book.tex 786 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. % move binary subtraction from Lif to Lint
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \usepackage[all]{xy}
  18. \usepackage{url}
  19. \definecolor{lightgray}{gray}{1}
  20. \newcommand{\black}[1]{{\color{black} #1}}
  21. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  22. \newcommand{\gray}[1]{{\color{gray} #1}}
  23. \def\racketEd{0}
  24. \def\pythonEd{1}
  25. \def\edition{1}
  26. % material that is specific to the Racket edition of the book
  27. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  28. % would like a command for: \if\edition\racketEd\color{olive}
  29. % and : \fi\color{black}
  30. % material that is specific to the Python edition of the book
  31. \newcommand{\python}[1]{{\if\edition\pythonEd #1\fi}}
  32. %% For multiple indices:
  33. %\usepackage{multind} moved this to the file TimesAPriori_MIT.cls. -Jeremy
  34. \makeindex{subject}
  35. %\makeindex{authors}
  36. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  37. \if\edition\racketEd
  38. \lstset{%
  39. language=Lisp,
  40. basicstyle=\ttfamily\small,
  41. morekeywords={lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  42. deletekeywords={read,mapping,vector},
  43. escapechar=|,
  44. columns=flexible,
  45. %moredelim=[is][\color{red}]{~}{~},
  46. showstringspaces=false
  47. }
  48. \fi
  49. \if\edition\pythonEd
  50. \lstset{%
  51. language=Python,
  52. basicstyle=\ttfamily\small,
  53. morekeywords={match,case,bool,int,let},
  54. deletekeywords={},
  55. escapechar=|,
  56. columns=flexible,
  57. %moredelim=[is][\color{red}]{~}{~},
  58. showstringspaces=false
  59. }
  60. \fi
  61. %%% Any shortcut own defined macros place here
  62. %% sample of author macro:
  63. \input{defs}
  64. \newtheorem{exercise}[theorem]{Exercise}
  65. \numberwithin{theorem}{chapter}
  66. \numberwithin{definition}{chapter}
  67. \numberwithin{equation}{chapter}
  68. % Adjusted settings
  69. \setlength{\columnsep}{4pt}
  70. %% \begingroup
  71. %% \setlength{\intextsep}{0pt}%
  72. %% \setlength{\columnsep}{0pt}%
  73. %% \begin{wrapfigure}{r}{0.5\textwidth}
  74. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  75. %% \caption{Basic layout}
  76. %% \end{wrapfigure}
  77. %% \lipsum[1]
  78. %% \endgroup
  79. \newbox\oiintbox
  80. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  81. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  82. \def\oiint{\copy\oiintbox}
  83. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  84. %\usepackage{showframe}
  85. \def\ShowFrameLinethickness{0.125pt}
  86. \addbibresource{book.bib}
  87. \if\edition\pythonEd
  88. \addbibresource{python.bib}
  89. \fi
  90. \begin{document}
  91. \frontmatter
  92. %\HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  93. \HalfTitle{Essentials of Compilation}
  94. \halftitlepage
  95. \Title{Essentials of Compilation}
  96. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  97. %\edition{First Edition}
  98. \BookAuthor{Jeremy G. Siek}
  99. \imprint{The MIT Press\\
  100. Cambridge, Massachusetts\\
  101. London, England}
  102. \begin{copyrightpage}
  103. \textcopyright\ 2023 Massachusetts Institute of Technology \\[2ex]
  104. This work is subject to a Creative Commons CC-BY-ND-NC license. \\[2ex]
  105. Subject to such license, all rights are reserved. \\[2ex]
  106. \includegraphics{CCBY-logo}
  107. The MIT Press would like to thank the anonymous peer reviewers who
  108. provided comments on drafts of this book. The generous work of
  109. academic experts is essential for establishing the authority and
  110. quality of our publications. We acknowledge with gratitude the
  111. contributions of these otherwise uncredited readers.
  112. This book was set in Times LT Std Roman by the author. Printed and
  113. bound in the United States of America.
  114. Library of Congress Cataloging-in-Publication Data is available.
  115. ISBN:
  116. 10 9 8 7 6 5 4 3 2 1
  117. %% Jeremy G. Siek. Available for free viewing
  118. %% or personal downloading under the
  119. %% \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  120. %% license.
  121. %% Copyright in this monograph has been licensed exclusively to The MIT
  122. %% Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  123. %% version to the public in 2022. All inquiries regarding rights should
  124. %% be addressed to The MIT Press, Rights and Permissions Department.
  125. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  126. %% All rights reserved. No part of this book may be reproduced in any
  127. %% form by any electronic or mechanical means (including photocopying,
  128. %% recording, or information storage and retrieval) without permission in
  129. %% writing from the publisher.
  130. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  131. %% United States of America.
  132. %% Library of Congress Cataloging-in-Publication Data is available.
  133. %% ISBN:
  134. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  135. \end{copyrightpage}
  136. \dedication{This book is dedicated to Katie, my partner in everything,
  137. my children, who grew up during the writing of this book, and the
  138. programming language students at Indiana University, whose
  139. thoughtful questions made this a better book.}
  140. %% \begin{epigraphpage}
  141. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  142. %% \textit{Book Name if any}}
  143. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  144. %% \end{epigraphpage}
  145. \tableofcontents
  146. %\listoffigures
  147. %\listoftables
  148. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  149. \chapter*{Preface}
  150. \addcontentsline{toc}{fmbm}{Preface}
  151. There is a magical moment when a programmer presses the run button
  152. and the software begins to execute. Somehow a program written in a
  153. high-level language is running on a computer that is capable only of
  154. shuffling bits. Here we reveal the wizardry that makes that moment
  155. possible. Beginning with the groundbreaking work of Backus and
  156. colleagues in the 1950s, computer scientists developed techniques for
  157. constructing programs called \emph{compilers} that automatically
  158. translate high-level programs into machine code.
  159. We take you on a journey through constructing your own compiler for a
  160. small but powerful language. Along the way we explain the essential
  161. concepts, algorithms, and data structures that underlie compilers. We
  162. develop your understanding of how programs are mapped onto computer
  163. hardware, which is helpful in reasoning about properties at the
  164. junction of hardware and software, such as execution time, software
  165. errors, and security vulnerabilities. For those interested in
  166. pursuing compiler construction as a career, our goal is to provide a
  167. stepping-stone to advanced topics such as just-in-time compilation,
  168. program analysis, and program optimization. For those interested in
  169. designing and implementing programming languages, we connect language
  170. design choices to their impact on the compiler and the generated code.
  171. A compiler is typically organized as a sequence of stages that
  172. progressively translate a program to the code that runs on
  173. hardware. We take this approach to the extreme by partitioning our
  174. compiler into a large number of \emph{nanopasses}, each of which
  175. performs a single task. This enables the testing of each pass in
  176. isolation and focuses our attention, making the compiler far easier to
  177. understand.
  178. The most familiar approach to describing compilers is to dedicate each
  179. chapter to one pass. The problem with that approach is that it
  180. obfuscates how language features motivate design choices in a
  181. compiler. We instead take an \emph{incremental} approach in which we
  182. build a complete compiler in each chapter, starting with a small input
  183. language that includes only arithmetic and variables. We add new
  184. language features in subsequent chapters, extending the compiler as
  185. necessary.
  186. Our choice of language features is designed to elicit fundamental
  187. concepts and algorithms used in compilers.
  188. \begin{itemize}
  189. \item We begin with integer arithmetic and local variables in
  190. Chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  191. the fundamental tools of compiler construction: \emph{abstract
  192. syntax trees} and \emph{recursive functions}.
  193. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  194. \emph{graph coloring} to assign variables to machine registers.
  195. \item Chapter~\ref{ch:Lif} adds conditional expressions, which
  196. motivates an elegant recursive algorithm for translating them into
  197. conditional \code{goto} statements.
  198. \item Chapter~\ref{ch:Lwhile} adds loops\racket{ and mutable
  199. variables}. This elicits the need for \emph{dataflow
  200. analysis} in the register allocator.
  201. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  202. \emph{garbage collection}.
  203. \item Chapter~\ref{ch:Lfun} adds functions as first-class values
  204. without lexical scoping, similar to functions in the C programming
  205. language~\citep{Kernighan:1988nx}. The reader learns about the
  206. procedure call stack and \emph{calling conventions} and how they interact
  207. with register allocation and garbage collection. The chapter also
  208. describes how to generate efficient tail calls.
  209. \item Chapter~\ref{ch:Llambda} adds anonymous functions with lexical
  210. scoping, that is, \emph{lambda} expressions. The reader learns about
  211. \emph{closure conversion}, in which lambdas are translated into a
  212. combination of functions and tuples.
  213. % Chapter about classes and objects?
  214. \item Chapter~\ref{ch:Ldyn} adds \emph{dynamic typing}. Prior to this
  215. point the input languages are statically typed. The reader extends
  216. the statically typed language with an \code{Any} type that serves
  217. as a target for compiling the dynamically typed language.
  218. %% {\if\edition\pythonEd
  219. %% \item Chapter~\ref{ch:Lobject} adds support for \emph{objects} and
  220. %% \emph{classes}.
  221. %% \fi}
  222. \item Chapter~\ref{ch:Lgrad} uses the \code{Any} type introduced in
  223. Chapter~\ref{ch:Ldyn} to implement a \emph{gradually typed language}
  224. in which different regions of a program may be static or dynamically
  225. typed. The reader implements runtime support for \emph{proxies} that
  226. allow values to safely move between regions.
  227. \item Chapter~\ref{ch:Lpoly} adds \emph{generics} with autoboxing,
  228. leveraging the \code{Any} type and type casts developed in chapters
  229. \ref{ch:Ldyn} and \ref{ch:Lgrad}.
  230. \end{itemize}
  231. There are many language features that we do not include. Our choices
  232. balance the incidental complexity of a feature versus the fundamental
  233. concepts that it exposes. For example, we include tuples and not
  234. records because although they both elicit the study of heap allocation and
  235. garbage collection, records come with more incidental complexity.
  236. Since 2009, drafts of this book have served as the textbook for
  237. sixteen week compiler courses for upper-level undergraduates and
  238. first-year graduate students at the University of Colorado and Indiana
  239. University.
  240. %
  241. Students come into the course having learned the basics of
  242. programming, data structures and algorithms, and discrete
  243. mathematics.
  244. %
  245. At the beginning of the course, students form groups of two to four
  246. people. The groups complete one chapter every two weeks, starting
  247. with chapter~\ref{ch:Lvar} and finishing with
  248. chapter~\ref{ch:Llambda}. Many chapters include a challenge problem
  249. that we assign to the graduate students. The last two weeks of the
  250. course involve a final project in which students design and implement
  251. a compiler extension of their choosing. The last few chapters can be
  252. used in support of these projects. For compiler courses at
  253. universities on the quarter system (about ten weeks in length), we
  254. recommend completing the course through chapter~\ref{ch:Lvec} or
  255. chapter~\ref{ch:Lfun} and providing some scaffolding code to the
  256. students for each compiler pass.
  257. %
  258. The course can be adapted to emphasize functional languages by
  259. skipping chapter~\ref{ch:Lwhile} (loops) and including
  260. chapter~\ref{ch:Llambda} (lambda). The course can be adapted to
  261. dynamically typed languages by including chapter~\ref{ch:Ldyn}.
  262. %
  263. %% \python{A course that emphasizes object-oriented languages would
  264. %% include Chapter~\ref{ch:Lobject}.}
  265. %
  266. Figure~\ref{fig:chapter-dependences} depicts the dependencies between
  267. chapters. Chapter~\ref{ch:Lfun} (functions) depends on
  268. chapter~\ref{ch:Lvec} (tuples) only in the implementation of efficient
  269. tail calls.
  270. This book has been used in compiler courses at California Polytechnic
  271. State University, Portland State University, Rose–Hulman Institute of
  272. Technology, University of Freiburg, University of Massachusetts
  273. Lowell, and the University of Vermont.
  274. \begin{figure}[tp]
  275. \begin{tcolorbox}[colback=white]
  276. {\if\edition\racketEd
  277. \begin{tikzpicture}[baseline=(current bounding box.center)]
  278. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  279. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  280. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  281. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  282. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  283. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  284. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  285. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  286. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  287. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  288. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  289. \path[->] (C1) edge [above] node {} (C2);
  290. \path[->] (C2) edge [above] node {} (C3);
  291. \path[->] (C3) edge [above] node {} (C4);
  292. \path[->] (C4) edge [above] node {} (C5);
  293. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  294. \path[->] (C5) edge [above] node {} (C7);
  295. \path[->] (C6) edge [above] node {} (C7);
  296. \path[->] (C4) edge [above] node {} (C8);
  297. \path[->] (C4) edge [above] node {} (C9);
  298. \path[->] (C7) edge [above] node {} (C10);
  299. \path[->] (C8) edge [above] node {} (C10);
  300. \path[->] (C10) edge [above] node {} (C11);
  301. \end{tikzpicture}
  302. \fi}
  303. {\if\edition\pythonEd
  304. \begin{tikzpicture}[baseline=(current bounding box.center)]
  305. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  306. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  307. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  308. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  309. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  310. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  311. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  312. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  313. % \node (CO) at (0,-3) {\small Ch.~\ref{ch:Lobject} Objects};
  314. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  315. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  316. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  317. \path[->] (C1) edge [above] node {} (C2);
  318. \path[->] (C2) edge [above] node {} (C3);
  319. \path[->] (C3) edge [above] node {} (C4);
  320. \path[->] (C4) edge [above] node {} (C5);
  321. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  322. \path[->] (C5) edge [above] node {} (C7);
  323. \path[->] (C6) edge [above] node {} (C7);
  324. \path[->] (C4) edge [above] node {} (C8);
  325. \path[->] (C4) edge [above] node {} (C9);
  326. \path[->] (C7) edge [above] node {} (C10);
  327. \path[->] (C8) edge [above] node {} (C10);
  328. % \path[->] (C8) edge [above] node {} (CO);
  329. \path[->] (C10) edge [above] node {} (C11);
  330. \end{tikzpicture}
  331. \fi}
  332. \end{tcolorbox}
  333. \caption{Diagram of chapter dependencies.}
  334. \label{fig:chapter-dependences}
  335. \end{figure}
  336. \racket{
  337. We use the \href{https://racket-lang.org/}{Racket} language both for
  338. the implementation of the compiler and for the input language, so the
  339. reader should be proficient with Racket or Scheme. There are many
  340. excellent resources for learning Scheme and
  341. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  342. }
  343. \python{
  344. This edition of the book uses \href{https://www.python.org/}{Python}
  345. both for the implementation of the compiler and for the input language, so the
  346. reader should be proficient with Python. There are many
  347. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.
  348. }
  349. The support code for this book is in the GitHub repository at
  350. the following location:
  351. \begin{center}\small\texttt
  352. https://github.com/IUCompilerCourse/
  353. \end{center}
  354. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  355. is helpful but not necessary for the reader to have taken a computer
  356. systems course~\citep{Bryant:2010aa}. We introduce the parts of x86-64
  357. assembly language that are needed in the compiler.
  358. %
  359. We follow the System V calling
  360. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  361. that we generate works with the runtime system (written in C) when it
  362. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  363. operating systems on Intel hardware.
  364. %
  365. On the Windows operating system, \code{gcc} uses the Microsoft x64
  366. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  367. assembly code that we generate does \emph{not} work with the runtime
  368. system on Windows. One workaround is to use a virtual machine with
  369. Linux as the guest operating system.
  370. \section*{Acknowledgments}
  371. The tradition of compiler construction at Indiana University goes back
  372. to research and courses on programming languages by Daniel Friedman in
  373. the 1970s and 1980s. One of his students, Kent Dybvig, implemented
  374. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  375. compiler for Scheme. Throughout the 1990s and 2000s, Dybvig taught
  376. the compiler course and continued the development of Chez Scheme.
  377. %
  378. The compiler course evolved to incorporate novel pedagogical ideas
  379. while also including elements of real-world compilers. One of
  380. Friedman's ideas was to split the compiler into many small
  381. passes. Another idea, called ``the game,'' was to test the code
  382. generated by each pass using interpreters.
  383. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  384. developed infrastructure to support this approach and evolved the
  385. course to use even smaller
  386. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  387. design decisions in this book are inspired by the assignment
  388. descriptions of \citet{Dybvig:2010aa}. In the mid 2000s, a student of
  389. Dybvig named Abdulaziz Ghuloum observed that the front-to-back
  390. organization of the course made it difficult for students to
  391. understand the rationale for the compiler design. Ghuloum proposed the
  392. incremental approach~\citep{Ghuloum:2006bh} on which this book is
  393. based.
  394. We thank the many students who served as teaching assistants for the
  395. compiler course at IU, including Carl Factora, Ryan Scott, Cameron
  396. Swords, and Chris Wailes. We thank Andre Kuhlenschmidt for work on the
  397. garbage collector and x86 interpreter, Michael Vollmer for work on
  398. efficient tail calls, and Michael Vitousek for help with the first
  399. offering of the incremental compiler course at IU.
  400. We thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  401. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  402. Michael Wollowski for teaching courses based on drafts of this book
  403. and for their feedback. We thank the National Science Foundation for
  404. the grants that helped to support this work: Grant Numbers 1518844,
  405. 1763922, and 1814460.
  406. We thank Ronald Garcia for helping Jeremy survive Dybvig's compiler
  407. course in the early 2000s and especially for finding the bug that
  408. sent our garbage collector on a wild goose chase!
  409. \mbox{}\\
  410. \noindent Jeremy G. Siek \\
  411. Bloomington, Indiana
  412. \mainmatter
  413. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  414. \chapter{Preliminaries}
  415. \label{ch:trees-recur}
  416. \setcounter{footnote}{0}
  417. In this chapter we review the basic tools needed to implement a
  418. compiler. Programs are typically input by a programmer as text, that
  419. is, a sequence of characters. The program-as-text representation is
  420. called \emph{concrete syntax}. We use concrete syntax to concisely
  421. write down and talk about programs. Inside the compiler, we use
  422. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  423. that efficiently supports the operations that the compiler needs to
  424. perform.\index{subject}{concrete syntax}\index{subject}{abstract
  425. syntax}\index{subject}{abstract syntax
  426. tree}\index{subject}{AST}\index{subject}{program}\index{subject}{parse}
  427. The process of translating from concrete syntax to abstract syntax is
  428. called \emph{parsing}~\citep{Aho:2006wb}\python{ and is studied in
  429. chapter~\ref{ch:parsing-Lvar}}.
  430. \racket{This book does not cover the theory and implementation of parsing.}%
  431. %
  432. \racket{A parser is provided in the support code for translating from
  433. concrete to abstract syntax.}%
  434. %
  435. \python{For now we use Python's \code{ast} module to translate from concrete
  436. to abstract syntax.}
  437. ASTs can be represented inside the compiler in many different ways,
  438. depending on the programming language used to write the compiler.
  439. %
  440. \racket{We use Racket's
  441. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  442. feature to represent ASTs (section~\ref{sec:ast}).}
  443. %
  444. \python{We use Python classes and objects to represent ASTs, especially the
  445. classes defined in the standard \code{ast} module for the Python
  446. source language.}
  447. %
  448. We use grammars to define the abstract syntax of programming languages
  449. (section~\ref{sec:grammar}) and pattern matching to inspect individual
  450. nodes in an AST (section~\ref{sec:pattern-matching}). We use
  451. recursive functions to construct and deconstruct ASTs
  452. (section~\ref{sec:recursion}). This chapter provides a brief
  453. introduction to these components.
  454. \racket{\index{subject}{struct}}
  455. \python{\index{subject}{class}\index{subject}{object}}
  456. \section{Abstract Syntax Trees}
  457. \label{sec:ast}
  458. Compilers use abstract syntax trees to represent programs because they
  459. often need to ask questions such as, for a given part of a program,
  460. what kind of language feature is it? What are its subparts? Consider
  461. the program on the left and the diagram of its AST on the
  462. right~\eqref{eq:arith-prog}. This program is an addition operation
  463. that has two subparts, a \racket{read}\python{input} operation and a
  464. negation. The negation has another subpart, the integer constant
  465. \code{8}. By using a tree to represent the program, we can easily
  466. follow the links to go from one part of a program to its subparts.
  467. \begin{center}
  468. \begin{minipage}{0.4\textwidth}
  469. \if\edition\racketEd
  470. \begin{lstlisting}
  471. (+ (read) (- 8))
  472. \end{lstlisting}
  473. \fi
  474. \if\edition\pythonEd
  475. \begin{lstlisting}
  476. input_int() + -8
  477. \end{lstlisting}
  478. \fi
  479. \end{minipage}
  480. \begin{minipage}{0.4\textwidth}
  481. \begin{equation}
  482. \begin{tikzpicture}
  483. \node[draw] (plus) at (0 , 0) {\key{+}};
  484. \node[draw] (read) at (-1, -1.5) {{\if\edition\racketEd\footnotesize\key{read}\fi\if\edition\pythonEd\key{input\_int()}\fi}};
  485. \node[draw] (minus) at (1 , -1.5) {$\key{-}$};
  486. \node[draw] (8) at (1 , -3) {\key{8}};
  487. \draw[->] (plus) to (read);
  488. \draw[->] (plus) to (minus);
  489. \draw[->] (minus) to (8);
  490. \end{tikzpicture}
  491. \label{eq:arith-prog}
  492. \end{equation}
  493. \end{minipage}
  494. \end{center}
  495. We use the standard terminology for trees to describe ASTs: each
  496. rectangle above is called a \emph{node}. The arrows connect a node to its
  497. \emph{children}, which are also nodes. The top-most node is the
  498. \emph{root}. Every node except for the root has a \emph{parent} (the
  499. node of which it is the child). If a node has no children, it is a
  500. \emph{leaf} node; otherwise it is an \emph{internal} node.
  501. \index{subject}{node}
  502. \index{subject}{children}
  503. \index{subject}{root}
  504. \index{subject}{parent}
  505. \index{subject}{leaf}
  506. \index{subject}{internal node}
  507. %% Recall that an \emph{symbolic expression} (S-expression) is either
  508. %% \begin{enumerate}
  509. %% \item an atom, or
  510. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  511. %% where $e_1$ and $e_2$ are each an S-expression.
  512. %% \end{enumerate}
  513. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  514. %% null value \code{'()}, etc. We can create an S-expression in Racket
  515. %% simply by writing a backquote (called a quasi-quote in Racket)
  516. %% followed by the textual representation of the S-expression. It is
  517. %% quite common to use S-expressions to represent a list, such as $a, b
  518. %% ,c$ in the following way:
  519. %% \begin{lstlisting}
  520. %% `(a . (b . (c . ())))
  521. %% \end{lstlisting}
  522. %% Each element of the list is in the first slot of a pair, and the
  523. %% second slot is either the rest of the list or the null value, to mark
  524. %% the end of the list. Such lists are so common that Racket provides
  525. %% special notation for them that removes the need for the periods
  526. %% and so many parenthesis:
  527. %% \begin{lstlisting}
  528. %% `(a b c)
  529. %% \end{lstlisting}
  530. %% The following expression creates an S-expression that represents AST
  531. %% \eqref{eq:arith-prog}.
  532. %% \begin{lstlisting}
  533. %% `(+ (read) (- 8))
  534. %% \end{lstlisting}
  535. %% When using S-expressions to represent ASTs, the convention is to
  536. %% represent each AST node as a list and to put the operation symbol at
  537. %% the front of the list. The rest of the list contains the children. So
  538. %% in the above case, the root AST node has operation \code{`+} and its
  539. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  540. %% diagram \eqref{eq:arith-prog}.
  541. %% To build larger S-expressions one often needs to splice together
  542. %% several smaller S-expressions. Racket provides the comma operator to
  543. %% splice an S-expression into a larger one. For example, instead of
  544. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  545. %% we could have first created an S-expression for AST
  546. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  547. %% S-expression.
  548. %% \begin{lstlisting}
  549. %% (define ast1.4 `(- 8))
  550. %% (define ast1_1 `(+ (read) ,ast1.4))
  551. %% \end{lstlisting}
  552. %% In general, the Racket expression that follows the comma (splice)
  553. %% can be any expression that produces an S-expression.
  554. {\if\edition\racketEd
  555. We define a Racket \code{struct} for each kind of node. For this
  556. chapter we require just two kinds of nodes: one for integer constants
  557. and one for primitive operations. The following is the \code{struct}
  558. definition for integer constants.\footnote{All the AST structures are
  559. defined in the file \code{utilities.rkt} in the support code.}
  560. \begin{lstlisting}
  561. (struct Int (value))
  562. \end{lstlisting}
  563. An integer node contains just one thing: the integer value.
  564. We establish the convention that \code{struct} names, such
  565. as \code{Int}, are capitalized.
  566. To create an AST node for the integer $8$, we write \INT{8}.
  567. \begin{lstlisting}
  568. (define eight (Int 8))
  569. \end{lstlisting}
  570. We say that the value created by \INT{8} is an
  571. \emph{instance} of the
  572. \code{Int} structure.
  573. The following is the \code{struct} definition for primitive operations.
  574. \begin{lstlisting}
  575. (struct Prim (op args))
  576. \end{lstlisting}
  577. A primitive operation node includes an operator symbol \code{op} and a
  578. list of child arguments called \code{args}. For example, to create an
  579. AST that negates the number $8$, we write the following.
  580. \begin{lstlisting}
  581. (define neg-eight (Prim '- (list eight)))
  582. \end{lstlisting}
  583. Primitive operations may have zero or more children. The \code{read}
  584. operator has zero:
  585. \begin{lstlisting}
  586. (define rd (Prim 'read '()))
  587. \end{lstlisting}
  588. The addition operator has two children:
  589. \begin{lstlisting}
  590. (define ast1_1 (Prim '+ (list rd neg-eight)))
  591. \end{lstlisting}
  592. We have made a design choice regarding the \code{Prim} structure.
  593. Instead of using one structure for many different operations
  594. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  595. structure for each operation, as follows:
  596. \begin{lstlisting}
  597. (struct Read ())
  598. (struct Add (left right))
  599. (struct Neg (value))
  600. \end{lstlisting}
  601. The reason that we choose to use just one structure is that many parts
  602. of the compiler can use the same code for the different primitive
  603. operators, so we might as well just write that code once by using a
  604. single structure.
  605. %
  606. \fi}
  607. {\if\edition\pythonEd
  608. We use a Python \code{class} for each kind of node.
  609. The following is the class definition for
  610. constants from the Python \code{ast} module.
  611. \begin{lstlisting}
  612. class Constant:
  613. def __init__(self, value):
  614. self.value = value
  615. \end{lstlisting}
  616. An integer constant node includes just one thing: the integer value.
  617. To create an AST node for the integer $8$, we write \INT{8}.
  618. \begin{lstlisting}
  619. eight = Constant(8)
  620. \end{lstlisting}
  621. We say that the value created by \INT{8} is an
  622. \emph{instance} of the \code{Constant} class.
  623. The following is the class definition for unary operators.
  624. \begin{lstlisting}
  625. class UnaryOp:
  626. def __init__(self, op, operand):
  627. self.op = op
  628. self.operand = operand
  629. \end{lstlisting}
  630. The specific operation is specified by the \code{op} parameter. For
  631. example, the class \code{USub} is for unary subtraction.
  632. (More unary operators are introduced in later chapters.) To create an AST that
  633. negates the number $8$, we write the following.
  634. \begin{lstlisting}
  635. neg_eight = UnaryOp(USub(), eight)
  636. \end{lstlisting}
  637. The call to the \code{input\_int} function is represented by the
  638. \code{Call} and \code{Name} classes.
  639. \begin{lstlisting}
  640. class Call:
  641. def __init__(self, func, args):
  642. self.func = func
  643. self.args = args
  644. class Name:
  645. def __init__(self, id):
  646. self.id = id
  647. \end{lstlisting}
  648. To create an AST node that calls \code{input\_int}, we write
  649. \begin{lstlisting}
  650. read = Call(Name('input_int'), [])
  651. \end{lstlisting}
  652. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  653. the \code{BinOp} class for binary operators.
  654. \begin{lstlisting}
  655. class BinOp:
  656. def __init__(self, left, op, right):
  657. self.op = op
  658. self.left = left
  659. self.right = right
  660. \end{lstlisting}
  661. Similar to \code{UnaryOp}, the specific operation is specified by the
  662. \code{op} parameter, which for now is just an instance of the
  663. \code{Add} class. So to create the AST
  664. node that adds negative eight to some user input, we write the following.
  665. \begin{lstlisting}
  666. ast1_1 = BinOp(read, Add(), neg_eight)
  667. \end{lstlisting}
  668. \fi}
  669. To compile a program such as \eqref{eq:arith-prog}, we need to know
  670. that the operation associated with the root node is addition and we
  671. need to be able to access its two
  672. children. \racket{Racket}\python{Python} provides pattern matching to
  673. support these kinds of queries, as we see in
  674. section~\ref{sec:pattern-matching}.
  675. We often write down the concrete syntax of a program even when we
  676. actually have in mind the AST, because the concrete syntax is more
  677. concise. We recommend that you always think of programs as abstract
  678. syntax trees.
  679. \section{Grammars}
  680. \label{sec:grammar}
  681. \index{subject}{integer}
  682. \index{subject}{literal}
  683. %\index{subject}{constant}
  684. A programming language can be thought of as a \emph{set} of programs.
  685. The set is infinite (that is, one can always create larger programs),
  686. so one cannot simply describe a language by listing all the
  687. programs in the language. Instead we write down a set of rules, a
  688. \emph{grammar}, for building programs. Grammars are often used to
  689. define the concrete syntax of a language, but they can also be used to
  690. describe the abstract syntax. We write our rules in a variant of
  691. Backus-Naur form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  692. \index{subject}{Backus-Naur form}\index{subject}{BNF} As an example,
  693. we describe a small language, named \LangInt{}, that consists of
  694. integers and arithmetic operations. \index{subject}{grammar}
  695. The first grammar rule for the abstract syntax of \LangInt{} says that an
  696. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  697. \begin{equation}
  698. \Exp ::= \INT{\Int} \label{eq:arith-int}
  699. \end{equation}
  700. %
  701. Each rule has a left-hand side and a right-hand side.
  702. If you have an AST node that matches the
  703. right-hand side, then you can categorize it according to the
  704. left-hand side.
  705. %
  706. Symbols in typewriter font, such as \racket{\code{Int}}\python{\code{Constant}},
  707. are \emph{terminal} symbols and must literally appear in the program for the
  708. rule to be applicable.\index{subject}{terminal}
  709. %
  710. Our grammars do not mention \emph{white space}, that is, delimiter
  711. characters like spaces, tabs, and new lines. White space may be
  712. inserted between symbols for disambiguation and to improve
  713. readability. \index{subject}{white space}
  714. %
  715. A name such as $\Exp$ that is defined by the grammar rules is a
  716. \emph{nonterminal}. \index{subject}{nonterminal}
  717. %
  718. The name $\Int$ is also a nonterminal, but instead of defining it with
  719. a grammar rule, we define it with the following explanation. An
  720. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  721. $-$ (for negative integers), such that the sequence of decimals
  722. represents an integer in the range $-2^{62}$ to $2^{62}-1$. This
  723. enables the representation of integers using 63 bits, which simplifies
  724. several aspects of compilation.
  725. %
  726. \racket{Thus, these integers correspond to the Racket \texttt{fixnum}
  727. datatype on a 64-bit machine.}
  728. %
  729. \python{In contrast, integers in Python have unlimited precision, but
  730. the techniques needed to handle unlimited precision fall outside the
  731. scope of this book.}
  732. The second grammar rule is the \READOP{} operation, which receives an
  733. input integer from the user of the program.
  734. \begin{equation}
  735. \Exp ::= \READ{} \label{eq:arith-read}
  736. \end{equation}
  737. The third rule categorizes the negation of an $\Exp$ node as an
  738. $\Exp$.
  739. \begin{equation}
  740. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  741. \end{equation}
  742. We can apply these rules to categorize the ASTs that are in the
  743. \LangInt{} language. For example, by rule \eqref{eq:arith-int},
  744. \INT{8} is an $\Exp$, and then by rule \eqref{eq:arith-neg} the
  745. following AST is an $\Exp$.
  746. \begin{center}
  747. \begin{minipage}{0.5\textwidth}
  748. \NEG{\INT{\code{8}}}
  749. \end{minipage}
  750. \begin{minipage}{0.25\textwidth}
  751. \begin{equation}
  752. \begin{tikzpicture}
  753. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  754. \node[draw, circle] (8) at (0, -1.2) {$8$};
  755. \draw[->] (minus) to (8);
  756. \end{tikzpicture}
  757. \label{eq:arith-neg8}
  758. \end{equation}
  759. \end{minipage}
  760. \end{center}
  761. The next two grammar rules are for addition and subtraction expressions:
  762. \begin{align}
  763. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  764. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  765. \end{align}
  766. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  767. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  768. \eqref{eq:arith-read}, and we have already categorized
  769. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  770. to show that
  771. \[
  772. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  773. \]
  774. is an $\Exp$ in the \LangInt{} language.
  775. If you have an AST for which these rules do not apply, then the
  776. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  777. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  778. because there is no rule for the \key{*} operator. Whenever we
  779. define a language with a grammar, the language includes only those
  780. programs that are justified by the grammar rules.
  781. {\if\edition\pythonEd
  782. The language \LangInt{} includes a second nonterminal $\Stmt$ for statements.
  783. There is a statement for printing the value of an expression
  784. \[
  785. \Stmt{} ::= \PRINT{\Exp}
  786. \]
  787. and a statement that evaluates an expression but ignores the result.
  788. \[
  789. \Stmt{} ::= \EXPR{\Exp}
  790. \]
  791. \fi}
  792. {\if\edition\racketEd
  793. The last grammar rule for \LangInt{} states that there is a
  794. \code{Program} node to mark the top of the whole program:
  795. \[
  796. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  797. \]
  798. The \code{Program} structure is defined as follows:
  799. \begin{lstlisting}
  800. (struct Program (info body))
  801. \end{lstlisting}
  802. where \code{body} is an expression. In further chapters, the \code{info}
  803. part is used to store auxiliary information, but for now it is
  804. just the empty list.
  805. \fi}
  806. {\if\edition\pythonEd
  807. The last grammar rule for \LangInt{} states that there is a
  808. \code{Module} node to mark the top of the whole program:
  809. \[
  810. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  811. \]
  812. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  813. this case, a list of statements.
  814. %
  815. The \code{Module} class is defined as follows
  816. \begin{lstlisting}
  817. class Module:
  818. def __init__(self, body):
  819. self.body = body
  820. \end{lstlisting}
  821. where \code{body} is a list of statements.
  822. \fi}
  823. It is common to have many grammar rules with the same left-hand side
  824. but different right-hand sides, such as the rules for $\Exp$ in the
  825. grammar of \LangInt{}. As shorthand, a vertical bar can be used to
  826. combine several right-hand sides into a single rule.
  827. The concrete syntax for \LangInt{} is shown in
  828. figure~\ref{fig:r0-concrete-syntax} and the abstract syntax for
  829. \LangInt{} is shown in figure~\ref{fig:r0-syntax}.
  830. \racket{The \code{read-program} function provided in
  831. \code{utilities.rkt} of the support code reads a program from a file
  832. (the sequence of characters in the concrete syntax of Racket) and
  833. parses it into an abstract syntax tree. Refer to the description of
  834. \code{read-program} in appendix~\ref{appendix:utilities} for more
  835. details.}
  836. \python{The \code{parse} function in Python's \code{ast} module
  837. converts the concrete syntax (represented as a string) into an
  838. abstract syntax tree.}
  839. \newcommand{\LintGrammarRacket}{
  840. \begin{array}{rcl}
  841. \Type &::=& \key{Integer} \\
  842. \Exp{} &::=& \Int{} \MID \CREAD \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  843. \MID \CSUB{\Exp}{\Exp}
  844. \end{array}
  845. }
  846. \newcommand{\LintASTRacket}{
  847. \begin{array}{rcl}
  848. \Type &::=& \key{Integer} \\
  849. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  850. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \SUB{\Exp}{\Exp}
  851. \end{array}
  852. }
  853. \newcommand{\LintGrammarPython}{
  854. \begin{array}{rcl}
  855. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  856. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  857. \end{array}
  858. }
  859. \newcommand{\LintASTPython}{
  860. \begin{array}{rcl}
  861. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  862. \itm{unaryop} &::= & \code{USub()} \\
  863. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  864. &\MID& \UNIOP{\itm{unaryop}}{\Exp} \MID \BINOP{\itm{binaryop}}{\Exp}{\Exp} \\
  865. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  866. \end{array}
  867. }
  868. \begin{figure}[tp]
  869. \begin{tcolorbox}[colback=white]
  870. {\if\edition\racketEd
  871. \[
  872. \begin{array}{l}
  873. \LintGrammarRacket \\
  874. \begin{array}{rcl}
  875. \LangInt{} &::=& \Exp
  876. \end{array}
  877. \end{array}
  878. \]
  879. \fi}
  880. {\if\edition\pythonEd
  881. \[
  882. \begin{array}{l}
  883. \LintGrammarPython \\
  884. \begin{array}{rcl}
  885. \LangInt{} &::=& \Stmt^{*}
  886. \end{array}
  887. \end{array}
  888. \]
  889. \fi}
  890. \end{tcolorbox}
  891. \caption{The concrete syntax of \LangInt{}.}
  892. \label{fig:r0-concrete-syntax}
  893. \end{figure}
  894. \begin{figure}[tp]
  895. \begin{tcolorbox}[colback=white]
  896. {\if\edition\racketEd
  897. \[
  898. \begin{array}{l}
  899. \LintASTRacket{} \\
  900. \begin{array}{rcl}
  901. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  902. \end{array}
  903. \end{array}
  904. \]
  905. \fi}
  906. {\if\edition\pythonEd
  907. \[
  908. \begin{array}{l}
  909. \LintASTPython\\
  910. \begin{array}{rcl}
  911. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  912. \end{array}
  913. \end{array}
  914. \]
  915. \fi}
  916. \end{tcolorbox}
  917. \python{
  918. \index{subject}{Constant@\texttt{Constant}}
  919. \index{subject}{UnaryOp@\texttt{UnaryOp}}
  920. \index{subject}{USub@\texttt{USub}}
  921. \index{subject}{inputint@\texttt{input\_int}}
  922. \index{subject}{Call@\texttt{Call}}
  923. \index{subject}{Name@\texttt{Name}}
  924. \index{subject}{BinOp@\texttt{BinOp}}
  925. \index{subject}{Add@\texttt{Add}}
  926. \index{subject}{Sub@\texttt{Sub}}
  927. \index{subject}{print@\texttt{print}}
  928. \index{subject}{Expr@\texttt{Expr}}
  929. \index{subject}{Module@\texttt{Module}}
  930. }
  931. \caption{The abstract syntax of \LangInt{}.}
  932. \label{fig:r0-syntax}
  933. \end{figure}
  934. \section{Pattern Matching}
  935. \label{sec:pattern-matching}
  936. As mentioned in section~\ref{sec:ast}, compilers often need to access
  937. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python}
  938. provides the \texttt{match} feature to access the parts of a value.
  939. Consider the following example: \index{subject}{match} \index{subject}{pattern matching}
  940. \begin{center}
  941. \begin{minipage}{0.5\textwidth}
  942. {\if\edition\racketEd
  943. \begin{lstlisting}
  944. (match ast1_1
  945. [(Prim op (list child1 child2))
  946. (print op)])
  947. \end{lstlisting}
  948. \fi}
  949. {\if\edition\pythonEd
  950. \begin{lstlisting}
  951. match ast1_1:
  952. case BinOp(child1, op, child2):
  953. print(op)
  954. \end{lstlisting}
  955. \fi}
  956. \end{minipage}
  957. \end{center}
  958. {\if\edition\racketEd
  959. %
  960. In this example, the \texttt{match} form checks whether the AST
  961. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  962. three pattern variables \texttt{op}, \texttt{child1}, and
  963. \texttt{child2}. In general, a match clause consists of a
  964. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  965. recursively defined to be a pattern variable, a structure name
  966. followed by a pattern for each of the structure's arguments, or an
  967. S-expression (a symbol, list, etc.). (See chapter 12 of The Racket
  968. Guide\footnote{See \url{https://docs.racket-lang.org/guide/match.html}.}
  969. and chapter 9 of The Racket
  970. Reference\footnote{See \url{https://docs.racket-lang.org/reference/match.html}.}
  971. for complete descriptions of \code{match}.)
  972. %
  973. The body of a match clause may contain arbitrary Racket code. The
  974. pattern variables can be used in the scope of the body, such as
  975. \code{op} in \code{(print op)}.
  976. %
  977. \fi}
  978. %
  979. %
  980. {\if\edition\pythonEd
  981. %
  982. In the above example, the \texttt{match} form checks whether the AST
  983. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  984. three pattern variables \texttt{child1}, \texttt{op}, and
  985. \texttt{child2}, and then prints out the operator. In general, each
  986. \code{case} consists of a \emph{pattern} and a
  987. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  988. to be either a pattern variable, a class name followed by a pattern
  989. for each of its constructor's arguments, or other literals such as
  990. strings, lists, etc.
  991. %
  992. The body of each \code{case} may contain arbitrary Python code. The
  993. pattern variables can be used in the body, such as \code{op} in
  994. \code{print(op)}.
  995. %
  996. \fi}
  997. A \code{match} form may contain several clauses, as in the following
  998. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  999. the AST. The \code{match} proceeds through the clauses in order,
  1000. checking whether the pattern can match the input AST. The body of the
  1001. first clause that matches is executed. The output of \code{leaf} for
  1002. several ASTs is shown on the right side of the following:
  1003. \begin{center}
  1004. \begin{minipage}{0.6\textwidth}
  1005. {\if\edition\racketEd
  1006. \begin{lstlisting}
  1007. (define (leaf arith)
  1008. (match arith
  1009. [(Int n) #t]
  1010. [(Prim 'read '()) #t]
  1011. [(Prim '- (list e1)) #f]
  1012. [(Prim '+ (list e1 e2)) #f]
  1013. [(Prim '- (list e1 e2)) #f]))
  1014. (leaf (Prim 'read '()))
  1015. (leaf (Prim '- (list (Int 8))))
  1016. (leaf (Int 8))
  1017. \end{lstlisting}
  1018. \fi}
  1019. {\if\edition\pythonEd
  1020. \begin{lstlisting}
  1021. def leaf(arith):
  1022. match arith:
  1023. case Constant(n):
  1024. return True
  1025. case Call(Name('input_int'), []):
  1026. return True
  1027. case UnaryOp(USub(), e1):
  1028. return False
  1029. case BinOp(e1, Add(), e2):
  1030. return False
  1031. case BinOp(e1, Sub(), e2):
  1032. return False
  1033. print(leaf(Call(Name('input_int'), [])))
  1034. print(leaf(UnaryOp(USub(), eight)))
  1035. print(leaf(Constant(8)))
  1036. \end{lstlisting}
  1037. \fi}
  1038. \end{minipage}
  1039. \vrule
  1040. \begin{minipage}{0.25\textwidth}
  1041. {\if\edition\racketEd
  1042. \begin{lstlisting}
  1043. #t
  1044. #f
  1045. #t
  1046. \end{lstlisting}
  1047. \fi}
  1048. {\if\edition\pythonEd
  1049. \begin{lstlisting}
  1050. True
  1051. False
  1052. True
  1053. \end{lstlisting}
  1054. \fi}
  1055. \end{minipage}
  1056. \end{center}
  1057. When constructing a \code{match} expression, we refer to the grammar
  1058. definition to identify which nonterminal we are expecting to match
  1059. against, and then we make sure that (1) we have one
  1060. \racket{clause}\python{case} for each alternative of that nonterminal
  1061. and (2) the pattern in each \racket{clause}\python{case}
  1062. corresponds to the corresponding right-hand side of a grammar
  1063. rule. For the \code{match} in the \code{leaf} function, we refer to
  1064. the grammar for \LangInt{} shown in figure~\ref{fig:r0-syntax}. The $\Exp$
  1065. nonterminal has four alternatives, so the \code{match} has four
  1066. \racket{clauses}\python{cases}. The pattern in each
  1067. \racket{clause}\python{case} corresponds to the right-hand side of a
  1068. grammar rule. For example, the pattern \ADDP{\code{e1}}{\code{e2}}
  1069. corresponds to the right-hand side $\ADD{\Exp}{\Exp}$. When
  1070. translating from grammars to patterns, replace nonterminals such as
  1071. $\Exp$ with pattern variables of your choice (e.g., \code{e1} and
  1072. \code{e2}).
  1073. \section{Recursive Functions}
  1074. \label{sec:recursion}
  1075. \index{subject}{recursive function}
  1076. Programs are inherently recursive. For example, an expression is often
  1077. made of smaller expressions. Thus, the natural way to process an
  1078. entire program is to use a recursive function. As a first example of
  1079. such a recursive function, we define the function \code{is\_exp} as
  1080. shown in figure~\ref{fig:exp-predicate}, to take an arbitrary
  1081. value and determine whether or not it is an expression in \LangInt{}.
  1082. %
  1083. We say that a function is defined by \emph{structural recursion} if
  1084. it is defined using a sequence of match \racket{clauses}\python{cases}
  1085. that correspond to a grammar and the body of each
  1086. \racket{clause}\python{case} makes a recursive call on each child
  1087. node.\footnote{This principle of structuring code according to the
  1088. data definition is advocated in the book \emph{How to Design
  1089. Programs} by \citet{Felleisen:2001aa}.} \python{We define a
  1090. second function, named \code{stmt}, that recognizes whether a value
  1091. is a \LangInt{} statement.} \python{Finally, }
  1092. Figure~\ref{fig:exp-predicate} \racket{also} contains the definition of
  1093. \code{is\_Lint}, which determines whether an AST is a program in \LangInt{}.
  1094. In general, we can write one recursive function to handle each
  1095. nonterminal in a grammar.\index{subject}{structural recursion} Of the
  1096. two examples at the bottom of the figure, the first is in
  1097. \LangInt{} and the second is not.
  1098. \begin{figure}[tp]
  1099. \begin{tcolorbox}[colback=white]
  1100. {\if\edition\racketEd
  1101. \begin{lstlisting}
  1102. (define (is_exp ast)
  1103. (match ast
  1104. [(Int n) #t]
  1105. [(Prim 'read '()) #t]
  1106. [(Prim '- (list e)) (is_exp e)]
  1107. [(Prim '+ (list e1 e2))
  1108. (and (is_exp e1) (is_exp e2))]
  1109. [(Prim '- (list e1 e2))
  1110. (and (is_exp e1) (is_exp e2))]
  1111. [else #f]))
  1112. (define (is_Lint ast)
  1113. (match ast
  1114. [(Program '() e) (is_exp e)]
  1115. [else #f]))
  1116. (is_Lint (Program '() ast1_1)
  1117. (is_Lint (Program '()
  1118. (Prim '* (list (Prim 'read '())
  1119. (Prim '+ (list (Int 8)))))))
  1120. \end{lstlisting}
  1121. \fi}
  1122. {\if\edition\pythonEd
  1123. \begin{lstlisting}
  1124. def is_exp(e):
  1125. match e:
  1126. case Constant(n):
  1127. return True
  1128. case Call(Name('input_int'), []):
  1129. return True
  1130. case UnaryOp(USub(), e1):
  1131. return is_exp(e1)
  1132. case BinOp(e1, Add(), e2):
  1133. return is_exp(e1) and is_exp(e2)
  1134. case BinOp(e1, Sub(), e2):
  1135. return is_exp(e1) and is_exp(e2)
  1136. case _:
  1137. return False
  1138. def stmt(s):
  1139. match s:
  1140. case Expr(Call(Name('print'), [e])):
  1141. return is_exp(e)
  1142. case Expr(e):
  1143. return is_exp(e)
  1144. case _:
  1145. return False
  1146. def is_Lint(p):
  1147. match p:
  1148. case Module(body):
  1149. return all([stmt(s) for s in body])
  1150. case _:
  1151. return False
  1152. print(is_Lint(Module([Expr(ast1_1)])))
  1153. print(is_Lint(Module([Expr(BinOp(read, Sub(),
  1154. UnaryOp(Add(), Constant(8))))])))
  1155. \end{lstlisting}
  1156. \fi}
  1157. \end{tcolorbox}
  1158. \caption{Example of recursive functions for \LangInt{}. These functions
  1159. recognize whether an AST is in \LangInt{}.}
  1160. \label{fig:exp-predicate}
  1161. \end{figure}
  1162. %% You may be tempted to merge the two functions into one, like this:
  1163. %% \begin{center}
  1164. %% \begin{minipage}{0.5\textwidth}
  1165. %% \begin{lstlisting}
  1166. %% (define (Lint ast)
  1167. %% (match ast
  1168. %% [(Int n) #t]
  1169. %% [(Prim 'read '()) #t]
  1170. %% [(Prim '- (list e)) (Lint e)]
  1171. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1172. %% [(Program '() e) (Lint e)]
  1173. %% [else #f]))
  1174. %% \end{lstlisting}
  1175. %% \end{minipage}
  1176. %% \end{center}
  1177. %% %
  1178. %% Sometimes such a trick will save a few lines of code, especially when
  1179. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1180. %% \emph{not} recommended because it can get you into trouble.
  1181. %% %
  1182. %% For example, the above function is subtly wrong:
  1183. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1184. %% returns true when it should return false.
  1185. \section{Interpreters}
  1186. \label{sec:interp_Lint}
  1187. \index{subject}{interpreter}
  1188. The behavior of a program is defined by the specification of the
  1189. programming language.
  1190. %
  1191. \racket{For example, the Scheme language is defined in the report by
  1192. \citet{SPERBER:2009aa}. The Racket language is defined in its
  1193. reference manual~\citep{plt-tr}.}
  1194. %
  1195. \python{For example, the Python language is defined in the Python
  1196. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1197. %
  1198. In this book we use interpreters to specify each language that we
  1199. consider. An interpreter that is designated as the definition of a
  1200. language is called a \emph{definitional
  1201. interpreter}~\citep{reynolds72:_def_interp}.
  1202. \index{subject}{definitional interpreter} We warm up by creating a
  1203. definitional interpreter for the \LangInt{} language. This interpreter
  1204. serves as a second example of structural recursion. The definition of the
  1205. \code{interp\_Lint} function is shown in
  1206. figure~\ref{fig:interp_Lint}.
  1207. %
  1208. \racket{The body of the function is a match on the input program
  1209. followed by a call to the \lstinline{interp_exp} auxiliary function,
  1210. which in turn has one match clause per grammar rule for \LangInt{}
  1211. expressions.}
  1212. %
  1213. \python{The body of the function matches on the \code{Module} AST node
  1214. and then invokes \code{interp\_stmt} on each statement in the
  1215. module. The \code{interp\_stmt} function includes a case for each
  1216. grammar rule of the \Stmt{} nonterminal and it calls
  1217. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1218. function includes a case for each grammar rule of the \Exp{}
  1219. nonterminal.}
  1220. \begin{figure}[tp]
  1221. \begin{tcolorbox}[colback=white]
  1222. {\if\edition\racketEd
  1223. \begin{lstlisting}
  1224. (define (interp_exp e)
  1225. (match e
  1226. [(Int n) n]
  1227. [(Prim 'read '())
  1228. (define r (read))
  1229. (cond [(fixnum? r) r]
  1230. [else (error 'interp_exp "read expected an integer" r)])]
  1231. [(Prim '- (list e))
  1232. (define v (interp_exp e))
  1233. (fx- 0 v)]
  1234. [(Prim '+ (list e1 e2))
  1235. (define v1 (interp_exp e1))
  1236. (define v2 (interp_exp e2))
  1237. (fx+ v1 v2)]
  1238. [(Prim '- (list e1 e2))
  1239. (define v1 ((interp-exp env) e1))
  1240. (define v2 ((interp-exp env) e2))
  1241. (fx- v1 v2)]))
  1242. (define (interp_Lint p)
  1243. (match p
  1244. [(Program '() e) (interp_exp e)]))
  1245. \end{lstlisting}
  1246. \fi}
  1247. {\if\edition\pythonEd
  1248. \begin{lstlisting}
  1249. def interp_exp(e):
  1250. match e:
  1251. case BinOp(left, Add(), right):
  1252. l = interp_exp(left); r = interp_exp(right)
  1253. return l + r
  1254. case BinOp(left, Sub(), right):
  1255. l = interp_exp(left); r = interp_exp(right)
  1256. return l - r
  1257. case UnaryOp(USub(), v):
  1258. return - interp_exp(v)
  1259. case Constant(value):
  1260. return value
  1261. case Call(Name('input_int'), []):
  1262. return int(input())
  1263. def interp_stmt(s):
  1264. match s:
  1265. case Expr(Call(Name('print'), [arg])):
  1266. print(interp_exp(arg))
  1267. case Expr(value):
  1268. interp_exp(value)
  1269. def interp_Lint(p):
  1270. match p:
  1271. case Module(body):
  1272. for s in body:
  1273. interp_stmt(s)
  1274. \end{lstlisting}
  1275. \fi}
  1276. \end{tcolorbox}
  1277. \caption{Interpreter for the \LangInt{} language.}
  1278. \label{fig:interp_Lint}
  1279. \end{figure}
  1280. Let us consider the result of interpreting a few \LangInt{} programs. The
  1281. following program adds two integers:
  1282. {\if\edition\racketEd
  1283. \begin{lstlisting}
  1284. (+ 10 32)
  1285. \end{lstlisting}
  1286. \fi}
  1287. {\if\edition\pythonEd
  1288. \begin{lstlisting}
  1289. print(10 + 32)
  1290. \end{lstlisting}
  1291. \fi}
  1292. %
  1293. \noindent The result is \key{42}, the answer to life, the universe,
  1294. and everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to
  1295. the Galaxy} by Douglas Adams.}
  1296. %
  1297. We wrote this program in concrete syntax, whereas the parsed
  1298. abstract syntax is
  1299. {\if\edition\racketEd
  1300. \begin{lstlisting}
  1301. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1302. \end{lstlisting}
  1303. \fi}
  1304. {\if\edition\pythonEd
  1305. \begin{lstlisting}
  1306. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1307. \end{lstlisting}
  1308. \fi}
  1309. The following program demonstrates that expressions may be nested within
  1310. each other, in this case nesting several additions and negations.
  1311. {\if\edition\racketEd
  1312. \begin{lstlisting}
  1313. (+ 10 (- (+ 12 20)))
  1314. \end{lstlisting}
  1315. \fi}
  1316. {\if\edition\pythonEd
  1317. \begin{lstlisting}
  1318. print(10 + -(12 + 20))
  1319. \end{lstlisting}
  1320. \fi}
  1321. %
  1322. \noindent What is the result of this program?
  1323. {\if\edition\racketEd
  1324. As mentioned previously, the \LangInt{} language does not support
  1325. arbitrarily large integers but only $63$-bit integers, so we
  1326. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1327. in Racket.
  1328. Suppose that
  1329. \[
  1330. n = 999999999999999999
  1331. \]
  1332. which indeed fits in $63$ bits. What happens when we run the
  1333. following program in our interpreter?
  1334. \begin{lstlisting}
  1335. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1336. \end{lstlisting}
  1337. It produces the following error:
  1338. \begin{lstlisting}
  1339. fx+: result is not a fixnum
  1340. \end{lstlisting}
  1341. We establish the convention that if running the definitional
  1342. interpreter on a program produces an error, then the meaning of that
  1343. program is \emph{unspecified}\index{subject}{unspecified behavior} unless the
  1344. error is a \code{trapped-error}. A compiler for the language is under
  1345. no obligation regarding programs with unspecified behavior; it does
  1346. not have to produce an executable, and if it does, that executable can
  1347. do anything. On the other hand, if the error is a
  1348. \code{trapped-error}, then the compiler must produce an executable and
  1349. it is required to report that an error occurred. To signal an error,
  1350. exit with a return code of \code{255}. The interpreters in chapters
  1351. \ref{ch:Ldyn} and \ref{ch:Lgrad} and in section \ref{sec:arrays} use
  1352. \code{trapped-error}.
  1353. \fi}
  1354. % TODO: how to deal with too-large integers in the Python interpreter?
  1355. %% This convention applies to the languages defined in this
  1356. %% book, as a way to simplify the student's task of implementing them,
  1357. %% but this convention is not applicable to all programming languages.
  1358. %%
  1359. The last feature of the \LangInt{} language, the \READOP{} operation,
  1360. prompts the user of the program for an integer. Recall that program
  1361. \eqref{eq:arith-prog} requests an integer input and then subtracts
  1362. \code{8}. So, if we run {\if\edition\racketEd
  1363. \begin{lstlisting}
  1364. (interp_Lint (Program '() ast1_1))
  1365. \end{lstlisting}
  1366. \fi}
  1367. {\if\edition\pythonEd
  1368. \begin{lstlisting}
  1369. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1370. \end{lstlisting}
  1371. \fi}
  1372. \noindent and if the input is \code{50}, the result is \code{42}.
  1373. We include the \READOP{} operation in \LangInt{} so that a clever
  1374. student cannot implement a compiler for \LangInt{} that simply runs
  1375. the interpreter during compilation to obtain the output and then
  1376. generates the trivial code to produce the output.\footnote{Yes, a
  1377. clever student did this in the first instance of this course!}
  1378. The job of a compiler is to translate a program in one language into a
  1379. program in another language so that the output program behaves the
  1380. same way as the input program. This idea is depicted in the
  1381. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1382. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1383. Given a compiler that translates from language $\mathcal{L}_1$ to
  1384. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1385. compiler must translate it into some program $P_2$ such that
  1386. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1387. same input $i$ yields the same output $o$.
  1388. \begin{equation} \label{eq:compile-correct}
  1389. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1390. \node (p1) at (0, 0) {$P_1$};
  1391. \node (p2) at (3, 0) {$P_2$};
  1392. \node (o) at (3, -2.5) {$o$};
  1393. \path[->] (p1) edge [above] node {compile} (p2);
  1394. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1395. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1396. \end{tikzpicture}
  1397. \end{equation}
  1398. In the next section we see our first example of a compiler.
  1399. \section{Example Compiler: A Partial Evaluator}
  1400. \label{sec:partial-evaluation}
  1401. In this section we consider a compiler that translates \LangInt{}
  1402. programs into \LangInt{} programs that may be more efficient. The
  1403. compiler eagerly computes the parts of the program that do not depend
  1404. on any inputs, a process known as \emph{partial
  1405. evaluation}~\citep{Jones:1993uq}. \index{subject}{partial evaluation}
  1406. For example, given the following program
  1407. {\if\edition\racketEd
  1408. \begin{lstlisting}
  1409. (+ (read) (- (+ 5 3)))
  1410. \end{lstlisting}
  1411. \fi}
  1412. {\if\edition\pythonEd
  1413. \begin{lstlisting}
  1414. print(input_int() + -(5 + 3) )
  1415. \end{lstlisting}
  1416. \fi}
  1417. \noindent our compiler translates it into the program
  1418. {\if\edition\racketEd
  1419. \begin{lstlisting}
  1420. (+ (read) -8)
  1421. \end{lstlisting}
  1422. \fi}
  1423. {\if\edition\pythonEd
  1424. \begin{lstlisting}
  1425. print(input_int() + -8)
  1426. \end{lstlisting}
  1427. \fi}
  1428. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1429. evaluator for the \LangInt{} language. The output of the partial evaluator
  1430. is a program in \LangInt{}. In figure~\ref{fig:pe-arith}, the structural
  1431. recursion over $\Exp$ is captured in the \code{pe\_exp} function,
  1432. whereas the code for partially evaluating the negation and addition
  1433. operations is factored into three auxiliary functions:
  1434. \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub}. The input to these
  1435. functions is the output of partially evaluating the children.
  1436. The \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub} functions check whether their
  1437. arguments are integers and if they are, perform the appropriate
  1438. arithmetic. Otherwise, they create an AST node for the arithmetic
  1439. operation.
  1440. \begin{figure}[tp]
  1441. \begin{tcolorbox}[colback=white]
  1442. {\if\edition\racketEd
  1443. \begin{lstlisting}
  1444. (define (pe_neg r)
  1445. (match r
  1446. [(Int n) (Int (fx- 0 n))]
  1447. [else (Prim '- (list r))]))
  1448. (define (pe_add r1 r2)
  1449. (match* (r1 r2)
  1450. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1451. [(_ _) (Prim '+ (list r1 r2))]))
  1452. (define (pe_sub r1 r2)
  1453. (match* (r1 r2)
  1454. [((Int n1) (Int n2)) (Int (fx- n1 n2))]
  1455. [(_ _) (Prim '- (list r1 r2))]))
  1456. (define (pe_exp e)
  1457. (match e
  1458. [(Int n) (Int n)]
  1459. [(Prim 'read '()) (Prim 'read '())]
  1460. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1461. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]
  1462. [(Prim '- (list e1 e2)) (pe_sub (pe_exp e1) (pe_exp e2))]))
  1463. (define (pe_Lint p)
  1464. (match p
  1465. [(Program '() e) (Program '() (pe_exp e))]))
  1466. \end{lstlisting}
  1467. \fi}
  1468. {\if\edition\pythonEd
  1469. \begin{lstlisting}
  1470. def pe_neg(r):
  1471. match r:
  1472. case Constant(n):
  1473. return Constant(-n)
  1474. case _:
  1475. return UnaryOp(USub(), r)
  1476. def pe_add(r1, r2):
  1477. match (r1, r2):
  1478. case (Constant(n1), Constant(n2)):
  1479. return Constant(n1 + n2)
  1480. case _:
  1481. return BinOp(r1, Add(), r2)
  1482. def pe_sub(r1, r2):
  1483. match (r1, r2):
  1484. case (Constant(n1), Constant(n2)):
  1485. return Constant(n1 - n2)
  1486. case _:
  1487. return BinOp(r1, Sub(), r2)
  1488. def pe_exp(e):
  1489. match e:
  1490. case BinOp(left, Add(), right):
  1491. return pe_add(pe_exp(left), pe_exp(right))
  1492. case BinOp(left, Sub(), right):
  1493. return pe_sub(pe_exp(left), pe_exp(right))
  1494. case UnaryOp(USub(), v):
  1495. return pe_neg(pe_exp(v))
  1496. case Constant(value):
  1497. return e
  1498. case Call(Name('input_int'), []):
  1499. return e
  1500. def pe_stmt(s):
  1501. match s:
  1502. case Expr(Call(Name('print'), [arg])):
  1503. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1504. case Expr(value):
  1505. return Expr(pe_exp(value))
  1506. def pe_P_int(p):
  1507. match p:
  1508. case Module(body):
  1509. new_body = [pe_stmt(s) for s in body]
  1510. return Module(new_body)
  1511. \end{lstlisting}
  1512. \fi}
  1513. \end{tcolorbox}
  1514. \caption{A partial evaluator for \LangInt{}.}
  1515. \label{fig:pe-arith}
  1516. \end{figure}
  1517. To gain some confidence that the partial evaluator is correct, we can
  1518. test whether it produces programs that produce the same result as the
  1519. input programs. That is, we can test whether it satisfies the diagram
  1520. of \eqref{eq:compile-correct}.
  1521. %
  1522. {\if\edition\racketEd
  1523. The following code runs the partial evaluator on several examples and
  1524. tests the output program. The \texttt{parse-program} and
  1525. \texttt{assert} functions are defined in
  1526. appendix~\ref{appendix:utilities}.\\
  1527. \begin{minipage}{1.0\textwidth}
  1528. \begin{lstlisting}
  1529. (define (test_pe p)
  1530. (assert "testing pe_Lint"
  1531. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1532. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1533. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1534. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1535. \end{lstlisting}
  1536. \end{minipage}
  1537. \fi}
  1538. % TODO: python version of testing the PE
  1539. \begin{exercise}\normalfont\normalsize
  1540. Create three programs in the \LangInt{} language and test whether
  1541. partially evaluating them with \code{pe\_Lint} and then
  1542. interpreting them with \code{interp\_Lint} gives the same result
  1543. as directly interpreting them with \code{interp\_Lint}.
  1544. \end{exercise}
  1545. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1546. \chapter{Integers and Variables}
  1547. \label{ch:Lvar}
  1548. \setcounter{footnote}{0}
  1549. This chapter covers compiling a subset of
  1550. \racket{Racket}\python{Python} to x86-64 assembly
  1551. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1552. integer arithmetic and local variables. We often refer to x86-64
  1553. simply as x86. The chapter first describes the \LangVar{} language
  1554. (section~\ref{sec:s0}) and then introduces x86 assembly
  1555. (section~\ref{sec:x86}). Because x86 assembly language is large, we
  1556. discuss only the instructions needed for compiling \LangVar{}. We
  1557. introduce more x86 instructions in subsequent chapters. After
  1558. introducing \LangVar{} and x86, we reflect on their differences and
  1559. create a plan to break down the translation from \LangVar{} to x86
  1560. into a handful of steps (section~\ref{sec:plan-s0-x86}). The rest of
  1561. the chapter gives detailed hints regarding each step. We aim to give
  1562. enough hints that the well-prepared reader, together with a few
  1563. friends, can implement a compiler from \LangVar{} to x86 in a short
  1564. time. To suggest the scale of this first compiler, we note that the
  1565. instructor solution for the \LangVar{} compiler is approximately
  1566. \racket{500}\python{300} lines of code.
  1567. \section{The \LangVar{} Language}
  1568. \label{sec:s0}
  1569. \index{subject}{variable}
  1570. The \LangVar{} language extends the \LangInt{} language with
  1571. variables. The concrete syntax of the \LangVar{} language is defined
  1572. by the grammar presented in figure~\ref{fig:Lvar-concrete-syntax} and
  1573. the abstract syntax is presented in figure~\ref{fig:Lvar-syntax}. The
  1574. nonterminal \Var{} may be any \racket{Racket}\python{Python}
  1575. identifier. As in \LangInt{}, \READOP{} is a nullary operator,
  1576. \key{-} is a unary operator, and \key{+} is a binary operator.
  1577. Similarly to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1578. \racket{\key{Program} struct}\python{\key{Module} instance} to mark
  1579. the top of the program.
  1580. %% The $\itm{info}$
  1581. %% field of the \key{Program} structure contains an \emph{association
  1582. %% list} (a list of key-value pairs) that is used to communicate
  1583. %% auxiliary data from one compiler pass the next.
  1584. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1585. exhibit several compilation techniques.
  1586. \newcommand{\LvarGrammarRacket}{
  1587. \begin{array}{rcl}
  1588. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1589. \end{array}
  1590. }
  1591. \newcommand{\LvarASTRacket}{
  1592. \begin{array}{rcl}
  1593. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1594. \end{array}
  1595. }
  1596. \newcommand{\LvarGrammarPython}{
  1597. \begin{array}{rcl}
  1598. \Exp &::=& \Var{} \\
  1599. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1600. \end{array}
  1601. }
  1602. \newcommand{\LvarASTPython}{
  1603. \begin{array}{rcl}
  1604. \Exp{} &::=& \VAR{\Var{}} \\
  1605. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1606. \end{array}
  1607. }
  1608. \begin{figure}[tp]
  1609. \centering
  1610. \begin{tcolorbox}[colback=white]
  1611. {\if\edition\racketEd
  1612. \[
  1613. \begin{array}{l}
  1614. \gray{\LintGrammarRacket{}} \\ \hline
  1615. \LvarGrammarRacket{} \\
  1616. \begin{array}{rcl}
  1617. \LangVarM{} &::=& \Exp
  1618. \end{array}
  1619. \end{array}
  1620. \]
  1621. \fi}
  1622. {\if\edition\pythonEd
  1623. \[
  1624. \begin{array}{l}
  1625. \gray{\LintGrammarPython} \\ \hline
  1626. \LvarGrammarPython \\
  1627. \begin{array}{rcl}
  1628. \LangVarM{} &::=& \Stmt^{*}
  1629. \end{array}
  1630. \end{array}
  1631. \]
  1632. \fi}
  1633. \end{tcolorbox}
  1634. \caption{The concrete syntax of \LangVar{}.}
  1635. \label{fig:Lvar-concrete-syntax}
  1636. \end{figure}
  1637. \begin{figure}[tp]
  1638. \centering
  1639. \begin{tcolorbox}[colback=white]
  1640. {\if\edition\racketEd
  1641. \[
  1642. \begin{array}{l}
  1643. \gray{\LintASTRacket{}} \\ \hline
  1644. \LvarASTRacket \\
  1645. \begin{array}{rcl}
  1646. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1647. \end{array}
  1648. \end{array}
  1649. \]
  1650. \fi}
  1651. {\if\edition\pythonEd
  1652. \[
  1653. \begin{array}{l}
  1654. \gray{\LintASTPython}\\ \hline
  1655. \LvarASTPython \\
  1656. \begin{array}{rcl}
  1657. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1658. \end{array}
  1659. \end{array}
  1660. \]
  1661. \fi}
  1662. \end{tcolorbox}
  1663. \caption{The abstract syntax of \LangVar{}.}
  1664. \label{fig:Lvar-syntax}
  1665. \end{figure}
  1666. {\if\edition\racketEd
  1667. Let us dive further into the syntax and semantics of the \LangVar{}
  1668. language. The \key{let} feature defines a variable for use within its
  1669. body and initializes the variable with the value of an expression.
  1670. The abstract syntax for \key{let} is shown in
  1671. figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1672. \begin{lstlisting}
  1673. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1674. \end{lstlisting}
  1675. For example, the following program initializes \code{x} to $32$ and then
  1676. evaluates the body \code{(+ 10 x)}, producing $42$.
  1677. \begin{lstlisting}
  1678. (let ([x (+ 12 20)]) (+ 10 x))
  1679. \end{lstlisting}
  1680. \fi}
  1681. %
  1682. {\if\edition\pythonEd
  1683. %
  1684. The \LangVar{} language includes assignment statements, which define a
  1685. variable for use in later statements and initializes the variable with
  1686. the value of an expression. The abstract syntax for assignment is
  1687. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1688. assignment is \index{subject}{Assign@\texttt{Assign}}
  1689. \begin{lstlisting}
  1690. |$\itm{var}$| = |$\itm{exp}$|
  1691. \end{lstlisting}
  1692. For example, the following program initializes the variable \code{x}
  1693. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1694. \begin{lstlisting}
  1695. x = 12 + 20
  1696. print(10 + x)
  1697. \end{lstlisting}
  1698. \fi}
  1699. {\if\edition\racketEd
  1700. %
  1701. When there are multiple \key{let}s for the same variable, the closest
  1702. enclosing \key{let} is used. That is, variable definitions overshadow
  1703. prior definitions. Consider the following program with two \key{let}s
  1704. that define two variables named \code{x}. Can you figure out the
  1705. result?
  1706. \begin{lstlisting}
  1707. (let ([x 32]) (+ (let ([x 10]) x) x))
  1708. \end{lstlisting}
  1709. For the purposes of depicting which variable occurrences correspond to
  1710. which definitions, the following shows the \code{x}'s annotated with
  1711. subscripts to distinguish them. Double check that your answer for the
  1712. previous program is the same as your answer for this annotated version
  1713. of the program.
  1714. \begin{lstlisting}
  1715. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1716. \end{lstlisting}
  1717. The initializing expression is always evaluated before the body of the
  1718. \key{let}, so in the following, the \key{read} for \code{x} is
  1719. performed before the \key{read} for \code{y}. Given the input
  1720. $52$ then $10$, the following produces $42$ (not $-42$).
  1721. \begin{lstlisting}
  1722. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1723. \end{lstlisting}
  1724. \fi}
  1725. \subsection{Extensible Interpreters via Method Overriding}
  1726. \label{sec:extensible-interp}
  1727. To prepare for discussing the interpreter of \LangVar{}, we explain
  1728. why we implement it in an object-oriented style. Throughout this book
  1729. we define many interpreters, one for each language that we
  1730. study. Because each language builds on the prior one, there is a lot
  1731. of commonality between these interpreters. We want to write down the
  1732. common parts just once instead of many times. A naive interpreter for
  1733. \LangVar{} would handle the \racket{cases for variables and
  1734. \code{let}} \python{case for variables} but dispatch to an
  1735. interpreter for \LangInt{} in the rest of the cases. The following
  1736. code sketches this idea. (We explain the \code{env} parameter in
  1737. section~\ref{sec:interp-Lvar}.)
  1738. \begin{center}
  1739. {\if\edition\racketEd
  1740. \begin{minipage}{0.45\textwidth}
  1741. \begin{lstlisting}
  1742. (define ((interp_Lint env) e)
  1743. (match e
  1744. [(Prim '- (list e1))
  1745. (fx- 0 ((interp_Lint env) e1))]
  1746. ...))
  1747. \end{lstlisting}
  1748. \end{minipage}
  1749. \begin{minipage}{0.45\textwidth}
  1750. \begin{lstlisting}
  1751. (define ((interp_Lvar env) e)
  1752. (match e
  1753. [(Var x)
  1754. (dict-ref env x)]
  1755. [(Let x e body)
  1756. (define v ((interp_exp env) e))
  1757. (define env^ (dict-set env x v))
  1758. ((interp_exp env^) body)]
  1759. [else ((interp_Lint env) e)]))
  1760. \end{lstlisting}
  1761. \end{minipage}
  1762. \fi}
  1763. {\if\edition\pythonEd
  1764. \begin{minipage}{0.45\textwidth}
  1765. \begin{lstlisting}
  1766. def interp_Lint(e, env):
  1767. match e:
  1768. case UnaryOp(USub(), e1):
  1769. return - interp_Lint(e1, env)
  1770. ...
  1771. \end{lstlisting}
  1772. \end{minipage}
  1773. \begin{minipage}{0.45\textwidth}
  1774. \begin{lstlisting}
  1775. def interp_Lvar(e, env):
  1776. match e:
  1777. case Name(id):
  1778. return env[id]
  1779. case _:
  1780. return interp_Lint(e, env)
  1781. \end{lstlisting}
  1782. \end{minipage}
  1783. \fi}
  1784. \end{center}
  1785. The problem with this naive approach is that it does not handle
  1786. situations in which an \LangVar{} feature, such as a variable, is
  1787. nested inside an \LangInt{} feature, such as the \code{-} operator, as
  1788. in the following program.
  1789. {\if\edition\racketEd
  1790. \begin{lstlisting}
  1791. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1792. \end{lstlisting}
  1793. \fi}
  1794. {\if\edition\pythonEd
  1795. \begin{minipage}{0.96\textwidth}
  1796. \begin{lstlisting}
  1797. y = 10
  1798. print(-y)
  1799. \end{lstlisting}
  1800. \end{minipage}
  1801. \fi}
  1802. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1803. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1804. then it recursively calls \code{interp\_Lint} again on its argument.
  1805. Because there is no case for \code{Var} in \code{interp\_Lint}, we get
  1806. an error!
  1807. To make our interpreters extensible we need something called
  1808. \emph{open recursion}\index{subject}{open recursion}, in which the
  1809. tying of the recursive knot is delayed until the functions are
  1810. composed. Object-oriented languages provide open recursion via method
  1811. overriding\index{subject}{method overriding}. The following code uses
  1812. method overriding to interpret \LangInt{} and \LangVar{} using
  1813. %
  1814. \racket{the
  1815. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1816. \index{subject}{class} feature of Racket.}
  1817. %
  1818. \python{a Python \code{class} definition.}
  1819. %
  1820. We define one class for each language and define a method for
  1821. interpreting expressions inside each class. The class for \LangVar{}
  1822. inherits from the class for \LangInt{}, and the method
  1823. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1824. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1825. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1826. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1827. \code{interp\_exp} in \LangInt{}.
  1828. \begin{center}
  1829. \hspace{-20pt}
  1830. {\if\edition\racketEd
  1831. \begin{minipage}{0.45\textwidth}
  1832. \begin{lstlisting}
  1833. (define interp-Lint-class
  1834. (class object%
  1835. (define/public ((interp_exp env) e)
  1836. (match e
  1837. [(Prim '- (list e))
  1838. (fx- 0 ((interp_exp env) e))]
  1839. ...))
  1840. ...))
  1841. \end{lstlisting}
  1842. \end{minipage}
  1843. \begin{minipage}{0.45\textwidth}
  1844. \begin{lstlisting}
  1845. (define interp-Lvar-class
  1846. (class interp-Lint-class
  1847. (define/override ((interp_exp env) e)
  1848. (match e
  1849. [(Var x)
  1850. (dict-ref env x)]
  1851. [(Let x e body)
  1852. (define v ((interp_exp env) e))
  1853. (define env^ (dict-set env x v))
  1854. ((interp_exp env^) body)]
  1855. [else
  1856. (super (interp_exp env) e)]))
  1857. ...
  1858. ))
  1859. \end{lstlisting}
  1860. \end{minipage}
  1861. \fi}
  1862. {\if\edition\pythonEd
  1863. \begin{minipage}{0.45\textwidth}
  1864. \begin{lstlisting}
  1865. class InterpLint:
  1866. def interp_exp(e):
  1867. match e:
  1868. case UnaryOp(USub(), e1):
  1869. return -self.interp_exp(e1)
  1870. ...
  1871. ...
  1872. \end{lstlisting}
  1873. \end{minipage}
  1874. \begin{minipage}{0.45\textwidth}
  1875. \begin{lstlisting}
  1876. def InterpLvar(InterpLint):
  1877. def interp_exp(e):
  1878. match e:
  1879. case Name(id):
  1880. return env[id]
  1881. case _:
  1882. return super().interp_exp(e)
  1883. ...
  1884. \end{lstlisting}
  1885. \end{minipage}
  1886. \fi}
  1887. \end{center}
  1888. Getting back to the troublesome example, repeated here
  1889. {\if\edition\racketEd
  1890. \begin{lstlisting}
  1891. (Let 'y (Int 10) (Prim '- (Var 'y)))
  1892. \end{lstlisting}
  1893. \fi}
  1894. {\if\edition\pythonEd
  1895. \begin{lstlisting}
  1896. y = 10
  1897. print(-y)
  1898. \end{lstlisting}
  1899. \fi}
  1900. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1901. \racket{on this expression,}
  1902. \python{on the \code{-y} expression,}
  1903. %
  1904. which we call \code{e0}, by creating an object of the \LangVar{} class
  1905. and calling the \code{interp\_exp} method
  1906. {\if\edition\racketEd
  1907. \begin{lstlisting}
  1908. ((send (new interp-Lvar-class) interp_exp '()) e0)
  1909. \end{lstlisting}
  1910. \fi}
  1911. {\if\edition\pythonEd
  1912. \begin{lstlisting}
  1913. InterpLvar().interp_exp(e0)
  1914. \end{lstlisting}
  1915. \fi}
  1916. \noindent To process the \code{-} operator, the default case of
  1917. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1918. method in \LangInt{}. But then for the recursive method call, it
  1919. dispatches to \code{interp\_exp} in \LangVar{}, where the
  1920. \code{Var} node is handled correctly. Thus, method overriding gives us
  1921. the open recursion that we need to implement our interpreters in an
  1922. extensible way.
  1923. \subsection{Definitional Interpreter for \LangVar{}}
  1924. \label{sec:interp-Lvar}
  1925. Having justified the use of classes and methods to implement
  1926. interpreters, we revisit the definitional interpreter for \LangInt{}
  1927. shown in figure~\ref{fig:interp-Lint-class} and then extend it to
  1928. create an interpreter for \LangVar{}, shown in figure~\ref{fig:interp-Lvar}.
  1929. The interpreter for \LangVar{} adds two new \key{match} cases for
  1930. variables and \racket{\key{let}}\python{assignment}. For
  1931. \racket{\key{let}}\python{assignment}, we need a way to communicate the
  1932. value bound to a variable to all the uses of the variable. To
  1933. accomplish this, we maintain a mapping from variables to values called
  1934. an \emph{environment}\index{subject}{environment}.
  1935. %
  1936. We use
  1937. %
  1938. \racket{an association list (alist) }%
  1939. %
  1940. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary} }%
  1941. %
  1942. to represent the environment.
  1943. %
  1944. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  1945. and the \code{racket/dict} package.}
  1946. %
  1947. The \code{interp\_exp} function takes the current environment,
  1948. \code{env}, as an extra parameter. When the interpreter encounters a
  1949. variable, it looks up the corresponding value in the dictionary.
  1950. %
  1951. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  1952. initializing expression, extends the environment with the result
  1953. value bound to the variable, using \code{dict-set}, then evaluates
  1954. the body of the \key{Let}.}
  1955. %
  1956. \python{When the interpreter encounters an assignment, it evaluates
  1957. the initializing expression and then associates the resulting value
  1958. with the variable in the environment.}
  1959. \begin{figure}[tp]
  1960. \begin{tcolorbox}[colback=white]
  1961. {\if\edition\racketEd
  1962. \begin{lstlisting}
  1963. (define interp-Lint-class
  1964. (class object%
  1965. (super-new)
  1966. (define/public ((interp_exp env) e)
  1967. (match e
  1968. [(Int n) n]
  1969. [(Prim 'read '())
  1970. (define r (read))
  1971. (cond [(fixnum? r) r]
  1972. [else (error 'interp_exp "expected an integer" r)])]
  1973. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  1974. [(Prim '+ (list e1 e2))
  1975. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  1976. [(Prim '- (list e1 e2))
  1977. (fx- ((interp_exp env) e1) ((interp_exp env) e2))]))
  1978. (define/public (interp_program p)
  1979. (match p
  1980. [(Program '() e) ((interp_exp '()) e)]))
  1981. ))
  1982. \end{lstlisting}
  1983. \fi}
  1984. {\if\edition\pythonEd
  1985. \begin{lstlisting}
  1986. class InterpLint:
  1987. def interp_exp(self, e, env):
  1988. match e:
  1989. case BinOp(left, Add(), right):
  1990. return self.interp_exp(left, env) + self.interp_exp(right, env)
  1991. case BinOp(left, Sub(), right):
  1992. return self.interp_exp(left, env) - self.interp_exp(right, env)
  1993. case UnaryOp(USub(), v):
  1994. return - self.interp_exp(v, env)
  1995. case Constant(value):
  1996. return value
  1997. case Call(Name('input_int'), []):
  1998. return int(input())
  1999. def interp_stmts(self, ss, env):
  2000. if len(ss) == 0:
  2001. return
  2002. match ss[0]:
  2003. case Expr(Call(Name('print'), [arg])):
  2004. print(self.interp_exp(arg, env), end='')
  2005. return self.interp_stmts(ss[1:], env)
  2006. case Expr(value):
  2007. self.interp_exp(value, env)
  2008. return self.interp_stmts(ss[1:], env)
  2009. def interp(self, p):
  2010. match p:
  2011. case Module(body):
  2012. self.interp_stmts(body, {})
  2013. def interp_Lint(p):
  2014. return InterpLint().interp(p)
  2015. \end{lstlisting}
  2016. \fi}
  2017. \end{tcolorbox}
  2018. \caption{Interpreter for \LangInt{} as a class.}
  2019. \label{fig:interp-Lint-class}
  2020. \end{figure}
  2021. \begin{figure}[tp]
  2022. \begin{tcolorbox}[colback=white]
  2023. {\if\edition\racketEd
  2024. \begin{lstlisting}
  2025. (define interp-Lvar-class
  2026. (class interp-Lint-class
  2027. (super-new)
  2028. (define/override ((interp_exp env) e)
  2029. (match e
  2030. [(Var x) (dict-ref env x)]
  2031. [(Let x e body)
  2032. (define new-env (dict-set env x ((interp_exp env) e)))
  2033. ((interp_exp new-env) body)]
  2034. [else ((super interp-exp env) e)]))
  2035. ))
  2036. (define (interp_Lvar p)
  2037. (send (new interp-Lvar-class) interp_program p))
  2038. \end{lstlisting}
  2039. \fi}
  2040. {\if\edition\pythonEd
  2041. \begin{lstlisting}
  2042. class InterpLvar(InterpLint):
  2043. def interp_exp(self, e, env):
  2044. match e:
  2045. case Name(id):
  2046. return env[id]
  2047. case _:
  2048. return super().interp_exp(e, env)
  2049. def interp_stmts(self, ss, env):
  2050. if len(ss) == 0:
  2051. return
  2052. match ss[0]:
  2053. case Assign([lhs], value):
  2054. env[lhs.id] = self.interp_exp(value, env)
  2055. return self.interp_stmts(ss[1:], env)
  2056. case _:
  2057. return super().interp_stmts(ss, env)
  2058. def interp_Lvar(p):
  2059. return InterpLvar().interp(p)
  2060. \end{lstlisting}
  2061. \fi}
  2062. \end{tcolorbox}
  2063. \caption{Interpreter for the \LangVar{} language.}
  2064. \label{fig:interp-Lvar}
  2065. \end{figure}
  2066. {\if\edition\racketEd
  2067. \begin{figure}[tp]
  2068. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  2069. \small
  2070. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  2071. An \emph{association list} (called an alist) is a list of key-value pairs.
  2072. For example, we can map people to their ages with an alist
  2073. \index{subject}{alist}\index{subject}{association list}
  2074. \begin{lstlisting}[basicstyle=\ttfamily]
  2075. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  2076. \end{lstlisting}
  2077. The \emph{dictionary} interface is for mapping keys to values.
  2078. Every alist implements this interface. \index{subject}{dictionary}
  2079. The package
  2080. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  2081. provides many functions for working with dictionaries, such as
  2082. \begin{description}
  2083. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  2084. returns the value associated with the given $\itm{key}$.
  2085. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  2086. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  2087. and otherwise is the same as $\itm{dict}$.
  2088. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  2089. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  2090. of keys and values in $\itm{dict}$. For example, the following
  2091. creates a new alist in which the ages are incremented:
  2092. \end{description}
  2093. \vspace{-10pt}
  2094. \begin{lstlisting}[basicstyle=\ttfamily]
  2095. (for/list ([(k v) (in-dict ages)])
  2096. (cons k (add1 v)))
  2097. \end{lstlisting}
  2098. \end{tcolorbox}
  2099. %\end{wrapfigure}
  2100. \caption{Association lists implement the dictionary interface.}
  2101. \label{fig:alist}
  2102. \end{figure}
  2103. \fi}
  2104. The goal for this chapter is to implement a compiler that translates
  2105. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2106. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2107. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2108. That is, they output the same integer $n$. We depict this correctness
  2109. criteria in the following diagram:
  2110. \[
  2111. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2112. \node (p1) at (0, 0) {$P_1$};
  2113. \node (p2) at (4, 0) {$P_2$};
  2114. \node (o) at (4, -2) {$n$};
  2115. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2116. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2117. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2118. \end{tikzpicture}
  2119. \]
  2120. Next we introduce the \LangXInt{} subset of x86 that suffices for
  2121. compiling \LangVar{}.
  2122. \section{The \LangXInt{} Assembly Language}
  2123. \label{sec:x86}
  2124. \index{subject}{x86}
  2125. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2126. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2127. assembler.
  2128. %
  2129. A program begins with a \code{main} label followed by a sequence of
  2130. instructions. The \key{globl} directive makes the \key{main} procedure
  2131. externally visible so that the operating system can call it.
  2132. %
  2133. An x86 program is stored in the computer's memory. For our purposes,
  2134. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2135. values. The computer has a \emph{program counter}
  2136. (PC)\index{subject}{program counter}\index{subject}{PC} stored in the
  2137. \code{rip} register that points to the address of the next instruction
  2138. to be executed. For most instructions, the program counter is
  2139. incremented after the instruction is executed so that it points to the
  2140. next instruction in memory. Most x86 instructions take two operands,
  2141. each of which is an integer constant (called an \emph{immediate
  2142. value}\index{subject}{immediate value}), a
  2143. \emph{register}\index{subject}{register}, or a memory location.
  2144. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2145. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2146. && \key{r8} \MID \key{r9} \MID \key{r10}
  2147. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2148. \MID \key{r14} \MID \key{r15}}
  2149. \newcommand{\GrammarXInt}{
  2150. \begin{array}{rcl}
  2151. \Reg &::=& \allregisters{} \\
  2152. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2153. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2154. \key{subq} \; \Arg\key{,} \Arg \MID
  2155. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2156. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2157. \key{callq} \; \mathit{label} \MID
  2158. \key{retq} \MID
  2159. \key{jmp}\,\itm{label} \MID \\
  2160. && \itm{label}\key{:}\; \Instr
  2161. \end{array}
  2162. }
  2163. \begin{figure}[tp]
  2164. \begin{tcolorbox}[colback=white]
  2165. {\if\edition\racketEd
  2166. \[
  2167. \begin{array}{l}
  2168. \GrammarXInt \\
  2169. \begin{array}{lcl}
  2170. \LangXIntM{} &::= & \key{.globl main}\\
  2171. & & \key{main:} \; \Instr\ldots
  2172. \end{array}
  2173. \end{array}
  2174. \]
  2175. \fi}
  2176. {\if\edition\pythonEd
  2177. \[
  2178. \begin{array}{lcl}
  2179. \Reg &::=& \allregisters{} \\
  2180. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2181. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2182. \key{subq} \; \Arg\key{,} \Arg \MID
  2183. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2184. && \key{callq} \; \mathit{label} \MID
  2185. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2186. \LangXIntM{} &::= & \key{.globl main}\\
  2187. & & \key{main:} \; \Instr^{*}
  2188. \end{array}
  2189. \]
  2190. \fi}
  2191. \end{tcolorbox}
  2192. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2193. \label{fig:x86-int-concrete}
  2194. \end{figure}
  2195. A register is a special kind of variable that holds a 64-bit
  2196. value. There are 16 general-purpose registers in the computer; their
  2197. names are given in figure~\ref{fig:x86-int-concrete}. A register is
  2198. written with a percent sign, \key{\%}, followed by the register name,
  2199. for example \key{\%rax}.
  2200. An immediate value is written using the notation \key{\$}$n$ where $n$
  2201. is an integer.
  2202. %
  2203. %
  2204. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2205. which obtains the address stored in register $r$ and then adds $n$
  2206. bytes to the address. The resulting address is used to load or to store
  2207. to memory depending on whether it occurs as a source or destination
  2208. argument of an instruction.
  2209. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from
  2210. the source $s$ and destination $d$, applies the arithmetic operation,
  2211. and then writes the result to the destination $d$. \index{subject}{instruction}
  2212. %
  2213. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2214. stores the result in $d$.
  2215. %
  2216. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2217. specified by the label, and $\key{retq}$ returns from a procedure to
  2218. its caller.
  2219. %
  2220. We discuss procedure calls in more detail further in this chapter and
  2221. in chapter~\ref{ch:Lfun}.
  2222. %
  2223. The last letter \key{q} indicates that these instructions operate on
  2224. quadwords which are 64-bit values.
  2225. %
  2226. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2227. counter to the address of the instruction immediately after the
  2228. specified label.}
  2229. Appendix~\ref{sec:x86-quick-reference} contains a quick reference for
  2230. all the x86 instructions used in this book.
  2231. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2232. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2233. \lstinline{movq $10, %rax}
  2234. puts $10$ into register \key{rax}, and then \lstinline{addq $32, %rax}
  2235. adds $32$ to the $10$ in \key{rax} and
  2236. puts the result, $42$, into \key{rax}.
  2237. %
  2238. The last instruction \key{retq} finishes the \key{main} function by
  2239. returning the integer in \key{rax} to the operating system. The
  2240. operating system interprets this integer as the program's exit
  2241. code. By convention, an exit code of 0 indicates that a program has
  2242. completed successfully, and all other exit codes indicate various
  2243. errors.
  2244. %
  2245. \racket{However, in this book we return the result of the program
  2246. as the exit code.}
  2247. \begin{figure}[tbp]
  2248. \begin{minipage}{0.45\textwidth}
  2249. \begin{tcolorbox}[colback=white]
  2250. \begin{lstlisting}
  2251. .globl main
  2252. main:
  2253. movq $10, %rax
  2254. addq $32, %rax
  2255. retq
  2256. \end{lstlisting}
  2257. \end{tcolorbox}
  2258. \end{minipage}
  2259. \caption{An x86 program that computes
  2260. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2261. \label{fig:p0-x86}
  2262. \end{figure}
  2263. We exhibit the use of memory for storing intermediate results in the
  2264. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2265. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2266. uses a region of memory called the \emph{procedure call stack}
  2267. (\emph{stack} for
  2268. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2269. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2270. for each procedure call. The memory layout for an individual frame is
  2271. shown in figure~\ref{fig:frame}. The register \key{rsp} is called the
  2272. \emph{stack pointer}\index{subject}{stack pointer} and contains the
  2273. address of the item at the top of the stack. In general, we use the
  2274. term \emph{pointer}\index{subject}{pointer} for something that
  2275. contains an address. The stack grows downward in memory, so we
  2276. increase the size of the stack by subtracting from the stack pointer.
  2277. In the context of a procedure call, the \emph{return
  2278. address}\index{subject}{return address} is the location of the
  2279. instruction that immediately follows the call instruction on the
  2280. caller side. The function call instruction, \code{callq}, pushes the
  2281. return address onto the stack prior to jumping to the procedure. The
  2282. register \key{rbp} is the \emph{base pointer}\index{subject}{base
  2283. pointer} and is used to access variables that are stored in the
  2284. frame of the current procedure call. The base pointer of the caller
  2285. is stored immediately after the return address.
  2286. Figure~\ref{fig:frame} shows the memory layout of a frame with storage
  2287. for $n$ variables, which are numbered from $1$ to $n$. Variable $1$ is
  2288. stored at address $-8\key{(\%rbp)}$, variable $2$ at
  2289. $-16\key{(\%rbp)}$, and so on.
  2290. \begin{figure}[tbp]
  2291. \begin{minipage}{0.66\textwidth}
  2292. \begin{tcolorbox}[colback=white]
  2293. {\if\edition\racketEd
  2294. \begin{lstlisting}
  2295. start:
  2296. movq $10, -8(%rbp)
  2297. negq -8(%rbp)
  2298. movq -8(%rbp), %rax
  2299. addq $52, %rax
  2300. jmp conclusion
  2301. .globl main
  2302. main:
  2303. pushq %rbp
  2304. movq %rsp, %rbp
  2305. subq $16, %rsp
  2306. jmp start
  2307. conclusion:
  2308. addq $16, %rsp
  2309. popq %rbp
  2310. retq
  2311. \end{lstlisting}
  2312. \fi}
  2313. {\if\edition\pythonEd
  2314. \begin{lstlisting}
  2315. .globl main
  2316. main:
  2317. pushq %rbp
  2318. movq %rsp, %rbp
  2319. subq $16, %rsp
  2320. movq $10, -8(%rbp)
  2321. negq -8(%rbp)
  2322. movq -8(%rbp), %rax
  2323. addq $52, %rax
  2324. addq $16, %rsp
  2325. popq %rbp
  2326. retq
  2327. \end{lstlisting}
  2328. \fi}
  2329. \end{tcolorbox}
  2330. \end{minipage}
  2331. \caption{An x86 program that computes
  2332. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2333. \label{fig:p1-x86}
  2334. \end{figure}
  2335. \begin{figure}[tbp]
  2336. \begin{minipage}{0.66\textwidth}
  2337. \begin{tcolorbox}[colback=white]
  2338. \centering
  2339. \begin{tabular}{|r|l|} \hline
  2340. Position & Contents \\ \hline
  2341. $8$(\key{\%rbp}) & return address \\
  2342. $0$(\key{\%rbp}) & old \key{rbp} \\
  2343. $-8$(\key{\%rbp}) & variable $1$ \\
  2344. $-16$(\key{\%rbp}) & variable $2$ \\
  2345. \ldots & \ldots \\
  2346. $0$(\key{\%rsp}) & variable $n$\\ \hline
  2347. \end{tabular}
  2348. \end{tcolorbox}
  2349. \end{minipage}
  2350. \caption{Memory layout of a frame.}
  2351. \label{fig:frame}
  2352. \end{figure}
  2353. In the program shown in figure~\ref{fig:p1-x86}, consider how control
  2354. is transferred from the operating system to the \code{main} function.
  2355. The operating system issues a \code{callq main} instruction that
  2356. pushes its return address on the stack and then jumps to
  2357. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2358. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2359. that when control arrives at \code{main}, the \code{rsp} is 8 bytes
  2360. out of alignment (because the \code{callq} pushed the return address).
  2361. The first three instructions are the typical
  2362. \emph{prelude}\index{subject}{prelude} for a procedure. The
  2363. instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2364. pointer \code{rsp} and then saves the base pointer of the caller at
  2365. address \code{rsp} on the stack. The next instruction \code{movq
  2366. \%rsp, \%rbp} sets the base pointer to the current stack pointer,
  2367. which is pointing to the location of the old base pointer. The
  2368. instruction \code{subq \$16, \%rsp} moves the stack pointer down to
  2369. make enough room for storing variables. This program needs one
  2370. variable ($8$ bytes), but we round up to 16 bytes so that \code{rsp} is
  2371. 16-byte-aligned, and then we are ready to make calls to other functions.
  2372. \racket{The last instruction of the prelude is \code{jmp start}, which
  2373. transfers control to the instructions that were generated from the
  2374. expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2375. \racket{The first instruction under the \code{start} label is}
  2376. %
  2377. \python{The first instruction after the prelude is}
  2378. %
  2379. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2380. %
  2381. The instruction \code{negq -8(\%rbp)} changes the contents of variable
  2382. $1$ to $-10$.
  2383. %
  2384. The next instruction moves the $-10$ from variable $1$ into the
  2385. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2386. the value in \code{rax}, updating its contents to $42$.
  2387. \racket{The three instructions under the label \code{conclusion} are the
  2388. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2389. %
  2390. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2391. \code{main} function consists of the last three instructions.}
  2392. %
  2393. The first two restore the \code{rsp} and \code{rbp} registers to their
  2394. states at the beginning of the procedure. In particular,
  2395. \key{addq \$16, \%rsp} moves the stack pointer to point to the
  2396. old base pointer. Then \key{popq \%rbp} restores the old base pointer
  2397. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2398. \key{retq}, jumps back to the procedure that called this one and adds
  2399. $8$ to the stack pointer.
  2400. Our compiler needs a convenient representation for manipulating x86
  2401. programs, so we define an abstract syntax for x86, shown in
  2402. figure~\ref{fig:x86-int-ast}. We refer to this language as
  2403. \LangXInt{}.
  2404. %
  2405. {\if\edition\pythonEd%
  2406. The main difference between this and the concrete syntax of \LangXInt{}
  2407. (figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2408. names, and register names are explicitly represented by strings.
  2409. \fi} %
  2410. {\if\edition\racketEd
  2411. The main difference between this and the concrete syntax of \LangXInt{}
  2412. (figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2413. front of every instruction. Instead instructions are grouped into
  2414. \emph{basic blocks}\index{subject}{basic block} with a
  2415. label associated with every basic block; this is why the \key{X86Program}
  2416. struct includes an alist mapping labels to basic blocks. The reason for this
  2417. organization becomes apparent in chapter~\ref{ch:Lif} when we
  2418. introduce conditional branching. The \code{Block} structure includes
  2419. an $\itm{info}$ field that is not needed in this chapter but becomes
  2420. useful in chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2421. $\itm{info}$ field should contain an empty list.
  2422. \fi}
  2423. %
  2424. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2425. node includes an integer for representing the arity of the function,
  2426. that is, the number of arguments, which is helpful to know during
  2427. register allocation (chapter~\ref{ch:register-allocation-Lvar}).
  2428. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2429. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2430. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2431. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2432. \MID \skey{r14} \MID \skey{r15}}
  2433. \newcommand{\ASTXIntRacket}{
  2434. \begin{array}{lcl}
  2435. \Reg &::=& \allregisters{} \\
  2436. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2437. \MID \DEREF{\Reg}{\Int} \\
  2438. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2439. \MID \BININSTR{\code{subq}}{\Arg}{\Arg}\\
  2440. &\MID& \UNIINSTR{\code{negq}}{\Arg}
  2441. \MID \BININSTR{\code{movq}}{\Arg}{\Arg}\\
  2442. &\MID& \PUSHQ{\Arg}
  2443. \MID \POPQ{\Arg} \\
  2444. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2445. \MID \RETQ{}
  2446. \MID \JMP{\itm{label}} \\
  2447. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}
  2448. \end{array}
  2449. }
  2450. \begin{figure}[tp]
  2451. \begin{tcolorbox}[colback=white]
  2452. \small
  2453. {\if\edition\racketEd
  2454. \[\arraycolsep=3pt
  2455. \begin{array}{l}
  2456. \ASTXIntRacket \\
  2457. \begin{array}{lcl}
  2458. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2459. \end{array}
  2460. \end{array}
  2461. \]
  2462. \fi}
  2463. {\if\edition\pythonEd
  2464. \[
  2465. \begin{array}{lcl}
  2466. \Reg &::=& \allastregisters{} \\
  2467. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2468. \MID \DEREF{\Reg}{\Int} \\
  2469. \Instr &::=& \BININSTR{\scode{addq}}{\Arg}{\Arg}
  2470. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} \\
  2471. &\MID& \BININSTR{\scode{movq}}{\Arg}{\Arg}
  2472. \MID \UNIINSTR{\scode{negq}}{\Arg}\\
  2473. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2474. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{} \MID \JMP{\itm{label}} \\
  2475. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2476. \end{array}
  2477. \]
  2478. \fi}
  2479. \end{tcolorbox}
  2480. \caption{The abstract syntax of \LangXInt{} assembly.}
  2481. \label{fig:x86-int-ast}
  2482. \end{figure}
  2483. \section{Planning the Trip to x86}
  2484. \label{sec:plan-s0-x86}
  2485. To compile one language to another, it helps to focus on the
  2486. differences between the two languages because the compiler will need
  2487. to bridge those differences. What are the differences between \LangVar{}
  2488. and x86 assembly? Here are some of the most important ones:
  2489. \begin{enumerate}
  2490. \item x86 arithmetic instructions typically have two arguments and
  2491. update the second argument in place. In contrast, \LangVar{}
  2492. arithmetic operations take two arguments and produce a new value.
  2493. An x86 instruction may have at most one memory-accessing argument.
  2494. Furthermore, some x86 instructions place special restrictions on
  2495. their arguments.
  2496. \item An argument of an \LangVar{} operator can be a deeply nested
  2497. expression, whereas x86 instructions restrict their arguments to be
  2498. integer constants, registers, and memory locations.
  2499. {\if\edition\racketEd
  2500. \item The order of execution in x86 is explicit in the syntax, which
  2501. is a sequence of instructions and jumps to labeled positions,
  2502. whereas in \LangVar{} the order of evaluation is a left-to-right
  2503. depth-first traversal of the abstract syntax tree. \fi}
  2504. \item A program in \LangVar{} can have any number of variables,
  2505. whereas x86 has 16 registers and the procedure call stack.
  2506. {\if\edition\racketEd
  2507. \item Variables in \LangVar{} can shadow other variables with the
  2508. same name. In x86, registers have unique names, and memory locations
  2509. have unique addresses.
  2510. \fi}
  2511. \end{enumerate}
  2512. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2513. down the problem into several steps, which deal with these differences
  2514. one at a time. Each of these steps is called a \emph{pass} of the
  2515. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2516. %
  2517. This term indicates that each step passes over, or traverses, the AST
  2518. of the program.
  2519. %
  2520. Furthermore, we follow the nanopass approach, which means that we
  2521. strive for each pass to accomplish one clear objective rather than two
  2522. or three at the same time.
  2523. %
  2524. We begin by sketching how we might implement each pass and give each
  2525. pass a name. We then figure out an ordering of the passes and the
  2526. input/output language for each pass. The very first pass has
  2527. \LangVar{} as its input language, and the last pass has \LangXInt{} as
  2528. its output language. In between these two passes, we can choose
  2529. whichever language is most convenient for expressing the output of
  2530. each pass, whether that be \LangVar{}, \LangXInt{}, or a new
  2531. \emph{intermediate languages} of our own design. Finally, to
  2532. implement each pass we write one recursive function per nonterminal in
  2533. the grammar of the input language of the pass.
  2534. \index{subject}{intermediate language}
  2535. Our compiler for \LangVar{} consists of the following passes:
  2536. %
  2537. \begin{description}
  2538. {\if\edition\racketEd
  2539. \item[\key{uniquify}] deals with the shadowing of variables by
  2540. renaming every variable to a unique name.
  2541. \fi}
  2542. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2543. of a primitive operation or function call is a variable or integer,
  2544. that is, an \emph{atomic} expression. We refer to nonatomic
  2545. expressions as \emph{complex}. This pass introduces temporary
  2546. variables to hold the results of complex
  2547. subexpressions.\index{subject}{atomic
  2548. expression}\index{subject}{complex expression}%
  2549. {\if\edition\racketEd
  2550. \item[\key{explicate\_control}] makes the execution order of the
  2551. program explicit. It converts the abstract syntax tree
  2552. representation into a graph in which each node is a labeled sequence
  2553. of statements and the edges are \code{goto} statements.
  2554. \fi}
  2555. \item[\key{select\_instructions}] handles the difference between
  2556. \LangVar{} operations and x86 instructions. This pass converts each
  2557. \LangVar{} operation to a short sequence of instructions that
  2558. accomplishes the same task.
  2559. \item[\key{assign\_homes}] replaces variables with registers or stack
  2560. locations.
  2561. \end{description}
  2562. %
  2563. {\if\edition\racketEd
  2564. %
  2565. Our treatment of \code{remove\_complex\_operands} and
  2566. \code{explicate\_control} as separate passes is an example of the
  2567. nanopass approach\footnote{For analogous decompositions of the
  2568. translation into continuation passing style, see the work of
  2569. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.}. The traditional
  2570. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2571. %
  2572. \fi}
  2573. The next question is, in what order should we apply these passes? This
  2574. question can be challenging because it is difficult to know ahead of
  2575. time which orderings will be better (that is, will be easier to
  2576. implement, produce more efficient code, and so on), and therefore
  2577. ordering often involves trial and error. Nevertheless, we can plan
  2578. ahead and make educated choices regarding the ordering.
  2579. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2580. \key{uniquify}? The \key{uniquify} pass should come first because
  2581. \key{explicate\_control} changes all the \key{let}-bound variables to
  2582. become local variables whose scope is the entire program, which would
  2583. confuse variables with the same name.}
  2584. %
  2585. \racket{We place \key{remove\_complex\_operands} before \key{explicate\_control}
  2586. because the later removes the \key{let} form, but it is convenient to
  2587. use \key{let} in the output of \key{remove\_complex\_operands}.}
  2588. %
  2589. \racket{The ordering of \key{uniquify} with respect to
  2590. \key{remove\_complex\_operands} does not matter, so we arbitrarily choose
  2591. \key{uniquify} to come first.}
  2592. The \key{select\_instructions} and \key{assign\_homes} passes are
  2593. intertwined.
  2594. %
  2595. In chapter~\ref{ch:Lfun} we learn that in x86, registers are used for
  2596. passing arguments to functions and that it is preferable to assign
  2597. parameters to their corresponding registers. This suggests that it
  2598. would be better to start with the \key{select\_instructions} pass,
  2599. which generates the instructions for argument passing, before
  2600. performing register allocation.
  2601. %
  2602. On the other hand, by selecting instructions first we may run into a
  2603. dead end in \key{assign\_homes}. Recall that only one argument of an
  2604. x86 instruction may be a memory access, but \key{assign\_homes} might
  2605. be forced to assign both arguments to memory locations.
  2606. %
  2607. A sophisticated approach is to repeat the two passes until a solution
  2608. is found. However, to reduce implementation complexity we recommend
  2609. placing \key{select\_instructions} first, followed by the
  2610. \key{assign\_homes}, and then a third pass named \key{patch\_instructions}
  2611. that uses a reserved register to fix outstanding problems.
  2612. \begin{figure}[tbp]
  2613. \begin{tcolorbox}[colback=white]
  2614. {\if\edition\racketEd
  2615. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  2616. \node (Lvar) at (0,2) {\large \LangVar{}};
  2617. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2618. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  2619. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2620. \node (Cvar-2) at (0,0) {\large \LangCVar{}};
  2621. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  2622. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  2623. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  2624. \node (x86-5) at (11,-2) {\large \LangXInt{}};
  2625. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2626. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  2627. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-2);
  2628. \path[->,bend right=15] (Cvar-2) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  2629. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2630. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  2631. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  2632. \end{tikzpicture}
  2633. \fi}
  2634. {\if\edition\pythonEd
  2635. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  2636. \node (Lvar) at (0,2) {\large \LangVar{}};
  2637. \node (Lvar-2) at (4,2) {\large \LangVarANF{}};
  2638. \node (x86-1) at (0,0) {\large \LangXVar{}};
  2639. \node (x86-2) at (4,0) {\large \LangXVar{}};
  2640. \node (x86-3) at (8,0) {\large \LangXInt{}};
  2641. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2642. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-2);
  2643. \path[->,bend left=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instructions} (x86-1);
  2644. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2645. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  2646. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  2647. \end{tikzpicture}
  2648. \fi}
  2649. \end{tcolorbox}
  2650. \caption{Diagram of the passes for compiling \LangVar{}. }
  2651. \label{fig:Lvar-passes}
  2652. \end{figure}
  2653. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2654. passes and identifies the input and output language of each pass.
  2655. %
  2656. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2657. language, which extends \LangXInt{} with an unbounded number of
  2658. program-scope variables and removes the restrictions regarding
  2659. instruction arguments.
  2660. %
  2661. The last pass, \key{prelude\_and\_conclusion}, places the program
  2662. instructions inside a \code{main} function with instructions for the
  2663. prelude and conclusion.
  2664. %
  2665. \racket{In the next section we discuss the \LangCVar{} intermediate
  2666. language that serves as the output of \code{explicate\_control}.}
  2667. %
  2668. The remainder of this chapter provides guidance on the implementation
  2669. of each of the compiler passes represented in
  2670. figure~\ref{fig:Lvar-passes}.
  2671. %% The output of \key{uniquify} and \key{remove-complex-operands}
  2672. %% are programs that are still in the \LangVar{} language, though the
  2673. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2674. %% (section~\ref{sec:remove-complex-opera-Lvar}).
  2675. %% %
  2676. %% The output of \code{explicate\_control} is in an intermediate language
  2677. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2678. %% syntax, which we introduce in the next section. The
  2679. %% \key{select-instruction} pass translates from \LangCVar{} to
  2680. %% \LangXVar{}. The \key{assign-homes} and
  2681. %% \key{patch-instructions}
  2682. %% passes input and output variants of x86 assembly.
  2683. \newcommand{\CvarGrammarRacket}{
  2684. \begin{array}{lcl}
  2685. \Atm &::=& \Int \MID \Var \\
  2686. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2687. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2688. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2689. \end{array}
  2690. }
  2691. \newcommand{\CvarASTRacket}{
  2692. \begin{array}{lcl}
  2693. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2694. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2695. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2696. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2697. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2698. \end{array}
  2699. }
  2700. {\if\edition\racketEd
  2701. \subsection{The \LangCVar{} Intermediate Language}
  2702. The output of \code{explicate\_control} is similar to the C
  2703. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2704. categories for expressions and statements, so we name it \LangCVar{}.
  2705. This style of intermediate language is also known as
  2706. \emph{three-address code}, to emphasize that the typical form of a
  2707. statement such as \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2708. addresses: \code{x}, \code{y}, and \code{z}~\citep{Aho:2006wb}.
  2709. The concrete syntax for \LangCVar{} is shown in
  2710. figure~\ref{fig:c0-concrete-syntax}, and the abstract syntax for
  2711. \LangCVar{} is shown in figure~\ref{fig:c0-syntax}.
