book.tex 537 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874
  1. %\documentclass[]{TimesAPriori_MIT}%%6x9
  2. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  3. %\documentclass[8x10]{TimesAPriori_MIT}%%8x10
  4. \usepackage[T1]{fontenc}
  5. \usepackage[utf8]{inputenc}
  6. \usepackage{listings}
  7. \usepackage{amsmath}
  8. \usepackage{amsthm}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. \usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. \definecolor{lightgray}{gray}{1}
  16. \newcommand{\black}[1]{{\color{black} #1}}
  17. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  18. \newcommand{\gray}[1]{{\color{gray} #1}}
  19. %% For multiple indices:
  20. \usepackage{multind}
  21. \makeindex{subject}
  22. \makeindex{authors}
  23. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  24. \lstset{%
  25. language=Lisp,
  26. basicstyle=\ttfamily\small,
  27. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  28. deletekeywords={read,mapping,vector},
  29. escapechar=|,
  30. columns=flexible,
  31. moredelim=[is][\color{red}]{~}{~},
  32. showstringspaces=false
  33. }
  34. %%% Any shortcut own defined macros place here
  35. %% sample of author macro:
  36. \input{defs}
  37. \newtheorem{exercise}[theorem]{Exercise}
  38. % Adjusted settings
  39. \setlength{\columnsep}{4pt}
  40. %% \begingroup
  41. %% \setlength{\intextsep}{0pt}%
  42. %% \setlength{\columnsep}{0pt}%
  43. %% \begin{wrapfigure}{r}{0.5\textwidth}
  44. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  45. %% \caption{Basic layout}
  46. %% \end{wrapfigure}
  47. %% \lipsum[1]
  48. %% \endgroup
  49. \newbox\oiintbox
  50. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  51. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  52. \def\oiint{\copy\oiintbox}
  53. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  54. %\usepackage{showframe}
  55. \def\ShowFrameLinethickness{0.125pt}
  56. \addbibresource{book.bib}
  57. \begin{document}
  58. \frontmatter
  59. \HalfTitle{Essentials of Compilation}
  60. \halftitlepage
  61. %% \begin{seriespage}
  62. %% \seriestitle{Industrial Economics}
  63. %% \serieseditor{Miriam Smith and Simon Rattle, editors}
  64. %% \title{Engineering and Economics}
  65. %% \author{Samuel Endgrove}
  66. %% \title{Structural Economics: From Beginning to End}
  67. %% \author{Guang Xi}
  68. %% \end{seriespage}
  69. \Title{Essentials of Compilation}
  70. \Booksubtitle{The Incremental, Nano-Pass Approach}
  71. \edition{First Edition}
  72. \BookAuthor{Jeremy G. Siek}
  73. \imprint{The MIT Press\\
  74. Cambridge, Massachusetts\\
  75. London, England}
  76. \begin{copyrightpage}
  77. \textcopyright\ [YEAR] Massachusetts Institute of Technology
  78. All rights reserved. No part of this book may be reproduced in any
  79. form by any electronic or mechanical means (including photocopying,
  80. recording, or information storage and retrieval) without permission in
  81. writing from the publisher.
  82. This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  83. United States of America.
  84. Library of Congress Cataloging-in-Publication Data is available.
  85. ISBN:
  86. 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  87. \end{copyrightpage}
  88. \dedication{This book is dedicated to the programming language wonks
  89. at Indiana University.}
  90. %% \begin{epigraphpage}
  91. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  92. %% \textit{Book Name if any}}
  93. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  94. %% \end{epigraphpage}
  95. \tableofcontents
  96. \listoffigures
  97. \listoftables
  98. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  99. \chapter*{Preface}
  100. \addcontentsline{toc}{fmbm}{Preface}
  101. There is a magical moment when a programmer presses the ``run'' button
  102. and the software begins to execute. Somehow a program written in a
  103. high-level language is running on a computer that is only capable of
  104. shuffling bits. Here we reveal the wizardry that makes that moment
  105. possible. Beginning with the groundbreaking work of Backus and
  106. colleagues in the 1950s, computer scientists discovered techniques for
  107. constructing programs, called \emph{compilers}, that automatically
  108. translate high-level programs into machine code.
  109. We take you on a journey by constructing your own compiler for a small
  110. but powerful language. Along the way we explain the essential
  111. concepts, algorithms, and data structures that underlie compilers. We
  112. develop your understanding of how programs are mapped onto computer
  113. hardware, which is helpful when reasoning about properties at the
  114. junction between hardware and software such as execution time,
  115. software errors, and security vulnerabilities. For those interested
  116. in pursuing compiler construction, our goal is to provide a
  117. stepping-stone to advanced topics such as just-in-time compilation,
  118. program analysis, and program optimization. For those interested in
  119. designing and implementing programming languages, we connect
  120. language design choices to their impact on the compiler and the generated
  121. code.
  122. A compiler is typically organized as a sequence of stages that
  123. progressively translates a program to code that runs on hardware. We
  124. take this approach to the extreme by partitioning our compiler into a
  125. large number of \emph{nanopasses}, each of which performs a single
  126. task. This allows us to test the output of each pass in isolation, and
  127. furthermore, allows us to focus our attention making the compiler far
  128. easier to understand.
  129. %% [TODO: easier to understand/debug for those maintaining the compiler,
  130. %% proving correctness]
  131. The most familiar approach to describing compilers is with one pass
  132. per chapter. The problem with that is it obfuscates how language
  133. features motivate design choices in a compiler. We take an
  134. \emph{incremental} approach in which we build a complete compiler in
  135. each chapter, starting with arithmetic and variables and add new
  136. features in subsequent chapters.
  137. Our choice of language features is designed to elicit the fundamental
  138. concepts and algorithms used in compilers.
  139. \begin{itemize}
  140. \item We begin with integer arithmetic and local variables in
  141. Chapters~\ref{ch:trees-recur} and \ref{ch:Rvar}, where we introduce
  142. the fundamental tools of compiler construction: \emph{abstract
  143. syntax trees} and \emph{recursive functions}.
  144. \item In Chapter~\ref{ch:register-allocation-Rvar} we apply
  145. \emph{graph coloring} to assign variables to machine registers.
  146. \item Chapter~\ref{ch:Rif} adds \code{if} expressions, which motivates
  147. an elegant recursive algorithm for mapping expressions to
  148. \emph{control-flow graphs}.
  149. \item Chapter~\ref{ch:Rvec} adds heap-allocated tuples, motivating
  150. \emph{garbage collection}.
  151. \item Chapter~\ref{ch:Rfun} adds functions that are first-class values
  152. but lack lexical scoping, similar to the C programming
  153. language~\citep{Kernighan:1988nx} except that we generate efficient
  154. tail calls. The reader learns about the procedure call stack,
  155. \emph{calling conventions}, and their interaction with register
  156. allocation and garbage collection.
  157. \item Chapter~\ref{ch:Rlam} adds anonymous functions with lexical
  158. scoping, i.e., \emph{lambda abstraction}. The reader learns about
  159. \emph{closure conversion}, in which lambdas are translated into a
  160. combination of functions and tuples.
  161. \item Chapter~\ref{ch:Rdyn} adds \emph{dynamic typing}. Prior to this
  162. point the input languages are statically typed. The reader extends
  163. the statically typed language with an \code{Any} type which serves
  164. as a target for compiling the dynamically typed language.
  165. \item Chapter~\ref{ch:Rwhile} fleshes out support for imperative
  166. programming languages with the addition of loops and mutable
  167. variables. These additions elicit the need for \emph{dataflow
  168. analysis} in the register allocator.
  169. \item Chapter~\ref{ch:Rgrad} uses the \code{Any} type of
  170. Chapter~\ref{ch:Rdyn} to implement a \emph{gradually typed language}
  171. in which different regions of a program may be static or dynamically
  172. typed. The reader implements runtime support for \emph{proxies} that
  173. allow values to safely move between regions.
  174. \item Chapter~\ref{ch:Rpoly} adds \emph{generics} with autoboxing,
  175. leveraging the \code{Any} type and type casts developed in Chapters
  176. \ref{ch:Rdyn} and \ref{ch:Rgrad}.
  177. \end{itemize}
  178. There are many language features that we do not include. Our choices
  179. weigh the incidental complexity of a feature against the fundamental
  180. concepts that it exposes. For example, we include tuples and not
  181. records because they both elicit the study of heap allocation and
  182. garbage collection but records come with more incidental complexity.
  183. Since 2016 this book has served as the textbook for the compiler
  184. course at Indiana University, a 16-week course for upper-level
  185. undergraduates and first-year graduate students.
  186. %
  187. Prior to this course, students learn to program in both imperative and
  188. functional languages, study data structures and algorithms, and take
  189. discrete mathematics.
  190. %
  191. At the beginning of the course, students form groups of 2-4 people.
  192. The groups complete one chapter every two weeks, starting with
  193. Chapter~\ref{ch:Rvar} and finishing with Chapter~\ref{ch:Rdyn}. Many
  194. chapters include a challenge problem that we assign to the graduate
  195. students. The last two weeks of the course involve a final project in
  196. which students design and implement a compiler extension of their
  197. choosing. Chapters~\ref{ch:Rwhile}, \ref{ch:Rgrad}, and
  198. \ref{ch:Rpoly} can be used in support of these projects or they can
  199. replace some of the earlier chapters. For example, a course with an
  200. emphasis on statically-typed imperative languages would skip
  201. Chapter~\ref{ch:Rdyn} in favor of
  202. Chapter~\ref{ch:Rwhile}. Figure~\ref{fig:chapter-dependences} depicts
  203. the dependencies between chapters.
  204. This book has also been used in compiler courses at California
  205. Polytechnic State University, Rose–Hulman Institute of Technology, and
  206. University of Massachusetts Lowell.
  207. \begin{figure}[tp]
  208. \begin{tikzpicture}[baseline=(current bounding box.center)]
  209. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  210. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Rvar} Variables};
  211. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Rvar} Registers};
  212. \node (C4) at (0,0) {\small Ch.~\ref{ch:Rif} Control Flow};
  213. \node (C5) at (4,0) {\small Ch.~\ref{ch:Rvec} Tuples};
  214. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  215. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Rwhile} Loops};
  216. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  217. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  218. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual};
  219. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  220. \path[->] (C1) edge [above] node {} (C2);
  221. \path[->] (C2) edge [above] node {} (C3);
  222. \path[->] (C3) edge [above] node {} (C4);
  223. \path[->] (C4) edge [above] node {} (C5);
  224. \path[->] (C5) edge [above] node {} (C6);
  225. \path[->] (C6) edge [above] node {} (C7);
  226. \path[->] (C4) edge [above] node {} (C8);
  227. \path[->] (C4) edge [above] node {} (C9);
  228. \path[->] (C8) edge [above] node {} (C10);
  229. \path[->] (C10) edge [above] node {} (C11);
  230. \end{tikzpicture}
  231. \caption{Diagram of chapter dependencies.}
  232. \label{fig:chapter-dependences}
  233. \end{figure}
  234. We use the \href{https://racket-lang.org/}{Racket} language both for
  235. the implementation of the compiler and for the input language, so the
  236. reader should be proficient with Racket or Scheme. There are many
  237. excellent resources for learning Scheme and
  238. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}. The
  239. support code for this book is in the \code{github} repository at the
  240. following URL:
  241. \begin{center}\small
  242. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  243. \end{center}
  244. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  245. is helpful but not necessary for the reader to have taken a computer
  246. systems course~\citep{Bryant:2010aa}. This book introduces the parts
  247. of x86-64 assembly language that are needed.
  248. %
  249. We follow the System V calling
  250. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  251. that we generate works with the runtime system (written in C) when it
  252. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  253. operating systems.
  254. %
  255. On the Windows operating system, \code{gcc} uses the Microsoft x64
  256. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  257. assembly code that we generate does \emph{not} work with the runtime
  258. system on Windows. One workaround is to use a virtual machine with
  259. Linux as the guest operating system.
  260. \section*{Acknowledgments}
  261. The tradition of compiler construction at Indiana University goes back
  262. to research and courses on programming languages by Daniel Friedman in
  263. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  264. Chez Scheme~\citep{Dybvig:2006aa}, a production-quality, efficient
  265. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  266. the compiler course and continued the development of Chez Scheme.
  267. %
  268. The compiler course evolved to incorporate novel pedagogical ideas
  269. while also including elements of efficient real-world compilers. One
  270. of Friedman's ideas was to split the compiler into many small
  271. passes. Another idea, called ``the game'', was to test the code
  272. generated by each pass on interpreters.
  273. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  274. developed infrastructure to support this approach and evolved the
  275. course to use even smaller
  276. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  277. design decisions in this book are inspired by the assignment
  278. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  279. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  280. organization of the course made it difficult for students to
  281. understand the rationale for the compiler design. Ghuloum proposed the
  282. incremental approach~\citep{Ghuloum:2006bh}.
  283. We thank the many graduate students who served as teaching assistants
  284. for the compiler course at IU. In particular, we thank Andre
  285. Kuhlenschmidt for his work on the garbage collector, Michael Vollmer
  286. for his work on efficient tail calls, and Michael Vitousek for his
  287. help running the first offering of the incremental compiler course at
  288. IU.
  289. We thank Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph Near, Nate
  290. Nystrom, and Michael Wollowski for teaching courses based on early
  291. drafts of this book.
  292. We thank Ronald Garcia for being Jeremy's partner when they took the
  293. compiler course in the early 2000's and especially for finding the bug
  294. that sent the garbage collector on a wild goose chase!
  295. \mbox{}\\
  296. \noindent Jeremy G. Siek \\
  297. Bloomington, Indiana
  298. \mainmatter
  299. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  300. \chapter{Preliminaries}
  301. \label{ch:trees-recur}
  302. In this chapter we review the basic tools that are needed to implement
  303. a compiler. Programs are typically input by a programmer as text,
  304. i.e., a sequence of characters. The program-as-text representation is
  305. called \emph{concrete syntax}. We use concrete syntax to concisely
  306. write down and talk about programs. Inside the compiler, we use
  307. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  308. that efficiently supports the operations that the compiler needs to
  309. perform.\index{subject}{concrete syntax}\index{subject}{abstract syntax}\index{subject}{abstract
  310. syntax tree}\index{subject}{AST}\index{subject}{program}\index{subject}{parse} The translation
  311. from concrete syntax to abstract syntax is a process called
  312. \emph{parsing}~\citep{Aho:1986qf}. We do not cover the theory and
  313. implementation of parsing in this book. A parser is provided in the
  314. support code for translating from concrete to abstract syntax.
