi}
  2446. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2447. of a primitive operation or function call is a variable or integer,
  2448. that is, an \emph{atomic} expression. We refer to non-atomic
  2449. expressions as \emph{complex}. This pass introduces temporary
  2450. variables to hold the results of complex
  2451. subexpressions.\index{subject}{atomic
  2452. expression}\index{subject}{complex expression}%
  2453. {\if\edition\racketEd
  2454. \item[\key{explicate\_control}] makes the execution order of the
  2455. program explicit. It converts the abstract syntax tree representation
  2456. into a control-flow graph in which each node contains a sequence of
  2457. statements and the edges between nodes say which nodes contain jumps
  2458. to other nodes.
  2459. \fi}
  2460. \item[\key{select\_instructions}] handles the difference between
  2461. \LangVar{} operations and x86 instructions. This pass converts each
  2462. \LangVar{} operation to a short sequence of instructions that
  2463. accomplishes the same task.
  2464. \item[\key{assign\_homes}] replaces variables with registers or stack
  2465. locations.
  2466. \end{description}
  2467. %
  2468. {\if\edition\racketEd
  2469. %
  2470. Our treatment of \code{remove\_complex\_operands} and
  2471. \code{explicate\_control} as separate passes is an example of the
  2472. nanopass approach\footnote{For analogous decompositions of the
  2473. translation into continuation passing style, see the work of
  2474. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.}. The traditional
  2475. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2476. %
  2477. \fi}
  2478. The next question is: in what order should we apply these passes? This
  2479. question can be challenging because it is difficult to know ahead of
  2480. time which orderings will be better (easier to implement, produce more
  2481. efficient code, etc.) so oftentimes trial-and-error is
  2482. involved. Nevertheless, we can try to plan ahead and make educated
  2483. choices regarding the ordering.
  2484. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2485. \key{uniquify}? The \key{uniquify} pass should come first because
  2486. \key{explicate\_control} changes all the \key{let}-bound variables to
  2487. become local variables whose scope is the entire program, which would
  2488. confuse variables with the same name.}
  2489. %
  2490. \racket{We place \key{remove\_complex\_opera*} before \key{explicate\_control}
  2491. because the later removes the \key{let} form, but it is convenient to
  2492. use \key{let} in the output of \key{remove\_complex\_opera*}.}
  2493. %
  2494. \racket{The ordering of \key{uniquify} with respect to
  2495. \key{remove\_complex\_opera*} does not matter so we arbitrarily choose
  2496. \key{uniquify} to come first.}
  2497. The \key{select\_instructions} and \key{assign\_homes} passes are
  2498. intertwined.
  2499. %
  2500. In Chapter~\ref{ch:Lfun} we learn that, in x86, registers are used for
  2501. passing arguments to functions and it is preferable to assign
  2502. parameters to their corresponding registers. This suggests that it
  2503. would be better to start with the \key{select\_instructions} pass,
  2504. which generates the instructions for argument passing, before
  2505. performing register allocation.
  2506. %
  2507. On the other hand, by selecting instructions first we may run into a
  2508. dead end in \key{assign\_homes}. Recall that only one argument of an
  2509. x86 instruction may be a memory access but \key{assign\_homes} might
  2510. be forced to assign both arguments to memory locations.
  2511. %
  2512. A sophisticated approach is to iteratively repeat the two passes until
  2513. a solution is found. However, to reduce implementation complexity we
  2514. recommend placing \key{select\_instructions} first, followed by the
  2515. \key{assign\_homes}, then a third pass named \key{patch\_instructions}
  2516. that uses a reserved register to fix outstanding problems.
  2517. \begin{figure}[tbp]
  2518. {\if\edition\racketEd
  2519. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2520. \node (Lvar) at (0,2) {\large \LangVar{}};
  2521. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2522. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  2523. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2524. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2525. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2526. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2527. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2528. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2529. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2530. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  2531. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-2);
  2532. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  2533. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2534. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  2535. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  2536. \end{tikzpicture}
  2537. \fi}
  2538. {\if\edition\pythonEd
  2539. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2540. \node (Lvar) at (0,2) {\large \LangVar{}};
  2541. \node (Lvar-2) at (3,2) {\large \LangVarANF{}};
  2542. \node (x86-1) at (3,0) {\large \LangXVar{}};
  2543. \node (x86-2) at (6,0) {\large \LangXVar{}};
  2544. \node (x86-3) at (9,0) {\large \LangXInt{}};
  2545. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2546. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-2);
  2547. \path[->,bend right=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  2548. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2549. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  2550. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-4);
  2551. \end{tikzpicture}
  2552. \fi}
  2553. \caption{Diagram of the passes for compiling \LangVar{}. }
  2554. \label{fig:Lvar-passes}
  2555. \end{figure}
  2556. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2557. passes and identifies the input and output language of each pass.
  2558. %
  2559. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2560. language, which extends \LangXInt{} with an unbounded number of
  2561. program-scope variables and removes the restrictions regarding
  2562. instruction arguments.
  2563. %
  2564. The last pass, \key{prelude\_and\_conclusion}, places the program
  2565. instructions inside a \code{main} function with instructions for the
  2566. prelude and conclusion.
  2567. %
  2568. \racket{In the following section we discuss the \LangCVar{}
  2569. intermediate language.}
  2570. %
  2571. The remainder of this chapter provides guidance on the implementation
  2572. of each of the compiler passes in Figure~\ref{fig:Lvar-passes}.
  2573. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  2574. %% are programs that are still in the \LangVar{} language, though the
  2575. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2576. %% (Section~\ref{sec:remove-complex-opera-Lvar}).
  2577. %% %
  2578. %% The output of \code{explicate\_control} is in an intermediate language
  2579. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2580. %% syntax, which we introduce in the next section. The
  2581. %% \key{select-instruction} pass translates from \LangCVar{} to
  2582. %% \LangXVar{}. The \key{assign-homes} and
  2583. %% \key{patch-instructions}
  2584. %% passes input and output variants of x86 assembly.
  2585. \newcommand{\CvarGrammarRacket}{
  2586. \begin{array}{lcl}
  2587. \Atm &::=& \Int \MID \Var \\
  2588. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2589. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2590. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2591. \end{array}
  2592. }
  2593. \newcommand{\CvarASTRacket}{
  2594. \begin{array}{lcl}
  2595. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2596. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2597. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2598. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2599. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2600. \end{array}
  2601. }
  2602. {\if\edition\racketEd
  2603. \subsection{The \LangCVar{} Intermediate Language}
  2604. The output of \code{explicate\_control} is similar to the $C$
  2605. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2606. categories for expressions and statements, so we name it \LangCVar{}.
  2607. This style of intermediate language is also known as
  2608. \emph{three-address code}, to emphasize that the typical form of a
  2609. statement is \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2610. addresses~\citep{Aho:2006wb}.
  2611. The concrete syntax for \LangCVar{} is defined in
  2612. Figure~\ref{fig:c0-concrete-syntax} and the abstract syntax for
  2613. \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2614. %
  2615. The \LangCVar{} language supports the same operators as \LangVar{} but
  2616. the arguments of operators are restricted to atomic
  2617. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2618. assignment statements which can be executed in sequence using the
  2619. \key{Seq} form. A sequence of statements always ends with
  2620. \key{Return}, a guarantee that is baked into the grammar rules for
  2621. \itm{tail}. The naming of this non-terminal comes from the term
  2622. \emph{tail position}\index{subject}{tail position}, which refers to an
  2623. expression that is the last one to execute within a function.
  2624. A \LangCVar{} program consists of an alist mapping labels to
  2625. tails. This is more general than necessary for the present chapter, as
  2626. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2627. us from having to change the syntax in Chapter~\ref{ch:Lif}. For now
  2628. there will be just one label, \key{start}, and the whole program is
  2629. its tail.
  2630. %
  2631. The $\itm{info}$ field of the \key{CProgram} form, after the
  2632. \code{explicate\_control} pass, contains a mapping from the symbol
  2633. \key{locals} to a list of variables, that is, a list of all the
  2634. variables used in the program. At the start of the program, these
  2635. variables are uninitialized; they become initialized on their first
  2636. assignment.
  2637. \begin{figure}[tbp]
  2638. \fbox{
  2639. \begin{minipage}{0.96\textwidth}
  2640. \[
  2641. \begin{array}{l}
  2642. \CvarGrammarRacket \\
  2643. \begin{array}{lcl}
  2644. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2645. \end{array}
  2646. \end{array}
  2647. \]
  2648. \end{minipage}
  2649. }
  2650. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2651. \label{fig:c0-concrete-syntax}
  2652. \end{figure}
  2653. \begin{figure}[tbp]
  2654. \fbox{
  2655. \begin{minipage}{0.96\textwidth}
  2656. \[
  2657. \begin{array}{l}
  2658. \CvarASTRacket \\
  2659. \begin{array}{lcl}
  2660. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2661. \end{array}
  2662. \end{array}
  2663. \]
  2664. \end{minipage}
  2665. }
  2666. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2667. \label{fig:c0-syntax}
  2668. \end{figure}
  2669. The definitional interpreter for \LangCVar{} is in the support code,
  2670. in the file \code{interp-Cvar.rkt}.
  2671. \fi}
  2672. {\if\edition\racketEd
  2673. \section{Uniquify Variables}
  2674. \label{sec:uniquify-Lvar}
  2675. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2676. programs in which every \key{let} binds a unique variable name. For
  2677. example, the \code{uniquify} pass should translate the program on the
  2678. left into the program on the right.
  2679. \begin{transformation}
  2680. \begin{lstlisting}
  2681. (let ([x 32])
  2682. (+ (let ([x 10]) x) x))
  2683. \end{lstlisting}
  2684. \compilesto
  2685. \begin{lstlisting}
  2686. (let ([x.1 32])
  2687. (+ (let ([x.2 10]) x.2) x.1))
  2688. \end{lstlisting}
  2689. \end{transformation}
  2690. The following is another example translation, this time of a program
  2691. with a \key{let} nested inside the initializing expression of another
  2692. \key{let}.
  2693. \begin{transformation}
  2694. \begin{lstlisting}
  2695. (let ([x (let ([x 4])
  2696. (+ x 1))])
  2697. (+ x 2))
  2698. \end{lstlisting}
  2699. \compilesto
  2700. \begin{lstlisting}
  2701. (let ([x.2 (let ([x.1 4])
  2702. (+ x.1 1))])
  2703. (+ x.2 2))
  2704. \end{lstlisting}
  2705. \end{transformation}
  2706. We recommend implementing \code{uniquify} by creating a structurally
  2707. recursive function named \code{uniquify-exp} that mostly just copies
  2708. an expression. However, when encountering a \key{let}, it should
  2709. generate a unique name for the variable and associate the old name
  2710. with the new name in an alist.\footnote{The Racket function
  2711. \code{gensym} is handy for generating unique variable names.} The
  2712. \code{uniquify-exp} function needs to access this alist when it gets
  2713. to a variable reference, so we add a parameter to \code{uniquify-exp}
  2714. for the alist.
  2715. The skeleton of the \code{uniquify-exp} function is shown in
  2716. Figure~\ref{fig:uniquify-Lvar}. The function is curried so that it is
  2717. convenient to partially apply it to an alist and then apply it to
  2718. different expressions, as in the last case for primitive operations in
  2719. Figure~\ref{fig:uniquify-Lvar}. The
  2720. %
  2721. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2722. %
  2723. form of Racket is useful for transforming each element of a list to
  2724. produce a new list.\index{subject}{for/list}
  2725. \begin{figure}[tbp]
  2726. \begin{lstlisting}
  2727. (define (uniquify-exp env)
  2728. (lambda (e)
  2729. (match e
  2730. [(Var x) ___]
  2731. [(Int n) (Int n)]
  2732. [(Let x e body) ___]
  2733. [(Prim op es)
  2734. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  2735. (define (uniquify p)
  2736. (match p
  2737. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  2738. \end{lstlisting}
  2739. \caption{Skeleton for the \key{uniquify} pass.}
  2740. \label{fig:uniquify-Lvar}
  2741. \end{figure}
  2742. \begin{exercise}
  2743. \normalfont % I don't like the italics for exercises. -Jeremy
  2744. Complete the \code{uniquify} pass by filling in the blanks in
  2745. Figure~\ref{fig:uniquify-Lvar}, that is, implement the cases for
  2746. variables and for the \key{let} form in the file \code{compiler.rkt}
  2747. in the support code.
  2748. \end{exercise}
  2749. \begin{exercise}
  2750. \normalfont % I don't like the italics for exercises. -Jeremy
  2751. \label{ex:Lvar}
  2752. Create five \LangVar{} programs that exercise the most interesting
  2753. parts of the \key{uniquify} pass, that is, the programs should include
  2754. \key{let} forms, variables, and variables that shadow each other.
  2755. The five programs should be placed in the subdirectory named
  2756. \key{tests} and the file names should start with \code{var\_test\_}
  2757. followed by a unique integer and end with the file extension
  2758. \key{.rkt}.
  2759. %
  2760. The \key{run-tests.rkt} script in the support code checks whether the
  2761. output programs produce the same result as the input programs. The
  2762. script uses the \key{interp-tests} function
  2763. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2764. your \key{uniquify} pass on the example programs. The \code{passes}
  2765. parameter of \key{interp-tests} is a list that should have one entry
  2766. for each pass in your compiler. For now, define \code{passes} to
  2767. contain just one entry for \code{uniquify} as shown below.
  2768. \begin{lstlisting}
  2769. (define passes
  2770. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2771. \end{lstlisting}
  2772. Run the \key{run-tests.rkt} script in the support code to check
  2773. whether the output programs produce the same result as the input
  2774. programs.
  2775. \end{exercise}
  2776. \fi}
  2777. \section{Remove Complex Operands}
  2778. \label{sec:remove-complex-opera-Lvar}
  2779. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2780. into a restricted form in which the arguments of operations are atomic
  2781. expressions. Put another way, this pass removes complex
  2782. operands\index{subject}{complex operand}, such as the expression
  2783. \racket{\code{(- 10)}}\python{\code{-10}}
  2784. in the program below. This is accomplished by introducing a new
  2785. temporary variable, assigning the complex operand to the new
  2786. variable, and then using the new variable in place of the complex
  2787. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2788. right.
  2789. {\if\edition\racketEd
  2790. \begin{transformation}
  2791. % var_test_19.rkt
  2792. \begin{lstlisting}
  2793. (let ([x (+ 42 (- 10))])
  2794. (+ x 10))
  2795. \end{lstlisting}
  2796. \compilesto
  2797. \begin{lstlisting}
  2798. (let ([x (let ([tmp.1 (- 10)])
  2799. (+ 42 tmp.1))])
  2800. (+ x 10))
  2801. \end{lstlisting}
  2802. \end{transformation}
  2803. \fi}
  2804. {\if\edition\pythonEd
  2805. \begin{transformation}
  2806. \begin{lstlisting}
  2807. x = 42 + -10
  2808. print(x + 10)
  2809. \end{lstlisting}
  2810. \compilesto
  2811. \begin{lstlisting}
  2812. tmp_0 = -10
  2813. x = 42 + tmp_0
  2814. tmp_1 = x + 10
  2815. print(tmp_1)
  2816. \end{lstlisting}
  2817. \end{transformation}
  2818. \fi}
  2819. \begin{figure}[tp]
  2820. \centering
  2821. \fbox{
  2822. \begin{minipage}{0.96\textwidth}
  2823. {\if\edition\racketEd
  2824. \[
  2825. \begin{array}{rcl}
  2826. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2827. \Exp &::=& \Atm \MID \READ{} \\
  2828. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2829. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2830. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  2831. \end{array}
  2832. \]
  2833. \fi}
  2834. {\if\edition\pythonEd
  2835. \[
  2836. \begin{array}{rcl}
  2837. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2838. \Exp{} &::=& \Atm \MID \READ{} \\
  2839. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2840. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  2841. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  2842. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  2843. \end{array}
  2844. \]
  2845. \fi}
  2846. \end{minipage}
  2847. }
  2848. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  2849. atomic expressions.}
  2850. \label{fig:Lvar-anf-syntax}
  2851. \end{figure}
  2852. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  2853. of this pass, the language \LangVarANF{}. The only difference is that
  2854. operator arguments are restricted to be atomic expressions that are
  2855. defined by the \Atm{} non-terminal. In particular, integer constants
  2856. and variables are atomic.
  2857. The atomic expressions are pure (they do not cause side-effects or
  2858. depend on them) whereas complex expressions may have side effects,
  2859. such as \READ{}. A language with this separation between pure versus
  2860. side-effecting expressions is said to be in monadic normal
  2861. form~\citep{Moggi:1991in,Danvy:2003fk} which explains the \textit{mon}
  2862. in \LangVarANF{}. An important invariant of the
  2863. \code{remove\_complex\_operands} pass is that the relative ordering
  2864. among complex expressions is not changed, but the relative ordering
  2865. between atomic expressions and complex expressions can change and
  2866. often does. The reason that these changes are behaviour preserving is
  2867. that the atomic expressions are pure.
  2868. Another well-known form for intermediate languages is the
  2869. \emph{administrative normal form}
  2870. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2871. \index{subject}{administrative normal form} \index{subject}{ANF}
  2872. %
  2873. The \LangVarANF{} language is not quite in ANF because we allow the
  2874. right-hand side of a \code{let} to be a complex expression.
  2875. {\if\edition\racketEd
  2876. We recommend implementing this pass with two mutually recursive
  2877. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  2878. \code{rco\_atom} to subexpressions that need to become atomic and to
  2879. apply \code{rco\_exp} to subexpressions that do not. Both functions
  2880. take an \LangVar{} expression as input. The \code{rco\_exp} function
  2881. returns an expression. The \code{rco\_atom} function returns two
  2882. things: an atomic expression and an alist mapping temporary variables to
  2883. complex subexpressions. You can return multiple things from a function
  2884. using Racket's \key{values} form and you can receive multiple things
  2885. from a function call using the \key{define-values} form.
  2886. Also, the
  2887. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  2888. form is useful for applying a function to each element of a list, in
  2889. the case where the function returns multiple values.
  2890. \index{subject}{for/lists}
  2891. \fi}
  2892. %
  2893. {\if\edition\pythonEd
  2894. %
  2895. We recommend implementing this pass with an auxiliary method named
  2896. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  2897. Boolean that specifies whether the expression needs to become atomic
  2898. or not. The \code{rco\_exp} method should return a pair consisting of
  2899. the new expression and a list of pairs, associating new temporary
  2900. variables with their initializing expressions.
  2901. %
  2902. \fi}
  2903. {\if\edition\racketEd
  2904. Returning to the example program with the expression \code{(+ 42 (-
  2905. 10))}, the subexpression \code{(- 10)} should be processed using the
  2906. \code{rco\_atom} function because it is an argument of the \code{+} and
  2907. therefore needs to become atomic. The output of \code{rco\_atom}
  2908. applied to \code{(- 10)} is as follows.
  2909. \begin{transformation}
  2910. \begin{lstlisting}
  2911. (- 10)
  2912. \end{lstlisting}
  2913. \compilesto
  2914. \begin{lstlisting}
  2915. tmp.1
  2916. ((tmp.1 . (- 10)))
  2917. \end{lstlisting}
  2918. \end{transformation}
  2919. \fi}
  2920. %
  2921. {\if\edition\pythonEd
  2922. %
  2923. Returning to the example program with the expression \code{42 + -10},
  2924. the subexpression \code{-10} should be processed using the
  2925. \code{rco\_exp} function with \code{True} as the second argument
  2926. because \code{-10} is an argument of the \code{+} operator and
  2927. therefore needs to become atomic. The output of \code{rco\_exp}
  2928. applied to \code{-10} is as follows.
  2929. \begin{transformation}
  2930. \begin{lstlisting}
  2931. -10
  2932. \end{lstlisting}
  2933. \compilesto
  2934. \begin{lstlisting}
  2935. tmp_1
  2936. [(tmp_1, -10)]
  2937. \end{lstlisting}
  2938. \end{transformation}
  2939. %
  2940. \fi}
  2941. Take special care of programs such as the following that
  2942. %
  2943. \racket{bind a variable to an atomic expression}
  2944. %
  2945. \python{assign an atomic expression to a variable}.
  2946. %
  2947. You should leave such \racket{variable bindings}\python{assignments}
  2948. unchanged, as shown in the program on the right\\
  2949. %
  2950. {\if\edition\racketEd
  2951. \begin{transformation}
  2952. % var_test_20.rkt
  2953. \begin{lstlisting}
  2954. (let ([a 42])
  2955. (let ([b a])
  2956. b))
  2957. \end{lstlisting}
  2958. \compilesto
  2959. \begin{lstlisting}
  2960. (let ([a 42])
  2961. (let ([b a])
  2962. b))
  2963. \end{lstlisting}
  2964. \end{transformation}
  2965. \fi}
  2966. {\if\edition\pythonEd
  2967. \begin{transformation}
  2968. \begin{lstlisting}
  2969. a = 42
  2970. b = a
  2971. print(b)
  2972. \end{lstlisting}
  2973. \compilesto
  2974. \begin{lstlisting}
  2975. a = 42
  2976. b = a
  2977. print(b)
  2978. \end{lstlisting}
  2979. \end{transformation}
  2980. \fi}
  2981. %
  2982. \noindent A careless implementation might produce the following output with
  2983. unnecessary temporary variables.
  2984. \begin{center}
  2985. \begin{minipage}{0.4\textwidth}
  2986. {\if\edition\racketEd
  2987. \begin{lstlisting}
  2988. (let ([tmp.1 42])
  2989. (let ([a tmp.1])
  2990. (let ([tmp.2 a])
  2991. (let ([b tmp.2])
  2992. b))))
  2993. \end{lstlisting}
  2994. \fi}
  2995. {\if\edition\pythonEd
  2996. \begin{lstlisting}
  2997. tmp_1 = 42
  2998. a = tmp_1
  2999. tmp_2 = a
  3000. b = tmp_2
  3001. print(b)
  3002. \end{lstlisting}
  3003. \fi}
  3004. \end{minipage}
  3005. \end{center}
  3006. \begin{exercise}
  3007. \normalfont
  3008. {\if\edition\racketEd
  3009. Implement the \code{remove\_complex\_operands} function in
  3010. \code{compiler.rkt}.
  3011. %
  3012. Create three new \LangVar{} programs that exercise the interesting
  3013. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  3014. regarding file names described in Exercise~\ref{ex:Lvar}.
  3015. %
  3016. In the \code{run-tests.rkt} script, add the following entry to the
  3017. list of \code{passes} and then run the script to test your compiler.
  3018. \begin{lstlisting}
  3019. (list "remove-complex" remove-complex-opera* interp_Lvar type-check-Lvar)
  3020. \end{lstlisting}
  3021. While debugging your compiler, it is often useful to see the
  3022. intermediate programs that are output from each pass. To print the
  3023. intermediate programs, place \lstinline{(debug-level 1)} before the call to
  3024. \code{interp-tests} in \code{run-tests.rkt}.
  3025. \fi}
  3026. %
  3027. {\if\edition\pythonEd
  3028. Implement the \code{remove\_complex\_operands} pass in
  3029. \code{compiler.py}, creating auxiliary functions for each
  3030. non-terminal in the grammar, i.e., \code{rco\_exp}
  3031. and \code{rco\_stmt}.
  3032. \fi}
  3033. \end{exercise}
  3034. {\if\edition\pythonEd
  3035. \begin{exercise}
  3036. \normalfont % I don't like the italics for exercises. -Jeremy
  3037. \label{ex:Lvar}
  3038. Create five \LangVar{} programs that exercise the most interesting
  3039. parts of the \code{remove\_complex\_operands} pass. The five programs
  3040. should be placed in the subdirectory named \key{tests} and the file
  3041. names should start with \code{var\_test\_} followed by a unique
  3042. integer and end with the file extension \key{.py}.
  3043. %% The \key{run-tests.rkt} script in the support code checks whether the
  3044. %% output programs produce the same result as the input programs. The
  3045. %% script uses the \key{interp-tests} function
  3046. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  3047. %% your \key{uniquify} pass on the example programs. The \code{passes}
  3048. %% parameter of \key{interp-tests} is a list that should have one entry
  3049. %% for each pass in your compiler. For now, define \code{passes} to
  3050. %% contain just one entry for \code{uniquify} as shown below.
  3051. %% \begin{lstlisting}
  3052. %% (define passes
  3053. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3054. %% \end{lstlisting}
  3055. Run the \key{run-tests.py} script in the support code to check
  3056. whether the output programs produce the same result as the input
  3057. programs.
  3058. \end{exercise}
  3059. \fi}
  3060. {\if\edition\racketEd
  3061. \section{Explicate Control}
  3062. \label{sec:explicate-control-Lvar}
  3063. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3064. programs that make the order of execution explicit in their
  3065. syntax. For now this amounts to flattening \key{let} constructs into a
  3066. sequence of assignment statements. For example, consider the following
  3067. \LangVar{} program.\\
  3068. % var_test_11.rkt
  3069. \begin{minipage}{0.96\textwidth}
  3070. \begin{lstlisting}
  3071. (let ([y (let ([x 20])
  3072. (+ x (let ([x 22]) x)))])
  3073. y)
  3074. \end{lstlisting}
  3075. \end{minipage}\\
  3076. %
  3077. The output of the previous pass and of \code{explicate\_control} is
  3078. shown below. Recall that the right-hand-side of a \key{let} executes
  3079. before its body, so the order of evaluation for this program is to
  3080. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  3081. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  3082. output of \code{explicate\_control} makes this ordering explicit.
  3083. \begin{transformation}
  3084. \begin{lstlisting}
  3085. (let ([y (let ([x.1 20])
  3086. (let ([x.2 22])
  3087. (+ x.1 x.2)))])
  3088. y)
  3089. \end{lstlisting}
  3090. \compilesto
  3091. \begin{lstlisting}[language=C]
  3092. start:
  3093. x.1 = 20;
  3094. x.2 = 22;
  3095. y = (+ x.1 x.2);
  3096. return y;
  3097. \end{lstlisting}
  3098. \end{transformation}
  3099. \begin{figure}[tbp]
  3100. \begin{lstlisting}
  3101. (define (explicate_tail e)
  3102. (match e
  3103. [(Var x) ___]
  3104. [(Int n) (Return (Int n))]
  3105. [(Let x rhs body) ___]
  3106. [(Prim op es) ___]
  3107. [else (error "explicate_tail unhandled case" e)]))
  3108. (define (explicate_assign e x cont)
  3109. (match e
  3110. [(Var x) ___]
  3111. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3112. [(Let y rhs body) ___]
  3113. [(Prim op es) ___]
  3114. [else (error "explicate_assign unhandled case" e)]))
  3115. (define (explicate_control p)
  3116. (match p
  3117. [(Program info body) ___]))
  3118. \end{lstlisting}
  3119. \caption{Skeleton for the \code{explicate\_control} pass.}
  3120. \label{fig:explicate-control-Lvar}
  3121. \end{figure}
  3122. The organization of this pass depends on the notion of tail position
  3123. that we have alluded to earlier.
  3124. \begin{definition}
  3125. The following rules define when an expression is in \textbf{\emph{tail
  3126. position}}\index{subject}{tail position} for the language \LangVar{}.
  3127. \begin{enumerate}
  3128. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3129. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3130. \end{enumerate}
  3131. \end{definition}
  3132. We recommend implementing \code{explicate\_control} using two mutually
  3133. recursive functions, \code{explicate\_tail} and
  3134. \code{explicate\_assign}, as suggested in the skeleton code in
  3135. Figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3136. function should be applied to expressions in tail position whereas the
  3137. \code{explicate\_assign} should be applied to expressions that occur on
  3138. the right-hand-side of a \key{let}.
  3139. %
  3140. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3141. input and produces a \Tail{} in \LangCVar{} (see
  3142. Figure~\ref{fig:c0-syntax}).
  3143. %
  3144. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3145. the variable that it is to be assigned to, and a \Tail{} in
  3146. \LangCVar{} for the code that comes after the assignment. The
  3147. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3148. The \code{explicate\_assign} function is in accumulator-passing style:
  3149. the \code{cont} parameter is used for accumulating the output. This
  3150. accumulator-passing style plays an important role in how we generate
  3151. high-quality code for conditional expressions in Chapter~\ref{ch:Lif}.
  3152. \begin{exercise}\normalfont
  3153. %
  3154. Implement the \code{explicate\_control} function in
  3155. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3156. exercise the code in \code{explicate\_control}.
  3157. %
  3158. In the \code{run-tests.rkt} script, add the following entry to the
  3159. list of \code{passes} and then run the script to test your compiler.
  3160. \begin{lstlisting}
  3161. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3162. \end{lstlisting}
  3163. \end{exercise}
  3164. \fi}
  3165. \section{Select Instructions}
  3166. \label{sec:select-Lvar}
  3167. \index{subject}{instruction selection}
  3168. In the \code{select\_instructions} pass we begin the work of
  3169. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3170. language of this pass is a variant of x86 that still uses variables,
  3171. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3172. non-terminal of the \LangXInt{} abstract syntax
  3173. (Figure~\ref{fig:x86-int-ast}).
  3174. \racket{We recommend implementing the
  3175. \code{select\_instructions} with three auxiliary functions, one for
  3176. each of the non-terminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3177. $\Tail$.}
  3178. \python{We recommend implementing an auxiliary function
  3179. named \code{select\_stmt} for the $\Stmt$ non-terminal.}
  3180. \racket{
  3181. The cases for $\Atm$ are straightforward; variables stay
  3182. the same and integer constants change to immediates:
  3183. $\INT{n}$ changes to $\IMM{n}$.}
  3184. We consider the cases for the $\Stmt$ non-terminal, starting with
  3185. arithmetic operations. For example, consider the addition operation
  3186. below, on the left side. There is an \key{addq} instruction in x86,
  3187. but it performs an in-place update. So we could move $\Arg_1$
  3188. into the left-hand side \itm{var} and then add $\Arg_2$ to
  3189. \itm{var}, where $\Arg_1$ and $\Arg_2$ are the translations of
  3190. $\Atm_1$ and $\Atm_2$ respectively.
  3191. \begin{transformation}
  3192. {\if\edition\racketEd
  3193. \begin{lstlisting}
  3194. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3195. \end{lstlisting}
  3196. \fi}
  3197. {\if\edition\pythonEd
  3198. \begin{lstlisting}
  3199. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3200. \end{lstlisting}
  3201. \fi}
  3202. \compilesto
  3203. \begin{lstlisting}
  3204. movq |$\Arg_1$|, |$\itm{var}$|
  3205. addq |$\Arg_2$|, |$\itm{var}$|
  3206. \end{lstlisting}
  3207. \end{transformation}
  3208. There are also cases that require special care to avoid generating
  3209. needlessly complicated code. For example, if one of the arguments of
  3210. the addition is the same variable as the left-hand side of the
  3211. assignment, as shown below, then there is no need for the extra move
  3212. instruction. The assignment statement can be translated into a single
  3213. \key{addq} instruction as follows.
  3214. \begin{transformation}
  3215. {\if\edition\racketEd
  3216. \begin{lstlisting}
  3217. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3218. \end{lstlisting}
  3219. \fi}
  3220. {\if\edition\pythonEd
  3221. \begin{lstlisting}
  3222. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3223. \end{lstlisting}
  3224. \fi}
  3225. \compilesto
  3226. \begin{lstlisting}
  3227. addq |$\Arg_1$|, |$\itm{var}$|
  3228. \end{lstlisting}
  3229. \end{transformation}
  3230. The \READOP{} operation does not have a direct counterpart in x86
  3231. assembly, so we provide this functionality with the function
  3232. \code{read\_int} in the file \code{runtime.c}, written in
  3233. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  3234. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3235. system}, or simply the \emph{runtime} for short. When compiling your
  3236. generated x86 assembly code, you need to compile \code{runtime.c} to
  3237. \code{runtime.o} (an ``object file'', using \code{gcc} with option
  3238. \code{-c}) and link it into the executable. For our purposes of code
  3239. generation, all you need to do is translate an assignment of
  3240. \READOP{} into a call to the \code{read\_int} function followed by a
  3241. move from \code{rax} to the left-hand-side variable. (Recall that the
  3242. return value of a function goes into \code{rax}.)
  3243. \begin{transformation}
  3244. {\if\edition\racketEd
  3245. \begin{lstlisting}
  3246. |$\itm{var}$| = (read);
  3247. \end{lstlisting}
  3248. \fi}
  3249. {\if\edition\pythonEd
  3250. \begin{lstlisting}
  3251. |$\itm{var}$| = input_int();
  3252. \end{lstlisting}
  3253. \fi}
  3254. \compilesto
  3255. \begin{lstlisting}
  3256. callq read_int
  3257. movq %rax, |$\itm{var}$|
  3258. \end{lstlisting}
  3259. \end{transformation}
  3260. {\if\edition\pythonEd
  3261. %
  3262. Similarly, we translate the \code{print} operation, shown below, into
  3263. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3264. In x86, the first six arguments to functions are passed in registers,
  3265. with the first argument passed in register \code{rdi}. So we move the
  3266. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3267. \code{callq} instruction.
  3268. \begin{transformation}
  3269. \begin{lstlisting}
  3270. print(|$\Atm$|)
  3271. \end{lstlisting}
  3272. \compilesto
  3273. \begin{lstlisting}
  3274. movq |$\Arg$|, %rdi
  3275. callq print_int
  3276. \end{lstlisting}
  3277. \end{transformation}
  3278. %
  3279. \fi}
  3280. {\if\edition\racketEd
  3281. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  3282. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3283. assignment to the \key{rax} register followed by a jump to the
  3284. conclusion of the program (so the conclusion needs to be labeled).
  3285. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3286. recursively and then append the resulting instructions.
  3287. \fi}
  3288. {\if\edition\pythonEd
  3289. We recommend that you use the function \code{utils.label\_name()} to
  3290. transform a string into an label argument suitably suitable for, e.g.,
  3291. the target of the \code{callq} instruction. This practice makes your
  3292. compiler portable across Linus and Mac OS X, which requires an underscore prefixed to
  3293. all labels.
  3294. \fi}
  3295. \begin{exercise}
  3296. \normalfont
  3297. {\if\edition\racketEd
  3298. Implement the \code{select\_instructions} pass in
  3299. \code{compiler.rkt}. Create three new example programs that are
  3300. designed to exercise all of the interesting cases in this pass.
  3301. %
  3302. In the \code{run-tests.rkt} script, add the following entry to the
  3303. list of \code{passes} and then run the script to test your compiler.
  3304. \begin{lstlisting}
  3305. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3306. \end{lstlisting}
  3307. \fi}
  3308. {\if\edition\pythonEd
  3309. Implement the \key{select\_instructions} pass in
  3310. \code{compiler.py}. Create three new example programs that are
  3311. designed to exercise all of the interesting cases in this pass.
  3312. Run the \code{run-tests.py} script to to check
  3313. whether the output programs produce the same result as the input
  3314. programs.
  3315. \fi}
  3316. \end{exercise}
  3317. \section{Assign Homes}
  3318. \label{sec:assign-Lvar}
  3319. The \key{assign\_homes} pass compiles \LangXVar{} programs to
  3320. \LangXVar{} programs that no longer use program variables.
  3321. Thus, the \key{assign-homes} pass is responsible for placing all of
  3322. the program variables in registers or on the stack. For runtime
  3323. efficiency, it is better to place variables in registers, but as there
  3324. are only 16 registers, some programs must necessarily resort to
  3325. placing some variables on the stack. In this chapter we focus on the
  3326. mechanics of placing variables on the stack. We study an algorithm for
  3327. placing variables in registers in
  3328. Chapter~\ref{ch:register-allocation-Lvar}.
  3329. Consider again the following \LangVar{} program from
  3330. Section~\ref{sec:remove-complex-opera-Lvar}.
  3331. % var_test_20.rkt
  3332. {\if\edition\racketEd
  3333. \begin{lstlisting}
  3334. (let ([a 42])
  3335. (let ([b a])
  3336. b))
  3337. \end{lstlisting}
  3338. \fi}
  3339. {\if\edition\pythonEd
  3340. \begin{lstlisting}
  3341. a = 42
  3342. b = a
  3343. print(b)
  3344. \end{lstlisting}
  3345. \fi}
  3346. %
  3347. The output of \code{select\_instructions} is shown below, on the left,
  3348. and the output of \code{assign\_homes} is on the right. In this
  3349. example, we assign variable \code{a} to stack location
  3350. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3351. \begin{transformation}
  3352. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3353. movq $42, a
  3354. movq a, b
  3355. movq b, %rax
  3356. \end{lstlisting}
  3357. \compilesto
  3358. %stack-space: 16
  3359. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3360. movq $42, -8(%rbp)
  3361. movq -8(%rbp), -16(%rbp)
  3362. movq -16(%rbp), %rax
  3363. \end{lstlisting}
  3364. \end{transformation}
  3365. \racket{The \code{locals-types} entry in the $\itm{info}$ of the
  3366. \code{X86Program} node is an alist mapping all the variables in the
  3367. program to their types (for now just \code{Integer}). The
  3368. \code{assign\_homes} pass should replace all uses of those variables
  3369. with stack locations. As an aside, the \code{locals-types} entry is
  3370. computed by \code{type-check-Cvar} in the support code, which
  3371. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3372. which should be propagated to the \code{X86Program} node.}
  3373. %
  3374. \python{The \code{assign\_homes} pass should replace all uses of
  3375. variables with stack locations.}
  3376. %
  3377. In the process of assigning variables to stack locations, it is
  3378. convenient for you to compute and store the size of the frame (in
  3379. bytes) in%
  3380. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space}}
  3381. %
  3382. \python{the field \code{stack\_space} of the \key{X86Program} node},
  3383. which is needed later to generate the conclusion of the \code{main}
  3384. procedure. The x86-64 standard requires the frame size to be a
  3385. multiple of 16 bytes.\index{subject}{frame}
  3386. % TODO: store the number of variables instead? -Jeremy
  3387. \begin{exercise}\normalfont
  3388. Implement the \key{assign\_homes} pass in
  3389. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3390. auxiliary functions for each of the non-terminals in the \LangXVar{}
  3391. grammar. We recommend that the auxiliary functions take an extra
  3392. parameter that maps variable names to homes (stack locations for now).
  3393. %
  3394. {\if\edition\racketEd
  3395. In the \code{run-tests.rkt} script, add the following entry to the
  3396. list of \code{passes} and then run the script to test your compiler.
  3397. \begin{lstlisting}
  3398. (list "assign homes" assign-homes interp_x86-0)
  3399. \end{lstlisting}
  3400. \fi}
  3401. {\if\edition\pythonEd
  3402. Run the \code{run-tests.py} script to to check
  3403. whether the output programs produce the same result as the input
  3404. programs.
  3405. \fi}
  3406. \end{exercise}
  3407. \section{Patch Instructions}
  3408. \label{sec:patch-s0}
  3409. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3410. \LangXInt{} by making sure that each instruction adheres to the
  3411. restriction that at most one argument of an instruction may be a
  3412. memory reference.
  3413. We return to the following example.\\
  3414. \begin{minipage}{0.5\textwidth}
  3415. % var_test_20.rkt
  3416. {\if\edition\racketEd
  3417. \begin{lstlisting}
  3418. (let ([a 42])
  3419. (let ([b a])
  3420. b))
  3421. \end{lstlisting}
  3422. \fi}
  3423. {\if\edition\pythonEd
  3424. \begin{lstlisting}
  3425. a = 42
  3426. b = a
  3427. print(b)
  3428. \end{lstlisting}
  3429. \fi}
  3430. \end{minipage}\\
  3431. The \key{assign\_homes} pass produces the following translation. \\
  3432. \begin{minipage}{0.5\textwidth}
  3433. {\if\edition\racketEd
  3434. \begin{lstlisting}
  3435. movq $42, -8(%rbp)
  3436. movq -8(%rbp), -16(%rbp)
  3437. movq -16(%rbp), %rax
  3438. \end{lstlisting}
  3439. \fi}
  3440. {\if\edition\pythonEd
  3441. \begin{lstlisting}
  3442. movq 42, -8(%rbp)
  3443. movq -8(%rbp), -16(%rbp)
  3444. movq -16(%rbp), %rdi
  3445. callq print_int
  3446. \end{lstlisting}
  3447. \fi}
  3448. \end{minipage}\\
  3449. The second \key{movq} instruction is problematic because both
  3450. arguments are stack locations. We suggest fixing this problem by
  3451. moving from the source location to the register \key{rax} and then
  3452. from \key{rax} to the destination location, as follows.
  3453. \begin{lstlisting}
  3454. movq -8(%rbp), %rax
  3455. movq %rax, -16(%rbp)
  3456. \end{lstlisting}
  3457. \begin{exercise}
  3458. \normalfont Implement the \key{patch\_instructions} pass in
  3459. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3460. Create three new example programs that are
  3461. designed to exercise all of the interesting cases in this pass.
  3462. %
  3463. {\if\edition\racketEd
  3464. In the \code{run-tests.rkt} script, add the following entry to the
  3465. list of \code{passes} and then run the script to test your compiler.
  3466. \begin{lstlisting}
  3467. (list "patch instructions" patch_instructions interp_x86-0)
  3468. \end{lstlisting}
  3469. \fi}
  3470. {\if\edition\pythonEd
  3471. Run the \code{run-tests.py} script to to check
  3472. whether the output programs produce the same result as the input
  3473. programs.
  3474. \fi}
  3475. \end{exercise}
  3476. \section{Generate Prelude and Conclusion}
  3477. \label{sec:print-x86}
  3478. \index{subject}{prelude}\index{subject}{conclusion}
  3479. The last step of the compiler from \LangVar{} to x86 is to generate
  3480. the \code{main} function with a prelude and conclusion wrapped around
  3481. the rest of the program, as shown in Figure~\ref{fig:p1-x86} and
  3482. discussed in Section~\ref{sec:x86}.
  3483. When running on Mac OS X, your compiler should prefix an underscore to
  3484. all labels, e.g., changing \key{main} to \key{\_main}.
  3485. %
  3486. \racket{The Racket call \code{(system-type 'os)} is useful for
  3487. determining which operating system the compiler is running on. It
  3488. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3489. %
  3490. \python{The Python \code{platform} library includes a \code{system()}
  3491. function that returns \code{'Linux'}, \code{'Windows'}, or
  3492. \code{'Darwin'} (for Mac).}
  3493. \begin{exercise}\normalfont
  3494. %
  3495. Implement the \key{prelude\_and\_conclusion} pass in
  3496. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3497. %
  3498. {\if\edition\racketEd
  3499. In the \code{run-tests.rkt} script, add the following entry to the
  3500. list of \code{passes} and then run the script to test your compiler.
  3501. \begin{lstlisting}
  3502. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3503. \end{lstlisting}
  3504. %
  3505. Uncomment the call to the \key{compiler-tests} function
  3506. (Appendix~\ref{appendix:utilities}), which tests your complete
  3507. compiler by executing the generated x86 code. It translates the x86
  3508. AST that you produce into a string by invoking the \code{print-x86}
  3509. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3510. the provided \key{runtime.c} file to \key{runtime.o} using
  3511. \key{gcc}. Run the script to test your compiler.
  3512. %
  3513. \fi}
  3514. {\if\edition\pythonEd
  3515. %
  3516. Run the \code{run-tests.py} script to to check whether the output
  3517. programs produce the same result as the input programs. That script
  3518. translates the x86 AST that you produce into a string by invoking the
  3519. \code{repr} method that is implemented by the x86 AST classes in
  3520. \code{x86\_ast.py}.
  3521. %
  3522. \fi}
  3523. \end{exercise}
  3524. \section{Challenge: Partial Evaluator for \LangVar{}}
  3525. \label{sec:pe-Lvar}
  3526. \index{subject}{partial evaluation}
  3527. This section describes two optional challenge exercises that involve
  3528. adapting and improving the partial evaluator for \LangInt{} that was
  3529. introduced in Section~\ref{sec:partial-evaluation}.
  3530. \begin{exercise}\label{ex:pe-Lvar}
  3531. \normalfont
  3532. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  3533. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3534. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3535. %
  3536. \racket{\key{let} binding}\python{assignment}
  3537. %
  3538. to the \LangInt{} language, so you will need to add cases for them in
  3539. the \code{pe\_exp}
  3540. %
  3541. \racket{function}
  3542. %
  3543. \python{and \code{pe\_stmt} functions}.
  3544. %
  3545. Once complete, add the partial evaluation pass to the front of your
  3546. compiler and make sure that your compiler still passes all of the
  3547. tests.
  3548. \end{exercise}
  3549. \begin{exercise}
  3550. \normalfont
  3551. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3552. \code{pe\_add} auxiliary functions with functions that know more about
  3553. arithmetic. For example, your partial evaluator should translate
  3554. {\if\edition\racketEd
  3555. \[
  3556. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3557. \code{(+ 2 (read))}
  3558. \]
  3559. \fi}
  3560. {\if\edition\pythonEd
  3561. \[
  3562. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3563. \code{2 + input\_int()}
  3564. \]
  3565. \fi}
  3566. To accomplish this, the \code{pe\_exp} function should produce output
  3567. in the form of the $\itm{residual}$ non-terminal of the following
  3568. grammar. The idea is that when processing an addition expression, we
  3569. can always produce either 1) an integer constant, 2) an addition
  3570. expression with an integer constant on the left-hand side but not the
  3571. right-hand side, or 3) or an addition expression in which neither
  3572. subexpression is a constant.
  3573. {\if\edition\racketEd
  3574. \[
  3575. \begin{array}{lcl}
  3576. \itm{inert} &::=& \Var
  3577. \MID \LP\key{read}\RP
  3578. \MID \LP\key{-} ~\Var\RP
  3579. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3580. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3581. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3582. \itm{residual} &::=& \Int
  3583. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3584. \MID \itm{inert}
  3585. \end{array}
  3586. \]
  3587. \fi}
  3588. {\if\edition\pythonEd
  3589. \[
  3590. \begin{array}{lcl}
  3591. \itm{inert} &::=& \Var
  3592. \MID \key{input\_int}\LP\RP
  3593. \MID \key{-} \Var
  3594. \MID \key{-} \key{input\_int}\LP\RP
  3595. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3596. \itm{residual} &::=& \Int
  3597. \MID \Int ~ \key{+} ~ \itm{inert}
  3598. \MID \itm{inert}
  3599. \end{array}
  3600. \]
  3601. \fi}
  3602. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3603. inputs are $\itm{residual}$ expressions and they should return
  3604. $\itm{residual}$ expressions. Once the improvements are complete,
  3605. make sure that your compiler still passes all of the tests. After
  3606. all, fast code is useless if it produces incorrect results!
  3607. \end{exercise}
  3608. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3609. \chapter{Register Allocation}
  3610. \label{ch:register-allocation-Lvar}
  3611. \index{subject}{register allocation}
  3612. In Chapter~\ref{ch:Lvar} we learned how to store variables on the
  3613. stack. In this chapter we learn how to improve the performance of the
  3614. generated code by assigning some variables to registers. The CPU can
  3615. access a register in a single cycle, whereas accessing the stack can
  3616. take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
  3617. serves as a running example. The source program is on the left and the
  3618. output of instruction selection is on the right. The program is almost
  3619. in the x86 assembly language but it still uses variables.
  3620. \begin{figure}
  3621. \begin{minipage}{0.45\textwidth}
  3622. Example \LangVar{} program:
  3623. % var_test_28.rkt
  3624. {\if\edition\racketEd
  3625. \begin{lstlisting}
  3626. (let ([v 1])
  3627. (let ([w 42])
  3628. (let ([x (+ v 7)])
  3629. (let ([y x])
  3630. (let ([z (+ x w)])
  3631. (+ z (- y)))))))
  3632. \end{lstlisting}
  3633. \fi}
  3634. {\if\edition\pythonEd
  3635. \begin{lstlisting}
  3636. v = 1
  3637. w = 42
  3638. x = v + 7
  3639. y = x
  3640. z = x + w
  3641. print(z + (- y))
  3642. \end{lstlisting}
  3643. \fi}
  3644. \end{minipage}
  3645. \begin{minipage}{0.45\textwidth}
  3646. After instruction selection:
  3647. {\if\edition\racketEd
  3648. \begin{lstlisting}
  3649. locals-types:
  3650. x : Integer, y : Integer,
  3651. z : Integer, t : Integer,
  3652. v : Integer, w : Integer
  3653. start:
  3654. movq $1, v
  3655. movq $42, w
  3656. movq v, x
  3657. addq $7, x
  3658. movq x, y
  3659. movq x, z
  3660. addq w, z
  3661. movq y, t
  3662. negq t
  3663. movq z, %rax
  3664. addq t, %rax
  3665. jmp conclusion
  3666. \end{lstlisting}
  3667. \fi}
  3668. {\if\edition\pythonEd
  3669. \begin{lstlisting}
  3670. movq $1, v
  3671. movq $42, w
  3672. movq v, x
  3673. addq $7, x
  3674. movq x, y
  3675. movq x, z
  3676. addq w, z
  3677. movq y, tmp_0
  3678. negq tmp_0
  3679. movq z, tmp_1
  3680. addq tmp_0, tmp_1
  3681. movq tmp_1, %rdi
  3682. callq print_int
  3683. \end{lstlisting}
  3684. \fi}
  3685. \end{minipage}
  3686. \caption{A running example for register allocation.}
  3687. \label{fig:reg-eg}
  3688. \end{figure}
  3689. The goal of register allocation is to fit as many variables into
  3690. registers as possible. Some programs have more variables than
  3691. registers so we cannot always map each variable to a different
  3692. register. Fortunately, it is common for different variables to be
  3693. needed during different periods of time during program execution, and
  3694. in such cases several variables can be mapped to the same register.
  3695. Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
  3696. After the variable \code{x} is moved to \code{z} it is no longer
  3697. needed. Variable \code{z}, on the other hand, is used only after this
  3698. point, so \code{x} and \code{z} could share the same register. The
  3699. topic of Section~\ref{sec:liveness-analysis-Lvar} is how to compute
  3700. where a variable is needed. Once we have that information, we compute
  3701. which variables are needed at the same time, i.e., which ones
  3702. \emph{interfere} with each other, and represent this relation as an
  3703. undirected graph whose vertices are variables and edges indicate when
  3704. two variables interfere (Section~\ref{sec:build-interference}). We
  3705. then model register allocation as a graph coloring problem
  3706. (Section~\ref{sec:graph-coloring}).
  3707. If we run out of registers despite these efforts, we place the
  3708. remaining variables on the stack, similar to what we did in
  3709. Chapter~\ref{ch:Lvar}. It is common to use the verb \emph{spill} for
  3710. assigning a variable to a stack location. The decision to spill a
  3711. variable is handled as part of the graph coloring process.
  3712. We make the simplifying assumption that each variable is assigned to
  3713. one location (a register or stack address). A more sophisticated
  3714. approach is to assign a variable to one or more locations in different
  3715. regions of the program. For example, if a variable is used many times
  3716. in short sequence and then only used again after many other
  3717. instructions, it could be more efficient to assign the variable to a
  3718. register during the initial sequence and then move it to the stack for
  3719. the rest of its lifetime. We refer the interested reader to
  3720. \citet{Cooper:2011aa} Chapter 13 for more information about that
  3721. approach.
  3722. % discuss prioritizing variables based on how much they are used.
  3723. \section{Registers and Calling Conventions}
  3724. \label{sec:calling-conventions}
  3725. \index{subject}{calling conventions}
  3726. As we perform register allocation, we need to be aware of the
  3727. \emph{calling conventions} \index{subject}{calling conventions} that govern how
  3728. functions calls are performed in x86.
  3729. %
  3730. Even though \LangVar{} does not include programmer-defined functions,
  3731. our generated code includes a \code{main} function that is called by
  3732. the operating system and our generated code contains calls to the
  3733. \code{read\_int} function.
  3734. Function calls require coordination between two pieces of code that
  3735. may be written by different programmers or generated by different
  3736. compilers. Here we follow the System V calling conventions that are
  3737. used by the GNU C compiler on Linux and
  3738. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3739. %
  3740. The calling conventions include rules about how functions share the
  3741. use of registers. In particular, the caller is responsible for freeing
  3742. up some registers prior to the function call for use by the callee.
  3743. These are called the \emph{caller-saved registers}
  3744. \index{subject}{caller-saved registers}
  3745. and they are
  3746. \begin{lstlisting}
  3747. rax rcx rdx rsi rdi r8 r9 r10 r11
  3748. \end{lstlisting}
  3749. On the other hand, the callee is responsible for preserving the values
  3750. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  3751. which are
  3752. \begin{lstlisting}
  3753. rsp rbp rbx r12 r13 r14 r15
  3754. \end{lstlisting}
  3755. We can think about this caller/callee convention from two points of
  3756. view, the caller view and the callee view:
  3757. \begin{itemize}
  3758. \item The caller should assume that all the caller-saved registers get
  3759. overwritten with arbitrary values by the callee. On the other hand,
  3760. the caller can safely assume that all the callee-saved registers
  3761. contain the same values after the call that they did before the
  3762. call.
  3763. \item The callee can freely use any of the caller-saved registers.
  3764. However, if the callee wants to use a callee-saved register, the
  3765. callee must arrange to put the original value back in the register
  3766. prior to returning to the caller. This can be accomplished by saving
  3767. the value to the stack in the prelude of the function and restoring
  3768. the value in the conclusion of the function.
  3769. \end{itemize}
  3770. In x86, registers are also used for passing arguments to a function
  3771. and for the return value. In particular, the first six arguments to a
  3772. function are passed in the following six registers, in this order.
  3773. \begin{lstlisting}
  3774. rdi rsi rdx rcx r8 r9
  3775. \end{lstlisting}
  3776. If there are more than six arguments, then the convention is to use
  3777. space on the frame of the caller for the rest of the
  3778. arguments. However, in Chapter~\ref{ch:Lfun} we arrange never to
  3779. need more than six arguments.
  3780. %
  3781. \racket{For now, the only function we care about is \code{read\_int}
  3782. and it takes zero arguments.}
  3783. %
  3784. \python{For now, the only functions we care about are \code{read\_int}
  3785. and \code{print\_int}, which take zero and one argument, respectively.}
  3786. %
  3787. The register \code{rax} is used for the return value of a function.
  3788. The next question is how these calling conventions impact register
  3789. allocation. Consider the \LangVar{} program in
  3790. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3791. example from the caller point of view and then from the callee point
  3792. of view.
  3793. The program makes two calls to \READOP{}. Also, the variable \code{x}
  3794. is in use during the second call to \READOP{}, so we need to make sure
  3795. that the value in \code{x} does not get accidentally wiped out by the
  3796. call to \READOP{}. One obvious approach is to save all the values in
  3797. caller-saved registers to the stack prior to each function call, and
  3798. restore them after each call. That way, if the register allocator
  3799. chooses to assign \code{x} to a caller-saved register, its value will
  3800. be preserved across the call to \READOP{}. However, saving and
  3801. restoring to the stack is relatively slow. If \code{x} is not used
  3802. many times, it may be better to assign \code{x} to a stack location in
  3803. the first place. Or better yet, if we can arrange for \code{x} to be
  3804. placed in a callee-saved register, then it won't need to be saved and
  3805. restored during function calls.
  3806. The approach that we recommend for variables that are in use during a
  3807. function call is to either assign them to callee-saved registers or to
  3808. spill them to the stack. On the other hand, for variables that are not
  3809. in use during a function call, we try the following alternatives in
  3810. order 1) look for an available caller-saved register (to leave room
  3811. for other variables in the callee-saved register), 2) look for a
  3812. callee-saved register, and 3) spill the variable to the stack.
  3813. It is straightforward to implement this approach in a graph coloring
  3814. register allocator. First, we know which variables are in use during
  3815. every function call because we compute that information for every
  3816. instruction (Section~\ref{sec:liveness-analysis-Lvar}). Second, when
  3817. we build the interference graph
  3818. (Section~\ref{sec:build-interference}), we can place an edge between
  3819. each of these call-live variables and the caller-saved registers in
  3820. the interference graph. This will prevent the graph coloring algorithm
  3821. from assigning them to caller-saved registers.
  3822. Returning to the example in
  3823. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3824. generated x86 code on the right-hand side. Notice that variable
  3825. \code{x} is assigned to \code{rbx}, a callee-saved register. Thus, it
  3826. is already in a safe place during the second call to
  3827. \code{read\_int}. Next, notice that variable \code{y} is assigned to
  3828. \code{rcx}, a caller-saved register, because \code{y} is not in the
  3829. live-after set of a \code{callq} instruction.
  3830. Next we analyze the example from the callee point of view, focusing on
  3831. the prelude and conclusion of the \code{main} function. As usual the
  3832. prelude begins with saving the \code{rbp} register to the stack and
  3833. setting the \code{rbp} to the current stack pointer. We now know why
  3834. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3835. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3836. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3837. (\code{x}). The other callee-saved registers are not saved in the
  3838. prelude because they are not used. The prelude subtracts 8 bytes from
  3839. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  3840. conclusion, we see that \code{rbx} is restored from the stack with a
  3841. \code{popq} instruction.
  3842. \index{subject}{prelude}\index{subject}{conclusion}
  3843. \begin{figure}[tp]
  3844. \begin{minipage}{0.45\textwidth}
  3845. Example \LangVar{} program:
  3846. %var_test_14.rkt
  3847. {\if\edition\racketEd
  3848. \begin{lstlisting}
  3849. (let ([x (read)])
  3850. (let ([y (read)])
  3851. (+ (+ x y) 42)))
  3852. \end{lstlisting}
  3853. \fi}
  3854. {\if\edition\pythonEd
  3855. \begin{lstlisting}
  3856. x = input_int()
  3857. y = input_int()
  3858. print((x + y) + 42)
  3859. \end{lstlisting}
  3860. \fi}
  3861. \end{minipage}
  3862. \begin{minipage}{0.45\textwidth}
  3863. Generated x86 assembly:
  3864. {\if\edition\racketEd
  3865. \begin{lstlisting}
  3866. start:
  3867. callq read_int
  3868. movq %rax, %rbx
  3869. callq read_int
  3870. movq %rax, %rcx
  3871. addq %rcx, %rbx
  3872. movq %rbx, %rax
  3873. addq $42, %rax
  3874. jmp _conclusion
  3875. .globl main
  3876. main:
  3877. pushq %rbp
  3878. movq %rsp, %rbp
  3879. pushq %rbx
  3880. subq $8, %rsp
  3881. jmp start
  3882. conclusion:
  3883. addq $8, %rsp
  3884. popq %rbx
  3885. popq %rbp
  3886. retq
  3887. \end{lstlisting}
  3888. \fi}
  3889. {\if\edition\pythonEd
  3890. \begin{lstlisting}
  3891. .globl main
  3892. main:
  3893. pushq %rbp
  3894. movq %rsp, %rbp
  3895. pushq %rbx
  3896. subq $8, %rsp
  3897. callq read_int
  3898. movq %rax, %rbx
  3899. callq read_int
  3900. movq %rax, %rcx
  3901. movq %rbx, %rdx
  3902. addq %rcx, %rdx
  3903. movq %rdx, %rcx
  3904. addq $42, %rcx
  3905. movq %rcx, %rdi
  3906. callq print_int
  3907. addq $8, %rsp
  3908. popq %rbx
  3909. popq %rbp
  3910. retq
  3911. \end{lstlisting}
  3912. \fi}
  3913. \end{minipage}
  3914. \caption{An example with function calls.}
  3915. \label{fig:example-calling-conventions}
  3916. \end{figure}
  3917. %\clearpage
  3918. \section{Liveness Analysis}
  3919. \label{sec:liveness-analysis-Lvar}
  3920. \index{subject}{liveness analysis}
  3921. The \code{uncover\_live} \racket{pass}\python{function}
  3922. performs \emph{liveness analysis}, that
  3923. is, it discovers which variables are in-use in different regions of a
  3924. program.
  3925. %
  3926. A variable or register is \emph{live} at a program point if its
  3927. current value is used at some later point in the program. We refer to
  3928. variables, stack locations, and registers collectively as
  3929. \emph{locations}.
  3930. %
  3931. Consider the following code fragment in which there are two writes to
  3932. \code{b}. Are \code{a} and \code{b} both live at the same time?
  3933. \begin{center}
  3934. \begin{minipage}{0.96\textwidth}
  3935. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3936. movq $5, a
  3937. movq $30, b
  3938. movq a, c
  3939. movq $10, b
  3940. addq b, c
  3941. \end{lstlisting}
  3942. \end{minipage}
  3943. \end{center}
  3944. The answer is no because \code{a} is live from line 1 to 3 and
  3945. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  3946. line 2 is never used because it is overwritten (line 4) before the
  3947. next read (line 5).
  3948. The live locations can be computed by traversing the instruction
  3949. sequence back to front (i.e., backwards in execution order). Let
  3950. $I_1,\ldots, I_n$ be the instruction sequence. We write
  3951. $L_{\mathsf{after}}(k)$ for the set of live locations after
  3952. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  3953. locations before instruction $I_k$.
  3954. \racket{We recommend representing these
  3955. sets with the Racket \code{set} data structure described in
  3956. Figure~\ref{fig:set}.}
  3957. \python{We recommend representing these sets with the Python
  3958. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  3959. data structure.}
  3960. {\if\edition\racketEd
  3961. \begin{figure}[tp]
  3962. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  3963. \small
  3964. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  3965. A \emph{set} is an unordered collection of elements without duplicates.
  3966. Here are some of the operations defined on sets.
  3967. \index{subject}{set}
  3968. \begin{description}
  3969. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  3970. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  3971. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  3972. difference of the two sets.
  3973. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  3974. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  3975. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  3976. \end{description}
  3977. \end{tcolorbox}
  3978. %\end{wrapfigure}
  3979. \caption{The \code{set} data structure.}
  3980. \label{fig:set}
  3981. \end{figure}
  3982. \fi}
  3983. The live locations after an instruction are always the same as the
  3984. live locations before the next instruction.
  3985. \index{subject}{live-after} \index{subject}{live-before}
  3986. \begin{equation} \label{eq:live-after-before-next}
  3987. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  3988. \end{equation}
  3989. To start things off, there are no live locations after the last
  3990. instruction, so
  3991. \begin{equation}\label{eq:live-last-empty}
  3992. L_{\mathsf{after}}(n) = \emptyset
  3993. \end{equation}
  3994. We then apply the following rule repeatedly, traversing the
  3995. instruction sequence back to front.
  3996. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  3997. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  3998. \end{equation}
  3999. where $W(k)$ are the locations written to by instruction $I_k$ and
  4000. $R(k)$ are the locations read by instruction $I_k$.
  4001. {\if\edition\racketEd
  4002. There is a special case for \code{jmp} instructions. The locations
  4003. that are live before a \code{jmp} should be the locations in
  4004. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  4005. maintaining an alist named \code{label->live} that maps each label to
  4006. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  4007. now the only \code{jmp} in a \LangXVar{} program is the one at the
  4008. end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
  4009. The conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should
  4010. map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  4011. \fi}
  4012. Let us walk through the above example, applying these formulas
  4013. starting with the instruction on line 5. We collect the answers in
  4014. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  4015. \code{addq b, c} instruction is $\emptyset$ because it is the last
  4016. instruction (formula~\ref{eq:live-last-empty}). The
  4017. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  4018. because it reads from variables \code{b} and \code{c}
  4019. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  4020. \[
  4021. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  4022. \]
  4023. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  4024. the live-before set from line 5 to be the live-after set for this
  4025. instruction (formula~\ref{eq:live-after-before-next}).
  4026. \[
  4027. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  4028. \]
  4029. This move instruction writes to \code{b} and does not read from any
  4030. variables, so we have the following live-before set
  4031. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  4032. \[
  4033. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  4034. \]
  4035. The live-before for instruction \code{movq a, c}
  4036. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  4037. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  4038. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  4039. variable that is not live and does not read from a variable.
  4040. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  4041. because it writes to variable \code{a}.
  4042. \begin{figure}[tbp]
  4043. \begin{minipage}{0.45\textwidth}
  4044. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4045. movq $5, a
  4046. movq $30, b
  4047. movq a, c
  4048. movq $10, b
  4049. addq b, c
  4050. \end{lstlisting}
  4051. \end{minipage}
  4052. \vrule\hspace{10pt}
  4053. \begin{minipage}{0.45\textwidth}
  4054. \begin{align*}
  4055. L_{\mathsf{before}}(1)= \emptyset,
  4056. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  4057. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  4058. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  4059. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  4060. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  4061. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  4062. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  4063. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  4064. L_{\mathsf{after}}(5)= \emptyset
  4065. \end{align*}
  4066. \end{minipage}
  4067. \caption{Example output of liveness analysis on a short example.}
  4068. \label{fig:liveness-example-0}
  4069. \end{figure}
  4070. \begin{exercise}\normalfont
  4071. Perform liveness analysis on the running example in
  4072. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  4073. sets for each instruction. Compare your answers to the solution
  4074. shown in Figure~\ref{fig:live-eg}.
  4075. \end{exercise}
  4076. \begin{figure}[tp]
  4077. \hspace{20pt}
  4078. \begin{minipage}{0.45\textwidth}
  4079. {\if\edition\racketEd
  4080. \begin{lstlisting}
  4081. |$\{\ttm{rsp}\}$|
  4082. movq $1, v
  4083. |$\{\ttm{v},\ttm{rsp}\}$|
  4084. movq $42, w
  4085. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  4086. movq v, x
  4087. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4088. addq $7, x
  4089. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4090. movq x, y
  4091. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  4092. movq x, z
  4093. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4094. addq w, z
  4095. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4096. movq y, t
  4097. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4098. negq t
  4099. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4100. movq z, %rax
  4101. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  4102. addq t, %rax
  4103. |$\{\ttm{rax},\ttm{rsp}\}$|
  4104. jmp conclusion
  4105. \end{lstlisting}
  4106. \fi}
  4107. {\if\edition\pythonEd
  4108. \begin{lstlisting}
  4109. movq $1, v
  4110. |$\{\ttm{v}\}$|
  4111. movq $42, w
  4112. |$\{\ttm{w}, \ttm{v}\}$|
  4113. movq v, x
  4114. |$\{\ttm{w}, \ttm{x}\}$|
  4115. addq $7, x
  4116. |$\{\ttm{w}, \ttm{x}\}$|
  4117. movq x, y
  4118. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  4119. movq x, z
  4120. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  4121. addq w, z
  4122. |$\{\ttm{y}, \ttm{z}\}$|
  4123. movq y, tmp_0
  4124. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4125. negq tmp_0
  4126. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4127. movq z, tmp_1
  4128. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  4129. addq tmp_0, tmp_1
  4130. |$\{\ttm{tmp\_1}\}$|
  4131. movq tmp_1, %rdi
  4132. |$\{\ttm{rdi}\}$|
  4133. callq print_int
  4134. |$\{\}$|
  4135. \end{lstlisting}
  4136. \fi}
  4137. \end{minipage}
  4138. \caption{The running example annotated with live-after sets.}
  4139. \label{fig:live-eg}
  4140. \end{figure}
  4141. \begin{exercise}\normalfont
  4142. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  4143. %
  4144. \racket{Store the sequence of live-after sets in the $\itm{info}$
  4145. field of the \code{Block} structure.}
  4146. %
  4147. \python{Return a dictionary that maps each instruction to its
  4148. live-after set.}
  4149. %
  4150. \racket{We recommend creating an auxiliary function that takes a list
  4151. of instructions and an initial live-after set (typically empty) and
  4152. returns the list of live-after sets.}
  4153. %
  4154. We recommend creating auxiliary functions to 1) compute the set
  4155. of locations that appear in an \Arg{}, 2) compute the locations read
  4156. by an instruction (the $R$ function), and 3) the locations written by
  4157. an instruction (the $W$ function). The \code{callq} instruction should
  4158. include all of the caller-saved registers in its write-set $W$ because
  4159. the calling convention says that those registers may be written to
  4160. during the function call. Likewise, the \code{callq} instruction
  4161. should include the appropriate argument-passing registers in its
  4162. read-set $R$, depending on the arity of the function being
  4163. called. (This is why the abstract syntax for \code{callq} includes the
  4164. arity.)
  4165. \end{exercise}
  4166. %\clearpage
  4167. \section{Build the Interference Graph}
  4168. \label{sec:build-interference}
  4169. {\if\edition\racketEd
  4170. \begin{figure}[tp]
  4171. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  4172. \small
  4173. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  4174. A \emph{graph} is a collection of vertices and edges where each
  4175. edge connects two vertices. A graph is \emph{directed} if each
  4176. edge points from a source to a target. Otherwise the graph is
  4177. \emph{undirected}.
  4178. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  4179. \begin{description}
  4180. %% We currently don't use directed graphs. We instead use
  4181. %% directed multi-graphs. -Jeremy
  4182. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  4183. directed graph from a list of edges. Each edge is a list
  4184. containing the source and target vertex.
  4185. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  4186. undirected graph from a list of edges. Each edge is represented by
  4187. a list containing two vertices.
  4188. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  4189. inserts a vertex into the graph.
  4190. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  4191. inserts an edge between the two vertices.
  4192. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  4193. returns a sequence of vertices adjacent to the vertex.
  4194. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  4195. returns a sequence of all vertices in the graph.
  4196. \end{description}
  4197. \end{tcolorbox}
  4198. %\end{wrapfigure}
  4199. \caption{The Racket \code{graph} package.}
  4200. \label{fig:graph}
  4201. \end{figure}
  4202. \fi}
  4203. Based on the liveness analysis, we know where each location is live.
  4204. However, during register allocation, we need to answer questions of
  4205. the specific form: are locations $u$ and $v$ live at the same time?
  4206. (And therefore cannot be assigned to the same register.) To make this
  4207. question more efficient to answer, we create an explicit data
  4208. structure, an \emph{interference graph}\index{subject}{interference
  4209. graph}. An interference graph is an undirected graph that has an
  4210. edge between two locations if they are live at the same time, that is,
  4211. if they interfere with each other.
  4212. %
  4213. \racket{We recommend using the Racket \code{graph} package
  4214. (Figure~\ref{fig:graph}) to represent the interference graph.}
  4215. %
  4216. \python{We provide implementations of directed and undirected graph
  4217. data structures in the file \code{graph.py} of the support code.}
  4218. A straightforward way to compute the interference graph is to look at
  4219. the set of live locations between each instruction and add an edge to
  4220. the graph for every pair of variables in the same set. This approach
  4221. is less than ideal for two reasons. First, it can be expensive because
  4222. it takes $O(n^2)$ time to consider at every pair in a set of $n$ live
  4223. locations. Second, in the special case where two locations hold the
  4224. same value (because one was assigned to the other), they can be live
  4225. at the same time without interfering with each other.
  4226. A better way to compute the interference graph is to focus on
  4227. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  4228. must not overwrite something in a live location. So for each
  4229. instruction, we create an edge between the locations being written to
  4230. and the live locations. (Except that one should not create self
  4231. edges.) Note that for the \key{callq} instruction, we consider all of
  4232. the caller-saved registers as being written to, so an edge is added
  4233. between every live variable and every caller-saved register. Also, for
  4234. \key{movq} there is the above-mentioned special case to deal with. If
  4235. a live variable $v$ is the same as the source of the \key{movq}, then
  4236. there is no need to add an edge between $v$ and the destination,
  4237. because they both hold the same value.
  4238. %
  4239. So we have the following two rules.
  4240. \begin{enumerate}
  4241. \item If instruction $I_k$ is a move instruction of the form
  4242. \key{movq} $s$\key{,} $d$, then for every $v \in
  4243. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  4244. $(d,v)$.
  4245. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  4246. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  4247. $(d,v)$.
  4248. \end{enumerate}
  4249. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  4250. the above rules to each instruction. We highlight a few of the
  4251. instructions. \racket{The first instruction is \lstinline{movq $1, v}
  4252. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  4253. so \code{v} interferes with \code{rsp}.}
  4254. %
  4255. \python{The first instruction is \lstinline{movq $1, v} and the
  4256. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  4257. no interference because $\ttm{v}$ is the destination of the move.}
  4258. %
  4259. \racket{The fourth instruction is \lstinline{addq $7, x} and the
  4260. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  4261. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  4262. %
  4263. \python{The fourth instruction is \lstinline{addq $7, x} and the
  4264. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  4265. $\ttm{x}$ interferes with \ttm{w}.}
  4266. %
  4267. \racket{The next instruction is \lstinline{movq x, y} and the
  4268. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  4269. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  4270. \ttm{x} because \ttm{x} is the source of the move and therefore
  4271. \ttm{x} and \ttm{y} hold the same value.}
  4272. %
  4273. \python{The next instruction is \lstinline{movq x, y} and the
  4274. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  4275. applies, so \ttm{y} interferes with \ttm{w} but not
  4276. \ttm{x} because \ttm{x} is the source of the move and therefore
  4277. \ttm{x} and \ttm{y} hold the same value.}
  4278. %
  4279. Figure~\ref{fig:interference-results} lists the interference results
  4280. for all of the instructions and the resulting interference graph is
  4281. shown in Figure~\ref{fig:interfere}.
  4282. \begin{figure}[tbp]
  4283. \begin{quote}
  4284. {\if\edition\racketEd
  4285. \begin{tabular}{ll}
  4286. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  4287. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  4288. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4289. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4290. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  4291. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  4292. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  4293. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4294. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4295. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  4296. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  4297. \lstinline!jmp conclusion!& no interference.
  4298. \end{tabular}
  4299. \fi}
  4300. {\if\edition\pythonEd
  4301. \begin{tabular}{ll}
  4302. \lstinline!movq $1, v!& no interference\\
  4303. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  4304. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  4305. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  4306. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  4307. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  4308. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  4309. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  4310. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  4311. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  4312. \lstinline!addq tmp_0, tmp_1! & no interference\\
  4313. \lstinline!movq tmp_1, %rdi! & no interference \\
  4314. \lstinline!callq print_int!& no interference.
  4315. \end{tabular}
  4316. \fi}
  4317. \end{quote}
  4318. \caption{Interference results for the running example.}
  4319. \label{fig:interference-results}
  4320. \end{figure}
  4321. \begin{figure}[tbp]
  4322. \large
  4323. {\if\edition\racketEd
  4324. \[
  4325. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4326. \node (rax) at (0,0) {$\ttm{rax}$};
  4327. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4328. \node (t1) at (0,2) {$\ttm{t}$};
  4329. \node (z) at (3,2) {$\ttm{z}$};
  4330. \node (x) at (6,2) {$\ttm{x}$};
  4331. \node (y) at (3,0) {$\ttm{y}$};
  4332. \node (w) at (6,0) {$\ttm{w}$};
  4333. \node (v) at (9,0) {$\ttm{v}$};
  4334. \draw (t1) to (rax);
  4335. \draw (t1) to (z);
  4336. \draw (z) to (y);
  4337. \draw (z) to (w);
  4338. \draw (x) to (w);
  4339. \draw (y) to (w);
  4340. \draw (v) to (w);
  4341. \draw (v) to (rsp);
  4342. \draw (w) to (rsp);
  4343. \draw (x) to (rsp);
  4344. \draw (y) to (rsp);
  4345. \path[-.,bend left=15] (z) edge node {} (rsp);
  4346. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4347. \draw (rax) to (rsp);
  4348. \end{tikzpicture}
  4349. \]
  4350. \fi}
  4351. {\if\edition\pythonEd
  4352. \[
  4353. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4354. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  4355. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  4356. \node (z) at (3,2) {$\ttm{z}$};
  4357. \node (x) at (6,2) {$\ttm{x}$};
  4358. \node (y) at (3,0) {$\ttm{y}$};
  4359. \node (w) at (6,0) {$\ttm{w}$};
  4360. \node (v) at (9,0) {$\ttm{v}$};
  4361. \draw (t0) to (t1);
  4362. \draw (t0) to (z);
  4363. \draw (z) to (y);
  4364. \draw (z) to (w);
  4365. \draw (x) to (w);
  4366. \draw (y) to (w);
  4367. \draw (v) to (w);
  4368. \end{tikzpicture}
  4369. \]
  4370. \fi}
  4371. \caption{The interference graph of the example program.}
  4372. \label{fig:interfere}
  4373. \end{figure}
  4374. %% Our next concern is to choose a data structure for representing the
  4375. %% interference graph. There are many choices for how to represent a
  4376. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  4377. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  4378. %% data structure is to study the algorithm that uses the data structure,
  4379. %% determine what operations need to be performed, and then choose the
  4380. %% data structure that provide the most efficient implementations of
  4381. %% those operations. Often times the choice of data structure can have an
  4382. %% effect on the time complexity of the algorithm, as it does here. If
  4383. %% you skim the next section, you will see that the register allocation
  4384. %% algorithm needs to ask the graph for all of its vertices and, given a
  4385. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  4386. %% correct choice of graph representation is that of an adjacency
  4387. %% list. There are helper functions in \code{utilities.rkt} for
  4388. %% representing graphs using the adjacency list representation:
  4389. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  4390. %% (Appendix~\ref{appendix:utilities}).
  4391. %% %
  4392. %% \margincomment{\footnotesize To do: change to use the
  4393. %% Racket graph library. \\ --Jeremy}
  4394. %% %
  4395. %% In particular, those functions use a hash table to map each vertex to
  4396. %% the set of adjacent vertices, and the sets are represented using
  4397. %% Racket's \key{set}, which is also a hash table.
  4398. \begin{exercise}\normalfont
  4399. \racket{Implement the compiler pass named \code{build\_interference} according
  4400. to the algorithm suggested above. We recommend using the Racket
  4401. \code{graph} package to create and inspect the interference graph.