  2712. %
  2713. The \LangCVar{} language supports the same operators as \LangVar{} but
  2714. the arguments of operators are restricted to atomic
  2715. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2716. assignment statements that can be executed in sequence using the
  2717. \key{Seq} form. A sequence of statements always ends with
  2718. \key{Return}, a guarantee that is baked into the grammar rules for
  2719. \itm{tail}. The naming of this nonterminal comes from the term
  2720. \emph{tail position}\index{subject}{tail position}, which refers to an
  2721. expression that is the last one to execute within a function or
  2722. program.
  2723. A \LangCVar{} program consists of an alist mapping labels to
  2724. tails. This is more general than necessary for the present chapter, as
  2725. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2726. us from having to change the syntax in chapter~\ref{ch:Lif}. For now
  2727. there is just one label, \key{start}, and the whole program is
  2728. its tail.
  2729. %
  2730. The $\itm{info}$ field of the \key{CProgram} form, after the
  2731. \code{explicate\_control} pass, contains an alist that associates the
  2732. symbol \key{locals} with a list of all the variables used in the
  2733. program. At the start of the program, these variables are
  2734. uninitialized; they become initialized on their first assignment.
  2735. \begin{figure}[tbp]
  2736. \begin{tcolorbox}[colback=white]
  2737. \[
  2738. \begin{array}{l}
  2739. \CvarGrammarRacket \\
  2740. \begin{array}{lcl}
  2741. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2742. \end{array}
  2743. \end{array}
  2744. \]
  2745. \end{tcolorbox}
  2746. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2747. \label{fig:c0-concrete-syntax}
  2748. \end{figure}
  2749. \begin{figure}[tbp]
  2750. \begin{tcolorbox}[colback=white]
  2751. \[
  2752. \begin{array}{l}
  2753. \CvarASTRacket \\
  2754. \begin{array}{lcl}
  2755. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2756. \end{array}
  2757. \end{array}
  2758. \]
  2759. \end{tcolorbox}
  2760. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2761. \label{fig:c0-syntax}
  2762. \end{figure}
  2763. The definitional interpreter for \LangCVar{} is in the support code,
  2764. in the file \code{interp-Cvar.rkt}.
  2765. \fi}
  2766. {\if\edition\racketEd
  2767. \section{Uniquify Variables}
  2768. \label{sec:uniquify-Lvar}
  2769. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2770. programs in which every \key{let} binds a unique variable name. For
  2771. example, the \code{uniquify} pass should translate the program on the
  2772. left into the program on the right.
  2773. \begin{transformation}
  2774. \begin{lstlisting}
  2775. (let ([x 32])
  2776. (+ (let ([x 10]) x) x))
  2777. \end{lstlisting}
  2778. \compilesto
  2779. \begin{lstlisting}
  2780. (let ([x.1 32])
  2781. (+ (let ([x.2 10]) x.2) x.1))
  2782. \end{lstlisting}
  2783. \end{transformation}
  2784. The following is another example translation, this time of a program
  2785. with a \key{let} nested inside the initializing expression of another
  2786. \key{let}.
  2787. \begin{transformation}
  2788. \begin{lstlisting}
  2789. (let ([x (let ([x 4])
  2790. (+ x 1))])
  2791. (+ x 2))
  2792. \end{lstlisting}
  2793. \compilesto
  2794. \begin{lstlisting}
  2795. (let ([x.2 (let ([x.1 4])
  2796. (+ x.1 1))])
  2797. (+ x.2 2))
  2798. \end{lstlisting}
  2799. \end{transformation}
  2800. We recommend implementing \code{uniquify} by creating a structurally
  2801. recursive function named \code{uniquify\_exp} that does little other
  2802. than copy an expression. However, when encountering a \key{let}, it
  2803. should generate a unique name for the variable and associate the old
  2804. name with the new name in an alist.\footnote{The Racket function
  2805. \code{gensym} is handy for generating unique variable names.} The
  2806. \code{uniquify\_exp} function needs to access this alist when it gets
  2807. to a variable reference, so we add a parameter to \code{uniquify\_exp}
  2808. for the alist.
  2809. The skeleton of the \code{uniquify\_exp} function is shown in
  2810. figure~\ref{fig:uniquify-Lvar}.
  2811. %% The function is curried so that it is
  2812. %% convenient to partially apply it to an alist and then apply it to
  2813. %% different expressions, as in the last case for primitive operations in
  2814. %% figure~\ref{fig:uniquify-Lvar}.
  2815. The
  2816. %
  2817. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2818. %
  2819. form of Racket is useful for transforming the element of a list to
  2820. produce a new list.\index{subject}{for/list}
  2821. \begin{figure}[tbp]
  2822. \begin{tcolorbox}[colback=white]
  2823. \begin{lstlisting}
  2824. (define (uniquify_exp env)
  2825. (lambda (e)
  2826. (match e
  2827. [(Var x) ___]
  2828. [(Int n) (Int n)]
  2829. [(Let x e body) ___]
  2830. [(Prim op es)
  2831. (Prim op (for/list ([e es]) ((uniquify_exp env) e)))])))
  2832. (define (uniquify p)
  2833. (match p
  2834. [(Program '() e) (Program '() ((uniquify_exp '()) e))]))
  2835. \end{lstlisting}
  2836. \end{tcolorbox}
  2837. \caption{Skeleton for the \key{uniquify} pass.}
  2838. \label{fig:uniquify-Lvar}
  2839. \end{figure}
  2840. \begin{exercise}
  2841. \normalfont\normalsize % I don't like the italics for exercises. -Jeremy
  2842. Complete the \code{uniquify} pass by filling in the blanks in
  2843. figure~\ref{fig:uniquify-Lvar}; that is, implement the cases for
  2844. variables and for the \key{let} form in the file \code{compiler.rkt}
  2845. in the support code.
  2846. \end{exercise}
  2847. \begin{exercise}
  2848. \normalfont\normalsize
  2849. \label{ex:Lvar}
  2850. Create five \LangVar{} programs that exercise the most interesting
  2851. parts of the \key{uniquify} pass; that is, the programs should include
  2852. \key{let} forms, variables, and variables that shadow each other.
  2853. The five programs should be placed in the subdirectory named
  2854. \key{tests}, and the file names should start with \code{var\_test\_}
  2855. followed by a unique integer and end with the file extension
  2856. \key{.rkt}.
  2857. %
  2858. The \key{run-tests.rkt} script in the support code checks whether the
  2859. output programs produce the same result as the input programs. The
  2860. script uses the \key{interp-tests} function
  2861. (appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2862. your \key{uniquify} pass on the example programs. The \code{passes}
  2863. parameter of \key{interp-tests} is a list that should have one entry
  2864. for each pass in your compiler. For now, define \code{passes} to
  2865. contain just one entry for \code{uniquify} as follows:
  2866. \begin{lstlisting}
  2867. (define passes
  2868. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2869. \end{lstlisting}
  2870. Run the \key{run-tests.rkt} script in the support code to check
  2871. whether the output programs produce the same result as the input
  2872. programs.
  2873. \end{exercise}
  2874. \fi}
  2875. \section{Remove Complex Operands}
  2876. \label{sec:remove-complex-opera-Lvar}
  2877. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2878. into a restricted form in which the arguments of operations are atomic
  2879. expressions. Put another way, this pass removes complex
  2880. operands\index{subject}{complex operand}, such as the expression
  2881. \racket{\code{(- 10)}}\python{\code{-10}}
  2882. in the following program. This is accomplished by introducing a new
  2883. temporary variable, assigning the complex operand to the new
  2884. variable, and then using the new variable in place of the complex
  2885. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2886. right.
  2887. {\if\edition\racketEd
  2888. \begin{transformation}
  2889. % var_test_19.rkt
  2890. \begin{lstlisting}
  2891. (let ([x (+ 42 (- 10))])
  2892. (+ x 10))
  2893. \end{lstlisting}
  2894. \compilesto
  2895. \begin{lstlisting}
  2896. (let ([x (let ([tmp.1 (- 10)])
  2897. (+ 42 tmp.1))])
  2898. (+ x 10))
  2899. \end{lstlisting}
  2900. \end{transformation}
  2901. \fi}
  2902. {\if\edition\pythonEd
  2903. \begin{transformation}
  2904. \begin{lstlisting}
  2905. x = 42 + -10
  2906. print(x + 10)
  2907. \end{lstlisting}
  2908. \compilesto
  2909. \begin{lstlisting}
  2910. tmp_0 = -10
  2911. x = 42 + tmp_0
  2912. tmp_1 = x + 10
  2913. print(tmp_1)
  2914. \end{lstlisting}
  2915. \end{transformation}
  2916. \fi}
  2917. \newcommand{\LvarMonadASTRacket}{
  2918. \begin{array}{rcl}
  2919. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2920. \Exp &::=& \Atm \MID \READ{} \\
  2921. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm} \\
  2922. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2923. \end{array}
  2924. }
  2925. \newcommand{\LvarMonadASTPython}{
  2926. \begin{array}{rcl}
  2927. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2928. \Exp{} &::=& \Atm \MID \READ{} \\
  2929. &\MID& \UNIOP{\itm{unaryop}}{\Atm} \MID \BINOP{\Atm}{\itm{binaryop}}{\Atm} \\
  2930. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  2931. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  2932. \end{array}
  2933. }
  2934. \begin{figure}[tp]
  2935. \centering
  2936. \begin{tcolorbox}[colback=white]
  2937. {\if\edition\racketEd
  2938. \[
  2939. \begin{array}{l}
  2940. \LvarMonadASTRacket \\
  2941. \begin{array}{rcl}
  2942. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  2943. \end{array}
  2944. \end{array}
  2945. \]
  2946. \fi}
  2947. {\if\edition\pythonEd
  2948. \[
  2949. \begin{array}{l}
  2950. \LvarMonadASTPython \\
  2951. \begin{array}{rcl}
  2952. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  2953. \end{array}
  2954. \end{array}
  2955. \]
  2956. \fi}
  2957. \end{tcolorbox}
  2958. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  2959. atomic expressions.}
  2960. \label{fig:Lvar-anf-syntax}
  2961. \end{figure}
  2962. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  2963. of this pass, the language \LangVarANF{}. The only difference is that
  2964. operator arguments are restricted to be atomic expressions that are
  2965. defined by the \Atm{} nonterminal. In particular, integer constants
  2966. and variables are atomic.
  2967. The atomic expressions are pure (they do not cause or depend on side
  2968. effects) whereas complex expressions may have side effects, such as
  2969. \READ{}. A language with this separation between pure expression
  2970. versus expressions with side effects is said to be in monadic normal
  2971. form~\citep{Moggi:1991in,Danvy:2003fk}, which explains the \textit{mon}
  2972. in the name \LangVarANF{}. An important invariant of the
  2973. \code{remove\_complex\_operands} pass is that the relative ordering
  2974. among complex expressions is not changed, but the relative ordering
  2975. between atomic expressions and complex expressions can change and
  2976. often does. The reason that these changes are behavior preserving is
  2977. that the atomic expressions are pure.
  2978. Another well-known form for intermediate languages is the
  2979. \emph{administrative normal form}
  2980. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2981. \index{subject}{administrative normal form} \index{subject}{ANF}
  2982. %
  2983. The \LangVarANF{} language is not quite in ANF because we allow the
  2984. right-hand side of a \code{let} to be a complex expression.
  2985. {\if\edition\racketEd
  2986. We recommend implementing this pass with two mutually recursive
  2987. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  2988. \code{rco\_atom} to subexpressions that need to become atomic and to
  2989. apply \code{rco\_exp} to subexpressions that do not. Both functions
  2990. take an \LangVar{} expression as input. The \code{rco\_exp} function
  2991. returns an expression. The \code{rco\_atom} function returns two
  2992. things: an atomic expression and an alist mapping temporary variables to
  2993. complex subexpressions. You can return multiple things from a function
  2994. using Racket's \key{values} form, and you can receive multiple things
  2995. from a function call using the \key{define-values} form.
  2996. \fi}
  2997. %
  2998. {\if\edition\pythonEd
  2999. %
  3000. We recommend implementing this pass with an auxiliary method named
  3001. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  3002. Boolean that specifies whether the expression needs to become atomic
  3003. or not. The \code{rco\_exp} method should return a pair consisting of
  3004. the new expression and a list of pairs, associating new temporary
  3005. variables with their initializing expressions.
  3006. %
  3007. \fi}
  3008. {\if\edition\racketEd
  3009. %
  3010. Returning to the example program with the expression \code{(+ 42 (-
  3011. 10))}, the subexpression \code{(- 10)} should be processed using the
  3012. \code{rco\_atom} function because it is an argument of the \code{+}
  3013. operator and therefore needs to become atomic. The output of
  3014. \code{rco\_atom} applied to \code{(- 10)} is as follows:
  3015. \begin{transformation}
  3016. \begin{lstlisting}
  3017. (- 10)
  3018. \end{lstlisting}
  3019. \compilesto
  3020. \begin{lstlisting}
  3021. tmp.1
  3022. ((tmp.1 . (- 10)))
  3023. \end{lstlisting}
  3024. \end{transformation}
  3025. \fi}
  3026. %
  3027. {\if\edition\pythonEd
  3028. %
  3029. Returning to the example program with the expression \code{42 + -10},
  3030. the subexpression \code{-10} should be processed using the
  3031. \code{rco\_exp} function with \code{True} as the second argument
  3032. because \code{-10} is an argument of the \code{+} operator and
  3033. therefore needs to become atomic. The output of \code{rco\_exp}
  3034. applied to \code{-10} is as follows.
  3035. \begin{transformation}
  3036. \begin{lstlisting}
  3037. -10
  3038. \end{lstlisting}
  3039. \compilesto
  3040. \begin{lstlisting}
  3041. tmp_1
  3042. [(tmp_1, -10)]
  3043. \end{lstlisting}
  3044. \end{transformation}
  3045. %
  3046. \fi}
  3047. Take special care of programs, such as the following, that
  3048. %
  3049. \racket{bind a variable to an atomic expression.}
  3050. %
  3051. \python{assign an atomic expression to a variable.}
  3052. %
  3053. You should leave such \racket{variable bindings}\python{assignments}
  3054. unchanged, as shown in the program on the right\\
  3055. %
  3056. {\if\edition\racketEd
  3057. \begin{transformation}
  3058. % var_test_20.rkt
  3059. \begin{lstlisting}
  3060. (let ([a 42])
  3061. (let ([b a])
  3062. b))
  3063. \end{lstlisting}
  3064. \compilesto
  3065. \begin{lstlisting}
  3066. (let ([a 42])
  3067. (let ([b a])
  3068. b))
  3069. \end{lstlisting}
  3070. \end{transformation}
  3071. \fi}
  3072. {\if\edition\pythonEd
  3073. \begin{transformation}
  3074. \begin{lstlisting}
  3075. a = 42
  3076. b = a
  3077. print(b)
  3078. \end{lstlisting}
  3079. \compilesto
  3080. \begin{lstlisting}
  3081. a = 42
  3082. b = a
  3083. print(b)
  3084. \end{lstlisting}
  3085. \end{transformation}
  3086. \fi}
  3087. %
  3088. \noindent A careless implementation might produce the following output with
  3089. unnecessary temporary variables.
  3090. \begin{center}
  3091. \begin{minipage}{0.4\textwidth}
  3092. {\if\edition\racketEd
  3093. \begin{lstlisting}
  3094. (let ([tmp.1 42])
  3095. (let ([a tmp.1])
  3096. (let ([tmp.2 a])
  3097. (let ([b tmp.2])
  3098. b))))
  3099. \end{lstlisting}
  3100. \fi}
  3101. {\if\edition\pythonEd
  3102. \begin{lstlisting}
  3103. tmp_1 = 42
  3104. a = tmp_1
  3105. tmp_2 = a
  3106. b = tmp_2
  3107. print(b)
  3108. \end{lstlisting}
  3109. \fi}
  3110. \end{minipage}
  3111. \end{center}
  3112. \begin{exercise}
  3113. \normalfont\normalsize
  3114. {\if\edition\racketEd
  3115. Implement the \code{remove\_complex\_operands} function in
  3116. \code{compiler.rkt}.
  3117. %
  3118. Create three new \LangVar{} programs that exercise the interesting
  3119. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  3120. regarding file names described in exercise~\ref{ex:Lvar}.
  3121. %
  3122. In the \code{run-tests.rkt} script, add the following entry to the
  3123. list of \code{passes}, and then run the script to test your compiler.
  3124. \begin{lstlisting}
  3125. (list "remove-complex" remove_complex_operands interp_Lvar type-check-Lvar)
  3126. \end{lstlisting}
  3127. In debugging your compiler, it is often useful to see the intermediate
  3128. programs that are output from each pass. To print the intermediate
  3129. programs, place \lstinline{(debug-level 1)} before the call to
  3130. \code{interp-tests} in \code{run-tests.rkt}. \fi}
  3131. %
  3132. {\if\edition\pythonEd
  3133. Implement the \code{remove\_complex\_operands} pass in
  3134. \code{compiler.py}, creating auxiliary functions for each
  3135. nonterminal in the grammar, i.e., \code{rco\_exp}
  3136. and \code{rco\_stmt}. We recommend you use the function
  3137. \code{utils.generate\_name()} to generate fresh names from a stub string.
  3138. \fi}
  3139. \end{exercise}
  3140. {\if\edition\pythonEd
  3141. \begin{exercise}
  3142. \normalfont\normalsize
  3143. \label{ex:Lvar}
  3144. Create five \LangVar{} programs that exercise the most interesting
  3145. parts of the \code{remove\_complex\_operands} pass. The five programs
  3146. should be placed in the subdirectory named \key{tests}, and the file
  3147. names should start with \code{var\_test\_} followed by a unique
  3148. integer and end with the file extension \key{.py}.
  3149. %% The \key{run-tests.rkt} script in the support code checks whether the
  3150. %% output programs produce the same result as the input programs. The
  3151. %% script uses the \key{interp-tests} function
  3152. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  3153. %% your \key{uniquify} pass on the example programs. The \code{passes}
  3154. %% parameter of \key{interp-tests} is a list that should have one entry
  3155. %% for each pass in your compiler. For now, define \code{passes} to
  3156. %% contain just one entry for \code{uniquify} as shown below.
  3157. %% \begin{lstlisting}
  3158. %% (define passes
  3159. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3160. %% \end{lstlisting}
  3161. Run the \key{run-tests.py} script in the support code to check
  3162. whether the output programs produce the same result as the input
  3163. programs.
  3164. \end{exercise}
  3165. \fi}
  3166. {\if\edition\racketEd
  3167. \section{Explicate Control}
  3168. \label{sec:explicate-control-Lvar}
  3169. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3170. programs that make the order of execution explicit in their
  3171. syntax. For now this amounts to flattening \key{let} constructs into a
  3172. sequence of assignment statements. For example, consider the following
  3173. \LangVar{} program:\\
  3174. % var_test_11.rkt
  3175. \begin{minipage}{0.96\textwidth}
  3176. \begin{lstlisting}
  3177. (let ([y (let ([x 20])
  3178. (+ x (let ([x 22]) x)))])
  3179. y)
  3180. \end{lstlisting}
  3181. \end{minipage}\\
  3182. %
  3183. The output of the previous pass is shown next, on the left, and the
  3184. output of \code{explicate\_control} is on the right. Recall that the
  3185. right-hand side of a \key{let} executes before its body, so that the order
  3186. of evaluation for this program is to assign \code{20} to \code{x.1},
  3187. \code{22} to \code{x.2}, and \code{(+ x.1 x.2)} to \code{y}, and then to
  3188. return \code{y}. Indeed, the output of \code{explicate\_control} makes
  3189. this ordering explicit.
  3190. \begin{transformation}
  3191. \begin{lstlisting}
  3192. (let ([y (let ([x.1 20])
  3193. (let ([x.2 22])
  3194. (+ x.1 x.2)))])
  3195. y)
  3196. \end{lstlisting}
  3197. \compilesto
  3198. \begin{lstlisting}[language=C]
  3199. start:
  3200. x.1 = 20;
  3201. x.2 = 22;
  3202. y = (+ x.1 x.2);
  3203. return y;
  3204. \end{lstlisting}
  3205. \end{transformation}
  3206. \begin{figure}[tbp]
  3207. \begin{tcolorbox}[colback=white]
  3208. \begin{lstlisting}
  3209. (define (explicate_tail e)
  3210. (match e
  3211. [(Var x) ___]
  3212. [(Int n) (Return (Int n))]
  3213. [(Let x rhs body) ___]
  3214. [(Prim op es) ___]
  3215. [else (error "explicate_tail unhandled case" e)]))
  3216. (define (explicate_assign e x cont)
  3217. (match e
  3218. [(Var x) ___]
  3219. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3220. [(Let y rhs body) ___]
  3221. [(Prim op es) ___]
  3222. [else (error "explicate_assign unhandled case" e)]))
  3223. (define (explicate_control p)
  3224. (match p
  3225. [(Program info body) ___]))
  3226. \end{lstlisting}
  3227. \end{tcolorbox}
  3228. \caption{Skeleton for the \code{explicate\_control} pass.}
  3229. \label{fig:explicate-control-Lvar}
  3230. \end{figure}
  3231. The organization of this pass depends on the notion of tail position
  3232. to which we have alluded. Here is the definition.
  3233. \begin{definition}\normalfont
  3234. The following rules define when an expression is in \emph{tail
  3235. position}\index{subject}{tail position} for the language \LangVar{}.
  3236. \begin{enumerate}
  3237. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3238. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3239. \end{enumerate}
  3240. \end{definition}
  3241. We recommend implementing \code{explicate\_control} using two
  3242. recursive functions, \code{explicate\_tail} and
  3243. \code{explicate\_assign}, as suggested in the skeleton code shown in
  3244. figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3245. function should be applied to expressions in tail position, whereas the
  3246. \code{explicate\_assign} should be applied to expressions that occur on
  3247. the right-hand side of a \key{let}.
  3248. %
  3249. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3250. input and produces a \Tail{} in \LangCVar{} (see
  3251. figure~\ref{fig:c0-syntax}).
  3252. %
  3253. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3254. the variable to which it is to be assigned to, and a \Tail{} in
  3255. \LangCVar{} for the code that comes after the assignment. The
  3256. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3257. The \code{explicate\_assign} function is in accumulator-passing style:
  3258. the \code{cont} parameter is used for accumulating the output. This
  3259. accumulator-passing style plays an important role in the way that we
  3260. generate high-quality code for conditional expressions in
  3261. chapter~\ref{ch:Lif}. The abbreviation \code{cont} is for
  3262. continuation because it contains the generated code that should come
  3263. after the current assignment. This code organization is also related
  3264. to continuation-passing style, except that \code{cont} is not what
  3265. happens next during compilation but is what happens next in the
  3266. generated code.
  3267. \begin{exercise}\normalfont\normalsize
  3268. %
  3269. Implement the \code{explicate\_control} function in
  3270. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3271. exercise the code in \code{explicate\_control}.
  3272. %
  3273. In the \code{run-tests.rkt} script, add the following entry to the
  3274. list of \code{passes} and then run the script to test your compiler.
  3275. \begin{lstlisting}
  3276. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3277. \end{lstlisting}
  3278. \end{exercise}
  3279. \fi}
  3280. \section{Select Instructions}
  3281. \label{sec:select-Lvar}
  3282. \index{subject}{instruction selection}
  3283. In the \code{select\_instructions} pass we begin the work of
  3284. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3285. language of this pass is a variant of x86 that still uses variables,
  3286. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3287. nonterminal of the \LangXInt{} abstract syntax
  3288. (figure~\ref{fig:x86-int-ast}).
  3289. \racket{We recommend implementing the
  3290. \code{select\_instructions} with three auxiliary functions, one for
  3291. each of the nonterminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3292. $\Tail$.}
  3293. \python{We recommend implementing an auxiliary function
  3294. named \code{select\_stmt} for the $\Stmt$ nonterminal.}
  3295. \racket{The cases for $\Atm$ are straightforward; variables stay the
  3296. same and integer constants change to immediates; that is, $\INT{n}$
  3297. changes to $\IMM{n}$.}
  3298. Next consider the cases for the $\Stmt$ nonterminal, starting with
  3299. arithmetic operations. For example, consider the following addition
  3300. operation, on the left side. There is an \key{addq} instruction in
  3301. x86, but it performs an in-place update. So, we could move $\Arg_1$
  3302. into the left-hand \itm{var} and then add $\Arg_2$ to \itm{var},
  3303. where $\Arg_1$ and $\Arg_2$ are the translations of $\Atm_1$ and
  3304. $\Atm_2$, respectively.
  3305. \begin{transformation}
  3306. {\if\edition\racketEd
  3307. \begin{lstlisting}
  3308. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3309. \end{lstlisting}
  3310. \fi}
  3311. {\if\edition\pythonEd
  3312. \begin{lstlisting}
  3313. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3314. \end{lstlisting}
  3315. \fi}
  3316. \compilesto
  3317. \begin{lstlisting}
  3318. movq |$\Arg_1$|, |$\itm{var}$|
  3319. addq |$\Arg_2$|, |$\itm{var}$|
  3320. \end{lstlisting}
  3321. \end{transformation}
  3322. There are also cases that require special care to avoid generating
  3323. needlessly complicated code. For example, if one of the arguments of
  3324. the addition is the same variable as the left-hand side of the
  3325. assignment, as shown next, then there is no need for the extra move
  3326. instruction. The assignment statement can be translated into a single
  3327. \key{addq} instruction, as follows.
  3328. \begin{transformation}
  3329. {\if\edition\racketEd
  3330. \begin{lstlisting}
  3331. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3332. \end{lstlisting}
  3333. \fi}
  3334. {\if\edition\pythonEd
  3335. \begin{lstlisting}
  3336. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3337. \end{lstlisting}
  3338. \fi}
  3339. \compilesto
  3340. \begin{lstlisting}
  3341. addq |$\Arg_1$|, |$\itm{var}$|
  3342. \end{lstlisting}
  3343. \end{transformation}
  3344. The \READOP{} operation does not have a direct counterpart in x86
  3345. assembly, so we provide this functionality with the function
  3346. \code{read\_int} in the file \code{runtime.c}, written in
  3347. C~\citep{Kernighan:1988nx}. In general, we refer to all the
  3348. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3349. system}, or simply the \emph{runtime} for short. When compiling your
  3350. generated x86 assembly code, you need to compile \code{runtime.c} to
  3351. \code{runtime.o} (an \emph{object file}, using \code{gcc} with option
  3352. \code{-c}) and link it into the executable. For our purposes of code
  3353. generation, all you need to do is translate an assignment of
  3354. \READOP{} into a call to the \code{read\_int} function followed by a
  3355. move from \code{rax} to the left-hand side variable. (Recall that the
  3356. return value of a function goes into \code{rax}.)
  3357. \begin{transformation}
  3358. {\if\edition\racketEd
  3359. \begin{lstlisting}
  3360. |$\itm{var}$| = (read);
  3361. \end{lstlisting}
  3362. \fi}
  3363. {\if\edition\pythonEd
  3364. \begin{lstlisting}
  3365. |$\itm{var}$| = input_int();
  3366. \end{lstlisting}
  3367. \fi}
  3368. \compilesto
  3369. \begin{lstlisting}
  3370. callq read_int
  3371. movq %rax, |$\itm{var}$|
  3372. \end{lstlisting}
  3373. \end{transformation}
  3374. {\if\edition\pythonEd
  3375. %
  3376. Similarly, we translate the \code{print} operation, shown below, into
  3377. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3378. In x86, the first six arguments to functions are passed in registers,
  3379. with the first argument passed in register \code{rdi}. So we move the
  3380. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3381. \code{callq} instruction.
  3382. \begin{transformation}
  3383. \begin{lstlisting}
  3384. print(|$\Atm$|)
  3385. \end{lstlisting}
  3386. \compilesto
  3387. \begin{lstlisting}
  3388. movq |$\Arg$|, %rdi
  3389. callq print_int
  3390. \end{lstlisting}
  3391. \end{transformation}
  3392. %
  3393. \fi}
  3394. {\if\edition\racketEd
  3395. There are two cases for the $\Tail$ nonterminal: \key{Return} and
  3396. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3397. assignment to the \key{rax} register followed by a jump to the
  3398. conclusion of the program (so the conclusion needs to be labeled).
  3399. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3400. recursively and then append the resulting instructions.
  3401. \fi}
  3402. {\if\edition\pythonEd
  3403. We recommend that you use the function \code{utils.label\_name()} to
  3404. transform a string into an label argument suitably suitable for, e.g.,
  3405. the target of the \code{callq} instruction. This practice makes your
  3406. compiler portable across Linus and Mac OS X, which requires an underscore prefixed to
  3407. all labels.
  3408. \fi}
  3409. \begin{exercise}
  3410. \normalfont\normalsize
  3411. {\if\edition\racketEd
  3412. Implement the \code{select\_instructions} pass in
  3413. \code{compiler.rkt}. Create three new example programs that are
  3414. designed to exercise all the interesting cases in this pass.
  3415. %
  3416. In the \code{run-tests.rkt} script, add the following entry to the
  3417. list of \code{passes} and then run the script to test your compiler.
  3418. \begin{lstlisting}
  3419. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3420. \end{lstlisting}
  3421. \fi}
  3422. {\if\edition\pythonEd
  3423. Implement the \key{select\_instructions} pass in
  3424. \code{compiler.py}. Create three new example programs that are
  3425. designed to exercise all the interesting cases in this pass.
  3426. Run the \code{run-tests.py} script to to check
  3427. whether the output programs produce the same result as the input
  3428. programs.
  3429. \fi}
  3430. \end{exercise}
  3431. \section{Assign Homes}
  3432. \label{sec:assign-Lvar}
  3433. The \code{assign\_homes} pass compiles \LangXVar{} programs to
  3434. \LangXVar{} programs that no longer use program variables. Thus, the
  3435. \code{assign\_homes} pass is responsible for placing all the program
  3436. variables in registers or on the stack. For runtime efficiency, it is
  3437. better to place variables in registers, but because there are only
  3438. sixteen registers, some programs must necessarily resort to placing
  3439. some variables on the stack. In this chapter we focus on the mechanics
  3440. of placing variables on the stack. We study an algorithm for placing
  3441. variables in registers in chapter~\ref{ch:register-allocation-Lvar}.
  3442. Consider again the following \LangVar{} program from
  3443. section~\ref{sec:remove-complex-opera-Lvar}:\\
  3444. % var_test_20.rkt
  3445. \begin{minipage}{0.96\textwidth}
  3446. {\if\edition\racketEd
  3447. \begin{lstlisting}
  3448. (let ([a 42])
  3449. (let ([b a])
  3450. b))
  3451. \end{lstlisting}
  3452. \fi}
  3453. {\if\edition\pythonEd
  3454. \begin{lstlisting}
  3455. a = 42
  3456. b = a
  3457. print(b)
  3458. \end{lstlisting}
  3459. \fi}
  3460. \end{minipage}\\
  3461. %
  3462. The output of \code{select\_instructions} is shown next, on the left,
  3463. and the output of \code{assign\_homes} is on the right. In this
  3464. example, we assign variable \code{a} to stack location
  3465. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3466. \begin{transformation}
  3467. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3468. movq $42, a
  3469. movq a, b
  3470. movq b, %rax
  3471. \end{lstlisting}
  3472. \compilesto
  3473. %stack-space: 16
  3474. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3475. movq $42, -8(%rbp)
  3476. movq -8(%rbp), -16(%rbp)
  3477. movq -16(%rbp), %rax
  3478. \end{lstlisting}
  3479. \end{transformation}
  3480. \racket{
  3481. The \code{assign\_homes} pass should replace all variables
  3482. with stack locations.
  3483. The list of variables can be obtained from
  3484. the \code{locals-types} entry in the $\itm{info}$ of the
  3485. \code{X86Program} node. The \code{locals-types} entry is an alist
  3486. mapping all the variables in the program to their types
  3487. (for now, just \code{Integer}).
  3488. As an aside, the \code{locals-types} entry is
  3489. computed by \code{type-check-Cvar} in the support code, which
  3490. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3491. which you should propagate to the \code{X86Program} node.}
  3492. %
  3493. \python{The \code{assign\_homes} pass should replace all uses of
  3494. variables with stack locations.}
  3495. %
  3496. In the process of assigning variables to stack locations, it is
  3497. convenient for you to compute and store the size of the frame (in
  3498. bytes) in
  3499. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space},}
  3500. %
  3501. \python{the field \code{stack\_space} of the \key{X86Program} node,}
  3502. %
  3503. which is needed later to generate the conclusion of the \code{main}
  3504. procedure. The x86-64 standard requires the frame size to be a
  3505. multiple of 16 bytes.\index{subject}{frame}
  3506. % TODO: store the number of variables instead? -Jeremy
  3507. \begin{exercise}\normalfont\normalsize
  3508. Implement the \code{assign\_homes} pass in
  3509. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3510. auxiliary functions for each of the nonterminals in the \LangXVar{}
  3511. grammar. We recommend that the auxiliary functions take an extra
  3512. parameter that maps variable names to homes (stack locations for now).
  3513. %
  3514. {\if\edition\racketEd
  3515. In the \code{run-tests.rkt} script, add the following entry to the
  3516. list of \code{passes} and then run the script to test your compiler.
  3517. \begin{lstlisting}
  3518. (list "assign homes" assign-homes interp_x86-0)
  3519. \end{lstlisting}
  3520. \fi}
  3521. {\if\edition\pythonEd
  3522. Run the \code{run-tests.py} script to to check
  3523. whether the output programs produce the same result as the input
  3524. programs.
  3525. \fi}
  3526. \end{exercise}
  3527. \section{Patch Instructions}
  3528. \label{sec:patch-s0}
  3529. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3530. \LangXInt{} by making sure that each instruction adheres to the
  3531. restriction that at most one argument of an instruction may be a
  3532. memory reference.
  3533. We return to the following example.\\
  3534. \begin{minipage}{0.5\textwidth}
  3535. % var_test_20.rkt
  3536. {\if\edition\racketEd
  3537. \begin{lstlisting}
  3538. (let ([a 42])
  3539. (let ([b a])
  3540. b))
  3541. \end{lstlisting}
  3542. \fi}
  3543. {\if\edition\pythonEd
  3544. \begin{lstlisting}
  3545. a = 42
  3546. b = a
  3547. print(b)
  3548. \end{lstlisting}
  3549. \fi}
  3550. \end{minipage}\\
  3551. The \code{assign\_homes} pass produces the following translation. \\
  3552. \begin{minipage}{0.5\textwidth}
  3553. {\if\edition\racketEd
  3554. \begin{lstlisting}
  3555. movq $42, -8(%rbp)
  3556. movq -8(%rbp), -16(%rbp)
  3557. movq -16(%rbp), %rax
  3558. \end{lstlisting}
  3559. \fi}
  3560. {\if\edition\pythonEd
  3561. \begin{lstlisting}
  3562. movq 42, -8(%rbp)
  3563. movq -8(%rbp), -16(%rbp)
  3564. movq -16(%rbp), %rdi
  3565. callq print_int
  3566. \end{lstlisting}
  3567. \fi}
  3568. \end{minipage}\\
  3569. The second \key{movq} instruction is problematic because both
  3570. arguments are stack locations. We suggest fixing this problem by
  3571. moving from the source location to the register \key{rax} and then
  3572. from \key{rax} to the destination location, as follows.
  3573. \begin{lstlisting}
  3574. movq -8(%rbp), %rax
  3575. movq %rax, -16(%rbp)
  3576. \end{lstlisting}
  3577. \begin{exercise}
  3578. \normalfont\normalsize Implement the \key{patch\_instructions} pass in
  3579. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3580. Create three new example programs that are
  3581. designed to exercise all the interesting cases in this pass.
  3582. %
  3583. {\if\edition\racketEd
  3584. In the \code{run-tests.rkt} script, add the following entry to the
  3585. list of \code{passes} and then run the script to test your compiler.
  3586. \begin{lstlisting}
  3587. (list "patch instructions" patch_instructions interp_x86-0)
  3588. \end{lstlisting}
  3589. \fi}
  3590. {\if\edition\pythonEd
  3591. Run the \code{run-tests.py} script to to check
  3592. whether the output programs produce the same result as the input
  3593. programs.
  3594. \fi}
  3595. \end{exercise}
  3596. \section{Generate Prelude and Conclusion}
  3597. \label{sec:print-x86}
  3598. \index{subject}{prelude}\index{subject}{conclusion}
  3599. The last step of the compiler from \LangVar{} to x86 is to generate
  3600. the \code{main} function with a prelude and conclusion wrapped around
  3601. the rest of the program, as shown in figure~\ref{fig:p1-x86} and
  3602. discussed in section~\ref{sec:x86}.
  3603. When running on Mac OS X, your compiler should prefix an underscore to
  3604. all labels, e.g., changing \key{main} to \key{\_main}.
  3605. %
  3606. \racket{The Racket call \code{(system-type 'os)} is useful for
  3607. determining which operating system the compiler is running on. It
  3608. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3609. %
  3610. \python{The Python \code{platform} library includes a \code{system()}
  3611. function that returns \code{'Linux'}, \code{'Windows'}, or
  3612. \code{'Darwin'} (for Mac).}
  3613. \begin{exercise}\normalfont\normalsize
  3614. %
  3615. Implement the \key{prelude\_and\_conclusion} pass in
  3616. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3617. %
  3618. {\if\edition\racketEd
  3619. In the \code{run-tests.rkt} script, add the following entry to the
  3620. list of \code{passes} and then run the script to test your compiler.
  3621. \begin{lstlisting}
  3622. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3623. \end{lstlisting}
  3624. %
  3625. Uncomment the call to the \key{compiler-tests} function
  3626. (appendix~\ref{appendix:utilities}), which tests your complete
  3627. compiler by executing the generated x86 code. It translates the x86
  3628. AST that you produce into a string by invoking the \code{print-x86}
  3629. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3630. the provided \key{runtime.c} file to \key{runtime.o} using
  3631. \key{gcc}. Run the script to test your compiler.
  3632. %
  3633. \fi}
  3634. {\if\edition\pythonEd
  3635. %
  3636. Run the \code{run-tests.py} script to to check whether the output
  3637. programs produce the same result as the input programs. That script
  3638. translates the x86 AST that you produce into a string by invoking the
  3639. \code{repr} method that is implemented by the x86 AST classes in
  3640. \code{x86\_ast.py}.
  3641. %
  3642. \fi}
  3643. \end{exercise}
  3644. \section{Challenge: Partial Evaluator for \LangVar{}}
  3645. \label{sec:pe-Lvar}
  3646. \index{subject}{partial evaluation}
  3647. This section describes two optional challenge exercises that involve
  3648. adapting and improving the partial evaluator for \LangInt{} that was
  3649. introduced in section~\ref{sec:partial-evaluation}.
  3650. \begin{exercise}\label{ex:pe-Lvar}
  3651. \normalfont\normalsize
  3652. Adapt the partial evaluator from section~\ref{sec:partial-evaluation}
  3653. (figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3654. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3655. %
  3656. \racket{\key{let} binding}\python{assignment}
  3657. %
  3658. to the \LangInt{} language, so you will need to add cases for them in
  3659. the \code{pe\_exp}
  3660. %
  3661. \racket{function.}
  3662. %
  3663. \python{and \code{pe\_stmt} functions.}
  3664. %
  3665. Once complete, add the partial evaluation pass to the front of your
  3666. compiler, and make sure that your compiler still passes all the
  3667. tests.
  3668. \end{exercise}
  3669. \begin{exercise}
  3670. \normalfont\normalsize
  3671. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3672. \code{pe\_add} auxiliary functions with functions that know more about
  3673. arithmetic. For example, your partial evaluator should translate
  3674. {\if\edition\racketEd
  3675. \[
  3676. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3677. \code{(+ 2 (read))}
  3678. \]
  3679. \fi}
  3680. {\if\edition\pythonEd
  3681. \[
  3682. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3683. \code{2 + input\_int()}
  3684. \]
  3685. \fi}
  3686. %
  3687. To accomplish this, the \code{pe\_exp} function should produce output
  3688. in the form of the $\itm{residual}$ nonterminal of the following
  3689. grammar. The idea is that when processing an addition expression, we
  3690. can always produce one of the following: (1) an integer constant, (2)
  3691. an addition expression with an integer constant on the left-hand side
  3692. but not the right-hand side, or (3) an addition expression in which
  3693. neither subexpression is a constant.
  3694. %
  3695. {\if\edition\racketEd
  3696. \[
  3697. \begin{array}{lcl}
  3698. \itm{inert} &::=& \Var
  3699. \MID \LP\key{read}\RP
  3700. \MID \LP\key{-} ~\Var\RP
  3701. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3702. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3703. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3704. \itm{residual} &::=& \Int
  3705. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3706. \MID \itm{inert}
  3707. \end{array}
  3708. \]
  3709. \fi}
  3710. {\if\edition\pythonEd
  3711. \[
  3712. \begin{array}{lcl}
  3713. \itm{inert} &::=& \Var
  3714. \MID \key{input\_int}\LP\RP
  3715. \MID \key{-} \Var
  3716. \MID \key{-} \key{input\_int}\LP\RP
  3717. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3718. \itm{residual} &::=& \Int
  3719. \MID \Int ~ \key{+} ~ \itm{inert}
  3720. \MID \itm{inert}
  3721. \end{array}
  3722. \]
  3723. \fi}
  3724. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3725. inputs are $\itm{residual}$ expressions and they should return
  3726. $\itm{residual}$ expressions. Once the improvements are complete,
  3727. make sure that your compiler still passes all the tests. After
  3728. all, fast code is useless if it produces incorrect results!
  3729. \end{exercise}
  3730. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3731. \chapter{Parsing}
  3732. \label{ch:parsing-Lvar}
  3733. \setcounter{footnote}{0}
  3734. \index{subject}{parsing}
  3735. In this chapter we learn how to use the Lark parser generator to
  3736. translate the concrete syntax of \LangVar{} (a sequence of characters)
  3737. into an abstract syntax tree. A parser generator takes in a
  3738. specification of the concrete syntax and produces a parser. Even
  3739. though a parser generator does most of the work for us, using one
  3740. properly requires considerable knowledge about parsing algorithms. In
  3741. particular, we must learn about the specification languages used by
  3742. parser generators and we must learn how to deal with ambiguity in our
  3743. language specifications.
  3744. The process of parsing is traditionally subdivided into two phases:
  3745. \emph{lexical analysis} (often called scanning) and
  3746. \emph{parsing}. The lexical analysis phase translates the sequence of
  3747. characters into a sequence of \emph{tokens}, that is, words consisting
  3748. of several characters. The parsing phase organizes the tokens into a
  3749. \emph{parse tree} that captures how the tokens were matched by rules
  3750. in the grammar of the language. The reason for the subdivision into
  3751. two phases is to enable the use of a faster but less powerful
  3752. algorithm for lexical analysis and the use of a slower but more
  3753. powerful algorithm for parsing.
  3754. %
  3755. Likewise, parser generators typical come in pairs, with separate
  3756. generators for the lexical analyzer and for the parser. A paricularly
  3757. influential pair of generators were \texttt{lex} and
  3758. \texttt{yacc}. The \texttt{lex} generator was written by Eric Schmidt
  3759. and Mike Lesk~\cite{Lesk:1975uq} at Bell Labs. The \texttt{yacc}
  3760. generator was written by Stephen C. Johnson at
  3761. AT\&T~\cite{Johnson:1979qy} and stands for Yet Another Compiler
  3762. Compiler.
  3763. The Lark parse generator that we use in this chapter includes both a
  3764. lexical analyzer and a parser. The next section discusses lexical
  3765. analysis and the remainder of the chapter discusses parsing.
  3766. \section{Lexical analysis}
  3767. \label{sec:lex}
  3768. The lexical analyzers produced by Lark turn a sequence of characters
  3769. (a string) into a sequence of token objects. For example, the string
  3770. \begin{lstlisting}
  3771. 'print(1 + 3)'
  3772. \end{lstlisting}
  3773. \noindent could be converted into the following sequence of token objects
  3774. \begin{lstlisting}
  3775. Token('PRINT', 'print')
  3776. Token('LPAR', '(')
  3777. Token('INT', '1')
  3778. Token('PLUS', '+')
  3779. Token('INT', '3')
  3780. Token('RPAR', ')')
  3781. Token('NEWLINE', '\n')
  3782. \end{lstlisting}
  3783. where each token includes a field for its \code{type}, such as \code{'INT'},
  3784. and for its \code{value}, such as \code{'1'}.
  3785. Following in the tradition of \code{lex}, the Lark generator requires
  3786. a specification of which words should be categorized as which types of
  3787. the tokens using \emph{regular expressions}. The term ``regular''
  3788. comes from ``regular languages'', which are the (particularly simple)
  3789. set of languages that can be recognized by a finite automata. A
  3790. \emph{regular expression} is a pattern formed of the following core
  3791. elements:\index{subject}{regular expression}
  3792. \begin{enumerate}
  3793. \item a single character, e.g. \texttt{a}. The only string that matches this
  3794. regular expression is \texttt{a}.
  3795. \item two regular expressions, one followed by the other
  3796. (concatenation), e.g. \texttt{bc}. The only string that matches
  3797. this regular expression is \texttt{bc}.
  3798. \item one regular expression or another (alternation), e.g.
  3799. \texttt{a|bc}. Both the string \texttt{'a'} and \texttt{'bc'} would
  3800. be matched by this pattern.
  3801. \item a regular expression repeated zero or more times (Kleene
  3802. closure), e.g. \texttt{(a|bc)*}. The string \texttt{'bcabcbc'}
  3803. would match this pattern, but not \texttt{'bccba'}.
  3804. \item the empty sequence
  3805. \end{enumerate}
  3806. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3807. \chapter{Register Allocation}
  3808. \label{ch:register-allocation-Lvar}
  3809. \setcounter{footnote}{0}
  3810. \index{subject}{register allocation}
  3811. In chapter~\ref{ch:Lvar} we learned how to compile \LangVar{} to x86,
  3812. storing variables on the procedure call stack. The CPU may require tens
  3813. to hundreds of cycles to access a location on the stack, whereas
  3814. accessing a register takes only a single cycle. In this chapter we
  3815. improve the efficiency of our generated code by storing some variables
  3816. in registers. The goal of register allocation is to fit as many
  3817. variables into registers as possible. Some programs have more
  3818. variables than registers, so we cannot always map each variable to a
  3819. different register. Fortunately, it is common for different variables
  3820. to be in use during different periods of time during program
  3821. execution, and in those cases we can map multiple variables to the
  3822. same register.
  3823. The program shown in figure~\ref{fig:reg-eg} serves as a running
  3824. example. The source program is on the left and the output of
  3825. instruction selection is on the right. The program is almost
  3826. completely in the x86 assembly language, but it still uses variables.
  3827. Consider variables \code{x} and \code{z}. After the variable \code{x}
  3828. has been moved to \code{z}, it is no longer in use. Variable \code{z}, on
  3829. the other hand, is used only after this point, so \code{x} and
  3830. \code{z} could share the same register.
  3831. \begin{figure}
  3832. \begin{tcolorbox}[colback=white]
  3833. \begin{minipage}{0.45\textwidth}
  3834. Example \LangVar{} program:
  3835. % var_test_28.rkt
  3836. {\if\edition\racketEd
  3837. \begin{lstlisting}
  3838. (let ([v 1])
  3839. (let ([w 42])
  3840. (let ([x (+ v 7)])
  3841. (let ([y x])
  3842. (let ([z (+ x w)])
  3843. (+ z (- y)))))))
  3844. \end{lstlisting}
  3845. \fi}
  3846. {\if\edition\pythonEd
  3847. \begin{lstlisting}
  3848. v = 1
  3849. w = 42
  3850. x = v + 7
  3851. y = x
  3852. z = x + w
  3853. print(z + (- y))
  3854. \end{lstlisting}
  3855. \fi}
  3856. \end{minipage}
  3857. \begin{minipage}{0.45\textwidth}
  3858. After instruction selection:
  3859. {\if\edition\racketEd
  3860. \begin{lstlisting}
  3861. locals-types:
  3862. x : Integer, y : Integer,
  3863. z : Integer, t : Integer,
  3864. v : Integer, w : Integer
  3865. start:
  3866. movq $1, v
  3867. movq $42, w
  3868. movq v, x
  3869. addq $7, x
  3870. movq x, y
  3871. movq x, z
  3872. addq w, z
  3873. movq y, t
  3874. negq t
  3875. movq z, %rax
  3876. addq t, %rax
  3877. jmp conclusion
  3878. \end{lstlisting}
  3879. \fi}
  3880. {\if\edition\pythonEd
  3881. \begin{lstlisting}
  3882. movq $1, v
  3883. movq $42, w
  3884. movq v, x
  3885. addq $7, x
  3886. movq x, y
  3887. movq x, z
  3888. addq w, z
  3889. movq y, tmp_0
  3890. negq tmp_0
  3891. movq z, tmp_1
  3892. addq tmp_0, tmp_1
  3893. movq tmp_1, %rdi
  3894. callq print_int
  3895. \end{lstlisting}
  3896. \fi}
  3897. \end{minipage}
  3898. \end{tcolorbox}
  3899. \caption{A running example for register allocation.}
  3900. \label{fig:reg-eg}
  3901. \end{figure}
  3902. The topic of section~\ref{sec:liveness-analysis-Lvar} is how to
  3903. compute where a variable is in use. Once we have that information, we
  3904. compute which variables are in use at the same time, i.e., which ones
  3905. \emph{interfere}\index{subject}{interfere} with each other, and
  3906. represent this relation as an undirected graph whose vertices are
  3907. variables and edges indicate when two variables interfere
  3908. (section~\ref{sec:build-interference}). We then model register
  3909. allocation as a graph coloring problem
  3910. (section~\ref{sec:graph-coloring}).
  3911. If we run out of registers despite these efforts, we place the
  3912. remaining variables on the stack, similarly to how we handled
  3913. variables in chapter~\ref{ch:Lvar}. It is common to use the verb
  3914. \emph{spill}\index{subject}{spill} for assigning a variable to a stack
  3915. location. The decision to spill a variable is handled as part of the
  3916. graph coloring process.
  3917. We make the simplifying assumption that each variable is assigned to
  3918. one location (a register or stack address). A more sophisticated
  3919. approach is to assign a variable to one or more locations in different
  3920. regions of the program. For example, if a variable is used many times
  3921. in short sequence and then used again only after many other
  3922. instructions, it could be more efficient to assign the variable to a
  3923. register during the initial sequence and then move it to the stack for
  3924. the rest of its lifetime. We refer the interested reader to
  3925. \citet{Cooper:2011aa} (chapter 13) for more information about that
  3926. approach.
  3927. % discuss prioritizing variables based on how much they are used.
  3928. \section{Registers and Calling Conventions}
  3929. \label{sec:calling-conventions}
  3930. \index{subject}{calling conventions}
  3931. As we perform register allocation, we must be aware of the
  3932. \emph{calling conventions} \index{subject}{calling conventions} that
  3933. govern how functions calls are performed in x86.
  3934. %
  3935. Even though \LangVar{} does not include programmer-defined functions,
  3936. our generated code includes a \code{main} function that is called by
  3937. the operating system and our generated code contains calls to the
  3938. \code{read\_int} function.
  3939. Function calls require coordination between two pieces of code that
  3940. may be written by different programmers or generated by different
  3941. compilers. Here we follow the System V calling conventions that are
  3942. used by the GNU C compiler on Linux and
  3943. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3944. %
  3945. The calling conventions include rules about how functions share the
  3946. use of registers. In particular, the caller is responsible for freeing
  3947. some registers prior to the function call for use by the callee.
  3948. These are called the \emph{caller-saved registers}
  3949. \index{subject}{caller-saved registers}
  3950. and they are
  3951. \begin{lstlisting}
  3952. rax rcx rdx rsi rdi r8 r9 r10 r11
  3953. \end{lstlisting}
  3954. On the other hand, the callee is responsible for preserving the values
  3955. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  3956. which are
  3957. \begin{lstlisting}
  3958. rsp rbp rbx r12 r13 r14 r15
  3959. \end{lstlisting}
  3960. We can think about this caller/callee convention from two points of
  3961. view, the caller view and the callee view, as follows:
  3962. \begin{itemize}
  3963. \item The caller should assume that all the caller-saved registers get
  3964. overwritten with arbitrary values by the callee. On the other hand,
  3965. the caller can safely assume that all the callee-saved registers
  3966. retain their original values.
  3967. \item The callee can freely use any of the caller-saved registers.
  3968. However, if the callee wants to use a callee-saved register, the
  3969. callee must arrange to put the original value back in the register
  3970. prior to returning to the caller. This can be accomplished by saving
  3971. the value to the stack in the prelude of the function and restoring
  3972. the value in the conclusion of the function.
  3973. \end{itemize}
  3974. In x86, registers are also used for passing arguments to a function
  3975. and for the return value. In particular, the first six arguments of a
  3976. function are passed in the following six registers, in this order.
  3977. \index{subject}{argument-passing registers}
  3978. \index{subject}{parameter-passing registers}
  3979. \begin{lstlisting}
  3980. rdi rsi rdx rcx r8 r9
  3981. \end{lstlisting}
  3982. If there are more than six arguments, the convention is to use
  3983. space on the frame of the caller for the rest of the
  3984. arguments. However, in chapter~\ref{ch:Lfun} we arrange never to
  3985. need more than six arguments.
  3986. %
  3987. \racket{For now, the only function we care about is \code{read\_int},
  3988. which takes zero arguments.}
  3989. %
  3990. \python{For now, the only functions we care about are \code{read\_int}
  3991. and \code{print\_int}, which take zero and one argument, respectively.}
  3992. %
  3993. The register \code{rax} is used for the return value of a function.
  3994. The next question is how these calling conventions impact register
  3995. allocation. Consider the \LangVar{} program presented in
  3996. figure~\ref{fig:example-calling-conventions}. We first analyze this
  3997. example from the caller point of view and then from the callee point
  3998. of view. We refer to a variable that is in use during a function call
  3999. as a \emph{call-live variable}\index{subject}{call-live variable}.
  4000. The program makes two calls to \READOP{}. The variable \code{x} is
  4001. call-live because it is in use during the second call to \READOP{}; we
  4002. must ensure that the value in \code{x} does not get overwritten during
  4003. the call to \READOP{}. One obvious approach is to save all the values
  4004. that reside in caller-saved registers to the stack prior to each
  4005. function call and to restore them after each call. That way, if the
  4006. register allocator chooses to assign \code{x} to a caller-saved
  4007. register, its value will be preserved across the call to \READOP{}.
  4008. However, saving and restoring to the stack is relatively slow. If
  4009. \code{x} is not used many times, it may be better to assign \code{x}
  4010. to a stack location in the first place. Or better yet, if we can
  4011. arrange for \code{x} to be placed in a callee-saved register, then it
  4012. won't need to be saved and restored during function calls.
  4013. The approach that we recommend for call-live variables is either to
  4014. assign them to callee-saved registers or to spill them to the
  4015. stack. On the other hand, for variables that are not call-live, we try
  4016. the following alternatives in order: (1) look for an available
  4017. caller-saved register (to leave room for other variables in the
  4018. callee-saved register), (2) look for a callee-saved register, and (3)
  4019. spill the variable to the stack.
  4020. It is straightforward to implement this approach in a graph coloring
  4021. register allocator. First, we know which variables are call-live
  4022. because we already need to compute which variables are in use at every
  4023. instruction (section~\ref{sec:liveness-analysis-Lvar}). Second, when
  4024. we build the interference graph
  4025. (section~\ref{sec:build-interference}), we can place an edge between
  4026. each of the call-live variables and the caller-saved registers in the
  4027. interference graph. This will prevent the graph coloring algorithm
  4028. from assigning them to caller-saved registers.
  4029. Returning to the example in
  4030. figure~\ref{fig:example-calling-conventions}, let us analyze the
  4031. generated x86 code on the right-hand side. Notice that variable
  4032. \code{x} is assigned to \code{rbx}, a callee-saved register. Thus, it
  4033. is already in a safe place during the second call to
  4034. \code{read\_int}. Next, notice that variable \code{y} is assigned to
  4035. \code{rcx}, a caller-saved register, because \code{y} is not a
  4036. call-live variable.
  4037. Next we analyze the example from the callee point of view, focusing on
  4038. the prelude and conclusion of the \code{main} function. As usual, the
  4039. prelude begins with saving the \code{rbp} register to the stack and
  4040. setting the \code{rbp} to the current stack pointer. We now know why
  4041. it is necessary to save the \code{rbp}: it is a callee-saved register.
  4042. The prelude then pushes \code{rbx} to the stack because (1) \code{rbx}
  4043. is a callee-saved register and (2) \code{rbx} is assigned to a variable
  4044. (\code{x}). The other callee-saved registers are not saved in the
  4045. prelude because they are not used. The prelude subtracts 8 bytes from
  4046. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  4047. conclusion, we see that \code{rbx} is restored from the stack with a
  4048. \code{popq} instruction.
  4049. \index{subject}{prelude}\index{subject}{conclusion}
  4050. \begin{figure}[tp]
  4051. \begin{tcolorbox}[colback=white]
  4052. \begin{minipage}{0.45\textwidth}
  4053. Example \LangVar{} program:
  4054. %var_test_14.rkt
  4055. {\if\edition\racketEd
  4056. \begin{lstlisting}
  4057. (let ([x (read)])
  4058. (let ([y (read)])
  4059. (+ (+ x y) 42)))
  4060. \end{lstlisting}
  4061. \fi}
  4062. {\if\edition\pythonEd
  4063. \begin{lstlisting}
  4064. x = input_int()
  4065. y = input_int()
  4066. print((x + y) + 42)
  4067. \end{lstlisting}
  4068. \fi}
  4069. \end{minipage}
  4070. \begin{minipage}{0.45\textwidth}
  4071. Generated x86 assembly:
  4072. {\if\edition\racketEd
  4073. \begin{lstlisting}
  4074. start:
  4075. callq read_int
  4076. movq %rax, %rbx
  4077. callq read_int
  4078. movq %rax, %rcx
  4079. addq %rcx, %rbx
  4080. movq %rbx, %rax
  4081. addq $42, %rax
  4082. jmp _conclusion
  4083. .globl main
  4084. main:
  4085. pushq %rbp
  4086. movq %rsp, %rbp
  4087. pushq %rbx
  4088. subq $8, %rsp
  4089. jmp start
  4090. conclusion:
  4091. addq $8, %rsp
  4092. popq %rbx
  4093. popq %rbp
  4094. retq
  4095. \end{lstlisting}
  4096. \fi}
  4097. {\if\edition\pythonEd
  4098. \begin{lstlisting}
  4099. .globl main
  4100. main:
  4101. pushq %rbp
  4102. movq %rsp, %rbp
  4103. pushq %rbx
  4104. subq $8, %rsp
  4105. callq read_int
  4106. movq %rax, %rbx
  4107. callq read_int
  4108. movq %rax, %rcx
  4109. movq %rbx, %rdx
  4110. addq %rcx, %rdx
  4111. movq %rdx, %rcx
  4112. addq $42, %rcx
  4113. movq %rcx, %rdi
  4114. callq print_int
  4115. addq $8, %rsp
  4116. popq %rbx
  4117. popq %rbp
  4118. retq
  4119. \end{lstlisting}
  4120. \fi}
  4121. \end{minipage}
  4122. \end{tcolorbox}
  4123. \caption{An example with function calls.}
  4124. \label{fig:example-calling-conventions}
  4125. \end{figure}
  4126. %\clearpage
  4127. \section{Liveness Analysis}
  4128. \label{sec:liveness-analysis-Lvar}
  4129. \index{subject}{liveness analysis}
  4130. The \code{uncover\_live} \racket{pass}\python{function} performs
  4131. \emph{liveness analysis}; that is, it discovers which variables are
  4132. in use in different regions of a program.
  4133. %
  4134. A variable or register is \emph{live} at a program point if its
  4135. current value is used at some later point in the program. We refer to
  4136. variables, stack locations, and registers collectively as
  4137. \emph{locations}.
  4138. %
  4139. Consider the following code fragment in which there are two writes to
  4140. \code{b}. Are variables \code{a} and \code{b} both live at the same
  4141. time?
  4142. \begin{center}
  4143. \begin{minipage}{0.96\textwidth}
  4144. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4145. movq $5, a
  4146. movq $30, b
  4147. movq a, c
  4148. movq $10, b
  4149. addq b, c
  4150. \end{lstlisting}
  4151. \end{minipage}
  4152. \end{center}
  4153. The answer is no, because \code{a} is live from line 1 to 3 and
  4154. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  4155. line 2 is never used because it is overwritten (line 4) before the
  4156. next read (line 5).
  4157. The live locations for each instruction can be computed by traversing
  4158. the instruction sequence back to front (i.e., backward in execution
  4159. order). Let $I_1,\ldots, I_n$ be the instruction sequence. We write
  4160. $L_{\mathsf{after}}(k)$ for the set of live locations after
  4161. instruction $I_k$ and write $L_{\mathsf{before}}(k)$ for the set of live
  4162. locations before instruction $I_k$. \racket{We recommend representing
  4163. these sets with the Racket \code{set} data structure described in
  4164. figure~\ref{fig:set}.} \python{We recommend representing these sets
  4165. with the Python
  4166. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  4167. data structure.}
  4168. {\if\edition\racketEd
  4169. \begin{figure}[tp]
  4170. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  4171. \small
  4172. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  4173. A \emph{set} is an unordered collection of elements without duplicates.
  4174. Here are some of the operations defined on sets.
  4175. \index{subject}{set}
  4176. \begin{description}
  4177. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  4178. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  4179. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  4180. difference of the two sets.
  4181. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  4182. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  4183. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  4184. \end{description}
  4185. \end{tcolorbox}
  4186. %\end{wrapfigure}
  4187. \caption{The \code{set} data structure.}
  4188. \label{fig:set}
  4189. \end{figure}
  4190. \fi}
  4191. The live locations after an instruction are always the same as the
  4192. live locations before the next instruction.
  4193. \index{subject}{live-after} \index{subject}{live-before}
  4194. \begin{equation} \label{eq:live-after-before-next}
  4195. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  4196. \end{equation}
  4197. To start things off, there are no live locations after the last
  4198. instruction, so
  4199. \begin{equation}\label{eq:live-last-empty}
  4200. L_{\mathsf{after}}(n) = \emptyset
  4201. \end{equation}
  4202. We then apply the following rule repeatedly, traversing the
  4203. instruction sequence back to front.
  4204. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  4205. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  4206. \end{equation}
  4207. where $W(k)$ are the locations written to by instruction $I_k$, and
  4208. $R(k)$ are the locations read by instruction $I_k$.
  4209. {\if\edition\racketEd
  4210. %
  4211. There is a special case for \code{jmp} instructions. The locations
  4212. that are live before a \code{jmp} should be the locations in
  4213. $L_{\mathsf{before}}$ at the target of the jump. So, we recommend
  4214. maintaining an alist named \code{label->live} that maps each label to
  4215. the $L_{\mathsf{before}}$ for the first instruction in its block. For
  4216. now the only \code{jmp} in a \LangXVar{} program is the jump to the
  4217. conclusion. (For example, see figure~\ref{fig:reg-eg}.) The
  4218. conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should map
  4219. \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  4220. %
  4221. \fi}
  4222. Let us walk through the previous example, applying these formulas
  4223. starting with the instruction on line 5 of the code fragment. We
  4224. collect the answers in figure~\ref{fig:liveness-example-0}. The
  4225. $L_{\mathsf{after}}$ for the \code{addq b, c} instruction is
  4226. $\emptyset$ because it is the last instruction
  4227. (formula~\eqref{eq:live-last-empty}). The $L_{\mathsf{before}}$ for
  4228. this instruction is $\{\ttm{b},\ttm{c}\}$ because it reads from
  4229. variables \code{b} and \code{c}
  4230. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads})
  4231. \[
  4232. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  4233. \]
  4234. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  4235. the live-before set from line 5 to be the live-after set for this
  4236. instruction (formula~\eqref{eq:live-after-before-next}).
  4237. \[
  4238. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  4239. \]
  4240. This move instruction writes to \code{b} and does not read from any
  4241. variables, so we have the following live-before set
  4242. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}).
  4243. \[
  4244. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  4245. \]
  4246. The live-before for instruction \code{movq a, c}
  4247. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  4248. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}). The
  4249. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  4250. variable that is not live and does not read from a variable.
  4251. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  4252. because it writes to variable \code{a}.
  4253. \begin{figure}[tbp]
  4254. \centering
  4255. \begin{tcolorbox}[colback=white]
  4256. \hspace{10pt}
  4257. \begin{minipage}{0.4\textwidth}
  4258. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4259. movq $5, a
  4260. movq $30, b
  4261. movq a, c
  4262. movq $10, b
  4263. addq b, c
  4264. \end{lstlisting}
  4265. \end{minipage}
  4266. \vrule\hspace{10pt}
  4267. \begin{minipage}{0.45\textwidth}
  4268. \begin{align*}
  4269. L_{\mathsf{before}}(1)= \emptyset,
  4270. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  4271. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  4272. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  4273. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  4274. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  4275. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  4276. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  4277. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  4278. L_{\mathsf{after}}(5)= \emptyset
  4279. \end{align*}
  4280. \end{minipage}
  4281. \end{tcolorbox}
  4282. \caption{Example output of liveness analysis on a short example.}
  4283. \label{fig:liveness-example-0}
  4284. \end{figure}
  4285. \begin{exercise}\normalfont\normalsize
  4286. Perform liveness analysis by hand on the running example in
  4287. figure~\ref{fig:reg-eg}, computing the live-before and live-after
  4288. sets for each instruction. Compare your answers to the solution
  4289. shown in figure~\ref{fig:live-eg}.
  4290. \end{exercise}
  4291. \begin{figure}[tp]
  4292. \hspace{20pt}
  4293. \begin{minipage}{0.55\textwidth}
  4294. \begin{tcolorbox}[colback=white]
  4295. {\if\edition\racketEd
  4296. \begin{lstlisting}
  4297. |$\{\ttm{rsp}\}$|
  4298. movq $1, v
  4299. |$\{\ttm{v},\ttm{rsp}\}$|
  4300. movq $42, w
  4301. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  4302. movq v, x
  4303. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4304. addq $7, x
  4305. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  4306. movq x, y
  4307. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  4308. movq x, z
  4309. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4310. addq w, z
  4311. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  4312. movq y, t
  4313. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4314. negq t
  4315. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  4316. movq z, %rax
  4317. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  4318. addq t, %rax
  4319. |$\{\ttm{rax},\ttm{rsp}\}$|
  4320. jmp conclusion
  4321. \end{lstlisting}
  4322. \fi}
  4323. {\if\edition\pythonEd
  4324. \begin{lstlisting}
  4325. movq $1, v
  4326. |$\{\ttm{v}\}$|
  4327. movq $42, w
  4328. |$\{\ttm{w}, \ttm{v}\}$|
  4329. movq v, x
  4330. |$\{\ttm{w}, \ttm{x}\}$|
  4331. addq $7, x
  4332. |$\{\ttm{w}, \ttm{x}\}$|
  4333. movq x, y
  4334. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  4335. movq x, z
  4336. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  4337. addq w, z
  4338. |$\{\ttm{y}, \ttm{z}\}$|
  4339. movq y, tmp_0
  4340. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4341. negq tmp_0
  4342. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4343. movq z, tmp_1
  4344. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  4345. addq tmp_0, tmp_1
  4346. |$\{\ttm{tmp\_1}\}$|
  4347. movq tmp_1, %rdi
  4348. |$\{\ttm{rdi}\}$|
  4349. callq print_int
  4350. |$\{\}$|
  4351. \end{lstlisting}
  4352. \fi}
  4353. \end{tcolorbox}
  4354. \end{minipage}
  4355. \caption{The running example annotated with live-after sets.}
  4356. \label{fig:live-eg}
  4357. \end{figure}
  4358. \begin{exercise}\normalfont\normalsize
  4359. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  4360. %
  4361. \racket{Store the sequence of live-after sets in the $\itm{info}$
  4362. field of the \code{Block} structure.}
  4363. %
  4364. \python{Return a dictionary that maps each instruction to its
  4365. live-after set.}
  4366. %
  4367. \racket{We recommend creating an auxiliary function that takes a list
  4368. of instructions and an initial live-after set (typically empty) and
  4369. returns the list of live-after sets.}
  4370. %
  4371. We recommend creating auxiliary functions to (1) compute the set
  4372. of locations that appear in an \Arg{}, (2) compute the locations read
  4373. by an instruction (the $R$ function), and (3) the locations written by
  4374. an instruction (the $W$ function). The \code{callq} instruction should
  4375. include all the caller-saved registers in its write set $W$ because
  4376. the calling convention says that those registers may be written to
  4377. during the function call. Likewise, the \code{callq} instruction
  4378. should include the appropriate argument-passing registers in its
  4379. read set $R$, depending on the arity of the function being
  4380. called. (This is why the abstract syntax for \code{callq} includes the
  4381. arity.)
  4382. \end{exercise}
  4383. %\clearpage
  4384. \section{Build the Interference Graph}
  4385. \label{sec:build-interference}
  4386. {\if\edition\racketEd
  4387. \begin{figure}[tp]
  4388. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  4389. \small
  4390. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  4391. A \emph{graph} is a collection of vertices and edges where each
  4392. edge connects two vertices. A graph is \emph{directed} if each
  4393. edge points from a source to a target. Otherwise the graph is
  4394. \emph{undirected}.
  4395. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  4396. \begin{description}
  4397. %% We currently don't use directed graphs. We instead use
  4398. %% directed multi-graphs. -Jeremy
  4399. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  4400. directed graph from a list of edges. Each edge is a list
  4401. containing the source and target vertex.
  4402. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  4403. undirected graph from a list of edges. Each edge is represented by
  4404. a list containing two vertices.
  4405. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  4406. inserts a vertex into the graph.
  4407. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  4408. inserts an edge between the two vertices.
  4409. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  4410. returns a sequence of vertices adjacent to the vertex.
  4411. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  4412. returns a sequence of all vertices in the graph.
  4413. \end{description}
  4414. \end{tcolorbox}
  4415. %\end{wrapfigure}
  4416. \caption{The Racket \code{graph} package.}
  4417. \label{fig:graph}
  4418. \end{figure}
  4419. \fi}
  4420. On the basis of the liveness analysis, we know where each location is
  4421. live. However, during register allocation, we need to answer
  4422. questions of the specific form: are locations $u$ and $v$ live at the
  4423. same time? (If so, they cannot be assigned to the same register.) To
  4424. make this question more efficient to answer, we create an explicit
  4425. data structure, an \emph{interference
  4426. graph}\index{subject}{interference graph}. An interference graph is
  4427. an undirected graph that has an edge between two locations if they are
  4428. live at the same time, that is, if they interfere with each other.
  4429. %
  4430. \racket{We recommend using the Racket \code{graph} package
  4431. (figure~\ref{fig:graph}) to represent the interference graph.}
  4432. %
  4433. \python{We provide implementations of directed and undirected graph
  4434. data structures in the file \code{graph.py} of the support code.}
  4435. A straightforward way to compute the interference graph is to look at
  4436. the set of live locations between each instruction and add an edge to
  4437. the graph for every pair of variables in the same set. This approach
  4438. is less than ideal for two reasons. First, it can be expensive because
  4439. it takes $O(n^2)$ time to consider every pair in a set of $n$ live
  4440. locations. Second, in the special case in which two locations hold the
  4441. same value (because one was assigned to the other), they can be live
  4442. at the same time without interfering with each other.
  4443. A better way to compute the interference graph is to focus on
  4444. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  4445. must not overwrite something in a live location. So for each
  4446. instruction, we create an edge between the locations being written to
  4447. and the live locations. (However, a location never interferes with
  4448. itself.) For the \key{callq} instruction, we consider all the
  4449. caller-saved registers to have been written to, so an edge is added
  4450. between every live variable and every caller-saved register. Also, for
  4451. \key{movq} there is the special case of two variables holding the same
  4452. value. If a live variable $v$ is the same as the source of the
  4453. \key{movq}, then there is no need to add an edge between $v$ and the
  4454. destination, because they both hold the same value.
  4455. %
  4456. Hence we have the following two rules:
  4457. \begin{enumerate}
  4458. \item If instruction $I_k$ is a move instruction of the form
  4459. \key{movq} $s$\key{,} $d$, then for every $v \in
  4460. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  4461. $(d,v)$.
  4462. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  4463. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  4464. $(d,v)$.
  4465. \end{enumerate}
  4466. Working from the top to bottom of figure~\ref{fig:live-eg}, we apply
  4467. these rules to each instruction. We highlight a few of the
  4468. instructions. \racket{The first instruction is \lstinline{movq $1, v},
  4469. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  4470. so \code{v} interferes with \code{rsp}.}
  4471. %
  4472. \python{The first instruction is \lstinline{movq $1, v}, and the
  4473. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  4474. no interference because $\ttm{v}$ is the destination of the move.}
  4475. %
  4476. \racket{The fourth instruction is \lstinline{addq $7, x}, and the
  4477. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  4478. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  4479. %
  4480. \python{The fourth instruction is \lstinline{addq $7, x}, and the
  4481. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  4482. $\ttm{x}$ interferes with \ttm{w}.}
  4483. %
  4484. \racket{The next instruction is \lstinline{movq x, y}, and the
  4485. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  4486. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  4487. \ttm{x} because \ttm{x} is the source of the move and therefore
  4488. \ttm{x} and \ttm{y} hold the same value.}
  4489. %
  4490. \python{The next instruction is \lstinline{movq x, y}, and the
  4491. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  4492. applies, so \ttm{y} interferes with \ttm{w} but not
  4493. \ttm{x}, because \ttm{x} is the source of the move and therefore
  4494. \ttm{x} and \ttm{y} hold the same value.}
  4495. %
  4496. Figure~\ref{fig:interference-results} lists the interference results
  4497. for all the instructions, and the resulting interference graph is
  4498. shown in figure~\ref{fig:interfere}.
  4499. \begin{figure}[tbp]
  4500. \begin{tcolorbox}[colback=white]
  4501. \begin{quote}
  4502. {\if\edition\racketEd
  4503. \begin{tabular}{ll}
  4504. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  4505. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  4506. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4507. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4508. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  4509. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  4510. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  4511. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4512. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4513. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  4514. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  4515. \lstinline!jmp conclusion!& no interference.
  4516. \end{tabular}
  4517. \fi}
  4518. {\if\edition\pythonEd
  4519. \begin{tabular}{ll}
  4520. \lstinline!movq $1, v!& no interference\\
  4521. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  4522. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  4523. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  4524. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  4525. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  4526. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  4527. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  4528. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  4529. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  4530. \lstinline!addq tmp_0, tmp_1! & no interference\\
  4531. \lstinline!movq tmp_1, %rdi! & no interference \\
  4532. \lstinline!callq print_int!& no interference.
  4533. \end{tabular}
  4534. \fi}
  4535. \end{quote}
  4536. \end{tcolorbox}
  4537. \caption{Interference results for the running example.}
  4538. \label{fig:interference-results}
  4539. \end{figure}
  4540. \begin{figure}[tbp]
  4541. \begin{tcolorbox}[colback=white]
  4542. \large
  4543. {\if\edition\racketEd
  4544. \[
  4545. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4546. \node (rax) at (0,0) {$\ttm{rax}$};
  4547. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4548. \node (t1) at (0,2) {$\ttm{t}$};
  4549. \node (z) at (3,2) {$\ttm{z}$};
  4550. \node (x) at (6,2) {$\ttm{x}$};
  4551. \node (y) at (3,0) {$\ttm{y}$};
  4552. \node (w) at (6,0) {$\ttm{w}$};
  4553. \node (v) at (9,0) {$\ttm{v}$};
  4554. \draw (t1) to (rax);
  4555. \draw (t1) to (z);
  4556. \draw (z) to (y);
  4557. \draw (z) to (w);
  4558. \draw (x) to (w);
  4559. \draw (y) to (w);
  4560. \draw (v) to (w);
  4561. \draw (v) to (rsp);
  4562. \draw (w) to (rsp);
  4563. \draw (x) to (rsp);
  4564. \draw (y) to (rsp);
  4565. \path[-.,bend left=15] (z) edge node {} (rsp);
  4566. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4567. \draw (rax) to (rsp);
  4568. \end{tikzpicture}
  4569. \]
  4570. \fi}
  4571. {\if\edition\pythonEd
  4572. \[
  4573. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4574. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  4575. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  4576. \node (z) at (3,2) {$\ttm{z}$};
  4577. \node (x) at (6,2) {$\ttm{x}$};
  4578. \node (y) at (3,0) {$\ttm{y}$};
  4579. \node (w) at (6,0) {$\ttm{w}$};
  4580. \node (v) at (9,0) {$\ttm{v}$};
  4581. \draw (t0) to (t1);
  4582. \draw (t0) to (z);
  4583. \draw (z) to (y);
  4584. \draw (z) to (w);
  4585. \draw (x) to (w);
  4586. \draw (y) to (w);
  4587. \draw (v) to (w);
  4588. \end{tikzpicture}
  4589. \]
  4590. \fi}
  4591. \end{tcolorbox}
  4592. \caption{The interference graph of the example program.}
  4593. \label{fig:interfere}
  4594. \end{figure}
  4595. %% Our next concern is to choose a data structure for representing the
  4596. %% interference graph. There are many choices for how to represent a
  4597. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  4598. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  4599. %% data structure is to study the algorithm that uses the data structure,
  4600. %% determine what operations need to be performed, and then choose the
  4601. %% data structure that provide the most efficient implementations of
  4602. %% those operations. Often times the choice of data structure can have an
  4603. %% effect on the time complexity of the algorithm, as it does here. If
  4604. %% you skim the next section, you will see that the register allocation
  4605. %% algorithm needs to ask the graph for all its vertices and, given a
  4606. %% vertex, it needs to known all the adjacent vertices. Thus, the
  4607. %% correct choice of graph representation is that of an adjacency
  4608. %% list. There are helper functions in \code{utilities.rkt} for
  4609. %% representing graphs using the adjacency list representation:
  4610. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  4611. %% (Appendix~\ref{appendix:utilities}).
  4612. %% %
  4613. %% \margincomment{\footnotesize To do: change to use the
  4614. %% Racket graph library. \\ --Jeremy}
  4615. %% %
  4616. %% In particular, those functions use a hash table to map each vertex to
  4617. %% the set of adjacent vertices, and the sets are represented using
  4618. %% Racket's \key{set}, which is also a hash table.
  4619. \begin{exercise}\normalfont\normalsize
  4620. \racket{Implement the compiler pass named \code{build\_interference} according
  4621. to the algorithm suggested here. We recommend using the Racket
  4622. \code{graph} package to create and inspect the interference graph.
  4623. The output graph of this pass should be stored in the $\itm{info}$ field of
  4624. the program, under the key \code{conflicts}.}
  4625. %
  4626. \python{Implement a function named \code{build\_interference}
  4627. according to the algorithm suggested above that
  4628. returns the interference graph.}
  4629. \end{exercise}
  4630. \section{Graph Coloring via Sudoku}
  4631. \label{sec:graph-coloring}
  4632. \index{subject}{graph coloring}
  4633. \index{subject}{sudoku}
  4634. \index{subject}{color}
  4635. We come to the main event discussed in this chapter, mapping variables
  4636. to registers and stack locations. Variables that interfere with each
  4637. other must be mapped to different locations. In terms of the
  4638. interference graph, this means that adjacent vertices must be mapped
  4639. to different locations. If we think of locations as colors, the
  4640. register allocation problem becomes the graph coloring
  4641. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  4642. The reader may be more familiar with the graph coloring problem than he
  4643. or she realizes; the popular game of sudoku is an instance of the
  4644. graph coloring problem. The following describes how to build a graph
  4645. out of an initial sudoku board.
  4646. \begin{itemize}
  4647. \item There is one vertex in the graph for each sudoku square.
  4648. \item There is an edge between two vertices if the corresponding squares
  4649. are in the same row, in the same column, or in the same $3\times 3$ region.
  4650. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  4651. \item On the basis of the initial assignment of numbers to squares on the
  4652. sudoku board, assign the corresponding colors to the corresponding
  4653. vertices in the graph.
  4654. \end{itemize}
  4655. If you can color the remaining vertices in the graph with the nine
  4656. colors, then you have also solved the corresponding game of sudoku.
  4657. Figure~\ref{fig:sudoku-graph} shows an initial sudoku game board and
  4658. the corresponding graph with colored vertices. Here we use a
  4659. monochrome representation of colors, mapping the sudoku number 1 to
  4660. black, 2 to white, and 3 to gray. We show edges for only a sampling
  4661. of the vertices (the colored ones) because showing edges for all the
  4662. vertices would make the graph unreadable.
  4663. \begin{figure}[tbp]
  4664. \begin{tcolorbox}[colback=white]
  4665. \includegraphics[width=0.5\textwidth]{figs/sudoku}
  4666. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  4667. \end{tcolorbox}
  4668. \caption{A sudoku game board and the corresponding colored graph.}
  4669. \label{fig:sudoku-graph}
  4670. \end{figure}
  4671. Some techniques for playing sudoku correspond to heuristics used in
  4672. graph coloring algorithms. For example, one of the basic techniques
  4673. for sudoku is called Pencil Marks. The idea is to use a process of
  4674. elimination to determine what numbers are no longer available for a
  4675. square and to write those numbers in the square (writing very
  4676. small). For example, if the number $1$ is assigned to a square, then
  4677. write the pencil mark $1$ in all the squares in the same row, column,
  4678. and region to indicate that $1$ is no longer an option for those other
  4679. squares.
  4680. %
  4681. The Pencil Marks technique corresponds to the notion of
  4682. \emph{saturation}\index{subject}{saturation} due to \citet{Brelaz:1979eu}. The
  4683. saturation of a vertex, in sudoku terms, is the set of numbers that
  4684. are no longer available. In graph terminology, we have the following
  4685. definition:
  4686. \begin{equation*}
  4687. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  4688. \text{ and } \mathrm{color}(v) = c \}
  4689. \end{equation*}
  4690. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  4691. edge with $u$.
  4692. The Pencil Marks technique leads to a simple strategy for filling in
  4693. numbers: if there is a square with only one possible number left, then
  4694. choose that number! But what if there are no squares with only one
  4695. possibility left? One brute-force approach is to try them all: choose
  4696. the first one, and if that ultimately leads to a solution, great. If
  4697. not, backtrack and choose the next possibility. One good thing about
  4698. Pencil Marks is that it reduces the degree of branching in the search
  4699. tree. Nevertheless, backtracking can be terribly time consuming. One
  4700. way to reduce the amount of backtracking is to use the
  4701. most-constrained-first heuristic (aka minimum remaining
  4702. values)~\citep{Russell2003}. That is, in choosing a square, always
  4703. choose one with the fewest possibilities left (the vertex with the
  4704. highest saturation). The idea is that choosing highly constrained
  4705. squares earlier rather than later is better, because later on there may
  4706. not be any possibilities left in the highly saturated squares.
  4707. However, register allocation is easier than sudoku, because the
  4708. register allocator can fall back to assigning variables to stack
  4709. locations when the registers run out. Thus, it makes sense to replace
  4710. backtracking with greedy search: make the best choice at the time and
  4711. keep going. We still wish to minimize the number of colors needed, so
  4712. we use the most-constrained-first heuristic in the greedy search.
  4713. Figure~\ref{fig:satur-algo} gives the pseudocode for a simple greedy
  4714. algorithm for register allocation based on saturation and the
  4715. most-constrained-first heuristic. It is roughly equivalent to the
  4716. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}.
  4717. Just as in sudoku, the algorithm represents colors with integers. The
  4718. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  4719. for register allocation. The integers $k$ and larger correspond to
  4720. stack locations. The registers that are not used for register
  4721. allocation, such as \code{rax}, are assigned to negative integers. In
  4722. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  4723. %% One might wonder why we include registers at all in the liveness
  4724. %% analysis and interference graph. For example, we never allocate a
  4725. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  4726. %% leave them out. As we see in chapter~\ref{ch:Lvec}, when we begin
  4727. %% to use register for passing arguments to functions, it will be
  4728. %% necessary for those registers to appear in the interference graph
  4729. %% because those registers will also be assigned to variables, and we
  4730. %% don't want those two uses to encroach on each other. Regarding
  4731. %% registers such as \code{rax} and \code{rsp} that are not used for
  4732. %% variables, we could omit them from the interference graph but that
  4733. %% would require adding special cases to our algorithm, which would
  4734. %% complicate the logic for little gain.
  4735. \begin{figure}[btp]
  4736. \begin{tcolorbox}[colback=white]
  4737. \centering
  4738. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  4739. Algorithm: DSATUR
  4740. Input: A graph |$G$|
  4741. Output: An assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  4742. |$W \gets \mathrm{vertices}(G)$|
  4743. while |$W \neq \emptyset$| do
  4744. pick a vertex |$u$| from |$W$| with the highest saturation,
  4745. breaking ties randomly
  4746. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  4747. |$\mathrm{color}[u] \gets c$|
  4748. |$W \gets W - \{u\}$|
  4749. \end{lstlisting}
  4750. \end{tcolorbox}
  4751. \caption{The saturation-based greedy graph coloring algorithm.}
  4752. \label{fig:satur-algo}
  4753. \end{figure}
  4754. {\if\edition\racketEd
  4755. With the DSATUR algorithm in hand, let us return to the running
  4756. example and consider how to color the interference graph shown in
  4757. figure~\ref{fig:interfere}.
  4758. %
  4759. We start by assigning each register node to its own color. For
  4760. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  4761. assigned $-2$. The variables are not yet colored, so they are
  4762. annotated with a dash. We then update the saturation for vertices that
  4763. are adjacent to a register, obtaining the following annotated
  4764. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  4765. it interferes with both \code{rax} and \code{rsp}.
  4766. \[
  4767. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4768. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  4769. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  4770. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  4771. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  4772. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4773. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4774. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4775. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4776. \draw (t1) to (rax);
  4777. \draw (t1) to (z);
  4778. \draw (z) to (y);
  4779. \draw (z) to (w);
  4780. \draw (x) to (w);
  4781. \draw (y) to (w);
  4782. \draw (v) to (w);
  4783. \draw (v) to (rsp);
  4784. \draw (w) to (rsp);
  4785. \draw (x) to (rsp);
  4786. \draw (y) to (rsp);
  4787. \path[-.,bend left=15] (z) edge node {} (rsp);
  4788. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4789. \draw (rax) to (rsp);
  4790. \end{tikzpicture}
  4791. \]
  4792. The algorithm says to select a maximally saturated vertex. So, we pick
  4793. $\ttm{t}$ and color it with the first available integer, which is
  4794. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4795. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4796. \[
  4797. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4798. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4799. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4800. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4801. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4802. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4803. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4804. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4805. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4806. \draw (t1) to (rax);
  4807. \draw (t1) to (z);
  4808. \draw (z) to (y);
  4809. \draw (z) to (w);
  4810. \draw (x) to (w);
  4811. \draw (y) to (w);
  4812. \draw (v) to (w);
  4813. \draw (v) to (rsp);
  4814. \draw (w) to (rsp);
  4815. \draw (x) to (rsp);
  4816. \draw (y) to (rsp);
  4817. \path[-.,bend left=15] (z) edge node {} (rsp);
  4818. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4819. \draw (rax) to (rsp);
  4820. \end{tikzpicture}
  4821. \]
  4822. We repeat the process, selecting a maximally saturated vertex,
  4823. choosing \code{z}, and coloring it with the first available number, which
  4824. is $1$. We add $1$ to the saturation for the neighboring vertices
  4825. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4826. \[
  4827. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4828. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4829. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4830. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4831. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4832. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4833. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4834. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4835. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4836. \draw (t1) to (rax);
  4837. \draw (t1) to (z);
  4838. \draw (z) to (y);
  4839. \draw (z) to (w);
  4840. \draw (x) to (w);
  4841. \draw (y) to (w);
  4842. \draw (v) to (w);
  4843. \draw (v) to (rsp);
  4844. \draw (w) to (rsp);
  4845. \draw (x) to (rsp);
  4846. \draw (y) to (rsp);
  4847. \path[-.,bend left=15] (z) edge node {} (rsp);
  4848. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4849. \draw (rax) to (rsp);
  4850. \end{tikzpicture}
  4851. \]
  4852. The most saturated vertices are now \code{w} and \code{y}. We color
  4853. \code{w} with the first available color, which is $0$.
  4854. \[
  4855. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4856. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4857. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4858. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4859. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4860. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4861. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4862. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4863. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4864. \draw (t1) to (rax);
  4865. \draw (t1) to (z);
  4866. \draw (z) to (y);
  4867. \draw (z) to (w);
  4868. \draw (x) to (w);
  4869. \draw (y) to (w);
  4870. \draw (v) to (w);
  4871. \draw (v) to (rsp);
  4872. \draw (w) to (rsp);
  4873. \draw (x) to (rsp);
  4874. \draw (y) to (rsp);
  4875. \path[-.,bend left=15] (z) edge node {} (rsp);
  4876. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4877. \draw (rax) to (rsp);
  4878. \end{tikzpicture}
  4879. \]
  4880. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4881. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4882. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4883. and \code{z}, whose colors are $0$ and $1$ respectively.
  4884. \[
  4885. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4886. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4887. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4888. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4889. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4890. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4891. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4892. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4893. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4894. \draw (t1) to (rax);
  4895. \draw (t1) to (z);
  4896. \draw (z) to (y);
  4897. \draw (z) to (w);
  4898. \draw (x) to (w);
  4899. \draw (y) to (w);
  4900. \draw (v) to (w);
  4901. \draw (v) to (rsp);
  4902. \draw (w) to (rsp);
  4903. \draw (x) to (rsp);
  4904. \draw (y) to (rsp);
  4905. \path[-.,bend left=15] (z) edge node {} (rsp);
  4906. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4907. \draw (rax) to (rsp);
  4908. \end{tikzpicture}
  4909. \]
  4910. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4911. \[
  4912. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4913. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4914. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4915. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4916. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4917. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4918. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4919. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4920. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4921. \draw (t1) to (rax);
  4922. \draw (t1) to (z);
  4923. \draw (z) to (y);
  4924. \draw (z) to (w);
  4925. \draw (x) to (w);
  4926. \draw (y) to (w);
  4927. \draw (v) to (w);
  4928. \draw (v) to (rsp);
  4929. \draw (w) to (rsp);
  4930. \draw (x) to (rsp);
  4931. \draw (y) to (rsp);
  4932. \path[-.,bend left=15] (z) edge node {} (rsp);
  4933. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4934. \draw (rax) to (rsp);
  4935. \end{tikzpicture}
  4936. \]
  4937. In the last step of the algorithm, we color \code{x} with $1$.
  4938. \[
  4939. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4940. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4941. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4942. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4943. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4944. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4945. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4946. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4947. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4948. \draw (t1) to (rax);
  4949. \draw (t1) to (z);
  4950. \draw (z) to (y);
  4951. \draw (z) to (w);
  4952. \draw (x) to (w);
  4953. \draw (y) to (w);
  4954. \draw (v) to (w);
  4955. \draw (v) to (rsp);
  4956. \draw (w) to (rsp);
  4957. \draw (x) to (rsp);
  4958. \draw (y) to (rsp);
  4959. \path[-.,bend left=15] (z) edge node {} (rsp);
  4960. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4961. \draw (rax) to (rsp);
  4962. \end{tikzpicture}
  4963. \]
  4964. So, we obtain the following coloring:
  4965. \[
  4966. \{
  4967. \ttm{rax} \mapsto -1,
  4968. \ttm{rsp} \mapsto -2,
  4969. \ttm{t} \mapsto 0,
  4970. \ttm{z} \mapsto 1,
  4971. \ttm{x} \mapsto 1,
  4972. \ttm{y} \mapsto 2,
  4973. \ttm{w} \mapsto 0,
  4974. \ttm{v} \mapsto 1
  4975. \}
  4976. \]
  4977. \fi}
  4978. %
  4979. {\if\edition\pythonEd
  4980. %
  4981. With the DSATUR algorithm in hand, let us return to the running
  4982. example and consider how to color the interference graph in
  4983. figure~\ref{fig:interfere}. We annotate each variable node with a dash
  4984. to indicate that it has not yet been assigned a color. The saturation
  4985. sets are also shown for each node; all of them start as the empty set.
  4986. (We do not include the register nodes in the graph below because there
  4987. were no interference edges involving registers in this program, but in
  4988. general there can be.)
  4989. %
  4990. \[
  4991. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4992. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  4993. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  4994. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  4995. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4996. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4997. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4998. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4999. \draw (t0) to (t1);
  5000. \draw (t0) to (z);
  5001. \draw (z) to (y);
  5002. \draw (z) to (w);
  5003. \draw (x) to (w);
  5004. \draw (y) to (w);
  5005. \draw (v) to (w);
  5006. \end{tikzpicture}
  5007. \]
  5008. The algorithm says to select a maximally saturated vertex, but they
  5009. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  5010. then color it with the first available integer, which is $0$. We mark
  5011. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  5012. they interfere with $\ttm{tmp\_0}$.
  5013. \[
  5014. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5015. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  5016. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5017. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  5018. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5019. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5020. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5021. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5022. \draw (t0) to (t1);
  5023. \draw (t0) to (z);
  5024. \draw (z) to (y);
  5025. \draw (z) to (w);
  5026. \draw (x) to (w);
  5027. \draw (y) to (w);
  5028. \draw (v) to (w);
  5029. \end{tikzpicture}
  5030. \]
  5031. We repeat the process. The most saturated vertices are \code{z} and
  5032. \code{tmp\_1}, so we choose \code{z} and color it with the first
  5033. available number, which is $1$. We add $1$ to the saturation for the
  5034. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  5035. \[
  5036. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5037. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5038. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5039. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5040. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5041. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5042. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5043. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5044. \draw (t0) to (t1);
  5045. \draw (t0) to (z);
  5046. \draw (z) to (y);
  5047. \draw (z) to (w);
  5048. \draw (x) to (w);
  5049. \draw (y) to (w);
  5050. \draw (v) to (w);
  5051. \end{tikzpicture}
  5052. \]
  5053. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  5054. \code{y}. We color \code{w} with the first available color, which
  5055. is $0$.
  5056. \[
  5057. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5058. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5059. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5060. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5061. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5062. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  5063. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  5064. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5065. \draw (t0) to (t1);
  5066. \draw (t0) to (z);
  5067. \draw (z) to (y);
  5068. \draw (z) to (w);
  5069. \draw (x) to (w);
  5070. \draw (y) to (w);
  5071. \draw (v) to (w);
  5072. \end{tikzpicture}
  5073. \]
  5074. Now \code{y} is the most saturated, so we color it with $2$.
  5075. \[
  5076. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5077. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5078. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5079. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5080. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5081. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5082. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5083. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5084. \draw (t0) to (t1);
  5085. \draw (t0) to (z);
  5086. \draw (z) to (y);
  5087. \draw (z) to (w);
  5088. \draw (x) to (w);
  5089. \draw (y) to (w);
  5090. \draw (v) to (w);
  5091. \end{tikzpicture}
  5092. \]
  5093. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  5094. We choose to color \code{v} with $1$.
  5095. \[
  5096. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5097. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5098. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5099. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5100. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5101. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5102. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5103. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5104. \draw (t0) to (t1);
  5105. \draw (t0) to (z);
  5106. \draw (z) to (y);
  5107. \draw (z) to (w);
  5108. \draw (x) to (w);
  5109. \draw (y) to (w);
  5110. \draw (v) to (w);
  5111. \end{tikzpicture}
  5112. \]
  5113. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  5114. \[
  5115. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5116. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5117. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5118. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5119. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  5120. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5121. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5122. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5123. \draw (t0) to (t1);
  5124. \draw (t0) to (z);
  5125. \draw (z) to (y);
  5126. \draw (z) to (w);
  5127. \draw (x) to (w);
  5128. \draw (y) to (w);
  5129. \draw (v) to (w);
  5130. \end{tikzpicture}
  5131. \]
  5132. So, we obtain the following coloring:
  5133. \[
  5134. \{ \ttm{tmp\_0} \mapsto 0,
  5135. \ttm{tmp\_1} \mapsto 1,
  5136. \ttm{z} \mapsto 1,
  5137. \ttm{x} \mapsto 1,
  5138. \ttm{y} \mapsto 2,
  5139. \ttm{w} \mapsto 0,
  5140. \ttm{v} \mapsto 1 \}
  5141. \]
  5142. \fi}
  5143. We recommend creating an auxiliary function named \code{color\_graph}
  5144. that takes an interference graph and a list of all the variables in
  5145. the program. This function should return a mapping of variables to
  5146. their colors (represented as natural numbers). By creating this helper
  5147. function, you will be able to reuse it in chapter~\ref{ch:Lfun}
  5148. when we add support for functions.
  5149. To prioritize the processing of highly saturated nodes inside the
  5150. \code{color\_graph} function, we recommend using the priority queue
  5151. data structure \racket{described in figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  5152. addition, you will need to maintain a mapping from variables to their
  5153. handles in the priority queue so that you can notify the priority
  5154. queue when their saturation changes.}
  5155. {\if\edition\racketEd
  5156. \begin{figure}[tp]
  5157. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  5158. \small
  5159. \begin{tcolorbox}[title=Priority Queue]
  5160. A \emph{priority queue} is a collection of items in which the
  5161. removal of items is governed by priority. In a min queue,
  5162. lower priority items are removed first. An implementation is in
  5163. \code{priority\_queue.rkt} of the support code. \index{subject}{priority
  5164. queue} \index{subject}{minimum priority queue}
  5165. \begin{description}
  5166. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  5167. priority queue that uses the $\itm{cmp}$ predicate to determine
  5168. whether its first argument has lower or equal priority to its
  5169. second argument.
  5170. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  5171. items in the queue.
  5172. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  5173. the item into the queue and returns a handle for the item in the
  5174. queue.
  5175. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  5176. the lowest priority.
  5177. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  5178. notifies the queue that the priority has decreased for the item
  5179. associated with the given handle.
  5180. \end{description}
  5181. \end{tcolorbox}
  5182. %\end{wrapfigure}
  5183. \caption{The priority queue data structure.}
  5184. \label{fig:priority-queue}
  5185. \end{figure}
  5186. \fi}
  5187. With the coloring complete, we finalize the assignment of variables to
  5188. registers and stack locations. We map the first $k$ colors to the $k$
  5189. registers and the rest of the colors to stack locations. Suppose for
  5190. the moment that we have just one register to use for register
  5191. allocation, \key{rcx}. Then we have the following map from colors to
  5192. locations.
  5193. \[
  5194. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  5195. \]
  5196. Composing this mapping with the coloring, we arrive at the following
  5197. assignment of variables to locations.
  5198. {\if\edition\racketEd
  5199. \begin{gather*}
  5200. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  5201. \ttm{w} \mapsto \key{\%rcx}, \,
  5202. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  5203. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  5204. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5205. \ttm{t} \mapsto \key{\%rcx} \}
  5206. \end{gather*}
  5207. \fi}
  5208. {\if\edition\pythonEd
  5209. \begin{gather*}
  5210. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  5211. \ttm{w} \mapsto \key{\%rcx}, \,
  5212. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  5213. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  5214. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5215. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5216. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5217. \end{gather*}
  5218. \fi}
  5219. Adapt the code from the \code{assign\_homes} pass
  5220. (section~\ref{sec:assign-Lvar}) to replace the variables with their
  5221. assigned location. Applying this assignment to our running
  5222. example shown next, on the left, yields the program on the right.
  5223. % why frame size of 32? -JGS
  5224. \begin{center}
  5225. {\if\edition\racketEd
  5226. \begin{minipage}{0.3\textwidth}
  5227. \begin{lstlisting}
  5228. movq $1, v
  5229. movq $42, w
  5230. movq v, x
  5231. addq $7, x
  5232. movq x, y
  5233. movq x, z
  5234. addq w, z
  5235. movq y, t
  5236. negq t
  5237. movq z, %rax
  5238. addq t, %rax
  5239. jmp conclusion
  5240. \end{lstlisting}
  5241. \end{minipage}
  5242. $\Rightarrow\qquad$
  5243. \begin{minipage}{0.45\textwidth}
  5244. \begin{lstlisting}
  5245. movq $1, -8(%rbp)
  5246. movq $42, %rcx
  5247. movq -8(%rbp), -8(%rbp)
  5248. addq $7, -8(%rbp)
  5249. movq -8(%rbp), -16(%rbp)
  5250. movq -8(%rbp), -8(%rbp)
  5251. addq %rcx, -8(%rbp)
  5252. movq -16(%rbp), %rcx
  5253. negq %rcx
  5254. movq -8(%rbp), %rax
  5255. addq %rcx, %rax
  5256. jmp conclusion
  5257. \end{lstlisting}
  5258. \end{minipage}
  5259. \fi}
  5260. {\if\edition\pythonEd
  5261. \begin{minipage}{0.3\textwidth}
  5262. \begin{lstlisting}
  5263. movq $1, v
  5264. movq $42, w
  5265. movq v, x
  5266. addq $7, x
  5267. movq x, y
  5268. movq x, z
  5269. addq w, z
  5270. movq y, tmp_0
  5271. negq tmp_0
  5272. movq z, tmp_1
  5273. addq tmp_0, tmp_1
  5274. movq tmp_1, %rdi
  5275. callq print_int
  5276. \end{lstlisting}
  5277. \end{minipage}
  5278. $\Rightarrow\qquad$
  5279. \begin{minipage}{0.45\textwidth}
  5280. \begin{lstlisting}
  5281. movq $1, -8(%rbp)
  5282. movq $42, %rcx
  5283. movq -8(%rbp), -8(%rbp)
  5284. addq $7, -8(%rbp)
  5285. movq -8(%rbp), -16(%rbp)
  5286. movq -8(%rbp), -8(%rbp)
  5287. addq %rcx, -8(%rbp)
  5288. movq -16(%rbp), %rcx
  5289. negq %rcx
  5290. movq -8(%rbp), -8(%rbp)
  5291. addq %rcx, -8(%rbp)
  5292. movq -8(%rbp), %rdi
  5293. callq print_int
  5294. \end{lstlisting}
  5295. \end{minipage}
  5296. \fi}
  5297. \end{center}
  5298. \begin{exercise}\normalfont\normalsize
  5299. Implement the \code{allocate\_registers} pass.
  5300. Create five programs that exercise all aspects of the register
  5301. allocation algorithm, including spilling variables to the stack.
  5302. %
  5303. {\if\edition\racketEd
  5304. Replace \code{assign\_homes} in the list of \code{passes} in the
  5305. \code{run-tests.rkt} script with the three new passes:
  5306. \code{uncover\_live}, \code{build\_interference}, and
  5307. \code{allocate\_registers}.
  5308. Temporarily remove the call to \code{compiler-tests}.
  5309. Run the script to test the register allocator.
  5310. \fi}
  5311. %
  5312. {\if\edition\pythonEd
  5313. Run the \code{run-tests.py} script to to check whether the
  5314. output programs produce the same result as the input programs.
  5315. \fi}
  5316. \end{exercise}
  5317. \section{Patch Instructions}
  5318. \label{sec:patch-instructions}
  5319. The remaining step in the compilation to x86 is to ensure that the
  5320. instructions have at most one argument that is a memory access.
  5321. %
  5322. In the running example, the instruction \code{movq -8(\%rbp),
  5323. -16(\%rbp)} is problematic. Recall from section~\ref{sec:patch-s0}
  5324. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  5325. then move \code{rax} into \code{-16(\%rbp)}.
  5326. %
  5327. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  5328. problematic, but they can simply be deleted. In general, we recommend
  5329. deleting all the trivial moves whose source and destination are the
  5330. same location.
  5331. %
  5332. The following is the output of \code{patch\_instructions} on the
  5333. running example.
  5334. \begin{center}
  5335. {\if\edition\racketEd
  5336. \begin{minipage}{0.4\textwidth}
  5337. \begin{lstlisting}
  5338. movq $1, -8(%rbp)
  5339. movq $42, %rcx
  5340. movq -8(%rbp), -8(%rbp)
  5341. addq $7, -8(%rbp)
  5342. movq -8(%rbp), -16(%rbp)
  5343. movq -8(%rbp), -8(%rbp)
  5344. addq %rcx, -8(%rbp)
  5345. movq -16(%rbp), %rcx
  5346. negq %rcx
  5347. movq -8(%rbp), %rax
  5348. addq %rcx, %rax
  5349. jmp conclusion
  5350. \end{lstlisting}
  5351. \end{minipage}
  5352. $\Rightarrow\qquad$
  5353. \begin{minipage}{0.45\textwidth}
  5354. \begin{lstlisting}
  5355. movq $1, -8(%rbp)
  5356. movq $42, %rcx
  5357. addq $7, -8(%rbp)
  5358. movq -8(%rbp), %rax
  5359. movq %rax, -16(%rbp)
  5360. addq %rcx, -8(%rbp)
  5361. movq -16(%rbp), %rcx
  5362. negq %rcx
  5363. movq -8(%rbp), %rax
  5364. addq %rcx, %rax
  5365. jmp conclusion
  5366. \end{lstlisting}
  5367. \end{minipage}
  5368. \fi}
  5369. {\if\edition\pythonEd
  5370. \begin{minipage}{0.4\textwidth}
  5371. \begin{lstlisting}
  5372. movq $1, -8(%rbp)
  5373. movq $42, %rcx
  5374. movq -8(%rbp), -8(%rbp)
  5375. addq $7, -8(%rbp)
  5376. movq -8(%rbp), -16(%rbp)
  5377. movq -8(%rbp), -8(%rbp)
  5378. addq %rcx, -8(%rbp)
  5379. movq -16(%rbp), %rcx
  5380. negq %rcx
  5381. movq -8(%rbp), -8(%rbp)
  5382. addq %rcx, -8(%rbp)
  5383. movq -8(%rbp), %rdi
  5384. callq print_int
  5385. \end{lstlisting}
  5386. \end{minipage}
  5387. $\Rightarrow\qquad$
  5388. \begin{minipage}{0.45\textwidth}
  5389. \begin{lstlisting}
  5390. movq $1, -8(%rbp)
  5391. movq $42, %rcx
  5392. addq $7, -8(%rbp)
  5393. movq -8(%rbp), %rax
  5394. movq %rax, -16(%rbp)
  5395. addq %rcx, -8(%rbp)
  5396. movq -16(%rbp), %rcx
  5397. negq %rcx
  5398. addq %rcx, -8(%rbp)
  5399. movq -8(%rbp), %rdi
  5400. callq print_int
  5401. \end{lstlisting}
  5402. \end{minipage}
  5403. \fi}
  5404. \end{center}
  5405. \begin{exercise}\normalfont\normalsize
  5406. %
  5407. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  5408. %
  5409. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  5410. %in the \code{run-tests.rkt} script.
  5411. %
  5412. Run the script to test the \code{patch\_instructions} pass.
  5413. \end{exercise}
  5414. \section{Prelude and Conclusion}
  5415. \label{sec:print-x86-reg-alloc}
  5416. \index{subject}{calling conventions}
  5417. \index{subject}{prelude}\index{subject}{conclusion}
  5418. Recall that this pass generates the prelude and conclusion
  5419. instructions to satisfy the x86 calling conventions
  5420. (section~\ref{sec:calling-conventions}). With the addition of the
  5421. register allocator, the callee-saved registers used by the register
  5422. allocator must be saved in the prelude and restored in the conclusion.
  5423. In the \code{allocate\_registers} pass,
  5424. %
  5425. \racket{add an entry to the \itm{info}
  5426. of \code{X86Program} named \code{used\_callee}}
  5427. %
  5428. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  5429. %
  5430. that stores the set of callee-saved registers that were assigned to
  5431. variables. The \code{prelude\_and\_conclusion} pass can then access
  5432. this information to decide which callee-saved registers need to be
  5433. saved and restored.
  5434. %
  5435. When calculating the amount to adjust the \code{rsp} in the prelude,
  5436. make sure to take into account the space used for saving the
  5437. callee-saved registers. Also, remember that the frame needs to be a
  5438. multiple of 16 bytes! We recommend using the following equation for
  5439. the amount $A$ to subtract from the \code{rsp}. Let $S$ be the number
  5440. of spilled variables and $C$ be the number of callee-saved registers
  5441. that were allocated to variables. The $\itm{align}$ function rounds a
  5442. number up to the nearest 16 bytes.
  5443. \[
  5444. \itm{A} = \itm{align}(8\itm{S} + 8\itm{C}) - 8\itm{C}
  5445. \]
  5446. The reason we subtract $8\itm{C}$ in this equation is that the
  5447. prelude uses \code{pushq} to save each of the callee-saved registers,
  5448. and \code{pushq} subtracts $8$ from the \code{rsp}.
  5449. \racket{An overview of all the passes involved in register
  5450. allocation is shown in figure~\ref{fig:reg-alloc-passes}.}
  5451. {\if\edition\racketEd
  5452. \begin{figure}[tbp]
  5453. \begin{tcolorbox}[colback=white]
  5454. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5455. \node (Lvar) at (0,2) {\large \LangVar{}};
  5456. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  5457. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  5458. \node (Cvar-1) at (0,0) {\large \LangCVar{}};
  5459. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  5460. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  5461. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  5462. \node (x86-5) at (7,-4) {\large \LangXInt{}};
  5463. \node (x86-2-1) at (0,-4) {\large \LangXVar{}};
  5464. \node (x86-2-2) at (3,-4) {\large \LangXVar{}};
  5465. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  5466. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  5467. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-1);
  5468. \path[->,bend right=15] (Cvar-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  5469. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  5470. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  5471. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  5472. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  5473. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  5474. \end{tikzpicture}
  5475. \end{tcolorbox}
  5476. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  5477. \label{fig:reg-alloc-passes}
  5478. \end{figure}
  5479. \fi}
  5480. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  5481. the running example (figure~\ref{fig:reg-eg}). To demonstrate both the
  5482. use of registers and the stack, we limit the register allocator for
  5483. this example to use just two registers: \code{rbx} and \code{rcx}. In
  5484. the prelude\index{subject}{prelude} of the \code{main} function, we
  5485. push \code{rbx} onto the stack because it is a callee-saved register
  5486. and it was assigned to a variable by the register allocator. We
  5487. subtract \code{8} from the \code{rsp} at the end of the prelude to
  5488. reserve space for the one spilled variable. After that subtraction,
  5489. the \code{rsp} is aligned to 16 bytes.
  5490. Moving on to the program proper, we see how the registers were
  5491. allocated.
  5492. %
  5493. \racket{Variables \code{v}, \code{x}, and \code{y} were assigned to
  5494. \code{rbx}, and variable \code{z} was assigned to \code{rcx}.}
  5495. %
  5496. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  5497. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  5498. were assigned to \code{rbx}.}
  5499. %
  5500. Variable \racket{\code{w}}\python{\code{z}} was spilled to the stack
  5501. location \code{-16(\%rbp)}. Recall that the prelude saved the
  5502. callee-save register \code{rbx} onto the stack. The spilled variables
  5503. must be placed lower on the stack than the saved callee-save
  5504. registers, so in this case \racket{\code{w}}\python{z} is placed at
  5505. \code{-16(\%rbp)}.
  5506. In the conclusion\index{subject}{conclusion}, we undo the work that was
  5507. done in the prelude. We move the stack pointer up by \code{8} bytes
  5508. (the room for spilled variables), then pop the old values of
  5509. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  5510. \code{retq} to return control to the operating system.