  315. ASTs can be represented in many different ways inside the compiler,
  316. depending on the programming language used to write the compiler.
  317. %
  318. We use Racket's
  319. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  320. feature to represent ASTs (Section~\ref{sec:ast}). We use grammars to
  321. define the abstract syntax of programming languages
  322. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  323. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  324. recursive functions to construct and deconstruct ASTs
  325. (Section~\ref{sec:recursion}). This chapter provides an brief
  326. introduction to these ideas. \index{subject}{struct}
  327. \section{Abstract Syntax Trees and Racket Structures}
  328. \label{sec:ast}
  329. Compilers use abstract syntax trees to represent programs because they
  330. often need to ask questions like: for a given part of a program, what
  331. kind of language feature is it? What are its sub-parts? Consider the
  332. program on the left and its AST on the right. This program is an
  333. addition operation and it has two sub-parts, a read operation and a
  334. negation. The negation has another sub-part, the integer constant
  335. \code{8}. By using a tree to represent the program, we can easily
  336. follow the links to go from one part of a program to its sub-parts.
  337. \begin{center}
  338. \begin{minipage}{0.4\textwidth}
  339. \begin{lstlisting}
  340. (+ (read) (- 8))
  341. \end{lstlisting}
  342. \end{minipage}
  343. \begin{minipage}{0.4\textwidth}
  344. \begin{equation}
  345. \begin{tikzpicture}
  346. \node[draw, circle] (plus) at (0 , 0) {\key{+}};
  347. \node[draw, circle] (read) at (-1, -1.5) {{\footnotesize\key{read}}};
  348. \node[draw, circle] (minus) at (1 , -1.5) {$\key{-}$};
  349. \node[draw, circle] (8) at (1 , -3) {\key{8}};
  350. \draw[->] (plus) to (read);
  351. \draw[->] (plus) to (minus);
  352. \draw[->] (minus) to (8);
  353. \end{tikzpicture}
  354. \label{eq:arith-prog}
  355. \end{equation}
  356. \end{minipage}
  357. \end{center}
  358. We use the standard terminology for trees to describe ASTs: each
  359. circle above is called a \emph{node}. The arrows connect a node to its
  360. \emph{children} (which are also nodes). The top-most node is the
  361. \emph{root}. Every node except for the root has a \emph{parent} (the
  362. node it is the child of). If a node has no children, it is a
  363. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  364. \index{subject}{node}
  365. \index{subject}{children}
  366. \index{subject}{root}
  367. \index{subject}{parent}
  368. \index{subject}{leaf}
  369. \index{subject}{internal node}
  370. %% Recall that an \emph{symbolic expression} (S-expression) is either
  371. %% \begin{enumerate}
  372. %% \item an atom, or
  373. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  374. %% where $e_1$ and $e_2$ are each an S-expression.
  375. %% \end{enumerate}
  376. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  377. %% null value \code{'()}, etc. We can create an S-expression in Racket
  378. %% simply by writing a backquote (called a quasi-quote in Racket)
  379. %% followed by the textual representation of the S-expression. It is
  380. %% quite common to use S-expressions to represent a list, such as $a, b
  381. %% ,c$ in the following way:
  382. %% \begin{lstlisting}
  383. %% `(a . (b . (c . ())))
  384. %% \end{lstlisting}
  385. %% Each element of the list is in the first slot of a pair, and the
  386. %% second slot is either the rest of the list or the null value, to mark
  387. %% the end of the list. Such lists are so common that Racket provides
  388. %% special notation for them that removes the need for the periods
  389. %% and so many parenthesis:
  390. %% \begin{lstlisting}
  391. %% `(a b c)
  392. %% \end{lstlisting}
  393. %% The following expression creates an S-expression that represents AST
  394. %% \eqref{eq:arith-prog}.
  395. %% \begin{lstlisting}
  396. %% `(+ (read) (- 8))
  397. %% \end{lstlisting}
  398. %% When using S-expressions to represent ASTs, the convention is to
  399. %% represent each AST node as a list and to put the operation symbol at
  400. %% the front of the list. The rest of the list contains the children. So
  401. %% in the above case, the root AST node has operation \code{`+} and its
  402. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  403. %% diagram \eqref{eq:arith-prog}.
  404. %% To build larger S-expressions one often needs to splice together
  405. %% several smaller S-expressions. Racket provides the comma operator to
  406. %% splice an S-expression into a larger one. For example, instead of
  407. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  408. %% we could have first created an S-expression for AST
  409. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  410. %% S-expression.
  411. %% \begin{lstlisting}
  412. %% (define ast1.4 `(- 8))
  413. %% (define ast1.1 `(+ (read) ,ast1.4))
  414. %% \end{lstlisting}
  415. %% In general, the Racket expression that follows the comma (splice)
  416. %% can be any expression that produces an S-expression.
  417. We define a Racket \code{struct} for each kind of node. For this
  418. chapter we require just two kinds of nodes: one for integer constants
  419. and one for primitive operations. The following is the \code{struct}
  420. definition for integer constants.
  421. \begin{lstlisting}
  422. (struct Int (value))
  423. \end{lstlisting}
  424. An integer node includes just one thing: the integer value.
  425. To create an AST node for the integer $8$, we write \code{(Int 8)}.
  426. \begin{lstlisting}
  427. (define eight (Int 8))
  428. \end{lstlisting}
  429. We say that the value created by \code{(Int 8)} is an
  430. \emph{instance} of the \code{Int} structure.
  431. The following is the \code{struct} definition for primitive operations.
  432. \begin{lstlisting}
  433. (struct Prim (op args))
  434. \end{lstlisting}
  435. A primitive operation node includes an operator symbol \code{op}
  436. and a list of child \code{args}. For example, to create
  437. an AST that negates the number $8$, we write \code{(Prim '- (list eight))}.
  438. \begin{lstlisting}
  439. (define neg-eight (Prim '- (list eight)))
  440. \end{lstlisting}
  441. Primitive operations may have zero or more children. The \code{read}
  442. operator has zero children:
  443. \begin{lstlisting}
  444. (define rd (Prim 'read '()))
  445. \end{lstlisting}
  446. whereas the addition operator has two children:
  447. \begin{lstlisting}
  448. (define ast1.1 (Prim '+ (list rd neg-eight)))
  449. \end{lstlisting}
  450. We have made a design choice regarding the \code{Prim} structure.
  451. Instead of using one structure for many different operations
  452. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  453. structure for each operation, as follows.
  454. \begin{lstlisting}
  455. (struct Read ())
  456. (struct Add (left right))
  457. (struct Neg (value))
  458. \end{lstlisting}
  459. The reason we choose to use just one structure is that in many parts
  460. of the compiler the code for the different primitive operators is the
  461. same, so we might as well just write that code once, which is enabled
  462. by using a single structure.
  463. When compiling a program such as \eqref{eq:arith-prog}, we need to
  464. know that the operation associated with the root node is addition and
  465. we need to be able to access its two children. Racket provides pattern
  466. matching to support these kinds of queries, as we see in
  467. Section~\ref{sec:pattern-matching}.
  468. In this book, we often write down the concrete syntax of a program
  469. even when we really have in mind the AST because the concrete syntax
  470. is more concise. We recommend that, in your mind, you always think of
  471. programs as abstract syntax trees.
  472. \section{Grammars}
  473. \label{sec:grammar}
  474. \index{subject}{integer}
  475. \index{subject}{literal}
  476. \index{subject}{constant}
  477. A programming language can be thought of as a \emph{set} of programs.
  478. The set is typically infinite (one can always create larger and larger
  479. programs), so one cannot simply describe a language by listing all of
  480. the programs in the language. Instead we write down a set of rules, a
  481. \emph{grammar}, for building programs. Grammars are often used to
  482. define the concrete syntax of a language, but they can also be used to
  483. describe the abstract syntax. We write our rules in a variant of
  484. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  485. \index{subject}{Backus-Naur Form}\index{subject}{BNF}
  486. As an example, we describe a small language, named \LangInt{}, that consists of
  487. integers and arithmetic operations.
  488. \index{subject}{grammar}
  489. The first grammar rule for the abstract syntax of \LangInt{} says that an
  490. instance of the \code{Int} structure is an expression:
  491. \begin{equation}
  492. \Exp ::= \INT{\Int} \label{eq:arith-int}
  493. \end{equation}
  494. %
  495. Each rule has a left-hand-side and a right-hand-side. The way to read
  496. a rule is that if you have an AST node that matches the
  497. right-hand-side, then you can categorize it according to the
  498. left-hand-side.
  499. %
  500. A name such as $\Exp$ that is defined by the grammar rules is a
  501. \emph{non-terminal}. \index{subject}{non-terminal}
  502. %
  503. The name $\Int$ is also a non-terminal, but instead of defining it
  504. with a grammar rule, we define it with the following explanation. We
  505. make the simplifying design decision that all of the languages in this
  506. book only handle machine-representable integers. On most modern
  507. machines this corresponds to integers represented with 64-bits, i.e.,
  508. the in range $-2^{63}$ to $2^{63}-1$. We restrict this range further
  509. to match the Racket \texttt{fixnum} datatype, which allows 63-bit
  510. integers on a 64-bit machine. So an $\Int$ is a sequence of decimals
  511. ($0$ to $9$), possibly starting with $-$ (for negative integers), such
  512. that the sequence of decimals represent an integer in range $-2^{62}$
  513. to $2^{62}-1$.
  514. The second grammar rule is the \texttt{read} operation that receives
  515. an input integer from the user of the program.
  516. \begin{equation}
  517. \Exp ::= \READ{} \label{eq:arith-read}
  518. \end{equation}
  519. The third rule says that, given an $\Exp$ node, the negation of that
  520. node is also an $\Exp$.
  521. \begin{equation}
  522. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  523. \end{equation}
  524. Symbols in typewriter font such as \key{-} and \key{read} are
  525. \emph{terminal} symbols and must literally appear in the program for
  526. the rule to be applicable.
  527. \index{subject}{terminal}
  528. We can apply these rules to categorize the ASTs that are in the
  529. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  530. \texttt{(Int 8)} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  531. following AST is an $\Exp$.
  532. \begin{center}
  533. \begin{minipage}{0.4\textwidth}
  534. \begin{lstlisting}
  535. (Prim '- (list (Int 8)))
  536. \end{lstlisting}
  537. \end{minipage}
  538. \begin{minipage}{0.25\textwidth}
  539. \begin{equation}
  540. \begin{tikzpicture}
  541. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  542. \node[draw, circle] (8) at (0, -1.2) {$8$};
  543. \draw[->] (minus) to (8);
  544. \end{tikzpicture}
  545. \label{eq:arith-neg8}
  546. \end{equation}
  547. \end{minipage}
  548. \end{center}
  549. The next grammar rule is for addition expressions:
  550. \begin{equation}
  551. \Exp ::= \ADD{\Exp}{\Exp} \label{eq:arith-add}
  552. \end{equation}
  553. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  554. \LangInt{}. We know that \lstinline{(Prim 'read '())} is an $\Exp$ by rule
  555. \eqref{eq:arith-read} and we have already categorized \code{(Prim '-
  556. (list (Int 8)))} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  557. to show that
  558. \begin{lstlisting}
  559. (Prim '+ (list (Prim 'read '()) (Prim '- (list (Int 8)))))
  560. \end{lstlisting}
  561. is an $\Exp$ in the \LangInt{} language.
  562. If you have an AST for which the above rules do not apply, then the
  563. AST is not in \LangInt{}. For example, the program \code{(- (read) (+ 8))}
  564. is not in \LangInt{} because there are no rules for \code{+} with only one
  565. argument, nor for \key{-} with two arguments. Whenever we define a
  566. language with a grammar, the language only includes those programs
  567. that are justified by the rules.
  568. The last grammar rule for \LangInt{} states that there is a \code{Program}
  569. node to mark the top of the whole program:
  570. \[
  571. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  572. \]
  573. The \code{Program} structure is defined as follows
  574. \begin{lstlisting}
  575. (struct Program (info body))
  576. \end{lstlisting}
  577. where \code{body} is an expression. In later chapters, the \code{info}
  578. part will be used to store auxiliary information but for now it is
  579. just the empty list.
  580. It is common to have many grammar rules with the same left-hand side
  581. but different right-hand sides, such as the rules for $\Exp$ in the
  582. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  583. combine several right-hand-sides into a single rule.
  584. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  585. in Figure~\ref{fig:r0-syntax}. The concrete syntax for \LangInt{} is
  586. defined in Figure~\ref{fig:r0-concrete-syntax}.