  4402. The output graph of this pass should be stored in the $\itm{info}$ field of
  4403. the program, under the key \code{conflicts}.}
  4404. %
  4405. \python{Implement a function named \code{build\_interference}
  4406. according to the algorithm suggested above that
  4407. returns the interference graph.}
  4408. \end{exercise}
  4409. \section{Graph Coloring via Sudoku}
  4410. \label{sec:graph-coloring}
  4411. \index{subject}{graph coloring}
  4412. \index{subject}{Sudoku}
  4413. \index{subject}{color}
  4414. We come to the main event, mapping variables to registers and stack
  4415. locations. Variables that interfere with each other must be mapped to
  4416. different locations. In terms of the interference graph, this means
  4417. that adjacent vertices must be mapped to different locations. If we
  4418. think of locations as colors, the register allocation problem becomes
  4419. the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  4420. The reader may be more familiar with the graph coloring problem than he
  4421. or she realizes; the popular game of Sudoku is an instance of the
  4422. graph coloring problem. The following describes how to build a graph
  4423. out of an initial Sudoku board.
  4424. \begin{itemize}
  4425. \item There is one vertex in the graph for each Sudoku square.
  4426. \item There is an edge between two vertices if the corresponding squares
  4427. are in the same row, in the same column, or if the squares are in
  4428. the same $3\times 3$ region.
  4429. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  4430. \item Based on the initial assignment of numbers to squares in the
  4431. Sudoku board, assign the corresponding colors to the corresponding
  4432. vertices in the graph.
  4433. \end{itemize}
  4434. If you can color the remaining vertices in the graph with the nine
  4435. colors, then you have also solved the corresponding game of Sudoku.
  4436. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  4437. the corresponding graph with colored vertices. We map the Sudoku
  4438. number 1 to black, 2 to white, and 3 to gray. We only show edges for a
  4439. sampling of the vertices (the colored ones) because showing edges for
  4440. all of the vertices would make the graph unreadable.
  4441. \begin{figure}[tbp]
  4442. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  4443. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  4444. \caption{A Sudoku game board and the corresponding colored graph.}
  4445. \label{fig:sudoku-graph}
  4446. \end{figure}
  4447. Some techniques for playing Sudoku correspond to heuristics used in
  4448. graph coloring algorithms. For example, one of the basic techniques
  4449. for Sudoku is called Pencil Marks. The idea is to use a process of
  4450. elimination to determine what numbers are no longer available for a
  4451. square and write down those numbers in the square (writing very
  4452. small). For example, if the number $1$ is assigned to a square, then
  4453. write the pencil mark $1$ in all the squares in the same row, column,
  4454. and region to indicate that $1$ is no longer an option for those other
  4455. squares.
  4456. %
  4457. The Pencil Marks technique corresponds to the notion of
  4458. \emph{saturation}\index{subject}{saturation} due to \cite{Brelaz:1979eu}. The
  4459. saturation of a vertex, in Sudoku terms, is the set of numbers that
  4460. are no longer available. In graph terminology, we have the following
  4461. definition:
  4462. \begin{equation*}
  4463. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  4464. \text{ and } \mathrm{color}(v) = c \}
  4465. \end{equation*}
  4466. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  4467. edge with $u$.
  4468. The Pencil Marks technique leads to a simple strategy for filling in
  4469. numbers: if there is a square with only one possible number left, then
  4470. choose that number! But what if there are no squares with only one
  4471. possibility left? One brute-force approach is to try them all: choose
  4472. the first one and if that ultimately leads to a solution, great. If
  4473. not, backtrack and choose the next possibility. One good thing about
  4474. Pencil Marks is that it reduces the degree of branching in the search
  4475. tree. Nevertheless, backtracking can be terribly time consuming. One
  4476. way to reduce the amount of backtracking is to use the
  4477. most-constrained-first heuristic (aka. minimum remaining
  4478. values)~\citep{Russell2003}. That is, when choosing a square, always
  4479. choose one with the fewest possibilities left (the vertex with the
  4480. highest saturation). The idea is that choosing highly constrained
  4481. squares earlier rather than later is better because later on there may
  4482. not be any possibilities left in the highly saturated squares.
  4483. However, register allocation is easier than Sudoku because the
  4484. register allocator can fall back to assigning variables to stack
  4485. locations when the registers run out. Thus, it makes sense to replace
  4486. backtracking with greedy search: make the best choice at the time and
  4487. keep going. We still wish to minimize the number of colors needed, so
  4488. we use the most-constrained-first heuristic in the greedy search.
  4489. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  4490. algorithm for register allocation based on saturation and the
  4491. most-constrained-first heuristic. It is roughly equivalent to the
  4492. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}.
  4493. %,Gebremedhin:1999fk,Omari:2006uq
  4494. Just as in Sudoku, the algorithm represents colors with integers. The
  4495. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  4496. for register allocation. The integers $k$ and larger correspond to
  4497. stack locations. The registers that are not used for register
  4498. allocation, such as \code{rax}, are assigned to negative integers. In
  4499. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  4500. %% One might wonder why we include registers at all in the liveness
  4501. %% analysis and interference graph. For example, we never allocate a
  4502. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  4503. %% leave them out. As we see in Chapter~\ref{ch:Lvec}, when we begin
  4504. %% to use register for passing arguments to functions, it will be
  4505. %% necessary for those registers to appear in the interference graph
  4506. %% because those registers will also be assigned to variables, and we
  4507. %% don't want those two uses to encroach on each other. Regarding
  4508. %% registers such as \code{rax} and \code{rsp} that are not used for
  4509. %% variables, we could omit them from the interference graph but that
  4510. %% would require adding special cases to our algorithm, which would
  4511. %% complicate the logic for little gain.
  4512. \begin{figure}[btp]
  4513. \centering
  4514. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  4515. Algorithm: DSATUR
  4516. Input: a graph |$G$|
  4517. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  4518. |$W \gets \mathrm{vertices}(G)$|
  4519. while |$W \neq \emptyset$| do
  4520. pick a vertex |$u$| from |$W$| with the highest saturation,
  4521. breaking ties randomly
  4522. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  4523. |$\mathrm{color}[u] \gets c$|
  4524. |$W \gets W - \{u\}$|
  4525. \end{lstlisting}
  4526. \caption{The saturation-based greedy graph coloring algorithm.}
  4527. \label{fig:satur-algo}
  4528. \end{figure}
  4529. {\if\edition\racketEd
  4530. With the DSATUR algorithm in hand, let us return to the running
  4531. example and consider how to color the interference graph in
  4532. Figure~\ref{fig:interfere}.
  4533. %
  4534. We start by assigning the register nodes to their own color. For
  4535. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  4536. assigned $-2$. The variables are not yet colored, so they are
  4537. annotated with a dash. We then update the saturation for vertices that
  4538. are adjacent to a register, obtaining the following annotated
  4539. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  4540. it interferes with both \code{rax} and \code{rsp}.
  4541. \[
  4542. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4543. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  4544. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  4545. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  4546. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  4547. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4548. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4549. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4550. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4551. \draw (t1) to (rax);
  4552. \draw (t1) to (z);
  4553. \draw (z) to (y);
  4554. \draw (z) to (w);
  4555. \draw (x) to (w);
  4556. \draw (y) to (w);
  4557. \draw (v) to (w);
  4558. \draw (v) to (rsp);
  4559. \draw (w) to (rsp);
  4560. \draw (x) to (rsp);
  4561. \draw (y) to (rsp);
  4562. \path[-.,bend left=15] (z) edge node {} (rsp);
  4563. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4564. \draw (rax) to (rsp);
  4565. \end{tikzpicture}
  4566. \]
  4567. The algorithm says to select a maximally saturated vertex. So we pick
  4568. $\ttm{t}$ and color it with the first available integer, which is
  4569. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4570. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4571. \[
  4572. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4573. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4574. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4575. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4576. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4577. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4578. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4579. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4580. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4581. \draw (t1) to (rax);
  4582. \draw (t1) to (z);
  4583. \draw (z) to (y);
  4584. \draw (z) to (w);
  4585. \draw (x) to (w);
  4586. \draw (y) to (w);
  4587. \draw (v) to (w);
  4588. \draw (v) to (rsp);
  4589. \draw (w) to (rsp);
  4590. \draw (x) to (rsp);
  4591. \draw (y) to (rsp);
  4592. \path[-.,bend left=15] (z) edge node {} (rsp);
  4593. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4594. \draw (rax) to (rsp);
  4595. \end{tikzpicture}
  4596. \]
  4597. We repeat the process, selecting a maximally saturated vertex,
  4598. choosing is \code{z}, and color it with the first available number, which
  4599. is $1$. We add $1$ to the saturation for the neighboring vertices
  4600. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4601. \[
  4602. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4603. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4604. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4605. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4606. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4607. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4608. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4609. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4610. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4611. \draw (t1) to (rax);
  4612. \draw (t1) to (z);
  4613. \draw (z) to (y);
  4614. \draw (z) to (w);
  4615. \draw (x) to (w);
  4616. \draw (y) to (w);
  4617. \draw (v) to (w);
  4618. \draw (v) to (rsp);
  4619. \draw (w) to (rsp);
  4620. \draw (x) to (rsp);
  4621. \draw (y) to (rsp);
  4622. \path[-.,bend left=15] (z) edge node {} (rsp);
  4623. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4624. \draw (rax) to (rsp);
  4625. \end{tikzpicture}
  4626. \]
  4627. The most saturated vertices are now \code{w} and \code{y}. We color
  4628. \code{w} with the first available color, which is $0$.
  4629. \[
  4630. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4631. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4632. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4633. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4634. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4635. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4636. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4637. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4638. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4639. \draw (t1) to (rax);
  4640. \draw (t1) to (z);
  4641. \draw (z) to (y);
  4642. \draw (z) to (w);
  4643. \draw (x) to (w);
  4644. \draw (y) to (w);
  4645. \draw (v) to (w);
  4646. \draw (v) to (rsp);
  4647. \draw (w) to (rsp);
  4648. \draw (x) to (rsp);
  4649. \draw (y) to (rsp);
  4650. \path[-.,bend left=15] (z) edge node {} (rsp);
  4651. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4652. \draw (rax) to (rsp);
  4653. \end{tikzpicture}
  4654. \]
  4655. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4656. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4657. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4658. and \code{z}, whose colors are $0$ and $1$ respectively.
  4659. \[
  4660. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4661. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4662. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4663. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4664. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4665. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4666. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4667. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4668. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4669. \draw (t1) to (rax);
  4670. \draw (t1) to (z);
  4671. \draw (z) to (y);
  4672. \draw (z) to (w);
  4673. \draw (x) to (w);
  4674. \draw (y) to (w);
  4675. \draw (v) to (w);
  4676. \draw (v) to (rsp);
  4677. \draw (w) to (rsp);
  4678. \draw (x) to (rsp);
  4679. \draw (y) to (rsp);
  4680. \path[-.,bend left=15] (z) edge node {} (rsp);
  4681. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4682. \draw (rax) to (rsp);
  4683. \end{tikzpicture}
  4684. \]
  4685. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4686. \[
  4687. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4688. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4689. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4690. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4691. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4692. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4693. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4694. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4695. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4696. \draw (t1) to (rax);
  4697. \draw (t1) to (z);
  4698. \draw (z) to (y);
  4699. \draw (z) to (w);
  4700. \draw (x) to (w);
  4701. \draw (y) to (w);
  4702. \draw (v) to (w);
  4703. \draw (v) to (rsp);
  4704. \draw (w) to (rsp);
  4705. \draw (x) to (rsp);
  4706. \draw (y) to (rsp);
  4707. \path[-.,bend left=15] (z) edge node {} (rsp);
  4708. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4709. \draw (rax) to (rsp);
  4710. \end{tikzpicture}
  4711. \]
  4712. In the last step of the algorithm, we color \code{x} with $1$.
  4713. \[
  4714. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4715. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4716. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4717. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4718. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4719. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4720. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4721. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4722. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4723. \draw (t1) to (rax);
  4724. \draw (t1) to (z);
  4725. \draw (z) to (y);
  4726. \draw (z) to (w);
  4727. \draw (x) to (w);
  4728. \draw (y) to (w);
  4729. \draw (v) to (w);
  4730. \draw (v) to (rsp);
  4731. \draw (w) to (rsp);
  4732. \draw (x) to (rsp);
  4733. \draw (y) to (rsp);
  4734. \path[-.,bend left=15] (z) edge node {} (rsp);
  4735. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4736. \draw (rax) to (rsp);
  4737. \end{tikzpicture}
  4738. \]
  4739. So we obtain the following coloring:
  4740. \[
  4741. \{
  4742. \ttm{rax} \mapsto -1,
  4743. \ttm{rsp} \mapsto -2,
  4744. \ttm{t} \mapsto 0,
  4745. \ttm{z} \mapsto 1,
  4746. \ttm{x} \mapsto 1,
  4747. \ttm{y} \mapsto 2,
  4748. \ttm{w} \mapsto 0,
  4749. \ttm{v} \mapsto 1
  4750. \}
  4751. \]
  4752. \fi}
  4753. %
  4754. {\if\edition\pythonEd
  4755. %
  4756. With the DSATUR algorithm in hand, let us return to the running
  4757. example and consider how to color the interference graph in
  4758. Figure~\ref{fig:interfere}. We annotate each variable node with a dash
  4759. to indicate that it has not yet been assigned a color. The saturation
  4760. sets are also shown for each node; all of them start as the empty set.
  4761. (We do not include the register nodes in the graph below because there
  4762. were no interference edges involving registers in this program, but in
  4763. general there can be.)
  4764. %
  4765. \[
  4766. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4767. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  4768. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  4769. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  4770. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4771. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4772. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4773. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4774. \draw (t0) to (t1);
  4775. \draw (t0) to (z);
  4776. \draw (z) to (y);
  4777. \draw (z) to (w);
  4778. \draw (x) to (w);
  4779. \draw (y) to (w);
  4780. \draw (v) to (w);
  4781. \end{tikzpicture}
  4782. \]
  4783. The algorithm says to select a maximally saturated vertex, but they
  4784. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  4785. then color it with the first available integer, which is $0$. We mark
  4786. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  4787. they interfere with $\ttm{tmp\_0}$.
  4788. \[
  4789. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4790. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  4791. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4792. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  4793. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4794. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4795. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4796. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4797. \draw (t0) to (t1);
  4798. \draw (t0) to (z);
  4799. \draw (z) to (y);
  4800. \draw (z) to (w);
  4801. \draw (x) to (w);
  4802. \draw (y) to (w);
  4803. \draw (v) to (w);
  4804. \end{tikzpicture}
  4805. \]
  4806. We repeat the process. The most saturated vertices are \code{z} and
  4807. \code{tmp\_1}, so we choose \code{z} and color it with the first
  4808. available number, which is $1$. We add $1$ to the saturation for the
  4809. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  4810. \[
  4811. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4812. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4813. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4814. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4815. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4816. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  4817. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  4818. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4819. \draw (t0) to (t1);
  4820. \draw (t0) to (z);
  4821. \draw (z) to (y);
  4822. \draw (z) to (w);
  4823. \draw (x) to (w);
  4824. \draw (y) to (w);
  4825. \draw (v) to (w);
  4826. \end{tikzpicture}
  4827. \]
  4828. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  4829. \code{y}. We color \code{w} with the first available color, which
  4830. is $0$.
  4831. \[
  4832. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4833. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4834. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4835. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4836. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4837. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  4838. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  4839. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4840. \draw (t0) to (t1);
  4841. \draw (t0) to (z);
  4842. \draw (z) to (y);
  4843. \draw (z) to (w);
  4844. \draw (x) to (w);
  4845. \draw (y) to (w);
  4846. \draw (v) to (w);
  4847. \end{tikzpicture}
  4848. \]
  4849. Now \code{y} is the most saturated, so we color it with $2$.
  4850. \[
  4851. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4852. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4853. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4854. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4855. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4856. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4857. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4858. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4859. \draw (t0) to (t1);
  4860. \draw (t0) to (z);
  4861. \draw (z) to (y);
  4862. \draw (z) to (w);
  4863. \draw (x) to (w);
  4864. \draw (y) to (w);
  4865. \draw (v) to (w);
  4866. \end{tikzpicture}
  4867. \]
  4868. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  4869. We choose to color \code{v} with $1$.
  4870. \[
  4871. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4872. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4873. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4874. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4875. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4876. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4877. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4878. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4879. \draw (t0) to (t1);
  4880. \draw (t0) to (z);
  4881. \draw (z) to (y);
  4882. \draw (z) to (w);
  4883. \draw (x) to (w);
  4884. \draw (y) to (w);
  4885. \draw (v) to (w);
  4886. \end{tikzpicture}
  4887. \]
  4888. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  4889. \[
  4890. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4891. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4892. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  4893. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4894. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  4895. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4896. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4897. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4898. \draw (t0) to (t1);
  4899. \draw (t0) to (z);
  4900. \draw (z) to (y);
  4901. \draw (z) to (w);
  4902. \draw (x) to (w);
  4903. \draw (y) to (w);
  4904. \draw (v) to (w);
  4905. \end{tikzpicture}
  4906. \]
  4907. So we obtain the following coloring:
  4908. \[
  4909. \{ \ttm{tmp\_0} \mapsto 0,
  4910. \ttm{tmp\_1} \mapsto 1,
  4911. \ttm{z} \mapsto 1,
  4912. \ttm{x} \mapsto 1,
  4913. \ttm{y} \mapsto 2,
  4914. \ttm{w} \mapsto 0,
  4915. \ttm{v} \mapsto 1 \}
  4916. \]
  4917. \fi}
  4918. We recommend creating an auxiliary function named \code{color\_graph}
  4919. that takes an interference graph and a list of all the variables in
  4920. the program. This function should return a mapping of variables to
  4921. their colors (represented as natural numbers). By creating this helper
  4922. function, you will be able to reuse it in Chapter~\ref{ch:Lfun}
  4923. when we add support for functions.
  4924. To prioritize the processing of highly saturated nodes inside the
  4925. \code{color\_graph} function, we recommend using the priority queue
  4926. data structure \racket{described in Figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  4927. addition, you will need to maintain a mapping from variables to their
  4928. ``handles'' in the priority queue so that you can notify the priority
  4929. queue when their saturation changes.}
  4930. {\if\edition\racketEd
  4931. \begin{figure}[tp]
  4932. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  4933. \small
  4934. \begin{tcolorbox}[title=Priority Queue]
  4935. A \emph{priority queue} is a collection of items in which the
  4936. removal of items is governed by priority. In a ``min'' queue,
  4937. lower priority items are removed first. An implementation is in
  4938. \code{priority\_queue.rkt} of the support code. \index{subject}{priority
  4939. queue} \index{subject}{minimum priority queue}
  4940. \begin{description}
  4941. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  4942. priority queue that uses the $\itm{cmp}$ predicate to determine
  4943. whether its first argument has lower or equal priority to its
  4944. second argument.
  4945. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  4946. items in the queue.
  4947. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  4948. the item into the queue and returns a handle for the item in the
  4949. queue.
  4950. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  4951. the lowest priority.
  4952. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  4953. notifies the queue that the priority has decreased for the item
  4954. associated with the given handle.
  4955. \end{description}
  4956. \end{tcolorbox}
  4957. %\end{wrapfigure}
  4958. \caption{The priority queue data structure.}
  4959. \label{fig:priority-queue}
  4960. \end{figure}
  4961. \fi}
  4962. With the coloring complete, we finalize the assignment of variables to
  4963. registers and stack locations. We map the first $k$ colors to the $k$
  4964. registers and the rest of the colors to stack locations. Suppose for
  4965. the moment that we have just one register to use for register
  4966. allocation, \key{rcx}. Then we have the following map from colors to
  4967. locations.
  4968. \[
  4969. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  4970. \]
  4971. Composing this mapping with the coloring, we arrive at the following
  4972. assignment of variables to locations.
  4973. {\if\edition\racketEd
  4974. \begin{gather*}
  4975. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4976. \ttm{w} \mapsto \key{\%rcx}, \,
  4977. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4978. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4979. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4980. \ttm{t} \mapsto \key{\%rcx} \}
  4981. \end{gather*}
  4982. \fi}
  4983. {\if\edition\pythonEd
  4984. \begin{gather*}
  4985. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4986. \ttm{w} \mapsto \key{\%rcx}, \,
  4987. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4988. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4989. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4990. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  4991. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  4992. \end{gather*}
  4993. \fi}
  4994. Adapt the code from the \code{assign\_homes} pass
  4995. (Section~\ref{sec:assign-Lvar}) to replace the variables with their
  4996. assigned location. Applying the above assignment to our running
  4997. example, on the left, yields the program on the right.
  4998. % why frame size of 32? -JGS
  4999. \begin{center}
  5000. {\if\edition\racketEd
  5001. \begin{minipage}{0.3\textwidth}
  5002. \begin{lstlisting}
  5003. movq $1, v
  5004. movq $42, w
  5005. movq v, x
  5006. addq $7, x
  5007. movq x, y
  5008. movq x, z
  5009. addq w, z
  5010. movq y, t
  5011. negq t
  5012. movq z, %rax
  5013. addq t, %rax
  5014. jmp conclusion
  5015. \end{lstlisting}
  5016. \end{minipage}
  5017. $\Rightarrow\qquad$
  5018. \begin{minipage}{0.45\textwidth}
  5019. \begin{lstlisting}
  5020. movq $1, -8(%rbp)
  5021. movq $42, %rcx
  5022. movq -8(%rbp), -8(%rbp)
  5023. addq $7, -8(%rbp)
  5024. movq -8(%rbp), -16(%rbp)
  5025. movq -8(%rbp), -8(%rbp)
  5026. addq %rcx, -8(%rbp)
  5027. movq -16(%rbp), %rcx
  5028. negq %rcx
  5029. movq -8(%rbp), %rax
  5030. addq %rcx, %rax
  5031. jmp conclusion
  5032. \end{lstlisting}
  5033. \end{minipage}
  5034. \fi}
  5035. {\if\edition\pythonEd
  5036. \begin{minipage}{0.3\textwidth}
  5037. \begin{lstlisting}
  5038. movq $1, v
  5039. movq $42, w
  5040. movq v, x
  5041. addq $7, x
  5042. movq x, y
  5043. movq x, z
  5044. addq w, z
  5045. movq y, tmp_0
  5046. negq tmp_0
  5047. movq z, tmp_1
  5048. addq tmp_0, tmp_1
  5049. movq tmp_1, %rdi
  5050. callq print_int
  5051. \end{lstlisting}
  5052. \end{minipage}
  5053. $\Rightarrow\qquad$
  5054. \begin{minipage}{0.45\textwidth}
  5055. \begin{lstlisting}
  5056. movq $1, -8(%rbp)
  5057. movq $42, %rcx
  5058. movq -8(%rbp), -8(%rbp)
  5059. addq $7, -8(%rbp)
  5060. movq -8(%rbp), -16(%rbp)
  5061. movq -8(%rbp), -8(%rbp)
  5062. addq %rcx, -8(%rbp)
  5063. movq -16(%rbp), %rcx
  5064. negq %rcx
  5065. movq -8(%rbp), -8(%rbp)
  5066. addq %rcx, -8(%rbp)
  5067. movq -8(%rbp), %rdi
  5068. callq print_int
  5069. \end{lstlisting}
  5070. \end{minipage}
  5071. \fi}
  5072. \end{center}
  5073. \begin{exercise}\normalfont
  5074. %
  5075. Implement the compiler pass \code{allocate\_registers}.
  5076. %
  5077. Create five programs that exercise all aspects of the register
  5078. allocation algorithm, including spilling variables to the stack.
  5079. %
  5080. \racket{Replace \code{assign\_homes} in the list of \code{passes} in the
  5081. \code{run-tests.rkt} script with the three new passes:
  5082. \code{uncover\_live}, \code{build\_interference}, and
  5083. \code{allocate\_registers}.
  5084. %
  5085. Temporarily remove the \code{print\_x86} pass from the list of passes
  5086. and the call to \code{compiler-tests}.
  5087. Run the script to test the register allocator.
  5088. }
  5089. %
  5090. \python{Run the \code{run-tests.py} script to to check whether the
  5091. output programs produce the same result as the input programs.}
  5092. \end{exercise}
  5093. \section{Patch Instructions}
  5094. \label{sec:patch-instructions}
  5095. The remaining step in the compilation to x86 is to ensure that the
  5096. instructions have at most one argument that is a memory access.
  5097. %
  5098. In the running example, the instruction \code{movq -8(\%rbp),
  5099. -16(\%rbp)} is problematic. Recall from Section~\ref{sec:patch-s0}
  5100. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  5101. then move \code{rax} into \code{-16(\%rbp)}.
  5102. %
  5103. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  5104. problematic, but they can simply be deleted. In general, we recommend
  5105. deleting all the trivial moves whose source and destination are the
  5106. same location.
  5107. %
  5108. The following is the output of \code{patch\_instructions} on the
  5109. running example.
  5110. \begin{center}
  5111. {\if\edition\racketEd
  5112. \begin{minipage}{0.4\textwidth}
  5113. \begin{lstlisting}
  5114. movq $1, -8(%rbp)
  5115. movq $42, %rcx
  5116. movq -8(%rbp), -8(%rbp)
  5117. addq $7, -8(%rbp)
  5118. movq -8(%rbp), -16(%rbp)
  5119. movq -8(%rbp), -8(%rbp)
  5120. addq %rcx, -8(%rbp)
  5121. movq -16(%rbp), %rcx
  5122. negq %rcx
  5123. movq -8(%rbp), %rax
  5124. addq %rcx, %rax
  5125. jmp conclusion
  5126. \end{lstlisting}
  5127. \end{minipage}
  5128. $\Rightarrow\qquad$
  5129. \begin{minipage}{0.45\textwidth}
  5130. \begin{lstlisting}
  5131. movq $1, -8(%rbp)
  5132. movq $42, %rcx
  5133. addq $7, -8(%rbp)
  5134. movq -8(%rbp), %rax
  5135. movq %rax, -16(%rbp)
  5136. addq %rcx, -8(%rbp)
  5137. movq -16(%rbp), %rcx
  5138. negq %rcx
  5139. movq -8(%rbp), %rax
  5140. addq %rcx, %rax
  5141. jmp conclusion
  5142. \end{lstlisting}
  5143. \end{minipage}
  5144. \fi}
  5145. {\if\edition\pythonEd
  5146. \begin{minipage}{0.4\textwidth}
  5147. \begin{lstlisting}
  5148. movq $1, -8(%rbp)
  5149. movq $42, %rcx
  5150. movq -8(%rbp), -8(%rbp)
  5151. addq $7, -8(%rbp)
  5152. movq -8(%rbp), -16(%rbp)
  5153. movq -8(%rbp), -8(%rbp)
  5154. addq %rcx, -8(%rbp)
  5155. movq -16(%rbp), %rcx
  5156. negq %rcx
  5157. movq -8(%rbp), -8(%rbp)
  5158. addq %rcx, -8(%rbp)
  5159. movq -8(%rbp), %rdi
  5160. callq print_int
  5161. \end{lstlisting}
  5162. \end{minipage}
  5163. $\Rightarrow\qquad$
  5164. \begin{minipage}{0.45\textwidth}
  5165. \begin{lstlisting}
  5166. movq $1, -8(%rbp)
  5167. movq $42, %rcx
  5168. addq $7, -8(%rbp)
  5169. movq -8(%rbp), %rax
  5170. movq %rax, -16(%rbp)
  5171. addq %rcx, -8(%rbp)
  5172. movq -16(%rbp), %rcx
  5173. negq %rcx
  5174. addq %rcx, -8(%rbp)
  5175. movq -8(%rbp), %rdi
  5176. callq print_int
  5177. \end{lstlisting}
  5178. \end{minipage}
  5179. \fi}
  5180. \end{center}
  5181. \begin{exercise}\normalfont
  5182. %
  5183. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  5184. %
  5185. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  5186. %in the \code{run-tests.rkt} script.
  5187. %
  5188. Run the script to test the \code{patch\_instructions} pass.
  5189. \end{exercise}
  5190. \section{Prelude and Conclusion}
  5191. \label{sec:print-x86-reg-alloc}
  5192. \index{subject}{calling conventions}
  5193. \index{subject}{prelude}\index{subject}{conclusion}
  5194. Recall that this pass generates the prelude and conclusion
  5195. instructions to satisfy the x86 calling conventions
  5196. (Section~\ref{sec:calling-conventions}). With the addition of the
  5197. register allocator, the callee-saved registers used by the register
  5198. allocator must be saved in the prelude and restored in the conclusion.
  5199. In the \code{allocate\_registers} pass,
  5200. %
  5201. \racket{add an entry to the \itm{info}
  5202. of \code{X86Program} named \code{used\_callee}}
  5203. %
  5204. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  5205. %
  5206. that stores the set of callee-saved registers that were assigned to
  5207. variables. The \code{prelude\_and\_conclusion} pass can then access
  5208. this information to decide which callee-saved registers need to be
  5209. saved and restored.
  5210. %
  5211. When calculating the size of the frame to adjust the \code{rsp} in the
  5212. prelude, make sure to take into account the space used for saving the
  5213. callee-saved registers. Also, don't forget that the frame needs to be
  5214. a multiple of 16 bytes!
  5215. \racket{An overview of all of the passes involved in register
  5216. allocation is shown in Figure~\ref{fig:reg-alloc-passes}.}
  5217. {\if\edition\racketEd
  5218. \begin{figure}[tbp]
  5219. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5220. \node (Lvar) at (0,2) {\large \LangVar{}};
  5221. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  5222. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  5223. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  5224. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  5225. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  5226. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  5227. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  5228. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  5229. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  5230. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  5231. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  5232. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-1);
  5233. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  5234. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  5235. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  5236. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  5237. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  5238. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  5239. \end{tikzpicture}
  5240. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  5241. \label{fig:reg-alloc-passes}
  5242. \end{figure}
  5243. \fi}
  5244. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  5245. the running example (Figure~\ref{fig:reg-eg}). To demonstrate both the
  5246. use of registers and the stack, we limit the register allocator for
  5247. this example to use just two registers: \code{rbx} and \code{rcx}. In
  5248. the prelude\index{subject}{prelude} of the \code{main} function, we
  5249. push \code{rbx} onto the stack because it is a callee-saved register
  5250. and it was assigned to variable by the register allocator. We
  5251. subtract \code{8} from the \code{rsp} at the end of the prelude to
  5252. reserve space for the one spilled variable. After that subtraction,
  5253. the \code{rsp} is aligned to 16 bytes.
  5254. Moving on to the program proper, we see how the registers were
  5255. allocated.
  5256. %
  5257. \racket{Variables \code{v}, \code{x}, and \code{y} were assigned to
  5258. \code{rbx} and variable \code{z} was assigned to \code{rcx}.}
  5259. %
  5260. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  5261. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  5262. were assigned to \code{rbx}.}
  5263. %
  5264. Variable \racket{\code{w}}\python{\code{z}} was spilled to the stack
  5265. location \code{-16(\%rbp)}. Recall that the prelude saved the
  5266. callee-save register \code{rbx} onto the stack. The spilled variables
  5267. must be placed lower on the stack than the saved callee-save
  5268. registers, so in this case \racket{\code{w}}\python{z} is placed at
  5269. \code{-16(\%rbp)}.
  5270. In the conclusion\index{subject}{conclusion}, we undo the work that was
  5271. done in the prelude. We move the stack pointer up by \code{8} bytes
  5272. (the room for spilled variables), then we pop the old values of
  5273. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  5274. \code{retq} to return control to the operating system.
  5275. \begin{figure}[tbp]
  5276. % var_test_28.rkt
  5277. % (use-minimal-set-of-registers! #t)
  5278. % and only rbx rcx
  5279. % tmp 0 rbx
  5280. % z 1 rcx
  5281. % y 0 rbx
  5282. % w 2 16(%rbp)
  5283. % v 0 rbx
  5284. % x 0 rbx
  5285. {\if\edition\racketEd
  5286. \begin{lstlisting}
  5287. start:
  5288. movq $1, %rbx
  5289. movq $42, -16(%rbp)
  5290. addq $7, %rbx
  5291. movq %rbx, %rcx
  5292. addq -16(%rbp), %rcx
  5293. negq %rbx
  5294. movq %rcx, %rax
  5295. addq %rbx, %rax
  5296. jmp conclusion
  5297. .globl main
  5298. main:
  5299. pushq %rbp
  5300. movq %rsp, %rbp
  5301. pushq %rbx
  5302. subq $8, %rsp
  5303. jmp start
  5304. conclusion:
  5305. addq $8, %rsp
  5306. popq %rbx
  5307. popq %rbp
  5308. retq
  5309. \end{lstlisting}
  5310. \fi}
  5311. {\if\edition\pythonEd
  5312. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  5313. \begin{lstlisting}
  5314. .globl main
  5315. main:
  5316. pushq %rbp
  5317. movq %rsp, %rbp
  5318. pushq %rbx
  5319. subq $8, %rsp
  5320. movq $1, %rcx
  5321. movq $42, %rbx
  5322. addq $7, %rcx
  5323. movq %rcx, -16(%rbp)
  5324. addq %rbx, -16(%rbp)
  5325. negq %rcx
  5326. movq -16(%rbp), %rbx
  5327. addq %rcx, %rbx
  5328. movq %rbx, %rdi
  5329. callq print_int
  5330. addq $8, %rsp
  5331. popq %rbx
  5332. popq %rbp
  5333. retq
  5334. \end{lstlisting}
  5335. \fi}
  5336. \caption{The x86 output from the running example
  5337. (Figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  5338. and \code{rcx}.}
  5339. \label{fig:running-example-x86}
  5340. \end{figure}
  5341. \begin{exercise}\normalfont
  5342. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  5343. %
  5344. \racket{
  5345. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  5346. list of passes and the call to \code{compiler-tests}.}
  5347. %
  5348. Run the script to test the complete compiler for \LangVar{} that
  5349. performs register allocation.
  5350. \end{exercise}
  5351. \section{Challenge: Move Biasing}
  5352. \label{sec:move-biasing}
  5353. \index{subject}{move biasing}
  5354. This section describes an enhancement to the register allocator,
  5355. called move biasing, for students who are looking for an extra
  5356. challenge.
  5357. {\if\edition\racketEd
  5358. To motivate the need for move biasing we return to the running example
  5359. but this time use all of the general purpose registers. So we have
  5360. the following mapping of color numbers to registers.
  5361. \[
  5362. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
  5363. \]
  5364. Using the same assignment of variables to color numbers that was
  5365. produced by the register allocator described in the last section, we
  5366. get the following program.
  5367. \begin{center}
  5368. \begin{minipage}{0.3\textwidth}
  5369. \begin{lstlisting}
  5370. movq $1, v
  5371. movq $42, w
  5372. movq v, x
  5373. addq $7, x
  5374. movq x, y
  5375. movq x, z
  5376. addq w, z
  5377. movq y, t
  5378. negq t
  5379. movq z, %rax
  5380. addq t, %rax
  5381. jmp conclusion
  5382. \end{lstlisting}
  5383. \end{minipage}
  5384. $\Rightarrow\qquad$
  5385. \begin{minipage}{0.45\textwidth}
  5386. \begin{lstlisting}
  5387. movq $1, %rdx
  5388. movq $42, %rcx
  5389. movq %rdx, %rdx
  5390. addq $7, %rdx
  5391. movq %rdx, %rsi
  5392. movq %rdx, %rdx
  5393. addq %rcx, %rdx
  5394. movq %rsi, %rcx
  5395. negq %rcx
  5396. movq %rdx, %rax
  5397. addq %rcx, %rax
  5398. jmp conclusion
  5399. \end{lstlisting}
  5400. \end{minipage}
  5401. \end{center}
  5402. In the above output code there are two \key{movq} instructions that
  5403. can be removed because their source and target are the same. However,
  5404. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  5405. register, we could instead remove three \key{movq} instructions. We
  5406. can accomplish this by taking into account which variables appear in
  5407. \key{movq} instructions with which other variables.
  5408. \fi}
  5409. {\if\edition\pythonEd
  5410. %
  5411. To motivate the need for move biasing we return to the running example
  5412. and recall that in Section~\ref{sec:patch-instructions} we were able to
  5413. remove three trivial move instructions from the running
  5414. example. However, we could remove another trivial move if we were able
  5415. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  5416. We say that two variables $p$ and $q$ are \emph{move
  5417. related}\index{subject}{move related} if they participate together in
  5418. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  5419. \key{movq} $q$\key{,} $p$. When deciding which variable to color next,
  5420. when there are multiple variables with the same saturation, prefer
  5421. variables that can be assigned to a color that is the same as the
  5422. color of a move related variable. Furthermore, when the register
  5423. allocator chooses a color for a variable, it should prefer a color
  5424. that has already been used for a move-related variable (assuming that
  5425. they do not interfere). Of course, this preference should not override
  5426. the preference for registers over stack locations. So this preference
  5427. should be used as a tie breaker when choosing between registers or
  5428. when choosing between stack locations.
  5429. We recommend representing the move relationships in a graph, similar
  5430. to how we represented interference. The following is the \emph{move
  5431. graph} for our running example.
  5432. {\if\edition\racketEd
  5433. \[
  5434. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5435. \node (rax) at (0,0) {$\ttm{rax}$};
  5436. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5437. \node (t) at (0,2) {$\ttm{t}$};
  5438. \node (z) at (3,2) {$\ttm{z}$};
  5439. \node (x) at (6,2) {$\ttm{x}$};
  5440. \node (y) at (3,0) {$\ttm{y}$};
  5441. \node (w) at (6,0) {$\ttm{w}$};
  5442. \node (v) at (9,0) {$\ttm{v}$};
  5443. \draw (v) to (x);
  5444. \draw (x) to (y);
  5445. \draw (x) to (z);
  5446. \draw (y) to (t);
  5447. \end{tikzpicture}
  5448. \]
  5449. \fi}
  5450. %
  5451. {\if\edition\pythonEd
  5452. \[
  5453. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5454. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5455. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5456. \node (z) at (3,2) {$\ttm{z}$};
  5457. \node (x) at (6,2) {$\ttm{x}$};
  5458. \node (y) at (3,0) {$\ttm{y}$};
  5459. \node (w) at (6,0) {$\ttm{w}$};
  5460. \node (v) at (9,0) {$\ttm{v}$};
  5461. \draw (y) to (t0);
  5462. \draw (z) to (x);
  5463. \draw (z) to (t1);
  5464. \draw (x) to (y);
  5465. \draw (x) to (v);
  5466. \end{tikzpicture}
  5467. \]
  5468. \fi}
  5469. {\if\edition\racketEd
  5470. Now we replay the graph coloring, pausing to see the coloring of
  5471. \code{y}. Recall the following configuration. The most saturated vertices
  5472. were \code{w} and \code{y}.
  5473. \[
  5474. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5475. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5476. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5477. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5478. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5479. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5480. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5481. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5482. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5483. \draw (t1) to (rax);
  5484. \draw (t1) to (z);
  5485. \draw (z) to (y);
  5486. \draw (z) to (w);
  5487. \draw (x) to (w);
  5488. \draw (y) to (w);
  5489. \draw (v) to (w);
  5490. \draw (v) to (rsp);
  5491. \draw (w) to (rsp);
  5492. \draw (x) to (rsp);
  5493. \draw (y) to (rsp);
  5494. \path[-.,bend left=15] (z) edge node {} (rsp);
  5495. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5496. \draw (rax) to (rsp);
  5497. \end{tikzpicture}
  5498. \]
  5499. %
  5500. Last time we chose to color \code{w} with $0$. But this time we see
  5501. that \code{w} is not move related to any vertex, but \code{y} is move
  5502. related to \code{t}. So we choose to color \code{y} the same color as
  5503. \code{t}, $0$.
  5504. \[
  5505. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5506. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5507. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5508. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5509. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5510. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5511. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  5512. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  5513. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5514. \draw (t1) to (rax);
  5515. \draw (t1) to (z);
  5516. \draw (z) to (y);
  5517. \draw (z) to (w);
  5518. \draw (x) to (w);
  5519. \draw (y) to (w);
  5520. \draw (v) to (w);
  5521. \draw (v) to (rsp);
  5522. \draw (w) to (rsp);
  5523. \draw (x) to (rsp);
  5524. \draw (y) to (rsp);
  5525. \path[-.,bend left=15] (z) edge node {} (rsp);
  5526. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5527. \draw (rax) to (rsp);
  5528. \end{tikzpicture}
  5529. \]
  5530. Now \code{w} is the most saturated, so we color it $2$.
  5531. \[
  5532. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5533. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5534. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5535. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5536. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5537. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  5538. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5539. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5540. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  5541. \draw (t1) to (rax);
  5542. \draw (t1) to (z);
  5543. \draw (z) to (y);
  5544. \draw (z) to (w);
  5545. \draw (x) to (w);
  5546. \draw (y) to (w);
  5547. \draw (v) to (w);
  5548. \draw (v) to (rsp);
  5549. \draw (w) to (rsp);
  5550. \draw (x) to (rsp);
  5551. \draw (y) to (rsp);
  5552. \path[-.,bend left=15] (z) edge node {} (rsp);
  5553. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5554. \draw (rax) to (rsp);
  5555. \end{tikzpicture}
  5556. \]
  5557. At this point, vertices \code{x} and \code{v} are most saturated, but
  5558. \code{x} is move related to \code{y} and \code{z}, so we color
  5559. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  5560. \[
  5561. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5562. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5563. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5564. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5565. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5566. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  5567. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5568. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5569. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  5570. \draw (t1) to (rax);
  5571. \draw (t) to (z);
  5572. \draw (z) to (y);
  5573. \draw (z) to (w);
  5574. \draw (x) to (w);
  5575. \draw (y) to (w);
  5576. \draw (v) to (w);
  5577. \draw (v) to (rsp);
  5578. \draw (w) to (rsp);
  5579. \draw (x) to (rsp);
  5580. \draw (y) to (rsp);
  5581. \path[-.,bend left=15] (z) edge node {} (rsp);
  5582. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5583. \draw (rax) to (rsp);
  5584. \end{tikzpicture}
  5585. \]
  5586. \fi}
  5587. %
  5588. {\if\edition\pythonEd
  5589. Now we replay the graph coloring, pausing before the coloring of
  5590. \code{w}. Recall the following configuration. The most saturated vertices
  5591. were \code{tmp\_1}, \code{w}, and \code{y}.
  5592. \[
  5593. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5594. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5595. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5596. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5597. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5598. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5599. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5600. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5601. \draw (t0) to (t1);
  5602. \draw (t0) to (z);
  5603. \draw (z) to (y);
  5604. \draw (z) to (w);
  5605. \draw (x) to (w);
  5606. \draw (y) to (w);
  5607. \draw (v) to (w);
  5608. \end{tikzpicture}
  5609. \]
  5610. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  5611. or \code{y}, but note that \code{w} is not move related to any
  5612. variables, whereas \code{y} and \code{tmp\_1} are move related to
  5613. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  5614. \code{y} and color it $0$, we can delete another move instruction.
  5615. \[
  5616. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5617. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5618. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5619. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5620. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5621. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  5622. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  5623. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5624. \draw (t0) to (t1);
  5625. \draw (t0) to (z);
  5626. \draw (z) to (y);
  5627. \draw (z) to (w);
  5628. \draw (x) to (w);
  5629. \draw (y) to (w);
  5630. \draw (v) to (w);
  5631. \end{tikzpicture}
  5632. \]
  5633. Now \code{w} is the most saturated, so we color it $2$.
  5634. \[
  5635. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5636. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5637. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5638. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5639. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  5640. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5641. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5642. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  5643. \draw (t0) to (t1);
  5644. \draw (t0) to (z);
  5645. \draw (z) to (y);
  5646. \draw (z) to (w);
  5647. \draw (x) to (w);
  5648. \draw (y) to (w);
  5649. \draw (v) to (w);
  5650. \end{tikzpicture}
  5651. \]
  5652. To finish the coloring, \code{x} and \code{v} get $0$ and
  5653. \code{tmp\_1} gets $1$.
  5654. \[
  5655. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5656. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5657. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5658. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5659. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  5660. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5661. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5662. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  5663. \draw (t0) to (t1);
  5664. \draw (t0) to (z);
  5665. \draw (z) to (y);
  5666. \draw (z) to (w);
  5667. \draw (x) to (w);
  5668. \draw (y) to (w);
  5669. \draw (v) to (w);
  5670. \end{tikzpicture}
  5671. \]
  5672. \fi}
  5673. So we have the following assignment of variables to registers.
  5674. {\if\edition\racketEd
  5675. \begin{gather*}
  5676. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5677. \ttm{w} \mapsto \key{\%rsi}, \,
  5678. \ttm{x} \mapsto \key{\%rcx}, \,
  5679. \ttm{y} \mapsto \key{\%rcx}, \,
  5680. \ttm{z} \mapsto \key{\%rdx}, \,
  5681. \ttm{t} \mapsto \key{\%rcx} \}
  5682. \end{gather*}
  5683. \fi}
  5684. {\if\edition\pythonEd
  5685. \begin{gather*}
  5686. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5687. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  5688. \ttm{x} \mapsto \key{\%rcx}, \,
  5689. \ttm{y} \mapsto \key{\%rcx}, \\
  5690. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5691. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5692. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5693. \end{gather*}
  5694. \fi}
  5695. We apply this register assignment to the running example, on the left,
  5696. to obtain the code in the middle. The \code{patch\_instructions} then
  5697. deletes the trivial moves to obtain the code on the right.
  5698. {\if\edition\racketEd
  5699. \begin{minipage}{0.25\textwidth}
  5700. \begin{lstlisting}
  5701. movq $1, v
  5702. movq $42, w
  5703. movq v, x
  5704. addq $7, x
  5705. movq x, y
  5706. movq x, z
  5707. addq w, z
  5708. movq y, t
  5709. negq t
  5710. movq z, %rax
  5711. addq t, %rax
  5712. jmp conclusion
  5713. \end{lstlisting}
  5714. \end{minipage}
  5715. $\Rightarrow\qquad$
  5716. \begin{minipage}{0.25\textwidth}
  5717. \begin{lstlisting}
  5718. movq $1, %rcx
  5719. movq $42, %rsi
  5720. movq %rcx, %rcx
  5721. addq $7, %rcx
  5722. movq %rcx, %rcx
  5723. movq %rcx, %rdx
  5724. addq %rsi, %rdx
  5725. movq %rcx, %rcx
  5726. negq %rcx
  5727. movq %rdx, %rax
  5728. addq %rcx, %rax
  5729. jmp conclusion
  5730. \end{lstlisting}
  5731. \end{minipage}
  5732. $\Rightarrow\qquad$
  5733. \begin{minipage}{0.25\textwidth}
  5734. \begin{lstlisting}
  5735. movq $1, %rcx
  5736. movq $42, %rsi
  5737. addq $7, %rcx
  5738. movq %rcx, %rdx
  5739. addq %rsi, %rdx
  5740. negq %rcx
  5741. movq %rdx, %rax
  5742. addq %rcx, %rax
  5743. jmp conclusion
  5744. \end{lstlisting}
  5745. \end{minipage}
  5746. \fi}
  5747. {\if\edition\pythonEd
  5748. \begin{minipage}{0.20\textwidth}
  5749. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5750. movq $1, v
  5751. movq $42, w
  5752. movq v, x
  5753. addq $7, x
  5754. movq x, y
  5755. movq x, z
  5756. addq w, z
  5757. movq y, tmp_0
  5758. negq tmp_0
  5759. movq z, tmp_1
  5760. addq tmp_0, tmp_1
  5761. movq tmp_1, %rdi
  5762. callq _print_int
  5763. \end{lstlisting}
  5764. \end{minipage}
  5765. ${\Rightarrow\qquad}$
  5766. \begin{minipage}{0.30\textwidth}
  5767. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5768. movq $1, %rcx
  5769. movq $42, -16(%rbp)
  5770. movq %rcx, %rcx
  5771. addq $7, %rcx
  5772. movq %rcx, %rcx
  5773. movq %rcx, -8(%rbp)
  5774. addq -16(%rbp), -8(%rbp)
  5775. movq %rcx, %rcx
  5776. negq %rcx
  5777. movq -8(%rbp), -8(%rbp)
  5778. addq %rcx, -8(%rbp)
  5779. movq -8(%rbp), %rdi
  5780. callq _print_int
  5781. \end{lstlisting}
  5782. \end{minipage}
  5783. ${\Rightarrow\qquad}$
  5784. \begin{minipage}{0.20\textwidth}
  5785. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5786. movq $1, %rcx
  5787. movq $42, -16(%rbp)
  5788. addq $7, %rcx
  5789. movq %rcx, -8(%rbp)
  5790. movq -16(%rbp), %rax
  5791. addq %rax, -8(%rbp)
  5792. negq %rcx
  5793. addq %rcx, -8(%rbp)
  5794. movq -8(%rbp), %rdi
  5795. callq print_int
  5796. \end{lstlisting}
  5797. \end{minipage}
  5798. \fi}
  5799. \begin{exercise}\normalfont
  5800. Change your implementation of \code{allocate\_registers} to take move
  5801. biasing into account. Create two new tests that include at least one
  5802. opportunity for move biasing and visually inspect the output x86
  5803. programs to make sure that your move biasing is working properly. Make
  5804. sure that your compiler still passes all of the tests.
  5805. \end{exercise}
  5806. %To do: another neat challenge would be to do
  5807. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  5808. %% \subsection{Output of the Running Example}
  5809. %% \label{sec:reg-alloc-output}
  5810. % challenge: prioritize variables based on execution frequencies
  5811. % and the number of uses of a variable
  5812. % challenge: enhance the coloring algorithm using Chaitin's
  5813. % approach of prioritizing high-degree variables
  5814. % by removing low-degree variables (coloring them later)
  5815. % from the interference graph
  5816. \section{Further Reading}
  5817. \label{sec:register-allocation-further-reading}
  5818. Early register allocation algorithms were developed for Fortran
  5819. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  5820. of graph coloring began in the late 1970s and early 1980s with the
  5821. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  5822. algorithm is based on the following observation of
  5823. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  5824. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  5825. $v$ removed is also $k$ colorable. To see why, suppose that the
  5826. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  5827. different colors, but since there are less than $k$ neighbors, there
  5828. will be one or more colors left over to use for coloring $v$ in $G$.
  5829. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  5830. less than $k$ from the graph and recursively colors the rest of the
  5831. graph. Upon returning from the recursion, it colors $v$ with one of
  5832. the available colors and returns. \citet{Chaitin:1982vn} augments
  5833. this algorithm to handle spilling as follows. If there are no vertices
  5834. of degree lower than $k$ then pick a vertex at random, spill it,
  5835. remove it from the graph, and proceed recursively to color the rest of
  5836. the graph.
  5837. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  5838. move-related and that don't interfere with each other, a process
  5839. called \emph{coalescing}. While coalescing decreases the number of
  5840. moves, it can make the graph more difficult to
  5841. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  5842. which two variables are merged only if they have fewer than $k$
  5843. neighbors of high degree. \citet{George:1996aa} observe that
  5844. conservative coalescing is sometimes too conservative and make it more
  5845. aggressive by iterating the coalescing with the removal of low-degree
  5846. vertices.
  5847. %
  5848. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  5849. also propose \emph{biased coloring} in which a variable is assigned to
  5850. the same color as another move-related variable if possible, as
  5851. discussed in Section~\ref{sec:move-biasing}.
  5852. %
  5853. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  5854. performs coalescing, graph coloring, and spill code insertion until
  5855. all variables have been assigned a location.
  5856. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  5857. spills variables that don't have to be: a high-degree variable can be
  5858. colorable if many of its neighbors are assigned the same color.
  5859. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  5860. high-degree vertex is not immediately spilled. Instead the decision is
  5861. deferred until after the recursive call, at which point it is apparent
  5862. whether there is actually an available color or not. We observe that
  5863. this algorithm is equivalent to the smallest-last ordering
  5864. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  5865. be registers and the rest to be stack locations.
  5866. %% biased coloring
  5867. Earlier editions of the compiler course at Indiana University
  5868. \citep{Dybvig:2010aa} were based on the algorithm of
  5869. \citet{Briggs:1994kx}.
  5870. The smallest-last ordering algorithm is one of many \emph{greedy}
  5871. coloring algorithms. A greedy coloring algorithm visits all the
  5872. vertices in a particular order and assigns each one the first
  5873. available color. An \emph{offline} greedy algorithm chooses the
  5874. ordering up-front, prior to assigning colors. The algorithm of
  5875. \citet{Chaitin:1981vl} should be considered offline because the vertex
  5876. ordering does not depend on the colors assigned. Other orderings are
  5877. possible. For example, \citet{Chow:1984ys} order variables according
  5878. to an estimate of runtime cost.
  5879. An \emph{online} greedy coloring algorithm uses information about the
  5880. current assignment of colors to influence the order in which the
  5881. remaining vertices are colored. The saturation-based algorithm
  5882. described in this chapter is one such algorithm. We choose to use
  5883. saturation-based coloring because it is fun to introduce graph
  5884. coloring via Sudoku!
  5885. A register allocator may choose to map each variable to just one
  5886. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  5887. variable to one or more locations. The later can be achieved by
  5888. \emph{live range splitting}, where a variable is replaced by several
  5889. variables that each handle part of its live
  5890. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  5891. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  5892. %% replacement algorithm, bottom-up local
  5893. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  5894. %% Cooper: top-down (priority bassed), bottom-up
  5895. %% top-down
  5896. %% order variables by priority (estimated cost)
  5897. %% caveat: split variables into two groups:
  5898. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  5899. %% color the constrained ones first
  5900. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  5901. %% cite J. Cocke for an algorithm that colors variables
  5902. %% in a high-degree first ordering
  5903. %Register Allocation via Usage Counts, Freiburghouse CACM
  5904. \citet{Palsberg:2007si} observe that many of the interference graphs
  5905. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  5906. that is, every cycle with four or more edges has an edge which is not
  5907. part of the cycle but which connects two vertices on the cycle. Such
  5908. graphs can be optimally colored by the greedy algorithm with a vertex
  5909. ordering determined by maximum cardinality search.
  5910. In situations where compile time is of utmost importance, such as in
  5911. just-in-time compilers, graph coloring algorithms can be too expensive
  5912. and the linear scan algorithm of \citet{Poletto:1999uq} may be more
  5913. appropriate.
  5914. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5915. \chapter{Booleans and Conditionals}
  5916. \label{ch:Lif}
  5917. \index{subject}{Boolean}
  5918. \index{subject}{control flow}
  5919. \index{subject}{conditional expression}
  5920. The \LangInt{} and \LangVar{} languages only have a single kind of
  5921. value, the integers. In this chapter we add a second kind of value,
  5922. the Booleans, to create the \LangIf{} language. The Boolean values
  5923. \emph{true} and \emph{false} are written \TRUE{} and \FALSE{}
  5924. respectively in \racket{Racket}\python{Python}. The \LangIf{}
  5925. language includes several operations that involve Booleans (\key{and},
  5926. \key{not}, \racket{\key{eq?}}\python{==}, \key{<}, etc.) and the
  5927. \key{if} expression \python{and statement}. With the addition of
  5928. \key{if}, programs can have non-trivial control flow which
  5929. %
  5930. \racket{impacts \code{explicate\_control} and liveness analysis}
  5931. %
  5932. \python{impacts liveness analysis and motivates a new pass named
  5933. \code{explicate\_control}}.
  5934. %
  5935. Also, because we now have two kinds of values, we need to handle
  5936. programs that apply an operation to the wrong kind of value, such as
  5937. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5938. There are two language design options for such situations. One option
  5939. is to signal an error and the other is to provide a wider
  5940. interpretation of the operation. \racket{The Racket
  5941. language}\python{Python} uses a mixture of these two options,
  5942. depending on the operation and the kind of value. For example, the
  5943. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  5944. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  5945. treats non-zero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  5946. %
  5947. \racket{On the other hand, \code{(car 1)} results in a run-time error
  5948. in Racket because \code{car} expects a pair.}
  5949. %
  5950. \python{On the other hand, \code{1[0]} results in a run-time error
  5951. in Python because an ``\code{int} object is not subscriptable''.}
  5952. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  5953. design choices as \racket{Racket}\python{Python}, except much of the
  5954. error detection happens at compile time instead of run
  5955. time\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  5956. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  5957. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed
  5958. Racket}\python{MyPy} reports a compile-time error
  5959. %
  5960. \racket{because Racket expects the type of the argument to be of the form
  5961. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  5962. %
  5963. \python{stating that a ``value of type \code{int} is not indexable''.}
  5964. The \LangIf{} language performs type checking during compilation like
  5965. \racket{Typed Racket}\python{MyPy}. In Chapter~\ref{ch:Ldyn} we study the
  5966. alternative choice, that is, a dynamically typed language like
  5967. \racket{Racket}\python{Python}.
  5968. The \LangIf{} language is a subset of \racket{Typed Racket}\python{MyPy};
  5969. for some operations we are more restrictive, for example, rejecting
  5970. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5971. This chapter is organized as follows. We begin by defining the syntax
  5972. and interpreter for the \LangIf{} language
  5973. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  5974. checking and define a type checker for \LangIf{}
  5975. (Section~\ref{sec:type-check-Lif}).
  5976. %
  5977. \racket{To compile \LangIf{} we need to enlarge the intermediate
  5978. language \LangCVar{} into \LangCIf{} (Section~\ref{sec:Cif}) and
  5979. \LangXInt{} into \LangXIf{} (Section~\ref{sec:x86-if}).}
  5980. %
  5981. The remaining sections of this chapter discuss how the addition of
  5982. Booleans and conditional control flow to the language requires changes
  5983. to the existing compiler passes and the addition of new ones. In
  5984. particular, we introduce the \code{shrink} pass to translates some
  5985. operators into others, thereby reducing the number of operators that
  5986. need to be handled in later passes.
  5987. %
  5988. The main event of this chapter is the \code{explicate\_control} pass
  5989. that is responsible for translating \code{if}'s into conditional
  5990. \code{goto}'s (Section~\ref{sec:explicate-control-Lif}).
  5991. %
  5992. Regarding register allocation, there is the interesting question of
  5993. how to handle conditional \code{goto}'s during liveness analysis.
  5994. \section{The \LangIf{} Language}
  5995. \label{sec:lang-if}
  5996. The concrete and abstract syntax of the \LangIf{} language are defined in
  5997. Figures~\ref{fig:Lif-concrete-syntax} and~\ref{fig:Lif-syntax},
  5998. respectively. The \LangIf{} language includes all of
  5999. \LangVar{} {(shown in gray)}, the Boolean literals \TRUE{} and
  6000. \FALSE{},\racket{ and} the \code{if} expression\python{, and the
  6001. \code{if} statement}. We expand the set of operators to include
  6002. \begin{enumerate}
  6003. \item subtraction on integers,
  6004. \item the logical operators \key{and}, \key{or}, and \key{not},
  6005. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  6006. for comparing integers or Booleans for equality, and
  6007. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  6008. comparing integers.
  6009. \end{enumerate}
  6010. \racket{We reorganize the abstract syntax for the primitive
  6011. operations in Figure~\ref{fig:Lif-syntax}, using only one grammar
  6012. rule for all of them. This means that the grammar no longer checks
  6013. whether the arity of an operators matches the number of
  6014. arguments. That responsibility is moved to the type checker for
  6015. \LangIf{}, which we introduce in Section~\ref{sec:type-check-Lif}.}
  6016. \newcommand{\LifGrammarRacket}{
  6017. \begin{array}{lcl}
  6018. \Type &::=& \key{Boolean} \\
  6019. \itm{bool} &::=& \TRUE \MID \FALSE \\
  6020. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  6021. \Exp &::=& \CSUB{\Exp}{\Exp} \MID \itm{bool}
  6022. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  6023. \MID (\key{not}\;\Exp) \\
  6024. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  6025. \end{array}
  6026. }
  6027. \newcommand{\LifASTRacket}{
  6028. \begin{array}{lcl}
  6029. \Type &::=& \key{Boolean} \\
  6030. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  6031. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6032. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  6033. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  6034. \end{array}
  6035. }
  6036. \newcommand{\LintOpAST}{
  6037. \begin{array}{rcl}
  6038. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  6039. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  6040. \end{array}
  6041. }
  6042. \newcommand{\LifGrammarPython}{
  6043. \begin{array}{rcl}
  6044. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  6045. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  6046. \MID \key{not}~\Exp \\
  6047. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  6048. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  6049. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  6050. \end{array}
  6051. }
  6052. \newcommand{\LifASTPython}{
  6053. \begin{array}{lcl}
  6054. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  6055. \itm{unaryop} &::=& \code{Not()} \\
  6056. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  6057. \itm{bool} &::=& \code{True} \MID \code{False} \\
  6058. \Exp &::=& \BOOL{\itm{bool}}
  6059. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  6060. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6061. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  6062. \end{array}
  6063. }
  6064. \begin{figure}[tp]
  6065. \centering
  6066. \fbox{
  6067. \begin{minipage}{0.96\textwidth}
  6068. {\if\edition\racketEd
  6069. \[
  6070. \begin{array}{l}
  6071. \gray{\LintGrammarRacket{}} \\ \hline
  6072. \gray{\LvarGrammarRacket{}} \\ \hline
  6073. \LifGrammarRacket{} \\
  6074. \begin{array}{lcl}
  6075. \LangIfM{} &::=& \Exp
  6076. \end{array}
  6077. \end{array}
  6078. \]
  6079. \fi}
  6080. {\if\edition\pythonEd
  6081. \[
  6082. \begin{array}{l}
  6083. \gray{\LintGrammarPython} \\ \hline
  6084. \gray{\LvarGrammarPython} \\ \hline
  6085. \LifGrammarPython \\
  6086. \begin{array}{rcl}
  6087. \LangIfM{} &::=& \Stmt^{*}
  6088. \end{array}
  6089. \end{array}
  6090. \]
  6091. \fi}
  6092. \end{minipage}
  6093. }
  6094. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  6095. (Figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  6096. \label{fig:Lif-concrete-syntax}
  6097. \end{figure}
  6098. \begin{figure}[tp]
  6099. \centering
  6100. \fbox{
  6101. \begin{minipage}{0.96\textwidth}
  6102. {\if\edition\racketEd
  6103. \[
  6104. \begin{array}{l}
  6105. \gray{\LintOpAST} \\ \hline
  6106. \gray{\LvarASTRacket{}} \\ \hline
  6107. \LifASTRacket{} \\
  6108. \begin{array}{lcl}
  6109. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  6110. \end{array}
  6111. \end{array}
  6112. \]
  6113. \fi}
  6114. {\if\edition\pythonEd
  6115. \[
  6116. \begin{array}{l}
  6117. \gray{\LintASTPython} \\ \hline
  6118. \gray{\LvarASTPython} \\ \hline
  6119. \LifASTPython \\
  6120. \begin{array}{lcl}
  6121. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  6122. \end{array}
  6123. \end{array}
  6124. \]
  6125. \fi}
  6126. \end{minipage}
  6127. }
  6128. \caption{The abstract syntax of \LangIf{}.}
  6129. \label{fig:Lif-syntax}
  6130. \end{figure}
  6131. Figure~\ref{fig:interp-Lif} defines the interpreter for \LangIf{},
  6132. which inherits from the interpreter for \LangVar{}
  6133. (Figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  6134. evaluate to the corresponding Boolean values. The conditional
  6135. expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates expression $e_1$
  6136. and then either evaluates $e_2$ or $e_3$ depending on whether
  6137. $e_1$ produced \TRUE{} or \FALSE{}. The logical operations
  6138. \code{and}, \code{or}, and \code{not} behave according to
  6139. propositional logic. In addition, the \code{and} and \code{or}
  6140. operations perform \emph{short-circuit evaluation}.
  6141. %
  6142. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  6143. is not evaluated if $e_1$ evaluates to \FALSE{}.
  6144. %
  6145. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  6146. evaluated if $e_1$ evaluates to \TRUE{}.
  6147. \racket{With the increase in the number of primitive operations, the
  6148. interpreter would become repetitive without some care. We refactor
  6149. the case for \code{Prim}, moving the code that differs with each
  6150. operation into the \code{interp\_op} method shown in in
  6151. Figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  6152. \code{or} operations separately because of their short-circuiting
  6153. behavior.}
  6154. \begin{figure}[tbp]
  6155. {\if\edition\racketEd
  6156. \begin{lstlisting}
  6157. (define interp_Lif_class
  6158. (class interp_Lvar_class
  6159. (super-new)
  6160. (define/public (interp_op op) ...)
  6161. (define/override ((interp_exp env) e)
  6162. (define recur (interp_exp env))
  6163. (match e
  6164. [(Bool b) b]
  6165. [(If cnd thn els)
  6166. (match (recur cnd)
  6167. [#t (recur thn)]
  6168. [#f (recur els)])]
  6169. [(Prim 'and (list e1 e2))
  6170. (match (recur e1)
  6171. [#t (match (recur e2) [#t #t] [#f #f])]
  6172. [#f #f])]
  6173. [(Prim 'or (list e1 e2))
  6174. (define v1 (recur e1))
  6175. (match v1
  6176. [#t #t]
  6177. [#f (match (recur e2) [#t #t] [#f #f])])]
  6178. [(Prim op args)
  6179. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  6180. [else ((super interp_exp env) e)]))
  6181. ))
  6182. (define (interp_Lif p)
  6183. (send (new interp_Lif_class) interp_program p))
  6184. \end{lstlisting}
  6185. \fi}
  6186. {\if\edition\pythonEd
  6187. \begin{lstlisting}
  6188. class InterpLif(InterpLvar):
  6189. def interp_exp(self, e, env):
  6190. match e:
  6191. case IfExp(test, body, orelse):
  6192. if self.interp_exp(test, env):
  6193. return self.interp_exp(body, env)
  6194. else:
  6195. return self.interp_exp(orelse, env)
  6196. case BinOp(left, Sub(), right):
  6197. return self.interp_exp(left, env) - self.interp_exp(right, env)
  6198. case UnaryOp(Not(), v):
  6199. return not self.interp_exp(v, env)
  6200. case BoolOp(And(), values):
  6201. if self.interp_exp(values[0], env):
  6202. return self.interp_exp(values[1], env)
  6203. else:
  6204. return False
  6205. case BoolOp(Or(), values):
  6206. if self.interp_exp(values[0], env):
  6207. return True
  6208. else:
  6209. return self.interp_exp(values[1], env)
  6210. case Compare(left, [cmp], [right]):
  6211. l = self.interp_exp(left, env)
  6212. r = self.interp_exp(right, env)
  6213. return self.interp_cmp(cmp)(l, r)
  6214. case _:
  6215. return super().interp_exp(e, env)
  6216. def interp_stmts(self, ss, env):
  6217. if len(ss) == 0:
  6218. return
  6219. match ss[0]:
  6220. case If(test, body, orelse):
  6221. if self.interp_exp(test, env):
  6222. return self.interp_stmts(body + ss[1:], env)
  6223. else:
  6224. return self.interp_stmts(orelse + ss[1:], env)
  6225. case _:
  6226. return super().interp_stmts(ss, env)
  6227. ...
  6228. \end{lstlisting}
  6229. \fi}
  6230. \caption{Interpreter for the \LangIf{} language. \racket{(See
  6231. Figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  6232. \python{(See Figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  6233. \label{fig:interp-Lif}
  6234. \end{figure}
  6235. {\if\edition\racketEd
  6236. \begin{figure}[tbp]
  6237. \begin{lstlisting}
  6238. (define/public (interp_op op)
  6239. (match op
  6240. ['+ fx+]
  6241. ['- fx-]
  6242. ['read read-fixnum]
  6243. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  6244. ['eq? (lambda (v1 v2)
  6245. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6246. (and (boolean? v1) (boolean? v2))
  6247. (and (vector? v1) (vector? v2)))
  6248. (eq? v1 v2)]))]
  6249. ['< (lambda (v1 v2)
  6250. (cond [(and (fixnum? v1) (fixnum? v2))
  6251. (< v1 v2)]))]
  6252. ['<= (lambda (v1 v2)
  6253. (cond [(and (fixnum? v1) (fixnum? v2))
  6254. (<= v1 v2)]))]
  6255. ['> (lambda (v1 v2)
  6256. (cond [(and (fixnum? v1) (fixnum? v2))
  6257. (> v1 v2)]))]
  6258. ['>= (lambda (v1 v2)
  6259. (cond [(and (fixnum? v1) (fixnum? v2))
  6260. (>= v1 v2)]))]
  6261. [else (error 'interp_op "unknown operator")]))
  6262. \end{lstlisting}
  6263. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  6264. \label{fig:interp-op-Lif}
  6265. \end{figure}
  6266. \fi}
  6267. {\if\edition\pythonEd
  6268. \begin{figure}
  6269. \begin{lstlisting}
  6270. class InterpLif(InterpLvar):
  6271. ...
  6272. def interp_cmp(self, cmp):
  6273. match cmp:
  6274. case Lt():
  6275. return lambda x, y: x < y
  6276. case LtE():
  6277. return lambda x, y: x <= y
  6278. case Gt():
  6279. return lambda x, y: x > y
  6280. case GtE():
  6281. return lambda x, y: x >= y
  6282. case Eq():
  6283. return lambda x, y: x == y
  6284. case NotEq():
  6285. return lambda x, y: x != y
  6286. \end{lstlisting}
  6287. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  6288. \label{fig:interp-cmp-Lif}
  6289. \end{figure}
  6290. \fi}
  6291. \section{Type Checking \LangIf{} Programs}
  6292. \label{sec:type-check-Lif}
  6293. \index{subject}{type checking}
  6294. \index{subject}{semantic analysis}
  6295. It is helpful to think about type checking in two complementary
  6296. ways. A type checker predicts the type of value that will be produced
  6297. by each expression in the program. For \LangIf{}, we have just two types,
  6298. \INTTY{} and \BOOLTY{}. So a type checker should predict that
  6299. {\if\edition\racketEd
  6300. \begin{lstlisting}
  6301. (+ 10 (- (+ 12 20)))
  6302. \end{lstlisting}
  6303. \fi}
  6304. {\if\edition\pythonEd
  6305. \begin{lstlisting}
  6306. 10 + -(12 + 20)
  6307. \end{lstlisting}
  6308. \fi}
  6309. \noindent produces a value of type \INTTY{} while
  6310. {\if\edition\racketEd
  6311. \begin{lstlisting}
  6312. (and (not #f) #t)
  6313. \end{lstlisting}
  6314. \fi}
  6315. {\if\edition\pythonEd
  6316. \begin{lstlisting}
  6317. (not False) and True
  6318. \end{lstlisting}
  6319. \fi}
  6320. \noindent produces a value of type \BOOLTY{}.
  6321. A second way to think about type checking is that it enforces a set of
  6322. rules about which operators can be applied to which kinds of
  6323. values. For example, our type checker for \LangIf{} signals an error
  6324. for the below expression {\if\edition\racketEd
  6325. \begin{lstlisting}
  6326. (not (+ 10 (- (+ 12 20))))
  6327. \end{lstlisting}
  6328. \fi}
  6329. {\if\edition\pythonEd
  6330. \begin{lstlisting}
  6331. not (10 + -(12 + 20))
  6332. \end{lstlisting}
  6333. \fi}
  6334. The subexpression
  6335. \racket{\code{(+ 10 (- (+ 12 20)))}}\python{\code{(10 + -(12 + 20))}}
  6336. has type \INTTY{} but the type checker enforces the rule that the argument of
  6337. \code{not} must be an expression of type \BOOLTY{}.
  6338. We implement type checking using classes and methods because they
  6339. provide the open recursion needed to reuse code as we extend the type
  6340. checker in later chapters, analogous to the use of classes and methods
  6341. for the interpreters (Section~\ref{sec:extensible-interp}).
  6342. We separate the type checker for the \LangVar{} subset into its own
  6343. class, shown in Figure~\ref{fig:type-check-Lvar}. The type checker for
  6344. \LangIf{} is shown in Figure~\ref{fig:type-check-Lif} and it inherits
  6345. from the type checker for \LangVar{}. These type checkers are in the
  6346. files
  6347. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  6348. and
  6349. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  6350. of the support code.
  6351. %
  6352. Each type checker is a structurally recursive function over the AST.
  6353. Given an input expression \code{e}, the type checker either signals an
  6354. error or returns \racket{an expression and} its type (\INTTY{} or
  6355. \BOOLTY{}).
  6356. %
  6357. \racket{It returns an expression because there are situations in which
  6358. we want to change or update the expression.}
  6359. Next we discuss the \code{type\_check\_exp} function of \LangVar{} in
  6360. Figure~\ref{fig:type-check-Lvar}. The type of an integer constant is
  6361. \INTTY{}. To handle variables, the type checker uses the environment
  6362. \code{env} to map variables to types.
  6363. %
  6364. \racket{Consider the case for \key{let}. We type check the
  6365. initializing expression to obtain its type \key{T} and then
  6366. associate type \code{T} with the variable \code{x} in the
  6367. environment used to type check the body of the \key{let}. Thus,
  6368. when the type checker encounters a use of variable \code{x}, it can
  6369. find its type in the environment.}
  6370. %
  6371. \python{Consider the case for assignment. We type check the
  6372. initializing expression to obtain its type \key{t}. If the variable
  6373. \code{lhs.id} is already in the environment because there was a
  6374. prior assignment, we check that this initializer has the same type
  6375. as the prior one. If this is the first assignment to the variable,
  6376. we associate type \code{t} with the variable \code{lhs.id} in the
  6377. environment. Thus, when the type checker encounters a use of
  6378. variable \code{x}, it can find its type in the environment.}
  6379. %
  6380. \racket{Regarding primitive operators, we recursively analyze the
  6381. arguments and then invoke \code{type\_check\_op} to check whether
  6382. the argument types are allowed.}
  6383. %
  6384. \python{Regarding addition, subtraction, and negation, we recursively analyze the
  6385. arguments, check that they have type \INTTY{}, and return \INTTY{}.}
  6386. \racket{Several auxiliary methods are used in the type checker. The
  6387. method \code{operator-types} defines a dictionary that maps the
  6388. operator names to their parameter and return types. The
  6389. \code{type-equal?} method determines whether two types are equal,
  6390. which for now simply dispatches to \code{equal?} (deep
  6391. equality). The \code{check-type-equal?} method triggers an error if
  6392. the two types are not equal. The \code{type-check-op} method looks
  6393. up the operator in the \code{operator-types} dictionary and then
  6394. checks whether the argument types are equal to the parameter types.
  6395. The result is the return type of the operator.}
  6396. %
  6397. \python{The auxiliary method \code{check\_type\_equal} triggers
  6398. an error if the two types are not equal.}
  6399. \begin{figure}[tbp]
  6400. {\if\edition\racketEd
  6401. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6402. (define type-check-Lvar_class
  6403. (class object%
  6404. (super-new)
  6405. (define/public (operator-types)
  6406. '((+ . ((Integer Integer) . Integer))
  6407. (- . ((Integer) . Integer))
  6408. (read . (() . Integer))))
  6409. (define/public (type-equal? t1 t2) (equal? t1 t2))
  6410. (define/public (check-type-equal? t1 t2 e)
  6411. (unless (type-equal? t1 t2)
  6412. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  6413. (define/public (type-check-op op arg-types e)
  6414. (match (dict-ref (operator-types) op)
  6415. [`(,param-types . ,return-type)
  6416. (for ([at arg-types] [pt param-types])
  6417. (check-type-equal? at pt e))
  6418. return-type]
  6419. [else (error 'type-check-op "unrecognized ~a" op)]))
  6420. (define/public (type-check-exp env)
  6421. (lambda (e)
  6422. (match e
  6423. [(Int n) (values (Int n) 'Integer)]
  6424. [(Var x) (values (Var x) (dict-ref env x))]
  6425. [(Let x e body)
  6426. (define-values (e^ Te) ((type-check-exp env) e))
  6427. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  6428. (values (Let x e^ b) Tb)]
  6429. [(Prim op es)
  6430. (define-values (new-es ts)
  6431. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  6432. (values (Prim op new-es) (type-check-op op ts e))]
  6433. [else (error 'type-check-exp "couldn't match" e)])))
  6434. (define/public (type-check-program e)
  6435. (match e
  6436. [(Program info body)
  6437. (define-values (body^ Tb) ((type-check-exp '()) body))
  6438. (check-type-equal? Tb 'Integer body)
  6439. (Program info body^)]
  6440. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  6441. ))
  6442. (define (type-check-Lvar p)
  6443. (send (new type-check-Lvar_class) type-check-program p))
  6444. \end{lstlisting}
  6445. \fi}
  6446. {\if\edition\pythonEd
  6447. \begin{lstlisting}[escapechar=`]
  6448. class TypeCheckLvar:
  6449. def check_type_equal(self, t1, t2, e):
  6450. if t1 != t2:
  6451. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  6452. raise Exception(msg)
  6453. def type_check_exp(self, e, env):
  6454. match e:
  6455. case BinOp(left, (Add() | Sub()), right):
  6456. l = self.type_check_exp(left, env)
  6457. check_type_equal(l, int, left)
  6458. r = self.type_check_exp(right, env)
  6459. check_type_equal(r, int, right)
  6460. return int
  6461. case UnaryOp(USub(), v):
  6462. t = self.type_check_exp(v, env)
  6463. check_type_equal(t, int, v)
  6464. return int
  6465. case Name(id):
  6466. return env[id]
  6467. case Constant(value) if isinstance(value, int):
  6468. return int
  6469. case Call(Name('input_int'), []):
  6470. return int
  6471. def type_check_stmts(self, ss, env):
  6472. if len(ss) == 0:
  6473. return
  6474. match ss[0]:
  6475. case Assign([lhs], value):
  6476. t = self.type_check_exp(value, env)
  6477. if lhs.id in env:
  6478. check_type_equal(env[lhs.id], t, value)
  6479. else:
  6480. env[lhs.id] = t
  6481. return self.type_check_stmts(ss[1:], env)
  6482. case Expr(Call(Name('print'), [arg])):
  6483. t = self.type_check_exp(arg, env)
  6484. check_type_equal(t, int, arg)
  6485. return self.type_check_stmts(ss[1:], env)
  6486. case Expr(value):
  6487. self.type_check_exp(value, env)
  6488. return self.type_check_stmts(ss[1:], env)
  6489. def type_check_P(self, p):
  6490. match p:
  6491. case Module(body):
  6492. self.type_check_stmts(body, {})
  6493. \end{lstlisting}
  6494. \fi}
  6495. \caption{Type checker for the \LangVar{} language.}
  6496. \label{fig:type-check-Lvar}
  6497. \end{figure}
  6498. \begin{figure}[tbp]
  6499. {\if\edition\racketEd
  6500. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6501. (define type-check-Lif_class
  6502. (class type-check-Lvar_class
  6503. (super-new)
  6504. (inherit check-type-equal?)