  5511. \begin{figure}[tbp]
  5512. \begin{minipage}{0.55\textwidth}
  5513. \begin{tcolorbox}[colback=white]
  5514. % var_test_28.rkt
  5515. % (use-minimal-set-of-registers! #t)
  5516. % and only rbx rcx
  5517. % tmp 0 rbx
  5518. % z 1 rcx
  5519. % y 0 rbx
  5520. % w 2 16(%rbp)
  5521. % v 0 rbx
  5522. % x 0 rbx
  5523. {\if\edition\racketEd
  5524. \begin{lstlisting}
  5525. start:
  5526. movq $1, %rbx
  5527. movq $42, -16(%rbp)
  5528. addq $7, %rbx
  5529. movq %rbx, %rcx
  5530. addq -16(%rbp), %rcx
  5531. negq %rbx
  5532. movq %rcx, %rax
  5533. addq %rbx, %rax
  5534. jmp conclusion
  5535. .globl main
  5536. main:
  5537. pushq %rbp
  5538. movq %rsp, %rbp
  5539. pushq %rbx
  5540. subq $8, %rsp
  5541. jmp start
  5542. conclusion:
  5543. addq $8, %rsp
  5544. popq %rbx
  5545. popq %rbp
  5546. retq
  5547. \end{lstlisting}
  5548. \fi}
  5549. {\if\edition\pythonEd
  5550. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  5551. \begin{lstlisting}
  5552. .globl main
  5553. main:
  5554. pushq %rbp
  5555. movq %rsp, %rbp
  5556. pushq %rbx
  5557. subq $8, %rsp
  5558. movq $1, %rcx
  5559. movq $42, %rbx
  5560. addq $7, %rcx
  5561. movq %rcx, -16(%rbp)
  5562. addq %rbx, -16(%rbp)
  5563. negq %rcx
  5564. movq -16(%rbp), %rbx
  5565. addq %rcx, %rbx
  5566. movq %rbx, %rdi
  5567. callq print_int
  5568. addq $8, %rsp
  5569. popq %rbx
  5570. popq %rbp
  5571. retq
  5572. \end{lstlisting}
  5573. \fi}
  5574. \end{tcolorbox}
  5575. \end{minipage}
  5576. \caption{The x86 output from the running example
  5577. (figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  5578. and \code{rcx}.}
  5579. \label{fig:running-example-x86}
  5580. \end{figure}
  5581. \begin{exercise}\normalfont\normalsize
  5582. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  5583. %
  5584. \racket{
  5585. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  5586. list of passes and the call to \code{compiler-tests}.}
  5587. %
  5588. Run the script to test the complete compiler for \LangVar{} that
  5589. performs register allocation.
  5590. \end{exercise}
  5591. \section{Challenge: Move Biasing}
  5592. \label{sec:move-biasing}
  5593. \index{subject}{move biasing}
  5594. This section describes an enhancement to the register allocator,
  5595. called move biasing, for students who are looking for an extra
  5596. challenge.
  5597. {\if\edition\racketEd
  5598. To motivate the need for move biasing we return to the running example,
  5599. but this time we use all the general purpose registers. So, we have
  5600. the following mapping of color numbers to registers.
  5601. \[
  5602. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi}, \ldots \}
  5603. \]
  5604. Using the same assignment of variables to color numbers that was
  5605. produced by the register allocator described in the last section, we
  5606. get the following program.
  5607. \begin{center}
  5608. \begin{minipage}{0.3\textwidth}
  5609. \begin{lstlisting}
  5610. movq $1, v
  5611. movq $42, w
  5612. movq v, x
  5613. addq $7, x
  5614. movq x, y
  5615. movq x, z
  5616. addq w, z
  5617. movq y, t
  5618. negq t
  5619. movq z, %rax
  5620. addq t, %rax
  5621. jmp conclusion
  5622. \end{lstlisting}
  5623. \end{minipage}
  5624. $\Rightarrow\qquad$
  5625. \begin{minipage}{0.45\textwidth}
  5626. \begin{lstlisting}
  5627. movq $1, %rdx
  5628. movq $42, %rcx
  5629. movq %rdx, %rdx
  5630. addq $7, %rdx
  5631. movq %rdx, %rsi
  5632. movq %rdx, %rdx
  5633. addq %rcx, %rdx
  5634. movq %rsi, %rcx
  5635. negq %rcx
  5636. movq %rdx, %rax
  5637. addq %rcx, %rax
  5638. jmp conclusion
  5639. \end{lstlisting}
  5640. \end{minipage}
  5641. \end{center}
  5642. In this output code there are two \key{movq} instructions that
  5643. can be removed because their source and target are the same. However,
  5644. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  5645. register, we could instead remove three \key{movq} instructions. We
  5646. can accomplish this by taking into account which variables appear in
  5647. \key{movq} instructions with which other variables.
  5648. \fi}
  5649. {\if\edition\pythonEd
  5650. %
  5651. To motivate the need for move biasing we return to the running example
  5652. and recall that in section~\ref{sec:patch-instructions} we were able to
  5653. remove three trivial move instructions from the running
  5654. example. However, we could remove another trivial move if we were able
  5655. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  5656. We say that two variables $p$ and $q$ are \emph{move
  5657. related}\index{subject}{move related} if they participate together in
  5658. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  5659. \key{movq} $q$\key{,} $p$. In deciding which variable to color next,
  5660. if there are multiple variables with the same saturation, prefer
  5661. variables that can be assigned to a color that is the same as the
  5662. color of a move-related variable. Furthermore, when the register
  5663. allocator chooses a color for a variable, it should prefer a color
  5664. that has already been used for a move-related variable (assuming that
  5665. they do not interfere). Of course, this preference should not override
  5666. the preference for registers over stack locations. So, this preference
  5667. should be used as a tie breaker in choosing between registers and
  5668. in choosing between stack locations.
  5669. We recommend representing the move relationships in a graph, similarly
  5670. to how we represented interference. The following is the \emph{move
  5671. graph} for our running example.
  5672. {\if\edition\racketEd
  5673. \[
  5674. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5675. \node (rax) at (0,0) {$\ttm{rax}$};
  5676. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5677. \node (t) at (0,2) {$\ttm{t}$};
  5678. \node (z) at (3,2) {$\ttm{z}$};
  5679. \node (x) at (6,2) {$\ttm{x}$};
  5680. \node (y) at (3,0) {$\ttm{y}$};
  5681. \node (w) at (6,0) {$\ttm{w}$};
  5682. \node (v) at (9,0) {$\ttm{v}$};
  5683. \draw (v) to (x);
  5684. \draw (x) to (y);
  5685. \draw (x) to (z);
  5686. \draw (y) to (t);
  5687. \end{tikzpicture}
  5688. \]
  5689. \fi}
  5690. %
  5691. {\if\edition\pythonEd
  5692. \[
  5693. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5694. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5695. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5696. \node (z) at (3,2) {$\ttm{z}$};
  5697. \node (x) at (6,2) {$\ttm{x}$};
  5698. \node (y) at (3,0) {$\ttm{y}$};
  5699. \node (w) at (6,0) {$\ttm{w}$};
  5700. \node (v) at (9,0) {$\ttm{v}$};
  5701. \draw (y) to (t0);
  5702. \draw (z) to (x);
  5703. \draw (z) to (t1);
  5704. \draw (x) to (y);
  5705. \draw (x) to (v);
  5706. \end{tikzpicture}
  5707. \]
  5708. \fi}
  5709. {\if\edition\racketEd
  5710. Now we replay the graph coloring, pausing to see the coloring of
  5711. \code{y}. Recall the following configuration. The most saturated vertices
  5712. were \code{w} and \code{y}.
  5713. \[
  5714. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5715. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5716. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5717. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5718. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5719. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5720. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5721. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5722. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5723. \draw (t1) to (rax);
  5724. \draw (t1) to (z);
  5725. \draw (z) to (y);
  5726. \draw (z) to (w);
  5727. \draw (x) to (w);
  5728. \draw (y) to (w);
  5729. \draw (v) to (w);
  5730. \draw (v) to (rsp);
  5731. \draw (w) to (rsp);
  5732. \draw (x) to (rsp);
  5733. \draw (y) to (rsp);
  5734. \path[-.,bend left=15] (z) edge node {} (rsp);
  5735. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5736. \draw (rax) to (rsp);
  5737. \end{tikzpicture}
  5738. \]
  5739. %
  5740. The last time, we chose to color \code{w} with $0$. This time, we see
  5741. that \code{w} is not move-related to any vertex, but \code{y} is
  5742. move-related to \code{t}. So we choose to color \code{y} with $0$,
  5743. the same color as \code{t}.
  5744. \[
  5745. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5746. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5747. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5748. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5749. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5750. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5751. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  5752. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  5753. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5754. \draw (t1) to (rax);
  5755. \draw (t1) to (z);
  5756. \draw (z) to (y);
  5757. \draw (z) to (w);
  5758. \draw (x) to (w);
  5759. \draw (y) to (w);
  5760. \draw (v) to (w);
  5761. \draw (v) to (rsp);
  5762. \draw (w) to (rsp);
  5763. \draw (x) to (rsp);
  5764. \draw (y) to (rsp);
  5765. \path[-.,bend left=15] (z) edge node {} (rsp);
  5766. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5767. \draw (rax) to (rsp);
  5768. \end{tikzpicture}
  5769. \]
  5770. Now \code{w} is the most saturated, so we color it $2$.
  5771. \[
  5772. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5773. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5774. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5775. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5776. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5777. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  5778. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5779. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5780. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  5781. \draw (t1) to (rax);
  5782. \draw (t1) to (z);
  5783. \draw (z) to (y);
  5784. \draw (z) to (w);
  5785. \draw (x) to (w);
  5786. \draw (y) to (w);
  5787. \draw (v) to (w);
  5788. \draw (v) to (rsp);
  5789. \draw (w) to (rsp);
  5790. \draw (x) to (rsp);
  5791. \draw (y) to (rsp);
  5792. \path[-.,bend left=15] (z) edge node {} (rsp);
  5793. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5794. \draw (rax) to (rsp);
  5795. \end{tikzpicture}
  5796. \]
  5797. At this point, vertices \code{x} and \code{v} are most saturated, but
  5798. \code{x} is move related to \code{y} and \code{z}, so we color
  5799. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  5800. \[
  5801. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5802. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5803. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5804. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5805. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5806. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  5807. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5808. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5809. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  5810. \draw (t1) to (rax);
  5811. \draw (t) to (z);
  5812. \draw (z) to (y);
  5813. \draw (z) to (w);
  5814. \draw (x) to (w);
  5815. \draw (y) to (w);
  5816. \draw (v) to (w);
  5817. \draw (v) to (rsp);
  5818. \draw (w) to (rsp);
  5819. \draw (x) to (rsp);
  5820. \draw (y) to (rsp);
  5821. \path[-.,bend left=15] (z) edge node {} (rsp);
  5822. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5823. \draw (rax) to (rsp);
  5824. \end{tikzpicture}
  5825. \]
  5826. \fi}
  5827. %
  5828. {\if\edition\pythonEd
  5829. Now we replay the graph coloring, pausing before the coloring of
  5830. \code{w}. Recall the following configuration. The most saturated vertices
  5831. were \code{tmp\_1}, \code{w}, and \code{y}.
  5832. \[
  5833. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5834. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5835. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5836. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5837. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5838. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5839. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5840. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5841. \draw (t0) to (t1);
  5842. \draw (t0) to (z);
  5843. \draw (z) to (y);
  5844. \draw (z) to (w);
  5845. \draw (x) to (w);
  5846. \draw (y) to (w);
  5847. \draw (v) to (w);
  5848. \end{tikzpicture}
  5849. \]
  5850. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  5851. or \code{y}, but note that \code{w} is not move related to any
  5852. variables, whereas \code{y} and \code{tmp\_1} are move related to
  5853. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  5854. \code{y} and color it $0$, we can delete another move instruction.
  5855. \[
  5856. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5857. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5858. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5859. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5860. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5861. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  5862. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  5863. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5864. \draw (t0) to (t1);
  5865. \draw (t0) to (z);
  5866. \draw (z) to (y);
  5867. \draw (z) to (w);
  5868. \draw (x) to (w);
  5869. \draw (y) to (w);
  5870. \draw (v) to (w);
  5871. \end{tikzpicture}
  5872. \]
  5873. Now \code{w} is the most saturated, so we color it $2$.
  5874. \[
  5875. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5876. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5877. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5878. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5879. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  5880. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5881. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5882. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  5883. \draw (t0) to (t1);
  5884. \draw (t0) to (z);
  5885. \draw (z) to (y);
  5886. \draw (z) to (w);
  5887. \draw (x) to (w);
  5888. \draw (y) to (w);
  5889. \draw (v) to (w);
  5890. \end{tikzpicture}
  5891. \]
  5892. To finish the coloring, \code{x} and \code{v} get $0$ and
  5893. \code{tmp\_1} gets $1$.
  5894. \[
  5895. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5896. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5897. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5898. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5899. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  5900. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5901. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5902. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  5903. \draw (t0) to (t1);
  5904. \draw (t0) to (z);
  5905. \draw (z) to (y);
  5906. \draw (z) to (w);
  5907. \draw (x) to (w);
  5908. \draw (y) to (w);
  5909. \draw (v) to (w);
  5910. \end{tikzpicture}
  5911. \]
  5912. \fi}
  5913. So, we have the following assignment of variables to registers.
  5914. {\if\edition\racketEd
  5915. \begin{gather*}
  5916. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5917. \ttm{w} \mapsto \key{\%rsi}, \,
  5918. \ttm{x} \mapsto \key{\%rcx}, \,
  5919. \ttm{y} \mapsto \key{\%rcx}, \,
  5920. \ttm{z} \mapsto \key{\%rdx}, \,
  5921. \ttm{t} \mapsto \key{\%rcx} \}
  5922. \end{gather*}
  5923. \fi}
  5924. {\if\edition\pythonEd
  5925. \begin{gather*}
  5926. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5927. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  5928. \ttm{x} \mapsto \key{\%rcx}, \,
  5929. \ttm{y} \mapsto \key{\%rcx}, \\
  5930. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5931. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5932. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5933. \end{gather*}
  5934. \fi}
  5935. %
  5936. We apply this register assignment to the running example shown next,
  5937. on the left, to obtain the code in the middle. The
  5938. \code{patch\_instructions} then deletes the trivial moves to obtain
  5939. the code on the right.
  5940. {\if\edition\racketEd
  5941. \begin{minipage}{0.25\textwidth}
  5942. \begin{lstlisting}
  5943. movq $1, v
  5944. movq $42, w
  5945. movq v, x
  5946. addq $7, x
  5947. movq x, y
  5948. movq x, z
  5949. addq w, z
  5950. movq y, t
  5951. negq t
  5952. movq z, %rax
  5953. addq t, %rax
  5954. jmp conclusion
  5955. \end{lstlisting}
  5956. \end{minipage}
  5957. $\Rightarrow\qquad$
  5958. \begin{minipage}{0.25\textwidth}
  5959. \begin{lstlisting}
  5960. movq $1, %rcx
  5961. movq $42, %rsi
  5962. movq %rcx, %rcx
  5963. addq $7, %rcx
  5964. movq %rcx, %rcx
  5965. movq %rcx, %rdx
  5966. addq %rsi, %rdx
  5967. movq %rcx, %rcx
  5968. negq %rcx
  5969. movq %rdx, %rax
  5970. addq %rcx, %rax
  5971. jmp conclusion
  5972. \end{lstlisting}
  5973. \end{minipage}
  5974. $\Rightarrow\qquad$
  5975. \begin{minipage}{0.25\textwidth}
  5976. \begin{lstlisting}
  5977. movq $1, %rcx
  5978. movq $42, %rsi
  5979. addq $7, %rcx
  5980. movq %rcx, %rdx
  5981. addq %rsi, %rdx
  5982. negq %rcx
  5983. movq %rdx, %rax
  5984. addq %rcx, %rax
  5985. jmp conclusion
  5986. \end{lstlisting}
  5987. \end{minipage}
  5988. \fi}
  5989. {\if\edition\pythonEd
  5990. \begin{minipage}{0.20\textwidth}
  5991. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5992. movq $1, v
  5993. movq $42, w
  5994. movq v, x
  5995. addq $7, x
  5996. movq x, y
  5997. movq x, z
  5998. addq w, z
  5999. movq y, tmp_0
  6000. negq tmp_0
  6001. movq z, tmp_1
  6002. addq tmp_0, tmp_1
  6003. movq tmp_1, %rdi
  6004. callq _print_int
  6005. \end{lstlisting}
  6006. \end{minipage}
  6007. ${\Rightarrow\qquad}$
  6008. \begin{minipage}{0.30\textwidth}
  6009. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6010. movq $1, %rcx
  6011. movq $42, -16(%rbp)
  6012. movq %rcx, %rcx
  6013. addq $7, %rcx
  6014. movq %rcx, %rcx
  6015. movq %rcx, -8(%rbp)
  6016. addq -16(%rbp), -8(%rbp)
  6017. movq %rcx, %rcx
  6018. negq %rcx
  6019. movq -8(%rbp), -8(%rbp)
  6020. addq %rcx, -8(%rbp)
  6021. movq -8(%rbp), %rdi
  6022. callq _print_int
  6023. \end{lstlisting}
  6024. \end{minipage}
  6025. ${\Rightarrow\qquad}$
  6026. \begin{minipage}{0.20\textwidth}
  6027. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6028. movq $1, %rcx
  6029. movq $42, -16(%rbp)
  6030. addq $7, %rcx
  6031. movq %rcx, -8(%rbp)
  6032. movq -16(%rbp), %rax
  6033. addq %rax, -8(%rbp)
  6034. negq %rcx
  6035. addq %rcx, -8(%rbp)
  6036. movq -8(%rbp), %rdi
  6037. callq print_int
  6038. \end{lstlisting}
  6039. \end{minipage}
  6040. \fi}
  6041. \begin{exercise}\normalfont\normalsize
  6042. Change your implementation of \code{allocate\_registers} to take move
  6043. biasing into account. Create two new tests that include at least one
  6044. opportunity for move biasing, and visually inspect the output x86
  6045. programs to make sure that your move biasing is working properly. Make
  6046. sure that your compiler still passes all the tests.
  6047. \end{exercise}
  6048. %To do: another neat challenge would be to do
  6049. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  6050. %% \subsection{Output of the Running Example}
  6051. %% \label{sec:reg-alloc-output}
  6052. % challenge: prioritize variables based on execution frequencies
  6053. % and the number of uses of a variable
  6054. % challenge: enhance the coloring algorithm using Chaitin's
  6055. % approach of prioritizing high-degree variables
  6056. % by removing low-degree variables (coloring them later)
  6057. % from the interference graph
  6058. \section{Further Reading}
  6059. \label{sec:register-allocation-further-reading}
  6060. Early register allocation algorithms were developed for Fortran
  6061. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  6062. of graph coloring began in the late 1970s and early 1980s with the
  6063. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  6064. algorithm is based on the following observation of
  6065. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  6066. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  6067. $v$ removed is also $k$ colorable. To see why, suppose that the
  6068. subgraph is $k$ colorable. At worst, the neighbors of $v$ are assigned
  6069. different colors, but because there are fewer than $k$ neighbors, there
  6070. will be one or more colors left over to use for coloring $v$ in $G$.
  6071. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  6072. less than $k$ from the graph and recursively colors the rest of the
  6073. graph. Upon returning from the recursion, it colors $v$ with one of
  6074. the available colors and returns. \citet{Chaitin:1982vn} augments
  6075. this algorithm to handle spilling as follows. If there are no vertices
  6076. of degree lower than $k$ then pick a vertex at random, spill it,
  6077. remove it from the graph, and proceed recursively to color the rest of
  6078. the graph.
  6079. Prior to coloring, \citet{Chaitin:1981vl} merged variables that are
  6080. move-related and that don't interfere with each other, in a process
  6081. called \emph{coalescing}. Although coalescing decreases the number of
  6082. moves, it can make the graph more difficult to
  6083. color. \citet{Briggs:1994kx} proposed \emph{conservative coalescing} in
  6084. which two variables are merged only if they have fewer than $k$
  6085. neighbors of high degree. \citet{George:1996aa} observed that
  6086. conservative coalescing is sometimes too conservative and made it more
  6087. aggressive by iterating the coalescing with the removal of low-degree
  6088. vertices.
  6089. %
  6090. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  6091. also proposed \emph{biased coloring}, in which a variable is assigned to
  6092. the same color as another move-related variable if possible, as
  6093. discussed in section~\ref{sec:move-biasing}.
  6094. %
  6095. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  6096. performs coalescing, graph coloring, and spill code insertion until
  6097. all variables have been assigned a location.
  6098. \citet{Briggs:1994kx} observed that \citet{Chaitin:1982vn} sometimes
  6099. spilled variables that don't have to be: a high-degree variable can be
  6100. colorable if many of its neighbors are assigned the same color.
  6101. \citet{Briggs:1994kx} proposed \emph{optimistic coloring}, in which a
  6102. high-degree vertex is not immediately spilled. Instead the decision is
  6103. deferred until after the recursive call, at which point it is apparent
  6104. whether there is actually an available color or not. We observe that
  6105. this algorithm is equivalent to the smallest-last ordering
  6106. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  6107. be registers and the rest to be stack locations.
  6108. %% biased coloring
  6109. Earlier editions of the compiler course at Indiana University
  6110. \citep{Dybvig:2010aa} were based on the algorithm of
  6111. \citet{Briggs:1994kx}.
  6112. The smallest-last ordering algorithm is one of many \emph{greedy}
  6113. coloring algorithms. A greedy coloring algorithm visits all the
  6114. vertices in a particular order and assigns each one the first
  6115. available color. An \emph{offline} greedy algorithm chooses the
  6116. ordering up front, prior to assigning colors. The algorithm of
  6117. \citet{Chaitin:1981vl} should be considered offline because the vertex
  6118. ordering does not depend on the colors assigned. Other orderings are
  6119. possible. For example, \citet{Chow:1984ys} ordered variables according
  6120. to an estimate of runtime cost.
  6121. An \emph{online} greedy coloring algorithm uses information about the
  6122. current assignment of colors to influence the order in which the
  6123. remaining vertices are colored. The saturation-based algorithm
  6124. described in this chapter is one such algorithm. We choose to use
  6125. saturation-based coloring because it is fun to introduce graph
  6126. coloring via sudoku!
  6127. A register allocator may choose to map each variable to just one
  6128. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  6129. variable to one or more locations. The latter can be achieved by
  6130. \emph{live range splitting}, where a variable is replaced by several
  6131. variables that each handle part of its live
  6132. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  6133. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  6134. %% replacement algorithm, bottom-up local
  6135. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  6136. %% Cooper: top-down (priority bassed), bottom-up
  6137. %% top-down
  6138. %% order variables by priority (estimated cost)
  6139. %% caveat: split variables into two groups:
  6140. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  6141. %% color the constrained ones first
  6142. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  6143. %% cite J. Cocke for an algorithm that colors variables
  6144. %% in a high-degree first ordering
  6145. %Register Allocation via Usage Counts, Freiburghouse CACM
  6146. \citet{Palsberg:2007si} observed that many of the interference graphs
  6147. that arise from Java programs in the JoeQ compiler are \emph{chordal};
  6148. that is, every cycle with four or more edges has an edge that is not
  6149. part of the cycle but that connects two vertices on the cycle. Such
  6150. graphs can be optimally colored by the greedy algorithm with a vertex
  6151. ordering determined by maximum cardinality search.
  6152. In situations in which compile time is of utmost importance, such as
  6153. in just-in-time compilers, graph coloring algorithms can be too
  6154. expensive, and the linear scan algorithm of \citet{Poletto:1999uq} may
  6155. be more appropriate.
  6156. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6157. \chapter{Booleans and Conditionals}
  6158. \label{ch:Lif}
  6159. \index{subject}{Boolean}
  6160. \index{subject}{control flow}
  6161. \index{subject}{conditional expression}
  6162. \setcounter{footnote}{0}
  6163. The \LangVar{} language has only a single kind of value, the
  6164. integers. In this chapter we add a second kind of value, the Booleans,
  6165. to create the \LangIf{} language. In \racket{Racket}\python{Python},
  6166. the Boolean values \emph{true} and \emph{false} are written \TRUE{}
  6167. and \FALSE{}, respectively. The \LangIf{} language includes several
  6168. operations that involve Booleans (\key{and}, \key{not},
  6169. \racket{\key{eq?}}\python{==}, \key{<}, etc.) and the \key{if}
  6170. expression \python{and statement}. With the addition of \key{if},
  6171. programs can have nontrivial control flow which
  6172. %
  6173. \racket{impacts \code{explicate\_control} and liveness analysis}
  6174. %
  6175. \python{impacts liveness analysis and motivates a new pass named
  6176. \code{explicate\_control}}.
  6177. %
  6178. Also, because we now have two kinds of values, we need to handle
  6179. programs that apply an operation to the wrong kind of value, such as
  6180. \racket{\code{(not 1)}}\python{\code{not 1}}.
  6181. There are two language design options for such situations. One option
  6182. is to signal an error and the other is to provide a wider
  6183. interpretation of the operation. \racket{The Racket
  6184. language}\python{Python} uses a mixture of these two options,
  6185. depending on the operation and the kind of value. For example, the
  6186. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  6187. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  6188. treats nonzero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  6189. %
  6190. \racket{On the other hand, \code{(car 1)} results in a runtime error
  6191. in Racket because \code{car} expects a pair.}
  6192. %
  6193. \python{On the other hand, \code{1[0]} results in a runtime error
  6194. in Python because an ``\code{int} object is not subscriptable''.}
  6195. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  6196. design choices as \racket{Racket}\python{Python}, except that much of the
  6197. error detection happens at compile time instead of runtime\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  6198. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  6199. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed Racket}
  6200. \python{MyPy} reports a compile-time error
  6201. %
  6202. \racket{because Racket expects the type of the argument to be of the form
  6203. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  6204. %
  6205. \python{stating that a ``value of type \code{int} is not indexable''.}
  6206. The \LangIf{} language performs type checking during compilation just as
  6207. \racket{Typed Racket}\python{MyPy}. In chapter~\ref{ch:Ldyn} we study
  6208. the alternative choice, that is, a dynamically typed language like
  6209. \racket{Racket}\python{Python}. The \LangIf{} language is a subset of
  6210. \racket{Typed Racket}\python{MyPy}; for some operations we are more
  6211. restrictive, for example, rejecting \racket{\code{(not
  6212. 1)}}\python{\code{not 1}}. We keep the type checker for \LangIf{}
  6213. fairly simple because the focus of this book is on compilation and not
  6214. type systems, about which there are already several excellent
  6215. books~\citep{Pierce:2002hj,Pierce:2004fk,Harper2016,Pierce:SF2}.
  6216. This chapter is organized as follows. We begin by defining the syntax
  6217. and interpreter for the \LangIf{} language
  6218. (section~\ref{sec:lang-if}). We then introduce the idea of type
  6219. checking and define a type checker for \LangIf{}
  6220. (section~\ref{sec:type-check-Lif}).
  6221. %
  6222. \racket{To compile \LangIf{} we need to enlarge the intermediate
  6223. language \LangCVar{} into \LangCIf{} (section~\ref{sec:Cif}) and
  6224. \LangXInt{} into \LangXIf{} (section~\ref{sec:x86-if}).}
  6225. %
  6226. The remaining sections of this chapter discuss how Booleans and
  6227. conditional control flow require changes to the existing compiler
  6228. passes and the addition of new ones. We introduce the \code{shrink}
  6229. pass to translate some operators into others, thereby reducing the
  6230. number of operators that need to be handled in later passes.
  6231. %
  6232. The main event of this chapter is the \code{explicate\_control} pass
  6233. that is responsible for translating \code{if}s into conditional
  6234. \code{goto}s (section~\ref{sec:explicate-control-Lif}).
  6235. %
  6236. Regarding register allocation, there is the interesting question of
  6237. how to handle conditional \code{goto}s during liveness analysis.
  6238. \section{The \LangIf{} Language}
  6239. \label{sec:lang-if}
  6240. Definitions of the concrete syntax and abstract syntax of the
  6241. \LangIf{} language are shown in figures~\ref{fig:Lif-concrete-syntax}
  6242. and~\ref{fig:Lif-syntax}, respectively. The \LangIf{} language
  6243. includes all of \LangVar{} {(shown in gray)}, the Boolean literals
  6244. \TRUE{} and \FALSE{}, \racket{and} the \code{if} expression
  6245. %
  6246. \python{, and the \code{if} statement}. We expand the set of
  6247. operators to include
  6248. \begin{enumerate}
  6249. \item the logical operators \key{and}, \key{or}, and \key{not},
  6250. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  6251. for comparing integers or Booleans for equality, and
  6252. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  6253. comparing integers.
  6254. \end{enumerate}
  6255. \racket{We reorganize the abstract syntax for the primitive
  6256. operations given in figure~\ref{fig:Lif-syntax}, using only one grammar
  6257. rule for all of them. This means that the grammar no longer checks
  6258. whether the arity of an operators matches the number of
  6259. arguments. That responsibility is moved to the type checker for
  6260. \LangIf{} (section~\ref{sec:type-check-Lif}).}
  6261. \newcommand{\LifGrammarRacket}{
  6262. \begin{array}{lcl}
  6263. \Type &::=& \key{Boolean} \\
  6264. \itm{bool} &::=& \TRUE \MID \FALSE \\
  6265. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  6266. \Exp &::=& \itm{bool}
  6267. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  6268. \MID (\key{not}\;\Exp) \\
  6269. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  6270. \end{array}
  6271. }
  6272. \newcommand{\LifASTRacket}{
  6273. \begin{array}{lcl}
  6274. \Type &::=& \key{Boolean} \\
  6275. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  6276. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6277. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  6278. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  6279. \end{array}
  6280. }
  6281. \newcommand{\LintOpAST}{
  6282. \begin{array}{rcl}
  6283. \Type &::=& \key{Integer} \\
  6284. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  6285. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  6286. \end{array}
  6287. }
  6288. \newcommand{\LifGrammarPython}{
  6289. \begin{array}{rcl}
  6290. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  6291. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  6292. \MID \key{not}~\Exp \\
  6293. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  6294. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  6295. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  6296. \end{array}
  6297. }
  6298. \newcommand{\LifASTPython}{
  6299. \begin{array}{lcl}
  6300. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  6301. \itm{unaryop} &::=& \code{Not()} \\
  6302. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  6303. \itm{bool} &::=& \code{True} \MID \code{False} \\
  6304. \Exp &::=& \BOOL{\itm{bool}}
  6305. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  6306. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6307. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  6308. \end{array}
  6309. }
  6310. \begin{figure}[tp]
  6311. \centering
  6312. \begin{tcolorbox}[colback=white]
  6313. {\if\edition\racketEd
  6314. \[
  6315. \begin{array}{l}
  6316. \gray{\LintGrammarRacket{}} \\ \hline
  6317. \gray{\LvarGrammarRacket{}} \\ \hline
  6318. \LifGrammarRacket{} \\
  6319. \begin{array}{lcl}
  6320. \LangIfM{} &::=& \Exp
  6321. \end{array}
  6322. \end{array}
  6323. \]
  6324. \fi}
  6325. {\if\edition\pythonEd
  6326. \[
  6327. \begin{array}{l}
  6328. \gray{\LintGrammarPython} \\ \hline
  6329. \gray{\LvarGrammarPython} \\ \hline
  6330. \LifGrammarPython \\
  6331. \begin{array}{rcl}
  6332. \LangIfM{} &::=& \Stmt^{*}
  6333. \end{array}
  6334. \end{array}
  6335. \]
  6336. \fi}
  6337. \end{tcolorbox}
  6338. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  6339. (figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  6340. \label{fig:Lif-concrete-syntax}
  6341. \end{figure}
  6342. \begin{figure}[tp]
  6343. %\begin{minipage}{0.66\textwidth}
  6344. \begin{tcolorbox}[colback=white]
  6345. \centering
  6346. {\if\edition\racketEd
  6347. \[
  6348. \begin{array}{l}
  6349. \gray{\LintOpAST} \\ \hline
  6350. \gray{\LvarASTRacket{}} \\ \hline
  6351. \LifASTRacket{} \\
  6352. \begin{array}{lcl}
  6353. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  6354. \end{array}
  6355. \end{array}
  6356. \]
  6357. \fi}
  6358. {\if\edition\pythonEd
  6359. \[
  6360. \begin{array}{l}
  6361. \gray{\LintASTPython} \\ \hline
  6362. \gray{\LvarASTPython} \\ \hline
  6363. \LifASTPython \\
  6364. \begin{array}{lcl}
  6365. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  6366. \end{array}
  6367. \end{array}
  6368. \]
  6369. \fi}
  6370. \end{tcolorbox}
  6371. %\end{minipage}
  6372. \index{subject}{True@\TRUE{}}\index{subject}{False@\FALSE{}}
  6373. \index{subject}{IfExp@\IFNAME{}}
  6374. \python{\index{subject}{IfStmt@\IFSTMTNAME{}}}
  6375. \index{subject}{and@\ANDNAME{}}
  6376. \index{subject}{or@\ORNAME{}}
  6377. \index{subject}{not@\NOTNAME{}}
  6378. \index{subject}{equal@\EQNAME{}}
  6379. \python{\index{subject}{not equal@\NOTEQNAME{}}}
  6380. \racket{
  6381. \index{subject}{lessthan@\texttt{<}}
  6382. \index{subject}{lessthaneq@\texttt{<=}}
  6383. \index{subject}{greaterthan@\texttt{>}}
  6384. \index{subject}{greaterthaneq@\texttt{>=}}
  6385. }
  6386. \python{
  6387. \index{subject}{BoolOp@\texttt{BoolOp}}
  6388. \index{subject}{Compare@\texttt{Compare}}
  6389. \index{subject}{Lt@\texttt{Lt}}
  6390. \index{subject}{LtE@\texttt{LtE}}
  6391. \index{subject}{Gt@\texttt{Gt}}
  6392. \index{subject}{GtE@\texttt{GtE}}
  6393. }
  6394. \caption{The abstract syntax of \LangIf{}.}
  6395. \label{fig:Lif-syntax}
  6396. \end{figure}
  6397. Figure~\ref{fig:interp-Lif} shows the definition of the interpreter
  6398. for \LangIf{}, which inherits from the interpreter for \LangVar{}
  6399. (figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  6400. evaluate to the corresponding Boolean values. The conditional
  6401. expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates expression $e_1$ and
  6402. then either evaluates $e_2$ or $e_3$, depending on whether $e_1$
  6403. produced \TRUE{} or \FALSE{}. The logical operations \code{and},
  6404. \code{or}, and \code{not} behave according to propositional logic. In
  6405. addition, the \code{and} and \code{or} operations perform
  6406. \emph{short-circuit evaluation}.
  6407. %
  6408. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  6409. is not evaluated if $e_1$ evaluates to \FALSE{}.
  6410. %
  6411. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  6412. evaluated if $e_1$ evaluates to \TRUE{}.
  6413. \racket{With the increase in the number of primitive operations, the
  6414. interpreter would become repetitive without some care. We refactor
  6415. the case for \code{Prim}, moving the code that differs with each
  6416. operation into the \code{interp\_op} method shown in
  6417. figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  6418. \code{or} operations separately because of their short-circuiting
  6419. behavior.}
  6420. \begin{figure}[tbp]
  6421. \begin{tcolorbox}[colback=white]
  6422. {\if\edition\racketEd
  6423. \begin{lstlisting}
  6424. (define interp-Lif-class
  6425. (class interp-Lvar-class
  6426. (super-new)
  6427. (define/public (interp_op op) ...)
  6428. (define/override ((interp_exp env) e)
  6429. (define recur (interp_exp env))
  6430. (match e
  6431. [(Bool b) b]
  6432. [(If cnd thn els)
  6433. (match (recur cnd)
  6434. [#t (recur thn)]
  6435. [#f (recur els)])]
  6436. [(Prim 'and (list e1 e2))
  6437. (match (recur e1)
  6438. [#t (match (recur e2) [#t #t] [#f #f])]
  6439. [#f #f])]
  6440. [(Prim 'or (list e1 e2))
  6441. (define v1 (recur e1))
  6442. (match v1
  6443. [#t #t]
  6444. [#f (match (recur e2) [#t #t] [#f #f])])]
  6445. [(Prim op args)
  6446. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  6447. [else ((super interp_exp env) e)]))
  6448. ))
  6449. (define (interp_Lif p)
  6450. (send (new interp-Lif-class) interp_program p))
  6451. \end{lstlisting}
  6452. \fi}
  6453. {\if\edition\pythonEd
  6454. \begin{lstlisting}
  6455. class InterpLif(InterpLvar):
  6456. def interp_exp(self, e, env):
  6457. match e:
  6458. case IfExp(test, body, orelse):
  6459. if self.interp_exp(test, env):
  6460. return self.interp_exp(body, env)
  6461. else:
  6462. return self.interp_exp(orelse, env)
  6463. case UnaryOp(Not(), v):
  6464. return not self.interp_exp(v, env)
  6465. case BoolOp(And(), values):
  6466. if self.interp_exp(values[0], env):
  6467. return self.interp_exp(values[1], env)
  6468. else:
  6469. return False
  6470. case BoolOp(Or(), values):
  6471. if self.interp_exp(values[0], env):
  6472. return True
  6473. else:
  6474. return self.interp_exp(values[1], env)
  6475. case Compare(left, [cmp], [right]):
  6476. l = self.interp_exp(left, env)
  6477. r = self.interp_exp(right, env)
  6478. return self.interp_cmp(cmp)(l, r)
  6479. case _:
  6480. return super().interp_exp(e, env)
  6481. def interp_stmts(self, ss, env):
  6482. if len(ss) == 0:
  6483. return
  6484. match ss[0]:
  6485. case If(test, body, orelse):
  6486. if self.interp_exp(test, env):
  6487. return self.interp_stmts(body + ss[1:], env)
  6488. else:
  6489. return self.interp_stmts(orelse + ss[1:], env)
  6490. case _:
  6491. return super().interp_stmts(ss, env)
  6492. ...
  6493. \end{lstlisting}
  6494. \fi}
  6495. \end{tcolorbox}
  6496. \caption{Interpreter for the \LangIf{} language. \racket{(See
  6497. figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  6498. \python{(See figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  6499. \label{fig:interp-Lif}
  6500. \end{figure}
  6501. {\if\edition\racketEd
  6502. \begin{figure}[tbp]
  6503. \begin{tcolorbox}[colback=white]
  6504. \begin{lstlisting}
  6505. (define/public (interp_op op)
  6506. (match op
  6507. ['+ fx+]
  6508. ['- fx-]
  6509. ['read read-fixnum]
  6510. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  6511. ['eq? (lambda (v1 v2)
  6512. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6513. (and (boolean? v1) (boolean? v2))
  6514. (and (vector? v1) (vector? v2)))
  6515. (eq? v1 v2)]))]
  6516. ['< (lambda (v1 v2)
  6517. (cond [(and (fixnum? v1) (fixnum? v2))
  6518. (< v1 v2)]))]
  6519. ['<= (lambda (v1 v2)
  6520. (cond [(and (fixnum? v1) (fixnum? v2))
  6521. (<= v1 v2)]))]
  6522. ['> (lambda (v1 v2)
  6523. (cond [(and (fixnum? v1) (fixnum? v2))
  6524. (> v1 v2)]))]
  6525. ['>= (lambda (v1 v2)
  6526. (cond [(and (fixnum? v1) (fixnum? v2))
  6527. (>= v1 v2)]))]
  6528. [else (error 'interp_op "unknown operator")]))
  6529. \end{lstlisting}
  6530. \end{tcolorbox}
  6531. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  6532. \label{fig:interp-op-Lif}
  6533. \end{figure}
  6534. \fi}
  6535. {\if\edition\pythonEd
  6536. \begin{figure}
  6537. \begin{tcolorbox}[colback=white]
  6538. \begin{lstlisting}
  6539. class InterpLif(InterpLvar):
  6540. ...
  6541. def interp_cmp(self, cmp):
  6542. match cmp:
  6543. case Lt():
  6544. return lambda x, y: x < y
  6545. case LtE():
  6546. return lambda x, y: x <= y
  6547. case Gt():
  6548. return lambda x, y: x > y
  6549. case GtE():
  6550. return lambda x, y: x >= y
  6551. case Eq():
  6552. return lambda x, y: x == y
  6553. case NotEq():
  6554. return lambda x, y: x != y
  6555. \end{lstlisting}
  6556. \end{tcolorbox}
  6557. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  6558. \label{fig:interp-cmp-Lif}
  6559. \end{figure}
  6560. \fi}
  6561. \section{Type Checking \LangIf{} Programs}
  6562. \label{sec:type-check-Lif}
  6563. \index{subject}{type checking}
  6564. \index{subject}{semantic analysis}
  6565. It is helpful to think about type checking in two complementary
  6566. ways. A type checker predicts the type of value that will be produced
  6567. by each expression in the program. For \LangIf{}, we have just two types,
  6568. \INTTY{} and \BOOLTY{}. So, a type checker should predict that
  6569. {\if\edition\racketEd
  6570. \begin{lstlisting}
  6571. (+ 10 (- (+ 12 20)))
  6572. \end{lstlisting}
  6573. \fi}
  6574. {\if\edition\pythonEd
  6575. \begin{lstlisting}
  6576. 10 + -(12 + 20)
  6577. \end{lstlisting}
  6578. \fi}
  6579. \noindent produces a value of type \INTTY{}, whereas
  6580. {\if\edition\racketEd
  6581. \begin{lstlisting}
  6582. (and (not #f) #t)
  6583. \end{lstlisting}
  6584. \fi}
  6585. {\if\edition\pythonEd
  6586. \begin{lstlisting}
  6587. (not False) and True
  6588. \end{lstlisting}
  6589. \fi}
  6590. \noindent produces a value of type \BOOLTY{}.
  6591. A second way to think about type checking is that it enforces a set of
  6592. rules about which operators can be applied to which kinds of
  6593. values. For example, our type checker for \LangIf{} signals an error
  6594. for the following expression:
  6595. %
  6596. {\if\edition\racketEd
  6597. \begin{lstlisting}
  6598. (not (+ 10 (- (+ 12 20))))
  6599. \end{lstlisting}
  6600. \fi}
  6601. {\if\edition\pythonEd
  6602. \begin{lstlisting}
  6603. not (10 + -(12 + 20))
  6604. \end{lstlisting}
  6605. \fi}
  6606. \noindent The subexpression
  6607. \racket{\code{(+ 10 (- (+ 12 20)))}}
  6608. \python{\code{(10 + -(12 + 20))}}
  6609. has type \INTTY{}, but the type checker enforces the rule that the
  6610. argument of \code{not} must be an expression of type \BOOLTY{}.
  6611. We implement type checking using classes and methods because they
  6612. provide the open recursion needed to reuse code as we extend the type
  6613. checker in subsequent chapters, analogous to the use of classes and methods
  6614. for the interpreters (section~\ref{sec:extensible-interp}).
  6615. We separate the type checker for the \LangVar{} subset into its own
  6616. class, shown in figure~\ref{fig:type-check-Lvar}. The type checker for
  6617. \LangIf{} is shown in figure~\ref{fig:type-check-Lif}, and it inherits
  6618. from the type checker for \LangVar{}. These type checkers are in the
  6619. files
  6620. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  6621. and
  6622. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  6623. of the support code.
  6624. %
  6625. Each type checker is a structurally recursive function over the AST.
  6626. Given an input expression \code{e}, the type checker either signals an
  6627. error or returns \racket{an expression and} its type.
  6628. %
  6629. \racket{It returns an expression because there are situations in which
  6630. we want to change or update the expression.}
  6631. Next we discuss the \code{type\_check\_exp} function of \LangVar{}
  6632. shown in figure~\ref{fig:type-check-Lvar}. The type of an integer
  6633. constant is \INTTY{}. To handle variables, the type checker uses the
  6634. environment \code{env} to map variables to types.
  6635. %
  6636. \racket{Consider the case for \key{let}. We type check the
  6637. initializing expression to obtain its type \key{T} and then
  6638. associate type \code{T} with the variable \code{x} in the
  6639. environment used to type check the body of the \key{let}. Thus,
  6640. when the type checker encounters a use of variable \code{x}, it can
  6641. find its type in the environment.}
  6642. %
  6643. \python{Consider the case for assignment. We type check the
  6644. initializing expression to obtain its type \key{t}. If the variable
  6645. \code{lhs.id} is already in the environment because there was a
  6646. prior assignment, we check that this initializer has the same type
  6647. as the prior one. If this is the first assignment to the variable,
  6648. we associate type \code{t} with the variable \code{lhs.id} in the
  6649. environment. Thus, when the type checker encounters a use of
  6650. variable \code{x}, it can find its type in the environment.}
  6651. %
  6652. \racket{Regarding primitive operators, we recursively analyze the
  6653. arguments and then invoke \code{type\_check\_op} to check whether
  6654. the argument types are allowed.}
  6655. %
  6656. \python{Regarding addition, subtraction, and negation, we recursively analyze the
  6657. arguments, check that they have type \INTTY{}, and return \INTTY{}.}
  6658. \racket{Several auxiliary methods are used in the type checker. The
  6659. method \code{operator-types} defines a dictionary that maps the
  6660. operator names to their parameter and return types. The
  6661. \code{type-equal?} method determines whether two types are equal,
  6662. which for now simply dispatches to \code{equal?} (deep
  6663. equality). The \code{check-type-equal?} method triggers an error if
  6664. the two types are not equal. The \code{type-check-op} method looks
  6665. up the operator in the \code{operator-types} dictionary and then
  6666. checks whether the argument types are equal to the parameter types.
  6667. The result is the return type of the operator.}
  6668. %
  6669. \python{The auxiliary method \code{check\_type\_equal} triggers
  6670. an error if the two types are not equal.}
  6671. \begin{figure}[tbp]
  6672. \begin{tcolorbox}[colback=white]
  6673. {\if\edition\racketEd
  6674. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6675. (define type-check-Lvar-class
  6676. (class object%
  6677. (super-new)
  6678. (define/public (operator-types)
  6679. '((+ . ((Integer Integer) . Integer))
  6680. (- . ((Integer Integer) . Integer))
  6681. (read . (() . Integer))))
  6682. (define/public (type-equal? t1 t2) (equal? t1 t2))
  6683. (define/public (check-type-equal? t1 t2 e)
  6684. (unless (type-equal? t1 t2)
  6685. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  6686. (define/public (type-check-op op arg-types e)
  6687. (match (dict-ref (operator-types) op)
  6688. [`(,param-types . ,return-type)
  6689. (for ([at arg-types] [pt param-types])
  6690. (check-type-equal? at pt e))
  6691. return-type]
  6692. [else (error 'type-check-op "unrecognized ~a" op)]))
  6693. (define/public (type-check-exp env)
  6694. (lambda (e)
  6695. (match e
  6696. [(Int n) (values (Int n) 'Integer)]
  6697. [(Var x) (values (Var x) (dict-ref env x))]
  6698. [(Let x e body)
  6699. (define-values (e^ Te) ((type-check-exp env) e))
  6700. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  6701. (values (Let x e^ b) Tb)]
  6702. [(Prim op es)
  6703. (define-values (new-es ts)
  6704. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  6705. (values (Prim op new-es) (type-check-op op ts e))]
  6706. [else (error 'type-check-exp "couldn't match" e)])))
  6707. (define/public (type-check-program e)
  6708. (match e
  6709. [(Program info body)
  6710. (define-values (body^ Tb) ((type-check-exp '()) body))
  6711. (check-type-equal? Tb 'Integer body)
  6712. (Program info body^)]
  6713. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  6714. ))
  6715. (define (type-check-Lvar p)
  6716. (send (new type-check-Lvar-class) type-check-program p))
  6717. \end{lstlisting}
  6718. \fi}
  6719. {\if\edition\pythonEd
  6720. \begin{lstlisting}[escapechar=`]
  6721. class TypeCheckLvar:
  6722. def check_type_equal(self, t1, t2, e):
  6723. if t1 != t2:
  6724. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  6725. raise Exception(msg)
  6726. def type_check_exp(self, e, env):
  6727. match e:
  6728. case BinOp(left, (Add() | Sub()), right):
  6729. l = self.type_check_exp(left, env)
  6730. check_type_equal(l, int, left)
  6731. r = self.type_check_exp(right, env)
  6732. check_type_equal(r, int, right)
  6733. return int
  6734. case UnaryOp(USub(), v):
  6735. t = self.type_check_exp(v, env)
  6736. check_type_equal(t, int, v)
  6737. return int
  6738. case Name(id):
  6739. return env[id]
  6740. case Constant(value) if isinstance(value, int):
  6741. return int
  6742. case Call(Name('input_int'), []):
  6743. return int
  6744. def type_check_stmts(self, ss, env):
  6745. if len(ss) == 0:
  6746. return
  6747. match ss[0]:
  6748. case Assign([lhs], value):
  6749. t = self.type_check_exp(value, env)
  6750. if lhs.id in env:
  6751. check_type_equal(env[lhs.id], t, value)
  6752. else:
  6753. env[lhs.id] = t
  6754. return self.type_check_stmts(ss[1:], env)
  6755. case Expr(Call(Name('print'), [arg])):
  6756. t = self.type_check_exp(arg, env)
  6757. check_type_equal(t, int, arg)
  6758. return self.type_check_stmts(ss[1:], env)
  6759. case Expr(value):
  6760. self.type_check_exp(value, env)
  6761. return self.type_check_stmts(ss[1:], env)
  6762. def type_check_P(self, p):
  6763. match p:
  6764. case Module(body):
  6765. self.type_check_stmts(body, {})
  6766. \end{lstlisting}
  6767. \fi}
  6768. \end{tcolorbox}
  6769. \caption{Type checker for the \LangVar{} language.}
  6770. \label{fig:type-check-Lvar}
  6771. \end{figure}
  6772. \begin{figure}[tbp]
  6773. \begin{tcolorbox}[colback=white]
  6774. {\if\edition\racketEd
  6775. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6776. (define type-check-Lif-class
  6777. (class type-check-Lvar-class
  6778. (super-new)
  6779. (inherit check-type-equal?)
  6780. (define/override (operator-types)
  6781. (append '((and . ((Boolean Boolean) . Boolean))
  6782. (or . ((Boolean Boolean) . Boolean))
  6783. (< . ((Integer Integer) . Boolean))
  6784. (<= . ((Integer Integer) . Boolean))
  6785. (> . ((Integer Integer) . Boolean))
  6786. (>= . ((Integer Integer) . Boolean))
  6787. (not . ((Boolean) . Boolean)))
  6788. (super operator-types)))
  6789. (define/override (type-check-exp env)
  6790. (lambda (e)
  6791. (match e
  6792. [(Bool b) (values (Bool b) 'Boolean)]
  6793. [(Prim 'eq? (list e1 e2))
  6794. (define-values (e1^ T1) ((type-check-exp env) e1))
  6795. (define-values (e2^ T2) ((type-check-exp env) e2))
  6796. (check-type-equal? T1 T2 e)
  6797. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  6798. [(If cnd thn els)
  6799. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  6800. (define-values (thn^ Tt) ((type-check-exp env) thn))
  6801. (define-values (els^ Te) ((type-check-exp env) els))
  6802. (check-type-equal? Tc 'Boolean e)
  6803. (check-type-equal? Tt Te e)
  6804. (values (If cnd^ thn^ els^) Te)]
  6805. [else ((super type-check-exp env) e)])))
  6806. ))
  6807. (define (type-check-Lif p)
  6808. (send (new type-check-Lif-class) type-check-program p))
  6809. \end{lstlisting}
  6810. \fi}
  6811. {\if\edition\pythonEd
  6812. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6813. class TypeCheckLif(TypeCheckLvar):
  6814. def type_check_exp(self, e, env):
  6815. match e:
  6816. case Constant(value) if isinstance(value, bool):
  6817. return bool
  6818. case BinOp(left, Sub(), right):
  6819. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6820. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6821. return int
  6822. case UnaryOp(Not(), v):
  6823. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  6824. return bool
  6825. case BoolOp(op, values):
  6826. left = values[0] ; right = values[1]
  6827. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  6828. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  6829. return bool
  6830. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  6831. or isinstance(cmp, NotEq):
  6832. l = self.type_check_exp(left, env)
  6833. r = self.type_check_exp(right, env)
  6834. check_type_equal(l, r, e)
  6835. return bool
  6836. case Compare(left, [cmp], [right]):
  6837. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6838. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6839. return bool
  6840. case IfExp(test, body, orelse):
  6841. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6842. b = self.type_check_exp(body, env)
  6843. o = self.type_check_exp(orelse, env)
  6844. check_type_equal(b, o, e)
  6845. return b
  6846. case _:
  6847. return super().type_check_exp(e, env)
  6848. def type_check_stmts(self, ss, env):
  6849. if len(ss) == 0:
  6850. return
  6851. match ss[0]:
  6852. case If(test, body, orelse):
  6853. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6854. b = self.type_check_stmts(body, env)
  6855. o = self.type_check_stmts(orelse, env)
  6856. check_type_equal(b, o, ss[0])
  6857. return self.type_check_stmts(ss[1:], env)
  6858. case _:
  6859. return super().type_check_stmts(ss, env)
  6860. \end{lstlisting}
  6861. \fi}
  6862. \end{tcolorbox}
  6863. \caption{Type checker for the \LangIf{} language.}
  6864. \label{fig:type-check-Lif}
  6865. \end{figure}
  6866. The definition of the type checker for \LangIf{} is shown in
  6867. figure~\ref{fig:type-check-Lif}.
  6868. %
  6869. The type of a Boolean constant is \BOOLTY{}.
  6870. %
  6871. \racket{The \code{operator-types} function adds dictionary entries for
  6872. the new operators.}
  6873. %
  6874. \python{Logical not requires its argument to be a \BOOLTY{} and
  6875. produces a \BOOLTY{}. Similarly for logical and and logical or. }
  6876. %
  6877. The equality operator requires the two arguments to have the same type,
  6878. and therefore we handle it separately from the other operators.
  6879. %
  6880. \python{The other comparisons (less-than, etc.) require their
  6881. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  6882. %
  6883. The condition of an \code{if} must
  6884. be of \BOOLTY{} type, and the two branches must have the same type.
  6885. \begin{exercise}\normalfont\normalsize
  6886. Create ten new test programs in \LangIf{}. Half the programs should
  6887. have a type error. For those programs, create an empty file with the
  6888. same base name and with file extension \code{.tyerr}. For example, if
  6889. the test
  6890. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  6891. is expected to error, then create
  6892. an empty file named \code{cond\_test\_14.tyerr}.
  6893. %
  6894. \racket{This indicates to \code{interp-tests} and
  6895. \code{compiler-tests} that a type error is expected. }
  6896. %
  6897. The other half of the test programs should not have type errors.
  6898. %
  6899. \racket{In the \code{run-tests.rkt} script, change the second argument
  6900. of \code{interp-tests} and \code{compiler-tests} to
  6901. \code{type-check-Lif}, which causes the type checker to run prior to
  6902. the compiler passes. Temporarily change the \code{passes} to an
  6903. empty list and run the script, thereby checking that the new test
  6904. programs either type check or do not, as intended.}
  6905. %
  6906. Run the test script to check that these test programs type check as
  6907. expected.
  6908. \end{exercise}
  6909. \clearpage
  6910. \section{The \LangCIf{} Intermediate Language}
  6911. \label{sec:Cif}
  6912. {\if\edition\racketEd
  6913. %
  6914. The \LangCIf{} language builds on \LangCVar{} by adding logical and
  6915. comparison operators to the \Exp{} nonterminal and the literals
  6916. \TRUE{} and \FALSE{} to the \Arg{} nonterminal. Regarding control
  6917. flow, \LangCIf{} adds \key{goto} and \code{if} statements to the
  6918. \Tail{} nonterminal. The condition of an \code{if} statement is a
  6919. comparison operation and the branches are \code{goto} statements,
  6920. making it straightforward to compile \code{if} statements to x86. The
  6921. \key{CProgram} construct contains an alist mapping labels to $\Tail$
  6922. expressions. A \code{goto} statement transfers control to the $\Tail$
  6923. expression corresponding to its label.
  6924. %
  6925. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  6926. \LangCIf{} intermediate language, and figure~\ref{fig:c1-syntax}
  6927. defines its abstract syntax.
  6928. %
  6929. \fi}
  6930. %
  6931. {\if\edition\pythonEd
  6932. %
  6933. The output of \key{explicate\_control} is a language similar to the
  6934. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  6935. \code{goto} statements, so we name it \LangCIf{}.
  6936. %
  6937. The \LangCIf{} language supports the same operators as \LangIf{} but
  6938. the arguments of operators are restricted to atomic expressions. The
  6939. \LangCIf{} language does not include \code{if} expressions but it does
  6940. include a restricted form of \code{if} statement. The condition must be
  6941. a comparison and the two branches may only contain \code{goto}
  6942. statements. These restrictions make it easier to translate \code{if}
  6943. statements to x86. The \LangCIf{} language also adds a \code{return}
  6944. statement to finish the program with a specified value.
  6945. %
  6946. The \key{CProgram} construct contains a dictionary mapping labels to
  6947. lists of statements that end with a \code{return} statement, a
  6948. \code{goto}, or a conditional \code{goto}.
  6949. %% Statement lists of this
  6950. %% form are called \emph{basic blocks}\index{subject}{basic block}: there
  6951. %% is a control transfer at the end and control only enters at the
  6952. %% beginning of the list, which is marked by the label.
  6953. %
  6954. A \code{goto} statement transfers control to the sequence of statements
  6955. associated with its label.
  6956. %
  6957. The concrete syntax for \LangCIf{} is defined in
  6958. figure~\ref{fig:c1-concrete-syntax} and the abstract syntax is defined
  6959. in figure~\ref{fig:c1-syntax}.
  6960. %
  6961. \fi}
  6962. %
  6963. \newcommand{\CifGrammarRacket}{
  6964. \begin{array}{lcl}
  6965. \Atm &::=& \itm{bool} \\
  6966. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6967. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  6968. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  6969. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  6970. \end{array}
  6971. }
  6972. \newcommand{\CifASTRacket}{
  6973. \begin{array}{lcl}
  6974. \Atm &::=& \BOOL{\itm{bool}} \\
  6975. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6976. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  6977. \Tail &::= & \GOTO{\itm{label}} \\
  6978. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  6979. \end{array}
  6980. }
  6981. \newcommand{\CifGrammarPython}{
  6982. \begin{array}{lcl}
  6983. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  6984. \Exp &::= & \Atm \MID \CREAD{}
  6985. \MID \CBINOP{\itm{binaryop}}{\Atm}{\Atm}
  6986. \MID \CUNIOP{\itm{unaryop}}{\Atm} \\
  6987. &\MID& \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  6988. \Stmt &::=& \CPRINT{\Atm} \MID \Exp \\
  6989. &\MID& \CASSIGN{\Var}{\Exp}
  6990. \MID \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  6991. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  6992. \end{array}
  6993. }
  6994. \newcommand{\CifASTPython}{
  6995. \begin{array}{lcl}
  6996. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  6997. \Exp &::= & \Atm \MID \READ{} \\
  6998. &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  6999. \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  7000. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  7001. \Stmt &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  7002. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  7003. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  7004. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  7005. \end{array}
  7006. }
  7007. \begin{figure}[tbp]
  7008. \begin{tcolorbox}[colback=white]
  7009. \small
  7010. {\if\edition\racketEd
  7011. \[
  7012. \begin{array}{l}
  7013. \gray{\CvarGrammarRacket} \\ \hline
  7014. \CifGrammarRacket \\
  7015. \begin{array}{lcl}
  7016. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  7017. \end{array}
  7018. \end{array}
  7019. \]
  7020. \fi}
  7021. {\if\edition\pythonEd
  7022. \[
  7023. \begin{array}{l}
  7024. \CifGrammarPython \\
  7025. \begin{array}{lcl}
  7026. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}) \ldots
  7027. \end{array}
  7028. \end{array}
  7029. \]
  7030. \fi}
  7031. \end{tcolorbox}
  7032. \caption{The concrete syntax of the \LangCIf{} intermediate language%
  7033. \racket{, an extension of \LangCVar{} (figure~\ref{fig:c0-concrete-syntax})}.}
  7034. \label{fig:c1-concrete-syntax}
  7035. \end{figure}
  7036. \begin{figure}[tp]
  7037. \begin{tcolorbox}[colback=white]
  7038. \small
  7039. {\if\edition\racketEd
  7040. \[
  7041. \begin{array}{l}
  7042. \gray{\CvarASTRacket} \\ \hline
  7043. \CifASTRacket \\
  7044. \begin{array}{lcl}
  7045. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  7046. \end{array}
  7047. \end{array}
  7048. \]
  7049. \fi}
  7050. {\if\edition\pythonEd
  7051. \[
  7052. \begin{array}{l}
  7053. \CifASTPython \\
  7054. \begin{array}{lcl}
  7055. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  7056. \end{array}
  7057. \end{array}
  7058. \]
  7059. \fi}
  7060. \end{tcolorbox}
  7061. \racket{
  7062. \index{subject}{IfStmt@\IFSTMTNAME{}}
  7063. }
  7064. \index{subject}{Goto@\texttt{Goto}}
  7065. \index{subject}{Return@\texttt{Return}}
  7066. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  7067. (figure~\ref{fig:c0-syntax})}.}
  7068. \label{fig:c1-syntax}
  7069. \end{figure}
  7070. \section{The \LangXIf{} Language}
  7071. \label{sec:x86-if}
  7072. \index{subject}{x86} To implement the new logical operations, the
  7073. comparison operations, and the \key{if} expression\python{ and
  7074. statement}, we delve further into the x86
  7075. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} present
  7076. the definitions of the concrete and abstract syntax for the \LangXIf{}
  7077. subset of x86, which includes instructions for logical operations,
  7078. comparisons, and \racket{conditional} jumps.
  7079. %
  7080. \python{The abstract syntax for an \LangXIf{} program contains a
  7081. dictionary mapping labels to sequences of instructions, each of
  7082. which we refer to as a \emph{basic block}\index{subject}{basic
  7083. block}.}
  7084. One challenge is that x86 does not provide an instruction that
  7085. directly implements logical negation (\code{not} in \LangIf{} and
  7086. \LangCIf{}). However, the \code{xorq} instruction can be used to
  7087. encode \code{not}. The \key{xorq} instruction takes two arguments,
  7088. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  7089. bit of its arguments, and writes the results into its second argument.
  7090. Recall the following truth table for exclusive-or:
  7091. \begin{center}
  7092. \begin{tabular}{l|cc}
  7093. & 0 & 1 \\ \hline
  7094. 0 & 0 & 1 \\
  7095. 1 & 1 & 0
  7096. \end{tabular}
  7097. \end{center}
  7098. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  7099. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  7100. for the bit $1$, the result is the opposite of the second bit. Thus,
  7101. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  7102. the first argument, as follows, where $\Arg$ is the translation of
  7103. $\Atm$ to x86:
  7104. \[
  7105. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  7106. \qquad\Rightarrow\qquad
  7107. \begin{array}{l}
  7108. \key{movq}~ \Arg\key{,} \Var\\
  7109. \key{xorq}~ \key{\$1,} \Var
  7110. \end{array}
  7111. \]
  7112. \newcommand{\GrammarXIf}{
  7113. \begin{array}{lcl}
  7114. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7115. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7116. \Arg &::=& \key{\%}\itm{bytereg}\\
  7117. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7118. \Instr &::=& \key{xorq}~\Arg\key{,}~\Arg
  7119. \MID \key{cmpq}~\Arg\key{,}~\Arg
  7120. \MID \key{set}cc~\Arg
  7121. \MID \key{movzbq}~\Arg\key{,}~\Arg \\
  7122. &\MID& \key{j}cc~\itm{label} \\
  7123. \end{array}
  7124. }
  7125. \begin{figure}[tp]
  7126. \begin{tcolorbox}[colback=white]
  7127. \[
  7128. \begin{array}{l}
  7129. \gray{\GrammarXInt} \\ \hline
  7130. \GrammarXIf \\
  7131. \begin{array}{lcl}
  7132. \LangXIfM{} &::= & \key{.globl main} \\
  7133. & & \key{main:} \; \Instr\ldots
  7134. \end{array}
  7135. \end{array}
  7136. \]
  7137. \end{tcolorbox}
  7138. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of figure~\ref{fig:x86-int-concrete}).}
  7139. \label{fig:x86-1-concrete}
  7140. \end{figure}
  7141. \newcommand{\ASTXIfRacket}{
  7142. \begin{array}{lcl}
  7143. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7144. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7145. \Arg &::=& \BYTEREG{\itm{bytereg}} \\
  7146. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7147. \Instr &::=& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  7148. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  7149. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  7150. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  7151. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}}
  7152. \end{array}
  7153. }
  7154. \begin{figure}[tp]
  7155. \begin{tcolorbox}[colback=white]
  7156. \small
  7157. {\if\edition\racketEd
  7158. \[\arraycolsep=3pt
  7159. \begin{array}{l}
  7160. \gray{\ASTXIntRacket} \\ \hline
  7161. \ASTXIfRacket \\
  7162. \begin{array}{lcl}
  7163. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  7164. \end{array}
  7165. \end{array}
  7166. \]
  7167. \fi}
  7168. %
  7169. {\if\edition\pythonEd
  7170. \[
  7171. \begin{array}{lcl}
  7172. \itm{bytereg} &::=& \skey{ah} \MID \skey{al} \MID \skey{bh} \MID \skey{bl}
  7173. \MID \skey{ch} \MID \skey{cl} \MID \skey{dh} \MID \skey{dl} \\
  7174. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  7175. \MID \BYTEREG{\itm{bytereg}} \\
  7176. \itm{cc} & ::= & \skey{e} \MID \skey{ne} \MID \skey{l} \MID \skey{le} \MID \skey{g} \MID \skey{ge} \\
  7177. \Instr &::=& \gray{ \BININSTR{\scode{addq}}{\Arg}{\Arg}
  7178. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} } \\
  7179. &\MID& \gray{ \BININSTR{\scode{movq}}{\Arg}{\Arg}
  7180. \MID \UNIINSTR{\scode{negq}}{\Arg} } \\
  7181. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  7182. \MID \PUSHQ{\Arg}} \\
  7183. &\MID& \gray{ \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  7184. &\MID& \BININSTR{\scode{xorq}}{\Arg}{\Arg}
  7185. \MID \BININSTR{\scode{cmpq}}{\Arg}{\Arg}\\
  7186. &\MID& \BININSTR{\scode{set}}{\itm{cc}}{\Arg}
  7187. \MID \BININSTR{\scode{movzbq}}{\Arg}{\Arg}\\
  7188. &\MID& \JMPIF{\itm{cc}}{\itm{label}} \\
  7189. \Block &::= & \Instr^{+} \\
  7190. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  7191. \end{array}
  7192. \]
  7193. \fi}
  7194. \end{tcolorbox}
  7195. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} shown in figure~\ref{fig:x86-int-ast}).}
  7196. \label{fig:x86-1}
  7197. \end{figure}
  7198. Next we consider the x86 instructions that are relevant for compiling
  7199. the comparison operations. The \key{cmpq} instruction compares its two
  7200. arguments to determine whether one argument is less than, equal to, or
  7201. greater than the other argument. The \key{cmpq} instruction is unusual
  7202. regarding the order of its arguments and where the result is
  7203. placed. The argument order is backward: if you want to test whether
  7204. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  7205. \key{cmpq} is placed in the special EFLAGS register. This register
  7206. cannot be accessed directly, but it can be queried by a number of
  7207. instructions, including the \key{set} instruction. The instruction
  7208. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$,
  7209. depending on whether the contents of the EFLAGS register matches the
  7210. condition code \itm{cc}: \key{e} for equal, \key{l} for less, \key{le}
  7211. for less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal.
  7212. The \key{set} instruction has a quirk in that its destination argument
  7213. must be single-byte register, such as \code{al} (\code{l} for lower bits) or
  7214. \code{ah} (\code{h} for higher bits), which are part of the \code{rax}
  7215. register. Thankfully, the \key{movzbq} instruction can be used to
  7216. move from a single-byte register to a normal 64-bit register. The
  7217. abstract syntax for the \code{set} instruction differs from the
  7218. concrete syntax in that it separates the instruction name from the
  7219. condition code.
  7220. \python{The x86 instructions for jumping are relevant to the
  7221. compilation of \key{if} expressions.}
  7222. %
  7223. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  7224. counter to the address of the instruction after the specified
  7225. label.}
  7226. %
  7227. \racket{The x86 instruction for conditional jump is relevant to the
  7228. compilation of \key{if} expressions.}
  7229. %
  7230. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  7231. counter to point to the instruction after \itm{label}, depending on
  7232. whether the result in the EFLAGS register matches the condition code
  7233. \itm{cc}; otherwise, the jump instruction falls through to the next
  7234. instruction. Like the abstract syntax for \code{set}, the abstract
  7235. syntax for conditional jump separates the instruction name from the
  7236. condition code. For example, \JMPIF{\QUOTE{\code{le}}}{\QUOTE{\code{foo}}}
  7237. corresponds to \code{jle foo}. Because the conditional jump instruction
  7238. relies on the EFLAGS register, it is common for it to be immediately preceded by
  7239. a \key{cmpq} instruction to set the EFLAGS register.
  7240. \section{Shrink the \LangIf{} Language}
  7241. \label{sec:shrink-Lif}
  7242. The \LangIf{} language includes several features that are easily
  7243. expressible with other features. For example, \code{and} and \code{or}
  7244. are expressible using \code{if} as follows.
  7245. \begin{align*}
  7246. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  7247. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  7248. \end{align*}
  7249. By performing these translations in the front end of the compiler,
  7250. subsequent passes of the compiler do not need to deal with these features,
  7251. thus making the passes shorter.
  7252. On the other hand, translations sometimes reduce the efficiency of the
  7253. generated code by increasing the number of instructions. For example,
  7254. expressing subtraction in terms of negation
  7255. \[
  7256. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  7257. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  7258. \]
  7259. produces code with two x86 instructions (\code{negq} and \code{addq})
  7260. instead of just one (\code{subq}).
  7261. \begin{exercise}\normalfont\normalsize
  7262. %
  7263. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  7264. the language by translating them to \code{if} expressions in \LangIf{}.
  7265. %
  7266. Create four test programs that involve these operators.
  7267. %
  7268. {\if\edition\racketEd
  7269. In the \code{run-tests.rkt} script, add the following entry for
  7270. \code{shrink} to the list of passes (it should be the only pass at
  7271. this point).
  7272. \begin{lstlisting}
  7273. (list "shrink" shrink interp_Lif type-check-Lif)
  7274. \end{lstlisting}
  7275. This instructs \code{interp-tests} to run the interpreter
  7276. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  7277. output of \code{shrink}.
  7278. \fi}
  7279. %
  7280. Run the script to test your compiler on all the test programs.
  7281. \end{exercise}
  7282. {\if\edition\racketEd
  7283. \section{Uniquify Variables}
  7284. \label{sec:uniquify-Lif}
  7285. Add cases to \code{uniquify\_exp} to handle Boolean constants and
  7286. \code{if} expressions.
  7287. \begin{exercise}\normalfont\normalsize
  7288. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  7289. entry to the list of \code{passes} in the \code{run-tests.rkt} script:
  7290. \begin{lstlisting}
  7291. (list "uniquify" uniquify interp_Lif type_check_Lif)
  7292. \end{lstlisting}
  7293. Run the script to test your compiler.
  7294. \end{exercise}
  7295. \fi}
  7296. \section{Remove Complex Operands}
  7297. \label{sec:remove-complex-opera-Lif}
  7298. The output language of \code{remove\_complex\_operands} is
  7299. \LangIfANF{} (figure~\ref{fig:Lif-anf-syntax}), the monadic
  7300. normal form of \LangIf{}. A Boolean constant is an atomic expression,
  7301. but the \code{if} expression is not. All three subexpressions of an
  7302. \code{if} are allowed to be complex expressions, but the operands of
  7303. the \code{not} operator and comparison operators must be atomic.
  7304. %
  7305. \python{We add a new language form, the \code{Begin} expression, to aid
  7306. in the translation of \code{if} expressions. When we recursively
  7307. process the two branches of the \code{if}, we generate temporary
  7308. variables and their initializing expressions. However, these
  7309. expressions may contain side effects and should only be executed
  7310. when the condition of the \code{if} is true (for the ``then''
  7311. branch) or false (for the ``else'' branch). The \code{Begin} provides
  7312. a way to initialize the temporary variables within the two branches
  7313. of the \code{if} expression. In general, the $\BEGIN{ss}{e}$
  7314. form execute the statements $ss$ and then returns the result of
  7315. expression $e$.}
  7316. Add cases to the \code{rco\_exp} and \code{rco\_atom} functions for
  7317. the new features in \LangIf{}. In recursively processing
  7318. subexpressions, recall that you should invoke \code{rco\_atom} when
  7319. the output needs to be an \Atm{} (as specified in the grammar for
  7320. \LangIfANF{}) and invoke \code{rco\_exp} when the output should be
  7321. \Exp{}. Regarding \code{if}, it is particularly important
  7322. \textbf{not} to replace its condition with a temporary variable, because
  7323. that would interfere with the generation of high-quality output in the
  7324. upcoming \code{explicate\_control} pass.
  7325. \newcommand{\LifMonadASTRacket}{
  7326. \begin{array}{rcl}
  7327. \Atm &::=& \BOOL{\itm{bool}}\\
  7328. \Exp &::=& \UNIOP{\key{not}}{\Atm}
  7329. \MID \BINOP{\itm{cmp}}{\Atm}{\Atm}
  7330. \MID \IF{\Exp}{\Exp}{\Exp}
  7331. \end{array}
  7332. }
  7333. \newcommand{\LifMonadASTPython}{
  7334. \begin{array}{rcl}
  7335. %% \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  7336. %% \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7337. %% \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  7338. %% \itm{bool} &::=& \code{True} \MID \code{False} \\
  7339. \Atm &::=& \BOOL{\itm{bool}}\\
  7340. \Exp &::=& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  7341. &\MID& \BEGIN{\Stmt^{*}}{\Exp}\\
  7342. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}
  7343. \end{array}
  7344. }
  7345. \begin{figure}[tp]
  7346. \centering
  7347. \begin{tcolorbox}[colback=white]
  7348. {\if\edition\racketEd
  7349. \[
  7350. \begin{array}{l}
  7351. \gray{\LvarMonadASTRacket} \\ \hline
  7352. \LifMonadASTRacket \\
  7353. \begin{array}{rcl}
  7354. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  7355. \end{array}
  7356. \end{array}
  7357. \]
  7358. \fi}
  7359. {\if\edition\pythonEd
  7360. \[
  7361. \begin{array}{l}
  7362. \gray{\LvarMonadASTPython} \\ \hline
  7363. \LifMonadASTPython \\
  7364. \begin{array}{rcl}
  7365. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  7366. \end{array}
  7367. \end{array}
  7368. \]
  7369. \fi}
  7370. \end{tcolorbox}
  7371. \python{\index{subject}{Begin@\texttt{Begin}}}
  7372. \caption{\LangIfANF{} is \LangIf{} in monadic normal form
  7373. (extends \LangVarANF in figure~\ref{fig:Lvar-anf-syntax}).}
  7374. \label{fig:Lif-anf-syntax}
  7375. \end{figure}
  7376. \begin{exercise}\normalfont\normalsize
  7377. %
  7378. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  7379. and \code{rco\_exp} functions in \code{compiler.rkt}.
  7380. %
  7381. Create three new \LangIf{} programs that exercise the interesting
  7382. code in this pass.
  7383. %
  7384. {\if\edition\racketEd
  7385. In the \code{run-tests.rkt} script, add the following entry to the
  7386. list of \code{passes} and then run the script to test your compiler.
  7387. \begin{lstlisting}
  7388. (list "remove-complex" remove_complex_operands interp-Lif type-check-Lif)
  7389. \end{lstlisting}
  7390. \fi}
  7391. \end{exercise}
  7392. \section{Explicate Control}
  7393. \label{sec:explicate-control-Lif}
  7394. \racket{Recall that the purpose of \code{explicate\_control} is to
  7395. make the order of evaluation explicit in the syntax of the program.
  7396. With the addition of \key{if}, this becomes more interesting.}
  7397. %
  7398. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  7399. %
  7400. The main challenge to overcome is that the condition of an \key{if}
  7401. can be an arbitrary expression in \LangIf{}, whereas in \LangCIf{} the
  7402. condition must be a comparison.
  7403. As a motivating example, consider the following program that has an
  7404. \key{if} expression nested in the condition of another \key{if}:%
  7405. \python{\footnote{Programmers rarely write nested \code{if}
  7406. expressions, but it is not uncommon for the condition of an
  7407. \code{if} statement to be a call of a function that also contains an
  7408. \code{if} statement. When such a function is inlined, the result is
  7409. a nested \code{if} that requires the techniques discussed in this
  7410. section.}}
  7411. % cond_test_41.rkt, if_lt_eq.py
  7412. \begin{center}
  7413. \begin{minipage}{0.96\textwidth}
  7414. {\if\edition\racketEd
  7415. \begin{lstlisting}
  7416. (let ([x (read)])
  7417. (let ([y (read)])
  7418. (if (if (< x 1) (eq? x 0) (eq? x 2))
  7419. (+ y 2)
  7420. (+ y 10))))
  7421. \end{lstlisting}
  7422. \fi}
  7423. {\if\edition\pythonEd
  7424. \begin{lstlisting}
  7425. x = input_int()
  7426. y = input_int()
  7427. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  7428. \end{lstlisting}
  7429. \fi}
  7430. \end{minipage}
  7431. \end{center}
  7432. %
  7433. The naive way to compile \key{if} and the comparison operations would
  7434. be to handle each of them in isolation, regardless of their context.
  7435. Each comparison would be translated into a \key{cmpq} instruction
  7436. followed by several instructions to move the result from the EFLAGS
  7437. register into a general purpose register or stack location. Each
  7438. \key{if} would be translated into a \key{cmpq} instruction followed by
  7439. a conditional jump. The generated code for the inner \key{if} in this
  7440. example would be as follows:
  7441. \begin{center}
  7442. \begin{minipage}{0.96\textwidth}
  7443. \begin{lstlisting}
  7444. cmpq $1, x
  7445. setl %al
  7446. movzbq %al, tmp
  7447. cmpq $1, tmp
  7448. je then_branch_1
  7449. jmp else_branch_1
  7450. \end{lstlisting}
  7451. \end{minipage}
  7452. \end{center}
  7453. Notice that the three instructions starting with \code{setl} are
  7454. redundant: the conditional jump could come immediately after the first
  7455. \code{cmpq}.
  7456. Our goal is to compile \key{if} expressions so that the relevant
  7457. comparison instruction appears directly before the conditional jump.
  7458. For example, we want to generate the following code for the inner
  7459. \code{if}:
  7460. \begin{center}
  7461. \begin{minipage}{0.96\textwidth}
  7462. \begin{lstlisting}
  7463. cmpq $1, x
  7464. jl then_branch_1
  7465. jmp else_branch_1
  7466. \end{lstlisting}
  7467. \end{minipage}
  7468. \end{center}
  7469. One way to achieve this goal is to reorganize the code at the level of
  7470. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  7471. the following code:
  7472. \begin{center}
  7473. \begin{minipage}{0.96\textwidth}
  7474. {\if\edition\racketEd
  7475. \begin{lstlisting}
  7476. (let ([x (read)])
  7477. (let ([y (read)])
  7478. (if (< x 1)
  7479. (if (eq? x 0)
  7480. (+ y 2)
  7481. (+ y 10))
  7482. (if (eq? x 2)
  7483. (+ y 2)
  7484. (+ y 10)))))
  7485. \end{lstlisting}
  7486. \fi}
  7487. {\if\edition\pythonEd
  7488. \begin{lstlisting}
  7489. x = input_int()
  7490. y = input_int()
  7491. print(((y + 2) if x == 0 else (y + 10)) \
  7492. if (x < 1) \
  7493. else ((y + 2) if (x == 2) else (y + 10)))
  7494. \end{lstlisting}
  7495. \fi}
  7496. \end{minipage}
  7497. \end{center}
  7498. Unfortunately, this approach duplicates the two branches from the
  7499. outer \code{if}, and a compiler must never duplicate code! After all,
  7500. the two branches could be very large expressions.
  7501. How can we apply this transformation without duplicating code? In
  7502. other words, how can two different parts of a program refer to one
  7503. piece of code?
  7504. %
  7505. The answer is that we must move away from abstract syntax \emph{trees}
  7506. and instead use \emph{graphs}.
  7507. %
  7508. At the level of x86 assembly, this is straightforward because we can
  7509. label the code for each branch and insert jumps in all the places that
  7510. need to execute the branch. In this way, jump instructions are edges
  7511. in the graph and the basic blocks are the nodes.
  7512. %
  7513. Likewise, our language \LangCIf{} provides the ability to label a
  7514. sequence of statements and to jump to a label via \code{goto}.
  7515. As a preview of what \code{explicate\_control} will do,
  7516. figure~\ref{fig:explicate-control-s1-38} shows the output of
  7517. \code{explicate\_control} on this example. Note how the condition of
  7518. every \code{if} is a comparison operation and that we have not
  7519. duplicated any code but instead have used labels and \code{goto} to
  7520. enable sharing of code.
  7521. \begin{figure}[tbp]
  7522. \begin{tcolorbox}[colback=white]
  7523. {\if\edition\racketEd
  7524. \begin{tabular}{lll}
  7525. \begin{minipage}{0.4\textwidth}
  7526. % cond_test_41.rkt
  7527. \begin{lstlisting}
  7528. (let ([x (read)])
  7529. (let ([y (read)])
  7530. (if (if (< x 1)
  7531. (eq? x 0)
  7532. (eq? x 2))
  7533. (+ y 2)
  7534. (+ y 10))))
  7535. \end{lstlisting}
  7536. \end{minipage}
  7537. &
  7538. $\Rightarrow$
  7539. &
  7540. \begin{minipage}{0.55\textwidth}
  7541. \begin{lstlisting}
  7542. start:
  7543. x = (read);
  7544. y = (read);
  7545. if (< x 1)
  7546. goto block_4;
  7547. else
  7548. goto block_5;
  7549. block_4:
  7550. if (eq? x 0)
  7551. goto block_2;
  7552. else
  7553. goto block_3;
  7554. block_5:
  7555. if (eq? x 2)
  7556. goto block_2;
  7557. else
  7558. goto block_3;
  7559. block_2:
  7560. return (+ y 2);
  7561. block_3:
  7562. return (+ y 10);
  7563. \end{lstlisting}
  7564. \end{minipage}
  7565. \end{tabular}
  7566. \fi}
  7567. {\if\edition\pythonEd
  7568. \begin{tabular}{lll}
  7569. \begin{minipage}{0.4\textwidth}
  7570. % cond_test_41.rkt
  7571. \begin{lstlisting}
  7572. x = input_int()
  7573. y = input_int()
  7574. print(y + 2 \
  7575. if (x == 0 \
  7576. if x < 1 \
  7577. else x == 2) \
  7578. else y + 10)
  7579. \end{lstlisting}
  7580. \end{minipage}
  7581. &
  7582. $\Rightarrow$
  7583. &
  7584. \begin{minipage}{0.55\textwidth}
  7585. \begin{lstlisting}
  7586. start:
  7587. x = input_int()
  7588. y = input_int()
  7589. if x < 1:
  7590. goto block_8
  7591. else:
  7592. goto block_9
  7593. block_8:
  7594. if x == 0:
  7595. goto block_4
  7596. else:
  7597. goto block_5
  7598. block_9:
  7599. if x == 2:
  7600. goto block_6
  7601. else:
  7602. goto block_7
  7603. block_4:
  7604. goto block_2
  7605. block_5:
  7606. goto block_3
  7607. block_6:
  7608. goto block_2
  7609. block_7:
  7610. goto block_3
  7611. block_2:
  7612. tmp_0 = y + 2
  7613. goto block_1
  7614. block_3:
  7615. tmp_0 = y + 10
  7616. goto block_1
  7617. block_1:
  7618. print(tmp_0)
  7619. return 0
  7620. \end{lstlisting}
  7621. \end{minipage}
  7622. \end{tabular}
  7623. \fi}
  7624. \end{tcolorbox}
  7625. \caption{Translation from \LangIf{} to \LangCIf{}
  7626. via the \code{explicate\_control}.}
  7627. \label{fig:explicate-control-s1-38}
  7628. \end{figure}
  7629. {\if\edition\racketEd
  7630. %
  7631. Recall that in section~\ref{sec:explicate-control-Lvar} we implement
  7632. \code{explicate\_control} for \LangVar{} using two recursive
  7633. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  7634. former function translates expressions in tail position, whereas the
  7635. latter function translates expressions on the right-hand side of a
  7636. \key{let}. With the addition of \key{if} expression to \LangIf{} we
  7637. have a new kind of position to deal with: the predicate position of
  7638. the \key{if}. We need another function, \code{explicate\_pred}, that
  7639. decides how to compile an \key{if} by analyzing its condition. So,
  7640. \code{explicate\_pred} takes an \LangIf{} expression and two
  7641. \LangCIf{} tails for the \emph{then} branch and \emph{else} branch
  7642. and outputs a tail. In the following paragraphs we discuss specific
  7643. cases in the \code{explicate\_tail}, \code{explicate\_assign}, and
  7644. \code{explicate\_pred} functions.
  7645. %
  7646. \fi}
  7647. %
  7648. {\if\edition\pythonEd
  7649. %
  7650. We recommend implementing \code{explicate\_control} using the
  7651. following four auxiliary functions.
  7652. \begin{description}
  7653. \item[\code{explicate\_effect}] generates code for expressions as
  7654. statements, so their result is ignored and only their side effects
  7655. matter.
  7656. \item[\code{explicate\_assign}] generates code for expressions
  7657. on the right-hand side of an assignment.
  7658. \item[\code{explicate\_pred}] generates code for an \code{if}
  7659. expression or statement by analyzing the condition expression.
  7660. \item[\code{explicate\_stmt}] generates code for statements.
  7661. \end{description}
  7662. These four functions should build the dictionary of basic blocks. The
  7663. following auxiliary function can be used to create a new basic block
  7664. from a list of statements. It returns a \code{goto} statement that
  7665. jumps to the new basic block.
  7666. \begin{center}
  7667. \begin{minipage}{\textwidth}
  7668. \begin{lstlisting}
  7669. def create_block(stmts, basic_blocks):
  7670. label = label_name(generate_name('block'))
  7671. basic_blocks[label] = stmts
  7672. return Goto(label)
  7673. \end{lstlisting}
  7674. \end{minipage}
  7675. \end{center}
  7676. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  7677. \code{explicate\_control} pass.
  7678. The \code{explicate\_effect} function has three parameters: 1) the
  7679. expression to be compiled, 2) the already-compiled code for this
  7680. expression's \emph{continuation}, that is, the list of statements that
  7681. should execute after this expression, and 3) the dictionary of
  7682. generated basic blocks. The \code{explicate\_effect} function returns
  7683. a list of \LangCIf{} statements and it may add to the dictionary of
  7684. basic blocks.
  7685. %
  7686. Let's consider a few of the cases for the expression to be compiled.
  7687. If the expression to be compiled is a constant, then it can be
  7688. discarded because it has no side effects. If it's a \CREAD{}, then it
  7689. has a side-effect and should be preserved. So the expression should be
  7690. translated into a statement using the \code{Expr} AST class. If the
  7691. expression to be compiled is an \code{if} expression, we translate the
  7692. two branches using \code{explicate\_effect} and then translate the
  7693. condition expression using \code{explicate\_pred}, which generates
  7694. code for the entire \code{if}.
  7695. The \code{explicate\_assign} function has four parameters: 1) the
  7696. right-hand side of the assignment, 2) the left-hand side of the
  7697. assignment (the variable), 3) the continuation, and 4) the dictionary
  7698. of basic blocks. The \code{explicate\_assign} function returns a list
  7699. of \LangCIf{} statements and it may add to the dictionary of basic
  7700. blocks.
  7701. When the right-hand side is an \code{if} expression, there is some
  7702. work to do. In particular, the two branches should be translated using
  7703. \code{explicate\_assign} and the condition expression should be
  7704. translated using \code{explicate\_pred}. Otherwise we can simply
  7705. generate an assignment statement, with the given left and right-hand
  7706. sides, concatenated with its continuation.
  7707. \begin{figure}[tbp]
  7708. \begin{tcolorbox}[colback=white]
  7709. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7710. def explicate_effect(e, cont, basic_blocks):
  7711. match e:
  7712. case IfExp(test, body, orelse):
  7713. ...
  7714. case Call(func, args):
  7715. ...
  7716. case Begin(body, result):
  7717. ...
  7718. case _:
  7719. ...
  7720. def explicate_assign(rhs, lhs, cont, basic_blocks):
  7721. match rhs:
  7722. case IfExp(test, body, orelse):
  7723. ...
  7724. case Begin(body, result):
  7725. ...
  7726. case _:
  7727. return [Assign([lhs], rhs)] + cont
  7728. def explicate_pred(cnd, thn, els, basic_blocks):
  7729. match cnd:
  7730. case Compare(left, [op], [right]):
  7731. goto_thn = create_block(thn, basic_blocks)
  7732. goto_els = create_block(els, basic_blocks)
  7733. return [If(cnd, [goto_thn], [goto_els])]
  7734. case Constant(True):
  7735. return thn;
  7736. case Constant(False):
  7737. return els;
  7738. case UnaryOp(Not(), operand):
  7739. ...
  7740. case IfExp(test, body, orelse):
  7741. ...
  7742. case Begin(body, result):
  7743. ...
  7744. case _:
  7745. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  7746. [create_block(els, basic_blocks)],
  7747. [create_block(thn, basic_blocks)])]
  7748. def explicate_stmt(s, cont, basic_blocks):
  7749. match s:
  7750. case Assign([lhs], rhs):
  7751. return explicate_assign(rhs, lhs, cont, basic_blocks)
  7752. case Expr(value):
  7753. return explicate_effect(value, cont, basic_blocks)
  7754. case If(test, body, orelse):
  7755. ...
  7756. def explicate_control(p):
  7757. match p:
  7758. case Module(body):
  7759. new_body = [Return(Constant(0))]
  7760. basic_blocks = {}
  7761. for s in reversed(body):
  7762. new_body = explicate_stmt(s, new_body, basic_blocks)
  7763. basic_blocks[label_name('start')] = new_body
  7764. return CProgram(basic_blocks)
  7765. \end{lstlisting}
  7766. \end{tcolorbox}
  7767. \caption{Skeleton for the \code{explicate\_control} pass.}
  7768. \label{fig:explicate-control-Lif}
  7769. \end{figure}
  7770. \fi}
  7771. {\if\edition\racketEd
  7772. \subsection{Explicate Tail and Assign}
  7773. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  7774. additional cases for Boolean constants and \key{if}. The cases for
  7775. \code{if} should recursively compile the two branches using either
  7776. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  7777. cases should then invoke \code{explicate\_pred} on the condition
  7778. expression, passing in the generated code for the two branches. For
  7779. example, consider the following program with an \code{if} in tail
  7780. position.
  7781. % cond_test_6.rkt
  7782. \begin{lstlisting}
  7783. (let ([x (read)])
  7784. (if (eq? x 0) 42 777))
  7785. \end{lstlisting}
  7786. The two branches are recursively compiled to return statements. We
  7787. then delegate to \code{explicate\_pred}, passing the condition
  7788. \code{(eq? x 0)} and the two return statements. We return to this
  7789. example shortly when we discuss \code{explicate\_pred}.
  7790. Next let us consider a program with an \code{if} on the right-hand
  7791. side of a \code{let}.
  7792. \begin{lstlisting}
  7793. (let ([y (read)])
  7794. (let ([x (if (eq? y 0) 40 777)])
  7795. (+ x 2)))
  7796. \end{lstlisting}
  7797. Note that the body of the inner \code{let} will have already been
  7798. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  7799. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  7800. to recursively process both branches of the \code{if}, and we do not
  7801. want to duplicate code, so we generate the following block using an
  7802. auxiliary function named \code{create\_block}, discussed in the next
  7803. section.
  7804. \begin{lstlisting}
  7805. block_6:
  7806. return (+ x 2)
  7807. \end{lstlisting}
  7808. We then use \code{goto block\_6;} as the \code{cont} argument for
  7809. compiling the branches. So the two branches compile to
  7810. \begin{center}
  7811. \begin{minipage}{0.2\textwidth}
  7812. \begin{lstlisting}
  7813. x = 40;
  7814. goto block_6;
  7815. \end{lstlisting}
  7816. \end{minipage}
  7817. \hspace{0.5in} and \hspace{0.5in}
  7818. \begin{minipage}{0.2\textwidth}
  7819. \begin{lstlisting}
  7820. x = 777;
  7821. goto block_6;
  7822. \end{lstlisting}
  7823. \end{minipage}
  7824. \end{center}
  7825. Finally, we delegate to \code{explicate\_pred}, passing the condition
  7826. \code{(eq? y 0)} and the previously presented code for the branches.
  7827. \subsection{Create Block}
  7828. We recommend implementing the \code{create\_block} auxiliary function
  7829. as follows, using a global variable \code{basic-blocks} to store a
  7830. dictionary that maps labels to $\Tail$ expressions. The main idea is
  7831. that \code{create\_block} generates a new label and then associates
  7832. the given \code{tail} with the new label in the \code{basic-blocks}
  7833. dictionary. The result of \code{create\_block} is a \code{Goto} to the
  7834. new label. However, if the given \code{tail} is already a \code{Goto},
  7835. then there is no need to generate a new label and entry in
  7836. \code{basic-blocks}; we can simply return that \code{Goto}.
  7837. %
  7838. \begin{lstlisting}
  7839. (define (create_block tail)
  7840. (match tail
  7841. [(Goto label) (Goto label)]
  7842. [else
  7843. (let ([label (gensym 'block)])
  7844. (set! basic-blocks (cons (cons label tail) basic-blocks))
  7845. (Goto label))]))
  7846. \end{lstlisting}
  7847. \fi}
  7848. {\if\edition\racketEd
  7849. \subsection{Explicate Predicate}
  7850. \begin{figure}[tbp]
  7851. \begin{tcolorbox}[colback=white]
  7852. \begin{lstlisting}
  7853. (define (explicate_pred cnd thn els)
  7854. (match cnd
  7855. [(Var x) ___]
  7856. [(Let x rhs body) ___]
  7857. [(Prim 'not (list e)) ___]
  7858. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  7859. (IfStmt (Prim op es) (create_block thn)
  7860. (create_block els))]
  7861. [(Bool b) (if b thn els)]
  7862. [(If cnd^ thn^ els^) ___]
  7863. [else (error "explicate_pred unhandled case" cnd)]))
  7864. \end{lstlisting}
  7865. \end{tcolorbox}
  7866. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  7867. \label{fig:explicate-pred}
  7868. \end{figure}
  7869. \fi}
  7870. \racket{The skeleton for the \code{explicate\_pred} function is given
  7871. in figure~\ref{fig:explicate-pred}. It takes three parameters:
  7872. (1) \code{cnd}, the condition expression of the \code{if};
  7873. (2) \code{thn}, the code generated by explicate for the \emph{then} branch;
  7874. and (3) \code{els}, the code generated by
  7875. explicate for the \emph{else} branch. The \code{explicate\_pred}
  7876. function should match on \code{cnd} with a case for
  7877. every kind of expression that can have type \BOOLTY{}.}
  7878. %
  7879. \python{The \code{explicate\_pred} function has four parameters: 1)
  7880. the condition expression, 2) the generated statements for the
  7881. ``then'' branch, 3) the generated statements for the ``else''
  7882. branch, and 4) the dictionary of basic blocks. The
  7883. \code{explicate\_pred} function returns a list of \LangCIf{}
  7884. statements and it may add to the dictionary of basic blocks.}
  7885. Consider the case for comparison operators. We translate the
  7886. comparison to an \code{if} statement whose branches are \code{goto}
  7887. statements created by applying \code{create\_block} to the code
  7888. generated for the \code{thn} and \code{els} branches. Let us
  7889. illustrate this translation by returning to the program with an
  7890. \code{if} expression in tail position, shown next. We invoke
  7891. \code{explicate\_pred} on its condition \racket{\code{(eq? x 0)}}
  7892. \python{\code{x == 0}}.
  7893. %
  7894. {\if\edition\racketEd
  7895. \begin{lstlisting}
  7896. (let ([x (read)])
  7897. (if (eq? x 0) 42 777))
  7898. \end{lstlisting}
  7899. \fi}
  7900. %
  7901. {\if\edition\pythonEd
  7902. \begin{lstlisting}
  7903. x = input_int()
  7904. 42 if x == 0 else 777
  7905. \end{lstlisting}
  7906. \fi}
  7907. %
  7908. \noindent The two branches \code{42} and \code{777} were already
  7909. compiled to \code{return} statements, from which we now create the
  7910. following blocks:
  7911. %
  7912. \begin{center}
  7913. \begin{minipage}{\textwidth}
  7914. \begin{lstlisting}
  7915. block_1:
  7916. return 42;
  7917. block_2:
  7918. return 777;
  7919. \end{lstlisting}
  7920. \end{minipage}
  7921. \end{center}
  7922. %
  7923. After that, \code{explicate\_pred} compiles the comparison
  7924. \racket{\code{(eq? x 0)}}
  7925. \python{\code{x == 0}}
  7926. to the following \code{if} statement:
  7927. %
  7928. {\if\edition\racketEd
  7929. \begin{center}
  7930. \begin{minipage}{\textwidth}
  7931. \begin{lstlisting}
  7932. if (eq? x 0)
  7933. goto block_1;
  7934. else
  7935. goto block_2;
  7936. \end{lstlisting}
  7937. \end{minipage}
  7938. \end{center}
  7939. \fi}
  7940. {\if\edition\pythonEd
  7941. \begin{center}
  7942. \begin{minipage}{\textwidth}
  7943. \begin{lstlisting}
  7944. if x == 0:
  7945. goto block_1;
  7946. else
  7947. goto block_2;
  7948. \end{lstlisting}
  7949. \end{minipage}
  7950. \end{center}
  7951. \fi}
  7952. Next consider the case for Boolean constants. We perform a kind of
  7953. partial evaluation\index{subject}{partial evaluation} and output
  7954. either the \code{thn} or \code{els} branch, depending on whether the
  7955. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  7956. following program:
  7957. {\if\edition\racketEd
  7958. \begin{lstlisting}
  7959. (if #t 42 777)
  7960. \end{lstlisting}
  7961. \fi}
  7962. {\if\edition\pythonEd
  7963. \begin{lstlisting}
  7964. 42 if True else 777
  7965. \end{lstlisting}
  7966. \fi}
  7967. %
  7968. \noindent Again, the two branches \code{42} and \code{777} were
  7969. compiled to \code{return} statements, so \code{explicate\_pred}
  7970. compiles the constant \racket{\code{\#t}} \python{\code{True}} to the
  7971. code for the \emph{then} branch.
  7972. \begin{lstlisting}
  7973. return 42;
  7974. \end{lstlisting}
  7975. This case demonstrates that we sometimes discard the \code{thn} or
  7976. \code{els} blocks that are input to \code{explicate\_pred}.
  7977. The case for \key{if} expressions in \code{explicate\_pred} is
  7978. particularly illuminating because it deals with the challenges
  7979. discussed previously regarding nested \key{if} expressions
  7980. (figure~\ref{fig:explicate-control-s1-38}). The
  7981. \racket{\lstinline{thn^}}\python{\code{body}} and
  7982. \racket{\lstinline{els^}}\python{\code{orelse}} branches of the
  7983. \key{if} inherit their context from the current one, that is,
  7984. predicate context. So, you should recursively apply
  7985. \code{explicate\_pred} to the
  7986. \racket{\lstinline{thn^}}\python{\code{body}} and
  7987. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  7988. those recursive calls, pass \code{thn} and \code{els} as the extra
  7989. parameters. Thus, \code{thn} and \code{els} may be used twice, once
  7990. inside each recursive call. As discussed previously, to avoid
  7991. duplicating code, we need to add them to the dictionary of basic
  7992. blocks so that we can instead refer to them by name and execute them
  7993. with a \key{goto}.
  7994. {\if\edition\pythonEd
  7995. %
  7996. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  7997. three parameters: 1) the statement to be compiled, 2) the code for its
  7998. continuation, and 3) the dictionary of basic blocks. The
  7999. \code{explicate\_stmt} returns a list of statements and it may add to
  8000. the dictionary of basic blocks. The cases for assignment and an
  8001. expression-statement are given in full in the skeleton code: they
  8002. simply dispatch to \code{explicate\_assign} and
  8003. \code{explicate\_effect}, respectively. The case for \code{if}
  8004. statements is not given, and is similar to the case for \code{if}
  8005. expressions.
  8006. The \code{explicate\_control} function itself is given in
  8007. figure~\ref{fig:explicate-control-Lif}. It applies
  8008. \code{explicate\_stmt} to each statement in the program, from back to
  8009. front. Thus, the result so-far, stored in \code{new\_body}, can be
  8010. used as the continuation parameter in the next call to
  8011. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  8012. \code{Return} statement. Once complete, we add the \code{new\_body} to
  8013. the dictionary of basic blocks, labeling it as the ``start'' block.
  8014. %
  8015. \fi}
  8016. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  8017. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  8018. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  8019. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  8020. %% results from the two recursive calls. We complete the case for
  8021. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  8022. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  8023. %% the result $B_5$.
  8024. %% \[
  8025. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  8026. %% \quad\Rightarrow\quad
  8027. %% B_5
  8028. %% \]
  8029. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  8030. %% inherit the current context, so they are in tail position. Thus, the
  8031. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  8032. %% \code{explicate\_tail}.
  8033. %% %
  8034. %% We need to pass $B_0$ as the accumulator argument for both of these
  8035. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  8036. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  8037. %% to the control-flow graph and obtain a promised goto $G_0$.
  8038. %% %
  8039. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  8040. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  8041. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  8042. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  8043. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  8044. %% \[
  8045. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  8046. %% \]
  8047. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  8048. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  8049. %% should not be confused with the labels for the blocks that appear in
  8050. %% the generated code. We initially construct unlabeled blocks; we only
  8051. %% attach labels to blocks when we add them to the control-flow graph, as
  8052. %% we see in the next case.
  8053. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  8054. %% function. The context of the \key{if} is an assignment to some
  8055. %% variable $x$ and then the control continues to some promised block
  8056. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  8057. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  8058. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  8059. %% branches of the \key{if} inherit the current context, so they are in
  8060. %% assignment positions. Let $B_2$ be the result of applying
  8061. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  8062. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  8063. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  8064. %% the result of applying \code{explicate\_pred} to the predicate
  8065. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  8066. %% translates to the promise $B_4$.
  8067. %% \[
  8068. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  8069. %% \]
  8070. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  8071. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  8072. \code{remove\_complex\_operands} pass and then the
  8073. \code{explicate\_control} pass on the example program. We walk through
  8074. the output program.
  8075. %
  8076. Following the order of evaluation in the output of
  8077. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  8078. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  8079. in the predicate of the inner \key{if}. In the output of
  8080. \code{explicate\_control}, in the
  8081. block labeled \code{start}, two assignment statements are followed by an
  8082. \code{if} statement that branches to \code{block\_4} or
  8083. \code{block\_5}. The blocks associated with those labels contain the
  8084. translations of the code
  8085. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8086. and
  8087. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  8088. respectively. In particular, we start \code{block\_4} with the
  8089. comparison
  8090. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8091. and then branch to \code{block\_2} or \code{block\_3},
  8092. which correspond to the two branches of the outer \key{if}, that is,
  8093. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  8094. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  8095. %
  8096. The story for \code{block\_5} is similar to that of \code{block\_4}.
  8097. %
  8098. \python{The \code{block\_1} corresponds to the \code{print} statement
  8099. at the end of the program.}
  8100. {\if\edition\racketEd
  8101. \subsection{Interactions between Explicate and Shrink}
  8102. The way in which the \code{shrink} pass transforms logical operations
  8103. such as \code{and} and \code{or} can impact the quality of code
  8104. generated by \code{explicate\_control}. For example, consider the
  8105. following program:
  8106. % cond_test_21.rkt, and_eq_input.py
  8107. \begin{lstlisting}
  8108. (if (and (eq? (read) 0) (eq? (read) 1))
  8109. 0
  8110. 42)
  8111. \end{lstlisting}
  8112. The \code{and} operation should transform into something that the
  8113. \code{explicate\_pred} function can analyze and descend through to
  8114. reach the underlying \code{eq?} conditions. Ideally, for this program
  8115. your \code{explicate\_control} pass should generate code similar to
  8116. the following:
  8117. \begin{center}
  8118. \begin{minipage}{\textwidth}
  8119. \begin{lstlisting}
  8120. start:
  8121. tmp1 = (read);
  8122. if (eq? tmp1 0) goto block40;
  8123. else goto block39;
  8124. block40:
  8125. tmp2 = (read);
  8126. if (eq? tmp2 1) goto block38;
  8127. else goto block39;
  8128. block38:
  8129. return 0;
  8130. block39:
  8131. return 42;
  8132. \end{lstlisting}
  8133. \end{minipage}
  8134. \end{center}
  8135. \fi}
  8136. \begin{exercise}\normalfont\normalsize
  8137. \racket{
  8138. Implement the pass \code{explicate\_control} by adding the cases for
  8139. Boolean constants and \key{if} to the \code{explicate\_tail} and
  8140. \code{explicate\_assign} functions. Implement the auxiliary function
  8141. \code{explicate\_pred} for predicate contexts.}
  8142. \python{Implement \code{explicate\_control} pass with its
  8143. four auxiliary functions.}
  8144. %
  8145. Create test cases that exercise all the new cases in the code for
  8146. this pass.
  8147. %
  8148. {\if\edition\racketEd
  8149. Add the following entry to the list of \code{passes} in
  8150. \code{run-tests.rkt}:
  8151. \begin{lstlisting}
  8152. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  8153. \end{lstlisting}
  8154. and then run \code{run-tests.rkt} to test your compiler.
  8155. \fi}
  8156. \end{exercise}
  8157. \section{Select Instructions}
  8158. \label{sec:select-Lif}
  8159. \index{subject}{instruction selection}
  8160. The \code{select\_instructions} pass translates \LangCIf{} to
  8161. \LangXIfVar{}.
  8162. %
  8163. \racket{Recall that we implement this pass using three auxiliary
  8164. functions, one for each of the nonterminals $\Atm$, $\Stmt$, and
  8165. $\Tail$ in \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  8166. %
  8167. \racket{For $\Atm$, we have new cases for the Booleans.}
  8168. %
  8169. \python{We begin with the Boolean constants.}
  8170. We take the usual approach of encoding them as integers.
  8171. \[
  8172. \TRUE{} \quad\Rightarrow\quad \key{1}
  8173. \qquad\qquad
  8174. \FALSE{} \quad\Rightarrow\quad \key{0}
  8175. \]
  8176. For translating statements, we discuss some of the cases. The
  8177. \code{not} operation can be implemented in terms of \code{xorq}, as we
  8178. discussed at the beginning of this section. Given an assignment, if
  8179. the left-hand-side variable is the same as the argument of \code{not},
  8180. then just the \code{xorq} instruction suffices.
  8181. \[
  8182. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  8183. \quad\Rightarrow\quad
  8184. \key{xorq}~\key{\$}1\key{,}~\Var
  8185. \]
  8186. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  8187. semantics of x86. In the following translation, let $\Arg$ be the
  8188. result of translating $\Atm$ to x86.
  8189. \[
  8190. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  8191. \quad\Rightarrow\quad
  8192. \begin{array}{l}
  8193. \key{movq}~\Arg\key{,}~\Var\\
  8194. \key{xorq}~\key{\$}1\key{,}~\Var
  8195. \end{array}
  8196. \]
  8197. Next consider the cases for equality comparisons. Translating this
  8198. operation to x86 is slightly involved due to the unusual nature of the
  8199. \key{cmpq} instruction that we discussed in section~\ref{sec:x86-if}.
  8200. We recommend translating an assignment with an equality on the
  8201. right-hand side into a sequence of three instructions. \\
  8202. \begin{tabular}{lll}
  8203. \begin{minipage}{0.4\textwidth}
  8204. $\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$
  8205. \end{minipage}
  8206. &
  8207. $\Rightarrow$
  8208. &
  8209. \begin{minipage}{0.4\textwidth}
  8210. \begin{lstlisting}
  8211. cmpq |$\Arg_2$|, |$\Arg_1$|
  8212. sete %al
  8213. movzbq %al, |$\Var$|
  8214. \end{lstlisting}
  8215. \end{minipage}
  8216. \end{tabular} \\
  8217. The translations for the other comparison operators are similar to
  8218. this but use different condition codes for the \code{set} instruction.
  8219. \racket{Regarding the $\Tail$ nonterminal, we have two new cases:
  8220. \key{goto} and \key{if} statements. Both are straightforward to
  8221. translate to x86.}
  8222. %
  8223. A \key{goto} statement becomes a jump instruction.
  8224. \[
  8225. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  8226. \]
  8227. %
  8228. An \key{if} statement becomes a compare instruction followed by a
  8229. conditional jump (for the \emph{then} branch), and the fall-through is to
  8230. a regular jump (for the \emph{else} branch).\\
  8231. \begin{tabular}{lll}
  8232. \begin{minipage}{0.4\textwidth}
  8233. \begin{lstlisting}
  8234. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  8235. goto |$\ell_1$||$\racket{\key{;}}$|
  8236. else|$\python{\key{:}}$|
  8237. goto |$\ell_2$||$\racket{\key{;}}$|
  8238. \end{lstlisting}
  8239. \end{minipage}
  8240. &
  8241. $\Rightarrow$
  8242. &
  8243. \begin{minipage}{0.4\textwidth}
  8244. \begin{lstlisting}
  8245. cmpq |$\Arg_2$|, |$\Arg_1$|
  8246. je |$\ell_1$|
  8247. jmp |$\ell_2$|
  8248. \end{lstlisting}
  8249. \end{minipage}
  8250. \end{tabular} \\
  8251. Again, the translations for the other comparison operators are similar to this
  8252. but use different condition codes for the conditional jump instruction.
  8253. \python{Regarding the \key{return} statement, we recommend treating it
  8254. as an assignment to the \key{rax} register followed by a jump to the
  8255. conclusion of the \code{main} function.}
  8256. \begin{exercise}\normalfont\normalsize
  8257. Expand your \code{select\_instructions} pass to handle the new
  8258. features of the \LangCIf{} language.
  8259. %
  8260. {\if\edition\racketEd
  8261. Add the following entry to the list of \code{passes} in
  8262. \code{run-tests.rkt}
  8263. \begin{lstlisting}
  8264. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  8265. \end{lstlisting}
  8266. \fi}
  8267. %
  8268. Run the script to test your compiler on all the test programs.
  8269. \end{exercise}
  8270. \section{Register Allocation}
  8271. \label{sec:register-allocation-Lif}
  8272. \index{subject}{register allocation}
  8273. The changes required for compiling \LangIf{} affect liveness analysis,
  8274. building the interference graph, and assigning homes, but the graph
  8275. coloring algorithm itself does not change.
  8276. \subsection{Liveness Analysis}
  8277. \label{sec:liveness-analysis-Lif}
  8278. \index{subject}{liveness analysis}
  8279. Recall that for \LangVar{} we implemented liveness analysis for a
  8280. single basic block (section~\ref{sec:liveness-analysis-Lvar}). With
  8281. the addition of \key{if} expressions to \LangIf{},
  8282. \code{explicate\_control} produces many basic blocks.