  587. The \code{read-program} function provided in \code{utilities.rkt} of
  588. the support code reads a program in from a file (the sequence of
  589. characters in the concrete syntax of Racket) and parses it into an
  590. abstract syntax tree. See the description of \code{read-program} in
  591. Appendix~\ref{appendix:utilities} for more details.
  592. \begin{figure}[tp]
  593. \fbox{
  594. \begin{minipage}{0.96\textwidth}
  595. \[
  596. \begin{array}{rcl}
  597. \begin{array}{rcl}
  598. \Exp &::=& \Int \mid \LP\key{read}\RP \mid \LP\key{-}\;\Exp\RP \mid \LP\key{+} \; \Exp\;\Exp\RP\\
  599. \LangInt{} &::=& \Exp
  600. \end{array}
  601. \end{array}
  602. \]
  603. \end{minipage}
  604. }
  605. \caption{The concrete syntax of \LangInt{}.}
  606. \label{fig:r0-concrete-syntax}
  607. \end{figure}
  608. \begin{figure}[tp]
  609. \fbox{
  610. \begin{minipage}{0.96\textwidth}
  611. \[
  612. \begin{array}{rcl}
  613. \Exp &::=& \INT{\Int} \mid \READ{} \mid \NEG{\Exp} \\
  614. &\mid& \ADD{\Exp}{\Exp} \\
  615. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  616. \end{array}
  617. \]
  618. \end{minipage}
  619. }
  620. \caption{The abstract syntax of \LangInt{}.}
  621. \label{fig:r0-syntax}
  622. \end{figure}
  623. \section{Pattern Matching}
  624. \label{sec:pattern-matching}
  625. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  626. the parts of an AST node. Racket provides the \texttt{match} form to
  627. access the parts of a structure. Consider the following example and
  628. the output on the right. \index{subject}{match} \index{subject}{pattern matching}
  629. \begin{center}
  630. \begin{minipage}{0.5\textwidth}
  631. \begin{lstlisting}
  632. (match ast1.1
  633. [(Prim op (list child1 child2))
  634. (print op)])
  635. \end{lstlisting}
  636. \end{minipage}
  637. \vrule
  638. \begin{minipage}{0.25\textwidth}
  639. \begin{lstlisting}
  640. '+
  641. \end{lstlisting}
  642. \end{minipage}
  643. \end{center}
  644. In the above example, the \texttt{match} form takes an AST
  645. \eqref{eq:arith-prog} and binds its parts to the three pattern
  646. variables \texttt{op}, \texttt{child1}, and \texttt{child2}, and then
  647. prints out the operator. In general, a match clause consists of a
  648. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  649. recursively defined to be either a pattern variable, a structure name
  650. followed by a pattern for each of the structure's arguments, or an
  651. S-expression (symbols, lists, etc.). (See Chapter 12 of The Racket
  652. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  653. and Chapter 9 of The Racket
  654. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  655. for a complete description of \code{match}.)
  656. %
  657. The body of a match clause may contain arbitrary Racket code. The
  658. pattern variables can be used in the scope of the body, such as
  659. \code{op} in \code{(print op)}.
  660. A \code{match} form may contain several clauses, as in the following
  661. function \code{leaf?} that recognizes when an \LangInt{} node is a leaf in
  662. the AST. The \code{match} proceeds through the clauses in order,
  663. checking whether the pattern can match the input AST. The body of the
  664. first clause that matches is executed. The output of \code{leaf?} for
  665. several ASTs is shown on the right.
  666. \begin{center}
  667. \begin{minipage}{0.6\textwidth}
  668. \begin{lstlisting}
  669. (define (leaf? arith)
  670. (match arith
  671. [(Int n) #t]
  672. [(Prim 'read '()) #t]
  673. [(Prim '- (list e1)) #f]
  674. [(Prim '+ (list e1 e2)) #f]))
  675. (leaf? (Prim 'read '()))
  676. (leaf? (Prim '- (list (Int 8))))
  677. (leaf? (Int 8))
  678. \end{lstlisting}
  679. \end{minipage}
  680. \vrule
  681. \begin{minipage}{0.25\textwidth}
  682. \begin{lstlisting}
  683. #t
  684. #f
  685. #t
  686. \end{lstlisting}
  687. \end{minipage}
  688. \end{center}
  689. When writing a \code{match}, we refer to the grammar definition to
  690. identify which non-terminal we are expecting to match against, then we
  691. make sure that 1) we have one clause for each alternative of that
  692. non-terminal and 2) that the pattern in each clause corresponds to the
  693. corresponding right-hand side of a grammar rule. For the \code{match}
  694. in the \code{leaf?} function, we refer to the grammar for \LangInt{} in
  695. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  696. alternatives, so the \code{match} has 4 clauses. The pattern in each
  697. clause corresponds to the right-hand side of a grammar rule. For
  698. example, the pattern \code{(Prim '+ (list e1 e2))} corresponds to the
  699. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  700. patterns, replace non-terminals such as $\Exp$ with pattern variables
  701. of your choice (e.g. \code{e1} and \code{e2}).
  702. \section{Recursive Functions}
  703. \label{sec:recursion}
  704. \index{subject}{recursive function}
  705. Programs are inherently recursive. For example, an \LangInt{} expression is
  706. often made of smaller expressions. Thus, the natural way to process an
  707. entire program is with a recursive function. As a first example of
  708. such a recursive function, we define \texttt{exp?} below, which takes
  709. an arbitrary value and determines whether or not it is an \LangInt{}
  710. expression.
  711. %
  712. We say that a function is defined by \emph{structural recursion} when
  713. it is defined using a sequence of match clauses that correspond to a
  714. grammar, and the body of each clause makes a recursive call on each
  715. child node.\footnote{This principle of structuring code according to
  716. the data definition is advocated in the book \emph{How to Design
  717. Programs} \url{https://htdp.org/2020-8-1/Book/index.html}.}.
  718. Below we also define a second function, named \code{Rint?}, that
  719. determines whether an AST is an \LangInt{} program. In general we can
  720. expect to write one recursive function to handle each non-terminal in
  721. a grammar.\index{subject}{structural recursion}
  722. %
  723. \begin{center}
  724. \begin{minipage}{0.7\textwidth}
  725. \begin{lstlisting}
  726. (define (exp? ast)
  727. (match ast
  728. [(Int n) #t]
  729. [(Prim 'read '()) #t]
  730. [(Prim '- (list e)) (exp? e)]
  731. [(Prim '+ (list e1 e2))
  732. (and (exp? e1) (exp? e2))]
  733. [else #f]))
  734. (define (Rint? ast)
  735. (match ast
  736. [(Program '() e) (exp? e)]
  737. [else #f]))
  738. (Rint? (Program '() ast1.1)
  739. (Rint? (Program '()
  740. (Prim '- (list (Prim 'read '())
  741. (Prim '+ (list (Num 8)))))))
  742. \end{lstlisting}
  743. \end{minipage}
  744. \vrule
  745. \begin{minipage}{0.25\textwidth}
  746. \begin{lstlisting}
  747. #t
  748. #f
  749. \end{lstlisting}
  750. \end{minipage}
  751. \end{center}
  752. You may be tempted to merge the two functions into one, like this:
  753. \begin{center}
  754. \begin{minipage}{0.5\textwidth}
  755. \begin{lstlisting}
  756. (define (Rint? ast)
  757. (match ast
  758. [(Int n) #t]
  759. [(Prim 'read '()) #t]
  760. [(Prim '- (list e)) (Rint? e)]
  761. [(Prim '+ (list e1 e2)) (and (Rint? e1) (Rint? e2))]
  762. [(Program '() e) (Rint? e)]
  763. [else #f]))
  764. \end{lstlisting}
  765. \end{minipage}
  766. \end{center}
  767. %
  768. Sometimes such a trick will save a few lines of code, especially when
  769. it comes to the \code{Program} wrapper. Yet this style is generally
  770. \emph{not} recommended because it can get you into trouble.
  771. %
  772. For example, the above function is subtly wrong:
  773. \lstinline{(Rint? (Program '() (Program '() (Int 3))))}
  774. returns true when it should return false.
  775. \section{Interpreters}
  776. \label{sec:interp-Rint}
  777. \index{subject}{interpreter}
  778. In general, the intended behavior of a program is defined by the
  779. specification of the language. For example, the Scheme language is
  780. defined in the report by \cite{SPERBER:2009aa}. The Racket language is
  781. defined in its reference manual~\citep{plt-tr}. In this book we use
  782. interpreters to specify each language that we consider. An interpreter
  783. that is designated as the definition of a language is called a
  784. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  785. \index{subject}{definitional interpreter} We warm up by creating a definitional
  786. interpreter for the \LangInt{} language, which serves as a second example
  787. of structural recursion. The \texttt{interp-Rint} function is defined in
  788. Figure~\ref{fig:interp-Rint}. The body of the function is a match on the
  789. input program followed by a call to the \lstinline{interp-exp} helper
  790. function, which in turn has one match clause per grammar rule for
  791. \LangInt{} expressions.
  792. \begin{figure}[tp]
  793. \begin{lstlisting}
  794. (define (interp-exp e)
  795. (match e
  796. [(Int n) n]
  797. [(Prim 'read '())
  798. (define r (read))
  799. (cond [(fixnum? r) r]
  800. [else (error 'interp-exp "read expected an integer" r)])]
  801. [(Prim '- (list e))
  802. (define v (interp-exp e))
  803. (fx- 0 v)]
  804. [(Prim '+ (list e1 e2))
  805. (define v1 (interp-exp e1))
  806. (define v2 (interp-exp e2))
  807. (fx+ v1 v2)]))
  808. (define (interp-Rint p)
  809. (match p
  810. [(Program '() e) (interp-exp e)]))
  811. \end{lstlisting}
  812. \caption{Interpreter for the \LangInt{} language.}
  813. \label{fig:interp-Rint}
  814. \end{figure}
  815. Let us consider the result of interpreting a few \LangInt{} programs. The
  816. following program adds two integers.
  817. \begin{lstlisting}
  818. (+ 10 32)
  819. \end{lstlisting}
  820. The result is \key{42}, the answer to life, the universe, and
  821. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  822. Galaxy} by Douglas Adams.}.
  823. %
  824. We wrote the above program in concrete syntax whereas the parsed
  825. abstract syntax is:
  826. \begin{lstlisting}
  827. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  828. \end{lstlisting}
  829. The next example demonstrates that expressions may be nested within
  830. each other, in this case nesting several additions and negations.
  831. \begin{lstlisting}
  832. (+ 10 (- (+ 12 20)))
  833. \end{lstlisting}
  834. What is the result of the above program?
  835. As mentioned previously, the \LangInt{} language does not support
  836. arbitrarily-large integers, but only $63$-bit integers, so we
  837. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  838. in Racket.
  839. Suppose
  840. \[
  841. n = 999999999999999999
  842. \]
  843. which indeed fits in $63$-bits. What happens when we run the
  844. following program in our interpreter?
  845. \begin{lstlisting}
  846. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  847. \end{lstlisting}
  848. It produces an error:
  849. \begin{lstlisting}
  850. fx+: result is not a fixnum
  851. \end{lstlisting}
  852. We establish the convention that if running the definitional
  853. interpreter on a program produces an error then the meaning of that
  854. program is \emph{unspecified}\index{subject}{unspecified behavior}, unless the
  855. error is a \code{trapped-error}. A compiler for the language is under
  856. no obligations regarding programs with unspecified behavior; it does
  857. not have to produce an executable, and if it does, that executable can
  858. do anything. On the other hand, if the error is a
  859. \code{trapped-error}, then the compiler must produce an executable and
  860. it is required to report that an error occurred. To signal an error,
  861. exit with a return code of \code{255}. The interpreters in chapters
  862. \ref{ch:Rdyn} and \ref{ch:Rgrad} use
  863. \code{trapped-error}.
  864. %% This convention applies to the languages defined in this
  865. %% book, as a way to simplify the student's task of implementing them,
  866. %% but this convention is not applicable to all programming languages.
  867. %%
  868. Moving on to the last feature of the \LangInt{} language, the \key{read}
  869. operation prompts the user of the program for an integer. Recall that
  870. program \eqref{eq:arith-prog} performs a \key{read} and then subtracts
  871. \code{8}. So if we run
  872. \begin{lstlisting}
  873. (interp-Rint (Program '() ast1.1))
  874. \end{lstlisting}
  875. and if the input is \code{50}, the result is \code{42}.
  876. We include the \key{read} operation in \LangInt{} so a clever student
  877. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  878. during compilation to obtain the output and then generates the trivial
  879. code to produce the output. (Yes, a clever student did this in the
  880. first instance of this course.)
  881. The job of a compiler is to translate a program in one language into a
  882. program in another language so that the output program behaves the
  883. same way as the input program does. This idea is depicted in the
  884. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  885. $\mathcal{L}_2$, and a definitional interpreter for each language.
  886. Given a compiler that translates from language $\mathcal{L}_1$ to
  887. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  888. compiler must translate it into some program $P_2$ such that
  889. interpreting $P_1$ and $P_2$ on their respective interpreters with
  890. same input $i$ yields the same output $o$.
  891. \begin{equation} \label{eq:compile-correct}
  892. \begin{tikzpicture}[baseline=(current bounding box.center)]
  893. \node (p1) at (0, 0) {$P_1$};
  894. \node (p2) at (3, 0) {$P_2$};
  895. \node (o) at (3, -2.5) {$o$};
  896. \path[->] (p1) edge [above] node {compile} (p2);
  897. \path[->] (p2) edge [right] node {interp-$\mathcal{L}_2$($i$)} (o);
  898. \path[->] (p1) edge [left] node {interp-$\mathcal{L}_1$($i$)} (o);
  899. \end{tikzpicture}
  900. \end{equation}
  901. In the next section we see our first example of a compiler.
  902. \section{Example Compiler: a Partial Evaluator}
  903. \label{sec:partial-evaluation}
  904. In this section we consider a compiler that translates \LangInt{} programs
  905. into \LangInt{} programs that may be more efficient, that is, this compiler
  906. is an optimizer. This optimizer eagerly computes the parts of the
  907. program that do not depend on any inputs, a process known as
  908. \emph{partial evaluation}~\citep{Jones:1993uq}.
  909. \index{subject}{partial evaluation}
  910. For example, given the following program
  911. \begin{lstlisting}
  912. (+ (read) (- (+ 5 3)))
  913. \end{lstlisting}
  914. our compiler will translate it into the program
  915. \begin{lstlisting}
  916. (+ (read) -8)
  917. \end{lstlisting}
  918. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  919. evaluator for the \LangInt{} language. The output of the partial evaluator
  920. is an \LangInt{} program. In Figure~\ref{fig:pe-arith}, the structural
  921. recursion over $\Exp$ is captured in the \code{pe-exp} function
  922. whereas the code for partially evaluating the negation and addition
  923. operations is factored into two separate helper functions:
  924. \code{pe-neg} and \code{pe-add}. The input to these helper
  925. functions is the output of partially evaluating the children.