  6505. (define/override (operator-types)
  6506. (append '((- . ((Integer Integer) . Integer))
  6507. (and . ((Boolean Boolean) . Boolean))
  6508. (or . ((Boolean Boolean) . Boolean))
  6509. (< . ((Integer Integer) . Boolean))
  6510. (<= . ((Integer Integer) . Boolean))
  6511. (> . ((Integer Integer) . Boolean))
  6512. (>= . ((Integer Integer) . Boolean))
  6513. (not . ((Boolean) . Boolean))
  6514. )
  6515. (super operator-types)))
  6516. (define/override (type-check-exp env)
  6517. (lambda (e)
  6518. (match e
  6519. [(Bool b) (values (Bool b) 'Boolean)]
  6520. [(Prim 'eq? (list e1 e2))
  6521. (define-values (e1^ T1) ((type-check-exp env) e1))
  6522. (define-values (e2^ T2) ((type-check-exp env) e2))
  6523. (check-type-equal? T1 T2 e)
  6524. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  6525. [(If cnd thn els)
  6526. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  6527. (define-values (thn^ Tt) ((type-check-exp env) thn))
  6528. (define-values (els^ Te) ((type-check-exp env) els))
  6529. (check-type-equal? Tc 'Boolean e)
  6530. (check-type-equal? Tt Te e)
  6531. (values (If cnd^ thn^ els^) Te)]
  6532. [else ((super type-check-exp env) e)])))
  6533. ))
  6534. (define (type-check-Lif p)
  6535. (send (new type-check-Lif_class) type-check-program p))
  6536. \end{lstlisting}
  6537. \fi}
  6538. {\if\edition\pythonEd
  6539. \begin{lstlisting}
  6540. class TypeCheckLif(TypeCheckLvar):
  6541. def type_check_exp(self, e, env):
  6542. match e:
  6543. case Constant(value) if isinstance(value, bool):
  6544. return bool
  6545. case BinOp(left, Sub(), right):
  6546. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6547. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6548. return int
  6549. case UnaryOp(Not(), v):
  6550. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  6551. return bool
  6552. case BoolOp(op, values):
  6553. left = values[0] ; right = values[1]
  6554. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  6555. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  6556. return bool
  6557. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  6558. or isinstance(cmp, NotEq):
  6559. l = self.type_check_exp(left, env)
  6560. r = self.type_check_exp(right, env)
  6561. check_type_equal(l, r, e)
  6562. return bool
  6563. case Compare(left, [cmp], [right]):
  6564. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6565. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6566. return bool
  6567. case IfExp(test, body, orelse):
  6568. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6569. b = self.type_check_exp(body, env)
  6570. o = self.type_check_exp(orelse, env)
  6571. check_type_equal(b, o, e)
  6572. return b
  6573. case _:
  6574. return super().type_check_exp(e, env)
  6575. def type_check_stmts(self, ss, env):
  6576. if len(ss) == 0:
  6577. return
  6578. match ss[0]:
  6579. case If(test, body, orelse):
  6580. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6581. b = self.type_check_stmts(body, env)
  6582. o = self.type_check_stmts(orelse, env)
  6583. check_type_equal(b, o, ss[0])
  6584. return self.type_check_stmts(ss[1:], env)
  6585. case _:
  6586. return super().type_check_stmts(ss, env)
  6587. \end{lstlisting}
  6588. \fi}
  6589. \caption{Type checker for the \LangIf{} language.}
  6590. \label{fig:type-check-Lif}
  6591. \end{figure}
  6592. We shift our focus to Figure~\ref{fig:type-check-Lif}, the type
  6593. checker for \LangIf{}.
  6594. %
  6595. The type of a Boolean constant is \BOOLTY{}.
  6596. %
  6597. \racket{The \code{operator-types} function adds dictionary entries for
  6598. the other new operators.}
  6599. %
  6600. \python{Logical not requires its argument to be a \BOOLTY{} and
  6601. produces a \BOOLTY{}. Similarly for logical and and logical or. }
  6602. %
  6603. The equality operators require the two arguments to have the same
  6604. type.
  6605. %
  6606. \python{The other comparisons (less-than, etc.) require their
  6607. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  6608. %
  6609. The condition of an \code{if} must
  6610. be of \BOOLTY{} type and the two branches must have the same type.
  6611. \begin{exercise}\normalfont
  6612. Create 10 new test programs in \LangIf{}. Half of the programs should
  6613. have a type error. For those programs, create an empty file with the
  6614. same base name but with file extension \code{.tyerr}. For example, if
  6615. the test
  6616. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  6617. is expected to error, then create
  6618. an empty file named \code{cond\_test\_14.tyerr}.
  6619. %
  6620. \racket{This indicates to \code{interp-tests} and
  6621. \code{compiler-tests} that a type error is expected. }
  6622. %
  6623. The other half of the test programs should not have type errors.
  6624. %
  6625. \racket{In the \code{run-tests.rkt} script, change the second argument
  6626. of \code{interp-tests} and \code{compiler-tests} to
  6627. \code{type-check-Lif}, which causes the type checker to run prior to
  6628. the compiler passes. Temporarily change the \code{passes} to an
  6629. empty list and run the script, thereby checking that the new test
  6630. programs either type check or not as intended.}
  6631. %
  6632. Run the test script to check that these test programs type check as
  6633. expected.
  6634. \end{exercise}
  6635. \clearpage
  6636. \section{The \LangCIf{} Intermediate Language}
  6637. \label{sec:Cif}
  6638. {\if\edition\racketEd
  6639. %
  6640. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  6641. \LangCIf{} intermediate language and Figure~\ref{fig:c1-syntax}
  6642. defines its abstract syntax. Compared to \LangCVar{}, the \LangCIf{}
  6643. language adds logical and comparison operators to the \Exp{}
  6644. non-terminal and the literals \TRUE{} and \FALSE{} to the \Arg{}
  6645. non-terminal.
  6646. Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
  6647. statements to the \Tail{} non-terminal. The condition of an \code{if}
  6648. statement is a comparison operation and the branches are \code{goto}
  6649. statements, making it straightforward to compile \code{if} statements
  6650. to x86.
  6651. %
  6652. \fi}
  6653. %
  6654. {\if\edition\pythonEd
  6655. %
  6656. The output of \key{explicate\_control} is a language similar to the
  6657. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  6658. \code{goto} statements, so we name it \LangCIf{}. The
  6659. concrete syntax for \LangCIf{} is defined in
  6660. Figure~\ref{fig:c1-concrete-syntax}
  6661. and the abstract syntax is defined in Figure~\ref{fig:c1-syntax}.
  6662. %
  6663. The \LangCIf{} language supports the same operators as \LangIf{} but
  6664. the arguments of operators are restricted to atomic expressions. The
  6665. \LangCIf{} language does not include \code{if} expressions but it does
  6666. include a restricted form of \code{if} statment. The condition must be
  6667. a comparison and the two branches may only contain \code{goto}
  6668. statements. These restrictions make it easier to translate \code{if}
  6669. statements to x86.
  6670. %
  6671. \fi}
  6672. %
  6673. Besides the \code{goto} statement, \LangCIf{}, also adds a
  6674. \code{return} statement to finish a function call with a specified value.
  6675. %
  6676. The \key{CProgram} construct contains
  6677. %
  6678. \racket{an alist}\python{a dictionary}
  6679. %
  6680. mapping labels to
  6681. \racket{$\Tail$ expressions, which can be \code{return} statements,
  6682. an assignment statement followed by a $\Tail$ expression, a
  6683. \code{goto}, or a conditional \code{goto}.}
  6684. \python{lists of statements, which comprise of assignment statements
  6685. and end in a \code{return} statement, a \code{goto}, or a
  6686. conditional \code{goto}.
  6687. \index{subject}{basic block}
  6688. Statement lists of this form are called
  6689. \emph{basic blocks}: there is a control transfer at the end and
  6690. control only enters at the beginning of the list, which is marked by
  6691. the label. }
  6692. \newcommand{\CifGrammarRacket}{
  6693. \begin{array}{lcl}
  6694. \Atm &::=& \itm{bool} \\
  6695. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6696. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  6697. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  6698. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  6699. \end{array}
  6700. }
  6701. \newcommand{\CifASTRacket}{
  6702. \begin{array}{lcl}
  6703. \Atm &::=& \BOOL{\itm{bool}} \\
  6704. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6705. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  6706. \Tail &::= & \GOTO{\itm{label}} \\
  6707. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  6708. \end{array}
  6709. }
  6710. \newcommand{\CifGrammarPython}{
  6711. \begin{array}{lcl}
  6712. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  6713. \Exp &::= & \Atm \MID \CREAD{}
  6714. \MID \CBINOP{\itm{binaryop}}{\Atm}{\Atm}
  6715. \MID \CUNIOP{\itm{unaryop}}{\Atm} \\
  6716. &\MID& \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  6717. \Stmt &::=& \CPRINT{\Exp} \MID \Exp \\
  6718. &\MID& \CASSIGN{\Var}{\Exp}
  6719. \MID \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  6720. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  6721. \end{array}
  6722. }
  6723. \newcommand{\CifASTPython}{
  6724. \begin{array}{lcl}
  6725. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  6726. \Exp &::= & \Atm \MID \READ{} \\
  6727. &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  6728. \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  6729. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  6730. \Stmt &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  6731. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  6732. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  6733. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  6734. \end{array}
  6735. }
  6736. \begin{figure}[tbp]
  6737. \fbox{
  6738. \begin{minipage}{0.96\textwidth}
  6739. \small
  6740. {\if\edition\racketEd
  6741. \[
  6742. \begin{array}{l}
  6743. \gray{\CvarGrammarRacket} \\ \hline
  6744. \CifGrammarRacket \\
  6745. \begin{array}{lcl}
  6746. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  6747. \end{array}
  6748. \end{array}
  6749. \]
  6750. \fi}
  6751. {\if\edition\pythonEd
  6752. \[
  6753. \begin{array}{l}
  6754. \CifGrammarPython \\
  6755. \begin{array}{lcl}
  6756. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}) \ldots
  6757. \end{array}
  6758. \end{array}
  6759. \]
  6760. \fi}
  6761. \end{minipage}
  6762. }
  6763. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  6764. \label{fig:c1-concrete-syntax}
  6765. \end{figure}
  6766. \begin{figure}[tp]
  6767. \fbox{
  6768. \begin{minipage}{0.96\textwidth}
  6769. \small
  6770. {\if\edition\racketEd
  6771. \[
  6772. \begin{array}{l}
  6773. \gray{\CvarASTRacket} \\ \hline
  6774. \CifASTRacket \\
  6775. \begin{array}{lcl}
  6776. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  6777. \end{array}
  6778. \end{array}
  6779. \]
  6780. \fi}
  6781. {\if\edition\pythonEd
  6782. \[
  6783. \begin{array}{l}
  6784. \CifASTPython \\
  6785. \begin{array}{lcl}
  6786. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  6787. \end{array}
  6788. \end{array}
  6789. \]
  6790. \fi}
  6791. \end{minipage}
  6792. }
  6793. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  6794. (Figure~\ref{fig:c0-syntax})}.}
  6795. \label{fig:c1-syntax}
  6796. \end{figure}
  6797. \section{The \LangXIf{} Language}
  6798. \label{sec:x86-if}
  6799. \index{subject}{x86} To implement the new logical operations, the comparison
  6800. operations, and the \key{if} expression\python{ and statement}, we need to delve further into
  6801. the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
  6802. define the concrete and abstract syntax for the \LangXIf{} subset
  6803. of x86, which includes instructions for logical operations,
  6804. comparisons, and \racket{conditional} jumps.
  6805. One challenge is that x86 does not provide an instruction that
  6806. directly implements logical negation (\code{not} in \LangIf{} and
  6807. \LangCIf{}). However, the \code{xorq} instruction can be used to
  6808. encode \code{not}. The \key{xorq} instruction takes two arguments,
  6809. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  6810. bit of its arguments, and writes the results into its second argument.
  6811. Recall the truth table for exclusive-or:
  6812. \begin{center}
  6813. \begin{tabular}{l|cc}
  6814. & 0 & 1 \\ \hline
  6815. 0 & 0 & 1 \\
  6816. 1 & 1 & 0
  6817. \end{tabular}
  6818. \end{center}
  6819. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  6820. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  6821. for the bit $1$, the result is the opposite of the second bit. Thus,
  6822. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  6823. the first argument as follows, where $\Arg$ is the translation of
  6824. $\Atm$.
  6825. \[
  6826. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  6827. \qquad\Rightarrow\qquad
  6828. \begin{array}{l}
  6829. \key{movq}~ \Arg\key{,} \Var\\
  6830. \key{xorq}~ \key{\$1,} \Var
  6831. \end{array}
  6832. \]
  6833. \begin{figure}[tp]
  6834. \fbox{
  6835. \begin{minipage}{0.96\textwidth}
  6836. \[
  6837. \begin{array}{lcl}
  6838. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6839. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6840. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} } \MID \key{\%}\itm{bytereg}\\
  6841. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6842. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \MID
  6843. \key{subq} \; \Arg\key{,} \Arg \MID
  6844. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID } \\
  6845. && \gray{ \key{callq} \; \itm{label} \MID
  6846. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \racket{\key{jmp}\,\itm{label} \MID} } \python{\key{jmp}\,\itm{label} \MID} \\
  6847. && \racket{\gray{ \itm{label}\key{:}\; \Instr }}\python{\itm{label}\key{:}\; \Instr}
  6848. \MID \key{xorq}~\Arg\key{,}~\Arg
  6849. \MID \key{cmpq}~\Arg\key{,}~\Arg \MID \\
  6850. && \key{set}cc~\Arg
  6851. \MID \key{movzbq}~\Arg\key{,}~\Arg
  6852. \MID \key{j}cc~\itm{label}
  6853. \\
  6854. \LangXIfM{} &::= & \gray{ \key{.globl main} }\\
  6855. & & \gray{ \key{main:} \; \Instr\ldots }
  6856. \end{array}
  6857. \]
  6858. \end{minipage}
  6859. }
  6860. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  6861. \label{fig:x86-1-concrete}
  6862. \end{figure}
  6863. \begin{figure}[tp]
  6864. \fbox{
  6865. \begin{minipage}{0.98\textwidth}
  6866. \small
  6867. {\if\edition\racketEd
  6868. \[
  6869. \begin{array}{lcl}
  6870. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6871. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6872. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6873. \MID \BYTEREG{\itm{bytereg}} \\
  6874. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6875. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6876. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6877. &\MID& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  6878. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6879. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6880. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} } \\
  6881. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6882. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6883. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6884. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6885. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}} \\
  6886. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  6887. \LangXIfM{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  6888. \end{array}
  6889. \]
  6890. \fi}
  6891. %
  6892. {\if\edition\pythonEd
  6893. \[
  6894. \begin{array}{lcl}
  6895. \itm{bytereg} &::=& \skey{ah} \MID \skey{al} \MID \skey{bh} \MID \skey{bl}
  6896. \MID \skey{ch} \MID \skey{cl} \MID \skey{dh} \MID \skey{dl} \\
  6897. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6898. \MID \BYTEREG{\itm{bytereg}} \\
  6899. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6900. \Instr &::=& \gray{ \BININSTR{\scode{addq}}{\Arg}{\Arg}
  6901. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} } \\
  6902. &\MID& \gray{ \BININSTR{\scode{movq}}{\Arg}{\Arg}
  6903. \MID \UNIINSTR{\scode{negq}}{\Arg} } \\
  6904. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6905. \MID \PUSHQ{\Arg}} \\
  6906. &\MID& \gray{ \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  6907. &\MID& \BININSTR{\scode{xorq}}{\Arg}{\Arg}
  6908. \MID \BININSTR{\scode{cmpq}}{\Arg}{\Arg}\\
  6909. &\MID& \BININSTR{\scode{set}}{\itm{cc}}{\Arg}
  6910. \MID \BININSTR{\scode{movzbq}}{\Arg}{\Arg}\\
  6911. &\MID& \JMPIF{\key{'}\itm{cc}\key{'}}{\itm{label}} \\
  6912. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Instr^{*} \key{,} \ldots \RC }
  6913. \end{array}
  6914. \]
  6915. \fi}
  6916. \end{minipage}
  6917. }
  6918. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  6919. \label{fig:x86-1}
  6920. \end{figure}
  6921. Next we consider the x86 instructions that are relevant for compiling
  6922. the comparison operations. The \key{cmpq} instruction compares its two
  6923. arguments to determine whether one argument is less than, equal, or
  6924. greater than the other argument. The \key{cmpq} instruction is unusual
  6925. regarding the order of its arguments and where the result is
  6926. placed. The argument order is backwards: if you want to test whether
  6927. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  6928. \key{cmpq} is placed in the special EFLAGS register. This register
  6929. cannot be accessed directly but it can be queried by a number of
  6930. instructions, including the \key{set} instruction. The instruction
  6931. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  6932. depending on whether the comparison comes out according to the
  6933. condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
  6934. for less-or-equal, \key{g} for greater, \key{ge} for
  6935. greater-or-equal). The \key{set} instruction has a quirk in
  6936. that its destination argument must be single byte register, such as
  6937. \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
  6938. are part of the \code{rax} register. Thankfully, the \key{movzbq}
  6939. instruction can be used to move from a single byte register to a
  6940. normal 64-bit register. The abstract syntax for the \code{set}
  6941. instruction differs from the concrete syntax in that it separates the
  6942. instruction name from the condition code.
  6943. \python{The x86 instructions for jumping are relevant to the
  6944. compilation of \key{if} expressions.}
  6945. %
  6946. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  6947. counter to the address of the instruction after the specified
  6948. label.}
  6949. %
  6950. \racket{The x86 instruction for conditional jump is relevant to the
  6951. compilation of \key{if} expressions.}
  6952. %
  6953. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  6954. counter to point to the instruction after \itm{label} depending on
  6955. whether the result in the EFLAGS register matches the condition code
  6956. \itm{cc}, otherwise the jump instruction falls through to the next
  6957. instruction. Like the abstract syntax for \code{set}, the abstract
  6958. syntax for conditional jump separates the instruction name from the
  6959. condition code. For example, \JMPIF{\key{'le'}}{\key{foo}} corresponds
  6960. to \code{jle foo}. Because the conditional jump instruction relies on
  6961. the EFLAGS register, it is common for it to be immediately preceded by
  6962. a \key{cmpq} instruction to set the EFLAGS register.
  6963. \section{Shrink the \LangIf{} Language}
  6964. \label{sec:shrink-Lif}
  6965. The \LangIf{} language includes several features that are easily
  6966. expressible with other features. For example, \code{and} and \code{or}
  6967. are expressible using \code{if} as follows.
  6968. \begin{align*}
  6969. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  6970. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  6971. \end{align*}
  6972. By performing these translations in the front-end of the compiler,
  6973. subsequent passes of the compiler do not need to deal with these features,
  6974. making the passes shorter.
  6975. %% For example, subtraction is
  6976. %% expressible using addition and negation.
  6977. %% \[
  6978. %% \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  6979. %% \]
  6980. %% Several of the comparison operations are expressible using less-than
  6981. %% and logical negation.
  6982. %% \[
  6983. %% \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  6984. %% \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  6985. %% \]
  6986. %% The \key{let} is needed in the above translation to ensure that
  6987. %% expression $e_1$ is evaluated before $e_2$.
  6988. On the other hand, sometimes translations reduce the efficiency of the
  6989. generated code by increasing the number of instructions. For example,
  6990. expressing subtraction in terms of negation
  6991. \[
  6992. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  6993. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  6994. \]
  6995. produces code with two x86 instructions (\code{negq} and \code{addq})
  6996. instead of just one (\code{subq}).
  6997. %% However,
  6998. %% these differences typically do not affect the number of accesses to
  6999. %% memory, which is the primary factor that determines execution time on
  7000. %% modern computer architectures.
  7001. \begin{exercise}\normalfont
  7002. %
  7003. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  7004. the language by translating them to \code{if} expressions in \LangIf{}.
  7005. %
  7006. Create four test programs that involve these operators.
  7007. %
  7008. {\if\edition\racketEd
  7009. In the \code{run-tests.rkt} script, add the following entry for
  7010. \code{shrink} to the list of passes (it should be the only pass at
  7011. this point).
  7012. \begin{lstlisting}
  7013. (list "shrink" shrink interp_Lif type-check-Lif)
  7014. \end{lstlisting}
  7015. This instructs \code{interp-tests} to run the intepreter
  7016. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  7017. output of \code{shrink}.
  7018. \fi}
  7019. %
  7020. Run the script to test your compiler on all the test programs.
  7021. \end{exercise}
  7022. {\if\edition\racketEd
  7023. \section{Uniquify Variables}
  7024. \label{sec:uniquify-Lif}
  7025. Add cases to \code{uniquify-exp} to handle Boolean constants and
  7026. \code{if} expressions.
  7027. \begin{exercise}\normalfont
  7028. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  7029. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  7030. \begin{lstlisting}
  7031. (list "uniquify" uniquify interp_Lif type_check_Lif)
  7032. \end{lstlisting}
  7033. Run the script to test your compiler.
  7034. \end{exercise}
  7035. \fi}
  7036. \section{Remove Complex Operands}
  7037. \label{sec:remove-complex-opera-Lif}
  7038. The output language of \code{remove\_complex\_operands} is
  7039. \LangIfANF{} (Figure~\ref{fig:Lif-anf-syntax}), the administrative
  7040. normal form of \LangIf{}. A Boolean constant is an atomic expressions
  7041. but the \code{if} expression is not. All three sub-expressions of an
  7042. \code{if} are allowed to be complex expressions but the operands of
  7043. \code{not} and the comparisons must be atomic.
  7044. %
  7045. \python{We add a new language form, the \code{Let} expression, to aid
  7046. in the translation of \code{if} expressions. When we recursively
  7047. process the two branches of the \code{if}, we generate temporary
  7048. variables and their initializing expressions. However, these
  7049. expressions may contain side effects and should only be executed
  7050. when the condition of the \code{if} is true (for the ``then''
  7051. branch) or false (for the ``else'' branch). The \code{Let} provides
  7052. a way to initialize the temporary variables within the two branches
  7053. of the \code{if} expression. In general, the $\LET{x}{e_1}{e_2}$
  7054. form assigns the result of $e_1$ to the variable $x$, and then
  7055. evaluates $e_2$, which may reference $x$.}
  7056. Add cases for Boolean constants, \python{comparisons,} and \code{if}
  7057. expressions to the \code{rco\_exp} and \code{rco\_atom} functions
  7058. according to whether the output needs to be \Exp{} or \Atm{} as
  7059. specified in the grammar for \LangIfANF{}. Regarding \code{if}, it is
  7060. particularly important to \textbf{not} replace its condition with a
  7061. temporary variable because that would interfere with the generation of
  7062. high-quality output in the \code{explicate\_control} pass.
  7063. \newcommand{\LifASTMonadPython}{
  7064. \begin{array}{rcl}
  7065. %% \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  7066. %% \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7067. %% \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  7068. %% \itm{bool} &::=& \code{True} \MID \code{False} \\
  7069. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  7070. \Exp &::=& \Atm \MID \READ{} \\
  7071. &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm} \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  7072. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  7073. &\MID& \LET{\Var}{\Exp}{\Exp}\\
  7074. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  7075. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}\\
  7076. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  7077. \end{array}
  7078. }
  7079. \begin{figure}[tp]
  7080. \centering
  7081. \fbox{
  7082. \begin{minipage}{0.96\textwidth}
  7083. {\if\edition\racketEd
  7084. \[
  7085. \begin{array}{rcl}
  7086. Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} } \MID \BOOL{\itm{bool}}\\
  7087. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  7088. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  7089. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  7090. &\MID& \UNIOP{\key{not}}{\Atm} \\
  7091. &\MID& \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  7092. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  7093. \end{array}
  7094. \]
  7095. \fi}
  7096. {\if\edition\pythonEd
  7097. \[
  7098. \begin{array}{l}
  7099. \LifASTMonadPython \\
  7100. % \begin{array}{rcl}
  7101. % \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  7102. % \end{array}
  7103. \end{array}
  7104. \]
  7105. \fi}
  7106. \end{minipage}
  7107. }
  7108. \caption{\LangIfANF{} is \LangIf{} in monadic normal form.}
  7109. \label{fig:Lif-anf-syntax}
  7110. \end{figure}
  7111. \begin{exercise}\normalfont
  7112. %
  7113. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  7114. and \code{rco\_exp} functions in \code{compiler.rkt}.
  7115. %
  7116. Create three new \LangIf{} programs that exercise the interesting
  7117. code in this pass.
  7118. %
  7119. {\if\edition\racketEd
  7120. In the \code{run-tests.rkt} script, add the following entry to the
  7121. list of \code{passes} and then run the script to test your compiler.
  7122. \begin{lstlisting}
  7123. (list "remove-complex" remove-complex-opera* interp-Lif type-check-Lif)
  7124. \end{lstlisting}
  7125. \fi}
  7126. \end{exercise}
  7127. \section{Explicate Control}
  7128. \label{sec:explicate-control-Lif}
  7129. \racket{Recall that the purpose of \code{explicate\_control} is to
  7130. make the order of evaluation explicit in the syntax of the program.
  7131. With the addition of \key{if} this get more interesting.}
  7132. %
  7133. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  7134. %
  7135. The main challenge to overcome is that the condition of an \key{if}
  7136. can be an arbitrary expression in \LangIf{} whereas in \LangCIf{} the
  7137. condition must be a comparison.
  7138. As a motivating example, consider the following program that has an
  7139. \key{if} expression nested in the condition of another \key{if}.%
  7140. \python{\footnote{Programmers rarely write nested \code{if}
  7141. expressions, but it is not uncommon for the condition of an
  7142. \code{if} statement to be a call of a function that also contains an
  7143. \code{if} statement. When such a function is inlined, the result is
  7144. a nested \code{if} that requires the techniques discussed in this
  7145. section.}}
  7146. % cond_test_41.rkt, if_lt_eq.py
  7147. \begin{center}
  7148. \begin{minipage}{0.96\textwidth}
  7149. {\if\edition\racketEd
  7150. \begin{lstlisting}
  7151. (let ([x (read)])
  7152. (let ([y (read)])
  7153. (if (if (< x 1) (eq? x 0) (eq? x 2))
  7154. (+ y 2)
  7155. (+ y 10))))
  7156. \end{lstlisting}
  7157. \fi}
  7158. {\if\edition\pythonEd
  7159. \begin{lstlisting}
  7160. x = input_int()
  7161. y = input_int()
  7162. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  7163. \end{lstlisting}
  7164. \fi}
  7165. \end{minipage}
  7166. \end{center}
  7167. %
  7168. The naive way to compile \key{if} and the comparison operations would
  7169. be to handle each of them in isolation, regardless of their context.
  7170. Each comparison would be translated into a \key{cmpq} instruction
  7171. followed by several instructions to move the result from the EFLAGS
  7172. register into a general purpose register or stack location. Each
  7173. \key{if} would be translated into a \key{cmpq} instruction followed by
  7174. a conditional jump. The generated code for the inner \key{if} in the
  7175. above example would be as follows.
  7176. \begin{center}
  7177. \begin{minipage}{0.96\textwidth}
  7178. \begin{lstlisting}
  7179. cmpq $1, x
  7180. setl %al
  7181. movzbq %al, tmp
  7182. cmpq $1, tmp
  7183. je then_branch_1
  7184. jmp else_branch_1
  7185. \end{lstlisting}
  7186. \end{minipage}
  7187. \end{center}
  7188. However, if we take context into account we can do better and reduce
  7189. the use of \key{cmpq} instructions for accessing the EFLAG register.
  7190. Our goal will be to compile \key{if} expressions so that the relevant
  7191. comparison instruction appears directly before the conditional jump.
  7192. For example, we want to generate the following code for the inner
  7193. \code{if}.
  7194. \begin{center}
  7195. \begin{minipage}{0.96\textwidth}
  7196. \begin{lstlisting}
  7197. cmpq $1, x
  7198. jl then_branch_1
  7199. jmp else_branch_1
  7200. \end{lstlisting}
  7201. \end{minipage}
  7202. \end{center}
  7203. One way to achieve this goal is to reorganize the code at the level of
  7204. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  7205. the following code.
  7206. \begin{center}
  7207. \begin{minipage}{0.96\textwidth}
  7208. {\if\edition\racketEd
  7209. \begin{lstlisting}
  7210. (let ([x (read)])
  7211. (let ([y (read)])
  7212. (if (< x 1)
  7213. (if (eq? x 0)
  7214. (+ y 2)
  7215. (+ y 10))
  7216. (if (eq? x 2)
  7217. (+ y 2)
  7218. (+ y 10)))))
  7219. \end{lstlisting}
  7220. \fi}
  7221. {\if\edition\pythonEd
  7222. \begin{lstlisting}
  7223. x = input_int()
  7224. y = intput_int()
  7225. print(((y + 2) if x == 0 else (y + 10)) \
  7226. if (x < 1) \
  7227. else ((y + 2) if (x == 2) else (y + 10)))
  7228. \end{lstlisting}
  7229. \fi}
  7230. \end{minipage}
  7231. \end{center}
  7232. Unfortunately, this approach duplicates the two branches from the
  7233. outer \code{if} and a compiler must never duplicate code! After all,
  7234. the two branches could have been very large expressions.
  7235. We need a way to perform the above transformation but without
  7236. duplicating code. That is, we need a way for different parts of a
  7237. program to refer to the same piece of code.
  7238. %
  7239. Put another way, we need to move away from abstract syntax
  7240. \emph{trees} and instead use \emph{graphs}.
  7241. %
  7242. At the level of x86 assembly this is straightforward because we can
  7243. label the code for each branch and insert jumps in all the places that
  7244. need to execute the branch.
  7245. %
  7246. Likewise, our language \LangCIf{} provides the ability to label a
  7247. sequence of code and to jump to a label via \code{goto}.
  7248. %
  7249. %% In particular, we use a standard program representation called a
  7250. %% \emph{control flow graph} (CFG), due to Frances Elizabeth
  7251. %% \citet{Allen:1970uq}. \index{subject}{control-flow graph} Each vertex
  7252. %% is a labeled sequence of code, called a \emph{basic block}, and each
  7253. %% edge represents a jump to another block.
  7254. %
  7255. %% The nice thing about the output of \code{explicate\_control} is that
  7256. %% there are no unnecessary comparisons and every comparison is part of a
  7257. %% conditional jump.
  7258. %% The down-side of this output is that it includes
  7259. %% trivial blocks, such as the blocks labeled \code{block92} through
  7260. %% \code{block95}, that only jump to another block. We discuss a solution
  7261. %% to this problem in Section~\ref{sec:opt-jumps}.
  7262. {\if\edition\racketEd
  7263. %
  7264. Recall that in Section~\ref{sec:explicate-control-Lvar} we implement
  7265. \code{explicate\_control} for \LangVar{} using two mutually recursive
  7266. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  7267. former function translates expressions in tail position whereas the
  7268. later function translates expressions on the right-hand-side of a
  7269. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  7270. have a new kind of position to deal with: the predicate position of
  7271. the \key{if}. We need another function, \code{explicate\_pred}, that
  7272. decides how to compile an \key{if} by analyzing its predicate. So
  7273. \code{explicate\_pred} takes an \LangIf{} expression and two \LangCIf{}
  7274. tails for the then-branch and else-branch and outputs a tail. In the
  7275. following paragraphs we discuss specific cases in the
  7276. \code{explicate\_tail}, \code{explicate\_assign}, and
  7277. \code{explicate\_pred} functions.
  7278. %
  7279. \fi}
  7280. %
  7281. {\if\edition\pythonEd
  7282. %
  7283. We recommend implementing \code{explicate\_control} using the
  7284. following four auxiliary functions.
  7285. \begin{description}
  7286. \item[\code{explicate\_effect}] generates code for expressions as
  7287. statements, so their result is ignored and only their side effects
  7288. matter.
  7289. \item[\code{explicate\_assign}] generates code for expressions
  7290. on the right-hand side of an assignment.
  7291. \item[\code{explicate\_pred}] generates code for an \code{if}
  7292. expression or statement by analyzing the condition expression.
  7293. \item[\code{explicate\_stmt}] generates code for statements.
  7294. \end{description}
  7295. These four functions should build the dictionary of basic blocks. The
  7296. following auxiliary function can be used to create a new basic block
  7297. from a list of statements. It returns a \code{goto} statement that
  7298. jumps to the new basic block.
  7299. \begin{center}
  7300. \begin{minipage}{\textwidth}
  7301. \begin{lstlisting}
  7302. def create_block(stmts, basic_blocks):
  7303. label = label_name(generate_name('block'))
  7304. basic_blocks[label] = stmts
  7305. return Goto(label)
  7306. \end{lstlisting}
  7307. \end{minipage}
  7308. \end{center}
  7309. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  7310. \code{explicate\_control} pass.
  7311. The \code{explicate\_effect} function has three parameters: 1) the
  7312. expression to be compiled, 2) the already-compiled code for this
  7313. expression's \emph{continuation}, that is, the list of statements that
  7314. should execute after this expression, and 3) the dictionary of
  7315. generated basic blocks. The \code{explicate\_effect} function returns
  7316. a list of \LangCIf{} statements and it may add to the dictionary of
  7317. basic blocks.
  7318. %
  7319. Let's consider a few of the cases for the expression to be compiled.
  7320. If the expression to be compiled is a constant, then it can be
  7321. discarded because it has no side effects. If it's a \CREAD{}, then it
  7322. has a side-effect and should be preserved. So the expression should be
  7323. translated into a statement using the \code{Expr} AST class. If the
  7324. expression to be compiled is an \code{if} expression, we translate the
  7325. two branches using \code{explicate\_effect} and then translate the
  7326. condition expression using \code{explicate\_pred}, which generates
  7327. code for the entire \code{if}.
  7328. The \code{explicate\_assign} function has four parameters: 1) the
  7329. right-hand-side of the assignment, 2) the left-hand-side of the
  7330. assignment (the variable), 3) the continuation, and 4) the dictionary
  7331. of basic blocks. The \code{explicate\_assign} function returns a list
  7332. of \LangCIf{} statements and it may add to the dictionary of basic
  7333. blocks.
  7334. When the right-hand-side is an \code{if} expression, there is some
  7335. work to do. In particular, the two branches should be translated using
  7336. \code{explicate\_assign} and the condition expression should be
  7337. translated using \code{explicate\_pred}. Otherwise we can simply
  7338. generate an assignment statement, with the given left and right-hand
  7339. sides, concatenated with its continuation.
  7340. \begin{figure}[tbp]
  7341. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7342. def explicate_effect(e, cont, basic_blocks):
  7343. match e:
  7344. case IfExp(test, body, orelse):
  7345. ...
  7346. case Call(func, args):
  7347. ...
  7348. case Let(var, rhs, body):
  7349. ...
  7350. case _:
  7351. ...
  7352. def explicate_assign(rhs, lhs, cont, basic_blocks):
  7353. match rhs:
  7354. case IfExp(test, body, orelse):
  7355. ...
  7356. case Let(var, rhs, body):
  7357. ...
  7358. case _:
  7359. return [Assign([lhs], rhs)] + cont
  7360. def explicate_pred(cnd, thn, els, basic_blocks):
  7361. match cnd:
  7362. case Compare(left, [op], [right]):
  7363. goto_thn = create_block(thn, basic_blocks)
  7364. goto_els = create_block(els, basic_blocks)
  7365. return [If(cnd, [goto_thn], [goto_els])]
  7366. case Constant(True):
  7367. return thn;
  7368. case Constant(False):
  7369. return els;
  7370. case UnaryOp(Not(), operand):
  7371. ...
  7372. case IfExp(test, body, orelse):
  7373. ...
  7374. case Let(var, rhs, body):
  7375. ...
  7376. case _:
  7377. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  7378. [create_block(els, basic_blocks)],
  7379. [create_block(thn, basic_blocks)])]
  7380. def explicate_stmt(s, cont, basic_blocks):
  7381. match s:
  7382. case Assign([lhs], rhs):
  7383. return explicate_assign(rhs, lhs, cont, basic_blocks)
  7384. case Expr(value):
  7385. return explicate_effect(value, cont, basic_blocks)
  7386. case If(test, body, orelse):
  7387. ...
  7388. def explicate_control(p):
  7389. match p:
  7390. case Module(body):
  7391. new_body = [Return(Constant(0))]
  7392. basic_blocks = {}
  7393. for s in reversed(body):
  7394. new_body = explicate_stmt(s, new_body, basic_blocks)
  7395. basic_blocks[label_name('start')] = new_body
  7396. return CProgram(basic_blocks)
  7397. \end{lstlisting}
  7398. \caption{Skeleton for the \code{explicate\_control} pass.}
  7399. \label{fig:explicate-control-Lif}
  7400. \end{figure}
  7401. \fi}
  7402. {\if\edition\racketEd
  7403. %
  7404. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  7405. additional cases for Boolean constants and \key{if}. The cases for
  7406. \code{if} should recursively compile the two branches using either
  7407. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  7408. cases should then invoke \code{explicate\_pred} on the condition
  7409. expression, passing in the generated code for the two branches. For
  7410. example, consider the following program with an \code{if} in tail
  7411. position.
  7412. \begin{lstlisting}
  7413. (let ([x (read)])
  7414. (if (eq? x 0) 42 777))
  7415. \end{lstlisting}
  7416. The two branches are recursively compiled to \code{return 42;} and
  7417. \code{return 777;}. We then delegate to \code{explicate\_pred},
  7418. passing the condition \code{(eq? x 0)} and the two return statements, which is
  7419. used as the result for \code{explicate\_tail}.
  7420. Next let us consider a program with an \code{if} on the right-hand
  7421. side of a \code{let}.
  7422. \begin{lstlisting}
  7423. (let ([y (read)])
  7424. (let ([x (if (eq? y 0) 40 777)])
  7425. (+ x 2)))
  7426. \end{lstlisting}
  7427. Note that the body of the inner \code{let} will have already been
  7428. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  7429. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  7430. to recursively process both branches of the \code{if}, so we generate
  7431. the following block using an auxiliary function named \code{create\_block}.
  7432. \begin{lstlisting}
  7433. block_6:
  7434. return (+ x 2)
  7435. \end{lstlisting}
  7436. and use \code{goto block\_6;} as the \code{cont} argument for
  7437. compiling the branches. So the two branches compile to
  7438. \begin{lstlisting}
  7439. x = 40;
  7440. goto block_6;
  7441. \end{lstlisting}
  7442. and
  7443. \begin{lstlisting}
  7444. x = 777;
  7445. goto block_6;
  7446. \end{lstlisting}
  7447. We then delegate to \code{explicate\_pred}, passing the condition \code{(eq? y
  7448. 0)} and the above code for the branches.
  7449. \fi}
  7450. {\if\edition\racketEd
  7451. \begin{figure}[tbp]
  7452. \begin{lstlisting}
  7453. (define (explicate_pred cnd thn els)
  7454. (match cnd
  7455. [(Var x) ___]
  7456. [(Let x rhs body) ___]
  7457. [(Prim 'not (list e)) ___]
  7458. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  7459. (IfStmt (Prim op es) (create_block thn)
  7460. (create_block els))]
  7461. [(Bool b) (if b thn els)]
  7462. [(If cnd^ thn^ els^) ___]
  7463. [else (error "explicate_pred unhandled case" cnd)]))
  7464. \end{lstlisting}
  7465. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  7466. \label{fig:explicate-pred}
  7467. \end{figure}
  7468. \fi}
  7469. \racket{The skeleton for the \code{explicate\_pred} function is given
  7470. in Figure~\ref{fig:explicate-pred}. It takes three parameters:
  7471. 1) \code{cnd}, the condition expression of the \code{if},
  7472. 2) \code{thn}, the code generated by explicate for the ``then'' branch,
  7473. and 3) \code{els}, the code generated by
  7474. explicate for the ``else'' branch. The \code{explicate\_pred}
  7475. function should match on \code{cnd} with a case for
  7476. every kind of expression that can have type \code{Boolean}.}
  7477. %
  7478. \python{The \code{explicate\_pred} function has four parameters: 1)
  7479. the condition expression, 2) the generated statements for the
  7480. ``then'' branch, 3) the generated statements for the ``else''
  7481. branch, and 4) the dictionary of basic blocks. The
  7482. \code{explicate\_pred} function returns a list of \LangCIf{}
  7483. statements and it may add to the dictionary of basic blocks.}
  7484. Consider the case for comparison operators. We translate the
  7485. comparison to an \code{if} statement whose branches are \code{goto}
  7486. statements created by applying \code{create\_block} to the code
  7487. generated for the \code{thn} and \code{els} branches. Let us
  7488. illustrate this translation with an example. Returning
  7489. to the program with an \code{if} expression in tail position,
  7490. we invoke \code{explicate\_pred} on its condition
  7491. \racket{\code{(eq? x 0)}}
  7492. \python{\code{x == 0}}
  7493. which happens to be a comparison operator.
  7494. {\if\edition\racketEd
  7495. \begin{lstlisting}
  7496. (let ([x (read)])
  7497. (if (eq? x 0) 42 777))
  7498. \end{lstlisting}
  7499. \fi}
  7500. {\if\edition\pythonEd
  7501. \begin{lstlisting}
  7502. x = input_int()
  7503. 42 if x == 0 else 777
  7504. \end{lstlisting}
  7505. \fi}
  7506. The two branches \code{42} and \code{777} were already compiled to \code{return}
  7507. statements, from which we now create the following blocks.
  7508. \begin{center}
  7509. \begin{minipage}{\textwidth}
  7510. \begin{lstlisting}
  7511. block_1:
  7512. return 42;
  7513. block_2:
  7514. return 777;
  7515. \end{lstlisting}
  7516. \end{minipage}
  7517. \end{center}
  7518. %
  7519. So \code{explicate\_pred} compiles the comparison
  7520. \racket{\code{(eq? x 0)}}
  7521. \python{\code{x == 0}}
  7522. to the following \code{if} statement.
  7523. %
  7524. {\if\edition\racketEd
  7525. \begin{center}
  7526. \begin{minipage}{\textwidth}
  7527. \begin{lstlisting}
  7528. if (eq? x 0)
  7529. goto block_1;
  7530. else
  7531. goto block_2;
  7532. \end{lstlisting}
  7533. \end{minipage}
  7534. \end{center}
  7535. \fi}
  7536. {\if\edition\pythonEd
  7537. \begin{center}
  7538. \begin{minipage}{\textwidth}
  7539. \begin{lstlisting}
  7540. if x == 0:
  7541. goto block_1;
  7542. else
  7543. goto block_2;
  7544. \end{lstlisting}
  7545. \end{minipage}
  7546. \end{center}
  7547. \fi}
  7548. Next consider the case for Boolean constants. We perform a kind of
  7549. partial evaluation\index{subject}{partial evaluation} and output
  7550. either the \code{thn} or \code{els} branch depending on whether the
  7551. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  7552. following program.
  7553. {\if\edition\racketEd
  7554. \begin{center}
  7555. \begin{minipage}{\textwidth}
  7556. \begin{lstlisting}
  7557. (if #t 42 777)
  7558. \end{lstlisting}
  7559. \end{minipage}
  7560. \end{center}
  7561. \fi}
  7562. {\if\edition\pythonEd
  7563. \begin{center}
  7564. \begin{minipage}{\textwidth}
  7565. \begin{lstlisting}
  7566. 42 if True else 777
  7567. \end{lstlisting}
  7568. \end{minipage}
  7569. \end{center}
  7570. \fi}
  7571. %
  7572. Again, the two branches \code{42} and \code{777} were compiled to
  7573. \code{return} statements, so \code{explicate\_pred} compiles the
  7574. constant
  7575. \racket{\code{\#t}}
  7576. \python{\code{True}}
  7577. to the code for the ``then'' branch.
  7578. \begin{center}
  7579. \begin{minipage}{\textwidth}
  7580. \begin{lstlisting}
  7581. return 42;
  7582. \end{lstlisting}
  7583. \end{minipage}
  7584. \end{center}
  7585. %
  7586. This case demonstrates that we sometimes discard the \code{thn} or
  7587. \code{els} blocks that are input to \code{explicate\_pred}.
  7588. The case for \key{if} expressions in \code{explicate\_pred} is
  7589. particularly illuminating because it deals with the challenges we
  7590. discussed above regarding nested \key{if} expressions
  7591. (Figure~\ref{fig:explicate-control-s1-38}). The
  7592. \racket{\lstinline{thn^}}\python{\code{body}} and
  7593. \racket{\lstinline{els^}}\python{\code{orelse}} branches of the
  7594. \key{if} inherit their context from the current one, that is,
  7595. predicate context. So you should recursively apply
  7596. \code{explicate\_pred} to the
  7597. \racket{\lstinline{thn^}}\python{\code{body}} and
  7598. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  7599. those recursive calls, pass \code{thn} and \code{els} as the extra
  7600. parameters. Thus, \code{thn} and \code{els} may get used twice, once
  7601. inside each recursive call. As discussed above, to avoid duplicating
  7602. code, we need to add them to the dictionary of basic blocks so that we
  7603. can instead refer to them by name and execute them with a \key{goto}.
  7604. {\if\edition\pythonEd
  7605. %
  7606. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  7607. three parameters: 1) the statement to be compiled, 2) the code for its
  7608. continuation, and 3) the dictionary of basic blocks. The
  7609. \code{explicate\_stmt} returns a list of statements and it may add to
  7610. the dictionary of basic blocks. The cases for assignment and an
  7611. expression-statement are given in full in the skeleton code: they
  7612. simply dispatch to \code{explicate\_assign} and
  7613. \code{explicate\_effect}, respectively. The case for \code{if}
  7614. statements is not given, and is similar to the case for \code{if}
  7615. expressions.
  7616. The \code{explicate\_control} function itself is given in
  7617. Figure~\ref{fig:explicate-control-Lif}. It applies
  7618. \code{explicate\_stmt} to each statement in the program, from back to
  7619. front. Thus, the result so-far, stored in \code{new\_body}, can be
  7620. used as the continuation parameter in the next call to
  7621. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  7622. \code{Return} statement. Once complete, we add the \code{new\_body} to
  7623. the dictionary of basic blocks, labeling it as the ``start'' block.
  7624. %
  7625. \fi}
  7626. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  7627. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  7628. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  7629. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  7630. %% results from the two recursive calls. We complete the case for
  7631. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  7632. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  7633. %% the result $B_5$.
  7634. %% \[
  7635. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  7636. %% \quad\Rightarrow\quad
  7637. %% B_5
  7638. %% \]
  7639. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  7640. %% inherit the current context, so they are in tail position. Thus, the
  7641. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  7642. %% \code{explicate\_tail}.
  7643. %% %
  7644. %% We need to pass $B_0$ as the accumulator argument for both of these
  7645. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  7646. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  7647. %% to the control-flow graph and obtain a promised goto $G_0$.
  7648. %% %
  7649. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  7650. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  7651. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  7652. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  7653. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  7654. %% \[
  7655. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  7656. %% \]
  7657. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  7658. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  7659. %% should not be confused with the labels for the blocks that appear in
  7660. %% the generated code. We initially construct unlabeled blocks; we only
  7661. %% attach labels to blocks when we add them to the control-flow graph, as
  7662. %% we see in the next case.
  7663. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  7664. %% function. The context of the \key{if} is an assignment to some
  7665. %% variable $x$ and then the control continues to some promised block
  7666. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  7667. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  7668. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  7669. %% branches of the \key{if} inherit the current context, so they are in
  7670. %% assignment positions. Let $B_2$ be the result of applying
  7671. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  7672. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  7673. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  7674. %% the result of applying \code{explicate\_pred} to the predicate
  7675. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  7676. %% translates to the promise $B_4$.
  7677. %% \[
  7678. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  7679. %% \]
  7680. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  7681. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  7682. \code{remove\_complex\_operands} pass and then the
  7683. \code{explicate\_control} pass on the example program. We walk through
  7684. the output program.
  7685. %
  7686. Following the order of evaluation in the output of
  7687. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  7688. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  7689. in the predicate of the inner \key{if}. In the output of
  7690. \code{explicate\_control}, in the
  7691. block labeled \code{start}, are two assignment statements followed by a
  7692. \code{if} statement that branches to \code{block\_8} or
  7693. \code{block\_9}. The blocks associated with those labels contain the
  7694. translations of the code
  7695. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7696. and
  7697. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  7698. respectively. In particular, we start \code{block\_8} with the
  7699. comparison
  7700. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7701. and then branch to \code{block\_4} or \code{block\_5}.
  7702. Here was see that our algorithm sometimes inserts unnecessary blocks:
  7703. \code{block\_4} is just a \code{goto} to \code{block\_2}
  7704. and \code{block\_5} is just a \code{goto} to \code{block\_3}.
  7705. It would be better to skip blocks \code{block\_4} and \code{block\_5}
  7706. and go directly to \code{block\_2} and \code{block\_3},
  7707. which we investigate in Section~\ref{sec:opt-jumps}.
  7708. Getting back to the example, \code{block\_2} and \code{block\_3},
  7709. corresponds to the two branches of the outer \key{if}, i.e.,
  7710. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  7711. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  7712. %
  7713. The story for \code{block\_9} is similar to that of \code{block\_8}.
  7714. %
  7715. \python{The \code{block\_1} corresponds to the \code{print} statment
  7716. at the end of the program.}
  7717. \begin{figure}[tbp]
  7718. {\if\edition\racketEd
  7719. \begin{tabular}{lll}
  7720. \begin{minipage}{0.4\textwidth}
  7721. % cond_test_41.rkt
  7722. \begin{lstlisting}
  7723. (let ([x (read)])
  7724. (let ([y (read)])
  7725. (if (if (< x 1)
  7726. (eq? x 0)
  7727. (eq? x 2))
  7728. (+ y 2)
  7729. (+ y 10))))
  7730. \end{lstlisting}
  7731. \end{minipage}
  7732. &
  7733. $\Rightarrow$
  7734. &
  7735. \begin{minipage}{0.55\textwidth}
  7736. \begin{lstlisting}
  7737. start:
  7738. x = (read);
  7739. y = (read);
  7740. if (< x 1)
  7741. goto block_8;
  7742. else
  7743. goto block_9;
  7744. block_8:
  7745. if (eq? x 0)
  7746. goto block_4;
  7747. else
  7748. goto block_5;
  7749. block_9:
  7750. if (eq? x 2)
  7751. goto block_6;
  7752. else
  7753. goto block_7;
  7754. block_4:
  7755. goto block_2;
  7756. block_5:
  7757. goto block_3;
  7758. block_6:
  7759. goto block_2;
  7760. block_7:
  7761. goto block_3;
  7762. block_2:
  7763. return (+ y 2);
  7764. block_3:
  7765. return (+ y 10);
  7766. \end{lstlisting}
  7767. \end{minipage}
  7768. \end{tabular}
  7769. \fi}
  7770. {\if\edition\pythonEd
  7771. \begin{tabular}{lll}
  7772. \begin{minipage}{0.4\textwidth}
  7773. % cond_test_41.rkt
  7774. \begin{lstlisting}
  7775. x = input_int()
  7776. y = input_int()
  7777. print(y + 2 \
  7778. if (x == 0 \
  7779. if x < 1 \
  7780. else x == 2) \
  7781. else y + 10)
  7782. \end{lstlisting}
  7783. \end{minipage}
  7784. &
  7785. $\Rightarrow$
  7786. &
  7787. \begin{minipage}{0.55\textwidth}
  7788. \begin{lstlisting}
  7789. start:
  7790. x = input_int()
  7791. y = input_int()
  7792. if x < 1:
  7793. goto block_8
  7794. else:
  7795. goto block_9
  7796. block_8:
  7797. if x == 0:
  7798. goto block_4
  7799. else:
  7800. goto block_5
  7801. block_9:
  7802. if x == 2:
  7803. goto block_6
  7804. else:
  7805. goto block_7
  7806. block_4:
  7807. goto block_2
  7808. block_5:
  7809. goto block_3
  7810. block_6:
  7811. goto block_2
  7812. block_7:
  7813. goto block_3
  7814. block_2:
  7815. tmp_0 = y + 2
  7816. goto block_1
  7817. block_3:
  7818. tmp_0 = y + 10
  7819. goto block_1
  7820. block_1:
  7821. print(tmp_0)
  7822. return 0
  7823. \end{lstlisting}
  7824. \end{minipage}
  7825. \end{tabular}
  7826. \fi}
  7827. \caption{Translation from \LangIf{} to \LangCIf{}
  7828. via the \code{explicate\_control}.}
  7829. \label{fig:explicate-control-s1-38}
  7830. \end{figure}
  7831. {\if\edition\racketEd
  7832. The way in which the \code{shrink} pass transforms logical operations
  7833. such as \code{and} and \code{or} can impact the quality of code
  7834. generated by \code{explicate\_control}. For example, consider the
  7835. following program.
  7836. % cond_test_21.rkt, and_eq_input.py
  7837. \begin{lstlisting}
  7838. (if (and (eq? (read) 0) (eq? (read) 1))
  7839. 0
  7840. 42)
  7841. \end{lstlisting}
  7842. The \code{and} operation should transform into something that the
  7843. \code{explicate\_pred} function can still analyze and descend through to
  7844. reach the underlying \code{eq?} conditions. Ideally, your
  7845. \code{explicate\_control} pass should generate code similar to the
  7846. following for the above program.
  7847. \begin{center}
  7848. \begin{lstlisting}
  7849. start:
  7850. tmp1 = (read);
  7851. if (eq? tmp1 0) goto block40;
  7852. else goto block39;
  7853. block40:
  7854. tmp2 = (read);
  7855. if (eq? tmp2 1) goto block38;
  7856. else goto block39;
  7857. block38:
  7858. return 0;
  7859. block39:
  7860. return 42;
  7861. \end{lstlisting}
  7862. \end{center}
  7863. \fi}
  7864. \begin{exercise}\normalfont
  7865. \racket{
  7866. Implement the pass \code{explicate\_control} by adding the cases for
  7867. Boolean constants and \key{if} to the \code{explicate\_tail} and
  7868. \code{explicate\_assign} functions. Implement the auxiliary function
  7869. \code{explicate\_pred} for predicate contexts.}
  7870. \python{Implement \code{explicate\_control} pass with its
  7871. four auxiliary functions.}
  7872. %
  7873. Create test cases that exercise all of the new cases in the code for
  7874. this pass.
  7875. %
  7876. {\if\edition\racketEd
  7877. Add the following entry to the list of \code{passes} in
  7878. \code{run-tests.rkt} and then run this script to test your compiler.
  7879. \begin{lstlisting}
  7880. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  7881. \end{lstlisting}
  7882. \fi}
  7883. \end{exercise}
  7884. \clearpage
  7885. \section{Select Instructions}
  7886. \label{sec:select-Lif}
  7887. \index{subject}{instruction selection}
  7888. The \code{select\_instructions} pass translates \LangCIf{} to
  7889. \LangXIfVar{}.
  7890. %
  7891. \racket{Recall that we implement this pass using three auxiliary
  7892. functions, one for each of the non-terminals $\Atm$, $\Stmt$, and
  7893. $\Tail$.}
  7894. %
  7895. \racket{For $\Atm$, we have new cases for the Booleans.}
  7896. %
  7897. \python{We begin with the Boolean constants.}
  7898. We take the usual approach of encoding them as integers.
  7899. \[
  7900. \TRUE{} \quad\Rightarrow\quad \key{1}
  7901. \qquad\qquad
  7902. \FALSE{} \quad\Rightarrow\quad \key{0}
  7903. \]
  7904. For translating statements, we discuss a selection of cases. The \code{not}
  7905. operation can be implemented in terms of \code{xorq} as we discussed
  7906. at the beginning of this section. Given an assignment, if the
  7907. left-hand side variable is the same as the argument of \code{not},
  7908. then just the \code{xorq} instruction suffices.
  7909. \[
  7910. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  7911. \quad\Rightarrow\quad
  7912. \key{xorq}~\key{\$}1\key{,}~\Var
  7913. \]
  7914. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  7915. semantics of x86. In the following translation, let $\Arg$ be the
  7916. result of translating $\Atm$ to x86.
  7917. \[
  7918. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  7919. \quad\Rightarrow\quad
  7920. \begin{array}{l}
  7921. \key{movq}~\Arg\key{,}~\Var\\
  7922. \key{xorq}~\key{\$}1\key{,}~\Var
  7923. \end{array}
  7924. \]
  7925. Next consider the cases for equality. Translating this operation to
  7926. x86 is slightly involved due to the unusual nature of the \key{cmpq}
  7927. instruction discussed above. We recommend translating an assignment
  7928. with an equality on the right-hand side into a sequence of three
  7929. instructions. \\
  7930. \begin{tabular}{lll}
  7931. \begin{minipage}{0.4\textwidth}
  7932. \begin{lstlisting}
  7933. |$\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$|
  7934. \end{lstlisting}
  7935. \end{minipage}
  7936. &
  7937. $\Rightarrow$
  7938. &
  7939. \begin{minipage}{0.4\textwidth}
  7940. \begin{lstlisting}
  7941. cmpq |$\Arg_2$|, |$\Arg_1$|
  7942. sete %al
  7943. movzbq %al, |$\Var$|
  7944. \end{lstlisting}
  7945. \end{minipage}
  7946. \end{tabular} \\
  7947. The translations for the other comparison operators are similar to the
  7948. above but use different suffixes for the \code{set} instruction.
  7949. \racket{Regarding the $\Tail$ non-terminal, we have two new cases:
  7950. \key{goto} and \key{if} statements. Both are straightforward to
  7951. translate to x86.}
  7952. %
  7953. A \key{goto} statement becomes a jump instruction.
  7954. \[
  7955. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  7956. \]
  7957. %
  7958. An \key{if} statement becomes a compare instruction followed by a
  7959. conditional jump (for the ``then'' branch) and the fall-through is to
  7960. a regular jump (for the ``else'' branch).\\
  7961. \begin{tabular}{lll}
  7962. \begin{minipage}{0.4\textwidth}
  7963. \begin{lstlisting}
  7964. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  7965. goto |$\ell_1$||$\racket{\key{;}}$|
  7966. else|$\python{\key{:}}$|
  7967. goto |$\ell_2$||$\racket{\key{;}}$|
  7968. \end{lstlisting}
  7969. \end{minipage}
  7970. &
  7971. $\Rightarrow$
  7972. &
  7973. \begin{minipage}{0.4\textwidth}
  7974. \begin{lstlisting}
  7975. cmpq |$\Arg_2$|, |$\Arg_1$|
  7976. je |$\ell_1$|
  7977. jmp |$\ell_2$|
  7978. \end{lstlisting}
  7979. \end{minipage}
  7980. \end{tabular} \\
  7981. Again, the translations for the other comparison operators are similar to the
  7982. above but use different suffixes for the conditional jump instruction.
  7983. \python{Regarding the \key{return} statement, we recommend treating it
  7984. as an assignment to the \key{rax} register followed by a jump to the
  7985. conclusion of the \code{main} function.}
  7986. \begin{exercise}\normalfont
  7987. Expand your \code{select\_instructions} pass to handle the new
  7988. features of the \LangIf{} language.
  7989. %
  7990. {\if\edition\racketEd
  7991. Add the following entry to the list of \code{passes} in
  7992. \code{run-tests.rkt}
  7993. \begin{lstlisting}
  7994. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  7995. \end{lstlisting}
  7996. \fi}
  7997. %
  7998. Run the script to test your compiler on all the test programs.
  7999. \end{exercise}
  8000. \section{Register Allocation}
  8001. \label{sec:register-allocation-Lif}
  8002. \index{subject}{register allocation}
  8003. The changes required for \LangIf{} affect liveness analysis, building the
  8004. interference graph, and assigning homes, but the graph coloring
  8005. algorithm itself does not change.
  8006. \subsection{Liveness Analysis}
  8007. \label{sec:liveness-analysis-Lif}
  8008. \index{subject}{liveness analysis}
  8009. Recall that for \LangVar{} we implemented liveness analysis for a
  8010. single basic block (Section~\ref{sec:liveness-analysis-Lvar}). With
  8011. the addition of \key{if} expressions to \LangIf{},
  8012. \code{explicate\_control} produces many basic blocks.
  8013. %% We recommend that you create a new auxiliary function named
  8014. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  8015. %% control-flow graph.
  8016. The first question is: in what order should we process the basic blocks?
  8017. Recall that to perform liveness analysis on a basic block we need to
  8018. know the live-after set for the last instruction in the block. If a
  8019. basic block has no successors (i.e. contains no jumps to other
  8020. blocks), then it has an empty live-after set and we can immediately
  8021. apply liveness analysis to it. If a basic block has some successors,
  8022. then we need to complete liveness analysis on those blocks
  8023. first. These ordering contraints are the reverse of a
  8024. \emph{topological order}\index{subject}{topological order} on a graph
  8025. representation of the program. In particular, the \emph{control flow
  8026. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  8027. of a program has a node for each basic block and an edge for each jump
  8028. from one block to another. It is straightforward to generate a CFG
  8029. from the dictionary of basic blocks. One then transposes the CFG and
  8030. applies the topological sort algorithm.
  8031. %
  8032. %
  8033. \racket{We recommend using the \code{tsort} and \code{transpose}
  8034. functions of the Racket \code{graph} package to accomplish this.}
  8035. %
  8036. \python{We provide implementations of \code{topological\_sort} and
  8037. \code{transpose} in the file \code{graph.py} of the support code.}
  8038. %
  8039. As an aside, a topological ordering is only guaranteed to exist if the
  8040. graph does not contain any cycles. This is the case for the
  8041. control-flow graphs that we generate from \LangIf{} programs.
  8042. However, in Chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  8043. and learn how to handle cycles in the control-flow graph.
  8044. \racket{You'll need to construct a directed graph to represent the
  8045. control-flow graph. Do not use the \code{directed-graph} of the
  8046. \code{graph} package because that only allows at most one edge
  8047. between each pair of vertices, but a control-flow graph may have
  8048. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  8049. file in the support code implements a graph representation that
  8050. allows multiple edges between a pair of vertices.}
  8051. {\if\edition\racketEd
  8052. The next question is how to analyze jump instructions. Recall that in
  8053. Section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  8054. \code{label->live} that maps each label to the set of live locations
  8055. at the beginning of its block. We use \code{label->live} to determine
  8056. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  8057. that we have many basic blocks, \code{label->live} needs to be updated
  8058. as we process the blocks. In particular, after performing liveness
  8059. analysis on a block, we take the live-before set of its first
  8060. instruction and associate that with the block's label in the
  8061. \code{label->live}.
  8062. \fi}
  8063. %
  8064. {\if\edition\pythonEd
  8065. %
  8066. The next question is how to analyze jump instructions. The locations
  8067. that are live before a \code{jmp} should be the locations in
  8068. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  8069. maintaining a dictionary named \code{live\_before\_block} that maps each
  8070. label to the $L_{\mathtt{before}}$ for the first instruction in its
  8071. block. After performing liveness analysis on each block, we take the
  8072. live-before set of its first instruction and associate that with the
  8073. block's label in the \code{live\_before\_block} dictionary.
  8074. %
  8075. \fi}
  8076. In \LangXIfVar{} we also have the conditional jump
  8077. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  8078. this instruction is particularly interesting because, during
  8079. compilation, we do not know which way a conditional jump will go. So
  8080. we do not know whether to use the live-before set for the following
  8081. instruction or the live-before set for the block associated with the
  8082. $\itm{label}$. However, there is no harm to the correctness of the
  8083. generated code if we classify more locations as live than the ones
  8084. that are truly live during one particular execution of the
  8085. instruction. Thus, we can take the union of the live-before sets from
  8086. the following instruction and from the mapping for $\itm{label}$ in
  8087. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  8088. The auxiliary functions for computing the variables in an
  8089. instruction's argument and for computing the variables read-from ($R$)
  8090. or written-to ($W$) by an instruction need to be updated to handle the
  8091. new kinds of arguments and instructions in \LangXIfVar{}.
  8092. \begin{exercise}\normalfont
  8093. {\if\edition\racketEd
  8094. %
  8095. Update the \code{uncover\_live} pass to apply liveness analysis to
  8096. every basic block in the program.
  8097. %
  8098. Add the following entry to the list of \code{passes} in the
  8099. \code{run-tests.rkt} script.
  8100. \begin{lstlisting}
  8101. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  8102. \end{lstlisting}
  8103. \fi}
  8104. {\if\edition\pythonEd
  8105. %
  8106. Update the \code{uncover\_live} function to perform liveness analysis,
  8107. in reverse topological order, on all of the basic blocks in the
  8108. program.
  8109. %
  8110. \fi}
  8111. % Check that the live-after sets that you generate for
  8112. % example X matches the following... -Jeremy
  8113. \end{exercise}
  8114. \subsection{Build the Interference Graph}
  8115. \label{sec:build-interference-Lif}
  8116. Many of the new instructions in \LangXIfVar{} can be handled in the
  8117. same way as the instructions in \LangXVar{}.
  8118. % Thus, if your code was
  8119. % already quite general, it will not need to be changed to handle the
  8120. % new instructions. If your code is not general enough, we recommend that
  8121. % you change your code to be more general. For example, you can factor
  8122. % out the computing of the the read and write sets for each kind of
  8123. % instruction into auxiliary functions.
  8124. %
  8125. Some instructions, e.g., the \key{movzbq} instruction, require special care,
  8126. similar to the \key{movq} instruction. See rule number 1 in
  8127. Section~\ref{sec:build-interference}.
  8128. \begin{exercise}\normalfont
  8129. Update the \code{build\_interference} pass for \LangXIfVar{}.
  8130. {\if\edition\racketEd
  8131. Add the following entries to the list of \code{passes} in the
  8132. \code{run-tests.rkt} script.
  8133. \begin{lstlisting}
  8134. (list "build_interference" build_interference interp-pseudo-x86-1)
  8135. (list "allocate_registers" allocate_registers interp-x86-1)
  8136. \end{lstlisting}
  8137. \fi}
  8138. % Check that the interference graph that you generate for
  8139. % example X matches the following graph G... -Jeremy
  8140. \end{exercise}
  8141. \section{Patch Instructions}
  8142. The new instructions \key{cmpq} and \key{movzbq} have some special
  8143. restrictions that need to be handled in the \code{patch\_instructions}
  8144. pass.
  8145. %
  8146. The second argument of the \key{cmpq} instruction must not be an
  8147. immediate value (such as an integer). So if you are comparing two
  8148. immediates, we recommend inserting a \key{movq} instruction to put the
  8149. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  8150. one memory reference.
  8151. %
  8152. The second argument of the \key{movzbq} must be a register.
  8153. \begin{exercise}\normalfont
  8154. %
  8155. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  8156. %
  8157. {\if\edition\racketEd
  8158. Add the following entry to the list of \code{passes} in
  8159. \code{run-tests.rkt} and then run this script to test your compiler.
  8160. \begin{lstlisting}
  8161. (list "patch_instructions" patch_instructions interp-x86-1)
  8162. \end{lstlisting}
  8163. \fi}
  8164. \end{exercise}
  8165. {\if\edition\pythonEd
  8166. \section{Prelude and Conclusion}
  8167. \label{sec:prelude-conclusion-cond}
  8168. The generation of the \code{main} function with its prelude and
  8169. conclusion must change to accomodate how the program now consists of
  8170. one or more basic blocks. After the prelude in \code{main}, jump to
  8171. the \code{start} block. Place the conclusion in a basic block labelled
  8172. with \code{conclusion}.
  8173. \fi}
  8174. Figure~\ref{fig:if-example-x86} shows a simple example program in
  8175. \LangIf{} translated to x86, showing the results of
  8176. \code{explicate\_control}, \code{select\_instructions}, and the final
  8177. x86 assembly.
  8178. \begin{figure}[tbp]
  8179. {\if\edition\racketEd
  8180. \begin{tabular}{lll}
  8181. \begin{minipage}{0.4\textwidth}
  8182. % cond_test_20.rkt, eq_input.py
  8183. \begin{lstlisting}
  8184. (if (eq? (read) 1) 42 0)
  8185. \end{lstlisting}
  8186. $\Downarrow$
  8187. \begin{lstlisting}
  8188. start:
  8189. tmp7951 = (read);
  8190. if (eq? tmp7951 1)
  8191. goto block7952;
  8192. else
  8193. goto block7953;
  8194. block7952:
  8195. return 42;
  8196. block7953:
  8197. return 0;
  8198. \end{lstlisting}
  8199. $\Downarrow$
  8200. \begin{lstlisting}
  8201. start:
  8202. callq read_int
  8203. movq %rax, tmp7951
  8204. cmpq $1, tmp7951
  8205. je block7952
  8206. jmp block7953
  8207. block7953:
  8208. movq $0, %rax
  8209. jmp conclusion
  8210. block7952:
  8211. movq $42, %rax
  8212. jmp conclusion
  8213. \end{lstlisting}
  8214. \end{minipage}
  8215. &
  8216. $\Rightarrow\qquad$
  8217. \begin{minipage}{0.4\textwidth}
  8218. \begin{lstlisting}
  8219. start:
  8220. callq read_int
  8221. movq %rax, %rcx
  8222. cmpq $1, %rcx
  8223. je block7952
  8224. jmp block7953
  8225. block7953:
  8226. movq $0, %rax
  8227. jmp conclusion
  8228. block7952:
  8229. movq $42, %rax
  8230. jmp conclusion
  8231. .globl main
  8232. main:
  8233. pushq %rbp
  8234. movq %rsp, %rbp
  8235. pushq %r13
  8236. pushq %r12
  8237. pushq %rbx
  8238. pushq %r14
  8239. subq $0, %rsp
  8240. jmp start
  8241. conclusion:
  8242. addq $0, %rsp
  8243. popq %r14
  8244. popq %rbx
  8245. popq %r12
  8246. popq %r13
  8247. popq %rbp
  8248. retq
  8249. \end{lstlisting}
  8250. \end{minipage}
  8251. \end{tabular}
  8252. \fi}
  8253. {\if\edition\pythonEd
  8254. \begin{tabular}{lll}
  8255. \begin{minipage}{0.4\textwidth}
  8256. % cond_test_20.rkt, eq_input.py
  8257. \begin{lstlisting}
  8258. print(42 if input_int() == 1 else 0)
  8259. \end{lstlisting}
  8260. $\Downarrow$
  8261. \begin{lstlisting}
  8262. start:
  8263. tmp_0 = input_int()
  8264. if tmp_0 == 1:
  8265. goto block_3
  8266. else:
  8267. goto block_4
  8268. block_3:
  8269. tmp_1 = 42
  8270. goto block_2
  8271. block_4:
  8272. tmp_1 = 0
  8273. goto block_2
  8274. block_2:
  8275. print(tmp_1)
  8276. return 0
  8277. \end{lstlisting}
  8278. $\Downarrow$
  8279. \begin{lstlisting}
  8280. start:
  8281. callq read_int
  8282. movq %rax, tmp_0
  8283. cmpq 1, tmp_0
  8284. je block_3
  8285. jmp block_4
  8286. block_3:
  8287. movq 42, tmp_1
  8288. jmp block_2
  8289. block_4:
  8290. movq 0, tmp_1
  8291. jmp block_2
  8292. block_2:
  8293. movq tmp_1, %rdi
  8294. callq print_int
  8295. movq 0, %rax
  8296. jmp conclusion
  8297. \end{lstlisting}
  8298. \end{minipage}
  8299. &
  8300. $\Rightarrow\qquad$
  8301. \begin{minipage}{0.4\textwidth}
  8302. \begin{lstlisting}
  8303. .globl main
  8304. main:
  8305. pushq %rbp
  8306. movq %rsp, %rbp
  8307. subq $0, %rsp
  8308. jmp start
  8309. start:
  8310. callq read_int
  8311. movq %rax, %rcx
  8312. cmpq $1, %rcx
  8313. je block_3
  8314. jmp block_4
  8315. block_3:
  8316. movq $42, %rcx
  8317. jmp block_2
  8318. block_4:
  8319. movq $0, %rcx
  8320. jmp block_2
  8321. block_2:
  8322. movq %rcx, %rdi
  8323. callq print_int
  8324. movq $0, %rax
  8325. jmp conclusion
  8326. conclusion:
  8327. addq $0, %rsp
  8328. popq %rbp
  8329. retq
  8330. \end{lstlisting}
  8331. \end{minipage}
  8332. \end{tabular}
  8333. \fi}
  8334. \caption{Example compilation of an \key{if} expression to x86, showing
  8335. the results of \code{explicate\_control},
  8336. \code{select\_instructions}, and the final x86 assembly code. }
  8337. \label{fig:if-example-x86}
  8338. \end{figure}
  8339. \begin{figure}[tbp]
  8340. {\if\edition\racketEd
  8341. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8342. \node (Lif) at (0,2) {\large \LangIf{}};
  8343. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8344. \node (Lif-3) at (6,2) {\large \LangIf{}};
  8345. \node (Lif-4) at (9,2) {\large \LangIf{}};
  8346. \node (Lif-5) at (12,2) {\large \LangIfANF{}};
  8347. \node (C1-1) at (3,0) {\large \LangCIf{}};
  8348. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  8349. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  8350. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  8351. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  8352. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  8353. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  8354. \path[->,bend left=15] (Lif) edge [above] node {\ttfamily\footnotesize type\_check} (Lif-2);
  8355. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  8356. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  8357. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-5);
  8358. \path[->,bend left=15] (Lif-5) edge [left] node {\ttfamily\footnotesize explicate\_control} (C1-1);
  8359. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  8360. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  8361. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  8362. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  8363. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  8364. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86 } (x86-5);
  8365. \end{tikzpicture}
  8366. \fi}
  8367. {\if\edition\pythonEd
  8368. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8369. \node (Lif-1) at (0,2) {\large \LangIf{}};
  8370. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8371. \node (Lif-3) at (6,2) {\large \LangIfANF{}};
  8372. \node (C-1) at (3,0) {\large \LangCIf{}};
  8373. \node (x86-1) at (3,-2) {\large \LangXIfVar{}};
  8374. \node (x86-2) at (6,-2) {\large \LangXIfVar{}};
  8375. \node (x86-3) at (9,-2) {\large \LangXIf{}};
  8376. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  8377. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  8378. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-3);
  8379. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (C-1);
  8380. \path[->,bend right=15] (C-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  8381. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  8382. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  8383. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl. } (x86-4);
  8384. \end{tikzpicture}
  8385. \fi}
  8386. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  8387. \label{fig:Lif-passes}
  8388. \end{figure}
  8389. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  8390. compilation of \LangIf{}.
  8391. \section{Challenge: Optimize Blocks and Remove Jumps}
  8392. \label{sec:opt-jumps}
  8393. We discuss two optional challenges that involve optimizing the
  8394. control-flow of the program.
  8395. \subsection{Optimize Blocks}
  8396. The algorithm for \code{explicate\_control} that we discussed in
  8397. Section~\ref{sec:explicate-control-Lif} sometimes generates too many
  8398. blocks. It does so in two different ways.
  8399. %
  8400. First, recall how in Figure~\ref{fig:explicate-control-s1-38},
  8401. \code{block\_4} consists of just a jump to \code{block\_2}. We created
  8402. a new basic block from a single \code{goto} statement, whereas we
  8403. could have simply returned the \code{goto} statement. We can solve
  8404. this problem by modifying the \code{create\_block} function to
  8405. recognize this situation.
  8406. Second, \code{explicate\_control} creates a basic block whenever a
  8407. continuation \emph{might} get used more than once (whenever a
  8408. continuation is passed into two or more recursive calls). However,
  8409. some continuation parameters may not be used at all. For example, consider the
  8410. case for the constant \TRUE{} in \code{explicate\_pred}, where we
  8411. discard the \code{els} branch. So the question is how can we decide
  8412. whether to create a basic block?
  8413. The solution to this conundrum is to use \emph{lazy
  8414. evaluation}\index{subject}{lazy evaluation}~\citep{Friedman:1976aa}
  8415. to delay creating a basic block until the point in time where we know
  8416. it will be used.
  8417. %
  8418. {\if\edition\racketEd
  8419. %
  8420. Racket provides support for
  8421. lazy evaluation with the
  8422. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  8423. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  8424. \index{subject}{delay} creates a
  8425. \emph{promise}\index{subject}{promise} in which the evaluation of the
  8426. expressions is postponed. When \key{(force}
  8427. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  8428. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  8429. result of $e_n$ is cached in the promise and returned. If \code{force}
  8430. is applied again to the same promise, then the cached result is
  8431. returned. If \code{force} is applied to an argument that is not a
  8432. promise, \code{force} simply returns the argument.
  8433. %
  8434. \fi}
  8435. %
  8436. {\if\edition\pythonEd
  8437. %
  8438. While Python does not provide direct support for lazy evaluation, it
  8439. is easy to mimic. We can \emph{delay} the evaluation of a computation
  8440. by wrapping it inside a function with no parameters. We can
  8441. \emph{force} its evaluation by calling the function. However, in some
  8442. cases of \code{explicate\_pred}, etc., we will return a list of
  8443. statements and in other cases we will return a function that computes
  8444. a list of statements. We use the term \emph{promise} to refer to a
  8445. value that may be delayed. To uniformly deal with
  8446. promises, we define the following \code{force} function that checks
  8447. whether its input is delayed (i.e., whether it is a function) and then
  8448. either 1) calls the function, or 2) returns the input.