  8283. %% We recommend that you create a new auxiliary function named
  8284. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  8285. %% control-flow graph.
  8286. The first question is, in what order should we process the basic blocks?
  8287. Recall that to perform liveness analysis on a basic block we need to
  8288. know the live-after set for the last instruction in the block. If a
  8289. basic block has no successors (i.e., contains no jumps to other
  8290. blocks), then it has an empty live-after set and we can immediately
  8291. apply liveness analysis to it. If a basic block has some successors,
  8292. then we need to complete liveness analysis on those blocks
  8293. first. These ordering constraints are the reverse of a
  8294. \emph{topological order}\index{subject}{topological order} on a graph
  8295. representation of the program. In particular, the \emph{control flow
  8296. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  8297. of a program has a node for each basic block and an edge for each jump
  8298. from one block to another. It is straightforward to generate a CFG
  8299. from the dictionary of basic blocks. One then transposes the CFG and
  8300. applies the topological sort algorithm.
  8301. %
  8302. %
  8303. \racket{We recommend using the \code{tsort} and \code{transpose}
  8304. functions of the Racket \code{graph} package to accomplish this.}
  8305. %
  8306. \python{We provide implementations of \code{topological\_sort} and
  8307. \code{transpose} in the file \code{graph.py} of the support code.}
  8308. %
  8309. As an aside, a topological ordering is only guaranteed to exist if the
  8310. graph does not contain any cycles. This is the case for the
  8311. control-flow graphs that we generate from \LangIf{} programs.
  8312. However, in chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  8313. and learn how to handle cycles in the control-flow graph.
  8314. \racket{You need to construct a directed graph to represent the
  8315. control-flow graph. Do not use the \code{directed-graph} of the
  8316. \code{graph} package because that allows at most one edge
  8317. between each pair of vertices, whereas a control-flow graph may have
  8318. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  8319. file in the support code implements a graph representation that
  8320. allows multiple edges between a pair of vertices.}
  8321. {\if\edition\racketEd
  8322. The next question is how to analyze jump instructions. Recall that in
  8323. section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  8324. \code{label->live} that maps each label to the set of live locations
  8325. at the beginning of its block. We use \code{label->live} to determine
  8326. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  8327. that we have many basic blocks, \code{label->live} needs to be updated
  8328. as we process the blocks. In particular, after performing liveness
  8329. analysis on a block, we take the live-before set of its first
  8330. instruction and associate that with the block's label in the
  8331. \code{label->live} alist.
  8332. \fi}
  8333. %
  8334. {\if\edition\pythonEd
  8335. %
  8336. The next question is how to analyze jump instructions. The locations
  8337. that are live before a \code{jmp} should be the locations in
  8338. $L_{\mathsf{before}}$ at the target of the jump. So we recommend
  8339. maintaining a dictionary named \code{live\_before\_block} that maps each
  8340. label to the $L_{\mathsf{before}}$ for the first instruction in its
  8341. block. After performing liveness analysis on each block, we take the
  8342. live-before set of its first instruction and associate that with the
  8343. block's label in the \code{live\_before\_block} dictionary.
  8344. %
  8345. \fi}
  8346. In \LangXIfVar{} we also have the conditional jump
  8347. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  8348. this instruction is particularly interesting because during
  8349. compilation, we do not know which way a conditional jump will go. Thus
  8350. we do not know whether to use the live-before set for the block
  8351. associated with the $\itm{label}$ or the live-before set for the
  8352. following instruction. However, there is no harm to the correctness
  8353. of the generated code if we classify more locations as live than the
  8354. ones that are truly live during one particular execution of the
  8355. instruction. Thus, we can take the union of the live-before sets from
  8356. the following instruction and from the mapping for $\itm{label}$ in
  8357. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  8358. The auxiliary functions for computing the variables in an
  8359. instruction's argument and for computing the variables read-from ($R$)
  8360. or written-to ($W$) by an instruction need to be updated to handle the
  8361. new kinds of arguments and instructions in \LangXIfVar{}.
  8362. \begin{exercise}\normalfont\normalsize
  8363. {\if\edition\racketEd
  8364. %
  8365. Update the \code{uncover\_live} pass to apply liveness analysis to
  8366. every basic block in the program.
  8367. %
  8368. Add the following entry to the list of \code{passes} in the
  8369. \code{run-tests.rkt} script:
  8370. \begin{lstlisting}
  8371. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  8372. \end{lstlisting}
  8373. \fi}
  8374. {\if\edition\pythonEd
  8375. %
  8376. Update the \code{uncover\_live} function to perform liveness analysis,
  8377. in reverse topological order, on all the basic blocks in the
  8378. program.
  8379. %
  8380. \fi}
  8381. % Check that the live-after sets that you generate for
  8382. % example X matches the following... -Jeremy
  8383. \end{exercise}
  8384. \subsection{Build the Interference Graph}
  8385. \label{sec:build-interference-Lif}
  8386. Many of the new instructions in \LangXIfVar{} can be handled in the
  8387. same way as the instructions in \LangXVar{}.
  8388. % Thus, if your code was
  8389. % already quite general, it will not need to be changed to handle the
  8390. % new instructions. If your code is not general enough, we recommend that
  8391. % you change your code to be more general. For example, you can factor
  8392. % out the computing of the the read and write sets for each kind of
  8393. % instruction into auxiliary functions.
  8394. %
  8395. Some instructions, such as the \key{movzbq} instruction, require special care,
  8396. similar to the \key{movq} instruction. Refer to rule number 1 in
  8397. section~\ref{sec:build-interference}.
  8398. \begin{exercise}\normalfont\normalsize
  8399. Update the \code{build\_interference} pass for \LangXIfVar{}.
  8400. {\if\edition\racketEd
  8401. Add the following entries to the list of \code{passes} in the
  8402. \code{run-tests.rkt} script:
  8403. \begin{lstlisting}
  8404. (list "build_interference" build_interference interp-pseudo-x86-1)
  8405. (list "allocate_registers" allocate_registers interp-pseudo-x86-1)
  8406. \end{lstlisting}
  8407. \fi}
  8408. % Check that the interference graph that you generate for
  8409. % example X matches the following graph G... -Jeremy
  8410. \end{exercise}
  8411. \section{Patch Instructions}
  8412. The new instructions \key{cmpq} and \key{movzbq} have some special
  8413. restrictions that need to be handled in the \code{patch\_instructions}
  8414. pass.
  8415. %
  8416. The second argument of the \key{cmpq} instruction must not be an
  8417. immediate value (such as an integer). So, if you are comparing two
  8418. immediates, we recommend inserting a \key{movq} instruction to put the
  8419. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  8420. one memory reference.
  8421. %
  8422. The second argument of the \key{movzbq} must be a register.
  8423. \begin{exercise}\normalfont\normalsize
  8424. %
  8425. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  8426. %
  8427. {\if\edition\racketEd
  8428. Add the following entry to the list of \code{passes} in
  8429. \code{run-tests.rkt}, and then run this script to test your compiler.
  8430. \begin{lstlisting}
  8431. (list "patch_instructions" patch_instructions interp-x86-1)
  8432. \end{lstlisting}
  8433. \fi}
  8434. \end{exercise}
  8435. {\if\edition\pythonEd
  8436. \section{Prelude and Conclusion}
  8437. \label{sec:prelude-conclusion-cond}
  8438. The generation of the \code{main} function with its prelude and
  8439. conclusion must change to accommodate how the program now consists of
  8440. one or more basic blocks. After the prelude in \code{main}, jump to
  8441. the \code{start} block. Place the conclusion in a basic block labeled
  8442. with \code{conclusion}.
  8443. \fi}
  8444. Figure~\ref{fig:if-example-x86} shows a simple example program in
  8445. \LangIf{} translated to x86, showing the results of
  8446. \code{explicate\_control}, \code{select\_instructions}, and the final
  8447. x86 assembly.
  8448. \begin{figure}[tbp]
  8449. \begin{tcolorbox}[colback=white]
  8450. {\if\edition\racketEd
  8451. \begin{tabular}{lll}
  8452. \begin{minipage}{0.4\textwidth}
  8453. % cond_test_20.rkt, eq_input.py
  8454. \begin{lstlisting}
  8455. (if (eq? (read) 1) 42 0)
  8456. \end{lstlisting}
  8457. $\Downarrow$
  8458. \begin{lstlisting}
  8459. start:
  8460. tmp7951 = (read);
  8461. if (eq? tmp7951 1)
  8462. goto block7952;
  8463. else
  8464. goto block7953;
  8465. block7952:
  8466. return 42;
  8467. block7953:
  8468. return 0;
  8469. \end{lstlisting}
  8470. $\Downarrow$
  8471. \begin{lstlisting}
  8472. start:
  8473. callq read_int
  8474. movq %rax, tmp7951
  8475. cmpq $1, tmp7951
  8476. je block7952
  8477. jmp block7953
  8478. block7953:
  8479. movq $0, %rax
  8480. jmp conclusion
  8481. block7952:
  8482. movq $42, %rax
  8483. jmp conclusion
  8484. \end{lstlisting}
  8485. \end{minipage}
  8486. &
  8487. $\Rightarrow\qquad$
  8488. \begin{minipage}{0.4\textwidth}
  8489. \begin{lstlisting}
  8490. start:
  8491. callq read_int
  8492. movq %rax, %rcx
  8493. cmpq $1, %rcx
  8494. je block7952
  8495. jmp block7953
  8496. block7953:
  8497. movq $0, %rax
  8498. jmp conclusion
  8499. block7952:
  8500. movq $42, %rax
  8501. jmp conclusion
  8502. .globl main
  8503. main:
  8504. pushq %rbp
  8505. movq %rsp, %rbp
  8506. pushq %r13
  8507. pushq %r12
  8508. pushq %rbx
  8509. pushq %r14
  8510. subq $0, %rsp
  8511. jmp start
  8512. conclusion:
  8513. addq $0, %rsp
  8514. popq %r14
  8515. popq %rbx
  8516. popq %r12
  8517. popq %r13
  8518. popq %rbp
  8519. retq
  8520. \end{lstlisting}
  8521. \end{minipage}
  8522. \end{tabular}
  8523. \fi}
  8524. {\if\edition\pythonEd
  8525. \begin{tabular}{lll}
  8526. \begin{minipage}{0.4\textwidth}
  8527. % cond_test_20.rkt, eq_input.py
  8528. \begin{lstlisting}
  8529. print(42 if input_int() == 1 else 0)
  8530. \end{lstlisting}
  8531. $\Downarrow$
  8532. \begin{lstlisting}
  8533. start:
  8534. tmp_0 = input_int()
  8535. if tmp_0 == 1:
  8536. goto block_3
  8537. else:
  8538. goto block_4
  8539. block_3:
  8540. tmp_1 = 42
  8541. goto block_2
  8542. block_4:
  8543. tmp_1 = 0
  8544. goto block_2
  8545. block_2:
  8546. print(tmp_1)
  8547. return 0
  8548. \end{lstlisting}
  8549. $\Downarrow$
  8550. \begin{lstlisting}
  8551. start:
  8552. callq read_int
  8553. movq %rax, tmp_0
  8554. cmpq 1, tmp_0
  8555. je block_3
  8556. jmp block_4
  8557. block_3:
  8558. movq 42, tmp_1
  8559. jmp block_2
  8560. block_4:
  8561. movq 0, tmp_1
  8562. jmp block_2
  8563. block_2:
  8564. movq tmp_1, %rdi
  8565. callq print_int
  8566. movq 0, %rax
  8567. jmp conclusion
  8568. \end{lstlisting}
  8569. \end{minipage}
  8570. &
  8571. $\Rightarrow\qquad$
  8572. \begin{minipage}{0.4\textwidth}
  8573. \begin{lstlisting}
  8574. .globl main
  8575. main:
  8576. pushq %rbp
  8577. movq %rsp, %rbp
  8578. subq $0, %rsp
  8579. jmp start
  8580. start:
  8581. callq read_int
  8582. movq %rax, %rcx
  8583. cmpq $1, %rcx
  8584. je block_3
  8585. jmp block_4
  8586. block_3:
  8587. movq $42, %rcx
  8588. jmp block_2
  8589. block_4:
  8590. movq $0, %rcx
  8591. jmp block_2
  8592. block_2:
  8593. movq %rcx, %rdi
  8594. callq print_int
  8595. movq $0, %rax
  8596. jmp conclusion
  8597. conclusion:
  8598. addq $0, %rsp
  8599. popq %rbp
  8600. retq
  8601. \end{lstlisting}
  8602. \end{minipage}
  8603. \end{tabular}
  8604. \fi}
  8605. \end{tcolorbox}
  8606. \caption{Example compilation of an \key{if} expression to x86, showing
  8607. the results of \code{explicate\_control},
  8608. \code{select\_instructions}, and the final x86 assembly code. }
  8609. \label{fig:if-example-x86}
  8610. \end{figure}
  8611. \begin{figure}[tbp]
  8612. \begin{tcolorbox}[colback=white]
  8613. {\if\edition\racketEd
  8614. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  8615. \node (Lif-2) at (0,2) {\large \LangIf{}};
  8616. \node (Lif-3) at (3,2) {\large \LangIf{}};
  8617. \node (Lif-4) at (6,2) {\large \LangIf{}};
  8618. \node (Lif-5) at (10,2) {\large \LangIfANF{}};
  8619. \node (C1-1) at (0,0) {\large \LangCIf{}};
  8620. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  8621. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  8622. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  8623. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  8624. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  8625. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  8626. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  8627. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  8628. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-5);
  8629. \path[->,bend left=10] (Lif-5) edge [right] node {\ttfamily\footnotesize explicate\_control} (C1-1);
  8630. \path[->,bend right=15] (C1-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  8631. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  8632. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  8633. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  8634. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  8635. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion } (x86-5);
  8636. \end{tikzpicture}
  8637. \fi}
  8638. {\if\edition\pythonEd
  8639. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  8640. \node (Lif-1) at (0,2) {\large \LangIf{}};
  8641. \node (Lif-2) at (4,2) {\large \LangIf{}};
  8642. \node (Lif-3) at (8,2) {\large \LangIfANF{}};
  8643. \node (C-1) at (0,0) {\large \LangCIf{}};
  8644. \node (x86-1) at (0,-2) {\large \LangXIfVar{}};
  8645. \node (x86-2) at (4,-2) {\large \LangXIfVar{}};
  8646. \node (x86-3) at (8,-2) {\large \LangXIf{}};
  8647. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  8648. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  8649. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-3);
  8650. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (C-1);
  8651. \path[->,bend right=15] (C-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-1);
  8652. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  8653. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  8654. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  8655. \end{tikzpicture}
  8656. \fi}
  8657. \end{tcolorbox}
  8658. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  8659. \label{fig:Lif-passes}
  8660. \end{figure}
  8661. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  8662. compilation of \LangIf{}.
  8663. \section{Challenge: Optimize Blocks and Remove Jumps}
  8664. \label{sec:opt-jumps}
  8665. We discuss two optional challenges that involve optimizing the
  8666. control-flow of the program.
  8667. \subsection{Optimize Blocks}
  8668. The algorithm for \code{explicate\_control} that we discussed in
  8669. section~\ref{sec:explicate-control-Lif} sometimes generates too many
  8670. blocks. It creates a basic block whenever a continuation \emph{might}
  8671. get used more than once (e.g., whenever the \code{cont} parameter is
  8672. passed into two or more recursive calls). However, some continuation
  8673. arguments may not be used at all. For example, consider the case for
  8674. the constant \TRUE{} in \code{explicate\_pred}, in which we discard the
  8675. \code{els} continuation.
  8676. %
  8677. {\if\edition\racketEd
  8678. The following example program falls into this
  8679. case, and it creates two unused blocks.
  8680. \begin{center}
  8681. \begin{tabular}{lll}
  8682. \begin{minipage}{0.4\textwidth}
  8683. % cond_test_82.rkt
  8684. \begin{lstlisting}
  8685. (let ([y (if #t
  8686. (read)
  8687. (if (eq? (read) 0)
  8688. 777
  8689. (let ([x (read)])
  8690. (+ 1 x))))])
  8691. (+ y 2))
  8692. \end{lstlisting}
  8693. \end{minipage}
  8694. &
  8695. $\Rightarrow$
  8696. &
  8697. \begin{minipage}{0.55\textwidth}
  8698. \begin{lstlisting}
  8699. start:
  8700. y = (read);
  8701. goto block_5;
  8702. block_5:
  8703. return (+ y 2);
  8704. block_6:
  8705. y = 777;
  8706. goto block_5;
  8707. block_7:
  8708. x = (read);
  8709. y = (+ 1 x2);
  8710. goto block_5;
  8711. \end{lstlisting}
  8712. \end{minipage}
  8713. \end{tabular}
  8714. \end{center}
  8715. \fi}
  8716. The question is, how can we decide whether to create a basic block?
  8717. \emph{Lazy evaluation}\index{subject}{lazy
  8718. evaluation}~\citep{Friedman:1976aa} can solve this conundrum by
  8719. delaying the creation of a basic block until the point in time at which
  8720. we know that it will be used.
  8721. %
  8722. {\if\edition\racketEd
  8723. %
  8724. Racket provides support for
  8725. lazy evaluation with the
  8726. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  8727. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  8728. \index{subject}{delay} creates a
  8729. \emph{promise}\index{subject}{promise} in which the evaluation of the
  8730. expressions is postponed. When \key{(force}
  8731. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  8732. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  8733. result of $e_n$ is cached in the promise and returned. If \code{force}
  8734. is applied again to the same promise, then the cached result is
  8735. returned. If \code{force} is applied to an argument that is not a
  8736. promise, \code{force} simply returns the argument.
  8737. %
  8738. \fi}
  8739. %
  8740. {\if\edition\pythonEd
  8741. %
  8742. While Python does not provide direct support for lazy evaluation, it
  8743. is easy to mimic. We can \emph{delay} the evaluation of a computation
  8744. by wrapping it inside a function with no parameters. We can
  8745. \emph{force} its evaluation by calling the function. However, in some
  8746. cases of \code{explicate\_pred}, etc., we will return a list of
  8747. statements and in other cases we will return a function that computes
  8748. a list of statements. We use the term \emph{promise} to refer to a
  8749. value that may be delayed. To uniformly deal with
  8750. promises, we define the following \code{force} function that checks
  8751. whether its input is delayed (i.e., whether it is a function) and then
  8752. either 1) calls the function, or 2) returns the input.
  8753. \begin{lstlisting}
  8754. def force(promise):
  8755. if isinstance(promise, types.FunctionType):
  8756. return promise()
  8757. else:
  8758. return promise
  8759. \end{lstlisting}
  8760. %
  8761. \fi}
  8762. We use promises for the input and output of the functions
  8763. \code{explicate\_pred}, \code{explicate\_assign},
  8764. %
  8765. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  8766. %
  8767. So, instead of taking and returning \racket{$\Tail$
  8768. expressions}\python{lists of statements}, they take and return
  8769. promises. Furthermore, when we come to a situation in which a
  8770. continuation might be used more than once, as in the case for
  8771. \code{if} in \code{explicate\_pred}, we create a delayed computation
  8772. that creates a basic block for each continuation (if there is not
  8773. already one) and then returns a \code{goto} statement to that basic
  8774. block. When we come to a situation in which we have a promise but need an
  8775. actual piece of code, for example, to create a larger piece of code with a
  8776. constructor such as \code{Seq}, then insert a call to \code{force}.
  8777. %
  8778. {\if\edition\racketEd
  8779. %
  8780. Also, we must modify the \code{create\_block} function to begin with
  8781. \code{delay} to create a promise. When forced, this promise forces the
  8782. original promise. If that returns a \code{Goto} (because the block was
  8783. already added to \code{basic-blocks}), then we return the
  8784. \code{Goto}. Otherwise, we add the block to \code{basic-blocks} and
  8785. return a \code{Goto} to the new label.
  8786. \begin{center}
  8787. \begin{minipage}{\textwidth}
  8788. \begin{lstlisting}
  8789. (define (create_block tail)
  8790. (delay
  8791. (define t (force tail))
  8792. (match t
  8793. [(Goto label) (Goto label)]
  8794. [else
  8795. (let ([label (gensym 'block)])
  8796. (set! basic-blocks (cons (cons label t) basic-blocks))
  8797. (Goto label))]))
  8798. \end{lstlisting}
  8799. \end{minipage}
  8800. \end{center}
  8801. \fi}
  8802. {\if\edition\pythonEd
  8803. %
  8804. Here is the new version of the \code{create\_block} auxiliary function
  8805. that works on promises and that checks whether the block consists of a
  8806. solitary \code{goto} statement.\\
  8807. \begin{minipage}{\textwidth}
  8808. \begin{lstlisting}
  8809. def create_block(promise, basic_blocks):
  8810. stmts = force(promise)
  8811. match stmts:
  8812. case [Goto(l)]:
  8813. return Goto(l)
  8814. case _:
  8815. label = label_name(generate_name('block'))
  8816. basic_blocks[label] = stmts
  8817. return Goto(label)
  8818. \end{lstlisting}
  8819. \end{minipage}
  8820. \fi}
  8821. Figure~\ref{fig:explicate-control-challenge} shows the output of
  8822. improved \code{explicate\_control} on this example. As you can
  8823. see, the number of basic blocks has been reduced from four blocks (see
  8824. figure~\ref{fig:explicate-control-s1-38}) to two blocks.
  8825. \begin{figure}[tbp]
  8826. \begin{tcolorbox}[colback=white]
  8827. {\if\edition\racketEd
  8828. \begin{tabular}{lll}
  8829. \begin{minipage}{0.4\textwidth}
  8830. % cond_test_82.rkt
  8831. \begin{lstlisting}
  8832. (let ([y (if #t
  8833. (read)
  8834. (if (eq? (read) 0)
  8835. 777
  8836. (let ([x (read)])
  8837. (+ 1 x))))])
  8838. (+ y 2))
  8839. \end{lstlisting}
  8840. \end{minipage}
  8841. &
  8842. $\Rightarrow$
  8843. &
  8844. \begin{minipage}{0.55\textwidth}
  8845. \begin{lstlisting}
  8846. start:
  8847. y = (read);
  8848. goto block_5;
  8849. block_5:
  8850. return (+ y 2);
  8851. \end{lstlisting}
  8852. \end{minipage}
  8853. \end{tabular}
  8854. \fi}
  8855. {\if\edition\pythonEd
  8856. \begin{tabular}{lll}
  8857. \begin{minipage}{0.4\textwidth}
  8858. % cond_test_41.rkt
  8859. \begin{lstlisting}
  8860. x = input_int()
  8861. y = input_int()
  8862. print(y + 2 \
  8863. if (x == 0 \
  8864. if x < 1 \
  8865. else x == 2) \
  8866. else y + 10)
  8867. \end{lstlisting}
  8868. \end{minipage}
  8869. &
  8870. $\Rightarrow$
  8871. &
  8872. \begin{minipage}{0.55\textwidth}
  8873. \begin{lstlisting}
  8874. start:
  8875. x = input_int()
  8876. y = input_int()
  8877. if x < 1:
  8878. goto block_4
  8879. else:
  8880. goto block_5
  8881. block_4:
  8882. if x == 0:
  8883. goto block_2
  8884. else:
  8885. goto block_3
  8886. block_5:
  8887. if x == 2:
  8888. goto block_2
  8889. else:
  8890. goto block_3
  8891. block_2:
  8892. tmp_0 = y + 2
  8893. goto block_1
  8894. block_3:
  8895. tmp_0 = y + 10
  8896. goto block_1
  8897. block_1:
  8898. print(tmp_0)
  8899. return 0
  8900. \end{lstlisting}
  8901. \end{minipage}
  8902. \end{tabular}
  8903. \fi}
  8904. \end{tcolorbox}
  8905. \caption{Translation from \LangIf{} to \LangCIf{}
  8906. via the improved \code{explicate\_control}.}
  8907. \label{fig:explicate-control-challenge}
  8908. \end{figure}
  8909. %% Recall that in the example output of \code{explicate\_control} in
  8910. %% figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  8911. %% \code{block60} are trivial blocks, they do nothing but jump to another
  8912. %% block. The first goal of this challenge assignment is to remove those
  8913. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  8914. %% \code{explicate\_control} on the left and shows the result of bypassing
  8915. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  8916. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  8917. %% \code{block55}. The optimized code on the right of
  8918. %% figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  8919. %% \code{then} branch jumping directly to \code{block55}. The story is
  8920. %% similar for the \code{else} branch, as well as for the two branches in
  8921. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  8922. %% have been optimized in this way, there are no longer any jumps to
  8923. %% blocks \code{block57} through \code{block60}, so they can be removed.
  8924. %% \begin{figure}[tbp]
  8925. %% \begin{tabular}{lll}
  8926. %% \begin{minipage}{0.4\textwidth}
  8927. %% \begin{lstlisting}
  8928. %% block62:
  8929. %% tmp54 = (read);
  8930. %% if (eq? tmp54 2) then
  8931. %% goto block59;
  8932. %% else
  8933. %% goto block60;
  8934. %% block61:
  8935. %% tmp53 = (read);
  8936. %% if (eq? tmp53 0) then
  8937. %% goto block57;
  8938. %% else
  8939. %% goto block58;
  8940. %% block60:
  8941. %% goto block56;
  8942. %% block59:
  8943. %% goto block55;
  8944. %% block58:
  8945. %% goto block56;
  8946. %% block57:
  8947. %% goto block55;
  8948. %% block56:
  8949. %% return (+ 700 77);
  8950. %% block55:
  8951. %% return (+ 10 32);
  8952. %% start:
  8953. %% tmp52 = (read);
  8954. %% if (eq? tmp52 1) then
  8955. %% goto block61;
  8956. %% else
  8957. %% goto block62;
  8958. %% \end{lstlisting}
  8959. %% \end{minipage}
  8960. %% &
  8961. %% $\Rightarrow$
  8962. %% &
  8963. %% \begin{minipage}{0.55\textwidth}
  8964. %% \begin{lstlisting}
  8965. %% block62:
  8966. %% tmp54 = (read);
  8967. %% if (eq? tmp54 2) then
  8968. %% goto block55;
  8969. %% else
  8970. %% goto block56;
  8971. %% block61:
  8972. %% tmp53 = (read);
  8973. %% if (eq? tmp53 0) then
  8974. %% goto block55;
  8975. %% else
  8976. %% goto block56;
  8977. %% block56:
  8978. %% return (+ 700 77);
  8979. %% block55:
  8980. %% return (+ 10 32);
  8981. %% start:
  8982. %% tmp52 = (read);
  8983. %% if (eq? tmp52 1) then
  8984. %% goto block61;
  8985. %% else
  8986. %% goto block62;
  8987. %% \end{lstlisting}
  8988. %% \end{minipage}
  8989. %% \end{tabular}
  8990. %% \caption{Optimize jumps by removing trivial blocks.}
  8991. %% \label{fig:optimize-jumps}
  8992. %% \end{figure}
  8993. %% The name of this pass is \code{optimize-jumps}. We recommend
  8994. %% implementing this pass in two phases. The first phrase builds a hash
  8995. %% table that maps labels to possibly improved labels. The second phase
  8996. %% changes the target of each \code{goto} to use the improved label. If
  8997. %% the label is for a trivial block, then the hash table should map the
  8998. %% label to the first non-trivial block that can be reached from this
  8999. %% label by jumping through trivial blocks. If the label is for a
  9000. %% non-trivial block, then the hash table should map the label to itself;
  9001. %% we do not want to change jumps to non-trivial blocks.
  9002. %% The first phase can be accomplished by constructing an empty hash
  9003. %% table, call it \code{short-cut}, and then iterating over the control
  9004. %% flow graph. Each time you encounter a block that is just a \code{goto},
  9005. %% then update the hash table, mapping the block's source to the target
  9006. %% of the \code{goto}. Also, the hash table may already have mapped some
  9007. %% labels to the block's source, to you must iterate through the hash
  9008. %% table and update all of those so that they instead map to the target
  9009. %% of the \code{goto}.
  9010. %% For the second phase, we recommend iterating through the $\Tail$ of
  9011. %% each block in the program, updating the target of every \code{goto}
  9012. %% according to the mapping in \code{short-cut}.
  9013. \begin{exercise}\normalfont\normalsize
  9014. Implement the improvements to the \code{explicate\_control} pass.
  9015. Check that it removes trivial blocks in a few example programs. Then
  9016. check that your compiler still passes all your tests.
  9017. \end{exercise}
  9018. \subsection{Remove Jumps}
  9019. There is an opportunity for removing jumps that is apparent in the
  9020. example of figure~\ref{fig:if-example-x86}. The \code{start} block
  9021. ends with a jump to \code{block\_5}, and there are no other jumps to
  9022. \code{block\_5} in the rest of the program. In this situation we can
  9023. avoid the runtime overhead of this jump by merging \code{block\_5}
  9024. into the preceding block, which in this case is the \code{start} block.
  9025. Figure~\ref{fig:remove-jumps} shows the output of
  9026. \code{allocate\_registers} on the left and the result of this
  9027. optimization on the right.
  9028. \begin{figure}[tbp]
  9029. \begin{tcolorbox}[colback=white]
  9030. {\if\edition\racketEd
  9031. \begin{tabular}{lll}
  9032. \begin{minipage}{0.5\textwidth}
  9033. % cond_test_82.rkt
  9034. \begin{lstlisting}
  9035. start:
  9036. callq read_int
  9037. movq %rax, %rcx
  9038. jmp block_5
  9039. block_5:
  9040. movq %rcx, %rax
  9041. addq $2, %rax
  9042. jmp conclusion
  9043. \end{lstlisting}
  9044. \end{minipage}
  9045. &
  9046. $\Rightarrow\qquad$
  9047. \begin{minipage}{0.4\textwidth}
  9048. \begin{lstlisting}
  9049. start:
  9050. callq read_int
  9051. movq %rax, %rcx
  9052. movq %rcx, %rax
  9053. addq $2, %rax
  9054. jmp conclusion
  9055. \end{lstlisting}
  9056. \end{minipage}
  9057. \end{tabular}
  9058. \fi}
  9059. {\if\edition\pythonEd
  9060. \begin{tabular}{lll}
  9061. \begin{minipage}{0.5\textwidth}
  9062. % cond_test_20.rkt
  9063. \begin{lstlisting}
  9064. start:
  9065. callq read_int
  9066. movq %rax, tmp_0
  9067. cmpq 1, tmp_0
  9068. je block_3
  9069. jmp block_4
  9070. block_3:
  9071. movq 42, tmp_1
  9072. jmp block_2
  9073. block_4:
  9074. movq 0, tmp_1
  9075. jmp block_2
  9076. block_2:
  9077. movq tmp_1, %rdi
  9078. callq print_int
  9079. movq 0, %rax
  9080. jmp conclusion
  9081. \end{lstlisting}
  9082. \end{minipage}
  9083. &
  9084. $\Rightarrow\qquad$
  9085. \begin{minipage}{0.4\textwidth}
  9086. \begin{lstlisting}
  9087. start:
  9088. callq read_int
  9089. movq %rax, tmp_0
  9090. cmpq 1, tmp_0
  9091. je block_3
  9092. movq 0, tmp_1
  9093. jmp block_2
  9094. block_3:
  9095. movq 42, tmp_1
  9096. jmp block_2
  9097. block_2:
  9098. movq tmp_1, %rdi
  9099. callq print_int
  9100. movq 0, %rax
  9101. jmp conclusion
  9102. \end{lstlisting}
  9103. \end{minipage}
  9104. \end{tabular}
  9105. \fi}
  9106. \end{tcolorbox}
  9107. \caption{Merging basic blocks by removing unnecessary jumps.}
  9108. \label{fig:remove-jumps}
  9109. \end{figure}
  9110. \begin{exercise}\normalfont\normalsize
  9111. %
  9112. Implement a pass named \code{remove\_jumps} that merges basic blocks
  9113. into their preceding basic block, when there is only one preceding
  9114. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  9115. %
  9116. {\if\edition\racketEd
  9117. In the \code{run-tests.rkt} script, add the following entry to the
  9118. list of \code{passes} between \code{allocate\_registers}
  9119. and \code{patch\_instructions}:
  9120. \begin{lstlisting}
  9121. (list "remove_jumps" remove_jumps interp-pseudo-x86-1)
  9122. \end{lstlisting}
  9123. \fi}
  9124. %
  9125. Run the script to test your compiler.
  9126. %
  9127. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  9128. blocks on several test programs.
  9129. \end{exercise}
  9130. \section{Further Reading}
  9131. \label{sec:cond-further-reading}
  9132. The algorithm for the \code{explicate\_control} pass is based on the
  9133. \code{expose-basic-blocks} pass in the course notes of
  9134. \citet{Dybvig:2010aa}.
  9135. %
  9136. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  9137. \citet{Appel:2003fk}, and is related to translations into continuation
  9138. passing
  9139. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  9140. %
  9141. The treatment of conditionals in the \code{explicate\_control} pass is
  9142. similar to short-cut boolean
  9143. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  9144. and the case-of-case transformation~\citep{PeytonJones:1998}.
  9145. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9146. \chapter{Loops and Dataflow Analysis}
  9147. \label{ch:Lwhile}
  9148. \setcounter{footnote}{0}
  9149. % TODO: define R'_8
  9150. % TODO: multi-graph
  9151. {\if\edition\racketEd
  9152. %
  9153. In this chapter we study two features that are the hallmarks of
  9154. imperative programming languages: loops and assignments to local
  9155. variables. The following example demonstrates these new features by
  9156. computing the sum of the first five positive integers:
  9157. % similar to loop_test_1.rkt
  9158. \begin{lstlisting}
  9159. (let ([sum 0])
  9160. (let ([i 5])
  9161. (begin
  9162. (while (> i 0)
  9163. (begin
  9164. (set! sum (+ sum i))
  9165. (set! i (- i 1))))
  9166. sum)))
  9167. \end{lstlisting}
  9168. The \code{while} loop consists of a condition and a
  9169. body.\footnote{The \code{while} loop is not a built-in
  9170. feature of the Racket language, but Racket includes many looping
  9171. constructs and it is straightforward to define \code{while} as a
  9172. macro.} The body is evaluated repeatedly so long as the condition
  9173. remains true.
  9174. %
  9175. The \code{set!} consists of a variable and a right-hand side
  9176. expression. The \code{set!} updates value of the variable to the
  9177. value of the right-hand side.
  9178. %
  9179. The primary purpose of both the \code{while} loop and \code{set!} is
  9180. to cause side effects, so they do not give a meaningful result
  9181. value. Instead, their result is the \code{\#<void>} value. The
  9182. expression \code{(void)} is an explicit way to create the
  9183. \code{\#<void>} value, and it has type \code{Void}. The
  9184. \code{\#<void>} value can be passed around just like other values
  9185. inside an \LangLoop{} program, and it can be compared for equality with
  9186. another \code{\#<void>} value. However, there are no other operations
  9187. specific to the \code{\#<void>} value in \LangLoop{}. In contrast,
  9188. Racket defines the \code{void?} predicate that returns \code{\#t}
  9189. when applied to \code{\#<void>} and \code{\#f} otherwise.%
  9190. %
  9191. \footnote{Racket's \code{Void} type corresponds to what is often
  9192. called the \code{Unit} type. Racket's \code{Void} type is inhabited
  9193. by a single value \code{\#<void>}, which corresponds to \code{unit}
  9194. or \code{()} in the literature~\citep{Pierce:2002hj}.}
  9195. %
  9196. With the addition of side effect-producing features such as
  9197. \code{while} loop and \code{set!}, it is helpful to include a language
  9198. feature for sequencing side effects: the \code{begin} expression. It
  9199. consists of one or more subexpressions that are evaluated
  9200. left to right.
  9201. %
  9202. \fi}
  9203. {\if\edition\pythonEd
  9204. %
  9205. In this chapter we study loops, one of the hallmarks of imperative
  9206. programming languages. The following example demonstrates the
  9207. \code{while} loop by computing the sum of the first five positive
  9208. integers.
  9209. \begin{lstlisting}
  9210. sum = 0
  9211. i = 5
  9212. while i > 0:
  9213. sum = sum + i
  9214. i = i - 1
  9215. print(sum)
  9216. \end{lstlisting}
  9217. The \code{while} loop consists of a condition expression and a body (a
  9218. sequence of statements). The body is evaluated repeatedly so long as
  9219. the condition remains true.
  9220. %
  9221. \fi}
  9222. \section{The \LangLoop{} Language}
  9223. \newcommand{\LwhileGrammarRacket}{
  9224. \begin{array}{lcl}
  9225. \Type &::=& \key{Void}\\
  9226. \Exp &::=& \CSETBANG{\Var}{\Exp}
  9227. \MID \CBEGIN{\Exp^{*}}{\Exp}
  9228. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  9229. \end{array}
  9230. }
  9231. \newcommand{\LwhileASTRacket}{
  9232. \begin{array}{lcl}
  9233. \Type &::=& \key{Void}\\
  9234. \Exp &::=& \SETBANG{\Var}{\Exp}
  9235. \MID \BEGIN{\Exp^{*}}{\Exp}
  9236. \MID \WHILE{\Exp}{\Exp}
  9237. \MID \VOID{}
  9238. \end{array}
  9239. }
  9240. \newcommand{\LwhileGrammarPython}{
  9241. \begin{array}{rcl}
  9242. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  9243. \end{array}
  9244. }
  9245. \newcommand{\LwhileASTPython}{
  9246. \begin{array}{lcl}
  9247. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  9248. \end{array}
  9249. }
  9250. \begin{figure}[tp]
  9251. \centering
  9252. \begin{tcolorbox}[colback=white]
  9253. \small
  9254. {\if\edition\racketEd
  9255. \[
  9256. \begin{array}{l}
  9257. \gray{\LintGrammarRacket{}} \\ \hline
  9258. \gray{\LvarGrammarRacket{}} \\ \hline
  9259. \gray{\LifGrammarRacket{}} \\ \hline
  9260. \LwhileGrammarRacket \\
  9261. \begin{array}{lcl}
  9262. \LangLoopM{} &::=& \Exp
  9263. \end{array}
  9264. \end{array}
  9265. \]
  9266. \fi}
  9267. {\if\edition\pythonEd
  9268. \[
  9269. \begin{array}{l}
  9270. \gray{\LintGrammarPython} \\ \hline
  9271. \gray{\LvarGrammarPython} \\ \hline
  9272. \gray{\LifGrammarPython} \\ \hline
  9273. \LwhileGrammarPython \\
  9274. \begin{array}{rcl}
  9275. \LangLoopM{} &::=& \Stmt^{*}
  9276. \end{array}
  9277. \end{array}
  9278. \]
  9279. \fi}
  9280. \end{tcolorbox}
  9281. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-concrete-syntax}).}
  9282. \label{fig:Lwhile-concrete-syntax}
  9283. \end{figure}
  9284. \begin{figure}[tp]
  9285. \centering
  9286. \begin{tcolorbox}[colback=white]
  9287. \small
  9288. {\if\edition\racketEd
  9289. \[
  9290. \begin{array}{l}
  9291. \gray{\LintOpAST} \\ \hline
  9292. \gray{\LvarASTRacket{}} \\ \hline
  9293. \gray{\LifASTRacket{}} \\ \hline
  9294. \LwhileASTRacket{} \\
  9295. \begin{array}{lcl}
  9296. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  9297. \end{array}
  9298. \end{array}
  9299. \]
  9300. \fi}
  9301. {\if\edition\pythonEd
  9302. \[
  9303. \begin{array}{l}
  9304. \gray{\LintASTPython} \\ \hline
  9305. \gray{\LvarASTPython} \\ \hline
  9306. \gray{\LifASTPython} \\ \hline
  9307. \LwhileASTPython \\
  9308. \begin{array}{lcl}
  9309. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  9310. \end{array}
  9311. \end{array}
  9312. \]
  9313. \fi}
  9314. \end{tcolorbox}
  9315. \python{
  9316. \index{subject}{While@\texttt{While}}
  9317. }
  9318. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-syntax}).}
  9319. \label{fig:Lwhile-syntax}
  9320. \end{figure}
  9321. Figure~\ref{fig:Lwhile-concrete-syntax} shows the definition of the
  9322. concrete syntax of \LangLoop{}, and figure~\ref{fig:Lwhile-syntax}
  9323. shows the definition of its abstract syntax.
  9324. %
  9325. The definitional interpreter for \LangLoop{} is shown in
  9326. figure~\ref{fig:interp-Lwhile}.
  9327. %
  9328. {\if\edition\racketEd
  9329. %
  9330. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  9331. and \code{Void}, and we make changes to the cases for \code{Var} and
  9332. \code{Let} regarding variables. To support assignment to variables and
  9333. to make their lifetimes indefinite (see the second example in
  9334. section~\ref{sec:assignment-scoping}), we box the value that is bound
  9335. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  9336. value.
  9337. %
  9338. Now we discuss the new cases. For \code{SetBang}, we find the
  9339. variable in the environment to obtain a boxed value, and then we change
  9340. it using \code{set-box!} to the result of evaluating the right-hand
  9341. side. The result value of a \code{SetBang} is \code{\#<void>}.
  9342. %
  9343. For the \code{WhileLoop}, we repeatedly (1) evaluate the condition, and
  9344. if the result is true, (2) evaluate the body.
  9345. The result value of a \code{while} loop is also \code{\#<void>}.
  9346. %
  9347. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  9348. subexpressions \itm{es} for their effects and then evaluates
  9349. and returns the result from \itm{body}.
  9350. %
  9351. The $\VOID{}$ expression produces the \code{\#<void>} value.
  9352. %
  9353. \fi}
  9354. {\if\edition\pythonEd
  9355. %
  9356. We add a new case for \code{While} in the \code{interp\_stmts}
  9357. function, where we repeatedly interpret the \code{body} so long as the
  9358. \code{test} expression remains true.
  9359. %
  9360. \fi}
  9361. \begin{figure}[tbp]
  9362. \begin{tcolorbox}[colback=white]
  9363. {\if\edition\racketEd
  9364. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9365. (define interp-Lwhile-class
  9366. (class interp-Lif-class
  9367. (super-new)
  9368. (define/override ((interp-exp env) e)
  9369. (define recur (interp-exp env))
  9370. (match e
  9371. [(Let x e body)
  9372. (define new-env (dict-set env x (box (recur e))))
  9373. ((interp-exp new-env) body)]
  9374. [(Var x) (unbox (dict-ref env x))]
  9375. [(SetBang x rhs)
  9376. (set-box! (dict-ref env x) (recur rhs))]
  9377. [(WhileLoop cnd body)
  9378. (define (loop)
  9379. (cond [(recur cnd) (recur body) (loop)]
  9380. [else (void)]))
  9381. (loop)]
  9382. [(Begin es body)
  9383. (for ([e es]) (recur e))
  9384. (recur body)]
  9385. [(Void) (void)]
  9386. [else ((super interp-exp env) e)]))
  9387. ))
  9388. (define (interp-Lwhile p)
  9389. (send (new interp-Lwhile-class) interp-program p))
  9390. \end{lstlisting}
  9391. \fi}
  9392. {\if\edition\pythonEd
  9393. \begin{lstlisting}
  9394. class InterpLwhile(InterpLif):
  9395. def interp_stmts(self, ss, env):
  9396. if len(ss) == 0:
  9397. return
  9398. match ss[0]:
  9399. case While(test, body, []):
  9400. while self.interp_exp(test, env):
  9401. self.interp_stmts(body, env)
  9402. return self.interp_stmts(ss[1:], env)
  9403. case _:
  9404. return super().interp_stmts(ss, env)
  9405. \end{lstlisting}
  9406. \fi}
  9407. \end{tcolorbox}
  9408. \caption{Interpreter for \LangLoop{}.}
  9409. \label{fig:interp-Lwhile}
  9410. \end{figure}
  9411. The definition of the type checker for \LangLoop{} is shown in
  9412. figure~\ref{fig:type-check-Lwhile}.
  9413. %
  9414. {\if\edition\racketEd
  9415. %
  9416. The type checking of the \code{SetBang} expression requires the type
  9417. of the variable and the right-hand side to agree. The result type is
  9418. \code{Void}. For \code{while}, the condition must be a \BOOLTY{}
  9419. and the result type is \code{Void}. For \code{Begin}, the result type
  9420. is the type of its last subexpression.
  9421. %
  9422. \fi}
  9423. %
  9424. {\if\edition\pythonEd
  9425. %
  9426. A \code{while} loop is well typed if the type of the \code{test}
  9427. expression is \code{bool} and the statements in the \code{body} are
  9428. well typed.
  9429. %
  9430. \fi}
  9431. \begin{figure}[tbp]
  9432. \begin{tcolorbox}[colback=white]
  9433. {\if\edition\racketEd
  9434. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9435. (define type-check-Lwhile-class
  9436. (class type-check-Lif-class
  9437. (super-new)
  9438. (inherit check-type-equal?)
  9439. (define/override (type-check-exp env)
  9440. (lambda (e)
  9441. (define recur (type-check-exp env))
  9442. (match e
  9443. [(SetBang x rhs)
  9444. (define-values (rhs^ rhsT) (recur rhs))
  9445. (define varT (dict-ref env x))
  9446. (check-type-equal? rhsT varT e)
  9447. (values (SetBang x rhs^) 'Void)]
  9448. [(WhileLoop cnd body)
  9449. (define-values (cnd^ Tc) (recur cnd))
  9450. (check-type-equal? Tc 'Boolean e)
  9451. (define-values (body^ Tbody) ((type-check-exp env) body))
  9452. (values (WhileLoop cnd^ body^) 'Void)]
  9453. [(Begin es body)
  9454. (define-values (es^ ts)
  9455. (for/lists (l1 l2) ([e es]) (recur e)))
  9456. (define-values (body^ Tbody) (recur body))
  9457. (values (Begin es^ body^) Tbody)]
  9458. [else ((super type-check-exp env) e)])))
  9459. ))
  9460. (define (type-check-Lwhile p)
  9461. (send (new type-check-Lwhile-class) type-check-program p))
  9462. \end{lstlisting}
  9463. \fi}
  9464. {\if\edition\pythonEd
  9465. \begin{lstlisting}
  9466. class TypeCheckLwhile(TypeCheckLif):
  9467. def type_check_stmts(self, ss, env):
  9468. if len(ss) == 0:
  9469. return
  9470. match ss[0]:
  9471. case While(test, body, []):
  9472. test_t = self.type_check_exp(test, env)
  9473. check_type_equal(bool, test_t, test)
  9474. body_t = self.type_check_stmts(body, env)
  9475. return self.type_check_stmts(ss[1:], env)
  9476. case _:
  9477. return super().type_check_stmts(ss, env)
  9478. \end{lstlisting}
  9479. \fi}
  9480. \end{tcolorbox}
  9481. \caption{Type checker for the \LangLoop{} language.}
  9482. \label{fig:type-check-Lwhile}
  9483. \end{figure}
  9484. {\if\edition\racketEd
  9485. %
  9486. At first glance, the translation of these language features to x86
  9487. seems straightforward because the \LangCIf{} intermediate language
  9488. already supports all the ingredients that we need: assignment,
  9489. \code{goto}, conditional branching, and sequencing. However, there are
  9490. complications that arise, which we discuss in the next section. After
  9491. that we introduce the changes necessary to the existing passes.
  9492. %
  9493. \fi}
  9494. {\if\edition\pythonEd
  9495. %
  9496. At first glance, the translation of \code{while} loops to x86 seems
  9497. straightforward because the \LangCIf{} intermediate language already
  9498. supports \code{goto} and conditional branching. However, there are
  9499. complications that arise which we discuss in the next section. After
  9500. that we introduce the changes necessary to the existing passes.
  9501. %
  9502. \fi}
  9503. \section{Cyclic Control Flow and Dataflow Analysis}
  9504. \label{sec:dataflow-analysis}
  9505. Up until this point, the programs generated in
  9506. \code{explicate\_control} were guaranteed to be acyclic. However, each
  9507. \code{while} loop introduces a cycle. Does that matter?
  9508. %
  9509. Indeed, it does. Recall that for register allocation, the compiler
  9510. performs liveness analysis to determine which variables can share the
  9511. same register. To accomplish this, we analyzed the control-flow graph
  9512. in reverse topological order
  9513. (section~\ref{sec:liveness-analysis-Lif}), but topological order is
  9514. well defined only for acyclic graphs.
  9515. Let us return to the example of computing the sum of the first five
  9516. positive integers. Here is the program after instruction selection but
  9517. before register allocation.
  9518. \begin{center}
  9519. {\if\edition\racketEd
  9520. \begin{minipage}{0.45\textwidth}
  9521. \begin{lstlisting}
  9522. (define (main) : Integer
  9523. mainstart:
  9524. movq $0, sum
  9525. movq $5, i
  9526. jmp block5
  9527. block5:
  9528. movq i, tmp3
  9529. cmpq tmp3, $0
  9530. jl block7
  9531. jmp block8
  9532. \end{lstlisting}
  9533. \end{minipage}
  9534. \begin{minipage}{0.45\textwidth}
  9535. \begin{lstlisting}
  9536. block7:
  9537. addq i, sum
  9538. movq $1, tmp4
  9539. negq tmp4
  9540. addq tmp4, i
  9541. jmp block5
  9542. block8:
  9543. movq $27, %rax
  9544. addq sum, %rax
  9545. jmp mainconclusion
  9546. )
  9547. \end{lstlisting}
  9548. \end{minipage}
  9549. \fi}
  9550. {\if\edition\pythonEd
  9551. \begin{minipage}{0.45\textwidth}
  9552. \begin{lstlisting}
  9553. mainstart:
  9554. movq $0, sum
  9555. movq $5, i
  9556. jmp block5
  9557. block5:
  9558. cmpq $0, i
  9559. jg block7
  9560. jmp block8
  9561. \end{lstlisting}
  9562. \end{minipage}
  9563. \begin{minipage}{0.45\textwidth}
  9564. \begin{lstlisting}
  9565. block7:
  9566. addq i, sum
  9567. subq $1, i
  9568. jmp block5
  9569. block8:
  9570. movq sum, %rdi
  9571. callq print_int
  9572. movq $0, %rax
  9573. jmp mainconclusion
  9574. \end{lstlisting}
  9575. \end{minipage}
  9576. \fi}
  9577. \end{center}
  9578. Recall that liveness analysis works backward, starting at the end
  9579. of each function. For this example we could start with \code{block8}
  9580. because we know what is live at the beginning of the conclusion:
  9581. only \code{rax} and \code{rsp}. So the live-before set
  9582. for \code{block8} is \code{\{rsp,sum\}}.
  9583. %
  9584. Next we might try to analyze \code{block5} or \code{block7}, but
  9585. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  9586. we are stuck.
  9587. The way out of this impasse is to realize that we can compute an
  9588. underapproximation of each live-before set by starting with empty
  9589. live-after sets. By \emph{underapproximation}, we mean that the set
  9590. contains only variables that are live for some execution of the
  9591. program, but the set may be missing some variables that are live.
  9592. Next, the underapproximations for each block can be improved by (1)
  9593. updating the live-after set for each block using the approximate
  9594. live-before sets from the other blocks, and (2) performing liveness
  9595. analysis again on each block. In fact, by iterating this process, the
  9596. underapproximations eventually become the correct solutions!
  9597. %
  9598. This approach of iteratively analyzing a control-flow graph is
  9599. applicable to many static analysis problems and goes by the name
  9600. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  9601. \citet{Kildall:1973vn} in his PhD thesis at the University of
  9602. Washington.
  9603. Let us apply this approach to the previously presented example. We use
  9604. the empty set for the initial live-before set for each block. Let
  9605. $m_0$ be the following mapping from label names to sets of locations
  9606. (variables and registers):
  9607. \begin{center}
  9608. \begin{lstlisting}
  9609. mainstart: {}, block5: {}, block7: {}, block8: {}
  9610. \end{lstlisting}
  9611. \end{center}
  9612. Using the above live-before approximations, we determine the
  9613. live-after for each block and then apply liveness analysis to each
  9614. block. This produces our next approximation $m_1$ of the live-before
  9615. sets.
  9616. \begin{center}
  9617. \begin{lstlisting}
  9618. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  9619. \end{lstlisting}
  9620. \end{center}
  9621. For the second round, the live-after for \code{mainstart} is the
  9622. current live-before for \code{block5}, which is \code{\{i\}}. Therefore
  9623. the liveness analysis for \code{mainstart} computes the empty set. The
  9624. live-after for \code{block5} is the union of the live-before sets for
  9625. \code{block7} and \code{block8}, which is \code{\{i , rsp, sum\}}.
  9626. So the liveness analysis for \code{block5} computes \code{\{i , rsp,
  9627. sum\}}. The live-after for \code{block7} is the live-before for
  9628. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  9629. So the liveness analysis for \code{block7} remains \code{\{i,
  9630. sum\}}. Together these yield the following approximation $m_2$ of
  9631. the live-before sets:
  9632. \begin{center}
  9633. \begin{lstlisting}
  9634. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  9635. \end{lstlisting}
  9636. \end{center}
  9637. In the preceding iteration, only \code{block5} changed, so we can
  9638. limit our attention to \code{mainstart} and \code{block7}, the two
  9639. blocks that jump to \code{block5}. As a result, the live-before sets
  9640. for \code{mainstart} and \code{block7} are updated to include
  9641. \code{rsp}, yielding the following approximation $m_3$:
  9642. \begin{center}
  9643. \begin{lstlisting}
  9644. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  9645. \end{lstlisting}
  9646. \end{center}
  9647. Because \code{block7} changed, we analyze \code{block5} once more, but
  9648. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  9649. our approximations have converged, so $m_3$ is the solution.
  9650. This iteration process is guaranteed to converge to a solution by the
  9651. Kleene fixed-point theorem, a general theorem about functions on
  9652. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  9653. any collection that comes with a partial ordering $\sqsubseteq$ on its
  9654. elements, a least element $\bot$ (pronounced \emph{bottom}), and a
  9655. join operator
  9656. $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{partial
  9657. ordering}\index{subject}{join}\footnote{Technically speaking, we
  9658. will be working with join semilattices.} When two elements are
  9659. ordered $m_i \sqsubseteq m_j$, it means that $m_j$ contains at least
  9660. as much information as $m_i$, so we can think of $m_j$ as a
  9661. better-than-or-equal-to approximation in relation to $m_i$. The
  9662. bottom element $\bot$ represents the complete lack of information,
  9663. that is, the worst approximation. The join operator takes two lattice
  9664. elements and combines their information; that is, it produces the
  9665. least upper bound of the two.\index{subject}{least upper bound}
  9666. A dataflow analysis typically involves two lattices: one lattice to
  9667. represent abstract states and another lattice that aggregates the
  9668. abstract states of all the blocks in the control-flow graph. For
  9669. liveness analysis, an abstract state is a set of locations. We form
  9670. the lattice $L$ by taking its elements to be sets of locations, the
  9671. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  9672. set, and the join operator to be set union.
  9673. %
  9674. We form a second lattice $M$ by taking its elements to be mappings
  9675. from the block labels to sets of locations (elements of $L$). We
  9676. order the mappings point-wise, using the ordering of $L$. So, given any
  9677. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  9678. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  9679. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  9680. to the empty set; that is, $\bot_M(\ell) = \emptyset$.
  9681. We can think of one iteration of liveness analysis applied to the
  9682. whole program as being a function $f$ on the lattice $M$. It takes a
  9683. mapping as input and computes a new mapping.
  9684. \[
  9685. f(m_i) = m_{i+1}
  9686. \]
  9687. Next let us think for a moment about what a final solution $m_s$
  9688. should look like. If we perform liveness analysis using the solution
  9689. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  9690. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  9691. \[
  9692. f(m_s) = m_s
  9693. \]
  9694. Furthermore, the solution should include only locations that are
  9695. forced to be there by performing liveness analysis on the program, so
  9696. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  9697. The Kleene fixed-point theorem states that if a function $f$ is
  9698. monotone (better inputs produce better outputs), then the least fixed
  9699. point of $f$ is the least upper bound of the \emph{ascending Kleene
  9700. chain} obtained by starting at $\bot$ and iterating $f$, as
  9701. follows:\index{subject}{Kleene fixed-point theorem}
  9702. \[
  9703. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9704. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  9705. \]
  9706. When a lattice contains only finitely long ascending chains, then
  9707. every Kleene chain tops out at some fixed point after some number of
  9708. iterations of $f$.
  9709. \[
  9710. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9711. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  9712. \]
  9713. The liveness analysis is indeed a monotone function and the lattice
  9714. $M$ has finitely long ascending chains because there are only a
  9715. finite number of variables and blocks in the program. Thus we are
  9716. guaranteed that iteratively applying liveness analysis to all blocks
  9717. in the program will eventually produce the least fixed point solution.
  9718. Next let us consider dataflow analysis in general and discuss the
  9719. generic work list algorithm (figure~\ref{fig:generic-dataflow}).
  9720. %
  9721. The algorithm has four parameters: the control-flow graph \code{G}, a
  9722. function \code{transfer} that applies the analysis to one block, and the
  9723. \code{bottom} and \code{join} operators for the lattice of abstract
  9724. states. The \code{analyze\_dataflow} function is formulated as a
  9725. \emph{forward} dataflow analysis; that is, the inputs to the transfer
  9726. function come from the predecessor nodes in the control-flow
  9727. graph. However, liveness analysis is a \emph{backward} dataflow
  9728. analysis, so in that case one must supply the \code{analyze\_dataflow}
  9729. function with the transpose of the control-flow graph.
  9730. The algorithm begins by creating the bottom mapping, represented by a
  9731. hash table. It then pushes all the nodes in the control-flow graph
  9732. onto the work list (a queue). The algorithm repeats the \code{while}
  9733. loop as long as there are items in the work list. In each iteration, a
  9734. node is popped from the work list and processed. The \code{input} for
  9735. the node is computed by taking the join of the abstract states of all
  9736. the predecessor nodes. The \code{transfer} function is then applied to
  9737. obtain the \code{output} abstract state. If the output differs from
  9738. the previous state for this block, the mapping for this block is
  9739. updated and its successor nodes are pushed onto the work list.
  9740. \begin{figure}[tb]
  9741. \begin{tcolorbox}[colback=white]
  9742. {\if\edition\racketEd
  9743. \begin{lstlisting}
  9744. (define (analyze_dataflow G transfer bottom join)
  9745. (define mapping (make-hash))
  9746. (for ([v (in-vertices G)])
  9747. (dict-set! mapping v bottom))
  9748. (define worklist (make-queue))
  9749. (for ([v (in-vertices G)])
  9750. (enqueue! worklist v))
  9751. (define trans-G (transpose G))
  9752. (while (not (queue-empty? worklist))
  9753. (define node (dequeue! worklist))
  9754. (define input (for/fold ([state bottom])
  9755. ([pred (in-neighbors trans-G node)])
  9756. (join state (dict-ref mapping pred))))
  9757. (define output (transfer node input))
  9758. (cond [(not (equal? output (dict-ref mapping node)))
  9759. (dict-set! mapping node output)
  9760. (for ([v (in-neighbors G node)])
  9761. (enqueue! worklist v))]))
  9762. mapping)
  9763. \end{lstlisting}
  9764. \fi}
  9765. {\if\edition\pythonEd
  9766. \begin{lstlisting}
  9767. def analyze_dataflow(G, transfer, bottom, join):
  9768. trans_G = transpose(G)
  9769. mapping = dict((v, bottom) for v in G.vertices())
  9770. worklist = deque(G.vertices)
  9771. while worklist:
  9772. node = worklist.pop()
  9773. inputs = [mapping[v] for v in trans_G.adjacent(node)]
  9774. input = reduce(join, inputs, bottom)
  9775. output = transfer(node, input)
  9776. if output != mapping[node]:
  9777. mapping[node] = output
  9778. worklist.extend(G.adjacent(node))
  9779. \end{lstlisting}
  9780. \fi}
  9781. \end{tcolorbox}
  9782. \caption{Generic work list algorithm for dataflow analysis}
  9783. \label{fig:generic-dataflow}
  9784. \end{figure}
  9785. {\if\edition\racketEd
  9786. \section{Mutable Variables and Remove Complex Operands}
  9787. There is a subtle interaction between the
  9788. \code{remove\_complex\_operands} pass, the addition of \code{set!},
  9789. and the left-to-right order of evaluation of Racket. Consider the
  9790. following example:
  9791. \begin{lstlisting}
  9792. (let ([x 2])
  9793. (+ x (begin (set! x 40) x)))
  9794. \end{lstlisting}
  9795. The result of this program is \code{42} because the first read from
  9796. \code{x} produces \code{2} and the second produces \code{40}. However,
  9797. if we naively apply the \code{remove\_complex\_operands} pass to this
  9798. example we obtain the following program whose result is \code{80}!
  9799. \begin{lstlisting}
  9800. (let ([x 2])
  9801. (let ([tmp (begin (set! x 40) x)])
  9802. (+ x tmp)))
  9803. \end{lstlisting}
  9804. The problem is that with mutable variables, the ordering between
  9805. reads and writes is important, and the
  9806. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  9807. before the first read of \code{x}.
  9808. We recommend solving this problem by giving special treatment to reads
  9809. from mutable variables, that is, variables that occur on the left-hand
  9810. side of a \code{set!}. We mark each read from a mutable variable with
  9811. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  9812. that the read operation is effectful in that it can produce different
  9813. results at different points in time. Let's apply this idea to the
  9814. following variation that also involves a variable that is not mutated:
  9815. % loop_test_24.rkt
  9816. \begin{lstlisting}
  9817. (let ([x 2])
  9818. (let ([y 0])
  9819. (+ y (+ x (begin (set! x 40) x)))))
  9820. \end{lstlisting}
  9821. We first analyze this program to discover that variable \code{x}
  9822. is mutable but \code{y} is not. We then transform the program as
  9823. follows, replacing each occurrence of \code{x} with \code{(get! x)}:
  9824. \begin{lstlisting}
  9825. (let ([x 2])
  9826. (let ([y 0])
  9827. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  9828. \end{lstlisting}
  9829. Now that we have a clear distinction between reads from mutable and
  9830. immutable variables, we can apply the \code{remove\_complex\_operands}
  9831. pass, where reads from immutable variables are still classified as
  9832. atomic expressions but reads from mutable variables are classified as
  9833. complex. Thus, \code{remove\_complex\_operands} yields the following
  9834. program:\\
  9835. \begin{minipage}{\textwidth}
  9836. \begin{lstlisting}
  9837. (let ([x 2])
  9838. (let ([y 0])
  9839. (+ y (let ([t1 (get! x)])
  9840. (let ([t2 (begin (set! x 40) (get! x))])
  9841. (+ t1 t2))))))
  9842. \end{lstlisting}
  9843. \end{minipage}
  9844. The temporary variable \code{t1} gets the value of \code{x} before the
  9845. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  9846. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  9847. do not generate a temporary variable for the occurrence of \code{y}
  9848. because it's an immutable variable. We want to avoid such unnecessary
  9849. extra temporaries because they would needless increase the number of
  9850. variables, making it more likely for some of them to be spilled. The
  9851. result of this program is \code{42}, the same as the result prior to
  9852. \code{remove\_complex\_operands}.
  9853. The approach that we've sketched requires only a small
  9854. modification to \code{remove\_complex\_operands} to handle
  9855. \code{get!}. However, it requires a new pass, called
  9856. \code{uncover-get!}, that we discuss in
  9857. section~\ref{sec:uncover-get-bang}.
  9858. As an aside, this problematic interaction between \code{set!} and the
  9859. pass \code{remove\_complex\_operands} is particular to Racket and not
  9860. its predecessor, the Scheme language. The key difference is that
  9861. Scheme does not specify an order of evaluation for the arguments of an
  9862. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  9863. Scheme is free to choose any ordering: both \code{42} and \code{80}
  9864. would be correct results for the example program. Interestingly,
  9865. Racket is implemented on top of the Chez Scheme
  9866. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  9867. presented in this section (using extra \code{let} bindings to control
  9868. the order of evaluation) is used in the translation from Racket to
  9869. Scheme~\citep{Flatt:2019tb}.
  9870. \fi} % racket
  9871. Having discussed the complications that arise from adding support for
  9872. assignment and loops, we turn to discussing the individual compilation
  9873. passes.
  9874. {\if\edition\racketEd
  9875. \section{Uncover \texttt{get!}}
  9876. \label{sec:uncover-get-bang}
  9877. The goal of this pass is to mark uses of mutable variables so that
  9878. \code{remove\_complex\_operands} can treat them as complex expressions
  9879. and thereby preserve their ordering relative to the side effects in
  9880. other operands. So, the first step is to collect all the mutable
  9881. variables. We recommend creating an auxiliary function for this,
  9882. named \code{collect-set!}, that recursively traverses expressions,
  9883. returning the set of all variables that occur on the left-hand side of a
  9884. \code{set!}. Here's an excerpt of its implementation.
  9885. \begin{center}
  9886. \begin{minipage}{\textwidth}
  9887. \begin{lstlisting}
  9888. (define (collect-set! e)
  9889. (match e
  9890. [(Var x) (set)]
  9891. [(Int n) (set)]
  9892. [(Let x rhs body)
  9893. (set-union (collect-set! rhs) (collect-set! body))]
  9894. [(SetBang var rhs)
  9895. (set-union (set var) (collect-set! rhs))]
  9896. ...))
  9897. \end{lstlisting}
  9898. \end{minipage}
  9899. \end{center}
  9900. By placing this pass after \code{uniquify}, we need not worry about
  9901. variable shadowing, and our logic for \code{Let} can remain simple, as
  9902. in this excerpt.
  9903. The second step is to mark the occurrences of the mutable variables
  9904. with the new \code{GetBang} AST node (\code{get!} in concrete
  9905. syntax). The following is an excerpt of the \code{uncover-get!-exp}
  9906. function, which takes two parameters: the set of mutable variables
  9907. \code{set!-vars} and the expression \code{e} to be processed. The
  9908. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  9909. mutable variable or leaves it alone if not.
  9910. \begin{center}
  9911. \begin{minipage}{\textwidth}
  9912. \begin{lstlisting}
  9913. (define ((uncover-get!-exp set!-vars) e)
  9914. (match e
  9915. [(Var x)
  9916. (if (set-member? set!-vars x)
  9917. (GetBang x)
  9918. (Var x))]
  9919. ...))
  9920. \end{lstlisting}
  9921. \end{minipage}
  9922. \end{center}
  9923. To wrap things up, define the \code{uncover-get!} function for
  9924. processing a whole program, using \code{collect-set!} to obtain the
  9925. set of mutable variables and then \code{uncover-get!-exp} to replace
  9926. their occurrences with \code{GetBang}.
  9927. \fi}
  9928. \section{Remove Complex Operands}
  9929. \label{sec:rco-loop}
  9930. {\if\edition\racketEd
  9931. %
  9932. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  9933. \code{while} are all complex expressions. The subexpressions of
  9934. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  9935. %
  9936. \fi}
  9937. {\if\edition\pythonEd
  9938. %
  9939. The change needed for this pass is to add a case for the \code{while}
  9940. statement. The condition of a \code{while} loop is allowed to be a
  9941. complex expression, just like the condition of the \code{if}
  9942. statement.
  9943. %
  9944. \fi}
  9945. %
  9946. Figure~\ref{fig:Lwhile-anf-syntax} defines the output language
  9947. \LangLoopANF{} of this pass.
  9948. \newcommand{\LwhileMonadASTRacket}{
  9949. \begin{array}{rcl}
  9950. \Atm &::=& \VOID{} \\
  9951. \Exp &::=& \GETBANG{\Var}
  9952. \MID \SETBANG{\Var}{\Exp}
  9953. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  9954. &\MID& \WHILE{\Exp}{\Exp}
  9955. \end{array}
  9956. }
  9957. \newcommand{\LwhileMonadASTPython}{
  9958. \begin{array}{rcl}
  9959. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  9960. \end{array}
  9961. }
  9962. \begin{figure}[tp]
  9963. \centering
  9964. \begin{tcolorbox}[colback=white]
  9965. \small
  9966. {\if\edition\racketEd
  9967. \[
  9968. \begin{array}{l}
  9969. \gray{\LvarMonadASTRacket} \\ \hline
  9970. \gray{\LifMonadASTRacket} \\ \hline
  9971. \LwhileMonadASTRacket \\
  9972. \begin{array}{rcl}
  9973. \LangLoopANF &::=& \PROGRAM{\code{'()}}{\Exp}
  9974. \end{array}
  9975. \end{array}
  9976. \]
  9977. \fi}
  9978. {\if\edition\pythonEd
  9979. \[
  9980. \begin{array}{l}
  9981. \gray{\LvarMonadASTPython} \\ \hline
  9982. \gray{\LifMonadASTPython} \\ \hline
  9983. \LwhileMonadASTPython \\
  9984. \begin{array}{rcl}
  9985. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  9986. \end{array}
  9987. \end{array}
  9988. %% \begin{array}{rcl}
  9989. %% \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  9990. %% \Exp &::=& \Atm \MID \READ{} \\
  9991. %% &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm} \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  9992. %% &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  9993. %% % &\MID& \LET{\Var}{\Exp}{\Exp}\\ % Why?
  9994. %% \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  9995. %% &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  9996. %% &\MID& \WHILESTMT{\Exp}{\Stmt^{+}} \\
  9997. %% \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  9998. %% \end{array}
  9999. \]
  10000. \fi}
  10001. \end{tcolorbox}
  10002. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  10003. \label{fig:Lwhile-anf-syntax}
  10004. \end{figure}
  10005. {\if\edition\racketEd
  10006. %
  10007. As usual, when a complex expression appears in a grammar position that
  10008. needs to be atomic, such as the argument of a primitive operator, we
  10009. must introduce a temporary variable and bind it to the complex
  10010. expression. This approach applies, unchanged, to handle the new
  10011. language forms. For example, in the following code there are two
  10012. \code{begin} expressions appearing as arguments to the \code{+}
  10013. operator. The output of \code{rco\_exp} is then shown, in which the
  10014. \code{begin} expressions have been bound to temporary
  10015. variables. Recall that \code{let} expressions in \LangLoopANF{} are
  10016. allowed to have arbitrary expressions in their right-hand side
  10017. expression, so it is fine to place \code{begin} there.
  10018. %
  10019. \begin{center}
  10020. \begin{tabular}{lcl}
  10021. \begin{minipage}{0.4\textwidth}
  10022. \begin{lstlisting}
  10023. (let ([x2 10])
  10024. (let ([y3 0])
  10025. (+ (+ (begin
  10026. (set! y3 (read))
  10027. (get! x2))
  10028. (begin
  10029. (set! x2 (read))
  10030. (get! y3)))
  10031. (get! x2))))
  10032. \end{lstlisting}
  10033. \end{minipage}
  10034. &
  10035. $\Rightarrow$
  10036. &
  10037. \begin{minipage}{0.4\textwidth}
  10038. \begin{lstlisting}
  10039. (let ([x2 10])
  10040. (let ([y3 0])
  10041. (let ([tmp4 (begin
  10042. (set! y3 (read))
  10043. x2)])
  10044. (let ([tmp5 (begin
  10045. (set! x2 (read))
  10046. y3)])
  10047. (let ([tmp6 (+ tmp4 tmp5)])
  10048. (let ([tmp7 x2])
  10049. (+ tmp6 tmp7)))))))
  10050. \end{lstlisting}
  10051. \end{minipage}
  10052. \end{tabular}
  10053. \end{center}
  10054. \fi}
  10055. \section{Explicate Control \racket{and \LangCLoop{}}}
  10056. \label{sec:explicate-loop}
  10057. \newcommand{\CloopASTRacket}{
  10058. \begin{array}{lcl}
  10059. \Atm &::=& \VOID \\
  10060. \Stmt &::=& \READ{}
  10061. \end{array}
  10062. }
  10063. {\if\edition\racketEd
  10064. Recall that in the \code{explicate\_control} pass we define one helper
  10065. function for each kind of position in the program. For the \LangVar{}
  10066. language of integers and variables, we needed assignment and tail
  10067. positions. The \code{if} expressions of \LangIf{} introduced predicate
  10068. positions. For \LangLoop{}, the \code{begin} expression introduces yet
  10069. another kind of position: effect position. Except for the last
  10070. subexpression, the subexpressions inside a \code{begin} are evaluated
  10071. only for their effect. Their result values are discarded. We can
  10072. generate better code by taking this fact into account.
  10073. The output language of \code{explicate\_control} is \LangCLoop{}
  10074. (figure~\ref{fig:c7-syntax}), which is nearly identical to
  10075. \LangCIf{}. The only syntactic differences are the addition of \VOID{}
  10076. and that \code{read} may appear as a statement. The most significant
  10077. difference between the programs generated by \code{explicate\_control}
  10078. in chapter~\ref{ch:Lif} versus \code{explicate\_control} in this
  10079. chapter is that the control-flow graphs of the latter may contain
  10080. cycles.
  10081. \begin{figure}[tp]
  10082. \begin{tcolorbox}[colback=white]
  10083. \small
  10084. \[
  10085. \begin{array}{l}
  10086. \gray{\CvarASTRacket} \\ \hline
  10087. \gray{\CifASTRacket} \\ \hline
  10088. \CloopASTRacket \\
  10089. \begin{array}{lcl}
  10090. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  10091. \end{array}
  10092. \end{array}
  10093. \]
  10094. \end{tcolorbox}
  10095. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  10096. \label{fig:c7-syntax}
  10097. \end{figure}
  10098. The new auxiliary function \code{explicate\_effect} takes an
  10099. expression (in an effect position) and the code for its
  10100. continuation. The function returns a $\Tail$ that includes the
  10101. generated code for the input expression followed by the
  10102. continuation. If the expression is obviously pure, that is, never
  10103. causes side effects, then the expression can be removed, so the result
  10104. is just the continuation.
  10105. %
  10106. The case for $\WHILE{\itm{cnd}}{\itm{body}}$ expressions is
  10107. interesting; the generated code is depicted in the following diagram:
  10108. \begin{center}
  10109. \begin{minipage}{0.3\textwidth}
  10110. \xymatrix{
  10111. *+[F=]{\txt{\code{goto} \itm{loop}}} \ar[r]
  10112. & *+[F]{\txt{\itm{loop}: \\ \itm{cnd'}}} \ar[r]^{else} \ar[d]^{then}
  10113. & *+[F]{\txt{\itm{cont}}} \\
  10114. & *+[F]{\txt{\itm{body'} \\ \code{goto} \itm{loop}}} \ar@/^50pt/[u]
  10115. }
  10116. \end{minipage}
  10117. \end{center}
  10118. We start by creating a fresh label $\itm{loop}$ for the top of the
  10119. loop. Next, recursively process the \itm{body} (in effect position)
  10120. with a \code{goto} to $\itm{loop}$ as the continuation, producing
  10121. \itm{body'}. Process the \itm{cnd} (in predicate position) with
  10122. \itm{body'} as the \emph{then} branch and the continuation block as the
  10123. \emph{else} branch. The result should be added to the dictionary of
  10124. \code{basic-blocks} with the label \itm{loop}. The result for the
  10125. whole \code{while} loop is a \code{goto} to the \itm{loop} label.
  10126. The auxiliary functions for tail, assignment, and predicate positions
  10127. need to be updated. The three new language forms, \code{while},
  10128. \code{set!}, and \code{begin}, can appear in assignment and tail
  10129. positions. Only \code{begin} may appear in predicate positions; the
  10130. other two have result type \code{Void}.
  10131. \fi}
  10132. %
  10133. {\if\edition\pythonEd
  10134. %
  10135. The output of this pass is the language \LangCIf{}. No new language
  10136. features are needed in the output because a \code{while} loop can be
  10137. expressed in terms of \code{goto} and \code{if} statements, which are
  10138. already in \LangCIf{}.
  10139. %
  10140. Add a case for the \code{while} statement to the
  10141. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  10142. the condition expression.
  10143. %
  10144. \fi}
  10145. {\if\edition\racketEd
  10146. \section{Select Instructions}
  10147. \label{sec:select-instructions-loop}
  10148. Only two small additions are needed in the \code{select\_instructions}
  10149. pass to handle the changes to \LangCLoop{}. First, to handle the
  10150. addition of \VOID{} we simply translate it to \code{0}. Second,
  10151. \code{read} may appear as a stand-alone statement instead of
  10152. appearing only on the right-hand side of an assignment statement. The code
  10153. generation is nearly identical to the one for assignment; just leave
  10154. off the instruction for moving the result into the left-hand side.
  10155. \fi}
  10156. \section{Register Allocation}
  10157. \label{sec:register-allocation-loop}
  10158. As discussed in section~\ref{sec:dataflow-analysis}, the presence of
  10159. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  10160. which complicates the liveness analysis needed for register
  10161. allocation.
  10162. %
  10163. We recommend using the generic \code{analyze\_dataflow} function that
  10164. was presented at the end of section~\ref{sec:dataflow-analysis} to
  10165. perform liveness analysis, replacing the code in
  10166. \code{uncover\_live} that processed the basic blocks in topological
  10167. order (section~\ref{sec:liveness-analysis-Lif}).
  10168. The \code{analyze\_dataflow} function has the following four parameters.
  10169. \begin{enumerate}
  10170. \item The first parameter \code{G} should be passed the transpose
  10171. of the control-flow graph.
  10172. \item The second parameter \code{transfer} should be passed a function
  10173. that applies liveness analysis to a basic block. It takes two
  10174. parameters: the label for the block to analyze and the live-after
  10175. set for that block. The transfer function should return the
  10176. live-before set for the block.
  10177. %
  10178. \racket{Also, as a side effect, it should update the block's
  10179. $\itm{info}$ with the liveness information for each instruction.}
  10180. %
  10181. \python{Also, as a side-effect, it should update the live-before and
  10182. live-after sets for each instruction.}
  10183. %
  10184. To implement the \code{transfer} function, you should be able to
  10185. reuse the code you already have for analyzing basic blocks.
  10186. \item The third and fourth parameters of \code{analyze\_dataflow} are
  10187. \code{bottom} and \code{join} for the lattice of abstract states,
  10188. that is, sets of locations. For liveness analysis, the bottom of the
  10189. lattice is the empty set, and the join operator is set union.
  10190. \end{enumerate}
  10191. \begin{figure}[p]
  10192. \begin{tcolorbox}[colback=white]
  10193. {\if\edition\racketEd
  10194. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  10195. \node (Lfun) at (0,2) {\large \LangLoop{}};
  10196. \node (Lfun-2) at (3,2) {\large \LangLoop{}};
  10197. \node (F1-4) at (6,2) {\large \LangLoop{}};
  10198. \node (F1-5) at (9,2) {\large \LangLoop{}};
  10199. \node (F1-6) at (9,0) {\large \LangLoopANF{}};
  10200. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  10201. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  10202. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  10203. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  10204. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  10205. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  10206. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  10207. \path[->,bend left=15] (Lfun) edge [above] node
  10208. {\ttfamily\footnotesize shrink} (Lfun-2);
  10209. \path[->,bend left=15] (Lfun-2) edge [above] node
  10210. {\ttfamily\footnotesize uniquify} (F1-4);
  10211. \path[->,bend left=15] (F1-4) edge [above] node
  10212. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  10213. \path[->,bend left=15] (F1-5) edge [left] node
  10214. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  10215. \path[->,bend left=10] (F1-6) edge [above] node
  10216. {\ttfamily\footnotesize explicate\_control} (C3-2);
  10217. \path[->,bend left=15] (C3-2) edge [right] node
  10218. {\ttfamily\footnotesize select\_instructions} (x86-2);
  10219. \path[->,bend right=15] (x86-2) edge [right] node
  10220. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  10221. \path[->,bend right=15] (x86-2-1) edge [below] node
  10222. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  10223. \path[->,bend right=15] (x86-2-2) edge [right] node
  10224. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  10225. \path[->,bend left=15] (x86-3) edge [above] node
  10226. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  10227. \path[->,bend left=15] (x86-4) edge [right] node
  10228. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  10229. \end{tikzpicture}
  10230. \fi}
  10231. {\if\edition\pythonEd
  10232. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  10233. \node (Lfun) at (0,2) {\large \LangLoop{}};
  10234. \node (Lfun-2) at (4,2) {\large \LangLoop{}};
  10235. \node (F1-6) at (8,2) {\large \LangLoopANF{}};
  10236. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  10237. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  10238. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  10239. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  10240. \node (x86-5) at (12,-2) {\large \LangXIf{}};
  10241. \path[->,bend left=15] (Lfun) edge [above] node
  10242. {\ttfamily\footnotesize shrink} (Lfun-2);
  10243. \path[->,bend left=15] (Lfun-2) edge [above] node
  10244. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  10245. \path[->,bend left=10] (F1-6) edge [right] node
  10246. {\ttfamily\footnotesize explicate\_control} (C3-2);
  10247. \path[->,bend right=15] (C3-2) edge [right] node
  10248. {\ttfamily\footnotesize select\_instructions} (x86-2);
  10249. \path[->,bend right=15] (x86-2) edge [below] node
  10250. {\ttfamily\footnotesize assign\_homes} (x86-3);
  10251. \path[->,bend left=15] (x86-3) edge [above] node
  10252. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  10253. \path[->,bend right=15] (x86-4) edge [below] node
  10254. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  10255. \end{tikzpicture}
  10256. \fi}
  10257. \end{tcolorbox}
  10258. \caption{Diagram of the passes for \LangLoop{}.}
  10259. \label{fig:Lwhile-passes}
  10260. \end{figure}
  10261. Figure~\ref{fig:Lwhile-passes} provides an overview of all the passes needed
  10262. for the compilation of \LangLoop{}.
  10263. % Further Reading: dataflow analysis
  10264. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10265. \chapter{Tuples and Garbage Collection}
  10266. \label{ch:Lvec}
  10267. \index{subject}{tuple}
  10268. \index{subject}{vector}
  10269. \index{subject}{allocate}
  10270. \index{subject}{heap allocate}
  10271. \setcounter{footnote}{0}
  10272. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  10273. %% all the IR grammars are spelled out! \\ --Jeremy}
  10274. %% \margincomment{\scriptsize Be more explicit about how to deal with
  10275. %% the root stack. \\ --Jeremy}
  10276. In this chapter we study the implementation of tuples\racket{, called
  10277. vectors in Racket}. A tuple is a fixed-length sequence of elements
  10278. in which each element may have a different type.
  10279. %
  10280. This language feature is the first to use the computer's
  10281. \emph{heap}\index{subject}{heap}, because the lifetime of a tuple is
  10282. indefinite; that is, a tuple lives forever from the programmer's
  10283. viewpoint. Of course, from an implementer's viewpoint, it is important
  10284. to reclaim the space associated with a tuple when it is no longer
  10285. needed, which is why we also study \emph{garbage collection}
  10286. \index{subject}{garbage collection} techniques in this chapter.
  10287. Section~\ref{sec:r3} introduces the \LangVec{} language, including its
  10288. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  10289. language (chapter~\ref{ch:Lwhile}) with tuples.
  10290. %
  10291. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  10292. copying live tuples back and forth between two halves of the heap. The
  10293. garbage collector requires coordination with the compiler so that it
  10294. can find all the live tuples.
  10295. %
  10296. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  10297. discuss the necessary changes and additions to the compiler passes,
  10298. including a new compiler pass named \code{expose\_allocation}.
  10299. \section{The \LangVec{} Language}
  10300. \label{sec:r3}
  10301. Figure~\ref{fig:Lvec-concrete-syntax} shows the definition of the
  10302. concrete syntax for \LangVec{}, and figure~\ref{fig:Lvec-syntax} shows
  10303. the definition of the abstract syntax.
  10304. %
  10305. \racket{The \LangVec{} language includes the forms: \code{vector} for
  10306. creating a tuple, \code{vector-ref} for reading an element of a
  10307. tuple, \code{vector-set!} for writing to an element of a tuple, and
  10308. \code{vector-length} for obtaining the number of elements of a
  10309. tuple.}
  10310. %
  10311. \python{The \LangVec{} language adds 1) tuple creation via a
  10312. comma-separated list of expressions, 2) accessing an element of a
  10313. tuple with the square bracket notation, i.e., \code{t[n]} returns
  10314. the element at index \code{n} of tuple \code{t}, 3) the \code{is} comparison
  10315. operator, and 4) obtaining the number of elements (the length) of a
  10316. tuple. In this chapter, we restrict access indices to constant
  10317. integers.}
  10318. %
  10319. The following program shows an example use of tuples. It creates a tuple
  10320. \code{t} containing the elements \code{40},
  10321. \racket{\code{\#t}}\python{\code{True}}, and another tuple that
  10322. contains just \code{2}. The element at index $1$ of \code{t} is
  10323. \racket{\code{\#t}}\python{\code{True}}, so the \emph{then} branch of the
  10324. \key{if} is taken. The element at index $0$ of \code{t} is \code{40},
  10325. to which we add \code{2}, the element at index $0$ of the tuple.
  10326. The result of the program is \code{42}.
  10327. %
  10328. {\if\edition\racketEd
  10329. \begin{lstlisting}
  10330. (let ([t (vector 40 #t (vector 2))])
  10331. (if (vector-ref t 1)
  10332. (+ (vector-ref t 0)
  10333. (vector-ref (vector-ref t 2) 0))
  10334. 44))
  10335. \end{lstlisting}
  10336. \fi}
  10337. {\if\edition\pythonEd
  10338. \begin{lstlisting}
  10339. t = 40, True, (2,)
  10340. print( t[0] + t[2][0] if t[1] else 44 )
  10341. \end{lstlisting}
  10342. \fi}
  10343. \newcommand{\LtupGrammarRacket}{
  10344. \begin{array}{lcl}
  10345. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  10346. \Exp &::=& \LP\key{vector}\;\Exp^{*}\RP
  10347. \MID \LP\key{vector-length}\;\Exp\RP \\
  10348. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  10349. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  10350. \end{array}
  10351. }
  10352. \newcommand{\LtupASTRacket}{
  10353. \begin{array}{lcl}
  10354. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  10355. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  10356. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  10357. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp}
  10358. % &\MID& \LP\key{HasType}~\Exp~\Type \RP
  10359. \end{array}
  10360. }
  10361. \newcommand{\LtupGrammarPython}{
  10362. \begin{array}{rcl}
  10363. \itm{cmp} &::= & \key{is} \\
  10364. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Int} \MID \CLEN{\Exp}
  10365. \end{array}
  10366. }
  10367. \newcommand{\LtupASTPython}{
  10368. \begin{array}{lcl}
  10369. \itm{cmp} &::= & \code{Is()} \\
  10370. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\INT{\Int}} \\
  10371. &\MID& \LEN{\Exp}
  10372. \end{array}
  10373. }
  10374. \begin{figure}[tbp]
  10375. \centering
  10376. \begin{tcolorbox}[colback=white]
  10377. \small
  10378. {\if\edition\racketEd
  10379. \[
  10380. \begin{array}{l}
  10381. \gray{\LintGrammarRacket{}} \\ \hline
  10382. \gray{\LvarGrammarRacket{}} \\ \hline
  10383. \gray{\LifGrammarRacket{}} \\ \hline
  10384. \gray{\LwhileGrammarRacket} \\ \hline
  10385. \LtupGrammarRacket \\
  10386. \begin{array}{lcl}
  10387. \LangVecM{} &::=& \Exp
  10388. \end{array}
  10389. \end{array}
  10390. \]
  10391. \fi}
  10392. {\if\edition\pythonEd
  10393. \[
  10394. \begin{array}{l}
  10395. \gray{\LintGrammarPython{}} \\ \hline
  10396. \gray{\LvarGrammarPython{}} \\ \hline
  10397. \gray{\LifGrammarPython{}} \\ \hline
  10398. \gray{\LwhileGrammarPython} \\ \hline
  10399. \LtupGrammarPython \\
  10400. \begin{array}{rcl}
  10401. \LangVecM{} &::=& \Stmt^{*}
  10402. \end{array}
  10403. \end{array}
  10404. \]
  10405. \fi}
  10406. \end{tcolorbox}
  10407. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  10408. (figure~\ref{fig:Lwhile-concrete-syntax}).}
  10409. \label{fig:Lvec-concrete-syntax}
  10410. \end{figure}
  10411. \begin{figure}[tp]
  10412. \centering
  10413. \begin{tcolorbox}[colback=white]
  10414. \small
  10415. {\if\edition\racketEd
  10416. \[
  10417. \begin{array}{l}
  10418. \gray{\LintOpAST} \\ \hline
  10419. \gray{\LvarASTRacket{}} \\ \hline
  10420. \gray{\LifASTRacket{}} \\ \hline
  10421. \gray{\LwhileASTRacket{}} \\ \hline
  10422. \LtupASTRacket{} \\
  10423. \begin{array}{lcl}
  10424. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  10425. \end{array}
  10426. \end{array}
  10427. \]
  10428. \fi}
  10429. {\if\edition\pythonEd
  10430. \[
  10431. \begin{array}{l}
  10432. \gray{\LintASTPython} \\ \hline
  10433. \gray{\LvarASTPython} \\ \hline
  10434. \gray{\LifASTPython} \\ \hline
  10435. \gray{\LwhileASTPython} \\ \hline
  10436. \LtupASTPython \\
  10437. \begin{array}{lcl}
  10438. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10439. \end{array}
  10440. \end{array}
  10441. \]
  10442. \fi}
  10443. \end{tcolorbox}
  10444. \caption{The abstract syntax of \LangVec{}.}
  10445. \label{fig:Lvec-syntax}
  10446. \end{figure}
  10447. Tuples raise several interesting new issues. First, variable binding
  10448. performs a shallow copy in dealing with tuples, which means that
  10449. different variables can refer to the same tuple; that is, two
  10450. variables can be \emph{aliases}\index{subject}{alias} for the same
  10451. entity. Consider the following example, in which \code{t1} and
  10452. \code{t2} refer to the same tuple value and \code{t3} refers to a
  10453. different tuple value with equal elements. The result of the
  10454. program is \code{42}.
  10455. \begin{center}
  10456. \begin{minipage}{0.96\textwidth}
  10457. {\if\edition\racketEd
  10458. \begin{lstlisting}
  10459. (let ([t1 (vector 3 7)])
  10460. (let ([t2 t1])
  10461. (let ([t3 (vector 3 7)])
  10462. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  10463. 42
  10464. 0))))
  10465. \end{lstlisting}
  10466. \fi}
  10467. {\if\edition\pythonEd
  10468. \begin{lstlisting}
  10469. t1 = 3, 7
  10470. t2 = t1
  10471. t3 = 3, 7
  10472. print( 42 if (t1 is t2) and not (t1 is t3) else 0 )
  10473. \end{lstlisting}
  10474. \fi}
  10475. \end{minipage}
  10476. \end{center}
  10477. {\if\edition\racketEd
  10478. Whether two variables are aliased or not affects what happens
  10479. when the underlying tuple is mutated\index{subject}{mutation}.
  10480. Consider the following example in which \code{t1} and \code{t2}
  10481. again refer to the same tuple value.
  10482. \begin{center}
  10483. \begin{minipage}{0.96\textwidth}
  10484. \begin{lstlisting}
  10485. (let ([t1 (vector 3 7)])
  10486. (let ([t2 t1])
  10487. (let ([_ (vector-set! t2 0 42)])
  10488. (vector-ref t1 0))))
  10489. \end{lstlisting}
  10490. \end{minipage}
  10491. \end{center}
  10492. The mutation through \code{t2} is visible in referencing the tuple
  10493. from \code{t1}, so the result of this program is \code{42}.
  10494. \fi}
  10495. The next issue concerns the lifetime of tuples. When does a tuple's
  10496. lifetime end? Notice that \LangVec{} does not include an operation
  10497. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  10498. to any notion of static scoping.
  10499. %
  10500. {\if\edition\racketEd
  10501. %
  10502. For example, the following program returns \code{42} even though the
  10503. variable \code{w} goes out of scope prior to the \code{vector-ref}
  10504. that reads from the vector to which it was bound.
  10505. \begin{center}
  10506. \begin{minipage}{0.96\textwidth}
  10507. \begin{lstlisting}
  10508. (let ([v (vector (vector 44))])
  10509. (let ([x (let ([w (vector 42)])
  10510. (let ([_ (vector-set! v 0 w)])
  10511. 0))])
  10512. (+ x (vector-ref (vector-ref v 0) 0))))
  10513. \end{lstlisting}
  10514. \end{minipage}
  10515. \end{center}
  10516. \fi}
  10517. %
  10518. {\if\edition\pythonEd
  10519. %
  10520. For example, the following program returns \code{42} even though the
  10521. variable \code{x} goes out of scope when the function returns, prior
  10522. to reading the tuple element at index zero. (We study the compilation
  10523. of functions in chapter~\ref{ch:Lfun}.)
  10524. %
  10525. \begin{center}
  10526. \begin{minipage}{0.96\textwidth}
  10527. \begin{lstlisting}
  10528. def f():
  10529. x = 42, 43
  10530. return x
  10531. t = f()
  10532. print( t[0] )
  10533. \end{lstlisting}
  10534. \end{minipage}
  10535. \end{center}
  10536. \fi}
  10537. %
  10538. From the perspective of programmer-observable behavior, tuples live
  10539. forever. However, if they really lived forever then many long-running
  10540. programs would run out of memory. To solve this problem, the
  10541. language's runtime system performs automatic garbage collection.
  10542. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  10543. \LangVec{} language.
  10544. %
  10545. \racket{We define the \code{vector}, \code{vector-ref},
  10546. \code{vector-set!}, and \code{vector-length} operations for
  10547. \LangVec{} in terms of the corresponding operations in Racket. One
  10548. subtle point is that the \code{vector-set!} operation returns the
  10549. \code{\#<void>} value.}
  10550. %
  10551. \python{We represent tuples with Python lists in the interpreter
  10552. because we need to write to them
  10553. (section~\ref{sec:expose-allocation}). (Python tuples are
  10554. immutable.) We define element access, the \code{is} operator, and
  10555. the \code{len} operator for \LangVec{} in terms of the corresponding
  10556. operations in Python.}
  10557. \begin{figure}[tbp]
  10558. \begin{tcolorbox}[colback=white]
  10559. {\if\edition\racketEd
  10560. \begin{lstlisting}
  10561. (define interp-Lvec-class
  10562. (class interp-Lwhile-class
  10563. (super-new)
  10564. (define/override (interp-op op)
  10565. (match op
  10566. ['eq? (lambda (v1 v2)
  10567. (cond [(or (and (fixnum? v1) (fixnum? v2))
  10568. (and (boolean? v1) (boolean? v2))
  10569. (and (vector? v1) (vector? v2))
  10570. (and (void? v1) (void? v2)))
  10571. (eq? v1 v2)]))]
  10572. ['vector vector]
  10573. ['vector-length vector-length]
  10574. ['vector-ref vector-ref]
  10575. ['vector-set! vector-set!]
  10576. [else (super interp-op op)]
  10577. ))
  10578. (define/override ((interp-exp env) e)
  10579. (match e
  10580. [(HasType e t) ((interp-exp env) e)]
  10581. [else ((super interp-exp env) e)]
  10582. ))
  10583. ))
  10584. (define (interp-Lvec p)
  10585. (send (new interp-Lvec-class) interp-program p))
  10586. \end{lstlisting}
  10587. \fi}
  10588. %
  10589. {\if\edition\pythonEd
  10590. \begin{lstlisting}
  10591. class InterpLtup(InterpLwhile):
  10592. def interp_cmp(self, cmp):
  10593. match cmp:
  10594. case Is():
  10595. return lambda x, y: x is y
  10596. case _:
  10597. return super().interp_cmp(cmp)
  10598. def interp_exp(self, e, env):
  10599. match e:
  10600. case Tuple(es, Load()):
  10601. return tuple([self.interp_exp(e, env) for e in es])
  10602. case Subscript(tup, index, Load()):
  10603. t = self.interp_exp(tup, env)
  10604. n = self.interp_exp(index, env)
  10605. return t[n]
  10606. case _:
  10607. return super().interp_exp(e, env)
  10608. \end{lstlisting}
  10609. \fi}
  10610. \end{tcolorbox}
  10611. \caption{Interpreter for the \LangVec{} language.}
  10612. \label{fig:interp-Lvec}
  10613. \end{figure}
  10614. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  10615. \LangVec{}.
  10616. %
  10617. The type of a tuple is a
  10618. \racket{\code{Vector}}\python{\code{TupleType}} type that contains a
  10619. type for each of its elements.
  10620. %
  10621. \racket{To create the s-expression for the \code{Vector} type, we use the
  10622. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  10623. operator} \code{,@} to insert the list \code{t*} without its usual
  10624. start and end parentheses. \index{subject}{unquote-splicing}}
  10625. %
  10626. The type of accessing the ith element of a tuple is the ith element
  10627. type of the tuple's type, if there is one. If not, an error is
  10628. signaled. Note that the index \code{i} is required to be a constant
  10629. integer (and not, for example, a call to
  10630. \racket{\code{read}}\python{input\_int}) so that the type checker
  10631. can determine the element's type given the tuple type.
  10632. %
  10633. \racket{
  10634. Regarding writing an element to a tuple, the element's type must
  10635. be equal to the ith element type of the tuple's type.
  10636. The result type is \code{Void}.}
  10637. %% When allocating a tuple,
  10638. %% we need to know which elements of the tuple are themselves tuples for
  10639. %% the purposes of garbage collection. We can obtain this information
  10640. %% during type checking. The type checker shown in
  10641. %% figure~\ref{fig:type-check-Lvec} not only computes the type of an
  10642. %% expression; it also
  10643. %% %
  10644. %% \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  10645. %% where $T$ is the tuple's type.
  10646. %
  10647. %records the type of each tuple expression in a new field named \code{has\_type}.
  10648. \begin{figure}[tp]
  10649. \begin{tcolorbox}[colback=white]
  10650. {\if\edition\racketEd
  10651. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10652. (define type-check-Lvec-class
  10653. (class type-check-Lif-class
  10654. (super-new)
  10655. (inherit check-type-equal?)
  10656. (define/override (type-check-exp env)
  10657. (lambda (e)
  10658. (define recur (type-check-exp env))
  10659. (match e
  10660. [(Prim 'vector es)
  10661. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  10662. (define t `(Vector ,@t*))
  10663. (values (Prim 'vector e*) t)]
  10664. [(Prim 'vector-ref (list e1 (Int i)))
  10665. (define-values (e1^ t) (recur e1))
  10666. (match t
  10667. [`(Vector ,ts ...)
  10668. (unless (and (0 . <= . i) (i . < . (length ts)))
  10669. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10670. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  10671. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10672. [(Prim 'vector-set! (list e1 (Int i) elt) )
  10673. (define-values (e-vec t-vec) (recur e1))
  10674. (define-values (e-elt^ t-elt) (recur elt))
  10675. (match t-vec
  10676. [`(Vector ,ts ...)
  10677. (unless (and (0 . <= . i) (i . < . (length ts)))
  10678. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10679. (check-type-equal? (list-ref ts i) t-elt e)
  10680. (values (Prim 'vector-set! (list e-vec (Int i) e-elt^)) 'Void)]
  10681. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  10682. [(Prim 'vector-length (list e))
  10683. (define-values (e^ t) (recur e))
  10684. (match t
  10685. [`(Vector ,ts ...)
  10686. (values (Prim 'vector-length (list e^)) 'Integer)]
  10687. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10688. [(Prim 'eq? (list arg1 arg2))
  10689. (define-values (e1 t1) (recur arg1))
  10690. (define-values (e2 t2) (recur arg2))
  10691. (match* (t1 t2)
  10692. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  10693. [(other wise) (check-type-equal? t1 t2 e)])
  10694. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  10695. [else ((super type-check-exp env) e)]
  10696. )))
  10697. ))
  10698. (define (type-check-Lvec p)
  10699. (send (new type-check-Lvec-class) type-check-program p))
  10700. \end{lstlisting}
  10701. \fi}
  10702. {\if\edition\pythonEd
  10703. \begin{lstlisting}
  10704. class TypeCheckLtup(TypeCheckLwhile):
  10705. def type_check_exp(self, e, env):
  10706. match e:
  10707. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  10708. l = self.type_check_exp(left, env)
  10709. r = self.type_check_exp(right, env)
  10710. check_type_equal(l, r, e)
  10711. return bool
  10712. case Tuple(es, Load()):
  10713. ts = [self.type_check_exp(e, env) for e in es]
  10714. e.has_type = TupleType(ts)
  10715. return e.has_type
  10716. case Subscript(tup, Constant(i), Load()):
  10717. tup_ty = self.type_check_exp(tup, env)
  10718. i_ty = self.type_check_exp(Constant(i), env)
  10719. check_type_equal(i_ty, int, i)
  10720. match tup_ty:
  10721. case TupleType(ts):
  10722. return ts[i]
  10723. case _:
  10724. raise Exception('error: expected a tuple, not ' + repr(tup_ty))
  10725. case _:
  10726. return super().type_check_exp(e, env)
  10727. \end{lstlisting}
  10728. \fi}
  10729. \end{tcolorbox}
  10730. \caption{Type checker for the \LangVec{} language.}
  10731. \label{fig:type-check-Lvec}
  10732. \end{figure}
  10733. \section{Garbage Collection}
  10734. \label{sec:GC}
  10735. Garbage collection is a runtime technique for reclaiming space on the
  10736. heap that will not be used in the future of the running program. We
  10737. use the term \emph{object}\index{subject}{object} to refer to any
  10738. value that is stored in the heap, which for now includes only
  10739. tuples.%
  10740. %
  10741. \footnote{The term \emph{object} as it is used in the context of
  10742. object-oriented programming has a more specific meaning than the
  10743. way in which we use the term here.}
  10744. %
  10745. Unfortunately, it is impossible to know precisely which objects will
  10746. be accessed in the future and which will not. Instead, garbage
  10747. collectors overapproximate the set of objects that will be accessed by
  10748. identifying which objects can possibly be accessed. The running
  10749. program can directly access objects that are in registers and on the
  10750. procedure call stack. It can also transitively access the elements of
  10751. tuples, starting with a tuple whose address is in a register or on the
  10752. procedure call stack. We define the \emph{root
  10753. set}\index{subject}{root set} to be all the tuple addresses that are
  10754. in registers or on the procedure call stack. We define the \emph{live
  10755. objects}\index{subject}{live objects} to be the objects that are
  10756. reachable from the root set. Garbage collectors reclaim the space that
  10757. is allocated to objects that are no longer live. That means that some
  10758. objects may not get reclaimed as soon as they could be, but at least
  10759. garbage collectors do not reclaim the space dedicated to objects that
  10760. will be accessed in the future! The programmer can influence which
  10761. objects get reclaimed by causing them to become unreachable.
  10762. So the goal of the garbage collector is twofold:
  10763. \begin{enumerate}
  10764. \item to preserve all the live objects, and
  10765. \item to reclaim the memory of everything else, that is, the \emph{garbage}.
  10766. \end{enumerate}
  10767. \subsection{Two-Space Copying Collector}
  10768. Here we study a relatively simple algorithm for garbage collection
  10769. that is the basis of many state-of-the-art garbage
  10770. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  10771. particular, we describe a two-space copying
  10772. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  10773. perform the copy~\citep{Cheney:1970aa}. \index{subject}{copying
  10774. collector} \index{subject}{two-space copying collector}
  10775. Figure~\ref{fig:copying-collector} gives a coarse-grained depiction of
  10776. what happens in a two-space collector, showing two time steps, prior
  10777. to garbage collection (on the top) and after garbage collection (on
  10778. the bottom). In a two-space collector, the heap is divided into two
  10779. parts named the FromSpace\index{subject}{FromSpace} and the
  10780. ToSpace\index{subject}{ToSpace}. Initially, all allocations go to the
  10781. FromSpace until there is not enough room for the next allocation
  10782. request. At that point, the garbage collector goes to work to make
  10783. room for the next allocation.
  10784. A copying collector makes more room by copying all the live objects
  10785. from the FromSpace into the ToSpace and then performs a sleight of
  10786. hand, treating the ToSpace as the new FromSpace and the old FromSpace
  10787. as the new ToSpace. In the example shown in
  10788. figure~\ref{fig:copying-collector}, the root set consists of three
  10789. pointers, one in a register and two on the stack. All the live
  10790. objects have been copied to the ToSpace (the right-hand side of
  10791. figure~\ref{fig:copying-collector}) in a way that preserves the
  10792. pointer relationships. For example, the pointer in the register still
  10793. points to a tuple that in turn points to two other tuples. There are
  10794. four tuples that are not reachable from the root set and therefore do
  10795. not get copied into the ToSpace.
  10796. The exact situation shown in figure~\ref{fig:copying-collector} cannot be
  10797. created by a well-typed program in \LangVec{} because it contains a
  10798. cycle. However, creating cycles will be possible once we get to
  10799. \LangDyn{} (chapter~\ref{ch:Ldyn}). We design the garbage collector
  10800. to deal with cycles to begin with, so we will not need to revisit this
  10801. issue.
  10802. \begin{figure}[tbp]
  10803. \centering
  10804. \begin{tcolorbox}[colback=white]
  10805. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-1}}
  10806. \python{\includegraphics[width=\textwidth]{figs/copy-collect-1-python}}
  10807. \\[5ex]
  10808. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-2}}
  10809. \python{\includegraphics[width=\textwidth]{figs/copy-collect-2-python}}
  10810. \end{tcolorbox}
  10811. \caption{A copying collector in action.}
  10812. \label{fig:copying-collector}
  10813. \end{figure}
  10814. \subsection{Graph Copying via Cheney's Algorithm}
  10815. \label{sec:cheney}
  10816. \index{subject}{Cheney's algorithm}
  10817. Let us take a closer look at the copying of the live objects. The
  10818. allocated objects and pointers can be viewed as a graph, and we need to
  10819. copy the part of the graph that is reachable from the root set. To
  10820. make sure that we copy all the reachable vertices in the graph, we need
  10821. an exhaustive graph traversal algorithm, such as depth-first search or
  10822. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  10823. such algorithms take into account the possibility of cycles by marking
  10824. which vertices have already been visited, so to ensure termination
  10825. of the algorithm. These search algorithms also use a data structure
  10826. such as a stack or queue as a to-do list to keep track of the vertices
  10827. that need to be visited. We use breadth-first search and a trick
  10828. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  10829. and copying tuples into the ToSpace.
  10830. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  10831. copy progresses. The queue is represented by a chunk of contiguous
  10832. memory at the beginning of the ToSpace, using two pointers to track
  10833. the front and the back of the queue, called the \emph{free pointer}
  10834. and the \emph{scan pointer}, respectively. The algorithm starts by
  10835. copying all tuples that are immediately reachable from the root set
  10836. into the ToSpace to form the initial queue. When we copy a tuple, we
  10837. mark the old tuple to indicate that it has been visited. We discuss
  10838. how this marking is accomplished in section~\ref{sec:data-rep-gc}. Note
  10839. that any pointers inside the copied tuples in the queue still point
  10840. back to the FromSpace. Once the initial queue has been created, the
  10841. algorithm enters a loop in which it repeatedly processes the tuple at
  10842. the front of the queue and pops it off the queue. To process a tuple,
  10843. the algorithm copies all the objects that are directly reachable from it
  10844. to the ToSpace, placing them at the back of the queue. The algorithm
  10845. then updates the pointers in the popped tuple so that they point to the
  10846. newly copied objects.
  10847. \begin{figure}[tbp]
  10848. \centering
  10849. \begin{tcolorbox}[colback=white]
  10850. \racket{\includegraphics[width=0.9\textwidth]{figs/cheney}}
  10851. \python{\includegraphics[width=0.9\textwidth]{figs/cheney-python}}
  10852. \end{tcolorbox}
  10853. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  10854. \label{fig:cheney}
  10855. \end{figure}
  10856. As shown in figure~\ref{fig:cheney}, in the first step we copy the
  10857. tuple whose second element is $42$ to the back of the queue. The other
  10858. pointer goes to a tuple that has already been copied, so we do not
  10859. need to copy it again, but we do need to update the pointer to the new
  10860. location. This can be accomplished by storing a \emph{forwarding
  10861. pointer}\index{subject}{forwarding pointer} to the new location in the
  10862. old tuple, when we initially copied the tuple into the
  10863. ToSpace. This completes one step of the algorithm. The algorithm
  10864. continues in this way until the queue is empty; that is, when the scan
  10865. pointer catches up with the free pointer.
  10866. \subsection{Data Representation}
  10867. \label{sec:data-rep-gc}
  10868. The garbage collector places some requirements on the data
  10869. representations used by our compiler. First, the garbage collector
  10870. needs to distinguish between pointers and other kinds of data such as
  10871. integers. The following are several ways to accomplish this:
  10872. \begin{enumerate}
  10873. \item Attach a tag to each object that identifies what type of
  10874. object it is~\citep{McCarthy:1960dz}.
  10875. \item Store different types of objects in different
  10876. regions~\citep{Steele:1977ab}.
  10877. \item Use type information from the program to either (a) generate
  10878. type-specific code for collecting, or (b) generate tables that
  10879. guide the collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  10880. \end{enumerate}
  10881. Dynamically typed languages, such as \racket{Racket}\python{Python},
  10882. need to tag objects in any case, so option 1 is a natural choice for those
  10883. languages. However, \LangVec{} is a statically typed language, so it
  10884. would be unfortunate to require tags on every object, especially small
  10885. and pervasive objects like integers and Booleans. Option 3 is the
  10886. best-performing choice for statically typed languages, but it comes with
  10887. a relatively high implementation complexity. To keep this chapter
  10888. within a reasonable scope of complexity, we recommend a combination of options
  10889. 1 and 2, using separate strategies for the stack and the heap.
  10890. Regarding the stack, we recommend using a separate stack for pointers,
  10891. which we call the \emph{root stack}\index{subject}{root stack}
  10892. (aka \emph{shadow stack})~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}.
  10893. That is, when a local variable needs to be spilled and is of type
  10894. \racket{\code{Vector}}\python{\code{TupleType}}, we put it on the
  10895. root stack instead of putting it on the procedure call
  10896. stack. Furthermore, we always spill tuple-typed variables if they are
  10897. live during a call to the collector, thereby ensuring that no pointers
  10898. are in registers during a collection. Figure~\ref{fig:shadow-stack}
  10899. reproduces the example shown in figure~\ref{fig:copying-collector} and
  10900. contrasts it with the data layout using a root stack. The root stack
  10901. contains the two pointers from the regular stack and also the pointer
  10902. in the second register.
  10903. \begin{figure}[tbp]
  10904. \centering
  10905. \begin{tcolorbox}[colback=white]
  10906. \racket{\includegraphics[width=0.60\textwidth]{figs/root-stack}}
  10907. \python{\includegraphics[width=0.60\textwidth]{figs/root-stack-python}}
  10908. \end{tcolorbox}
  10909. \caption{Maintaining a root stack to facilitate garbage collection.}
  10910. \label{fig:shadow-stack}
  10911. \end{figure}
  10912. The problem of distinguishing between pointers and other kinds of data
  10913. also arises inside each tuple on the heap. We solve this problem by
  10914. attaching a tag, an extra 64 bits, to each
  10915. tuple. Figure~\ref{fig:tuple-rep} shows a zoomed-in view of the tags for
  10916. two of the tuples in the example given in figure~\ref{fig:copying-collector}.