  926. \begin{figure}[tp]
  927. \begin{lstlisting}
  928. (define (pe-neg r)
  929. (match r
  930. [(Int n) (Int (fx- 0 n))]
  931. [else (Prim '- (list r))]))
  932. (define (pe-add r1 r2)
  933. (match* (r1 r2)
  934. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  935. [(_ _) (Prim '+ (list r1 r2))]))
  936. (define (pe-exp e)
  937. (match e
  938. [(Int n) (Int n)]
  939. [(Prim 'read '()) (Prim 'read '())]
  940. [(Prim '- (list e1)) (pe-neg (pe-exp e1))]
  941. [(Prim '+ (list e1 e2)) (pe-add (pe-exp e1) (pe-exp e2))]))
  942. (define (pe-Rint p)
  943. (match p
  944. [(Program '() e) (Program '() (pe-exp e))]))
  945. \end{lstlisting}
  946. \caption{A partial evaluator for \LangInt{}.}
  947. \label{fig:pe-arith}
  948. \end{figure}
  949. The \texttt{pe-neg} and \texttt{pe-add} functions check whether their
  950. arguments are integers and if they are, perform the appropriate
  951. arithmetic. Otherwise, they create an AST node for the arithmetic
  952. operation.
  953. To gain some confidence that the partial evaluator is correct, we can
  954. test whether it produces programs that get the same result as the
  955. input programs. That is, we can test whether it satisfies Diagram
  956. \ref{eq:compile-correct}. The following code runs the partial
  957. evaluator on several examples and tests the output program. The
  958. \texttt{parse-program} and \texttt{assert} functions are defined in
  959. Appendix~\ref{appendix:utilities}.\\
  960. \begin{minipage}{1.0\textwidth}
  961. \begin{lstlisting}
  962. (define (test-pe p)
  963. (assert "testing pe-Rint"
  964. (equal? (interp-Rint p) (interp-Rint (pe-Rint p)))))
  965. (test-pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  966. (test-pe (parse-program `(program () (+ 1 (+ 3 1)))))
  967. (test-pe (parse-program `(program () (- (+ 3 (- 5))))))
  968. \end{lstlisting}
  969. \end{minipage}
  970. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  971. \chapter{Integers and Variables}
  972. \label{ch:Rvar}
  973. This chapter is about compiling a subset of Racket to x86-64 assembly
  974. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  975. integer arithmetic and local variable binding. We often refer to
  976. x86-64 simply as x86. The chapter begins with a description of the
  977. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  978. to x86 assembly (Section~\ref{sec:x86}). The x86 assembly language
  979. is large so we discuss only the instructions needed for compiling
  980. \LangVar{}. We introduce more x86 instructions in later chapters.
  981. After introducing \LangVar{} and x86, we reflect on their differences
  982. and come up with a plan to break down the translation from \LangVar{}
  983. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  984. rest of the sections in this chapter give detailed hints regarding
  985. each step (Sections~\ref{sec:uniquify-Rvar} through \ref{sec:patch-s0}).
  986. We hope to give enough hints that the well-prepared reader, together
  987. with a few friends, can implement a compiler from \LangVar{} to x86 in
  988. a couple weeks. To give the reader a feeling for the scale of this
  989. first compiler, the instructor solution for the \LangVar{} compiler is
  990. approximately 500 lines of code.
  991. \section{The \LangVar{} Language}
  992. \label{sec:s0}
  993. \index{subject}{variable}
  994. The \LangVar{} language extends the \LangInt{} language with variable
  995. definitions. The concrete syntax of the \LangVar{} language is defined by
  996. the grammar in Figure~\ref{fig:r1-concrete-syntax} and the abstract
  997. syntax is defined in Figure~\ref{fig:r1-syntax}. The non-terminal
  998. \Var{} may be any Racket identifier. As in \LangInt{}, \key{read} is a
  999. nullary operator, \key{-} is a unary operator, and \key{+} is a binary
  1000. operator. Similar to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1001. \key{Program} struct to mark the top of the program.
  1002. %% The $\itm{info}$
  1003. %% field of the \key{Program} structure contains an \emph{association
  1004. %% list} (a list of key-value pairs) that is used to communicate
  1005. %% auxiliary data from one compiler pass the next.
  1006. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1007. exhibit several compilation techniques.
  1008. \begin{figure}[tp]
  1009. \centering
  1010. \fbox{
  1011. \begin{minipage}{0.96\textwidth}
  1012. \[
  1013. \begin{array}{rcl}
  1014. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp}\\
  1015. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  1016. \LangVarM{} &::=& \Exp
  1017. \end{array}
  1018. \]
  1019. \end{minipage}
  1020. }
  1021. \caption{The concrete syntax of \LangVar{}.}
  1022. \label{fig:r1-concrete-syntax}
  1023. \end{figure}
  1024. \begin{figure}[tp]
  1025. \centering
  1026. \fbox{
  1027. \begin{minipage}{0.96\textwidth}
  1028. \[
  1029. \begin{array}{rcl}
  1030. \Exp &::=& \INT{\Int} \mid \READ{} \\
  1031. &\mid& \NEG{\Exp} \mid \ADD{\Exp}{\Exp} \\
  1032. &\mid& \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  1033. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1034. \end{array}
  1035. \]
  1036. \end{minipage}
  1037. }
  1038. \caption{The abstract syntax of \LangVar{}.}
  1039. \label{fig:r1-syntax}
  1040. \end{figure}
  1041. Let us dive further into the syntax and semantics of the \LangVar{}
  1042. language. The \key{let} feature defines a variable for use within its
  1043. body and initializes the variable with the value of an expression.
  1044. The abstract syntax for \key{let} is defined in
  1045. Figure~\ref{fig:r1-syntax}. The concrete syntax for \key{let} is
  1046. \begin{lstlisting}
  1047. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1048. \end{lstlisting}
  1049. For example, the following program initializes \code{x} to $32$ and then
  1050. evaluates the body \code{(+ 10 x)}, producing $42$.
  1051. \begin{lstlisting}
  1052. (let ([x (+ 12 20)]) (+ 10 x))
  1053. \end{lstlisting}
  1054. When there are multiple \key{let}'s for the same variable, the closest
  1055. enclosing \key{let} is used. That is, variable definitions overshadow
  1056. prior definitions. Consider the following program with two \key{let}'s
  1057. that define variables named \code{x}. Can you figure out the result?
  1058. \begin{lstlisting}
  1059. (let ([x 32]) (+ (let ([x 10]) x) x))
  1060. \end{lstlisting}
  1061. For the purposes of depicting which variable uses correspond to which
  1062. definitions, the following shows the \code{x}'s annotated with
  1063. subscripts to distinguish them. Double check that your answer for the
  1064. above is the same as your answer for this annotated version of the
  1065. program.
  1066. \begin{lstlisting}
  1067. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1068. \end{lstlisting}
  1069. The initializing expression is always evaluated before the body of the
  1070. \key{let}, so in the following, the \key{read} for \code{x} is
  1071. performed before the \key{read} for \code{y}. Given the input
  1072. $52$ then $10$, the following produces $42$ (not $-42$).
  1073. \begin{lstlisting}
  1074. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1075. \end{lstlisting}
  1076. \subsection{Extensible Interpreters via Method Overriding}
  1077. \label{sec:extensible-interp}
  1078. To prepare for discussing the interpreter for \LangVar{}, we need to
  1079. explain why we choose to implement the interpreter using
  1080. object-oriented programming, that is, as a collection of methods
  1081. inside of a class. Throughout this book we define many interpreters,
  1082. one for each of the languages that we study. Because each language
  1083. builds on the prior one, there is a lot of commonality between their
  1084. interpreters. We want to write down those common parts just once
  1085. instead of many times. A naive approach would be to have, for example,
  1086. the interpreter for \LangIf{} handle all of the new features in that
  1087. language and then have a default case that dispatches to the
  1088. interpreter for \LangVar{}. The following code sketches this idea.
  1089. \begin{center}
  1090. \begin{minipage}{0.45\textwidth}
  1091. \begin{lstlisting}
  1092. (define (interp-Rvar e)
  1093. (match e
  1094. [(Prim '- (list e))
  1095. (fx- 0 (interp-Rvar e))]
  1096. ...))
  1097. \end{lstlisting}
  1098. \end{minipage}
  1099. \begin{minipage}{0.45\textwidth}
  1100. \begin{lstlisting}
  1101. (define (interp-Rif e)
  1102. (match e
  1103. [(If cnd thn els)
  1104. (match (interp-Rif cnd)
  1105. [#t (interp-Rif thn)]
  1106. [#f (interp-Rif els)])]
  1107. ...
  1108. [else (interp-Rvar e)]))
  1109. \end{lstlisting}
  1110. \end{minipage}
  1111. \end{center}
  1112. The problem with this approach is that it does not handle situations
  1113. in which an \LangIf{} feature, like \code{If}, is nested inside an \LangVar{}
  1114. feature, like the \code{-} operator, as in the following program.
  1115. \begin{lstlisting}
  1116. (Prim '- (list (If (Bool #t) (Int 42) (Int 0))))
  1117. \end{lstlisting}
  1118. If we invoke \code{interp-Rif} on this program, it dispatches to
  1119. \code{interp-Rvar} to handle the \code{-} operator, but then it
  1120. recurisvely calls \code{interp-Rvar} again on the argument of \code{-},
  1121. which is an \code{If}. But there is no case for \code{If} in
  1122. \code{interp-Rvar}, so we get an error!
  1123. To make our interpreters extensible we need something called
  1124. \emph{open recursion}\index{subject}{open recursion}, where the tying of the
  1125. recursive knot is delayed to when the functions are
  1126. composed. Object-oriented languages provide open recursion with the
  1127. late-binding of overridden methods\index{subject}{method overriding}. The
  1128. following code sketches this idea for interpreting \LangVar{} and
  1129. \LangIf{} using the
  1130. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1131. \index{subject}{class} feature of Racket. We define one class for each
  1132. language and define a method for interpreting expressions inside each
  1133. class. The class for \LangIf{} inherits from the class for \LangVar{}
  1134. and the method \code{interp-exp} in \LangIf{} overrides the
  1135. \code{interp-exp} in \LangVar{}. Note that the default case of
  1136. \code{interp-exp} in \LangIf{} uses \code{super} to invoke
  1137. \code{interp-exp}, and because \LangIf{} inherits from \LangVar{},
  1138. that dispatches to the \code{interp-exp} in \LangVar{}.
  1139. \begin{center}
  1140. \begin{minipage}{0.45\textwidth}
  1141. \begin{lstlisting}
  1142. (define interp-Rvar-class
  1143. (class object%
  1144. (define/public (interp-exp e)
  1145. (match e
  1146. [(Prim '- (list e))
  1147. (fx- 0 (interp-exp e))]
  1148. ...))
  1149. ...))
  1150. \end{lstlisting}
  1151. \end{minipage}
  1152. \begin{minipage}{0.45\textwidth}
  1153. \begin{lstlisting}
  1154. (define interp-Rif-class
  1155. (class interp-Rvar-class
  1156. (define/override (interp-exp e)
  1157. (match e
  1158. [(If cnd thn els)
  1159. (match (interp-exp cnd)
  1160. [#t (interp-exp thn)]
  1161. [#f (interp-exp els)])]
  1162. ...
  1163. [else (super interp-exp e)]))
  1164. ...
  1165. ))
  1166. \end{lstlisting}
  1167. \end{minipage}
  1168. \end{center}
  1169. Getting back to the troublesome example, repeated here:
  1170. \begin{lstlisting}
  1171. (define e0 (Prim '- (list (If (Bool #t) (Int 42) (Int 0)))))
  1172. \end{lstlisting}
  1173. We can invoke the \code{interp-exp} method for \LangIf{} on this
  1174. expression by creating an object of the \LangIf{} class and sending it the
  1175. \code{interp-exp} method with the argument \code{e0}.
  1176. \begin{lstlisting}
  1177. (send (new interp-Rif-class) interp-exp e0)
  1178. \end{lstlisting}
  1179. The default case of \code{interp-exp} in \LangIf{} handles it by
  1180. dispatching to the \code{interp-exp} method in \LangVar{}, which
  1181. handles the \code{-} operator. But then for the recursive method call,
  1182. it dispatches back to \code{interp-exp} in \LangIf{}, where the
  1183. \code{If} is handled correctly. Thus, method overriding gives us the
  1184. open recursion that we need to implement our interpreters in an
  1185. extensible way.
  1186. \newpage
  1187. \subsection{Definitional Interpreter for \LangVar{}}
  1188. \begin{wrapfigure}[26]{r}[0.9in]{0.55\textwidth}
  1189. \small
  1190. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1191. An \emph{association list} (alist) is a list of key-value pairs.
  1192. For example, we can map people to their ages with an alist.
  1193. \index{subject}{alist}\index{subject}{association list}
  1194. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1195. (define ages
  1196. '((jane . 25) (sam . 24) (kate . 45)))
  1197. \end{lstlisting}
  1198. The \emph{dictionary} interface is for mapping keys to values.
  1199. Every alist implements this interface. \index{subject}{dictionary} The package
  1200. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1201. provides many functions for working with dictionaries. Here
  1202. are a few of them:
  1203. \begin{description}
  1204. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1205. returns the value associated with the given $\itm{key}$.
  1206. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1207. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1208. but otherwise is the same as $\itm{dict}$.
  1209. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1210. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1211. of keys and values in $\itm{dict}$. For example, the following
  1212. creates a new alist in which the ages are incremented.
  1213. \end{description}
  1214. \vspace{-10pt}
  1215. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1216. (for/list ([(k v) (in-dict ages)])
  1217. (cons k (add1 v)))
  1218. \end{lstlisting}
  1219. \end{tcolorbox}
  1220. \end{wrapfigure}
  1221. Having justified the use of classes and methods to implement
  1222. interpreters, we turn to the definitional interpreter for \LangVar{}
  1223. in Figure~\ref{fig:interp-Rvar}. It is similar to the interpreter for
  1224. \LangInt{} but adds two new \key{match} cases for variables and
  1225. \key{let}. For \key{let} we need a way to communicate the value bound
  1226. to a variable to all the uses of the variable. To accomplish this, we
  1227. maintain a mapping from variables to values. Throughout the compiler
  1228. we often need to map variables to information about them. We refer to
  1229. these mappings as
  1230. \emph{environments}\index{subject}{environment}.\footnote{Another common term
  1231. for environment in the compiler literature is \emph{symbol
  1232. table}\index{subject}{symbol table}.}
  1233. %
  1234. For simplicity, we use an association list (alist) to represent the
  1235. environment. The sidebar to the right gives a brief introduction to
  1236. alists and the \code{racket/dict} package. The \code{interp-exp}
  1237. function takes the current environment, \code{env}, as an extra
  1238. parameter. When the interpreter encounters a variable, it finds the
  1239. corresponding value using the \code{dict-ref} function. When the
  1240. interpreter encounters a \key{Let}, it evaluates the initializing
  1241. expression, extends the environment with the result value bound to the
  1242. variable, using \code{dict-set}, then evaluates the body of the
  1243. \key{Let}.