  8449. \begin{lstlisting}
  8450. def force(promise):
  8451. if isinstance(promise, types.FunctionType):
  8452. return promise()
  8453. else:
  8454. return promise
  8455. \end{lstlisting}
  8456. %
  8457. \fi}
  8458. We use promises for the input and output of the functions
  8459. \code{explicate\_pred}, \code{explicate\_assign},
  8460. %
  8461. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  8462. %
  8463. So instead of taking and returning lists of statments, they take and
  8464. return promises. Furthermore, when we come to a situation in which a
  8465. continuation might be used more than once, as in the case for
  8466. \code{if} in \code{explicate\_pred}, we create a delayed computation
  8467. that creates a basic block for each continuation (if there is not
  8468. already one) and then returns a \code{goto} statement to that basic
  8469. block.
  8470. %
  8471. {\if\edition\racketEd
  8472. %
  8473. The following auxiliary function named \code{create\_block} accomplishes
  8474. this task. It begins with \code{delay} to create a promise. When
  8475. forced, this promise will force the original promise. If that returns
  8476. a \code{goto} (because the block was already added to the control-flow
  8477. graph), then we return the \code{goto}. Otherwise we add the block to
  8478. the control-flow graph with another auxiliary function named
  8479. \code{add-node}. That function returns the label for the new block,
  8480. which we use to create a \code{goto}.
  8481. \begin{lstlisting}
  8482. (define (create_block tail)
  8483. (delay
  8484. (define t (force tail))
  8485. (match t
  8486. [(Goto label) (Goto label)]
  8487. [else (Goto (add-node t))])))
  8488. \end{lstlisting}
  8489. \fi}
  8490. {\if\edition\pythonEd
  8491. %
  8492. Here is the new version of the \code{create\_block} auxiliary function
  8493. that works on promises and that checks whether the block consists of a
  8494. solitary \code{goto} statement.\\
  8495. \begin{minipage}{\textwidth}
  8496. \begin{lstlisting}
  8497. def create_block(promise, basic_blocks):
  8498. stmts = force(promise)
  8499. match stmts:
  8500. case [Goto(l)]:
  8501. return Goto(l)
  8502. case _:
  8503. label = label_name(generate_name('block'))
  8504. basic_blocks[label] = stmts
  8505. return Goto(label)
  8506. \end{lstlisting}
  8507. \end{minipage}
  8508. \fi}
  8509. Figure~\ref{fig:explicate-control-challenge} shows the output of
  8510. \code{explicate\_control} on the example of the nested \code{if}
  8511. expressions with the two improvements discussed above. As you can
  8512. see, the number of basic blocks has been reduced from 10 blocks (see
  8513. Figure~\ref{fig:explicate-control-s1-38}) down to 6 blocks.
  8514. \begin{figure}[tbp]
  8515. {\if\edition\racketEd
  8516. \begin{tabular}{lll}
  8517. \begin{minipage}{0.4\textwidth}
  8518. % cond_test_41.rkt
  8519. \begin{lstlisting}
  8520. (let ([x (read)])
  8521. (let ([y (read)])
  8522. (if (if (< x 1)
  8523. (eq? x 0)
  8524. (eq? x 2))
  8525. (+ y 2)
  8526. (+ y 10))))
  8527. \end{lstlisting}
  8528. \end{minipage}
  8529. &
  8530. $\Rightarrow$
  8531. &
  8532. \begin{minipage}{0.55\textwidth}
  8533. \begin{lstlisting}
  8534. start:
  8535. x = (read);
  8536. y = (read);
  8537. if (< x 1) goto block40;
  8538. else goto block41;
  8539. block40:
  8540. if (eq? x 0) goto block38;
  8541. else goto block39;
  8542. block41:
  8543. if (eq? x 2) goto block38;
  8544. else goto block39;
  8545. block38:
  8546. return (+ y 2);
  8547. block39:
  8548. return (+ y 10);
  8549. \end{lstlisting}
  8550. \end{minipage}
  8551. \end{tabular}
  8552. \fi}
  8553. {\if\edition\pythonEd
  8554. \begin{tabular}{lll}
  8555. \begin{minipage}{0.4\textwidth}
  8556. % cond_test_41.rkt
  8557. \begin{lstlisting}
  8558. x = input_int()
  8559. y = input_int()
  8560. print(y + 2 \
  8561. if (x == 0 \
  8562. if x < 1 \
  8563. else x == 2) \
  8564. else y + 10)
  8565. \end{lstlisting}
  8566. \end{minipage}
  8567. &
  8568. $\Rightarrow$
  8569. &
  8570. \begin{minipage}{0.55\textwidth}
  8571. \begin{lstlisting}
  8572. start:
  8573. x = input_int()
  8574. y = input_int()
  8575. if x < 1:
  8576. goto block_4
  8577. else:
  8578. goto block_5
  8579. block_4:
  8580. if x == 0:
  8581. goto block_2
  8582. else:
  8583. goto block_3
  8584. block_5:
  8585. if x == 2:
  8586. goto block_2
  8587. else:
  8588. goto block_3
  8589. block_2:
  8590. tmp_0 = y + 2
  8591. goto block_1
  8592. block_3:
  8593. tmp_0 = y + 10
  8594. goto block_1
  8595. block_1:
  8596. print(tmp_0)
  8597. return 0
  8598. \end{lstlisting}
  8599. \end{minipage}
  8600. \end{tabular}
  8601. \fi}
  8602. \caption{Translation from \LangIf{} to \LangCIf{}
  8603. via the improved \code{explicate\_control}.}
  8604. \label{fig:explicate-control-challenge}
  8605. \end{figure}
  8606. %% Recall that in the example output of \code{explicate\_control} in
  8607. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  8608. %% \code{block60} are trivial blocks, they do nothing but jump to another
  8609. %% block. The first goal of this challenge assignment is to remove those
  8610. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  8611. %% \code{explicate\_control} on the left and shows the result of bypassing
  8612. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  8613. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  8614. %% \code{block55}. The optimized code on the right of
  8615. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  8616. %% \code{then} branch jumping directly to \code{block55}. The story is
  8617. %% similar for the \code{else} branch, as well as for the two branches in
  8618. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  8619. %% have been optimized in this way, there are no longer any jumps to
  8620. %% blocks \code{block57} through \code{block60}, so they can be removed.
  8621. %% \begin{figure}[tbp]
  8622. %% \begin{tabular}{lll}
  8623. %% \begin{minipage}{0.4\textwidth}
  8624. %% \begin{lstlisting}
  8625. %% block62:
  8626. %% tmp54 = (read);
  8627. %% if (eq? tmp54 2) then
  8628. %% goto block59;
  8629. %% else
  8630. %% goto block60;
  8631. %% block61:
  8632. %% tmp53 = (read);
  8633. %% if (eq? tmp53 0) then
  8634. %% goto block57;
  8635. %% else
  8636. %% goto block58;
  8637. %% block60:
  8638. %% goto block56;
  8639. %% block59:
  8640. %% goto block55;
  8641. %% block58:
  8642. %% goto block56;
  8643. %% block57:
  8644. %% goto block55;
  8645. %% block56:
  8646. %% return (+ 700 77);
  8647. %% block55:
  8648. %% return (+ 10 32);
  8649. %% start:
  8650. %% tmp52 = (read);
  8651. %% if (eq? tmp52 1) then
  8652. %% goto block61;
  8653. %% else
  8654. %% goto block62;
  8655. %% \end{lstlisting}
  8656. %% \end{minipage}
  8657. %% &
  8658. %% $\Rightarrow$
  8659. %% &
  8660. %% \begin{minipage}{0.55\textwidth}
  8661. %% \begin{lstlisting}
  8662. %% block62:
  8663. %% tmp54 = (read);
  8664. %% if (eq? tmp54 2) then
  8665. %% goto block55;
  8666. %% else
  8667. %% goto block56;
  8668. %% block61:
  8669. %% tmp53 = (read);
  8670. %% if (eq? tmp53 0) then
  8671. %% goto block55;
  8672. %% else
  8673. %% goto block56;
  8674. %% block56:
  8675. %% return (+ 700 77);
  8676. %% block55:
  8677. %% return (+ 10 32);
  8678. %% start:
  8679. %% tmp52 = (read);
  8680. %% if (eq? tmp52 1) then
  8681. %% goto block61;
  8682. %% else
  8683. %% goto block62;
  8684. %% \end{lstlisting}
  8685. %% \end{minipage}
  8686. %% \end{tabular}
  8687. %% \caption{Optimize jumps by removing trivial blocks.}
  8688. %% \label{fig:optimize-jumps}
  8689. %% \end{figure}
  8690. %% The name of this pass is \code{optimize-jumps}. We recommend
  8691. %% implementing this pass in two phases. The first phrase builds a hash
  8692. %% table that maps labels to possibly improved labels. The second phase
  8693. %% changes the target of each \code{goto} to use the improved label. If
  8694. %% the label is for a trivial block, then the hash table should map the
  8695. %% label to the first non-trivial block that can be reached from this
  8696. %% label by jumping through trivial blocks. If the label is for a
  8697. %% non-trivial block, then the hash table should map the label to itself;
  8698. %% we do not want to change jumps to non-trivial blocks.
  8699. %% The first phase can be accomplished by constructing an empty hash
  8700. %% table, call it \code{short-cut}, and then iterating over the control
  8701. %% flow graph. Each time you encouter a block that is just a \code{goto},
  8702. %% then update the hash table, mapping the block's source to the target
  8703. %% of the \code{goto}. Also, the hash table may already have mapped some
  8704. %% labels to the block's source, to you must iterate through the hash
  8705. %% table and update all of those so that they instead map to the target
  8706. %% of the \code{goto}.
  8707. %% For the second phase, we recommend iterating through the $\Tail$ of
  8708. %% each block in the program, updating the target of every \code{goto}
  8709. %% according to the mapping in \code{short-cut}.
  8710. \begin{exercise}\normalfont
  8711. Implement the improvements to the \code{explicate\_control} pass.
  8712. Check that it removes trivial blocks in a few example programs. Then
  8713. check that your compiler still passes all of your tests.
  8714. \end{exercise}
  8715. \subsection{Remove Jumps}
  8716. There is an opportunity for removing jumps that is apparent in the
  8717. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  8718. ends with a jump to \code{block\_4} and there are no other jumps to
  8719. \code{block\_4} in the rest of the program. In this situation we can
  8720. avoid the runtime overhead of this jump by merging \code{block\_4}
  8721. into the preceding block, in this case the \code{start} block.
  8722. Figure~\ref{fig:remove-jumps} shows the output of
  8723. \code{select\_instructions} on the left and the result of this
  8724. optimization on the right.
  8725. \begin{figure}[tbp]
  8726. {\if\edition\racketEd
  8727. \begin{tabular}{lll}
  8728. \begin{minipage}{0.5\textwidth}
  8729. % cond_test_20.rkt
  8730. \begin{lstlisting}
  8731. start:
  8732. callq read_int
  8733. movq %rax, tmp7951
  8734. cmpq $1, tmp7951
  8735. je block7952
  8736. jmp block7953
  8737. block7953:
  8738. movq $0, %rax
  8739. jmp conclusion
  8740. block7952:
  8741. movq $42, %rax
  8742. jmp conclusion
  8743. \end{lstlisting}
  8744. \end{minipage}
  8745. &
  8746. $\Rightarrow\qquad$
  8747. \begin{minipage}{0.4\textwidth}
  8748. \begin{lstlisting}
  8749. start:
  8750. callq read_int
  8751. movq %rax, tmp7951
  8752. cmpq $1, tmp7951
  8753. je block7952
  8754. movq $0, %rax
  8755. jmp conclusion
  8756. block7952:
  8757. movq $42, %rax
  8758. jmp conclusion
  8759. \end{lstlisting}
  8760. \end{minipage}
  8761. \end{tabular}
  8762. \fi}
  8763. {\if\edition\pythonEd
  8764. \begin{tabular}{lll}
  8765. \begin{minipage}{0.5\textwidth}
  8766. % cond_test_20.rkt
  8767. \begin{lstlisting}
  8768. start:
  8769. callq read_int
  8770. movq %rax, tmp_0
  8771. cmpq 1, tmp_0
  8772. je block_3
  8773. jmp block_4
  8774. block_3:
  8775. movq 42, tmp_1
  8776. jmp block_2
  8777. block_4:
  8778. movq 0, tmp_1
  8779. jmp block_2
  8780. block_2:
  8781. movq tmp_1, %rdi
  8782. callq print_int
  8783. movq 0, %rax
  8784. jmp conclusion
  8785. \end{lstlisting}
  8786. \end{minipage}
  8787. &
  8788. $\Rightarrow\qquad$
  8789. \begin{minipage}{0.4\textwidth}
  8790. \begin{lstlisting}
  8791. start:
  8792. callq read_int
  8793. movq %rax, tmp_0
  8794. cmpq 1, tmp_0
  8795. je block_3
  8796. movq 0, tmp_1
  8797. jmp block_2
  8798. block_3:
  8799. movq 42, tmp_1
  8800. jmp block_2
  8801. block_2:
  8802. movq tmp_1, %rdi
  8803. callq print_int
  8804. movq 0, %rax
  8805. jmp conclusion
  8806. \end{lstlisting}
  8807. \end{minipage}
  8808. \end{tabular}
  8809. \fi}
  8810. \caption{Merging basic blocks by removing unnecessary jumps.}
  8811. \label{fig:remove-jumps}
  8812. \end{figure}
  8813. \begin{exercise}\normalfont
  8814. %
  8815. Implement a pass named \code{remove\_jumps} that merges basic blocks
  8816. into their preceding basic block, when there is only one preceding
  8817. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  8818. %
  8819. {\if\edition\racketEd
  8820. In the \code{run-tests.rkt} script, add the following entry to the
  8821. list of \code{passes} between \code{allocate\_registers}
  8822. and \code{patch\_instructions}.
  8823. \begin{lstlisting}
  8824. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  8825. \end{lstlisting}
  8826. \fi}
  8827. %
  8828. Run the script to test your compiler.
  8829. %
  8830. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  8831. blocks on several test programs.
  8832. \end{exercise}
  8833. \section{Further Reading}
  8834. \label{sec:cond-further-reading}
  8835. The algorithm for the \code{explicate\_control} pass is based on the
  8836. \code{explose-basic-blocks} pass in the course notes of
  8837. \citet{Dybvig:2010aa}.
  8838. %
  8839. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  8840. \citet{Appel:2003fk}, and is related to translations into continuation
  8841. passing
  8842. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  8843. %
  8844. The treatment of conditionals in the \code{explicate\_control} pass is
  8845. similar to short-cut boolean
  8846. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  8847. and the case-of-case transformation of \citet{PeytonJones:1998}.
  8848. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8849. \chapter{Loops and Dataflow Analysis}
  8850. \label{ch:Lwhile}
  8851. % TODO: define R'_8
  8852. % TODO: multi-graph
  8853. {\if\edition\racketEd
  8854. %
  8855. In this chapter we study two features that are the hallmarks of
  8856. imperative programming languages: loops and assignments to local
  8857. variables. The following example demonstrates these new features by
  8858. computing the sum of the first five positive integers.
  8859. % similar to loop_test_1.rkt
  8860. \begin{lstlisting}
  8861. (let ([sum 0])
  8862. (let ([i 5])
  8863. (begin
  8864. (while (> i 0)
  8865. (begin
  8866. (set! sum (+ sum i))
  8867. (set! i (- i 1))))
  8868. sum)))
  8869. \end{lstlisting}
  8870. The \code{while} loop consists of a condition and a
  8871. body\footnote{The \code{while} loop in particular is not a built-in
  8872. feature of the Racket language, but Racket includes many looping
  8873. constructs and it is straightforward to define \code{while} as a
  8874. macro.}. The body is evaluated repeatedly so long as the condition
  8875. remains true.
  8876. %
  8877. The \code{set!} consists of a variable and a right-hand-side
  8878. expression. The \code{set!} updates value of the variable to the
  8879. value of the right-hand-side.
  8880. %
  8881. The primary purpose of both the \code{while} loop and \code{set!} is
  8882. to cause side effects, so they do not have a meaningful result
  8883. value. Instead their result is the \code{\#<void>} value. The
  8884. expression \code{(void)} is an explicit way to create the
  8885. \code{\#<void>} value and it has type \code{Void}. The
  8886. \code{\#<void>} value can be passed around just like other values
  8887. inside an \LangLoop{} program and a \code{\#<void>} value can be
  8888. compared for equality with another \code{\#<void>} value. However,
  8889. there are no other operations specific to the the \code{\#<void>}
  8890. value in \LangLoop{}. In contrast, Racket defines the \code{void?}
  8891. predicate that returns \code{\#t} when applied to \code{\#<void>} and
  8892. \code{\#f} otherwise.
  8893. %
  8894. \footnote{Racket's \code{Void} type corresponds to what is called the
  8895. \code{Unit} type in the programming languages literature. Racket's
  8896. \code{Void} type is inhabited by a single value \code{\#<void>}
  8897. which corresponds to \code{unit} or \code{()} in the
  8898. literature~\citep{Pierce:2002hj}.}.
  8899. %
  8900. With the addition of side-effecting features such as \code{while} loop
  8901. and \code{set!}, it is helpful to also include in a language feature
  8902. for sequencing side effects: the \code{begin} expression. It consists
  8903. of one or more subexpressions that are evaluated left-to-right.
  8904. %
  8905. \fi}
  8906. {\if\edition\pythonEd
  8907. %
  8908. In this chapter we study loops, one of the hallmarks of imperative
  8909. programming languages. The following example demonstrates the
  8910. \code{while} loop by computing the sum of the first five positive
  8911. integers.
  8912. \begin{lstlisting}
  8913. sum = 0
  8914. i = 5
  8915. while i > 0:
  8916. sum = sum + i
  8917. i = i - 1
  8918. print(sum)
  8919. \end{lstlisting}
  8920. The \code{while} loop consists of a condition expression and a body (a
  8921. sequence of statements). The body is evaluated repeatedly so long as
  8922. the condition remains true.
  8923. %
  8924. \fi}
  8925. \section{The \LangLoop{} Language}
  8926. \newcommand{\LwhileGrammarRacket}{
  8927. \begin{array}{lcl}
  8928. \Type &::=& \key{Void}\\
  8929. \Exp &::=& \CSETBANG{\Var}{\Exp}
  8930. \MID \CBEGIN{\Exp\ldots}{\Exp}
  8931. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  8932. \end{array}
  8933. }
  8934. \newcommand{\LwhileASTRacket}{
  8935. \begin{array}{lcl}
  8936. \Type &::=& \key{Void}\\
  8937. \Exp &::=& \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp}\\
  8938. &\MID& \WHILE{\Exp}{\Exp} \MID \VOID{}
  8939. \end{array}
  8940. }
  8941. \newcommand{\LwhileGrammarPython}{
  8942. \begin{array}{rcl}
  8943. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  8944. \end{array}
  8945. }
  8946. \newcommand{\LwhileASTPython}{
  8947. \begin{array}{lcl}
  8948. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  8949. \end{array}
  8950. }
  8951. \begin{figure}[tp]
  8952. \centering
  8953. \fbox{
  8954. \begin{minipage}{0.96\textwidth}
  8955. \small
  8956. {\if\edition\racketEd
  8957. \[
  8958. \begin{array}{l}
  8959. \gray{\LintGrammarRacket{}} \\ \hline
  8960. \gray{\LvarGrammarRacket{}} \\ \hline
  8961. \gray{\LifGrammarRacket{}} \\ \hline
  8962. \LwhileGrammarRacket \\
  8963. \begin{array}{lcl}
  8964. \LangLoopM{} &::=& \Exp
  8965. \end{array}
  8966. \end{array}
  8967. \]
  8968. \fi}
  8969. {\if\edition\pythonEd
  8970. \[
  8971. \begin{array}{l}
  8972. \gray{\LintGrammarPython} \\ \hline
  8973. \gray{\LvarGrammarPython} \\ \hline
  8974. \gray{\LifGrammarPython} \\ \hline
  8975. \LwhileGrammarPython \\
  8976. \begin{array}{rcl}
  8977. \LangLoopM{} &::=& \Stmt^{*}
  8978. \end{array}
  8979. \end{array}
  8980. \]
  8981. \fi}
  8982. \end{minipage}
  8983. }
  8984. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-concrete-syntax}).}
  8985. \label{fig:Lwhile-concrete-syntax}
  8986. \end{figure}
  8987. \begin{figure}[tp]
  8988. \centering
  8989. \fbox{
  8990. \begin{minipage}{0.96\textwidth}
  8991. \small
  8992. {\if\edition\racketEd
  8993. \[
  8994. \begin{array}{l}
  8995. \gray{\LintOpAST} \\ \hline
  8996. \gray{\LvarASTRacket{}} \\ \hline
  8997. \gray{\LifASTRacket{}} \\ \hline
  8998. \LwhileASTRacket{} \\
  8999. \begin{array}{lcl}
  9000. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  9001. \end{array}
  9002. \end{array}
  9003. \]
  9004. \fi}
  9005. {\if\edition\pythonEd
  9006. \[
  9007. \begin{array}{l}
  9008. \gray{\LintASTPython} \\ \hline
  9009. \gray{\LvarASTPython} \\ \hline
  9010. \gray{\LifASTPython} \\ \hline
  9011. \LwhileASTPython \\
  9012. \begin{array}{lcl}
  9013. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  9014. \end{array}
  9015. \end{array}
  9016. \]
  9017. \fi}
  9018. \end{minipage}
  9019. }
  9020. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-syntax}).}
  9021. \label{fig:Lwhile-syntax}
  9022. \end{figure}
  9023. The concrete syntax of \LangLoop{} is defined in
  9024. Figure~\ref{fig:Lwhile-concrete-syntax} and its abstract syntax is defined
  9025. in Figure~\ref{fig:Lwhile-syntax}.
  9026. %
  9027. The definitional interpreter for \LangLoop{} is shown in
  9028. Figure~\ref{fig:interp-Rwhile}.
  9029. %
  9030. {\if\edition\racketEd
  9031. %
  9032. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  9033. and \code{Void} and we make changes to the cases for \code{Var} and
  9034. \code{Let} regarding variables. To support assignment to variables and
  9035. to make their lifetimes indefinite (see the second example in
  9036. Section~\ref{sec:assignment-scoping}), we box the value that is bound
  9037. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  9038. value.
  9039. %
  9040. Now to discuss the new cases. For \code{SetBang}, we lookup the
  9041. variable in the environment to obtain a boxed value and then we change
  9042. it using \code{set-box!} to the result of evaluating the right-hand
  9043. side. The result value of a \code{SetBang} is \code{void}.
  9044. %
  9045. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  9046. if the result is true, 2) evaluate the body.
  9047. The result value of a \code{while} loop is also \code{void}.
  9048. %
  9049. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  9050. subexpressions \itm{es} for their effects and then evaluates
  9051. and returns the result from \itm{body}.
  9052. %
  9053. The $\VOID{}$ expression produces the \code{void} value.
  9054. %
  9055. \fi}
  9056. {\if\edition\pythonEd
  9057. %
  9058. We add a new case for \code{While} in the \code{interp\_stmts}
  9059. function, where we repeatedly interpret the \code{body} so long as the
  9060. \code{test} expression remains true.
  9061. %
  9062. \fi}
  9063. \begin{figure}[tbp]
  9064. {\if\edition\racketEd
  9065. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9066. (define interp-Rwhile_class
  9067. (class interp-Rany_class
  9068. (super-new)
  9069. (define/override ((interp-exp env) e)
  9070. (define recur (interp-exp env))
  9071. (match e
  9072. [(SetBang x rhs)
  9073. (set-box! (lookup x env) (recur rhs))]
  9074. [(WhileLoop cnd body)
  9075. (define (loop)
  9076. (cond [(recur cnd) (recur body) (loop)]
  9077. [else (void)]))
  9078. (loop)]
  9079. [(Begin es body)
  9080. (for ([e es]) (recur e))
  9081. (recur body)]
  9082. [(Void) (void)]
  9083. [else ((super interp-exp env) e)]))
  9084. ))
  9085. (define (interp-Rwhile p)
  9086. (send (new interp-Rwhile_class) interp-program p))
  9087. \end{lstlisting}
  9088. \fi}
  9089. {\if\edition\pythonEd
  9090. \begin{lstlisting}
  9091. class InterpLwhile(InterpLif):
  9092. def interp_stmts(self, ss, env):
  9093. if len(ss) == 0:
  9094. return
  9095. match ss[0]:
  9096. case While(test, body, []):
  9097. while self.interp_exp(test, env):
  9098. self.interp_stmts(body, env)
  9099. return self.interp_stmts(ss[1:], env)
  9100. case _:
  9101. return super().interp_stmts(ss, env)
  9102. \end{lstlisting}
  9103. \fi}
  9104. \caption{Interpreter for \LangLoop{}.}
  9105. \label{fig:interp-Rwhile}
  9106. \end{figure}
  9107. The type checker for \LangLoop{} is defined in
  9108. Figure~\ref{fig:type-check-Rwhile}.
  9109. %
  9110. {\if\edition\racketEd
  9111. %
  9112. For \LangLoop{} we add a type named \code{Void} and the only value of
  9113. this type is the \code{void} value.
  9114. %
  9115. The type checking of the \code{SetBang} expression requires the type of
  9116. the variable and the right-hand-side to agree. The result type is
  9117. \code{Void}. For \code{while}, the condition must be a
  9118. \code{Boolean}. The result type is also \code{Void}. For
  9119. \code{Begin}, the result type is the type of its last subexpression.
  9120. %
  9121. \fi}
  9122. %
  9123. {\if\edition\pythonEd
  9124. %
  9125. A \code{while} loop is well typed if the type of the \code{test}
  9126. expression is \code{bool} and the statements in the \code{body} are
  9127. well typed.
  9128. %
  9129. \fi}
  9130. \begin{figure}[tbp]
  9131. {\if\edition\racketEd
  9132. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9133. (define type-check-Rwhile_class
  9134. (class type-check-Rany_class
  9135. (super-new)
  9136. (inherit check-type-equal?)
  9137. (define/override (type-check-exp env)
  9138. (lambda (e)
  9139. (define recur (type-check-exp env))
  9140. (match e
  9141. [(SetBang x rhs)
  9142. (define-values (rhs^ rhsT) (recur rhs))
  9143. (define varT (dict-ref env x))
  9144. (check-type-equal? rhsT varT e)
  9145. (values (SetBang x rhs^) 'Void)]
  9146. [(WhileLoop cnd body)
  9147. (define-values (cnd^ Tc) (recur cnd))
  9148. (check-type-equal? Tc 'Boolean e)
  9149. (define-values (body^ Tbody) ((type-check-exp env) body))
  9150. (values (WhileLoop cnd^ body^) 'Void)]
  9151. [(Begin es body)
  9152. (define-values (es^ ts)
  9153. (for/lists (l1 l2) ([e es]) (recur e)))
  9154. (define-values (body^ Tbody) (recur body))
  9155. (values (Begin es^ body^) Tbody)]
  9156. [else ((super type-check-exp env) e)])))
  9157. ))
  9158. (define (type-check-Rwhile p)
  9159. (send (new type-check-Rwhile_class) type-check-program p))
  9160. \end{lstlisting}
  9161. \fi}
  9162. {\if\edition\pythonEd
  9163. \begin{lstlisting}
  9164. class TypeCheckLwhile(TypeCheckLif):
  9165. def type_check_stmts(self, ss, env):
  9166. if len(ss) == 0:
  9167. return
  9168. match ss[0]:
  9169. case While(test, body, []):
  9170. test_t = self.type_check_exp(test, env)
  9171. check_type_equal(bool, test_t, test)
  9172. body_t = self.type_check_stmts(body, env)
  9173. return self.type_check_stmts(ss[1:], env)
  9174. case _:
  9175. return super().type_check_stmts(ss, env)
  9176. \end{lstlisting}
  9177. \fi}
  9178. \caption{Type checker for the \LangLoop{} language.}
  9179. \label{fig:type-check-Rwhile}
  9180. \end{figure}
  9181. {\if\edition\racketEd
  9182. %
  9183. At first glance, the translation of these language features to x86
  9184. seems straightforward because the \LangCIf{} intermediate language
  9185. already supports all of the ingredients that we need: assignment,
  9186. \code{goto}, conditional branching, and sequencing. However, there are
  9187. complications that arise which we discuss in the next section. After
  9188. that we introduce the changes necessary to the existing passes.
  9189. %
  9190. \fi}
  9191. {\if\edition\pythonEd
  9192. %
  9193. At first glance, the translation of \code{while} loops to x86 seems
  9194. straightforward because the \LangCIf{} intermediate language already
  9195. supports \code{goto} and conditional branching. However, there are
  9196. complications that arise which we discuss in the next section. After
  9197. that we introduce the changes necessary to the existing passes.
  9198. %
  9199. \fi}
  9200. \section{Cyclic Control Flow and Dataflow Analysis}
  9201. \label{sec:dataflow-analysis}
  9202. Up until this point the control-flow graphs of the programs generated
  9203. in \code{explicate\_control} were guaranteed to be acyclic. However,
  9204. each \code{while} loop introduces a cycle in the control-flow graph.
  9205. But does that matter?
  9206. %
  9207. Indeed it does. Recall that for register allocation, the compiler
  9208. performs liveness analysis to determine which variables can share the
  9209. same register. To accomplish this we analyzed the control-flow graph
  9210. in reverse topological order
  9211. (Section~\ref{sec:liveness-analysis-Lif}), but topological order is
  9212. only well-defined for acyclic graphs.
  9213. Let us return to the example of computing the sum of the first five
  9214. positive integers. Here is the program after instruction selection but
  9215. before register allocation.
  9216. \begin{center}
  9217. {\if\edition\racketEd
  9218. \begin{minipage}{0.45\textwidth}
  9219. \begin{lstlisting}
  9220. (define (main) : Integer
  9221. mainstart:
  9222. movq $0, sum
  9223. movq $5, i
  9224. jmp block5
  9225. block5:
  9226. movq i, tmp3
  9227. cmpq tmp3, $0
  9228. jl block7
  9229. jmp block8
  9230. \end{lstlisting}
  9231. \end{minipage}
  9232. \begin{minipage}{0.45\textwidth}
  9233. \begin{lstlisting}
  9234. block7:
  9235. addq i, sum
  9236. movq $1, tmp4
  9237. negq tmp4
  9238. addq tmp4, i
  9239. jmp block5
  9240. block8:
  9241. movq $27, %rax
  9242. addq sum, %rax
  9243. jmp mainconclusion
  9244. )
  9245. \end{lstlisting}
  9246. \end{minipage}
  9247. \fi}
  9248. {\if\edition\pythonEd
  9249. \begin{minipage}{0.45\textwidth}
  9250. \begin{lstlisting}
  9251. mainstart:
  9252. movq $0, sum
  9253. movq $5, i
  9254. jmp block5
  9255. block5:
  9256. cmpq $0, i
  9257. jg block7
  9258. jmp block8
  9259. \end{lstlisting}
  9260. \end{minipage}
  9261. \begin{minipage}{0.45\textwidth}
  9262. \begin{lstlisting}
  9263. block7:
  9264. addq i, sum
  9265. subq $1, i
  9266. jmp block5
  9267. block8:
  9268. movq sum, %rdi
  9269. callq print_int
  9270. movq $0, %rax
  9271. jmp mainconclusion
  9272. \end{lstlisting}
  9273. \end{minipage}
  9274. \fi}
  9275. \end{center}
  9276. Recall that liveness analysis works backwards, starting at the end
  9277. of each function. For this example we could start with \code{block8}
  9278. because we know what is live at the beginning of the conclusion,
  9279. just \code{rax} and \code{rsp}. So the live-before set
  9280. for \code{block8} is $\{\ttm{rsp},\ttm{sum}\}$.
  9281. %
  9282. Next we might try to analyze \code{block5} or \code{block7}, but
  9283. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  9284. we are stuck.
  9285. The way out of this impasse is to realize that we can compute an
  9286. under-approximation of the live-before set by starting with empty
  9287. live-after sets. By \emph{under-approximation}, we mean that the set
  9288. only contains variables that are live for some execution of the
  9289. program, but the set may be missing some variables. Next, the
  9290. under-approximations for each block can be improved by 1) updating the
  9291. live-after set for each block using the approximate live-before sets
  9292. from the other blocks and 2) perform liveness analysis again on each
  9293. block. In fact, by iterating this process, the under-approximations
  9294. eventually become the correct solutions!
  9295. %
  9296. This approach of iteratively analyzing a control-flow graph is
  9297. applicable to many static analysis problems and goes by the name
  9298. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  9299. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  9300. Washington.
  9301. Let us apply this approach to the above example. We use the empty set
  9302. for the initial live-before set for each block. Let $m_0$ be the
  9303. following mapping from label names to sets of locations (variables and
  9304. registers).
  9305. \begin{center}
  9306. \begin{lstlisting}
  9307. mainstart: {}, block5: {}, block7: {}, block8: {}
  9308. \end{lstlisting}
  9309. \end{center}
  9310. Using the above live-before approximations, we determine the
  9311. live-after for each block and then apply liveness analysis to each
  9312. block. This produces our next approximation $m_1$ of the live-before
  9313. sets.
  9314. \begin{center}
  9315. \begin{lstlisting}
  9316. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  9317. \end{lstlisting}
  9318. \end{center}
  9319. For the second round, the live-after for \code{mainstart} is the
  9320. current live-before for \code{block5}, which is \code{\{i\}}. So the
  9321. liveness analysis for \code{mainstart} computes the empty set. The
  9322. live-after for \code{block5} is the union of the live-before sets for
  9323. \code{block7} and \code{block8}, which is \code{\{i , rsp, sum\}}.
  9324. So the liveness analysis for \code{block5} computes \code{\{i , rsp,
  9325. sum\}}. The live-after for \code{block7} is the live-before for
  9326. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  9327. So the liveness analysis for \code{block7} remains \code{\{i,
  9328. sum\}}. Together these yield the following approximation $m_2$ of
  9329. the live-before sets.
  9330. \begin{center}
  9331. \begin{lstlisting}
  9332. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  9333. \end{lstlisting}
  9334. \end{center}
  9335. In the preceding iteration, only \code{block5} changed, so we can
  9336. limit our attention to \code{mainstart} and \code{block7}, the two
  9337. blocks that jump to \code{block5}. As a result, the live-before sets
  9338. for \code{mainstart} and \code{block7} are updated to include
  9339. \code{rsp}, yielding the following approximation $m_3$.
  9340. \begin{center}
  9341. \begin{lstlisting}
  9342. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  9343. \end{lstlisting}
  9344. \end{center}
  9345. Because \code{block7} changed, we analyze \code{block5} once more, but
  9346. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  9347. our approximations have converged, so $m_3$ is the solution.
  9348. This iteration process is guaranteed to converge to a solution by the
  9349. Kleene Fixed-Point Theorem, a general theorem about functions on
  9350. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  9351. any collection that comes with a partial ordering $\sqsubseteq$ on its
  9352. elements, a least element $\bot$ (pronounced bottom), and a join
  9353. operator $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{partial
  9354. ordering}\index{subject}{join}\footnote{Technically speaking, we will be
  9355. working with join semi-lattices.} When two elements are ordered $m_i
  9356. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  9357. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  9358. approximation than $m_i$. The bottom element $\bot$ represents the
  9359. complete lack of information, i.e., the worst approximation. The join
  9360. operator takes two lattice elements and combines their information,
  9361. i.e., it produces the least upper bound of the two.\index{subject}{least upper
  9362. bound}
  9363. A dataflow analysis typically involves two lattices: one lattice to
  9364. represent abstract states and another lattice that aggregates the
  9365. abstract states of all the blocks in the control-flow graph. For
  9366. liveness analysis, an abstract state is a set of locations. We form
  9367. the lattice $L$ by taking its elements to be sets of locations, the
  9368. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  9369. set, and the join operator to be set union.
  9370. %
  9371. We form a second lattice $M$ by taking its elements to be mappings
  9372. from the block labels to sets of locations (elements of $L$). We
  9373. order the mappings point-wise, using the ordering of $L$. So given any
  9374. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  9375. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  9376. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  9377. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  9378. We can think of one iteration of liveness analysis applied to the
  9379. whole program as being a function $f$ on the lattice $M$. It takes a
  9380. mapping as input and computes a new mapping.
  9381. \[
  9382. f(m_i) = m_{i+1}
  9383. \]
  9384. Next let us think for a moment about what a final solution $m_s$
  9385. should look like. If we perform liveness analysis using the solution
  9386. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  9387. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  9388. \[
  9389. f(m_s) = m_s
  9390. \]
  9391. Furthermore, the solution should only include locations that are
  9392. forced to be there by performing liveness analysis on the program, so
  9393. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  9394. The Kleene Fixed-Point Theorem states that if a function $f$ is
  9395. monotone (better inputs produce better outputs), then the least fixed
  9396. point of $f$ is the least upper bound of the \emph{ascending Kleene
  9397. chain} obtained by starting at $\bot$ and iterating $f$ as
  9398. follows.\index{subject}{Kleene Fixed-Point Theorem}
  9399. \[
  9400. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9401. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  9402. \]
  9403. When a lattice contains only finitely-long ascending chains, then
  9404. every Kleene chain tops out at some fixed point after some number of
  9405. iterations of $f$.
  9406. \[
  9407. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9408. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  9409. \]
  9410. The liveness analysis is indeed a monotone function and the lattice
  9411. $M$ only has finitely-long ascending chains because there are only a
  9412. finite number of variables and blocks in the program. Thus we are
  9413. guaranteed that iteratively applying liveness analysis to all blocks
  9414. in the program will eventually produce the least fixed point solution.
  9415. Next let us consider dataflow analysis in general and discuss the
  9416. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  9417. %
  9418. The algorithm has four parameters: the control-flow graph \code{G}, a
  9419. function \code{transfer} that applies the analysis to one block, the
  9420. \code{bottom} and \code{join} operator for the lattice of abstract
  9421. states. The algorithm begins by creating the bottom mapping,
  9422. represented by a hash table. It then pushes all of the nodes in the
  9423. control-flow graph onto the work list (a queue). The algorithm repeats
  9424. the \code{while} loop as long as there are items in the work list. In
  9425. each iteration, a node is popped from the work list and processed. The
  9426. \code{input} for the node is computed by taking the join of the
  9427. abstract states of all the predecessor nodes. The \code{transfer}
  9428. function is then applied to obtain the \code{output} abstract
  9429. state. If the output differs from the previous state for this block,
  9430. the mapping for this block is updated and its successor nodes are
  9431. pushed onto the work list.
  9432. Note that the \code{analyze\_dataflow} function is formulated as a
  9433. \emph{forward} dataflow analysis, that is, the inputs to the transfer
  9434. function come from the predecessor nodes in the control-flow
  9435. graph. However, liveness analysis is a \emph{backward} dataflow
  9436. analysis, so in that case one must supply the \code{analyze\_dataflow}
  9437. function with the transpose of the control-flow graph.
  9438. \begin{figure}[tb]
  9439. {\if\edition\racketEd
  9440. \begin{lstlisting}
  9441. (define (analyze_dataflow G transfer bottom join)
  9442. (define mapping (make-hash))
  9443. (for ([v (in-vertices G)])
  9444. (dict-set! mapping v bottom))
  9445. (define worklist (make-queue))
  9446. (for ([v (in-vertices G)])
  9447. (enqueue! worklist v))
  9448. (define trans-G (transpose G))
  9449. (while (not (queue-empty? worklist))
  9450. (define node (dequeue! worklist))
  9451. (define input (for/fold ([state bottom])
  9452. ([pred (in-neighbors trans-G node)])
  9453. (join state (dict-ref mapping pred))))
  9454. (define output (transfer node input))
  9455. (cond [(not (equal? output (dict-ref mapping node)))
  9456. (dict-set! mapping node output)
  9457. (for ([v (in-neighbors G node)])
  9458. (enqueue! worklist v))]))
  9459. mapping)
  9460. \end{lstlisting}
  9461. \fi}
  9462. {\if\edition\pythonEd
  9463. \begin{lstlisting}
  9464. def analyze_dataflow(G, transfer, bottom, join):
  9465. trans_G = transpose(G)
  9466. mapping = {}
  9467. for v in G.vertices():
  9468. mapping[v] = bottom
  9469. worklist = deque()
  9470. for v in G.vertices():
  9471. worklist.append(v)
  9472. while worklist:
  9473. node = worklist.pop()
  9474. input = reduce(join, [mapping[v] for v in trans_G.adjacent(node)], bottom)
  9475. output = transfer(node, input)
  9476. if output != mapping[node]:
  9477. mapping[node] = output
  9478. for v in G.adjacent(node):
  9479. worklist.append(v)
  9480. \end{lstlisting}
  9481. \fi}
  9482. \caption{Generic work list algorithm for dataflow analysis}
  9483. \label{fig:generic-dataflow}
  9484. \end{figure}
  9485. {\if\edition\racketEd
  9486. \section{Mutable Variables \& Remove Complex Operands}
  9487. There is a subtle interaction between the addition of \code{set!}, the
  9488. \code{remove\_complex\_operands} pass, and the left-to-right order of
  9489. evaluation of Racket. Consider the following example.
  9490. \begin{lstlisting}
  9491. (let ([x 2])
  9492. (+ x (begin (set! x 40) x)))
  9493. \end{lstlisting}
  9494. The result of this program is \code{42} because the first read from
  9495. \code{x} produces \code{2} and the second produces \code{40}. However,
  9496. if we naively apply the \code{remove\_complex\_operands} pass to this
  9497. example we obtain the following program whose result is \code{80}!
  9498. \begin{lstlisting}
  9499. (let ([x 2])
  9500. (let ([tmp (begin (set! x 40) x)])
  9501. (+ x tmp)))
  9502. \end{lstlisting}
  9503. The problem is that, with mutable variables, the ordering between
  9504. reads and writes is important, and the
  9505. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  9506. before the first read of \code{x}.
  9507. We recommend solving this problem by giving special treatment to reads
  9508. from mutable variables, that is, variables that occur on the left-hand
  9509. side of a \code{set!}. We mark each read from a mutable variable with
  9510. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  9511. that the read operation is effectful in that it can produce different
  9512. results at different points in time. Let's apply this idea to the
  9513. following variation that also involves a variable that is not mutated.
  9514. % loop_test_24.rkt
  9515. \begin{lstlisting}
  9516. (let ([x 2])
  9517. (let ([y 0])
  9518. (+ y (+ x (begin (set! x 40) x)))))
  9519. \end{lstlisting}
  9520. We analyze the above program to discover that variable \code{x} is
  9521. mutable but \code{y} is not. We then transform the program as follows,
  9522. replacing each occurence of \code{x} with \code{(get! x)}.
  9523. \begin{lstlisting}
  9524. (let ([x 2])
  9525. (let ([y 0])
  9526. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  9527. \end{lstlisting}
  9528. Now that we have a clear distinction between reads from mutable and
  9529. immutable variables, we can apply the \code{remove\_complex\_operands}
  9530. pass, where reads from immutable variables are still classified as
  9531. atomic expressions but reads from mutable variables are classified as
  9532. complex. Thus, \code{remove\_complex\_operands} yields the following
  9533. program.
  9534. \begin{lstlisting}
  9535. (let ([x 2])
  9536. (let ([y 0])
  9537. (+ y (let ([t1 (get! x)])
  9538. (let ([t2 (begin (set! x 40) (get! x))])
  9539. (+ t1 t2))))))
  9540. \end{lstlisting}
  9541. The temporary variable \code{t1} gets the value of \code{x} before the
  9542. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  9543. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  9544. do not generate a temporary variable for the occurence of \code{y}
  9545. because it's an immutable variable. We want to avoid such unnecessary
  9546. extra temporaries because they would needless increase the number of
  9547. variables, making it more likely for some of them to be spilled. The
  9548. result of this program is \code{42}, the same as the result prior to
  9549. \code{remove\_complex\_operands}.
  9550. The approach that we've sketched above requires only a small
  9551. modification to \code{remove\_complex\_operands} to handle
  9552. \code{get!}. However, it requires a new pass, called
  9553. \code{uncover-get!}, that we discuss in
  9554. Section~\ref{sec:uncover-get-bang}.
  9555. As an aside, this problematic interaction between \code{set!} and the
  9556. pass \code{remove\_complex\_operands} is particular to Racket and not
  9557. its predecessor, the Scheme language. The key difference is that
  9558. Scheme does not specify an order of evaluation for the arguments of an
  9559. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  9560. Scheme is free to choose any ordering: both \code{42} and \code{80}
  9561. would be correct results for the example program. Interestingly,
  9562. Racket is implemented on top of the Chez Scheme
  9563. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  9564. presented in this section (using extra \code{let} bindings to control
  9565. the order of evaluation) is used in the translation from Racket to
  9566. Scheme~\citep{Flatt:2019tb}.
  9567. \fi} % racket
  9568. Having discussed the complications that arise from adding support for
  9569. assignment and loops, we turn to discussing the individual compilation
  9570. passes.
  9571. {\if\edition\racketEd
  9572. \section{Uncover \texttt{get!}}
  9573. \label{sec:uncover-get-bang}
  9574. The goal of this pass it to mark uses of mutable variables so that
  9575. \code{remove\_complex\_operands} can treat them as complex expressions
  9576. and thereby preserve their ordering relative to the side-effects in
  9577. other operands. So the first step is to collect all the mutable
  9578. variables. We recommend creating an auxilliary function for this,
  9579. named \code{collect-set!}, that recursively traverses expressions,
  9580. returning a set of all variables that occur on the left-hand side of a
  9581. \code{set!}. Here's an exerpt of its implementation.
  9582. \begin{center}
  9583. \begin{minipage}{\textwidth}
  9584. \begin{lstlisting}
  9585. (define (collect-set! e)
  9586. (match e
  9587. [(Var x) (set)]
  9588. [(Int n) (set)]
  9589. [(Let x rhs body)
  9590. (set-union (collect-set! rhs) (collect-set! body))]
  9591. [(SetBang var rhs)
  9592. (set-union (set var) (collect-set! rhs))]
  9593. ...))
  9594. \end{lstlisting}
  9595. \end{minipage}
  9596. \end{center}
  9597. By placing this pass after \code{uniquify}, we need not worry about
  9598. variable shadowing and our logic for \code{let} can remain simple, as
  9599. in the exerpt above.
  9600. The second step is to mark the occurences of the mutable variables
  9601. with the new \code{GetBang} AST node (\code{get!} in concrete
  9602. syntax). The following is an exerpt of the \code{uncover-get!-exp}
  9603. function, which takes two parameters: the set of mutable varaibles
  9604. \code{set!-vars}, and the expression \code{e} to be processed. The
  9605. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  9606. mutable variable or leaves it alone if not.
  9607. \begin{center}
  9608. \begin{minipage}{\textwidth}
  9609. \begin{lstlisting}
  9610. (define ((uncover-get!-exp set!-vars) e)
  9611. (match e
  9612. [(Var x)
  9613. (if (set-member? set!-vars x)
  9614. (GetBang x)
  9615. (Var x))]
  9616. ...))
  9617. \end{lstlisting}
  9618. \end{minipage}
  9619. \end{center}
  9620. To wrap things up, define the \code{uncover-get!} function for
  9621. processing a whole program, using \code{collect-set!} to obtain the
  9622. set of mutable variables and then \code{uncover-get!-exp} to replace
  9623. their occurences with \code{GetBang}.
  9624. \fi}
  9625. \section{Remove Complex Operands}
  9626. \label{sec:rco-loop}
  9627. {\if\edition\racketEd
  9628. %
  9629. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  9630. \code{while} are all complex expressions. The subexpressions of
  9631. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  9632. %
  9633. \fi}
  9634. {\if\edition\pythonEd
  9635. %
  9636. The change needed for this pass is to add a case for the \code{while}
  9637. statement. The condition of a \code{while} loop is allowed to be a
  9638. complex expression, just like the condition of the \code{if}
  9639. statement.
  9640. %
  9641. \fi}
  9642. %
  9643. Figure~\ref{fig:Rwhile-anf-syntax} defines the output language
  9644. \LangLoopANF{} of this pass.
  9645. \begin{figure}[tp]
  9646. \centering
  9647. \fbox{
  9648. \begin{minipage}{0.96\textwidth}
  9649. \small
  9650. {\if\edition\racketEd
  9651. \[
  9652. \begin{array}{rcl}
  9653. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} } \MID \VOID{} \\
  9654. \Exp &::=& \ldots \MID \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  9655. &\MID& \GETBANG{\Var}
  9656. \MID \SETBANG{\Var}{\Exp} \\
  9657. &\MID& \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  9658. \MID \WHILE{\Exp}{\Exp} \\
  9659. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  9660. \LangLoopANF &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  9661. \end{array}
  9662. \]
  9663. \fi}
  9664. {\if\edition\pythonEd
  9665. \[
  9666. \begin{array}{rcl}
  9667. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  9668. \Exp &::=& \Atm \MID \READ{} \\
  9669. &\MID& \BINOP{\itm{binaryop}}{\Atm}{\Atm} \MID \UNIOP{\key{unaryop}}{\Atm} \\
  9670. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  9671. % &\MID& \LET{\Var}{\Exp}{\Exp}\\
  9672. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  9673. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  9674. &\MID& \WHILESTMT{\Exp}{\Stmt^{+}} \\
  9675. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  9676. \end{array}
  9677. \]
  9678. \fi}
  9679. \end{minipage}
  9680. }
  9681. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  9682. \label{fig:Rwhile-anf-syntax}
  9683. \end{figure}
  9684. {\if\edition\racketEd
  9685. As usual, when a complex expression appears in a grammar position that
  9686. needs to be atomic, such as the argument of a primitive operator, we
  9687. must introduce a temporary variable and bind it to the complex
  9688. expression. This approach applies, unchanged, to handle the new
  9689. language forms. For example, in the following code there are two
  9690. \code{begin} expressions appearing as arguments to \code{+}. The
  9691. output of \code{rco\_exp} is shown below, in which the \code{begin}
  9692. expressions have been bound to temporary variables. Recall that
  9693. \code{let} expressions in \LangLoopANF{} are allowed to have
  9694. arbitrary expressions in their right-hand-side expression, so it is
  9695. fine to place \code{begin} there.
  9696. \begin{center}
  9697. \begin{minipage}{\textwidth}
  9698. \begin{lstlisting}
  9699. (let ([x0 10])
  9700. (let ([y1 0])
  9701. (+ (+ (begin (set! y1 (read)) x0)
  9702. (begin (set! x0 (read)) y1))
  9703. x0)))
  9704. |$\Rightarrow$|
  9705. (let ([x0 10])
  9706. (let ([y1 0])
  9707. (let ([tmp2 (begin (set! y1 (read)) x0)])
  9708. (let ([tmp3 (begin (set! x0 (read)) y1)])
  9709. (let ([tmp4 (+ tmp2 tmp3)])
  9710. (+ tmp4 x0))))))
  9711. \end{lstlisting}
  9712. \end{minipage}
  9713. \end{center}
  9714. \fi}
  9715. \section{Explicate Control \racket{and \LangCLoop{}}}
  9716. \label{sec:explicate-loop}
  9717. \newcommand{\CloopASTRacket}{
  9718. \begin{array}{lcl}
  9719. \Atm &::=& \VOID \\
  9720. \Stmt &::=& \READ{}\\
  9721. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  9722. \end{array}
  9723. }
  9724. {\if\edition\racketEd
  9725. Recall that in the \code{explicate\_control} pass we define one helper
  9726. function for each kind of position in the program. For the \LangVar{}
  9727. language of integers and variables we needed kinds of positions:
  9728. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  9729. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  9730. yet another kind of position: effect position. Except for the last
  9731. subexpression, the subexpressions inside a \code{begin} are evaluated
  9732. only for their effect. Their result values are discarded. We can
  9733. generate better code by taking this fact into account.
  9734. The output language of \code{explicate\_control} is \LangCLoop{}
  9735. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  9736. \LangCLam{}. The only syntactic difference is that \code{Call} and
  9737. \code{read} may also appear as statements. The most significant
  9738. difference between \LangCLam{} and \LangCLoop{} is that the
  9739. control-flow graphs of the later may contain cycles.
  9740. \begin{figure}[tp]
  9741. \fbox{
  9742. \begin{minipage}{0.96\textwidth}
  9743. \small
  9744. {\if\edition\racketEd
  9745. \[
  9746. \begin{array}{l}
  9747. \gray{\CvarASTRacket} \\ \hline
  9748. \gray{\CifASTRacket} \\ \hline
  9749. \CloopASTRacket \\
  9750. \begin{array}{lcl}
  9751. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  9752. \end{array}
  9753. \end{array}
  9754. \]
  9755. \fi}
  9756. {\if\edition\pythonEd
  9757. UNDER CONSTRUCTION
  9758. \fi}
  9759. \end{minipage}
  9760. }
  9761. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (Figure~\ref{fig:c1-syntax}).}
  9762. \label{fig:c7-syntax}
  9763. \end{figure}
  9764. The new auxiliary function \code{explicate\_effect} takes an
  9765. expression (in an effect position) and a continuation. The function
  9766. returns a $\Tail$ that includes the generated code for the input
  9767. expression followed by the continuation. If the expression is
  9768. obviously pure, that is, never causes side effects, then the
  9769. expression can be removed, so the result is just the continuation.
  9770. %
  9771. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  9772. case. First, you will need a fresh label $\itm{loop}$ for the top of
  9773. the loop. Recursively process the \itm{body} (in effect position)
  9774. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  9775. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  9776. \itm{body'} as the then-branch and the continuation block as the
  9777. else-branch. The result should be added to the control-flow graph with
  9778. the label \itm{loop}. The result for the whole \code{while} loop is a
  9779. \code{goto} to the \itm{loop} label.
  9780. The auxiliary functions for tail, assignment, and predicate positions
  9781. need to be updated. The three new language forms, \code{while},
  9782. \code{set!}, and \code{begin}, can appear in assignment and tail
  9783. positions. Only \code{begin} may appear in predicate positions; the
  9784. other two have result type \code{Void}.
  9785. \fi}
  9786. %
  9787. {\if\edition\pythonEd
  9788. %
  9789. The output of this pass is the language \LangCIf{}. No new language
  9790. features are needed in the output because a \code{while} loop can be
  9791. expressed in terms of \code{goto} and \code{if} statements, which are
  9792. already in \LangCIf{}.
  9793. %
  9794. Add a case for the \code{while} statement to the
  9795. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  9796. the condition expression.
  9797. %
  9798. \fi}
  9799. {\if\edition\racketEd
  9800. \section{Select Instructions}
  9801. \label{sec:select-instructions-loop}
  9802. Only three small additions are needed in the
  9803. \code{select\_instructions} pass to handle the changes to
  9804. \LangCLoop{}. That is, a \code{Call} to \code{read} may now appear as a
  9805. stand-alone statement instead of only appearing on the right-hand
  9806. side of an assignment statement. The code generation is nearly
  9807. identical; just leave off the instruction for moving the result into
  9808. the left-hand side.
  9809. \fi}
  9810. \section{Register Allocation}
  9811. \label{sec:register-allocation-loop}
  9812. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  9813. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  9814. which complicates the liveness analysis needed for register
  9815. allocation.
  9816. \subsection{Liveness Analysis}
  9817. \label{sec:liveness-analysis-r8}
  9818. We recommend using the generic \code{analyze\_dataflow} function that
  9819. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  9820. perform liveness analysis, replacing the code in
  9821. \code{uncover\_live} that processed the basic blocks in topological
  9822. order (Section~\ref{sec:liveness-analysis-Lif}).
  9823. The \code{analyze\_dataflow} function has four parameters.
  9824. \begin{enumerate}
  9825. \item The first parameter \code{G} should be a directed graph from the
  9826. \racket{
  9827. \code{racket/graph} package (see the sidebar in
  9828. Section~\ref{sec:build-interference})}
  9829. \python{\code{graph.py} file in the support code}
  9830. that represents the
  9831. control-flow graph.
  9832. \item The second parameter \code{transfer} is a function that applies
  9833. liveness analysis to a basic block. It takes two parameters: the
  9834. label for the block to analyze and the live-after set for that
  9835. block. The transfer function should return the live-before set for
  9836. the block.
  9837. %
  9838. \racket{Also, as a side-effect, it should update the block's
  9839. $\itm{info}$ with the liveness information for each instruction.}
  9840. %
  9841. \python{Also, as a side-effect, it should update the live-before and
  9842. live-after sets for each instruction.}
  9843. %
  9844. To implement the \code{transfer} function, you should be able to
  9845. reuse the code you already have for analyzing basic blocks.
  9846. \item The third and fourth parameters of \code{analyze\_dataflow} are
  9847. \code{bottom} and \code{join} for the lattice of abstract states,
  9848. i.e. sets of locations. The bottom of the lattice is the empty set
  9849. and the join operator is set union.
  9850. \end{enumerate}
  9851. \begin{figure}[p]
  9852. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9853. \node (Rfun) at (0,2) {\large \LangLoop{}};
  9854. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  9855. %\node (Rfun-3) at (6,2) {\large \LangLoop{}};
  9856. %\node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  9857. %\node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  9858. %\node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  9859. %\node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  9860. \node (F1-4) at (6,2) {\large \LangLoop{}};
  9861. \node (F1-5) at (9,2) {\large \LangLoopANF{}};
  9862. \node (C3-2) at (3,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  9863. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  9864. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  9865. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  9866. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  9867. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  9868. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  9869. %% \path[->,bend left=15] (Rfun) edge [above] node
  9870. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  9871. \path[->,bend left=15] (Rfun) edge [above] node
  9872. {\ttfamily\footnotesize shrink} (Rfun-2);
  9873. \path[->,bend left=15] (Rfun-2) edge [above] node
  9874. {\ttfamily\footnotesize uniquify} (F1-4);
  9875. %% \path[->,bend left=15] (Rfun-3) edge [above] node
  9876. %% {\ttfamily\footnotesize reveal\_functions} (Rfun-4);
  9877. %% \path[->,bend left=15] (Rfun-4) edge [right] node
  9878. %% {\ttfamily\footnotesize convert\_assignments} (F1-1);
  9879. %% \path[->,bend left=15] (Rfun-4) edge [right] node
  9880. %% {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  9881. %% \path[->,bend right=15] (F1-2) edge [above] node
  9882. %% {\ttfamily\footnotesize limit\_fun.} (F1-3);
  9883. %% \path[->,bend right=15] (F1-3) edge [above] node
  9884. %% {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9885. \path[->,bend left=15] (F1-4) edge [above] node
  9886. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  9887. \path[->,bend left=15] (F1-5) edge [right] node
  9888. {\ttfamily\footnotesize explicate\_control} (C3-2);
  9889. \path[->,bend left=15] (C3-2) edge [left] node
  9890. {\ttfamily\footnotesize select\_instr.} (x86-2);
  9891. \path[->,bend right=15] (x86-2) edge [left] node
  9892. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9893. \path[->,bend right=15] (x86-2-1) edge [below] node
  9894. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  9895. \path[->,bend right=15] (x86-2-2) edge [left] node
  9896. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  9897. \path[->,bend left=15] (x86-3) edge [above] node
  9898. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  9899. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  9900. \end{tikzpicture}
  9901. \caption{Diagram of the passes for \LangLoop{}.}
  9902. \label{fig:Rwhile-passes}
  9903. \end{figure}
  9904. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  9905. for the compilation of \LangLoop{}.
  9906. % Further Reading: dataflow analysis
  9907. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9908. \chapter{Tuples and Garbage Collection}
  9909. \label{ch:Lvec}
  9910. \index{subject}{tuple}
  9911. \index{subject}{vector}
  9912. \index{subject}{allocate}
  9913. \index{subject}{heap allocate}
  9914. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  9915. %% all the IR grammars are spelled out! \\ --Jeremy}
  9916. %% \margincomment{\scriptsize Be more explicit about how to deal with
  9917. %% the root stack. \\ --Jeremy}
  9918. In this chapter we study the implementation of
  9919. tuples\racket{, called vectors in Racket}.
  9920. %
  9921. This language feature is the first of ours to use the computer's
  9922. \emph{heap}\index{subject}{heap} because the lifetime of a tuple is
  9923. indefinite, that is, a tuple lives forever from the programmer's
  9924. viewpoint. Of course, from an implementer's viewpoint, it is important
  9925. to reclaim the space associated with a tuple when it is no longer
  9926. needed, which is why we also study \emph{garbage collection}
  9927. \index{garbage collection} techniques in this chapter.
  9928. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  9929. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  9930. language of Chapter~\ref{ch:Lwhile} with tuples.
  9931. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  9932. copying live objects back and forth between two halves of the
  9933. heap. The garbage collector requires coordination with the compiler so
  9934. that it can see all of the \emph{root} pointers, that is, pointers in
  9935. registers or on the procedure call stack.
  9936. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  9937. discuss all the necessary changes and additions to the compiler
  9938. passes, including a new compiler pass named \code{expose\_allocation}.
  9939. \section{The \LangVec{} Language}
  9940. \label{sec:r3}
  9941. Figure~\ref{fig:Lvec-concrete-syntax} defines the concrete syntax for
  9942. \LangVec{} and Figure~\ref{fig:Lvec-syntax} defines the abstract syntax.
  9943. %
  9944. \racket{The \LangVec{} language includes the forms: \code{vector} for
  9945. creating a tuple, \code{vector-ref} for reading an element of a
  9946. tuple, \code{vector-set!} for writing to an element of a tuple, and
  9947. \code{vector-length} for obtaining the number of elements of a
  9948. tuple.}
  9949. %
  9950. \python{The \LangVec{} language adds 1) tuple creation via a
  9951. comma-separated list of expressions, 2) accessing an element of a
  9952. tuple with the square bracket notation, i.e., \code{t[n]} returns
  9953. the nth element of the tuple \code{t}, 3) the \code{is} comparison
  9954. operator, and 4) obtaining the number of elements (the length) of a
  9955. tuple.}
  9956. %
  9957. The program below shows an example use of tuples. It creates a 3-tuple
  9958. \code{t} and a 1-tuple that is stored at index $2$ of the 3-tuple,
  9959. demonstrating that tuples are first-class values. The element at
  9960. index $1$ of \code{t} is \racket{\code{\#t}}\python{\code{True}}, so the
  9961. ``then'' branch of the \key{if} is taken. The element at index $0$ of
  9962. \code{t} is \code{40}, to which we add \code{2}, the element at index
  9963. $0$ of the 1-tuple. So the result of the program is \code{42}.
  9964. %
  9965. {\if\edition\racketEd
  9966. \begin{lstlisting}
  9967. (let ([t (vector 40 #t (vector 2))])
  9968. (if (vector-ref t 1)
  9969. (+ (vector-ref t 0)
  9970. (vector-ref (vector-ref t 2) 0))
  9971. 44))
  9972. \end{lstlisting}
  9973. \fi}
  9974. {\if\edition\pythonEd
  9975. \begin{lstlisting}
  9976. t = 40, True, (2,)
  9977. print( t[0] + t[2][0] if t[1] else 44 )
  9978. \end{lstlisting}
  9979. \fi}
  9980. \newcommand{\LtupGrammarRacket}{
  9981. \begin{array}{lcl}
  9982. \Type &::=& \LP\key{Vector}\;\Type\ldots\RP \\
  9983. \Exp &::=& \LP\key{vector}\;\Exp\ldots\RP
  9984. \MID \LP\key{vector-length}\;\Exp\RP \\
  9985. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  9986. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  9987. \end{array}
  9988. }
  9989. \newcommand{\LtupASTRacket}{
  9990. \begin{array}{lcl}
  9991. \Type &::=& \LP\key{Vector}\;\Type\ldots\RP \\
  9992. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  9993. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  9994. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  9995. &\MID& \LP\key{HasType}~\Exp~\Type \RP
  9996. \end{array}
  9997. }
  9998. \newcommand{\LtupGrammarPython}{
  9999. \begin{array}{rcl}
  10000. \itm{cmp} &::= & \key{is} \\
  10001. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp} \MID \CLEN{\Exp}
  10002. \end{array}
  10003. }
  10004. \newcommand{\LtupASTPython}{
  10005. \begin{array}{lcl}
  10006. \itm{cmp} &::= & \code{Is()} \\
  10007. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  10008. &\MID& \LEN{\Exp}
  10009. \end{array}
  10010. }
  10011. \begin{figure}[tbp]
  10012. \centering
  10013. \fbox{
  10014. \begin{minipage}{0.96\textwidth}
  10015. {\if\edition\racketEd
  10016. \[
  10017. \begin{array}{l}
  10018. \gray{\LintGrammarRacket{}} \\ \hline
  10019. \gray{\LvarGrammarRacket{}} \\ \hline
  10020. \gray{\LifGrammarRacket{}} \\ \hline
  10021. \gray{\LwhileGrammarRacket} \\ \hline
  10022. \LtupGrammarRacket \\
  10023. \begin{array}{lcl}
  10024. \LangVecM{} &::=& \Exp
  10025. \end{array}
  10026. \end{array}
  10027. \]
  10028. \fi}
  10029. {\if\edition\pythonEd
  10030. \[
  10031. \begin{array}{l}
  10032. \gray{\LintGrammarPython{}} \\ \hline
  10033. \gray{\LvarGrammarPython{}} \\ \hline
  10034. \gray{\LifGrammarPython{}} \\ \hline
  10035. \gray{\LwhileGrammarPython} \\ \hline
  10036. \LtupGrammarPython \\
  10037. \begin{array}{rcl}
  10038. \LangVecM{} &::=& \Stmt^{*}
  10039. \end{array}
  10040. \end{array}
  10041. \]
  10042. \fi}
  10043. \end{minipage}
  10044. }
  10045. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  10046. (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  10047. \label{fig:Lvec-concrete-syntax}
  10048. \end{figure}
  10049. \begin{figure}[tp]
  10050. \centering
  10051. \fbox{
  10052. \begin{minipage}{0.96\textwidth}
  10053. {\if\edition\racketEd
  10054. \[
  10055. \begin{array}{l}
  10056. \gray{\LintOpAST} \\ \hline
  10057. \gray{\LvarASTRacket{}} \\ \hline
  10058. \gray{\LifASTRacket{}} \\ \hline
  10059. \gray{\LwhileASTRacket{}} \\ \hline
  10060. \LtupASTRacket{} \\
  10061. \begin{array}{lcl}
  10062. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  10063. \end{array}
  10064. \end{array}
  10065. \]
  10066. \fi}
  10067. {\if\edition\pythonEd
  10068. \[
  10069. \begin{array}{l}
  10070. \gray{\LintASTPython} \\ \hline
  10071. \gray{\LvarASTPython} \\ \hline
  10072. \gray{\LifASTPython} \\ \hline
  10073. \gray{\LwhileASTPython} \\ \hline
  10074. \LtupASTPython \\
  10075. \begin{array}{lcl}
  10076. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10077. \end{array}
  10078. \end{array}
  10079. \]
  10080. \fi}
  10081. \end{minipage}
  10082. }
  10083. \caption{The abstract syntax of \LangVec{}.}
  10084. \label{fig:Lvec-syntax}
  10085. \end{figure}
  10086. Tuples raises several interesting new issues. First, variable binding
  10087. performs a shallow-copy when dealing with tuples, which means that
  10088. different variables can refer to the same tuple, that is, two
  10089. variables can be \emph{aliases}\index{subject}{alias} for the same
  10090. entity. Consider the following example in which both \code{t1} and
  10091. \code{t2} refer to the same tuple value but \code{t3} refers to a
  10092. different tuple value but with equal elements. The result of the
  10093. program is \code{42}.
  10094. \begin{center}
  10095. \begin{minipage}{0.96\textwidth}
  10096. {\if\edition\racketEd
  10097. \begin{lstlisting}
  10098. (let ([t1 (vector 3 7)])
  10099. (let ([t2 t1])
  10100. (let ([t3 (vector 3 7)])
  10101. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  10102. 42
  10103. 0))))
  10104. \end{lstlisting}
  10105. \fi}
  10106. {\if\edition\pythonEd
  10107. \begin{lstlisting}
  10108. t1 = 3, 7
  10109. t2 = t1
  10110. t3 = 3, 7
  10111. print( 42 if (t1 is t2) and not (t1 is t3) else 0)
  10112. \end{lstlisting}
  10113. \fi}
  10114. \end{minipage}
  10115. \end{center}
  10116. {\if\edition\racketEd
  10117. Whether two variables are aliased or not affects what happens
  10118. when the underlying tuple is mutated\index{subject}{mutation}.
  10119. Consider the following example in which \code{t1} and \code{t2}
  10120. again refer to the same tuple value.
  10121. \begin{center}
  10122. \begin{minipage}{0.96\textwidth}
  10123. \begin{lstlisting}
  10124. (let ([t1 (vector 3 7)])
  10125. (let ([t2 t1])
  10126. (let ([_ (vector-set! t2 0 42)])
  10127. (vector-ref t1 0))))
  10128. \end{lstlisting}
  10129. \end{minipage}
  10130. \end{center}
  10131. The mutation through \code{t2} is visible when referencing the tuple
  10132. from \code{t1}, so the result of this program is \code{42}.
  10133. \fi}
  10134. The next issue concerns the lifetime of tuples. When does their
  10135. lifetime end? Notice that \LangVec{} does not include an operation
  10136. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  10137. to any notion of static scoping.
  10138. %
  10139. {\if\edition\racketEd
  10140. %
  10141. For example, the following program returns \code{42} even though the
  10142. variable \code{w} goes out of scope prior to the \code{vector-ref}
  10143. that reads from the vector it was bound to.
  10144. \begin{center}
  10145. \begin{minipage}{0.96\textwidth}
  10146. \begin{lstlisting}
  10147. (let ([v (vector (vector 44))])
  10148. (let ([x (let ([w (vector 42)])
  10149. (let ([_ (vector-set! v 0 w)])
  10150. 0))])
  10151. (+ x (vector-ref (vector-ref v 0) 0))))
  10152. \end{lstlisting}
  10153. \end{minipage}
  10154. \end{center}
  10155. \fi}
  10156. %
  10157. {\if\edition\pythonEd
  10158. %
  10159. For example, the following program returns \code{42} even though the
  10160. variable \code{x} goes out of scope when the function returns, prior
  10161. to reading the tuple element at index zero. (We study the compilation
  10162. of functions in Chapter~\ref{ch:Lfun}.)
  10163. %
  10164. \begin{center}
  10165. \begin{minipage}{0.96\textwidth}
  10166. \begin{lstlisting}
  10167. def f():
  10168. x = 42, 43
  10169. return x
  10170. t = f()
  10171. print( t[0] )
  10172. \end{lstlisting}
  10173. \end{minipage}
  10174. \end{center}
  10175. \fi}
  10176. %
  10177. From the perspective of programmer-observable behavior, tuples live
  10178. forever. Of course, if they really lived forever then many programs
  10179. would run out of memory. The language's runtime system must therefore
  10180. perform automatic garbage collection.
  10181. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  10182. \LangVec{} language.
  10183. %
  10184. \racket{We define the \code{vector}, \code{vector-ref},
  10185. \code{vector-set!}, and \code{vector-length} operations for
  10186. \LangVec{} in terms of the corresponding operations in Racket. One
  10187. subtle point is that the \code{vector-set!} operation returns the
  10188. \code{\#<void>} value.}
  10189. %
  10190. \python{We define tuple creation, element access, and the \code{len}
  10191. operator for \LangVec{} in terms of the corresponding operations in
  10192. Python.}
  10193. \begin{figure}[tbp]
  10194. {\if\edition\racketEd
  10195. \begin{lstlisting}
  10196. (define interp-Lvec_class
  10197. (class interp-Lif_class
  10198. (super-new)
  10199. (define/override (interp-op op)
  10200. (match op
  10201. ['eq? (lambda (v1 v2)
  10202. (cond [(or (and (fixnum? v1) (fixnum? v2))
  10203. (and (boolean? v1) (boolean? v2))
  10204. (and (vector? v1) (vector? v2))
  10205. (and (void? v1) (void? v2)))
  10206. (eq? v1 v2)]))]
  10207. ['vector vector]
  10208. ['vector-length vector-length]
  10209. ['vector-ref vector-ref]
  10210. ['vector-set! vector-set!]
  10211. [else (super interp-op op)]
  10212. ))
  10213. (define/override ((interp-exp env) e)
  10214. (define recur (interp-exp env))
  10215. (match e
  10216. [(HasType e t) (recur e)]
  10217. [(Void) (void)]
  10218. [else ((super interp-exp env) e)]
  10219. ))
  10220. ))
  10221. (define (interp-Lvec p)
  10222. (send (new interp-Lvec_class) interp-program p))
  10223. \end{lstlisting}
  10224. \fi}
  10225. %
  10226. {\if\edition\pythonEd
  10227. \begin{lstlisting}
  10228. class InterpLtup(InterpLwhile):
  10229. def interp_cmp(self, cmp):
  10230. match cmp:
  10231. case Is():
  10232. return lambda x, y: x is y
  10233. case _:
  10234. return super().interp_cmp(cmp)
  10235. def interp_exp(self, e, env):
  10236. match e:
  10237. case Tuple(es, Load()):
  10238. return tuple([self.interp_exp(e, env) for e in es])
  10239. case Subscript(tup, index, Load()):
  10240. t = self.interp_exp(tup, env)
  10241. n = self.interp_exp(index, env)
  10242. return t[n]
  10243. case _:
  10244. return super().interp_exp(e, env)
  10245. \end{lstlisting}
  10246. \fi}
  10247. \caption{Interpreter for the \LangVec{} language.}
  10248. \label{fig:interp-Lvec}
  10249. \end{figure}
  10250. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  10251. \LangVec{}, which deserves some explanation. When allocating a tuple,
  10252. we need to know which elements of the tuple are pointers (i.e. are
  10253. also tuple) for garbage collection purposes. We can obtain this
  10254. information during type checking. The type checker in
  10255. Figure~\ref{fig:type-check-Lvec} not only computes the type of an
  10256. expression, it also
  10257. %
  10258. \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  10259. where $T$ is the vector's type.
  10260. To create the s-expression for the \code{Vector} type in
  10261. Figure~\ref{fig:type-check-Lvec}, we use the
  10262. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  10263. operator} \code{,@} to insert the list \code{t*} without its usual
  10264. start and end parentheses. \index{subject}{unquote-slicing}}
  10265. %
  10266. \python{records the type of each tuple expression in a new field
  10267. named \code{has\_type}.}
  10268. \begin{figure}[tp]
  10269. {\if\edition\racketEd
  10270. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10271. (define type-check-Lvec_class
  10272. (class type-check-Lif_class
  10273. (super-new)
  10274. (inherit check-type-equal?)
  10275. (define/override (type-check-exp env)
  10276. (lambda (e)
  10277. (define recur (type-check-exp env))
  10278. (match e
  10279. [(Void) (values (Void) 'Void)]
  10280. [(Prim 'vector es)
  10281. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  10282. (define t `(Vector ,@t*))
  10283. (values (HasType (Prim 'vector e*) t) t)]
  10284. [(Prim 'vector-ref (list e1 (Int i)))
  10285. (define-values (e1^ t) (recur e1))
  10286. (match t
  10287. [`(Vector ,ts ...)
  10288. (unless (and (0 . <= . i) (i . < . (length ts)))
  10289. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10290. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  10291. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10292. [(Prim 'vector-set! (list e1 (Int i) arg) )
  10293. (define-values (e-vec t-vec) (recur e1))
  10294. (define-values (e-arg^ t-arg) (recur arg))
  10295. (match t-vec
  10296. [`(Vector ,ts ...)
  10297. (unless (and (0 . <= . i) (i . < . (length ts)))
  10298. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10299. (check-type-equal? (list-ref ts i) t-arg e)
  10300. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  10301. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  10302. [(Prim 'vector-length (list e))
  10303. (define-values (e^ t) (recur e))
  10304. (match t
  10305. [`(Vector ,ts ...)
  10306. (values (Prim 'vector-length (list e^)) 'Integer)]
  10307. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10308. [(Prim 'eq? (list arg1 arg2))
  10309. (define-values (e1 t1) (recur arg1))
  10310. (define-values (e2 t2) (recur arg2))
  10311. (match* (t1 t2)
  10312. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  10313. [(other wise) (check-type-equal? t1 t2 e)])
  10314. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  10315. [(HasType (Prim 'vector es) t)
  10316. ((type-check-exp env) (Prim 'vector es))]
  10317. [(HasType e1 t)
  10318. (define-values (e1^ t^) (recur e1))
  10319. (check-type-equal? t t^ e)
  10320. (values (HasType e1^ t) t)]
  10321. [else ((super type-check-exp env) e)]
  10322. )))
  10323. ))
  10324. (define (type-check-Lvec p)
  10325. (send (new type-check-Lvec_class) type-check-program p))
  10326. \end{lstlisting}
  10327. \fi}
  10328. {\if\edition\pythonEd
  10329. \begin{lstlisting}
  10330. class TypeCheckLtup(TypeCheckLwhile):
  10331. def type_check_exp(self, e, env):
  10332. match e:
  10333. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  10334. l = self.type_check_exp(left, env)
  10335. r = self.type_check_exp(right, env)
  10336. check_type_equal(l, r, e)
  10337. return bool
  10338. case Tuple(es, Load()):
  10339. ts = [self.type_check_exp(e, env) for e in es]
  10340. e.has_type = tuple(ts)
  10341. return e.has_type
  10342. case Subscript(tup, Constant(index), Load()):
  10343. tup_ty = self.type_check_exp(tup, env)
  10344. index_ty = self.type_check_exp(Constant(index), env)
  10345. check_type_equal(index_ty, int, index)
  10346. match tup_ty:
  10347. case tuple(ts):
  10348. return ts[index]
  10349. case _:
  10350. raise Exception('error: expected a tuple, not ' + repr(tup_ty))
  10351. case _:
  10352. return super().type_check_exp(e, env)
  10353. \end{lstlisting}
  10354. \fi}
  10355. \caption{Type checker for the \LangVec{} language.}
  10356. \label{fig:type-check-Lvec}
  10357. \end{figure}
  10358. \section{Garbage Collection}
  10359. \label{sec:GC}
  10360. Here we study a relatively simple algorithm for garbage collection
  10361. that is the basis of state-of-the-art garbage
  10362. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  10363. particular, we describe a two-space copying
  10364. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  10365. perform the
  10366. copy~\citep{Cheney:1970aa}.