  10917. Note that we have drawn the bits in a big-endian way, from right to left,
  10918. with bit location 0 (the least significant bit) on the far right,
  10919. which corresponds to the direction of the x86 shifting instructions
  10920. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  10921. is dedicated to specifying which elements of the tuple are pointers,
  10922. the part labeled \emph{pointer mask}. Within the pointer mask, a 1 bit
  10923. indicates that there is a pointer, and a 0 bit indicates some other kind of
  10924. data. The pointer mask starts at bit location 7. We limit tuples to a
  10925. maximum size of fifty elements, so we need 50 bits for the pointer
  10926. mask.%
  10927. %
  10928. \footnote{A production-quality compiler would handle
  10929. arbitrarily sized tuples and use a more complex approach.}
  10930. %
  10931. The tag also contains two other pieces of information. The length of
  10932. the tuple (number of elements) is stored in bits at locations 1 through
  10933. 6. Finally, the bit at location 0 indicates whether the tuple has yet
  10934. to be copied to the ToSpace. If the bit has value 1, then this tuple
  10935. has not yet been copied. If the bit has value 0, then the entire tag
  10936. is a forwarding pointer. (The lower 3 bits of a pointer are always
  10937. zero in any case, because our tuples are 8-byte aligned.)
  10938. \begin{figure}[tbp]
  10939. \centering
  10940. \begin{tcolorbox}[colback=white]
  10941. \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  10942. \end{tcolorbox}
  10943. \caption{Representation of tuples in the heap.}
  10944. \label{fig:tuple-rep}
  10945. \end{figure}
  10946. \subsection{Implementation of the Garbage Collector}
  10947. \label{sec:organize-gz}
  10948. \index{subject}{prelude}
  10949. An implementation of the copying collector is provided in the
  10950. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  10951. interface to the garbage collector that is used by the compiler. The
  10952. \code{initialize} function creates the FromSpace, ToSpace, and root
  10953. stack and should be called in the prelude of the \code{main}
  10954. function. The arguments of \code{initialize} are the root stack size
  10955. and the heap size. Both need to be multiples of sixty-four, and $16,384$ is a
  10956. good choice for both. The \code{initialize} function puts the address
  10957. of the beginning of the FromSpace into the global variable
  10958. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  10959. the address that is one past the last element of the FromSpace. We use
  10960. half-open intervals to represent chunks of
  10961. memory~\citep{Dijkstra:1982aa}. The \code{rootstack\_begin} variable
  10962. points to the first element of the root stack.
  10963. As long as there is room left in the FromSpace, your generated code
  10964. can allocate tuples simply by moving the \code{free\_ptr} forward.
  10965. %
  10966. The amount of room left in the FromSpace is the difference between the
  10967. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  10968. function should be called when there is not enough room left in the
  10969. FromSpace for the next allocation. The \code{collect} function takes
  10970. a pointer to the current top of the root stack (one past the last item
  10971. that was pushed) and the number of bytes that need to be
  10972. allocated. The \code{collect} function performs the copying collection
  10973. and leaves the heap in a state such that there is enough room for the
  10974. next allocation.
  10975. \begin{figure}[tbp]
  10976. \begin{tcolorbox}[colback=white]
  10977. \begin{lstlisting}
  10978. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  10979. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  10980. int64_t* free_ptr;
  10981. int64_t* fromspace_begin;
  10982. int64_t* fromspace_end;
  10983. int64_t** rootstack_begin;
  10984. \end{lstlisting}
  10985. \end{tcolorbox}
  10986. \caption{The compiler's interface to the garbage collector.}
  10987. \label{fig:gc-header}
  10988. \end{figure}
  10989. %% \begin{exercise}
  10990. %% In the file \code{runtime.c} you will find the implementation of
  10991. %% \code{initialize} and a partial implementation of \code{collect}.
  10992. %% The \code{collect} function calls another function, \code{cheney},
  10993. %% to perform the actual copy, and that function is left to the reader
  10994. %% to implement. The following is the prototype for \code{cheney}.
  10995. %% \begin{lstlisting}
  10996. %% static void cheney(int64_t** rootstack_ptr);
  10997. %% \end{lstlisting}
  10998. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  10999. %% rootstack (which is an array of pointers). The \code{cheney} function
  11000. %% also communicates with \code{collect} through the global
  11001. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  11002. %% mentioned in figure~\ref{fig:gc-header} as well as the pointers for
  11003. %% the ToSpace:
  11004. %% \begin{lstlisting}
  11005. %% static int64_t* tospace_begin;
  11006. %% static int64_t* tospace_end;
  11007. %% \end{lstlisting}
  11008. %% The job of the \code{cheney} function is to copy all the live
  11009. %% objects (reachable from the root stack) into the ToSpace, update
  11010. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  11011. %% update the root stack so that it points to the objects in the
  11012. %% ToSpace, and finally to swap the global pointers for the FromSpace
  11013. %% and ToSpace.
  11014. %% \end{exercise}
  11015. The introduction of garbage collection has a nontrivial impact on our
  11016. compiler passes. We introduce a new compiler pass named
  11017. \code{expose\_allocation} that elaborates the code for allocating
  11018. tuples. We also make significant changes to
  11019. \code{select\_instructions}, \code{build\_interference},
  11020. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  11021. make minor changes in several more passes.
  11022. The following program serves as our running example. It creates
  11023. two tuples, one nested inside the other. Both tuples have length
  11024. one. The program accesses the element in the inner tuple.
  11025. % tests/vectors_test_17.rkt
  11026. {\if\edition\racketEd
  11027. \begin{lstlisting}
  11028. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  11029. \end{lstlisting}
  11030. \fi}
  11031. {\if\edition\pythonEd
  11032. \begin{lstlisting}
  11033. print( ((42,),)[0][0] )
  11034. \end{lstlisting}
  11035. \fi}
  11036. %% {\if\edition\racketEd
  11037. %% \section{Shrink}
  11038. %% \label{sec:shrink-Lvec}
  11039. %% Recall that the \code{shrink} pass translates the primitives operators
  11040. %% into a smaller set of primitives.
  11041. %% %
  11042. %% This pass comes after type checking, and the type checker adds a
  11043. %% \code{HasType} AST node around each \code{vector} AST node, so you'll
  11044. %% need to add a case for \code{HasType} to the \code{shrink} pass.
  11045. %% \fi}
  11046. \section{Expose Allocation}
  11047. \label{sec:expose-allocation}
  11048. The pass \code{expose\_allocation} lowers tuple creation into making a
  11049. conditional call to the collector followed by allocating the
  11050. appropriate amount of memory and initializing it. We choose to place
  11051. the \code{expose\_allocation} pass before
  11052. \code{remove\_complex\_operands} because it generates
  11053. code that contains complex operands.
  11054. The output of \code{expose\_allocation} is a language \LangAlloc{}
  11055. that replaces tuple creation with new lower-level forms that we use in the
  11056. translation of tuple creation.
  11057. %
  11058. {\if\edition\racketEd
  11059. \[
  11060. \begin{array}{lcl}
  11061. \Exp &::=& \cdots
  11062. \MID (\key{collect} \,\itm{int})
  11063. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  11064. \MID (\key{global-value} \,\itm{name})
  11065. \end{array}
  11066. \]
  11067. \fi}
  11068. {\if\edition\pythonEd
  11069. \[
  11070. \begin{array}{lcl}
  11071. \Exp &::=& \cdots\\
  11072. &\MID& \key{collect}(\itm{int})
  11073. \MID \key{allocate}(\itm{int},\itm{type})
  11074. \MID \key{global\_value}(\itm{name}) \\
  11075. &\MID& \key{begin:} ~ \Stmt^{*} ~ \Exp \\
  11076. \Stmt &::= & \CASSIGN{\CPUT{\Exp}{\itm{int}}}{\Exp}
  11077. \end{array}
  11078. \]
  11079. \fi}
  11080. %
  11081. The \CCOLLECT{$n$} form runs the garbage collector, requesting that it
  11082. make sure that there are $n$ bytes ready to be allocated. During
  11083. instruction selection, the \CCOLLECT{$n$} form will become a call to
  11084. the \code{collect} function in \code{runtime.c}.
  11085. %
  11086. The \CALLOCATE{$n$}{$\itm{type}$} form obtains memory for $n$ elements (and
  11087. space at the front for the 64-bit tag), but the elements are not
  11088. initialized. \index{subject}{allocate} The $\itm{type}$ parameter is the type
  11089. of the tuple:
  11090. %
  11091. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  11092. %
  11093. where $\Type_i$ is the type of the $i$th element.
  11094. %
  11095. The \CGLOBALVALUE{\itm{name}} form reads the value of a global
  11096. variable, such as \code{free\_ptr}.
  11097. %
  11098. \python{The \code{begin} form is an expression that executes a
  11099. sequence of statements and then produces the value of the expression
  11100. at the end.}
  11101. \racket{
  11102. The type information that you need for \CALLOCATE{$n$}{$\itm{type}$}
  11103. can be obtained by running the
  11104. \code{type-check-Lvec-has-type} type checker immediately before the
  11105. \code{expose\_allocation} pass. This version of the type checker
  11106. places a special AST node of the form $(\key{HasType}~e~\itm{type})$
  11107. around each tuple creation. The concrete syntax
  11108. for \code{HasType} is \code{has-type}.}
  11109. The following shows the transformation of tuple creation into (1) a
  11110. sequence of temporary variable bindings for the initializing
  11111. expressions, (2) a conditional call to \code{collect}, (3) a call to
  11112. \code{allocate}, and (4) the initialization of the tuple. The
  11113. \itm{len} placeholder refers to the length of the tuple, and
  11114. \itm{bytes} is the total number of bytes that need to be allocated for
  11115. the tuple, which is 8 for the tag plus \itm{len} times 8.
  11116. %
  11117. \python{The \itm{type} needed for the second argument of the
  11118. \code{allocate} form can be obtained from the \code{has\_type} field
  11119. of the tuple AST node, which is stored there by running the type
  11120. checker for \LangVec{} immediately before this pass.}
  11121. %
  11122. \begin{center}
  11123. \begin{minipage}{\textwidth}
  11124. {\if\edition\racketEd
  11125. \begin{lstlisting}
  11126. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  11127. |$\Longrightarrow$|
  11128. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  11129. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  11130. (global-value fromspace_end))
  11131. (void)
  11132. (collect |\itm{bytes}|))])
  11133. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  11134. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  11135. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  11136. |$v$|) ... )))) ...)
  11137. \end{lstlisting}
  11138. \fi}
  11139. {\if\edition\pythonEd
  11140. \begin{lstlisting}
  11141. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  11142. |$\Longrightarrow$|
  11143. begin:
  11144. |$x_0$| = |$e_0$|
  11145. |$\vdots$|
  11146. |$x_{n-1}$| = |$e_{n-1}$|
  11147. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  11148. 0
  11149. else:
  11150. collect(|\itm{bytes}|)
  11151. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  11152. |$v$|[0] = |$x_0$|
  11153. |$\vdots$|
  11154. |$v$|[|$n-1$|] = |$x_{n-1}$|
  11155. |$v$|
  11156. \end{lstlisting}
  11157. \fi}
  11158. \end{minipage}
  11159. \end{center}
  11160. %
  11161. \noindent The sequencing of the initializing expressions
  11162. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important, because
  11163. they may trigger garbage collection and we cannot have an allocated
  11164. but uninitialized tuple on the heap during a collection.
  11165. Figure~\ref{fig:expose-alloc-output} shows the output of the
  11166. \code{expose\_allocation} pass on our running example.
  11167. \begin{figure}[tbp]
  11168. \begin{tcolorbox}[colback=white]
  11169. % tests/s2_17.rkt
  11170. {\if\edition\racketEd
  11171. \begin{lstlisting}
  11172. (vector-ref
  11173. (vector-ref
  11174. (let ([vecinit6
  11175. (let ([_4 (if (< (+ (global-value free_ptr) 16)
  11176. (global-value fromspace_end))
  11177. (void)
  11178. (collect 16))])
  11179. (let ([alloc2 (allocate 1 (Vector Integer))])
  11180. (let ([_3 (vector-set! alloc2 0 42)])
  11181. alloc2)))])
  11182. (let ([_8 (if (< (+ (global-value free_ptr) 16)
  11183. (global-value fromspace_end))
  11184. (void)
  11185. (collect 16))])
  11186. (let ([alloc5 (allocate 1 (Vector (Vector Integer)))])
  11187. (let ([_7 (vector-set! alloc5 0 vecinit6)])
  11188. alloc5))))
  11189. 0)
  11190. 0)
  11191. \end{lstlisting}
  11192. \fi}
  11193. {\if\edition\pythonEd
  11194. \begin{lstlisting}
  11195. print( |$T_1$|[0][0] )
  11196. \end{lstlisting}
  11197. where $T_1$ is
  11198. \begin{lstlisting}
  11199. begin:
  11200. tmp.1 = |$T_2$|
  11201. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  11202. 0
  11203. else:
  11204. collect(16)
  11205. tmp.2 = allocate(1, TupleType(TupleType([int])))
  11206. tmp.2[0] = tmp.1
  11207. tmp.2
  11208. \end{lstlisting}
  11209. and $T_2$ is
  11210. \begin{lstlisting}
  11211. begin:
  11212. tmp.3 = 42
  11213. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  11214. 0
  11215. else:
  11216. collect(16)
  11217. tmp.4 = allocate(1, TupleType([int]))
  11218. tmp.4[0] = tmp.3
  11219. tmp.4
  11220. \end{lstlisting}
  11221. \fi}
  11222. \end{tcolorbox}
  11223. \caption{Output of the \code{expose\_allocation} pass.}
  11224. \label{fig:expose-alloc-output}
  11225. \end{figure}
  11226. \section{Remove Complex Operands}
  11227. \label{sec:remove-complex-opera-Lvec}
  11228. {\if\edition\racketEd
  11229. %
  11230. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  11231. should be treated as complex operands.
  11232. %
  11233. \fi}
  11234. %
  11235. {\if\edition\pythonEd
  11236. %
  11237. The expressions \code{allocate}, \code{global\_value}, \code{begin},
  11238. and tuple access should be treated as complex operands. The
  11239. sub-expressions of tuple access must be atomic.
  11240. %
  11241. \fi}
  11242. %% A new case for
  11243. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  11244. %% handled carefully to prevent the \code{Prim} node from being separated
  11245. %% from its enclosing \code{HasType}.
  11246. Figure~\ref{fig:Lvec-anf-syntax}
  11247. shows the grammar for the output language \LangAllocANF{} of this
  11248. pass, which is \LangAlloc{} in monadic normal form.
  11249. \newcommand{\LtupMonadASTRacket}{
  11250. \begin{array}{rcl}
  11251. \Exp &::=& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  11252. \MID \GLOBALVALUE{\Var}
  11253. \end{array}
  11254. }
  11255. \newcommand{\LtupMonadASTPython}{
  11256. \begin{array}{rcl}
  11257. \Exp &::=& \GET{\Atm}{\Atm} \\
  11258. &\MID& \LEN{\Atm}\\
  11259. &\MID& \ALLOCATE{\Int}{\Type}
  11260. \MID \GLOBALVALUE{\Var} \\
  11261. \Stmt{} &::=& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  11262. &\MID& \COLLECT{\Int}
  11263. \end{array}
  11264. }
  11265. \begin{figure}[tp]
  11266. \centering
  11267. \begin{tcolorbox}[colback=white]
  11268. \small
  11269. {\if\edition\racketEd
  11270. \[
  11271. \begin{array}{l}
  11272. \gray{\LvarMonadASTRacket} \\ \hline
  11273. \gray{\LifMonadASTRacket} \\ \hline
  11274. \gray{\LwhileMonadASTRacket} \\ \hline
  11275. \LtupMonadASTRacket \\
  11276. \begin{array}{rcl}
  11277. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  11278. \end{array}
  11279. \end{array}
  11280. \]
  11281. \fi}
  11282. {\if\edition\pythonEd
  11283. \[
  11284. \begin{array}{l}
  11285. \gray{\LvarMonadASTPython} \\ \hline
  11286. \gray{\LifMonadASTPython} \\ \hline
  11287. \gray{\LwhileMonadASTPython} \\ \hline
  11288. \LtupMonadASTPython \\
  11289. \begin{array}{rcl}
  11290. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  11291. \end{array}
  11292. \end{array}
  11293. \]
  11294. \fi}
  11295. \end{tcolorbox}
  11296. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  11297. \label{fig:Lvec-anf-syntax}
  11298. \end{figure}
  11299. \section{Explicate Control and the \LangCVec{} language}
  11300. \label{sec:explicate-control-r3}
  11301. \newcommand{\CtupASTRacket}{
  11302. \begin{array}{lcl}
  11303. \Exp &::= & \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  11304. &\MID& \VECREF{\Atm}{\INT{\Int}} \\
  11305. &\MID& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  11306. &\MID& \VECLEN{\Atm} \\
  11307. &\MID& \GLOBALVALUE{\Var} \\
  11308. \Stmt &::=& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  11309. &\MID& \LP\key{Collect} \,\itm{int}\RP
  11310. \end{array}
  11311. }
  11312. \newcommand{\CtupASTPython}{
  11313. \begin{array}{lcl}
  11314. \Exp &::= & \GET{\Atm}{\Atm} \MID \ALLOCATE{\Int}{\Type} \\
  11315. &\MID& \GLOBALVALUE{\Var} \MID \LEN{\Atm} \\
  11316. \Stmt &::=& \COLLECT{\Int} \\
  11317. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  11318. \end{array}
  11319. }
  11320. \begin{figure}[tp]
  11321. \begin{tcolorbox}[colback=white]
  11322. \small
  11323. {\if\edition\racketEd
  11324. \[
  11325. \begin{array}{l}
  11326. \gray{\CvarASTRacket} \\ \hline
  11327. \gray{\CifASTRacket} \\ \hline
  11328. \gray{\CloopASTRacket} \\ \hline
  11329. \CtupASTRacket \\
  11330. \begin{array}{lcl}
  11331. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  11332. \end{array}
  11333. \end{array}
  11334. \]
  11335. \fi}
  11336. {\if\edition\pythonEd
  11337. \[
  11338. \begin{array}{l}
  11339. \gray{\CifASTPython} \\ \hline
  11340. \CtupASTPython \\
  11341. \begin{array}{lcl}
  11342. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}, \ldots \RC}
  11343. \end{array}
  11344. \end{array}
  11345. \]
  11346. \fi}
  11347. \end{tcolorbox}
  11348. \caption{The abstract syntax of \LangCVec{}, extending
  11349. \racket{\LangCLoop{} (figure~\ref{fig:c7-syntax})}\python{\LangCIf{}
  11350. (figure~\ref{fig:c1-syntax})}.}
  11351. \label{fig:c2-syntax}
  11352. \end{figure}
  11353. The output of \code{explicate\_control} is a program in the
  11354. intermediate language \LangCVec{}, for which figure~\ref{fig:c2-syntax}
  11355. shows the definition of the abstract syntax.
  11356. %
  11357. %% \racket{(The concrete syntax is defined in
  11358. %% figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  11359. %
  11360. The new expressions of \LangCVec{} include \key{allocate},
  11361. %
  11362. \racket{\key{vector-ref}, and \key{vector-set!},}
  11363. %
  11364. \python{accessing tuple elements,}
  11365. %
  11366. and \key{global\_value}.
  11367. %
  11368. \python{\LangCVec{} also includes the \code{collect} statement and
  11369. assignment to a tuple element.}
  11370. %
  11371. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  11372. %
  11373. The \code{explicate\_control} pass can treat these new forms much like
  11374. the other forms that we've already encountered. The output of the
  11375. \code{explicate\_control} pass on the running example is shown on the
  11376. left side of figure~\ref{fig:select-instr-output-gc} in the next
  11377. section.
  11378. \section{Select Instructions and the \LangXGlobal{} Language}
  11379. \label{sec:select-instructions-gc}
  11380. \index{subject}{instruction selection}
  11381. %% void (rep as zero)
  11382. %% allocate
  11383. %% collect (callq collect)
  11384. %% vector-ref
  11385. %% vector-set!
  11386. %% vector-length
  11387. %% global (postpone)
  11388. In this pass we generate x86 code for most of the new operations that
  11389. were needed to compile tuples, including \code{Allocate},
  11390. \code{Collect}, and accessing tuple elements.
  11391. %
  11392. We compile \code{GlobalValue} to \code{Global} because the latter has a
  11393. different concrete syntax (see figures~\ref{fig:x86-2-concrete} and
  11394. \ref{fig:x86-2}). \index{subject}{x86}
  11395. The tuple read and write forms translate into \code{movq}
  11396. instructions. (The $+1$ in the offset serves to move past the tag at the
  11397. beginning of the tuple representation.)
  11398. %
  11399. \begin{center}
  11400. \begin{minipage}{\textwidth}
  11401. {\if\edition\racketEd
  11402. \begin{lstlisting}
  11403. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  11404. |$\Longrightarrow$|
  11405. movq |$\itm{tup}'$|, %r11
  11406. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  11407. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  11408. |$\Longrightarrow$|
  11409. movq |$\itm{tup}'$|, %r11
  11410. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  11411. movq $0, |$\itm{lhs'}$|
  11412. \end{lstlisting}
  11413. \fi}
  11414. {\if\edition\pythonEd
  11415. \begin{lstlisting}
  11416. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  11417. |$\Longrightarrow$|
  11418. movq |$\itm{tup}'$|, %r11
  11419. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  11420. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  11421. |$\Longrightarrow$|
  11422. movq |$\itm{tup}'$|, %r11
  11423. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  11424. \end{lstlisting}
  11425. \fi}
  11426. \end{minipage}
  11427. \end{center}
  11428. \racket{The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$}
  11429. \python{The $\itm{tup}'$ and $\itm{rhs}'$}
  11430. are obtained by translating from \LangCVec{} to x86.
  11431. %
  11432. The move of $\itm{tup}'$ to
  11433. register \code{r11} ensures that offset expression
  11434. \code{$8(n+1)$(\%r11)} contains a register operand. This requires
  11435. removing \code{r11} from consideration by the register allocating.
  11436. Why not use \code{rax} instead of \code{r11}? Suppose that we instead used
  11437. \code{rax}. Then the generated code for tuple assignment would be
  11438. \begin{lstlisting}
  11439. movq |$\itm{tup}'$|, %rax
  11440. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  11441. \end{lstlisting}
  11442. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  11443. \code{patch\_instructions} would insert a move through \code{rax}
  11444. as follows:
  11445. \begin{lstlisting}
  11446. movq |$\itm{tup}'$|, %rax
  11447. movq |$\itm{rhs}'$|, %rax
  11448. movq %rax, |$8(n+1)$|(%rax)
  11449. \end{lstlisting}
  11450. However, this sequence of instructions does not work, because we're
  11451. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  11452. $\itm{rhs}'$) at the same time!
  11453. The \racket{\code{vector-length}}\python{\code{len}} operation should
  11454. be translated into a sequence of instructions that read the tag of the
  11455. tuple and extract the 6 bits that represent the tuple length, which
  11456. are the bits starting at index 1 and going up to and including bit 6.
  11457. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  11458. (shift right) can be used to accomplish this.
  11459. We compile the \code{allocate} form to operations on the
  11460. \code{free\_ptr}, as shown next. This approach is called
  11461. \emph{inline allocation} because it implements allocation without a
  11462. function call by simply incrementing the allocation pointer. It is much
  11463. more efficient than calling a function for each allocation. The
  11464. address in the \code{free\_ptr} is the next free address in the
  11465. FromSpace, so we copy it into \code{r11} and then move it forward by
  11466. enough space for the tuple being allocated, which is $8(\itm{len}+1)$
  11467. bytes because each element is 8 bytes (64 bits) and we use 8 bytes for
  11468. the tag. We then initialize the \itm{tag} and finally copy the
  11469. address in \code{r11} to the left-hand side. Refer to
  11470. figure~\ref{fig:tuple-rep} to see how the tag is organized.
  11471. %
  11472. \racket{We recommend using the Racket operations
  11473. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  11474. during compilation.}
  11475. %
  11476. \python{We recommend using the bitwise-or operator \code{|} and the
  11477. shift-left operator \code{<<} to compute the tag during
  11478. compilation.}
  11479. %
  11480. The type annotation in the \code{allocate} form is used to determine
  11481. the pointer mask region of the tag.
  11482. %
  11483. The addressing mode \verb!free_ptr(%rip)! essentially stands for the
  11484. address of the \code{free\_ptr} global variable using a special
  11485. instruction-pointer-relative addressing mode of the x86-64 processor.
  11486. In particular, the assembler computes the distance $d$ between the
  11487. address of \code{free\_ptr} and where the \code{rip} would be at that
  11488. moment and then changes the \code{free\_ptr(\%rip)} argument to
  11489. \code{$d$(\%rip)}, which at runtime will compute the address of
  11490. \code{free\_ptr}.
  11491. %
  11492. {\if\edition\racketEd
  11493. \begin{lstlisting}
  11494. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  11495. |$\Longrightarrow$|
  11496. movq free_ptr(%rip), %r11
  11497. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  11498. movq $|$\itm{tag}$|, 0(%r11)
  11499. movq %r11, |$\itm{lhs}'$|
  11500. \end{lstlisting}
  11501. \fi}
  11502. {\if\edition\pythonEd
  11503. \begin{lstlisting}
  11504. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  11505. |$\Longrightarrow$|
  11506. movq free_ptr(%rip), %r11
  11507. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  11508. movq $|$\itm{tag}$|, 0(%r11)
  11509. movq %r11, |$\itm{lhs}'$|
  11510. \end{lstlisting}
  11511. \fi}
  11512. %
  11513. The \code{collect} form is compiled to a call to the \code{collect}
  11514. function in the runtime. The arguments to \code{collect} are (1) the
  11515. top of the root stack, and (2) the number of bytes that need to be
  11516. allocated. We use another dedicated register, \code{r15}, to store
  11517. the pointer to the top of the root stack. Therefore \code{r15} is not
  11518. available for use by the register allocator.
  11519. %
  11520. {\if\edition\racketEd
  11521. \begin{lstlisting}
  11522. (collect |$\itm{bytes}$|)
  11523. |$\Longrightarrow$|
  11524. movq %r15, %rdi
  11525. movq $|\itm{bytes}|, %rsi
  11526. callq collect
  11527. \end{lstlisting}
  11528. \fi}
  11529. {\if\edition\pythonEd
  11530. \begin{lstlisting}
  11531. collect(|$\itm{bytes}$|)
  11532. |$\Longrightarrow$|
  11533. movq %r15, %rdi
  11534. movq $|\itm{bytes}|, %rsi
  11535. callq collect
  11536. \end{lstlisting}
  11537. \fi}
  11538. \newcommand{\GrammarXGlobal}{
  11539. \begin{array}{lcl}
  11540. \Arg &::=& \itm{label} \key{(\%rip)}
  11541. \end{array}
  11542. }
  11543. \newcommand{\ASTXGlobalRacket}{
  11544. \begin{array}{lcl}
  11545. \Arg &::=& \GLOBAL{\itm{label}}
  11546. \end{array}
  11547. }
  11548. \begin{figure}[tp]
  11549. \begin{tcolorbox}[colback=white]
  11550. \[
  11551. \begin{array}{l}
  11552. \gray{\GrammarXInt} \\ \hline
  11553. \gray{\GrammarXIf} \\ \hline
  11554. \GrammarXGlobal \\
  11555. \begin{array}{lcl}
  11556. \LangXGlobalM{} &::= & \key{.globl main} \\
  11557. & & \key{main:} \; \Instr^{*}
  11558. \end{array}
  11559. \end{array}
  11560. \]
  11561. \end{tcolorbox}
  11562. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1-concrete}).}
  11563. \label{fig:x86-2-concrete}
  11564. \end{figure}
  11565. \begin{figure}[tp]
  11566. \begin{tcolorbox}[colback=white]
  11567. \small
  11568. \[
  11569. \begin{array}{l}
  11570. \gray{\ASTXIntRacket} \\ \hline
  11571. \gray{\ASTXIfRacket} \\ \hline
  11572. \ASTXGlobalRacket \\
  11573. \begin{array}{lcl}
  11574. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  11575. \end{array}
  11576. \end{array}
  11577. \]
  11578. \end{tcolorbox}
  11579. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1}).}
  11580. \label{fig:x86-2}
  11581. \end{figure}
  11582. The definitions of the concrete and abstract syntax of the
  11583. \LangXGlobal{} language are shown in figures~\ref{fig:x86-2-concrete}
  11584. and \ref{fig:x86-2}. It differs from \LangXIf{} only in the addition
  11585. of global variables.
  11586. %
  11587. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  11588. \code{select\_instructions} pass on the running example.
  11589. \begin{figure}[tbp]
  11590. \centering
  11591. \begin{tcolorbox}[colback=white]
  11592. % tests/s2_17.rkt
  11593. \begin{tabular}{lll}
  11594. \begin{minipage}{0.5\textwidth}
  11595. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11596. start:
  11597. tmp9 = (global-value free_ptr);
  11598. tmp0 = (+ tmp9 16);
  11599. tmp1 = (global-value fromspace_end);
  11600. if (< tmp0 tmp1)
  11601. goto block0;
  11602. else
  11603. goto block1;
  11604. block0:
  11605. _4 = (void);
  11606. goto block9;
  11607. block1:
  11608. (collect 16)
  11609. goto block9;
  11610. block9:
  11611. alloc2 = (allocate 1 (Vector Integer));
  11612. _3 = (vector-set! alloc2 0 42);
  11613. vecinit6 = alloc2;
  11614. tmp2 = (global-value free_ptr);
  11615. tmp3 = (+ tmp2 16);
  11616. tmp4 = (global-value fromspace_end);
  11617. if (< tmp3 tmp4)
  11618. goto block7;
  11619. else
  11620. goto block8;
  11621. block7:
  11622. _8 = (void);
  11623. goto block6;
  11624. block8:
  11625. (collect 16)
  11626. goto block6;
  11627. block6:
  11628. alloc5 = (allocate 1 (Vector (Vector Integer)));
  11629. _7 = (vector-set! alloc5 0 vecinit6);
  11630. tmp5 = (vector-ref alloc5 0);
  11631. return (vector-ref tmp5 0);
  11632. \end{lstlisting}
  11633. \end{minipage}
  11634. &$\Rightarrow$&
  11635. \begin{minipage}{0.4\textwidth}
  11636. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11637. start:
  11638. movq free_ptr(%rip), tmp9
  11639. movq tmp9, tmp0
  11640. addq $16, tmp0
  11641. movq fromspace_end(%rip), tmp1
  11642. cmpq tmp1, tmp0
  11643. jl block0
  11644. jmp block1
  11645. block0:
  11646. movq $0, _4
  11647. jmp block9
  11648. block1:
  11649. movq %r15, %rdi
  11650. movq $16, %rsi
  11651. callq collect
  11652. jmp block9
  11653. block9:
  11654. movq free_ptr(%rip), %r11
  11655. addq $16, free_ptr(%rip)
  11656. movq $3, 0(%r11)
  11657. movq %r11, alloc2
  11658. movq alloc2, %r11
  11659. movq $42, 8(%r11)
  11660. movq $0, _3
  11661. movq alloc2, vecinit6
  11662. movq free_ptr(%rip), tmp2
  11663. movq tmp2, tmp3
  11664. addq $16, tmp3
  11665. movq fromspace_end(%rip), tmp4
  11666. cmpq tmp4, tmp3
  11667. jl block7
  11668. jmp block8
  11669. block7:
  11670. movq $0, _8
  11671. jmp block6
  11672. block8:
  11673. movq %r15, %rdi
  11674. movq $16, %rsi
  11675. callq collect
  11676. jmp block6
  11677. block6:
  11678. movq free_ptr(%rip), %r11
  11679. addq $16, free_ptr(%rip)
  11680. movq $131, 0(%r11)
  11681. movq %r11, alloc5
  11682. movq alloc5, %r11
  11683. movq vecinit6, 8(%r11)
  11684. movq $0, _7
  11685. movq alloc5, %r11
  11686. movq 8(%r11), tmp5
  11687. movq tmp5, %r11
  11688. movq 8(%r11), %rax
  11689. jmp conclusion
  11690. \end{lstlisting}
  11691. \end{minipage}
  11692. \end{tabular}
  11693. \end{tcolorbox}
  11694. \caption{Output of the \code{explicate\_control} (\emph{left}) and
  11695. \code{select\_instructions} (\emph{right}) passes on the running
  11696. example.}
  11697. \label{fig:select-instr-output-gc}
  11698. \end{figure}
  11699. \clearpage
  11700. \section{Register Allocation}
  11701. \label{sec:reg-alloc-gc}
  11702. \index{subject}{register allocation}
  11703. As discussed previously in this chapter, the garbage collector needs to
  11704. access all the pointers in the root set, that is, all variables that
  11705. are tuples. It will be the responsibility of the register allocator
  11706. to make sure that
  11707. \begin{enumerate}
  11708. \item the root stack is used for spilling tuple-typed variables, and
  11709. \item if a tuple-typed variable is live during a call to the
  11710. collector, it must be spilled to ensure that it is visible to the
  11711. collector.
  11712. \end{enumerate}
  11713. The latter responsibility can be handled during construction of the
  11714. interference graph, by adding interference edges between the call-live
  11715. tuple-typed variables and all the callee-saved registers. (They
  11716. already interfere with the caller-saved registers.)
  11717. %
  11718. \racket{The type information for variables is in the \code{Program}
  11719. form, so we recommend adding another parameter to the
  11720. \code{build\_interference} function to communicate this alist.}
  11721. %
  11722. \python{The type information for variables is generated by the type
  11723. checker for \LangCVec{}, stored a field named \code{var\_types} in
  11724. the \code{CProgram} AST mode. You'll need to propagate that
  11725. information so that it is available in this pass.}
  11726. The spilling of tuple-typed variables to the root stack can be handled
  11727. after graph coloring, in choosing how to assign the colors
  11728. (integers) to registers and stack locations. The
  11729. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  11730. changes to also record the number of spills to the root stack.
  11731. % build-interference
  11732. %
  11733. % callq
  11734. % extra parameter for var->type assoc. list
  11735. % update 'program' and 'if'
  11736. % allocate-registers
  11737. % allocate spilled vectors to the rootstack
  11738. % don't change color-graph
  11739. % TODO:
  11740. %\section{Patch Instructions}
  11741. %[mention that global variables are memory references]
  11742. \section{Prelude and Conclusion}
  11743. \label{sec:print-x86-gc}
  11744. \label{sec:prelude-conclusion-x86-gc}
  11745. \index{subject}{prelude}\index{subject}{conclusion}
  11746. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  11747. \code{prelude\_and\_conclusion} pass on the running example. In the
  11748. prelude of the \code{main} function, we allocate space
  11749. on the root stack to make room for the spills of tuple-typed
  11750. variables. We do so by incrementing the root stack pointer (\code{r15}),
  11751. taking care that the root stack grows up instead of down. For the
  11752. running example, there was just one spill, so we increment \code{r15}
  11753. by 8 bytes. In the conclusion we subtract 8 bytes from \code{r15}.
  11754. One issue that deserves special care is that there may be a call to
  11755. \code{collect} prior to the initializing assignments for all the
  11756. variables in the root stack. We do not want the garbage collector to
  11757. mistakenly determine that some uninitialized variable is a pointer that
  11758. needs to be followed. Thus, we zero out all locations on the root
  11759. stack in the prelude of \code{main}. In
  11760. figure~\ref{fig:print-x86-output-gc}, the instruction
  11761. %
  11762. \lstinline{movq $0, 0(%r15)}
  11763. %
  11764. is sufficient to accomplish this task because there is only one spill.
  11765. In general, we have to clear as many words as there are spills of
  11766. tuple-typed variables. The garbage collector tests each root to see
  11767. if it is null prior to dereferencing it.
  11768. \begin{figure}[htbp]
  11769. % TODO: Python Version -Jeremy
  11770. \begin{tcolorbox}[colback=white]
  11771. \begin{minipage}[t]{0.5\textwidth}
  11772. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11773. .globl main
  11774. main:
  11775. pushq %rbp
  11776. movq %rsp, %rbp
  11777. subq $0, %rsp
  11778. movq $65536, %rdi
  11779. movq $65536, %rsi
  11780. callq initialize
  11781. movq rootstack_begin(%rip), %r15
  11782. movq $0, 0(%r15)
  11783. addq $8, %r15
  11784. jmp start
  11785. conclusion:
  11786. subq $8, %r15
  11787. addq $0, %rsp
  11788. popq %rbp
  11789. retq
  11790. \end{lstlisting}
  11791. \end{minipage}
  11792. \end{tcolorbox}
  11793. \caption{The prelude and conclusion generated by the \code{prelude\_and\_conclusion} pass for the running example.}
  11794. \label{fig:print-x86-output-gc}
  11795. \end{figure}
  11796. \begin{figure}[tbp]
  11797. \begin{tcolorbox}[colback=white]
  11798. {\if\edition\racketEd
  11799. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11800. \node (Lvec) at (0,2) {\large \LangVec{}};
  11801. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  11802. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  11803. \node (Lvec-4) at (10,2) {\large \LangAlloc{}};
  11804. \node (Lvec-5) at (10,0) {\large \LangAlloc{}};
  11805. \node (Lvec-6) at (5,0) {\large \LangAllocANF{}};
  11806. \node (C2-4) at (0,0) {\large \LangCVec{}};
  11807. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  11808. \node (x86-2-1) at (0,-4) {\large \LangXGlobalVar{}};
  11809. \node (x86-2-2) at (4,-4) {\large \LangXGlobalVar{}};
  11810. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  11811. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  11812. \node (x86-5) at (8,-4) {\large \LangXGlobal{}};
  11813. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  11814. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  11815. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-4);
  11816. \path[->,bend left=15] (Lvec-4) edge [right] node
  11817. {\ttfamily\footnotesize uncover\_get!} (Lvec-5);
  11818. \path[->,bend left=10] (Lvec-5) edge [below] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  11819. \path[->,bend right=10] (Lvec-6) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  11820. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  11821. \path[->,bend right=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11822. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  11823. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  11824. \path[->,bend left=10] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11825. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11826. \end{tikzpicture}
  11827. \fi}
  11828. {\if\edition\pythonEd
  11829. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  11830. \node (Lvec) at (0,2) {\large \LangVec{}};
  11831. \node (Lvec-2) at (4,2) {\large \LangVec{}};
  11832. \node (Lvec-5) at (8,2) {\large \LangAlloc{}};
  11833. \node (Lvec-6) at (12,2) {\large \LangAllocANF{}};
  11834. \node (C2-4) at (0,0) {\large \LangCVec{}};
  11835. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  11836. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  11837. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  11838. \node (x86-5) at (12,-2) {\large \LangXGlobal{}};
  11839. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  11840. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-5);
  11841. \path[->,bend left=15] (Lvec-5) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  11842. \path[->,bend left=10] (Lvec-6) edge [right] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  11843. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  11844. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  11845. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11846. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11847. \end{tikzpicture}
  11848. \fi}
  11849. \end{tcolorbox}
  11850. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  11851. \label{fig:Lvec-passes}
  11852. \end{figure}
  11853. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  11854. for the compilation of \LangVec{}.
  11855. \clearpage
  11856. {\if\edition\racketEd
  11857. \section{Challenge: Simple Structures}
  11858. \label{sec:simple-structures}
  11859. \index{subject}{struct}
  11860. \index{subject}{structure}
  11861. The language \LangStruct{} extends \LangVec{} with support for simple
  11862. structures. The definition of its concrete syntax is shown in
  11863. figure~\ref{fig:Lstruct-concrete-syntax}, and the abstract syntax is
  11864. shown in figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct}
  11865. in Typed Racket is a user-defined data type that contains named fields
  11866. and that is heap allocated, similarly to a vector. The following is an
  11867. example of a structure definition, in this case the definition of a
  11868. \code{point} type:
  11869. \begin{lstlisting}
  11870. (struct point ([x : Integer] [y : Integer]) #:mutable)
  11871. \end{lstlisting}
  11872. \newcommand{\LstructGrammarRacket}{
  11873. \begin{array}{lcl}
  11874. \Type &::=& \Var \\
  11875. \Exp &::=& (\Var\;\Exp \ldots)\\
  11876. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  11877. \end{array}
  11878. }
  11879. \newcommand{\LstructASTRacket}{
  11880. \begin{array}{lcl}
  11881. \Type &::=& \VAR{\Var} \\
  11882. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  11883. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  11884. \end{array}
  11885. }
  11886. \begin{figure}[tbp]
  11887. \centering
  11888. \begin{tcolorbox}[colback=white]
  11889. \[
  11890. \begin{array}{l}
  11891. \gray{\LintGrammarRacket{}} \\ \hline
  11892. \gray{\LvarGrammarRacket{}} \\ \hline
  11893. \gray{\LifGrammarRacket{}} \\ \hline
  11894. \gray{\LwhileGrammarRacket} \\ \hline
  11895. \gray{\LtupGrammarRacket} \\ \hline
  11896. \LstructGrammarRacket \\
  11897. \begin{array}{lcl}
  11898. \LangStruct{} &::=& \Def \ldots \; \Exp
  11899. \end{array}
  11900. \end{array}
  11901. \]
  11902. \end{tcolorbox}
  11903. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  11904. (figure~\ref{fig:Lvec-concrete-syntax}).}
  11905. \label{fig:Lstruct-concrete-syntax}
  11906. \end{figure}
  11907. \begin{figure}[tbp]
  11908. \centering
  11909. \begin{tcolorbox}[colback=white]
  11910. \small
  11911. \[
  11912. \begin{array}{l}
  11913. \gray{\LintASTRacket{}} \\ \hline
  11914. \gray{\LvarASTRacket{}} \\ \hline
  11915. \gray{\LifASTRacket{}} \\ \hline
  11916. \gray{\LwhileASTRacket} \\ \hline
  11917. \gray{\LtupASTRacket} \\ \hline
  11918. \LstructASTRacket \\
  11919. \begin{array}{lcl}
  11920. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  11921. \end{array}
  11922. \end{array}
  11923. \]
  11924. \end{tcolorbox}
  11925. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  11926. (figure~\ref{fig:Lvec-syntax}).}
  11927. \label{fig:Lstruct-syntax}
  11928. \end{figure}
  11929. An instance of a structure is created using function-call syntax, with
  11930. the name of the structure in the function position, as follows:
  11931. \begin{lstlisting}
  11932. (point 7 12)
  11933. \end{lstlisting}
  11934. Function-call syntax is also used to read a field of a structure. The
  11935. function name is formed by the structure name, a dash, and the field
  11936. name. The following example uses \code{point-x} and \code{point-y} to
  11937. access the \code{x} and \code{y} fields of two point instances:
  11938. \begin{center}
  11939. \begin{lstlisting}
  11940. (let ([pt1 (point 7 12)])
  11941. (let ([pt2 (point 4 3)])
  11942. (+ (- (point-x pt1) (point-x pt2))
  11943. (- (point-y pt1) (point-y pt2)))))
  11944. \end{lstlisting}
  11945. \end{center}
  11946. Similarly, to write to a field of a structure, use its set function,
  11947. whose name starts with \code{set-}, followed by the structure name,
  11948. then a dash, then the field name, and finally with an exclamation
  11949. mark. The following example uses \code{set-point-x!} to change the
  11950. \code{x} field from \code{7} to \code{42}:
  11951. \begin{center}
  11952. \begin{lstlisting}
  11953. (let ([pt (point 7 12)])
  11954. (let ([_ (set-point-x! pt 42)])
  11955. (point-x pt)))
  11956. \end{lstlisting}
  11957. \end{center}
  11958. \begin{exercise}\normalfont\normalsize
  11959. Create a type checker for \LangStruct{} by extending the type
  11960. checker for \LangVec{}. Extend your compiler with support for simple
  11961. structures, compiling \LangStruct{} to x86 assembly code. Create
  11962. five new test cases that use structures and, test your compiler.
  11963. \end{exercise}
  11964. % TODO: create an interpreter for L_struct
  11965. \clearpage
  11966. \fi}
  11967. \section{Challenge: Arrays}
  11968. \label{sec:arrays}
  11969. % TODO mention trapped-error
  11970. In this chapter we have studied tuples, that is, heterogeneous
  11971. sequences of elements whose length is determined at compile time. This
  11972. challenge is also about sequences, but this time the length is
  11973. determined at runtime and all the elements have the same type (they
  11974. are homogeneous). We use the term \emph{array} for this latter kind of
  11975. sequence.
  11976. %
  11977. \racket{
  11978. The Racket language does not distinguish between tuples and arrays;
  11979. they are both represented by vectors. However, Typed Racket
  11980. distinguishes between tuples and arrays: the \code{Vector} type is for
  11981. tuples, and the \code{Vectorof} type is for arrays.}
  11982. \python{
  11983. Arrays correspond to the \code{list} type in Python language.
  11984. }
  11985. Figure~\ref{fig:Lvecof-concrete-syntax} presents the definition of the
  11986. concrete syntax for \LangArray{}, and figure~\ref{fig:Lvecof-syntax}
  11987. presents the definition of the abstract syntax, extending \LangVec{}
  11988. with the \racket{\code{Vectorof}}\python{\code{list}} type and the
  11989. %
  11990. \racket{\code{make-vector} primitive operator for creating an array,
  11991. whose arguments are the length of the array and an initial value for
  11992. all the elements in the array.}
  11993. \python{bracket notation for creating an array literal.}
  11994. \racket{
  11995. The \code{vector-length},
  11996. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  11997. for tuples become overloaded for use with arrays.}
  11998. \python{
  11999. The subscript operator becomes overloaded for use with arrays and tuples
  12000. and now may appear on the left-hand side of an assignment.
  12001. Note that the index of the subscript, when applied to an array, may be an
  12002. arbitrary expression and not just a constant integer.
  12003. The \code{len} function is also applicable to arrays.
  12004. }
  12005. %
  12006. We include integer multiplication in \LangArray{}, because it is
  12007. useful in many examples involving arrays such as computing the
  12008. inner product of two arrays (figure~\ref{fig:inner_product}).
  12009. \newcommand{\LarrayGrammarRacket}{
  12010. \begin{array}{lcl}
  12011. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  12012. \Exp &::=& \CMUL{\Exp}{\Exp}
  12013. \MID \CMAKEVEC{\Exp}{\Exp}
  12014. \end{array}
  12015. }
  12016. \newcommand{\LarrayASTRacket}{
  12017. \begin{array}{lcl}
  12018. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  12019. \Exp &::=& \MUL{\Exp}{\Exp}
  12020. \MID \MAKEVEC{\Exp}{\Exp}
  12021. \end{array}
  12022. }
  12023. \newcommand{\LarrayGrammarPython}{
  12024. \begin{array}{lcl}
  12025. \Type &::=& \key{list}\LS\Type\RS \\
  12026. \Exp &::=& \CMUL{\Exp}{\Exp}
  12027. \MID \CGET{\Exp}{\Exp}
  12028. \MID \LS \Exp \code{,} \ldots \RS \\
  12029. \Stmt &::= & \CGET{\Exp}{\Exp} \mathop{\key{=}}\Exp
  12030. \end{array}
  12031. }
  12032. \newcommand{\LarrayASTPython}{
  12033. \begin{array}{lcl}
  12034. \Type &::=& \key{ListType}\LP\Type\RP \\
  12035. \Exp &::=& \MUL{\Exp}{\Exp}
  12036. \MID \GET{\Exp}{\Exp} \\
  12037. &\MID& \key{List}\LP \Exp \code{,} \ldots \code{, } \code{Load()} \RP \\
  12038. \Stmt &::= & \ASSIGN{ \PUT{\Exp}{\Exp} }{\Exp}
  12039. \end{array}
  12040. }
  12041. \begin{figure}[tp]
  12042. \centering
  12043. \begin{tcolorbox}[colback=white]
  12044. \small
  12045. {\if\edition\racketEd
  12046. \[
  12047. \begin{array}{l}
  12048. \gray{\LintGrammarRacket{}} \\ \hline
  12049. \gray{\LvarGrammarRacket{}} \\ \hline
  12050. \gray{\LifGrammarRacket{}} \\ \hline
  12051. \gray{\LwhileGrammarRacket} \\ \hline
  12052. \gray{\LtupGrammarRacket} \\ \hline
  12053. \LarrayGrammarRacket \\
  12054. \begin{array}{lcl}
  12055. \LangArray{} &::=& \Exp
  12056. \end{array}
  12057. \end{array}
  12058. \]
  12059. \fi}
  12060. {\if\edition\pythonEd
  12061. \[
  12062. \begin{array}{l}
  12063. \gray{\LintGrammarPython{}} \\ \hline
  12064. \gray{\LvarGrammarPython{}} \\ \hline
  12065. \gray{\LifGrammarPython{}} \\ \hline
  12066. \gray{\LwhileGrammarPython} \\ \hline
  12067. \gray{\LtupGrammarPython} \\ \hline
  12068. \LarrayGrammarPython \\
  12069. \begin{array}{rcl}
  12070. \LangArrayM{} &::=& \Stmt^{*}
  12071. \end{array}
  12072. \end{array}
  12073. \]
  12074. \fi}
  12075. \end{tcolorbox}
  12076. \caption{The concrete syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  12077. \label{fig:Lvecof-concrete-syntax}
  12078. \end{figure}
  12079. \begin{figure}[tp]
  12080. \centering
  12081. \begin{tcolorbox}[colback=white]
  12082. \small
  12083. {\if\edition\racketEd
  12084. \[
  12085. \begin{array}{l}
  12086. \gray{\LintASTRacket{}} \\ \hline
  12087. \gray{\LvarASTRacket{}} \\ \hline
  12088. \gray{\LifASTRacket{}} \\ \hline
  12089. \gray{\LwhileASTRacket} \\ \hline
  12090. \gray{\LtupASTRacket} \\ \hline
  12091. \LarrayASTRacket \\
  12092. \begin{array}{lcl}
  12093. \LangArray{} &::=& \Exp
  12094. \end{array}
  12095. \end{array}
  12096. \]
  12097. \fi}
  12098. {\if\edition\pythonEd
  12099. \[
  12100. \begin{array}{l}
  12101. \gray{\LintASTPython{}} \\ \hline
  12102. \gray{\LvarASTPython{}} \\ \hline
  12103. \gray{\LifASTPython{}} \\ \hline
  12104. \gray{\LwhileASTPython} \\ \hline
  12105. \gray{\LtupASTPython} \\ \hline
  12106. \LarrayASTPython \\
  12107. \begin{array}{rcl}
  12108. \LangArrayM{} &::=& \Stmt^{*}
  12109. \end{array}
  12110. \end{array}
  12111. \]
  12112. \fi}
  12113. \end{tcolorbox}
  12114. \caption{The abstract syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  12115. \label{fig:Lvecof-syntax}
  12116. \end{figure}
  12117. \begin{figure}[tp]
  12118. \begin{tcolorbox}[colback=white]
  12119. {\if\edition\racketEd
  12120. % TODO: remove the function from the following example, like the python version -Jeremy
  12121. \begin{lstlisting}
  12122. (let ([A (make-vector 2 2)])
  12123. (let ([B (make-vector 2 3)])
  12124. (let ([i 0])
  12125. (let ([prod 0])
  12126. (begin
  12127. (while (< i n)
  12128. (begin
  12129. (set! prod (+ prod (* (vector-ref A i)
  12130. (vector-ref B i))))
  12131. (set! i (+ i 1))))
  12132. prod)))))
  12133. \end{lstlisting}
  12134. \fi}
  12135. {\if\edition\pythonEd
  12136. \begin{lstlisting}
  12137. A = [2, 2]
  12138. B = [3, 3]
  12139. i = 0
  12140. prod = 0
  12141. while i != len(A):
  12142. prod = prod + A[i] * B[i]
  12143. i = i + 1
  12144. print( prod )
  12145. \end{lstlisting}
  12146. \fi}
  12147. \end{tcolorbox}
  12148. \caption{Example program that computes the inner product.}
  12149. \label{fig:inner_product}
  12150. \end{figure}
  12151. {\if\edition\racketEd
  12152. %
  12153. Figure~\ref{fig:type-check-Lvecof} shows the definition of the type
  12154. checker for \LangArray{}. The result type of
  12155. \code{make-vector} is \code{(Vectorof T)}, where \code{T} is the type
  12156. of the initializing expression. The length expression is required to
  12157. have type \code{Integer}. The type checking of the operators
  12158. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  12159. updated to handle the situation in which the vector has type
  12160. \code{Vectorof}. In these cases we translate the operators to their
  12161. \code{vectorof} form so that later passes can easily distinguish
  12162. between operations on tuples versus arrays. We override the
  12163. \code{operator-types} method to provide the type signature for
  12164. multiplication: it takes two integers and returns an integer. \fi}
  12165. {\if\edition\pythonEd
  12166. %
  12167. The type checker for \LangArray{} is defined in
  12168. figure~\ref{fig:type-check-Lvecof}. The result type of a list literal
  12169. is \code{list[T]} where \code{T} is the type of the initializing
  12170. expressions. The type checking of the \code{len} function and the
  12171. subscript operator is updated to handle lists. The type checker now
  12172. also handles a subscript on the left-hand side of an assignment.
  12173. Regarding multiplication, it takes two integers and returns an
  12174. integer.
  12175. %
  12176. \fi}
  12177. \begin{figure}[tbp]
  12178. \begin{tcolorbox}[colback=white]
  12179. {\if\edition\racketEd
  12180. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12181. (define type-check-Lvecof-class
  12182. (class type-check-Lvec-class
  12183. (super-new)
  12184. (inherit check-type-equal?)
  12185. (define/override (operator-types)
  12186. (append '((* . ((Integer Integer) . Integer)))
  12187. (super operator-types)))
  12188. (define/override (type-check-exp env)
  12189. (lambda (e)
  12190. (define recur (type-check-exp env))
  12191. (match e
  12192. [(Prim 'make-vector (list e1 e2))
  12193. (define-values (e1^ t1) (recur e1))
  12194. (define-values (e2^ elt-type) (recur e2))
  12195. (define vec-type `(Vectorof ,elt-type))
  12196. (values (Prim 'make-vector (list e1^ e2^)) vec-type)]
  12197. [(Prim 'vector-ref (list e1 e2))
  12198. (define-values (e1^ t1) (recur e1))
  12199. (define-values (e2^ t2) (recur e2))
  12200. (match* (t1 t2)
  12201. [(`(Vectorof ,elt-type) 'Integer)
  12202. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  12203. [(other wise) ((super type-check-exp env) e)])]
  12204. [(Prim 'vector-set! (list e1 e2 e3) )
  12205. (define-values (e-vec t-vec) (recur e1))
  12206. (define-values (e2^ t2) (recur e2))
  12207. (define-values (e-arg^ t-arg) (recur e3))
  12208. (match t-vec
  12209. [`(Vectorof ,elt-type)
  12210. (check-type-equal? elt-type t-arg e)
  12211. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  12212. [else ((super type-check-exp env) e)])]
  12213. [(Prim 'vector-length (list e1))
  12214. (define-values (e1^ t1) (recur e1))
  12215. (match t1
  12216. [`(Vectorof ,t)
  12217. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  12218. [else ((super type-check-exp env) e)])]
  12219. [else ((super type-check-exp env) e)])))
  12220. ))
  12221. (define (type-check-Lvecof p)
  12222. (send (new type-check-Lvecof-class) type-check-program p))
  12223. \end{lstlisting}
  12224. \fi}
  12225. {\if\edition\pythonEd
  12226. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12227. class TypeCheckLarray(TypeCheckLtup):
  12228. def type_check_exp(self, e, env):
  12229. match e:
  12230. case ast.List(es, Load()):
  12231. ts = [self.type_check_exp(e, env) for e in es]
  12232. elt_ty = ts[0]
  12233. for (ty, elt) in zip(ts, es):
  12234. self.check_type_equal(elt_ty, ty, elt)
  12235. e.has_type = ListType(elt_ty)
  12236. return e.has_type
  12237. case Call(Name('len'), [tup]):
  12238. tup_t = self.type_check_exp(tup, env)
  12239. tup.has_type = tup_t
  12240. match tup_t:
  12241. case TupleType(ts):
  12242. return IntType()
  12243. case ListType(ty):
  12244. return IntType()
  12245. case _:
  12246. raise Exception('len expected a tuple, not ' + repr(tup_t))
  12247. case Subscript(tup, index, Load()):
  12248. tup_ty = self.type_check_exp(tup, env)
  12249. index_ty = self.type_check_exp(index, env)
  12250. self.check_type_equal(index_ty, IntType(), index)
  12251. match tup_ty:
  12252. case TupleType(ts):
  12253. match index:
  12254. case Constant(i):
  12255. return ts[i]
  12256. case _:
  12257. raise Exception('subscript required constant integer index')
  12258. case ListType(ty):
  12259. return ty
  12260. case _:
  12261. raise Exception('subscript expected a tuple, not ' + repr(tup_ty))
  12262. case BinOp(left, Mult(), right):
  12263. l = self.type_check_exp(left, env)
  12264. self.check_type_equal(l, IntType(), left)
  12265. r = self.type_check_exp(right, env)
  12266. self.check_type_equal(r, IntType(), right)
  12267. return IntType()
  12268. case _:
  12269. return super().type_check_exp(e, env)
  12270. def type_check_stmts(self, ss, env):
  12271. if len(ss) == 0:
  12272. return VoidType()
  12273. match ss[0]:
  12274. case Assign([Subscript(tup, index, Store())], value):
  12275. tup_t = self.type_check_exp(tup, env)
  12276. value_t = self.type_check_exp(value, env)
  12277. index_ty = self.type_check_exp(index, env)
  12278. self.check_type_equal(index_ty, IntType(), index)
  12279. match tup_t:
  12280. case ListType(ty):
  12281. self.check_type_equal(ty, value_t, ss[0])
  12282. case TupleType(ts):
  12283. return self.type_check_stmts(ss, env)
  12284. case _:
  12285. raise Exception('type_check_stmts: '
  12286. 'expected tuple or list, not ' + repr(tup_t))
  12287. return self.type_check_stmts(ss[1:], env)
  12288. case _:
  12289. return super().type_check_stmts(ss, env)
  12290. \end{lstlisting}
  12291. \fi}
  12292. \end{tcolorbox}
  12293. \caption{Type checker for the \LangArray{} language.}
  12294. \label{fig:type-check-Lvecof}
  12295. \end{figure}
  12296. The definition of the interpreter for \LangArray{} is shown in
  12297. figure~\ref{fig:interp-Lvecof}.
  12298. \racket{The \code{make-vector} operator is
  12299. interpreted using Racket's \code{make-vector} function,
  12300. and multiplication is interpreted using \code{fx*},
  12301. which is multiplication for \code{fixnum} integers.
  12302. In the \code{resolve} pass (Section~\ref{sec:array-resolution})
  12303. we translate array access operations
  12304. into \code{vectorof-ref} and \code{vectorof-set!} operations,
  12305. which we interpret using \code{vector} operations with additional
  12306. bounds checks that signal a \code{trapped-error}.
  12307. }
  12308. %
  12309. \python{We implement list creation with a Python list comprehension
  12310. and multiplication is implemented with Python multiplication. We
  12311. add a case to handle a subscript on the left-hand side of
  12312. assignment. Other uses of subscript can be handled by the existing
  12313. code for tuples.}
  12314. \begin{figure}[tbp]
  12315. \begin{tcolorbox}[colback=white]
  12316. {\if\edition\racketEd
  12317. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12318. (define interp-Lvecof-class
  12319. (class interp-Lvec-class
  12320. (super-new)
  12321. (define/override (interp-op op)
  12322. (match op
  12323. ['make-vector make-vector]
  12324. ['vectorof-length vector-length]
  12325. ['vectorof-ref
  12326. (lambda (v i)
  12327. (if (< i (vector-length v))
  12328. (vector-ref v i)
  12329. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  12330. ['vectorof-set!
  12331. (lambda (v i e)
  12332. (if (< i (vector-length v))
  12333. (vector-set! v i e)
  12334. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  12335. [else (super interp-op op)]))
  12336. ))
  12337. (define (interp-Lvecof p)
  12338. (send (new interp-Lvecof-class) interp-program p))
  12339. \end{lstlisting}
  12340. \fi}
  12341. {\if\edition\pythonEd
  12342. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12343. class InterpLarray(InterpLtup):
  12344. def interp_exp(self, e, env):
  12345. match e:
  12346. case ast.List(es, Load()):
  12347. return [self.interp_exp(e, env) for e in es]
  12348. case BinOp(left, Mult(), right):
  12349. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  12350. return l * r
  12351. case _:
  12352. return super().interp_exp(e, env)
  12353. def interp_stmts(self, ss, env):
  12354. if len(ss) == 0:
  12355. return
  12356. match ss[0]:
  12357. case Assign([Subscript(lst, index)], value):
  12358. lst = self.interp_exp(lst, env)
  12359. index = self.interp_exp(index, env)
  12360. lst[index] = self.interp_exp(value, env)
  12361. return self.interp_stmts(ss[1:], env)
  12362. case _:
  12363. return super().interp_stmts(ss, env)
  12364. \end{lstlisting}
  12365. \fi}
  12366. \end{tcolorbox}
  12367. \caption{Interpreter for \LangArray{}.}
  12368. \label{fig:interp-Lvecof}
  12369. \end{figure}
  12370. \subsection{Data Representation}
  12371. \label{sec:array-rep}
  12372. Just as with tuples, we store arrays on the heap, which means that the
  12373. garbage collector will need to inspect arrays. An immediate thought is
  12374. to use the same representation for arrays that we use for tuples.
  12375. However, we limit tuples to a length of fifty so that their length and
  12376. pointer mask can fit into the 64-bit tag at the beginning of each
  12377. tuple (section~\ref{sec:data-rep-gc}). We intend arrays to allow
  12378. millions of elements, so we need more bits to store the length.
  12379. However, because arrays are homogeneous, we need only 1 bit for the
  12380. pointer mask instead of 1 bit per array element. Finally, the
  12381. garbage collector must be able to distinguish between tuples
  12382. and arrays, so we need to reserve one bit for that purpose. We
  12383. arrive at the following layout for the 64-bit tag at the beginning of
  12384. an array:
  12385. \begin{itemize}
  12386. \item The right-most bit is the forwarding bit, just as in a tuple.
  12387. A $0$ indicates that it is a forwarding pointer, and a $1$ indicates
  12388. that it is not.
  12389. \item The next bit to the left is the pointer mask. A $0$ indicates
  12390. that none of the elements are pointers to the heap, and a $1$
  12391. indicates that all the elements are pointers.
  12392. \item The next $60$ bits store the length of the array.
  12393. \item The bit at position $62$ distinguishes between a tuple ($0$)
  12394. and an array ($1$).
  12395. \item The left-most bit is reserved as explained in
  12396. chapter~\ref{ch:Lgrad}.
  12397. \end{itemize}
  12398. %% Recall that in chapter~\ref{ch:Ldyn}, we use a $3$-bit tag to
  12399. %% differentiate the kinds of values that have been injected into the
  12400. %% \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  12401. %% to indicate that the value is an array.
  12402. In the following subsections we provide hints regarding how to update
  12403. the passes to handle arrays.
  12404. \subsection{Overload Resolution}
  12405. \label{sec:array-resolution}
  12406. As noted previously, with the addition of arrays, several operators
  12407. have become \emph{overloaded}; that is, they can be applied to values
  12408. of more than one type. In this case, the element access and length
  12409. operators can be applied to both tuples and arrays. This kind of
  12410. overloading is quite common in programming languages, so many
  12411. compilers perform \emph{overload resolution}\index{subject}{overload
  12412. resolution} to handle it. The idea is to translate each overloaded
  12413. operator into different operators for the different types.
  12414. Implement a new pass named \code{resolve}.
  12415. Translate the reading of an array element
  12416. into a call to
  12417. \racket{\code{vectorof-ref}}\python{\code{array\_load}}
  12418. and the writing of an array element to
  12419. \racket{\code{vectorof-set!}}\python{\code{array\_store}}
  12420. Translate calls to \racket{\code{vector-length}}\python{\code{len}}
  12421. into \racket{\code{vectorof-length}}\python{\code{array\_len}}.
  12422. When these operators are applied to tuples, leave them as is.
  12423. %
  12424. \python{The type checker for \LangArray{} adds a \code{has\_type}
  12425. field which can be inspected to determine whether the operator
  12426. is applied to a tuple or an array.}
  12427. \subsection{Bounds Checking}
  12428. Recall that the interpreter for \LangArray{} signals a
  12429. \code{trapped-error} when there is an array access that is out of
  12430. bounds. Therefore your compiler is obliged to also catch these errors
  12431. during execution and halt, signaling an error. We recommend inserting
  12432. a new pass named \code{check\_bounds} that inserts code around each
  12433. \racket{\code{vectorof-ref} and \code{vectorof-set!}}
  12434. \python{subscript} operation to ensure that the index is greater than
  12435. or equal to zero and less than the array's length. If not, the program
  12436. should halt, for which we recommend using a new primitive operation
  12437. named \code{exit}.
  12438. %% \subsection{Reveal Casts}
  12439. %% The array-access operators \code{vectorof-ref} and
  12440. %% \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  12441. %% \code{any-vector-set!} operators of chapter~\ref{ch:Ldyn} in
  12442. %% that the type checker cannot tell whether the index will be in bounds,
  12443. %% so the bounds check must be performed at run time. Recall that the
  12444. %% \code{reveal-casts} pass (section~\ref{sec:reveal-casts-Rany}) wraps
  12445. %% an \code{If} around a vector reference for update to check whether
  12446. %% the index is less than the length. You should do the same for
  12447. %% \code{vectorof-ref} and \code{vectorof-set!} .
  12448. %% In addition, the handling of the \code{any-vector} operators in
  12449. %% \code{reveal-casts} needs to be updated to account for arrays that are
  12450. %% injected to \code{Any}. For the \code{any-vector-length} operator, the
  12451. %% generated code should test whether the tag is for tuples (\code{010})
  12452. %% or arrays (\code{110}) and then dispatch to either
  12453. %% \code{any-vector-length} or \code{any-vectorof-length}. For the later
  12454. %% we add a case in \code{select\_instructions} to generate the
  12455. %% appropriate instructions for accessing the array length from the
  12456. %% header of an array.
  12457. %% For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  12458. %% the generated code needs to check that the index is less than the
  12459. %% vector length, so like the code for \code{any-vector-length}, check
  12460. %% the tag to determine whether to use \code{any-vector-length} or
  12461. %% \code{any-vectorof-length} for this purpose. Once the bounds checking
  12462. %% is complete, the generated code can use \code{any-vector-ref} and
  12463. %% \code{any-vector-set!} for both tuples and arrays because the
  12464. %% instructions used for those operators do not look at the tag at the
  12465. %% front of the tuple or array.
  12466. \subsection{Expose Allocation}
  12467. This pass should translate array creation into lower-level
  12468. operations. In particular, the new AST node \ALLOCARRAY{\Exp}{\Type}
  12469. is analogous to the \code{Allocate} AST node for tuples. The $\Type$
  12470. argument must be \ARRAYTY{T}, where $T$ is the element type for the
  12471. array. The \code{AllocateArray} AST node allocates an array of the
  12472. length specified by the $\Exp$ (of type \INTTY), but does not
  12473. initialize the elements of the array. Generate code in this pass to
  12474. initialize the elements analogous to the case for tuples.
  12475. {\if\edition\racketEd
  12476. \section{Uncover \texttt{get!}}
  12477. \label{sec:uncover-get-bang-vecof}
  12478. Add cases for \code{AllocateArray} to \code{collect-set!} and
  12479. \code{uncover-get!-exp}.
  12480. \fi}
  12481. \subsection{Remove Complex Operands}
  12482. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  12483. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  12484. complex, and its subexpression must be atomic.
  12485. \subsection{Explicate Control}
  12486. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  12487. \code{explicate\_assign}.
  12488. \subsection{Select Instructions}
  12489. Generate instructions for \code{AllocateArray} similar to those for
  12490. \code{Allocate} given in section~\ref{sec:select-instructions-gc}
  12491. except that the tag at the front of the array should instead use the
  12492. representation discussed in section~\ref{sec:array-rep}.
  12493. Regarding \racket{\code{vectorof-length}}\python{\code{array\_len}},
  12494. extract the length from the tag.
  12495. The instructions generated for accessing an element of an array differ
  12496. from those for a tuple (section~\ref{sec:select-instructions-gc}) in
  12497. that the index is not a constant so you need to generate instructions
  12498. that compute the offset at runtime.
  12499. Compile the \code{exit} primitive into a call to the \code{exit}
  12500. function of the C standard library, with an argument of $255$.
  12501. %% Also, note that assignment to an array element may appear in
  12502. %% as a stand-alone statement, so make sure to handle that situation in
  12503. %% this pass.
  12504. %% Finally, the instructions for \code{any-vectorof-length} should be
  12505. %% similar to those for \code{vectorof-length}, except that one must
  12506. %% first project the array by writing zeroes into the $3$-bit tag
  12507. \begin{exercise}\normalfont\normalsize
  12508. Implement a compiler for the \LangArray{} language by extending your
  12509. compiler for \LangLoop{}. Test your compiler on a half dozen new
  12510. programs, including the one shown in figure~\ref{fig:inner_product}
  12511. and also a program that multiplies two matrices. Note that although
  12512. matrices are two-dimensional arrays, they can be encoded into
  12513. one-dimensional arrays by laying out each row in the array, one after
  12514. the next.
  12515. \end{exercise}
  12516. {\if\edition\racketEd
  12517. \section{Challenge: Generational Collection}
  12518. The copying collector described in section~\ref{sec:GC} can incur
  12519. significant runtime overhead because the call to \code{collect} takes
  12520. time proportional to all the live data. One way to reduce this
  12521. overhead is to reduce how much data is inspected in each call to
  12522. \code{collect}. In particular, researchers have observed that recently
  12523. allocated data is more likely to become garbage then data that has
  12524. survived one or more previous calls to \code{collect}. This insight
  12525. motivated the creation of \emph{generational garbage collectors}
  12526. \index{subject}{generational garbage collector} that
  12527. (1) segregate data according to its age into two or more generations;
  12528. (2) allocate less space for younger generations, so collecting them is
  12529. faster, and more space for the older generations; and (3) perform
  12530. collection on the younger generations more frequently than on older
  12531. generations~\citep{Wilson:1992fk}.
  12532. For this challenge assignment, the goal is to adapt the copying
  12533. collector implemented in \code{runtime.c} to use two generations, one
  12534. for young data and one for old data. Each generation consists of a
  12535. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  12536. \code{collect} function to use the two generations:
  12537. \begin{enumerate}
  12538. \item Copy the young generation's FromSpace to its ToSpace and then
  12539. switch the role of the ToSpace and FromSpace
  12540. \item If there is enough space for the requested number of bytes in
  12541. the young FromSpace, then return from \code{collect}.
  12542. \item If there is not enough space in the young FromSpace for the
  12543. requested bytes, then move the data from the young generation to the
  12544. old one with the following steps:
  12545. \begin{enumerate}
  12546. \item[a.] If there is enough room in the old FromSpace, copy the young
  12547. FromSpace to the old FromSpace and then return.
  12548. \item[b.] If there is not enough room in the old FromSpace, then collect
  12549. the old generation by copying the old FromSpace to the old ToSpace
  12550. and swap the roles of the old FromSpace and ToSpace.
  12551. \item[c.] If there is enough room now, copy the young FromSpace to the
  12552. old FromSpace and return. Otherwise, allocate a larger FromSpace
  12553. and ToSpace for the old generation. Copy the young FromSpace and
  12554. the old FromSpace into the larger FromSpace for the old
  12555. generation and then return.
  12556. \end{enumerate}
  12557. \end{enumerate}
  12558. We recommend that you generalize the \code{cheney} function so that it
  12559. can be used for all the copies mentioned: between the young FromSpace
  12560. and ToSpace, between the old FromSpace and ToSpace, and between the
  12561. young FromSpace and old FromSpace. This can be accomplished by adding
  12562. parameters to \code{cheney} that replace its use of the global
  12563. variables \code{fromspace\_begin}, \code{fromspace\_end},
  12564. \code{tospace\_begin}, and \code{tospace\_end}.
  12565. Note that the collection of the young generation does not traverse the
  12566. old generation. This introduces a potential problem: there may be
  12567. young data that is reachable only through pointers in the old
  12568. generation. If these pointers are not taken into account, the
  12569. collector could throw away young data that is live! One solution,
  12570. called \emph{pointer recording}, is to maintain a set of all the
  12571. pointers from the old generation into the new generation and consider
  12572. this set as part of the root set. To maintain this set, the compiler
  12573. must insert extra instructions around every \code{vector-set!}. If the
  12574. vector being modified is in the old generation, and if the value being
  12575. written is a pointer into the new generation, then that pointer must
  12576. be added to the set. Also, if the value being overwritten was a
  12577. pointer into the new generation, then that pointer should be removed
  12578. from the set.
  12579. \begin{exercise}\normalfont\normalsize
  12580. Adapt the \code{collect} function in \code{runtime.c} to implement
  12581. generational garbage collection, as outlined in this section.
  12582. Update the code generation for \code{vector-set!} to implement
  12583. pointer recording. Make sure that your new compiler and runtime
  12584. execute without error on your test suite.
  12585. \end{exercise}
  12586. \fi}
  12587. \section{Further Reading}
  12588. \citet{Appel90} describes many data representation approaches,
  12589. including the ones used in the compilation of Standard ML.
  12590. There are many alternatives to copying collectors (and their bigger
  12591. siblings, the generational collectors) with regard to garbage
  12592. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  12593. reference counting~\citep{Collins:1960aa}. The strengths of copying
  12594. collectors are that allocation is fast (just a comparison and pointer
  12595. increment), there is no fragmentation, cyclic garbage is collected,
  12596. and the time complexity of collection depends only on the amount of
  12597. live data and not on the amount of garbage~\citep{Wilson:1992fk}. The
  12598. main disadvantages of a two-space copying collector is that it uses a
  12599. lot of extra space and takes a long time to perform the copy, though
  12600. these problems are ameliorated in generational collectors.
  12601. \racket{Racket}\python{Object-oriented} programs tend to allocate many
  12602. small objects and generate a lot of garbage, so copying and
  12603. generational collectors are a good fit\python{~\citep{Dieckmann99}}.
  12604. Garbage collection is an active research topic, especially concurrent
  12605. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  12606. developing new techniques and revisiting old
  12607. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  12608. meet every year at the International Symposium on Memory Management to
  12609. present these findings.
  12610. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12611. \chapter{Functions}
  12612. \label{ch:Lfun}
  12613. \index{subject}{function}
  12614. \setcounter{footnote}{0}
  12615. This chapter studies the compilation of a subset of \racket{Typed
  12616. Racket}\python{Python} in which only top-level function definitions
  12617. are allowed. This kind of function appears in the C programming
  12618. language, and it serves as an important stepping-stone to implementing
  12619. lexically scoped functions in the form of \key{lambda} abstractions,
  12620. which is the topic of chapter~\ref{ch:Llambda}.
  12621. \section{The \LangFun{} Language}
  12622. The concrete syntax and abstract syntax for function definitions and
  12623. function application are shown in
  12624. figures~\ref{fig:Lfun-concrete-syntax} and \ref{fig:Lfun-syntax}, with
  12625. which we define the \LangFun{} language. Programs in \LangFun{} begin
  12626. with zero or more function definitions. The function names from these
  12627. definitions are in scope for the entire program, including all the
  12628. function definitions, and therefore the ordering of function
  12629. definitions does not matter.
  12630. %
  12631. \python{The abstract syntax for function parameters in
  12632. figure~\ref{fig:Lfun-syntax} is a list of pairs, where each pair
  12633. consists of a parameter name and its type. This design differs from
  12634. Python's \code{ast} module, which has a more complex structure for
  12635. function parameters to handle keyword parameters,
  12636. defaults, and so on. The type checker in \code{type\_check\_Lfun} converts the
  12637. complex Python abstract syntax into the simpler syntax of
  12638. figure~\ref{fig:Lfun-syntax}. The fourth and sixth parameters of the
  12639. \code{FunctionDef} constructor are for decorators and a type
  12640. comment, neither of which are used by our compiler. We recommend
  12641. replacing them with \code{None} in the \code{shrink} pass.
  12642. }
  12643. %
  12644. The concrete syntax for function application
  12645. \index{subject}{function application}
  12646. is \python{$\CAPPLY{\Exp}{\Exp\code{,} \ldots}$}\racket{$\CAPPLY{\Exp}{\Exp \ldots}$},
  12647. where the first expression
  12648. must evaluate to a function and the remaining expressions are the arguments. The
  12649. abstract syntax for function application is
  12650. $\APPLY{\Exp}{\Exp^*}$.
  12651. %% The syntax for function application does not include an explicit
  12652. %% keyword, which is error prone when using \code{match}. To alleviate
  12653. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  12654. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  12655. Functions are first-class in the sense that a function pointer
  12656. \index{subject}{function pointer} is data and can be stored in memory or passed
  12657. as a parameter to another function. Thus, there is a function
  12658. type, written
  12659. {\if\edition\racketEd
  12660. \begin{lstlisting}
  12661. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  12662. \end{lstlisting}
  12663. \fi}
  12664. {\if\edition\pythonEd
  12665. \begin{lstlisting}
  12666. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_R$|]
  12667. \end{lstlisting}
  12668. \fi}
  12669. %
  12670. \noindent for a function whose $n$ parameters have the types $\Type_1$
  12671. through $\Type_n$ and whose return type is $\Type_R$. The main
  12672. limitation of these functions (with respect to
  12673. \racket{Racket}\python{Python} functions) is that they are not
  12674. lexically scoped. That is, the only external entities that can be
  12675. referenced from inside a function body are other globally defined
  12676. functions. The syntax of \LangFun{} prevents function definitions from
  12677. being nested inside each other.
  12678. \newcommand{\LfunGrammarRacket}{
  12679. \begin{array}{lcl}
  12680. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  12681. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  12682. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  12683. \end{array}
  12684. }
  12685. \newcommand{\LfunASTRacket}{
  12686. \begin{array}{lcl}
  12687. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  12688. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  12689. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  12690. \end{array}
  12691. }
  12692. \newcommand{\LfunGrammarPython}{
  12693. \begin{array}{lcl}
  12694. \Type &::=& \key{int}
  12695. \MID \key{bool} \MID \key{void}
  12696. \MID \key{tuple}\LS \Type^+ \RS
  12697. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  12698. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  12699. \Stmt &::=& \CRETURN{\Exp} \\
  12700. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  12701. \end{array}
  12702. }
  12703. \newcommand{\LfunASTPython}{
  12704. \begin{array}{lcl}
  12705. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  12706. \MID \key{TupleType}\LS\Type^+\RS\\
  12707. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  12708. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  12709. \Stmt &::=& \RETURN{\Exp} \\
  12710. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  12711. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  12712. \end{array}
  12713. }
  12714. \begin{figure}[tp]
  12715. \centering
  12716. \begin{tcolorbox}[colback=white]
  12717. \small
  12718. {\if\edition\racketEd
  12719. \[
  12720. \begin{array}{l}
  12721. \gray{\LintGrammarRacket{}} \\ \hline
  12722. \gray{\LvarGrammarRacket{}} \\ \hline
  12723. \gray{\LifGrammarRacket{}} \\ \hline
  12724. \gray{\LwhileGrammarRacket} \\ \hline
  12725. \gray{\LtupGrammarRacket} \\ \hline
  12726. \LfunGrammarRacket \\
  12727. \begin{array}{lcl}
  12728. \LangFunM{} &::=& \Def \ldots \; \Exp
  12729. \end{array}
  12730. \end{array}
  12731. \]
  12732. \fi}
  12733. {\if\edition\pythonEd
  12734. \[
  12735. \begin{array}{l}
  12736. \gray{\LintGrammarPython{}} \\ \hline
  12737. \gray{\LvarGrammarPython{}} \\ \hline
  12738. \gray{\LifGrammarPython{}} \\ \hline
  12739. \gray{\LwhileGrammarPython} \\ \hline
  12740. \gray{\LtupGrammarPython} \\ \hline
  12741. \LfunGrammarPython \\
  12742. \begin{array}{rcl}
  12743. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  12744. \end{array}
  12745. \end{array}
  12746. \]
  12747. \fi}
  12748. \end{tcolorbox}
  12749. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  12750. \label{fig:Lfun-concrete-syntax}
  12751. \end{figure}
  12752. \begin{figure}[tp]
  12753. \centering
  12754. \begin{tcolorbox}[colback=white]
  12755. \small
  12756. {\if\edition\racketEd
  12757. \[
  12758. \begin{array}{l}
  12759. \gray{\LintOpAST} \\ \hline
  12760. \gray{\LvarASTRacket{}} \\ \hline
  12761. \gray{\LifASTRacket{}} \\ \hline
  12762. \gray{\LwhileASTRacket{}} \\ \hline
  12763. \gray{\LtupASTRacket{}} \\ \hline
  12764. \LfunASTRacket \\
  12765. \begin{array}{lcl}
  12766. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  12767. \end{array}
  12768. \end{array}
  12769. \]
  12770. \fi}
  12771. {\if\edition\pythonEd
  12772. \[
  12773. \begin{array}{l}
  12774. \gray{\LintASTPython{}} \\ \hline
  12775. \gray{\LvarASTPython{}} \\ \hline
  12776. \gray{\LifASTPython{}} \\ \hline
  12777. \gray{\LwhileASTPython} \\ \hline
  12778. \gray{\LtupASTPython} \\ \hline
  12779. \LfunASTPython \\
  12780. \begin{array}{rcl}
  12781. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  12782. \end{array}
  12783. \end{array}
  12784. \]
  12785. \fi}
  12786. \end{tcolorbox}
  12787. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  12788. \label{fig:Lfun-syntax}
  12789. \end{figure}
  12790. The program shown in figure~\ref{fig:Lfun-function-example} is a
  12791. representative example of defining and using functions in \LangFun{}.
  12792. We define a function \code{map} that applies some other function
  12793. \code{f} to both elements of a tuple and returns a new tuple
  12794. containing the results. We also define a function \code{inc}. The
  12795. program applies \code{map} to \code{inc} and
  12796. %
  12797. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  12798. %
  12799. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  12800. %
  12801. from which we return \code{42}.
  12802. \begin{figure}[tbp]
  12803. \begin{tcolorbox}[colback=white]
  12804. {\if\edition\racketEd
  12805. \begin{lstlisting}
  12806. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  12807. : (Vector Integer Integer)
  12808. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12809. (define (inc [x : Integer]) : Integer
  12810. (+ x 1))
  12811. (vector-ref (map inc (vector 0 41)) 1)
  12812. \end{lstlisting}
  12813. \fi}
  12814. {\if\edition\pythonEd
  12815. \begin{lstlisting}
  12816. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  12817. return f(v[0]), f(v[1])
  12818. def inc(x : int) -> int:
  12819. return x + 1
  12820. print( map(inc, (0, 41))[1] )
  12821. \end{lstlisting}
  12822. \fi}
  12823. \end{tcolorbox}
  12824. \caption{Example of using functions in \LangFun{}.}
  12825. \label{fig:Lfun-function-example}
  12826. \end{figure}
  12827. The definitional interpreter for \LangFun{} is shown in
  12828. figure~\ref{fig:interp-Lfun}. The case for the
  12829. %
  12830. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  12831. %
  12832. AST is responsible for setting up the mutual recursion between the
  12833. top-level function definitions.
  12834. %
  12835. \racket{We use the classic back-patching
  12836. \index{subject}{back-patching} approach that uses mutable variables
  12837. and makes two passes over the function
  12838. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  12839. top-level environment using a mutable cons cell for each function
  12840. definition. Note that the \code{lambda} value for each function is
  12841. incomplete; it does not yet include the environment. Once the
  12842. top-level environment has been constructed, we iterate over it and
  12843. update the \code{lambda} values to use the top-level environment.}
  12844. %
  12845. \python{We create a dictionary named \code{env} and fill it in
  12846. by mapping each function name to a new \code{Function} value,
  12847. each of which stores a reference to the \code{env}.
  12848. (We define the class \code{Function} for this purpose.)}
  12849. %
  12850. To interpret a function \racket{application}\python{call}, we match
  12851. the result of the function expression to obtain a function value. We
  12852. then extend the function's environment with the mapping of parameters to
  12853. argument values. Finally, we interpret the body of the function in
  12854. this extended environment.
  12855. \begin{figure}[tp]
  12856. \begin{tcolorbox}[colback=white]
  12857. {\if\edition\racketEd
  12858. \begin{lstlisting}
  12859. (define interp-Lfun-class
  12860. (class interp-Lvec-class
  12861. (super-new)
  12862. (define/override ((interp-exp env) e)
  12863. (define recur (interp-exp env))
  12864. (match e
  12865. [(Apply fun args)
  12866. (define fun-val (recur fun))
  12867. (define arg-vals (for/list ([e args]) (recur e)))
  12868. (match fun-val
  12869. [`(function (,xs ...) ,body ,fun-env)
  12870. (define params-args (for/list ([x xs] [arg arg-vals])
  12871. (cons x (box arg))))
  12872. (define new-env (append params-args fun-env))
  12873. ((interp-exp new-env) body)]
  12874. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  12875. [else ((super interp-exp env) e)]
  12876. ))
  12877. (define/public (interp-def d)
  12878. (match d
  12879. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  12880. (cons f (box `(function ,xs ,body ())))]))
  12881. (define/override (interp-program p)
  12882. (match p
  12883. [(ProgramDefsExp info ds body)
  12884. (let ([top-level (for/list ([d ds]) (interp-def d))])
  12885. (for/list ([f (in-dict-values top-level)])
  12886. (set-box! f (match (unbox f)
  12887. [`(function ,xs ,body ())
  12888. `(function ,xs ,body ,top-level)])))
  12889. ((interp-exp top-level) body))]))
  12890. ))
  12891. (define (interp-Lfun p)
  12892. (send (new interp-Lfun-class) interp-program p))
  12893. \end{lstlisting}
  12894. \fi}
  12895. {\if\edition\pythonEd
  12896. \begin{lstlisting}
  12897. class InterpLfun(InterpLtup):
  12898. def apply_fun(self, fun, args, e):
  12899. match fun:
  12900. case Function(name, xs, body, env):
  12901. new_env = env.copy().update(zip(xs, args))
  12902. return self.interp_stmts(body, new_env)
  12903. case _:
  12904. raise Exception('apply_fun: unexpected: ' + repr(fun))
  12905. def interp_exp(self, e, env):
  12906. match e:
  12907. case Call(Name('input_int'), []):
  12908. return super().interp_exp(e, env)
  12909. case Call(func, args):
  12910. f = self.interp_exp(func, env)
  12911. vs = [self.interp_exp(arg, env) for arg in args]
  12912. return self.apply_fun(f, vs, e)
  12913. case _:
  12914. return super().interp_exp(e, env)
  12915. def interp_stmts(self, ss, env):
  12916. if len(ss) == 0:
  12917. return
  12918. match ss[0]:
  12919. case Return(value):
  12920. return self.interp_exp(value, env)
  12921. case FunctionDef(name, params, bod, dl, returns, comment):
  12922. ps = [x for (x,t) in params]
  12923. env[name] = Function(name, ps, bod, env)
  12924. return self.interp_stmts(ss[1:], env)
  12925. case _:
  12926. return super().interp_stmts(ss, env)
  12927. def interp(self, p):
  12928. match p:
  12929. case Module(ss):
  12930. env = {}
  12931. self.interp_stmts(ss, env)
  12932. if 'main' in env.keys():
  12933. self.apply_fun(env['main'], [], None)
  12934. case _:
  12935. raise Exception('interp: unexpected ' + repr(p))
  12936. \end{lstlisting}
  12937. \fi}
  12938. \end{tcolorbox}
  12939. \caption{Interpreter for the \LangFun{} language.}
  12940. \label{fig:interp-Lfun}
  12941. \end{figure}
  12942. %\margincomment{TODO: explain type checker}
  12943. The type checker for \LangFun{} is shown in
  12944. figure~\ref{fig:type-check-Lfun}.
  12945. %
  12946. \python{(We omit the code that parses function parameters into the
  12947. simpler abstract syntax.)}
  12948. %
  12949. Similarly to the interpreter, the case for the
  12950. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  12951. %
  12952. AST is responsible for setting up the mutual recursion between the
  12953. top-level function definitions. We begin by create a mapping
  12954. \code{env} from every function name to its type. We then type check
  12955. the program using this mapping.
  12956. %
  12957. In the case for function \racket{application}\python{call}, we match
  12958. the type of the function expression to a function type and check that
  12959. the types of the argument expressions are equal to the function's
  12960. parameter types. The type of the \racket{application}\python{call} as
  12961. a whole is the return type from the function type.
  12962. \begin{figure}[tp]
  12963. \begin{tcolorbox}[colback=white]
  12964. {\if\edition\racketEd
  12965. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12966. (define type-check-Lfun-class
  12967. (class type-check-Lvec-class
  12968. (super-new)
  12969. (inherit check-type-equal?)
  12970. (define/public (type-check-apply env e es)
  12971. (define-values (e^ ty) ((type-check-exp env) e))
  12972. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  12973. ((type-check-exp env) e)))
  12974. (match ty
  12975. [`(,ty^* ... -> ,rt)
  12976. (for ([arg-ty ty*] [param-ty ty^*])
  12977. (check-type-equal? arg-ty param-ty (Apply e es)))
  12978. (values e^ e* rt)]))
  12979. (define/override (type-check-exp env)
  12980. (lambda (e)
  12981. (match e
  12982. [(FunRef f n)
  12983. (values (FunRef f n) (dict-ref env f))]
  12984. [(Apply e es)
  12985. (define-values (e^ es^ rt) (type-check-apply env e es))
  12986. (values (Apply e^ es^) rt)]
  12987. [(Call e es)
  12988. (define-values (e^ es^ rt) (type-check-apply env e es))
  12989. (values (Call e^ es^) rt)]
  12990. [else ((super type-check-exp env) e)])))
  12991. (define/public (type-check-def env)
  12992. (lambda (e)
  12993. (match e
  12994. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  12995. (define new-env (append (map cons xs ps) env))
  12996. (define-values (body^ ty^) ((type-check-exp new-env) body))
  12997. (check-type-equal? ty^ rt body)
  12998. (Def f p:t* rt info body^)])))
  12999. (define/public (fun-def-type d)
  13000. (match d
  13001. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  13002. (define/override (type-check-program e)
  13003. (match e
  13004. [(ProgramDefsExp info ds body)
  13005. (define env (for/list ([d ds])
  13006. (cons (Def-name d) (fun-def-type d))))
  13007. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  13008. (define-values (body^ ty) ((type-check-exp env) body))
  13009. (check-type-equal? ty 'Integer body)
  13010. (ProgramDefsExp info ds^ body^)]))))
  13011. (define (type-check-Lfun p)
  13012. (send (new type-check-Lfun-class) type-check-program p))
  13013. \end{lstlisting}
  13014. \fi}
  13015. {\if\edition\pythonEd
  13016. \begin{lstlisting}
  13017. class TypeCheckLfun(TypeCheckLtup):
  13018. def type_check_exp(self, e, env):
  13019. match e:
  13020. case Call(Name('input_int'), []):
  13021. return super().type_check_exp(e, env)
  13022. case Call(func, args):
  13023. func_t = self.type_check_exp(func, env)
  13024. args_t = [self.type_check_exp(arg, env) for arg in args]
  13025. match func_t:
  13026. case FunctionType(params_t, return_t):
  13027. for (arg_t, param_t) in zip(args_t, params_t):
  13028. check_type_equal(param_t, arg_t, e)
  13029. return return_t
  13030. case _:
  13031. raise Exception('type_check_exp: in call, unexpected ' +
  13032. repr(func_t))
  13033. case _:
  13034. return super().type_check_exp(e, env)
  13035. def type_check_stmts(self, ss, env):
  13036. if len(ss) == 0:
  13037. return
  13038. match ss[0]:
  13039. case FunctionDef(name, params, body, dl, returns, comment):
  13040. new_env = env.copy().update(params)
  13041. rt = self.type_check_stmts(body, new_env)
  13042. check_type_equal(returns, rt, ss[0])
  13043. return self.type_check_stmts(ss[1:], env)
  13044. case Return(value):
  13045. return self.type_check_exp(value, env)
  13046. case _:
  13047. return super().type_check_stmts(ss, env)
  13048. def type_check(self, p):
  13049. match p:
  13050. case Module(body):
  13051. env = {}
  13052. for s in body:
  13053. match s:
  13054. case FunctionDef(name, params, bod, dl, returns, comment):
  13055. if name in env:
  13056. raise Exception('type_check: function ' +
  13057. repr(name) + ' defined twice')
  13058. params_t = [t for (x,t) in params]
  13059. env[name] = FunctionType(params_t, returns)
  13060. self.type_check_stmts(body, env)
  13061. case _:
  13062. raise Exception('type_check: unexpected ' + repr(p))
  13063. \end{lstlisting}
  13064. \fi}
  13065. \end{tcolorbox}
  13066. \caption{Type checker for the \LangFun{} language.}
  13067. \label{fig:type-check-Lfun}
  13068. \end{figure}
  13069. \clearpage
  13070. \section{Functions in x86}
  13071. \label{sec:fun-x86}
  13072. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  13073. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  13074. %% \margincomment{\tiny Talk about the return address on the
  13075. %% stack and what callq and retq does.\\ --Jeremy }
  13076. The x86 architecture provides a few features to support the
  13077. implementation of functions. We have already seen that there are
  13078. labels in x86 so that one can refer to the location of an instruction,
  13079. as is needed for jump instructions. Labels can also be used to mark
  13080. the beginning of the instructions for a function. Going further, we
  13081. can obtain the address of a label by using the \key{leaq}
  13082. instruction. For example, the following puts the address of the
  13083. \code{inc} label into the \code{rbx} register:
  13084. \begin{lstlisting}
  13085. leaq inc(%rip), %rbx
  13086. \end{lstlisting}
  13087. Recall from section~\ref{sec:select-instructions-gc} that
  13088. \verb!inc(%rip)! is an example of instruction-pointer-relative
  13089. addressing.
  13090. In section~\ref{sec:x86} we used the \code{callq} instruction to jump
  13091. to functions whose locations were given by a label, such as
  13092. \code{read\_int}. To support function calls in this chapter we instead
  13093. jump to functions whose location are given by an address in
  13094. a register; that is, we use \emph{indirect function calls}. The
  13095. x86 syntax for this is a \code{callq} instruction that requires an asterisk
  13096. before the register name.\index{subject}{indirect function call}
  13097. \begin{lstlisting}
  13098. callq *%rbx
  13099. \end{lstlisting}
  13100. \subsection{Calling Conventions}
  13101. \label{sec:calling-conventions-fun}
  13102. \index{subject}{calling conventions}
  13103. The \code{callq} instruction provides partial support for implementing
  13104. functions: it pushes the return address on the stack and it jumps to
  13105. the target. However, \code{callq} does not handle
  13106. \begin{enumerate}
  13107. \item parameter passing,
  13108. \item pushing frames on the procedure call stack and popping them off,
  13109. or
  13110. \item determining how registers are shared by different functions.
  13111. \end{enumerate}
  13112. Regarding parameter passing, recall that the x86-64 calling
  13113. convention for Unix-based system uses the following six registers to
  13114. pass arguments to a function, in the given order.
  13115. \begin{lstlisting}
  13116. rdi rsi rdx rcx r8 r9
  13117. \end{lstlisting}
  13118. If there are more than six arguments, then the calling convention
  13119. mandates using space on the frame of the caller for the rest of the
  13120. arguments. However, to ease the implementation of efficient tail calls
  13121. (section~\ref{sec:tail-call}), we arrange never to need more than six
  13122. arguments.
  13123. %
  13124. The return value of the function is stored in register \code{rax}.
  13125. \index{subject}{prelude}\index{subject}{conclusion}
  13126. Regarding frames \index{subject}{frame} and the procedure call stack,
  13127. \index{subject}{procedure call stack} recall from
  13128. section~\ref{sec:x86} that the stack grows down and each function call
  13129. uses a chunk of space on the stack called a frame. The caller sets the
  13130. stack pointer, register \code{rsp}, to the last data item in its
  13131. frame. The callee must not change anything in the caller's frame, that
  13132. is, anything that is at or above the stack pointer. The callee is free
  13133. to use locations that are below the stack pointer.
  13134. Recall that we store variables of tuple type on the root stack. So,
  13135. the prelude of a function needs to move the root stack pointer
  13136. \code{r15} up according to the number of variables of tuple type and
  13137. the conclusion needs to move the root stack pointer back down. Also,
  13138. the prelude must initialize to \code{0} this frame's slots in the root
  13139. stack to signal to the garbage collector that those slots do not yet
  13140. contain a valid pointer. Otherwise the garbage collector will
  13141. interpret the garbage bits in those slots as memory addresses and try
  13142. to traverse them, causing serious mayhem!
  13143. Regarding the sharing of registers between different functions, recall
  13144. from section~\ref{sec:calling-conventions} that the registers are
  13145. divided into two groups, the caller-saved registers and the
  13146. callee-saved registers. The caller should assume that all the
  13147. caller-saved registers are overwritten with arbitrary values by the
  13148. callee. For that reason we recommend in
  13149. section~\ref{sec:calling-conventions} that variables that are live
  13150. during a function call should not be assigned to caller-saved
  13151. registers.
  13152. On the flip side, if the callee wants to use a callee-saved register,
  13153. the callee must save the contents of those registers on their stack
  13154. frame and then put them back prior to returning to the caller. For
  13155. that reason we recommend in section~\ref{sec:calling-conventions} that if
  13156. the register allocator assigns a variable to a callee-saved register,
  13157. then the prelude of the \code{main} function must save that register
  13158. to the stack and the conclusion of \code{main} must restore it. This
  13159. recommendation now generalizes to all functions.
  13160. Recall that the base pointer, register \code{rbp}, is used as a
  13161. point of reference within a frame, so that each local variable can be
  13162. accessed at a fixed offset from the base pointer
  13163. (section~\ref{sec:x86}).
  13164. %
  13165. Figure~\ref{fig:call-frames} shows the general layout of the caller
  13166. and callee frames.
  13167. \begin{figure}[tbp]
  13168. \centering
  13169. \begin{tcolorbox}[colback=white]
  13170. \begin{tabular}{r|r|l|l} \hline
  13171. Caller View & Callee View & Contents & Frame \\ \hline
  13172. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  13173. 0(\key{\%rbp}) & & old \key{rbp} \\
  13174. -8(\key{\%rbp}) & & callee-saved $1$ \\
  13175. \ldots & & \ldots \\
  13176. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  13177. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  13178. \ldots & & \ldots \\
  13179. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  13180. %% & & \\
  13181. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  13182. %% & \ldots & \ldots \\
  13183. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  13184. \hline
  13185. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  13186. & 0(\key{\%rbp}) & old \key{rbp} \\
  13187. & -8(\key{\%rbp}) & callee-saved $1$ \\
  13188. & \ldots & \ldots \\
  13189. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  13190. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  13191. & \ldots & \ldots \\
  13192. & $-8(n+m)$(\key{\%rbp}) & local variable $m$\\ \hline
  13193. \end{tabular}
  13194. \end{tcolorbox}
  13195. \caption{Memory layout of caller and callee frames.}
  13196. \label{fig:call-frames}
  13197. \end{figure}
  13198. %% Recall from section~\ref{sec:x86} that the stack is also used for
  13199. %% local variables and for storing the values of callee-saved registers
  13200. %% (we shall refer to all of these collectively as ``locals''), and that
  13201. %% at the beginning of a function we move the stack pointer \code{rsp}
  13202. %% down to make room for them.
  13203. %% We recommend storing the local variables
  13204. %% first and then the callee-saved registers, so that the local variables
  13205. %% can be accessed using \code{rbp} the same as before the addition of
  13206. %% functions.
  13207. %% To make additional room for passing arguments, we shall
  13208. %% move the stack pointer even further down. We count how many stack
  13209. %% arguments are needed for each function call that occurs inside the
  13210. %% body of the function and find their maximum. Adding this number to the
  13211. %% number of locals gives us how much the \code{rsp} should be moved at
  13212. %% the beginning of the function. In preparation for a function call, we
  13213. %% offset from \code{rsp} to set up the stack arguments. We put the first
  13214. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  13215. %% so on.
  13216. %% Upon calling the function, the stack arguments are retrieved by the
  13217. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  13218. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  13219. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  13220. %% the layout of the caller and callee frames. Notice how important it is
  13221. %% that we correctly compute the maximum number of arguments needed for
  13222. %% function calls; if that number is too small then the arguments and
  13223. %% local variables will smash into each other!
  13224. \subsection{Efficient Tail Calls}
  13225. \label{sec:tail-call}
  13226. In general, the amount of stack space used by a program is determined
  13227. by the longest chain of nested function calls. That is, if function
  13228. $f_1$ calls $f_2$, $f_2$ calls $f_3$, and so on to $f_n$, then the
  13229. amount of stack space is linear in $n$. The depth $n$ can grow quite
  13230. large if functions are recursive. However, in some cases we can
  13231. arrange to use only a constant amount of space for a long chain of
  13232. nested function calls.
  13233. A \emph{tail call}\index{subject}{tail call} is a function call that
  13234. happens as the last action in a function body. For example, in the
  13235. following program, the recursive call to \code{tail\_sum} is a tail
  13236. call:
  13237. \begin{center}
  13238. {\if\edition\racketEd
  13239. \begin{lstlisting}
  13240. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  13241. (if (eq? n 0)
  13242. r
  13243. (tail_sum (- n 1) (+ n r))))
  13244. (+ (tail_sum 3 0) 36)
  13245. \end{lstlisting}
  13246. \fi}
  13247. {\if\edition\pythonEd
  13248. \begin{lstlisting}
  13249. def tail_sum(n : int, r : int) -> int:
  13250. if n == 0:
  13251. return r
  13252. else:
  13253. return tail_sum(n - 1, n + r)
  13254. print( tail_sum(3, 0) + 36)
  13255. \end{lstlisting}
  13256. \fi}
  13257. \end{center}
  13258. At a tail call, the frame of the caller is no longer needed, so we can
  13259. pop the caller's frame before making the tail call. With this
  13260. approach, a recursive function that makes only tail calls ends up
  13261. using a constant amount of stack space. Functional languages like
  13262. Racket rely heavily on recursive functions, so the definition of
  13263. Racket \emph{requires} that all tail calls be optimized in this way.
  13264. \index{subject}{frame}
  13265. Some care is needed with regard to argument passing in tail calls. As
  13266. mentioned, for arguments beyond the sixth, the convention is to use
  13267. space in the caller's frame for passing arguments. However, for a
  13268. tail call we pop the caller's frame and can no longer use it. An
  13269. alternative is to use space in the callee's frame for passing
  13270. arguments. However, this option is also problematic because the caller
  13271. and callee's frames overlap in memory. As we begin to copy the
  13272. arguments from their sources in the caller's frame, the target
  13273. locations in the callee's frame might collide with the sources for
  13274. later arguments! We solve this problem by using the heap instead of
  13275. the stack for passing more than six arguments
  13276. (section~\ref{sec:limit-functions-r4}).
  13277. As mentioned, for a tail call we pop the caller's frame prior to
  13278. making the tail call. The instructions for popping a frame are the
  13279. instructions that we usually place in the conclusion of a
  13280. function. Thus, we also need to place such code immediately before
  13281. each tail call. These instructions include restoring the callee-saved
  13282. registers, so it is fortunate that the argument passing registers are
  13283. all caller-saved registers.
  13284. One note remains regarding which instruction to use to make the tail
  13285. call. When the callee is finished, it should not return to the current
  13286. function but instead return to the function that called the current
  13287. one. Thus, the return address that is already on the stack is the
  13288. right one, and we should not use \key{callq} to make the tail call
  13289. because that would overwrite the return address. Instead we simply use
  13290. the \key{jmp} instruction. As with the indirect function call, we write
  13291. an \emph{indirect jump}\index{subject}{indirect jump} with a register
  13292. prefixed with an asterisk. We recommend using \code{rax} to hold the
  13293. jump target because the conclusion can overwrite just about everything
  13294. else.
  13295. \begin{lstlisting}
  13296. jmp *%rax
  13297. \end{lstlisting}
  13298. \section{Shrink \LangFun{}}
  13299. \label{sec:shrink-r4}
  13300. The \code{shrink} pass performs a minor modification to ease the
  13301. later passes. This pass introduces an explicit \code{main} function
  13302. that gobbles up all the top-level statements of the module.
  13303. %
  13304. \racket{It also changes the top \code{ProgramDefsExp} form to
  13305. \code{ProgramDefs}.}
  13306. {\if\edition\racketEd
  13307. \begin{lstlisting}
  13308. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  13309. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  13310. \end{lstlisting}
  13311. where $\itm{mainDef}$ is
  13312. \begin{lstlisting}
  13313. (Def 'main '() 'Integer '() |$\Exp'$|)
  13314. \end{lstlisting}
  13315. \fi}
  13316. {\if\edition\pythonEd
  13317. \begin{lstlisting}
  13318. Module(|$\Def\ldots\Stmt\ldots$|)
  13319. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  13320. \end{lstlisting}
  13321. where $\itm{mainDef}$ is
  13322. \begin{lstlisting}
  13323. FunctionDef('main', [], int, None, |$\Stmt\ldots$|Return(Constant(0)), None)
  13324. \end{lstlisting}
  13325. \fi}
  13326. \section{Reveal Functions and the \LangFunRef{} language}
  13327. \label{sec:reveal-functions-r4}
  13328. The syntax of \LangFun{} is inconvenient for purposes of compilation
  13329. in that it conflates the use of function names and local
  13330. variables. This is a problem because we need to compile the use of a
  13331. function name differently from the use of a local variable. In
  13332. particular, we use \code{leaq} to convert the function name (a label
  13333. in x86) to an address in a register. Thus, we create a new pass that
  13334. changes function references from $\VAR{f}$ to $\FUNREF{f}{n}$ where
  13335. $n$ is the arity of the function.\python{\footnote{The arity is not
  13336. needed in this chapter but is used in chapter~\ref{ch:Ldyn}.}}
  13337. This pass is named \code{reveal\_functions} and the output language
  13338. is \LangFunRef{}.
  13339. %is defined in figure~\ref{fig:f1-syntax}.
  13340. %% The concrete syntax for a
  13341. %% function reference is $\CFUNREF{f}$.
  13342. %% \begin{figure}[tp]
  13343. %% \centering
  13344. %% \fbox{
  13345. %% \begin{minipage}{0.96\textwidth}
  13346. %% {\if\edition\racketEd
  13347. %% \[
  13348. %% \begin{array}{lcl}
  13349. %% \Exp &::=& \ldots \MID \FUNREF{\Var}{\Int}\\
  13350. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  13351. %% \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  13352. %% \end{array}
  13353. %% \]
  13354. %% \fi}
  13355. %% {\if\edition\pythonEd
  13356. %% \[
  13357. %% \begin{array}{lcl}
  13358. %% \Exp &::=& \FUNREF{\Var}{\Int}\\
  13359. %% \LangFunRefM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  13360. %% \end{array}
  13361. %% \]
  13362. %% \fi}
  13363. %% \end{minipage}
  13364. %% }
  13365. %% \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  13366. %% (figure~\ref{fig:Lfun-syntax}).}
  13367. %% \label{fig:f1-syntax}
  13368. %% \end{figure}
  13369. %% Distinguishing between calls in tail position and non-tail position
  13370. %% requires the pass to have some notion of context. We recommend using
  13371. %% two mutually recursive functions, one for processing expressions in
  13372. %% tail position and another for the rest.
  13373. \racket{Placing this pass after \code{uniquify} will make sure that
  13374. there are no local variables and functions that share the same
  13375. name.}
  13376. %
  13377. The \code{reveal\_functions} pass should come before the
  13378. \code{remove\_complex\_operands} pass because function references
  13379. should be categorized as complex expressions.
  13380. \section{Limit Functions}
  13381. \label{sec:limit-functions-r4}
  13382. Recall that we wish to limit the number of function parameters to six
  13383. so that we do not need to use the stack for argument passing, which
  13384. makes it easier to implement efficient tail calls. However, because
  13385. the input language \LangFun{} supports arbitrary numbers of function
  13386. arguments, we have some work to do! The \code{limit\_functions} pass
  13387. transforms functions and function calls that involve more than six
  13388. arguments to pass the first five arguments as usual, but it packs the
  13389. rest of the arguments into a tuple and passes it as the sixth
  13390. argument.\footnote{The implementation this pass can be postponed to
  13391. last because you can test the rest of the passes on functions with
  13392. six or fewer parameters.}
  13393. Each function definition with seven or more parameters is transformed as
  13394. follows.
  13395. {\if\edition\racketEd
  13396. \begin{lstlisting}
  13397. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  13398. |$\Rightarrow$|
  13399. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  13400. \end{lstlisting}
  13401. \fi}
  13402. {\if\edition\pythonEd
  13403. \begin{lstlisting}
  13404. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, None, |$\itm{body}$|, None)
  13405. |$\Rightarrow$|
  13406. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))],
  13407. |$T_r$|, None, |$\itm{body}'$|, None)
  13408. \end{lstlisting}
  13409. \fi}
  13410. %
  13411. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  13412. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  13413. the $k$th element of the tuple, where $k = i - 6$.
  13414. %
  13415. {\if\edition\racketEd
  13416. \begin{lstlisting}
  13417. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  13418. \end{lstlisting}
  13419. \fi}
  13420. {\if\edition\pythonEd
  13421. \begin{lstlisting}
  13422. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|), Load())
  13423. \end{lstlisting}
  13424. \fi}
  13425. For function calls with too many arguments, the \code{limit\_functions}
  13426. pass transforms them in the following way:
  13427. \begin{tabular}{lll}
  13428. \begin{minipage}{0.3\textwidth}
  13429. {\if\edition\racketEd
  13430. \begin{lstlisting}
  13431. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  13432. \end{lstlisting}
  13433. \fi}
  13434. {\if\edition\pythonEd
  13435. \begin{lstlisting}
  13436. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  13437. \end{lstlisting}
  13438. \fi}
  13439. \end{minipage}
  13440. &
  13441. $\Rightarrow$
  13442. &
  13443. \begin{minipage}{0.5\textwidth}
  13444. {\if\edition\racketEd
  13445. \begin{lstlisting}
  13446. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  13447. \end{lstlisting}
  13448. \fi}
  13449. {\if\edition\pythonEd
  13450. \begin{lstlisting}
  13451. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  13452. \end{lstlisting}
  13453. \fi}
  13454. \end{minipage}
  13455. \end{tabular}
  13456. \section{Remove Complex Operands}
  13457. \label{sec:rco-r4}
  13458. The primary decisions to make for this pass are whether to classify
  13459. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  13460. atomic or complex expressions. Recall that an atomic expression will
  13461. end up as an immediate argument of an x86 instruction. Function
  13462. application will be translated to a sequence of instructions, so
  13463. \racket{\code{Apply}}\python{\code{Call}} must be classified as
  13464. complex expression. On the other hand, the arguments of
  13465. \racket{\code{Apply}}\python{\code{Call}} should be atomic
  13466. expressions.
  13467. %
  13468. Regarding \code{FunRef}, as discussed previously, the function label
  13469. needs to be converted to an address using the \code{leaq}
  13470. instruction. Thus, even though \code{FunRef} seems rather simple, it
  13471. needs to be classified as a complex expression so that we generate an
  13472. assignment statement with a left-hand side that can serve as the
  13473. target of the \code{leaq}.
  13474. The output of this pass, \LangFunANF{} (figure~\ref{fig:Lfun-anf-syntax}),
  13475. extends \LangAllocANF{} (figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  13476. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions
  13477. and augments programs to include a list of function definitions.