  1244. \begin{figure}[tp]
  1245. \begin{lstlisting}
  1246. (define interp-Rvar-class
  1247. (class object%
  1248. (super-new)
  1249. (define/public ((interp-exp env) e)
  1250. (match e
  1251. [(Int n) n]
  1252. [(Prim 'read '())
  1253. (define r (read))
  1254. (cond [(fixnum? r) r]
  1255. [else (error 'interp-exp "expected an integer" r)])]
  1256. [(Prim '- (list e)) (fx- 0 ((interp-exp env) e))]
  1257. [(Prim '+ (list e1 e2))
  1258. (fx+ ((interp-exp env) e1) ((interp-exp env) e2))]
  1259. [(Var x) (dict-ref env x)]
  1260. [(Let x e body)
  1261. (define new-env (dict-set env x ((interp-exp env) e)))
  1262. ((interp-exp new-env) body)]))
  1263. (define/public (interp-program p)
  1264. (match p
  1265. [(Program '() e) ((interp-exp '()) e)]))
  1266. ))
  1267. (define (interp-Rvar p)
  1268. (send (new interp-Rvar-class) interp-program p))
  1269. \end{lstlisting}
  1270. \caption{Interpreter for the \LangVar{} language.}
  1271. \label{fig:interp-Rvar}
  1272. \end{figure}
  1273. The goal for this chapter is to implement a compiler that translates
  1274. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  1275. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  1276. computer as the $P_1$ program interpreted by \code{interp-Rvar}. That
  1277. is, they output the same integer $n$. We depict this correctness
  1278. criteria in the following diagram.
  1279. \[
  1280. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1281. \node (p1) at (0, 0) {$P_1$};
  1282. \node (p2) at (4, 0) {$P_2$};
  1283. \node (o) at (4, -2) {$n$};
  1284. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  1285. \path[->] (p1) edge [left] node {\footnotesize\code{interp-Rvar}} (o);
  1286. \path[->] (p2) edge [right] node {\footnotesize\code{interp-x86int}} (o);
  1287. \end{tikzpicture}
  1288. \]
  1289. In the next section we introduce the \LangXInt{} subset of x86 that
  1290. suffices for compiling \LangVar{}.
  1291. \section{The \LangXInt{} Assembly Language}
  1292. \label{sec:x86}
  1293. \index{subject}{x86}
  1294. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  1295. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  1296. assembler.
  1297. %
  1298. A program begins with a \code{main} label followed by a sequence of
  1299. instructions. The \key{globl} directive says that the \key{main}
  1300. procedure is externally visible, which is necessary so that the
  1301. operating system can call it. In the grammar, ellipses such as
  1302. $\ldots$ are used to indicate a sequence of items, e.g., $\Instr
  1303. \ldots$ is a sequence of instructions.\index{subject}{instruction}
  1304. %
  1305. An x86 program is stored in the computer's memory. For our purposes,
  1306. the computer's memory is a mapping of 64-bit addresses to 64-bit
  1307. values. The computer has a \emph{program counter} (PC)\index{subject}{program
  1308. counter}\index{subject}{PC} stored in the \code{rip} register that points to
  1309. the address of the next instruction to be executed. For most
  1310. instructions, the program counter is incremented after the instruction
  1311. is executed, so it points to the next instruction in memory. Most x86
  1312. instructions take two operands, where each operand is either an
  1313. integer constant (called an \emph{immediate value}\index{subject}{immediate
  1314. value}), a \emph{register}\index{subject}{register}, or a memory location.
  1315. \newcommand{\allregisters}{\key{rsp} \mid \key{rbp} \mid \key{rax} \mid \key{rbx} \mid \key{rcx}
  1316. \mid \key{rdx} \mid \key{rsi} \mid \key{rdi} \mid \\
  1317. && \key{r8} \mid \key{r9} \mid \key{r10}
  1318. \mid \key{r11} \mid \key{r12} \mid \key{r13}
  1319. \mid \key{r14} \mid \key{r15}}
  1320. \begin{figure}[tp]
  1321. \fbox{
  1322. \begin{minipage}{0.96\textwidth}
  1323. \[
  1324. \begin{array}{lcl}
  1325. \Reg &::=& \allregisters{} \\
  1326. \Arg &::=& \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)}\\
  1327. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \mid
  1328. \key{subq} \; \Arg\key{,} \Arg \mid
  1329. \key{negq} \; \Arg \mid \key{movq} \; \Arg\key{,} \Arg \mid \\
  1330. && \key{callq} \; \mathit{label} \mid
  1331. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} \\
  1332. && \itm{label}\key{:}\; \Instr \\
  1333. \LangXIntM{} &::= & \key{.globl main}\\
  1334. & & \key{main:} \; \Instr\ldots
  1335. \end{array}
  1336. \]
  1337. \end{minipage}
  1338. }
  1339. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  1340. \label{fig:x86-int-concrete}
  1341. \end{figure}
  1342. A register is a special kind of variable. Each one holds a 64-bit
  1343. value; there are 16 general-purpose registers in the computer and
  1344. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  1345. is written with a \key{\%} followed by the register name, such as
  1346. \key{\%rax}.
  1347. An immediate value is written using the notation \key{\$}$n$ where $n$
  1348. is an integer.
  1349. %
  1350. %
  1351. An access to memory is specified using the syntax $n(\key{\%}r)$,
  1352. which obtains the address stored in register $r$ and then adds $n$
  1353. bytes to the address. The resulting address is used to load or store
  1354. to memory depending on whether it occurs as a source or destination
  1355. argument of an instruction.
  1356. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  1357. source $s$ and destination $d$, applies the arithmetic operation, then
  1358. writes the result back to the destination $d$.
  1359. %
  1360. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  1361. stores the result in $d$.
  1362. %
  1363. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  1364. specified by the label and $\key{retq}$ returns from a procedure to
  1365. its caller.
  1366. %
  1367. We discuss procedure calls in more detail later in this chapter and in
  1368. Chapter~\ref{ch:Rfun}. The instruction $\key{jmp}\,\itm{label}$
  1369. updates the program counter to the address of the instruction after
  1370. the specified label.
  1371. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  1372. all of the x86 instructions used in this book.
  1373. Figure~\ref{fig:p0-x86} depicts an x86 program that is equivalent to
  1374. \code{(+ 10 32)}. The instruction \lstinline{movq $10, %rax}
  1375. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  1376. adds $32$ to the $10$ in \key{rax} and
  1377. puts the result, $42$, back into \key{rax}.
  1378. %
  1379. The last instruction, \key{retq}, finishes the \key{main} function by
  1380. returning the integer in \key{rax} to the operating system. The
  1381. operating system interprets this integer as the program's exit
  1382. code. By convention, an exit code of 0 indicates that a program
  1383. completed successfully, and all other exit codes indicate various
  1384. errors. Nevertheless, in this book we return the result of the program
  1385. as the exit code.
  1386. \begin{figure}[tbp]
  1387. \begin{lstlisting}
  1388. .globl main
  1389. main:
  1390. movq $10, %rax
  1391. addq $32, %rax
  1392. retq
  1393. \end{lstlisting}
  1394. \caption{An x86 program equivalent to \code{(+ 10 32)}.}
  1395. \label{fig:p0-x86}
  1396. \end{figure}
  1397. The x86 assembly language varies in a couple of ways depending on what
  1398. operating system it is assembled in. The code examples shown here are
  1399. correct on Linux and most Unix-like platforms, but when assembled on
  1400. Mac OS X, labels like \key{main} must be prefixed with an underscore,
  1401. as in \key{\_main}.
  1402. We exhibit the use of memory for storing intermediate results in the
  1403. next example. Figure~\ref{fig:p1-x86} lists an x86 program that is
  1404. equivalent to \code{(+ 52 (- 10))}. This program uses a region of
  1405. memory called the \emph{procedure call stack} (or \emph{stack} for
  1406. short). \index{subject}{stack}\index{subject}{procedure call stack} The stack consists
  1407. of a separate \emph{frame}\index{subject}{frame} for each procedure call. The
  1408. memory layout for an individual frame is shown in
  1409. Figure~\ref{fig:frame}. The register \key{rsp} is called the
  1410. \emph{stack pointer}\index{subject}{stack pointer} and points to the item at
  1411. the top of the stack. The stack grows downward in memory, so we
  1412. increase the size of the stack by subtracting from the stack pointer.
  1413. In the context of a procedure call, the \emph{return
  1414. address}\index{subject}{return address} is the instruction after the call
  1415. instruction on the caller side. The function call instruction,
  1416. \code{callq}, pushes the return address onto the stack prior to
  1417. jumping to the procedure. The register \key{rbp} is the \emph{base
  1418. pointer}\index{subject}{base pointer} and is used to access variables that
  1419. are stored in the frame of the current procedure call. The base
  1420. pointer of the caller is pushed onto the stack after the return
  1421. address and then the base pointer is set to the location of the old
  1422. base pointer. In Figure~\ref{fig:frame} we number the variables from
  1423. $1$ to $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$,
  1424. variable $2$ at $-16\key{(\%rbp)}$, etc.
  1425. \begin{figure}[tbp]
  1426. \begin{lstlisting}
  1427. start:
  1428. movq $10, -8(%rbp)
  1429. negq -8(%rbp)
  1430. movq -8(%rbp), %rax
  1431. addq $52, %rax
  1432. jmp conclusion
  1433. .globl main
  1434. main:
  1435. pushq %rbp
  1436. movq %rsp, %rbp
  1437. subq $16, %rsp
  1438. jmp start
  1439. conclusion:
  1440. addq $16, %rsp
  1441. popq %rbp
  1442. retq
  1443. \end{lstlisting}
  1444. \caption{An x86 program equivalent to \code{(+ 52 (- 10))}.}
  1445. \label{fig:p1-x86}
  1446. \end{figure}
  1447. \begin{figure}[tbp]
  1448. \centering
  1449. \begin{tabular}{|r|l|} \hline
  1450. Position & Contents \\ \hline
  1451. 8(\key{\%rbp}) & return address \\
  1452. 0(\key{\%rbp}) & old \key{rbp} \\
  1453. -8(\key{\%rbp}) & variable $1$ \\
  1454. -16(\key{\%rbp}) & variable $2$ \\
  1455. \ldots & \ldots \\
  1456. 0(\key{\%rsp}) & variable $n$\\ \hline
  1457. \end{tabular}
  1458. \caption{Memory layout of a frame.}
  1459. \label{fig:frame}
  1460. \end{figure}
  1461. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  1462. control is transferred from the operating system to the \code{main}
  1463. function. The operating system issues a \code{callq main} instruction
  1464. which pushes its return address on the stack and then jumps to
  1465. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  1466. by 16 bytes prior to the execution of any \code{callq} instruction, so
  1467. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  1468. alignment (because the \code{callq} pushed the return address). The
  1469. first three instructions are the typical \emph{prelude}\index{subject}{prelude}
  1470. for a procedure. The instruction \code{pushq \%rbp} saves the base
  1471. pointer for the caller onto the stack and subtracts $8$ from the stack
  1472. pointer. The second instruction \code{movq \%rsp, \%rbp} changes the
  1473. base pointer so that it points the location of the old base
  1474. pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  1475. pointer down to make enough room for storing variables. This program
  1476. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  1477. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  1478. functions. The last instruction of the prelude is \code{jmp start},
  1479. which transfers control to the instructions that were generated from
  1480. the Racket expression \code{(+ 52 (- 10))}.
  1481. The first instruction under the \code{start} label is
  1482. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  1483. %
  1484. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  1485. %
  1486. The next instruction moves the $-10$ from variable $1$ into the
  1487. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  1488. the value in \code{rax}, updating its contents to $42$.
  1489. The three instructions under the label \code{conclusion} are the
  1490. typical \emph{conclusion}\index{subject}{conclusion} of a procedure. The first
  1491. two instructions restore the \code{rsp} and \code{rbp} registers to
  1492. the state they were in at the beginning of the procedure. The
  1493. instruction \key{addq \$16, \%rsp} moves the stack pointer back to
  1494. point at the old base pointer. Then \key{popq \%rbp} returns the old
  1495. base pointer to \key{rbp} and adds $8$ to the stack pointer. The last
  1496. instruction, \key{retq}, jumps back to the procedure that called this
  1497. one and adds $8$ to the stack pointer.
  1498. The compiler needs a convenient representation for manipulating x86
  1499. programs, so we define an abstract syntax for x86 in
  1500. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  1501. \LangXInt{}. The main difference compared to the concrete syntax of
  1502. \LangXInt{} (Figure~\ref{fig:x86-int-concrete}) is that labels are not
  1503. allowed in front of every instruction. Instead instructions are
  1504. grouped into \emph{blocks}\index{subject}{block}\index{subject}{basic block} with a
  1505. label associated with every block, which is why the \key{X86Program}
  1506. struct includes an alist mapping labels to blocks. The reason for this
  1507. organization becomes apparent in Chapter~\ref{ch:Rif} when we
  1508. introduce conditional branching. The \code{Block} structure includes
  1509. an $\itm{info}$ field that is not needed for this chapter, but becomes
  1510. useful in Chapter~\ref{ch:register-allocation-Rvar}. For now, the
  1511. $\itm{info}$ field should contain an empty list. Also, regarding the
  1512. abstract syntax for \code{callq}, the \code{Callq} struct includes an
  1513. integer for representing the arity of the function, i.e., the number
  1514. of arguments, which is helpful to know during register allocation
  1515. (Chapter~\ref{ch:register-allocation-Rvar}).