  10367. \index{subject}{copying collector}
  10368. \index{subject}{two-space copying collector}
  10369. Figure~\ref{fig:copying-collector} gives a
  10370. coarse-grained depiction of what happens in a two-space collector,
  10371. showing two time steps, prior to garbage collection (on the top) and
  10372. after garbage collection (on the bottom). In a two-space collector,
  10373. the heap is divided into two parts named the FromSpace and the
  10374. ToSpace. Initially, all allocations go to the FromSpace until there is
  10375. not enough room for the next allocation request. At that point, the
  10376. garbage collector goes to work to make more room.
  10377. \index{subject}{ToSpace}
  10378. \index{subject}{FromSpace}
  10379. The garbage collector must be careful not to reclaim tuples that will
  10380. be used by the program in the future. Of course, it is impossible in
  10381. general to predict what a program will do, but we can over approximate
  10382. the will-be-used tuples by preserving all tuples that could be
  10383. accessed by \emph{any} program given the current computer state. A
  10384. program could access any tuple whose address is in a register or on
  10385. the procedure call stack. These addresses are called the \emph{root
  10386. set}\index{subject}{root set}. In addition, a program could access any tuple that is
  10387. transitively reachable from the root set. Thus, it is safe for the
  10388. garbage collector to reclaim the tuples that are not reachable in this
  10389. way.
  10390. So the goal of the garbage collector is twofold:
  10391. \begin{enumerate}
  10392. \item preserve all tuple that are reachable from the root set via a
  10393. path of pointers, that is, the \emph{live} tuples, and
  10394. \item reclaim the memory of everything else, that is, the
  10395. \emph{garbage}.
  10396. \end{enumerate}
  10397. A copying collector accomplishes this by copying all of the live
  10398. objects from the FromSpace into the ToSpace and then performs a sleight
  10399. of hand, treating the ToSpace as the new FromSpace and the old
  10400. FromSpace as the new ToSpace. In the example of
  10401. Figure~\ref{fig:copying-collector}, there are three pointers in the
  10402. root set, one in a register and two on the stack. All of the live
  10403. objects have been copied to the ToSpace (the right-hand side of
  10404. Figure~\ref{fig:copying-collector}) in a way that preserves the
  10405. pointer relationships. For example, the pointer in the register still
  10406. points to a 2-tuple whose first element is a 3-tuple and whose second
  10407. element is a 2-tuple. There are four tuples that are not reachable
  10408. from the root set and therefore do not get copied into the ToSpace.
  10409. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  10410. created by a well-typed program in \LangVec{} because it contains a
  10411. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  10412. We design the garbage collector to deal with cycles to begin with so
  10413. we will not need to revisit this issue.
  10414. \begin{figure}[tbp]
  10415. \centering
  10416. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  10417. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  10418. \caption{A copying collector in action.}
  10419. \label{fig:copying-collector}
  10420. \end{figure}
  10421. There are many alternatives to copying collectors (and their bigger
  10422. siblings, the generational collectors) when its comes to garbage
  10423. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  10424. reference counting~\citep{Collins:1960aa}. The strengths of copying
  10425. collectors are that allocation is fast (just a comparison and pointer
  10426. increment), there is no fragmentation, cyclic garbage is collected,
  10427. and the time complexity of collection only depends on the amount of
  10428. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  10429. main disadvantages of a two-space copying collector is that it uses a
  10430. lot of space and takes a long time to perform the copy, though these
  10431. problems are ameliorated in generational collectors. Racket and
  10432. Scheme programs tend to allocate many small objects and generate a lot
  10433. of garbage, so copying and generational collectors are a good fit.
  10434. Garbage collection is an active research topic, especially concurrent
  10435. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  10436. developing new techniques and revisiting old
  10437. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  10438. meet every year at the International Symposium on Memory Management to
  10439. present these findings.
  10440. \subsection{Graph Copying via Cheney's Algorithm}
  10441. \label{sec:cheney}
  10442. \index{subject}{Cheney's algorithm}
  10443. Let us take a closer look at the copying of the live objects. The
  10444. allocated objects and pointers can be viewed as a graph and we need to
  10445. copy the part of the graph that is reachable from the root set. To
  10446. make sure we copy all of the reachable vertices in the graph, we need
  10447. an exhaustive graph traversal algorithm, such as depth-first search or
  10448. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  10449. such algorithms take into account the possibility of cycles by marking
  10450. which vertices have already been visited, so as to ensure termination
  10451. of the algorithm. These search algorithms also use a data structure
  10452. such as a stack or queue as a to-do list to keep track of the vertices
  10453. that need to be visited. We use breadth-first search and a trick
  10454. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  10455. and copying tuples into the ToSpace.
  10456. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  10457. copy progresses. The queue is represented by a chunk of contiguous
  10458. memory at the beginning of the ToSpace, using two pointers to track
  10459. the front and the back of the queue. The algorithm starts by copying
  10460. all tuples that are immediately reachable from the root set into the
  10461. ToSpace to form the initial queue. When we copy a tuple, we mark the
  10462. old tuple to indicate that it has been visited. We discuss how this
  10463. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  10464. pointers inside the copied tuples in the queue still point back to the
  10465. FromSpace. Once the initial queue has been created, the algorithm
  10466. enters a loop in which it repeatedly processes the tuple at the front
  10467. of the queue and pops it off the queue. To process a tuple, the
  10468. algorithm copies all the tuple that are directly reachable from it to
  10469. the ToSpace, placing them at the back of the queue. The algorithm then
  10470. updates the pointers in the popped tuple so they point to the newly
  10471. copied tuples.
  10472. \begin{figure}[tbp]
  10473. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  10474. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  10475. \label{fig:cheney}
  10476. \end{figure}
  10477. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  10478. tuple whose second element is $42$ to the back of the queue. The other
  10479. pointer goes to a tuple that has already been copied, so we do not
  10480. need to copy it again, but we do need to update the pointer to the new
  10481. location. This can be accomplished by storing a \emph{forwarding
  10482. pointer} to the new location in the old tuple, back when we initially
  10483. copied the tuple into the ToSpace. This completes one step of the
  10484. algorithm. The algorithm continues in this way until the front of the
  10485. queue is empty, that is, until the front catches up with the back.
  10486. \subsection{Data Representation}
  10487. \label{sec:data-rep-gc}
  10488. The garbage collector places some requirements on the data
  10489. representations used by our compiler. First, the garbage collector
  10490. needs to distinguish between pointers and other kinds of data. There
  10491. are several ways to accomplish this.
  10492. \begin{enumerate}
  10493. \item Attached a tag to each object that identifies what type of
  10494. object it is~\citep{McCarthy:1960dz}.
  10495. \item Store different types of objects in different
  10496. regions~\citep{Steele:1977ab}.
  10497. \item Use type information from the program to either generate
  10498. type-specific code for collecting or to generate tables that can
  10499. guide the
  10500. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  10501. \end{enumerate}
  10502. Dynamically typed languages, such as \racket{Racket}\python{Python},
  10503. need to tag objects anyways, so option 1 is a natural choice for those
  10504. languages. However, \LangVec{} is a statically typed language, so it
  10505. would be unfortunate to require tags on every object, especially small
  10506. and pervasive objects like integers and Booleans. Option 3 is the
  10507. best-performing choice for statically typed languages, but comes with
  10508. a relatively high implementation complexity. To keep this chapter
  10509. within a 2-week time budget, we recommend a combination of options 1
  10510. and 2, using separate strategies for the stack and the heap.
  10511. Regarding the stack, we recommend using a separate stack for pointers,
  10512. which we call a \emph{root stack}\index{subject}{root stack}
  10513. (a.k.a. ``shadow
  10514. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  10515. is, when a local variable needs to be spilled and is of type
  10516. \racket{\code{Vector}}\python{\code{TupleType}}, then we put it on the
  10517. root stack instead of the normal procedure call stack. Furthermore, we
  10518. always spill tuple-typed variables if they are live during a call to
  10519. the collector, thereby ensuring that no pointers are in registers
  10520. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  10521. example from Figure~\ref{fig:copying-collector} and contrasts it with
  10522. the data layout using a root stack. The root stack contains the two
  10523. pointers from the regular stack and also the pointer in the second
  10524. register.
  10525. \begin{figure}[tbp]
  10526. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  10527. \caption{Maintaining a root stack to facilitate garbage collection.}
  10528. \label{fig:shadow-stack}
  10529. \end{figure}
  10530. The problem of distinguishing between pointers and other kinds of data
  10531. also arises inside of each tuple on the heap. We solve this problem by
  10532. attaching a tag, an extra 64-bits, to each
  10533. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  10534. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  10535. that we have drawn the bits in a big-endian way, from right-to-left,
  10536. with bit location 0 (the least significant bit) on the far right,
  10537. which corresponds to the direction of the x86 shifting instructions
  10538. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  10539. is dedicated to specifying which elements of the tuple are pointers,
  10540. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  10541. indicates there is a pointer and a 0 bit indicates some other kind of
  10542. data. The pointer mask starts at bit location 7. We have limited
  10543. tuples to a maximum size of 50 elements, so we just need 50 bits for
  10544. the pointer mask. The tag also contains two other pieces of
  10545. information. The length of the tuple (number of elements) is stored in
  10546. bits location 1 through 6. Finally, the bit at location 0 indicates
  10547. whether the tuple has yet to be copied to the ToSpace. If the bit has
  10548. value 1, then this tuple has not yet been copied. If the bit has
  10549. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  10550. of a pointer are always zero anyways because our tuples are 8-byte
  10551. aligned.)
  10552. \begin{figure}[tbp]
  10553. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  10554. \caption{Representation of tuples in the heap.}
  10555. \label{fig:tuple-rep}
  10556. \end{figure}
  10557. \subsection{Implementation of the Garbage Collector}
  10558. \label{sec:organize-gz}
  10559. \index{subject}{prelude}
  10560. An implementation of the copying collector is provided in the
  10561. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  10562. interface to the garbage collector that is used by the compiler. The
  10563. \code{initialize} function creates the FromSpace, ToSpace, and root
  10564. stack and should be called in the prelude of the \code{main}
  10565. function. The arguments of \code{initialize} are the root stack size
  10566. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  10567. good choice for both. The \code{initialize} function puts the address
  10568. of the beginning of the FromSpace into the global variable
  10569. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  10570. the address that is 1-past the last element of the FromSpace. (We use
  10571. half-open intervals to represent chunks of
  10572. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  10573. points to the first element of the root stack.
  10574. As long as there is room left in the FromSpace, your generated code
  10575. can allocate tuples simply by moving the \code{free\_ptr} forward.
  10576. %
  10577. The amount of room left in FromSpace is the difference between the
  10578. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  10579. function should be called when there is not enough room left in the
  10580. FromSpace for the next allocation. The \code{collect} function takes
  10581. a pointer to the current top of the root stack (one past the last item
  10582. that was pushed) and the number of bytes that need to be
  10583. allocated. The \code{collect} function performs the copying collection
  10584. and leaves the heap in a state such that the next allocation will
  10585. succeed.
  10586. \begin{figure}[tbp]
  10587. \begin{lstlisting}
  10588. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  10589. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  10590. int64_t* free_ptr;
  10591. int64_t* fromspace_begin;
  10592. int64_t* fromspace_end;
  10593. int64_t** rootstack_begin;
  10594. \end{lstlisting}
  10595. \caption{The compiler's interface to the garbage collector.}
  10596. \label{fig:gc-header}
  10597. \end{figure}
  10598. %% \begin{exercise}
  10599. %% In the file \code{runtime.c} you will find the implementation of
  10600. %% \code{initialize} and a partial implementation of \code{collect}.
  10601. %% The \code{collect} function calls another function, \code{cheney},
  10602. %% to perform the actual copy, and that function is left to the reader
  10603. %% to implement. The following is the prototype for \code{cheney}.
  10604. %% \begin{lstlisting}
  10605. %% static void cheney(int64_t** rootstack_ptr);
  10606. %% \end{lstlisting}
  10607. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  10608. %% rootstack (which is an array of pointers). The \code{cheney} function
  10609. %% also communicates with \code{collect} through the global
  10610. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  10611. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  10612. %% the ToSpace:
  10613. %% \begin{lstlisting}
  10614. %% static int64_t* tospace_begin;
  10615. %% static int64_t* tospace_end;
  10616. %% \end{lstlisting}
  10617. %% The job of the \code{cheney} function is to copy all the live
  10618. %% objects (reachable from the root stack) into the ToSpace, update
  10619. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  10620. %% update the root stack so that it points to the objects in the
  10621. %% ToSpace, and finally to swap the global pointers for the FromSpace
  10622. %% and ToSpace.
  10623. %% \end{exercise}
  10624. %% \section{Compiler Passes}
  10625. %% \label{sec:code-generation-gc}
  10626. The introduction of garbage collection has a non-trivial impact on our
  10627. compiler passes. We introduce a new compiler pass named
  10628. \code{expose\_allocation}. We make significant changes to
  10629. \code{select\_instructions}, \code{build\_interference},
  10630. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  10631. make minor changes in several more passes. The following program will
  10632. serve as our running example. It creates two tuples, one nested
  10633. inside the other. Both tuples have length one. The program accesses
  10634. the element in the inner tuple tuple.
  10635. % tests/vectors_test_17.rkt
  10636. {\if\edition\racketEd
  10637. \begin{lstlisting}
  10638. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  10639. \end{lstlisting}
  10640. \fi}
  10641. {\if\edition\pythonEd
  10642. \begin{lstlisting}
  10643. print( ((42,),)[0][0] )
  10644. \end{lstlisting}
  10645. \fi}
  10646. {\if\edition\racketEd
  10647. \section{Shrink}
  10648. \label{sec:shrink-Lvec}
  10649. Recall that the \code{shrink} pass translates the primitives operators
  10650. into a smaller set of primitives.
  10651. %
  10652. This pass comes after type checking and the type checker adds a
  10653. \code{HasType} AST node around each \code{vector} AST node, so you'll
  10654. need to add a case for \code{HasType} to the \code{shrink} pass.
  10655. \fi}
  10656. \section{Expose Allocation}
  10657. \label{sec:expose-allocation}
  10658. The pass \code{expose\_allocation} lowers tuple creation into a
  10659. conditional call to the collector followed by allocating the
  10660. appropriate amount of memory and initializing it. We choose to place
  10661. the \code{expose\_allocation} pass before
  10662. \code{remove\_complex\_operands} because the code generated by
  10663. \code{expose\_allocation} contains complex operands.
  10664. The output of \code{expose\_allocation} is a language \LangAlloc{}
  10665. that extends \LangVec{} with new forms that we use in the translation
  10666. of tuple creation.
  10667. %
  10668. {\if\edition\racketEd
  10669. \[
  10670. \begin{array}{lcl}
  10671. \Exp &::=& \cdots
  10672. \MID (\key{collect} \,\itm{int})
  10673. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  10674. \MID (\key{global-value} \,\itm{name})
  10675. \end{array}
  10676. \]
  10677. \fi}
  10678. {\if\edition\pythonEd
  10679. \[
  10680. \begin{array}{lcl}
  10681. \Exp &::=& \cdots\\
  10682. &\MID& \key{collect}(\itm{int})
  10683. \MID \key{allocate}(\itm{int},\itm{type})
  10684. \MID \key{global\_value}(\itm{name}) \\
  10685. &\MID& \key{begin:} ~ \Stmt^{*} ~ \Exp
  10686. \end{array}
  10687. \]
  10688. \fi}
  10689. The \CCOLLECT{$n$} form runs the garbage collector, requesting that it
  10690. make sure that there are $n$ bytes ready to be allocated. During
  10691. instruction selection, the \CCOLLECT{$n$} form will become a call to
  10692. the \code{collect} function in \code{runtime.c}.
  10693. %
  10694. The \CALLOCATE{$n$}{$T$} form obtains memory for $n$ elements (and
  10695. space at the front for the 64 bit tag), but the elements are not
  10696. initialized. \index{subject}{allocate} The $T$ parameter is the type
  10697. of the tuple:
  10698. %
  10699. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  10700. %
  10701. where $\Type_i$ is the type of the $i$th element in the tuple. The
  10702. \CGLOBAL{\itm{name}} form reads the value of a global variable, such
  10703. as \code{free\_ptr}.
  10704. %
  10705. \python{The \code{begin} form is an expression that executes a
  10706. sequence of statements and then produces the value of the expression
  10707. at the end.}
  10708. The following shows the transformation of tuple creation into 1) a
  10709. sequence of temporary variables bindings for the initializing
  10710. expressions, 2) a conditional call to \code{collect}, 3) a call to
  10711. \code{allocate}, and 4) the initialization of the tuple. The
  10712. \itm{len} placeholder refers to the length of the tuple and
  10713. \itm{bytes} is how many total bytes need to be allocated for the
  10714. tuple, which is 8 for the tag plus \itm{len} times 8.
  10715. %
  10716. \python{The \itm{type} needed for the second argument of the
  10717. \code{allocate} form can be obtained from the \code{has\_type} field
  10718. of the tuple AST node, which is stored there by running the type
  10719. checker for \LangVec{} immediately before this pass.}
  10720. %
  10721. \begin{center}
  10722. \begin{minipage}{\textwidth}
  10723. {\if\edition\racketEd
  10724. \begin{lstlisting}
  10725. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  10726. |$\Longrightarrow$|
  10727. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  10728. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  10729. (global-value fromspace_end))
  10730. (void)
  10731. (collect |\itm{bytes}|))])
  10732. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  10733. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  10734. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  10735. |$v$|) ... )))) ...)
  10736. \end{lstlisting}
  10737. \fi}
  10738. {\if\edition\pythonEd
  10739. \begin{lstlisting}
  10740. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  10741. |$\Longrightarrow$|
  10742. begin:
  10743. |$x_0$| = |$e_0$|
  10744. |$\vdots$|
  10745. |$x_{n-1}$| = |$e_{n-1}$|
  10746. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  10747. 0
  10748. else:
  10749. collect(|\itm{bytes}|)
  10750. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  10751. |$v$|[0] = |$x_0$|
  10752. |$\vdots$|
  10753. |$v$|[|$n-1$|] = |$x_{n-1}$|
  10754. |$v$|
  10755. \end{lstlisting}
  10756. \fi}
  10757. \end{minipage}
  10758. \end{center}
  10759. %
  10760. \noindent The sequencing of the initializing expressions
  10761. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important, as
  10762. they may trigger garbage collection and we cannot have an allocated
  10763. but uninitialized tuple on the heap during a collection.
  10764. Figure~\ref{fig:expose-alloc-output} shows the output of the
  10765. \code{expose\_allocation} pass on our running example.
  10766. \begin{figure}[tbp]
  10767. % tests/s2_17.rkt
  10768. {\if\edition\racketEd
  10769. \begin{lstlisting}
  10770. (vector-ref
  10771. (vector-ref
  10772. (let ([vecinit7976
  10773. (let ([vecinit7972 42])
  10774. (let ([collectret7974
  10775. (if (< (+ (global-value free_ptr) 16)
  10776. (global-value fromspace_end))
  10777. (void)
  10778. (collect 16)
  10779. )])
  10780. (let ([alloc7971 (allocate 1 (Vector Integer))])
  10781. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  10782. alloc7971))))])
  10783. (let ([collectret7978
  10784. (if (< (+ (global-value free_ptr) 16)
  10785. (global-value fromspace_end))
  10786. (void)
  10787. (collect 16)
  10788. )])
  10789. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  10790. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  10791. alloc7975))))
  10792. 0)
  10793. 0)
  10794. \end{lstlisting}
  10795. \fi}
  10796. {\if\edition\pythonEd
  10797. \begin{lstlisting}
  10798. print( |$T_1$|[0][0] )
  10799. \end{lstlisting}
  10800. where $T_1$ is
  10801. \begin{lstlisting}
  10802. begin:
  10803. tmp.1 = |$T_2$|
  10804. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  10805. 0
  10806. else:
  10807. collect(16)
  10808. tmp.2 = allocate(1, TupleType(TupleType([int])))
  10809. tmp.2[0] = tmp.1
  10810. tmp.2
  10811. \end{lstlisting}
  10812. and $T_2$ is
  10813. \begin{lstlisting}
  10814. begin:
  10815. tmp.3 = 42
  10816. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  10817. 0
  10818. else:
  10819. collect(16)
  10820. tmp.4 = allocate(1, TupleType([int]))
  10821. tmp.4[0] = tmp.3
  10822. tmp.4
  10823. \end{lstlisting}
  10824. \fi}
  10825. \caption{Output of the \code{expose\_allocation} pass.}
  10826. \label{fig:expose-alloc-output}
  10827. \end{figure}
  10828. \section{Remove Complex Operands}
  10829. \label{sec:remove-complex-opera-Lvec}
  10830. {\if\edition\racketEd
  10831. %
  10832. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  10833. should be treated as complex operands.
  10834. %
  10835. \fi}
  10836. %
  10837. {\if\edition\pythonEd
  10838. %
  10839. The expressions \code{allocate}, \code{global\_value}, \code{begin},
  10840. and tuple access should be treated as complex operands. The
  10841. sub-expressions of tuple access must be atomic.
  10842. %
  10843. \fi}
  10844. %% A new case for
  10845. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  10846. %% handled carefully to prevent the \code{Prim} node from being separated
  10847. %% from its enclosing \code{HasType}.
  10848. Figure~\ref{fig:Lvec-anf-syntax}
  10849. shows the grammar for the output language \LangAllocANF{} of this
  10850. pass, which is \LangAlloc{} in monadic normal form.
  10851. \begin{figure}[tp]
  10852. \centering
  10853. \fbox{
  10854. \begin{minipage}{0.96\textwidth}
  10855. \small
  10856. {\if\edition\racketEd
  10857. \[
  10858. \begin{array}{rcl}
  10859. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  10860. \MID \VOID{} } \\
  10861. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  10862. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  10863. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  10864. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  10865. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  10866. &\MID& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  10867. \MID \GLOBALVALUE{\Var}\\
  10868. % &\MID& \LP\key{HasType}~\Exp~\Type\RP \\
  10869. \LangAllocANFM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10870. \end{array}
  10871. \]
  10872. \fi}
  10873. {\if\edition\pythonEd
  10874. \[
  10875. \begin{array}{lcl}
  10876. \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  10877. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  10878. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \MID \code{Is()} \\
  10879. \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  10880. \itm{bool} &::=& \code{True} \MID \code{False} \\
  10881. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  10882. \Exp &::=& \Atm \MID \READ{} \MID \\
  10883. &\MID& \BINOP{\Exp}{\itm{binaryop}}{\Exp}
  10884. \MID \UNIOP{\itm{unaryop}}{\Exp}\\
  10885. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp}
  10886. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  10887. &\MID& \IF{\Exp}{\Exp}{\Exp} \\
  10888. &\MID& \GET{\Atm}{\Atm} \\
  10889. &\MID& \LEN{\Exp}\\
  10890. &\MID& \ALLOCATE{\Int}{\Type}
  10891. \MID \GLOBALVALUE{\Var}\RP\\
  10892. &\MID& \BEGIN{\Stmt^{*}}{\Exp} \\
  10893. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  10894. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  10895. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Exp} \\
  10896. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  10897. &\MID& \WHILESTMT{\Exp}{\Stmt^{+}}
  10898. \MID \COLLECT{\Int} \\
  10899. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10900. \end{array}
  10901. \]
  10902. \fi}
  10903. \end{minipage}
  10904. }
  10905. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  10906. \label{fig:Lvec-anf-syntax}
  10907. \end{figure}
  10908. \section{Explicate Control and the \LangCVec{} language}
  10909. \label{sec:explicate-control-r3}
  10910. \newcommand{\CtupASTRacket}{
  10911. \begin{array}{lcl}
  10912. \Exp &::= & \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  10913. &\MID& \VECREF{\Atm}{\INT{\Int}} \\
  10914. &\MID& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  10915. &\MID& \VECLEN{\Atm} \\
  10916. &\MID& \GLOBALVALUE{\Var} \\
  10917. \Stmt &::=& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  10918. &\MID& \LP\key{Collect} \,\itm{int}\RP
  10919. \end{array}
  10920. }
  10921. \newcommand{\CtupASTPython}{
  10922. \begin{array}{lcl}
  10923. \Exp &::= & \GET{\Atm}{\Atm} \MID \ALLOCATE{\Int}{\Type} \\
  10924. &\MID& \GLOBALVALUE{\Var} \MID \LEN{\Atm} \\
  10925. \Stmt &::=& \COLLECT{\Int} \\
  10926. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  10927. \end{array}
  10928. }
  10929. \begin{figure}[tp]
  10930. \fbox{
  10931. \begin{minipage}{0.96\textwidth}
  10932. \small
  10933. {\if\edition\racketEd
  10934. \[
  10935. \begin{array}{l}
  10936. \gray{\CvarASTRacket} \\ \hline
  10937. \gray{\CifASTRacket} \\ \hline
  10938. \gray{\CloopASTRacket} \\ \hline
  10939. \CtupASTRacket \\
  10940. \begin{array}{lcl}
  10941. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  10942. \end{array}
  10943. \end{array}
  10944. \]
  10945. \fi}
  10946. {\if\edition\pythonEd
  10947. \[
  10948. \begin{array}{l}
  10949. \gray{\CifASTPython} \\ \hline
  10950. \CtupASTPython \\
  10951. \begin{array}{lcl}
  10952. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  10953. \end{array}
  10954. \end{array}
  10955. \]
  10956. \fi}
  10957. \end{minipage}
  10958. }
  10959. \caption{The abstract syntax of \LangCVec{}, extending \LangCLoop{}
  10960. (Figure~\ref{fig:c7-syntax}).}
  10961. \label{fig:c2-syntax}
  10962. \end{figure}
  10963. The output of \code{explicate\_control} is a program in the
  10964. intermediate language \LangCVec{}, whose abstract syntax is defined in
  10965. Figure~\ref{fig:c2-syntax}.
  10966. %
  10967. \racket{(The concrete syntax is defined in
  10968. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  10969. %
  10970. The new expressions of \LangCVec{} include \key{allocate},
  10971. %
  10972. \racket{\key{vector-ref}, and \key{vector-set!},}
  10973. %
  10974. \python{accessing tuple elements,}
  10975. %
  10976. and \key{global\_value}.
  10977. %
  10978. \python{\LangCVec{} also includes the \code{collect} statement and
  10979. assignment to a tuple element.}
  10980. %
  10981. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  10982. %
  10983. The \code{explicate\_control} pass can treat these new forms much like
  10984. the other forms that we've already encoutered.
  10985. \section{Select Instructions and the \LangXGlobal{} Language}
  10986. \label{sec:select-instructions-gc}
  10987. \index{subject}{instruction selection}
  10988. %% void (rep as zero)
  10989. %% allocate
  10990. %% collect (callq collect)
  10991. %% vector-ref
  10992. %% vector-set!
  10993. %% vector-length
  10994. %% global (postpone)
  10995. In this pass we generate x86 code for most of the new operations that
  10996. were needed to compile tuples, including \code{Allocate},
  10997. \code{Collect}, and accessing tuple elements.
  10998. %
  10999. We compile \code{GlobalValue} to \code{Global} because the later has a
  11000. different concrete syntax (see Figures~\ref{fig:x86-2-concrete} and
  11001. \ref{fig:x86-2}). \index{subject}{x86}
  11002. The tuple read and write forms translate into \code{movq}
  11003. instructions. (The plus one in the offset is to get past the tag at
  11004. the beginning of the tuple representation.)
  11005. %
  11006. \begin{center}
  11007. \begin{minipage}{\textwidth}
  11008. {\if\edition\racketEd
  11009. \begin{lstlisting}
  11010. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  11011. |$\Longrightarrow$|
  11012. movq |$\itm{tup}'$|, %r11
  11013. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  11014. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  11015. |$\Longrightarrow$|
  11016. movq |$\itm{tup}'$|, %r11
  11017. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  11018. movq $0, |$\itm{lhs'}$|
  11019. \end{lstlisting}
  11020. \fi}
  11021. {\if\edition\pythonEd
  11022. \begin{lstlisting}
  11023. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  11024. |$\Longrightarrow$|
  11025. movq |$\itm{tup}'$|, %r11
  11026. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  11027. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  11028. |$\Longrightarrow$|
  11029. movq |$\itm{tup}'$|, %r11
  11030. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  11031. movq $0, |$\itm{lhs'}$|
  11032. \end{lstlisting}
  11033. \fi}
  11034. \end{minipage}
  11035. \end{center}
  11036. The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$ are obtained by
  11037. translating $\itm{tup}$ and $\itm{rhs}$ to x86. The move of $\itm{tup}'$ to
  11038. register \code{r11} ensures that offset expression
  11039. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  11040. removing \code{r11} from consideration by the register allocating.
  11041. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  11042. \code{rax}. Then the generated code for tuple assignment would be
  11043. \begin{lstlisting}
  11044. movq |$\itm{tup}'$|, %rax
  11045. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  11046. movq $0, |$\itm{lhs}'$|
  11047. \end{lstlisting}
  11048. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  11049. \code{patch\_instructions} would insert a move through \code{rax}
  11050. as follows.
  11051. \begin{lstlisting}
  11052. movq |$\itm{tup}'$|, %rax
  11053. movq |$\itm{rhs}'$|, %rax
  11054. movq %rax, |$8(n+1)$|(%rax)
  11055. movq $0, |$\itm{lhs}'$|
  11056. \end{lstlisting}
  11057. But the above sequence of instructions does not work because we're
  11058. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  11059. $\itm{rhs}'$) at the same time!
  11060. The \racket{\code{vector-length}}\python{\code{len}} operation should
  11061. be translated into a sequence of instructions that read the tag of the
  11062. tuple and extract the six bits that represent the tuple length, which
  11063. are the bits starting at index 1 and going up to and including bit 6.
  11064. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  11065. (shift right) can be used to accomplish this.
  11066. We compile the \code{allocate} form to operations on the
  11067. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  11068. is the next free address in the FromSpace, so we copy it into
  11069. \code{r11} and then move it forward by enough space for the tuple
  11070. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  11071. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  11072. initialize the \itm{tag} and finally copy the address in \code{r11} to
  11073. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  11074. tag is organized.
  11075. %
  11076. \racket{We recommend using the Racket operations
  11077. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  11078. during compilation.}
  11079. %
  11080. \python{We recommend using the bitwise-or operator \code{|} and the
  11081. shift-left operator \code{<<} to compute the tag during
  11082. compilation.}
  11083. %
  11084. The type annotation in the \code{allocate} form is used to determine
  11085. the pointer mask region of the tag.
  11086. %
  11087. {\if\edition\racketEd
  11088. \begin{lstlisting}
  11089. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  11090. |$\Longrightarrow$|
  11091. movq free_ptr(%rip), %r11
  11092. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  11093. movq $|$\itm{tag}$|, 0(%r11)
  11094. movq %r11, |$\itm{lhs}'$|
  11095. \end{lstlisting}
  11096. \fi}
  11097. {\if\edition\pythonEd
  11098. \begin{lstlisting}
  11099. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  11100. |$\Longrightarrow$|
  11101. movq free_ptr(%rip), %r11
  11102. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  11103. movq $|$\itm{tag}$|, 0(%r11)
  11104. movq %r11, |$\itm{lhs}'$|
  11105. \end{lstlisting}
  11106. \fi}
  11107. The \code{collect} form is compiled to a call to the \code{collect}
  11108. function in the runtime. The arguments to \code{collect} are 1) the
  11109. top of the root stack and 2) the number of bytes that need to be
  11110. allocated. We use another dedicated register, \code{r15}, to
  11111. store the pointer to the top of the root stack. So \code{r15} is not
  11112. available for use by the register allocator.
  11113. {\if\edition\racketEd
  11114. \begin{lstlisting}
  11115. (collect |$\itm{bytes}$|)
  11116. |$\Longrightarrow$|
  11117. movq %r15, %rdi
  11118. movq $|\itm{bytes}|, %rsi
  11119. callq collect
  11120. \end{lstlisting}
  11121. \fi}
  11122. {\if\edition\pythonEd
  11123. \begin{lstlisting}
  11124. collect(|$\itm{bytes}$|)
  11125. |$\Longrightarrow$|
  11126. movq %r15, %rdi
  11127. movq $|\itm{bytes}|, %rsi
  11128. callq collect
  11129. \end{lstlisting}
  11130. \fi}
  11131. \begin{figure}[tp]
  11132. \fbox{
  11133. \begin{minipage}{0.96\textwidth}
  11134. \[
  11135. \begin{array}{lcl}
  11136. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)} \\
  11137. \LangXGlobalM{} &::= & \gray{ \key{.globl main} }\\
  11138. & & \gray{ \key{main:} \; \Instr\ldots }
  11139. \end{array}
  11140. \]
  11141. \end{minipage}
  11142. }
  11143. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  11144. \label{fig:x86-2-concrete}
  11145. \end{figure}
  11146. \begin{figure}[tp]
  11147. \fbox{
  11148. \begin{minipage}{0.96\textwidth}
  11149. \small
  11150. \[
  11151. \begin{array}{lcl}
  11152. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  11153. \MID \BYTEREG{\Reg}} \\
  11154. &\MID& \GLOBAL{\Var} \\
  11155. \LangXGlobalM{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  11156. \end{array}
  11157. \]
  11158. \end{minipage}
  11159. }
  11160. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  11161. \label{fig:x86-2}
  11162. \end{figure}
  11163. The concrete and abstract syntax of the \LangXGlobal{} language is
  11164. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  11165. differs from \LangXIf{} just in the addition of global variables.
  11166. %
  11167. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  11168. \code{select\_instructions} pass on the running example.
  11169. \begin{figure}[tbp]
  11170. \centering
  11171. % tests/s2_17.rkt
  11172. \begin{minipage}[t]{0.5\textwidth}
  11173. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11174. block35:
  11175. movq free_ptr(%rip), alloc9024
  11176. addq $16, free_ptr(%rip)
  11177. movq alloc9024, %r11
  11178. movq $131, 0(%r11)
  11179. movq alloc9024, %r11
  11180. movq vecinit9025, 8(%r11)
  11181. movq $0, initret9026
  11182. movq alloc9024, %r11
  11183. movq 8(%r11), tmp9034
  11184. movq tmp9034, %r11
  11185. movq 8(%r11), %rax
  11186. jmp conclusion
  11187. block36:
  11188. movq $0, collectret9027
  11189. jmp block35
  11190. block38:
  11191. movq free_ptr(%rip), alloc9020
  11192. addq $16, free_ptr(%rip)
  11193. movq alloc9020, %r11
  11194. movq $3, 0(%r11)
  11195. movq alloc9020, %r11
  11196. movq vecinit9021, 8(%r11)
  11197. movq $0, initret9022
  11198. movq alloc9020, vecinit9025
  11199. movq free_ptr(%rip), tmp9031
  11200. movq tmp9031, tmp9032
  11201. addq $16, tmp9032
  11202. movq fromspace_end(%rip), tmp9033
  11203. cmpq tmp9033, tmp9032
  11204. jl block36
  11205. jmp block37
  11206. block37:
  11207. movq %r15, %rdi
  11208. movq $16, %rsi
  11209. callq 'collect
  11210. jmp block35
  11211. block39:
  11212. movq $0, collectret9023
  11213. jmp block38
  11214. \end{lstlisting}
  11215. \end{minipage}
  11216. \begin{minipage}[t]{0.45\textwidth}
  11217. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11218. start:
  11219. movq $42, vecinit9021
  11220. movq free_ptr(%rip), tmp9028
  11221. movq tmp9028, tmp9029
  11222. addq $16, tmp9029
  11223. movq fromspace_end(%rip), tmp9030
  11224. cmpq tmp9030, tmp9029
  11225. jl block39
  11226. jmp block40
  11227. block40:
  11228. movq %r15, %rdi
  11229. movq $16, %rsi
  11230. callq 'collect
  11231. jmp block38
  11232. \end{lstlisting}
  11233. \end{minipage}
  11234. \caption{Output of the \code{select\_instructions} pass.}
  11235. \label{fig:select-instr-output-gc}
  11236. \end{figure}
  11237. \clearpage
  11238. \section{Register Allocation}
  11239. \label{sec:reg-alloc-gc}
  11240. \index{subject}{register allocation}
  11241. As discussed earlier in this chapter, the garbage collector needs to
  11242. access all the pointers in the root set, that is, all variables that
  11243. are tuples. It will be the responsibility of the register allocator
  11244. to make sure that:
  11245. \begin{enumerate}
  11246. \item the root stack is used for spilling tuple-typed variables, and
  11247. \item if a tuple-typed variable is live during a call to the
  11248. collector, it must be spilled to ensure it is visible to the
  11249. collector.
  11250. \end{enumerate}
  11251. The later responsibility can be handled during construction of the
  11252. interference graph, by adding interference edges between the call-live
  11253. tuple-typed variables and all the callee-saved registers. (They
  11254. already interfere with the caller-saved registers.)
  11255. %
  11256. \racket{The type information for variables is in the \code{Program}
  11257. form, so we recommend adding another parameter to the
  11258. \code{build\_interference} function to communicate this alist.}
  11259. %
  11260. \python{The type information for variables is generated by the type
  11261. checker for \LangCVec{}, stored a field named \code{var\_types} in
  11262. the \code{CProgram} AST mode. You'll need to propagate that
  11263. information so that it is available in this pass.}
  11264. The spilling of tuple-typed variables to the root stack can be handled
  11265. after graph coloring, when choosing how to assign the colors
  11266. (integers) to registers and stack locations. The
  11267. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  11268. changes to also record the number of spills to the root stack.
  11269. % build-interference
  11270. %
  11271. % callq
  11272. % extra parameter for var->type assoc. list
  11273. % update 'program' and 'if'
  11274. % allocate-registers
  11275. % allocate spilled vectors to the rootstack
  11276. % don't change color-graph
  11277. % TODO:
  11278. %\section{Patch Instructions}
  11279. %[mention that global variables are memory references]
  11280. \section{Prelude and Conclusion}
  11281. \label{sec:print-x86-gc}
  11282. \label{sec:prelude-conclusion-x86-gc}
  11283. \index{subject}{prelude}\index{subject}{conclusion}
  11284. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  11285. \code{prelude\_and\_conclusion} pass on the running example. In the
  11286. prelude and conclusion of the \code{main} function, we treat the root
  11287. stack very much like the regular stack in that we move the root stack
  11288. pointer (\code{r15}) to make room for the spills to the root stack,
  11289. except that the root stack grows up instead of down. For the running
  11290. example, there was just one spill so we increment \code{r15} by 8
  11291. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  11292. One issue that deserves special care is that there may be a call to
  11293. \code{collect} prior to the initializing assignments for all the
  11294. variables in the root stack. We do not want the garbage collector to
  11295. accidentally think that some uninitialized variable is a pointer that
  11296. needs to be followed. Thus, we zero-out all locations on the root
  11297. stack in the prelude of \code{main}. In
  11298. Figure~\ref{fig:print-x86-output-gc}, the instruction
  11299. %
  11300. \lstinline{movq $0, 0(%r15)}
  11301. %
  11302. accomplishes this task. The garbage collector tests each root to see
  11303. if it is null prior to dereferencing it.
  11304. \begin{figure}[htbp]
  11305. % TODO: Python Version -Jeremy
  11306. \begin{minipage}[t]{0.5\textwidth}
  11307. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11308. block35:
  11309. movq free_ptr(%rip), %rcx
  11310. addq $16, free_ptr(%rip)
  11311. movq %rcx, %r11
  11312. movq $131, 0(%r11)
  11313. movq %rcx, %r11
  11314. movq -8(%r15), %rax
  11315. movq %rax, 8(%r11)
  11316. movq $0, %rdx
  11317. movq %rcx, %r11
  11318. movq 8(%r11), %rcx
  11319. movq %rcx, %r11
  11320. movq 8(%r11), %rax
  11321. jmp conclusion
  11322. block36:
  11323. movq $0, %rcx
  11324. jmp block35
  11325. block38:
  11326. movq free_ptr(%rip), %rcx
  11327. addq $16, free_ptr(%rip)
  11328. movq %rcx, %r11
  11329. movq $3, 0(%r11)
  11330. movq %rcx, %r11
  11331. movq %rbx, 8(%r11)
  11332. movq $0, %rdx
  11333. movq %rcx, -8(%r15)
  11334. movq free_ptr(%rip), %rcx
  11335. addq $16, %rcx
  11336. movq fromspace_end(%rip), %rdx
  11337. cmpq %rdx, %rcx
  11338. jl block36
  11339. movq %r15, %rdi
  11340. movq $16, %rsi
  11341. callq collect
  11342. jmp block35
  11343. block39:
  11344. movq $0, %rcx
  11345. jmp block38
  11346. \end{lstlisting}
  11347. \end{minipage}
  11348. \begin{minipage}[t]{0.45\textwidth}
  11349. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11350. start:
  11351. movq $42, %rbx
  11352. movq free_ptr(%rip), %rdx
  11353. addq $16, %rdx
  11354. movq fromspace_end(%rip), %rcx
  11355. cmpq %rcx, %rdx
  11356. jl block39
  11357. movq %r15, %rdi
  11358. movq $16, %rsi
  11359. callq collect
  11360. jmp block38
  11361. .globl main
  11362. main:
  11363. pushq %rbp
  11364. movq %rsp, %rbp
  11365. pushq %r13
  11366. pushq %r12
  11367. pushq %rbx
  11368. pushq %r14
  11369. subq $0, %rsp
  11370. movq $16384, %rdi
  11371. movq $16384, %rsi
  11372. callq initialize
  11373. movq rootstack_begin(%rip), %r15
  11374. movq $0, 0(%r15)
  11375. addq $8, %r15
  11376. jmp start
  11377. conclusion:
  11378. subq $8, %r15
  11379. addq $0, %rsp
  11380. popq %r14
  11381. popq %rbx
  11382. popq %r12
  11383. popq %r13
  11384. popq %rbp
  11385. retq
  11386. \end{lstlisting}
  11387. \end{minipage}
  11388. \caption{Output of the \code{prelude\_and\_conclusion} pass.}
  11389. \label{fig:print-x86-output-gc}
  11390. \end{figure}
  11391. \begin{figure}[tbp]
  11392. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11393. \node (Lvec) at (0,2) {\large \LangVec{}};
  11394. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  11395. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  11396. \node (Lvec-4) at (9,2) {\large \LangVec{}};
  11397. \node (Lvec-5) at (9,0) {\large \LangAllocANF{}};
  11398. \node (C2-4) at (3,0) {\large \LangCVec{}};
  11399. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  11400. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  11401. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  11402. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  11403. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  11404. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  11405. %\path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize type-check} (Lvec-2);
  11406. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  11407. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  11408. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_alloc.} (Lvec-4);
  11409. \path[->,bend left=15] (Lvec-4) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvec-5);
  11410. \path[->,bend left=10] (Lvec-5) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  11411. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  11412. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11413. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  11414. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  11415. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  11416. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  11417. \end{tikzpicture}
  11418. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  11419. \label{fig:Lvec-passes}
  11420. \end{figure}
  11421. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  11422. for the compilation of \LangVec{}.
  11423. \clearpage
  11424. {\if\edition\racketEd
  11425. \section{Challenge: Simple Structures}
  11426. \label{sec:simple-structures}
  11427. \index{subject}{struct}
  11428. \index{subject}{structure}
  11429. The language \LangStruct{} extends \LangVec{} with support for simple
  11430. structures. Its concrete syntax is defined in
  11431. Figure~\ref{fig:Lstruct-concrete-syntax} and the abstract syntax is in
  11432. Figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct} in Typed
  11433. Racket is a user-defined data type that contains named fields and that
  11434. is heap allocated, similar to a vector. The following is an example of
  11435. a structure definition, in this case the definition of a \code{point}
  11436. type.
  11437. \begin{lstlisting}
  11438. (struct point ([x : Integer] [y : Integer]) #:mutable)
  11439. \end{lstlisting}
  11440. \newcommand{\LstructGrammarRacket}{
  11441. \begin{array}{lcl}
  11442. \Type &::=& \Var \\
  11443. \Exp &::=& (\Var\;\Exp \ldots)\\
  11444. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  11445. \end{array}
  11446. }
  11447. \newcommand{\LstructASTRacket}{
  11448. \begin{array}{lcl}
  11449. \Type &::=& \VAR{\Var} \\
  11450. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  11451. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  11452. \end{array}
  11453. }
  11454. \begin{figure}[tbp]
  11455. \centering
  11456. \fbox{
  11457. \begin{minipage}{0.96\textwidth}
  11458. \[
  11459. \begin{array}{l}
  11460. \gray{\LintGrammarRacket{}} \\ \hline
  11461. \gray{\LvarGrammarRacket{}} \\ \hline
  11462. \gray{\LifGrammarRacket{}} \\ \hline
  11463. \gray{\LwhileGrammarRacket} \\ \hline
  11464. \gray{\LtupGrammarRacket} \\ \hline
  11465. \LstructGrammarRacket \\
  11466. \begin{array}{lcl}
  11467. \LangStruct{} &::=& \Def \ldots \; \Exp
  11468. \end{array}
  11469. \end{array}
  11470. \]
  11471. \end{minipage}
  11472. }
  11473. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  11474. (Figure~\ref{fig:Lvec-concrete-syntax}).}
  11475. \label{fig:Lstruct-concrete-syntax}
  11476. \end{figure}
  11477. \begin{figure}[tbp]
  11478. \centering
  11479. \fbox{
  11480. \begin{minipage}{0.96\textwidth}
  11481. \[
  11482. \begin{array}{l}
  11483. \gray{\LintASTRacket{}} \\ \hline
  11484. \gray{\LvarASTRacket{}} \\ \hline
  11485. \gray{\LifASTRacket{}} \\ \hline
  11486. \gray{\LwhileASTRacket} \\ \hline
  11487. \gray{\LtupASTRacket} \\ \hline
  11488. \LstructASTRacket \\
  11489. \begin{array}{lcl}
  11490. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  11491. \end{array}
  11492. \end{array}
  11493. \]
  11494. \end{minipage}
  11495. }
  11496. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  11497. (Figure~\ref{fig:Lvec-syntax}).}
  11498. \label{fig:Lstruct-syntax}
  11499. \end{figure}
  11500. An instance of a structure is created using function call syntax, with
  11501. the name of the structure in the function position:
  11502. \begin{lstlisting}
  11503. (point 7 12)
  11504. \end{lstlisting}
  11505. Function-call syntax is also used to read the value in a field of a
  11506. structure. The function name is formed by the structure name, a dash,
  11507. and the field name. The following example uses \code{point-x} and
  11508. \code{point-y} to access the \code{x} and \code{y} fields of two point
  11509. instances.
  11510. \begin{center}
  11511. \begin{lstlisting}
  11512. (let ([pt1 (point 7 12)])
  11513. (let ([pt2 (point 4 3)])
  11514. (+ (- (point-x pt1) (point-x pt2))
  11515. (- (point-y pt1) (point-y pt2)))))
  11516. \end{lstlisting}
  11517. \end{center}
  11518. Similarly, to write to a field of a structure, use its set function,
  11519. whose name starts with \code{set-}, followed by the structure name,
  11520. then a dash, then the field name, and concluded with an exclamation
  11521. mark. The following example uses \code{set-point-x!} to change the
  11522. \code{x} field from \code{7} to \code{42}.
  11523. \begin{center}
  11524. \begin{lstlisting}
  11525. (let ([pt (point 7 12)])
  11526. (let ([_ (set-point-x! pt 42)])
  11527. (point-x pt)))
  11528. \end{lstlisting}
  11529. \end{center}
  11530. \begin{exercise}\normalfont
  11531. Create a type checker for \LangStruct{} by extending the type
  11532. checker for \LangVec{}. Extend your compiler with support for simple
  11533. structures, compiling \LangStruct{} to x86 assembly code. Create
  11534. five new test cases that use structures and test your compiler.
  11535. \end{exercise}
  11536. % TODO: create an interpreter for L_struct
  11537. \clearpage
  11538. \section{Challenge: Arrays}
  11539. \label{sec:arrays}
  11540. In Chapter~\ref{ch:Lvec} we studied tuples, that is, sequences of
  11541. elements whose length is determined at compile-time and where each
  11542. element of a tuple may have a different type (they are
  11543. heterogeous). This challenge is also about sequences, but this time
  11544. the length is determined at run-time and all the elements have the same
  11545. type (they are homogeneous). We use the term ``array'' for this later
  11546. kind of sequence.
  11547. The Racket language does not distinguish between tuples and arrays,
  11548. they are both represented by vectors. However, Typed Racket
  11549. distinguishes between tuples and arrays: the \code{Vector} type is for
  11550. tuples and the \code{Vectorof} type is for arrays.
  11551. %
  11552. Figure~\ref{fig:Lvecof-concrete-syntax} defines the concrete syntax
  11553. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  11554. and the \code{make-vector} primitive operator for creating an array,
  11555. whose arguments are the length of the array and an initial value for
  11556. all the elements in the array. The \code{vector-length},
  11557. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  11558. for tuples become overloaded for use with arrays.
  11559. %
  11560. We also include integer multiplication in \LangArray{}, as it is
  11561. useful in many examples involving arrays such as computing the
  11562. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  11563. \begin{figure}[tp]
  11564. \centering
  11565. \fbox{
  11566. \begin{minipage}{0.96\textwidth}
  11567. \small
  11568. \[
  11569. \begin{array}{lcl}
  11570. \Type &::=& \ldots \MID \LP \key{Vectorof}~\Type \RP \\
  11571. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  11572. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \MID \CMUL{\Exp}{\Exp}\\
  11573. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  11574. &\MID& \gray{\key{\#t} \MID \key{\#f}
  11575. \MID \LP\key{and}\;\Exp\;\Exp\RP
  11576. \MID \LP\key{or}\;\Exp\;\Exp\RP
  11577. \MID \LP\key{not}\;\Exp\RP } \\
  11578. &\MID& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  11579. &\MID& \gray{ \LP\key{vector}\;\Exp\ldots\RP \MID
  11580. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  11581. &\MID& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\MID \LP\key{void}\RP
  11582. \MID \LP\Exp \; \Exp\ldots\RP } \\
  11583. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP
  11584. \MID \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  11585. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  11586. \MID \CBEGIN{\Exp\ldots}{\Exp}
  11587. \MID \CWHILE{\Exp}{\Exp} } \\
  11588. &\MID& \CMAKEVEC{\Exp}{\Exp} \\
  11589. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11590. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  11591. \end{array}
  11592. \]
  11593. \end{minipage}
  11594. }
  11595. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  11596. \label{fig:Lvecof-concrete-syntax}
  11597. \end{figure}
  11598. \begin{figure}[tp]
  11599. \begin{lstlisting}
  11600. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  11601. [n : Integer]) : Integer
  11602. (let ([i 0])
  11603. (let ([prod 0])
  11604. (begin
  11605. (while (< i n)
  11606. (begin
  11607. (set! prod (+ prod (* (vector-ref A i)
  11608. (vector-ref B i))))
  11609. (set! i (+ i 1))
  11610. ))
  11611. prod))))
  11612. (let ([A (make-vector 2 2)])
  11613. (let ([B (make-vector 2 3)])
  11614. (+ (inner-product A B 2)
  11615. 30)))
  11616. \end{lstlisting}
  11617. \caption{Example program that computes the inner-product.}
  11618. \label{fig:inner-product}
  11619. \end{figure}
  11620. The type checker for \LangArray{} is define in
  11621. Figure~\ref{fig:type-check-Lvecof}. The result type of
  11622. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  11623. of the intializing expression. The length expression is required to
  11624. have type \code{Integer}. The type checking of the operators
  11625. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  11626. updated to handle the situation where the vector has type
  11627. \code{Vectorof}. In these cases we translate the operators to their
  11628. \code{vectorof} form so that later passes can easily distinguish
  11629. between operations on tuples versus arrays. We override the
  11630. \code{operator-types} method to provide the type signature for
  11631. multiplication: it takes two integers and returns an integer. To
  11632. support injection and projection of arrays to the \code{Any} type
  11633. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  11634. predicate.
  11635. \begin{figure}[tbp]
  11636. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11637. (define type-check-Lvecof_class
  11638. (class type-check-Rwhile_class
  11639. (super-new)
  11640. (inherit check-type-equal?)
  11641. (define/override (flat-ty? ty)
  11642. (match ty
  11643. ['(Vectorof Any) #t]
  11644. [else (super flat-ty? ty)]))
  11645. (define/override (operator-types)
  11646. (append '((* . ((Integer Integer) . Integer)))
  11647. (super operator-types)))
  11648. (define/override (type-check-exp env)
  11649. (lambda (e)
  11650. (define recur (type-check-exp env))
  11651. (match e
  11652. [(Prim 'make-vector (list e1 e2))
  11653. (define-values (e1^ t1) (recur e1))
  11654. (define-values (e2^ elt-type) (recur e2))
  11655. (define vec-type `(Vectorof ,elt-type))
  11656. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  11657. vec-type)]
  11658. [(Prim 'vector-ref (list e1 e2))
  11659. (define-values (e1^ t1) (recur e1))
  11660. (define-values (e2^ t2) (recur e2))
  11661. (match* (t1 t2)
  11662. [(`(Vectorof ,elt-type) 'Integer)
  11663. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  11664. [(other wise) ((super type-check-exp env) e)])]
  11665. [(Prim 'vector-set! (list e1 e2 e3) )
  11666. (define-values (e-vec t-vec) (recur e1))
  11667. (define-values (e2^ t2) (recur e2))
  11668. (define-values (e-arg^ t-arg) (recur e3))
  11669. (match t-vec
  11670. [`(Vectorof ,elt-type)
  11671. (check-type-equal? elt-type t-arg e)
  11672. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  11673. [else ((super type-check-exp env) e)])]
  11674. [(Prim 'vector-length (list e1))
  11675. (define-values (e1^ t1) (recur e1))
  11676. (match t1
  11677. [`(Vectorof ,t)
  11678. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  11679. [else ((super type-check-exp env) e)])]
  11680. [else ((super type-check-exp env) e)])))
  11681. ))
  11682. (define (type-check-Lvecof p)
  11683. (send (new type-check-Lvecof_class) type-check-program p))
  11684. \end{lstlisting}
  11685. \caption{Type checker for the \LangArray{} language.}
  11686. \label{fig:type-check-Lvecof}
  11687. \end{figure}
  11688. The interpreter for \LangArray{} is defined in
  11689. Figure~\ref{fig:interp-Lvecof}. The \code{make-vector} operator is
  11690. implemented with Racket's \code{make-vector} function and
  11691. multiplication is \code{fx*}, multiplication for \code{fixnum}
  11692. integers.
  11693. \begin{figure}[tbp]
  11694. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11695. (define interp-Lvecof_class
  11696. (class interp-Rwhile_class
  11697. (super-new)
  11698. (define/override (interp-op op)
  11699. (verbose "Lvecof/interp-op" op)
  11700. (match op
  11701. ['make-vector make-vector]
  11702. ['* fx*]
  11703. [else (super interp-op op)]))
  11704. ))
  11705. (define (interp-Lvecof p)
  11706. (send (new interp-Lvecof_class) interp-program p))
  11707. \end{lstlisting}
  11708. \caption{Interpreter for \LangArray{}.}
  11709. \label{fig:interp-Lvecof}
  11710. \end{figure}
  11711. \subsection{Data Representation}
  11712. \label{sec:array-rep}
  11713. Just like tuples, we store arrays on the heap which means that the
  11714. garbage collector will need to inspect arrays. An immediate thought is
  11715. to use the same representation for arrays that we use for tuples.
  11716. However, we limit tuples to a length of $50$ so that their length and
  11717. pointer mask can fit into the 64-bit tag at the beginning of each
  11718. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  11719. millions of elements, so we need more bits to store the length.
  11720. However, because arrays are homogeneous, we only need $1$ bit for the
  11721. pointer mask instead of one bit per array elements. Finally, the
  11722. garbage collector will need to be able to distinguish between tuples
  11723. and arrays, so we need to reserve $1$ bit for that purpose. So we
  11724. arrive at the following layout for the 64-bit tag at the beginning of
  11725. an array:
  11726. \begin{itemize}
  11727. \item The right-most bit is the forwarding bit, just like in a tuple.
  11728. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  11729. it is not.
  11730. \item The next bit to the left is the pointer mask. A $0$ indicates
  11731. that none of the elements are pointers to the heap and a $1$
  11732. indicates that all of the elements are pointers.
  11733. \item The next $61$ bits store the length of the array.
  11734. \item The left-most bit distinguishes between a tuple ($0$) versus an
  11735. array ($1$).
  11736. \end{itemize}
  11737. Recall that in Chapter~\ref{ch:Ldyn}, we use a $3$-bit tag to
  11738. differentiate the kinds of values that have been injected into the
  11739. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  11740. to indicate that the value is an array.
  11741. In the following subsections we provide hints regarding how to update
  11742. the passes to handle arrays.
  11743. \subsection{Reveal Casts}
  11744. The array-access operators \code{vectorof-ref} and
  11745. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  11746. \code{any-vector-set!} operators of Chapter~\ref{ch:Ldyn} in
  11747. that the type checker cannot tell whether the index will be in bounds,
  11748. so the bounds check must be performed at run time. Recall that the
  11749. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  11750. an \code{If} arround a vector reference for update to check whether
  11751. the index is less than the length. You should do the same for
  11752. \code{vectorof-ref} and \code{vectorof-set!} .
  11753. In addition, the handling of the \code{any-vector} operators in
  11754. \code{reveal-casts} needs to be updated to account for arrays that are
  11755. injected to \code{Any}. For the \code{any-vector-length} operator, the
  11756. generated code should test whether the tag is for tuples (\code{010})
  11757. or arrays (\code{110}) and then dispatch to either
  11758. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  11759. we add a case in \code{select\_instructions} to generate the
  11760. appropriate instructions for accessing the array length from the
  11761. header of an array.
  11762. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  11763. the generated code needs to check that the index is less than the
  11764. vector length, so like the code for \code{any-vector-length}, check
  11765. the tag to determine whether to use \code{any-vector-length} or
  11766. \code{any-vectorof-length} for this purpose. Once the bounds checking
  11767. is complete, the generated code can use \code{any-vector-ref} and
  11768. \code{any-vector-set!} for both tuples and arrays because the
  11769. instructions used for those operators do not look at the tag at the
  11770. front of the tuple or array.
  11771. \subsection{Expose Allocation}
  11772. This pass should translate the \code{make-vector} operator into
  11773. lower-level operations. In particular, the new AST node
  11774. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  11775. length specified by the $\Exp$, but does not initialize the elements
  11776. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  11777. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  11778. element type for the array. Regarding the initialization of the array,
  11779. we recommend generated a \code{while} loop that uses
  11780. \code{vector-set!} to put the initializing value into every element of
  11781. the array.
  11782. \subsection{Remove Complex Operands}
  11783. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  11784. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  11785. complex and its subexpression must be atomic.
  11786. \subsection{Explicate Control}
  11787. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  11788. \code{explicate\_assign}.
  11789. \subsection{Select Instructions}
  11790. Generate instructions for \code{AllocateArray} similar to those for
  11791. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  11792. that the tag at the front of the array should instead use the
  11793. representation discussed in Section~\ref{sec:array-rep}.
  11794. Regarding \code{vectorof-length}, extract the length from the tag
  11795. according to the representation discussed in
  11796. Section~\ref{sec:array-rep}.
  11797. The instructions generated for \code{vectorof-ref} differ from those
  11798. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  11799. that the index is not a constant so the offset must be computed at
  11800. runtime, similar to the instructions generated for
  11801. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). The same is
  11802. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  11803. appear in an assignment and as a stand-alone statement, so make sure
  11804. to handle both situations in this pass.
  11805. Finally, the instructions for \code{any-vectorof-length} should be
  11806. similar to those for \code{vectorof-length}, except that one must
  11807. first project the array by writing zeroes into the $3$-bit tag
  11808. \begin{exercise}\normalfont
  11809. Implement a compiler for the \LangArray{} language by extending your
  11810. compiler for \LangLoop{}. Test your compiler on a half dozen new
  11811. programs, including the one in Figure~\ref{fig:inner-product} and also
  11812. a program that multiplies two matrices. Note that matrices are
  11813. 2-dimensional arrays, but those can be encoded into 1-dimensional
  11814. arrays by laying out each row in the array, one after the next.
  11815. \end{exercise}
  11816. \section{Challenge: Generational Collection}
  11817. The copying collector described in Section~\ref{sec:GC} can incur
  11818. significant runtime overhead because the call to \code{collect} takes
  11819. time proportional to all of the live data. One way to reduce this
  11820. overhead is to reduce how much data is inspected in each call to
  11821. \code{collect}. In particular, researchers have observed that recently
  11822. allocated data is more likely to become garbage then data that has
  11823. survived one or more previous calls to \code{collect}. This insight
  11824. motivated the creation of \emph{generational garbage collectors}
  11825. \index{subject}{generational garbage collector} that
  11826. 1) segregates data according to its age into two or more generations,
  11827. 2) allocates less space for younger generations, so collecting them is
  11828. faster, and more space for the older generations, and 3) performs
  11829. collection on the younger generations more frequently then for older
  11830. generations~\citep{Wilson:1992fk}.
  11831. For this challenge assignment, the goal is to adapt the copying
  11832. collector implemented in \code{runtime.c} to use two generations, one
  11833. for young data and one for old data. Each generation consists of a
  11834. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  11835. \code{collect} function to use the two generations.
  11836. \begin{enumerate}
  11837. \item Copy the young generation's FromSpace to its ToSpace then switch
  11838. the role of the ToSpace and FromSpace
  11839. \item If there is enough space for the requested number of bytes in
  11840. the young FromSpace, then return from \code{collect}.
  11841. \item If there is not enough space in the young FromSpace for the
  11842. requested bytes, then move the data from the young generation to the
  11843. old one with the following steps:
  11844. \begin{enumerate}
  11845. \item If there is enough room in the old FromSpace, copy the young
  11846. FromSpace to the old FromSpace and then return.
  11847. \item If there is not enough room in the old FromSpace, then collect
  11848. the old generation by copying the old FromSpace to the old ToSpace
  11849. and swap the roles of the old FromSpace and ToSpace.
  11850. \item If there is enough room now, copy the young FromSpace to the
  11851. old FromSpace and return. Otherwise, allocate a larger FromSpace
  11852. and ToSpace for the old generation. Copy the young FromSpace and
  11853. the old FromSpace into the larger FromSpace for the old
  11854. generation and then return.
  11855. \end{enumerate}
  11856. \end{enumerate}
  11857. We recommend that you generalize the \code{cheney} function so that it
  11858. can be used for all the copies mentioned above: between the young
  11859. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  11860. between the young FromSpace and old FromSpace. This can be
  11861. accomplished by adding parameters to \code{cheney} that replace its
  11862. use of the global variables \code{fromspace\_begin},
  11863. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  11864. Note that the collection of the young generation does not traverse the
  11865. old generation. This introduces a potential problem: there may be
  11866. young data that is only reachable through pointers in the old
  11867. generation. If these pointers are not taken into account, the
  11868. collector could throw away young data that is live! One solution,
  11869. called \emph{pointer recording}, is to maintain a set of all the
  11870. pointers from the old generation into the new generation and consider
  11871. this set as part of the root set. To maintain this set, the compiler
  11872. must insert extra instructions around every \code{vector-set!}. If the
  11873. vector being modified is in the old generation, and if the value being
  11874. written is a pointer into the new generation, than that pointer must
  11875. be added to the set. Also, if the value being overwritten was a
  11876. pointer into the new generation, then that pointer should be removed
  11877. from the set.
  11878. \begin{exercise}\normalfont
  11879. Adapt the \code{collect} function in \code{runtime.c} to implement
  11880. generational garbage collection, as outlined in this section.
  11881. Update the code generation for \code{vector-set!} to implement
  11882. pointer recording. Make sure that your new compiler and runtime
  11883. passes your test suite.
  11884. \end{exercise}
  11885. \fi}
  11886. % Further Reading
  11887. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11888. \chapter{Functions}
  11889. \label{ch:Lfun}
  11890. \index{subject}{function}
  11891. This chapter studies the compilation of functions similar to those
  11892. found in the C language. This corresponds to a subset of \racket{Typed
  11893. Racket} \python{Python} in which only top-level function definitions
  11894. are allowed. This kind of function is an important stepping stone to
  11895. implementing lexically-scoped functions in the form of \key{lambda}
  11896. abstractions, which is the topic of Chapter~\ref{ch:Llambda}.
  11897. \section{The \LangFun{} Language}
  11898. The concrete and abstract syntax for function definitions and function
  11899. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  11900. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  11901. \LangFun{} begin with zero or more function definitions. The function
  11902. names from these definitions are in-scope for the entire program,
  11903. including all other function definitions (so the ordering of function
  11904. definitions does not matter).
  11905. %
  11906. \python{The abstract syntax for function parameters in
  11907. Figure~\ref{fig:Rfun-syntax} is a list of pairs, where each pair
  11908. consists of a parameter name and its type. This differs from
  11909. Python's \code{ast} module, which has a more complex syntax for
  11910. function parameters, for example, to handle keyword parameters and
  11911. defaults. The type checker in \code{type\_check\_Lfun} converts the
  11912. more commplex syntax into the simpler syntax of
  11913. Figure~\ref{fig:Rfun-syntax}. The fourth and sixth parameters of the
  11914. \code{FunctionDef} constructor are for decorators and a type
  11915. comment, neither of which are used by our compiler. We recommend
  11916. replacing them with \code{None} in the \code{shrink} pass.
  11917. }
  11918. %
  11919. The concrete syntax for function application\index{subject}{function
  11920. application} is $\CAPPLY{\Exp}{\Exp \ldots}$ where the first expression
  11921. must evaluate to a function and the rest are the arguments. The
  11922. abstract syntax for function application is
  11923. $\APPLY{\Exp}{\Exp\ldots}$.
  11924. %% The syntax for function application does not include an explicit
  11925. %% keyword, which is error prone when using \code{match}. To alleviate
  11926. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  11927. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  11928. Functions are first-class in the sense that a function pointer
  11929. \index{subject}{function pointer} is data and can be stored in memory or passed
  11930. as a parameter to another function. Thus, there is a function
  11931. type, written
  11932. {\if\edition\racketEd
  11933. \begin{lstlisting}
  11934. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  11935. \end{lstlisting}
  11936. \fi}
  11937. {\if\edition\pythonEd
  11938. \begin{lstlisting}
  11939. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_R$|]
  11940. \end{lstlisting}
  11941. \fi}
  11942. %
  11943. \noindent for a function whose $n$ parameters have the types $\Type_1$
  11944. through $\Type_n$ and whose return type is $\Type_R$. The main
  11945. limitation of these functions (with respect to
  11946. \racket{Racket}\python{Python} functions) is that they are not
  11947. lexically scoped. That is, the only external entities that can be
  11948. referenced from inside a function body are other globally-defined
  11949. functions. The syntax of \LangFun{} prevents functions from being
  11950. nested inside each other.
  11951. \newcommand{\LfunGrammarRacket}{
  11952. \begin{array}{lcl}
  11953. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  11954. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  11955. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  11956. \end{array}
  11957. }
  11958. \newcommand{\LfunASTRacket}{
  11959. \begin{array}{lcl}
  11960. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  11961. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  11962. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  11963. \end{array}
  11964. }
  11965. \newcommand{\LfunGrammarPython}{
  11966. \begin{array}{lcl}
  11967. \Type &::=& \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  11968. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  11969. \Stmt &::=& \CRETURN{\Exp} \\
  11970. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  11971. \end{array}
  11972. }
  11973. \newcommand{\LfunASTPython}{
  11974. \begin{array}{lcl}
  11975. \Type &::=& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  11976. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  11977. \Stmt &::=& \RETURN{\Exp} \\
  11978. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  11979. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  11980. \end{array}
  11981. }
  11982. \begin{figure}[tp]
  11983. \centering
  11984. \fbox{
  11985. \begin{minipage}{0.96\textwidth}
  11986. \small
  11987. {\if\edition\racketEd
  11988. \[
  11989. \begin{array}{l}
  11990. \gray{\LintGrammarRacket{}} \\ \hline
  11991. \gray{\LvarGrammarRacket{}} \\ \hline
  11992. \gray{\LifGrammarRacket{}} \\ \hline
  11993. \gray{\LwhileGrammarRacket} \\ \hline
  11994. \gray{\LtupGrammarRacket} \\ \hline
  11995. \LfunGrammarRacket \\
  11996. \begin{array}{lcl}
  11997. \LangFunM{} &::=& \Def \ldots \; \Exp
  11998. \end{array}
  11999. \end{array}
  12000. \]
  12001. \fi}
  12002. {\if\edition\pythonEd
  12003. \[
  12004. \begin{array}{l}
  12005. \gray{\LintGrammarPython{}} \\ \hline
  12006. \gray{\LvarGrammarPython{}} \\ \hline
  12007. \gray{\LifGrammarPython{}} \\ \hline
  12008. \gray{\LwhileGrammarPython} \\ \hline
  12009. \gray{\LtupGrammarPython} \\ \hline
  12010. \LfunGrammarPython \\
  12011. \begin{array}{rcl}
  12012. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  12013. \end{array}
  12014. \end{array}
  12015. \]
  12016. \fi}
  12017. \end{minipage}
  12018. }
  12019. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-concrete-syntax}).}
  12020. \label{fig:Rfun-concrete-syntax}
  12021. \end{figure}
  12022. \begin{figure}[tp]
  12023. \centering
  12024. \fbox{
  12025. \begin{minipage}{0.96\textwidth}
  12026. \small
  12027. {\if\edition\racketEd
  12028. \[
  12029. \begin{array}{l}
  12030. \gray{\LintOpAST} \\ \hline
  12031. \gray{\LvarASTRacket{}} \\ \hline
  12032. \gray{\LifASTRacket{}} \\ \hline
  12033. \gray{\LwhileASTRacket{}} \\ \hline
  12034. \gray{\LtupASTRacket{}} \\ \hline
  12035. \LfunASTRacket \\
  12036. \begin{array}{lcl}
  12037. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  12038. \end{array}
  12039. \end{array}
  12040. \]
  12041. \fi}
  12042. {\if\edition\pythonEd
  12043. \[
  12044. \begin{array}{l}
  12045. \gray{\LintASTPython{}} \\ \hline
  12046. \gray{\LvarASTPython{}} \\ \hline
  12047. \gray{\LifASTPython{}} \\ \hline
  12048. \gray{\LwhileASTPython} \\ \hline
  12049. \gray{\LtupASTPython} \\ \hline
  12050. \LfunASTPython \\
  12051. \begin{array}{rcl}
  12052. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  12053. \end{array}
  12054. \end{array}
  12055. \]
  12056. \fi}
  12057. \end{minipage}
  12058. }
  12059. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-syntax}).}
  12060. \label{fig:Rfun-syntax}
  12061. \end{figure}
  12062. The program in Figure~\ref{fig:Rfun-function-example} is a
  12063. representative example of defining and using functions in \LangFun{}.
  12064. We define a function \code{map} that applies some other function
  12065. \code{f} to both elements of a tuple and returns a new tuple
  12066. containing the results. We also define a function \code{inc}. The
  12067. program applies \code{map} to \code{inc} and
  12068. %
  12069. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  12070. %
  12071. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  12072. %
  12073. from which we return the \code{42}.
  12074. \begin{figure}[tbp]
  12075. {\if\edition\racketEd
  12076. \begin{lstlisting}
  12077. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  12078. : (Vector Integer Integer)
  12079. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12080. (define (inc [x : Integer]) : Integer
  12081. (+ x 1))
  12082. (vector-ref (map inc (vector 0 41)) 1)
  12083. \end{lstlisting}
  12084. \fi}
  12085. {\if\edition\pythonEd
  12086. \begin{lstlisting}
  12087. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  12088. return f(v[0]), f(v[1])
  12089. def inc(x : int) -> int:
  12090. return x + 1
  12091. print( map(inc, (0, 41))[1] )
  12092. \end{lstlisting}
  12093. \fi}
  12094. \caption{Example of using functions in \LangFun{}.}
  12095. \label{fig:Rfun-function-example}
  12096. \end{figure}
  12097. The definitional interpreter for \LangFun{} is in
  12098. Figure~\ref{fig:interp-Rfun}. The case for the
  12099. %
  12100. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  12101. %
  12102. AST is responsible for setting up the mutual recursion between the
  12103. top-level function definitions.
  12104. %
  12105. \racket{We use the classic back-patching
  12106. \index{subject}{back-patching} approach that uses mutable variables
  12107. and makes two passes over the function
  12108. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  12109. top-level environment using a mutable cons cell for each function
  12110. definition. Note that the \code{lambda} value for each function is
  12111. incomplete; it does not yet include the environment. Once the
  12112. top-level environment is constructed, we then iterate over it and
  12113. update the \code{lambda} values to use the top-level environment.}
  12114. %
  12115. \python{We create a dictionary named \code{env} and fill it in
  12116. by mapping each function name to a new \code{Function} value,
  12117. each of which stores a reference to the \code{env}.
  12118. (We define the class \code{Function} for this purpose.)}
  12119. %
  12120. To interpret a function \racket{application}\python{call}, we match
  12121. the result of the function expression to obtain a function value. We
  12122. then extend the function's environment with mapping of parameters to
  12123. argument values. Finally, we interpret the body of the function in
  12124. this extended environment.
  12125. \begin{figure}[tp]
  12126. {\if\edition\racketEd
  12127. \begin{lstlisting}
  12128. (define interp-Rfun_class
  12129. (class interp-Lvec_class
  12130. (super-new)
  12131. (define/override ((interp-exp env) e)
  12132. (define recur (interp-exp env))
  12133. (match e
  12134. [(Var x) (unbox (dict-ref env x))]
  12135. [(Let x e body)
  12136. (define new-env (dict-set env x (box (recur e))))
  12137. ((interp-exp new-env) body)]
  12138. [(Apply fun args)
  12139. (define fun-val (recur fun))
  12140. (define arg-vals (for/list ([e args]) (recur e)))
  12141. (match fun-val
  12142. [`(function (,xs ...) ,body ,fun-env)
  12143. (define params-args (for/list ([x xs] [arg arg-vals])
  12144. (cons x (box arg))))
  12145. (define new-env (append params-args fun-env))
  12146. ((interp-exp new-env) body)]
  12147. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  12148. [else ((super interp-exp env) e)]
  12149. ))
  12150. (define/public (interp-def d)
  12151. (match d
  12152. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  12153. (cons f (box `(function ,xs ,body ())))]))
  12154. (define/override (interp-program p)
  12155. (match p
  12156. [(ProgramDefsExp info ds body)
  12157. (let ([top-level (for/list ([d ds]) (interp-def d))])
  12158. (for/list ([f (in-dict-values top-level)])
  12159. (set-box! f (match (unbox f)
  12160. [`(function ,xs ,body ())
  12161. `(function ,xs ,body ,top-level)])))
  12162. ((interp-exp top-level) body))]))
  12163. ))
  12164. (define (interp-Rfun p)
  12165. (send (new interp-Rfun_class) interp-program p))
  12166. \end{lstlisting}
  12167. \fi}
  12168. {\if\edition\pythonEd
  12169. \begin{lstlisting}
  12170. class InterpLfun(InterpLtup):
  12171. def apply_fun(self, fun, args, e):
  12172. match fun:
  12173. case Function(name, xs, body, env):
  12174. new_env = {x: v for (x,v) in env.items()}
  12175. for (x,arg) in zip(xs, args):
  12176. new_env[x] = arg
  12177. return self.interp_stmts(body, new_env)
  12178. case _:
  12179. raise Exception('apply_fun: unexpected: ' + repr(fun))
  12180. def interp_exp(self, e, env):
  12181. match e:
  12182. case Call(Name('input_int'), []):
  12183. return super().interp_exp(e, env)
  12184. case Call(func, args):
  12185. f = self.interp_exp(func, env)
  12186. vs = [self.interp_exp(arg, env) for arg in args]
  12187. return self.apply_fun(f, vs, e)
  12188. case _:
  12189. return super().interp_exp(e, env)
  12190. def interp_stmts(self, ss, env):
  12191. if len(ss) == 0:
  12192. return
  12193. match ss[0]:
  12194. case Return(value):
  12195. return self.interp_exp(value, env)
  12196. case _:
  12197. return super().interp_stmts(ss, env)
  12198. def interp(self, p):
  12199. match p:
  12200. case Module(defs):
  12201. env = {}
  12202. for d in defs:
  12203. match d:
  12204. case FunctionDef(name, params, bod, dl, returns, comment):
  12205. env[name] = Function(name, [x for (x,t) in params], bod, env)
  12206. self.apply_fun(env['main'], [], None)
  12207. case _:
  12208. raise Exception('interp: unexpected ' + repr(p))
  12209. \end{lstlisting}
  12210. \fi}
  12211. \caption{Interpreter for the \LangFun{} language.}
  12212. \label{fig:interp-Rfun}
  12213. \end{figure}
  12214. %\margincomment{TODO: explain type checker}
  12215. The type checker for \LangFun{} is in
  12216. Figure~\ref{fig:type-check-Rfun}. (We omit the code that parses
  12217. function parameters into the simpler abstract syntax.) Similar to the
  12218. interpreter, the case for the
  12219. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  12220. %
  12221. AST is responsible for setting up the mutual recursion between the
  12222. top-level function definitions. We begin by create a mapping
  12223. \code{env} from every function name to its type. We then type check
  12224. the program using this \code{env}.