  13478. %
  13479. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  13480. \newcommand{\LfunMonadASTRacket}{
  13481. \begin{array}{lcl}
  13482. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13483. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \APPLY{\Atm}{\Atm\ldots}\\
  13484. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  13485. \end{array}
  13486. }
  13487. \newcommand{\LfunMonadASTPython}{
  13488. \begin{array}{lcl}
  13489. \Type &::=& \key{IntType()} \MID \key{BoolType()} \key{VoidType()}
  13490. \MID \key{TupleType}\LS\Type^+\RS\\
  13491. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  13492. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}}\\
  13493. \Stmt &::=& \RETURN{\Exp} \\
  13494. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  13495. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  13496. \end{array}
  13497. }
  13498. \begin{figure}[tp]
  13499. \centering
  13500. \begin{tcolorbox}[colback=white]
  13501. \small
  13502. {\if\edition\racketEd
  13503. \[
  13504. \begin{array}{l}
  13505. \gray{\LvarMonadASTRacket} \\ \hline
  13506. \gray{\LifMonadASTRacket} \\ \hline
  13507. \gray{\LwhileMonadASTRacket} \\ \hline
  13508. \gray{\LtupMonadASTRacket} \\ \hline
  13509. \LfunMonadASTRacket \\
  13510. \begin{array}{rcl}
  13511. \LangFunANFM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  13512. \end{array}
  13513. \end{array}
  13514. \]
  13515. \fi}
  13516. {\if\edition\pythonEd
  13517. \[
  13518. \begin{array}{l}
  13519. \gray{\LvarMonadASTPython} \\ \hline
  13520. \gray{\LifMonadASTPython} \\ \hline
  13521. \gray{\LwhileMonadASTPython} \\ \hline
  13522. \gray{\LtupMonadASTPython} \\ \hline
  13523. \LfunMonadASTPython \\
  13524. \begin{array}{rcl}
  13525. \LangFunANFM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  13526. \end{array}
  13527. \end{array}
  13528. \]
  13529. \fi}
  13530. \end{tcolorbox}
  13531. \caption{\LangFunANF{} is \LangFunRef{} in monadic normal form.}
  13532. \label{fig:Lfun-anf-syntax}
  13533. \end{figure}
  13534. %% Figure~\ref{fig:Lfun-anf-syntax} defines the output language
  13535. %% \LangFunANF{} of this pass.
  13536. %% \begin{figure}[tp]
  13537. %% \centering
  13538. %% \fbox{
  13539. %% \begin{minipage}{0.96\textwidth}
  13540. %% \small
  13541. %% \[
  13542. %% \begin{array}{rcl}
  13543. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  13544. %% \MID \VOID{} } \\
  13545. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  13546. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  13547. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  13548. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  13549. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  13550. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  13551. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  13552. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  13553. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  13554. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  13555. %% \end{array}
  13556. %% \]
  13557. %% \end{minipage}
  13558. %% }
  13559. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  13560. %% \label{fig:Lfun-anf-syntax}
  13561. %% \end{figure}
  13562. \section{Explicate Control and the \LangCFun{} language}
  13563. \label{sec:explicate-control-r4}
  13564. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  13565. output of \code{explicate\_control}.
  13566. %
  13567. %% \racket{(The concrete syntax is given in
  13568. %% figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  13569. %
  13570. The auxiliary functions for assignment\racket{ and tail contexts} should
  13571. be updated with cases for
  13572. \racket{\code{Apply}}\python{\code{Call}} and \code{FunRef} and the
  13573. function for predicate context should be updated for
  13574. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  13575. \code{FunRef} cannot be a Boolean.) In assignment and predicate
  13576. contexts, \code{Apply} becomes \code{Call}\racket{, whereas in tail position
  13577. \code{Apply} becomes \code{TailCall}}. We recommend defining a new
  13578. auxiliary function for processing function definitions. This code is
  13579. similar to the case for \code{Program} in \LangVec{}. The top-level
  13580. \code{explicate\_control} function that handles the \code{ProgramDefs}
  13581. form of \LangFun{} can then apply this new function to all the
  13582. function definitions.
  13583. {\if\edition\pythonEd
  13584. The translation of \code{Return} statements requires a new auxiliary
  13585. function to handle expressions in tail context, called
  13586. \code{explicate\_tail}. The function should take an expression and the
  13587. dictionary of basic blocks and produce a list of statements in the
  13588. \LangCFun{} language. The \code{explicate\_tail} function should
  13589. include cases for \code{Begin}, \code{IfExp}, \code{Let}, \code{Call},
  13590. and a default case for other kinds of expressions. The default case
  13591. should produce a \code{Return} statement. The case for \code{Call}
  13592. should change it into \code{TailCall}. The other cases should
  13593. recursively process their subexpressions and statements, choosing the
  13594. appropriate explicate functions for the various contexts.
  13595. \fi}
  13596. \newcommand{\CfunASTRacket}{
  13597. \begin{array}{lcl}
  13598. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  13599. \Tail &::= & \TAILCALL{\Atm}{\Atm\ldots} \\
  13600. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  13601. \end{array}
  13602. }
  13603. \newcommand{\CfunASTPython}{
  13604. \begin{array}{lcl}
  13605. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}} \\
  13606. \Stmt &::= & \TAILCALL{\Atm}{\Atm^{*}} \\
  13607. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  13608. \Block &::=& \itm{label}\key{:} \Stmt^{*} \\
  13609. \Blocks &::=& \LC\Block\code{,}\ldots\RC \\
  13610. \Def &::=& \DEF{\itm{label}}{\Params}{\Blocks}{\key{None}}{\Type}{\key{None}}
  13611. \end{array}
  13612. }
  13613. \begin{figure}[tp]
  13614. \begin{tcolorbox}[colback=white]
  13615. \small
  13616. {\if\edition\racketEd
  13617. \[
  13618. \begin{array}{l}
  13619. \gray{\CvarASTRacket} \\ \hline
  13620. \gray{\CifASTRacket} \\ \hline
  13621. \gray{\CloopASTRacket} \\ \hline
  13622. \gray{\CtupASTRacket} \\ \hline
  13623. \CfunASTRacket \\
  13624. \begin{array}{lcl}
  13625. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  13626. \end{array}
  13627. \end{array}
  13628. \]
  13629. \fi}
  13630. {\if\edition\pythonEd
  13631. \[
  13632. \begin{array}{l}
  13633. \gray{\CifASTPython} \\ \hline
  13634. \gray{\CtupASTPython} \\ \hline
  13635. \CfunASTPython \\
  13636. \begin{array}{lcl}
  13637. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  13638. \end{array}
  13639. \end{array}
  13640. \]
  13641. \fi}
  13642. \end{tcolorbox}
  13643. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  13644. \label{fig:c3-syntax}
  13645. \end{figure}
  13646. \clearpage
  13647. \section{Select Instructions and the \LangXIndCall{} Language}
  13648. \label{sec:select-r4}
  13649. \index{subject}{instruction selection}
  13650. The output of select instructions is a program in the \LangXIndCall{}
  13651. language; the definition of its concrete syntax is shown in
  13652. figure~\ref{fig:x86-3-concrete}, and the definition of its abstract
  13653. syntax is shown in figure~\ref{fig:x86-3}. We use the \code{align}
  13654. directive on the labels of function definitions to make sure the
  13655. bottom three bits are zero, which we put to use in
  13656. chapter~\ref{ch:Ldyn}. We discuss the new instructions as needed in
  13657. this section. \index{subject}{x86}
  13658. \newcommand{\GrammarXIndCall}{
  13659. \begin{array}{lcl}
  13660. \Instr &::=& \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  13661. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  13662. \Block &::= & \Instr^{+} \\
  13663. \Def &::= & \code{.globl}\,\code{.align 8}\,\itm{label}\; (\itm{label}\key{:}\, \Block)^{*}
  13664. \end{array}
  13665. }
  13666. \newcommand{\ASTXIndCallRacket}{
  13667. \begin{array}{lcl}
  13668. \Instr &::=& \INDCALLQ{\Arg}{\itm{int}}
  13669. \MID \TAILJMP{\Arg}{\itm{int}}\\
  13670. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  13671. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  13672. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP}
  13673. \end{array}
  13674. }
  13675. \begin{figure}[tp]
  13676. \begin{tcolorbox}[colback=white]
  13677. \small
  13678. \[
  13679. \begin{array}{l}
  13680. \gray{\GrammarXInt} \\ \hline
  13681. \gray{\GrammarXIf} \\ \hline
  13682. \gray{\GrammarXGlobal} \\ \hline
  13683. \GrammarXIndCall \\
  13684. \begin{array}{lcl}
  13685. \LangXIndCallM{} &::= & \Def^{*}
  13686. \end{array}
  13687. \end{array}
  13688. \]
  13689. \end{tcolorbox}
  13690. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of figure~\ref{fig:x86-2-concrete}).}
  13691. \label{fig:x86-3-concrete}
  13692. \end{figure}
  13693. \begin{figure}[tp]
  13694. \begin{tcolorbox}[colback=white]
  13695. \small
  13696. {\if\edition\racketEd
  13697. \[\arraycolsep=3pt
  13698. \begin{array}{l}
  13699. \gray{\ASTXIntRacket} \\ \hline
  13700. \gray{\ASTXIfRacket} \\ \hline
  13701. \gray{\ASTXGlobalRacket} \\ \hline
  13702. \ASTXIndCallRacket \\
  13703. \begin{array}{lcl}
  13704. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  13705. \end{array}
  13706. \end{array}
  13707. \]
  13708. \fi}
  13709. {\if\edition\pythonEd
  13710. \[
  13711. \begin{array}{lcl}
  13712. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  13713. \MID \BYTEREG{\Reg} } \\
  13714. &\MID& \gray{ \GLOBAL{\itm{label}} } \MID \FUNREF{\itm{label}}{\Int} \\
  13715. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  13716. \MID \TAILJMP{\Arg}{\itm{int}}\\
  13717. &\MID& \BININSTR{\scode{leaq}}{\Arg}{\REG{\Reg}}\\
  13718. \Block &::=&\itm{label}\key{:}\,\Instr^{*} \\
  13719. \Blocks &::= & \LC\Block\code{,}\ldots\RC\\
  13720. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\Blocks}{\_}{\Type}{\_} \\
  13721. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  13722. \end{array}
  13723. \]
  13724. \fi}
  13725. \end{tcolorbox}
  13726. \caption{The abstract syntax of \LangXIndCall{} (extends
  13727. \LangXGlobal{} of figure~\ref{fig:x86-2}).}
  13728. \label{fig:x86-3}
  13729. \end{figure}
  13730. An assignment of a function reference to a variable becomes a
  13731. load-effective-address instruction as follows, where $\itm{lhs}'$ is
  13732. the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{} to \Arg{} in
  13733. \LangXIndCallVar{}. The \code{FunRef} becomes a \code{Global} AST
  13734. node, whose concrete syntax is instruction-pointer-relative
  13735. addressing.
  13736. \begin{center}
  13737. \begin{tabular}{lcl}
  13738. \begin{minipage}{0.35\textwidth}
  13739. {\if\edition\racketEd
  13740. \begin{lstlisting}
  13741. |$\itm{lhs}$| = (fun-ref |$f$| |$n$|);
  13742. \end{lstlisting}
  13743. \fi}
  13744. {\if\edition\pythonEd
  13745. \begin{lstlisting}
  13746. |$\itm{lhs}$| = FunRef(|$f$| |$n$|);
  13747. \end{lstlisting}
  13748. \fi}
  13749. \end{minipage}
  13750. &
  13751. $\Rightarrow$\qquad\qquad
  13752. &
  13753. \begin{minipage}{0.3\textwidth}
  13754. \begin{lstlisting}
  13755. leaq |$f$|(%rip), |$\itm{lhs}'$|
  13756. \end{lstlisting}
  13757. \end{minipage}
  13758. \end{tabular}
  13759. \end{center}
  13760. Regarding function definitions, we need to remove the parameters and
  13761. instead perform parameter passing using the conventions discussed in
  13762. section~\ref{sec:fun-x86}. That is, the arguments are passed in
  13763. registers. We recommend turning the parameters into local variables
  13764. and generating instructions at the beginning of the function to move
  13765. from the argument-passing registers
  13766. (section~\ref{sec:calling-conventions-fun}) to these local variables.
  13767. {\if\edition\racketEd
  13768. \begin{lstlisting}
  13769. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  13770. |$\Rightarrow$|
  13771. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  13772. \end{lstlisting}
  13773. \fi}
  13774. {\if\edition\pythonEd
  13775. \begin{lstlisting}
  13776. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  13777. |$\Rightarrow$|
  13778. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  13779. \end{lstlisting}
  13780. \fi}
  13781. The basic blocks $B'$ are the same as $B$ except that the
  13782. \code{start} block is modified to add the instructions for moving from
  13783. the argument registers to the parameter variables. So the \code{start}
  13784. block of $B$ shown on the left of the following is changed to the code
  13785. on the right:
  13786. \begin{center}
  13787. \begin{minipage}{0.3\textwidth}
  13788. \begin{lstlisting}
  13789. start:
  13790. |$\itm{instr}_1$|
  13791. |$\cdots$|
  13792. |$\itm{instr}_n$|
  13793. \end{lstlisting}
  13794. \end{minipage}
  13795. $\Rightarrow$
  13796. \begin{minipage}{0.3\textwidth}
  13797. \begin{lstlisting}
  13798. |$f$|start:
  13799. movq %rdi, |$x_1$|
  13800. movq %rsi, |$x_2$|
  13801. |$\cdots$|
  13802. |$\itm{instr}_1$|
  13803. |$\cdots$|
  13804. |$\itm{instr}_n$|
  13805. \end{lstlisting}
  13806. \end{minipage}
  13807. \end{center}
  13808. Recall that we use the label \code{start} for the initial block of a
  13809. program, and in section~\ref{sec:select-Lvar} we recommend labeling
  13810. the conclusion of the program with \code{conclusion}, so that
  13811. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  13812. by a jump to \code{conclusion}. With the addition of function
  13813. definitions, there is a start block and conclusion for each function,
  13814. but their labels need to be unique. We recommend prepending the
  13815. function's name to \code{start} and \code{conclusion}, respectively,
  13816. to obtain unique labels.
  13817. \racket{The interpreter for \LangXIndCall{} needs to be given the
  13818. number of parameters the function expects, but the parameters are no
  13819. longer in the syntax of function definitions. Instead, add an entry
  13820. to $\itm{info}$ that maps \code{num-params} to the number of
  13821. parameters to construct $\itm{info}'$.}
  13822. By changing the parameters to local variables, we are giving the
  13823. register allocator control over which registers or stack locations to
  13824. use for them. If you implement the move-biasing challenge
  13825. (section~\ref{sec:move-biasing}), the register allocator will try to
  13826. assign the parameter variables to the corresponding argument register,
  13827. in which case the \code{patch\_instructions} pass will remove the
  13828. \code{movq} instruction. This happens in the example translation given
  13829. in figure~\ref{fig:add-fun} in section~\ref{sec:functions-example}, in
  13830. the \code{add} function.
  13831. %
  13832. Also, note that the register allocator will perform liveness analysis
  13833. on this sequence of move instructions and build the interference
  13834. graph. So, for example, $x_1$ will be marked as interfering with
  13835. \code{rsi}, and that will prevent the mapping of $x_1$ to \code{rsi},
  13836. which is good because otherwise the first \code{movq} would overwrite
  13837. the argument in \code{rsi} that is needed for $x_2$.
  13838. Next, consider the compilation of function calls. In the mirror image
  13839. of the handling of parameters in function definitions, the arguments
  13840. are moved to the argument-passing registers. Note that the function
  13841. is not given as a label, but its address is produced by the argument
  13842. $\itm{arg}_0$. So, we translate the call into an indirect function
  13843. call. The return value from the function is stored in \code{rax}, so
  13844. it needs to be moved into the \itm{lhs}.
  13845. \begin{lstlisting}
  13846. |\itm{lhs}| = |$\CALL{\itm{arg}_0}{\itm{arg}_1~\itm{arg}_2 \ldots}$|
  13847. |$\Rightarrow$|
  13848. movq |$\itm{arg}_1$|, %rdi
  13849. movq |$\itm{arg}_2$|, %rsi
  13850. |$\vdots$|
  13851. callq *|$\itm{arg}_0$|
  13852. movq %rax, |$\itm{lhs}$|
  13853. \end{lstlisting}
  13854. The \code{IndirectCallq} AST node includes an integer for the arity of
  13855. the function, that is, the number of parameters. That information is
  13856. useful in the \code{uncover\_live} pass for determining which
  13857. argument-passing registers are potentially read during the call.
  13858. For tail calls, the parameter passing is the same as non-tail calls:
  13859. generate instructions to move the arguments into the argument-passing
  13860. registers. After that we need to pop the frame from the procedure
  13861. call stack. However, we do not yet know how big the frame is; that
  13862. gets determined during register allocation. So, instead of generating
  13863. those instructions here, we invent a new instruction that means ``pop
  13864. the frame and then do an indirect jump,'' which we name
  13865. \code{TailJmp}. The abstract syntax for this instruction includes an
  13866. argument that specifies where to jump and an integer that represents
  13867. the arity of the function being called.
  13868. \section{Register Allocation}
  13869. \label{sec:register-allocation-r4}
  13870. The addition of functions requires some changes to all three aspects
  13871. of register allocation, which we discuss in the following subsections.
  13872. \subsection{Liveness Analysis}
  13873. \label{sec:liveness-analysis-r4}
  13874. \index{subject}{liveness analysis}
  13875. %% The rest of the passes need only minor modifications to handle the new
  13876. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  13877. %% \code{leaq}.
  13878. The \code{IndirectCallq} instruction should be treated like
  13879. \code{Callq} regarding its written locations $W$, in that they should
  13880. include all the caller-saved registers. Recall that the reason for
  13881. that is to force variables that are live across a function call to be assigned to callee-saved
  13882. registers or to be spilled to the stack.
  13883. Regarding the set of read locations $R$, the arity field of
  13884. \code{TailJmp} and \code{IndirectCallq} determine how many of the
  13885. argument-passing registers should be considered as read by those
  13886. instructions. Also, the target field of \code{TailJmp} and
  13887. \code{IndirectCallq} should be included in the set of read locations
  13888. $R$.
  13889. \subsection{Build Interference Graph}
  13890. \label{sec:build-interference-r4}
  13891. With the addition of function definitions, we compute a separate interference
  13892. graph for each function (not just one for the whole program).
  13893. Recall that in section~\ref{sec:reg-alloc-gc} we discussed the need to
  13894. spill tuple-typed variables that are live during a call to
  13895. \code{collect}, the garbage collector. With the addition of functions
  13896. to our language, we need to revisit this issue. Functions that perform
  13897. allocation contain calls to the collector. Thus, we should not only
  13898. spill a tuple-typed variable when it is live during a call to
  13899. \code{collect}, but we should spill the variable if it is live during
  13900. call to any user-defined function. Thus, in the
  13901. \code{build\_interference} pass, we recommend adding interference
  13902. edges between call-live tuple-typed variables and the callee-saved
  13903. registers (in addition to the usual addition of edges between
  13904. call-live variables and the caller-saved registers).
  13905. \subsection{Allocate Registers}
  13906. The primary change to the \code{allocate\_registers} pass is adding an
  13907. auxiliary function for handling definitions (the \Def{} nonterminal
  13908. shown in figure~\ref{fig:x86-3}) with one case for function
  13909. definitions. The logic is the same as described in
  13910. chapter~\ref{ch:register-allocation-Lvar} except that now register
  13911. allocation is performed many times, once for each function definition,
  13912. instead of just once for the whole program.
  13913. \section{Patch Instructions}
  13914. In \code{patch\_instructions}, you should deal with the x86
  13915. idiosyncrasy that the destination argument of \code{leaq} must be a
  13916. register. Additionally, you should ensure that the argument of
  13917. \code{TailJmp} is \itm{rax}, our reserved register---because we
  13918. trample many other registers before the tail call, as explained in the
  13919. next section.
  13920. \section{Prelude and Conclusion}
  13921. Now that register allocation is complete, we can translate the
  13922. \code{TailJmp} into a sequence of instructions. A naive translation of
  13923. \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}. However,
  13924. before the jump we need to pop the current frame to achieve efficient
  13925. tail calls. This sequence of instructions is the same as the code for
  13926. the conclusion of a function, except that the \code{retq} is replaced with
  13927. \code{jmp *$\itm{arg}$}.
  13928. Regarding function definitions, we generate a prelude and conclusion
  13929. for each one. This code is similar to the prelude and conclusion
  13930. generated for the \code{main} function presented in
  13931. chapter~\ref{ch:Lvec}. To review, the prelude of every function should
  13932. carry out the following steps:
  13933. % TODO: .align the functions!
  13934. \begin{enumerate}
  13935. %% \item Start with \code{.global} and \code{.align} directives followed
  13936. %% by the label for the function. (See figure~\ref{fig:add-fun} for an
  13937. %% example.)
  13938. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  13939. pointer.
  13940. \item Push to the stack all the callee-saved registers that were
  13941. used for register allocation.
  13942. \item Move the stack pointer \code{rsp} down to make room for the
  13943. regular spills (aligned to 16 bytes).
  13944. \item Move the root stack pointer \code{r15} up by the size of the
  13945. root-stack frame for this function, which depends on the number of
  13946. spilled tuple-typed variables. \label{root-stack-init}
  13947. \item Initialize to zero all new entries in the root-stack frame.
  13948. \item Jump to the start block.
  13949. \end{enumerate}
  13950. The prelude of the \code{main} function has an additional task: call
  13951. the \code{initialize} function to set up the garbage collector, and
  13952. then move the value of the global \code{rootstack\_begin} in
  13953. \code{r15}. This initialization should happen before step
  13954. \ref{root-stack-init}, which depends on \code{r15}.
  13955. The conclusion of every function should do the following:
  13956. \begin{enumerate}
  13957. \item Move the stack pointer back up past the regular spills.
  13958. \item Restore the callee-saved registers by popping them from the
  13959. stack.
  13960. \item Move the root stack pointer back down by the size of the
  13961. root-stack frame for this function.
  13962. \item Restore \code{rbp} by popping it from the stack.
  13963. \item Return to the caller with the \code{retq} instruction.
  13964. \end{enumerate}
  13965. The output of this pass is \LangXIndCallFlat{}, which differs from
  13966. \LangXIndCall{} in that there is no longer an AST node for function
  13967. definitions. Instead, a program is just an association list of basic
  13968. blocks, as in \LangXGlobal{}. So we have the following grammar rule:
  13969. \[
  13970. \LangXIndCallFlatM{} ::= \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  13971. \]
  13972. Figure~\ref{fig:Lfun-passes} gives an overview of the passes for
  13973. compiling \LangFun{} to x86.
  13974. \begin{exercise}\normalfont\normalsize
  13975. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  13976. Create eight new programs that use functions, including examples that
  13977. pass functions and return functions from other functions, recursive
  13978. functions, functions that create vectors, and functions that make tail
  13979. calls. Test your compiler on these new programs and all your
  13980. previously created test programs.
  13981. \end{exercise}
  13982. \begin{figure}[tbp]
  13983. \begin{tcolorbox}[colback=white]
  13984. {\if\edition\racketEd
  13985. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  13986. \node (Lfun) at (0,2) {\large \LangFun{}};
  13987. \node (Lfun-1) at (4,2) {\large \LangFun{}};
  13988. \node (Lfun-2) at (7,2) {\large \LangFun{}};
  13989. \node (F1-1) at (11,2) {\large \LangFunRef{}};
  13990. \node (F1-2) at (11,0) {\large \LangFunRef{}};
  13991. \node (F1-3) at (7,0) {\large \LangFunRefAlloc{}};
  13992. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  13993. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  13994. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  13995. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  13996. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  13997. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  13998. \node (x86-5) at (8,-6) {\large \LangXIndCallFlat{}};
  13999. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  14000. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  14001. \path[->,bend left=15] (Lfun) edge [above] node
  14002. {\ttfamily\footnotesize shrink} (Lfun-1);
  14003. \path[->,bend left=15] (Lfun-1) edge [above] node
  14004. {\ttfamily\footnotesize uniquify} (Lfun-2);
  14005. \path[->,bend left=15] (Lfun-2) edge [above] node
  14006. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  14007. \path[->,bend left=15] (F1-1) edge [left] node
  14008. {\ttfamily\footnotesize limit\_functions} (F1-2);
  14009. \path[->,bend left=15] (F1-2) edge [below] node
  14010. {\ttfamily\footnotesize expose\_allocation} (F1-3);
  14011. \path[->,bend left=15] (F1-3) edge [below] node
  14012. {\ttfamily\footnotesize uncover\_get!} (F1-4);
  14013. \path[->,bend right=15] (F1-4) edge [above] node
  14014. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  14015. \path[->,bend right=15] (F1-5) edge [right] node
  14016. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14017. \path[->,bend right=15] (C3-2) edge [right] node
  14018. {\ttfamily\footnotesize select\_instructions} (x86-2);
  14019. \path[->,bend left=15] (x86-2) edge [right] node
  14020. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  14021. \path[->,bend right=15] (x86-2-1) edge [below] node
  14022. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  14023. \path[->,bend right=15] (x86-2-2) edge [right] node
  14024. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  14025. \path[->,bend left=15] (x86-3) edge [above] node
  14026. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  14027. \path[->,bend right=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  14028. \end{tikzpicture}
  14029. \fi}
  14030. {\if\edition\pythonEd
  14031. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  14032. \node (Lfun) at (0,2) {\large \LangFun{}};
  14033. \node (Lfun-2) at (4,2) {\large \LangFun{}};
  14034. \node (F1-1) at (8,2) {\large \LangFunRef{}};
  14035. \node (F1-2) at (12,2) {\large \LangFunRef{}};
  14036. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  14037. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  14038. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  14039. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  14040. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  14041. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  14042. \node (x86-5) at (12,-4) {\large \LangXIndCallFlat{}};
  14043. \path[->,bend left=15] (Lfun) edge [above] node
  14044. {\ttfamily\footnotesize shrink} (Lfun-2);
  14045. \path[->,bend left=15] (Lfun-2) edge [above] node
  14046. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  14047. \path[->,bend left=15] (F1-1) edge [above] node
  14048. {\ttfamily\footnotesize limit\_functions} (F1-2);
  14049. \path[->,bend left=15] (F1-2) edge [right] node
  14050. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  14051. \path[->,bend right=15] (F1-4) edge [above] node
  14052. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  14053. \path[->,bend right=15] (F1-5) edge [right] node
  14054. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14055. \path[->,bend left=15] (C3-2) edge [right] node
  14056. {\ttfamily\footnotesize select\_instructions} (x86-2);
  14057. \path[->,bend right=15] (x86-2) edge [below] node
  14058. {\ttfamily\footnotesize assign\_homes} (x86-3);
  14059. \path[->,bend left=15] (x86-3) edge [above] node
  14060. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  14061. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  14062. \end{tikzpicture}
  14063. \fi}
  14064. \end{tcolorbox}
  14065. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  14066. \label{fig:Lfun-passes}
  14067. \end{figure}
  14068. \section{An Example Translation}
  14069. \label{sec:functions-example}
  14070. Figure~\ref{fig:add-fun} shows an example translation of a simple
  14071. function in \LangFun{} to x86. The figure also includes the results of the
  14072. \code{explicate\_control} and \code{select\_instructions} passes.
  14073. \begin{figure}[htbp]
  14074. \begin{tcolorbox}[colback=white]
  14075. \begin{tabular}{ll}
  14076. \begin{minipage}{0.4\textwidth}
  14077. % s3_2.rkt
  14078. {\if\edition\racketEd
  14079. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14080. (define (add [x : Integer]
  14081. [y : Integer])
  14082. : Integer
  14083. (+ x y))
  14084. (add 40 2)
  14085. \end{lstlisting}
  14086. \fi}
  14087. {\if\edition\pythonEd
  14088. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14089. def add(x:int, y:int) -> int:
  14090. return x + y
  14091. print(add(40, 2))
  14092. \end{lstlisting}
  14093. \fi}
  14094. $\Downarrow$
  14095. {\if\edition\racketEd
  14096. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14097. (define (add86 [x87 : Integer]
  14098. [y88 : Integer])
  14099. : Integer
  14100. add86start:
  14101. return (+ x87 y88);
  14102. )
  14103. (define (main) : Integer ()
  14104. mainstart:
  14105. tmp89 = (fun-ref add86 2);
  14106. (tail-call tmp89 40 2)
  14107. )
  14108. \end{lstlisting}
  14109. \fi}
  14110. {\if\edition\pythonEd
  14111. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14112. def add(x:int, y:int) -> int:
  14113. addstart:
  14114. return x + y
  14115. def main() -> int:
  14116. mainstart:
  14117. fun.0 = add
  14118. tmp.1 = fun.0(40, 2)
  14119. print(tmp.1)
  14120. return 0
  14121. \end{lstlisting}
  14122. \fi}
  14123. \end{minipage}
  14124. &
  14125. $\Rightarrow$
  14126. \begin{minipage}{0.5\textwidth}
  14127. {\if\edition\racketEd
  14128. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14129. (define (add86) : Integer
  14130. add86start:
  14131. movq %rdi, x87
  14132. movq %rsi, y88
  14133. movq x87, %rax
  14134. addq y88, %rax
  14135. jmp inc1389conclusion
  14136. )
  14137. (define (main) : Integer
  14138. mainstart:
  14139. leaq (fun-ref add86 2), tmp89
  14140. movq $40, %rdi
  14141. movq $2, %rsi
  14142. tail-jmp tmp89
  14143. )
  14144. \end{lstlisting}
  14145. \fi}
  14146. {\if\edition\pythonEd
  14147. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14148. def add() -> int:
  14149. addstart:
  14150. movq %rdi, x
  14151. movq %rsi, y
  14152. movq x, %rax
  14153. addq y, %rax
  14154. jmp addconclusion
  14155. def main() -> int:
  14156. mainstart:
  14157. leaq add, fun.0
  14158. movq $40, %rdi
  14159. movq $2, %rsi
  14160. callq *fun.0
  14161. movq %rax, tmp.1
  14162. movq tmp.1, %rdi
  14163. callq print_int
  14164. movq $0, %rax
  14165. jmp mainconclusion
  14166. \end{lstlisting}
  14167. \fi}
  14168. $\Downarrow$
  14169. \end{minipage}
  14170. \end{tabular}
  14171. \begin{tabular}{ll}
  14172. \begin{minipage}{0.3\textwidth}
  14173. {\if\edition\racketEd
  14174. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14175. .globl add86
  14176. .align 8
  14177. add86:
  14178. pushq %rbp
  14179. movq %rsp, %rbp
  14180. jmp add86start
  14181. add86start:
  14182. movq %rdi, %rax
  14183. addq %rsi, %rax
  14184. jmp add86conclusion
  14185. add86conclusion:
  14186. popq %rbp
  14187. retq
  14188. \end{lstlisting}
  14189. \fi}
  14190. {\if\edition\pythonEd
  14191. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14192. .align 8
  14193. add:
  14194. pushq %rbp
  14195. movq %rsp, %rbp
  14196. subq $0, %rsp
  14197. jmp addstart
  14198. addstart:
  14199. movq %rdi, %rdx
  14200. movq %rsi, %rcx
  14201. movq %rdx, %rax
  14202. addq %rcx, %rax
  14203. jmp addconclusion
  14204. addconclusion:
  14205. subq $0, %r15
  14206. addq $0, %rsp
  14207. popq %rbp
  14208. retq
  14209. \end{lstlisting}
  14210. \fi}
  14211. \end{minipage}
  14212. &
  14213. \begin{minipage}{0.5\textwidth}
  14214. {\if\edition\racketEd
  14215. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14216. .globl main
  14217. .align 8
  14218. main:
  14219. pushq %rbp
  14220. movq %rsp, %rbp
  14221. movq $16384, %rdi
  14222. movq $16384, %rsi
  14223. callq initialize
  14224. movq rootstack_begin(%rip), %r15
  14225. jmp mainstart
  14226. mainstart:
  14227. leaq add86(%rip), %rcx
  14228. movq $40, %rdi
  14229. movq $2, %rsi
  14230. movq %rcx, %rax
  14231. popq %rbp
  14232. jmp *%rax
  14233. mainconclusion:
  14234. popq %rbp
  14235. retq
  14236. \end{lstlisting}
  14237. \fi}
  14238. {\if\edition\pythonEd
  14239. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14240. .globl main
  14241. .align 8
  14242. main:
  14243. pushq %rbp
  14244. movq %rsp, %rbp
  14245. subq $0, %rsp
  14246. movq $65536, %rdi
  14247. movq $65536, %rsi
  14248. callq initialize
  14249. movq rootstack_begin(%rip), %r15
  14250. jmp mainstart
  14251. mainstart:
  14252. leaq add(%rip), %rcx
  14253. movq $40, %rdi
  14254. movq $2, %rsi
  14255. callq *%rcx
  14256. movq %rax, %rcx
  14257. movq %rcx, %rdi
  14258. callq print_int
  14259. movq $0, %rax
  14260. jmp mainconclusion
  14261. mainconclusion:
  14262. subq $0, %r15
  14263. addq $0, %rsp
  14264. popq %rbp
  14265. retq
  14266. \end{lstlisting}
  14267. \fi}
  14268. \end{minipage}
  14269. \end{tabular}
  14270. \end{tcolorbox}
  14271. \caption{Example compilation of a simple function to x86.}
  14272. \label{fig:add-fun}
  14273. \end{figure}
  14274. % Challenge idea: inlining! (simple version)
  14275. % Further Reading
  14276. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14277. \chapter{Lexically Scoped Functions}
  14278. \label{ch:Llambda}
  14279. \index{subject}{lambda}
  14280. \index{subject}{lexical scoping}
  14281. \setcounter{footnote}{0}
  14282. This chapter studies lexically scoped functions. Lexical scoping means
  14283. that a function's body may refer to variables whose binding site is
  14284. outside of the function, in an enclosing scope.
  14285. %
  14286. Consider the example shown in figure~\ref{fig:lexical-scoping} written
  14287. in \LangLam{}, which extends \LangFun{} with the \key{lambda} form for
  14288. creating lexically scoped functions. The body of the \key{lambda}
  14289. refers to three variables: \code{x}, \code{y}, and \code{z}. The
  14290. binding sites for \code{x} and \code{y} are outside of the
  14291. \key{lambda}. Variable \code{y} is \racket{bound by the enclosing
  14292. \key{let}}\python{a local variable of function \code{f}}, and
  14293. \code{x} is a parameter of function \code{f}. Note that function
  14294. \code{f} returns the \key{lambda} as its result value. The main
  14295. expression of the program includes two calls to \code{f} with
  14296. different arguments for \code{x}: first \code{5} and then \code{3}. The
  14297. functions returned from \code{f} are bound to variables \code{g} and
  14298. \code{h}. Even though these two functions were created by the same
  14299. \code{lambda}, they are really different functions because they use
  14300. different values for \code{x}. Applying \code{g} to \code{11} produces
  14301. \code{20} whereas applying \code{h} to \code{15} produces \code{22},
  14302. so the result of the program is \code{42}.
  14303. \begin{figure}[btp]
  14304. \begin{tcolorbox}[colback=white]
  14305. {\if\edition\racketEd
  14306. % lambda_test_21.rkt
  14307. \begin{lstlisting}
  14308. (define (f [x : Integer]) : (Integer -> Integer)
  14309. (let ([y 4])
  14310. (lambda: ([z : Integer]) : Integer
  14311. (+ x (+ y z)))))
  14312. (let ([g (f 5)])
  14313. (let ([h (f 3)])
  14314. (+ (g 11) (h 15))))
  14315. \end{lstlisting}
  14316. \fi}
  14317. {\if\edition\pythonEd
  14318. \begin{lstlisting}
  14319. def f(x : int) -> Callable[[int], int]:
  14320. y = 4
  14321. return lambda z: x + y + z
  14322. g = f(5)
  14323. h = f(3)
  14324. print( g(11) + h(15) )
  14325. \end{lstlisting}
  14326. \fi}
  14327. \end{tcolorbox}
  14328. \caption{Example of a lexically scoped function.}
  14329. \label{fig:lexical-scoping}
  14330. \end{figure}
  14331. The approach that we take for implementing lexically scoped functions
  14332. is to compile them into top-level function definitions, translating
  14333. from \LangLam{} into \LangFun{}. However, the compiler must give
  14334. special treatment to variable occurrences such as \code{x} and
  14335. \code{y} in the body of the \code{lambda} shown in
  14336. figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  14337. may not refer to variables defined outside of it. To identify such
  14338. variable occurrences, we review the standard notion of free variable.
  14339. \begin{definition}\normalfont
  14340. A variable is \emph{free in expression} $e$ if the variable occurs
  14341. inside $e$ but does not have an enclosing definition that is also in
  14342. $e$.\index{subject}{free variable}
  14343. \end{definition}
  14344. For example, in the expression
  14345. \racket{\code{(+ x (+ y z))}}\python{\code{x + y + z}}
  14346. the variables \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  14347. only \code{x} and \code{y} are free in the following expression,
  14348. because \code{z} is defined by the \code{lambda}
  14349. {\if\edition\racketEd
  14350. \begin{lstlisting}
  14351. (lambda: ([z : Integer]) : Integer
  14352. (+ x (+ y z)))
  14353. \end{lstlisting}
  14354. \fi}
  14355. {\if\edition\pythonEd
  14356. \begin{lstlisting}
  14357. lambda z: x + y + z
  14358. \end{lstlisting}
  14359. \fi}
  14360. %
  14361. \noindent Thus the free variables of a \code{lambda} are the ones that
  14362. need special treatment. We need to transport at runtime the values
  14363. of those variables from the point where the \code{lambda} was created
  14364. to the point where the \code{lambda} is applied. An efficient solution
  14365. to the problem, due to \citet{Cardelli:1983aa}, is to bundle the
  14366. values of the free variables together with a function pointer into a
  14367. tuple, an arrangement called a \emph{flat closure} (which we shorten
  14368. to just \emph{closure}).\index{subject}{closure}\index{subject}{flat
  14369. closure}
  14370. %
  14371. By design, we have all the ingredients to make closures:
  14372. chapter~\ref{ch:Lvec} gave us tuples, and chapter~\ref{ch:Lfun} gave us
  14373. function pointers. The function pointer resides at index $0$, and the
  14374. values for the free variables fill in the rest of the tuple.
  14375. Let us revisit the example shown in figure~\ref{fig:lexical-scoping}
  14376. to see how closures work. It is a three-step dance. The program calls
  14377. function \code{f}, which creates a closure for the \code{lambda}. The
  14378. closure is a tuple whose first element is a pointer to the top-level
  14379. function that we will generate for the \code{lambda}; the second
  14380. element is the value of \code{x}, which is \code{5}; and the third
  14381. element is \code{4}, the value of \code{y}. The closure does not
  14382. contain an element for \code{z} because \code{z} is not a free
  14383. variable of the \code{lambda}. Creating the closure is step 1 of the
  14384. dance. The closure is returned from \code{f} and bound to \code{g}, as
  14385. shown in figure~\ref{fig:closures}.
  14386. %
  14387. The second call to \code{f} creates another closure, this time with
  14388. \code{3} in the second slot (for \code{x}). This closure is also
  14389. returned from \code{f} but bound to \code{h}, which is also shown in
  14390. figure~\ref{fig:closures}.
  14391. \begin{figure}[tbp]
  14392. \centering
  14393. \begin{minipage}{0.65\textwidth}
  14394. \begin{tcolorbox}[colback=white]
  14395. \includegraphics[width=\textwidth]{figs/closures}
  14396. \end{tcolorbox}
  14397. \end{minipage}
  14398. \caption{Flat closure representations for the two functions
  14399. produced by the \key{lambda} in figure~\ref{fig:lexical-scoping}.}
  14400. \label{fig:closures}
  14401. \end{figure}
  14402. Continuing with the example, consider the application of \code{g} to
  14403. \code{11} shown in figure~\ref{fig:lexical-scoping}. To apply a
  14404. closure, we obtain the function pointer from the first element of the
  14405. closure and call it, passing in the closure itself and then the
  14406. regular arguments, in this case \code{11}. This technique for applying
  14407. a closure is step 2 of the dance.
  14408. %
  14409. But doesn't this \code{lambda} take only one argument, for parameter
  14410. \code{z}? The third and final step of the dance is generating a
  14411. top-level function for a \code{lambda}. We add an additional
  14412. parameter for the closure and insert an initialization at the beginning
  14413. of the function for each free variable, to bind those variables to the
  14414. appropriate elements from the closure parameter.
  14415. %
  14416. This three-step dance is known as \emph{closure conversion}. We
  14417. discuss the details of closure conversion in
  14418. section~\ref{sec:closure-conversion} and show the code generated from
  14419. the example in section~\ref{sec:example-lambda}. First, we define
  14420. the syntax and semantics of \LangLam{} in section~\ref{sec:r5}.
  14421. \section{The \LangLam{} Language}
  14422. \label{sec:r5}
  14423. The definitions of the concrete syntax and abstract syntax for
  14424. \LangLam{}, a language with anonymous functions and lexical scoping,
  14425. are shown in figures~\ref{fig:Llam-concrete-syntax} and
  14426. \ref{fig:Llam-syntax}. They add the \key{lambda} form to the grammar
  14427. for \LangFun{}, which already has syntax for function application.
  14428. %
  14429. \python{The syntax also includes an assignment statement that includes
  14430. a type annotation for the variable on the left-hand side, which
  14431. facilitates the type checking of \code{lambda} expressions that we
  14432. discuss later in this section.}
  14433. %
  14434. \racket{The \code{procedure-arity} operation returns the number of parameters
  14435. of a given function, an operation that we need for the translation
  14436. of dynamic typing in chapter~\ref{ch:Ldyn}.}
  14437. %
  14438. \python{The \code{arity} operation returns the number of parameters of
  14439. a given function, an operation that we need for the translation
  14440. of dynamic typing in chapter~\ref{ch:Ldyn}.
  14441. The \code{arity} operation is not in Python, but the same functionality
  14442. is available in a more complex form. We include \code{arity} in the
  14443. \LangLam{} source language to enable testing.}
  14444. \newcommand{\LlambdaGrammarRacket}{
  14445. \begin{array}{lcl}
  14446. \Exp &::=& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  14447. &\MID& \LP \key{procedure-arity}~\Exp\RP
  14448. \end{array}
  14449. }
  14450. \newcommand{\LlambdaASTRacket}{
  14451. \begin{array}{lcl}
  14452. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  14453. \itm{op} &::=& \code{procedure-arity}
  14454. \end{array}
  14455. }
  14456. \newcommand{\LlambdaGrammarPython}{
  14457. \begin{array}{lcl}
  14458. \Exp &::=& \CLAMBDA{\Var\code{, }\ldots}{\Exp} \MID \CARITY{\Exp} \\
  14459. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp}
  14460. \end{array}
  14461. }
  14462. \newcommand{\LlambdaASTPython}{
  14463. \begin{array}{lcl}
  14464. \Exp &::=& \LAMBDA{\Var^{*}}{\Exp} \MID \ARITY{\Exp} \\
  14465. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  14466. \end{array}
  14467. }
  14468. % include AnnAssign in ASTPython
  14469. \begin{figure}[tp]
  14470. \centering
  14471. \begin{tcolorbox}[colback=white]
  14472. \small
  14473. {\if\edition\racketEd
  14474. \[
  14475. \begin{array}{l}
  14476. \gray{\LintGrammarRacket{}} \\ \hline
  14477. \gray{\LvarGrammarRacket{}} \\ \hline
  14478. \gray{\LifGrammarRacket{}} \\ \hline
  14479. \gray{\LwhileGrammarRacket} \\ \hline
  14480. \gray{\LtupGrammarRacket} \\ \hline
  14481. \gray{\LfunGrammarRacket} \\ \hline
  14482. \LlambdaGrammarRacket \\
  14483. \begin{array}{lcl}
  14484. \LangLamM{} &::=& \Def\ldots \; \Exp
  14485. \end{array}
  14486. \end{array}
  14487. \]
  14488. \fi}
  14489. {\if\edition\pythonEd
  14490. \[
  14491. \begin{array}{l}
  14492. \gray{\LintGrammarPython{}} \\ \hline
  14493. \gray{\LvarGrammarPython{}} \\ \hline
  14494. \gray{\LifGrammarPython{}} \\ \hline
  14495. \gray{\LwhileGrammarPython} \\ \hline
  14496. \gray{\LtupGrammarPython} \\ \hline
  14497. \gray{\LfunGrammarPython} \\ \hline
  14498. \LlambdaGrammarPython \\
  14499. \begin{array}{lcl}
  14500. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  14501. \end{array}
  14502. \end{array}
  14503. \]
  14504. \fi}
  14505. \end{tcolorbox}
  14506. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-concrete-syntax})
  14507. with \key{lambda}.}
  14508. \label{fig:Llam-concrete-syntax}
  14509. \end{figure}
  14510. \begin{figure}[tp]
  14511. \centering
  14512. \begin{tcolorbox}[colback=white]
  14513. \small
  14514. {\if\edition\racketEd
  14515. \[\arraycolsep=3pt
  14516. \begin{array}{l}
  14517. \gray{\LintOpAST} \\ \hline
  14518. \gray{\LvarASTRacket{}} \\ \hline
  14519. \gray{\LifASTRacket{}} \\ \hline
  14520. \gray{\LwhileASTRacket{}} \\ \hline
  14521. \gray{\LtupASTRacket{}} \\ \hline
  14522. \gray{\LfunASTRacket} \\ \hline
  14523. \LlambdaASTRacket \\
  14524. \begin{array}{lcl}
  14525. \LangLamM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  14526. \end{array}
  14527. \end{array}
  14528. \]
  14529. \fi}
  14530. {\if\edition\pythonEd
  14531. \[
  14532. \begin{array}{l}
  14533. \gray{\LintASTPython} \\ \hline
  14534. \gray{\LvarASTPython{}} \\ \hline
  14535. \gray{\LifASTPython{}} \\ \hline
  14536. \gray{\LwhileASTPython{}} \\ \hline
  14537. \gray{\LtupASTPython{}} \\ \hline
  14538. \gray{\LfunASTPython} \\ \hline
  14539. \LlambdaASTPython \\
  14540. \begin{array}{lcl}
  14541. \LangLamM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  14542. \end{array}
  14543. \end{array}
  14544. \]
  14545. \fi}
  14546. \end{tcolorbox}
  14547. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-syntax}).}
  14548. \label{fig:Llam-syntax}
  14549. \end{figure}
  14550. \index{subject}{interpreter}
  14551. \label{sec:interp-Llambda}
  14552. Figure~\ref{fig:interp-Llambda} shows the definitional interpreter for
  14553. \LangLam{}. The case for \key{Lambda} saves the current environment
  14554. inside the returned function value. Recall that during function
  14555. application, the environment stored in the function value, extended
  14556. with the mapping of parameters to argument values, is used to
  14557. interpret the body of the function.
  14558. \begin{figure}[tbp]
  14559. \begin{tcolorbox}[colback=white]
  14560. {\if\edition\racketEd
  14561. \begin{lstlisting}
  14562. (define interp-Llambda-class
  14563. (class interp-Lfun-class
  14564. (super-new)
  14565. (define/override (interp-op op)
  14566. (match op
  14567. ['procedure-arity
  14568. (lambda (v)
  14569. (match v
  14570. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  14571. [else (error 'interp-op "expected a function, not ~a" v)]))]
  14572. [else (super interp-op op)]))
  14573. (define/override ((interp-exp env) e)
  14574. (define recur (interp-exp env))
  14575. (match e
  14576. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  14577. `(function ,xs ,body ,env)]
  14578. [else ((super interp-exp env) e)]))
  14579. ))
  14580. (define (interp-Llambda p)
  14581. (send (new interp-Llambda-class) interp-program p))
  14582. \end{lstlisting}
  14583. \fi}
  14584. {\if\edition\pythonEd
  14585. \begin{lstlisting}
  14586. class InterpLlambda(InterpLfun):
  14587. def arity(self, v):
  14588. match v:
  14589. case Function(name, params, body, env):
  14590. return len(params)
  14591. case _:
  14592. raise Exception('Llambda arity unexpected ' + repr(v))
  14593. def interp_exp(self, e, env):
  14594. match e:
  14595. case Call(Name('arity'), [fun]):
  14596. f = self.interp_exp(fun, env)
  14597. return self.arity(f)
  14598. case Lambda(params, body):
  14599. return Function('lambda', params, [Return(body)], env)
  14600. case _:
  14601. return super().interp_exp(e, env)
  14602. def interp_stmts(self, ss, env):
  14603. if len(ss) == 0:
  14604. return
  14605. match ss[0]:
  14606. case AnnAssign(lhs, typ, value, simple):
  14607. env[lhs.id] = self.interp_exp(value, env)
  14608. return self.interp_stmts(ss[1:], env)
  14609. case _:
  14610. return super().interp_stmts(ss, env)
  14611. \end{lstlisting}
  14612. \fi}
  14613. \end{tcolorbox}
  14614. \caption{Interpreter for \LangLam{}.}
  14615. \label{fig:interp-Llambda}
  14616. \end{figure}
  14617. \label{sec:type-check-r5}
  14618. \index{subject}{type checking}
  14619. {\if\edition\racketEd
  14620. %
  14621. Figure~\ref{fig:type-check-Llambda} shows how to type check the new
  14622. \key{lambda} form. The body of the \key{lambda} is checked in an
  14623. environment that includes the current environment (because it is
  14624. lexically scoped) and also includes the \key{lambda}'s parameters. We
  14625. require the body's type to match the declared return type.
  14626. %
  14627. \fi}
  14628. {\if\edition\pythonEd
  14629. %
  14630. Figures~\ref{fig:type-check-Llambda} and
  14631. \ref{fig:type-check-Llambda-part2} define the type checker for
  14632. \LangLam{}, which is more complex than one might expect. The reason
  14633. for the added complexity is that the syntax of \key{lambda} does not
  14634. include type annotations for the parameters or return type. Instead
  14635. they must be inferred. There are many approaches of type inference to
  14636. choose from of varying degrees of complexity. We choose one of the
  14637. simpler approaches, bidirectional type inference~\citep{Dunfield:2021}
  14638. (aka. local type inference~\citep{Pierce:2000}), because the focus of
  14639. this book is compilation, not type inference.
  14640. The main idea of bidirectional type inference is to add an auxiliary
  14641. function, here named \code{check\_exp}, that takes an expected type
  14642. and checks whether the given expression is of that type. Thus, in
  14643. \code{check\_exp}, type information flows in a top-down manner with
  14644. respect to the AST, in contrast to the regular \code{type\_check\_exp}
  14645. function, where type information flows in a primarily bottom-up
  14646. manner.
  14647. %
  14648. The idea then is to use \code{check\_exp} in all the places where we
  14649. already know what the type of an expression should be, such as in the
  14650. \code{return} statement of a top-level function definition, or on the
  14651. right-hand side of an annotated assignment statement.
  14652. Getting back to \code{lambda}, it is straightforward to check a
  14653. \code{lambda} inside \code{check\_exp} because the expected type
  14654. provides the parameter types and the return type. On the other hand,
  14655. inside \code{type\_check\_exp} we disallow \code{lambda}, which means
  14656. that we do not allow \code{lambda} in contexts where we don't already
  14657. know its type. This restriction does not incur a loss of
  14658. expressiveness for \LangLam{} because it is straightforward to modify
  14659. a program to sidestep the restriction, for example, by using an
  14660. annotated assignment statement to assign the \code{lambda} to a
  14661. temporary variable.
  14662. Note that for the \code{Name} and \code{Lambda} AST nodes, the type
  14663. checker records their type in a \code{has\_type} field. This type
  14664. information is used later in this chapter.
  14665. %
  14666. \fi}
  14667. \begin{figure}[tbp]
  14668. \begin{tcolorbox}[colback=white]
  14669. {\if\edition\racketEd
  14670. \begin{lstlisting}
  14671. (define (type-check-Llambda env)
  14672. (lambda (e)
  14673. (match e
  14674. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  14675. (define-values (new-body bodyT)
  14676. ((type-check-exp (append (map cons xs Ts) env)) body))
  14677. (define ty `(,@Ts -> ,rT))
  14678. (cond
  14679. [(equal? rT bodyT)
  14680. (values (HasType (Lambda params rT new-body) ty) ty)]
  14681. [else
  14682. (error "mismatch in return type" bodyT rT)])]
  14683. ...
  14684. )))
  14685. \end{lstlisting}
  14686. \fi}
  14687. {\if\edition\pythonEd
  14688. \begin{lstlisting}
  14689. class TypeCheckLlambda(TypeCheckLfun):
  14690. def type_check_exp(self, e, env):
  14691. match e:
  14692. case Name(id):
  14693. e.has_type = env[id]
  14694. return env[id]
  14695. case Lambda(params, body):
  14696. raise Exception('cannot synthesize a type for a lambda')
  14697. case Call(Name('arity'), [func]):
  14698. func_t = self.type_check_exp(func, env)
  14699. match func_t:
  14700. case FunctionType(params_t, return_t):
  14701. return IntType()
  14702. case _:
  14703. raise Exception('in arity, unexpected ' + repr(func_t))
  14704. case _:
  14705. return super().type_check_exp(e, env)
  14706. def check_exp(self, e, ty, env):
  14707. match e:
  14708. case Lambda(params, body):
  14709. e.has_type = ty
  14710. match ty:
  14711. case FunctionType(params_t, return_t):
  14712. new_env = env.copy().update(zip(params, params_t))
  14713. self.check_exp(body, return_t, new_env)
  14714. case _:
  14715. raise Exception('lambda does not have type ' + str(ty))
  14716. case Call(func, args):
  14717. func_t = self.type_check_exp(func, env)
  14718. match func_t:
  14719. case FunctionType(params_t, return_t):
  14720. for (arg, param_t) in zip(args, params_t):
  14721. self.check_exp(arg, param_t, env)
  14722. self.check_type_equal(return_t, ty, e)
  14723. case _:
  14724. raise Exception('type_check_exp: in call, unexpected ' + \
  14725. repr(func_t))
  14726. case _:
  14727. t = self.type_check_exp(e, env)
  14728. self.check_type_equal(t, ty, e)
  14729. \end{lstlisting}
  14730. \fi}
  14731. \end{tcolorbox}
  14732. \caption{Type checking \LangLam{}\python{, part 1}.}
  14733. \label{fig:type-check-Llambda}
  14734. \end{figure}
  14735. {\if\edition\pythonEd
  14736. \begin{figure}[tbp]
  14737. \begin{tcolorbox}[colback=white]
  14738. \begin{lstlisting}
  14739. def check_stmts(self, ss, return_ty, env):
  14740. if len(ss) == 0:
  14741. return
  14742. match ss[0]:
  14743. case FunctionDef(name, params, body, dl, returns, comment):
  14744. new_env = env.copy().update(params)
  14745. rt = self.check_stmts(body, returns, new_env)
  14746. self.check_stmts(ss[1:], return_ty, env)
  14747. case Return(value):
  14748. self.check_exp(value, return_ty, env)
  14749. case Assign([Name(id)], value):
  14750. if id in env:
  14751. self.check_exp(value, env[id], env)
  14752. else:
  14753. env[id] = self.type_check_exp(value, env)
  14754. self.check_stmts(ss[1:], return_ty, env)
  14755. case Assign([Subscript(tup, Constant(index), Store())], value):
  14756. tup_t = self.type_check_exp(tup, env)
  14757. match tup_t:
  14758. case TupleType(ts):
  14759. self.check_exp(value, ts[index], env)
  14760. case _:
  14761. raise Exception('expected a tuple, not ' + repr(tup_t))
  14762. self.check_stmts(ss[1:], return_ty, env)
  14763. case AnnAssign(Name(id), ty_annot, value, simple):
  14764. ss[0].annotation = ty_annot
  14765. if id in env:
  14766. self.check_type_equal(env[id], ty_annot)
  14767. else:
  14768. env[id] = ty_annot
  14769. self.check_exp(value, ty_annot, env)
  14770. self.check_stmts(ss[1:], return_ty, env)
  14771. case _:
  14772. self.type_check_stmts(ss, env)
  14773. def type_check(self, p):
  14774. match p:
  14775. case Module(body):
  14776. env = {}
  14777. for s in body:
  14778. match s:
  14779. case FunctionDef(name, params, bod, dl, returns, comment):
  14780. params_t = [t for (x,t) in params]
  14781. env[name] = FunctionType(params_t, returns)
  14782. self.check_stmts(body, int, env)
  14783. \end{lstlisting}
  14784. \end{tcolorbox}
  14785. \caption{Type checking the \key{lambda}'s in \LangLam{}, part 2.}
  14786. \label{fig:type-check-Llambda-part2}
  14787. \end{figure}
  14788. \fi}
  14789. \clearpage
  14790. \section{Assignment and Lexically Scoped Functions}
  14791. \label{sec:assignment-scoping}
  14792. The combination of lexically scoped functions and assignment to
  14793. variables raises a challenge with the flat-closure approach to
  14794. implementing lexically scoped functions. Consider the following
  14795. example in which function \code{f} has a free variable \code{x} that
  14796. is changed after \code{f} is created but before the call to \code{f}.
  14797. % loop_test_11.rkt
  14798. {\if\edition\racketEd
  14799. \begin{lstlisting}
  14800. (let ([x 0])
  14801. (let ([y 0])
  14802. (let ([z 20])
  14803. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  14804. (begin
  14805. (set! x 10)
  14806. (set! y 12)
  14807. (f y))))))
  14808. \end{lstlisting}
  14809. \fi}
  14810. {\if\edition\pythonEd
  14811. % box_free_assign.py
  14812. \begin{lstlisting}
  14813. def g(z : int) -> int:
  14814. x = 0
  14815. y = 0
  14816. f : Callable[[int],int] = lambda a: a + x + z
  14817. x = 10
  14818. y = 12
  14819. return f(y)
  14820. print( g(20) )
  14821. \end{lstlisting}
  14822. \fi} The correct output for this example is \code{42} because the call
  14823. to \code{f} is required to use the current value of \code{x} (which is
  14824. \code{10}). Unfortunately, the closure conversion pass
  14825. (section~\ref{sec:closure-conversion}) generates code for the
  14826. \code{lambda} that copies the old value of \code{x} into a
  14827. closure. Thus, if we naively applied closure conversion, the output of
  14828. this program would be \code{32}.
  14829. A first attempt at solving this problem would be to save a pointer to
  14830. \code{x} in the closure and change the occurrences of \code{x} inside
  14831. the lambda to dereference the pointer. Of course, this would require
  14832. assigning \code{x} to the stack and not to a register. However, the
  14833. problem goes a bit deeper.
  14834. Consider the following example that returns a function that refers to
  14835. a local variable of the enclosing function:
  14836. \begin{center}
  14837. \begin{minipage}{\textwidth}
  14838. {\if\edition\racketEd
  14839. \begin{lstlisting}
  14840. (define (f []) : Integer
  14841. (let ([x 0])
  14842. (let ([g (lambda: () : Integer x)])
  14843. (begin
  14844. (set! x 42)
  14845. g))))
  14846. ((f))
  14847. \end{lstlisting}
  14848. \fi}
  14849. {\if\edition\pythonEd
  14850. % counter.py
  14851. \begin{lstlisting}
  14852. def f():
  14853. x = 0
  14854. g = lambda: x
  14855. x = 42
  14856. return g
  14857. print( f()() )
  14858. \end{lstlisting}
  14859. \fi}
  14860. \end{minipage}
  14861. \end{center}
  14862. In this example, the lifetime of \code{x} extends beyond the lifetime
  14863. of the call to \code{f}. Thus, if we were to store \code{x} on the
  14864. stack frame for the call to \code{f}, it would be gone by the time we
  14865. called \code{g}, leaving us with dangling pointers for
  14866. \code{x}. This example demonstrates that when a variable occurs free
  14867. inside a function, its lifetime becomes indefinite. Thus, the value of
  14868. the variable needs to live on the heap. The verb
  14869. \emph{box}\index{subject}{box} is often used for allocating a single
  14870. value on the heap, producing a pointer, and
  14871. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  14872. %
  14873. We introduce a new pass named \code{convert\_assignments} to address
  14874. this challenge.
  14875. %
  14876. \python{But before diving into that, we have one more
  14877. problem to discuss.}
  14878. \if\edition\pythonEd
  14879. \section{Uniquify Variables}
  14880. \label{sec:uniquify-lambda}
  14881. With the addition of \code{lambda} we have a complication to deal
  14882. with: name shadowing. Consider the following program with a function
  14883. \code{f} that has a parameter \code{x}. Inside \code{f} there are two
  14884. \code{lambda} expressions. The first \code{lambda} has a parameter
  14885. that is also named \code{x}.
  14886. \begin{lstlisting}
  14887. def f(x:int, y:int) -> Callable[[int], int]:
  14888. g : Callable[[int],int] = (lambda x: x + y)
  14889. h : Callable[[int],int] = (lambda y: x + y)
  14890. x = input_int()
  14891. return g
  14892. print(f(0, 10)(32))
  14893. \end{lstlisting}
  14894. Many of our compiler passes rely on being able to connect variable
  14895. uses with their definitions using just the name of the variable,
  14896. including new passes in this chapter. However, in the above example
  14897. the name of the variable does not uniquely determine its
  14898. definition. To solve this problem we recommend implementing a pass
  14899. named \code{uniquify} that renames every variable in the program to
  14900. make sure they are all unique.
  14901. The following shows the result of \code{uniquify} for the above
  14902. example. The \code{x} parameter of \code{f} is renamed to \code{x\_0}
  14903. and the \code{x} parameter of the \code{lambda} is renamed to
  14904. \code{x\_4}.
  14905. \begin{lstlisting}
  14906. def f(x_0:int, y_1:int) -> Callable[[int], int] :
  14907. g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
  14908. h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
  14909. x_0 = input_int()
  14910. return g_2
  14911. def main() -> int :
  14912. print(f(0, 10)(32))
  14913. return 0
  14914. \end{lstlisting}
  14915. \fi
  14916. %% \section{Reveal Functions}
  14917. %% \label{sec:reveal-functions-r5}
  14918. %% \racket{To support the \code{procedure-arity} operator we need to
  14919. %% communicate the arity of a function to the point of closure
  14920. %% creation.}
  14921. %% %
  14922. %% \python{In chapter~\ref{ch:Ldyn} we need to access the arity of a
  14923. %% function at runtime. Thus, we need to communicate the arity of a
  14924. %% function to the point of closure creation.}
  14925. %% %
  14926. %% We can accomplish this by replacing the $\FUNREF{\Var}{\Int}$ AST node with
  14927. %% one that has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$.
  14928. %% \[
  14929. %% \begin{array}{lcl}
  14930. %% \Exp &::=& \FUNREFARITY{\Var}{\Int}
  14931. %% \end{array}
  14932. %% \]
  14933. \section{Assignment Conversion}
  14934. \label{sec:convert-assignments}
  14935. The purpose of the \code{convert\_assignments} pass is to address the
  14936. challenge regarding the interaction between variable assignments and
  14937. closure conversion. First we identify which variables need to be
  14938. boxed, and then we transform the program to box those variables. In
  14939. general, boxing introduces runtime overhead that we would like to
  14940. avoid, so we should box as few variables as possible. We recommend
  14941. boxing the variables in the intersection of the following two sets of
  14942. variables:
  14943. \begin{enumerate}
  14944. \item The variables that are free in a \code{lambda}.
  14945. \item The variables that appear on the left-hand side of an
  14946. assignment.
  14947. \end{enumerate}
  14948. The first condition is a must but the second condition is
  14949. conservative. It is possible to develop a more liberal condition using
  14950. static program analysis.
  14951. Consider again the first example from
  14952. section~\ref{sec:assignment-scoping}:
  14953. %
  14954. {\if\edition\racketEd
  14955. \begin{lstlisting}
  14956. (let ([x 0])
  14957. (let ([y 0])
  14958. (let ([z 20])
  14959. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  14960. (begin
  14961. (set! x 10)
  14962. (set! y 12)
  14963. (f y))))))
  14964. \end{lstlisting}
  14965. \fi}
  14966. {\if\edition\pythonEd
  14967. \begin{lstlisting}
  14968. def g(z : int) -> int:
  14969. x = 0
  14970. y = 0
  14971. f : Callable[[int],int] = lambda a: a + x + z
  14972. x = 10
  14973. y = 12
  14974. return f(y)
  14975. print( g(20) )
  14976. \end{lstlisting}
  14977. \fi}
  14978. %
  14979. \noindent The variables \code{x} and \code{y} are assigned to. The
  14980. variables \code{x} and \code{z} occur free inside the
  14981. \code{lambda}. Thus, variable \code{x} needs to be boxed but not
  14982. \code{y} or \code{z}. The boxing of \code{x} consists of three
  14983. transformations: initialize \code{x} with a tuple whose elements are
  14984. uninitialized, replace reads from \code{x} with tuple reads, and
  14985. replace each assignment to \code{x} with a tuple write. The output of
  14986. \code{convert\_assignments} for this example is as follows:
  14987. %
  14988. {\if\edition\racketEd
  14989. \begin{lstlisting}
  14990. (define (main) : Integer
  14991. (let ([x0 (vector 0)])
  14992. (let ([y1 0])
  14993. (let ([z2 20])
  14994. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  14995. (+ a3 (+ (vector-ref x0 0) z2)))])
  14996. (begin
  14997. (vector-set! x0 0 10)
  14998. (set! y1 12)
  14999. (f4 y1)))))))
  15000. \end{lstlisting}
  15001. \fi}
  15002. %
  15003. {\if\edition\pythonEd
  15004. \begin{lstlisting}
  15005. def g(z : int)-> int:
  15006. x = (uninitialized(int),)
  15007. x[0] = 0
  15008. y = 0
  15009. f : Callable[[int], int] = (lambda a: a + x[0] + z)
  15010. x[0] = 10
  15011. y = 12
  15012. return f(y)
  15013. def main() -> int:
  15014. print(g(20))
  15015. return 0
  15016. \end{lstlisting}
  15017. \fi}
  15018. To compute the free variables of all the \code{lambda} expressions, we
  15019. recommend defining the following two auxiliary functions:
  15020. \begin{enumerate}
  15021. \item \code{free\_variables} computes the free variables of an expression, and
  15022. \item \code{free\_in\_lambda} collects all the variables that are
  15023. free in any of the \code{lambda} expressions, using
  15024. \code{free\_variables} in the case for each \code{lambda}.
  15025. \end{enumerate}
  15026. {\if\edition\racketEd
  15027. %
  15028. To compute the variables that are assigned to, we recommend updating
  15029. the \code{collect-set!} function that we introduced in
  15030. section~\ref{sec:uncover-get-bang} to include the new AST forms such
  15031. as \code{Lambda}.
  15032. %
  15033. \fi}
  15034. {\if\edition\pythonEd
  15035. %
  15036. To compute the variables that are assigned to, we recommend defining
  15037. an auxiliary function named \code{assigned\_vars\_stmt} that returns
  15038. the set of variables that occur in the left-hand side of an assignment
  15039. statement, and otherwise returns the empty set.
  15040. %
  15041. \fi}
  15042. Let $\mathit{AF}$ be the intersection of the set of variables that are
  15043. free in a \code{lambda} and that are assigned to in the enclosing
  15044. function definition.
  15045. Next we discuss the \code{convert\_assignments} pass. In the case for
  15046. $\VAR{x}$, if $x$ is in $\mathit{AF}$, then unbox it by translating
  15047. $\VAR{x}$ to a tuple read.
  15048. %
  15049. {\if\edition\racketEd
  15050. \begin{lstlisting}
  15051. (Var |$x$|)
  15052. |$\Rightarrow$|
  15053. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  15054. \end{lstlisting}
  15055. \fi}
  15056. %
  15057. {\if\edition\pythonEd
  15058. \begin{lstlisting}
  15059. Name(|$x$|)
  15060. |$\Rightarrow$|
  15061. Subscript(Name(|$x$|), Constant(0), Load())
  15062. \end{lstlisting}
  15063. \fi}
  15064. %
  15065. \noindent In the case for assignment, recursively process the
  15066. right-hand side \itm{rhs} to obtain \itm{rhs'}. If the left-hand side
  15067. $x$ is in $\mathit{AF}$, translate the assignment into a tuple write
  15068. as follows:
  15069. %
  15070. {\if\edition\racketEd
  15071. \begin{lstlisting}
  15072. (SetBang |$x$| |$\itm{rhs}$|)
  15073. |$\Rightarrow$|
  15074. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  15075. \end{lstlisting}
  15076. \fi}
  15077. {\if\edition\pythonEd
  15078. \begin{lstlisting}
  15079. Assign([Name(|$x$|)],|$\itm{rhs}$|)
  15080. |$\Rightarrow$|
  15081. Assign([Subscript(Name(|$x$|), Constant(0), Store())], |$\itm{rhs'}$|)
  15082. \end{lstlisting}
  15083. \fi}
  15084. %
  15085. {\if\edition\racketEd
  15086. The case for \code{Lambda} is nontrivial, but it is similar to the
  15087. case for function definitions, which we discuss next.
  15088. \fi}
  15089. %
  15090. To translate a function definition, we first compute $\mathit{AF}$,
  15091. the intersection of the variables that are free in a \code{lambda} and
  15092. that are assigned to. We then apply assignment conversion to the body
  15093. of the function definition. Finally, we box the parameters of this
  15094. function definition that are in $\mathit{AF}$. For example,
  15095. the parameter \code{x} of the following function \code{g}
  15096. needs to be boxed:
  15097. {\if\edition\racketEd
  15098. \begin{lstlisting}
  15099. (define (g [x : Integer]) : Integer
  15100. (let ([f (lambda: ([a : Integer]) : Integer (+ a x))])
  15101. (begin
  15102. (set! x 10)
  15103. (f 32))))
  15104. \end{lstlisting}
  15105. \fi}
  15106. %
  15107. {\if\edition\pythonEd
  15108. \begin{lstlisting}
  15109. def g(x : int) -> int:
  15110. f : Callable[[int],int] = lambda a: a + x
  15111. x = 10
  15112. return f(32)
  15113. \end{lstlisting}
  15114. \fi}
  15115. %
  15116. \noindent We box parameter \code{x} by creating a local variable named
  15117. \code{x} that is initialized to a tuple whose contents is the value of
  15118. the parameter, which has been renamed to \code{x\_0}.
  15119. %
  15120. {\if\edition\racketEd
  15121. \begin{lstlisting}
  15122. (define (g [x_0 : Integer]) : Integer
  15123. (let ([x (vector x_0)])
  15124. (let ([f (lambda: ([a : Integer]) : Integer
  15125. (+ a (vector-ref x 0)))])
  15126. (begin
  15127. (vector-set! x 0 10)
  15128. (f 32)))))
  15129. \end{lstlisting}
  15130. \fi}
  15131. %
  15132. {\if\edition\pythonEd
  15133. \begin{lstlisting}
  15134. def g(x_0 : int)-> int:
  15135. x = (x_0,)
  15136. f : Callable[[int], int] = (lambda a: a + x[0])
  15137. x[0] = 10
  15138. return f(32)
  15139. \end{lstlisting}
  15140. \fi}
  15141. \section{Closure Conversion}
  15142. \label{sec:closure-conversion}
  15143. \index{subject}{closure conversion}
  15144. The compiling of lexically scoped functions into top-level function
  15145. definitions and flat closures is accomplished in the pass
  15146. \code{convert\_to\_closures} that comes after \code{reveal\_functions}
  15147. and before \code{limit\_functions}.
  15148. As usual, we implement the pass as a recursive function over the
  15149. AST. The interesting cases are for \key{lambda} and function
  15150. application. We transform a \key{lambda} expression into an expression
  15151. that creates a closure, that is, a tuple for which the first element
  15152. is a function pointer and the rest of the elements are the values of
  15153. the free variables of the \key{lambda}.
  15154. %
  15155. However, we use the \code{Closure} AST node instead of using a tuple
  15156. so that we can record the arity.
  15157. %
  15158. In the generated code that follows, \itm{fvs} is the free variables of
  15159. the lambda and \itm{name} is a unique symbol generated to identify the
  15160. lambda.
  15161. %
  15162. \racket{The \itm{arity} is the number of parameters (the length of
  15163. \itm{ps}).}
  15164. %
  15165. {\if\edition\racketEd
  15166. \begin{lstlisting}
  15167. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  15168. |$\Rightarrow$|
  15169. (Closure |\itm{arity}| (cons (FunRef |\itm{name}| |\itm{arity}|) |\itm{fvs}|))
  15170. \end{lstlisting}
  15171. \fi}
  15172. %
  15173. {\if\edition\pythonEd
  15174. \begin{lstlisting}
  15175. Lambda([|$x_1,\ldots,x_n$|], |\itm{body}|)
  15176. |$\Rightarrow$|
  15177. Closure(|$n$|, [FunRef(|\itm{name}|, |$n$|), |\itm{fvs}, \ldots|])
  15178. \end{lstlisting}
  15179. \fi}
  15180. %
  15181. In addition to transforming each \key{Lambda} AST node into a
  15182. tuple, we create a top-level function definition for each
  15183. \key{Lambda}, as shown next.\\
  15184. \begin{minipage}{0.8\textwidth}
  15185. {\if\edition\racketEd
  15186. \begin{lstlisting}
  15187. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  15188. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  15189. ...
  15190. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  15191. |\itm{body'}|)...))
  15192. \end{lstlisting}
  15193. \fi}
  15194. {\if\edition\pythonEd
  15195. \begin{lstlisting}
  15196. def |\itm{name}|(clos : |\itm{closTy}|, |\itm{ps'}, \ldots|) -> |\itm{rt'}|:
  15197. |$\itm{fvs}_1$| = clos[1]
  15198. |$\ldots$|
  15199. |$\itm{fvs}_n$| = clos[|$n$|]
  15200. |\itm{body'}|
  15201. \end{lstlisting}
  15202. \fi}
  15203. \end{minipage}\\
  15204. The \code{clos} parameter refers to the closure. Translate the type
  15205. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  15206. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The type
  15207. \itm{closTy} is a tuple type for which the first element type is
  15208. \python{\code{Bottom()}}\racket{\code{\_} (the dummy type)} and the rest of
  15209. the element types are the types of the free variables in the
  15210. lambda. We use \python{\code{Bottom()}}\racket{\code{\_}} because it
  15211. is nontrivial to give a type to the function in the closure's type.%
  15212. %
  15213. \footnote{To give an accurate type to a closure, we would need to add
  15214. existential types to the type checker~\citep{Minamide:1996ys}.}
  15215. %
  15216. %% The dummy type is considered to be equal to any other type during type
  15217. %% checking.
  15218. The free variables become local variables that are initialized with
  15219. their values in the closure.
  15220. Closure conversion turns every function into a tuple, so the type
  15221. annotations in the program must also be translated. We recommend
  15222. defining an auxiliary recursive function for this purpose. Function
  15223. types should be translated as follows:
  15224. %
  15225. {\if\edition\racketEd
  15226. \begin{lstlisting}
  15227. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  15228. |$\Rightarrow$|
  15229. (Vector ((Vector) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  15230. \end{lstlisting}
  15231. \fi}
  15232. {\if\edition\pythonEd
  15233. \begin{lstlisting}
  15234. FunctionType([|$T_1, \ldots, T_n$|], |$T_r$|)
  15235. |$\Rightarrow$|
  15236. TupleType([FunctionType([TupleType([]), |$T'_1, \ldots, T'_n$|], |$T'_r$|)])
  15237. \end{lstlisting}
  15238. \fi}
  15239. %
  15240. This type indicates that the first thing in the tuple is a
  15241. function. The first parameter of the function is a tuple (a closure)
  15242. and the rest of the parameters are the ones from the original
  15243. function, with types $T'_1, \ldots, T'_n$. The type for the closure
  15244. omits the types of the free variables because (1) those types are not
  15245. available in this context, and (2) we do not need them in the code that
  15246. is generated for function application. So this type describes only the
  15247. first component of the closure tuple. At runtime the tuple may have
  15248. more components, but we ignore them at this point.
  15249. We transform function application into code that retrieves the
  15250. function from the closure and then calls the function, passing the
  15251. closure as the first argument. We place $e'$ in a temporary variable
  15252. to avoid code duplication.
  15253. \begin{center}
  15254. \begin{minipage}{\textwidth}
  15255. {\if\edition\racketEd
  15256. \begin{lstlisting}
  15257. (Apply |$e$| |$\itm{es}$|)
  15258. |$\Rightarrow$|
  15259. (Let |$\itm{tmp}$| |$e'$|
  15260. (Apply (Prim 'vector-ref (list (Var |$\itm{tmp}$|) (Int 0))) (cons (Var |$\itm{tmp}$|) |$\itm{es'}$|)))
  15261. \end{lstlisting}
  15262. \fi}
  15263. %
  15264. {\if\edition\pythonEd
  15265. \begin{lstlisting}
  15266. Call(|$e$|, [|$e_1, \ldots, e_n$|])
  15267. |$\Rightarrow$|
  15268. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  15269. Call(Subscript(Name(|$\itm{tmp}$|), Constant(0)),
  15270. [|$\itm{tmp}$|, |$e'_1, \ldots, e'_n$|]))
  15271. \end{lstlisting}
  15272. \fi}
  15273. \end{minipage}
  15274. \end{center}
  15275. There is also the question of what to do with references to top-level
  15276. function definitions. To maintain a uniform translation of function
  15277. application, we turn function references into closures.
  15278. \begin{tabular}{lll}
  15279. \begin{minipage}{0.3\textwidth}
  15280. {\if\edition\racketEd
  15281. \begin{lstlisting}
  15282. (FunRef |$f$| |$n$|)
  15283. \end{lstlisting}
  15284. \fi}
  15285. {\if\edition\pythonEd
  15286. \begin{lstlisting}
  15287. FunRef(|$f$|, |$n$|)
  15288. \end{lstlisting}
  15289. \fi}
  15290. \end{minipage}
  15291. &
  15292. $\Rightarrow$
  15293. &
  15294. \begin{minipage}{0.5\textwidth}
  15295. {\if\edition\racketEd
  15296. \begin{lstlisting}
  15297. (Closure |$n$| (FunRef |$f$| |$n$|) '())
  15298. \end{lstlisting}
  15299. \fi}
  15300. {\if\edition\pythonEd
  15301. \begin{lstlisting}
  15302. Closure(|$n$|, [FunRef(|$f$| |$n$|)])
  15303. \end{lstlisting}
  15304. \fi}
  15305. \end{minipage}
  15306. \end{tabular} \\
  15307. We no longer need the annotated assignment statement \code{AnnAssign}
  15308. to support the type checking of \code{lambda} expressions, so we
  15309. translate it to a regular \code{Assign} statement.
  15310. The top-level function definitions need to be updated to take an extra
  15311. closure parameter, but that parameter is ignored in the body of those
  15312. functions.
  15313. \section{An Example Translation}
  15314. \label{sec:example-lambda}
  15315. Figure~\ref{fig:lexical-functions-example} shows the result of
  15316. \code{reveal\_functions} and \code{convert\_to\_closures} for the example
  15317. program demonstrating lexical scoping that we discussed at the
  15318. beginning of this chapter.
  15319. \begin{figure}[tbp]
  15320. \begin{tcolorbox}[colback=white]
  15321. \begin{minipage}{0.8\textwidth}
  15322. {\if\edition\racketEd
  15323. % tests/lambda_test_6.rkt
  15324. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15325. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  15326. (let ([y8 4])
  15327. (lambda: ([z9 : Integer]) : Integer
  15328. (+ x7 (+ y8 z9)))))
  15329. (define (main) : Integer
  15330. (let ([g0 ((fun-ref f6 1) 5)])
  15331. (let ([h1 ((fun-ref f6 1) 3)])
  15332. (+ (g0 11) (h1 15)))))
  15333. \end{lstlisting}
  15334. $\Rightarrow$
  15335. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15336. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  15337. (let ([y8 4])
  15338. (closure 1 (list (fun-ref lambda2 1) x7 y8))))
  15339. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  15340. (let ([x7 (vector-ref fvs3 1)])
  15341. (let ([y8 (vector-ref fvs3 2)])
  15342. (+ x7 (+ y8 z9)))))
  15343. (define (main) : Integer
  15344. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6 1)))])
  15345. ((vector-ref clos5 0) clos5 5))])
  15346. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6 1)))])
  15347. ((vector-ref clos6 0) clos6 3))])
  15348. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  15349. \end{lstlisting}
  15350. \fi}
  15351. %
  15352. {\if\edition\pythonEd
  15353. % free_var.py
  15354. \begin{lstlisting}
  15355. def f(x : int) -> Callable[[int], int]:
  15356. y = 4
  15357. return lambda z: x + y + z
  15358. g = f(5)
  15359. h = f(3)
  15360. print( g(11) + h(15) )
  15361. \end{lstlisting}
  15362. $\Rightarrow$
  15363. \begin{lstlisting}
  15364. def lambda_0(fvs_1:tuple[bot,int,tuple[int]],z:int) -> int:
  15365. x = fvs_1[1]
  15366. y = fvs_1[2]
  15367. return x + y[0] + z
  15368. def f(fvs_2:bot, x:int) -> tuple[Callable[[tuple[],int], int]]
  15369. y = (777,)
  15370. y[0] = 4
  15371. return (lambda_0, x, y)
  15372. def main() -> int:
  15373. g = (let clos_3 = (f,) in clos_3[0](clos_3, 5))
  15374. h = (let clos_4 = (f,) in clos_4[0](clos_4, 3))
  15375. print((let clos_5 = g in clos_5[0](clos_5, 11))
  15376. + (let clos_6 = h in clos_6[0](clos_6, 15)))
  15377. return 0
  15378. \end{lstlisting}
  15379. \fi}
  15380. \end{minipage}
  15381. \end{tcolorbox}
  15382. \caption{Example of closure conversion.}
  15383. \label{fig:lexical-functions-example}
  15384. \end{figure}
  15385. \begin{exercise}\normalfont\normalsize
  15386. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  15387. Create five new programs that use \key{lambda} functions and make use of
  15388. lexical scoping. Test your compiler on these new programs and all
  15389. your previously created test programs.
  15390. \end{exercise}
  15391. \section{Expose Allocation}
  15392. \label{sec:expose-allocation-r5}
  15393. Compile the $\CLOSURE{\itm{arity}}{\Exp^{*}}$ form into code
  15394. that allocates and initializes a tuple, similar to the translation of
  15395. the tuple creation in section~\ref{sec:expose-allocation}.
  15396. The only difference is replacing the use of
  15397. \ALLOC{\itm{len}}{\itm{type}} with
  15398. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  15399. \section{Explicate Control and \LangCLam{}}
  15400. \label{sec:explicate-r5}
  15401. The output language of \code{explicate\_control} is \LangCLam{}; the
  15402. definition of its abstract syntax is shown in
  15403. figure~\ref{fig:Clam-syntax}.
  15404. %
  15405. \racket{The only differences with respect to \LangCFun{} are the
  15406. addition of the \code{AllocateClosure} form to the grammar for
  15407. $\Exp$ and the \code{procedure-arity} operator. The handling of
  15408. \code{AllocateClosure} in the \code{explicate\_control} pass is
  15409. similar to the handling of other expressions such as primitive
  15410. operators.}
  15411. %
  15412. \python{The differences with respect to \LangCFun{} are the
  15413. additions of \code{Uninitialized}, \code{AllocateClosure},
  15414. and \code{arity} to the grammar for $\Exp$. The handling of them in the
  15415. \code{explicate\_control} pass is similar to the handling of other
  15416. expressions such as primitive operators.}
  15417. \newcommand{\ClambdaASTRacket}{
  15418. \begin{array}{lcl}
  15419. \Exp &::= & \ALLOCCLOS{\Int}{\Type}{\Int} \\
  15420. \itm{op} &::= & \code{procedure-arity}
  15421. \end{array}
  15422. }
  15423. \newcommand{\ClambdaASTPython}{
  15424. \begin{array}{lcl}
  15425. \Exp &::=& \key{Uninitialized}\LP \Type \RP
  15426. \MID \key{AllocateClosure}\LP\itm{len},\Type, \itm{arity}\RP \\
  15427. &\MID& \ARITY{\Atm}
  15428. \end{array}
  15429. }
  15430. \begin{figure}[tp]
  15431. \begin{tcolorbox}[colback=white]
  15432. \small
  15433. {\if\edition\racketEd
  15434. \[
  15435. \begin{array}{l}
  15436. \gray{\CvarASTRacket} \\ \hline
  15437. \gray{\CifASTRacket} \\ \hline
  15438. \gray{\CloopASTRacket} \\ \hline
  15439. \gray{\CtupASTRacket} \\ \hline
  15440. \gray{\CfunASTRacket} \\ \hline
  15441. \ClambdaASTRacket \\
  15442. \begin{array}{lcl}
  15443. \LangCLamM{} & ::= & \PROGRAMDEFS{\itm{info}}{\Def^{*}}
  15444. \end{array}
  15445. \end{array}
  15446. \]
  15447. \fi}
  15448. {\if\edition\pythonEd
  15449. \[
  15450. \begin{array}{l}
  15451. \gray{\CifASTPython} \\ \hline
  15452. \gray{\CtupASTPython} \\ \hline
  15453. \gray{\CfunASTPython} \\ \hline
  15454. \ClambdaASTPython \\
  15455. \begin{array}{lcl}
  15456. \LangCLamM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  15457. \end{array}
  15458. \end{array}
  15459. \]
  15460. \fi}
  15461. \end{tcolorbox}
  15462. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (figure~\ref{fig:c3-syntax}).}
  15463. \label{fig:Clam-syntax}
  15464. \end{figure}
  15465. \section{Select Instructions}
  15466. \label{sec:select-instructions-Llambda}
  15467. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  15468. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  15469. (section~\ref{sec:select-instructions-gc}). The only difference is
  15470. that you should place the \itm{arity} in the tag that is stored at
  15471. position $0$ of the vector. Recall that in
  15472. section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  15473. was not used. We store the arity in the $5$ bits starting at position
  15474. $58$.
  15475. \racket{Compile the \code{procedure-arity} operator into a sequence of
  15476. instructions that access the tag from position $0$ of the vector and
  15477. extract the $5$ bits starting at position $58$ from the tag.}
  15478. %
  15479. \python{Compile a call to the \code{arity} operator to a sequence of
  15480. instructions that access the tag from position $0$ of the tuple
  15481. (representing a closure) and extract the $5$-bits starting at position
  15482. $58$ from the tag.}
  15483. \begin{figure}[p]
  15484. \begin{tcolorbox}[colback=white]
  15485. {\if\edition\racketEd
  15486. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  15487. \node (Lfun) at (0,2) {\large \LangLam{}};
  15488. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  15489. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  15490. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  15491. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  15492. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  15493. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  15494. \node (F1-4) at (0,0) {\large \LangFunRefAlloc{}};
  15495. \node (F1-5) at (0,-2) {\large \LangFunRefAlloc{}};
  15496. \node (F1-6) at (4,-2) {\large \LangFunANF{}};
  15497. \node (C3-2) at (8,-2) {\large \LangCFun{}};
  15498. \node (x86-2) at (0,-5) {\large \LangXIndCallVar{}};
  15499. \node (x86-2-1) at (0,-7) {\large \LangXIndCallVar{}};
  15500. \node (x86-2-2) at (4,-7) {\large \LangXIndCallVar{}};
  15501. \node (x86-3) at (4,-5) {\large \LangXIndCallVar{}};
  15502. \node (x86-4) at (8,-5) {\large \LangXIndCall{}};
  15503. \node (x86-5) at (8,-7) {\large \LangXIndCall{}};
  15504. \path[->,bend left=15] (Lfun) edge [above] node
  15505. {\ttfamily\footnotesize shrink} (Lfun-2);
  15506. \path[->,bend left=15] (Lfun-2) edge [above] node
  15507. {\ttfamily\footnotesize uniquify} (Lfun-3);
  15508. \path[->,bend left=15] (Lfun-3) edge [above] node
  15509. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  15510. \path[->,bend left=15] (F1-0) edge [left] node
  15511. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  15512. \path[->,bend left=15] (F1-1) edge [below] node
  15513. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  15514. \path[->,bend right=15] (F1-2) edge [above] node
  15515. {\ttfamily\footnotesize limit\_functions} (F1-3);
  15516. \path[->,bend right=15] (F1-3) edge [above] node
  15517. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  15518. \path[->,bend left=15] (F1-4) edge [right] node
  15519. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  15520. \path[->,bend right=15] (F1-5) edge [below] node
  15521. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  15522. \path[->,bend left=15] (F1-6) edge [above] node
  15523. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15524. \path[->] (C3-2) edge [right] node
  15525. {\ttfamily\footnotesize select\_instructions} (x86-2);
  15526. \path[->,bend right=15] (x86-2) edge [right] node
  15527. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  15528. \path[->,bend right=15] (x86-2-1) edge [below] node
  15529. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  15530. \path[->,bend right=15] (x86-2-2) edge [right] node
  15531. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  15532. \path[->,bend left=15] (x86-3) edge [above] node
  15533. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  15534. \path[->,bend left=15] (x86-4) edge [right] node
  15535. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  15536. \end{tikzpicture}
  15537. \fi}
  15538. {\if\edition\pythonEd
  15539. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  15540. \node (Lfun) at (0,2) {\large \LangLam{}};
  15541. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  15542. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  15543. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  15544. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  15545. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  15546. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  15547. \node (F1-5) at (0,0) {\large \LangFunRefAlloc{}};
  15548. \node (F1-6) at (0,-2) {\large \LangFunANF{}};
  15549. \node (C3-2) at (0,-4) {\large \LangCFun{}};
  15550. \node (x86-2) at (0,-6) {\large \LangXIndCallVar{}};
  15551. \node (x86-3) at (4,-6) {\large \LangXIndCallVar{}};
  15552. \node (x86-4) at (8,-6) {\large \LangXIndCall{}};
  15553. \node (x86-5) at (12,-6) {\large \LangXIndCall{}};
  15554. \path[->,bend left=15] (Lfun) edge [above] node
  15555. {\ttfamily\footnotesize shrink} (Lfun-2);
  15556. \path[->,bend left=15] (Lfun-2) edge [above] node
  15557. {\ttfamily\footnotesize uniquify} (Lfun-3);
  15558. \path[->,bend left=15] (Lfun-3) edge [above] node
  15559. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  15560. \path[->,bend left=15] (F1-0) edge [left] node
  15561. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  15562. \path[->,bend left=15] (F1-1) edge [below] node
  15563. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  15564. \path[->,bend left=15] (F1-2) edge [below] node
  15565. {\ttfamily\footnotesize limit\_functions} (F1-3);
  15566. \path[->,bend right=15] (F1-3) edge [above] node
  15567. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  15568. \path[->,bend right=15] (F1-5) edge [right] node
  15569. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  15570. \path[->,bend left=15] (F1-6) edge [right] node
  15571. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15572. \path[->,bend right=15] (C3-2) edge [right] node
  15573. {\ttfamily\footnotesize select\_instructions} (x86-2);
  15574. \path[->,bend right=15] (x86-2) edge [below] node
  15575. {\ttfamily\footnotesize assign\_homes} (x86-3);
  15576. \path[->,bend right=15] (x86-3) edge [below] node
  15577. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  15578. \path[->,bend left=15] (x86-4) edge [above] node
  15579. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  15580. \end{tikzpicture}
  15581. \fi}
  15582. \end{tcolorbox}
  15583. \caption{Diagram of the passes for \LangLam{}, a language with lexically scoped
  15584. functions.}
  15585. \label{fig:Llambda-passes}
  15586. \end{figure}
  15587. Figure~\ref{fig:Llambda-passes} provides an overview of the passes
  15588. needed for the compilation of \LangLam{}.
  15589. \clearpage
  15590. \section{Challenge: Optimize Closures}
  15591. \label{sec:optimize-closures}
  15592. In this chapter we compile lexically scoped functions into a
  15593. relatively efficient representation: flat closures. However, even this
  15594. representation comes with some overhead. For example, consider the
  15595. following program with a function \code{tail\_sum} that does not have
  15596. any free variables and where all the uses of \code{tail\_sum} are in
  15597. applications in which we know that only \code{tail\_sum} is being applied
  15598. (and not any other functions):
  15599. \begin{center}
  15600. \begin{minipage}{0.95\textwidth}
  15601. {\if\edition\racketEd
  15602. \begin{lstlisting}
  15603. (define (tail_sum [n : Integer] [s : Integer]) : Integer
  15604. (if (eq? n 0)
  15605. s
  15606. (tail_sum (- n 1) (+ n s))))
  15607. (+ (tail_sum 3 0) 36)
  15608. \end{lstlisting}
  15609. \fi}
  15610. {\if\edition\pythonEd
  15611. \begin{lstlisting}
  15612. def tail_sum(n : int, s : int) -> int:
  15613. if n == 0:
  15614. return s
  15615. else:
  15616. return tail_sum(n - 1, n + s)
  15617. print( tail_sum(3, 0) + 36)
  15618. \end{lstlisting}
  15619. \fi}
  15620. \end{minipage}
  15621. \end{center}
  15622. As described in this chapter, we uniformly apply closure conversion to
  15623. all functions, obtaining the following output for this program:
  15624. \begin{center}
  15625. \begin{minipage}{0.95\textwidth}
  15626. {\if\edition\racketEd
  15627. \begin{lstlisting}
  15628. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
  15629. (if (eq? n2 0)
  15630. s3
  15631. (let ([clos4 (closure (list (fun-ref tail_sum1 2)))])
  15632. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))
  15633. (define (main) : Integer
  15634. (+ (let ([clos6 (closure (list (fun-ref tail_sum1 2)))])
  15635. ((vector-ref clos6 0) clos6 3 0)) 27))
  15636. \end{lstlisting}
  15637. \fi}
  15638. {\if\edition\pythonEd
  15639. \begin{lstlisting}
  15640. def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
  15641. if n_0 == 0:
  15642. return s_1
  15643. else:
  15644. return (let clos_2 = (tail_sum,)
  15645. in clos_2[0](clos_2, n_0 - 1, n_0 + s_1))
  15646. def main() -> int :
  15647. print((let clos_4 = (tail_sum,)
  15648. in clos_4[0](clos_4, 3, 0)) + 36)
  15649. return 0
  15650. \end{lstlisting}
  15651. \fi}
  15652. \end{minipage}
  15653. \end{center}
  15654. If this program were compiled according to the previous chapter, there
  15655. would be no allocation and the calls to \code{tail\_sum} would be
  15656. direct calls. In contrast, the program presented here allocates memory
  15657. for each closure and the calls to \code{tail\_sum} are indirect. These
  15658. two differences incur considerable overhead in a program such as this,
  15659. in which the allocations and indirect calls occur inside a tight loop.
  15660. One might think that this problem is trivial to solve: can't we just
  15661. recognize calls of the form \APPLY{\FUNREF{$f$}{$n$}}{$\mathit{args}$}
  15662. and compile them to direct calls instead of treating it like a call to
  15663. a closure? We would also drop the new \code{fvs} parameter of
  15664. \code{tail\_sum}.
  15665. %
  15666. However, this problem is not so trivial, because a global function may
  15667. \emph{escape} and become involved in applications that also involve
  15668. closures. Consider the following example in which the application
  15669. \CAPPLY{\code{f}}{\code{41}} needs to be compiled into a closure
  15670. application because the \code{lambda} may flow into \code{f}, but the
  15671. \code{inc} function might also flow into \code{f}:
  15672. \begin{center}
  15673. \begin{minipage}{\textwidth}
  15674. % lambda_test_30.rkt
  15675. {\if\edition\racketEd
  15676. \begin{lstlisting}
  15677. (define (inc [x : Integer]) : Integer
  15678. (+ x 1))
  15679. (let ([y (read)])
  15680. (let ([f (if (eq? (read) 0)
  15681. inc
  15682. (lambda: ([x : Integer]) : Integer (- x y)))])
  15683. (f 41)))
  15684. \end{lstlisting}
  15685. \fi}
  15686. {\if\edition\pythonEd
  15687. \begin{lstlisting}
  15688. def add1(x : int) -> int:
  15689. return x + 1
  15690. y = input_int()
  15691. g : Callable[[int], int] = lambda x: x - y
  15692. f = add1 if input_int() == 0 else g
  15693. print( f(41) )
  15694. \end{lstlisting}
  15695. \fi}
  15696. \end{minipage}
  15697. \end{center}
  15698. If a global function name is used in any way other than as the
  15699. operator in a direct call, then we say that the function
  15700. \emph{escapes}. If a global function does not escape, then we do not
  15701. need to perform closure conversion on the function.
  15702. \begin{exercise}\normalfont\normalsize
  15703. Implement an auxiliary function for detecting which global
  15704. functions escape. Using that function, implement an improved version
  15705. of closure conversion that does not apply closure conversion to
  15706. global functions that do not escape but instead compiles them as
  15707. regular functions. Create several new test cases that check whether
  15708. your compiler properly detect whether global functions escape or not.
  15709. \end{exercise}
  15710. So far we have reduced the overhead of calling global functions, but
  15711. it would also be nice to reduce the overhead of calling a
  15712. \code{lambda} when we can determine at compile time which
  15713. \code{lambda} will be called. We refer to such calls as \emph{known
  15714. calls}. Consider the following example in which a \code{lambda} is
  15715. bound to \code{f} and then applied.
  15716. {\if\edition\racketEd
  15717. % lambda_test_9.rkt
  15718. \begin{lstlisting}
  15719. (let ([y (read)])
  15720. (let ([f (lambda: ([x : Integer]) : Integer
  15721. (+ x y))])
  15722. (f 21)))
  15723. \end{lstlisting}
  15724. \fi}
  15725. {\if\edition\pythonEd
  15726. \begin{lstlisting}
  15727. y = input_int()
  15728. f : Callable[[int],int] = lambda x: x + y
  15729. print( f(21) )
  15730. \end{lstlisting}
  15731. \fi}
  15732. %
  15733. \noindent Closure conversion compiles the application
  15734. \CAPPLY{\code{f}}{\code{21}} into an indirect call, as follows:
  15735. %
  15736. {\if\edition\racketEd
  15737. \begin{lstlisting}
  15738. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  15739. (let ([y2 (vector-ref fvs6 1)])
  15740. (+ x3 y2)))
  15741. (define (main) : Integer
  15742. (let ([y2 (read)])
  15743. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  15744. ((vector-ref f4 0) f4 21))))
  15745. \end{lstlisting}
  15746. \fi}
  15747. {\if\edition\pythonEd
  15748. \begin{lstlisting}
  15749. def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
  15750. y_1 = fvs_4[1]
  15751. return x_2 + y_1[0]
  15752. def main() -> int:
  15753. y_1 = (777,)
  15754. y_1[0] = input_int()
  15755. f_0 = (lambda_3, y_1)
  15756. print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
  15757. return 0
  15758. \end{lstlisting}
  15759. \fi}
  15760. %
  15761. \noindent However, we can instead compile the application
  15762. \CAPPLY{\code{f}}{\code{21}} into a direct call, as follows:
  15763. %
  15764. {\if\edition\racketEd
  15765. \begin{lstlisting}
  15766. (define (main) : Integer
  15767. (let ([y2 (read)])
  15768. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  15769. ((fun-ref lambda5 1) f4 21))))
  15770. \end{lstlisting}
  15771. \fi}
  15772. {\if\edition\pythonEd
  15773. \begin{lstlisting}
  15774. def main() -> int:
  15775. y_1 = (777,)
  15776. y_1[0] = input_int()
  15777. f_0 = (lambda_3, y_1)
  15778. print(lambda_3(f_0, 21))
  15779. return 0
  15780. \end{lstlisting}
  15781. \fi}
  15782. The problem of determining which \code{lambda} will be called from a
  15783. particular application is quite challenging in general and the topic
  15784. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  15785. following exercise we recommend that you compile an application to a
  15786. direct call when the operator is a variable and \racket{the variable
  15787. is \code{let}-bound to a closure}\python{the previous assignment to
  15788. the variable is a closure}. This can be accomplished by maintaining
  15789. an environment that maps variables to function names. Extend the
  15790. environment whenever you encounter a closure on the right-hand side of
  15791. a \racket{\code{let}}\python{assignment}, mapping the variable to the
  15792. name of the global function for the closure. This pass should come
  15793. after closure conversion.
  15794. \begin{exercise}\normalfont\normalsize
  15795. Implement a compiler pass, named \code{optimize\_known\_calls}, that
  15796. compiles known calls into direct calls. Verify that your compiler is
  15797. successful in this regard on several example programs.
  15798. \end{exercise}
  15799. These exercises only scratch the surface of closure optimization. A
  15800. good next step for the interested reader is to look at the work of
  15801. \citet{Keep:2012ab}.
  15802. \section{Further Reading}
  15803. The notion of lexically scoped functions predates modern computers by
  15804. about a decade. They were invented by \citet{Church:1932aa}, who
  15805. proposed the lambda calculus as a foundation for logic. Anonymous
  15806. functions were included in the LISP~\citep{McCarthy:1960dz}
  15807. programming language but were initially dynamically scoped. The Scheme
  15808. dialect of LISP adopted lexical scoping, and
  15809. \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently compile
  15810. Scheme programs. However, environments were represented as linked
  15811. lists, so variable look-up was linear in the size of the
  15812. environment. \citet{Appel91} gives a detailed description of several
  15813. closure representations. In this chapter we represent environments
  15814. using flat closures, which were invented by
  15815. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  15816. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  15817. closures, variable look-up is constant time but the time to create a
  15818. closure is proportional to the number of its free variables. Flat
  15819. closures were reinvented by \citet{Dybvig:1987ab} in his PhD thesis
  15820. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  15821. % todo: related work on assignment conversion (e.g. orbit and rabbit
  15822. % compilers)
  15823. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15824. \chapter{Dynamic Typing}
  15825. \label{ch:Ldyn}
  15826. \index{subject}{dynamic typing}
  15827. \setcounter{footnote}{0}
  15828. In this chapter we learn how to compile \LangDyn{}, a dynamically
  15829. typed language that is a subset of \racket{Racket}\python{Python}. The
  15830. focus on dynamic typing is in contrast to the previous chapters, which
  15831. have studied the compilation of statically typed languages. In
  15832. dynamically typed languages such as \LangDyn{}, a particular
  15833. expression may produce a value of a different type each time it is
  15834. executed. Consider the following example with a conditional \code{if}
  15835. expression that may return a Boolean or an integer depending on the
  15836. input to the program:
  15837. % part of dynamic_test_25.rkt
  15838. {\if\edition\racketEd
  15839. \begin{lstlisting}
  15840. (not (if (eq? (read) 1) #f 0))
  15841. \end{lstlisting}
  15842. \fi}
  15843. {\if\edition\pythonEd
  15844. \begin{lstlisting}
  15845. not (False if input_int() == 1 else 0)
  15846. \end{lstlisting}
  15847. \fi}
  15848. Languages that allow expressions to produce different kinds of values
  15849. are called \emph{polymorphic}, a word composed of the Greek roots
  15850. \emph{poly}, meaning \emph{many}, and \emph{morph}, meaning \emph{form}.
  15851. There are several kinds of polymorphism in programming languages, such as
  15852. subtype polymorphism and parametric polymorphism
  15853. (aka. generics)~\citep{Cardelli:1985kx}. The kind of polymorphism that we
  15854. study in this chapter does not have a special name; it is the kind
  15855. that arises in dynamically typed languages.
  15856. Another characteristic of dynamically typed languages is that
  15857. their primitive operations, such as \code{not}, are often defined to operate
  15858. on many different types of values. In fact, in
  15859. \racket{Racket}\python{Python}, the \code{not} operator produces a
  15860. result for any kind of value: given \FALSE{} it returns \TRUE{}, and
  15861. given anything else it returns \FALSE{}.
  15862. Furthermore, even when primitive operations restrict their inputs to
  15863. values of a certain type, this restriction is enforced at runtime
  15864. instead of during compilation. For example, the tuple read
  15865. operation
  15866. \racket{\code{(vector-ref \#t 0)}}
  15867. \python{\code{True[0]}}
  15868. results in a runtime error because the first argument must
  15869. be a tuple, not a Boolean.
  15870. \section{The \LangDyn{} Language}
  15871. \newcommand{\LdynGrammarRacket}{
  15872. \begin{array}{rcl}
  15873. \Exp &::=& \LP\Exp \; \Exp\ldots\RP
  15874. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  15875. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  15876. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  15877. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP
  15878. \end{array}
  15879. }
  15880. \newcommand{\LdynASTRacket}{
  15881. \begin{array}{lcl}
  15882. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  15883. \MID \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  15884. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp}
  15885. \end{array}
  15886. }
  15887. \begin{figure}[tp]
  15888. \centering
  15889. \begin{tcolorbox}[colback=white]
  15890. \small
  15891. {\if\edition\racketEd
  15892. \[
  15893. \begin{array}{l}
  15894. \gray{\LintGrammarRacket{}} \\ \hline
  15895. \gray{\LvarGrammarRacket{}} \\ \hline
  15896. \gray{\LifGrammarRacket{}} \\ \hline
  15897. \gray{\LwhileGrammarRacket} \\ \hline
  15898. \gray{\LtupGrammarRacket} \\ \hline
  15899. \LdynGrammarRacket \\
  15900. \begin{array}{rcl}
  15901. \LangDynM{} &::=& \Def\ldots\; \Exp
  15902. \end{array}
  15903. \end{array}
  15904. \]
  15905. \fi}
  15906. {\if\edition\pythonEd
  15907. \[
  15908. \begin{array}{rcl}
  15909. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \MID \key{is} \\
  15910. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  15911. &\MID& \Var{} \MID \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp}
  15912. \MID \COR{\Exp}{\Exp} \MID \key{not}~\Exp \\
  15913. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  15914. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  15915. &\MID& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp}
  15916. \MID \CLEN{\Exp} \\
  15917. &\MID& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  15918. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}\\
  15919. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  15920. \MID \Var\mathop{\key{=}}\Exp \\
  15921. &\MID& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  15922. \MID \key{while}~ \Exp \key{:}~ \Stmt^{+} \\
  15923. &\MID& \CRETURN{\Exp} \\
  15924. \Def &::=& \CDEFU{\Var}{\Var{,} \ldots}{\Stmt^{+}} \\
  15925. \LangDynM{} &::=& \Def\ldots \Stmt\ldots
  15926. \end{array}
  15927. \]
  15928. \fi}
  15929. \end{tcolorbox}
  15930. \caption{Syntax of \LangDyn{}, an untyped language (a subset of \racket{Racket}\python{Python}).}
  15931. \label{fig:r7-concrete-syntax}
  15932. \end{figure}
  15933. \begin{figure}[tp]
  15934. \centering
  15935. \begin{tcolorbox}[colback=white]
  15936. \small
  15937. {\if\edition\racketEd
  15938. \[
  15939. \begin{array}{l}
  15940. \gray{\LintASTRacket{}} \\ \hline
  15941. \gray{\LvarASTRacket{}} \\ \hline
  15942. \gray{\LifASTRacket{}} \\ \hline
  15943. \gray{\LwhileASTRacket} \\ \hline
  15944. \gray{\LtupASTRacket} \\ \hline
  15945. \LdynASTRacket \\
  15946. \begin{array}{lcl}
  15947. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15948. \end{array}
  15949. \end{array}
  15950. \]
  15951. \fi}
  15952. {\if\edition\pythonEd
  15953. \[
  15954. \begin{array}{rcl}
  15955. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  15956. \itm{unaryop} &::= & \code{USub()} \MID \code{Not()} \\
  15957. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  15958. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()}
  15959. \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  15960. &\MID & \code{Is()} \\
  15961. \itm{bool} &::=& \code{True} \MID \code{False} \\
  15962. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  15963. &\MID& \UNIOP{\itm{unaryop}}{\Exp}
  15964. \MID \BINOP{\Exp}{\itm{binaryop}}{\Exp}
  15965. \MID \VAR{\Var{}} \\
  15966. &\MID& \BOOL{\itm{bool}}
  15967. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  15968. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  15969. &\MID& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  15970. &\MID& \LEN{\Exp} \\
  15971. &\MID& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp} \\
  15972. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  15973. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  15974. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  15975. \MID \WHILESTMT{\Exp}{\Stmt^{+}}\\
  15976. &\MID& \RETURN{\Exp} \\
  15977. \Params &::=& \LP\Var\key{,}\code{AnyType()}\RP^* \\
  15978. \Def &::=& \FUNDEF{\Var}{\Params}{\code{AnyType()}}{}{\Stmt^{+}} \\
  15979. \LangDynM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  15980. \end{array}
  15981. \]
  15982. \fi}
  15983. \end{tcolorbox}
  15984. \caption{The abstract syntax of \LangDyn{}.}
  15985. \label{fig:r7-syntax}
  15986. \end{figure}
  15987. The definitions of the concrete and abstract syntax of \LangDyn{} are
  15988. shown in figures~\ref{fig:r7-concrete-syntax} and \ref{fig:r7-syntax}.
  15989. %
  15990. There is no type checker for \LangDyn{} because it checks types only
  15991. at runtime.
  15992. The definitional interpreter for \LangDyn{} is presented in
  15993. \racket{figure~\ref{fig:interp-Ldyn}}
  15994. \python{figures~\ref{fig:interp-Ldyn} and \ref{fig:interp-Ldyn-2}},
  15995. and definitions of its auxiliary functions are shown in
  15996. figure~\ref{fig:interp-Ldyn-aux}. Consider the match case for
  15997. \INT{n}. Instead of simply returning the integer \code{n} (as
  15998. in the interpreter for \LangVar{} in figure~\ref{fig:interp-Lvar}), the
  15999. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  16000. value} that combines an underlying value with a tag that identifies
  16001. what kind of value it is. We define the following \racket{struct}\python{class}
  16002. to represent tagged values:
  16003. %
  16004. {\if\edition\racketEd
  16005. \begin{lstlisting}
  16006. (struct Tagged (value tag) #:transparent)
  16007. \end{lstlisting}
  16008. \fi}
  16009. {\if\edition\pythonEd
  16010. \begin{minipage}{\textwidth}
  16011. \begin{lstlisting}
  16012. @dataclass(eq=True)
  16013. class Tagged(Value):
  16014. value : Value
  16015. tag : str
  16016. def __str__(self):
  16017. return str(self.value)
  16018. \end{lstlisting}
  16019. \end{minipage}
  16020. \fi}
  16021. %
  16022. \racket{The tags are \code{Integer}, \BOOLTY{}, \code{Void},
  16023. \code{Vector}, and \code{Procedure}.}
  16024. %
  16025. \python{The tags are \code{'int'}, \code{'bool'}, \code{'none'},
  16026. \code{'tuple'}, and \code{'function'}.}
  16027. %
  16028. Tags are closely related to types but do not always capture all the
  16029. information that a type does.
  16030. %
  16031. \racket{For example, a vector of type \code{(Vector Any Any)} is
  16032. tagged with \code{Vector}, and a procedure of type \code{(Any Any ->
  16033. Any)} is tagged with \code{Procedure}.}
  16034. %
  16035. \python{For example, a tuple of type \code{TupleType([AnyType(),AnyType()])}
  16036. is tagged with \code{'tuple'} and a function of type
  16037. \code{FunctionType([AnyType(), AnyType()], AnyType())}
  16038. is tagged with \code{'function'}.}
  16039. Next consider the match case for accessing the element of a tuple.
  16040. The \racket{\code{check-tag}}\python{\code{untag}} auxiliary function
  16041. (figure~\ref{fig:interp-Ldyn-aux}) is used to ensure that the first
  16042. argument is a tuple and the second is an integer.