  1516. \begin{figure}[tp]
  1517. \fbox{
  1518. \begin{minipage}{0.98\textwidth}
  1519. \small
  1520. \[
  1521. \begin{array}{lcl}
  1522. \Reg &::=& \allregisters{} \\
  1523. \Arg &::=& \IMM{\Int} \mid \REG{\Reg}
  1524. \mid \DEREF{\Reg}{\Int} \\
  1525. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  1526. \mid \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  1527. &\mid& \BININSTR{\code{movq}}{\Arg}{\Arg}
  1528. \mid \UNIINSTR{\code{negq}}{\Arg}\\
  1529. &\mid& \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  1530. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} \\
  1531. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  1532. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  1533. \end{array}
  1534. \]
  1535. \end{minipage}
  1536. }
  1537. \caption{The abstract syntax of \LangXInt{} assembly.}
  1538. \label{fig:x86-int-ast}
  1539. \end{figure}
  1540. \section{Planning the trip to x86 via the \LangCVar{} language}
  1541. \label{sec:plan-s0-x86}
  1542. To compile one language to another it helps to focus on the
  1543. differences between the two languages because the compiler will need
  1544. to bridge those differences. What are the differences between \LangVar{}
  1545. and x86 assembly? Here are some of the most important ones:
  1546. \begin{enumerate}
  1547. \item[(a)] x86 arithmetic instructions typically have two arguments
  1548. and update the second argument in place. In contrast, \LangVar{}
  1549. arithmetic operations take two arguments and produce a new value.
  1550. An x86 instruction may have at most one memory-accessing argument.
  1551. Furthermore, some instructions place special restrictions on their
  1552. arguments.
  1553. \item[(b)] An argument of an \LangVar{} operator can be a deeply-nested
  1554. expression, whereas x86 instructions restrict their arguments to be
  1555. integer constants, registers, and memory locations.
  1556. \item[(c)] The order of execution in x86 is explicit in the syntax: a
  1557. sequence of instructions and jumps to labeled positions, whereas in
  1558. \LangVar{} the order of evaluation is a left-to-right depth-first
  1559. traversal of the abstract syntax tree.
  1560. \item[(d)] A program in \LangVar{} can have any number of variables
  1561. whereas x86 has 16 registers and the procedure calls stack.
  1562. \item[(e)] Variables in \LangVar{} can shadow other variables with the
  1563. same name. In x86, registers have unique names and memory locations
  1564. have unique addresses.
  1565. \end{enumerate}
  1566. We ease the challenge of compiling from \LangVar{} to x86 by breaking down
  1567. the problem into several steps, dealing with the above differences one
  1568. at a time. Each of these steps is called a \emph{pass} of the
  1569. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  1570. %
  1571. This terminology comes from the way each step passes over the AST of
  1572. the program.
  1573. %
  1574. We begin by sketching how we might implement each pass, and give them
  1575. names. We then figure out an ordering of the passes and the
  1576. input/output language for each pass. The very first pass has
  1577. \LangVar{} as its input language and the last pass has \LangXInt{} as
  1578. its output language. In between we can choose whichever language is
  1579. most convenient for expressing the output of each pass, whether that
  1580. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  1581. our own design. Finally, to implement each pass we write one
  1582. recursive function per non-terminal in the grammar of the input
  1583. language of the pass. \index{subject}{intermediate language}
  1584. \begin{description}
  1585. \item[\key{select-instructions}] handles the difference between
  1586. \LangVar{} operations and x86 instructions. This pass converts each
  1587. \LangVar{} operation to a short sequence of instructions that
  1588. accomplishes the same task.
  1589. \item[\key{remove-complex-opera*}] ensures that each subexpression of
  1590. a primitive operation is a variable or integer, that is, an
  1591. \emph{atomic} expression. We refer to non-atomic expressions as
  1592. \emph{complex}. This pass introduces temporary variables to hold
  1593. the results of complex subexpressions.\index{subject}{atomic
  1594. expression}\index{subject}{complex expression}%
  1595. \footnote{The subexpressions of an operation are often called
  1596. operators and operands which explains the presence of
  1597. \code{opera*} in the name of this pass.}
  1598. \item[\key{explicate-control}] makes the execution order of the
  1599. program explicit. It convert the abstract syntax tree representation
  1600. into a control-flow graph in which each node contains a sequence of
  1601. statements and the edges between nodes say which nodes contain jumps
  1602. to other nodes.
  1603. \item[\key{assign-homes}] replaces the variables in \LangVar{} with
  1604. registers or stack locations in x86.
  1605. \item[\key{uniquify}] deals with the shadowing of variables by
  1606. renaming every variable to a unique name.
  1607. \end{description}
  1608. The next question is: in what order should we apply these passes? This
  1609. question can be challenging because it is difficult to know ahead of
  1610. time which orderings will be better (easier to implement, produce more
  1611. efficient code, etc.) so oftentimes trial-and-error is
  1612. involved. Nevertheless, we can try to plan ahead and make educated
  1613. choices regarding the ordering.
  1614. What should be the ordering of \key{explicate-control} with respect to
  1615. \key{uniquify}? The \key{uniquify} pass should come first because
  1616. \key{explicate-control} changes all the \key{let}-bound variables to
  1617. become local variables whose scope is the entire program, which would
  1618. confuse variables with the same name.
  1619. %
  1620. We place \key{remove-complex-opera*} before \key{explicate-control}
  1621. because the later removes the \key{let} form, but it is convenient to
  1622. use \key{let} in the output of \key{remove-complex-opera*}.
  1623. %
  1624. The ordering of \key{uniquify} with respect to
  1625. \key{remove-complex-opera*} does not matter so we arbitrarily choose
  1626. \key{uniquify} to come first.
  1627. Last, we consider \key{select-instructions} and \key{assign-homes}.
  1628. These two passes are intertwined. In Chapter~\ref{ch:Rfun} we
  1629. learn that, in x86, registers are used for passing arguments to
  1630. functions and it is preferable to assign parameters to their
  1631. corresponding registers. On the other hand, by selecting instructions
  1632. first we may run into a dead end in \key{assign-homes}. Recall that
  1633. only one argument of an x86 instruction may be a memory access but
  1634. \key{assign-homes} might fail to assign even one of them to a
  1635. register.
  1636. %
  1637. A sophisticated approach is to iteratively repeat the two passes until
  1638. a solution is found. However, to reduce implementation complexity we
  1639. recommend a simpler approach in which \key{select-instructions} comes
  1640. first, followed by the \key{assign-homes}, then a third pass named
  1641. \key{patch-instructions} that uses a reserved register to fix
  1642. outstanding problems.
  1643. \begin{figure}[tbp]
  1644. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1645. \node (Rvar) at (0,2) {\large \LangVar{}};
  1646. \node (Rvar-2) at (3,2) {\large \LangVar{}};
  1647. \node (Rvar-3) at (6,2) {\large \LangVarANF{}};
  1648. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  1649. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  1650. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  1651. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  1652. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  1653. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  1654. \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
  1655. \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
  1656. \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-2);
  1657. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  1658. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign-homes} (x86-3);
  1659. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  1660. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize print-x86} (x86-5);
  1661. \end{tikzpicture}
  1662. \caption{Diagram of the passes for compiling \LangVar{}. }
  1663. \label{fig:Rvar-passes}
  1664. \end{figure}
  1665. Figure~\ref{fig:Rvar-passes} presents the ordering of the compiler
  1666. passes and identifies the input and output language of each pass. The
  1667. last pass, \key{print-x86}, converts from the abstract syntax of
  1668. \LangXInt{} to the concrete syntax. In the following two sections
  1669. we discuss the \LangCVar{} intermediate language and the \LangXVar{}
  1670. dialect of x86. The remainder of this chapter gives hints regarding
  1671. the implementation of each of the compiler passes in
  1672. Figure~\ref{fig:Rvar-passes}.
  1673. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  1674. %% are programs that are still in the \LangVar{} language, though the
  1675. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  1676. %% (Section~\ref{sec:remove-complex-opera-Rvar}).
  1677. %% %
  1678. %% The output of \key{explicate-control} is in an intermediate language
  1679. %% \LangCVar{} designed to make the order of evaluation explicit in its
  1680. %% syntax, which we introduce in the next section. The
  1681. %% \key{select-instruction} pass translates from \LangCVar{} to
  1682. %% \LangXVar{}. The \key{assign-homes} and
  1683. %% \key{patch-instructions}
  1684. %% passes input and output variants of x86 assembly.
  1685. \subsection{The \LangCVar{} Intermediate Language}
  1686. The output of \key{explicate-control} is similar to the $C$
  1687. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  1688. categories for expressions and statements, so we name it \LangCVar{}. The
  1689. abstract syntax for \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  1690. (The concrete syntax for \LangCVar{} is in the Appendix,
  1691. Figure~\ref{fig:c0-concrete-syntax}.)
  1692. %
  1693. The \LangCVar{} language supports the same operators as \LangVar{} but
  1694. the arguments of operators are restricted to atomic
  1695. expressions. Instead of \key{let} expressions, \LangCVar{} has
  1696. assignment statements which can be executed in sequence using the
  1697. \key{Seq} form. A sequence of statements always ends with
  1698. \key{Return}, a guarantee that is baked into the grammar rules for
  1699. \itm{tail}. The naming of this non-terminal comes from the term
  1700. \emph{tail position}\index{subject}{tail position}, which refers to an
  1701. expression that is the last one to execute within a function.
  1702. A \LangCVar{} program consists of a control-flow graph represented as
  1703. an alist mapping labels to tails. This is more general than necessary
  1704. for the present chapter, as we do not yet introduce \key{goto} for
  1705. jumping to labels, but it saves us from having to change the syntax in
  1706. Chapter~\ref{ch:Rif}. For now there will be just one label,
  1707. \key{start}, and the whole program is its tail.
  1708. %
  1709. The $\itm{info}$ field of the \key{CProgram} form, after the
  1710. \key{explicate-control} pass, contains a mapping from the symbol
  1711. \key{locals} to a list of variables, that is, a list of all the
  1712. variables used in the program. At the start of the program, these
  1713. variables are uninitialized; they become initialized on their first
  1714. assignment.
  1715. \begin{figure}[tbp]
  1716. \fbox{
  1717. \begin{minipage}{0.96\textwidth}
  1718. \[
  1719. \begin{array}{lcl}
  1720. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  1721. \Exp &::=& \Atm \mid \READ{} \mid \NEG{\Atm} \\
  1722. &\mid& \ADD{\Atm}{\Atm}\\
  1723. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  1724. \Tail &::= & \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} \\
  1725. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  1726. \end{array}
  1727. \]
  1728. \end{minipage}
  1729. }
  1730. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  1731. \label{fig:c0-syntax}
  1732. \end{figure}
  1733. The definitional interpreter for \LangCVar{} is in the support code,
  1734. in the file \code{interp-Cvar.rkt}.
  1735. \subsection{The \LangXVar{} dialect}
  1736. The \LangXVar{} language is the output of the pass
  1737. \key{select-instructions}. It extends \LangXInt{} with an unbounded
  1738. number of program-scope variables and removes the restrictions
  1739. regarding instruction arguments.
  1740. \section{Uniquify Variables}
  1741. \label{sec:uniquify-Rvar}
  1742. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  1743. programs in which every \key{let} binds a unique variable name. For
  1744. example, the \code{uniquify} pass should translate the program on the
  1745. left into the program on the right. \\
  1746. \begin{tabular}{lll}
  1747. \begin{minipage}{0.4\textwidth}
  1748. \begin{lstlisting}
  1749. (let ([x 32])
  1750. (+ (let ([x 10]) x) x))
  1751. \end{lstlisting}
  1752. \end{minipage}
  1753. &
  1754. $\Rightarrow$
  1755. &
  1756. \begin{minipage}{0.4\textwidth}
  1757. \begin{lstlisting}
  1758. (let ([x.1 32])
  1759. (+ (let ([x.2 10]) x.2) x.1))
  1760. \end{lstlisting}
  1761. \end{minipage}
  1762. \end{tabular} \\
  1763. %
  1764. The following is another example translation, this time of a program
  1765. with a \key{let} nested inside the initializing expression of another
  1766. \key{let}.\\
  1767. \begin{tabular}{lll}
  1768. \begin{minipage}{0.4\textwidth}
  1769. \begin{lstlisting}
  1770. (let ([x (let ([x 4])
  1771. (+ x 1))])
  1772. (+ x 2))
  1773. \end{lstlisting}
  1774. \end{minipage}
  1775. &
  1776. $\Rightarrow$
  1777. &
  1778. \begin{minipage}{0.4\textwidth}
  1779. \begin{lstlisting}
  1780. (let ([x.2 (let ([x.1 4])
  1781. (+ x.1 1))])
  1782. (+ x.2 2))
  1783. \end{lstlisting}
  1784. \end{minipage}
  1785. \end{tabular}
  1786. We recommend implementing \code{uniquify} by creating a structurally
  1787. recursive function named \code{uniquify-exp} that mostly just copies
  1788. an expression. However, when encountering a \key{let}, it should
  1789. generate a unique name for the variable and associate the old name
  1790. with the new name in an alist.\footnote{The Racket function
  1791. \code{gensym} is handy for generating unique variable names.} The
  1792. \code{uniquify-exp} function needs to access this alist when it gets
  1793. to a variable reference, so we add a parameter to \code{uniquify-exp}
  1794. for the alist.
  1795. The skeleton of the \code{uniquify-exp} function is shown in
  1796. Figure~\ref{fig:uniquify-Rvar}. The function is curried so that it is
  1797. convenient to partially apply it to an alist and then apply it to
  1798. different expressions, as in the last case for primitive operations in
  1799. Figure~\ref{fig:uniquify-Rvar}. The
  1800. %
  1801. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  1802. %
  1803. form of Racket is useful for transforming each element of a list to
  1804. produce a new list.\index{subject}{for/list}
  1805. \begin{figure}[tbp]
  1806. \begin{lstlisting}
  1807. (define (uniquify-exp env)
  1808. (lambda (e)
  1809. (match e
  1810. [(Var x) ___]
  1811. [(Int n) (Int n)]
  1812. [(Let x e body) ___]
  1813. [(Prim op es)
  1814. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  1815. (define (uniquify p)
  1816. (match p
  1817. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  1818. \end{lstlisting}
  1819. \caption{Skeleton for the \key{uniquify} pass.}
  1820. \label{fig:uniquify-Rvar}
  1821. \end{figure}
  1822. \begin{exercise}
  1823. \normalfont % I don't like the italics for exercises. -Jeremy
  1824. Complete the \code{uniquify} pass by filling in the blanks in
  1825. Figure~\ref{fig:uniquify-Rvar}, that is, implement the cases for
  1826. variables and for the \key{let} form in the file \code{compiler.rkt}
  1827. in the support code.