  12225. %
  12226. In the case for function \racket{application}\python{call}, we match
  12227. the type of the function expression to a function type and check that
  12228. the types of the argument expressions are equal to the function's
  12229. parameter types. The type of the \racket{application}\python{call} as
  12230. a whole is the return type from the function type.
  12231. \begin{figure}[tp]
  12232. {\if\edition\racketEd
  12233. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12234. (define type-check-Rfun_class
  12235. (class type-check-Lvec_class
  12236. (super-new)
  12237. (inherit check-type-equal?)
  12238. (define/public (type-check-apply env e es)
  12239. (define-values (e^ ty) ((type-check-exp env) e))
  12240. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  12241. ((type-check-exp env) e)))
  12242. (match ty
  12243. [`(,ty^* ... -> ,rt)
  12244. (for ([arg-ty ty*] [param-ty ty^*])
  12245. (check-type-equal? arg-ty param-ty (Apply e es)))
  12246. (values e^ e* rt)]))
  12247. (define/override (type-check-exp env)
  12248. (lambda (e)
  12249. (match e
  12250. [(FunRef f)
  12251. (values (FunRef f) (dict-ref env f))]
  12252. [(Apply e es)
  12253. (define-values (e^ es^ rt) (type-check-apply env e es))
  12254. (values (Apply e^ es^) rt)]
  12255. [(Call e es)
  12256. (define-values (e^ es^ rt) (type-check-apply env e es))
  12257. (values (Call e^ es^) rt)]
  12258. [else ((super type-check-exp env) e)])))
  12259. (define/public (type-check-def env)
  12260. (lambda (e)
  12261. (match e
  12262. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  12263. (define new-env (append (map cons xs ps) env))
  12264. (define-values (body^ ty^) ((type-check-exp new-env) body))
  12265. (check-type-equal? ty^ rt body)
  12266. (Def f p:t* rt info body^)])))
  12267. (define/public (fun-def-type d)
  12268. (match d
  12269. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  12270. (define/override (type-check-program e)
  12271. (match e
  12272. [(ProgramDefsExp info ds body)
  12273. (define env (for/list ([d ds])
  12274. (cons (Def-name d) (fun-def-type d))))
  12275. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  12276. (define-values (body^ ty) ((type-check-exp env) body))
  12277. (check-type-equal? ty 'Integer body)
  12278. (ProgramDefsExp info ds^ body^)]))))
  12279. (define (type-check-Rfun p)
  12280. (send (new type-check-Rfun_class) type-check-program p))
  12281. \end{lstlisting}
  12282. \fi}
  12283. {\if\edition\pythonEd
  12284. \begin{lstlisting}
  12285. class TypeCheckLfun(TypeCheckLtup):
  12286. def type_check_exp(self, e, env):
  12287. match e:
  12288. case Call(Name('input_int'), []):
  12289. return super().type_check_exp(e, env)
  12290. case Call(func, args):
  12291. func_t = self.type_check_exp(func, env)
  12292. args_t = [self.type_check_exp(arg, env) for arg in args]
  12293. match func_t:
  12294. case FunctionType(params_t, return_t):
  12295. for (arg_t, param_t) in zip(args_t, params_t):
  12296. check_type_equal(param_t, arg_t, e)
  12297. return return_t
  12298. case _:
  12299. raise Exception('type_check_exp: in call, unexpected ' + \
  12300. repr(func_t))
  12301. case _:
  12302. return super().type_check_exp(e, env)
  12303. def type_check_stmts(self, ss, env):
  12304. if len(ss) == 0:
  12305. return
  12306. match ss[0]:
  12307. case FunctionDef(name, params, body, dl, returns, comment):
  12308. new_env = {x: t for (x,t) in env.items()}
  12309. for (x,t) in params:
  12310. new_env[x] = t
  12311. rt = self.type_check_stmts(body, new_env)
  12312. check_type_equal(returns, rt, ss[0])
  12313. return self.type_check_stmts(ss[1:], env)
  12314. case Return(value):
  12315. return self.type_check_exp(value, env)
  12316. case _:
  12317. return super().type_check_stmts(ss, env)
  12318. def type_check(self, p):
  12319. match p:
  12320. case Module(body):
  12321. env = {}
  12322. for s in body:
  12323. match s:
  12324. case FunctionDef(name, params, bod, dl, returns, comment):
  12325. params_t = [t for (x,t) in params]
  12326. env[name] = FunctionType(params_t, returns)
  12327. self.type_check_stmts(body, env)
  12328. case _:
  12329. raise Exception('type_check: unexpected ' + repr(p))
  12330. \end{lstlisting}
  12331. \fi}
  12332. \caption{Type checker for the \LangFun{} language.}
  12333. \label{fig:type-check-Rfun}
  12334. \end{figure}
  12335. \clearpage
  12336. \section{Functions in x86}
  12337. \label{sec:fun-x86}
  12338. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  12339. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  12340. %% \margincomment{\tiny Talk about the return address on the
  12341. %% stack and what callq and retq does.\\ --Jeremy }
  12342. The x86 architecture provides a few features to support the
  12343. implementation of functions. We have already seen that x86 provides
  12344. labels so that one can refer to the location of an instruction, as is
  12345. needed for jump instructions. Labels can also be used to mark the
  12346. beginning of the instructions for a function. Going further, we can
  12347. obtain the address of a label by using the \key{leaq} instruction and
  12348. PC-relative addressing. For example, the following puts the
  12349. address of the \code{inc} label into the \code{rbx} register.
  12350. \begin{lstlisting}
  12351. leaq inc(%rip), %rbx
  12352. \end{lstlisting}
  12353. The instruction pointer register \key{rip} (aka. the program counter
  12354. \index{subject}{program counter}) always points to the next
  12355. instruction to be executed. When combined with an label, as in
  12356. \code{inc(\%rip)}, the assembler computes the distance $d$ between the
  12357. address of \code{inc} and where the \code{rip} would be at that moment
  12358. and then changes the \code{inc(\%rip)} argument to \code{$d$(\%rip)},
  12359. which at runtime will compute the address of \code{inc}.
  12360. In Section~\ref{sec:x86} we used the \code{callq} instruction to jump
  12361. to functions whose locations were given by a label, such as
  12362. \code{read\_int}. To support function calls in this chapter we instead
  12363. will be jumping to functions whose location are given by an address in
  12364. a register, that is, we need to make an \emph{indirect function
  12365. call}. The x86 syntax for this is a \code{callq} instruction but with
  12366. an asterisk before the register name.\index{subject}{indirect function
  12367. call}
  12368. \begin{lstlisting}
  12369. callq *%rbx
  12370. \end{lstlisting}
  12371. \subsection{Calling Conventions}
  12372. \index{subject}{calling conventions}
  12373. The \code{callq} instruction provides partial support for implementing
  12374. functions: it pushes the return address on the stack and it jumps to
  12375. the target. However, \code{callq} does not handle
  12376. \begin{enumerate}
  12377. \item parameter passing,
  12378. \item pushing frames on the procedure call stack and popping them off,
  12379. or
  12380. \item determining how registers are shared by different functions.
  12381. \end{enumerate}
  12382. Regarding (1) parameter passing, recall that the following six
  12383. registers are used to pass arguments to a function, in this order.
  12384. \begin{lstlisting}
  12385. rdi rsi rdx rcx r8 r9
  12386. \end{lstlisting}
  12387. If there are
  12388. more than six arguments, then the convention is to use space on the
  12389. frame of the caller for the rest of the arguments. However, to ease
  12390. the implementation of efficient tail calls
  12391. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  12392. arguments.
  12393. %
  12394. Also recall that the register \code{rax} is for the return value of
  12395. the function.
  12396. \index{subject}{prelude}\index{subject}{conclusion}
  12397. Regarding (2) frames \index{subject}{frame} and the procedure call
  12398. stack, \index{subject}{procedure call stack} recall from
  12399. Section~\ref{sec:x86} that the stack grows down and each function call
  12400. uses a chunk of space on the stack called a frame. The caller sets the
  12401. stack pointer, register \code{rsp}, to the last data item in its
  12402. frame. The callee must not change anything in the caller's frame, that
  12403. is, anything that is at or above the stack pointer. The callee is free
  12404. to use locations that are below the stack pointer.
  12405. Recall that we are storing variables of tuple type on the root stack.
  12406. So the prelude needs to move the root stack pointer \code{r15} up and
  12407. the conclusion needs to move the root stack pointer back down. Also,
  12408. the prelude must initialize to \code{0} this frame's slots in the root
  12409. stack to signal to the garbage collector that those slots do not yet
  12410. contain a pointer to a vector. Otherwise the garbage collector will
  12411. interpret the garbage bits in those slots as memory addresses and try
  12412. to traverse them, causing serious mayhem!
  12413. Regarding (3) the sharing of registers between different functions,
  12414. recall from Section~\ref{sec:calling-conventions} that the registers
  12415. are divided into two groups, the caller-saved registers and the
  12416. callee-saved registers. The caller should assume that all the
  12417. caller-saved registers get overwritten with arbitrary values by the
  12418. callee. That is why we recommend in
  12419. Section~\ref{sec:calling-conventions} that variables that are live
  12420. during a function call should not be assigned to caller-saved
  12421. registers.
  12422. On the flip side, if the callee wants to use a callee-saved register,
  12423. the callee must save the contents of those registers on their stack
  12424. frame and then put them back prior to returning to the caller. That
  12425. is why we recommended in Section~\ref{sec:calling-conventions} that if
  12426. the register allocator assigns a variable to a callee-saved register,
  12427. then the prelude of the \code{main} function must save that register
  12428. to the stack and the conclusion of \code{main} must restore it. This
  12429. recommendation now generalizes to all functions.
  12430. Recall that the base pointer, register \code{rbp}, is used as a
  12431. point-of-reference within a frame, so that each local variable can be
  12432. accessed at a fixed offset from the base pointer
  12433. (Section~\ref{sec:x86}).
  12434. %
  12435. Figure~\ref{fig:call-frames} shows the general layout of the caller
  12436. and callee frames.
  12437. \begin{figure}[tbp]
  12438. \centering
  12439. \begin{tabular}{r|r|l|l} \hline
  12440. Caller View & Callee View & Contents & Frame \\ \hline
  12441. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  12442. 0(\key{\%rbp}) & & old \key{rbp} \\
  12443. -8(\key{\%rbp}) & & callee-saved $1$ \\
  12444. \ldots & & \ldots \\
  12445. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  12446. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  12447. \ldots & & \ldots \\
  12448. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  12449. %% & & \\
  12450. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  12451. %% & \ldots & \ldots \\
  12452. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  12453. \hline
  12454. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  12455. & 0(\key{\%rbp}) & old \key{rbp} \\
  12456. & -8(\key{\%rbp}) & callee-saved $1$ \\
  12457. & \ldots & \ldots \\
  12458. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  12459. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  12460. & \ldots & \ldots \\
  12461. & $-8(n+m)$(\key{\%rbp}) & local variable $m$\\ \hline
  12462. \end{tabular}
  12463. \caption{Memory layout of caller and callee frames.}
  12464. \label{fig:call-frames}
  12465. \end{figure}
  12466. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  12467. %% local variables and for storing the values of callee-saved registers
  12468. %% (we shall refer to all of these collectively as ``locals''), and that
  12469. %% at the beginning of a function we move the stack pointer \code{rsp}
  12470. %% down to make room for them.
  12471. %% We recommend storing the local variables
  12472. %% first and then the callee-saved registers, so that the local variables
  12473. %% can be accessed using \code{rbp} the same as before the addition of
  12474. %% functions.
  12475. %% To make additional room for passing arguments, we shall
  12476. %% move the stack pointer even further down. We count how many stack
  12477. %% arguments are needed for each function call that occurs inside the
  12478. %% body of the function and find their maximum. Adding this number to the
  12479. %% number of locals gives us how much the \code{rsp} should be moved at
  12480. %% the beginning of the function. In preparation for a function call, we
  12481. %% offset from \code{rsp} to set up the stack arguments. We put the first
  12482. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  12483. %% so on.
  12484. %% Upon calling the function, the stack arguments are retrieved by the
  12485. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  12486. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  12487. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  12488. %% the layout of the caller and callee frames. Notice how important it is
  12489. %% that we correctly compute the maximum number of arguments needed for
  12490. %% function calls; if that number is too small then the arguments and
  12491. %% local variables will smash into each other!
  12492. \subsection{Efficient Tail Calls}
  12493. \label{sec:tail-call}
  12494. In general, the amount of stack space used by a program is determined
  12495. by the longest chain of nested function calls. That is, if function
  12496. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, $f_n$, then the amount
  12497. of stack space is linear in $n$. The depth $n$ can grow quite large
  12498. in the case of recursive or mutually recursive functions. However, in
  12499. some cases we can arrange to use only a constant amount of space for a
  12500. long chain of nested function calls.
  12501. If a function call is the last action in a function body, then that
  12502. call is said to be a \emph{tail call}\index{subject}{tail call}.
  12503. For example, in the following
  12504. program, the recursive call to \code{tail\_sum} is a tail call.
  12505. \begin{center}
  12506. {\if\edition\racketEd
  12507. \begin{lstlisting}
  12508. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  12509. (if (eq? n 0)
  12510. r
  12511. (tail_sum (- n 1) (+ n r))))
  12512. (+ (tail_sum 3 0) 36)
  12513. \end{lstlisting}
  12514. \fi}
  12515. {\if\edition\pythonEd
  12516. \begin{lstlisting}
  12517. def tail_sum(n : int, r : int) -> int:
  12518. if n == 0:
  12519. return r
  12520. else:
  12521. return tail_sum(n - 1, n + r)
  12522. print( tail_sum(3, 0) + 36)
  12523. \end{lstlisting}
  12524. \fi}
  12525. \end{center}
  12526. At a tail call, the frame of the caller is no longer needed, so we can
  12527. pop the caller's frame before making the tail call. With this
  12528. approach, a recursive function that only makes tail calls will only
  12529. use a constant amount of stack space. Functional languages like
  12530. Racket typically rely heavily on recursive functions, so they
  12531. typically guarantee that all tail calls will be optimized in this way.
  12532. \index{subject}{frame}
  12533. Some care is needed with regards to argument passing in tail calls.
  12534. As mentioned above, for arguments beyond the sixth, the convention is
  12535. to use space in the caller's frame for passing arguments. But for a
  12536. tail call we pop the caller's frame and can no longer use it. An
  12537. alternative is to use space in the callee's frame for passing
  12538. arguments. However, this option is also problematic because the caller
  12539. and callee's frames overlap in memory. As we begin to copy the
  12540. arguments from their sources in the caller's frame, the target
  12541. locations in the callee's frame might collide with the sources for
  12542. later arguments! We solve this problem by using the heap instead of
  12543. the stack for passing more than six arguments, which we describe in
  12544. the Section~\ref{sec:limit-functions-r4}.
  12545. As mentioned above, for a tail call we pop the caller's frame prior to
  12546. making the tail call. The instructions for popping a frame are the
  12547. instructions that we usually place in the conclusion of a
  12548. function. Thus, we also need to place such code immediately before
  12549. each tail call. These instructions include restoring the callee-saved
  12550. registers, so it is fortunate that the argument passing registers are
  12551. all caller-saved registers!
  12552. One last note regarding which instruction to use to make the tail
  12553. call. When the callee is finished, it should not return to the current
  12554. function, but it should return to the function that called the current
  12555. one. Thus, the return address that is already on the stack is the
  12556. right one, and we should not use \key{callq} to make the tail call, as
  12557. that would unnecessarily overwrite the return address. Instead we can
  12558. simply use the \key{jmp} instruction. Like the indirect function call,
  12559. we write an \emph{indirect jump}\index{subject}{indirect jump} with a
  12560. register prefixed with an asterisk. We recommend using \code{rax} to
  12561. hold the jump target because the preceding conclusion can overwrite
  12562. just about everything else.
  12563. \begin{lstlisting}
  12564. jmp *%rax
  12565. \end{lstlisting}
  12566. \section{Shrink \LangFun{}}
  12567. \label{sec:shrink-r4}
  12568. The \code{shrink} pass performs a minor modification to ease the
  12569. later passes. This pass introduces an explicit \code{main} function.
  12570. %
  12571. \racket{It also changes the top \code{ProgramDefsExp} form to
  12572. \code{ProgramDefs}.}
  12573. {\if\edition\racketEd
  12574. \begin{lstlisting}
  12575. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  12576. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  12577. \end{lstlisting}
  12578. where $\itm{mainDef}$ is
  12579. \begin{lstlisting}
  12580. (Def 'main '() 'Integer '() |$\Exp'$|)
  12581. \end{lstlisting}
  12582. \fi}
  12583. {\if\edition\pythonEd
  12584. \begin{lstlisting}
  12585. Module(|$\Def\ldots\Stmt\ldots$|)
  12586. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  12587. \end{lstlisting}
  12588. where $\itm{mainDef}$ is
  12589. \begin{lstlisting}
  12590. FunctionDef('main', [], int, None, |$\Stmt'\ldots$|Return(Constant(0)), None)
  12591. \end{lstlisting}
  12592. \fi}
  12593. \section{Reveal Functions and the \LangFunRef{} language}
  12594. \label{sec:reveal-functions-r4}
  12595. The syntax of \LangFun{} is inconvenient for purposes of compilation
  12596. in that it conflates the use of function names and local
  12597. variables. This is a problem because we need to compile the use of a
  12598. function name differently than the use of a local variable; we need to
  12599. use \code{leaq} to convert the function name (a label in x86) to an
  12600. address in a register. Thus, we create a new pass that changes
  12601. function references from $\VAR{f}$ to $\FUNREF{f}$. This pass is named
  12602. \code{reveal\_functions} and the output language, \LangFunRef{}, is
  12603. defined in Figure~\ref{fig:f1-syntax}.
  12604. %% The concrete syntax for a
  12605. %% function reference is $\CFUNREF{f}$.
  12606. \begin{figure}[tp]
  12607. \centering
  12608. \fbox{
  12609. \begin{minipage}{0.96\textwidth}
  12610. {\if\edition\racketEd
  12611. \[
  12612. \begin{array}{lcl}
  12613. \Exp &::=& \ldots \MID \FUNREF{\Var}\\
  12614. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12615. \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  12616. \end{array}
  12617. \]
  12618. \fi}
  12619. {\if\edition\pythonEd
  12620. \[
  12621. \begin{array}{lcl}
  12622. \Exp &::=& \FUNREF{\Var}\\
  12623. \LangFunRefM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  12624. \end{array}
  12625. \]
  12626. \fi}
  12627. \end{minipage}
  12628. }
  12629. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  12630. (Figure~\ref{fig:Rfun-syntax}).}
  12631. \label{fig:f1-syntax}
  12632. \end{figure}
  12633. %% Distinguishing between calls in tail position and non-tail position
  12634. %% requires the pass to have some notion of context. We recommend using
  12635. %% two mutually recursive functions, one for processing expressions in
  12636. %% tail position and another for the rest.
  12637. \racket{Placing this pass after \code{uniquify} will make sure that
  12638. there are no local variables and functions that share the same
  12639. name.}
  12640. %
  12641. The \code{reveal\_functions} pass should come before the
  12642. \code{remove\_complex\_operands} pass because function references
  12643. should be categorized as complex expressions.
  12644. \section{Limit Functions}
  12645. \label{sec:limit-functions-r4}
  12646. Recall that we wish to limit the number of function parameters to six
  12647. so that we do not need to use the stack for argument passing, which
  12648. makes it easier to implement efficient tail calls. However, because
  12649. the input language \LangFun{} supports arbitrary numbers of function
  12650. arguments, we have some work to do!
  12651. This pass transforms functions and function calls that involve more
  12652. than six arguments to pass the first five arguments as usual, but it
  12653. packs the rest of the arguments into a vector and passes it as the
  12654. sixth argument.
  12655. Each function definition with too many parameters is transformed as
  12656. follows.
  12657. {\if\edition\racketEd
  12658. \begin{lstlisting}
  12659. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  12660. |$\Rightarrow$|
  12661. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  12662. \end{lstlisting}
  12663. \fi}
  12664. {\if\edition\pythonEd
  12665. \begin{lstlisting}
  12666. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, None, |$\itm{body}$|, None)
  12667. |$\Rightarrow$|
  12668. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))],
  12669. |$T_r$|, None, |$\itm{body}'$|, None)
  12670. \end{lstlisting}
  12671. \fi}
  12672. %
  12673. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  12674. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  12675. the $k$th element of the tuple, where $k = i - 6$.
  12676. %
  12677. {\if\edition\racketEd
  12678. \begin{lstlisting}
  12679. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  12680. \end{lstlisting}
  12681. \fi}
  12682. {\if\edition\pythonEd
  12683. \begin{lstlisting}
  12684. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|))
  12685. \end{lstlisting}
  12686. \fi}
  12687. For function calls with too many arguments, the \code{limit\_functions}
  12688. pass transforms them in the following way.
  12689. \begin{tabular}{lll}
  12690. \begin{minipage}{0.3\textwidth}
  12691. {\if\edition\racketEd
  12692. \begin{lstlisting}
  12693. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  12694. \end{lstlisting}
  12695. \fi}
  12696. {\if\edition\pythonEd
  12697. \begin{lstlisting}
  12698. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  12699. \end{lstlisting}
  12700. \fi}
  12701. \end{minipage}
  12702. &
  12703. $\Rightarrow$
  12704. &
  12705. \begin{minipage}{0.5\textwidth}
  12706. {\if\edition\racketEd
  12707. \begin{lstlisting}
  12708. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  12709. \end{lstlisting}
  12710. \fi}
  12711. {\if\edition\pythonEd
  12712. \begin{lstlisting}
  12713. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  12714. \end{lstlisting}
  12715. \fi}
  12716. \end{minipage}
  12717. \end{tabular}
  12718. \section{Remove Complex Operands}
  12719. \label{sec:rco-r4}
  12720. The primary decisions to make for this pass is whether to classify
  12721. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  12722. atomic or complex expressions. Recall that a simple expression will
  12723. eventually end up as just an immediate argument of an x86
  12724. instruction. Function application will be translated to a sequence of
  12725. instructions, so \racket{\code{Apply}}\python{\code{Call}} must be
  12726. classified as complex expression. On the other hand, the arguments of
  12727. \racket{\code{Apply}}\python{\code{Call}} should be atomic expressions.
  12728. %
  12729. Regarding \code{FunRef}, as discussed above, the function label needs
  12730. to be converted to an address using the \code{leaq} instruction. Thus,
  12731. even though \code{FunRef} seems rather simple, it needs to be
  12732. classified as a complex expression so that we generate an assignment
  12733. statement with a left-hand side that can serve as the target of the
  12734. \code{leaq}.
  12735. The output of this pass, \LangFunANF{}, extends \LangAllocANF{}
  12736. (Figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  12737. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions.
  12738. %
  12739. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  12740. % TODO: Return?
  12741. %% Figure~\ref{fig:Rfun-anf-syntax} defines the output language
  12742. %% \LangFunANF{} of this pass.
  12743. %% \begin{figure}[tp]
  12744. %% \centering
  12745. %% \fbox{
  12746. %% \begin{minipage}{0.96\textwidth}
  12747. %% \small
  12748. %% \[
  12749. %% \begin{array}{rcl}
  12750. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  12751. %% \MID \VOID{} } \\
  12752. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  12753. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  12754. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  12755. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  12756. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  12757. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  12758. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  12759. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  12760. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12761. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  12762. %% \end{array}
  12763. %% \]
  12764. %% \end{minipage}
  12765. %% }
  12766. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  12767. %% \label{fig:Rfun-anf-syntax}
  12768. %% \end{figure}
  12769. \section{Explicate Control and the \LangCFun{} language}
  12770. \label{sec:explicate-control-r4}
  12771. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  12772. output of \code{explicate\_control}.
  12773. %
  12774. \racket{(The concrete syntax is given in
  12775. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  12776. %
  12777. The auxiliary functions for assignment\racket{and tail contexts} should
  12778. be updated with cases for
  12779. \racket{\code{Apply}}\python{\code{Call}} and \code{FunRef} and the
  12780. function for predicate context should be updated for
  12781. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  12782. \code{FunRef} can't be a Boolean.) In assignment and predicate
  12783. contexts, \code{Apply} becomes \code{Call}\racket{, whereas in tail position
  12784. \code{Apply} becomes \code{TailCall}}. We recommend defining a new
  12785. auxiliary function for processing function definitions. This code is
  12786. similar to the case for \code{Program} in \LangVec{}. The top-level
  12787. \code{explicate\_control} function that handles the \code{ProgramDefs}
  12788. form of \LangFun{} can then apply this new function to all the
  12789. function definitions.
  12790. {\if\edition\pythonEd
  12791. The translation of \code{Return} statements requires a new auxiliary
  12792. function to handle expressions in tail context, called
  12793. \code{explicate\_tail}. The function should take an expression and the
  12794. dictionary of basic blocks and produce a list of statements in the
  12795. \LangCFun{} language. The \code{explicate\_tail} function should
  12796. include cases for \code{Begin}, \code{IfExp}, \code{Let}, \code{Call},
  12797. and a default case for other kinds of expressions. The default case
  12798. should produce a \code{Return} statement. The case for \code{Call}
  12799. should change it into \code{TailCall}. The other cases should
  12800. recursively process their subexpressions and statements, choosing the
  12801. appropriate explicate functions for the various contexts.
  12802. \fi}
  12803. \newcommand{\CfunASTRacket}{
  12804. \begin{array}{lcl}
  12805. \Exp &::= & \FUNREF{\itm{label}} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  12806. \Tail &::= & \TAILCALL{\Atm}{\Atm\ldots} \\
  12807. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  12808. \end{array}
  12809. }
  12810. \newcommand{\CfunASTPython}{
  12811. \begin{array}{lcl}
  12812. \Exp &::= & \FUNREF{\itm{label}} \MID \CALL{\Atm}{\Atm^{*}} \\
  12813. \Stmt &::= & \TAILCALL{\Atm}{\Atm^{*}} \\
  12814. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  12815. \Block &::=& \Stmt^{*} \\
  12816. \Blocks &::=& \LC\itm{label}\key{:}\Block\code{,}\ldots\RC \\
  12817. \Def &::=& \DEF{\itm{label}}{\Params}{\Blocks}{\key{None}}{\Type}{\key{None}}
  12818. \end{array}
  12819. }
  12820. \begin{figure}[tp]
  12821. \fbox{
  12822. \begin{minipage}{0.96\textwidth}
  12823. \small
  12824. {\if\edition\racketEd
  12825. \[
  12826. \begin{array}{l}
  12827. \gray{\CvarASTRacket} \\ \hline
  12828. \gray{\CifASTRacket} \\ \hline
  12829. \gray{\CloopASTRacket} \\ \hline
  12830. \gray{\CtupASTRacket} \\ \hline
  12831. \CfunASTRacket \\
  12832. \begin{array}{lcl}
  12833. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  12834. \end{array}
  12835. \end{array}
  12836. \]
  12837. \fi}
  12838. {\if\edition\pythonEd
  12839. \[
  12840. \begin{array}{l}
  12841. \gray{\CifASTPython} \\ \hline
  12842. \gray{\CtupASTPython} \\ \hline
  12843. \CfunASTPython \\
  12844. \begin{array}{lcl}
  12845. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  12846. \end{array}
  12847. \end{array}
  12848. \]
  12849. \fi}
  12850. \end{minipage}
  12851. }
  12852. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  12853. \label{fig:c3-syntax}
  12854. \end{figure}
  12855. \section{Select Instructions and the \LangXIndCall{} Language}
  12856. \label{sec:select-r4}
  12857. \index{subject}{instruction selection}
  12858. The output of select instructions is a program in the \LangXIndCall{}
  12859. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  12860. \index{subject}{x86}
  12861. \begin{figure}[tp]
  12862. \fbox{
  12863. \begin{minipage}{0.96\textwidth}
  12864. \small
  12865. \[
  12866. \begin{array}{lcl}
  12867. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)} \\
  12868. \itm{cc} & ::= & \gray{ \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} } \\
  12869. \Instr &::=& \ldots
  12870. \MID \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  12871. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  12872. \Block &::= & \Instr^{*} \\
  12873. \Blocks &::=& \LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\\
  12874. \Def &::= & \LP\key{define} \; \LP\itm{label} \RP \; \Blocks \RP\\
  12875. \LangXIndCallM{} &::= & \Def\ldots
  12876. \end{array}
  12877. \]
  12878. \end{minipage}
  12879. }
  12880. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  12881. \label{fig:x86-3-concrete}
  12882. \end{figure}
  12883. \begin{figure}[tp]
  12884. \fbox{
  12885. \begin{minipage}{0.96\textwidth}
  12886. \small
  12887. {\if\edition\racketEd
  12888. \[
  12889. \begin{array}{lcl}
  12890. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  12891. \MID \BYTEREG{\Reg} } \\
  12892. &\MID& \gray{ \GLOBAL{\Var} } \MID \FUNREF{\itm{label}} \\
  12893. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  12894. \MID \TAILJMP{\Arg}{\itm{int}}\\
  12895. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  12896. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  12897. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  12898. \LangXIndCallM{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  12899. \end{array}
  12900. \]
  12901. \fi}
  12902. {\if\edition\pythonEd
  12903. \[
  12904. \begin{array}{lcl}
  12905. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  12906. \MID \BYTEREG{\Reg} } \\
  12907. &\MID& \gray{ \GLOBAL{\Var} } \MID \FUNREF{\itm{label}} \\
  12908. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  12909. \MID \TAILJMP{\Arg}{\itm{int}}\\
  12910. &\MID& \BININSTR{\code{leaq}}{\Arg}{\REG{\Reg}}\\
  12911. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\LC\itm{label}\key{:}\,\Instr^{*}\code{,}\ldots\RC}{\_}{\Type}{\_} \\
  12912. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  12913. \end{array}
  12914. \]
  12915. \fi}
  12916. \end{minipage}
  12917. }
  12918. \caption{The abstract syntax of \LangXIndCall{} (extends
  12919. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  12920. \label{fig:x86-3}
  12921. \end{figure}
  12922. An assignment of a function reference to a variable becomes a
  12923. load-effective-address instruction as follows, where $\itm{lhs}'$
  12924. is the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{}
  12925. to \Arg{} in \LangXIndCallVar{}. \\
  12926. \begin{tabular}{lcl}
  12927. \begin{minipage}{0.35\textwidth}
  12928. \begin{lstlisting}
  12929. |$\itm{lhs}$| = (fun-ref |$f$|);
  12930. \end{lstlisting}
  12931. \end{minipage}
  12932. &
  12933. $\Rightarrow$\qquad\qquad
  12934. &
  12935. \begin{minipage}{0.3\textwidth}
  12936. \begin{lstlisting}
  12937. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  12938. \end{lstlisting}
  12939. \end{minipage}
  12940. \end{tabular} \\
  12941. Regarding function definitions, we need to remove the parameters and
  12942. instead perform parameter passing using the conventions discussed in
  12943. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  12944. registers. We recommend turning the parameters into local variables
  12945. and generating instructions at the beginning of the function to move
  12946. from the argument passing registers to these local variables.
  12947. {\if\edition\racketEd
  12948. \begin{lstlisting}
  12949. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  12950. |$\Rightarrow$|
  12951. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  12952. \end{lstlisting}
  12953. \fi}
  12954. {\if\edition\pythonEd
  12955. \begin{lstlisting}
  12956. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  12957. |$\Rightarrow$|
  12958. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  12959. \end{lstlisting}
  12960. \fi}
  12961. The basic blocks $B'$ are the same as $B$ except that the
  12962. \code{start} block is modified to add the instructions for moving from
  12963. the argument registers to the parameter variables. So the \code{start}
  12964. block of $B$ shown on the left is changed to the code on the right.
  12965. \begin{center}
  12966. \begin{minipage}{0.3\textwidth}
  12967. \begin{lstlisting}
  12968. start:
  12969. |$\itm{instr}_1$|
  12970. |$\cdots$|
  12971. |$\itm{instr}_n$|
  12972. \end{lstlisting}
  12973. \end{minipage}
  12974. $\Rightarrow$
  12975. \begin{minipage}{0.3\textwidth}
  12976. \begin{lstlisting}
  12977. start:
  12978. movq %rdi, |$x_1$|
  12979. |$\cdots$|
  12980. |$\itm{instr}_1$|
  12981. |$\cdots$|
  12982. |$\itm{instr}_n$|
  12983. \end{lstlisting}
  12984. \end{minipage}
  12985. \end{center}
  12986. By changing the parameters to local variables, we are giving the
  12987. register allocator control over which registers or stack locations to
  12988. use for them. If you implemented the move-biasing challenge
  12989. (Section~\ref{sec:move-biasing}), the register allocator will try to
  12990. assign the parameter variables to the corresponding argument register,
  12991. in which case the \code{patch\_instructions} pass will remove the
  12992. \code{movq} instruction. This happens in the example translation in
  12993. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  12994. the \code{add} function.
  12995. %
  12996. Also, note that the register allocator will perform liveness analysis
  12997. on this sequence of move instructions and build the interference
  12998. graph. So, for example, $x_1$ will be marked as interfering with
  12999. \code{rsi} and that will prevent the assignment of $x_1$ to
  13000. \code{rsi}, which is good, because that would overwrite the argument
  13001. that needs to move into $x_2$.
  13002. Next, consider the compilation of function calls. In the mirror image
  13003. of handling the parameters of function definitions, the arguments need
  13004. to be moved to the argument passing registers. The function call
  13005. itself is performed with an indirect function call. The return value
  13006. from the function is stored in \code{rax}, so it needs to be moved
  13007. into the \itm{lhs}.
  13008. \begin{lstlisting}
  13009. |\itm{lhs}| = |$\CALL{\itm{fun}}{\itm{arg}_1\ldots}$|
  13010. |$\Rightarrow$|
  13011. movq |$\itm{arg}_1$|, %rdi
  13012. movq |$\itm{arg}_2$|, %rsi
  13013. |$\vdots$|
  13014. callq *|\itm{fun}|
  13015. movq %rax, |\itm{lhs}|
  13016. \end{lstlisting}
  13017. The \code{IndirectCallq} AST node includes an integer for the arity of
  13018. the function, i.e., the number of parameters. That information is
  13019. useful in the \code{uncover\_live} pass for determining which
  13020. argument-passing registers are potentially read during the call.
  13021. For tail calls, the parameter passing is the same as non-tail calls:
  13022. generate instructions to move the arguments into to the argument
  13023. passing registers. After that we need to pop the frame from the
  13024. procedure call stack. However, we do not yet know how big the frame
  13025. is; that gets determined during register allocation. So instead of
  13026. generating those instructions here, we invent a new instruction that
  13027. means ``pop the frame and then do an indirect jump'', which we name
  13028. \code{TailJmp}. The abstract syntax for this instruction includes an
  13029. argument that specifies where to jump and an integer that represents
  13030. the arity of the function being called.
  13031. Recall that we use the label \code{start} for the initial block of a
  13032. program, and in Section~\ref{sec:select-Lvar} we recommended labeling
  13033. the conclusion of the program with \code{conclusion}, so that
  13034. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  13035. by a jump to \code{conclusion}. With the addition of function
  13036. definitions, there is a start block and conclusion for each function,
  13037. but their labels need to be unique. We recommend prepending the
  13038. function's name to \code{start} and \code{conclusion}, respectively,
  13039. to obtain unique labels.
  13040. \section{Register Allocation}
  13041. \label{sec:register-allocation-r4}
  13042. \subsection{Liveness Analysis}
  13043. \label{sec:liveness-analysis-r4}
  13044. \index{subject}{liveness analysis}
  13045. %% The rest of the passes need only minor modifications to handle the new
  13046. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  13047. %% \code{leaq}.
  13048. The \code{IndirectCallq} instruction should be treated like
  13049. \code{Callq} regarding its written locations $W$, in that they should
  13050. include all the caller-saved registers. Recall that the reason for
  13051. that is to force call-live variables to be assigned to callee-saved
  13052. registers or to be spilled to the stack.
  13053. Regarding the set of read locations $R$ the arity field of
  13054. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  13055. argument-passing registers should be considered as read by those
  13056. instructions.
  13057. \subsection{Build Interference Graph}
  13058. \label{sec:build-interference-r4}
  13059. With the addition of function definitions, we compute an interference
  13060. graph for each function (not just one for the whole program).
  13061. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  13062. spill vector-typed variables that are live during a call to the
  13063. \code{collect}. With the addition of functions to our language, we
  13064. need to revisit this issue. Many functions perform allocation and
  13065. therefore have calls to the collector inside of them. Thus, we should
  13066. not only spill a vector-typed variable when it is live during a call
  13067. to \code{collect}, but we should spill the variable if it is live
  13068. during any function call. Thus, in the \code{build\_interference} pass,
  13069. we recommend adding interference edges between call-live vector-typed
  13070. variables and the callee-saved registers (in addition to the usual
  13071. addition of edges between call-live variables and the caller-saved
  13072. registers).
  13073. \subsection{Allocate Registers}
  13074. The primary change to the \code{allocate\_registers} pass is adding an
  13075. auxiliary function for handling definitions (the \Def{} non-terminal
  13076. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  13077. logic is the same as described in
  13078. Chapter~\ref{ch:register-allocation-Lvar}, except now register
  13079. allocation is performed many times, once for each function definition,
  13080. instead of just once for the whole program.
  13081. \section{Patch Instructions}
  13082. In \code{patch\_instructions}, you should deal with the x86
  13083. idiosyncrasy that the destination argument of \code{leaq} must be a
  13084. register. Additionally, you should ensure that the argument of
  13085. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  13086. code generation more convenient, because we trample many registers
  13087. before the tail call (as explained in the next section).
  13088. \section{Prelude and Conclusion}
  13089. %% For the \code{print\_x86} pass, the cases for \code{FunRef} and
  13090. %% \code{IndirectCallq} are straightforward: output their concrete
  13091. %% syntax.
  13092. %% \begin{lstlisting}
  13093. %% (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  13094. %% (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  13095. %% \end{lstlisting}
  13096. Now that register allocation is complete, we can translate the
  13097. \code{TailJmp} into a sequence of instructions. A straightforward
  13098. translation of \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}.
  13099. However, before the jump we need to pop the current frame. This
  13100. sequence of instructions is the same as the code for the conclusion of
  13101. a function, except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  13102. Regarding function definitions, you need to generate a prelude
  13103. and conclusion for each one. This code is similar to the prelude and
  13104. conclusion that you generated for the \code{main} function in
  13105. Chapter~\ref{ch:Lvec}. To review, the prelude of every function
  13106. should carry out the following steps.
  13107. % TODO: .align the functions!
  13108. \begin{enumerate}
  13109. %% \item Start with \code{.global} and \code{.align} directives followed
  13110. %% by the label for the function. (See Figure~\ref{fig:add-fun} for an
  13111. %% example.)
  13112. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  13113. pointer.
  13114. \item Push to the stack all of the callee-saved registers that were
  13115. used for register allocation.
  13116. \item Move the stack pointer \code{rsp} down by the size of the stack
  13117. frame for this function, which depends on the number of regular
  13118. spills. (Aligned to 16 bytes.)
  13119. \item Move the root stack pointer \code{r15} up by the size of the
  13120. root-stack frame for this function, which depends on the number of
  13121. spilled vectors. \label{root-stack-init}
  13122. \item Initialize to zero all of the entries in the root-stack frame.
  13123. \item Jump to the start block.
  13124. \end{enumerate}
  13125. The prelude of the \code{main} function has one additional task: call
  13126. the \code{initialize} function to set up the garbage collector and
  13127. move the value of the global \code{rootstack\_begin} in
  13128. \code{r15}. This should happen before step \ref{root-stack-init}
  13129. above, which depends on \code{r15}.
  13130. The conclusion of every function should do the following.
  13131. \begin{enumerate}
  13132. \item Move the stack pointer back up by the size of the stack frame
  13133. for this function.
  13134. \item Restore the callee-saved registers by popping them from the
  13135. stack.
  13136. \item Move the root stack pointer back down by the size of the
  13137. root-stack frame for this function.
  13138. \item Restore \code{rbp} by popping it from the stack.
  13139. \item Return to the caller with the \code{retq} instruction.
  13140. \end{enumerate}
  13141. \begin{exercise}\normalfont
  13142. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  13143. Create 5 new programs that use functions, including examples that pass
  13144. functions and return functions from other functions, recursive
  13145. functions, functions that create vectors, and functions that make tail
  13146. calls. Test your compiler on these new programs and all of your
  13147. previously created test programs.
  13148. \end{exercise}
  13149. \begin{figure}[tbp]
  13150. \begin{tikzpicture}[baseline=(current bounding box.center)]
  13151. \node (Rfun) at (0,2) {\large \LangFun{}};
  13152. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  13153. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  13154. \node (F1-1) at (9,2) {\large \LangFunRef{}};
  13155. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  13156. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  13157. \node (F1-4) at (3,0) {\large \LangFunANF{}};
  13158. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  13159. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  13160. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  13161. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  13162. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  13163. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  13164. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  13165. \path[->,bend left=15] (Rfun) edge [above] node
  13166. {\ttfamily\footnotesize shrink} (Rfun-1);
  13167. \path[->,bend left=15] (Rfun-1) edge [above] node
  13168. {\ttfamily\footnotesize uniquify} (Rfun-2);
  13169. \path[->,bend left=15] (Rfun-2) edge [above] node
  13170. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  13171. \path[->,bend left=15] (F1-1) edge [right] node
  13172. {\ttfamily\footnotesize limit\_functions} (F1-2);
  13173. \path[->,bend right=15] (F1-2) edge [above] node
  13174. {\ttfamily\footnotesize expose\_alloc.} (F1-3);
  13175. \path[->,bend right=15] (F1-3) edge [above] node
  13176. {\ttfamily\footnotesize remove\_complex.} (F1-4);
  13177. \path[->,bend left=15] (F1-4) edge [right] node
  13178. {\ttfamily\footnotesize explicate\_control} (C3-2);
  13179. \path[->,bend right=15] (C3-2) edge [left] node
  13180. {\ttfamily\footnotesize select\_instr.} (x86-2);
  13181. \path[->,bend left=15] (x86-2) edge [left] node
  13182. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  13183. \path[->,bend right=15] (x86-2-1) edge [below] node
  13184. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  13185. \path[->,bend right=15] (x86-2-2) edge [left] node
  13186. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  13187. \path[->,bend left=15] (x86-3) edge [above] node
  13188. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  13189. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  13190. \end{tikzpicture}
  13191. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  13192. \label{fig:Rfun-passes}
  13193. \end{figure}
  13194. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  13195. compiling \LangFun{} to x86.
  13196. \section{An Example Translation}
  13197. \label{sec:functions-example}
  13198. Figure~\ref{fig:add-fun} shows an example translation of a simple
  13199. function in \LangFun{} to x86. The figure also includes the results of the
  13200. \code{explicate\_control} and \code{select\_instructions} passes.
  13201. \begin{figure}[htbp]
  13202. \begin{tabular}{ll}
  13203. \begin{minipage}{0.4\textwidth}
  13204. % s3_2.rkt
  13205. {\if\edition\racketEd
  13206. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13207. (define (add [x : Integer] [y : Integer])
  13208. : Integer
  13209. (+ x y))
  13210. (add 40 2)
  13211. \end{lstlisting}
  13212. \fi}
  13213. {\if\edition\pythonEd
  13214. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13215. def add(x:int, y:int) -> int:
  13216. return x + y
  13217. print(add(40, 2))
  13218. \end{lstlisting}
  13219. \fi}
  13220. $\Downarrow$
  13221. {\if\edition\racketEd
  13222. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13223. (define (add86 [x87 : Integer]
  13224. [y88 : Integer]) : Integer
  13225. add86start:
  13226. return (+ x87 y88);
  13227. )
  13228. (define (main) : Integer ()
  13229. mainstart:
  13230. tmp89 = (fun-ref add86);
  13231. (tail-call tmp89 40 2)
  13232. )
  13233. \end{lstlisting}
  13234. \fi}
  13235. {\if\edition\pythonEd
  13236. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13237. def add(x:int, y:int) -> int:
  13238. addstart:
  13239. return x + y
  13240. def main() -> int:
  13241. mainstart:
  13242. fun.0 = add
  13243. tmp.1 = fun.0(40, 2)
  13244. print(tmp.1)
  13245. return 0
  13246. \end{lstlisting}
  13247. \fi}
  13248. \end{minipage}
  13249. &
  13250. $\Rightarrow$
  13251. \begin{minipage}{0.5\textwidth}
  13252. {\if\edition\racketEd
  13253. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13254. (define (add86) : Integer
  13255. add86start:
  13256. movq %rdi, x87
  13257. movq %rsi, y88
  13258. movq x87, %rax
  13259. addq y88, %rax
  13260. jmp inc1389conclusion
  13261. )
  13262. (define (main) : Integer
  13263. mainstart:
  13264. leaq (fun-ref add86), tmp89
  13265. movq $40, %rdi
  13266. movq $2, %rsi
  13267. tail-jmp tmp89
  13268. )
  13269. \end{lstlisting}
  13270. \fi}
  13271. {\if\edition\pythonEd
  13272. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13273. def add() -> int:
  13274. addstart:
  13275. movq %rdi, x
  13276. movq %rsi, y
  13277. movq x, %rax
  13278. addq y, %rax
  13279. jmp addconclusion
  13280. def main() -> int:
  13281. mainstart:
  13282. leaq add, fun.0
  13283. movq $40, %rdi
  13284. movq $2, %rsi
  13285. callq *fun.0
  13286. movq %rax, tmp.1
  13287. movq tmp.1, %rdi
  13288. callq print_int
  13289. movq $0, %rax
  13290. jmp mainconclusion
  13291. \end{lstlisting}
  13292. \fi}
  13293. $\Downarrow$
  13294. \end{minipage}
  13295. \end{tabular}
  13296. \begin{tabular}{ll}
  13297. \begin{minipage}{0.3\textwidth}
  13298. {\if\edition\racketEd
  13299. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13300. .globl add86
  13301. .align 16
  13302. add86:
  13303. pushq %rbp
  13304. movq %rsp, %rbp
  13305. jmp add86start
  13306. add86start:
  13307. movq %rdi, %rax
  13308. addq %rsi, %rax
  13309. jmp add86conclusion
  13310. add86conclusion:
  13311. popq %rbp
  13312. retq
  13313. \end{lstlisting}
  13314. \fi}
  13315. {\if\edition\pythonEd
  13316. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13317. .align 16
  13318. add:
  13319. pushq %rbp
  13320. movq %rsp, %rbp
  13321. subq $0, %rsp
  13322. jmp addstart
  13323. addstart:
  13324. movq %rdi, %rdx
  13325. movq %rsi, %rcx
  13326. movq %rdx, %rax
  13327. addq %rcx, %rax
  13328. jmp addconclusion
  13329. addconclusion:
  13330. subq $0, %r15
  13331. addq $0, %rsp
  13332. popq %rbp
  13333. retq
  13334. \end{lstlisting}
  13335. \fi}
  13336. \end{minipage}
  13337. &
  13338. \begin{minipage}{0.5\textwidth}
  13339. {\if\edition\racketEd
  13340. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13341. .globl main
  13342. .align 16
  13343. main:
  13344. pushq %rbp
  13345. movq %rsp, %rbp
  13346. movq $16384, %rdi
  13347. movq $16384, %rsi
  13348. callq initialize
  13349. movq rootstack_begin(%rip), %r15
  13350. jmp mainstart
  13351. mainstart:
  13352. leaq add86(%rip), %rcx
  13353. movq $40, %rdi
  13354. movq $2, %rsi
  13355. movq %rcx, %rax
  13356. popq %rbp
  13357. jmp *%rax
  13358. mainconclusion:
  13359. popq %rbp
  13360. retq
  13361. \end{lstlisting}
  13362. \fi}
  13363. {\if\edition\pythonEd
  13364. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13365. .globl main
  13366. .align 16
  13367. main:
  13368. pushq %rbp
  13369. movq %rsp, %rbp
  13370. subq $0, %rsp
  13371. movq $65536, %rdi
  13372. movq $65536, %rsi
  13373. callq initialize
  13374. movq rootstack_begin(%rip), %r15
  13375. jmp mainstart
  13376. mainstart:
  13377. leaq add(%rip), %rcx
  13378. movq $40, %rdi
  13379. movq $2, %rsi
  13380. callq *%rcx
  13381. movq %rax, %rcx
  13382. movq %rcx, %rdi
  13383. callq print_int
  13384. movq $0, %rax
  13385. jmp mainconclusion
  13386. mainconclusion:
  13387. subq $0, %r15
  13388. addq $0, %rsp
  13389. popq %rbp
  13390. retq
  13391. \end{lstlisting}
  13392. \fi}
  13393. \end{minipage}
  13394. \end{tabular}
  13395. \caption{Example compilation of a simple function to x86.}
  13396. \label{fig:add-fun}
  13397. \end{figure}
  13398. % Challenge idea: inlining! (simple version)
  13399. % Further Reading
  13400. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13401. \chapter{Lexically Scoped Functions}
  13402. \label{ch:Llambda}
  13403. \index{subject}{lambda}
  13404. \index{subject}{lexical scoping}
  13405. This chapter studies lexically scoped functions, that is, functions
  13406. whose body may refer to variables that are bound outside of the
  13407. function, in an enclosing scope.
  13408. %
  13409. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  13410. \LangLam{}, which extends \LangFun{} with lexically scoped functions
  13411. using the \key{lambda} form. The body of the \key{lambda} refers to
  13412. three variables: \code{x}, \code{y}, and \code{z}. The binding sites
  13413. for \code{x} and \code{y} are outside of the \key{lambda}. Variable
  13414. \code{y} is \racket{bound by the enclosing \key{let}}\python{a local
  13415. variable of function \code{f}} and \code{x} is a parameter of
  13416. function \code{f}. The \key{lambda} is returned from the function
  13417. \code{f}. The main expression of the program includes two calls to
  13418. \code{f} with different arguments for \code{x}, first \code{5} then
  13419. \code{3}. The functions returned from \code{f} are bound to variables
  13420. \code{g} and \code{h}. Even though these two functions were created by
  13421. the same \code{lambda}, they are really different functions because
  13422. they use different values for \code{x}. Applying \code{g} to \code{11}
  13423. produces \code{20} whereas applying \code{h} to \code{15} produces
  13424. \code{22}. The result of this program is \code{42}.
  13425. \begin{figure}[btp]
  13426. {\if\edition\racketEd
  13427. % lambda_test_21.rkt
  13428. \begin{lstlisting}
  13429. (define (f [x : Integer]) : (Integer -> Integer)
  13430. (let ([y 4])
  13431. (lambda: ([z : Integer]) : Integer
  13432. (+ x (+ y z)))))
  13433. (let ([g (f 5)])
  13434. (let ([h (f 3)])
  13435. (+ (g 11) (h 15))))
  13436. \end{lstlisting}
  13437. \fi}
  13438. {\if\edition\pythonEd
  13439. \begin{lstlisting}
  13440. def f(x : int) -> Callable[[int], int]:
  13441. y = 4
  13442. return lambda z: x + y + z
  13443. g = f(5)
  13444. h = f(3)
  13445. print( g(11) + h(15) )
  13446. \end{lstlisting}
  13447. \fi}
  13448. \caption{Example of a lexically scoped function.}
  13449. \label{fig:lexical-scoping}
  13450. \end{figure}
  13451. The approach that we take for implementing lexically scoped functions
  13452. is to compile them into top-level function definitions, translating
  13453. from \LangLam{} into \LangFun{}. However, the compiler must give
  13454. special treatment to variable occurrences such as \code{x} and
  13455. \code{y} in the body of the \code{lambda} of
  13456. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  13457. may not refer to variables defined outside of it. To identify such
  13458. variable occurrences, we review the standard notion of free variable.
  13459. \begin{definition}
  13460. A variable is \textbf{free in expression} $e$ if the variable occurs
  13461. inside $e$ but does not have an enclosing definition that is also in
  13462. $e$.\index{subject}{free variable}
  13463. \end{definition}
  13464. For example, in the expression
  13465. \racket{\code{(+ x (+ y z))}}\python{\code{x + y + z}}
  13466. the variables \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  13467. only \code{x} and \code{y} are free in the following expression
  13468. because \code{z} is defined by the \code{lambda}.
  13469. {\if\edition\racketEd
  13470. \begin{lstlisting}
  13471. (lambda: ([z : Integer]) : Integer
  13472. (+ x (+ y z)))
  13473. \end{lstlisting}
  13474. \fi}
  13475. {\if\edition\pythonEd
  13476. \begin{lstlisting}
  13477. lambda z: x + y + z
  13478. \end{lstlisting}
  13479. \fi}
  13480. %
  13481. So the free variables of a \code{lambda} are the ones that need
  13482. special treatment. We need to transport, at runtime, the values of
  13483. those variables from the point where the \code{lambda} was created to
  13484. the point where the \code{lambda} is applied. An efficient solution to
  13485. the problem, due to \citet{Cardelli:1983aa}, is to bundle the values
  13486. of the free variables together with a function pointer into a tuple,
  13487. an arrangement called a \emph{flat closure} (which we shorten to just
  13488. ``closure''). \index{subject}{closure}\index{subject}{flat closure}
  13489. Fortunately, we have all the ingredients to make closures:
  13490. Chapter~\ref{ch:Lvec} gave us tuples and Chapter~\ref{ch:Lfun} gave us
  13491. function pointers. The function pointer resides at index $0$ and the
  13492. values for the free variables fill in the rest of the tuple.
  13493. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  13494. how closures work. It's a three-step dance. The program calls function
  13495. \code{f}, which creates a closure for the \code{lambda}. The closure
  13496. is a tuple whose first element is a pointer to the top-level function
  13497. that we will generate for the \code{lambda}, the second element is the
  13498. value of \code{x}, which is \code{5}, and the third element is
  13499. \code{4}, the value of \code{y}. The closure does not contain an
  13500. element for \code{z} because \code{z} is not a free variable of the
  13501. \code{lambda}. Creating the closure is step 1 of the dance. The
  13502. closure is returned from \code{f} and bound to \code{g}, as shown in
  13503. Figure~\ref{fig:closures}.
  13504. %
  13505. The second call to \code{f} creates another closure, this time with
  13506. \code{3} in the second slot (for \code{x}). This closure is also
  13507. returned from \code{f} but bound to \code{h}, which is also shown in
  13508. Figure~\ref{fig:closures}.
  13509. \begin{figure}[tbp]
  13510. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  13511. \caption{Flat closure representations for the two functions
  13512. produced by the \key{lambda} in Figure~\ref{fig:lexical-scoping}.}
  13513. \label{fig:closures}
  13514. \end{figure}
  13515. Continuing with the example, consider the application of \code{g} to
  13516. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  13517. obtain the function pointer in the first element of the closure and
  13518. call it, passing in the closure itself and then the regular arguments,
  13519. in this case \code{11}. This technique for applying a closure is step
  13520. 2 of the dance.
  13521. %
  13522. But doesn't this \code{lambda} only take 1 argument, for parameter
  13523. \code{z}? The third and final step of the dance is generating a
  13524. top-level function for a \code{lambda}. We add an additional
  13525. parameter for the closure and we insert an initialization at the beginning
  13526. of the function for each free variable, to bind those variables to the
  13527. appropriate elements from the closure parameter.
  13528. %
  13529. This three-step dance is known as \emph{closure conversion}. We
  13530. discuss the details of closure conversion in
  13531. Section~\ref{sec:closure-conversion} and the code generated from the
  13532. example in Section~\ref{sec:example-lambda}. But first we define the
  13533. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  13534. \section{The \LangLam{} Language}
  13535. \label{sec:r5}
  13536. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  13537. functions and lexical scoping, is defined in
  13538. Figures~\ref{fig:Rlam-concrete-syntax} and \ref{fig:Rlam-syntax}. It adds
  13539. the \key{lambda} form to the grammar for \LangFun{}, which already has
  13540. syntax for function application.
  13541. \python{The syntax also includes an assignment statement that includes
  13542. a type annotation for the variable on the left-hand side.}
  13543. \newcommand{\LlambdaGrammarRacket}{
  13544. \begin{array}{lcl}
  13545. \Exp &::=& \LP \key{procedure-arity}~\Exp\RP \\
  13546. &\MID& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp}
  13547. \end{array}
  13548. }
  13549. \newcommand{\LlambdaASTRacket}{
  13550. \begin{array}{lcl}
  13551. \itm{op} &::=& \code{procedure-arity} \\
  13552. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}
  13553. \end{array}
  13554. }
  13555. \newcommand{\LlambdaGrammarPython}{
  13556. \begin{array}{lcl}
  13557. \Exp &::=& \CLAMBDA{\Var\code{, }\ldots}{\Exp}\\
  13558. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp}
  13559. \end{array}
  13560. }
  13561. \newcommand{\LlambdaASTPython}{
  13562. \begin{array}{lcl}
  13563. \Exp &::=& \LAMBDA{\Var^{*}}{\Exp} \\
  13564. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  13565. \end{array}
  13566. }
  13567. % include AnnAssign in ASTPython
  13568. \begin{figure}[tp]
  13569. \centering
  13570. \fbox{
  13571. \begin{minipage}{0.96\textwidth}
  13572. \small
  13573. {\if\edition\racketEd
  13574. \[
  13575. \begin{array}{l}
  13576. \gray{\LintGrammarRacket{}} \\ \hline
  13577. \gray{\LvarGrammarRacket{}} \\ \hline
  13578. \gray{\LifGrammarRacket{}} \\ \hline
  13579. \gray{\LwhileGrammarRacket} \\ \hline
  13580. \gray{\LtupGrammarRacket} \\ \hline
  13581. \gray{\LfunGrammarRacket} \\ \hline
  13582. \LlambdaGrammarRacket \\
  13583. \begin{array}{lcl}
  13584. \LangLamM{} &::=& \Def\ldots \; \Exp
  13585. \end{array}
  13586. \end{array}
  13587. \]
  13588. \fi}
  13589. {\if\edition\pythonEd
  13590. \[
  13591. \begin{array}{l}
  13592. \gray{\LintGrammarPython{}} \\ \hline
  13593. \gray{\LvarGrammarPython{}} \\ \hline
  13594. \gray{\LifGrammarPython{}} \\ \hline
  13595. \gray{\LwhileGrammarPython} \\ \hline
  13596. \gray{\LtupGrammarPython} \\ \hline
  13597. \gray{\LfunGrammarPython} \\ \hline
  13598. \LlambdaGrammarPython \\
  13599. \begin{array}{rcl}
  13600. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  13601. \end{array}
  13602. \end{array}
  13603. \]
  13604. \fi}
  13605. \end{minipage}
  13606. }
  13607. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  13608. with \key{lambda}.}
  13609. \label{fig:Rlam-concrete-syntax}
  13610. \end{figure}
  13611. \begin{figure}[tp]
  13612. \centering
  13613. \fbox{
  13614. \begin{minipage}{0.96\textwidth}
  13615. \small
  13616. {\if\edition\racketEd
  13617. \[
  13618. \begin{array}{l}
  13619. \gray{\LintOpAST} \\ \hline
  13620. \gray{\LvarASTRacket{}} \\ \hline
  13621. \gray{\LifASTRacket{}} \\ \hline
  13622. \gray{\LwhileASTRacket{}} \\ \hline
  13623. \gray{\LtupASTRacket{}} \\ \hline
  13624. \gray{\LfunASTRacket} \\ \hline
  13625. \LlambdaASTRacket \\
  13626. \begin{array}{lcl}
  13627. \LangLamM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  13628. \end{array}
  13629. \end{array}
  13630. \]
  13631. \fi}
  13632. {\if\edition\pythonEd
  13633. \[
  13634. \begin{array}{l}
  13635. \gray{\LintASTPython{}} \\ \hline
  13636. \gray{\LvarASTPython{}} \\ \hline
  13637. \gray{\LifASTPython{}} \\ \hline
  13638. \gray{\LwhileASTPython} \\ \hline
  13639. \gray{\LtupASTPython} \\ \hline
  13640. \gray{\LfunASTPython} \\ \hline
  13641. \LlambdaASTPython \\
  13642. \begin{array}{rcl}
  13643. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  13644. \end{array}
  13645. \end{array}
  13646. \]
  13647. \fi}
  13648. \end{minipage}
  13649. }
  13650. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  13651. \label{fig:Rlam-syntax}
  13652. \end{figure}
  13653. \index{subject}{interpreter}
  13654. \label{sec:interp-Rlambda}
  13655. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  13656. \LangLam{}. The case for \key{Lambda} saves the current environment
  13657. inside the returned function value. Recall that during function
  13658. application, the environment stored in the function value, extended
  13659. with the mapping of parameters to argument values, is used to
  13660. interpret the body of the function.
  13661. \begin{figure}[tbp]
  13662. {\if\edition\racketEd
  13663. \begin{lstlisting}
  13664. (define interp-Rlambda_class
  13665. (class interp-Rfun_class
  13666. (super-new)
  13667. (define/override (interp-op op)
  13668. (match op
  13669. ['procedure-arity
  13670. (lambda (v)
  13671. (match v
  13672. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  13673. [else (error 'interp-op "expected a function, not ~a" v)]))]
  13674. [else (super interp-op op)]))
  13675. (define/override ((interp-exp env) e)
  13676. (define recur (interp-exp env))
  13677. (match e
  13678. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  13679. `(function ,xs ,body ,env)]
  13680. [else ((super interp-exp env) e)]))
  13681. ))
  13682. (define (interp-Rlambda p)
  13683. (send (new interp-Rlambda_class) interp-program p))
  13684. \end{lstlisting}
  13685. \fi}
  13686. {\if\edition\pythonEd
  13687. \begin{lstlisting}
  13688. class InterpLlambda(InterpLfun):
  13689. def interp_exp(self, e, env):
  13690. match e:
  13691. case Lambda(params, body):
  13692. return Function('lambda', params, [Return(body)], env)
  13693. case _:
  13694. return super().interp_exp(e, env)
  13695. def interp_stmts(self, ss, env):
  13696. if len(ss) == 0:
  13697. return
  13698. match ss[0]:
  13699. case AnnAssign(lhs, typ, value, simple):
  13700. env[lhs.id] = self.interp_exp(value, env)
  13701. return self.interp_stmts(ss[1:], env)
  13702. case _:
  13703. return super().interp_stmts(ss, env)
  13704. \end{lstlisting}
  13705. \fi}
  13706. \caption{Interpreter for \LangLam{}.}
  13707. \label{fig:interp-Rlambda}
  13708. \end{figure}
  13709. \label{sec:type-check-r5}
  13710. \index{subject}{type checking}
  13711. {\if\edition\racketEd
  13712. %
  13713. Figure~\ref{fig:type-check-Llambda} shows how to type check the new
  13714. \key{lambda} form. The body of the \key{lambda} is checked in an
  13715. environment that includes the current environment (because it is
  13716. lexically scoped) and also includes the \key{lambda}'s parameters. We
  13717. require the body's type to match the declared return type.
  13718. %
  13719. \fi}
  13720. {\if\edition\pythonEd
  13721. %
  13722. Figures~\ref{fig:type-check-Llambda} and
  13723. \ref{fig:type-check-Llambda-part2} define the type checker for
  13724. \LangLam{}, which is more complex than one might expect. The reason
  13725. for the added complexity is that the syntax of \key{lambda} does not
  13726. include type annotations for the parameters or return type. Instead
  13727. they must be inferred. There are many approaches of type inference to
  13728. choose from of varying degrees of complexity. We choose one of the
  13729. simpler approaches, bidirectional type inference~\citep{Dunfield:2021}
  13730. (aka. local type inference~\citep{Pierce:2000}), because the focus of
  13731. this book is compilation, not type inference.
  13732. The main idea of bidirectional type inference is to add an auxilliary
  13733. function, here named \code{check\_exp}, that takes an expected type
  13734. and checks whether the given expression is of that type. Thus, in
  13735. \code{check\_exp}, type information flows in a top-down manner with
  13736. respect to the AST, in contrast to the regular \code{type\_check\_exp}
  13737. function, where type information flows in a primarily bottom-up
  13738. manner.
  13739. %
  13740. The idea then is to use \code{check\_exp} in all the places where we
  13741. already know what the type of an expression should be, such as in the
  13742. \code{return} statement of a top-level function definition, or on the
  13743. right-hand side of an annotated assignment statement.
  13744. Getting back to \code{lambda}, it is straightforward to check a
  13745. \code{lambda} inside \code{check\_exp} because the expected type
  13746. provides the parameter types and the return type. On the other hand,
  13747. inside \code{type\_check\_exp} we disallow \code{lambda}, which means
  13748. that we do not allow \code{lambda} in contexts where we don't already
  13749. know its type. This restriction does not incur a loss of
  13750. expressiveness for \LangLam{} because it is straightforward to modify
  13751. a program to sidestep the restriction, for example, by using an
  13752. annotated assignment statement to assign the \code{lambda} to a
  13753. temporary variable.
  13754. Note that for the \code{Name} and \code{Lambda} AST nodes, the type
  13755. checker records their type in a \code{has\_type} field. This type
  13756. information is used later in this chapter.
  13757. %
  13758. \fi}
  13759. \begin{figure}[tbp]
  13760. {\if\edition\racketEd
  13761. \begin{lstlisting}
  13762. (define (type-check-Rlambda env)
  13763. (lambda (e)
  13764. (match e
  13765. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  13766. (define-values (new-body bodyT)
  13767. ((type-check-exp (append (map cons xs Ts) env)) body))
  13768. (define ty `(,@Ts -> ,rT))
  13769. (cond
  13770. [(equal? rT bodyT)
  13771. (values (HasType (Lambda params rT new-body) ty) ty)]
  13772. [else
  13773. (error "mismatch in return type" bodyT rT)])]
  13774. ...
  13775. )))
  13776. \end{lstlisting}
  13777. \fi}
  13778. {\if\edition\pythonEd
  13779. \begin{lstlisting}
  13780. class TypeCheckLlambda(TypeCheckLfun):
  13781. def type_check_exp(self, e, env):
  13782. match e:
  13783. case Name(id):
  13784. e.has_type = env[id]
  13785. return env[id]
  13786. case Lambda(params, body):
  13787. raise Exception('cannot synthesize a type for a lambda')
  13788. case _:
  13789. return super().type_check_exp(e, env)
  13790. def check_exp(self, e, ty, env):
  13791. match e:
  13792. case Lambda(params, body):
  13793. e.has_type = ty
  13794. match ty:
  13795. case FunctionType(params_t, return_t):
  13796. new_env = {x:t for (x,t) in env.items()}
  13797. for (p,t) in zip(params, params_t):
  13798. new_env[p] = t
  13799. self.check_exp(body, return_t, new_env)
  13800. case _:
  13801. raise Exception('lambda does not have type ' + str(ty))
  13802. case Call(func, args):
  13803. func_t = self.type_check_exp(func, env)
  13804. match func_t:
  13805. case FunctionType(params_t, return_t):
  13806. for (arg, param_t) in zip(args, params_t):
  13807. self.check_exp(arg, param_t, env)
  13808. self.check_type_equal(return_t, ty, e)
  13809. case _:
  13810. raise Exception('type_check_exp: in call, unexpected ' + \
  13811. repr(func_t))
  13812. case _:
  13813. t = self.type_check_exp(e, env)
  13814. self.check_type_equal(t, ty, e)
  13815. \end{lstlisting}
  13816. \fi}
  13817. \caption{Type checking \LangLam{}\python{, part 1}.}
  13818. \label{fig:type-check-Llambda}
  13819. \end{figure}
  13820. {\if\edition\pythonEd
  13821. \begin{figure}[tbp]
  13822. \begin{lstlisting}
  13823. def check_stmts(self, ss, return_ty, env):
  13824. if len(ss) == 0:
  13825. return
  13826. match ss[0]:
  13827. case FunctionDef(name, params, body, dl, returns, comment):
  13828. new_env = {x: t for (x,t) in env.items()}
  13829. for (x,t) in params:
  13830. new_env[x] = t
  13831. rt = self.check_stmts(body, returns, new_env)
  13832. self.check_stmts(ss[1:], return_ty, env)
  13833. case Return(value):
  13834. self.check_exp(value, return_ty, env)
  13835. case Assign([Name(id)], value):
  13836. if id in env:
  13837. self.check_exp(value, env[id], env)
  13838. else:
  13839. env[id] = self.type_check_exp(value, env)
  13840. self.check_stmts(ss[1:], return_ty, env)
  13841. case Assign([Subscript(tup, Constant(index), Store())], value):
  13842. tup_t = self.type_check_exp(tup, env)
  13843. match tup_t:
  13844. case TupleType(ts):
  13845. self.check_exp(value, ts[index], env)
  13846. case _:
  13847. raise Exception('expected a tuple, not ' + repr(tup_t))
  13848. self.check_stmts(ss[1:], return_ty, env)
  13849. case AnnAssign(Name(id), ty, value, simple):
  13850. ss[0].annotation = ty_annot
  13851. if id in env:
  13852. self.check_type_equal(env[id], ty)
  13853. else:
  13854. env[id] = ty_annot
  13855. self.check_exp(value, ty_annot, env)
  13856. case _:
  13857. self.type_check_stmts(ss, env)
  13858. def type_check(self, p):
  13859. match p:
  13860. case Module(body):
  13861. env = {}
  13862. for s in body:
  13863. match s:
  13864. case FunctionDef(name, params, bod, dl, returns, comment):
  13865. params_t = [t for (x,t) in params]
  13866. env[name] = FunctionType(params_t, returns)
  13867. self.check_stmts(body, int, env)
  13868. \end{lstlisting}
  13869. \caption{Type checking the \key{lambda}'s in \LangLam{}, part 2.}
  13870. \label{fig:type-check-Llambda-part2}
  13871. \end{figure}
  13872. \fi}
  13873. \clearpage
  13874. \section{Assignment and Lexically Scoped Functions}
  13875. \label{sec:assignment-scoping}
  13876. The combination of lexically-scoped functions and assignment to
  13877. variables raises a challenge with our approach to implementing
  13878. lexically-scoped functions. Consider the following example in which
  13879. function \code{f} has a free variable \code{x} that is changed after
  13880. \code{f} is created but before the call to \code{f}.
  13881. % loop_test_11.rkt
  13882. {\if\edition\racketEd
  13883. \begin{lstlisting}
  13884. (let ([x 0])
  13885. (let ([y 0])
  13886. (let ([z 20])
  13887. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  13888. (begin
  13889. (set! x 10)
  13890. (set! y 12)
  13891. (f y))))))
  13892. \end{lstlisting}
  13893. \fi}
  13894. {\if\edition\pythonEd
  13895. % box_free_assign.py
  13896. \begin{lstlisting}
  13897. def g(z : int) -> int:
  13898. x = 0
  13899. y = 0
  13900. f : Callable[[int],int] = lambda a: a + x + z
  13901. x = 10
  13902. y = 12
  13903. return f(y)
  13904. print( g(20) )
  13905. \end{lstlisting}
  13906. \fi}
  13907. The correct output for this example is \code{42} because the call to
  13908. \code{f} is required to use the current value of \code{x} (which is
  13909. \code{10}). Unfortunately, the closure conversion pass
  13910. (Section~\ref{sec:closure-conversion}) generates code for the
  13911. \code{lambda} that copies the old value of \code{x} into a
  13912. closure. Thus, if we naively add support for assignment to our current
  13913. compiler, the output of this program would be \code{32}.
  13914. A first attempt at solving this problem would be to save a pointer to
  13915. \code{x} in the closure and change the occurrences of \code{x} inside
  13916. the lambda to dereference the pointer. Of course, this would require
  13917. assigning \code{x} to the stack and not to a register. However, the
  13918. problem goes a bit deeper.
  13919. %% Consider the following example in which we
  13920. %% create a counter abstraction by creating a pair of functions that
  13921. %% share the free variable \code{x}.
  13922. Consider the following example that returns a function that refers to
  13923. a local variable of the enclosing function.
  13924. \begin{center}
  13925. \begin{minipage}{\textwidth}
  13926. {\if\edition\racketEd
  13927. % similar to loop_test_10.rkt
  13928. %% \begin{lstlisting}
  13929. %% (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  13930. %% (vector
  13931. %% (lambda: () : Integer x)
  13932. %% (lambda: () : Void (set! x (+ 1 x)))))
  13933. %% (let ([counter (f 0)])
  13934. %% (let ([get (vector-ref counter 0)])
  13935. %% (let ([inc (vector-ref counter 1)])
  13936. %% (begin
  13937. %% (inc)
  13938. %% (get)))))
  13939. %% \end{lstlisting}
  13940. \begin{lstlisting}
  13941. (define (f []) : Integer
  13942. (let ([x 0])
  13943. (let ([g (lambda: () : Integer x)])
  13944. (begin
  13945. (set! x 42)
  13946. g))))
  13947. ((f))
  13948. \end{lstlisting}
  13949. \fi}
  13950. {\if\edition\pythonEd
  13951. % counter.py
  13952. \begin{lstlisting}
  13953. def f():
  13954. x = 0
  13955. g = lambda: x
  13956. x = 42
  13957. return g
  13958. print( f()() )
  13959. \end{lstlisting}
  13960. \fi}
  13961. \end{minipage}
  13962. \end{center}
  13963. In this example, the lifetime of \code{x} extends beyond the lifetime
  13964. of the call to \code{f}. Thus, if we were to store \code{x} on the
  13965. stack frame for the call to \code{f}, it would be gone by the time we
  13966. call \code{g}, leaving us with dangling pointers for
  13967. \code{x}. This example demonstrates that when a variable occurs free
  13968. inside a function, its lifetime becomes indefinite. Thus, the value of
  13969. the variable needs to live on the heap. The verb
  13970. \emph{box}\index{subject}{box} is often used for allocating a single
  13971. value on the heap, producing a pointer, and
  13972. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  13973. %% {\if\edition\racketEd
  13974. %% We recommend solving these problems by boxing the local variables that
  13975. %% are in the intersection of 1) variables that appear on the
  13976. %% left-hand-side of a \code{set!} and 2) variables that occur free
  13977. %% inside a \code{lambda}.
  13978. %% \fi}
  13979. %% {\if\edition\pythonEd
  13980. %% We recommend solving these problems by boxing the local variables that
  13981. %% are in the intersection of 1) variables whose values may change and 2)
  13982. %% variables that occur free inside a \code{lambda}.
  13983. %% \fi}
  13984. We shall introduce a new pass named
  13985. \code{convert\_assignments} in Section~\ref{sec:convert-assignments}
  13986. to address this challenge.
  13987. %
  13988. \racket{But before diving into the compiler passes, we have one more
  13989. problem to discuss.}
  13990. \if\edition\pythonEd
  13991. \section{Uniquify Variables}
  13992. \label{sec:uniquify-lambda}
  13993. With the addition of \code{lambda} we have a complication to deal
  13994. with: name shadowing. Consider the following program with a function
  13995. \code{f} that has a parameter \code{x}. Inside \code{f} there are two
  13996. \code{lambda} expressions. The first \code{lambda} has a parameter
  13997. that is also named \code{x}.
  13998. \begin{lstlisting}
  13999. def f(x:int, y:int) -> Callable[[int], int]:
  14000. g : Callable[[int],int] = (lambda x: x + y)
  14001. h : Callable[[int],int] = (lambda y: x + y)
  14002. x = input_int()
  14003. return g
  14004. print(f(0, 10)(32))
  14005. \end{lstlisting}
  14006. Many of our compiler passes rely on being able to connect variable
  14007. uses with their definitions using just the name of the variable,
  14008. including new passes in this chapter. However, in the above example
  14009. the name of the variable does not uniquely determine its
  14010. definition. To solve this problem we recommend implementing a pass
  14011. named \code{uniquify} that renames every variable in the program to
  14012. make sure they are all unique.
  14013. The following shows the result of \code{uniquify} for the above
  14014. example. The \code{x} parameter of \code{f} is renamed to \code{x\_0}
  14015. and the \code{x} parameter of the \code{lambda} is renamed to
  14016. \code{x\_4}.
  14017. \begin{lstlisting}
  14018. def f(x_0:int, y_1:int) -> Callable[[int], int] :
  14019. g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
  14020. h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
  14021. x_0 = input_int()
  14022. return g_2
  14023. def main() -> int :
  14024. print(f(0, 10)(32))
  14025. return 0
  14026. \end{lstlisting}
  14027. \fi
  14028. \if\edition\racketEd
  14029. \section{Reveal Functions and the $F_2$ language}
  14030. \label{sec:reveal-functions-r5}
  14031. To support the \code{procedure-arity} operator we need to communicate
  14032. the arity of a function to the point of closure creation. We can
  14033. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  14034. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  14035. output of this pass is the language $F_2$, whose syntax is defined in
  14036. Figure~\ref{fig:f2-syntax}.
  14037. \begin{figure}[tp]
  14038. \centering
  14039. \fbox{
  14040. \begin{minipage}{0.96\textwidth}
  14041. \[
  14042. \begin{array}{lcl}
  14043. \Exp &::=& \ldots \MID \FUNREFARITY{\Var}{\Int}\\
  14044. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14045. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  14046. \end{array}
  14047. \]
  14048. \end{minipage}
  14049. }
  14050. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  14051. (Figure~\ref{fig:Rlam-syntax}).}
  14052. \label{fig:f2-syntax}
  14053. \end{figure}
  14054. \fi
  14055. \section{Assignment Conversion}
  14056. \label{sec:convert-assignments}
  14057. The purpose of the \code{convert\_assignments} pass is address the
  14058. challenge posed in Section~\ref{sec:assignment-scoping} regarding the
  14059. interaction between variable assignments and closure conversion.