  16043. \racket{
  16044. If they are not, a \code{trapped-error} is raised. Recall from
  16045. section~\ref{sec:interp_Lint} that when a definition interpreter
  16046. raises a \code{trapped-error} error, the compiled code must also
  16047. signal an error by exiting with return code \code{255}. A
  16048. \code{trapped-error} is also raised if the index is not less than the
  16049. length of the vector.
  16050. }
  16051. %
  16052. \python{If they are not, an exception is raised. The compiled code
  16053. must also signal an error by exiting with return code \code{255}. A
  16054. exception is also raised if the index is not less than the length of the
  16055. tuple or if it is negative.}
  16056. \begin{figure}[tbp]
  16057. \begin{tcolorbox}[colback=white]
  16058. {\if\edition\racketEd
  16059. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16060. (define ((interp-Ldyn-exp env) ast)
  16061. (define recur (interp-Ldyn-exp env))
  16062. (match ast
  16063. [(Var x) (dict-ref env x)]
  16064. [(Int n) (Tagged n 'Integer)]
  16065. [(Bool b) (Tagged b 'Boolean)]
  16066. [(Lambda xs rt body)
  16067. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  16068. [(Prim 'vector es)
  16069. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  16070. [(Prim 'vector-ref (list e1 e2))
  16071. (define vec (recur e1)) (define i (recur e2))
  16072. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  16073. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  16074. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  16075. (vector-ref (Tagged-value vec) (Tagged-value i))]
  16076. [(Prim 'vector-set! (list e1 e2 e3))
  16077. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  16078. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  16079. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  16080. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  16081. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  16082. (Tagged (void) 'Void)]
  16083. [(Let x e body) ((interp-Ldyn-exp (cons (cons x (recur e)) env)) body)]
  16084. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  16085. [(Prim 'or (list e1 e2))
  16086. (define v1 (recur e1))
  16087. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  16088. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  16089. [(Prim op (list e1))
  16090. #:when (set-member? type-predicates op)
  16091. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  16092. [(Prim op es)
  16093. (define args (map recur es))
  16094. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  16095. (unless (for/or ([expected-tags (op-tags op)])
  16096. (equal? expected-tags tags))
  16097. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  16098. (tag-value
  16099. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  16100. [(If q t f)
  16101. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  16102. [(Apply f es)
  16103. (define new-f (recur f)) (define args (map recur es))
  16104. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  16105. (match f-val
  16106. [`(function ,xs ,body ,lam-env)
  16107. (unless (eq? (length xs) (length args))
  16108. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  16109. (define new-env (append (map cons xs args) lam-env))
  16110. ((interp-Ldyn-exp new-env) body)]
  16111. [else (error "interp-Ldyn-exp, expected function, not" f-val)])]))
  16112. \end{lstlisting}
  16113. \fi}
  16114. {\if\edition\pythonEd
  16115. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16116. class InterpLdyn(InterpLlambda):
  16117. def interp_exp(self, e, env):
  16118. match e:
  16119. case Constant(n):
  16120. return self.tag(super().interp_exp(e, env))
  16121. case Tuple(es, Load()):
  16122. return self.tag(super().interp_exp(e, env))
  16123. case Lambda(params, body):
  16124. return self.tag(super().interp_exp(e, env))
  16125. case Call(Name('input_int'), []):
  16126. return self.tag(super().interp_exp(e, env))
  16127. case BinOp(left, Add(), right):
  16128. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  16129. return self.tag(self.untag(l, 'int', e) + self.untag(r, 'int', e))
  16130. case BinOp(left, Sub(), right):
  16131. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  16132. return self.tag(self.untag(l, 'int', e) - self.untag(r, 'int', e))
  16133. case UnaryOp(USub(), e1):
  16134. v = self.interp_exp(e1, env)
  16135. return self.tag(- self.untag(v, 'int', e))
  16136. case IfExp(test, body, orelse):
  16137. v = self.interp_exp(test, env)
  16138. if self.untag(v, 'bool', e):
  16139. return self.interp_exp(body, env)
  16140. else:
  16141. return self.interp_exp(orelse, env)
  16142. case UnaryOp(Not(), e1):
  16143. v = self.interp_exp(e1, env)
  16144. return self.tag(not self.untag(v, 'bool', e))
  16145. case BoolOp(And(), values):
  16146. left = values[0]; right = values[1]
  16147. l = self.interp_exp(left, env)
  16148. if self.untag(l, 'bool', e):
  16149. return self.interp_exp(right, env)
  16150. else:
  16151. return self.tag(False)
  16152. case BoolOp(Or(), values):
  16153. left = values[0]; right = values[1]
  16154. l = self.interp_exp(left, env)
  16155. if self.untag(l, 'bool', e):
  16156. return self.tag(True)
  16157. else:
  16158. return self.interp_exp(right, env)
  16159. case Compare(left, [cmp], [right]):
  16160. l = self.interp_exp(left, env)
  16161. r = self.interp_exp(right, env)
  16162. if l.tag == r.tag:
  16163. return self.tag(self.interp_cmp(cmp)(l.value, r.value))
  16164. else:
  16165. raise Exception('interp Compare unexpected '
  16166. + repr(l) + ' ' + repr(r))
  16167. case Subscript(tup, index, Load()):
  16168. t = self.interp_exp(tup, env)
  16169. n = self.interp_exp(index, env)
  16170. return self.untag(t, 'tuple', e)[self.untag(n, 'int', e)]
  16171. case Call(Name('len'), [tup]):
  16172. t = self.interp_exp(tup, env)
  16173. return self.tag(len(self.untag(t, 'tuple', e)))
  16174. case _:
  16175. return self.tag(super().interp_exp(e, env))
  16176. \end{lstlisting}
  16177. \fi}
  16178. \end{tcolorbox}
  16179. \caption{Interpreter for the \LangDyn{} language\python{, part 1}.}
  16180. \label{fig:interp-Ldyn}
  16181. \end{figure}
  16182. {\if\edition\pythonEd
  16183. \begin{figure}[tbp]
  16184. \begin{tcolorbox}[colback=white]
  16185. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16186. class InterpLdyn(InterpLlambda):
  16187. def interp_stmts(self, ss, env):
  16188. if len(ss) == 0:
  16189. return
  16190. match ss[0]:
  16191. case If(test, body, orelse):
  16192. v = self.interp_exp(test, env)
  16193. if self.untag(v, 'bool', ss[0]):
  16194. return self.interp_stmts(body + ss[1:], env)
  16195. else:
  16196. return self.interp_stmts(orelse + ss[1:], env)
  16197. case While(test, body, []):
  16198. while self.untag(self.interp_exp(test, env), 'bool', ss[0]):
  16199. self.interp_stmts(body, env)
  16200. return self.interp_stmts(ss[1:], env)
  16201. case Assign([Subscript(tup, index)], value):
  16202. tup = self.interp_exp(tup, env)
  16203. index = self.interp_exp(index, env)
  16204. tup_v = self.untag(tup, 'tuple', ss[0])
  16205. index_v = self.untag(index, 'int', ss[0])
  16206. tup_v[index_v] = self.interp_exp(value, env)
  16207. return self.interp_stmts(ss[1:], env)
  16208. case FunctionDef(name, params, bod, dl, returns, comment):
  16209. ps = [x for (x,t) in params]
  16210. env[name] = self.tag(Function(name, ps, bod, env))
  16211. return self.interp_stmts(ss[1:], env)
  16212. case _:
  16213. return super().interp_stmts(ss, env)
  16214. \end{lstlisting}
  16215. \end{tcolorbox}
  16216. \caption{Interpreter for the \LangDyn{} language\python{, part 2}.}
  16217. \label{fig:interp-Ldyn-2}
  16218. \end{figure}
  16219. \fi}
  16220. \begin{figure}[tbp]
  16221. \begin{tcolorbox}[colback=white]
  16222. {\if\edition\racketEd
  16223. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16224. (define (interp-op op)
  16225. (match op
  16226. ['+ fx+]
  16227. ['- fx-]
  16228. ['read read-fixnum]
  16229. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  16230. ['< (lambda (v1 v2)
  16231. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  16232. ['<= (lambda (v1 v2)
  16233. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  16234. ['> (lambda (v1 v2)
  16235. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  16236. ['>= (lambda (v1 v2)
  16237. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  16238. ['boolean? boolean?]
  16239. ['integer? fixnum?]
  16240. ['void? void?]
  16241. ['vector? vector?]
  16242. ['vector-length vector-length]
  16243. ['procedure? (match-lambda
  16244. [`(functions ,xs ,body ,env) #t] [else #f])]
  16245. [else (error 'interp-op "unknown operator" op)]))
  16246. (define (op-tags op)
  16247. (match op
  16248. ['+ '((Integer Integer))]
  16249. ['- '((Integer Integer) (Integer))]
  16250. ['read '(())]
  16251. ['not '((Boolean))]
  16252. ['< '((Integer Integer))]
  16253. ['<= '((Integer Integer))]
  16254. ['> '((Integer Integer))]
  16255. ['>= '((Integer Integer))]
  16256. ['vector-length '((Vector))]))
  16257. (define type-predicates
  16258. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  16259. (define (tag-value v)
  16260. (cond [(boolean? v) (Tagged v 'Boolean)]
  16261. [(fixnum? v) (Tagged v 'Integer)]
  16262. [(procedure? v) (Tagged v 'Procedure)]
  16263. [(vector? v) (Tagged v 'Vector)]
  16264. [(void? v) (Tagged v 'Void)]
  16265. [else (error 'tag-value "unidentified value ~a" v)]))
  16266. (define (check-tag val expected ast)
  16267. (define tag (Tagged-tag val))
  16268. (unless (eq? tag expected)
  16269. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  16270. \end{lstlisting}
  16271. \fi}
  16272. {\if\edition\pythonEd
  16273. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16274. class InterpLdyn(InterpLlambda):
  16275. def tag(self, v):
  16276. if v is True or v is False:
  16277. return Tagged(v, 'bool')
  16278. elif isinstance(v, int):
  16279. return Tagged(v, 'int')
  16280. elif isinstance(v, Function):
  16281. return Tagged(v, 'function')
  16282. elif isinstance(v, tuple):
  16283. return Tagged(v, 'tuple')
  16284. elif isinstance(v, type(None)):
  16285. return Tagged(v, 'none')
  16286. else:
  16287. raise Exception('tag: unexpected ' + repr(v))
  16288. def untag(self, v, expected_tag, ast):
  16289. match v:
  16290. case Tagged(val, tag) if tag == expected_tag:
  16291. return val
  16292. case _:
  16293. raise Exception('expected Tagged value with '
  16294. + expected_tag + ', not ' + ' ' + repr(v))
  16295. def apply_fun(self, fun, args, e):
  16296. f = self.untag(fun, 'function', e)
  16297. return super().apply_fun(f, args, e)
  16298. \end{lstlisting}
  16299. \fi}
  16300. \end{tcolorbox}
  16301. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  16302. \label{fig:interp-Ldyn-aux}
  16303. \end{figure}
  16304. \clearpage
  16305. \section{Representation of Tagged Values}
  16306. The interpreter for \LangDyn{} introduced a new kind of value: the
  16307. tagged value. To compile \LangDyn{} to x86 we must decide how to
  16308. represent tagged values at the bit level. Because almost every
  16309. operation in \LangDyn{} involves manipulating tagged values, the
  16310. representation must be efficient. Recall that all our values are 64
  16311. bits. We shall steal the right-most $3$ bits to encode the tag. We use
  16312. $001$ to identify integers, $100$ for Booleans, $010$ for tuples,
  16313. $011$ for procedures, and $101$ for the void value\python{,
  16314. \key{None}}. We define the following auxiliary function for mapping
  16315. types to tag codes:
  16316. %
  16317. {\if\edition\racketEd
  16318. \begin{align*}
  16319. \itm{tagof}(\key{Integer}) &= 001 \\
  16320. \itm{tagof}(\key{Boolean}) &= 100 \\
  16321. \itm{tagof}(\LP\key{Vector} \ldots\RP) &= 010 \\
  16322. \itm{tagof}(\LP\ldots \key{->} \ldots\RP) &= 011 \\
  16323. \itm{tagof}(\key{Void}) &= 101
  16324. \end{align*}
  16325. \fi}
  16326. {\if\edition\pythonEd
  16327. \begin{align*}
  16328. \itm{tagof}(\key{IntType()}) &= 001 \\
  16329. \itm{tagof}(\key{BoolType()}) &= 100 \\
  16330. \itm{tagof}(\key{TupleType(ts)}) &= 010 \\
  16331. \itm{tagof}(\key{FunctionType(ps, rt)}) &= 011 \\
  16332. \itm{tagof}(\key{type(None)}) &= 101
  16333. \end{align*}
  16334. \fi}
  16335. %
  16336. This stealing of 3 bits comes at some price: integers are now restricted
  16337. to the range $-2^{60}$ to $2^{60}-1$. The stealing does not adversely
  16338. affect tuples and procedures because those values are addresses, and
  16339. our addresses are 8-byte aligned so the rightmost 3 bits are unused;
  16340. they are always $000$. Thus, we do not lose information by overwriting
  16341. the rightmost 3 bits with the tag, and we can simply zero out the tag
  16342. to recover the original address.
  16343. To make tagged values into first-class entities, we can give them a
  16344. type called \racket{\code{Any}}\python{\code{AnyType()}} and define
  16345. operations such as \code{Inject} and \code{Project} for creating and
  16346. using them, yielding the statically typed \LangAny{} intermediate
  16347. language. We describe how to compile \LangDyn{} to \LangAny{} in
  16348. section~\ref{sec:compile-r7}; in th next section we describe the
  16349. \LangAny{} language in greater detail.
  16350. \section{The \LangAny{} Language}
  16351. \label{sec:Rany-lang}
  16352. \newcommand{\LanyASTRacket}{
  16353. \begin{array}{lcl}
  16354. \Type &::= & \ANYTY \\
  16355. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  16356. \MID \LP\key{Vector}\; \ANYTY\ldots\RP
  16357. \MID \LP\ANYTY\ldots \; \key{->}\; \ANYTY\RP\\
  16358. \itm{op} &::= & \code{any-vector-length}
  16359. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  16360. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  16361. \MID \code{procedure?} \MID \code{void?} \\
  16362. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  16363. \end{array}
  16364. }
  16365. \newcommand{\LanyASTPython}{
  16366. \begin{array}{lcl}
  16367. \Type &::= & \key{AnyType()} \\
  16368. \FType &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  16369. \MID \key{TupleType}\LS\key{AnyType()}^+\RS \\
  16370. &\MID& \key{FunctionType}\LP \key{AnyType()}^{*}\key{, }\key{AnyType()}\RP \\
  16371. \Exp & ::= & \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  16372. &\MID& \CALL{\VAR{\key{'any\_tuple\_load'}}}{\LS\Exp\key{, }\Exp\RS}\\
  16373. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS\Exp\RS} \\
  16374. &\MID& \CALL{\VAR{\key{'arity'}}}{\LS\Exp\RS} \\
  16375. &\MID& \CALL{\VAR{\key{'make\_any'}}}{\LS\Exp\key{, }\INT{\Int}\RS}
  16376. %% &\MID& \CALL{\VAR{\key{'is\_int'}}}{\Exp}
  16377. %% \MID \CALL{\VAR{\key{'is\_bool'}}}{\Exp} \\
  16378. %% &\MID& \CALL{\VAR{\key{'is\_none'}}}{\Exp}
  16379. %% \MID \CALL{\VAR{\key{'is\_tuple'}}}{\Exp} \\
  16380. %% &\MID& \CALL{\VAR{\key{'is\_function'}}}{\Exp}
  16381. \end{array}
  16382. }
  16383. \begin{figure}[tp]
  16384. \centering
  16385. \begin{tcolorbox}[colback=white]
  16386. \small
  16387. {\if\edition\racketEd
  16388. \[
  16389. \begin{array}{l}
  16390. \gray{\LintOpAST} \\ \hline
  16391. \gray{\LvarASTRacket{}} \\ \hline
  16392. \gray{\LifASTRacket{}} \\ \hline
  16393. \gray{\LwhileASTRacket{}} \\ \hline
  16394. \gray{\LtupASTRacket{}} \\ \hline
  16395. \gray{\LfunASTRacket} \\ \hline
  16396. \gray{\LlambdaASTRacket} \\ \hline
  16397. \LanyASTRacket \\
  16398. \begin{array}{lcl}
  16399. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  16400. \end{array}
  16401. \end{array}
  16402. \]
  16403. \fi}
  16404. {\if\edition\pythonEd
  16405. \[
  16406. \begin{array}{l}
  16407. \gray{\LintASTPython} \\ \hline
  16408. \gray{\LvarASTPython{}} \\ \hline
  16409. \gray{\LifASTPython{}} \\ \hline
  16410. \gray{\LwhileASTPython{}} \\ \hline
  16411. \gray{\LtupASTPython{}} \\ \hline
  16412. \gray{\LfunASTPython} \\ \hline
  16413. \gray{\LlambdaASTPython} \\ \hline
  16414. \LanyASTPython \\
  16415. \begin{array}{lcl}
  16416. \LangAnyM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  16417. \end{array}
  16418. \end{array}
  16419. \]
  16420. \fi}
  16421. \end{tcolorbox}
  16422. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (figure~\ref{fig:Llam-syntax}).}
  16423. \label{fig:Lany-syntax}
  16424. \end{figure}
  16425. The definition of the abstract syntax of \LangAny{} is given in
  16426. figure~\ref{fig:Lany-syntax}.
  16427. %% \racket{(The concrete syntax of \LangAny{} is in the Appendix,
  16428. %% figure~\ref{fig:Lany-concrete-syntax}.)}
  16429. The $\INJECT{e}{T}$ form converts the value produced by expression $e$
  16430. of type $T$ into a tagged value. The $\PROJECT{e}{T}$ form either
  16431. converts the tagged value produced by expression $e$ into a value of
  16432. type $T$ or halts the program if the type tag does not match $T$.
  16433. %
  16434. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  16435. restricted to be a flat type (the nonterminal $\FType$) which
  16436. simplifies the implementation and complies with the needs for
  16437. compiling \LangDyn{}.
  16438. The \racket{\code{any-vector}} operators
  16439. \python{\code{any\_tuple\_load} and \code{any\_len}} adapt the tuple
  16440. operations so that they can be applied to a value of type
  16441. \racket{\code{Any}}\python{\code{AnyType}}. They also generalize the
  16442. tuple operations in that the index is not restricted to a literal
  16443. integer in the grammar but is allowed to be any expression.
  16444. \racket{The type predicates such as
  16445. \racket{\key{boolean?}}\python{\key{is\_bool}} expect their argument
  16446. to produce a tagged value; they return {\TRUE} if the tag corresponds to
  16447. the predicate and return {\FALSE} otherwise.}
  16448. The type checker for \LangAny{} is shown in
  16449. figure~\ref{fig:type-check-Lany}
  16450. %
  16451. \racket{ and uses the auxiliary functions presented in
  16452. figure~\ref{fig:type-check-Lany-aux}}.
  16453. %
  16454. The interpreter for \LangAny{} is shown in figure~\ref{fig:interp-Lany} and
  16455. its auxiliary functions are shown in figure~\ref{fig:interp-Lany-aux}.
  16456. \begin{figure}[btp]
  16457. \begin{tcolorbox}[colback=white]
  16458. {\if\edition\racketEd
  16459. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16460. (define type-check-Lany-class
  16461. (class type-check-Llambda-class
  16462. (super-new)
  16463. (inherit check-type-equal?)
  16464. (define/override (type-check-exp env)
  16465. (lambda (e)
  16466. (define recur (type-check-exp env))
  16467. (match e
  16468. [(Inject e1 ty)
  16469. (unless (flat-ty? ty)
  16470. (error 'type-check "may only inject from flat type, not ~a" ty))
  16471. (define-values (new-e1 e-ty) (recur e1))
  16472. (check-type-equal? e-ty ty e)
  16473. (values (Inject new-e1 ty) 'Any)]
  16474. [(Project e1 ty)
  16475. (unless (flat-ty? ty)
  16476. (error 'type-check "may only project to flat type, not ~a" ty))
  16477. (define-values (new-e1 e-ty) (recur e1))
  16478. (check-type-equal? e-ty 'Any e)
  16479. (values (Project new-e1 ty) ty)]
  16480. [(Prim 'any-vector-length (list e1))
  16481. (define-values (e1^ t1) (recur e1))
  16482. (check-type-equal? t1 'Any e)
  16483. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  16484. [(Prim 'any-vector-ref (list e1 e2))
  16485. (define-values (e1^ t1) (recur e1))
  16486. (define-values (e2^ t2) (recur e2))
  16487. (check-type-equal? t1 'Any e)
  16488. (check-type-equal? t2 'Integer e)
  16489. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  16490. [(Prim 'any-vector-set! (list e1 e2 e3))
  16491. (define-values (e1^ t1) (recur e1))
  16492. (define-values (e2^ t2) (recur e2))
  16493. (define-values (e3^ t3) (recur e3))
  16494. (check-type-equal? t1 'Any e)
  16495. (check-type-equal? t2 'Integer e)
  16496. (check-type-equal? t3 'Any e)
  16497. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  16498. [(Prim pred (list e1))
  16499. #:when (set-member? (type-predicates) pred)
  16500. (define-values (new-e1 e-ty) (recur e1))
  16501. (check-type-equal? e-ty 'Any e)
  16502. (values (Prim pred (list new-e1)) 'Boolean)]
  16503. [(Prim 'eq? (list arg1 arg2))
  16504. (define-values (e1 t1) (recur arg1))
  16505. (define-values (e2 t2) (recur arg2))
  16506. (match* (t1 t2)
  16507. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  16508. [(other wise) (check-type-equal? t1 t2 e)])
  16509. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  16510. [else ((super type-check-exp env) e)])))
  16511. ))
  16512. \end{lstlisting}
  16513. \fi}
  16514. {\if\edition\pythonEd
  16515. \begin{lstlisting}
  16516. class TypeCheckLany(TypeCheckLlambda):
  16517. def type_check_exp(self, e, env):
  16518. match e:
  16519. case Inject(value, typ):
  16520. self.check_exp(value, typ, env)
  16521. return AnyType()
  16522. case Project(value, typ):
  16523. self.check_exp(value, AnyType(), env)
  16524. return typ
  16525. case Call(Name('any_tuple_load'), [tup, index]):
  16526. self.check_exp(tup, AnyType(), env)
  16527. self.check_exp(index, IntType(), env)
  16528. return AnyType()
  16529. case Call(Name('any_len'), [tup]):
  16530. self.check_exp(tup, AnyType(), env)
  16531. return IntType()
  16532. case Call(Name('arity'), [fun]):
  16533. ty = self.type_check_exp(fun, env)
  16534. match ty:
  16535. case FunctionType(ps, rt):
  16536. return IntType()
  16537. case TupleType([FunctionType(ps,rs)]):
  16538. return IntType()
  16539. case _:
  16540. raise Exception('type_check_exp arity unexpected ' + repr(ty))
  16541. case Call(Name('make_any'), [value, tag]):
  16542. self.type_check_exp(value, env)
  16543. self.check_exp(tag, IntType(), env)
  16544. return AnyType()
  16545. case AnnLambda(params, returns, body):
  16546. new_env = {x:t for (x,t) in env.items()}
  16547. for (x,t) in params:
  16548. new_env[x] = t
  16549. return_t = self.type_check_exp(body, new_env)
  16550. self.check_type_equal(returns, return_t, e)
  16551. return FunctionType([t for (x,t) in params], return_t)
  16552. case _:
  16553. return super().type_check_exp(e, env)
  16554. \end{lstlisting}
  16555. \fi}
  16556. \end{tcolorbox}
  16557. \caption{Type checker for the \LangAny{} language.}
  16558. \label{fig:type-check-Lany}
  16559. \end{figure}
  16560. {\if\edition\racketEd
  16561. \begin{figure}[tbp]
  16562. \begin{tcolorbox}[colback=white]
  16563. \begin{lstlisting}
  16564. (define/override (operator-types)
  16565. (append
  16566. '((integer? . ((Any) . Boolean))
  16567. (vector? . ((Any) . Boolean))
  16568. (procedure? . ((Any) . Boolean))
  16569. (void? . ((Any) . Boolean)))
  16570. (super operator-types)))
  16571. (define/public (type-predicates)
  16572. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  16573. (define/public (flat-ty? ty)
  16574. (match ty
  16575. [(or `Integer `Boolean `Void) #t]
  16576. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  16577. [`(,ts ... -> ,rt)
  16578. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  16579. [else #f]))
  16580. \end{lstlisting}
  16581. \end{tcolorbox}
  16582. \caption{Auxiliary methods for type checking \LangAny{}.}
  16583. \label{fig:type-check-Lany-aux}
  16584. \end{figure}
  16585. \fi}
  16586. \begin{figure}[btp]
  16587. \begin{tcolorbox}[colback=white]
  16588. {\if\edition\racketEd
  16589. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16590. (define interp-Lany-class
  16591. (class interp-Llambda-class
  16592. (super-new)
  16593. (define/override (interp-op op)
  16594. (match op
  16595. ['boolean? (match-lambda
  16596. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  16597. [else #f])]
  16598. ['integer? (match-lambda
  16599. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  16600. [else #f])]
  16601. ['vector? (match-lambda
  16602. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  16603. [else #f])]
  16604. ['procedure? (match-lambda
  16605. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  16606. [else #f])]
  16607. ['eq? (match-lambda*
  16608. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  16609. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  16610. [ls (apply (super interp-op op) ls)])]
  16611. ['any-vector-ref (lambda (v i)
  16612. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  16613. ['any-vector-set! (lambda (v i a)
  16614. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  16615. ['any-vector-length (lambda (v)
  16616. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  16617. [else (super interp-op op)]))
  16618. (define/override ((interp-exp env) e)
  16619. (define recur (interp-exp env))
  16620. (match e
  16621. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  16622. [(Project e ty2) (apply-project (recur e) ty2)]
  16623. [else ((super interp-exp env) e)]))
  16624. ))
  16625. (define (interp-Lany p)
  16626. (send (new interp-Lany-class) interp-program p))
  16627. \end{lstlisting}
  16628. \fi}
  16629. {\if\edition\pythonEd
  16630. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16631. class InterpLany(InterpLlambda):
  16632. def interp_exp(self, e, env):
  16633. match e:
  16634. case Inject(value, typ):
  16635. v = self.interp_exp(value, env)
  16636. return Tagged(v, self.type_to_tag(typ))
  16637. case Project(value, typ):
  16638. v = self.interp_exp(value, env)
  16639. match v:
  16640. case Tagged(val, tag) if self.type_to_tag(typ) == tag:
  16641. return val
  16642. case _:
  16643. raise Exception('interp project to ' + repr(typ)
  16644. + ' unexpected ' + repr(v))
  16645. case Call(Name('any_tuple_load'), [tup, index]):
  16646. tv = self.interp_exp(tup, env)
  16647. n = self.interp_exp(index, env)
  16648. match tv:
  16649. case Tagged(v, tag):
  16650. return v[n]
  16651. case _:
  16652. raise Exception('interp any_tuple_load unexpected ' + repr(tv))
  16653. case Call(Name('any_len'), [value]):
  16654. v = self.interp_exp(value, env)
  16655. match v:
  16656. case Tagged(value, tag):
  16657. return len(value)
  16658. case _:
  16659. raise Exception('interp any_len unexpected ' + repr(v))
  16660. case Call(Name('arity'), [fun]):
  16661. f = self.interp_exp(fun, env)
  16662. return self.arity(f)
  16663. case _:
  16664. return super().interp_exp(e, env)
  16665. \end{lstlisting}
  16666. \fi}
  16667. \end{tcolorbox}
  16668. \caption{Interpreter for \LangAny{}.}
  16669. \label{fig:interp-Lany}
  16670. \end{figure}
  16671. \begin{figure}[tbp]
  16672. \begin{tcolorbox}[colback=white]
  16673. {\if\edition\racketEd
  16674. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16675. (define/public (apply-inject v tg) (Tagged v tg))
  16676. (define/public (apply-project v ty2)
  16677. (define tag2 (any-tag ty2))
  16678. (match v
  16679. [(Tagged v1 tag1)
  16680. (cond
  16681. [(eq? tag1 tag2)
  16682. (match ty2
  16683. [`(Vector ,ts ...)
  16684. (define l1 ((interp-op 'vector-length) v1))
  16685. (cond
  16686. [(eq? l1 (length ts)) v1]
  16687. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  16688. l1 (length ts))])]
  16689. [`(,ts ... -> ,rt)
  16690. (match v1
  16691. [`(function ,xs ,body ,env)
  16692. (cond [(eq? (length xs) (length ts)) v1]
  16693. [else
  16694. (error 'apply-project "arity mismatch ~a != ~a"
  16695. (length xs) (length ts))])]
  16696. [else (error 'apply-project "expected function not ~a" v1)])]
  16697. [else v1])]
  16698. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  16699. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  16700. \end{lstlisting}
  16701. \fi}
  16702. {\if\edition\pythonEd
  16703. \begin{lstlisting}
  16704. class InterpLany(InterpLlambda):
  16705. def type_to_tag(self, typ):
  16706. match typ:
  16707. case FunctionType(params, rt):
  16708. return 'function'
  16709. case TupleType(fields):
  16710. return 'tuple'
  16711. case t if t == int:
  16712. return 'int'
  16713. case t if t == bool:
  16714. return 'bool'
  16715. case IntType():
  16716. return 'int'
  16717. case BoolType():
  16718. return 'int'
  16719. case _:
  16720. raise Exception('type_to_tag unexpected ' + repr(typ))
  16721. def arity(self, v):
  16722. match v:
  16723. case Function(name, params, body, env):
  16724. return len(params)
  16725. case ClosureTuple(args, arity):
  16726. return arity
  16727. case _:
  16728. raise Exception('Lany arity unexpected ' + repr(v))
  16729. \end{lstlisting}
  16730. \fi}
  16731. \end{tcolorbox}
  16732. \caption{Auxiliary functions for interpreting \LangAny{}.}
  16733. \label{fig:interp-Lany-aux}
  16734. \end{figure}
  16735. \clearpage
  16736. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  16737. \label{sec:compile-r7}
  16738. The \code{cast\_insert} pass compiles from \LangDyn{} to \LangAny{}.
  16739. Figure~\ref{fig:compile-r7-Lany} shows the compilation of many of the
  16740. \LangDyn{} forms into \LangAny{}. An important invariant of this pass
  16741. is that given any subexpression $e$ in the \LangDyn{} program, the
  16742. pass will produce an expression $e'$ in \LangAny{} that has type
  16743. \ANYTY{}. For example, the first row in
  16744. figure~\ref{fig:compile-r7-Lany} shows the compilation of the Boolean
  16745. \TRUE{}, which must be injected to produce an expression of type
  16746. \ANYTY{}.
  16747. %
  16748. The compilation of addition is shown in the second row of
  16749. figure~\ref{fig:compile-r7-Lany}. The compilation of addition is
  16750. representative of many primitive operations: the arguments have type
  16751. \ANYTY{} and must be projected to \INTTYPE{} before the addition can
  16752. be performed.
  16753. The compilation of \key{lambda} (third row of
  16754. figure~\ref{fig:compile-r7-Lany}) shows what happens when we need to
  16755. produce type annotations: we simply use \ANYTY{}.
  16756. %
  16757. % TODO:update the following for python, and the tests and interpreter. -Jeremy
  16758. \racket{The compilation of \code{if} and \code{eq?} demonstrate how
  16759. this pass has to account for some differences in behavior between
  16760. \LangDyn{} and \LangAny{}. The \LangDyn{} language is more
  16761. permissive than \LangAny{} regarding what kind of values can be used
  16762. in various places. For example, the condition of an \key{if} does
  16763. not have to be a Boolean. For \key{eq?}, the arguments need not be
  16764. of the same type (in that case the result is \code{\#f}).}
  16765. \begin{figure}[btp]
  16766. \centering
  16767. \begin{tcolorbox}[colback=white]
  16768. {\if\edition\racketEd
  16769. \begin{tabular}{lll}
  16770. \begin{minipage}{0.27\textwidth}
  16771. \begin{lstlisting}
  16772. #t
  16773. \end{lstlisting}
  16774. \end{minipage}
  16775. &
  16776. $\Rightarrow$
  16777. &
  16778. \begin{minipage}{0.65\textwidth}
  16779. \begin{lstlisting}
  16780. (inject #t Boolean)
  16781. \end{lstlisting}
  16782. \end{minipage}
  16783. \\[2ex]\hline
  16784. \begin{minipage}{0.27\textwidth}
  16785. \begin{lstlisting}
  16786. (+ |$e_1$| |$e_2$|)
  16787. \end{lstlisting}
  16788. \end{minipage}
  16789. &
  16790. $\Rightarrow$
  16791. &
  16792. \begin{minipage}{0.65\textwidth}
  16793. \begin{lstlisting}
  16794. (inject
  16795. (+ (project |$e'_1$| Integer)
  16796. (project |$e'_2$| Integer))
  16797. Integer)
  16798. \end{lstlisting}
  16799. \end{minipage}
  16800. \\[2ex]\hline
  16801. \begin{minipage}{0.27\textwidth}
  16802. \begin{lstlisting}
  16803. (lambda (|$x_1 \ldots$|) |$e$|)
  16804. \end{lstlisting}
  16805. \end{minipage}
  16806. &
  16807. $\Rightarrow$
  16808. &
  16809. \begin{minipage}{0.65\textwidth}
  16810. \begin{lstlisting}
  16811. (inject
  16812. (lambda: ([|$x_1$|:Any]|$\ldots$|):Any |$e'$|)
  16813. (Any|$\ldots$|Any -> Any))
  16814. \end{lstlisting}
  16815. \end{minipage}
  16816. \\[2ex]\hline
  16817. \begin{minipage}{0.27\textwidth}
  16818. \begin{lstlisting}
  16819. (|$e_0$| |$e_1 \ldots e_n$|)
  16820. \end{lstlisting}
  16821. \end{minipage}
  16822. &
  16823. $\Rightarrow$
  16824. &
  16825. \begin{minipage}{0.65\textwidth}
  16826. \begin{lstlisting}
  16827. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  16828. \end{lstlisting}
  16829. \end{minipage}
  16830. \\[2ex]\hline
  16831. \begin{minipage}{0.27\textwidth}
  16832. \begin{lstlisting}
  16833. (vector-ref |$e_1$| |$e_2$|)
  16834. \end{lstlisting}
  16835. \end{minipage}
  16836. &
  16837. $\Rightarrow$
  16838. &
  16839. \begin{minipage}{0.65\textwidth}
  16840. \begin{lstlisting}
  16841. (any-vector-ref |$e_1'$| (project |$e'_2$| Integer))
  16842. \end{lstlisting}
  16843. \end{minipage}
  16844. \\[2ex]\hline
  16845. \begin{minipage}{0.27\textwidth}
  16846. \begin{lstlisting}
  16847. (if |$e_1$| |$e_2$| |$e_3$|)
  16848. \end{lstlisting}
  16849. \end{minipage}
  16850. &
  16851. $\Rightarrow$
  16852. &
  16853. \begin{minipage}{0.65\textwidth}
  16854. \begin{lstlisting}
  16855. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  16856. \end{lstlisting}
  16857. \end{minipage}
  16858. \\[2ex]\hline
  16859. \begin{minipage}{0.27\textwidth}
  16860. \begin{lstlisting}
  16861. (eq? |$e_1$| |$e_2$|)
  16862. \end{lstlisting}
  16863. \end{minipage}
  16864. &
  16865. $\Rightarrow$
  16866. &
  16867. \begin{minipage}{0.65\textwidth}
  16868. \begin{lstlisting}
  16869. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  16870. \end{lstlisting}
  16871. \end{minipage}
  16872. \\[2ex]\hline
  16873. \begin{minipage}{0.27\textwidth}
  16874. \begin{lstlisting}
  16875. (not |$e_1$|)
  16876. \end{lstlisting}
  16877. \end{minipage}
  16878. &
  16879. $\Rightarrow$
  16880. &
  16881. \begin{minipage}{0.65\textwidth}
  16882. \begin{lstlisting}
  16883. (if (eq? |$e'_1$| (inject #f Boolean))
  16884. (inject #t Boolean) (inject #f Boolean))
  16885. \end{lstlisting}
  16886. \end{minipage}
  16887. \end{tabular}
  16888. \fi}
  16889. {\if\edition\pythonEd
  16890. \hspace{-0.8em}\begin{tabular}{|lll|} \hline
  16891. \begin{minipage}{0.23\textwidth}
  16892. \begin{lstlisting}
  16893. True
  16894. \end{lstlisting}
  16895. \end{minipage}
  16896. &
  16897. $\Rightarrow$
  16898. &
  16899. \begin{minipage}{0.7\textwidth}
  16900. \begin{lstlisting}
  16901. Inject(True, BoolType())
  16902. \end{lstlisting}
  16903. \end{minipage}
  16904. \\[2ex]\hline
  16905. \begin{minipage}{0.23\textwidth}
  16906. \begin{lstlisting}
  16907. |$e_1$| + |$e_2$|
  16908. \end{lstlisting}
  16909. \end{minipage}
  16910. &
  16911. $\Rightarrow$
  16912. &
  16913. \begin{minipage}{0.7\textwidth}
  16914. \begin{lstlisting}
  16915. Inject(Project(|$e'_1$|, IntType())
  16916. + Project(|$e'_2$|, IntType()),
  16917. IntType())
  16918. \end{lstlisting}
  16919. \end{minipage}
  16920. \\[2ex]\hline
  16921. \begin{minipage}{0.23\textwidth}
  16922. \begin{lstlisting}
  16923. lambda |$x_1 \ldots$|: |$e$|
  16924. \end{lstlisting}
  16925. \end{minipage}
  16926. &
  16927. $\Rightarrow$
  16928. &
  16929. \begin{minipage}{0.7\textwidth}
  16930. \begin{lstlisting}
  16931. Inject(Lambda([(|$x_1$|,AnyType),|$\ldots$|], |$e'$|)
  16932. FunctionType([AnyType(),|$\ldots$|], AnyType()))
  16933. \end{lstlisting}
  16934. \end{minipage}
  16935. \\[2ex]\hline
  16936. \begin{minipage}{0.23\textwidth}
  16937. \begin{lstlisting}
  16938. |$e_0$|(|$e_1 \ldots e_n$|)
  16939. \end{lstlisting}
  16940. \end{minipage}
  16941. &
  16942. $\Rightarrow$
  16943. &
  16944. \begin{minipage}{0.7\textwidth}
  16945. \begin{lstlisting}
  16946. Call(Project(|$e'_0$|, FunctionType([AnyType(),|$\ldots$|],
  16947. AnyType())), |$e'_1, \ldots, e'_n$|)
  16948. \end{lstlisting}
  16949. \end{minipage}
  16950. \\[2ex]\hline
  16951. \begin{minipage}{0.23\textwidth}
  16952. \begin{lstlisting}
  16953. |$e_1$|[|$e_2$|]
  16954. \end{lstlisting}
  16955. \end{minipage}
  16956. &
  16957. $\Rightarrow$
  16958. &
  16959. \begin{minipage}{0.7\textwidth}
  16960. \begin{lstlisting}
  16961. Call(Name('any_tuple_load'),
  16962. [|$e_1'$|, Project(|$e_2'$|, IntType())])
  16963. \end{lstlisting}
  16964. \end{minipage}
  16965. %% \begin{minipage}{0.23\textwidth}
  16966. %% \begin{lstlisting}
  16967. %% |$e_2$| if |$e_1$| else |$e_3$|
  16968. %% \end{lstlisting}
  16969. %% \end{minipage}
  16970. %% &
  16971. %% $\Rightarrow$
  16972. %% &
  16973. %% \begin{minipage}{0.7\textwidth}
  16974. %% \begin{lstlisting}
  16975. %% (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  16976. %% \end{lstlisting}
  16977. %% \end{minipage}
  16978. %% \\[2ex]\hline
  16979. %% \begin{minipage}{0.23\textwidth}
  16980. %% \begin{lstlisting}
  16981. %% (eq? |$e_1$| |$e_2$|)
  16982. %% \end{lstlisting}
  16983. %% \end{minipage}
  16984. %% &
  16985. %% $\Rightarrow$
  16986. %% &
  16987. %% \begin{minipage}{0.7\textwidth}
  16988. %% \begin{lstlisting}
  16989. %% (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  16990. %% \end{lstlisting}
  16991. %% \end{minipage}
  16992. %% \\[2ex]\hline
  16993. %% \begin{minipage}{0.23\textwidth}
  16994. %% \begin{lstlisting}
  16995. %% (not |$e_1$|)
  16996. %% \end{lstlisting}
  16997. %% \end{minipage}
  16998. %% &
  16999. %% $\Rightarrow$
  17000. %% &
  17001. %% \begin{minipage}{0.7\textwidth}
  17002. %% \begin{lstlisting}
  17003. %% (if (eq? |$e'_1$| (inject #f Boolean))
  17004. %% (inject #t Boolean) (inject #f Boolean))
  17005. %% \end{lstlisting}
  17006. %% \end{minipage}
  17007. %% \\[2ex]\hline
  17008. \\\hline
  17009. \end{tabular}
  17010. \fi}
  17011. \end{tcolorbox}
  17012. \caption{Cast insertion}
  17013. \label{fig:compile-r7-Lany}
  17014. \end{figure}
  17015. \section{Reveal Casts}
  17016. \label{sec:reveal-casts-Lany}
  17017. % TODO: define R'_6
  17018. In the \code{reveal\_casts} pass, we recommend compiling
  17019. \code{Project} into a conditional expression that checks whether the
  17020. value's tag matches the target type; if it does, the value is
  17021. converted to a value of the target type by removing the tag; if it
  17022. does not, the program exits.
  17023. %
  17024. {\if\edition\racketEd
  17025. %
  17026. To perform these actions we need a new primitive operation,
  17027. \code{tag-of-any}, and a new form, \code{ValueOf}.
  17028. The \code{tag-of-any} operation retrieves the type tag from a tagged
  17029. value of type \code{Any}. The \code{ValueOf} form retrieves the
  17030. underlying value from a tagged value. The \code{ValueOf} form
  17031. includes the type for the underlying value that is used by the type
  17032. checker.
  17033. %
  17034. \fi}
  17035. %
  17036. {\if\edition\pythonEd
  17037. %
  17038. To perform these actions we need two new AST classes: \code{TagOf} and
  17039. \code{ValueOf}. The \code{TagOf} operation retrieves the type tag from a
  17040. tagged value of type \ANYTY{}. The \code{ValueOf} operation retrieves
  17041. the underlying value from a tagged value. The \code{ValueOf}
  17042. operation includes the type for the underlying value which is used by
  17043. the type checker.
  17044. %
  17045. \fi}
  17046. If the target type of the projection is \BOOLTY{} or \INTTY{}, then
  17047. \code{Project} can be translated as follows.
  17048. \begin{center}
  17049. \begin{minipage}{1.0\textwidth}
  17050. {\if\edition\racketEd
  17051. \begin{lstlisting}
  17052. (Project |$e$| |$\FType$|)
  17053. |$\Rightarrow$|
  17054. (Let |$\itm{tmp}$| |$e'$|
  17055. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  17056. (Int |$\itm{tagof}(\FType)$|)))
  17057. (ValueOf |$\itm{tmp}$| |$\FType$|)
  17058. (Exit)))
  17059. \end{lstlisting}
  17060. \fi}
  17061. {\if\edition\pythonEd
  17062. \begin{lstlisting}
  17063. Project(|$e$|, |$\FType$|)
  17064. |$\Rightarrow$|
  17065. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  17066. IfExp(Compare(TagOf(|$\itm{tmp}$|),[Eq()],
  17067. [Constant(|$\itm{tagof}(\FType)$|)]),
  17068. ValueOf(|$\itm{tmp}$|, |$\FType$|)
  17069. Call(Name('exit'), [])))
  17070. \end{lstlisting}
  17071. \fi}
  17072. \end{minipage}
  17073. \end{center}
  17074. If the target type of the projection is a tuple or function type, then
  17075. there is a bit more work to do. For tuples, check that the length of
  17076. the tuple type matches the length of the tuple. For functions, check
  17077. that the number of parameters in the function type matches the
  17078. function's arity.
  17079. Regarding \code{Inject}, we recommend compiling it to a slightly
  17080. lower-level primitive operation named \racket{\code{make-any}}\python{\code{make\_any}}. This operation
  17081. takes a tag instead of a type.
  17082. \begin{center}
  17083. \begin{minipage}{1.0\textwidth}
  17084. {\if\edition\racketEd
  17085. \begin{lstlisting}
  17086. (Inject |$e$| |$\FType$|)
  17087. |$\Rightarrow$|
  17088. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  17089. \end{lstlisting}
  17090. \fi}
  17091. {\if\edition\pythonEd
  17092. \begin{lstlisting}
  17093. Inject(|$e$|, |$\FType$|)
  17094. |$\Rightarrow$|
  17095. Call(Name('make_any'), [|$e'$|, Constant(|$\itm{tagof}(\FType)$|)])
  17096. \end{lstlisting}
  17097. \fi}
  17098. \end{minipage}
  17099. \end{center}
  17100. {\if\edition\pythonEd
  17101. %
  17102. The introduction of \code{make\_any} makes it difficult to use
  17103. bidirectional type checking because we no longer have an expected type
  17104. to use for type checking the expression $e'$. Thus, we run into
  17105. difficulty if $e'$ is a \code{Lambda} expression. We recommend
  17106. translating \code{Lambda} to a new AST class \code{AnnLambda} (for
  17107. annotated lambda) whose parameters have type annotations and that
  17108. records the return type.
  17109. %
  17110. \fi}
  17111. \racket{The type predicates (\code{boolean?}, etc.) can be translated into
  17112. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  17113. translation of \code{Project}.}
  17114. {\if\edition\racketEd
  17115. The \code{any-vector-ref} and \code{any-vector-set!} operations
  17116. combine the projection action with the vector operation. Also, the
  17117. read and write operations allow arbitrary expressions for the index, so
  17118. the type checker for \LangAny{} (figure~\ref{fig:type-check-Lany})
  17119. cannot guarantee that the index is within bounds. Thus, we insert code
  17120. to perform bounds checking at runtime. The translation for
  17121. \code{any-vector-ref} is as follows, and the other two operations are
  17122. translated in a similar way:
  17123. \begin{center}
  17124. \begin{minipage}{0.95\textwidth}
  17125. \begin{lstlisting}
  17126. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  17127. |$\Rightarrow$|
  17128. (Let |$v$| |$e'_1$|
  17129. (Let |$i$| |$e'_2$|
  17130. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  17131. (If (Prim '< (list (Var |$i$|) (Prim 'any-vector-length (list (Var |$v$|)))))
  17132. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  17133. (Exit))
  17134. (Exit))))
  17135. \end{lstlisting}
  17136. \end{minipage}
  17137. \end{center}
  17138. \fi}
  17139. %
  17140. {\if\edition\pythonEd
  17141. %
  17142. The \code{any\_tuple\_load} operation combines the projection action
  17143. with the load operation. Also, the load operation allows arbitrary
  17144. expressions for the index so the type checker for \LangAny{}
  17145. (figure~\ref{fig:type-check-Lany}) cannot guarantee that the index is
  17146. within bounds. Thus, we insert code to perform bounds checking at
  17147. runtime. The translation for \code{any\_tuple\_load} is as follows.
  17148. \begin{lstlisting}
  17149. Call(Name('any_tuple_load'), [|$e_1$|,|$e_2$|])
  17150. |$\Rightarrow$|
  17151. Block([Assign([|$t$|], |$e'_1$|), Assign([|$i$|], |$e'_2$|)],
  17152. IfExp(Compare(TagOf(|$t$|), [Eq()], [Constant(2)]),
  17153. IfExp(Compare(|$i$|, [Lt()], [Call(Name('any_len'), [|$t$|])]),
  17154. Call(Name('any_tuple_load_unsafe'), [|$t$|, |$i$|]),
  17155. Call(Name('exit'), [])),
  17156. Call(Name('exit'), [])))
  17157. \end{lstlisting}
  17158. \fi}
  17159. {\if\edition\pythonEd
  17160. \section{Assignment Conversion}
  17161. \label{sec:convert-assignments-Lany}
  17162. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  17163. \code{AnnLambda} AST classes.
  17164. \section{Closure Conversion}
  17165. \label{sec:closure-conversion-Lany}
  17166. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  17167. \code{AnnLambda} AST classes.
  17168. \fi}
  17169. \section{Remove Complex Operands}
  17170. \label{sec:rco-Lany}
  17171. \racket{The \code{ValueOf} and \code{Exit} forms are both complex
  17172. expressions. The subexpression of \code{ValueOf} must be atomic.}
  17173. %
  17174. \python{The \code{ValueOf} and \code{TagOf} operations are both
  17175. complex expressions. Their subexpressions must be atomic.}
  17176. \section{Explicate Control and \LangCAny{}}
  17177. \label{sec:explicate-Lany}
  17178. The output of \code{explicate\_control} is the \LangCAny{} language,
  17179. whose syntax definition is shown in figure~\ref{fig:c5-syntax}.
  17180. %
  17181. \racket{The \code{ValueOf} form that we added to \LangAny{} remains an
  17182. expression and the \code{Exit} expression becomes a $\Tail$. Also,
  17183. note that the index argument of \code{vector-ref} and
  17184. \code{vector-set!} is an $\Atm$, instead of an integer as it was in
  17185. \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  17186. %
  17187. \python{
  17188. Update the auxiliary functions \code{explicate\_tail}, \code{explicate\_effect},
  17189. and \code{explicate\_pred} as appropriately to handle the new expressions
  17190. in \LangCAny{}.
  17191. }
  17192. \newcommand{\CanyASTPython}{
  17193. \begin{array}{lcl}
  17194. \Exp &::=& \CALL{\VAR{\key{'make\_any'}}}{\LS \Atm,\Atm \RS}\\
  17195. &\MID& \key{TagOf}\LP \Atm \RP
  17196. \MID \key{ValueOf}\LP \Atm , \FType \RP \\
  17197. &\MID& \CALL{\VAR{\key{'any\_tuple\_load\_unsafe'}}}{\LS \Atm,\Atm \RS}\\
  17198. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS \Atm \RS} \\
  17199. &\MID& \CALL{\VAR{\key{'exit'}}}{\LS\RS}
  17200. \end{array}
  17201. }
  17202. \newcommand{\CanyASTRacket}{
  17203. \begin{array}{lcl}
  17204. \Exp &::= & \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  17205. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  17206. &\MID& \VALUEOF{\Atm}{\FType} \\
  17207. \Tail &::= & \LP\key{Exit}\RP
  17208. \end{array}
  17209. }
  17210. \begin{figure}[tp]
  17211. \begin{tcolorbox}[colback=white]
  17212. \small
  17213. {\if\edition\racketEd
  17214. \[
  17215. \begin{array}{l}
  17216. \gray{\CvarASTRacket} \\ \hline
  17217. \gray{\CifASTRacket} \\ \hline
  17218. \gray{\CloopASTRacket} \\ \hline
  17219. \gray{\CtupASTRacket} \\ \hline
  17220. \gray{\CfunASTRacket} \\ \hline
  17221. \gray{\ClambdaASTRacket} \\ \hline
  17222. \CanyASTRacket \\
  17223. \begin{array}{lcl}
  17224. \LangCAnyM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  17225. \end{array}
  17226. \end{array}
  17227. \]
  17228. \fi}
  17229. {\if\edition\pythonEd
  17230. \[
  17231. \begin{array}{l}
  17232. \gray{\CifASTPython} \\ \hline
  17233. \gray{\CtupASTPython} \\ \hline
  17234. \gray{\CfunASTPython} \\ \hline
  17235. \gray{\ClambdaASTPython} \\ \hline
  17236. \CanyASTPython \\
  17237. \begin{array}{lcl}
  17238. \LangCAnyM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  17239. \end{array}
  17240. \end{array}
  17241. \]
  17242. \fi}
  17243. \end{tcolorbox}
  17244. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (figure~\ref{fig:Clam-syntax}).}
  17245. \label{fig:c5-syntax}
  17246. \end{figure}
  17247. \section{Select Instructions}
  17248. \label{sec:select-Lany}
  17249. In the \code{select\_instructions} pass, we translate the primitive
  17250. operations on the \ANYTY{} type to x86 instructions that manipulate
  17251. the three tag bits of the tagged value. In the following descriptions,
  17252. given an atom $e$ we use a primed variable $e'$ to refer to the result
  17253. of translating $e$ into an x86 argument:
  17254. \paragraph{\racket{\code{make-any}}\python{\code{make\_any}}}
  17255. We recommend compiling the
  17256. \racket{\code{make-any}}\python{\code{make\_any}} operation as follows
  17257. if the tag is for \INTTY{} or \BOOLTY{}. The \key{salq} instruction
  17258. shifts the destination to the left by the number of bits specified its
  17259. source argument (in this case three, the length of the tag), and it
  17260. preserves the sign of the integer. We use the \key{orq} instruction to
  17261. combine the tag and the value to form the tagged value. \\
  17262. %
  17263. {\if\edition\racketEd
  17264. \begin{lstlisting}
  17265. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  17266. |$\Rightarrow$|
  17267. movq |$e'$|, |\itm{lhs'}|
  17268. salq $3, |\itm{lhs'}|
  17269. orq $|$\itm{tag}$|, |\itm{lhs'}|
  17270. \end{lstlisting}
  17271. \fi}
  17272. %
  17273. {\if\edition\pythonEd
  17274. \begin{lstlisting}
  17275. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  17276. |$\Rightarrow$|
  17277. movq |$e'$|, |\itm{lhs'}|
  17278. salq $3, |\itm{lhs'}|
  17279. orq $|$\itm{tag}$|, |\itm{lhs'}|
  17280. \end{lstlisting}
  17281. \fi}
  17282. %
  17283. The instruction selection for tuples and procedures is different
  17284. because their is no need to shift them to the left. The rightmost 3
  17285. bits are already zeros, so we simply combine the value and the tag
  17286. using \key{orq}. \\
  17287. %
  17288. {\if\edition\racketEd
  17289. \begin{center}
  17290. \begin{minipage}{\textwidth}
  17291. \begin{lstlisting}
  17292. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  17293. |$\Rightarrow$|
  17294. movq |$e'$|, |\itm{lhs'}|
  17295. orq $|$\itm{tag}$|, |\itm{lhs'}|
  17296. \end{lstlisting}
  17297. \end{minipage}
  17298. \end{center}
  17299. \fi}
  17300. %
  17301. {\if\edition\pythonEd
  17302. \begin{lstlisting}
  17303. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  17304. |$\Rightarrow$|
  17305. movq |$e'$|, |\itm{lhs'}|
  17306. orq $|$\itm{tag}$|, |\itm{lhs'}|
  17307. \end{lstlisting}
  17308. \fi}
  17309. \paragraph{\racket{\code{tag-of-any}}\python{\code{TagOf}}}
  17310. Recall that the \racket{\code{tag-of-any}}\python{\code{TagOf}}
  17311. operation extracts the type tag from a value of type \ANYTY{}. The
  17312. type tag is the bottom $3$ bits, so we obtain the tag by taking the
  17313. bitwise-and of the value with $111$ ($7$ decimal).
  17314. %
  17315. {\if\edition\racketEd
  17316. \begin{lstlisting}
  17317. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  17318. |$\Rightarrow$|
  17319. movq |$e'$|, |\itm{lhs'}|
  17320. andq $7, |\itm{lhs'}|
  17321. \end{lstlisting}
  17322. \fi}
  17323. %
  17324. {\if\edition\pythonEd
  17325. \begin{lstlisting}
  17326. Assign([|\itm{lhs}|], TagOf(|$e$|))
  17327. |$\Rightarrow$|
  17328. movq |$e'$|, |\itm{lhs'}|
  17329. andq $7, |\itm{lhs'}|
  17330. \end{lstlisting}
  17331. \fi}
  17332. \paragraph{\code{ValueOf}}
  17333. The instructions for \key{ValueOf} also differ, depending on whether
  17334. the type $T$ is a pointer (tuple or function) or not (integer or
  17335. Boolean). The following shows the instruction selection for integers
  17336. and Booleans, in which we produce an untagged value by shifting it to
  17337. the right by 3 bits:
  17338. %
  17339. {\if\edition\racketEd
  17340. \begin{lstlisting}
  17341. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  17342. |$\Rightarrow$|
  17343. movq |$e'$|, |\itm{lhs'}|
  17344. sarq $3, |\itm{lhs'}|
  17345. \end{lstlisting}
  17346. \fi}
  17347. %
  17348. {\if\edition\pythonEd
  17349. \begin{lstlisting}
  17350. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  17351. |$\Rightarrow$|
  17352. movq |$e'$|, |\itm{lhs'}|
  17353. sarq $3, |\itm{lhs'}|
  17354. \end{lstlisting}
  17355. \fi}
  17356. %
  17357. In the case for tuples and procedures, we zero out the rightmost 3
  17358. bits. We accomplish this by creating the bit pattern $\ldots 0111$
  17359. ($7$ decimal) and apply bitwise-not to obtain $\ldots 11111000$ (-8
  17360. decimal), which we \code{movq} into the destination $\itm{lhs'}$.
  17361. Finally, we apply \code{andq} with the tagged value to get the desired
  17362. result.
  17363. %
  17364. {\if\edition\racketEd
  17365. \begin{lstlisting}
  17366. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  17367. |$\Rightarrow$|
  17368. movq $|$-8$|, |\itm{lhs'}|
  17369. andq |$e'$|, |\itm{lhs'}|
  17370. \end{lstlisting}
  17371. \fi}
  17372. %
  17373. {\if\edition\pythonEd
  17374. \begin{lstlisting}
  17375. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  17376. |$\Rightarrow$|
  17377. movq $|$-8$|, |\itm{lhs'}|
  17378. andq |$e'$|, |\itm{lhs'}|
  17379. \end{lstlisting}
  17380. \fi}
  17381. %% \paragraph{Type Predicates} We leave it to the reader to
  17382. %% devise a sequence of instructions to implement the type predicates
  17383. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  17384. \paragraph{\racket{\code{any-vector-length}}\python{\code{any\_len}}}
  17385. The \racket{\code{any-vector-length}}\python{\code{any\_len}}
  17386. operation combines the effect of \code{ValueOf} with accessing the
  17387. length of a tuple from the tag stored at the zero index of the tuple.
  17388. {\if\edition\racketEd
  17389. \begin{lstlisting}
  17390. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$e_1$|)))
  17391. |$\Longrightarrow$|
  17392. movq $|$-8$|, %r11
  17393. andq |$e_1'$|, %r11
  17394. movq 0(%r11), %r11
  17395. andq $126, %r11
  17396. sarq $1, %r11
  17397. movq %r11, |$\itm{lhs'}$|
  17398. \end{lstlisting}
  17399. \fi}
  17400. {\if\edition\pythonEd
  17401. \begin{lstlisting}
  17402. Assign([|$\itm{lhs}$|], Call(Name('any_len'), [|$e_1$|]))
  17403. |$\Longrightarrow$|
  17404. movq $|$-8$|, %r11
  17405. andq |$e_1'$|, %r11
  17406. movq 0(%r11), %r11
  17407. andq $126, %r11
  17408. sarq $1, %r11
  17409. movq %r11, |$\itm{lhs'}$|
  17410. \end{lstlisting}
  17411. \fi}
  17412. \paragraph{\racket{\code{any-vector-ref}}\python{\code{\code{any\_tuple\_load\_unsafe}}}}
  17413. This operation combines the effect of \code{ValueOf} with reading an
  17414. element of the tuple (see
  17415. section~\ref{sec:select-instructions-gc}). However, the index may be
  17416. an arbitrary atom, so instead of computing the offset at compile time,
  17417. we must generate instructions to compute the offset at runtime as
  17418. follows. Note the use of the new instruction \code{imulq}.
  17419. \begin{center}
  17420. \begin{minipage}{0.96\textwidth}
  17421. {\if\edition\racketEd
  17422. \begin{lstlisting}
  17423. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  17424. |$\Longrightarrow$|
  17425. movq |$\neg 111$|, %r11
  17426. andq |$e_1'$|, %r11
  17427. movq |$e_2'$|, %rax
  17428. addq $1, %rax
  17429. imulq $8, %rax
  17430. addq %rax, %r11
  17431. movq 0(%r11) |$\itm{lhs'}$|
  17432. \end{lstlisting}
  17433. \fi}
  17434. %
  17435. {\if\edition\pythonEd
  17436. \begin{lstlisting}
  17437. Assign([|$\itm{lhs}$|], Call(Name('any_tuple_load_unsafe'), [|$e_1$|,|$e_2$|]))
  17438. |$\Longrightarrow$|
  17439. movq $|$-8$|, %r11
  17440. andq |$e_1'$|, %r11
  17441. movq |$e_2'$|, %rax
  17442. addq $1, %rax
  17443. imulq $8, %rax
  17444. addq %rax, %r11
  17445. movq 0(%r11) |$\itm{lhs'}$|
  17446. \end{lstlisting}
  17447. \fi}
  17448. \end{minipage}
  17449. \end{center}
  17450. % $ pacify font lock
  17451. %% \paragraph{\racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}}}
  17452. %% The code generation for
  17453. %% \racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}} is
  17454. %% analogous to the above translation for reading from a tuple.
  17455. \section{Register Allocation for \LangAny{}}
  17456. \label{sec:register-allocation-Lany}
  17457. \index{subject}{register allocation}
  17458. There is an interesting interaction between tagged values and garbage
  17459. collection that has an impact on register allocation. A variable of
  17460. type \ANYTY{} might refer to a tuple, and therefore it might be a root
  17461. that needs to be inspected and copied during garbage collection. Thus,
  17462. we need to treat variables of type \ANYTY{} in a similar way to
  17463. variables of tuple type for purposes of register allocation,
  17464. with particular attention to the following:
  17465. \begin{itemize}
  17466. \item If a variable of type \ANYTY{} is live during a function call,
  17467. then it must be spilled. This can be accomplished by changing
  17468. \code{build\_interference} to mark all variables of type \ANYTY{}
  17469. that are live after a \code{callq} to be interfering with all the
  17470. registers.
  17471. \item If a variable of type \ANYTY{} is spilled, it must be spilled to
  17472. the root stack instead of the normal procedure call stack.
  17473. \end{itemize}
  17474. Another concern regarding the root stack is that the garbage collector
  17475. needs to differentiate among (1) plain old pointers to tuples, (2) a
  17476. tagged value that points to a tuple, and (3) a tagged value that is
  17477. not a tuple. We enable this differentiation by choosing not to use the
  17478. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  17479. reserved for identifying plain old pointers to tuples. That way, if
  17480. one of the first three bits is set, then we have a tagged value and
  17481. inspecting the tag can differentiate between tuples ($010$) and the
  17482. other kinds of values.
  17483. %% \begin{exercise}\normalfont
  17484. %% Expand your compiler to handle \LangAny{} as discussed in the last few
  17485. %% sections. Create 5 new programs that use the \ANYTY{} type and the
  17486. %% new operations (\code{Inject}, \code{Project}, etc.). Test your
  17487. %% compiler on these new programs and all of your previously created test
  17488. %% programs.
  17489. %% \end{exercise}
  17490. \begin{exercise}\normalfont\normalsize
  17491. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  17492. Create tests for \LangDyn{} by adapting ten of your previous test programs
  17493. by removing type annotations. Add five more test programs that
  17494. specifically rely on the language being dynamically typed. That is,
  17495. they should not be legal programs in a statically typed language, but
  17496. nevertheless they should be valid \LangDyn{} programs that run to
  17497. completion without error.
  17498. \end{exercise}
  17499. \begin{figure}[p]
  17500. \begin{tcolorbox}[colback=white]
  17501. {\if\edition\racketEd
  17502. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  17503. \node (Lfun) at (0,4) {\large \LangDyn{}};
  17504. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  17505. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  17506. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  17507. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  17508. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  17509. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  17510. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  17511. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  17512. \node (F1-4) at (4,0) {\large \LangAnyAlloc{}};
  17513. \node (F1-5) at (8,0) {\large \LangAnyAlloc{}};
  17514. \node (F1-6) at (12,0) {\large \LangAnyAlloc{}};
  17515. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  17516. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  17517. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  17518. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  17519. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  17520. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  17521. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  17522. \path[->,bend left=15] (Lfun) edge [above] node
  17523. {\ttfamily\footnotesize shrink} (Lfun-2);
  17524. \path[->,bend left=15] (Lfun-2) edge [above] node
  17525. {\ttfamily\footnotesize uniquify} (Lfun-3);
  17526. \path[->,bend left=15] (Lfun-3) edge [above] node
  17527. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  17528. \path[->,bend left=15] (Lfun-4) edge [left] node
  17529. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  17530. \path[->,bend left=15] (Lfun-5) edge [below] node
  17531. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  17532. \path[->,bend left=15] (Lfun-6) edge [below] node
  17533. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  17534. \path[->,bend right=15] (Lfun-7) edge [above] node
  17535. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  17536. \path[->,bend right=15] (F1-2) edge [right] node
  17537. {\ttfamily\footnotesize limit\_functions} (F1-3);
  17538. \path[->,bend right=15] (F1-3) edge [below] node
  17539. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  17540. \path[->,bend right=15] (F1-4) edge [below] node
  17541. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  17542. \path[->,bend left=15] (F1-5) edge [above] node
  17543. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  17544. \path[->,bend left=15] (F1-6) edge [below] node
  17545. {\ttfamily\footnotesize explicate\_control} (C3-2);
  17546. \path[->,bend left=15] (C3-2) edge [right] node
  17547. {\ttfamily\footnotesize select\_instructions} (x86-2);
  17548. \path[->,bend right=15] (x86-2) edge [right] node
  17549. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  17550. \path[->,bend right=15] (x86-2-1) edge [below] node
  17551. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  17552. \path[->,bend right=15] (x86-2-2) edge [right] node
  17553. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  17554. \path[->,bend left=15] (x86-3) edge [above] node
  17555. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  17556. \path[->,bend left=15] (x86-4) edge [right] node
  17557. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  17558. \end{tikzpicture}
  17559. \fi}
  17560. {\if\edition\pythonEd
  17561. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  17562. \node (Lfun) at (0,4) {\large \LangDyn{}};
  17563. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  17564. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  17565. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  17566. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  17567. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  17568. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  17569. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  17570. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  17571. \node (F1-5) at (4,0) {\large \LangAnyAlloc{}};
  17572. \node (F1-6) at (8,0) {\large \LangAnyAlloc{}};
  17573. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  17574. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  17575. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  17576. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  17577. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  17578. \path[->,bend left=15] (Lfun) edge [above] node
  17579. {\ttfamily\footnotesize shrink} (Lfun-2);
  17580. \path[->,bend left=15] (Lfun-2) edge [above] node
  17581. {\ttfamily\footnotesize uniquify} (Lfun-3);
  17582. \path[->,bend left=15] (Lfun-3) edge [above] node
  17583. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  17584. \path[->,bend left=15] (Lfun-4) edge [left] node
  17585. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  17586. \path[->,bend left=15] (Lfun-5) edge [below] node
  17587. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  17588. \path[->,bend right=15] (Lfun-6) edge [above] node
  17589. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  17590. \path[->,bend right=15] (Lfun-7) edge [above] node
  17591. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  17592. \path[->,bend right=15] (F1-2) edge [right] node
  17593. {\ttfamily\footnotesize limit\_functions} (F1-3);
  17594. \path[->,bend right=15] (F1-3) edge [below] node
  17595. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  17596. \path[->,bend left=15] (F1-5) edge [above] node
  17597. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  17598. \path[->,bend left=15] (F1-6) edge [below] node
  17599. {\ttfamily\footnotesize explicate\_control} (C3-2);
  17600. \path[->,bend right=15] (C3-2) edge [right] node
  17601. {\ttfamily\footnotesize select\_instructions} (x86-2);
  17602. \path[->,bend right=15] (x86-2) edge [below] node
  17603. {\ttfamily\footnotesize assign\_homes} (x86-3);
  17604. \path[->,bend right=15] (x86-3) edge [below] node
  17605. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  17606. \path[->,bend left=15] (x86-4) edge [above] node
  17607. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  17608. \end{tikzpicture}
  17609. \fi}
  17610. \end{tcolorbox}
  17611. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  17612. \label{fig:Ldyn-passes}
  17613. \end{figure}
  17614. Figure~\ref{fig:Ldyn-passes} provides an overview of the passes needed
  17615. for the compilation of \LangDyn{}.
  17616. % Further Reading
  17617. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  17618. %% {\if\edition\pythonEd
  17619. %% \chapter{Objects}
  17620. %% \label{ch:Lobject}
  17621. %% \index{subject}{objects}
  17622. %% \index{subject}{classes}
  17623. %% \setcounter{footnote}{0}
  17624. %% \fi}
  17625. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  17626. \chapter{Gradual Typing}
  17627. \label{ch:Lgrad}
  17628. \index{subject}{gradual typing}
  17629. \setcounter{footnote}{0}
  17630. This chapter studies the language \LangGrad{}, in which the programmer
  17631. can choose between static and dynamic type checking in different parts
  17632. of a program, thereby mixing the statically typed \LangLam{} language
  17633. with the dynamically typed \LangDyn{}. There are several approaches to
  17634. mixing static and dynamic typing, including multilanguage
  17635. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  17636. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  17637. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  17638. programmer controls the amount of static versus dynamic checking by
  17639. adding or removing type annotations on parameters and
  17640. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  17641. The definition of the concrete syntax of \LangGrad{} is shown in
  17642. figure~\ref{fig:Lgrad-concrete-syntax} and the definition of its
  17643. abstract syntax is shown in figure~\ref{fig:Lgrad-syntax}. The main
  17644. syntactic difference between \LangLam{} and \LangGrad{} is that type
  17645. annotations are optional, which is specified in the grammar using the
  17646. \Param{} and \itm{ret} nonterminals. In the abstract syntax, type
  17647. annotations are not optional, but we use the \CANYTY{} type when a type
  17648. annotation is absent.
  17649. %
  17650. Both the type checker and the interpreter for \LangGrad{} require some
  17651. interesting changes to enable gradual typing, which we discuss in the
  17652. next two sections.
  17653. \newcommand{\LgradGrammarRacket}{
  17654. \begin{array}{lcl}
  17655. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  17656. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  17657. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  17658. \Exp &::=& \LP\Exp \; \Exp \ldots\RP
  17659. \MID \CGLAMBDA{\LP\Param\ldots\RP}{\itm{ret}}{\Exp} \\
  17660. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  17661. \Def &::=& \CGDEF{\Var}{\Param\ldots}{\itm{ret}}{\Exp}
  17662. \end{array}
  17663. }
  17664. \newcommand{\LgradASTRacket}{
  17665. \begin{array}{lcl}
  17666. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  17667. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  17668. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  17669. \MID \LAMBDA{\LP\Param\ldots\RP}{\Type}{\Exp} \\
  17670. \itm{op} &::=& \code{procedure-arity} \\
  17671. \Def &::=& \FUNDEF{\Var}{\LP\Param\ldots\RP}{\Type}{\code{'()}}{\Exp}
  17672. \end{array}
  17673. }
  17674. \newcommand{\LgradGrammarPython}{
  17675. \begin{array}{lcl}
  17676. \Type &::=& \key{Any}
  17677. \MID \key{int}
  17678. \MID \key{bool}
  17679. \MID \key{tuple}\LS \Type \code{, } \ldots \RS
  17680. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  17681. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  17682. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}
  17683. \MID \CARITY{\Exp} \\
  17684. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp} \MID \CRETURN{\Exp} \\
  17685. \Param &::=& \Var \MID \Var \key{:} \Type \\
  17686. \itm{ret} &::=& \epsilon \MID \key{->}~\Type \\
  17687. \Def &::=& \CGDEF{\Var}{\Param\key{, }\ldots}{\itm{ret}}{\Stmt^{+}}
  17688. \end{array}
  17689. }
  17690. \newcommand{\LgradASTPython}{
  17691. \begin{array}{lcl}
  17692. \Type &::=& \key{AnyType()} \MID \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}\\
  17693. &\MID& \key{TupleType}\LP\Type^{*}\RP
  17694. \MID \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  17695. \Exp &::=& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp}\\
  17696. &\MID& \ARITY{\Exp} \\
  17697. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  17698. \MID \RETURN{\Exp} \\
  17699. \Param &::=& \LP\Var\key{,}\Type\RP \\
  17700. \Def &::=& \FUNDEF{\Var}{\Param^{*}}{\Type}{}{\Stmt^{+}}
  17701. \end{array}
  17702. }
  17703. \begin{figure}[tp]
  17704. \centering
  17705. \begin{tcolorbox}[colback=white]
  17706. \small
  17707. {\if\edition\racketEd
  17708. \[
  17709. \begin{array}{l}
  17710. \gray{\LintGrammarRacket{}} \\ \hline
  17711. \gray{\LvarGrammarRacket{}} \\ \hline
  17712. \gray{\LifGrammarRacket{}} \\ \hline
  17713. \gray{\LwhileGrammarRacket} \\ \hline
  17714. \gray{\LtupGrammarRacket} \\ \hline
  17715. \LgradGrammarRacket \\
  17716. \begin{array}{lcl}
  17717. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  17718. \end{array}
  17719. \end{array}
  17720. \]
  17721. \fi}
  17722. {\if\edition\pythonEd
  17723. \[
  17724. \begin{array}{l}
  17725. \gray{\LintGrammarPython{}} \\ \hline
  17726. \gray{\LvarGrammarPython{}} \\ \hline
  17727. \gray{\LifGrammarPython{}} \\ \hline
  17728. \gray{\LwhileGrammarPython} \\ \hline
  17729. \gray{\LtupGrammarPython} \\ \hline
  17730. \LgradGrammarPython \\
  17731. \begin{array}{lcl}
  17732. \LangGradM{} &::=& \Def\ldots \Stmt\ldots
  17733. \end{array}
  17734. \end{array}
  17735. \]
  17736. \fi}
  17737. \end{tcolorbox}
  17738. \caption{The concrete syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  17739. \label{fig:Lgrad-concrete-syntax}
  17740. \end{figure}
  17741. \begin{figure}[tp]
  17742. \centering
  17743. \begin{tcolorbox}[colback=white]
  17744. \small
  17745. {\if\edition\racketEd
  17746. \[
  17747. \begin{array}{l}
  17748. \gray{\LintOpAST} \\ \hline
  17749. \gray{\LvarASTRacket{}} \\ \hline
  17750. \gray{\LifASTRacket{}} \\ \hline
  17751. \gray{\LwhileASTRacket{}} \\ \hline
  17752. \gray{\LtupASTRacket{}} \\ \hline
  17753. \LgradASTRacket \\
  17754. \begin{array}{lcl}
  17755. \LangGradM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17756. \end{array}
  17757. \end{array}
  17758. \]
  17759. \fi}
  17760. {\if\edition\pythonEd
  17761. \[
  17762. \begin{array}{l}
  17763. \gray{\LintASTPython{}} \\ \hline
  17764. \gray{\LvarASTPython{}} \\ \hline
  17765. \gray{\LifASTPython{}} \\ \hline
  17766. \gray{\LwhileASTPython} \\ \hline
  17767. \gray{\LtupASTPython} \\ \hline
  17768. \LgradASTPython \\
  17769. \begin{array}{lcl}
  17770. \LangGradM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17771. \end{array}
  17772. \end{array}
  17773. \]
  17774. \fi}
  17775. \end{tcolorbox}
  17776. \caption{The abstract syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  17777. \label{fig:Lgrad-syntax}
  17778. \end{figure}
  17779. % TODO: more road map -Jeremy
  17780. %\clearpage
  17781. \section{Type Checking \LangGrad{}}
  17782. \label{sec:gradual-type-check}
  17783. We begin by discussing the type checking of a partially typed variant
  17784. of the \code{map} example from chapter~\ref{ch:Lfun}, shown in
  17785. figure~\ref{fig:gradual-map}. The \code{map} function itself is
  17786. statically typed, so there is nothing special happening there with
  17787. respect to type checking. On the other hand, the \code{inc} function
  17788. does not have type annotations, so the type checker assigns the type
  17789. \CANYTY{} to parameter \code{x} and the return type. Now consider the
  17790. \code{+} operator inside \code{inc}. It expects both arguments to have
  17791. type \INTTY{}, but its first argument \code{x} has type \CANYTY{}. In
  17792. a gradually typed language, such differences are allowed so long as
  17793. the types are \emph{consistent}; that is, they are equal except in
  17794. places where there is an \CANYTY{} type. That is, the type \CANYTY{}
  17795. is consistent with every other type. Figure~\ref{fig:consistent}
  17796. shows the definition of the
  17797. \racket{\code{consistent?}}\python{\code{consistent}} method.
  17798. %
  17799. So the type checker allows the \code{+} operator to be applied
  17800. to \code{x} because \CANYTY{} is consistent with \INTTY{}.
  17801. %
  17802. Next consider the call to the \code{map} function shown in
  17803. figure~\ref{fig:gradual-map} with the arguments \code{inc} and a
  17804. tuple. The \code{inc} function has type
  17805. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}},
  17806. but parameter \code{f} of \code{map} has type
  17807. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  17808. The type checker for \LangGrad{} accepts this call because the two types are
  17809. consistent.
  17810. \begin{figure}[btp]
  17811. % gradual_test_9.rkt
  17812. \begin{tcolorbox}[colback=white]
  17813. {\if\edition\racketEd
  17814. \begin{lstlisting}
  17815. (define (map [f : (Integer -> Integer)]
  17816. [v : (Vector Integer Integer)])
  17817. : (Vector Integer Integer)
  17818. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  17819. (define (inc x) (+ x 1))
  17820. (vector-ref (map inc (vector 0 41)) 1)
  17821. \end{lstlisting}
  17822. \fi}
  17823. {\if\edition\pythonEd
  17824. \begin{lstlisting}
  17825. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  17826. return f(v[0]), f(v[1])
  17827. def inc(x):
  17828. return x + 1
  17829. t = map(inc, (0, 41))
  17830. print(t[1])
  17831. \end{lstlisting}
  17832. \fi}
  17833. \end{tcolorbox}
  17834. \caption{A partially typed version of the \code{map} example.}
  17835. \label{fig:gradual-map}
  17836. \end{figure}
  17837. \begin{figure}[tbp]
  17838. \begin{tcolorbox}[colback=white]
  17839. {\if\edition\racketEd
  17840. \begin{lstlisting}
  17841. (define/public (consistent? t1 t2)
  17842. (match* (t1 t2)
  17843. [('Integer 'Integer) #t]
  17844. [('Boolean 'Boolean) #t]
  17845. [('Void 'Void) #t]
  17846. [('Any t2) #t]
  17847. [(t1 'Any) #t]
  17848. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  17849. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  17850. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  17851. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  17852. (consistent? rt1 rt2))]
  17853. [(other wise) #f]))
  17854. \end{lstlisting}
  17855. \fi}
  17856. {\if\edition\pythonEd
  17857. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17858. def consistent(self, t1, t2):
  17859. match (t1, t2):
  17860. case (AnyType(), _):
  17861. return True
  17862. case (_, AnyType()):
  17863. return True
  17864. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  17865. return all(map(self.consistent, ps1, ps2)) and consistent(rt1, rt2)
  17866. case (TupleType(ts1), TupleType(ts2)):
  17867. return all(map(self.consistent, ts1, ts2))
  17868. case (_, _):
  17869. return t1 == t2
  17870. \end{lstlisting}
  17871. \fi}
  17872. \end{tcolorbox}
  17873. \caption{The consistency method on types.}
  17874. \label{fig:consistent}
  17875. \end{figure}
  17876. It is also helpful to consider how gradual typing handles programs with an
  17877. error, such as applying \code{map} to a function that sometimes
  17878. returns a Boolean, as shown in figure~\ref{fig:map-maybe_inc}. The
  17879. type checker for \LangGrad{} accepts this program because the type of
  17880. \code{maybe\_inc} is consistent with the type of parameter \code{f} of
  17881. \code{map}; that is,
  17882. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}}
  17883. is consistent with
  17884. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  17885. One might say that a gradual type checker is optimistic in that it
  17886. accepts programs that might execute without a runtime type error.
  17887. %
  17888. The definition of the type checker for \LangGrad{} is shown in
  17889. figures~\ref{fig:type-check-Lgradual-1}, \ref{fig:type-check-Lgradual-2},
  17890. and \ref{fig:type-check-Lgradual-3}.
  17891. %% \begin{figure}[tp]
  17892. %% \centering
  17893. %% \fbox{
  17894. %% \begin{minipage}{0.96\textwidth}
  17895. %% \small
  17896. %% \[
  17897. %% \begin{array}{lcl}
  17898. %% \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  17899. %% \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  17900. %% \end{array}
  17901. %% \]
  17902. %% \end{minipage}
  17903. %% }
  17904. %% \caption{The abstract syntax of \LangCast{}, extending \LangLam{} (figure~\ref{fig:Lwhile-syntax}).}
  17905. %% \label{fig:Lgrad-prime-syntax}
  17906. %% \end{figure}
  17907. \begin{figure}[tbp]
  17908. \begin{tcolorbox}[colback=white]
  17909. {\if\edition\racketEd
  17910. \begin{lstlisting}
  17911. (define (map [f : (Integer -> Integer)]
  17912. [v : (Vector Integer Integer)])
  17913. : (Vector Integer Integer)
  17914. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  17915. (define (inc x) (+ x 1))
  17916. (define (true) #t)
  17917. (define (maybe_inc x) (if (eq? 0 (read)) (inc x) (true)))
  17918. (vector-ref (map maybe_inc (vector 0 41)) 0)
  17919. \end{lstlisting}
  17920. \fi}
  17921. {\if\edition\pythonEd
  17922. \begin{lstlisting}
  17923. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  17924. return f(v[0]), f(v[1])
  17925. def inc(x):
  17926. return x + 1
  17927. def true():
  17928. return True
  17929. def maybe_inc(x):
  17930. return inc(x) if input_int() == 0 else true()
  17931. t = map(maybe_inc, (0, 41))
  17932. print( t[1] )
  17933. \end{lstlisting}
  17934. \fi}
  17935. \end{tcolorbox}
  17936. \caption{A variant of the \code{map} example with an error.}
  17937. \label{fig:map-maybe_inc}
  17938. \end{figure}
  17939. Running this program with input \code{1} triggers an
  17940. error when the \code{maybe\_inc} function returns
  17941. \racket{\code{\#t}}\python{\code{True}}. The \LangGrad{} language
  17942. performs checking at runtime to ensure the integrity of the static
  17943. types, such as the
  17944. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}
  17945. annotation on
  17946. parameter \code{f} of \code{map}.
  17947. Here we give a preview of how the runtime checking is accomplished;
  17948. the following sections provide the details.
  17949. The runtime checking is carried out by a new \code{Cast} AST node that
  17950. is generated in a new pass named \code{cast\_insert}. The output of
  17951. \code{cast\_insert} is a program in the \LangCast{} language, which
  17952. simply adds \code{Cast} and \CANYTY{} to \LangLam{}.
  17953. %
  17954. Figure~\ref{fig:map-cast} shows the output of \code{cast\_insert} for
  17955. \code{map} and \code{maybe\_inc}. The idea is that \code{Cast} is
  17956. inserted every time the type checker encounters two types that are
  17957. consistent but not equal. In the \code{inc} function, \code{x} is
  17958. cast to \INTTY{} and the result of the \code{+} is cast to
  17959. \CANYTY{}. In the call to \code{map}, the \code{inc} argument
  17960. is cast from
  17961. \racket{\code{(Any -> Any)}}
  17962. \python{\code{Callable[[Any], Any]}}
  17963. to
  17964. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  17965. %
  17966. In the next section we see how to interpret the \code{Cast} node.
  17967. \begin{figure}[btp]
  17968. \begin{tcolorbox}[colback=white]
  17969. {\if\edition\racketEd
  17970. \begin{lstlisting}
  17971. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  17972. : (Vector Integer Integer)
  17973. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  17974. (define (inc [x : Any]) : Any
  17975. (cast (+ (cast x Any Integer) 1) Integer Any))
  17976. (define (true) : Any (cast #t Boolean Any))
  17977. (define (maybe_inc [x : Any]) : Any
  17978. (if (eq? 0 (read)) (inc x) (true)))
  17979. (vector-ref (map (cast maybe_inc (Any -> Any) (Integer -> Integer))
  17980. (vector 0 41)) 0)
  17981. \end{lstlisting}
  17982. \fi}
  17983. {\if\edition\pythonEd
  17984. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17985. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  17986. return f(v[0]), f(v[1])
  17987. def inc(x : Any) -> Any:
  17988. return Cast(Cast(x, Any, int) + 1, int, Any)
  17989. def true() -> Any:
  17990. return Cast(True, bool, Any)
  17991. def maybe_inc(x : Any) -> Any:
  17992. return inc(x) if input_int() == 0 else true()
  17993. t = map(Cast(maybe_inc, Callable[[Any], Any], Callable[[int], int]),
  17994. (0, 41))
  17995. print(t[1])
  17996. \end{lstlisting}
  17997. \fi}
  17998. \end{tcolorbox}
  17999. \caption{Output of the \code{cast\_insert} pass for the \code{map}
  18000. and \code{maybe\_inc} example.}
  18001. \label{fig:map-cast}
  18002. \end{figure}
  18003. {\if\edition\pythonEd
  18004. \begin{figure}[tbp]
  18005. \begin{tcolorbox}[colback=white]
  18006. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18007. class TypeCheckLgrad(TypeCheckLlambda):
  18008. def type_check_exp(self, e, env) -> Type:
  18009. match e:
  18010. case Name(id):
  18011. return env[id]
  18012. case Constant(value) if isinstance(value, bool):
  18013. return BoolType()
  18014. case Constant(value) if isinstance(value, int):
  18015. return IntType()
  18016. case Call(Name('input_int'), []):
  18017. return IntType()
  18018. case BinOp(left, op, right):
  18019. left_type = self.type_check_exp(left, env)
  18020. self.check_consistent(left_type, IntType(), left)
  18021. right_type = self.type_check_exp(right, env)
  18022. self.check_consistent(right_type, IntType(), right)
  18023. return IntType()
  18024. case IfExp(test, body, orelse):
  18025. test_t = self.type_check_exp(test, env)
  18026. self.check_consistent(test_t, BoolType(), test)
  18027. body_t = self.type_check_exp(body, env)
  18028. orelse_t = self.type_check_exp(orelse, env)
  18029. self.check_consistent(body_t, orelse_t, e)
  18030. return self.join_types(body_t, orelse_t)
  18031. case Call(func, args):
  18032. func_t = self.type_check_exp(func, env)
  18033. args_t = [self.type_check_exp(arg, env) for arg in args]
  18034. match func_t:
  18035. case FunctionType(params_t, return_t) if len(params_t) == len(args_t):
  18036. for (arg_t, param_t) in zip(args_t, params_t):
  18037. self.check_consistent(param_t, arg_t, e)
  18038. return return_t
  18039. case AnyType():
  18040. return AnyType()
  18041. case _:
  18042. raise Exception('type_check_exp: in call, unexpected ' + repr(func_t))
  18043. ...
  18044. case _:
  18045. raise Exception('type_check_exp: unexpected ' + repr(e))
  18046. \end{lstlisting}
  18047. \end{tcolorbox}
  18048. \caption{Type checking expressions in the \LangGrad{} language.}
  18049. \label{fig:type-check-Lgradual-1}
  18050. \end{figure}
  18051. \begin{figure}[tbp]
  18052. \begin{tcolorbox}[colback=white]
  18053. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18054. def check_exp(self, e, expected_ty, env):
  18055. match e:
  18056. case Lambda(params, body):
  18057. match expected_ty:
  18058. case FunctionType(params_t, return_t):
  18059. new_env = env.copy().update(zip(params, params_t))
  18060. e.has_type = expected_ty
  18061. body_ty = self.type_check_exp(body, new_env)
  18062. self.check_consistent(body_ty, return_t)
  18063. case AnyType():
  18064. new_env = env.copy().update((p, AnyType()) for p in params)
  18065. e.has_type = FunctionType([AnyType() for _ in params], AnyType())
  18066. body_ty = self.type_check_exp(body, new_env)
  18067. case _:
  18068. raise Exception('lambda does not have type ' + str(expected_ty))
  18069. case _:
  18070. e_ty = self.type_check_exp(e, env)
  18071. self.check_consistent(e_ty, expected_ty, e)
  18072. \end{lstlisting}
  18073. \end{tcolorbox}
  18074. \caption{Checking expressions with respect to a type in the \LangGrad{} language.}
  18075. \label{fig:type-check-Lgradual-2}
  18076. \end{figure}
  18077. \begin{figure}[tbp]
  18078. \begin{tcolorbox}[colback=white]
  18079. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18080. def type_check_stmt(self, s, env, return_type):
  18081. match s:
  18082. case Assign([Name(id)], value):
  18083. value_ty = self.type_check_exp(value, env)
  18084. if id in env:
  18085. self.check_consistent(env[id], value_ty, value)
  18086. else:
  18087. env[id] = value_ty
  18088. ...
  18089. case _:
  18090. raise Exception('type_check_stmts: unexpected ' + repr(ss))
  18091. def type_check_stmts(self, ss, env, return_type):
  18092. for s in ss:
  18093. self.type_check_stmt(s, env, return_type)
  18094. \end{lstlisting}
  18095. \end{tcolorbox}
  18096. \caption{Type checking statements in the \LangGrad{} language.}
  18097. \label{fig:type-check-Lgradual-3}
  18098. \end{figure}
  18099. \begin{figure}[tbp]
  18100. \begin{tcolorbox}[colback=white]
  18101. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  18102. def join_types(self, t1, t2):
  18103. match (t1, t2):
  18104. case (AnyType(), _):
  18105. return t2
  18106. case (_, AnyType()):
  18107. return t1
  18108. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  18109. return FunctionType(list(map(self.join_types, ps1, ps2)),
  18110. self.join_types(rt1,rt2))
  18111. case (TupleType(ts1), TupleType(ts2)):
  18112. return TupleType(list(map(self.join_types, ts1, ts2)))
  18113. case (_, _):
  18114. return t1
  18115. def check_consistent(self, t1, t2, e):
  18116. if not self.consistent(t1, t2):
  18117. raise Exception('error: ' + repr(t1) + ' inconsistent with ' + repr(t2) \
  18118. + ' in ' + repr(e))
  18119. \end{lstlisting}
  18120. \end{tcolorbox}
  18121. \caption{Auxiliary methods for type checking \LangGrad{}.}
  18122. \label{fig:type-check-Lgradual-aux}
  18123. \end{figure}
  18124. \fi}
  18125. {\if\edition\racketEd
  18126. \begin{figure}[tbp]
  18127. \begin{tcolorbox}[colback=white]
  18128. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18129. (define/override (type-check-exp env)
  18130. (lambda (e)
  18131. (define recur (type-check-exp env))
  18132. (match e
  18133. [(Prim op es) #:when (not (set-member? explicit-prim-ops op))
  18134. (define-values (new-es ts)
  18135. (for/lists (exprs types) ([e es])
  18136. (recur e)))
  18137. (define t-ret (type-check-op op ts e))
  18138. (values (Prim op new-es) t-ret)]
  18139. [(Prim 'eq? (list e1 e2))
  18140. (define-values (e1^ t1) (recur e1))
  18141. (define-values (e2^ t2) (recur e2))
  18142. (check-consistent? t1 t2 e)
  18143. (define T (meet t1 t2))
  18144. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  18145. [(Prim 'and (list e1 e2))
  18146. (recur (If e1 e2 (Bool #f)))]
  18147. [(Prim 'or (list e1 e2))
  18148. (define tmp (gensym 'tmp))
  18149. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  18150. [(If e1 e2 e3)
  18151. (define-values (e1^ T1) (recur e1))
  18152. (define-values (e2^ T2) (recur e2))
  18153. (define-values (e3^ T3) (recur e3))
  18154. (check-consistent? T1 'Boolean e)
  18155. (check-consistent? T2 T3 e)
  18156. (define Tif (meet T2 T3))
  18157. (values (If e1^ e2^ e3^) Tif)]
  18158. [(SetBang x e1)
  18159. (define-values (e1^ T1) (recur e1))
  18160. (define varT (dict-ref env x))
  18161. (check-consistent? T1 varT e)
  18162. (values (SetBang x e1^) 'Void)]
  18163. [(WhileLoop e1 e2)
  18164. (define-values (e1^ T1) (recur e1))
  18165. (check-consistent? T1 'Boolean e)
  18166. (define-values (e2^ T2) ((type-check-exp env) e2))
  18167. (values (WhileLoop e1^ e2^) 'Void)]
  18168. [(Prim 'vector-length (list e1))
  18169. (define-values (e1^ t) (recur e1))
  18170. (match t
  18171. [`(Vector ,ts ...)
  18172. (values (Prim 'vector-length (list e1^)) 'Integer)]
  18173. ['Any (values (Prim 'vector-length (list e1^)) 'Integer)])]
  18174. \end{lstlisting}
  18175. \end{tcolorbox}
  18176. \caption{Type checker for the \LangGrad{} language, part 1.}
  18177. \label{fig:type-check-Lgradual-1}
  18178. \end{figure}
  18179. \begin{figure}[tbp]
  18180. \begin{tcolorbox}[colback=white]
  18181. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18182. [(Prim 'vector-ref (list e1 e2))
  18183. (define-values (e1^ t1) (recur e1))
  18184. (define-values (e2^ t2) (recur e2))
  18185. (check-consistent? t2 'Integer e)
  18186. (match t1
  18187. [`(Vector ,ts ...)
  18188. (match e2^
  18189. [(Int i)
  18190. (unless (and (0 . <= . i) (i . < . (length ts)))
  18191. (error 'type-check "invalid index ~a in ~a" i e))
  18192. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  18193. [else (values (Prim 'vector-ref (list e1^ e2^)) 'Any)])]
  18194. ['Any (values (Prim 'vector-ref (list e1^ e2^)) 'Any)]
  18195. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  18196. [(Prim 'vector-set! (list e1 e2 e3) )
  18197. (define-values (e1^ t1) (recur e1))
  18198. (define-values (e2^ t2) (recur e2))
  18199. (define-values (e3^ t3) (recur e3))
  18200. (check-consistent? t2 'Integer e)
  18201. (match t1
  18202. [`(Vector ,ts ...)
  18203. (match e2^
  18204. [(Int i)
  18205. (unless (and (0 . <= . i) (i . < . (length ts)))
  18206. (error 'type-check "invalid index ~a in ~a" i e))
  18207. (check-consistent? (list-ref ts i) t3 e)
  18208. (values (Prim 'vector-set! (list e1^ (Int i) e3^)) 'Void)]
  18209. [else (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)])]
  18210. ['Any (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)]
  18211. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  18212. [(Apply e1 e2s)
  18213. (define-values (e1^ T1) (recur e1))
  18214. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  18215. (match T1
  18216. [`(,T1ps ... -> ,T1rt)
  18217. (for ([T2 T2s] [Tp T1ps])
  18218. (check-consistent? T2 Tp e))
  18219. (values (Apply e1^ e2s^) T1rt)]
  18220. [`Any (values (Apply e1^ e2s^) 'Any)]
  18221. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  18222. [(Lambda params Tr e1)
  18223. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  18224. (match p
  18225. [`[,x : ,T] (values x T)]
  18226. [(? symbol? x) (values x 'Any)])))
  18227. (define-values (e1^ T1)
  18228. ((type-check-exp (append (map cons xs Ts) env)) e1))
  18229. (check-consistent? Tr T1 e)
  18230. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr e1^)
  18231. `(,@Ts -> ,Tr))]
  18232. [else ((super type-check-exp env) e)]
  18233. )))
  18234. \end{lstlisting}
  18235. \end{tcolorbox}
  18236. \caption{Type checker for the \LangGrad{} language, part 2.}
  18237. \label{fig:type-check-Lgradual-2}
  18238. \end{figure}
  18239. \begin{figure}[tbp]
  18240. \begin{tcolorbox}[colback=white]
  18241. \begin{lstlisting}
  18242. (define/override (type-check-def env)
  18243. (lambda (e)
  18244. (match e
  18245. [(Def f params rt info body)
  18246. (define-values (xs ps) (for/lists (l1 l2) ([p params])
  18247. (match p
  18248. [`[,x : ,T] (values x T)]
  18249. [(? symbol? x) (values x 'Any)])))
  18250. (define new-env (append (map cons xs ps) env))
  18251. (define-values (body^ ty^) ((type-check-exp new-env) body))
  18252. (check-consistent? ty^ rt e)
  18253. (Def f (for/list ([x xs] [T ps]) `[,x : ,T]) rt info body^)]
  18254. [else (error 'type-check "ill-formed function definition ~a" e)]
  18255. )))
  18256. (define/override (type-check-program e)
  18257. (match e
  18258. [(Program info body)
  18259. (define-values (body^ ty) ((type-check-exp '()) body))
  18260. (check-consistent? ty 'Integer e)
  18261. (ProgramDefsExp info '() body^)]
  18262. [(ProgramDefsExp info ds body)
  18263. (define new-env (for/list ([d ds])
  18264. (cons (Def-name d) (fun-def-type d))))
  18265. (define ds^ (for/list ([d ds])
  18266. ((type-check-def new-env) d)))
  18267. (define-values (body^ ty) ((type-check-exp new-env) body))
  18268. (check-consistent? ty 'Integer e)
  18269. (ProgramDefsExp info ds^ body^)]
  18270. [else (super type-check-program e)]))
  18271. \end{lstlisting}
  18272. \end{tcolorbox}
  18273. \caption{Type checker for the \LangGrad{} language, part 3.}
  18274. \label{fig:type-check-Lgradual-3}
  18275. \end{figure}
  18276. \begin{figure}[tbp]
  18277. \begin{tcolorbox}[colback=white]
  18278. \begin{lstlisting}
  18279. (define/public (join t1 t2)
  18280. (match* (t1 t2)
  18281. [('Integer 'Integer) 'Integer]
  18282. [('Boolean 'Boolean) 'Boolean]
  18283. [('Void 'Void) 'Void]
  18284. [('Any t2) t2]
  18285. [(t1 'Any) t1]
  18286. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  18287. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  18288. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  18289. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  18290. -> ,(join rt1 rt2))]))
  18291. (define/public (meet t1 t2)
  18292. (match* (t1 t2)
  18293. [('Integer 'Integer) 'Integer]
  18294. [('Boolean 'Boolean) 'Boolean]
  18295. [('Void 'Void) 'Void]
  18296. [('Any t2) 'Any]
  18297. [(t1 'Any) 'Any]
  18298. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  18299. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  18300. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  18301. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  18302. -> ,(meet rt1 rt2))]))
  18303. (define/public (check-consistent? t1 t2 e)
  18304. (unless (consistent? t1 t2)
  18305. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  18306. (define explicit-prim-ops
  18307. (set-union
  18308. (type-predicates)
  18309. (set 'procedure-arity 'eq? 'not 'and 'or
  18310. 'vector 'vector-length 'vector-ref 'vector-set!
  18311. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  18312. (define/override (fun-def-type d)
  18313. (match d
  18314. [(Def f params rt info body)
  18315. (define ps
  18316. (for/list ([p params])
  18317. (match p
  18318. [`[,x : ,T] T]
  18319. [(? symbol?) 'Any]
  18320. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  18321. `(,@ps -> ,rt)]
  18322. [else (error 'fun-def-type "ill-formed definition in ~a" d)]))
  18323. \end{lstlisting}
  18324. \end{tcolorbox}
  18325. \caption{Auxiliary functions for type checking \LangGrad{}.}
  18326. \label{fig:type-check-Lgradual-aux}
  18327. \end{figure}
  18328. \fi}
  18329. \clearpage
  18330. \section{Interpreting \LangCast{}}
  18331. \label{sec:interp-casts}
  18332. The runtime behavior of casts involving simple types such as
  18333. \INTTY{} and \BOOLTY{} is straightforward. For example, a
  18334. cast from \INTTY{} to \CANYTY{} can be accomplished with the
  18335. \code{Inject} operator of \LangAny{}, which puts the integer into a
  18336. tagged value (figure~\ref{fig:interp-Lany}). Similarly, a cast from
  18337. \CANYTY{} to \INTTY{} is accomplished with the \code{Project}
  18338. operator, by checking the value's tag and either retrieving
  18339. the underlying integer or signaling an error if the tag is not the
  18340. one for integers (figure~\ref{fig:interp-Lany-aux}).
  18341. %
  18342. Things get more interesting with casts involving
  18343. \racket{function and tuple types}\python{function, tuple, and array types}.
  18344. Consider the cast of the function \code{maybe\_inc} from
  18345. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any], Any]}}
  18346. to
  18347. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int], int]}}
  18348. shown in figure~\ref{fig:map-maybe_inc}.
  18349. When the \code{maybe\_inc} function flows through
  18350. this cast at runtime, we don't know whether it will return
  18351. an integer, because that depends on the input from the user.
  18352. The \LangCast{} interpreter therefore delays the checking
  18353. of the cast until the function is applied. To do so it
  18354. wraps \code{maybe\_inc} in a new function that casts its parameter
  18355. from \INTTY{} to \CANYTY{}, applies \code{maybe\_inc}, and then
  18356. casts the return value from \CANYTY{} to \INTTY{}.
  18357. {\if\edition\pythonEd
  18358. %
  18359. There are further complications regarding casts on mutable data
  18360. such as the \code{list} type introduced in
  18361. the challenge assignment of section~\ref{sec:arrays}.
  18362. %
  18363. \fi}
  18364. %
  18365. Consider the example presented in figure~\ref{fig:map-bang} that
  18366. defines a partially typed version of \code{map} whose parameter
  18367. \code{v} has type
  18368. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}
  18369. and that updates \code{v} in place
  18370. instead of returning a new tuple. So, we name this function
  18371. \code{map\_inplace}. We apply \code{map\_inplace} to an
  18372. \racket{tuple}\python{array} of integers, so the type checker inserts a
  18373. cast from
  18374. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}}
  18375. to
  18376. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}.
  18377. A naive way for the \LangCast{} interpreter to cast between
  18378. \racket{tuple}\python{array} types would be a build a new
  18379. \racket{tuple}\python{array}
  18380. whose elements are the result
  18381. of casting each of the original elements to the appropriate target
  18382. type.
  18383. However, this approach is not valid for mutable data structures.
  18384. In the example of figure~\ref{fig:map-bang},
  18385. if the cast created a new \racket{tuple}\python{array}, then the updates inside
  18386. \code{map\_inplace} would happen to the new \racket{tuple}\python{array} and not
  18387. the original one.
  18388. \begin{figure}[tbp]
  18389. \begin{tcolorbox}[colback=white]
  18390. % gradual_test_11.rkt
  18391. {\if\edition\racketEd
  18392. \begin{lstlisting}
  18393. (define (map_inplace [f : (Any -> Any)]
  18394. [v : (Vector Any Any)]) : Void
  18395. (begin
  18396. (vector-set! v 0 (f (vector-ref v 0)))
  18397. (vector-set! v 1 (f (vector-ref v 1)))))
  18398. (define (inc x) (+ x 1))
  18399. (let ([v (vector 0 41)])
  18400. (begin (map_inplace inc v) (vector-ref v 1)))
  18401. \end{lstlisting}
  18402. \fi}
  18403. {\if\edition\pythonEd
  18404. \begin{lstlisting}
  18405. def map_inplace(f : Callable[[int], int], v : list[Any]) -> None:
  18406. i = 0
  18407. while i != len(v):
  18408. v[i] = f(v[i])
  18409. i = i + 1
  18410. def inc(x : int) -> int:
  18411. return x + 1
  18412. v = [0, 41]
  18413. map_inplace(inc, v)
  18414. print( v[1] )
  18415. \end{lstlisting}
  18416. \fi}
  18417. \end{tcolorbox}
  18418. \caption{An example involving casts on arrays.}
  18419. \label{fig:map-bang}
  18420. \end{figure}
  18421. Instead the interpreter needs to create a new kind of value, a
  18422. \emph{proxy}, that intercepts every \racket{tuple}\python{array} operation.
  18423. On a read, the proxy reads from the underlying \racket{tuple}\python{array}
  18424. and then applies a
  18425. cast to the resulting value. On a write, the proxy casts the argument
  18426. value and then performs the write to the underlying \racket{tuple}\python{array}.
  18427. \racket{
  18428. For the first \code{(vector-ref v 0)} in \code{map\_inplace}, the proxy casts
  18429. \code{0} from \INTTY{} to \CANYTY{}.
  18430. For the first \code{vector-set!}, the proxy casts a tagged \code{1}
  18431. from \CANYTY{} to \INTTY{}.
  18432. }
  18433. \python{
  18434. For the subscript \code{v[i]} in \code{f([v[i])} of \code{map\_inplace},
  18435. the proxy casts the integer from \INTTY{} to \CANYTY{}.
  18436. For the subscript on the left of the assignment,
  18437. the proxy casts the tagged value from \CANYTY{} to \INTTY{}.
  18438. }
  18439. The final category of cast that we need to consider consist of casts between
  18440. the \CANYTY{} type and higher-order types such as functions and
  18441. \racket{tuples}\python{lists}. Figure~\ref{fig:map-any} shows a
  18442. variant of \code{map\_inplace} in which parameter \code{v} does not
  18443. have a type annotation, so it is given type \CANYTY{}. In the call to
  18444. \code{map\_inplace}, the \racket{tuple}\python{list} has type
  18445. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}},
  18446. so the type checker inserts a cast to \CANYTY{}. A first thought is to use
  18447. \code{Inject}, but that doesn't work because
  18448. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}} is not
  18449. a flat type. Instead, we must first cast to
  18450. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}, which is flat,
  18451. and then inject to \CANYTY{}.
  18452. \begin{figure}[tbp]
  18453. \begin{tcolorbox}[colback=white]
  18454. {\if\edition\racketEd
  18455. \begin{lstlisting}
  18456. (define (map_inplace [f : (Any -> Any)] v) : Void
  18457. (begin
  18458. (vector-set! v 0 (f (vector-ref v 0)))
  18459. (vector-set! v 1 (f (vector-ref v 1)))))
  18460. (define (inc x) (+ x 1))
  18461. (let ([v (vector 0 41)])
  18462. (begin (map_inplace inc v) (vector-ref v 1)))
  18463. \end{lstlisting}
  18464. \fi}
  18465. {\if\edition\pythonEd
  18466. \begin{lstlisting}
  18467. def map_inplace(f : Callable[[Any], Any], v) -> None:
  18468. i = 0
  18469. while i != len(v):
  18470. v[i] = f(v[i])
  18471. i = i + 1
  18472. def inc(x):
  18473. return x + 1
  18474. v = [0, 41]
  18475. map_inplace(inc, v)
  18476. print( v[1] )
  18477. \end{lstlisting}
  18478. \fi}
  18479. \end{tcolorbox}
  18480. \caption{Casting an \racket{tuple}\python{array} to \CANYTY{}.}
  18481. \label{fig:map-any}
  18482. \end{figure}
  18483. \begin{figure}[tbp]
  18484. \begin{tcolorbox}[colback=white]
  18485. {\if\edition\racketEd
  18486. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18487. (define/public (apply_cast v s t)
  18488. (match* (s t)
  18489. [(t1 t2) #:when (equal? t1 t2) v]
  18490. [('Any t2)
  18491. (match t2
  18492. [`(,ts ... -> ,rt)
  18493. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  18494. (define v^ (apply-project v any->any))
  18495. (apply_cast v^ any->any `(,@ts -> ,rt))]
  18496. [`(Vector ,ts ...)
  18497. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  18498. (define v^ (apply-project v vec-any))
  18499. (apply_cast v^ vec-any `(Vector ,@ts))]
  18500. [else (apply-project v t2)])]
  18501. [(t1 'Any)
  18502. (match t1
  18503. [`(,ts ... -> ,rt)
  18504. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  18505. (define v^ (apply_cast v `(,@ts -> ,rt) any->any))
  18506. (apply-inject v^ (any-tag any->any))]
  18507. [`(Vector ,ts ...)
  18508. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  18509. (define v^ (apply_cast v `(Vector ,@ts) vec-any))
  18510. (apply-inject v^ (any-tag vec-any))]
  18511. [else (apply-inject v (any-tag t1))])]
  18512. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  18513. (define x (gensym 'x))
  18514. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  18515. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  18516. (define cast-writes
  18517. (for/list ([t1 ts1] [t2 ts2])
  18518. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  18519. `(vector-proxy ,(vector v (apply vector cast-reads)
  18520. (apply vector cast-writes)))]
  18521. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  18522. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  18523. `(function ,xs ,(Cast
  18524. (Apply (Value v)
  18525. (for/list ([x xs][t1 ts1][t2 ts2])
  18526. (Cast (Var x) t2 t1)))
  18527. rt1 rt2) ())]
  18528. ))
  18529. \end{lstlisting}
  18530. \fi}
  18531. {\if\edition\pythonEd
  18532. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18533. def apply_cast(self, value, src, tgt):
  18534. match (src, tgt):
  18535. case (AnyType(), FunctionType(ps2, rt2)):
  18536. anyfun = FunctionType([AnyType() for p in ps2], AnyType())
  18537. return self.apply_cast(self.apply_project(value, anyfun), anyfun, tgt)
  18538. case (AnyType(), TupleType(ts2)):
  18539. anytup = TupleType([AnyType() for t1 in ts2])
  18540. return self.apply_cast(self.apply_project(value, anytup), anytup, tgt)
  18541. case (AnyType(), ListType(t2)):
  18542. anylist = ListType([AnyType() for t1 in ts2])
  18543. return self.apply_cast(self.apply_project(value, anylist), anylist, tgt)
  18544. case (AnyType(), AnyType()):
  18545. return value
  18546. case (AnyType(), _):
  18547. return self.apply_project(value, tgt)
  18548. case (FunctionType(ps1,rt1), AnyType()):
  18549. anyfun = FunctionType([AnyType() for p in ps1], AnyType())
  18550. return self.apply_inject(self.apply_cast(value, src, anyfun), anyfun)
  18551. case (TupleType(ts1), AnyType()):
  18552. anytup = TupleType([AnyType() for t1 in ts1])
  18553. return self.apply_inject(self.apply_cast(value, src, anytup), anytup)
  18554. case (ListType(t1), AnyType()):
  18555. anylist = ListType(AnyType())
  18556. return self.apply_inject(self.apply_cast(value,src,anylist), anylist)
  18557. case (_, AnyType()):
  18558. return self.apply_inject(value, src)
  18559. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  18560. params = [generate_name('x') for p in ps2]
  18561. args = [Cast(Name(x), t2, t1)
  18562. for (x,t1,t2) in zip(params, ps1, ps2)]
  18563. body = Cast(Call(ValueExp(value), args), rt1, rt2)
  18564. return Function('cast', params, [Return(body)], {})
  18565. case (TupleType(ts1), TupleType(ts2)):
  18566. x = generate_name('x')
  18567. reads = [Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  18568. for (t1,t2) in zip(ts1,ts2)]
  18569. return ProxiedTuple(value, reads)
  18570. case (ListType(t1), ListType(t2)):
  18571. x = generate_name('x')
  18572. read = Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  18573. write = Function('cast', [x], [Return(Cast(Name(x), t2, t1))], {})
  18574. return ProxiedList(value, read, write)
  18575. case (t1, t2) if t1 == t2:
  18576. return value
  18577. case (t1, t2):
  18578. raise Exception('apply_cast unexpected ' + repr(src) + ' ' + repr(tgt))
  18579. def apply_inject(self, value, src):
  18580. return Tagged(value, self.type_to_tag(src))
  18581. def apply_project(self, value, tgt):
  18582. match value:
  18583. case Tagged(val, tag) if self.type_to_tag(tgt) == tag:
  18584. return val
  18585. case _:
  18586. raise Exception('apply_project, unexpected ' + repr(value))
  18587. \end{lstlisting}
  18588. \fi}
  18589. \end{tcolorbox}
  18590. \caption{The \code{apply\_cast} auxiliary method.}
  18591. \label{fig:apply_cast}
  18592. \end{figure}
  18593. The \LangCast{} interpreter uses an auxiliary function named
  18594. \code{apply\_cast} to cast a value from a source type to a target type,
  18595. shown in figure~\ref{fig:apply_cast}. You'll find that it handles all
  18596. the kinds of casts that we've discussed in this section.