  1828. \end{exercise}
  1829. \begin{exercise}
  1830. \normalfont % I don't like the italics for exercises. -Jeremy
  1831. \label{ex:Rvar}
  1832. Create five \LangVar{} programs that exercise the most interesting
  1833. parts of the \key{uniquify} pass, that is, the programs should include
  1834. \key{let} forms, variables, and variables that shadow each other.
  1835. The five programs should be placed in the subdirectory named
  1836. \key{tests} and the file names should start with \code{var\_test\_}
  1837. followed by a unique integer and end with the file extension
  1838. \key{.rkt}.
  1839. %
  1840. The \key{run-tests.rkt} script in the support code checks whether the
  1841. output programs produce the same result as the input programs. The
  1842. script uses the \key{interp-tests} function
  1843. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  1844. your \key{uniquify} pass on the example programs. The \code{passes}
  1845. parameter of \key{interp-tests} is a list that should have one entry
  1846. for each pass in your compiler. For now, define \code{passes} to
  1847. contain just one entry for \code{uniquify} as shown below.
  1848. \begin{lstlisting}
  1849. (define passes
  1850. (list (list "uniquify" uniquify interp-Rvar type-check-Rvar)))
  1851. \end{lstlisting}
  1852. Run the \key{run-tests.rkt} script in the support code to check
  1853. whether the output programs produce the same result as the input
  1854. programs.
  1855. \end{exercise}
  1856. \section{Remove Complex Operands}
  1857. \label{sec:remove-complex-opera-Rvar}
  1858. The \code{remove-complex-opera*} pass compiles \LangVar{} programs
  1859. into a restricted form in which the arguments of operations are atomic
  1860. expressions. Put another way, this pass removes complex
  1861. operands\index{subject}{complex operand}, such as the expression \code{(- 10)}
  1862. in the program below. This is accomplished by introducing a new
  1863. \key{let}-bound variable, binding the complex operand to the new
  1864. variable, and then using the new variable in place of the complex
  1865. operand, as shown in the output of \code{remove-complex-opera*} on the
  1866. right.\\
  1867. \begin{tabular}{lll}
  1868. \begin{minipage}{0.4\textwidth}
  1869. % var_test_19.rkt
  1870. \begin{lstlisting}
  1871. (+ 52 (- 10))
  1872. \end{lstlisting}
  1873. \end{minipage}
  1874. &
  1875. $\Rightarrow$
  1876. &
  1877. \begin{minipage}{0.4\textwidth}
  1878. \begin{lstlisting}
  1879. (let ([tmp.1 (- 10)])
  1880. (+ 52 tmp.1))
  1881. \end{lstlisting}
  1882. \end{minipage}
  1883. \end{tabular}
  1884. \begin{figure}[tp]
  1885. \centering
  1886. \fbox{
  1887. \begin{minipage}{0.96\textwidth}
  1888. \[
  1889. \begin{array}{rcl}
  1890. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  1891. \Exp &::=& \Atm \mid \READ{} \\
  1892. &\mid& \NEG{\Atm} \mid \ADD{\Atm}{\Atm} \\
  1893. &\mid& \LET{\Var}{\Exp}{\Exp} \\
  1894. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1895. \end{array}
  1896. \]
  1897. \end{minipage}
  1898. }
  1899. \caption{\LangVarANF{} is \LangVar{} in administrative normal form (ANF).}
  1900. \label{fig:r1-anf-syntax}
  1901. \end{figure}
  1902. Figure~\ref{fig:r1-anf-syntax} presents the grammar for the output of
  1903. this pass, the language \LangVarANF{}. The only difference is that
  1904. operator arguments are restricted to be atomic expressions that are
  1905. defined by the \Atm{} non-terminal. In particular, integer constants
  1906. and variables are atomic. In the literature, restricting arguments to
  1907. be atomic expressions is called \emph{administrative normal form}, or
  1908. ANF for short~\citep{Danvy:1991fk,Flanagan:1993cg}.
  1909. \index{subject}{administrative normal form} \index{subject}{ANF}
  1910. We recommend implementing this pass with two mutually recursive
  1911. functions, \code{rco-atom} and \code{rco-exp}. The idea is to apply
  1912. \code{rco-atom} to subexpressions that need to become atomic and to
  1913. apply \code{rco-exp} to subexpressions that do not. Both functions
  1914. take an \LangVar{} expression as input. The \code{rco-exp} function
  1915. returns an expression. The \code{rco-atom} function returns two
  1916. things: an atomic expression and an alist mapping temporary variables to
  1917. complex subexpressions. You can return multiple things from a function
  1918. using Racket's \key{values} form and you can receive multiple things
  1919. from a function call using the \key{define-values} form. If you are
  1920. not familiar with these features, review the Racket documentation.
  1921. Also, the
  1922. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  1923. form is useful for applying a function to each element of a list, in
  1924. the case where the function returns multiple values.
  1925. \index{subject}{for/lists}
  1926. Returning to the example program \code{(+ 52 (- 10))}, the
  1927. subexpression \code{(- 10)} should be processed using the
  1928. \code{rco-atom} function because it is an argument of the \code{+} and
  1929. therefore needs to become atomic. The output of \code{rco-atom}
  1930. applied to \code{(- 10)} is as follows.
  1931. \begin{tabular}{lll}
  1932. \begin{minipage}{0.4\textwidth}
  1933. \begin{lstlisting}
  1934. (- 10)
  1935. \end{lstlisting}
  1936. \end{minipage}
  1937. &
  1938. $\Rightarrow$
  1939. &
  1940. \begin{minipage}{0.4\textwidth}
  1941. \begin{lstlisting}
  1942. tmp.1
  1943. ((tmp.1 . (- 10)))
  1944. \end{lstlisting}
  1945. \end{minipage}
  1946. \end{tabular}
  1947. Take special care of programs such as the following one that binds a
  1948. variable to an atomic expression. You should leave such variable
  1949. bindings unchanged, as shown in to the program on the right \\
  1950. \begin{tabular}{lll}
  1951. \begin{minipage}{0.4\textwidth}
  1952. % var_test_20.rkt
  1953. \begin{lstlisting}
  1954. (let ([a 42])
  1955. (let ([b a])
  1956. b))
  1957. \end{lstlisting}
  1958. \end{minipage}
  1959. &
  1960. $\Rightarrow$
  1961. &
  1962. \begin{minipage}{0.4\textwidth}
  1963. \begin{lstlisting}
  1964. (let ([a 42])
  1965. (let ([b a])
  1966. b))
  1967. \end{lstlisting}
  1968. \end{minipage}
  1969. \end{tabular} \\
  1970. A careless implementation of \key{rco-exp} and \key{rco-atom} might
  1971. produce the following output with unnecessary temporary variables.\\
  1972. \begin{minipage}{0.4\textwidth}
  1973. \begin{lstlisting}
  1974. (let ([tmp.1 42])
  1975. (let ([a tmp.1])
  1976. (let ([tmp.2 a])
  1977. (let ([b tmp.2])
  1978. b))))
  1979. \end{lstlisting}
  1980. \end{minipage}
  1981. \begin{exercise}
  1982. \normalfont
  1983. Implement the \code{remove-complex-opera*} function in
  1984. \code{compiler.rkt}.
  1985. %
  1986. Create three new \LangVar{} programs that exercise the interesting
  1987. code in the \code{remove-complex-opera*} pass. Follow the guidelines
  1988. regarding file names described in Exercise~\ref{ex:Rvar}.
  1989. %
  1990. In the \code{run-tests.rkt} script, add the following entry to the
  1991. list of \code{passes} and then run the script to test your compiler.
  1992. \begin{lstlisting}
  1993. (list "remove-complex" remove-complex-opera* interp-Rvar type-check-Rvar)
  1994. \end{lstlisting}
  1995. While debugging your compiler, it is often useful to see the
  1996. intermediate programs that are output from each pass. To print the
  1997. intermediate programs, place the \lstinline{(debug-level 1)} before the call to
  1998. \code{interp-tests} in \code{run-tests.rkt}.
  1999. \end{exercise}
  2000. \section{Explicate Control}
  2001. \label{sec:explicate-control-Rvar}
  2002. The \code{explicate-control} pass compiles \LangVar{} programs into \LangCVar{}
  2003. programs that make the order of execution explicit in their
  2004. syntax. For now this amounts to flattening \key{let} constructs into a
  2005. sequence of assignment statements. For example, consider the following
  2006. \LangVar{} program.\\
  2007. % var_test_11.rkt
  2008. \begin{minipage}{0.96\textwidth}
  2009. \begin{lstlisting}
  2010. (let ([y (let ([x 20])
  2011. (+ x (let ([x 22]) x)))])
  2012. y)
  2013. \end{lstlisting}
  2014. \end{minipage}\\
  2015. %
  2016. The output of the previous pass and of \code{explicate-control} is
  2017. shown below. Recall that the right-hand-side of a \key{let} executes
  2018. before its body, so the order of evaluation for this program is to
  2019. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  2020. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  2021. output of \code{explicate-control} makes this ordering explicit.\\
  2022. \begin{tabular}{lll}
  2023. \begin{minipage}{0.4\textwidth}
  2024. \begin{lstlisting}
  2025. (let ([y (let ([x.1 20])
  2026. (let ([x.2 22])
  2027. (+ x.1 x.2)))])
  2028. y)
  2029. \end{lstlisting}
  2030. \end{minipage}
  2031. &
  2032. $\Rightarrow$
  2033. &
  2034. \begin{minipage}{0.4\textwidth}
  2035. \begin{lstlisting}[language=C]
  2036. start:
  2037. x.1 = 20;
  2038. x.2 = 22;
  2039. y = (+ x.1 x.2);
  2040. return y;
  2041. \end{lstlisting}
  2042. \end{minipage}
  2043. \end{tabular}
  2044. \begin{figure}[tbp]
  2045. \begin{lstlisting}
  2046. (define (explicate-tail e)
  2047. (match e
  2048. [(Var x) ___]
  2049. [(Int n) (Return (Int n))]
  2050. [(Let x rhs body) ___]
  2051. [(Prim op es) ___]
  2052. [else (error "explicate-tail unhandled case" e)]))
  2053. (define (explicate-assign e x cont)
  2054. (match e
  2055. [(Var x) ___]
  2056. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  2057. [(Let y rhs body) ___]
  2058. [(Prim op es) ___]
  2059. [else (error "explicate-assign unhandled case" e)]))
  2060. (define (explicate-control p)
  2061. (match p
  2062. [(Program info body) ___]))
  2063. \end{lstlisting}
  2064. \caption{Skeleton for the \key{explicate-control} pass.}
  2065. \label{fig:explicate-control-Rvar}
  2066. \end{figure}
  2067. The organization of this pass depends on the notion of tail position
  2068. that we have alluded to earlier. Formally, \emph{tail
  2069. position}\index{subject}{tail position} in the context of \LangVar{} is
  2070. defined recursively by the following two rules.
  2071. \begin{enumerate}
  2072. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  2073. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  2074. \end{enumerate}
  2075. We recommend implementing \code{explicate-control} using two mutually
  2076. recursive functions, \code{explicate-tail} and
  2077. \code{explicate-assign}, as suggested in the skeleton code in
  2078. Figure~\ref{fig:explicate-control-Rvar}. The \code{explicate-tail}
  2079. function should be applied to expressions in tail position whereas the
  2080. \code{explicate-assign} should be applied to expressions that occur on
  2081. the right-hand-side of a \key{let}.
  2082. %
  2083. The \code{explicate-tail} function takes an \Exp{} in \LangVar{} as
  2084. input and produces a \Tail{} in \LangCVar{} (see
  2085. Figure~\ref{fig:c0-syntax}).
  2086. %
  2087. The \code{explicate-assign} function takes an \Exp{} in \LangVar{},
  2088. the variable that it is to be assigned to, and a \Tail{} in
  2089. \LangCVar{} for the code that will come after the assignment. The
  2090. \code{explicate-assign} function returns a $\Tail$ in \LangCVar{}.
  2091. The \code{explicate-assign} function is in accumulator-passing style
  2092. in that the \code{cont} parameter is used for accumulating the
  2093. output. The reader might be tempted to instead organize
  2094. \code{explicate-assign} in a more direct fashion, without the
  2095. \code{cont} parameter and perhaps using \code{append} to combine
  2096. statements. We warn against that alternative because the
  2097. accumulator-passing style is key to how we generate high-quality code
  2098. for conditional expressions in Chapter~\ref{ch:Rif}.
  2099. \begin{exercise}\normalfont
  2100. %
  2101. Implement the \code{explicate-control} function in
  2102. \code{compiler.rkt}. Create three new \LangInt{} programs that
  2103. exercise the code in \code{explicate-control}.
  2104. %
  2105. In the \code{run-tests.rkt} script, add the following entry to the
  2106. list of \code{passes} and then run the script to test your compiler.
  2107. \begin{lstlisting}
  2108. (list "explicate control" explicate-control interp-Cvar type-check-Cvar)
  2109. \end{lstlisting}
  2110. \end{exercise}
  2111. \section{Select Instructions}
  2112. \label{sec:select-Rvar}
  2113. \index{subject}{instruction selection}
  2114. In the \code{select-instructions} pass we begin the work of
  2115. translating from \LangCVar{} to \LangXVar{}. The target language of
  2116. this pass is a variant of x86 that still uses variables, so we add an
  2117. AST node of the form $\VAR{\itm{var}}$ to the \Arg{} non-terminal of
  2118. the \LangXInt{} abstract syntax (Figure~\ref{fig:x86-int-ast}). We
  2119. recommend implementing the \code{select-instructions} with
  2120. three auxiliary functions, one for each of the non-terminals of
  2121. \LangCVar{}: $\Atm$, $\Stmt$, and $\Tail$.
  2122. The cases for $\Atm$ are straightforward; variables stay
  2123. the same and integer constants are changed to immediates:
  2124. $\INT{n}$ changes to $\IMM{n}$.