  14060. First we identify which variables need to be boxed, then we transform
  14061. the program to box those variables. In general, boxing introduces
  14062. runtime overhead that we would like to avoid, so we should box as few
  14063. variables as possible. We recommend boxing the variables in the
  14064. intersection of the following two sets of variables:
  14065. \begin{enumerate}
  14066. \item The variables that are free in a \code{lambda}.
  14067. \item The variables that appear on the left-hand side of an
  14068. assignment.
  14069. \end{enumerate}
  14070. Consider again the first example from
  14071. Section~\ref{sec:assignment-scoping}:
  14072. %
  14073. {\if\edition\racketEd
  14074. \begin{lstlisting}
  14075. (let ([x 0])
  14076. (let ([y 0])
  14077. (let ([z 20])
  14078. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  14079. (begin
  14080. (set! x 10)
  14081. (set! y 12)
  14082. (f y))))))
  14083. \end{lstlisting}
  14084. \fi}
  14085. {\if\edition\pythonEd
  14086. \begin{lstlisting}
  14087. def g(z : int) -> int:
  14088. x = 0
  14089. y = 0
  14090. f : Callable[[int],int] = lambda a: a + x + z
  14091. x = 10
  14092. y = 12
  14093. return f(y)
  14094. print( g(20) )
  14095. \end{lstlisting}
  14096. \fi}
  14097. %
  14098. \noindent The variables \code{x} and \code{y} are assigned-to. The
  14099. variables \code{x} and \code{z} occur free inside the
  14100. \code{lambda}. Thus, variable \code{x} needs to be boxed but not
  14101. \code{y} or \code{z}. The boxing of \code{x} consists of three
  14102. transformations: initialize \code{x} with a tuple, replace reads from
  14103. \code{x} with tuple reads, and replace each assignment to \code{x}
  14104. with a tuple writes. The output of \code{convert\_assignments} for
  14105. this example is as follows.
  14106. %
  14107. {\if\edition\racketEd
  14108. \begin{lstlisting}
  14109. (define (main) : Integer
  14110. (let ([x0 (vector 0)])
  14111. (let ([y1 0])
  14112. (let ([z2 20])
  14113. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  14114. (+ a3 (+ (vector-ref x0 0) z2)))])
  14115. (begin
  14116. (vector-set! x0 0 10)
  14117. (set! y1 12)
  14118. (f4 y1)))))))
  14119. \end{lstlisting}
  14120. \fi}
  14121. %
  14122. {\if\edition\pythonEd
  14123. \begin{lstlisting}
  14124. def g(z : int)-> int:
  14125. x = (0,)
  14126. x[0] = 0
  14127. y = 0
  14128. f : Callable[[int], int] = (lambda a: a + x[0] + z)
  14129. x[0] = 10
  14130. y = 12
  14131. return f(y)
  14132. def main() -> int:
  14133. print(g(20))
  14134. return 0
  14135. \end{lstlisting}
  14136. \fi}
  14137. To compute the free variables of all the \code{lambda} expressions, we
  14138. recommend defining two auxiliary functions:
  14139. \begin{enumerate}
  14140. \item \code{free\_variables} computes the free variables of an expression, and
  14141. \item \code{free\_in\_lambda} collects all of the variables that are
  14142. free in any of the \code{lambda} expressions, using
  14143. \code{free\_variables} in the case for each \code{lambda}.
  14144. \end{enumerate}
  14145. {\if\edition\racketEd
  14146. %
  14147. To compute the variables that are assigned-to, we recommend using the
  14148. \code{collect-set!} function that we introduced in
  14149. Section~\ref{sec:uncover-get-bang}, but updated to include the new AST
  14150. forms such as \code{Lambda}.
  14151. %
  14152. \fi}
  14153. {\if\edition\pythonEd
  14154. %
  14155. To compute the variables that are assigned-to, we recommend defining
  14156. an auxiliary function named \code{assigned\_vars\_stmt} that returns
  14157. the set of variables that occur in the left-hand side of an assignment
  14158. statement, and otherwise returns the empty set.
  14159. %
  14160. \fi}
  14161. Let $\mathit{AF}$ be the intersection of the set of variables that are
  14162. free in a \code{lambda} and that are assigned-to in the enclosing
  14163. function definition.
  14164. Next we discuss the \code{convert\_assignments} pass. In the case for
  14165. $\VAR{x}$, if $x$ is in $\mathit{AF}$, then unbox it by translating
  14166. $\VAR{x}$ to a tuple read.
  14167. %
  14168. {\if\edition\racketEd
  14169. \begin{lstlisting}
  14170. (Var |$x$|)
  14171. |$\Rightarrow$|
  14172. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  14173. \end{lstlisting}
  14174. \fi}
  14175. %
  14176. {\if\edition\pythonEd
  14177. \begin{lstlisting}
  14178. Name(|$x$|)
  14179. |$\Rightarrow$|
  14180. Subscript(Name(|$x$|), Constant(0), Load())
  14181. \end{lstlisting}
  14182. \fi}
  14183. %
  14184. %
  14185. In the case for assignment, recursively process the right-hand side
  14186. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in $\mathit{AF}$, translate
  14187. the assignment into a tuple-write as follows.
  14188. %
  14189. {\if\edition\racketEd
  14190. \begin{lstlisting}
  14191. (SetBang |$x$| |$\itm{rhs}$|)
  14192. |$\Rightarrow$|
  14193. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  14194. \end{lstlisting}
  14195. \fi}
  14196. {\if\edition\pythonEd
  14197. \begin{lstlisting}
  14198. Assign([Name(|$x$|)],|$\itm{rhs}$|)
  14199. |$\Rightarrow$|
  14200. Assign([Subscript(Name(|$x$|), Constant(0), Store())], |$\itm{rhs'}$|)
  14201. \end{lstlisting}
  14202. \fi}
  14203. %
  14204. {\if\edition\racketEd
  14205. The case for \code{Lambda} is non-trivial, but it is similar to the
  14206. case for function definitions, which we discuss next.
  14207. \fi}
  14208. To translate a function definition, we first compute $\mathit{AF}$,
  14209. the intersection of the variables that are free in a \code{lambda} and
  14210. that are assigned-to. We then apply assignment conversion to the body
  14211. of the function definition. Finally, we box the parameters of this
  14212. function definition that are in $\mathit{AF}$. For example,
  14213. the parameter \code{x} of the follow function \code{g}
  14214. needs to be boxed.
  14215. {\if\edition\racketEd
  14216. \begin{lstlisting}
  14217. (define (g [x : Integer]) : Integer
  14218. (let ([f (lambda: ([a : Integer]) : Integer (+ a x))])
  14219. (begin
  14220. (set! x 10)
  14221. (f 32))))
  14222. \end{lstlisting}
  14223. \fi}
  14224. %
  14225. {\if\edition\pythonEd
  14226. \begin{lstlisting}
  14227. def g(x : int) -> int:
  14228. f : Callable[[int],int] = lambda a: a + x
  14229. x = 10
  14230. return f(32)
  14231. \end{lstlisting}
  14232. \fi}
  14233. %
  14234. \noindent We box parameter \code{x} by creating a local variable named
  14235. \code{x} that is initialized to a tuple whose contents is the value of
  14236. the parameter, which we has been renamed.
  14237. %
  14238. {\if\edition\racketEd
  14239. \begin{lstlisting}
  14240. (define (g [x_0 : Integer]) : Integer
  14241. (let ([x (vector x_0)])
  14242. (let ([f (lambda: ([a : Integer]) : Integer
  14243. (+ a (vector-ref x 0)))])
  14244. (begin
  14245. (vector-set! x 0 10)
  14246. (f 32)))))
  14247. \end{lstlisting}
  14248. \fi}
  14249. %
  14250. {\if\edition\pythonEd
  14251. \begin{lstlisting}
  14252. def g(x_0 : int)-> int:
  14253. x = (x_0,)
  14254. f : Callable[[int], int] = (lambda a: a + x[0])
  14255. x[0] = 10
  14256. return f(32)
  14257. \end{lstlisting}
  14258. \fi}
  14259. %% Recall the second example in Section~\ref{sec:assignment-scoping}
  14260. %% involving a counter abstraction. The following is the output of
  14261. %% assignment version for function \code{f}.
  14262. %% \begin{lstlisting}
  14263. %% (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  14264. %% (vector
  14265. %% (lambda: () : Integer x1)
  14266. %% (lambda: () : Void (set! x1 (+ 1 x1)))))
  14267. %% |$\Rightarrow$|
  14268. %% (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  14269. %% (let ([x1 (vector param_x1)])
  14270. %% (vector (lambda: () : Integer (vector-ref x1 0))
  14271. %% (lambda: () : Void
  14272. %% (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  14273. %% \end{lstlisting}
  14274. \section{Closure Conversion}
  14275. \label{sec:closure-conversion}
  14276. \index{subject}{closure conversion}
  14277. The compiling of lexically-scoped functions into top-level function
  14278. definitions is accomplished in the pass \code{convert\_to\_closures}
  14279. that comes after \code{reveal\_functions} and before
  14280. \code{limit\_functions}.
  14281. As usual, we implement the pass as a recursive function over the
  14282. AST. The interesting cases are the ones for \key{lambda} and function
  14283. application. We transform a \key{lambda} expression into an expression
  14284. that creates a closure, that is, a tuple whose first element is a
  14285. function pointer and the rest of the elements are the values of the
  14286. free variables of the \key{lambda}.
  14287. %
  14288. \racket{However, we use the \code{Closure}
  14289. AST node instead of using a tuple so that we can record the arity
  14290. which is needed for \code{procedure-arity} and
  14291. to distinguish closures from tuples in
  14292. Section~\ref{sec:optimize-closures}.}
  14293. %
  14294. In the generated code below, \itm{fvs} is the free variables of the
  14295. lambda and \itm{name} is a unique symbol generated to identify the lambda.
  14296. %
  14297. \racket{The \itm{arity} is the number of parameters (the length of
  14298. \itm{ps}).}
  14299. %
  14300. {\if\edition\racketEd
  14301. \begin{lstlisting}
  14302. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  14303. |$\Rightarrow$|
  14304. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  14305. \end{lstlisting}
  14306. \fi}
  14307. %
  14308. {\if\edition\pythonEd
  14309. \begin{lstlisting}
  14310. Lambda(|\itm{ps}|, |\itm{body}|)
  14311. |$\Rightarrow$|
  14312. Tuple([FunRef(|\itm{name}|), |\itm{fvs}, \ldots|])
  14313. \end{lstlisting}
  14314. \fi}
  14315. %
  14316. In addition to transforming each \key{Lambda} AST node into a
  14317. tuple, we create a top-level function definition for each
  14318. \key{Lambda}, as shown below.\\
  14319. \begin{minipage}{0.8\textwidth}
  14320. {\if\edition\racketEd
  14321. \begin{lstlisting}
  14322. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  14323. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  14324. ...
  14325. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  14326. |\itm{body'}|)...))
  14327. \end{lstlisting}
  14328. \fi}
  14329. {\if\edition\pythonEd
  14330. \begin{lstlisting}
  14331. def |\itm{name}|(clos : |\itm{closTy}|, |\itm{ps'}, \ldots|) -> |\itm{rt'}|:
  14332. |$\itm{fvs}_1$| = clos[1]
  14333. |$\ldots$|
  14334. |$\itm{fvs}_n$| = clos[|$n$|]
  14335. |\itm{body'}|
  14336. \end{lstlisting}
  14337. \fi}
  14338. \end{minipage}\\
  14339. The \code{clos} parameter refers to the closure. Translate the type
  14340. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  14341. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The type
  14342. \itm{closTy} is a tuple type whose first element type is
  14343. \python{\code{Bottom()}}\racket{\code{\_} (the dummy type)} and the rest of
  14344. the element types are the types of the free variables in the
  14345. lambda. We use \python{\code{Bottom()}}\racket{\code{\_}} because it
  14346. is non-trivial to give a type to the function in the closure's type.%
  14347. %
  14348. \footnote{To give an accurate type to a closure, we would need to add
  14349. existential types to the type checker~\citep{Minamide:1996ys}.}
  14350. %
  14351. %% The dummy type is considered to be equal to any other type during type
  14352. %% checking.
  14353. The free variables become local variables that are initialized with
  14354. their values in the closure.
  14355. Closure conversion turns every function into a tuple, so the type
  14356. annotations in the program must also be translated. We recommend
  14357. defining an auxiliary recursive function for this purpose. Function
  14358. types should be translated as follows.
  14359. %
  14360. {\if\edition\racketEd
  14361. \begin{lstlisting}
  14362. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  14363. |$\Rightarrow$|
  14364. (Vector ((Vector) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  14365. \end{lstlisting}
  14366. \fi}
  14367. {\if\edition\pythonEd
  14368. \begin{lstlisting}
  14369. FunctionType([|$T_1, \ldots, T_n$|], |$T_r$|)
  14370. |$\Rightarrow$|
  14371. TupleType([FunctionType([TupleType([]), |$T'_1, \ldots, T'_n$|], |$T'_r$|)])
  14372. \end{lstlisting}
  14373. \fi}
  14374. %
  14375. The above type says that the first thing in the tuple is a
  14376. function. The first parameter of the function is a tuple (a closure)
  14377. and the rest of the parameters are the ones from the original
  14378. function, with types $T'_1, \ldots, T'_n$. The type for the closure
  14379. omits the types of the free variables because 1) those types are not
  14380. available in this context and 2) we do not need them in the code that
  14381. is generated for function application.
  14382. We transform function application into code that retrieves the
  14383. function from the closure and then calls the function, passing in the
  14384. closure as the first argument. We place $e'$ in a temporary variable
  14385. to avoid code duplication.
  14386. \begin{center}
  14387. \begin{minipage}{\textwidth}
  14388. {\if\edition\racketEd
  14389. \begin{lstlisting}
  14390. (Apply |$e$| |$\itm{es}$|)
  14391. |$\Rightarrow$|
  14392. (Let |$\itm{tmp}$| |$e'$|
  14393. (Apply (Prim 'vector-ref (list (Var |$\itm{tmp}$|) (Int 0))) (cons |$\itm{tmp}$| |$\itm{es'}$|)))
  14394. \end{lstlisting}
  14395. \fi}
  14396. %
  14397. {\if\edition\pythonEd
  14398. \begin{lstlisting}
  14399. Call(|$e$|, [|$e_1, \ldots, e_n$|])
  14400. |$\Rightarrow$|
  14401. Let(|$\itm{tmp}$|, |$e'$|,
  14402. Call(Subscript(Name(|$\itm{tmp}$|), Constant(0)),
  14403. [|$\itm{tmp}$|, |$e'_1, \ldots, e'_n$|]))
  14404. \end{lstlisting}
  14405. \fi}
  14406. \end{minipage}
  14407. \end{center}
  14408. There is also the question of what to do with references to top-level
  14409. function definitions. To maintain a uniform translation of function
  14410. application, we turn function references into closures.
  14411. \begin{tabular}{lll}
  14412. \begin{minipage}{0.3\textwidth}
  14413. {\if\edition\racketEd
  14414. \begin{lstlisting}
  14415. (FunRefArity |$f$| |$n$|)
  14416. \end{lstlisting}
  14417. \fi}
  14418. {\if\edition\pythonEd
  14419. \begin{lstlisting}
  14420. FunRefArity(|$f$|, |$n$|)
  14421. \end{lstlisting}
  14422. \fi}
  14423. \end{minipage}
  14424. &
  14425. $\Rightarrow$
  14426. &
  14427. \begin{minipage}{0.5\textwidth}
  14428. {\if\edition\racketEd
  14429. \begin{lstlisting}
  14430. (Closure |$n$| (FunRef |$f$|) '())
  14431. \end{lstlisting}
  14432. \fi}
  14433. {\if\edition\pythonEd
  14434. \begin{lstlisting}
  14435. Tuple([FunRef(|$f$|)])
  14436. \end{lstlisting}
  14437. \fi}
  14438. \end{minipage}
  14439. \end{tabular} \\
  14440. %
  14441. The top-level function definitions need to be updated as well to take
  14442. an extra closure parameter.
  14443. \section{An Example Translation}
  14444. \label{sec:example-lambda}
  14445. Figure~\ref{fig:lexical-functions-example} shows the result of
  14446. \code{reveal\_functions} and \code{convert\_to\_closures} for the example
  14447. program demonstrating lexical scoping that we discussed at the
  14448. beginning of this chapter.
  14449. \begin{figure}[tbp]
  14450. \begin{minipage}{0.8\textwidth}
  14451. {\if\edition\racketEd
  14452. % tests/lambda_test_6.rkt
  14453. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14454. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  14455. (let ([y8 4])
  14456. (lambda: ([z9 : Integer]) : Integer
  14457. (+ x7 (+ y8 z9)))))
  14458. (define (main) : Integer
  14459. (let ([g0 ((fun-ref-arity f6 1) 5)])
  14460. (let ([h1 ((fun-ref-arity f6 1) 3)])
  14461. (+ (g0 11) (h1 15)))))
  14462. \end{lstlisting}
  14463. $\Rightarrow$
  14464. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14465. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  14466. (let ([y8 4])
  14467. (closure 1 (list (fun-ref lambda2) x7 y8))))
  14468. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  14469. (let ([x7 (vector-ref fvs3 1)])
  14470. (let ([y8 (vector-ref fvs3 2)])
  14471. (+ x7 (+ y8 z9)))))
  14472. (define (main) : Integer
  14473. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  14474. ((vector-ref clos5 0) clos5 5))])
  14475. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  14476. ((vector-ref clos6 0) clos6 3))])
  14477. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  14478. \end{lstlisting}
  14479. \fi}
  14480. %
  14481. {\if\edition\pythonEd
  14482. % free_var.py
  14483. \begin{lstlisting}
  14484. def f(x : int) -> Callable[[int], int]:
  14485. y = 4
  14486. return lambda z: x + y + z
  14487. g = f(5)
  14488. h = f(3)
  14489. print( g(11) + h(15) )
  14490. \end{lstlisting}
  14491. $\Rightarrow$
  14492. \begin{lstlisting}
  14493. def lambda_0(fvs_1:tuple[bot,int,tuple[int]],z:int) -> int:
  14494. x = fvs_1[1]
  14495. y = fvs_1[2]
  14496. return x + y[0] + z
  14497. def f(fvs_2:bot, x:int) -> tuple[Callable[[tuple[],int], int]]
  14498. y = (777,)
  14499. y[0] = 4
  14500. return (lambda_0, y, x)
  14501. def main() -> int:
  14502. g = (let clos_3 = (f,) in clos_3[0](clos_3, 5))
  14503. h = (let clos_4 = (f,) in clos_4[0](clos_4, 3))
  14504. print((let clos_5 = g in clos_5[0](clos_5, 11))
  14505. + (let clos_6 = h in clos_6[0](clos_6, 15)))
  14506. return 0
  14507. \end{lstlisting}
  14508. \fi}
  14509. \end{minipage}
  14510. \caption{Example of closure conversion.}
  14511. \label{fig:lexical-functions-example}
  14512. \end{figure}
  14513. \begin{exercise}\normalfont
  14514. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  14515. Create 5 new programs that use \key{lambda} functions and make use of
  14516. lexical scoping. Test your compiler on these new programs and all of
  14517. your previously created test programs.
  14518. \end{exercise}
  14519. \if\edition\racketEd
  14520. \section{Expose Allocation}
  14521. \label{sec:expose-allocation-r5}
  14522. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  14523. that allocates and initializes a vector, similar to the translation of
  14524. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  14525. The only difference is replacing the use of
  14526. \ALLOC{\itm{len}}{\itm{type}} with
  14527. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  14528. \section{Explicate Control and \LangCLam{}}
  14529. \label{sec:explicate-r5}
  14530. The output language of \code{explicate\_control} is \LangCLam{} whose
  14531. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  14532. difference with respect to \LangCFun{} is the addition of the
  14533. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  14534. of \code{AllocateClosure} in the \code{explicate\_control} pass is
  14535. similar to the handling of other expressions such as primitive
  14536. operators.
  14537. \begin{figure}[tp]
  14538. \fbox{
  14539. \begin{minipage}{0.96\textwidth}
  14540. \small
  14541. {\if\edition\racketEd
  14542. \[
  14543. \begin{array}{lcl}
  14544. \Exp &::= & \ldots
  14545. \MID \ALLOCCLOS{\Int}{\Type}{\Int} \\
  14546. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  14547. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  14548. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  14549. \MID \GOTO{\itm{label}} } \\
  14550. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  14551. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  14552. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  14553. \LangCLamM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  14554. \end{array}
  14555. \]
  14556. \fi}
  14557. \end{minipage}
  14558. }
  14559. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  14560. \label{fig:c4-syntax}
  14561. \end{figure}
  14562. \section{Select Instructions}
  14563. \label{sec:select-instructions-Rlambda}
  14564. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  14565. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  14566. (Section~\ref{sec:select-instructions-gc}). The only difference is
  14567. that you should place the \itm{arity} in the tag that is stored at
  14568. position $0$ of the vector. Recall that in
  14569. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  14570. was not used. We store the arity in the $5$ bits starting at position
  14571. $58$.
  14572. Compile the \code{procedure-arity} operator into a sequence of
  14573. instructions that access the tag from position $0$ of the vector and
  14574. extract the $5$-bits starting at position $58$ from the tag.
  14575. \fi
  14576. \begin{figure}[p]
  14577. \begin{tikzpicture}[baseline=(current bounding box.center)]
  14578. \node (Rfun) at (0,2) {\large \LangLam{}};
  14579. \node (Rfun-2) at (3,2) {\large \LangLam{}};
  14580. \node (Rfun-3) at (6,2) {\large \LangLam{}};
  14581. \node (F1-0) at (9,2) {\large \LangLamFunRef{}};
  14582. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  14583. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  14584. \node (F1-3) at (6,0) {\large \LangFunRef{}};
  14585. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  14586. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  14587. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  14588. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  14589. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  14590. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  14591. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  14592. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  14593. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  14594. \path[->,bend left=15] (Rfun) edge [above] node
  14595. {\ttfamily\footnotesize shrink} (Rfun-2);
  14596. \path[->,bend left=15] (Rfun-2) edge [above] node
  14597. {\ttfamily\footnotesize uniquify} (Rfun-3);
  14598. \path[->,bend left=15] (Rfun-3) edge [above] node
  14599. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  14600. \path[->,bend left=15] (F1-0) edge [right] node
  14601. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  14602. \path[->,bend left=15] (F1-1) edge [below] node
  14603. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  14604. \path[->,bend right=15] (F1-2) edge [above] node
  14605. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  14606. \path[->,bend right=15] (F1-3) edge [above] node
  14607. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  14608. \path[->,bend right=15] (F1-4) edge [above] node
  14609. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  14610. \path[->,bend right=15] (F1-5) edge [right] node
  14611. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14612. \path[->,bend left=15] (C3-2) edge [left] node
  14613. {\ttfamily\footnotesize select\_instr.} (x86-2);
  14614. \path[->,bend right=15] (x86-2) edge [left] node
  14615. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  14616. \path[->,bend right=15] (x86-2-1) edge [below] node
  14617. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  14618. \path[->,bend right=15] (x86-2-2) edge [left] node
  14619. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  14620. \path[->,bend left=15] (x86-3) edge [above] node
  14621. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  14622. \path[->,bend left=15] (x86-4) edge [right] node
  14623. {\ttfamily\footnotesize print\_x86} (x86-5);
  14624. \end{tikzpicture}
  14625. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  14626. functions.}
  14627. \label{fig:Rlambda-passes}
  14628. \end{figure}
  14629. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  14630. for the compilation of \LangLam{}.
  14631. \clearpage
  14632. \section{Challenge: Optimize Closures}
  14633. \label{sec:optimize-closures}
  14634. In this chapter we compiled lexically-scoped functions into a
  14635. relatively efficient representation: flat closures. However, even this
  14636. representation comes with some overhead. For example, consider the
  14637. following program with a function \code{tail\_sum} that does not have
  14638. any free variables and where all the uses of \code{tail\_sum} are in
  14639. applications where we know that only \code{tail\_sum} is being applied
  14640. (and not any other functions).
  14641. \begin{center}
  14642. \begin{minipage}{0.95\textwidth}
  14643. {\if\edition\racketEd
  14644. \begin{lstlisting}
  14645. (define (tail_sum [n : Integer] [s : Integer]) : Integer
  14646. (if (eq? n 0)
  14647. s
  14648. (tail_sum (- n 1) (+ n s))))
  14649. (+ (tail_sum 3 0) 36)
  14650. \end{lstlisting}
  14651. \fi}
  14652. {\if\edition\pythonEd
  14653. \begin{lstlisting}
  14654. def tail_sum(n : int, s : int) -> int:
  14655. if n == 0:
  14656. return s
  14657. else:
  14658. return tail_sum(n - 1, n + s)
  14659. print( tail_sum(3, 0) + 36)
  14660. \end{lstlisting}
  14661. \fi}
  14662. \end{minipage}
  14663. \end{center}
  14664. As described in this chapter, we uniformly apply closure conversion to
  14665. all functions, obtaining the following output for this program.
  14666. \begin{center}
  14667. \begin{minipage}{0.95\textwidth}
  14668. {\if\edition\racketEd
  14669. \begin{lstlisting}
  14670. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
  14671. (if (eq? n2 0)
  14672. s3
  14673. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  14674. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))
  14675. (define (main) : Integer
  14676. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  14677. ((vector-ref clos6 0) clos6 3 0)) 27))
  14678. \end{lstlisting}
  14679. \fi}
  14680. {\if\edition\pythonEd
  14681. \begin{lstlisting}
  14682. def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
  14683. if n_0 == 0:
  14684. return s_1
  14685. else:
  14686. return (let clos_2 = (tail_sum,)
  14687. in clos_2[0](clos_2, n_0 - 1, n_0 + s_1))
  14688. def main() -> int :
  14689. print((let clos_4 = (tail_sum,)
  14690. in clos_4[0](clos_4, 3, 0)) + 36)
  14691. return 0
  14692. \end{lstlisting}
  14693. \fi}
  14694. \end{minipage}
  14695. \end{center}
  14696. In the previous chapter, there would be no allocation in the program
  14697. and the calls to \code{tail\_sum} would be direct calls. In contrast,
  14698. the above program allocates memory for each closure and the calls to
  14699. \code{tail\_sum} are indirect. These two differences incur
  14700. considerable overhead in a program such as this one, where the
  14701. allocations and indirect calls occur inside a tight loop.
  14702. One might think that this problem is trivial to solve: can't we just
  14703. recognize calls of the form \APPLY{\FUNREF{$f$}}{$\mathit{args}$}
  14704. and compile them to direct calls instead of treating it like a call to
  14705. a closure? We would also drop the new \code{fvs} parameter of
  14706. \code{tail\_sum}.
  14707. %
  14708. However, this problem is not so trivial because a global function may
  14709. ``escape'' and become involved in applications that also involve
  14710. closures. Consider the following example in which the application
  14711. \CAPPLY{\code{f}}{\code{41}} needs to be compiled into a closure
  14712. application, because the \code{lambda} may flow into \code{f}, but the
  14713. \code{inc} function might also flow into \code{f}.
  14714. \begin{center}
  14715. \begin{minipage}{\textwidth}
  14716. % lambda_test_30.rkt
  14717. {\if\edition\racketEd
  14718. \begin{lstlisting}
  14719. (define (inc [x : Integer]) : Integer
  14720. (+ x 1))
  14721. (let ([y (read)])
  14722. (let ([f (if (eq? (read) 0)
  14723. inc
  14724. (lambda: ([x : Integer]) : Integer (- x y)))])
  14725. (f 41)))
  14726. \end{lstlisting}
  14727. \fi}
  14728. {\if\edition\pythonEd
  14729. \begin{lstlisting}
  14730. def add1(x : int) -> int:
  14731. return x + 1
  14732. y = input_int()
  14733. g : Callable[[int], int] = lambda x: x - y
  14734. f = add1 if input_int() == 0 else g
  14735. print( f(41) )
  14736. \end{lstlisting}
  14737. \fi}
  14738. \end{minipage}
  14739. \end{center}
  14740. If a global function name is used in any way other than as the
  14741. operator in a direct call, then we say that the function
  14742. \emph{escapes}. If a global function does not escape, then we do not
  14743. need to perform closure conversion on the function.
  14744. \begin{exercise}\normalfont
  14745. Implement an auxiliary function for detecting which global
  14746. functions escape. Using that function, implement an improved version
  14747. of closure conversion that does not apply closure conversion to
  14748. global functions that do not escape but instead compiles them as
  14749. regular functions. Create several new test cases that check whether
  14750. you properly detect whether global functions escape or not.
  14751. \end{exercise}
  14752. So far we have reduced the overhead of calling global functions, but
  14753. it would also be nice to reduce the overhead of calling a
  14754. \code{lambda} when we can determine at compile time which
  14755. \code{lambda} will be called. We refer to such calls as \emph{known
  14756. calls}. Consider the following example in which a \code{lambda} is
  14757. bound to \code{f} and then applied.
  14758. {\if\edition\racketEd
  14759. % lambda_test_9.rkt
  14760. \begin{lstlisting}
  14761. (let ([y (read)])
  14762. (let ([f (lambda: ([x : Integer]) : Integer
  14763. (+ x y))])
  14764. (f 21)))
  14765. \end{lstlisting}
  14766. \fi}
  14767. {\if\edition\pythonEd
  14768. \begin{lstlisting}
  14769. y = input_int()
  14770. f : Callable[[int],int] = lambda x: x + y
  14771. print( f(21) )
  14772. \end{lstlisting}
  14773. \fi}
  14774. %
  14775. \noindent Closure conversion compiles the application
  14776. \CAPPLY{\code{f}}{\code{21}} into an indirect call:
  14777. %
  14778. {\if\edition\racketEd
  14779. \begin{lstlisting}
  14780. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  14781. (let ([y2 (vector-ref fvs6 1)])
  14782. (+ x3 y2)))
  14783. (define (main) : Integer
  14784. (let ([y2 (read)])
  14785. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  14786. ((vector-ref f4 0) f4 21))))
  14787. \end{lstlisting}
  14788. \fi}
  14789. {\if\edition\pythonEd
  14790. \begin{lstlisting}
  14791. def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
  14792. y_1 = fvs_4[1]
  14793. return x_2 + y_1[0]
  14794. def main() -> int:
  14795. y_1 = (777,)
  14796. y_1[0] = input_int()
  14797. f_0 = (lambda_3, y_1)
  14798. print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
  14799. return 0
  14800. \end{lstlisting}
  14801. \fi}
  14802. %
  14803. \noindent but we can instead compile the application
  14804. \CAPPLY{\code{f}}{\code{21}} into a direct call:
  14805. %
  14806. {\if\edition\racketEd
  14807. \begin{lstlisting}
  14808. (define (main) : Integer
  14809. (let ([y2 (read)])
  14810. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  14811. ((fun-ref lambda5) f4 21))))
  14812. \end{lstlisting}
  14813. \fi}
  14814. {\if\edition\pythonEd
  14815. \begin{lstlisting}
  14816. def main() -> int:
  14817. y_1 = (777,)
  14818. y_1[0] = input_int()
  14819. f_0 = (lambda_3, y_1)
  14820. print(lambda_3(f_0, 21))
  14821. return 0
  14822. \end{lstlisting}
  14823. \fi}
  14824. The problem of determining which \code{lambda} will be called from a
  14825. particular application is quite challenging in general and the topic
  14826. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  14827. following exercise we recommend that you compile an application to a
  14828. direct call when the operator is a variable and \racket{the variable
  14829. is \code{let}-bound to a closure} \python{the previous assignment to
  14830. the variable is a closure}. This can be accomplished by maintaining
  14831. an environment mapping variables to function names. Extend the
  14832. environment whenever you encounter a closure on the right-hand side of
  14833. a \racket{\code{let}}\python{assignment}, mapping the variable to the
  14834. name of the global function for the closure. This pass should come
  14835. after closure conversion.
  14836. \begin{exercise}\normalfont
  14837. Implement a compiler pass, named \code{optimize\_known\_calls}, that
  14838. compiles known calls into direct calls. Verify that your compiler is
  14839. successful in this regard on several example programs.
  14840. \end{exercise}
  14841. These exercises only scratches the surface of optimizing of
  14842. closures. A good next step for the interested reader is to look at the
  14843. work of \citet{Keep:2012ab}.
  14844. \section{Further Reading}
  14845. The notion of lexically scoped functions predates modern computers by
  14846. about a decade. They were invented by \citet{Church:1932aa}, who
  14847. proposed the lambda calculus as a foundation for logic. Anonymous
  14848. functions were included in the LISP~\citep{McCarthy:1960dz}
  14849. programming language but were initially dynamically scoped. The Scheme
  14850. dialect of LISP adopted lexical scoping and
  14851. \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently compile
  14852. Scheme programs. However, environments were represented as linked
  14853. lists, so variable lookup was linear in the size of the
  14854. environment. In this chapter we represent environments using flat
  14855. closures, which were invented by
  14856. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  14857. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  14858. closures, variable lookup is constant time but the time to create a
  14859. closure is proportional to the number of its free variables. Flat
  14860. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  14861. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  14862. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14863. \chapter{Dynamic Typing}
  14864. \label{ch:Ldyn}
  14865. \index{subject}{dynamic typing}
  14866. In this chapter we discuss the compilation of \LangDyn{}, a
  14867. dynamically typed language. This is in contrast to the previous
  14868. chapters, which have studied the compilation of statically typed
  14869. languages. In dynamically typed languages such as \LangDyn{}, a
  14870. particular expression may produce a value of a different type each
  14871. time it is executed. Consider the following example with a conditional
  14872. \code{if} expression that may return a Boolean or an integer depending
  14873. on the input to the program.
  14874. % part of dynamic_test_25.rkt
  14875. {\if\edition\racketEd
  14876. \begin{lstlisting}
  14877. (not (if (eq? (read) 1) #f 0))
  14878. \end{lstlisting}
  14879. \fi}
  14880. {\if\edition\pythonEd
  14881. \begin{lstlisting}
  14882. not (False if input_int() == 1 else 0)
  14883. \end{lstlisting}
  14884. \fi}
  14885. Languages that allow expressions to produce different kinds of values
  14886. are called \emph{polymorphic}, a word composed of the Greek roots
  14887. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  14888. are several kinds of polymorphism in programming languages, such as
  14889. subtype polymorphism and parametric
  14890. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  14891. study in this chapter does not have a special name but it is the kind
  14892. that arises in dynamically typed languages.
  14893. Another characteristic of dynamically typed languages is that
  14894. primitive operations, such as \code{not}, are often defined to operate
  14895. on many different types of values. In fact, in
  14896. \racket{Racket}\python{Python}, the \code{not} operator produces a
  14897. result for any kind of value: given \FALSE{} it returns \TRUE{} and
  14898. given anything else it returns \FALSE{}.
  14899. Furthermore, even when primitive operations restrict their inputs to
  14900. values of a certain type, this restriction is enforced at runtime
  14901. instead of during compilation. For example, the following tuple read
  14902. operation results in a run-time error because it requires a tuple, not
  14903. a Boolean such as \TRUE{}.
  14904. %
  14905. {\if\edition\racketEd
  14906. \begin{lstlisting}
  14907. (vector-ref #t 0)
  14908. \end{lstlisting}
  14909. \fi}
  14910. %
  14911. {\if\edition\pythonEd
  14912. \begin{lstlisting}
  14913. True[0]
  14914. \end{lstlisting}
  14915. \fi}
  14916. \begin{figure}[tp]
  14917. \centering
  14918. \fbox{
  14919. \begin{minipage}{0.97\textwidth}
  14920. \[
  14921. \begin{array}{rcl}
  14922. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  14923. \Exp &::=& \Int \MID \CREAD{} \MID \CNEG{\Exp}
  14924. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} \\
  14925. &\MID& \Var \MID \CLET{\Var}{\Exp}{\Exp} \\
  14926. &\MID& \key{\#t} \MID \key{\#f}
  14927. \MID \CBINOP{\key{and}}{\Exp}{\Exp}
  14928. \MID \CBINOP{\key{or}}{\Exp}{\Exp}
  14929. \MID \CUNIOP{\key{not}}{\Exp} \\
  14930. &\MID& \LP\itm{cmp}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} \\
  14931. &\MID& \LP\key{vector}\;\Exp\ldots\RP \MID
  14932. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  14933. &\MID& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \MID \LP\key{void}\RP \\
  14934. &\MID& \LP\Exp \; \Exp\ldots\RP
  14935. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  14936. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  14937. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  14938. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  14939. \LangDynM{} &::=& \Def\ldots\; \Exp
  14940. \end{array}
  14941. \]
  14942. \end{minipage}
  14943. }
  14944. \caption{Syntax of \LangDyn{}, an untyped language (a subset of \racket{Racket}\python{Python}).}
  14945. \label{fig:r7-concrete-syntax}
  14946. \end{figure}
  14947. \begin{figure}[tp]
  14948. \centering
  14949. \fbox{
  14950. \begin{minipage}{0.96\textwidth}
  14951. \small
  14952. {\if\edition\racketEd
  14953. \[
  14954. \begin{array}{lcl}
  14955. \Exp &::=& \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  14956. &\MID& \PRIM{\itm{op}}{\Exp\ldots} \\
  14957. &\MID& \BOOL{\itm{bool}}
  14958. \MID \IF{\Exp}{\Exp}{\Exp} \\
  14959. &\MID& \VOID{} \MID \APPLY{\Exp}{\Exp\ldots} \\
  14960. &\MID& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  14961. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  14962. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  14963. \end{array}
  14964. \]
  14965. \fi}
  14966. {\if\edition\pythonEd
  14967. UNDER CONSTRUCTION
  14968. \fi}
  14969. \end{minipage}
  14970. }
  14971. \caption{The abstract syntax of \LangDyn{}.}
  14972. \label{fig:r7-syntax}
  14973. \end{figure}
  14974. The concrete and abstract syntax of \LangDyn{}, our subset of
  14975. \racket{Racket}\python{Python}, is defined in
  14976. Figures~\ref{fig:r7-concrete-syntax} and \ref{fig:r7-syntax}.
  14977. %
  14978. There is no type checker for \LangDyn{} because it is not a statically
  14979. typed language (it's dynamically typed!).
  14980. UNDER CONSTRUCTION
  14981. The definitional interpreter for \LangDyn{} is presented in
  14982. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined in
  14983. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
  14984. \INT{n}. Instead of simply returning the integer \code{n} (as
  14985. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}), the
  14986. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  14987. value} that combines an underlying value with a tag that identifies
  14988. what kind of value it is. We define the following struct
  14989. to represented tagged values.
  14990. \begin{lstlisting}
  14991. (struct Tagged (value tag) #:transparent)
  14992. \end{lstlisting}
  14993. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  14994. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  14995. but don't always capture all the information that a type does. For
  14996. example, a vector of type \code{(Vector Any Any)} is tagged with
  14997. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  14998. is tagged with \code{Procedure}.
  14999. Next consider the match case for \code{vector-ref}. The
  15000. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  15001. is used to ensure that the first argument is a vector and the second
  15002. is an integer. If they are not, a \code{trapped-error} is raised.
  15003. Recall from Section~\ref{sec:interp_Lint} that when a definition
  15004. interpreter raises a \code{trapped-error} error, the compiled code
  15005. must also signal an error by exiting with return code \code{255}. A
  15006. \code{trapped-error} is also raised if the index is not less than
  15007. length of the vector.
  15008. \begin{figure}[tbp]
  15009. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15010. (define ((interp-Rdyn-exp env) ast)
  15011. (define recur (interp-Rdyn-exp env))
  15012. (match ast
  15013. [(Var x) (lookup x env)]
  15014. [(Int n) (Tagged n 'Integer)]
  15015. [(Bool b) (Tagged b 'Boolean)]
  15016. [(Lambda xs rt body)
  15017. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  15018. [(Prim 'vector es)
  15019. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  15020. [(Prim 'vector-ref (list e1 e2))
  15021. (define vec (recur e1)) (define i (recur e2))
  15022. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  15023. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  15024. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  15025. (vector-ref (Tagged-value vec) (Tagged-value i))]
  15026. [(Prim 'vector-set! (list e1 e2 e3))
  15027. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  15028. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  15029. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  15030. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  15031. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  15032. (Tagged (void) 'Void)]
  15033. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  15034. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  15035. [(Prim 'or (list e1 e2))
  15036. (define v1 (recur e1))
  15037. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  15038. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  15039. [(Prim op (list e1))
  15040. #:when (set-member? type-predicates op)
  15041. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  15042. [(Prim op es)
  15043. (define args (map recur es))
  15044. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  15045. (unless (for/or ([expected-tags (op-tags op)])
  15046. (equal? expected-tags tags))
  15047. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  15048. (tag-value
  15049. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  15050. [(If q t f)
  15051. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  15052. [(Apply f es)
  15053. (define new-f (recur f)) (define args (map recur es))
  15054. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  15055. (match f-val
  15056. [`(function ,xs ,body ,lam-env)
  15057. (unless (eq? (length xs) (length args))
  15058. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  15059. (define new-env (append (map cons xs args) lam-env))
  15060. ((interp-Rdyn-exp new-env) body)]
  15061. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  15062. \end{lstlisting}
  15063. \caption{Interpreter for the \LangDyn{} language.}
  15064. \label{fig:interp-Rdyn}
  15065. \end{figure}
  15066. \begin{figure}[tbp]
  15067. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15068. (define (interp-op op)
  15069. (match op
  15070. ['+ fx+]
  15071. ['- fx-]
  15072. ['read read-fixnum]
  15073. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  15074. ['< (lambda (v1 v2)
  15075. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  15076. ['<= (lambda (v1 v2)
  15077. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  15078. ['> (lambda (v1 v2)
  15079. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  15080. ['>= (lambda (v1 v2)
  15081. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  15082. ['boolean? boolean?]
  15083. ['integer? fixnum?]
  15084. ['void? void?]
  15085. ['vector? vector?]
  15086. ['vector-length vector-length]
  15087. ['procedure? (match-lambda
  15088. [`(functions ,xs ,body ,env) #t] [else #f])]
  15089. [else (error 'interp-op "unknown operator" op)]))
  15090. (define (op-tags op)
  15091. (match op
  15092. ['+ '((Integer Integer))]
  15093. ['- '((Integer Integer) (Integer))]
  15094. ['read '(())]
  15095. ['not '((Boolean))]
  15096. ['< '((Integer Integer))]
  15097. ['<= '((Integer Integer))]
  15098. ['> '((Integer Integer))]
  15099. ['>= '((Integer Integer))]
  15100. ['vector-length '((Vector))]))
  15101. (define type-predicates
  15102. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  15103. (define (tag-value v)
  15104. (cond [(boolean? v) (Tagged v 'Boolean)]
  15105. [(fixnum? v) (Tagged v 'Integer)]
  15106. [(procedure? v) (Tagged v 'Procedure)]
  15107. [(vector? v) (Tagged v 'Vector)]
  15108. [(void? v) (Tagged v 'Void)]
  15109. [else (error 'tag-value "unidentified value ~a" v)]))
  15110. (define (check-tag val expected ast)
  15111. (define tag (Tagged-tag val))
  15112. (unless (eq? tag expected)
  15113. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  15114. \end{lstlisting}
  15115. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  15116. \label{fig:interp-Rdyn-aux}
  15117. \end{figure}
  15118. \clearpage
  15119. \section{Representation of Tagged Values}
  15120. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  15121. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  15122. values at the bit level. Because almost every operation in \LangDyn{}
  15123. involves manipulating tagged values, the representation must be
  15124. efficient. Recall that all of our values are 64 bits. We shall steal
  15125. the 3 right-most bits to encode the tag. We use $001$ to identify
  15126. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  15127. and $101$ for the void value. We define the following auxiliary
  15128. function for mapping types to tag codes.
  15129. \begin{align*}
  15130. \itm{tagof}(\key{Integer}) &= 001 \\
  15131. \itm{tagof}(\key{Boolean}) &= 100 \\
  15132. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  15133. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  15134. \itm{tagof}(\key{Void}) &= 101
  15135. \end{align*}
  15136. This stealing of 3 bits comes at some price: our integers are reduced
  15137. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  15138. affect vectors and procedures because those values are addresses, and
  15139. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  15140. they are always $000$. Thus, we do not lose information by overwriting
  15141. the rightmost 3 bits with the tag and we can simply zero-out the tag
  15142. to recover the original address.
  15143. To make tagged values into first-class entities, we can give them a
  15144. type, called \code{Any}, and define operations such as \code{Inject}
  15145. and \code{Project} for creating and using them, yielding the \LangAny{}
  15146. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  15147. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  15148. in greater detail.
  15149. \section{The \LangAny{} Language}
  15150. \label{sec:Rany-lang}
  15151. \newcommand{\LAnyAST}{
  15152. \begin{array}{lcl}
  15153. \Type &::= & \key{Any} \\
  15154. \itm{op} &::= & \code{any-vector-length}
  15155. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  15156. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  15157. \MID \code{procedure?} \MID \code{void?} \\
  15158. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  15159. \end{array}
  15160. }
  15161. \begin{figure}[tp]
  15162. \centering
  15163. \fbox{
  15164. \begin{minipage}{0.96\textwidth}
  15165. \small
  15166. {\if\edition\racketEd
  15167. \[
  15168. \begin{array}{l}
  15169. \gray{\LintOpAST} \\ \hline
  15170. \gray{\LvarASTRacket{}} \\ \hline
  15171. \gray{\LifASTRacket{}} \\ \hline
  15172. \gray{\LwhileASTRacket{}} \\ \hline
  15173. \gray{\LtupASTRacket{}} \\ \hline
  15174. \gray{\LfunASTRacket} \\ \hline
  15175. \gray{\LlambdaASTRacket} \\ \hline
  15176. \LAnyAST \\
  15177. \begin{array}{lcl}
  15178. %% \Type &::= & \ldots \MID \key{Any} \\
  15179. %% \itm{op} &::= & \ldots \MID \code{any-vector-length}
  15180. %% \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  15181. %% &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  15182. %% \MID \code{procedure?} \MID \code{void?} \\
  15183. %% \Exp &::=& \ldots
  15184. %% \MID \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  15185. %% &\MID& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  15186. %% \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  15187. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15188. \end{array}
  15189. \end{array}
  15190. \]
  15191. \fi}
  15192. {\if\edition\pythonEd
  15193. UNDER CONSTRUCTION
  15194. \fi}
  15195. \end{minipage}
  15196. }
  15197. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  15198. \label{fig:Rany-syntax}
  15199. \end{figure}
  15200. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  15201. (The concrete syntax of \LangAny{} is in the Appendix,
  15202. Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
  15203. converts the value produced by expression $e$ of type $T$ into a
  15204. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  15205. produced by expression $e$ into a value of type $T$ or else halts the
  15206. program if the type tag is not equivalent to $T$.
  15207. %
  15208. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  15209. restricted to a flat type $\FType$, which simplifies the
  15210. implementation and corresponds with what is needed for compiling \LangDyn{}.
  15211. The \code{any-vector} operators adapt the vector operations so that
  15212. they can be applied to a value of type \code{Any}. They also
  15213. generalize the vector operations in that the index is not restricted
  15214. to be a literal integer in the grammar but is allowed to be any
  15215. expression.
  15216. The type predicates such as \key{boolean?} expect their argument to
  15217. produce a tagged value; they return \key{\#t} if the tag corresponds
  15218. to the predicate and they return \key{\#f} otherwise.
  15219. The type checker for \LangAny{} is shown in
  15220. Figures~\ref{fig:type-check-Rany-part-1} and
  15221. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  15222. Figure~\ref{fig:type-check-Rany-aux}.
  15223. %
  15224. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  15225. auxiliary functions \code{apply-inject} and \code{apply-project} are
  15226. in Figure~\ref{fig:apply-project}.
  15227. \begin{figure}[btp]
  15228. \begin{lstlisting}[basicstyle=\ttfamily\small]
  15229. (define type-check-Rany_class
  15230. (class type-check-Rlambda_class
  15231. (super-new)
  15232. (inherit check-type-equal?)
  15233. (define/override (type-check-exp env)
  15234. (lambda (e)
  15235. (define recur (type-check-exp env))
  15236. (match e
  15237. [(Inject e1 ty)
  15238. (unless (flat-ty? ty)
  15239. (error 'type-check "may only inject from flat type, not ~a" ty))
  15240. (define-values (new-e1 e-ty) (recur e1))
  15241. (check-type-equal? e-ty ty e)
  15242. (values (Inject new-e1 ty) 'Any)]
  15243. [(Project e1 ty)
  15244. (unless (flat-ty? ty)
  15245. (error 'type-check "may only project to flat type, not ~a" ty))
  15246. (define-values (new-e1 e-ty) (recur e1))
  15247. (check-type-equal? e-ty 'Any e)
  15248. (values (Project new-e1 ty) ty)]
  15249. [(Prim 'any-vector-length (list e1))
  15250. (define-values (e1^ t1) (recur e1))
  15251. (check-type-equal? t1 'Any e)
  15252. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  15253. [(Prim 'any-vector-ref (list e1 e2))
  15254. (define-values (e1^ t1) (recur e1))
  15255. (define-values (e2^ t2) (recur e2))
  15256. (check-type-equal? t1 'Any e)
  15257. (check-type-equal? t2 'Integer e)
  15258. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  15259. [(Prim 'any-vector-set! (list e1 e2 e3))
  15260. (define-values (e1^ t1) (recur e1))
  15261. (define-values (e2^ t2) (recur e2))
  15262. (define-values (e3^ t3) (recur e3))
  15263. (check-type-equal? t1 'Any e)
  15264. (check-type-equal? t2 'Integer e)
  15265. (check-type-equal? t3 'Any e)
  15266. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  15267. \end{lstlisting}
  15268. \caption{Type checker for the \LangAny{} language, part 1.}
  15269. \label{fig:type-check-Rany-part-1}
  15270. \end{figure}
  15271. \begin{figure}[btp]
  15272. \begin{lstlisting}[basicstyle=\ttfamily\small]
  15273. [(ValueOf e ty)
  15274. (define-values (new-e e-ty) (recur e))
  15275. (values (ValueOf new-e ty) ty)]
  15276. [(Prim pred (list e1))
  15277. #:when (set-member? (type-predicates) pred)
  15278. (define-values (new-e1 e-ty) (recur e1))
  15279. (check-type-equal? e-ty 'Any e)
  15280. (values (Prim pred (list new-e1)) 'Boolean)]
  15281. [(If cnd thn els)
  15282. (define-values (cnd^ Tc) (recur cnd))
  15283. (define-values (thn^ Tt) (recur thn))
  15284. (define-values (els^ Te) (recur els))
  15285. (check-type-equal? Tc 'Boolean cnd)
  15286. (check-type-equal? Tt Te e)
  15287. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  15288. [(Exit) (values (Exit) '_)]
  15289. [(Prim 'eq? (list arg1 arg2))
  15290. (define-values (e1 t1) (recur arg1))
  15291. (define-values (e2 t2) (recur arg2))
  15292. (match* (t1 t2)
  15293. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  15294. [(other wise) (check-type-equal? t1 t2 e)])
  15295. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  15296. [else ((super type-check-exp env) e)])))
  15297. ))
  15298. \end{lstlisting}
  15299. \caption{Type checker for the \LangAny{} language, part 2.}
  15300. \label{fig:type-check-Rany-part-2}
  15301. \end{figure}
  15302. \begin{figure}[tbp]
  15303. \begin{lstlisting}
  15304. (define/override (operator-types)
  15305. (append
  15306. '((integer? . ((Any) . Boolean))
  15307. (vector? . ((Any) . Boolean))
  15308. (procedure? . ((Any) . Boolean))
  15309. (void? . ((Any) . Boolean))
  15310. (tag-of-any . ((Any) . Integer))
  15311. (make-any . ((_ Integer) . Any))
  15312. )
  15313. (super operator-types)))
  15314. (define/public (type-predicates)
  15315. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  15316. (define/public (combine-types t1 t2)
  15317. (match (list t1 t2)
  15318. [(list '_ t2) t2]
  15319. [(list t1 '_) t1]
  15320. [(list `(Vector ,ts1 ...)
  15321. `(Vector ,ts2 ...))
  15322. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  15323. (combine-types t1 t2)))]
  15324. [(list `(,ts1 ... -> ,rt1)
  15325. `(,ts2 ... -> ,rt2))
  15326. `(,@(for/list ([t1 ts1] [t2 ts2])
  15327. (combine-types t1 t2))
  15328. -> ,(combine-types rt1 rt2))]
  15329. [else t1]))
  15330. (define/public (flat-ty? ty)
  15331. (match ty
  15332. [(or `Integer `Boolean '_ `Void) #t]
  15333. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  15334. [`(,ts ... -> ,rt)
  15335. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  15336. [else #f]))
  15337. \end{lstlisting}
  15338. \caption{Auxiliary methods for type checking \LangAny{}.}
  15339. \label{fig:type-check-Rany-aux}
  15340. \end{figure}
  15341. \begin{figure}[btp]
  15342. \begin{lstlisting}
  15343. (define interp-Rany_class
  15344. (class interp-Rlambda_class
  15345. (super-new)
  15346. (define/override (interp-op op)
  15347. (match op
  15348. ['boolean? (match-lambda
  15349. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  15350. [else #f])]
  15351. ['integer? (match-lambda
  15352. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  15353. [else #f])]
  15354. ['vector? (match-lambda
  15355. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  15356. [else #f])]
  15357. ['procedure? (match-lambda
  15358. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  15359. [else #f])]
  15360. ['eq? (match-lambda*
  15361. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  15362. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  15363. [ls (apply (super interp-op op) ls)])]
  15364. ['any-vector-ref (lambda (v i)
  15365. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  15366. ['any-vector-set! (lambda (v i a)
  15367. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  15368. ['any-vector-length (lambda (v)
  15369. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  15370. [else (super interp-op op)]))
  15371. (define/override ((interp-exp env) e)
  15372. (define recur (interp-exp env))
  15373. (match e
  15374. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  15375. [(Project e ty2) (apply-project (recur e) ty2)]
  15376. [else ((super interp-exp env) e)]))
  15377. ))
  15378. (define (interp-Rany p)
  15379. (send (new interp-Rany_class) interp-program p))
  15380. \end{lstlisting}
  15381. \caption{Interpreter for \LangAny{}.}
  15382. \label{fig:interp-Rany}
  15383. \end{figure}
  15384. \begin{figure}[tbp]
  15385. \begin{lstlisting}
  15386. (define/public (apply-inject v tg) (Tagged v tg))
  15387. (define/public (apply-project v ty2)
  15388. (define tag2 (any-tag ty2))
  15389. (match v
  15390. [(Tagged v1 tag1)
  15391. (cond
  15392. [(eq? tag1 tag2)
  15393. (match ty2
  15394. [`(Vector ,ts ...)
  15395. (define l1 ((interp-op 'vector-length) v1))
  15396. (cond
  15397. [(eq? l1 (length ts)) v1]
  15398. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  15399. l1 (length ts))])]
  15400. [`(,ts ... -> ,rt)
  15401. (match v1
  15402. [`(function ,xs ,body ,env)
  15403. (cond [(eq? (length xs) (length ts)) v1]
  15404. [else
  15405. (error 'apply-project "arity mismatch ~a != ~a"
  15406. (length xs) (length ts))])]
  15407. [else (error 'apply-project "expected function not ~a" v1)])]
  15408. [else v1])]
  15409. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  15410. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  15411. \end{lstlisting}
  15412. \caption{Auxiliary functions for injection and projection.}
  15413. \label{fig:apply-project}
  15414. \end{figure}
  15415. \clearpage
  15416. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  15417. \label{sec:compile-r7}
  15418. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  15419. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  15420. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  15421. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  15422. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  15423. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  15424. the Boolean \code{\#t}, which must be injected to produce an
  15425. expression of type \key{Any}.
  15426. %
  15427. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  15428. addition, is representative of compilation for many primitive
  15429. operations: the arguments have type \key{Any} and must be projected to
  15430. \key{Integer} before the addition can be performed.
  15431. The compilation of \key{lambda} (third row of
  15432. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  15433. produce type annotations: we simply use \key{Any}.
  15434. %
  15435. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  15436. has to account for some differences in behavior between \LangDyn{} and
  15437. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  15438. kind of values can be used in various places. For example, the
  15439. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  15440. the arguments need not be of the same type (in that case the
  15441. result is \code{\#f}).
  15442. \begin{figure}[btp]
  15443. \centering
  15444. \begin{tabular}{|lll|} \hline
  15445. \begin{minipage}{0.27\textwidth}
  15446. \begin{lstlisting}
  15447. #t
  15448. \end{lstlisting}
  15449. \end{minipage}
  15450. &
  15451. $\Rightarrow$
  15452. &
  15453. \begin{minipage}{0.65\textwidth}
  15454. \begin{lstlisting}
  15455. (inject #t Boolean)
  15456. \end{lstlisting}
  15457. \end{minipage}
  15458. \\[2ex]\hline
  15459. \begin{minipage}{0.27\textwidth}
  15460. \begin{lstlisting}
  15461. (+ |$e_1$| |$e_2$|)
  15462. \end{lstlisting}
  15463. \end{minipage}
  15464. &
  15465. $\Rightarrow$
  15466. &
  15467. \begin{minipage}{0.65\textwidth}
  15468. \begin{lstlisting}
  15469. (inject
  15470. (+ (project |$e'_1$| Integer)
  15471. (project |$e'_2$| Integer))
  15472. Integer)
  15473. \end{lstlisting}
  15474. \end{minipage}
  15475. \\[2ex]\hline
  15476. \begin{minipage}{0.27\textwidth}
  15477. \begin{lstlisting}
  15478. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  15479. \end{lstlisting}
  15480. \end{minipage}
  15481. &
  15482. $\Rightarrow$
  15483. &
  15484. \begin{minipage}{0.65\textwidth}
  15485. \begin{lstlisting}
  15486. (inject
  15487. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  15488. (Any|$\ldots$|Any -> Any))
  15489. \end{lstlisting}
  15490. \end{minipage}
  15491. \\[2ex]\hline
  15492. \begin{minipage}{0.27\textwidth}
  15493. \begin{lstlisting}
  15494. (|$e_0$| |$e_1 \ldots e_n$|)
  15495. \end{lstlisting}
  15496. \end{minipage}
  15497. &
  15498. $\Rightarrow$
  15499. &
  15500. \begin{minipage}{0.65\textwidth}
  15501. \begin{lstlisting}
  15502. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  15503. \end{lstlisting}
  15504. \end{minipage}
  15505. \\[2ex]\hline
  15506. \begin{minipage}{0.27\textwidth}
  15507. \begin{lstlisting}
  15508. (vector-ref |$e_1$| |$e_2$|)
  15509. \end{lstlisting}
  15510. \end{minipage}
  15511. &
  15512. $\Rightarrow$
  15513. &
  15514. \begin{minipage}{0.65\textwidth}
  15515. \begin{lstlisting}
  15516. (any-vector-ref |$e_1'$| |$e_2'$|)
  15517. \end{lstlisting}
  15518. \end{minipage}
  15519. \\[2ex]\hline
  15520. \begin{minipage}{0.27\textwidth}
  15521. \begin{lstlisting}
  15522. (if |$e_1$| |$e_2$| |$e_3$|)
  15523. \end{lstlisting}
  15524. \end{minipage}
  15525. &
  15526. $\Rightarrow$
  15527. &
  15528. \begin{minipage}{0.65\textwidth}
  15529. \begin{lstlisting}
  15530. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  15531. \end{lstlisting}
  15532. \end{minipage}
  15533. \\[2ex]\hline
  15534. \begin{minipage}{0.27\textwidth}
  15535. \begin{lstlisting}
  15536. (eq? |$e_1$| |$e_2$|)
  15537. \end{lstlisting}
  15538. \end{minipage}
  15539. &
  15540. $\Rightarrow$
  15541. &
  15542. \begin{minipage}{0.65\textwidth}
  15543. \begin{lstlisting}
  15544. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  15545. \end{lstlisting}
  15546. \end{minipage}
  15547. \\[2ex]\hline
  15548. \begin{minipage}{0.27\textwidth}
  15549. \begin{lstlisting}
  15550. (not |$e_1$|)
  15551. \end{lstlisting}
  15552. \end{minipage}
  15553. &
  15554. $\Rightarrow$
  15555. &
  15556. \begin{minipage}{0.65\textwidth}
  15557. \begin{lstlisting}
  15558. (if (eq? |$e'_1$| (inject #f Boolean))
  15559. (inject #t Boolean) (inject #f Boolean))
  15560. \end{lstlisting}
  15561. \end{minipage}
  15562. \\[2ex]\hline
  15563. \end{tabular}
  15564. \caption{Cast Insertion}
  15565. \label{fig:compile-r7-Rany}
  15566. \end{figure}
  15567. \section{Reveal Casts}
  15568. \label{sec:reveal-casts-Rany}
  15569. % TODO: define R'_6
  15570. In the \code{reveal-casts} pass we recommend compiling \code{project}
  15571. into an \code{if} expression that checks whether the value's tag
  15572. matches the target type; if it does, the value is converted to a value
  15573. of the target type by removing the tag; if it does not, the program
  15574. exits. To perform these actions we need a new primitive operation,
  15575. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  15576. The \code{tag-of-any} operation retrieves the type tag from a tagged
  15577. value of type \code{Any}. The \code{ValueOf} form retrieves the
  15578. underlying value from a tagged value. The \code{ValueOf} form
  15579. includes the type for the underlying value which is used by the type
  15580. checker. Finally, the \code{Exit} form ends the execution of the
  15581. program.
  15582. If the target type of the projection is \code{Boolean} or
  15583. \code{Integer}, then \code{Project} can be translated as follows.
  15584. \begin{center}
  15585. \begin{minipage}{1.0\textwidth}
  15586. \begin{lstlisting}
  15587. (Project |$e$| |$\FType$|)
  15588. |$\Rightarrow$|
  15589. (Let |$\itm{tmp}$| |$e'$|
  15590. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  15591. (Int |$\itm{tagof}(\FType)$|)))
  15592. (ValueOf |$\itm{tmp}$| |$\FType$|)
  15593. (Exit)))
  15594. \end{lstlisting}
  15595. \end{minipage}
  15596. \end{center}
  15597. If the target type of the projection is a vector or function type,
  15598. then there is a bit more work to do. For vectors, check that the
  15599. length of the vector type matches the length of the vector (using the
  15600. \code{vector-length} primitive). For functions, check that the number
  15601. of parameters in the function type matches the function's arity (using
  15602. \code{procedure-arity}).
  15603. Regarding \code{inject}, we recommend compiling it to a slightly
  15604. lower-level primitive operation named \code{make-any}. This operation
  15605. takes a tag instead of a type.
  15606. \begin{center}
  15607. \begin{minipage}{1.0\textwidth}
  15608. \begin{lstlisting}
  15609. (Inject |$e$| |$\FType$|)
  15610. |$\Rightarrow$|
  15611. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  15612. \end{lstlisting}
  15613. \end{minipage}
  15614. \end{center}
  15615. The type predicates (\code{boolean?}, etc.) can be translated into
  15616. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  15617. translation of \code{Project}.
  15618. The \code{any-vector-ref} and \code{any-vector-set!} operations
  15619. combine the projection action with the vector operation. Also, the
  15620. read and write operations allow arbitrary expressions for the index so
  15621. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  15622. cannot guarantee that the index is within bounds. Thus, we insert code
  15623. to perform bounds checking at runtime. The translation for
  15624. \code{any-vector-ref} is as follows and the other two operations are
  15625. translated in a similar way.
  15626. \begin{lstlisting}
  15627. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  15628. |$\Rightarrow$|
  15629. (Let |$v$| |$e'_1$|
  15630. (Let |$i$| |$e'_2$|
  15631. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  15632. (If (Prim '< (list (Var |$i$|)
  15633. (Prim 'any-vector-length (list (Var |$v$|)))))
  15634. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  15635. (Exit))))
  15636. \end{lstlisting}
  15637. \section{Remove Complex Operands}
  15638. \label{sec:rco-Rany}
  15639. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  15640. The subexpression of \code{ValueOf} must be atomic.
  15641. \section{Explicate Control and \LangCAny{}}
  15642. \label{sec:explicate-Rany}
  15643. The output of \code{explicate\_control} is the \LangCAny{} language whose
  15644. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  15645. form that we added to \LangAny{} remains an expression and the \code{Exit}
  15646. expression becomes a $\Tail$. Also, note that the index argument of
  15647. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  15648. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  15649. \begin{figure}[tp]
  15650. \fbox{
  15651. \begin{minipage}{0.96\textwidth}
  15652. \small
  15653. {\if\edition\racketEd
  15654. \[
  15655. \begin{array}{lcl}
  15656. \Exp &::= & \ldots
  15657. \MID \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  15658. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  15659. &\MID& \VALUEOF{\Exp}{\FType} \\
  15660. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  15661. \MID \LP\key{Collect} \,\itm{int}\RP }\\
  15662. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  15663. \MID \GOTO{\itm{label}} } \\
  15664. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  15665. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  15666. \MID \LP\key{Exit}\RP \\
  15667. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  15668. \LangCAnyM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  15669. \end{array}
  15670. \]
  15671. \fi}
  15672. {\if\edition\pythonEd
  15673. UNDER CONSTRUCTION
  15674. \fi}
  15675. \end{minipage}
  15676. }
  15677. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  15678. \label{fig:c5-syntax}
  15679. \end{figure}
  15680. \section{Select Instructions}
  15681. \label{sec:select-Rany}
  15682. In the \code{select\_instructions} pass we translate the primitive
  15683. operations on the \code{Any} type to x86 instructions that involve
  15684. manipulating the 3 tag bits of the tagged value.
  15685. \paragraph{Make-any}
  15686. We recommend compiling the \key{make-any} primitive as follows if the
  15687. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  15688. shifts the destination to the left by the number of bits specified its
  15689. source argument (in this case $3$, the length of the tag) and it
  15690. preserves the sign of the integer. We use the \key{orq} instruction to
  15691. combine the tag and the value to form the tagged value. \\
  15692. \begin{lstlisting}
  15693. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  15694. |$\Rightarrow$|
  15695. movq |$e'$|, |\itm{lhs'}|
  15696. salq $3, |\itm{lhs'}|
  15697. orq $|$\itm{tag}$|, |\itm{lhs'}|
  15698. \end{lstlisting}
  15699. The instruction selection for vectors and procedures is different
  15700. because their is no need to shift them to the left. The rightmost 3
  15701. bits are already zeros as described at the beginning of this
  15702. chapter. So we just combine the value and the tag using \key{orq}. \\
  15703. \begin{lstlisting}
  15704. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  15705. |$\Rightarrow$|
  15706. movq |$e'$|, |\itm{lhs'}|
  15707. orq $|$\itm{tag}$|, |\itm{lhs'}|
  15708. \end{lstlisting}
  15709. \paragraph{Tag-of-any}
  15710. Recall that the \code{tag-of-any} operation extracts the type tag from
  15711. a value of type \code{Any}. The type tag is the bottom three bits, so
  15712. we obtain the tag by taking the bitwise-and of the value with $111$
  15713. ($7$ in decimal).
  15714. \begin{lstlisting}
  15715. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  15716. |$\Rightarrow$|
  15717. movq |$e'$|, |\itm{lhs'}|
  15718. andq $7, |\itm{lhs'}|
  15719. \end{lstlisting}
  15720. \paragraph{ValueOf}
  15721. Like \key{make-any}, the instructions for \key{ValueOf} are different
  15722. depending on whether the type $T$ is a pointer (vector or procedure)
  15723. or not (Integer or Boolean). The following shows the instruction
  15724. selection for Integer and Boolean. We produce an untagged value by
  15725. shifting it to the right by 3 bits.
  15726. \begin{lstlisting}
  15727. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  15728. |$\Rightarrow$|
  15729. movq |$e'$|, |\itm{lhs'}|
  15730. sarq $3, |\itm{lhs'}|
  15731. \end{lstlisting}
  15732. %
  15733. In the case for vectors and procedures, there is no need to
  15734. shift. Instead we just need to zero-out the rightmost 3 bits. We
  15735. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  15736. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  15737. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  15738. then apply \code{andq} with the tagged value to get the desired
  15739. result. \\
  15740. \begin{lstlisting}
  15741. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  15742. |$\Rightarrow$|
  15743. movq $|$-8$|, |\itm{lhs'}|
  15744. andq |$e'$|, |\itm{lhs'}|
  15745. \end{lstlisting}
  15746. %% \paragraph{Type Predicates} We leave it to the reader to
  15747. %% devise a sequence of instructions to implement the type predicates
  15748. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  15749. \paragraph{Any-vector-length}
  15750. \begin{lstlisting}
  15751. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  15752. |$\Longrightarrow$|
  15753. movq |$\neg 111$|, %r11
  15754. andq |$a_1'$|, %r11
  15755. movq 0(%r11), %r11
  15756. andq $126, %r11
  15757. sarq $1, %r11
  15758. movq %r11, |$\itm{lhs'}$|
  15759. \end{lstlisting}
  15760. \paragraph{Any-vector-ref}
  15761. The index may be an arbitrary atom so instead of computing the offset
  15762. at compile time, instructions need to be generated to compute the
  15763. offset at runtime as follows. Note the use of the new instruction
  15764. \code{imulq}.
  15765. \begin{center}
  15766. \begin{minipage}{0.96\textwidth}
  15767. \begin{lstlisting}
  15768. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  15769. |$\Longrightarrow$|
  15770. movq |$\neg 111$|, %r11
  15771. andq |$a_1'$|, %r11
  15772. movq |$a_2'$|, %rax
  15773. addq $1, %rax
  15774. imulq $8, %rax
  15775. addq %rax, %r11
  15776. movq 0(%r11) |$\itm{lhs'}$|
  15777. \end{lstlisting}
  15778. \end{minipage}
  15779. \end{center}
  15780. \paragraph{Any-vector-set!}
  15781. The code generation for \code{any-vector-set!} is similar to the other
  15782. \code{any-vector} operations.
  15783. \section{Register Allocation for \LangAny{}}
  15784. \label{sec:register-allocation-Rany}
  15785. \index{subject}{register allocation}
  15786. There is an interesting interaction between tagged values and garbage
  15787. collection that has an impact on register allocation. A variable of
  15788. type \code{Any} might refer to a vector and therefore it might be a
  15789. root that needs to be inspected and copied during garbage
  15790. collection. Thus, we need to treat variables of type \code{Any} in a
  15791. similar way to variables of type \code{Vector} for purposes of
  15792. register allocation. In particular,
  15793. \begin{itemize}
  15794. \item If a variable of type \code{Any} is live during a function call,
  15795. then it must be spilled. This can be accomplished by changing
  15796. \code{build\_interference} to mark all variables of type \code{Any}
  15797. that are live after a \code{callq} as interfering with all the
  15798. registers.
  15799. \item If a variable of type \code{Any} is spilled, it must be spilled
  15800. to the root stack instead of the normal procedure call stack.
  15801. \end{itemize}
  15802. Another concern regarding the root stack is that the garbage collector
  15803. needs to differentiate between (1) plain old pointers to tuples, (2) a
  15804. tagged value that points to a tuple, and (3) a tagged value that is
  15805. not a tuple. We enable this differentiation by choosing not to use the
  15806. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  15807. reserved for identifying plain old pointers to tuples. That way, if
  15808. one of the first three bits is set, then we have a tagged value and
  15809. inspecting the tag can differentiation between vectors ($010$) and the
  15810. other kinds of values.
  15811. \begin{exercise}\normalfont
  15812. Expand your compiler to handle \LangAny{} as discussed in the last few
  15813. sections. Create 5 new programs that use the \code{Any} type and the
  15814. new operations (\code{inject}, \code{project}, \code{boolean?},
  15815. etc.). Test your compiler on these new programs and all of your
  15816. previously created test programs.
  15817. \end{exercise}
  15818. \begin{exercise}\normalfont
  15819. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  15820. Create tests for \LangDyn{} by adapting ten of your previous test programs
  15821. by removing type annotations. Add 5 more tests programs that
  15822. specifically rely on the language being dynamically typed. That is,
  15823. they should not be legal programs in a statically typed language, but
  15824. nevertheless, they should be valid \LangDyn{} programs that run to
  15825. completion without error.
  15826. \end{exercise}
  15827. \begin{figure}[p]
  15828. \begin{tikzpicture}[baseline=(current bounding box.center)]
  15829. \node (Rfun) at (0,4) {\large \LangDyn{}};
  15830. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  15831. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  15832. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  15833. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  15834. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  15835. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  15836. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  15837. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  15838. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  15839. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  15840. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  15841. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  15842. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  15843. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  15844. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  15845. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  15846. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  15847. \path[->,bend left=15] (Rfun) edge [above] node
  15848. {\ttfamily\footnotesize shrink} (Rfun-2);
  15849. \path[->,bend left=15] (Rfun-2) edge [above] node
  15850. {\ttfamily\footnotesize uniquify} (Rfun-3);
  15851. \path[->,bend left=15] (Rfun-3) edge [above] node
  15852. {\ttfamily\footnotesize reveal\_functions} (Rfun-4);
  15853. \path[->,bend right=15] (Rfun-4) edge [left] node
  15854. {\ttfamily\footnotesize cast\_insert} (Rfun-5);
  15855. \path[->,bend left=15] (Rfun-5) edge [above] node
  15856. {\ttfamily\footnotesize check\_bounds} (Rfun-6);
  15857. \path[->,bend left=15] (Rfun-6) edge [left] node
  15858. {\ttfamily\footnotesize reveal\_casts} (Rfun-7);
  15859. \path[->,bend left=15] (Rfun-7) edge [below] node
  15860. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  15861. \path[->,bend right=15] (F1-2) edge [above] node
  15862. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  15863. \path[->,bend right=15] (F1-3) edge [above] node
  15864. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  15865. \path[->,bend right=15] (F1-4) edge [above] node
  15866. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  15867. \path[->,bend right=15] (F1-5) edge [right] node
  15868. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15869. \path[->,bend left=15] (C3-2) edge [left] node
  15870. {\ttfamily\footnotesize select\_instr.} (x86-2);
  15871. \path[->,bend right=15] (x86-2) edge [left] node
  15872. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  15873. \path[->,bend right=15] (x86-2-1) edge [below] node
  15874. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  15875. \path[->,bend right=15] (x86-2-2) edge [left] node
  15876. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  15877. \path[->,bend left=15] (x86-3) edge [above] node
  15878. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  15879. \path[->,bend left=15] (x86-4) edge [right] node
  15880. {\ttfamily\footnotesize print\_x86} (x86-5);
  15881. \end{tikzpicture}
  15882. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  15883. \label{fig:Rdyn-passes}
  15884. \end{figure}
  15885. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  15886. for the compilation of \LangDyn{}.
  15887. % Further Reading
  15888. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15889. {\if\edition\pythonEd
  15890. \chapter{Objects}
  15891. \label{ch:Lobject}
  15892. \index{subject}{objects}
  15893. \index{subject}{classes}
  15894. \fi}
  15895. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15896. \chapter{Gradual Typing}
  15897. \label{ch:Lgrad}
  15898. \index{subject}{gradual typing}
  15899. \if\edition\racketEd
  15900. This chapter studies a language, \LangGrad{}, in which the programmer
  15901. can choose between static and dynamic type checking in different parts
  15902. of a program, thereby mixing the statically typed \LangLoop{} language
  15903. with the dynamically typed \LangDyn{}. There are several approaches to
  15904. mixing static and dynamic typing, including multi-language
  15905. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  15906. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  15907. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  15908. programmer controls the amount of static versus dynamic checking by
  15909. adding or removing type annotations on parameters and
  15910. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  15911. %
  15912. The concrete syntax of \LangGrad{} is defined in
  15913. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  15914. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  15915. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  15916. non-terminals that make type annotations optional. The return types
  15917. are not optional in the abstract syntax; the parser fills in
  15918. \code{Any} when the return type is not specified in the concrete
  15919. syntax.
  15920. \begin{figure}[tp]
  15921. \centering
  15922. \fbox{
  15923. \begin{minipage}{0.96\textwidth}
  15924. \small
  15925. \[
  15926. \begin{array}{lcl}
  15927. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  15928. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  15929. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  15930. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  15931. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  15932. &\MID& \gray{\key{\#t} \MID \key{\#f}
  15933. \MID (\key{and}\;\Exp\;\Exp)
  15934. \MID (\key{or}\;\Exp\;\Exp)
  15935. \MID (\key{not}\;\Exp) } \\
  15936. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  15937. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  15938. (\key{vector-ref}\;\Exp\;\Int)} \\
  15939. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  15940. \MID (\Exp \; \Exp\ldots) } \\
  15941. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  15942. \MID \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  15943. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  15944. \MID \CBEGIN{\Exp\ldots}{\Exp}
  15945. \MID \CWHILE{\Exp}{\Exp} } \\
  15946. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  15947. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  15948. \end{array}
  15949. \]
  15950. \end{minipage}
  15951. }
  15952. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  15953. \label{fig:Rgrad-concrete-syntax}
  15954. \end{figure}
  15955. \begin{figure}[tp]
  15956. \centering
  15957. \fbox{
  15958. \begin{minipage}{0.96\textwidth}
  15959. \small
  15960. \[
  15961. \begin{array}{lcl}
  15962. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  15963. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  15964. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  15965. &\MID& \gray{ \BOOL{\itm{bool}}
  15966. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  15967. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  15968. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  15969. &\MID& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  15970. &\MID& \gray{ \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  15971. &\MID& \gray{ \WHILE{\Exp}{\Exp} } \\
  15972. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  15973. \LangGradM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  15974. \end{array}
  15975. \]
  15976. \end{minipage}
  15977. }
  15978. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-syntax}).}
  15979. \label{fig:Rgrad-syntax}
  15980. \end{figure}
  15981. Both the type checker and the interpreter for \LangGrad{} require some
  15982. interesting changes to enable gradual typing, which we discuss in the
  15983. next two sections in the context of the \code{map} example from
  15984. Chapter~\ref{ch:Lfun}. In Figure~\ref{fig:gradual-map} we
  15985. revised the \code{map} example, omitting the type annotations from
  15986. the \code{inc} function.