  18597. %
  18598. The definition of the interpreter for \LangCast{} is shown in
  18599. figure~\ref{fig:interp-Lcast}, with the case for \code{Cast}
  18600. dispatching to \code{apply\_cast}.
  18601. \racket{To handle the addition of tuple
  18602. proxies, we update the tuple primitives in \code{interp-op} using the
  18603. functions given in figure~\ref{fig:guarded-tuple}.}
  18604. Next we turn to the individual passes needed for compiling \LangGrad{}.
  18605. \begin{figure}[tbp]
  18606. \begin{tcolorbox}[colback=white]
  18607. {\if\edition\racketEd
  18608. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18609. (define interp-Lcast-class
  18610. (class interp-Llambda-class
  18611. (super-new)
  18612. (inherit apply-fun apply-inject apply-project)
  18613. (define/override (interp-op op)
  18614. (match op
  18615. ['vector-length guarded-vector-length]
  18616. ['vector-ref guarded-vector-ref]
  18617. ['vector-set! guarded-vector-set!]
  18618. ['any-vector-ref (lambda (v i)
  18619. (match v [`(tagged ,v^ ,tg)
  18620. (guarded-vector-ref v^ i)]))]
  18621. ['any-vector-set! (lambda (v i a)
  18622. (match v [`(tagged ,v^ ,tg)
  18623. (guarded-vector-set! v^ i a)]))]
  18624. ['any-vector-length (lambda (v)
  18625. (match v [`(tagged ,v^ ,tg)
  18626. (guarded-vector-length v^)]))]
  18627. [else (super interp-op op)]
  18628. ))
  18629. (define/override ((interp-exp env) e)
  18630. (define (recur e) ((interp-exp env) e))
  18631. (match e
  18632. [(Value v) v]
  18633. [(Cast e src tgt) (apply_cast (recur e) src tgt)]
  18634. [else ((super interp-exp env) e)]))
  18635. ))
  18636. (define (interp-Lcast p)
  18637. (send (new interp-Lcast-class) interp-program p))
  18638. \end{lstlisting}
  18639. \fi}
  18640. {\if\edition\pythonEd
  18641. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18642. class InterpLcast(InterpLany):
  18643. def interp_exp(self, e, env):
  18644. match e:
  18645. case Cast(value, src, tgt):
  18646. v = self.interp_exp(value, env)
  18647. return self.apply_cast(v, src, tgt)
  18648. case ValueExp(value):
  18649. return value
  18650. ...
  18651. case _:
  18652. return super().interp_exp(e, env)
  18653. \end{lstlisting}
  18654. \fi}
  18655. \end{tcolorbox}
  18656. \caption{The interpreter for \LangCast{}.}
  18657. \label{fig:interp-Lcast}
  18658. \end{figure}
  18659. {\if\edition\racketEd
  18660. \begin{figure}[tbp]
  18661. \begin{tcolorbox}[colback=white]
  18662. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18663. (define (guarded-vector-ref vec i)
  18664. (match vec
  18665. [`(vector-proxy ,proxy)
  18666. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  18667. (define rd (vector-ref (vector-ref proxy 1) i))
  18668. (apply-fun rd (list val) 'guarded-vector-ref)]
  18669. [else (vector-ref vec i)]))
  18670. (define (guarded-vector-set! vec i arg)
  18671. (match vec
  18672. [`(vector-proxy ,proxy)
  18673. (define wr (vector-ref (vector-ref proxy 2) i))
  18674. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  18675. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  18676. [else (vector-set! vec i arg)]))
  18677. (define (guarded-vector-length vec)
  18678. (match vec
  18679. [`(vector-proxy ,proxy)
  18680. (guarded-vector-length (vector-ref proxy 0))]
  18681. [else (vector-length vec)]))
  18682. \end{lstlisting}
  18683. %% {\if\edition\pythonEd
  18684. %% \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18685. %% UNDER CONSTRUCTION
  18686. %% \end{lstlisting}
  18687. %% \fi}
  18688. \end{tcolorbox}
  18689. \caption{The \code{guarded-vector} auxiliary functions.}
  18690. \label{fig:guarded-tuple}
  18691. \end{figure}
  18692. \fi}
  18693. {\if\edition\pythonEd
  18694. \section{Overload Resolution}
  18695. \label{sec:gradual-resolution}
  18696. Recall that when we added support for arrays in
  18697. section~\ref{sec:arrays}, the syntax for the array operations were the
  18698. same as for tuple operations (e.g., accessing an element, getting the
  18699. length). So we performed overload resolution, with a pass named
  18700. \code{resolve}, to separate the array and tuple operations. In
  18701. particular, we introduced the primitives \code{array\_load},
  18702. \code{array\_store}, and \code{array\_len}.
  18703. For gradual typing, we further overload these operators to work on
  18704. values of type \CANYTY{}. Thus, the \code{resolve} pass should be
  18705. updated with new cases for the \CANYTY{} type, translating the element
  18706. access and length operations to the primitives \code{any\_load},
  18707. \code{any\_store}, and \code{any\_len}.
  18708. \fi}
  18709. \section{Cast Insertion}
  18710. \label{sec:gradual-insert-casts}
  18711. In our discussion of type checking of \LangGrad{}, we mentioned how
  18712. the runtime aspect of type checking is carried out by the \code{Cast}
  18713. AST node, which is added to the program by a new pass named
  18714. \code{cast\_insert}. The target of this pass is the \LangCast{}
  18715. language. We now discuss the details of this pass.
  18716. The \code{cast\_insert} pass is closely related to the type checker
  18717. for \LangGrad{} (starting in figure~\ref{fig:type-check-Lgradual-1}).
  18718. In particular, the type checker allows implicit casts between
  18719. consistent types. The job of the \code{cast\_insert} pass is to make
  18720. those casts explicit. It does so by inserting
  18721. \code{Cast} nodes into the AST.
  18722. %
  18723. For the most part, the implicit casts occur in places where the type
  18724. checker checks two types for consistency. Consider the case for
  18725. binary operators in figure~\ref{fig:type-check-Lgradual-1}. The type
  18726. checker requires that the type of the left operand is consistent with
  18727. \INTTY{}. Thus, the \code{cast\_insert} pass should insert a
  18728. \code{Cast} around the left operand, converting from its type to
  18729. \INTTY{}. The story is similar for the right operand. It is not always
  18730. necessary to insert a cast, e.g., if the left operand already has type
  18731. \INTTY{} then there is no need for a \code{Cast}.
  18732. Some of the implicit casts are not as straightforward. One such case
  18733. arises with the
  18734. conditional expression. In figure~\ref{fig:type-check-Lgradual-1} we
  18735. see that the type checker requires that the two branches have
  18736. consistent types and that type of the conditional expression is the
  18737. meet of the branches' types. In the target language \LangCast{}, both
  18738. branches will need to have the same type, and that type
  18739. will be the type of the conditional expression. Thus, each branch requires
  18740. a \code{Cast} to convert from its type to the meet of the branches' types.
  18741. The case for the function call exhibits another interesting situation. If
  18742. the function expression is of type \CANYTY{}, then it needs to be cast
  18743. to a function type so that it can be used in a function call in
  18744. \LangCast{}. Which function type should it be cast to? The parameter
  18745. and return types are unknown, so we can simply use \CANYTY{} for all
  18746. of them. Furthermore, in \LangCast{} the argument types will need to
  18747. exactly match the parameter types, so we must cast all the arguments
  18748. to type \CANYTY{} (if they are not already of that type).
  18749. {\if\edition\racketEd
  18750. %
  18751. Likewise, the cases for the tuple operators \code{vector-length},
  18752. \code{vector-ref}, and \code{vector-set!} need to handle the situation
  18753. where the tuple expression is of type \CANYTY{}. Instead of
  18754. handling these situations with casts, we recommend translating
  18755. the special-purpose variants of the tuple operators that handle
  18756. tuples of type \CANYTY{}: \code{any-vector-length},
  18757. \code{any-vector-ref}, and \code{any-vector-set!}.
  18758. %
  18759. \fi}
  18760. \section{Lower Casts}
  18761. \label{sec:lower_casts}
  18762. The next step in the journey toward x86 is the \code{lower\_casts}
  18763. pass that translates the casts in \LangCast{} to the lower-level
  18764. \code{Inject} and \code{Project} operators and new operators for
  18765. proxies, extending the \LangLam{} language to \LangProxy{}.
  18766. The \LangProxy{} language can also be described as an extension of
  18767. \LangAny{}, with the addition of proxies. We recommend creating an
  18768. auxiliary function named \code{lower\_cast} that takes an expression
  18769. (in \LangCast{}), a source type, and a target type and translates it
  18770. to an expression in \LangProxy{}.
  18771. The \code{lower\_cast} function can follow a code structure similar to
  18772. the \code{apply\_cast} function (figure~\ref{fig:apply_cast}) used in
  18773. the interpreter for \LangCast{}, because it must handle the same cases
  18774. as \code{apply\_cast} and it needs to mimic the behavior of
  18775. \code{apply\_cast}. The most interesting cases concern
  18776. the casts involving \racket{tuple and function types}\python{tuple, array, and function types}.
  18777. {\if\edition\racketEd
  18778. As mentioned in section~\ref{sec:interp-casts}, a cast from one tuple
  18779. type to another tuple type is accomplished by creating a proxy that
  18780. intercepts the operations on the underlying tuple. Here we make the
  18781. creation of the proxy explicit with the \code{vector-proxy} AST
  18782. node. It takes three arguments: the first is an expression for the
  18783. tuple, the second is tuple of functions for casting an element that is
  18784. being read from the tuple, and the third is a tuple of functions for
  18785. casting an element that is being written to the array. You can create
  18786. the functions for reading and writing using lambda expressions. Also,
  18787. as we show in the next section, we need to differentiate these tuples
  18788. of functions from the user-created ones, so we recommend using a new
  18789. AST node named \code{raw-vector} instead of \code{vector}.
  18790. %
  18791. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  18792. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  18793. that involved casting a tuple of integers to a tuple of \CANYTY{}.
  18794. \fi}
  18795. {\if\edition\pythonEd
  18796. As mentioned in section~\ref{sec:interp-casts}, a cast from one array
  18797. type to another array type is accomplished by creating a proxy that
  18798. intercepts the operations on the underlying array. Here we make the
  18799. creation of the proxy explicit with the \code{ListProxy} AST node. It
  18800. takes fives arguments: the first is an expression for the array, the
  18801. second is a function for casting an element that is being read from
  18802. the array, the third is a function for casting an element that is
  18803. being written to the array, the fourth is the type of the underlying
  18804. array, and the fifth is the type of the proxied array. You can create
  18805. the functions for reading and writing using lambda expressions.
  18806. A cast between two tuple types can be handled in a similar manner. We
  18807. create a proxy with the \code{TupleProxy} AST node. Tuples are
  18808. immutable, so there is no need for a function to cast the value during
  18809. a write. Because there is a separate element type for each slot in
  18810. the tuple, we need not just one function for casting during a read,
  18811. but instead a tuple of functions.
  18812. %
  18813. Also, as we show in the next section, we need to differentiate these
  18814. tuples from the user-created ones, so we recommend using a new AST
  18815. node named \code{RawTuple} instead of \code{Tuple} to create the
  18816. tuples of functions.
  18817. %
  18818. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  18819. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  18820. that involved casting an array of integers to an array of \CANYTY{}.
  18821. \fi}
  18822. \begin{figure}[tbp]
  18823. \begin{tcolorbox}[colback=white]
  18824. {\if\edition\racketEd
  18825. \begin{lstlisting}
  18826. (define (map_inplace [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  18827. (begin
  18828. (vector-set! v 0 (f (vector-ref v 0)))
  18829. (vector-set! v 1 (f (vector-ref v 1)))))
  18830. (define (inc [x : Any]) : Any
  18831. (inject (+ (project x Integer) 1) Integer))
  18832. (let ([v (vector 0 41)])
  18833. (begin
  18834. (map_inplace inc (vector-proxy v
  18835. (raw-vector (lambda: ([x9 : Integer]) : Any
  18836. (inject x9 Integer))
  18837. (lambda: ([x9 : Integer]) : Any
  18838. (inject x9 Integer)))
  18839. (raw-vector (lambda: ([x9 : Any]) : Integer
  18840. (project x9 Integer))
  18841. (lambda: ([x9 : Any]) : Integer
  18842. (project x9 Integer)))))
  18843. (vector-ref v 1)))
  18844. \end{lstlisting}
  18845. \fi}
  18846. {\if\edition\pythonEd
  18847. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18848. def map_inplace(f : Callable[[int], int], v : list[Any]) -> void:
  18849. i = 0
  18850. while i != array_len(v):
  18851. array_store(v, i, inject(f(project(array_load(v, i), int)), int))
  18852. i = (i + 1)
  18853. def inc(x : int) -> int:
  18854. return (x + 1)
  18855. def main() -> int:
  18856. v = [0, 41]
  18857. map_inplace(inc, array_proxy(v, list[int], list[Any]))
  18858. print(array_load(v, 1))
  18859. return 0
  18860. \end{lstlisting}
  18861. \fi}
  18862. \end{tcolorbox}
  18863. \caption{Output of \code{lower\_casts} on the example shown in
  18864. figure~\ref{fig:map-bang}.}
  18865. \label{fig:map-bang-lower-cast}
  18866. \end{figure}
  18867. A cast from one function type to another function type is accomplished
  18868. by generating a \code{lambda} whose parameter and return types match
  18869. the target function type. The body of the \code{lambda} should cast
  18870. the parameters from the target type to the source type. (Yes,
  18871. backward! Functions are contravariant\index{subject}{contravariant}
  18872. in the parameters.). Afterward, call the underlying function and then
  18873. cast the result from the source return type to the target return type.
  18874. Figure~\ref{fig:map-lower-cast} shows the output of the
  18875. \code{lower\_casts} pass on the \code{map} example give in
  18876. figure~\ref{fig:gradual-map}. Note that the \code{inc} argument in the
  18877. call to \code{map} is wrapped in a \code{lambda}.
  18878. \begin{figure}[tbp]
  18879. \begin{tcolorbox}[colback=white]
  18880. {\if\edition\racketEd
  18881. \begin{lstlisting}
  18882. (define (map [f : (Integer -> Integer)]
  18883. [v : (Vector Integer Integer)])
  18884. : (Vector Integer Integer)
  18885. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18886. (define (inc [x : Any]) : Any
  18887. (inject (+ (project x Integer) 1) Integer))
  18888. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  18889. (project (inc (inject x9 Integer)) Integer))
  18890. (vector 0 41)) 1)
  18891. \end{lstlisting}
  18892. \fi}
  18893. {\if\edition\pythonEd
  18894. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18895. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18896. return (f(v[0]), f(v[1]),)
  18897. def inc(x : any) -> any:
  18898. return inject((project(x, int) + 1), int)
  18899. def main() -> int:
  18900. t = map(lambda x: project(inc(inject(x, int)), int), (0, 41,))
  18901. print(t[1])
  18902. return 0
  18903. \end{lstlisting}
  18904. \fi}
  18905. \end{tcolorbox}
  18906. \caption{Output of \code{lower\_casts} on the example shown in
  18907. figure~\ref{fig:gradual-map}.}
  18908. \label{fig:map-lower-cast}
  18909. \end{figure}
  18910. \section{Differentiate Proxies}
  18911. \label{sec:differentiate-proxies}
  18912. So far, the responsibility of differentiating tuples and tuple proxies
  18913. has been the job of the interpreter.
  18914. %
  18915. \racket{For example, the interpreter for \LangCast{} implements
  18916. \code{vector-ref} using the \code{guarded-vector-ref} function shown in
  18917. figure~\ref{fig:guarded-tuple}.}
  18918. %
  18919. In the \code{differentiate\_proxies} pass we shift this responsibility
  18920. to the generated code.
  18921. We begin by designing the output language \LangPVec{}. In \LangGrad{}
  18922. we used the type \TUPLETYPENAME{} for both
  18923. real tuples and tuple proxies.
  18924. \python{Similarly, we use the type \code{list} for both arrays and
  18925. array proxies.}
  18926. In \LangPVec{} we return the
  18927. \TUPLETYPENAME{} type to its original
  18928. meaning, as the type of just tuples, and we introduce a new type,
  18929. \PTUPLETYNAME{}, whose values
  18930. can be either real tuples or tuple
  18931. proxies.
  18932. %
  18933. {\if\edition\pythonEd
  18934. Likewise, we return the
  18935. \ARRAYTYPENAME{} type to its original
  18936. meaning, as the type of arrays, and we introduce a new type,
  18937. \PARRAYTYNAME{}, whose values
  18938. can be either arrays or array proxies.
  18939. These new types come with a suite of new primitive operations.
  18940. \fi}
  18941. {\if\edition\racketEd
  18942. A tuple proxy is represented by a tuple containing three things: (1) the
  18943. underlying tuple, (2) a tuple of functions for casting elements that
  18944. are read from the tuple, and (3) a tuple of functions for casting
  18945. values to be written to the tuple. So, we define the following
  18946. abbreviation for the type of a tuple proxy:
  18947. \[
  18948. \itm{TupleProxy} (T\ldots \Rightarrow T'\ldots)
  18949. = (\ttm{Vector}~\PTUPLETY{T\ldots} ~R~ W) \to \PTUPLETY{T' \ldots})
  18950. \]
  18951. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  18952. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  18953. %
  18954. Next we describe each of the new primitive operations.
  18955. \begin{description}
  18956. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  18957. (\key{PVector} $T \ldots$)]\ \\
  18958. %
  18959. This operation brands a vector as a value of the \code{PVector} type.
  18960. \item[\code{inject-proxy} : $\itm{TupleProxy}(T\ldots \Rightarrow T'\ldots)$
  18961. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  18962. %
  18963. This operation brands a vector proxy as value of the \code{PVector} type.
  18964. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  18965. \BOOLTY{}] \ \\
  18966. %
  18967. This returns true if the value is a tuple proxy and false if it is a
  18968. real tuple.
  18969. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  18970. (\key{Vector} $T \ldots$)]\ \\
  18971. %
  18972. Assuming that the input is a tuple, this operation returns the
  18973. tuple.
  18974. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  18975. $\to$ \BOOLTY{}]\ \\
  18976. %
  18977. Given a tuple proxy, this operation returns the length of the tuple.
  18978. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  18979. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  18980. %
  18981. Given a tuple proxy, this operation returns the $i$th element of the
  18982. tuple.
  18983. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  18984. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\
  18985. Given a tuple proxy, this operation writes a value to the $i$th element
  18986. of the tuple.
  18987. \end{description}
  18988. \fi}
  18989. {\if\edition\pythonEd
  18990. %
  18991. A tuple proxy is represented by a tuple containing 1) the underlying
  18992. tuple and 2) a tuple of functions for casting elements that are read
  18993. from the tuple. The \LangPVec{} language includes the following AST
  18994. classes and primitive functions.
  18995. \begin{description}
  18996. \item[\code{InjectTuple}] \ \\
  18997. %
  18998. This AST node brands a tuple as a value of the \PTUPLETYNAME{} type.
  18999. \item[\code{InjectTupleProxy}]\ \\
  19000. %
  19001. This AST node brands a tuple proxy as value of the \PTUPLETYNAME{} type.
  19002. \item[\code{is\_tuple\_proxy}]\ \\
  19003. %
  19004. This primitive returns true if the value is a tuple proxy and false
  19005. if it is a tuple.
  19006. \item[\code{project\_tuple}]\ \\
  19007. %
  19008. Converts a tuple that is branded as \PTUPLETYNAME{}
  19009. back to a tuple.
  19010. \item[\code{proxy\_tuple\_len}]\ \\
  19011. %
  19012. Given a tuple proxy, returns the length of the underlying tuple.
  19013. \item[\code{proxy\_tuple\_load}]\ \\
  19014. %
  19015. Given a tuple proxy, returns the $i$th element of the underlying
  19016. tuple.
  19017. \end{description}
  19018. An array proxy is represented by a tuple containing 1) the underlying
  19019. array, 2) a function for casting elements that are read from the
  19020. array, and 3) a function for casting elements that are written to the
  19021. array. The \LangPVec{} language includes the following AST classes
  19022. and primitive functions.
  19023. \begin{description}
  19024. \item[\code{InjectList}]\ \\
  19025. This AST node brands an array as a value of the \PARRAYTYNAME{} type.
  19026. \item[\code{InjectListProxy}]\ \\
  19027. %
  19028. This AST node brands a array proxy as value of the \PARRAYTYNAME{} type.
  19029. \item[\code{is\_array\_proxy}]\ \\
  19030. %
  19031. Returns true if the value is a array proxy and false if it is an
  19032. array.
  19033. \item[\code{project\_array}]\ \\
  19034. %
  19035. Converts an array that is branded as \PARRAYTYNAME{} back to an
  19036. array.
  19037. \item[\code{proxy\_array\_len}]\ \\
  19038. %
  19039. Given a array proxy, returns the length of the underlying array.
  19040. \item[\code{proxy\_array\_load}]\ \\
  19041. %
  19042. Given a array proxy, returns the $i$th element of the underlying
  19043. array.
  19044. \item[\code{proxy\_array\_store}]\ \\
  19045. %
  19046. Given an array proxy, writes a value to the $i$th element of the
  19047. underlying array.
  19048. \end{description}
  19049. \fi}
  19050. Now we discuss the translation that differentiates tuples and arrays
  19051. from proxies. First, every type annotation in the program is
  19052. translated (recursively) to replace \TUPLETYPENAME{} with \PTUPLETYNAME{}.
  19053. Next, we insert uses of \PTUPLETYNAME{} operations in the appropriate
  19054. places. For example, we wrap every tuple creation with an
  19055. \racket{\code{inject-vector}}\python{\code{InjectTuple}}.
  19056. %
  19057. {\if\edition\racketEd
  19058. \begin{minipage}{0.96\textwidth}
  19059. \begin{lstlisting}
  19060. (vector |$e_1 \ldots e_n$|)
  19061. |$\Rightarrow$|
  19062. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  19063. \end{lstlisting}
  19064. \end{minipage}
  19065. \fi}
  19066. {\if\edition\pythonEd
  19067. \begin{lstlisting}
  19068. Tuple(|$e_1, \ldots, e_n$|)
  19069. |$\Rightarrow$|
  19070. InjectTuple(Tuple(|$e'_1, \ldots, e'_n$|))
  19071. \end{lstlisting}
  19072. \fi}
  19073. The \racket{\code{raw-vector}}\python{\code{RawTuple}}
  19074. AST node that we introduced in the previous
  19075. section does not get injected.
  19076. {\if\edition\racketEd
  19077. \begin{lstlisting}
  19078. (raw-vector |$e_1 \ldots e_n$|)
  19079. |$\Rightarrow$|
  19080. (vector |$e'_1 \ldots e'_n$|)
  19081. \end{lstlisting}
  19082. \fi}
  19083. {\if\edition\pythonEd
  19084. \begin{lstlisting}
  19085. RawTuple(|$e_1, \ldots, e_n$|)
  19086. |$\Rightarrow$|
  19087. Tuple(|$e'_1, \ldots, e'_n$|)
  19088. \end{lstlisting}
  19089. \fi}
  19090. The \racket{\code{vector-proxy}}\python{\code{TupleProxy}} AST
  19091. translates as follows:
  19092. %
  19093. {\if\edition\racketEd
  19094. \begin{lstlisting}
  19095. (vector-proxy |$e_1~e_2~e_3$|)
  19096. |$\Rightarrow$|
  19097. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  19098. \end{lstlisting}
  19099. \fi}
  19100. {\if\edition\pythonEd
  19101. \begin{lstlisting}
  19102. TupleProxy(|$e_1, e_2, T_1, T_2$|)
  19103. |$\Rightarrow$|
  19104. InjectTupleProxy(Tuple(|$e'_1,e'_2, T'_1, T'_2$|))
  19105. \end{lstlisting}
  19106. \fi}
  19107. We translate the element access operations into conditional
  19108. expressions that check whether the value is a proxy and then dispatch
  19109. to either the appropriate proxy tuple operation or the regular tuple
  19110. operation.
  19111. {\if\edition\racketEd
  19112. \begin{lstlisting}
  19113. (vector-ref |$e_1$| |$i$|)
  19114. |$\Rightarrow$|
  19115. (let ([|$v~e_1$|])
  19116. (if (proxy? |$v$|)
  19117. (proxy-vector-ref |$v$| |$i$|)
  19118. (vector-ref (project-vector |$v$|) |$i$|)
  19119. \end{lstlisting}
  19120. \fi}
  19121. %
  19122. Note that in the branch for a tuple, we must apply
  19123. \racket{\code{project-vector}}\python{\code{project\_tuple}} before reading
  19124. from the tuple.
  19125. The translation of array operations is similar to the ones for tuples.
  19126. \section{Reveal Casts}
  19127. \label{sec:reveal-casts-gradual}
  19128. {\if\edition\racketEd
  19129. Recall that the \code{reveal\_casts} pass
  19130. (section~\ref{sec:reveal-casts-Lany}) is responsible for lowering
  19131. \code{Inject} and \code{Project} into lower-level operations.
  19132. %
  19133. In particular, \code{Project} turns into a conditional expression that
  19134. inspects the tag and retrieves the underlying value. Here we need to
  19135. augment the translation of \code{Project} to handle the situation in which
  19136. the target type is \code{PVector}. Instead of using
  19137. \code{vector-length} we need to use \code{proxy-vector-length}.
  19138. \begin{lstlisting}
  19139. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  19140. |$\Rightarrow$|
  19141. (let |$\itm{tmp}$| |$e'$|
  19142. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  19143. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  19144. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  19145. (exit)))
  19146. \end{lstlisting}
  19147. \fi}
  19148. %
  19149. {\if\edition\pythonEd
  19150. Recall that the $\itm{tagof}$ function determines the bits used to
  19151. identify values of different types and it is used in the \code{reveal\_casts}
  19152. pass in the translation of \code{Project}. The \PTUPLETYNAME{} and
  19153. \PARRAYTYNAME{} types can be mapped to $010$ in binary ($2$ is
  19154. decimal), just like the tuple and array types.
  19155. \fi}
  19156. %
  19157. Otherwise, the only other changes are adding cases that copy the new AST nodes.
  19158. \section{Closure Conversion}
  19159. \label{sec:closure-conversion-gradual}
  19160. The auxiliary function that translates type annotations needs to be
  19161. updated to handle the \PTUPLETYNAME{}
  19162. \racket{type}\python{and \PARRAYTYNAME{} types}.
  19163. %
  19164. Otherwise, the only other changes are adding cases that copy the new
  19165. AST nodes.
  19166. \section{Select Instructions}
  19167. \label{sec:select-instructions-gradual}
  19168. Recall that the \code{select\_instructions} pass is responsible for
  19169. lowering the primitive operations into x86 instructions. So, we need
  19170. to translate the new operations on \PTUPLETYNAME{} \python{and \PARRAYTYNAME{}}
  19171. to x86. To do so, the first question we need to answer is how to
  19172. differentiate between tuple and tuples proxies\python{, and likewise for
  19173. arrays and array proxies}. We need just one bit to accomplish this;
  19174. we use the bit in position $63$ of the 64-bit tag at the front of
  19175. every tuple (see figure~\ref{fig:tuple-rep})\python{ or array
  19176. (section~\ref{sec:array-rep})}. So far, this bit has been set to $0$,
  19177. so for \racket{\code{inject-vector}}\python{\code{InjectTuple}} we leave
  19178. it that way.
  19179. {\if\edition\racketEd
  19180. \begin{lstlisting}
  19181. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  19182. |$\Rightarrow$|
  19183. movq |$e'_1$|, |$\itm{lhs'}$|
  19184. \end{lstlisting}
  19185. \fi}
  19186. {\if\edition\pythonEd
  19187. \begin{lstlisting}
  19188. Assign([|$\itm{lhs}$|], InjectTuple(|$e_1$|))
  19189. |$\Rightarrow$|
  19190. movq |$e'_1$|, |$\itm{lhs'}$|
  19191. \end{lstlisting}
  19192. \fi}
  19193. \python{The translation for \code{InjectList} is also a move instruction.}
  19194. \noindent On the other hand,
  19195. \racket{\code{inject-proxy}}\python{\code{InjectTupleProxy}} sets bit
  19196. $63$ to $1$.
  19197. %
  19198. {\if\edition\racketEd
  19199. \begin{lstlisting}
  19200. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  19201. |$\Rightarrow$|
  19202. movq |$e'_1$|, %r11
  19203. movq |$(1 << 63)$|, %rax
  19204. orq 0(%r11), %rax
  19205. movq %rax, 0(%r11)
  19206. movq %r11, |$\itm{lhs'}$|
  19207. \end{lstlisting}
  19208. \fi}
  19209. {\if\edition\pythonEd
  19210. \begin{lstlisting}
  19211. Assign([|$\itm{lhs}$|], InjectTupleProxy(|$e_1$|))
  19212. |$\Rightarrow$|
  19213. movq |$e'_1$|, %r11
  19214. movq |$(1 << 63)$|, %rax
  19215. orq 0(%r11), %rax
  19216. movq %rax, 0(%r11)
  19217. movq %r11, |$\itm{lhs'}$|
  19218. \end{lstlisting}
  19219. \fi}
  19220. \python{\noindent The translation for \code{InjectListProxy} should set bit $63$
  19221. of the tag and also bit $62$, to differentiate between arrays and tuples.}
  19222. The \racket{\code{proxy?} operation consumes}%
  19223. \python{\code{is\_tuple\_proxy} and \code{is\_array\_proxy} operations
  19224. consume}
  19225. the information so carefully stashed away by the injections. It
  19226. isolates bit $63$ to tell whether the value is a proxy.
  19227. %
  19228. {\if\edition\racketEd
  19229. \begin{lstlisting}
  19230. (Assign |$\itm{lhs}$| (Prim 'proxy? (list |$e_1$|)))
  19231. |$\Rightarrow$|
  19232. movq |$e_1'$|, %r11
  19233. movq 0(%r11), %rax
  19234. sarq $63, %rax
  19235. andq $1, %rax
  19236. movq %rax, |$\itm{lhs'}$|
  19237. \end{lstlisting}
  19238. \fi}%
  19239. %
  19240. {\if\edition\pythonEd
  19241. \begin{lstlisting}
  19242. Assign([|$\itm{lhs}$|], Call(Name('is_tuple_proxy'), [|$e_1$|]))
  19243. |$\Rightarrow$|
  19244. movq |$e_1'$|, %r11
  19245. movq 0(%r11), %rax
  19246. sarq $63, %rax
  19247. andq $1, %rax
  19248. movq %rax, |$\itm{lhs'}$|
  19249. \end{lstlisting}
  19250. \fi}%
  19251. %
  19252. The \racket{\code{project-vector} operation is}
  19253. \python{\code{project\_tuple} and \code{project\_array} operations are}
  19254. straightforward to translate, so we leave that to the reader.
  19255. Regarding the element access operations for tuples\python{ and arrays}, the
  19256. runtime provides procedures that implement them (they are recursive
  19257. functions!), so here we simply need to translate these tuple
  19258. operations into the appropriate function call. For example, here is
  19259. the translation for
  19260. \racket{\code{proxy-vector-ref}}\python{\code{proxy\_tuple\_load}}.
  19261. {\if\edition\racketEd
  19262. \begin{minipage}{0.96\textwidth}
  19263. \begin{lstlisting}
  19264. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  19265. |$\Rightarrow$|
  19266. movq |$e_1'$|, %rdi
  19267. movq |$e_2'$|, %rsi
  19268. callq proxy_vector_ref
  19269. movq %rax, |$\itm{lhs'}$|
  19270. \end{lstlisting}
  19271. \end{minipage}
  19272. \fi}
  19273. {\if\edition\pythonEd
  19274. \begin{lstlisting}
  19275. Assign([|$\itm{lhs}$|], Call(Name('proxy_tuple_load'), [|$e_1$|, |$e_2$|]))
  19276. |$\Rightarrow$|
  19277. movq |$e_1'$|, %rdi
  19278. movq |$e_2'$|, %rsi
  19279. callq proxy_vector_ref
  19280. movq %rax, |$\itm{lhs'}$|
  19281. \end{lstlisting}
  19282. \fi}
  19283. {\if\edition\pythonEd
  19284. % TODO: revisit the names vecof for python -Jeremy
  19285. We translate
  19286. \code{proxy\_array\_load} to \code{proxy\_vecof\_ref},
  19287. \code{proxy\_array\_store} to \code{proxy\_vecof\_set}, and
  19288. \code{proxy\_array\_len} to \code{proxy\_vecof\_length}.
  19289. \fi}
  19290. We have another batch of operations to deal with: those for the
  19291. \CANYTY{} type. Recall that we generate an
  19292. \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}} when
  19293. there is a element access on something of type \CANYTY{}, and
  19294. similarly for
  19295. \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}} and
  19296. \racket{\code{any-vector-length}}\python{\code{any\_len}}. In
  19297. section~\ref{sec:select-Lany} we selected instructions for these
  19298. operations on the basis of the idea that the underlying value was a tuple or
  19299. array. But in the current setting, the underlying value is of type
  19300. \PTUPLETYNAME{}\python{ or \PARRAYTYNAME{}}. We have added three runtime
  19301. functions to deal with this:
  19302. \code{proxy\_vector\_ref},
  19303. \code{proxy\_vector\_set}, and
  19304. \code{proxy\_vector\_length}, that inspect bit $62$ of the tag
  19305. to determine whether the value is a proxy, and then
  19306. dispatches to the the appropriate code.
  19307. %
  19308. So \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}}
  19309. can be translated as follows.
  19310. We begin by projecting the underlying value out of the tagged value and
  19311. then call the \code{proxy\_vector\_ref} procedure in the runtime.
  19312. {\if\edition\racketEd
  19313. \begin{lstlisting}
  19314. (Assign |$\itm{lhs}$| (Prim 'any-vec-ref (list |$e_1$| |$e_2$|)))
  19315. |$\Rightarrow$|
  19316. movq |$\neg 111$|, %rdi
  19317. andq |$e_1'$|, %rdi
  19318. movq |$e_2'$|, %rsi
  19319. callq proxy_vector_ref
  19320. movq %rax, |$\itm{lhs'}$|
  19321. \end{lstlisting}
  19322. \fi}
  19323. {\if\edition\pythonEd
  19324. \begin{lstlisting}
  19325. Assign([|$\itm{lhs}$|], Call(Name('any_load_unsafe'), [|$e_1$|, |$e_2$|]))
  19326. |$\Rightarrow$|
  19327. movq |$\neg 111$|, %rdi
  19328. andq |$e_1'$|, %rdi
  19329. movq |$e_2'$|, %rsi
  19330. callq proxy_vector_ref
  19331. movq %rax, |$\itm{lhs'}$|
  19332. \end{lstlisting}
  19333. \fi}
  19334. \noindent The \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}}
  19335. and \racket{\code{any-vector-length}}\python{\code{any\_len}} operators
  19336. are translated in a similar way. Alternatively, you could generate
  19337. instructions to open-code
  19338. the \code{proxy\_vector\_ref}, \code{proxy\_vector\_set},
  19339. and \code{proxy\_vector\_length} functions.
  19340. \begin{exercise}\normalfont\normalsize
  19341. Implement a compiler for the gradually typed \LangGrad{} language by
  19342. extending and adapting your compiler for \LangLam{}. Create ten new
  19343. partially typed test programs. In addition to testing with these
  19344. new programs, test your compiler on all the tests for \LangLam{}
  19345. and for \LangDyn{}.
  19346. %
  19347. \racket{Sometimes you may get a type checking error on the
  19348. \LangDyn{} programs, but you can adapt them by inserting a cast to
  19349. the \CANYTY{} type around each subexpression that has caused a type
  19350. error. Although \LangDyn{} does not have explicit casts, you can
  19351. induce one by wrapping the subexpression \code{e} with a call to
  19352. an unannotated identity function, as follows: \code{((lambda (x) x) e)}.}
  19353. %
  19354. \python{Sometimes you may get a type checking error on the
  19355. \LangDyn{} programs but you can adapt them by inserting a
  19356. temporary variable of type \CANYTY{} that is initialized with the
  19357. troublesome expression.}
  19358. \end{exercise}
  19359. \begin{figure}[p]
  19360. \begin{tcolorbox}[colback=white]
  19361. {\if\edition\racketEd
  19362. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  19363. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  19364. \node (Lgradual2) at (4,4) {\large \LangCast{}};
  19365. \node (Lgradual3) at (8,4) {\large \LangProxy{}};
  19366. \node (Lgradual4) at (12,4) {\large \LangPVec{}};
  19367. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  19368. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  19369. \node (Llambdapp) at (4,2) {\large \LangPVecFunRef{}};
  19370. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  19371. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  19372. %\node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  19373. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  19374. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  19375. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  19376. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  19377. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  19378. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  19379. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  19380. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  19381. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  19382. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  19383. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  19384. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  19385. \path[->,bend left=15] (Lgradual) edge [above] node
  19386. {\ttfamily\footnotesize cast\_insert} (Lgradual2);
  19387. \path[->,bend left=15] (Lgradual2) edge [above] node
  19388. {\ttfamily\footnotesize lower\_casts} (Lgradual3);
  19389. \path[->,bend left=15] (Lgradual3) edge [above] node
  19390. {\ttfamily\footnotesize differentiate\_proxies} (Lgradual4);
  19391. \path[->,bend left=15] (Lgradual4) edge [left] node
  19392. {\ttfamily\footnotesize shrink} (Lgradualr);
  19393. \path[->,bend left=15] (Lgradualr) edge [above] node
  19394. {\ttfamily\footnotesize uniquify} (Lgradualp);
  19395. \path[->,bend right=15] (Lgradualp) edge [above] node
  19396. {\ttfamily\footnotesize reveal\_functions} (Llambdapp);
  19397. %% \path[->,bend left=15] (Llambdaproxy-4) edge [left] node
  19398. %% {\ttfamily\footnotesize resolve} (Lgradualr);
  19399. \path[->,bend right=15] (Llambdapp) edge [above] node
  19400. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-4);
  19401. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  19402. {\ttfamily\footnotesize convert\_assignments} (Llambdaproxy-5);
  19403. \path[->,bend right=10] (Llambdaproxy-5) edge [above] node
  19404. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  19405. \path[->,bend left=15] (F1-2) edge [above] node
  19406. {\ttfamily\footnotesize limit\_functions} (F1-3);
  19407. \path[->,bend left=15] (F1-3) edge [left] node
  19408. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  19409. \path[->,bend left=15] (F1-4) edge [below] node
  19410. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  19411. \path[->,bend right=15] (F1-5) edge [above] node
  19412. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  19413. \path[->,bend right=15] (F1-6) edge [above] node
  19414. {\ttfamily\footnotesize explicate\_control} (C3-2);
  19415. \path[->,bend right=15] (C3-2) edge [right] node
  19416. {\ttfamily\footnotesize select\_instructions} (x86-2);
  19417. \path[->,bend right=15] (x86-2) edge [right] node
  19418. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  19419. \path[->,bend right=15] (x86-2-1) edge [below] node
  19420. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  19421. \path[->,bend right=15] (x86-2-2) edge [right] node
  19422. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  19423. \path[->,bend left=15] (x86-3) edge [above] node
  19424. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  19425. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  19426. \end{tikzpicture}
  19427. \fi}
  19428. {\if\edition\pythonEd
  19429. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.80]
  19430. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  19431. \node (Lgradual2) at (4,4) {\large \LangGrad{}};
  19432. \node (Lgradual3) at (8,4) {\large \LangCast{}};
  19433. \node (Lgradual4) at (12,4) {\large \LangProxy{}};
  19434. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  19435. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  19436. \node (Llambdapp) at (4,2) {\large \LangPVec{}};
  19437. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  19438. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  19439. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  19440. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  19441. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  19442. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  19443. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  19444. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  19445. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  19446. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  19447. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  19448. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  19449. \path[->,bend left=15] (Lgradual) edge [above] node
  19450. {\ttfamily\footnotesize shrink} (Lgradual2);
  19451. \path[->,bend left=15] (Lgradual2) edge [above] node
  19452. {\ttfamily\footnotesize uniquify} (Lgradual3);
  19453. \path[->,bend left=15] (Lgradual3) edge [above] node
  19454. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  19455. \path[->,bend left=15] (Lgradual4) edge [left] node
  19456. {\ttfamily\footnotesize resolve} (Lgradualr);
  19457. \path[->,bend left=15] (Lgradualr) edge [below] node
  19458. {\ttfamily\footnotesize cast\_insert} (Lgradualp);
  19459. \path[->,bend right=15] (Lgradualp) edge [above] node
  19460. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  19461. \path[->,bend right=15] (Llambdapp) edge [above] node
  19462. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  19463. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  19464. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  19465. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  19466. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  19467. \path[->,bend left=15] (F1-1) edge [above] node
  19468. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  19469. \path[->,bend left=15] (F1-2) edge [above] node
  19470. {\ttfamily\footnotesize limit\_functions} (F1-3);
  19471. \path[->,bend left=15] (F1-3) edge [right] node
  19472. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  19473. \path[->,bend right=15] (F1-5) edge [above] node
  19474. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  19475. \path[->,bend right=15] (F1-6) edge [above] node
  19476. {\ttfamily\footnotesize explicate\_control} (C3-2);
  19477. \path[->,bend right=15] (C3-2) edge [right] node
  19478. {\ttfamily\footnotesize select\_instructions} (x86-2);
  19479. \path[->,bend right=15] (x86-2) edge [below] node
  19480. {\ttfamily\footnotesize assign\_homes} (x86-3);
  19481. \path[->,bend right=15] (x86-3) edge [below] node
  19482. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  19483. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  19484. \end{tikzpicture}
  19485. \fi}
  19486. \end{tcolorbox}
  19487. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  19488. \label{fig:Lgradual-passes}
  19489. \end{figure}
  19490. Figure~\ref{fig:Lgradual-passes} provides an overview of the passes
  19491. needed for the compilation of \LangGrad{}.
  19492. \section{Further Reading}
  19493. This chapter just scratches the surface of gradual typing. The basic
  19494. approach described here is missing two key ingredients that one would
  19495. want in a implementation of gradual typing: blame
  19496. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  19497. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  19498. problem addressed by blame tracking is that when a cast on a
  19499. higher-order value fails, it often does so at a point in the program
  19500. that is far removed from the original cast. Blame tracking is a
  19501. technique for propagating extra information through casts and proxies
  19502. so that when a cast fails, the error message can point back to the
  19503. original location of the cast in the source program.
  19504. The problem addressed by space-efficient casts also relates to
  19505. higher-order casts. It turns out that in partially typed programs, a
  19506. function or tuple can flow through a great many casts at runtime. With
  19507. the approach described in this chapter, each cast adds another
  19508. \code{lambda} wrapper or a tuple proxy. Not only does this take up
  19509. considerable space, but it also makes the function calls and tuple
  19510. operations slow. For example, a partially typed version of quicksort
  19511. could, in the worst case, build a chain of proxies of length $O(n)$
  19512. around the tuple, changing the overall time complexity of the
  19513. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  19514. solution to this problem by representing casts using the coercion
  19515. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  19516. long chains of proxies by compressing them into a concise normal
  19517. form. \citet{Siek:2015ab} give an algorithm for compressing coercions,
  19518. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  19519. the Grift compiler:
  19520. \begin{center}
  19521. \url{https://github.com/Gradual-Typing/Grift}
  19522. \end{center}
  19523. There are also interesting interactions between gradual typing and
  19524. other language features, such as generics, information-flow types, and
  19525. type inference, to name a few. We recommend to the reader the
  19526. online gradual typing bibliography for more material:
  19527. \begin{center}
  19528. \url{http://samth.github.io/gradual-typing-bib/}
  19529. \end{center}
  19530. % TODO: challenge problem:
  19531. % type analysis and type specialization?
  19532. % coercions?
  19533. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  19534. \chapter{Generics}
  19535. \label{ch:Lpoly}
  19536. \index{subject}{parametric polymorphism}
  19537. \index{subject}{generics}
  19538. \setcounter{footnote}{0}
  19539. This chapter studies the compilation of
  19540. generics\index{subject}{generics} (aka parametric
  19541. polymorphism\index{subject}{parametric polymorphism}), compiling the
  19542. \LangPoly{} subset of \racket{Typed Racket}\python{Python}. Generics
  19543. enable programmers to make code more reusable by parameterizing
  19544. functions and data structures with respect to the types on which they
  19545. operate. For example, figure~\ref{fig:map-poly} revisits the
  19546. \code{map} example and this time gives it a more fitting type. This
  19547. \code{map} function is parameterized with respect to the element type
  19548. of the tuple. The type of \code{map} is the following generic type
  19549. specified by the \code{All} type with parameter \code{T}:
  19550. \if\edition\racketEd
  19551. \begin{lstlisting}
  19552. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  19553. \end{lstlisting}
  19554. \fi
  19555. \if\edition\pythonEd
  19556. \begin{lstlisting}
  19557. All[[T], Callable[[Callable[[T],T], tuple[T,T]], tuple[T,T]]]
  19558. \end{lstlisting}
  19559. \fi
  19560. %
  19561. The idea is that \code{map} can be used at \emph{all} choices of a
  19562. type for parameter \code{T}. In the example shown in
  19563. figure~\ref{fig:map-poly} we apply \code{map} to a tuple of integers,
  19564. implicitly choosing \racket{\code{Integer}}\python{\code{int}} for
  19565. \code{T}, but we could have just as well applied \code{map} to a tuple
  19566. of Booleans.
  19567. %
  19568. A \emph{monomorphic} function is simply one that is not generic.
  19569. %
  19570. We use the term \emph{instantiation} for the process (within the
  19571. language implementation) of turning a generic function into a
  19572. monomorphic one, where the type parameters have been replaced by
  19573. types.
  19574. \if\edition\pythonEd
  19575. %
  19576. In Python, when writing a generic function such as \code{map}, one
  19577. does not explicitly write down its generic type (using \code{All}).
  19578. Instead, the fact that it is generic is implied by the use of type
  19579. variables (such as \code{T}) in the type annotations of its
  19580. parameters.
  19581. %
  19582. \fi
  19583. \begin{figure}[tbp]
  19584. % poly_test_2.rkt
  19585. \begin{tcolorbox}[colback=white]
  19586. \if\edition\racketEd
  19587. \begin{lstlisting}
  19588. (: map (All (T) ((T -> T) (Vector T T) -> (Vector T T))))
  19589. (define (map f v)
  19590. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19591. (define (inc [x : Integer]) : Integer (+ x 1))
  19592. (vector-ref (map inc (vector 0 41)) 1)
  19593. \end{lstlisting}
  19594. \fi
  19595. \if\edition\pythonEd
  19596. \begin{lstlisting}
  19597. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  19598. return (f(tup[0]), f(tup[1]))
  19599. def add1(x : int) -> int:
  19600. return x + 1
  19601. t = map(add1, (0, 41))
  19602. print(t[1])
  19603. \end{lstlisting}
  19604. \fi
  19605. \end{tcolorbox}
  19606. \caption{A generic version of the \code{map} function.}
  19607. \label{fig:map-poly}
  19608. \end{figure}
  19609. Figure~\ref{fig:Lpoly-concrete-syntax} presents the definition of the
  19610. concrete syntax of \LangPoly{}, and figure~\ref{fig:Lpoly-syntax}
  19611. shows the definition of the abstract syntax.
  19612. %
  19613. \if\edition\racketEd
  19614. We add a second form for function definitions in which a type
  19615. declaration comes before the \code{define}. In the abstract syntax,
  19616. the return type in the \code{Def} is \CANYTY{}, but that should be
  19617. ignored in favor of the return type in the type declaration. (The
  19618. \CANYTY{} comes from using the same parser as discussed in
  19619. chapter~\ref{ch:Ldyn}.) The presence of a type declaration
  19620. enables the use of an \code{All} type for a function, thereby making
  19621. it generic.
  19622. \fi
  19623. %
  19624. The grammar for types is extended to include the type of a generic
  19625. (\code{All}) and type variables\python{ (\code{GenericVar} in the
  19626. abstract syntax)}.
  19627. \newcommand{\LpolyGrammarRacket}{
  19628. \begin{array}{lcl}
  19629. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  19630. \Def &::=& \LP\key{:}~\Var~\Type\RP \\
  19631. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP
  19632. \end{array}
  19633. }
  19634. \newcommand{\LpolyASTRacket}{
  19635. \begin{array}{lcl}
  19636. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  19637. \Def &::=& \DECL{\Var}{\Type} \\
  19638. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp}
  19639. \end{array}
  19640. }
  19641. \newcommand{\LpolyGrammarPython}{
  19642. \begin{array}{lcl}
  19643. \Type &::=& \key{All}\LS \LS\Var\ldots\RS,\Type\RS \MID \Var
  19644. \end{array}
  19645. }
  19646. \newcommand{\LpolyASTPython}{
  19647. \begin{array}{lcl}
  19648. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP
  19649. \MID \key{GenericVar}\LP\Var\RP
  19650. \end{array}
  19651. }
  19652. \begin{figure}[tp]
  19653. \centering
  19654. \begin{tcolorbox}[colback=white]
  19655. \footnotesize
  19656. \if\edition\racketEd
  19657. \[
  19658. \begin{array}{l}
  19659. \gray{\LintGrammarRacket{}} \\ \hline
  19660. \gray{\LvarGrammarRacket{}} \\ \hline
  19661. \gray{\LifGrammarRacket{}} \\ \hline
  19662. \gray{\LwhileGrammarRacket} \\ \hline
  19663. \gray{\LtupGrammarRacket} \\ \hline
  19664. \gray{\LfunGrammarRacket} \\ \hline
  19665. \gray{\LlambdaGrammarRacket} \\ \hline
  19666. \LpolyGrammarRacket \\
  19667. \begin{array}{lcl}
  19668. \LangPoly{} &::=& \Def \ldots ~ \Exp
  19669. \end{array}
  19670. \end{array}
  19671. \]
  19672. \fi
  19673. \if\edition\pythonEd
  19674. \[
  19675. \begin{array}{l}
  19676. \gray{\LintGrammarPython{}} \\ \hline
  19677. \gray{\LvarGrammarPython{}} \\ \hline
  19678. \gray{\LifGrammarPython{}} \\ \hline
  19679. \gray{\LwhileGrammarPython} \\ \hline
  19680. \gray{\LtupGrammarPython} \\ \hline
  19681. \gray{\LfunGrammarPython} \\ \hline
  19682. \gray{\LlambdaGrammarPython} \\\hline
  19683. \LpolyGrammarPython \\
  19684. \begin{array}{lcl}
  19685. \LangPoly{} &::=& \Def\ldots \Stmt\ldots
  19686. \end{array}
  19687. \end{array}
  19688. \]
  19689. \fi
  19690. \end{tcolorbox}
  19691. \caption{The concrete syntax of \LangPoly{}, extending \LangLam{}
  19692. (figure~\ref{fig:Llam-concrete-syntax}).}
  19693. \label{fig:Lpoly-concrete-syntax}
  19694. \end{figure}
  19695. \begin{figure}[tp]
  19696. \centering
  19697. \begin{tcolorbox}[colback=white]
  19698. \footnotesize
  19699. \if\edition\racketEd
  19700. \[
  19701. \begin{array}{l}
  19702. \gray{\LintOpAST} \\ \hline
  19703. \gray{\LvarASTRacket{}} \\ \hline
  19704. \gray{\LifASTRacket{}} \\ \hline
  19705. \gray{\LwhileASTRacket{}} \\ \hline
  19706. \gray{\LtupASTRacket{}} \\ \hline
  19707. \gray{\LfunASTRacket} \\ \hline
  19708. \gray{\LlambdaASTRacket} \\ \hline
  19709. \LpolyASTRacket \\
  19710. \begin{array}{lcl}
  19711. \LangPoly{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  19712. \end{array}
  19713. \end{array}
  19714. \]
  19715. \fi
  19716. \if\edition\pythonEd
  19717. \[
  19718. \begin{array}{l}
  19719. \gray{\LintASTPython} \\ \hline
  19720. \gray{\LvarASTPython{}} \\ \hline
  19721. \gray{\LifASTPython{}} \\ \hline
  19722. \gray{\LwhileASTPython{}} \\ \hline
  19723. \gray{\LtupASTPython{}} \\ \hline
  19724. \gray{\LfunASTPython} \\ \hline
  19725. \gray{\LlambdaASTPython} \\ \hline
  19726. \LpolyASTPython \\
  19727. \begin{array}{lcl}
  19728. \LangPoly{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  19729. \end{array}
  19730. \end{array}
  19731. \]
  19732. \fi
  19733. \end{tcolorbox}
  19734. \caption{The abstract syntax of \LangPoly{}, extending \LangLam{}
  19735. (figure~\ref{fig:Llam-syntax}).}
  19736. \label{fig:Lpoly-syntax}
  19737. \end{figure}
  19738. By including the \code{All} type in the $\Type$ nonterminal of the
  19739. grammar we choose to make generics first class, which has interesting
  19740. repercussions on the compiler.\footnote{The Python \code{typing} library does
  19741. not include syntax for the \code{All} type. It is inferred for functions whose
  19742. type annotations contain type variables.} Many languages with generics, such as
  19743. C++~\citep{stroustrup88:_param_types} and Standard
  19744. ML~\citep{Milner:1990fk}, support only second-class generics, so it
  19745. may be helpful to see an example of first-class generics in action. In
  19746. figure~\ref{fig:apply-twice} we define a function \code{apply\_twice}
  19747. whose parameter is a generic function. Indeed, because the grammar for
  19748. $\Type$ includes the \code{All} type, a generic function may also be
  19749. returned from a function or stored inside a tuple. The body of
  19750. \code{apply\_twice} applies the generic function \code{f} to a Boolean
  19751. and also to an integer, which would not be possible if \code{f} were
  19752. not generic.
  19753. \begin{figure}[tbp]
  19754. \begin{tcolorbox}[colback=white]
  19755. \if\edition\racketEd
  19756. \begin{lstlisting}
  19757. (: apply_twice ((All (U) (U -> U)) -> Integer))
  19758. (define (apply_twice f)
  19759. (if (f #t) (f 42) (f 777)))
  19760. (: id (All (T) (T -> T)))
  19761. (define (id x) x)
  19762. (apply_twice id)
  19763. \end{lstlisting}
  19764. \fi
  19765. \if\edition\pythonEd
  19766. \begin{lstlisting}
  19767. def apply_twice(f : All[[U], Callable[[U],U]]) -> int:
  19768. if f(True):
  19769. return f(42)
  19770. else:
  19771. return f(777)
  19772. def id(x: T) -> T:
  19773. return x
  19774. print(apply_twice(id))
  19775. \end{lstlisting}
  19776. \fi
  19777. \end{tcolorbox}
  19778. \caption{An example illustrating first-class generics.}
  19779. \label{fig:apply-twice}
  19780. \end{figure}
  19781. The type checker for \LangPoly{} shown in
  19782. figure~\ref{fig:type-check-Lpoly} has several new responsibilities
  19783. (compared to \LangLam{}) which we discuss in the following paragraphs.
  19784. \if\edition\pythonEd
  19785. %
  19786. Regarding function definitions, if the type annotations on its
  19787. parameters contain generic variables, then the function is generic and
  19788. therefore its type is an \code{All} type wrapped around a function
  19789. type. Otherwise the function is monomorphic and its type is simply
  19790. a function type.
  19791. %
  19792. \fi
  19793. The type checking of a function application is extended to handle the
  19794. case in which the operator expression is a generic function. In that case
  19795. the type arguments are deduced by matching the type of the parameters
  19796. with the types of the arguments.
  19797. %
  19798. The \code{match\_types} auxiliary function
  19799. (figure~\ref{fig:type-check-Lpoly-aux}) carries out this deduction by
  19800. recursively descending through a parameter type \code{param\_ty} and
  19801. the corresponding argument type \code{arg\_ty}, making sure that they
  19802. are equal except when there is a type parameter in the parameter
  19803. type. Upon encountering a type parameter for the first time, the
  19804. algorithm deduces an association of the type parameter to the
  19805. corresponding part of the argument type. If it is not the first time
  19806. that the type parameter has been encountered, the algorithm looks up
  19807. its deduced type and makes sure that it is equal to the corresponding
  19808. part of the argument type. The return type of the application is the
  19809. return type of the generic function with the type parameters
  19810. replaced by the deduced type arguments, using the
  19811. \code{substitute\_type} auxiliary function, which is also listed in
  19812. figure~\ref{fig:type-check-Lpoly-aux}.
  19813. The type checker extends type equality to handle the \code{All} type.
  19814. This is not quite as simple as for other types, such as function and
  19815. tuple types, because two \code{All} types can be syntactically
  19816. different even though they are equivalent. For example,
  19817. %
  19818. \racket{\code{(All (T) (T -> T))}}
  19819. \python{\code{All[[T], Callable[[T], T]]}}
  19820. is equivalent to
  19821. \racket{\code{(All (U) (U -> U))}}
  19822. \python{\code{All[[U], Callable[[U], U]]}}.
  19823. %
  19824. Two generic types should be considered equal if they differ only in
  19825. the choice of the names of the type parameters. The definition of type
  19826. equality shown in figure~\ref{fig:type-check-Lpoly-aux} renames the type
  19827. parameters in one type to match the type parameters of the other type.
  19828. \if\edition\racketEd
  19829. %
  19830. The type checker also ensures that only defined type variables appear
  19831. in type annotations. The \code{check\_well\_formed} function for which
  19832. the definition is shown in figure~\ref{fig:well-formed-types}
  19833. recursively inspects a type, making sure that each type variable has
  19834. been defined.
  19835. %
  19836. \fi
  19837. \begin{figure}[tbp]
  19838. \begin{tcolorbox}[colback=white]
  19839. \if\edition\racketEd
  19840. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  19841. (define type-check-poly-class
  19842. (class type-check-Llambda-class
  19843. (super-new)
  19844. (inherit check-type-equal?)
  19845. (define/override (type-check-apply env e1 es)
  19846. (define-values (e^ ty) ((type-check-exp env) e1))
  19847. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  19848. ((type-check-exp env) e)))
  19849. (match ty
  19850. [`(,ty^* ... -> ,rt)
  19851. (for ([arg-ty ty*] [param-ty ty^*])
  19852. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  19853. (values e^ es^ rt)]
  19854. [`(All ,xs (,tys ... -> ,rt))
  19855. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  19856. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  19857. (match_types env^^ param-ty arg-ty)))
  19858. (define targs
  19859. (for/list ([x xs])
  19860. (match (dict-ref env^^ x (lambda () #f))
  19861. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  19862. x (Apply e1 es))]
  19863. [ty ty])))
  19864. (values (Inst e^ ty targs) es^ (substitute_type env^^ rt))]
  19865. [else (error 'type-check "expected a function, not ~a" ty)]))
  19866. (define/override ((type-check-exp env) e)
  19867. (match e
  19868. [(Lambda `([,xs : ,Ts] ...) rT body)
  19869. (for ([T Ts]) ((check_well_formed env) T))
  19870. ((check_well_formed env) rT)
  19871. ((super type-check-exp env) e)]
  19872. [(HasType e1 ty)
  19873. ((check_well_formed env) ty)
  19874. ((super type-check-exp env) e)]
  19875. [else ((super type-check-exp env) e)]))
  19876. (define/override ((type-check-def env) d)
  19877. (verbose 'type-check "poly/def" d)
  19878. (match d
  19879. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  19880. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  19881. (for ([p ps]) ((check_well_formed ts-env) p))
  19882. ((check_well_formed ts-env) rt)
  19883. (define new-env (append ts-env (map cons xs ps) env))
  19884. (define-values (body^ ty^) ((type-check-exp new-env) body))
  19885. (check-type-equal? ty^ rt body)
  19886. (Generic ts (Def f p:t* rt info body^))]
  19887. [else ((super type-check-def env) d)]))
  19888. (define/override (type-check-program p)
  19889. (match p
  19890. [(Program info body)
  19891. (type-check-program (ProgramDefsExp info '() body))]
  19892. [(ProgramDefsExp info ds body)
  19893. (define ds^ (combine-decls-defs ds))
  19894. (define new-env (for/list ([d ds^])
  19895. (cons (def-name d) (fun-def-type d))))
  19896. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  19897. (define-values (body^ ty) ((type-check-exp new-env) body))
  19898. (check-type-equal? ty 'Integer body)
  19899. (ProgramDefsExp info ds^^ body^)]))
  19900. ))
  19901. \end{lstlisting}
  19902. \fi
  19903. \if\edition\pythonEd
  19904. \begin{lstlisting}[basicstyle=\ttfamily\small]
  19905. def type_check_exp(self, e, env):
  19906. match e:
  19907. case Call(Name(f), args) if f in builtin_functions:
  19908. return super().type_check_exp(e, env)
  19909. case Call(func, args):
  19910. func_t = self.type_check_exp(func, env)
  19911. func.has_type = func_t
  19912. match func_t:
  19913. case AllType(ps, FunctionType(p_tys, rt)):
  19914. for arg in args:
  19915. arg.has_type = self.type_check_exp(arg, env)
  19916. arg_tys = [arg.has_type for arg in args]
  19917. deduced = {}
  19918. for (p, a) in zip(p_tys, arg_tys):
  19919. self.match_types(p, a, deduced, e)
  19920. return self.substitute_type(rt, deduced)
  19921. case _:
  19922. return super().type_check_exp(e, env)
  19923. case _:
  19924. return super().type_check_exp(e, env)
  19925. def type_check(self, p):
  19926. match p:
  19927. case Module(body):
  19928. env = {}
  19929. for s in body:
  19930. match s:
  19931. case FunctionDef(name, params, bod, dl, returns, comment):
  19932. params_t = [t for (x,t) in params]
  19933. ty_params = set()
  19934. for t in params_t:
  19935. ty_params |$\mid$|= self.generic_variables(t)
  19936. ty = FunctionType(params_t, returns)
  19937. if len(ty_params) > 0:
  19938. ty = AllType(list(ty_params), ty)
  19939. env[name] = ty
  19940. self.check_stmts(body, IntType(), env)
  19941. case _:
  19942. raise Exception('type_check: unexpected ' + repr(p))
  19943. \end{lstlisting}
  19944. \fi
  19945. \end{tcolorbox}
  19946. \caption{Type checker for the \LangPoly{} language.}
  19947. \label{fig:type-check-Lpoly}
  19948. \end{figure}
  19949. \begin{figure}[tbp]
  19950. \begin{tcolorbox}[colback=white]
  19951. \if\edition\racketEd
  19952. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  19953. (define/override (type-equal? t1 t2)
  19954. (match* (t1 t2)
  19955. [(`(All ,xs ,T1) `(All ,ys ,T2))
  19956. (define env (map cons xs ys))
  19957. (type-equal? (substitute_type env T1) T2)]
  19958. [(other wise)
  19959. (super type-equal? t1 t2)]))
  19960. (define/public (match_types env pt at)
  19961. (match* (pt at)
  19962. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  19963. [('Void 'Void) env] [('Any 'Any) env]
  19964. [(`(Vector ,pts ...) `(Vector ,ats ...))
  19965. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  19966. (match_types env^ pt1 at1))]
  19967. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  19968. (define env^ (match_types env prt art))
  19969. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  19970. (match_types env^^ pt1 at1))]
  19971. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  19972. (define env^ (append (map cons pxs axs) env))
  19973. (match_types env^ pt1 at1)]
  19974. [((? symbol? x) at)
  19975. (match (dict-ref env x (lambda () #f))
  19976. [#f (error 'type-check "undefined type variable ~a" x)]
  19977. ['Type (cons (cons x at) env)]
  19978. [t^ (check-type-equal? at t^ 'matching) env])]
  19979. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  19980. (define/public (substitute_type env pt)
  19981. (match pt
  19982. ['Integer 'Integer] ['Boolean 'Boolean]
  19983. ['Void 'Void] ['Any 'Any]
  19984. [`(Vector ,ts ...)
  19985. `(Vector ,@(for/list ([t ts]) (substitute_type env t)))]
  19986. [`(,ts ... -> ,rt)
  19987. `(,@(for/list ([t ts]) (substitute_type env t)) -> ,(substitute_type env rt))]
  19988. [`(All ,xs ,t)
  19989. `(All ,xs ,(substitute_type (append (map cons xs xs) env) t))]
  19990. [(? symbol? x) (dict-ref env x)]
  19991. [else (error 'type-check "expected a type not ~a" pt)]))
  19992. (define/public (combine-decls-defs ds)
  19993. (match ds
  19994. ['() '()]
  19995. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  19996. (unless (equal? name f)
  19997. (error 'type-check "name mismatch, ~a != ~a" name f))
  19998. (match type
  19999. [`(All ,xs (,ps ... -> ,rt))
  20000. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  20001. (cons (Generic xs (Def name params^ rt info body))
  20002. (combine-decls-defs ds^))]
  20003. [`(,ps ... -> ,rt)
  20004. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  20005. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  20006. [else (error 'type-check "expected a function type, not ~a" type) ])]
  20007. [`(,(Def f params rt info body) . ,ds^)
  20008. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  20009. \end{lstlisting}
  20010. \fi
  20011. \if\edition\pythonEd
  20012. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20013. def match_types(self, param_ty, arg_ty, deduced, e):
  20014. match (param_ty, arg_ty):
  20015. case (GenericVar(id), _):
  20016. if id in deduced:
  20017. self.check_type_equal(arg_ty, deduced[id], e)
  20018. else:
  20019. deduced[id] = arg_ty
  20020. case (AllType(ps, ty), AllType(arg_ps, arg_ty)):
  20021. rename = {ap:p for (ap,p) in zip(arg_ps, ps)}
  20022. new_arg_ty = self.substitute_type(arg_ty, rename)
  20023. self.match_types(ty, new_arg_ty, deduced, e)
  20024. case (TupleType(ps), TupleType(ts)):
  20025. for (p, a) in zip(ps, ts):
  20026. self.match_types(p, a, deduced, e)
  20027. case (ListType(p), ListType(a)):
  20028. self.match_types(p, a, deduced, e)
  20029. case (FunctionType(pps, prt), FunctionType(aps, art)):
  20030. for (pp, ap) in zip(pps, aps):
  20031. self.match_types(pp, ap, deduced, e)
  20032. self.match_types(prt, art, deduced, e)
  20033. case (IntType(), IntType()):
  20034. pass
  20035. case (BoolType(), BoolType()):
  20036. pass
  20037. case _:
  20038. raise Exception('mismatch: ' + str(param_ty) + '\n!= ' + str(arg_ty))
  20039. def substitute_type(self, ty, var_map):
  20040. match ty:
  20041. case GenericVar(id):
  20042. return var_map[id]
  20043. case AllType(ps, ty):
  20044. new_map = copy.deepcopy(var_map)
  20045. for p in ps:
  20046. new_map[p] = GenericVar(p)
  20047. return AllType(ps, self.substitute_type(ty, new_map))
  20048. case TupleType(ts):
  20049. return TupleType([self.substitute_type(t, var_map) for t in ts])
  20050. case ListType(ty):
  20051. return ListType(self.substitute_type(ty, var_map))
  20052. case FunctionType(pts, rt):
  20053. return FunctionType([self.substitute_type(p, var_map) for p in pts],
  20054. self.substitute_type(rt, var_map))
  20055. case IntType():
  20056. return IntType()
  20057. case BoolType():
  20058. return BoolType()
  20059. case _:
  20060. raise Exception('substitute_type: unexpected ' + repr(ty))
  20061. def check_type_equal(self, t1, t2, e):
  20062. match (t1, t2):
  20063. case (AllType(ps1, ty1), AllType(ps2, ty2)):
  20064. rename = {p2: GenericVar(p1) for (p1,p2) in zip(ps1,ps2)}
  20065. return self.check_type_equal(ty1, self.substitute_type(ty2, rename), e)
  20066. case (_, _):
  20067. return super().check_type_equal(t1, t2, e)
  20068. \end{lstlisting}
  20069. \fi
  20070. \end{tcolorbox}
  20071. \caption{Auxiliary functions for type checking \LangPoly{}.}
  20072. \label{fig:type-check-Lpoly-aux}
  20073. \end{figure}
  20074. \if\edition\racketEd
  20075. \begin{figure}[tbp]
  20076. \begin{tcolorbox}[colback=white]
  20077. \begin{lstlisting}
  20078. (define/public ((check_well_formed env) ty)
  20079. (match ty
  20080. ['Integer (void)]
  20081. ['Boolean (void)]
  20082. ['Void (void)]
  20083. [(? symbol? a)
  20084. (match (dict-ref env a (lambda () #f))
  20085. ['Type (void)]
  20086. [else (error 'type-check "undefined type variable ~a" a)])]
  20087. [`(Vector ,ts ...)
  20088. (for ([t ts]) ((check_well_formed env) t))]
  20089. [`(,ts ... -> ,t)
  20090. (for ([t ts]) ((check_well_formed env) t))
  20091. ((check_well_formed env) t)]
  20092. [`(All ,xs ,t)
  20093. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  20094. ((check_well_formed env^) t)]
  20095. [else (error 'type-check "unrecognized type ~a" ty)]))
  20096. \end{lstlisting}
  20097. \end{tcolorbox}
  20098. \caption{Well-formed types.}
  20099. \label{fig:well-formed-types}
  20100. \end{figure}
  20101. \fi
  20102. % TODO: interpreter for R'_10
  20103. \clearpage
  20104. \section{Compiling Generics}
  20105. \label{sec:compiling-poly}
  20106. Broadly speaking, there are four approaches to compiling generics, as
  20107. follows:
  20108. \begin{description}
  20109. \item[Monomorphization] generates a different version of a generic
  20110. function for each set of type arguments with which it is used,
  20111. producing type-specialized code. This approach results in the most
  20112. efficient code but requires whole-program compilation (no separate
  20113. compilation) and may increase code size. Unfortunately,
  20114. monomorphization is incompatible with first-class generics, because
  20115. it is not always possible to determine which generic functions are
  20116. used with which type arguments during compilation. (It can be done
  20117. at runtime, with just-in-time compilation.) Monomorphization is
  20118. used to compile C++ templates~\citep{stroustrup88:_param_types} and
  20119. generic functions in NESL~\citep{Blelloch:1993aa} and
  20120. ML~\citep{Weeks:2006aa}.
  20121. \item[Uniform representation] generates one version of each generic
  20122. function and requires all values to have a common \emph{boxed} format,
  20123. such as the tagged values of type \CANYTY{} in \LangAny{}. Both
  20124. generic and monomorphic code is compiled similarly to code in a
  20125. dynamically typed language (like \LangDyn{}), in which primitive
  20126. operators require their arguments to be projected from \CANYTY{} and
  20127. their results to be injected into \CANYTY{}. (In object-oriented
  20128. languages, the projection is accomplished via virtual method
  20129. dispatch.) The uniform representation approach is compatible with
  20130. separate compilation and with first-class generics. However, it
  20131. produces the least efficient code because it introduces overhead in
  20132. the entire program. This approach is used in
  20133. Java~\citep{Bracha:1998fk},
  20134. CLU~\citep{liskov79:_clu_ref,Liskov:1993dk}, and some implementations
  20135. of ML~\citep{Cardelli:1984aa,Appel:1987aa}.
  20136. \item[Mixed representation] generates one version of each generic
  20137. function, using a boxed representation for type variables. However,
  20138. monomorphic code is compiled as usual (as in \LangLam{}), and
  20139. conversions are performed at the boundaries between monomorphic code
  20140. and polymorphic code (e.g., when a generic function is instantiated
  20141. and called). This approach is compatible with separate compilation
  20142. and first-class generics and maintains efficiency in monomorphic
  20143. code. The trade-off is increased overhead at the boundary between
  20144. monomorphic and generic code. This approach is used in
  20145. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  20146. Java 5 with the addition of autoboxing.
  20147. \item[Type passing] uses the unboxed representation in both
  20148. monomorphic and generic code. Each generic function is compiled to a
  20149. single function with extra parameters that describe the type
  20150. arguments. The type information is used by the generated code to
  20151. determine how to access the unboxed values at runtime. This approach is
  20152. used in implementation of Napier88~\citep{Morrison:1991aa} and
  20153. ML~\citep{Harper:1995um}. Type passing is compatible with separate
  20154. compilation and first-class generics and maintains the
  20155. efficiency for monomorphic code. There is runtime overhead in
  20156. polymorphic code from dispatching on type information.
  20157. \end{description}
  20158. In this chapter we use the mixed representation approach, partly
  20159. because of its favorable attributes and partly because it is
  20160. straightforward to implement using the tools that we have already
  20161. built to support gradual typing. The work of compiling generic
  20162. functions is performed in two passes, \code{resolve} and
  20163. \code{erase\_types}, that we discuss next. The output of
  20164. \code{erase\_types} is \LangCast{}
  20165. (section~\ref{sec:gradual-insert-casts}), so the rest of the
  20166. compilation is handled by the compiler of chapter~\ref{ch:Lgrad}.
  20167. \section{Resolve Instantiation}
  20168. \label{sec:generic-resolve}
  20169. Recall that the type checker for \LangPoly{} deduces the type
  20170. arguments at call sites to a generic function. The purpose of the
  20171. \code{resolve} pass is to turn this implicit instantiation into an
  20172. explicit one, by adding \code{inst} nodes to the syntax of the
  20173. intermediate language. An \code{inst} node records the mapping of
  20174. type parameters to type arguments. The semantics of the \code{inst}
  20175. node is to instantiate the result of its first argument, a generic
  20176. function, to produce a monomorphic function. However, because the
  20177. interpreter never analyzes type annotations, instantiation can be a
  20178. no-op and simply return the generic function.
  20179. %
  20180. The output language of the \code{resolve} pass is \LangInst{},
  20181. for which the definition is shown in figure~\ref{fig:Lpoly-prime-syntax}.
  20182. \if\edition\racketEd
  20183. The \code{resolve} pass combines the type declaration and polymorphic
  20184. function into a single definition, using the \code{Poly} form, to make
  20185. polymorphic functions more convenient to process in the next pass of the
  20186. compiler.
  20187. \fi
  20188. \newcommand{\LinstASTRacket}{
  20189. \begin{array}{lcl}
  20190. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20191. \Exp &::=& \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  20192. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  20193. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP
  20194. \end{array}
  20195. }
  20196. \newcommand{\LinstASTPython}{
  20197. \begin{array}{lcl}
  20198. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP \MID \Var \\
  20199. \Exp &::=& \INST{\Exp}{\LC\Var\key{:}\Type\ldots\RC}
  20200. \end{array}
  20201. }
  20202. \begin{figure}[tp]
  20203. \centering
  20204. \begin{tcolorbox}[colback=white]
  20205. \small
  20206. \if\edition\racketEd
  20207. \[
  20208. \begin{array}{l}
  20209. \gray{\LintOpAST} \\ \hline
  20210. \gray{\LvarASTRacket{}} \\ \hline
  20211. \gray{\LifASTRacket{}} \\ \hline
  20212. \gray{\LwhileASTRacket{}} \\ \hline
  20213. \gray{\LtupASTRacket{}} \\ \hline
  20214. \gray{\LfunASTRacket} \\ \hline
  20215. \gray{\LlambdaASTRacket} \\ \hline
  20216. \LinstASTRacket \\
  20217. \begin{array}{lcl}
  20218. \LangInst{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  20219. \end{array}
  20220. \end{array}
  20221. \]
  20222. \fi
  20223. \if\edition\pythonEd
  20224. \[
  20225. \begin{array}{l}
  20226. \gray{\LintASTPython} \\ \hline
  20227. \gray{\LvarASTPython{}} \\ \hline
  20228. \gray{\LifASTPython{}} \\ \hline
  20229. \gray{\LwhileASTPython{}} \\ \hline
  20230. \gray{\LtupASTPython{}} \\ \hline
  20231. \gray{\LfunASTPython} \\ \hline
  20232. \gray{\LlambdaASTPython} \\ \hline
  20233. \LinstASTPython \\
  20234. \begin{array}{lcl}
  20235. \LangInst{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  20236. \end{array}
  20237. \end{array}
  20238. \]
  20239. \fi
  20240. \end{tcolorbox}
  20241. \caption{The abstract syntax of \LangInst{}, extending \LangLam{}
  20242. (figure~\ref{fig:Llam-syntax}).}
  20243. \label{fig:Lpoly-prime-syntax}
  20244. \end{figure}
  20245. The output of the \code{resolve} pass on the generic \code{map}
  20246. example is listed in figure~\ref{fig:map-resolve}. Note that the use
  20247. of \code{map} is wrapped in an \code{inst} node, with the parameter
  20248. \code{T} chosen to be \racket{\code{Integer}} \python{\code{int}}.
  20249. \begin{figure}[tbp]
  20250. % poly_test_2.rkt
  20251. \begin{tcolorbox}[colback=white]
  20252. \if\edition\racketEd
  20253. \begin{lstlisting}
  20254. (poly (T) (define (map [f : (T -> T)] [v : (Vector T T)]) : (Vector T T)
  20255. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  20256. (define (inc [x : Integer]) : Integer (+ x 1))
  20257. (vector-ref ((inst map (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  20258. (Integer))
  20259. inc (vector 0 41)) 1)
  20260. \end{lstlisting}
  20261. \fi
  20262. \if\edition\pythonEd
  20263. \begin{lstlisting}
  20264. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  20265. return (f(tup[0]), f(tup[1]))
  20266. def add1(x : int) -> int:
  20267. return x + 1
  20268. t = inst(map, {T: int})(add1, (0, 41))
  20269. print(t[1])
  20270. \end{lstlisting}
  20271. \fi
  20272. \end{tcolorbox}
  20273. \caption{Output of the \code{resolve} pass on the \code{map} example.}
  20274. \label{fig:map-resolve}
  20275. \end{figure}
  20276. \section{Erase Types}
  20277. \label{sec:erase_types}
  20278. We use the \CANYTY{} type presented in chapter~\ref{ch:Ldyn} to
  20279. represent type variables. For example, figure~\ref{fig:map-erase}
  20280. shows the output of the \code{erase\_types} pass on the generic
  20281. \code{map} (figure~\ref{fig:map-poly}). The occurrences of
  20282. type parameter \code{a} are replaced by \CANYTY{}, and the generic
  20283. \code{All} types are removed from the type of \code{map}.
  20284. \begin{figure}[tbp]
  20285. \begin{tcolorbox}[colback=white]
  20286. \if\edition\racketEd
  20287. \begin{lstlisting}
  20288. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  20289. : (Vector Any Any)
  20290. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  20291. (define (inc [x : Integer]) : Integer (+ x 1))
  20292. (vector-ref ((cast map
  20293. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  20294. ((Integer -> Integer) (Vector Integer Integer)
  20295. -> (Vector Integer Integer)))
  20296. inc (vector 0 41)) 1)
  20297. \end{lstlisting}
  20298. \fi
  20299. \if\edition\pythonEd
  20300. \begin{lstlisting}
  20301. def map(f : Callable[[Any],Any], tup : tuple[Any,Any])-> tuple[Any,Any]:
  20302. return (f(tup[0]), f(tup[1]))
  20303. def add1(x : int) -> int:
  20304. return (x + 1)
  20305. def main() -> int:
  20306. t = cast(map, |$T_1$|, |$T_2$|)(add1, (0, 41))
  20307. print(t[1])
  20308. return 0
  20309. \end{lstlisting}
  20310. {\small
  20311. where\\
  20312. $T_1 = $ \code{Callable[[Callable[[Any], Any],tuple[Any,Any]], tuple[Any,Any]]}\\
  20313. $T_2 = $ \code{Callable[[Callable[[int], int],tuple[int,int]], tuple[int,int]]}
  20314. }
  20315. \fi
  20316. \end{tcolorbox}
  20317. \caption{The generic \code{map} example after type erasure.}
  20318. \label{fig:map-erase}
  20319. \end{figure}
  20320. This process of type erasure creates a challenge at points of
  20321. instantiation. For example, consider the instantiation of
  20322. \code{map} shown in figure~\ref{fig:map-resolve}.
  20323. The type of \code{map} is
  20324. %
  20325. \if\edition\racketEd
  20326. \begin{lstlisting}
  20327. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  20328. \end{lstlisting}
  20329. \fi
  20330. \if\edition\pythonEd
  20331. \begin{lstlisting}
  20332. All[[T], Callable[[Callable[[T], T], tuple[T, T]], tuple[T, T]]]
  20333. \end{lstlisting}
  20334. \fi
  20335. %
  20336. and it is instantiated to
  20337. %
  20338. \if\edition\racketEd
  20339. \begin{lstlisting}
  20340. ((Integer -> Integer) (Vector Integer Integer)
  20341. -> (Vector Integer Integer))
  20342. \end{lstlisting}
  20343. \fi
  20344. \if\edition\pythonEd
  20345. \begin{lstlisting}
  20346. Callable[[Callable[[int], int], tuple[int, int]], tuple[int, int]]
  20347. \end{lstlisting}
  20348. \fi
  20349. %
  20350. After erasure, the type of \code{map} is
  20351. %
  20352. \if\edition\racketEd
  20353. \begin{lstlisting}
  20354. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  20355. \end{lstlisting}
  20356. \fi
  20357. \if\edition\pythonEd
  20358. \begin{lstlisting}
  20359. Callable[[Callable[[Any], Any], tuple[Any, Any]], tuple[Any, Any]]
  20360. \end{lstlisting}
  20361. \fi
  20362. %
  20363. but we need to convert it to the instantiated type. This is easy to
  20364. do in the language \LangCast{} with a single \code{cast}. In the
  20365. example shown in figure~\ref{fig:map-erase}, the instantiation of
  20366. \code{map} has been compiled to a \code{cast} from the type of
  20367. \code{map} to the instantiated type. The source and the target type of a
  20368. cast must be consistent (figure~\ref{fig:consistent}), which indeed is
  20369. the case because both the source and target are obtained from the same
  20370. generic type of \code{map}, replacing the type parameters with
  20371. \CANYTY{} in the former and with the deduced type arguments in the
  20372. latter. (Recall that the \CANYTY{} type is consistent with any type.)
  20373. To implement the \code{erase\_types} pass, we first recommend defining
  20374. a recursive function that translates types, named
  20375. \code{erase\_type}. It replaces type variables with \CANYTY{} as
  20376. follows.
  20377. %
  20378. \if\edition\racketEd
  20379. \begin{lstlisting}
  20380. |$T$|
  20381. |$\Rightarrow$|
  20382. Any
  20383. \end{lstlisting}
  20384. \fi
  20385. \if\edition\pythonEd
  20386. \begin{lstlisting}
  20387. GenericVar(|$T$|)
  20388. |$\Rightarrow$|
  20389. Any
  20390. \end{lstlisting}
  20391. \fi
  20392. %
  20393. \noindent The \code{erase\_type} function also removes the generic
  20394. \code{All} types.
  20395. %
  20396. \if\edition\racketEd
  20397. \begin{lstlisting}
  20398. (All |$xs$| |$T_1$|)
  20399. |$\Rightarrow$|
  20400. |$T'_1$|
  20401. \end{lstlisting}
  20402. \fi
  20403. \if\edition\pythonEd
  20404. \begin{lstlisting}
  20405. AllType(|$xs$|, |$T_1$|)
  20406. |$\Rightarrow$|
  20407. |$T'_1$|
  20408. \end{lstlisting}
  20409. \fi
  20410. where $T'_1$ is the result of applying \code{erase\_type} to $T_1$.
  20411. %
  20412. In this compiler pass, apply the \code{erase\_type} function to all
  20413. the type annotations in the program.
  20414. Regarding the translation of expressions, the case for \code{Inst} is
  20415. the interesting one. We translate it into a \code{Cast}, as shown
  20416. next.
  20417. The type of the subexpression $e$ is a generic type of the form
  20418. \racket{$\LP\key{All}~\itm{xs}~T\RP$}
  20419. \python{$\key{AllType}\LP\itm{xs}, T\RP$}. The source type of the
  20420. cast is the erasure of $T$, the type $T_s$.
  20421. %
  20422. \if\edition\racketEd
  20423. %
  20424. The target type $T_t$ is the result of substituting the argument types
  20425. $ts$ for the type parameters $xs$ in $T$ followed by doing type
  20426. erasure.
  20427. %
  20428. \begin{lstlisting}
  20429. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  20430. |$\Rightarrow$|
  20431. (Cast |$e'$| |$T_s$| |$T_t$|)
  20432. \end{lstlisting}
  20433. %
  20434. where $T_t = \LP\code{erase\_type}~\LP\code{substitute\_type}~s~T\RP\RP$,
  20435. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  20436. \fi
  20437. \if\edition\pythonEd
  20438. %
  20439. The target type $T_t$ is the result of substituting the deduced
  20440. argument types $d$ in $T$ followed by doing type erasure.
  20441. %
  20442. \begin{lstlisting}
  20443. Inst(|$e$|, |$d$|)
  20444. |$\Rightarrow$|
  20445. Cast(|$e'$|, |$T_s$|, |$T_t$|)
  20446. \end{lstlisting}
  20447. %
  20448. where
  20449. $T_t = \code{erase\_type}\LP\code{substitute\_type}\LP d, T\RP\RP$.
  20450. \fi
  20451. Finally, each generic function is translated to a regular
  20452. function in which type erasure has been applied to all the type
  20453. annotations and the body.
  20454. %% \begin{lstlisting}
  20455. %% (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  20456. %% |$\Rightarrow$|
  20457. %% (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  20458. %% \end{lstlisting}
  20459. \begin{exercise}\normalfont\normalsize
  20460. Implement a compiler for the polymorphic language \LangPoly{} by
  20461. extending and adapting your compiler for \LangGrad{}. Create six new
  20462. test programs that use polymorphic functions. Some of them should
  20463. make use of first-class generics.
  20464. \end{exercise}
  20465. \begin{figure}[tbp]
  20466. \begin{tcolorbox}[colback=white]
  20467. \if\edition\racketEd
  20468. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  20469. \node (Lpoly) at (0,4) {\large \LangPoly{}};
  20470. \node (Lpolyp) at (4,4) {\large \LangInst{}};
  20471. \node (Lgradualp) at (8,4) {\large \LangCast{}};
  20472. \node (Llambdapp) at (12,4) {\large \LangProxy{}};
  20473. \node (Llambdaproxy) at (12,2) {\large \LangPVec{}};
  20474. \node (Llambdaproxy-2) at (8,2) {\large \LangPVec{}};
  20475. \node (Llambdaproxy-3) at (4,2) {\large \LangPVec{}};
  20476. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20477. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20478. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20479. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20480. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20481. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  20482. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20483. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20484. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20485. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20486. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  20487. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  20488. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20489. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20490. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  20491. \path[->,bend left=15] (Lpoly) edge [above] node
  20492. {\ttfamily\footnotesize resolve} (Lpolyp);
  20493. \path[->,bend left=15] (Lpolyp) edge [above] node
  20494. {\ttfamily\footnotesize erase\_types} (Lgradualp);
  20495. \path[->,bend left=15] (Lgradualp) edge [above] node
  20496. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  20497. \path[->,bend left=15] (Llambdapp) edge [left] node
  20498. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy);
  20499. \path[->,bend left=15] (Llambdaproxy) edge [below] node
  20500. {\ttfamily\footnotesize shrink} (Llambdaproxy-2);
  20501. \path[->,bend right=15] (Llambdaproxy-2) edge [above] node
  20502. {\ttfamily\footnotesize uniquify} (Llambdaproxy-3);
  20503. \path[->,bend right=15] (Llambdaproxy-3) edge [above] node
  20504. {\ttfamily\footnotesize reveal\_functions} (Llambdaproxy-4);
  20505. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20506. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  20507. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  20508. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  20509. \path[->,bend left=15] (F1-1) edge [above] node
  20510. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20511. \path[->,bend left=15] (F1-2) edge [above] node
  20512. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20513. \path[->,bend left=15] (F1-3) edge [left] node
  20514. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  20515. \path[->,bend left=15] (F1-4) edge [below] node
  20516. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  20517. \path[->,bend right=15] (F1-5) edge [above] node
  20518. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20519. \path[->,bend right=15] (F1-6) edge [above] node
  20520. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20521. \path[->,bend right=15] (C3-2) edge [right] node
  20522. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20523. \path[->,bend right=15] (x86-2) edge [right] node
  20524. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  20525. \path[->,bend right=15] (x86-2-1) edge [below] node
  20526. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  20527. \path[->,bend right=15] (x86-2-2) edge [right] node
  20528. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  20529. \path[->,bend left=15] (x86-3) edge [above] node
  20530. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20531. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20532. \end{tikzpicture}
  20533. \fi
  20534. \if\edition\pythonEd
  20535. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  20536. \node (Lgradual) at (0,4) {\large \LangPoly{}};
  20537. \node (Lgradual2) at (4,4) {\large \LangPoly{}};
  20538. \node (Lgradual3) at (8,4) {\large \LangPoly{}};
  20539. \node (Lgradual4) at (12,4) {\large \LangPoly{}};
  20540. \node (Lgradualr) at (12,2) {\large \LangInst{}};
  20541. \node (Llambdapp) at (8,2) {\large \LangCast{}};
  20542. \node (Llambdaproxy-4) at (4,2) {\large \LangPVec{}};
  20543. \node (Llambdaproxy-5) at (0,2) {\large \LangPVec{}};
  20544. \node (F1-1) at (0,0) {\large \LangPVec{}};
  20545. \node (F1-2) at (4,0) {\large \LangPVec{}};
  20546. \node (F1-3) at (8,0) {\large \LangPVec{}};
  20547. \node (F1-5) at (12,0) {\large \LangPVecAlloc{}};
  20548. \node (F1-6) at (12,-2) {\large \LangPVecAlloc{}};
  20549. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20550. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20551. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20552. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20553. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  20554. \path[->,bend left=15] (Lgradual) edge [above] node
  20555. {\ttfamily\footnotesize shrink} (Lgradual2);
  20556. \path[->,bend left=15] (Lgradual2) edge [above] node
  20557. {\ttfamily\footnotesize uniquify} (Lgradual3);
  20558. \path[->,bend left=15] (Lgradual3) edge [above] node
  20559. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  20560. \path[->,bend left=15] (Lgradual4) edge [left] node
  20561. {\ttfamily\footnotesize resolve} (Lgradualr);
  20562. \path[->,bend left=15] (Lgradualr) edge [below] node
  20563. {\ttfamily\footnotesize erase\_types} (Llambdapp);
  20564. \path[->,bend right=15] (Llambdapp) edge [above] node
  20565. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  20566. \path[->,bend right=15] (Llambdaproxy-4) edge [above] node
  20567. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  20568. \path[->,bend right=15] (Llambdaproxy-5) edge [right] node
  20569. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  20570. \path[->,bend right=15] (F1-1) edge [below] node
  20571. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20572. \path[->,bend right=15] (F1-2) edge [below] node
  20573. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20574. \path[->,bend left=15] (F1-3) edge [above] node
  20575. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  20576. \path[->,bend left=15] (F1-5) edge [left] node
  20577. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20578. \path[->,bend left=5] (F1-6) edge [below] node
  20579. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20580. \path[->,bend right=15] (C3-2) edge [right] node
  20581. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20582. \path[->,bend right=15] (x86-2) edge [below] node
  20583. {\ttfamily\footnotesize assign\_homes} (x86-3);
  20584. \path[->,bend right=15] (x86-3) edge [below] node
  20585. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20586. \path[->,bend left=15] (x86-4) edge [above] node
  20587. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20588. \end{tikzpicture}
  20589. \fi
  20590. \end{tcolorbox}
  20591. \caption{Diagram of the passes for \LangPoly{} (generics).}
  20592. \label{fig:Lpoly-passes}
  20593. \end{figure}
  20594. Figure~\ref{fig:Lpoly-passes} provides an overview of the passes
  20595. needed to compile \LangPoly{}.
  20596. % TODO: challenge problem: specialization of instantiations
  20597. % Further Reading
  20598. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  20599. \clearpage
  20600. \appendix
  20601. \chapter{Appendix}
  20602. \setcounter{footnote}{0}
  20603. \if\edition\racketEd
  20604. \section{Interpreters}
  20605. \label{appendix:interp}
  20606. \index{subject}{interpreter}
  20607. We provide interpreters for each of the source languages \LangInt{},
  20608. \LangVar{}, $\ldots$ in the files \code{interp-Lint.rkt},
  20609. \code{interp-Lvar.rkt}, and so on. The interpreters for the
  20610. intermediate languages \LangCVar{} and \LangCIf{} are in
  20611. \code{interp-Cvar.rkt} and \code{interp-C1.rkt}. The interpreters for
  20612. \LangCVec{}, \LangCFun{}, pseudo-x86, and x86 are in the
  20613. \key{interp.rkt} file.
  20614. \section{Utility Functions}
  20615. \label{appendix:utilities}
  20616. The utility functions described in this section are in the
  20617. \key{utilities.rkt} file of the support code.
  20618. \paragraph{\code{interp-tests}}
  20619. This function runs the compiler passes and the interpreters on each of
  20620. the specified tests to check whether each pass is correct. The
  20621. \key{interp-tests} function has the following parameters:
  20622. \begin{description}
  20623. \item[name (a string)] A name to identify the compiler,
  20624. \item[typechecker] A function of exactly one argument that either
  20625. raises an error using the \code{error} function when it encounters a
  20626. type error or returns \code{\#f} when it encounters a type
  20627. error. If there is no type error, the type checker returns the
  20628. program.
  20629. \item[passes] A list with one entry per pass. An entry is a list
  20630. consisting of four things:
  20631. \begin{enumerate}
  20632. \item a string giving the name of the pass;
  20633. \item the function that implements the pass (a translator from AST
  20634. to AST);
  20635. \item a function that implements the interpreter (a function from
  20636. AST to result value) for the output language; and,
  20637. \item a type checker for the output language. Type checkers for
  20638. all the $\Lang{}$ and $\CLang{}$ languages are provided in the support code.
  20639. For example, the type checkers for \LangVar{} and \LangCVar{} are in
  20640. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  20641. type checker entry is optional. The support code does not provide
  20642. type checkers for the x86 languages.
  20643. \end{enumerate}
  20644. \item[source-interp] An interpreter for the source language. The
  20645. interpreters from appendix~\ref{appendix:interp} make a good choice.
  20646. \item[test-family (a string)] For example, \code{"var"} or \code{"cond"}.
  20647. \item[tests] A list of test numbers that specifies which tests to
  20648. run (explained next).
  20649. \end{description}
  20650. %
  20651. The \key{interp-tests} function assumes that the subdirectory
  20652. \key{tests} has a collection of Racket programs whose names all start
  20653. with the family name, followed by an underscore and then the test
  20654. number, and ending with the file extension \key{.rkt}. Also, for each test
  20655. program that calls \code{read} one or more times, there is a file with
  20656. the same name except that the file extension is \key{.in}, which
  20657. provides the input for the Racket program. If the test program is
  20658. expected to fail type checking, then there should be an empty file of
  20659. the same name with extension \key{.tyerr}.
  20660. \paragraph{\code{compiler-tests}}
  20661. This function runs the compiler passes to generate x86 (a \key{.s}
  20662. file) and then runs the GNU C compiler (gcc) to generate machine code.
  20663. It runs the machine code and checks that the output is $42$. The
  20664. parameters to the \code{compiler-tests} function are similar to those
  20665. of the \code{interp-tests} function, and they consist of
  20666. \begin{itemize}
  20667. \item a compiler name (a string),
  20668. \item a type checker,
  20669. \item description of the passes,
  20670. \item name of a test-family, and
  20671. \item a list of test numbers.
  20672. \end{itemize}
  20673. \paragraph{\code{compile-file}}
  20674. This function takes a description of the compiler passes (see the
  20675. comment for \key{interp-tests}) and returns a function that, given a
  20676. program file name (a string ending in \key{.rkt}), applies all the
  20677. passes and writes the output to a file whose name is the same as the
  20678. program file name with extension \key{.rkt} replaced by \key{.s}.
  20679. \paragraph{\code{read-program}}
  20680. This function takes a file path and parses that file (it must be a
  20681. Racket program) into an abstract syntax tree.
  20682. \paragraph{\code{parse-program}}
  20683. This function takes an S-expression representation of an abstract
  20684. syntax tree and converts it into the struct-based representation.
  20685. \paragraph{\code{assert}}
  20686. This function takes two parameters, a string (\code{msg}) and Boolean
  20687. (\code{bool}), and displays the message \key{msg} if the Boolean
  20688. \key{bool} is false.
  20689. \paragraph{\code{lookup}}
  20690. % remove discussion of lookup? -Jeremy
  20691. This function takes a key and an alist and returns the first value that is
  20692. associated with the given key, if there is one. If not, an error is
  20693. triggered. The alist may contain both immutable pairs (built with
  20694. \key{cons}) and mutable pairs (built with \key{mcons}).
  20695. %The \key{map2} function ...
  20696. \fi %\racketEd
  20697. \section{x86 Instruction Set Quick Reference}
  20698. \label{sec:x86-quick-reference}
  20699. \index{subject}{x86}
  20700. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  20701. do. We write $A \to B$ to mean that the value of $A$ is written into
  20702. location $B$. Address offsets are given in bytes. The instruction
  20703. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  20704. registers (such as \code{\%rax}), or memory references (such as
  20705. \code{-4(\%ebp)}). Most x86 instructions allow at most one memory
  20706. reference per instruction. Other operands must be immediates or
  20707. registers.
  20708. \begin{table}[tbp]
  20709. \centering
  20710. \begin{tabular}{l|l}
  20711. \textbf{Instruction} & \textbf{Operation} \\ \hline
  20712. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  20713. \texttt{negq} $A$ & $- A \to A$ \\
  20714. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  20715. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  20716. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  20717. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  20718. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  20719. \texttt{retq} & Pops the return address and jumps to it \\
  20720. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  20721. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  20722. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  20723. \texttt{cmpq} $A$, $B$ & Compare $A$ and $B$ and set the flag register ($B$ must not
  20724. be an immediate) \\
  20725. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  20726. matches the condition code of the instruction; otherwise go to the
  20727. next instructions. The condition codes are \key{e} for \emph{equal},
  20728. \key{l} for \emph{less}, \key{le} for \emph{less or equal}, \key{g}
  20729. for \emph{greater}, and \key{ge} for \emph{greater or equal}.} \\
  20730. \texttt{jl} $L$ & \\
  20731. \texttt{jle} $L$ & \\
  20732. \texttt{jg} $L$ & \\
  20733. \texttt{jge} $L$ & \\
  20734. \texttt{jmp} $L$ & Jump to label $L$ \\
  20735. \texttt{movq} $A$, $B$ & $A \to B$ \\
  20736. \texttt{movzbq} $A$, $B$ &
  20737. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  20738. (e.g., \texttt{al} or \texttt{cl}), $B$ is an 8-byte register,
  20739. and the extra bytes of $B$ are set to zero.} \\
  20740. & \\
  20741. & \\
  20742. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  20743. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  20744. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  20745. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  20746. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  20747. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  20748. then $1 \to A$; else $0 \to A$. Refer to \texttt{je} for the
  20749. description of the condition codes. $A$ must be a single byte register
  20750. (e.g., \texttt{al} or \texttt{cl}).} \\
  20751. \texttt{setl} $A$ & \\
  20752. \texttt{setle} $A$ & \\
  20753. \texttt{setg} $A$ & \\
  20754. \texttt{setge} $A$ &
  20755. \end{tabular}
  20756. \vspace{5pt}
  20757. \caption{Quick reference for the x86 instructions used in this book.}
  20758. \label{tab:x86-instr}
  20759. \end{table}
  20760. %% \if\edition\racketEd
  20761. %% \cleardoublepage
  20762. %% \section{Concrete Syntax for Intermediate Languages}
  20763. %% The concrete syntax of \LangAny{} is defined in
  20764. %% figure~\ref{fig:Lany-concrete-syntax}.
  20765. %% \begin{figure}[tp]
  20766. %% \centering
  20767. %% \fbox{
  20768. %% \begin{minipage}{0.97\textwidth}\small
  20769. %% \[
  20770. %% \begin{array}{lcl}
  20771. %% \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  20772. %% \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}} \\
  20773. %% &\MID& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \MID \ANYTY{} \\
  20774. %% \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  20775. %% \MID \LP\key{Vector}\; \ANYTY{}\ldots\RP \\
  20776. %% &\MID& \LP\ANYTY{}\ldots \; \key{->}\; \ANYTY{}\RP\\
  20777. %% \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \MID \CPROJECT{\Exp}{\FType}\\
  20778. %% &\MID& \LP\key{any-vector-length}\;\Exp\RP
  20779. %% \MID \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  20780. %% &\MID& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  20781. %% &\MID& \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP
  20782. %% \MID \LP\key{void?}\;\Exp\RP \\
  20783. %% &\MID& \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \\
  20784. %% \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  20785. %% \LangAnyM{} &::=& \gray{\Def\ldots \; \Exp}
  20786. %% \end{array}
  20787. %% \]
  20788. %% \end{minipage}
  20789. %% }
  20790. %% \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  20791. %% (figure~\ref{fig:Llam-syntax}).}
  20792. %% \label{fig:Lany-concrete-syntax}
  20793. %% \end{figure}
  20794. %% The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and
  20795. %% \LangCFun{} is defined in figures~\ref{fig:c0-concrete-syntax},
  20796. %% \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax}, and
  20797. %% \ref{fig:c3-concrete-syntax}, respectively.
  20798. %% \begin{figure}[tbp]
  20799. %% \fbox{
  20800. %% \begin{minipage}{0.96\textwidth}
  20801. %% \small
  20802. %% \[
  20803. %% \begin{array}{lcl}
  20804. %% \Atm &::=& \gray{ \Int \MID \Var \MID \itm{bool} } \\
  20805. %% \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  20806. %% \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  20807. %% &\MID& \gray{ \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP } \\
  20808. %% &\MID& \LP \key{allocate}~\Int~\Type \RP \\
  20809. %% &\MID& (\key{vector-ref}\;\Atm\;\Int) \MID (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  20810. %% &\MID& \LP \key{global-value}~\Var \RP \MID \LP \key{void} \RP \\
  20811. %% \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \MID \LP\key{collect}~\Int \RP\\
  20812. %% \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  20813. %% \MID \gray{ \key{goto}~\itm{label}\key{;} }\\
  20814. %% &\MID& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  20815. %% \LangCVecM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  20816. %% \end{array}
  20817. %% \]
  20818. %% \end{minipage}
  20819. %% }
  20820. %% \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  20821. %% \label{fig:c2-concrete-syntax}
  20822. %% \end{figure}
  20823. %% \begin{figure}[tp]
  20824. %% \fbox{
  20825. %% \begin{minipage}{0.96\textwidth}
  20826. %% \small
  20827. %% \[
  20828. %% \begin{array}{lcl}
  20829. %% \Atm &::=& \gray{ \Int \MID \Var \MID \key{\#t} \MID \key{\#f} }
  20830. %% \\
  20831. %% \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  20832. %% \Exp &::= & \gray{ \Atm \MID \LP\key{read}\RP \MID \LP\key{-}\;\Atm\RP \MID \LP\key{+} \; \Atm\;\Atm\RP
  20833. %% \MID \LP\key{not}\;\Atm\RP \MID \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  20834. %% &\MID& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  20835. %% \MID \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  20836. %% &\MID& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \MID \LP\key{global-value} \,\itm{name}\RP \MID \LP\key{void}\RP } \\
  20837. %% &\MID& \LP\key{fun-ref}~\itm{label}~\Int\RP \MID \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  20838. %% \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \MID \RETURN{\Exp}
  20839. %% \MID \LP\key{collect} \,\itm{int}\RP }\\
  20840. %% \Tail &::= & \gray{\RETURN{\Exp} \MID \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  20841. %% &\MID& \gray{\LP\key{goto}\,\itm{label}\RP
  20842. %% \MID \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  20843. %% &\MID& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  20844. %% \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  20845. %% \LangCFunM{} & ::= & \Def\ldots
  20846. %% \end{array}
  20847. %% \]
  20848. %% \end{minipage}
  20849. %% }
  20850. %% \caption{The \LangCFun{} language, extending \LangCVec{} (figure~\ref{fig:c2-concrete-syntax}) with functions.}
  20851. %% \label{fig:c3-concrete-syntax}
  20852. %% \end{figure}
  20853. %% \fi % racketEd
  20854. \backmatter
  20855. \addtocontents{toc}{\vspace{11pt}}
  20856. %% \addtocontents{toc}{\vspace{11pt}}
  20857. %% \nocite{*} is a way to get all the entries in the .bib file to print in the bibliography:
  20858. \nocite{*}\let\bibname\refname
  20859. \addcontentsline{toc}{fmbm}{\refname}
  20860. \printbibliography
  20861. %\printindex{authors}{Author Index}
  20862. \printindex{subject}{Index}
  20863. \end{document}
  20864. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  20865. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  20866. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  20867. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  20868. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  20869. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  20870. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  20871. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  20872. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  20873. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  20874. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  20875. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  20876. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  20877. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  20878. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  20879. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  20880. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  20881. % LocalWords: numberstyle Cormen sudoku Balakrishnan ve aka DSATUR
  20882. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS wb
  20883. % LocalWords: morekeywords fullflexible goto allocator tuples Wailes
  20884. % LocalWords: Kernighan runtime Freiburg Thiemann Bloomington unary
  20885. % LocalWords: eq prog rcl binaryop unaryop definitional Evaluator os
  20886. % LocalWords: subexpression evaluator InterpLint lcl quadwords concl
  20887. % LocalWords: nanopass subexpressions decompositions Lawall Hatcliff
  20888. % LocalWords: subdirectory monadic Moggi mon utils macosx unix repr
  20889. % LocalWords: Uncomment undirected vertices callee Liveness liveness
  20890. % LocalWords: frozenset unordered Appel Rosen pqueue cmp Fortran vl
  20891. % LocalWords: Horwitz Kempe colorable subgraph kx iteratively Matula
  20892. % LocalWords: ys ly Palsberg si JoeQ cardinality Poletto Booleans hj
  20893. % LocalWords: subscriptable MyPy Lehtosalo Listof Pairof indexable
  20894. % LocalWords: bool boolop NotEq LtE GtE refactor els orelse BoolOp
  20895. % LocalWords: boolean initializer param exprs TypeCheckLvar msg Tt
  20896. % LocalWords: isinstance TypeCheckLif tyerr xorq bytereg al dh dl ne
  20897. % LocalWords: le ge cmpq movzbq EFLAGS jle inlined setl je jl Cif
  20898. % LocalWords: lll pred IfStmt sete CFG tsort multigraph FunctionType
  20899. % LocalWords: Wijngaarden Plotkin Logothetis PeytonJones SetBang Ph
  20900. % LocalWords: WhileLoop unboxes Lwhile unbox InterpLwhile rhsT varT
  20901. % LocalWords: Tbody TypeCheckLwhile acyclic mainstart mainconclusion
  20902. % LocalWords: versa Kildall Kleene worklist enqueue dequeue deque tb
  20903. % LocalWords: GetBang effectful SPERBER Lfun tuple implementer's tup
  20904. % LocalWords: indices HasType Lvec InterpLtup tuple's vec ty Ungar
  20905. % LocalWords: TypeCheckLtup Detlefs Tene FromSpace ToSpace Diwan ptr
  20906. % LocalWords: Siebert TupleType endian salq sarq fromspace rootstack
  20907. % LocalWords: uint th vecinit alloc GlobalValue andq bitwise ior elt
  20908. % LocalWords: dereferencing StructDef Vectorof vectorof Lvecof Jacek
  20909. % LocalWords: AllocateArray cheney tospace Dieckmann Shahriyar di xs
  20910. % LocalWords: Shidal Osterlund Gamari lexically FunctionDef IntType
  20911. % LocalWords: BoolType VoidType ProgramDefsExp vals params ps ds num
  20912. % LocalWords: InterpLfun FunRef TypeCheckLfun leaq callee's mainDef
  20913. % LocalWords: ProgramDefs TailCall tailjmp IndirectCallq TailJmp rT
  20914. % LocalWords: prepending addstart addconclusion Cardelli Llambda typ
  20915. % LocalWords: Llambda InterpLlambda AnnAssign Dunfield bodyT str fvs
  20916. % LocalWords: TypeCheckLlambda annot dereference clos fvts closTy tg
  20917. % LocalWords: Minamide AllocateClosure Gilray Milner morphos subtype
  20918. % LocalWords: polymorphism untyped AnyType dataclass untag Ldyn conc
  20919. % LocalWords: lookup InterpLdyn elif tagof Lany TypeCheckLany tv orq
  20920. % LocalWords: AnnLambda InterpLany ClosureTuple ValueOf TagOf imulq
  20921. % LocalWords: untagged multi Tobin Hochstadt zr mn Gronski kd ret Tp
  20922. % LocalWords: Tif src tgt Lcast wr contravariant PVector un Lgradual
  20923. % LocalWords: Lgradualp Llambdapp Llambdaproxy Wadler qv quicksort
  20924. % LocalWords: Henglein nz coercions Grift parametetric parameterized
  20925. % LocalWords: parameterizing stroustrup subst tys targs decls defs
  20926. % LocalWords: pts ats prt pxs axs Decl Monomorphization NESL CLU qb
  20927. % LocalWords: monomorphization Blelloch monomorphic Bracha unboxed
  20928. % LocalWords: instantiation Lpoly Lpolyp typechecker mcons ebp jge
  20929. % LocalWords: notq setle setg setge uncredited LT Std groundbreaking
  20930. % LocalWords: colback GitHub inputint nonatomic ea tcolorbox bassed
  20931. % LocalWords: tikzpicture Chaitin's Belady's Cocke Freiburghouse Lt
  20932. % LocalWords: lessthan lessthaneq greaterthan greaterthaneq Gt pt Te
  20933. % LocalWords: ts escapechar Tc bl ch cl cc foo lt metavariables vars
  20934. % LocalWords: trans naively IR rep assoc ListType TypeCheckLarray dz
  20935. % LocalWords: Mult InterpLarray lst array's generation's Collins inc
  20936. % LocalWords: Cutler Kelsey val rt bod conflates reg inlining lam AF
  20937. % LocalWords: ASTPython body's bot todo rs ls TypeCheckLgrad ops ab
  20938. % LocalWords: value's inplace anyfun anytup anylist ValueExp proxied
  20939. % LocalWords: ProxiedTuple ProxiedList InterpLcast ListProxy vectof
  20940. % LocalWords: TupleProxy RawTuple InjectTuple InjectTupleProxy vecof
  20941. % LocalWords: InjectList InjectListProxy unannotated Lgradualr poly
  20942. % LocalWords: GenericVar AllType Inst builtin ap pps aps pp deepcopy
  20943. % LocalWords: liskov clu Liskov dk Napier um inst popl jg seq ith
  20944. % LocalWords: racketEd subparts subpart nonterminal nonterminals
  20945. % LocalWords: pseudocode underapproximation underapproximations
  20946. % LocalWords: semilattices overapproximate incrementing
  20947. % LocalWords: multilanguage