  15987. \begin{figure}[btp]
  15988. % gradual_test_9.rkt
  15989. \begin{lstlisting}
  15990. (define (map [f : (Integer -> Integer)]
  15991. [v : (Vector Integer Integer)])
  15992. : (Vector Integer Integer)
  15993. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  15994. (define (inc x) (+ x 1))
  15995. (vector-ref (map inc (vector 0 41)) 1)
  15996. \end{lstlisting}
  15997. \caption{A partially-typed version of the \code{map} example.}
  15998. \label{fig:gradual-map}
  15999. \end{figure}
  16000. \section{Type Checking \LangGrad{} and \LangCast{}}
  16001. \label{sec:gradual-type-check}
  16002. The type checker for \LangGrad{} uses the \code{Any} type for missing
  16003. parameter and return types. For example, the \code{x} parameter of
  16004. \code{inc} in Figure~\ref{fig:gradual-map} is given the type
  16005. \code{Any} and the return type of \code{inc} is \code{Any}. Next
  16006. consider the \code{+} operator inside \code{inc}. It expects both
  16007. arguments to have type \code{Integer}, but its first argument \code{x}
  16008. has type \code{Any}. In a gradually typed language, such differences
  16009. are allowed so long as the types are \emph{consistent}, that is, they
  16010. are equal except in places where there is an \code{Any} type. The type
  16011. \code{Any} is consistent with every other type.
  16012. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  16013. \begin{figure}[tbp]
  16014. \begin{lstlisting}
  16015. (define/public (consistent? t1 t2)
  16016. (match* (t1 t2)
  16017. [('Integer 'Integer) #t]
  16018. [('Boolean 'Boolean) #t]
  16019. [('Void 'Void) #t]
  16020. [('Any t2) #t]
  16021. [(t1 'Any) #t]
  16022. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  16023. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  16024. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  16025. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  16026. (consistent? rt1 rt2))]
  16027. [(other wise) #f]))
  16028. \end{lstlisting}
  16029. \caption{The consistency predicate on types.}
  16030. \label{fig:consistent}
  16031. \end{figure}
  16032. Returning to the \code{map} example of
  16033. Figure~\ref{fig:gradual-map}, the \code{inc} function has type
  16034. \code{(Any -> Any)} but parameter \code{f} of \code{map} has type
  16035. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  16036. because the two types are consistent. In particular, \code{->} is
  16037. equal to \code{->} and because \code{Any} is consistent with
  16038. \code{Integer}.
  16039. Next consider a program with an error, such as applying the
  16040. \code{map} to a function that sometimes returns a Boolean, as
  16041. shown in Figure~\ref{fig:map-maybe-inc}. The type checker for
  16042. \LangGrad{} accepts this program because the type of \code{maybe-inc} is
  16043. consistent with the type of parameter \code{f} of \code{map}, that
  16044. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  16045. Integer)}. One might say that a gradual type checker is optimistic
  16046. in that it accepts programs that might execute without a runtime type
  16047. error.
  16048. %
  16049. Unfortunately, running this program with input \code{1} triggers an
  16050. error when the \code{maybe-inc} function returns \code{\#t}. \LangGrad{}
  16051. performs checking at runtime to ensure the integrity of the static
  16052. types, such as the \code{(Integer -> Integer)} annotation on parameter
  16053. \code{f} of \code{map}. This runtime checking is carried out by a
  16054. new \code{Cast} form that is inserted by the type checker. Thus, the
  16055. output of the type checker is a program in the \LangCast{} language, which
  16056. adds \code{Cast} to \LangLoop{}, as shown in
  16057. Figure~\ref{fig:Rgrad-prime-syntax}.
  16058. \begin{figure}[tp]
  16059. \centering
  16060. \fbox{
  16061. \begin{minipage}{0.96\textwidth}
  16062. \small
  16063. \[
  16064. \begin{array}{lcl}
  16065. \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  16066. \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  16067. \end{array}
  16068. \]
  16069. \end{minipage}
  16070. }
  16071. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-syntax}).}
  16072. \label{fig:Rgrad-prime-syntax}
  16073. \end{figure}
  16074. \begin{figure}[tbp]
  16075. \begin{lstlisting}
  16076. (define (map [f : (Integer -> Integer)]
  16077. [v : (Vector Integer Integer)])
  16078. : (Vector Integer Integer)
  16079. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  16080. (define (inc x) (+ x 1))
  16081. (define (true) #t)
  16082. (define (maybe-inc x) (if (eq? 0 (read)) (inc x) (true)))
  16083. (vector-ref (map maybe-inc (vector 0 41)) 0)
  16084. \end{lstlisting}
  16085. \caption{A variant of the \code{map} example with an error.}
  16086. \label{fig:map-maybe-inc}
  16087. \end{figure}
  16088. Figure~\ref{fig:map-cast} shows the output of the type checker for
  16089. \code{map} and \code{maybe-inc}. The idea is that \code{Cast} is
  16090. inserted every time the type checker sees two types that are
  16091. consistent but not equal. In the \code{inc} function, \code{x} is
  16092. cast to \code{Integer} and the result of the \code{+} is cast to
  16093. \code{Any}. In the call to \code{map}, the \code{inc} argument
  16094. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  16095. \begin{figure}[btp]
  16096. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16097. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  16098. : (Vector Integer Integer)
  16099. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  16100. (define (inc [x : Any]) : Any
  16101. (cast (+ (cast x Any Integer) 1) Integer Any))
  16102. (define (true) : Any (cast #t Boolean Any))
  16103. (define (maybe-inc [x : Any]) : Any
  16104. (if (eq? 0 (read)) (inc x) (true)))
  16105. (vector-ref (map (cast maybe-inc (Any -> Any) (Integer -> Integer))
  16106. (vector 0 41)) 0)
  16107. \end{lstlisting}
  16108. \caption{Output of type checking \code{map}
  16109. and \code{maybe-inc}.}
  16110. \label{fig:map-cast}
  16111. \end{figure}
  16112. The type checker for \LangGrad{} is defined in
  16113. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  16114. and \ref{fig:type-check-Rgradual-3}.
  16115. \begin{figure}[tbp]
  16116. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  16117. (define type-check-gradual_class
  16118. (class type-check-Rwhile_class
  16119. (super-new)
  16120. (inherit operator-types type-predicates)
  16121. (define/override (type-check-exp env)
  16122. (lambda (e)
  16123. (define recur (type-check-exp env))
  16124. (match e
  16125. [(Prim 'vector-length (list e1))
  16126. (define-values (e1^ t) (recur e1))
  16127. (match t
  16128. [`(Vector ,ts ...)
  16129. (values (Prim 'vector-length (list e1^)) 'Integer)]
  16130. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  16131. [(Prim 'vector-ref (list e1 e2))
  16132. (define-values (e1^ t1) (recur e1))
  16133. (define-values (e2^ t2) (recur e2))
  16134. (check-consistent? t2 'Integer e)
  16135. (match t1
  16136. [`(Vector ,ts ...)
  16137. (match e2^
  16138. [(Int i)
  16139. (unless (and (0 . <= . i) (i . < . (length ts)))
  16140. (error 'type-check "invalid index ~a in ~a" i e))
  16141. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  16142. [else (define e1^^ (make-cast e1^ t1 'Any))
  16143. (define e2^^ (make-cast e2^ t2 'Integer))
  16144. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  16145. ['Any
  16146. (define e2^^ (make-cast e2^ t2 'Integer))
  16147. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  16148. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  16149. [(Prim 'vector-set! (list e1 e2 e3) )
  16150. (define-values (e1^ t1) (recur e1))
  16151. (define-values (e2^ t2) (recur e2))
  16152. (define-values (e3^ t3) (recur e3))
  16153. (check-consistent? t2 'Integer e)
  16154. (match t1
  16155. [`(Vector ,ts ...)
  16156. (match e2^
  16157. [(Int i)
  16158. (unless (and (0 . <= . i) (i . < . (length ts)))
  16159. (error 'type-check "invalid index ~a in ~a" i e))
  16160. (check-consistent? (list-ref ts i) t3 e)
  16161. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  16162. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  16163. [else
  16164. (define e1^^ (make-cast e1^ t1 'Any))
  16165. (define e2^^ (make-cast e2^ t2 'Integer))
  16166. (define e3^^ (make-cast e3^ t3 'Any))
  16167. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  16168. ['Any
  16169. (define e2^^ (make-cast e2^ t2 'Integer))
  16170. (define e3^^ (make-cast e3^ t3 'Any))
  16171. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  16172. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  16173. \end{lstlisting}
  16174. \caption{Type checker for the \LangGrad{} language, part 1.}
  16175. \label{fig:type-check-Rgradual-1}
  16176. \end{figure}
  16177. \begin{figure}[tbp]
  16178. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  16179. [(Prim 'eq? (list e1 e2))
  16180. (define-values (e1^ t1) (recur e1))
  16181. (define-values (e2^ t2) (recur e2))
  16182. (check-consistent? t1 t2 e)
  16183. (define T (meet t1 t2))
  16184. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  16185. 'Boolean)]
  16186. [(Prim 'not (list e1))
  16187. (define-values (e1^ t1) (recur e1))
  16188. (match t1
  16189. ['Any
  16190. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  16191. (Bool #t) (Bool #f)))]
  16192. [else
  16193. (define-values (t-ret new-es^)
  16194. (type-check-op 'not (list t1) (list e1^) e))
  16195. (values (Prim 'not new-es^) t-ret)])]
  16196. [(Prim 'and (list e1 e2))
  16197. (recur (If e1 e2 (Bool #f)))]
  16198. [(Prim 'or (list e1 e2))
  16199. (define tmp (gensym 'tmp))
  16200. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  16201. [(Prim op es)
  16202. #:when (not (set-member? explicit-prim-ops op))
  16203. (define-values (new-es ts)
  16204. (for/lists (exprs types) ([e es])
  16205. (recur e)))
  16206. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  16207. (values (Prim op new-es^) t-ret)]
  16208. [(If e1 e2 e3)
  16209. (define-values (e1^ T1) (recur e1))
  16210. (define-values (e2^ T2) (recur e2))
  16211. (define-values (e3^ T3) (recur e3))
  16212. (check-consistent? T2 T3 e)
  16213. (match T1
  16214. ['Boolean
  16215. (define Tif (join T2 T3))
  16216. (values (If e1^ (make-cast e2^ T2 Tif)
  16217. (make-cast e3^ T3 Tif)) Tif)]
  16218. ['Any
  16219. (define Tif (meet T2 T3))
  16220. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  16221. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  16222. Tif)]
  16223. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  16224. [(HasType e1 T)
  16225. (define-values (e1^ T1) (recur e1))
  16226. (check-consistent? T1 T)
  16227. (values (make-cast e1^ T1 T) T)]
  16228. [(SetBang x e1)
  16229. (define-values (e1^ T1) (recur e1))
  16230. (define varT (dict-ref env x))
  16231. (check-consistent? T1 varT e)
  16232. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  16233. [(WhileLoop e1 e2)
  16234. (define-values (e1^ T1) (recur e1))
  16235. (check-consistent? T1 'Boolean e)
  16236. (define-values (e2^ T2) ((type-check-exp env) e2))
  16237. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  16238. \end{lstlisting}
  16239. \caption{Type checker for the \LangGrad{} language, part 2.}
  16240. \label{fig:type-check-Rgradual-2}
  16241. \end{figure}
  16242. \begin{figure}[tbp]
  16243. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  16244. [(Apply e1 e2s)
  16245. (define-values (e1^ T1) (recur e1))
  16246. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  16247. (match T1
  16248. [`(,T1ps ... -> ,T1rt)
  16249. (for ([T2 T2s] [Tp T1ps])
  16250. (check-consistent? T2 Tp e))
  16251. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  16252. (make-cast e2 src tgt)))
  16253. (values (Apply e1^ e2s^^) T1rt)]
  16254. [`Any
  16255. (define e1^^ (make-cast e1^ 'Any
  16256. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  16257. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  16258. (make-cast e2 src 'Any)))
  16259. (values (Apply e1^^ e2s^^) 'Any)]
  16260. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  16261. [(Lambda params Tr e1)
  16262. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  16263. (match p
  16264. [`[,x : ,T] (values x T)]
  16265. [(? symbol? x) (values x 'Any)])))
  16266. (define-values (e1^ T1)
  16267. ((type-check-exp (append (map cons xs Ts) env)) e1))
  16268. (check-consistent? Tr T1 e)
  16269. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  16270. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  16271. [else ((super type-check-exp env) e)]
  16272. )))
  16273. \end{lstlisting}
  16274. \caption{Type checker for the \LangGrad{} language, part 3.}
  16275. \label{fig:type-check-Rgradual-3}
  16276. \end{figure}
  16277. \begin{figure}[tbp]
  16278. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  16279. (define/public (join t1 t2)
  16280. (match* (t1 t2)
  16281. [('Integer 'Integer) 'Integer]
  16282. [('Boolean 'Boolean) 'Boolean]
  16283. [('Void 'Void) 'Void]
  16284. [('Any t2) t2]
  16285. [(t1 'Any) t1]
  16286. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  16287. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  16288. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  16289. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  16290. -> ,(join rt1 rt2))]))
  16291. (define/public (meet t1 t2)
  16292. (match* (t1 t2)
  16293. [('Integer 'Integer) 'Integer]
  16294. [('Boolean 'Boolean) 'Boolean]
  16295. [('Void 'Void) 'Void]
  16296. [('Any t2) 'Any]
  16297. [(t1 'Any) 'Any]
  16298. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  16299. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  16300. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  16301. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  16302. -> ,(meet rt1 rt2))]))
  16303. (define/public (make-cast e src tgt)
  16304. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  16305. (define/public (check-consistent? t1 t2 e)
  16306. (unless (consistent? t1 t2)
  16307. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  16308. (define/override (type-check-op op arg-types args e)
  16309. (match (dict-ref (operator-types) op)
  16310. [`(,param-types . ,return-type)
  16311. (for ([at arg-types] [pt param-types])
  16312. (check-consistent? at pt e))
  16313. (values return-type
  16314. (for/list ([e args] [s arg-types] [t param-types])
  16315. (make-cast e s t)))]
  16316. [else (error 'type-check-op "unrecognized ~a" op)]))
  16317. (define explicit-prim-ops
  16318. (set-union
  16319. (type-predicates)
  16320. (set 'procedure-arity 'eq?
  16321. 'vector 'vector-length 'vector-ref 'vector-set!
  16322. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  16323. (define/override (fun-def-type d)
  16324. (match d
  16325. [(Def f params rt info body)
  16326. (define ps
  16327. (for/list ([p params])
  16328. (match p
  16329. [`[,x : ,T] T]
  16330. [(? symbol?) 'Any]
  16331. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  16332. `(,@ps -> ,rt)]
  16333. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  16334. \end{lstlisting}
  16335. \caption{Auxiliary functions for type checking \LangGrad{}.}
  16336. \label{fig:type-check-Rgradual-aux}
  16337. \end{figure}
  16338. \clearpage
  16339. \section{Interpreting \LangCast{}}
  16340. \label{sec:interp-casts}
  16341. The runtime behavior of first-order casts is straightforward, that is,
  16342. casts involving simple types such as \code{Integer} and
  16343. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  16344. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  16345. puts the integer into a tagged value
  16346. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  16347. \code{Integer} is accomplished with the \code{Project} operator, that
  16348. is, by checking the value's tag and either retrieving the underlying
  16349. integer or signaling an error if it the tag is not the one for
  16350. integers (Figure~\ref{fig:apply-project}).
  16351. %
  16352. Things get more interesting for higher-order casts, that is, casts
  16353. involving function or vector types.
  16354. Consider the cast of the function \code{maybe-inc} from \code{(Any ->
  16355. Any)} to \code{(Integer -> Integer)}. When a function flows through
  16356. this cast at runtime, we can't know in general whether the function
  16357. will always return an integer.\footnote{Predicting the return value of
  16358. a function is equivalent to the halting problem, which is
  16359. undecidable.} The \LangCast{} interpreter therefore delays the checking
  16360. of the cast until the function is applied. This is accomplished by
  16361. wrapping \code{maybe-inc} in a new function that casts its parameter
  16362. from \code{Integer} to \code{Any}, applies \code{maybe-inc}, and then
  16363. casts the return value from \code{Any} to \code{Integer}.
  16364. Turning our attention to casts involving vector types, we consider the
  16365. example in Figure~\ref{fig:map-bang} that defines a
  16366. partially-typed version of \code{map} whose parameter \code{v} has
  16367. type \code{(Vector Any Any)} and that updates \code{v} in place
  16368. instead of returning a new vector. So we name this function
  16369. \code{map!}. We apply \code{map!} to a vector of integers, so
  16370. the type checker inserts a cast from \code{(Vector Integer Integer)}
  16371. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  16372. cast between vector types would be a build a new vector whose elements
  16373. are the result of casting each of the original elements to the
  16374. appropriate target type. However, this approach is only valid for
  16375. immutable vectors; and our vectors are mutable. In the example of
  16376. Figure~\ref{fig:map-bang}, if the cast created a new vector, then
  16377. the updates inside of \code{map!} would happen to the new vector
  16378. and not the original one.
  16379. \begin{figure}[tbp]
  16380. % gradual_test_11.rkt
  16381. \begin{lstlisting}
  16382. (define (map! [f : (Any -> Any)]
  16383. [v : (Vector Any Any)]) : Void
  16384. (begin
  16385. (vector-set! v 0 (f (vector-ref v 0)))
  16386. (vector-set! v 1 (f (vector-ref v 1)))))
  16387. (define (inc x) (+ x 1))
  16388. (let ([v (vector 0 41)])
  16389. (begin (map! inc v) (vector-ref v 1)))
  16390. \end{lstlisting}
  16391. \caption{An example involving casts on vectors.}
  16392. \label{fig:map-bang}
  16393. \end{figure}
  16394. Instead the interpreter needs to create a new kind of value, a
  16395. \emph{vector proxy}, that intercepts every vector operation. On a
  16396. read, the proxy reads from the underlying vector and then applies a
  16397. cast to the resulting value. On a write, the proxy casts the argument
  16398. value and then performs the write to the underlying vector. For the
  16399. first \code{(vector-ref v 0)} in \code{map!}, the proxy casts
  16400. \code{0} from \code{Integer} to \code{Any}. For the first
  16401. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  16402. to \code{Integer}.
  16403. The final category of cast that we need to consider are casts between
  16404. the \code{Any} type and either a function or a vector
  16405. type. Figure~\ref{fig:map-any} shows a variant of \code{map!}
  16406. in which parameter \code{v} does not have a type annotation, so it is
  16407. given type \code{Any}. In the call to \code{map!}, the vector has
  16408. type \code{(Vector Integer Integer)} so the type checker inserts a
  16409. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  16410. thought is to use \code{Inject}, but that doesn't work because
  16411. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  16412. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  16413. to \code{Any}.
  16414. \begin{figure}[tbp]
  16415. \begin{lstlisting}
  16416. (define (map! [f : (Any -> Any)] v) : Void
  16417. (begin
  16418. (vector-set! v 0 (f (vector-ref v 0)))
  16419. (vector-set! v 1 (f (vector-ref v 1)))))
  16420. (define (inc x) (+ x 1))
  16421. (let ([v (vector 0 41)])
  16422. (begin (map! inc v) (vector-ref v 1)))
  16423. \end{lstlisting}
  16424. \caption{Casting a vector to \code{Any}.}
  16425. \label{fig:map-any}
  16426. \end{figure}
  16427. The \LangCast{} interpreter uses an auxiliary function named
  16428. \code{apply-cast} to cast a value from a source type to a target type,
  16429. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  16430. of the kinds of casts that we've discussed in this section.
  16431. \begin{figure}[tbp]
  16432. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16433. (define/public (apply-cast v s t)
  16434. (match* (s t)
  16435. [(t1 t2) #:when (equal? t1 t2) v]
  16436. [('Any t2)
  16437. (match t2
  16438. [`(,ts ... -> ,rt)
  16439. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  16440. (define v^ (apply-project v any->any))
  16441. (apply-cast v^ any->any `(,@ts -> ,rt))]
  16442. [`(Vector ,ts ...)
  16443. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  16444. (define v^ (apply-project v vec-any))
  16445. (apply-cast v^ vec-any `(Vector ,@ts))]
  16446. [else (apply-project v t2)])]
  16447. [(t1 'Any)
  16448. (match t1
  16449. [`(,ts ... -> ,rt)
  16450. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  16451. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  16452. (apply-inject v^ (any-tag any->any))]
  16453. [`(Vector ,ts ...)
  16454. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  16455. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  16456. (apply-inject v^ (any-tag vec-any))]
  16457. [else (apply-inject v (any-tag t1))])]
  16458. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  16459. (define x (gensym 'x))
  16460. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  16461. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  16462. (define cast-writes
  16463. (for/list ([t1 ts1] [t2 ts2])
  16464. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  16465. `(vector-proxy ,(vector v (apply vector cast-reads)
  16466. (apply vector cast-writes)))]
  16467. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  16468. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  16469. `(function ,xs ,(Cast
  16470. (Apply (Value v)
  16471. (for/list ([x xs][t1 ts1][t2 ts2])
  16472. (Cast (Var x) t2 t1)))
  16473. rt1 rt2) ())]
  16474. ))
  16475. \end{lstlisting}
  16476. \caption{The \code{apply-cast} auxiliary method.}
  16477. \label{fig:apply-cast}
  16478. \end{figure}
  16479. The interpreter for \LangCast{} is defined in
  16480. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  16481. dispatching to \code{apply-cast}. To handle the addition of vector
  16482. proxies, we update the vector primitives in \code{interp-op} using the
  16483. functions in Figure~\ref{fig:guarded-vector}.
  16484. \begin{figure}[tbp]
  16485. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16486. (define interp-Rcast_class
  16487. (class interp-Rwhile_class
  16488. (super-new)
  16489. (inherit apply-fun apply-inject apply-project)
  16490. (define/override (interp-op op)
  16491. (match op
  16492. ['vector-length guarded-vector-length]
  16493. ['vector-ref guarded-vector-ref]
  16494. ['vector-set! guarded-vector-set!]
  16495. ['any-vector-ref (lambda (v i)
  16496. (match v [`(tagged ,v^ ,tg)
  16497. (guarded-vector-ref v^ i)]))]
  16498. ['any-vector-set! (lambda (v i a)
  16499. (match v [`(tagged ,v^ ,tg)
  16500. (guarded-vector-set! v^ i a)]))]
  16501. ['any-vector-length (lambda (v)
  16502. (match v [`(tagged ,v^ ,tg)
  16503. (guarded-vector-length v^)]))]
  16504. [else (super interp-op op)]
  16505. ))
  16506. (define/override ((interp-exp env) e)
  16507. (define (recur e) ((interp-exp env) e))
  16508. (match e
  16509. [(Value v) v]
  16510. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  16511. [else ((super interp-exp env) e)]))
  16512. ))
  16513. (define (interp-Rcast p)
  16514. (send (new interp-Rcast_class) interp-program p))
  16515. \end{lstlisting}
  16516. \caption{The interpreter for \LangCast{}.}
  16517. \label{fig:interp-Rcast}
  16518. \end{figure}
  16519. \begin{figure}[tbp]
  16520. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16521. (define (guarded-vector-ref vec i)
  16522. (match vec
  16523. [`(vector-proxy ,proxy)
  16524. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  16525. (define rd (vector-ref (vector-ref proxy 1) i))
  16526. (apply-fun rd (list val) 'guarded-vector-ref)]
  16527. [else (vector-ref vec i)]))
  16528. (define (guarded-vector-set! vec i arg)
  16529. (match vec
  16530. [`(vector-proxy ,proxy)
  16531. (define wr (vector-ref (vector-ref proxy 2) i))
  16532. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  16533. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  16534. [else (vector-set! vec i arg)]))
  16535. (define (guarded-vector-length vec)
  16536. (match vec
  16537. [`(vector-proxy ,proxy)
  16538. (guarded-vector-length (vector-ref proxy 0))]
  16539. [else (vector-length vec)]))
  16540. \end{lstlisting}
  16541. \caption{The guarded-vector auxiliary functions.}
  16542. \label{fig:guarded-vector}
  16543. \end{figure}
  16544. \section{Lower Casts}
  16545. \label{sec:lower-casts}
  16546. The next step in the journey towards x86 is the \code{lower-casts}
  16547. pass that translates the casts in \LangCast{} to the lower-level
  16548. \code{Inject} and \code{Project} operators and a new operator for
  16549. creating vector proxies, extending the \LangLoop{} language to create
  16550. \LangProxy{}. We recommend creating an auxiliary function named
  16551. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  16552. and a target type, and translates it to expression in \LangProxy{} that has
  16553. the same behavior as casting the expression from the source to the
  16554. target type in the interpreter.
  16555. The \code{lower-cast} function can follow a code structure similar to
  16556. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  16557. the interpreter for \LangCast{} because it must handle the same cases as
  16558. \code{apply-cast} and it needs to mimic the behavior of
  16559. \code{apply-cast}. The most interesting cases are those concerning the
  16560. casts between two vector types and between two function types.
  16561. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  16562. type to another vector type is accomplished by creating a proxy that
  16563. intercepts the operations on the underlying vector. Here we make the
  16564. creation of the proxy explicit with the \code{vector-proxy} primitive
  16565. operation. It takes three arguments, the first is an expression for
  16566. the vector, the second is a vector of functions for casting an element
  16567. that is being read from the vector, and the third is a vector of
  16568. functions for casting an element that is being written to the vector.
  16569. You can create the functions using \code{Lambda}. Also, as we shall
  16570. see in the next section, we need to differentiate these vectors from
  16571. the user-created ones, so we recommend using a new primitive operator
  16572. named \code{raw-vector} instead of \code{vector} to create these
  16573. vectors of functions. Figure~\ref{fig:map-bang-lower-cast} shows
  16574. the output of \code{lower-casts} on the example in
  16575. Figure~\ref{fig:map-bang} that involved casting a vector of
  16576. integers to a vector of \code{Any}.
  16577. \begin{figure}[tbp]
  16578. \begin{lstlisting}
  16579. (define (map! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  16580. (begin
  16581. (vector-set! v 0 (f (vector-ref v 0)))
  16582. (vector-set! v 1 (f (vector-ref v 1)))))
  16583. (define (inc [x : Any]) : Any
  16584. (inject (+ (project x Integer) 1) Integer))
  16585. (let ([v (vector 0 41)])
  16586. (begin
  16587. (map! inc (vector-proxy v
  16588. (raw-vector (lambda: ([x9 : Integer]) : Any
  16589. (inject x9 Integer))
  16590. (lambda: ([x9 : Integer]) : Any
  16591. (inject x9 Integer)))
  16592. (raw-vector (lambda: ([x9 : Any]) : Integer
  16593. (project x9 Integer))
  16594. (lambda: ([x9 : Any]) : Integer
  16595. (project x9 Integer)))))
  16596. (vector-ref v 1)))
  16597. \end{lstlisting}
  16598. \caption{Output of \code{lower-casts} on the example in
  16599. Figure~\ref{fig:map-bang}.}
  16600. \label{fig:map-bang-lower-cast}
  16601. \end{figure}
  16602. A cast from one function type to another function type is accomplished
  16603. by generating a \code{Lambda} whose parameter and return types match
  16604. the target function type. The body of the \code{Lambda} should cast
  16605. the parameters from the target type to the source type (yes,
  16606. backwards! functions are contravariant\index{subject}{contravariant} in the
  16607. parameters), then call the underlying function, and finally cast the
  16608. result from the source return type to the target return type.
  16609. Figure~\ref{fig:map-lower-cast} shows the output of the
  16610. \code{lower-casts} pass on the \code{map} example in
  16611. Figure~\ref{fig:gradual-map}. Note that the \code{inc} argument
  16612. in the call to \code{map} is wrapped in a \code{lambda}.
  16613. \begin{figure}[tbp]
  16614. \begin{lstlisting}
  16615. (define (map [f : (Integer -> Integer)]
  16616. [v : (Vector Integer Integer)])
  16617. : (Vector Integer Integer)
  16618. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  16619. (define (inc [x : Any]) : Any
  16620. (inject (+ (project x Integer) 1) Integer))
  16621. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  16622. (project (inc (inject x9 Integer)) Integer))
  16623. (vector 0 41)) 1)
  16624. \end{lstlisting}
  16625. \caption{Output of \code{lower-casts} on the example in
  16626. Figure~\ref{fig:gradual-map}.}
  16627. \label{fig:map-lower-cast}
  16628. \end{figure}
  16629. \section{Differentiate Proxies}
  16630. \label{sec:differentiate-proxies}
  16631. So far the job of differentiating vectors and vector proxies has been
  16632. the job of the interpreter. For example, the interpreter for \LangCast{}
  16633. implements \code{vector-ref} using the \code{guarded-vector-ref}
  16634. function in Figure~\ref{fig:guarded-vector}. In the
  16635. \code{differentiate-proxies} pass we shift this responsibility to the
  16636. generated code.
  16637. We begin by designing the output language $R^p_8$. In
  16638. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  16639. proxies. In $R^p_8$ we return the \code{Vector} type to
  16640. its original meaning, as the type of real vectors, and we introduce a
  16641. new type, \code{PVector}, whose values can be either real vectors or
  16642. vector proxies. This new type comes with a suite of new primitive
  16643. operations for creating and using values of type \code{PVector}. We
  16644. don't need to introduce a new type to represent vector proxies. A
  16645. proxy is represented by a vector containing three things: 1) the
  16646. underlying vector, 2) a vector of functions for casting elements that
  16647. are read from the vector, and 3) a vector of functions for casting
  16648. values to be written to the vector. So we define the following
  16649. abbreviation for the type of a vector proxy:
  16650. \[
  16651. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  16652. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  16653. \to (\key{PVector}~ T' \ldots)
  16654. \]
  16655. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  16656. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  16657. %
  16658. Next we describe each of the new primitive operations.
  16659. \begin{description}
  16660. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  16661. (\key{PVector} $T \ldots$)]\ \\
  16662. %
  16663. This operation brands a vector as a value of the \code{PVector} type.
  16664. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  16665. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  16666. %
  16667. This operation brands a vector proxy as value of the \code{PVector} type.
  16668. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  16669. \code{Boolean}] \ \\
  16670. %
  16671. returns true if the value is a vector proxy and false if it is a
  16672. real vector.
  16673. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  16674. (\key{Vector} $T \ldots$)]\ \\
  16675. %
  16676. Assuming that the input is a vector (and not a proxy), this
  16677. operation returns the vector.
  16678. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  16679. $\to$ \code{Boolean}]\ \\
  16680. %
  16681. Given a vector proxy, this operation returns the length of the
  16682. underlying vector.
  16683. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  16684. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  16685. %
  16686. Given a vector proxy, this operation returns the $i$th element of
  16687. the underlying vector.
  16688. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  16689. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  16690. proxy, this operation writes a value to the $i$th element of the
  16691. underlying vector.
  16692. \end{description}
  16693. Now to discuss the translation that differentiates vectors from
  16694. proxies. First, every type annotation in the program must be
  16695. translated (recursively) to replace \code{Vector} with \code{PVector}.
  16696. Next, we must insert uses of \code{PVector} operations in the
  16697. appropriate places. For example, we wrap every vector creation with an
  16698. \code{inject-vector}.
  16699. \begin{lstlisting}
  16700. (vector |$e_1 \ldots e_n$|)
  16701. |$\Rightarrow$|
  16702. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  16703. \end{lstlisting}
  16704. The \code{raw-vector} operator that we introduced in the previous
  16705. section does not get injected.
  16706. \begin{lstlisting}
  16707. (raw-vector |$e_1 \ldots e_n$|)
  16708. |$\Rightarrow$|
  16709. (vector |$e'_1 \ldots e'_n$|)
  16710. \end{lstlisting}
  16711. The \code{vector-proxy} primitive translates as follows.
  16712. \begin{lstlisting}
  16713. (vector-proxy |$e_1~e_2~e_3$|)
  16714. |$\Rightarrow$|
  16715. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  16716. \end{lstlisting}
  16717. We translate the vector operations into conditional expressions that
  16718. check whether the value is a proxy and then dispatch to either the
  16719. appropriate proxy vector operation or the regular vector operation.
  16720. For example, the following is the translation for \code{vector-ref}.
  16721. \begin{lstlisting}
  16722. (vector-ref |$e_1$| |$i$|)
  16723. |$\Rightarrow$|
  16724. (let ([|$v~e_1$|])
  16725. (if (proxy? |$v$|)
  16726. (proxy-vector-ref |$v$| |$i$|)
  16727. (vector-ref (project-vector |$v$|) |$i$|)
  16728. \end{lstlisting}
  16729. Note in the case of a real vector, we must apply \code{project-vector}
  16730. before the \code{vector-ref}.
  16731. \section{Reveal Casts}
  16732. \label{sec:reveal-casts-gradual}
  16733. Recall that the \code{reveal-casts} pass
  16734. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  16735. \code{Inject} and \code{Project} into lower-level operations. In
  16736. particular, \code{Project} turns into a conditional expression that
  16737. inspects the tag and retrieves the underlying value. Here we need to
  16738. augment the translation of \code{Project} to handle the situation when
  16739. the target type is \code{PVector}. Instead of using
  16740. \code{vector-length} we need to use \code{proxy-vector-length}.
  16741. \begin{lstlisting}
  16742. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  16743. |$\Rightarrow$|
  16744. (let |$\itm{tmp}$| |$e'$|
  16745. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  16746. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  16747. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  16748. (exit)))
  16749. \end{lstlisting}
  16750. \section{Closure Conversion}
  16751. \label{sec:closure-conversion-gradual}
  16752. The closure conversion pass only requires one minor adjustment. The
  16753. auxiliary function that translates type annotations needs to be
  16754. updated to handle the \code{PVector} type.
  16755. \section{Explicate Control}
  16756. \label{sec:explicate-control-gradual}
  16757. Update the \code{explicate\_control} pass to handle the new primitive
  16758. operations on the \code{PVector} type.
  16759. \section{Select Instructions}
  16760. \label{sec:select-instructions-gradual}
  16761. Recall that the \code{select\_instructions} pass is responsible for
  16762. lowering the primitive operations into x86 instructions. So we need
  16763. to translate the new \code{PVector} operations to x86. To do so, the
  16764. first question we need to answer is how will we differentiate the two
  16765. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  16766. We need just one bit to accomplish this, and use the bit in position
  16767. $57$ of the 64-bit tag at the front of every vector (see
  16768. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  16769. for \code{inject-vector} we leave it that way.
  16770. \begin{lstlisting}
  16771. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  16772. |$\Rightarrow$|
  16773. movq |$e'_1$|, |$\itm{lhs'}$|
  16774. \end{lstlisting}
  16775. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  16776. \begin{lstlisting}
  16777. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  16778. |$\Rightarrow$|
  16779. movq |$e'_1$|, %r11
  16780. movq |$(1 << 57)$|, %rax
  16781. orq 0(%r11), %rax
  16782. movq %rax, 0(%r11)
  16783. movq %r11, |$\itm{lhs'}$|
  16784. \end{lstlisting}
  16785. The \code{proxy?} operation consumes the information so carefully
  16786. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  16787. isolates the $57$th bit to tell whether the value is a real vector or
  16788. a proxy.
  16789. \begin{lstlisting}
  16790. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  16791. |$\Rightarrow$|
  16792. movq |$e_1'$|, %r11
  16793. movq 0(%r11), %rax
  16794. sarq $57, %rax
  16795. andq $1, %rax
  16796. movq %rax, |$\itm{lhs'}$|
  16797. \end{lstlisting}
  16798. The \code{project-vector} operation is straightforward to translate,
  16799. so we leave it up to the reader.
  16800. Regarding the \code{proxy-vector} operations, the runtime provides
  16801. procedures that implement them (they are recursive functions!) so
  16802. here we simply need to translate these vector operations into the
  16803. appropriate function call. For example, here is the translation for
  16804. \code{proxy-vector-ref}.
  16805. \begin{lstlisting}
  16806. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  16807. |$\Rightarrow$|
  16808. movq |$e_1'$|, %rdi
  16809. movq |$e_2'$|, %rsi
  16810. callq proxy_vector_ref
  16811. movq %rax, |$\itm{lhs'}$|
  16812. \end{lstlisting}
  16813. We have another batch of vector operations to deal with, those for the
  16814. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  16815. \code{any-vector-ref} when there is a \code{vector-ref} on something
  16816. of type \code{Any}, and similarly for \code{any-vector-set!} and
  16817. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  16818. Section~\ref{sec:select-Rany} we selected instructions for these
  16819. operations based on the idea that the underlying value was a real
  16820. vector. But in the current setting, the underlying value is of type
  16821. \code{PVector}. So \code{any-vector-ref} can be translates to
  16822. pseudo-x86 as follows. We begin by projecting the underlying value out
  16823. of the tagged value and then call the \code{proxy\_vector\_ref}
  16824. procedure in the runtime.
  16825. \begin{lstlisting}
  16826. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  16827. movq |$\neg 111$|, %rdi
  16828. andq |$e_1'$|, %rdi
  16829. movq |$e_2'$|, %rsi
  16830. callq proxy_vector_ref
  16831. movq %rax, |$\itm{lhs'}$|
  16832. \end{lstlisting}
  16833. The \code{any-vector-set!} and \code{any-vector-length} operators can
  16834. be translated in a similar way.
  16835. \begin{exercise}\normalfont
  16836. Implement a compiler for the gradually-typed \LangGrad{} language by
  16837. extending and adapting your compiler for \LangLoop{}. Create 10 new
  16838. partially-typed test programs. In addition to testing with these
  16839. new programs, also test your compiler on all the tests for \LangLoop{}
  16840. and tests for \LangDyn{}. Sometimes you may get a type checking error
  16841. on the \LangDyn{} programs but you can adapt them by inserting
  16842. a cast to the \code{Any} type around each subexpression
  16843. causing a type error. While \LangDyn{} does not have explicit casts,
  16844. you can induce one by wrapping the subexpression \code{e}
  16845. with a call to an un-annotated identity function, like this:
  16846. \code{((lambda (x) x) e)}.
  16847. \end{exercise}
  16848. \begin{figure}[p]
  16849. \begin{tikzpicture}[baseline=(current bounding box.center)]
  16850. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  16851. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  16852. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  16853. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  16854. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  16855. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  16856. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  16857. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  16858. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  16859. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  16860. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  16861. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  16862. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  16863. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  16864. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  16865. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  16866. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  16867. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  16868. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  16869. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  16870. \path[->,bend right=15] (Rgradual) edge [above] node
  16871. {\ttfamily\footnotesize type\_check} (Rgradualp);
  16872. \path[->,bend right=15] (Rgradualp) edge [above] node
  16873. {\ttfamily\footnotesize lower\_casts} (Rwhilepp);
  16874. \path[->,bend right=15] (Rwhilepp) edge [right] node
  16875. {\ttfamily\footnotesize differentiate\_proxies} (Rwhileproxy);
  16876. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  16877. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  16878. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  16879. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  16880. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  16881. {\ttfamily\footnotesize reveal\_functions} (Rwhileproxy-4);
  16882. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  16883. {\ttfamily\footnotesize reveal\_casts} (Rwhileproxy-5);
  16884. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  16885. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16886. \path[->,bend left=15] (F1-1) edge [below] node
  16887. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  16888. \path[->,bend right=15] (F1-2) edge [above] node
  16889. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  16890. \path[->,bend right=15] (F1-3) edge [above] node
  16891. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  16892. \path[->,bend right=15] (F1-4) edge [above] node
  16893. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  16894. \path[->,bend right=15] (F1-5) edge [right] node
  16895. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16896. \path[->,bend left=15] (C3-2) edge [left] node
  16897. {\ttfamily\footnotesize select\_instr.} (x86-2);
  16898. \path[->,bend right=15] (x86-2) edge [left] node
  16899. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16900. \path[->,bend right=15] (x86-2-1) edge [below] node
  16901. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  16902. \path[->,bend right=15] (x86-2-2) edge [left] node
  16903. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  16904. \path[->,bend left=15] (x86-3) edge [above] node
  16905. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  16906. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  16907. \end{tikzpicture}
  16908. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  16909. \label{fig:Rgradual-passes}
  16910. \end{figure}
  16911. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  16912. for the compilation of \LangGrad{}.
  16913. \section{Further Reading}
  16914. This chapter just scratches the surface of gradual typing. The basic
  16915. approach described here is missing two key ingredients that one would
  16916. want in a implementation of gradual typing: blame
  16917. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  16918. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  16919. problem addressed by blame tracking is that when a cast on a
  16920. higher-order value fails, it often does so at a point in the program
  16921. that is far removed from the original cast. Blame tracking is a
  16922. technique for propagating extra information through casts and proxies
  16923. so that when a cast fails, the error message can point back to the
  16924. original location of the cast in the source program.
  16925. The problem addressed by space-efficient casts also relates to
  16926. higher-order casts. It turns out that in partially typed programs, a
  16927. function or vector can flow through very-many casts at runtime. With
  16928. the approach described in this chapter, each cast adds another
  16929. \code{lambda} wrapper or a vector proxy. Not only does this take up
  16930. considerable space, but it also makes the function calls and vector
  16931. operations slow. For example, a partially-typed version of quicksort
  16932. could, in the worst case, build a chain of proxies of length $O(n)$
  16933. around the vector, changing the overall time complexity of the
  16934. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  16935. solution to this problem by representing casts using the coercion
  16936. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  16937. long chains of proxies by compressing them into a concise normal
  16938. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  16939. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  16940. the Grift compiler.
  16941. \begin{center}
  16942. \url{https://github.com/Gradual-Typing/Grift}
  16943. \end{center}
  16944. There are also interesting interactions between gradual typing and
  16945. other language features, such as parametetric polymorphism,
  16946. information-flow types, and type inference, to name a few. We
  16947. recommend the reader to the online gradual typing bibliography:
  16948. \begin{center}
  16949. \url{http://samth.github.io/gradual-typing-bib/}
  16950. \end{center}
  16951. % TODO: challenge problem:
  16952. % type analysis and type specialization?
  16953. % coercions?
  16954. \fi
  16955. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16956. \chapter{Parametric Polymorphism}
  16957. \label{ch:Lpoly}
  16958. \index{subject}{parametric polymorphism}
  16959. \index{subject}{generics}
  16960. \if\edition\racketEd
  16961. This chapter studies the compilation of parametric
  16962. polymorphism\index{subject}{parametric polymorphism}
  16963. (aka. generics\index{subject}{generics}) in the subset \LangPoly{} of Typed
  16964. Racket. Parametric polymorphism enables improved code reuse by
  16965. parameterizing functions and data structures with respect to the types
  16966. that they operate on. For example, Figure~\ref{fig:map-poly}
  16967. revisits the \code{map} example but this time gives it a more
  16968. fitting type. This \code{map} function is parameterized with
  16969. respect to the element type of the vector. The type of \code{map}
  16970. is the following polymorphic type as specified by the \code{All} and
  16971. the type parameter \code{a}.
  16972. \begin{lstlisting}
  16973. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  16974. \end{lstlisting}
  16975. The idea is that \code{map} can be used at \emph{all} choices of a
  16976. type for parameter \code{a}. In Figure~\ref{fig:map-poly} we apply
  16977. \code{map} to a vector of integers, a choice of \code{Integer} for
  16978. \code{a}, but we could have just as well applied \code{map} to a
  16979. vector of Booleans (and a function on Booleans).
  16980. \begin{figure}[tbp]
  16981. % poly_test_2.rkt
  16982. \begin{lstlisting}
  16983. (: map (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  16984. (define (map f v)
  16985. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  16986. (define (inc [x : Integer]) : Integer (+ x 1))
  16987. (vector-ref (map inc (vector 0 41)) 1)
  16988. \end{lstlisting}
  16989. \caption{The \code{map} example using parametric polymorphism.}
  16990. \label{fig:map-poly}
  16991. \end{figure}
  16992. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  16993. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  16994. syntax. We add a second form for function definitions in which a type
  16995. declaration comes before the \code{define}. In the abstract syntax,
  16996. the return type in the \code{Def} is \code{Any}, but that should be
  16997. ignored in favor of the return type in the type declaration. (The
  16998. \code{Any} comes from using the same parser as in
  16999. Chapter~\ref{ch:Ldyn}.) The presence of a type declaration
  17000. enables the use of an \code{All} type for a function, thereby making
  17001. it polymorphic. The grammar for types is extended to include
  17002. polymorphic types and type variables.
  17003. \begin{figure}[tp]
  17004. \centering
  17005. \fbox{
  17006. \begin{minipage}{0.96\textwidth}
  17007. \small
  17008. \[
  17009. \begin{array}{lcl}
  17010. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  17011. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  17012. &\MID& \LP\key{:}~\Var~\Type\RP \\
  17013. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  17014. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  17015. \end{array}
  17016. \]
  17017. \end{minipage}
  17018. }
  17019. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  17020. (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  17021. \label{fig:Rpoly-concrete-syntax}
  17022. \end{figure}
  17023. \begin{figure}[tp]
  17024. \centering
  17025. \fbox{
  17026. \begin{minipage}{0.96\textwidth}
  17027. \small
  17028. \[
  17029. \begin{array}{lcl}
  17030. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  17031. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  17032. &\MID& \DECL{\Var}{\Type} \\
  17033. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  17034. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  17035. \end{array}
  17036. \]
  17037. \end{minipage}
  17038. }
  17039. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  17040. (Figure~\ref{fig:Lwhile-syntax}).}
  17041. \label{fig:Rpoly-syntax}
  17042. \end{figure}
  17043. By including polymorphic types in the $\Type$ non-terminal we choose
  17044. to make them first-class which has interesting repercussions on the
  17045. compiler. Many languages with polymorphism, such as
  17046. C++~\citep{stroustrup88:_param_types} and Standard
  17047. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  17048. it is useful to see an example of first-class polymorphism. In
  17049. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  17050. whose parameter is a polymorphic function. The occurrence of a
  17051. polymorphic type underneath a function type is enabled by the normal
  17052. recursive structure of the grammar for $\Type$ and the categorization
  17053. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  17054. applies the polymorphic function to a Boolean and to an integer.
  17055. \begin{figure}[tbp]
  17056. \begin{lstlisting}
  17057. (: apply-twice ((All (b) (b -> b)) -> Integer))
  17058. (define (apply-twice f)
  17059. (if (f #t) (f 42) (f 777)))
  17060. (: id (All (a) (a -> a)))
  17061. (define (id x) x)
  17062. (apply-twice id)
  17063. \end{lstlisting}
  17064. \caption{An example illustrating first-class polymorphism.}
  17065. \label{fig:apply-twice}
  17066. \end{figure}
  17067. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Lvar0} has
  17068. three new responsibilities (compared to \LangLoop{}). The type checking of
  17069. function application is extended to handle the case where the operator
  17070. expression is a polymorphic function. In that case the type arguments
  17071. are deduced by matching the type of the parameters with the types of
  17072. the arguments.
  17073. %
  17074. The \code{match-types} auxiliary function carries out this deduction
  17075. by recursively descending through a parameter type \code{pt} and the
  17076. corresponding argument type \code{at}, making sure that they are equal
  17077. except when there is a type parameter on the left (in the parameter
  17078. type). If it's the first time that the type parameter has been
  17079. encountered, then the algorithm deduces an association of the type
  17080. parameter to the corresponding type on the right (in the argument
  17081. type). If it's not the first time that the type parameter has been
  17082. encountered, the algorithm looks up its deduced type and makes sure
  17083. that it is equal to the type on the right.
  17084. %
  17085. Once the type arguments are deduced, the operator expression is
  17086. wrapped in an \code{Inst} AST node (for instantiate) that records the
  17087. type of the operator, but more importantly, records the deduced type
  17088. arguments. The return type of the application is the return type of
  17089. the polymorphic function, but with the type parameters replaced by the
  17090. deduced type arguments, using the \code{subst-type} function.
  17091. The second responsibility of the type checker is extending the
  17092. function \code{type-equal?} to handle the \code{All} type. This is
  17093. not quite a simple as equal on other types, such as function and
  17094. vector types, because two polymorphic types can be syntactically
  17095. different even though they are equivalent types. For example,
  17096. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  17097. Two polymorphic types should be considered equal if they differ only
  17098. in the choice of the names of the type parameters. The
  17099. \code{type-equal?} function in Figure~\ref{fig:type-check-Lvar0-aux}
  17100. renames the type parameters of the first type to match the type
  17101. parameters of the second type.
  17102. The third responsibility of the type checker is making sure that only
  17103. defined type variables appear in type annotations. The
  17104. \code{check-well-formed} function defined in
  17105. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  17106. sure that each type variable has been defined.
  17107. The output language of the type checker is \LangInst{}, defined in
  17108. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  17109. declaration and polymorphic function into a single definition, using
  17110. the \code{Poly} form, to make polymorphic functions more convenient to
  17111. process in next pass of the compiler.
  17112. \begin{figure}[tp]
  17113. \centering
  17114. \fbox{
  17115. \begin{minipage}{0.96\textwidth}
  17116. \small
  17117. \[
  17118. \begin{array}{lcl}
  17119. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  17120. \Exp &::=& \ldots \MID \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  17121. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  17122. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  17123. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  17124. \end{array}
  17125. \]
  17126. \end{minipage}
  17127. }
  17128. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  17129. (Figure~\ref{fig:Lwhile-syntax}).}
  17130. \label{fig:Rpoly-prime-syntax}
  17131. \end{figure}
  17132. The output of the type checker on the polymorphic \code{map}
  17133. example is listed in Figure~\ref{fig:map-type-check}.
  17134. \begin{figure}[tbp]
  17135. % poly_test_2.rkt
  17136. \begin{lstlisting}
  17137. (poly (a) (define (map [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  17138. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  17139. (define (inc [x : Integer]) : Integer (+ x 1))
  17140. (vector-ref ((inst map (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  17141. (Integer))
  17142. inc (vector 0 41)) 1)
  17143. \end{lstlisting}
  17144. \caption{Output of the type checker on the \code{map} example.}
  17145. \label{fig:map-type-check}
  17146. \end{figure}
  17147. \begin{figure}[tbp]
  17148. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17149. (define type-check-poly-class
  17150. (class type-check-Rwhile-class
  17151. (super-new)
  17152. (inherit check-type-equal?)
  17153. (define/override (type-check-apply env e1 es)
  17154. (define-values (e^ ty) ((type-check-exp env) e1))
  17155. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  17156. ((type-check-exp env) e)))
  17157. (match ty
  17158. [`(,ty^* ... -> ,rt)
  17159. (for ([arg-ty ty*] [param-ty ty^*])
  17160. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  17161. (values e^ es^ rt)]
  17162. [`(All ,xs (,tys ... -> ,rt))
  17163. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  17164. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  17165. (match-types env^^ param-ty arg-ty)))
  17166. (define targs
  17167. (for/list ([x xs])
  17168. (match (dict-ref env^^ x (lambda () #f))
  17169. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  17170. x (Apply e1 es))]
  17171. [ty ty])))
  17172. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  17173. [else (error 'type-check "expected a function, not ~a" ty)]))
  17174. (define/override ((type-check-exp env) e)
  17175. (match e
  17176. [(Lambda `([,xs : ,Ts] ...) rT body)
  17177. (for ([T Ts]) ((check-well-formed env) T))
  17178. ((check-well-formed env) rT)
  17179. ((super type-check-exp env) e)]
  17180. [(HasType e1 ty)
  17181. ((check-well-formed env) ty)
  17182. ((super type-check-exp env) e)]
  17183. [else ((super type-check-exp env) e)]))
  17184. (define/override ((type-check-def env) d)
  17185. (verbose 'type-check "poly/def" d)
  17186. (match d
  17187. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  17188. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  17189. (for ([p ps]) ((check-well-formed ts-env) p))
  17190. ((check-well-formed ts-env) rt)
  17191. (define new-env (append ts-env (map cons xs ps) env))
  17192. (define-values (body^ ty^) ((type-check-exp new-env) body))
  17193. (check-type-equal? ty^ rt body)
  17194. (Generic ts (Def f p:t* rt info body^))]
  17195. [else ((super type-check-def env) d)]))
  17196. (define/override (type-check-program p)
  17197. (match p
  17198. [(Program info body)
  17199. (type-check-program (ProgramDefsExp info '() body))]
  17200. [(ProgramDefsExp info ds body)
  17201. (define ds^ (combine-decls-defs ds))
  17202. (define new-env (for/list ([d ds^])
  17203. (cons (def-name d) (fun-def-type d))))
  17204. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  17205. (define-values (body^ ty) ((type-check-exp new-env) body))
  17206. (check-type-equal? ty 'Integer body)
  17207. (ProgramDefsExp info ds^^ body^)]))
  17208. ))
  17209. \end{lstlisting}
  17210. \caption{Type checker for the \LangPoly{} language.}
  17211. \label{fig:type-check-Lvar0}
  17212. \end{figure}
  17213. \begin{figure}[tbp]
  17214. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17215. (define/override (type-equal? t1 t2)
  17216. (match* (t1 t2)
  17217. [(`(All ,xs ,T1) `(All ,ys ,T2))
  17218. (define env (map cons xs ys))
  17219. (type-equal? (subst-type env T1) T2)]
  17220. [(other wise)
  17221. (super type-equal? t1 t2)]))
  17222. (define/public (match-types env pt at)
  17223. (match* (pt at)
  17224. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  17225. [('Void 'Void) env] [('Any 'Any) env]
  17226. [(`(Vector ,pts ...) `(Vector ,ats ...))
  17227. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  17228. (match-types env^ pt1 at1))]
  17229. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  17230. (define env^ (match-types env prt art))
  17231. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  17232. (match-types env^^ pt1 at1))]
  17233. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  17234. (define env^ (append (map cons pxs axs) env))
  17235. (match-types env^ pt1 at1)]
  17236. [((? symbol? x) at)
  17237. (match (dict-ref env x (lambda () #f))
  17238. [#f (error 'type-check "undefined type variable ~a" x)]
  17239. ['Type (cons (cons x at) env)]
  17240. [t^ (check-type-equal? at t^ 'matching) env])]
  17241. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  17242. (define/public (subst-type env pt)
  17243. (match pt
  17244. ['Integer 'Integer] ['Boolean 'Boolean]
  17245. ['Void 'Void] ['Any 'Any]
  17246. [`(Vector ,ts ...)
  17247. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  17248. [`(,ts ... -> ,rt)
  17249. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  17250. [`(All ,xs ,t)
  17251. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  17252. [(? symbol? x) (dict-ref env x)]
  17253. [else (error 'type-check "expected a type not ~a" pt)]))
  17254. (define/public (combine-decls-defs ds)
  17255. (match ds
  17256. ['() '()]
  17257. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  17258. (unless (equal? name f)
  17259. (error 'type-check "name mismatch, ~a != ~a" name f))
  17260. (match type
  17261. [`(All ,xs (,ps ... -> ,rt))
  17262. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  17263. (cons (Generic xs (Def name params^ rt info body))
  17264. (combine-decls-defs ds^))]
  17265. [`(,ps ... -> ,rt)
  17266. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  17267. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  17268. [else (error 'type-check "expected a function type, not ~a" type) ])]
  17269. [`(,(Def f params rt info body) . ,ds^)
  17270. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  17271. \end{lstlisting}
  17272. \caption{Auxiliary functions for type checking \LangPoly{}.}
  17273. \label{fig:type-check-Lvar0-aux}
  17274. \end{figure}
  17275. \begin{figure}[tbp]
  17276. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  17277. (define/public ((check-well-formed env) ty)
  17278. (match ty
  17279. ['Integer (void)]
  17280. ['Boolean (void)]
  17281. ['Void (void)]
  17282. [(? symbol? a)
  17283. (match (dict-ref env a (lambda () #f))
  17284. ['Type (void)]
  17285. [else (error 'type-check "undefined type variable ~a" a)])]
  17286. [`(Vector ,ts ...)
  17287. (for ([t ts]) ((check-well-formed env) t))]
  17288. [`(,ts ... -> ,t)
  17289. (for ([t ts]) ((check-well-formed env) t))
  17290. ((check-well-formed env) t)]
  17291. [`(All ,xs ,t)
  17292. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  17293. ((check-well-formed env^) t)]
  17294. [else (error 'type-check "unrecognized type ~a" ty)]))
  17295. \end{lstlisting}
  17296. \caption{Well-formed types.}
  17297. \label{fig:well-formed-types}
  17298. \end{figure}
  17299. % TODO: interpreter for R'_10
  17300. \section{Compiling Polymorphism}
  17301. \label{sec:compiling-poly}
  17302. Broadly speaking, there are four approaches to compiling parametric
  17303. polymorphism, which we describe below.
  17304. \begin{description}
  17305. \item[Monomorphization] generates a different version of a polymorphic
  17306. function for each set of type arguments that it is used with,
  17307. producing type-specialized code. This approach results in the most
  17308. efficient code but requires whole-program compilation (no separate
  17309. compilation) and increases code size. For our current purposes
  17310. monomorphization is a non-starter because, with first-class
  17311. polymorphism, it is sometimes not possible to determine which
  17312. generic functions are used with which type arguments during
  17313. compilation. (It can be done at runtime, with just-in-time
  17314. compilation.) This approach is used to compile C++
  17315. templates~\citep{stroustrup88:_param_types} and polymorphic
  17316. functions in NESL~\citep{Blelloch:1993aa} and
  17317. ML~\citep{Weeks:2006aa}.
  17318. \item[Uniform representation] generates one version of each
  17319. polymorphic function but requires all values have a common ``boxed''
  17320. format, such as the tagged values of type \code{Any} in
  17321. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  17322. similarly to code in a dynamically typed language (like \LangDyn{}),
  17323. in which primitive operators require their arguments to be projected
  17324. from \code{Any} and their results are injected into \code{Any}. (In
  17325. object-oriented languages, the projection is accomplished via
  17326. virtual method dispatch.) The uniform representation approach is
  17327. compatible with separate compilation and with first-class
  17328. polymorphism. However, it produces the least-efficient code because
  17329. it introduces overhead in the entire program, including
  17330. non-polymorphic code. This approach is used in implementations of
  17331. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  17332. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  17333. Java~\citep{Bracha:1998fk}.
  17334. \item[Mixed representation] generates one version of each polymorphic
  17335. function, using a boxed representation for type
  17336. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  17337. and conversions are performed at the boundaries between monomorphic
  17338. and polymorphic (e.g. when a polymorphic function is instantiated
  17339. and called). This approach is compatible with separate compilation
  17340. and first-class polymorphism and maintains the efficiency of
  17341. monomorphic code. The tradeoff is increased overhead at the boundary
  17342. between monomorphic and polymorphic code. This approach is used in
  17343. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  17344. Java 5 with the addition of autoboxing.
  17345. \item[Type passing] uses the unboxed representation in both
  17346. monomorphic and polymorphic code. Each polymorphic function is
  17347. compiled to a single function with extra parameters that describe
  17348. the type arguments. The type information is used by the generated
  17349. code to know how to access the unboxed values at runtime. This
  17350. approach is used in implementation of the Napier88
  17351. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  17352. passing is compatible with separate compilation and first-class
  17353. polymorphism and maintains the efficiency for monomorphic
  17354. code. There is runtime overhead in polymorphic code from dispatching
  17355. on type information.
  17356. \end{description}
  17357. In this chapter we use the mixed representation approach, partly
  17358. because of its favorable attributes, and partly because it is
  17359. straightforward to implement using the tools that we have already
  17360. built to support gradual typing. To compile polymorphic functions, we
  17361. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  17362. \LangCast{}.
  17363. \section{Erase Types}
  17364. \label{sec:erase-types}
  17365. We use the \code{Any} type from Chapter~\ref{ch:Ldyn} to
  17366. represent type variables. For example, Figure~\ref{fig:map-erase}
  17367. shows the output of the \code{erase-types} pass on the polymorphic
  17368. \code{map} (Figure~\ref{fig:map-poly}). The occurrences of
  17369. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  17370. \code{All} types are removed from the type of \code{map}.
  17371. \begin{figure}[tbp]
  17372. \begin{lstlisting}
  17373. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  17374. : (Vector Any Any)
  17375. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  17376. (define (inc [x : Integer]) : Integer (+ x 1))
  17377. (vector-ref ((cast map
  17378. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  17379. ((Integer -> Integer) (Vector Integer Integer)
  17380. -> (Vector Integer Integer)))
  17381. inc (vector 0 41)) 1)
  17382. \end{lstlisting}
  17383. \caption{The polymorphic \code{map} example after type erasure.}
  17384. \label{fig:map-erase}
  17385. \end{figure}
  17386. This process of type erasure creates a challenge at points of
  17387. instantiation. For example, consider the instantiation of
  17388. \code{map} in Figure~\ref{fig:map-type-check}.
  17389. The type of \code{map} is
  17390. \begin{lstlisting}
  17391. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  17392. \end{lstlisting}
  17393. and it is instantiated to
  17394. \begin{lstlisting}
  17395. ((Integer -> Integer) (Vector Integer Integer)
  17396. -> (Vector Integer Integer))
  17397. \end{lstlisting}
  17398. After erasure, the type of \code{map} is
  17399. \begin{lstlisting}
  17400. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  17401. \end{lstlisting}
  17402. but we need to convert it to the instantiated type. This is easy to
  17403. do in the target language \LangCast{} with a single \code{cast}. In
  17404. Figure~\ref{fig:map-erase}, the instantiation of \code{map}
  17405. has been compiled to a \code{cast} from the type of \code{map} to
  17406. the instantiated type. The source and target type of a cast must be
  17407. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  17408. because both the source and target are obtained from the same
  17409. polymorphic type of \code{map}, replacing the type parameters with
  17410. \code{Any} in the former and with the deduced type arguments in the
  17411. later. (Recall that the \code{Any} type is consistent with any type.)
  17412. To implement the \code{erase-types} pass, we recommend defining a
  17413. recursive auxiliary function named \code{erase-type} that applies the
  17414. following two transformations. It replaces type variables with
  17415. \code{Any}
  17416. \begin{lstlisting}
  17417. |$x$|
  17418. |$\Rightarrow$|
  17419. Any
  17420. \end{lstlisting}
  17421. and it removes the polymorphic \code{All} types.
  17422. \begin{lstlisting}
  17423. (All |$xs$| |$T_1$|)
  17424. |$\Rightarrow$|
  17425. |$T'_1$|
  17426. \end{lstlisting}
  17427. Apply the \code{erase-type} function to all of the type annotations in
  17428. the program.
  17429. Regarding the translation of expressions, the case for \code{Inst} is
  17430. the interesting one. We translate it into a \code{Cast}, as shown
  17431. below. The type of the subexpression $e$ is the polymorphic type
  17432. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  17433. $T$, the type $T'$. The target type $T''$ is the result of
  17434. substituting the arguments types $ts$ for the type parameters $xs$ in
  17435. $T$ followed by doing type erasure.
  17436. \begin{lstlisting}
  17437. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  17438. |$\Rightarrow$|
  17439. (Cast |$e'$| |$T'$| |$T''$|)
  17440. \end{lstlisting}
  17441. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  17442. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  17443. Finally, each polymorphic function is translated to a regular
  17444. functions in which type erasure has been applied to all the type
  17445. annotations and the body.
  17446. \begin{lstlisting}
  17447. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  17448. |$\Rightarrow$|
  17449. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  17450. \end{lstlisting}
  17451. \begin{exercise}\normalfont
  17452. Implement a compiler for the polymorphic language \LangPoly{} by
  17453. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  17454. programs that use polymorphic functions. Some of them should make
  17455. use of first-class polymorphism.
  17456. \end{exercise}
  17457. \begin{figure}[p]
  17458. \begin{tikzpicture}[baseline=(current bounding box.center)]
  17459. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  17460. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  17461. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  17462. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  17463. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  17464. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  17465. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  17466. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  17467. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  17468. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  17469. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  17470. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  17471. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  17472. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  17473. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  17474. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  17475. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  17476. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  17477. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  17478. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  17479. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  17480. \path[->,bend right=15] (Rpoly) edge [above] node
  17481. {\ttfamily\footnotesize type\_check} (Rpolyp);
  17482. \path[->,bend right=15] (Rpolyp) edge [above] node
  17483. {\ttfamily\footnotesize erase\_types} (Rgradualp);
  17484. \path[->,bend right=15] (Rgradualp) edge [above] node
  17485. {\ttfamily\footnotesize lower\_casts} (Rwhilepp);
  17486. \path[->,bend right=15] (Rwhilepp) edge [right] node
  17487. {\ttfamily\footnotesize differentiate\_proxies} (Rwhileproxy);
  17488. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  17489. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  17490. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  17491. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  17492. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  17493. {\ttfamily\footnotesize reveal\_functions} (Rwhileproxy-4);
  17494. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  17495. {\ttfamily\footnotesize reveal\_casts} (Rwhileproxy-5);
  17496. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  17497. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  17498. \path[->,bend left=15] (F1-1) edge [below] node
  17499. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  17500. \path[->,bend right=15] (F1-2) edge [above] node
  17501. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  17502. \path[->,bend right=15] (F1-3) edge [above] node
  17503. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  17504. \path[->,bend right=15] (F1-4) edge [above] node
  17505. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  17506. \path[->,bend right=15] (F1-5) edge [right] node
  17507. {\ttfamily\footnotesize explicate\_control} (C3-2);
  17508. \path[->,bend left=15] (C3-2) edge [left] node
  17509. {\ttfamily\footnotesize select\_instr.} (x86-2);
  17510. \path[->,bend right=15] (x86-2) edge [left] node
  17511. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  17512. \path[->,bend right=15] (x86-2-1) edge [below] node
  17513. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  17514. \path[->,bend right=15] (x86-2-2) edge [left] node
  17515. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  17516. \path[->,bend left=15] (x86-3) edge [above] node
  17517. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  17518. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  17519. \end{tikzpicture}
  17520. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  17521. \label{fig:Rpoly-passes}
  17522. \end{figure}
  17523. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  17524. for the compilation of \LangPoly{}.
  17525. % TODO: challenge problem: specialization of instantiations
  17526. % Further Reading
  17527. \fi
  17528. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  17529. \clearpage
  17530. \appendix
  17531. \chapter{Appendix}
  17532. \if\edition\racketEd
  17533. \section{Interpreters}
  17534. \label{appendix:interp}
  17535. \index{subject}{interpreter}
  17536. We provide interpreters for each of the source languages \LangInt{},
  17537. \LangVar{}, $\ldots$ in the files \code{interp\_Lint.rkt},
  17538. \code{interp-Lvar.rkt}, etc. The interpreters for the intermediate
  17539. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  17540. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  17541. and x86 are in the \key{interp.rkt} file.
  17542. \section{Utility Functions}
  17543. \label{appendix:utilities}
  17544. The utility functions described in this section are in the
  17545. \key{utilities.rkt} file of the support code.
  17546. \paragraph{\code{interp-tests}}
  17547. The \key{interp-tests} function runs the compiler passes and the
  17548. interpreters on each of the specified tests to check whether each pass
  17549. is correct. The \key{interp-tests} function has the following
  17550. parameters:
  17551. \begin{description}
  17552. \item[name (a string)] a name to identify the compiler,
  17553. \item[typechecker] a function of exactly one argument that either
  17554. raises an error using the \code{error} function when it encounters a
  17555. type error, or returns \code{\#f} when it encounters a type
  17556. error. If there is no type error, the type checker returns the
  17557. program.
  17558. \item[passes] a list with one entry per pass. An entry is a list with
  17559. four things:
  17560. \begin{enumerate}
  17561. \item a string giving the name of the pass,
  17562. \item the function that implements the pass (a translator from AST
  17563. to AST),
  17564. \item a function that implements the interpreter (a function from
  17565. AST to result value) for the output language,
  17566. \item and a type checker for the output language. Type checkers for
  17567. the $R$ and $C$ languages are provided in the support code. For
  17568. example, the type checkers for \LangVar{} and \LangCVar{} are in
  17569. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  17570. type checker entry is optional. The support code does not provide
  17571. type checkers for the x86 languages.
  17572. \end{enumerate}
  17573. \item[source-interp] an interpreter for the source language. The
  17574. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  17575. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  17576. \item[tests] a list of test numbers that specifies which tests to
  17577. run. (see below)
  17578. \end{description}
  17579. %
  17580. The \key{interp-tests} function assumes that the subdirectory
  17581. \key{tests} has a collection of Racket programs whose names all start
  17582. with the family name, followed by an underscore and then the test
  17583. number, ending with the file extension \key{.rkt}. Also, for each test
  17584. program that calls \code{read} one or more times, there is a file with
  17585. the same name except that the file extension is \key{.in} that
  17586. provides the input for the Racket program. If the test program is
  17587. expected to fail type checking, then there should be an empty file of
  17588. the same name but with extension \key{.tyerr}.
  17589. \paragraph{\code{compiler-tests}}
  17590. runs the compiler passes to generate x86 (a \key{.s} file) and then
  17591. runs the GNU C compiler (gcc) to generate machine code. It runs the
  17592. machine code and checks that the output is $42$. The parameters to the
  17593. \code{compiler-tests} function are similar to those of the
  17594. \code{interp-tests} function, and consist of
  17595. \begin{itemize}
  17596. \item a compiler name (a string),
  17597. \item a type checker,
  17598. \item description of the passes,
  17599. \item name of a test-family, and
  17600. \item a list of test numbers.
  17601. \end{itemize}
  17602. \paragraph{\code{compile-file}}
  17603. takes a description of the compiler passes (see the comment for
  17604. \key{interp-tests}) and returns a function that, given a program file
  17605. name (a string ending in \key{.rkt}), applies all of the passes and
  17606. writes the output to a file whose name is the same as the program file
  17607. name but with \key{.rkt} replaced with \key{.s}.
  17608. \paragraph{\code{read-program}}
  17609. takes a file path and parses that file (it must be a Racket program)
  17610. into an abstract syntax tree.
  17611. \paragraph{\code{parse-program}}
  17612. takes an S-expression representation of an abstract syntax tree and converts it into
  17613. the struct-based representation.
  17614. \paragraph{\code{assert}}
  17615. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  17616. and displays the message \key{msg} if the Boolean \key{bool} is false.
  17617. \paragraph{\code{lookup}}
  17618. % remove discussion of lookup? -Jeremy
  17619. takes a key and an alist, and returns the first value that is
  17620. associated with the given key, if there is one. If not, an error is
  17621. triggered. The alist may contain both immutable pairs (built with
  17622. \key{cons}) and mutable pairs (built with \key{mcons}).
  17623. %The \key{map2} function ...
  17624. \fi %\racketEd
  17625. \section{x86 Instruction Set Quick-Reference}
  17626. \label{sec:x86-quick-reference}
  17627. \index{subject}{x86}
  17628. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  17629. do. We write $A \to B$ to mean that the value of $A$ is written into
  17630. location $B$. Address offsets are given in bytes. The instruction
  17631. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  17632. registers (such as \code{\%rax}), or memory references (such as
  17633. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  17634. reference per instruction. Other operands must be immediates or
  17635. registers.
  17636. \begin{table}[tbp]
  17637. \centering
  17638. \begin{tabular}{l|l}
  17639. \textbf{Instruction} & \textbf{Operation} \\ \hline
  17640. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  17641. \texttt{negq} $A$ & $- A \to A$ \\
  17642. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  17643. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  17644. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  17645. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  17646. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  17647. \texttt{retq} & Pops the return address and jumps to it \\
  17648. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  17649. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  17650. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  17651. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  17652. be an immediate) \\
  17653. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  17654. matches the condition code of the instruction, otherwise go to the
  17655. next instructions. The condition codes are \key{e} for ``equal'',
  17656. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  17657. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  17658. \texttt{jl} $L$ & \\
  17659. \texttt{jle} $L$ & \\
  17660. \texttt{jg} $L$ & \\
  17661. \texttt{jge} $L$ & \\
  17662. \texttt{jmp} $L$ & Jump to label $L$ \\
  17663. \texttt{movq} $A$, $B$ & $A \to B$ \\
  17664. \texttt{movzbq} $A$, $B$ &
  17665. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  17666. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  17667. and the extra bytes of $B$ are set to zero.} \\
  17668. & \\
  17669. & \\
  17670. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  17671. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  17672. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  17673. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  17674. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  17675. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  17676. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  17677. description of the condition codes. $A$ must be a single byte register
  17678. (e.g., \texttt{al} or \texttt{cl}).} \\
  17679. \texttt{setl} $A$ & \\
  17680. \texttt{setle} $A$ & \\
  17681. \texttt{setg} $A$ & \\
  17682. \texttt{setge} $A$ &
  17683. \end{tabular}
  17684. \vspace{5pt}
  17685. \caption{Quick-reference for the x86 instructions used in this book.}
  17686. \label{tab:x86-instr}
  17687. \end{table}
  17688. \if\edition\racketEd
  17689. \cleardoublepage
  17690. \section{Concrete Syntax for Intermediate Languages}
  17691. The concrete syntax of \LangAny{} is defined in
  17692. Figure~\ref{fig:Rany-concrete-syntax}.
  17693. \begin{figure}[tp]
  17694. \centering
  17695. \fbox{
  17696. \begin{minipage}{0.97\textwidth}\small
  17697. \[
  17698. \begin{array}{lcl}
  17699. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  17700. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}} \\
  17701. &\MID& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \MID \key{Any} \\
  17702. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  17703. \MID \LP\key{Vector}\; \key{Any}\ldots\RP \\
  17704. &\MID& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  17705. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \MID \CPROJECT{\Exp}{\FType}\\
  17706. &\MID& \LP\key{any-vector-length}\;\Exp\RP
  17707. \MID \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  17708. &\MID& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  17709. &\MID& \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP
  17710. \MID \LP\key{void?}\;\Exp\RP \\
  17711. &\MID& \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \\
  17712. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  17713. \LangAnyM{} &::=& \gray{\Def\ldots \; \Exp}
  17714. \end{array}
  17715. \]
  17716. \end{minipage}
  17717. }
  17718. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  17719. (Figure~\ref{fig:Rlam-syntax}).}
  17720. \label{fig:Rany-concrete-syntax}
  17721. \end{figure}
  17722. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  17723. defined in Figures~\ref{fig:c0-concrete-syntax},
  17724. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  17725. and \ref{fig:c3-concrete-syntax}, respectively.
  17726. \begin{figure}[tbp]
  17727. \fbox{
  17728. \begin{minipage}{0.96\textwidth}
  17729. \small
  17730. \[
  17731. \begin{array}{lcl}
  17732. \Atm &::=& \gray{ \Int \MID \Var \MID \itm{bool} } \\
  17733. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  17734. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  17735. &\MID& \gray{ \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP } \\
  17736. &\MID& \LP \key{allocate}~\Int~\Type \RP \\
  17737. &\MID& (\key{vector-ref}\;\Atm\;\Int) \MID (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  17738. &\MID& \LP \key{global-value}~\Var \RP \MID \LP \key{void} \RP \\
  17739. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \MID \LP\key{collect}~\Int \RP\\
  17740. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  17741. \MID \gray{ \key{goto}~\itm{label}\key{;} }\\
  17742. &\MID& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  17743. \LangCVecM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  17744. \end{array}
  17745. \]
  17746. \end{minipage}
  17747. }
  17748. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  17749. \label{fig:c2-concrete-syntax}
  17750. \end{figure}
  17751. \begin{figure}[tp]
  17752. \fbox{
  17753. \begin{minipage}{0.96\textwidth}
  17754. \small
  17755. \[
  17756. \begin{array}{lcl}
  17757. \Atm &::=& \gray{ \Int \MID \Var \MID \key{\#t} \MID \key{\#f} }
  17758. \\
  17759. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  17760. \Exp &::= & \gray{ \Atm \MID \LP\key{read}\RP \MID \LP\key{-}\;\Atm\RP \MID \LP\key{+} \; \Atm\;\Atm\RP
  17761. \MID \LP\key{not}\;\Atm\RP \MID \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  17762. &\MID& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  17763. \MID \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  17764. &\MID& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \MID \LP\key{global-value} \,\itm{name}\RP \MID \LP\key{void}\RP } \\
  17765. &\MID& \LP\key{fun-ref}~\itm{label}\RP \MID \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  17766. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \MID \RETURN{\Exp}
  17767. \MID \LP\key{collect} \,\itm{int}\RP }\\
  17768. \Tail &::= & \gray{\RETURN{\Exp} \MID \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  17769. &\MID& \gray{\LP\key{goto}\,\itm{label}\RP
  17770. \MID \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  17771. &\MID& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  17772. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  17773. \LangCFunM{} & ::= & \Def\ldots
  17774. \end{array}
  17775. \]
  17776. \end{minipage}
  17777. }
  17778. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  17779. \label{fig:c3-concrete-syntax}
  17780. \end{figure}
  17781. \fi % racketEd
  17782. \backmatter
  17783. \addtocontents{toc}{\vspace{11pt}}
  17784. %% \addtocontents{toc}{\vspace{11pt}}
  17785. %% \nocite{*} is a way to get all the entries in the .bib file to print in the bibliography:
  17786. \nocite{*}\let\bibname\refname
  17787. \addcontentsline{toc}{fmbm}{\refname}
  17788. \printbibliography
  17789. \printindex{authors}{Author Index}
  17790. \printindex{subject}{Subject Index}
  17791. \end{document}
  17792. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  17793. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  17794. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  17795. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  17796. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  17797. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  17798. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  17799. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  17800. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  17801. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  17802. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  17803. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  17804. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  17805. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  17806. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  17807. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  17808. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  17809. % LocalWords: numberstyle Cormen Sudoku Balakrishnan ve aka DSATUR
  17810. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS
  17811. % LocalWords: morekeywords fullflexible