  2125. Next we consider the cases for $\Stmt$, starting with arithmetic
  2126. operations. For example, consider the addition operation. We can use
  2127. the \key{addq} instruction, but it performs an in-place update. So we
  2128. could move $\itm{arg}_1$ into the left-hand side \itm{var} and then
  2129. add $\itm{arg}_2$ to \itm{var}. \\
  2130. \begin{tabular}{lll}
  2131. \begin{minipage}{0.4\textwidth}
  2132. \begin{lstlisting}
  2133. |$\itm{var}$| = (+ |$\itm{arg}_1$| |$\itm{arg}_2$|);
  2134. \end{lstlisting}
  2135. \end{minipage}
  2136. &
  2137. $\Rightarrow$
  2138. &
  2139. \begin{minipage}{0.4\textwidth}
  2140. \begin{lstlisting}
  2141. movq |$\itm{arg}_1$|, |$\itm{var}$|
  2142. addq |$\itm{arg}_2$|, |$\itm{var}$|
  2143. \end{lstlisting}
  2144. \end{minipage}
  2145. \end{tabular} \\
  2146. %
  2147. There are also cases that require special care to avoid generating
  2148. needlessly complicated code. For example, if one of the arguments of
  2149. the addition is the same variable as the left-hand side of the
  2150. assignment, then there is no need for the extra move instruction. The
  2151. assignment statement can be translated into a single \key{addq}
  2152. instruction as follows.\\
  2153. \begin{tabular}{lll}
  2154. \begin{minipage}{0.4\textwidth}
  2155. \begin{lstlisting}
  2156. |$\itm{var}$| = (+ |$\itm{arg}_1$| |$\itm{var}$|);
  2157. \end{lstlisting}
  2158. \end{minipage}
  2159. &
  2160. $\Rightarrow$
  2161. &
  2162. \begin{minipage}{0.4\textwidth}
  2163. \begin{lstlisting}
  2164. addq |$\itm{arg}_1$|, |$\itm{var}$|
  2165. \end{lstlisting}
  2166. \end{minipage}
  2167. \end{tabular}
  2168. The \key{read} operation does not have a direct counterpart in x86
  2169. assembly, so we provide this functionality with the function
  2170. \code{read\_int} in the file \code{runtime.c}, written in
  2171. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  2172. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  2173. system}, or simply the \emph{runtime} for short. When compiling your
  2174. generated x86 assembly code, you need to compile \code{runtime.c} to
  2175. \code{runtime.o} (an ``object file'', using \code{gcc} option
  2176. \code{-c}) and link it into the executable. For our purposes of code
  2177. generation, all you need to do is translate an assignment of
  2178. \key{read} into a call to the \code{read\_int} function followed by a
  2179. move from \code{rax} to the left-hand-side variable. (Recall that the
  2180. return value of a function goes into \code{rax}.) \\
  2181. \begin{tabular}{lll}
  2182. \begin{minipage}{0.3\textwidth}
  2183. \begin{lstlisting}
  2184. |$\itm{var}$| = (read);
  2185. \end{lstlisting}
  2186. \end{minipage}
  2187. &
  2188. $\Rightarrow$
  2189. &
  2190. \begin{minipage}{0.3\textwidth}
  2191. \begin{lstlisting}
  2192. callq read_int
  2193. movq %rax, |$\itm{var}$|
  2194. \end{lstlisting}
  2195. \end{minipage}
  2196. \end{tabular}
  2197. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  2198. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  2199. assignment to the \key{rax} register followed by a jump to the
  2200. conclusion of the program (so the conclusion needs to be labeled).
  2201. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  2202. recursively and then append the resulting instructions.
  2203. \begin{exercise}
  2204. \normalfont Implement the \key{select-instructions} pass in
  2205. \code{compiler.rkt}. Create three new example programs that are
  2206. designed to exercise all of the interesting cases in this pass.
  2207. %
  2208. In the \code{run-tests.rkt} script, add the following entry to the
  2209. list of \code{passes} and then run the script to test your compiler.
  2210. \begin{lstlisting}
  2211. (list "instruction selection" select-instructions interp-pseudo-x86-0)
  2212. \end{lstlisting}
  2213. \end{exercise}
  2214. \section{Assign Homes}
  2215. \label{sec:assign-Rvar}
  2216. The \key{assign-homes} pass compiles \LangXVar{} programs to
  2217. \LangXVar{} programs that no longer use program variables.
  2218. Thus, the \key{assign-homes} pass is responsible for placing all of
  2219. the program variables in registers or on the stack. For runtime
  2220. efficiency, it is better to place variables in registers, but as there
  2221. are only 16 registers, some programs must necessarily resort to
  2222. placing some variables on the stack. In this chapter we focus on the
  2223. mechanics of placing variables on the stack. We study an algorithm for
  2224. placing variables in registers in
  2225. Chapter~\ref{ch:register-allocation-Rvar}.
  2226. Consider again the following \LangVar{} program from
  2227. Section~\ref{sec:remove-complex-opera-Rvar}.
  2228. % var_test_20.rkt
  2229. \begin{lstlisting}
  2230. (let ([a 42])
  2231. (let ([b a])
  2232. b))
  2233. \end{lstlisting}
  2234. The output of \code{select-instructions} is shown on the left and the
  2235. output of \code{assign-homes} on the right. In this example, we
  2236. assign variable \code{a} to stack location \code{-8(\%rbp)} and
  2237. variable \code{b} to location \code{-16(\%rbp)}.\\
  2238. \begin{tabular}{l}
  2239. \begin{minipage}{0.4\textwidth}
  2240. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  2241. locals-types:
  2242. a : Integer, b : Integer
  2243. start:
  2244. movq $42, a
  2245. movq a, b
  2246. movq b, %rax
  2247. jmp conclusion
  2248. \end{lstlisting}
  2249. \end{minipage}
  2250. {$\Rightarrow$}
  2251. \begin{minipage}{0.4\textwidth}
  2252. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  2253. stack-space: 16
  2254. start:
  2255. movq $42, -8(%rbp)
  2256. movq -8(%rbp), -16(%rbp)
  2257. movq -16(%rbp), %rax
  2258. jmp conclusion
  2259. \end{lstlisting}
  2260. \end{minipage}
  2261. \end{tabular}
  2262. The \code{locals-types} entry in the $\itm{info}$ of the
  2263. \code{X86Program} node is an alist mapping all the variables in the
  2264. program to their types (for now just \code{Integer}). The
  2265. \code{assign-homes} pass should replace all uses of those variables
  2266. with stack locations. As an aside, the \code{locals-types} entry is
  2267. computed by \code{type-check-Cvar} in the support code, which installs
  2268. it in the $\itm{info}$ field of the \code{CProgram} node, which should
  2269. be propagated to the \code{X86Program} node.
  2270. In the process of assigning variables to stack locations, it is
  2271. convenient for you to compute and store the size of the frame (in
  2272. bytes) in the $\itm{info}$ field of the \key{X86Program} node, with
  2273. the key \code{stack-space}, which is needed later to generate the
  2274. conclusion of the \code{main} procedure. The x86-64 standard requires
  2275. the frame size to be a multiple of 16 bytes.\index{subject}{frame}
  2276. \begin{exercise}\normalfont
  2277. Implement the \key{assign-homes} pass in \code{compiler.rkt}, defining
  2278. auxiliary functions for the non-terminals \Arg{}, \Instr{}, and
  2279. \Block{}. We recommend that the auxiliary functions take an extra
  2280. parameter that is an alist mapping variable names to homes (stack
  2281. locations for now).
  2282. %
  2283. In the \code{run-tests.rkt} script, add the following entry to the
  2284. list of \code{passes} and then run the script to test your compiler.
  2285. \begin{lstlisting}
  2286. (list "assign homes" assign-homes interp-x86-0)
  2287. \end{lstlisting}
  2288. \end{exercise}
  2289. \section{Patch Instructions}
  2290. \label{sec:patch-s0}
  2291. The \code{patch-instructions} pass compiles from \LangXVar{} to
  2292. \LangXInt{} by making sure that each instruction adheres to the
  2293. restriction that at most one argument of an instruction may be a
  2294. memory reference.
  2295. We return to the following example.
  2296. % var_test_20.rkt
  2297. \begin{lstlisting}
  2298. (let ([a 42])
  2299. (let ([b a])
  2300. b))
  2301. \end{lstlisting}
  2302. The \key{assign-homes} pass produces the following output
  2303. for this program. \\
  2304. \begin{minipage}{0.5\textwidth}
  2305. \begin{lstlisting}
  2306. stack-space: 16
  2307. start:
  2308. movq $42, -8(%rbp)
  2309. movq -8(%rbp), -16(%rbp)
  2310. movq -16(%rbp), %rax
  2311. jmp conclusion
  2312. \end{lstlisting}
  2313. \end{minipage}\\
  2314. The second \key{movq} instruction is problematic because both
  2315. arguments are stack locations. We suggest fixing this problem by
  2316. moving from the source location to the register \key{rax} and then
  2317. from \key{rax} to the destination location, as follows.
  2318. \begin{lstlisting}
  2319. movq -8(%rbp), %rax
  2320. movq %rax, -16(%rbp)
  2321. \end{lstlisting}
  2322. \begin{exercise}
  2323. \normalfont Implement the \key{patch-instructions} pass in
  2324. \code{compiler.rkt}. Create three new example programs that are
  2325. designed to exercise all of the interesting cases in this pass.
  2326. %
  2327. In the \code{run-tests.rkt} script, add the following entry to the
  2328. list of \code{passes} and then run the script to test your compiler.
  2329. \begin{lstlisting}
  2330. (list "patch instructions" patch-instructions interp-x86-0)
  2331. \end{lstlisting}
  2332. \end{exercise}
  2333. \section{Print x86}
  2334. \label{sec:print-x86}
  2335. The last step of the compiler from \LangVar{} to x86 is to convert the
  2336. \LangXInt{} AST (defined in Figure~\ref{fig:x86-int-ast}) to the
  2337. string representation (defined in
  2338. Figure~\ref{fig:x86-int-concrete}). The Racket \key{format} and
  2339. \key{string-append} functions are useful in this regard. The main work
  2340. that this step needs to perform is to create the \key{main} function
  2341. and the standard instructions for its prelude and conclusion, as shown
  2342. in Figure~\ref{fig:p1-x86} of Section~\ref{sec:x86}. You will need to
  2343. know the amount of space needed for the stack frame, which you can
  2344. obtain from the \code{stack-space} entry in the $\itm{info}$ field of
  2345. the \key{X86Program} node.
  2346. When running on Mac OS X, you compiler should prefix an underscore to
  2347. labels like \key{main}. The Racket call \code{(system-type 'os)} is
  2348. useful for determining which operating system the compiler is running
  2349. on. It returns \code{'macosx}, \code{'unix}, or \code{'windows}.
  2350. \begin{exercise}\normalfont
  2351. %
  2352. Implement the \key{print-x86} pass in \code{compiler.rkt}.
  2353. %
  2354. In the \code{run-tests.rkt} script, add the following entry to the
  2355. list of \code{passes} and then run the script to test your compiler.
  2356. \begin{lstlisting}
  2357. (list "print x86" print-x86 #f)
  2358. \end{lstlisting}
  2359. %
  2360. Uncomment the call to the \key{compiler-tests} function
  2361. (Appendix~\ref{appendix:utilities}), which tests your complete
  2362. compiler by executing the generated x86 code. Compile the provided
  2363. \key{runtime.c} file to \key{runtime.o} using \key{gcc}. Run the
  2364. script to test your compiler.
  2365. \end{exercise}
  2366. \section{Challenge: Partial Evaluator for \LangVar{}}
  2367. \label{sec:pe-Rvar}
  2368. \index{subject}{partial evaluation}
  2369. This section describes optional challenge exercises that involve
  2370. adapting and improving the partial evaluator for \LangInt{} that was
  2371. introduced in Section~\ref{sec:partial-evaluation}.
  2372. \begin{exercise}\label{ex:pe-Rvar}
  2373. \normalfont
  2374. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  2375. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  2376. instead of \LangInt{} programs. Recall that \LangVar{} adds \key{let} binding
  2377. and variables to the \LangInt{} language, so you will need to add cases for
  2378. them in the \code{pe-exp} function. Once complete, add the partial
  2379. evaluation pass to the front of your compiler and make sure that your
  2380. compiler still passes all of the tests.
  2381. \end{exercise}
  2382. The next exercise builds on Exercise~\ref{ex:pe-Rvar}.
  2383. \begin{exercise}
  2384. \normalfont
  2385. Improve on the partial evaluator by replacing the \code{pe-neg} and
  2386. \code{pe-add} auxiliary functions with functions that know more about
  2387. arithmetic. For example, your partial evaluator should translate
  2388. \[
  2389. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  2390. \code{(+ 2 (read))}
  2391. \]
  2392. To accomplish this, the \code{pe-exp} function should produce output
  2393. in the form of the $\itm{residual}$ non-terminal of the following
  2394. grammar. The idea is that when processing an addition expression, we
  2395. can always produce either 1) an integer constant, 2) an addition
  2396. expression with an integer constant on the left-hand side but not the
  2397. right-hand side, or 3) or an addition expression in which neither
  2398. subexpression is a constant.
  2399. \[
  2400. \begin{array}{lcl}
  2401. \itm{inert} &::=& \Var
  2402. \mid \LP\key{read}\RP
  2403. \mid \LP\key{-} \;\Var\RP
  2404. \mid \LP\key{-} \;\LP\key{read}\RP\RP
  2405. \mid \LP\key{+} \; \itm{inert} \; \itm{inert}\RP\\
  2406. &\mid& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  2407. \itm{residual} &::=& \Int
  2408. \mid \LP\key{+}\; \Int\; \itm{inert}\RP
  2409. \mid \itm{inert}
  2410. \end{array}
  2411. \]
  2412. The \code{pe-add} and \code{pe-neg} functions may assume that their
  2413. inputs are $\itm{residual}$ expressions and they should return
  2414. $\itm{residual}$ expressions. Once the improvements are complete,
  2415. make sure that your compiler still passes all of the tests. After
  2416. all, fast code is useless if it produces incorrect results!
  2417. \end{exercise}
  2418. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  2419. \chapter{Register Allocation}
  2420. \label{ch:register-allocation-Rvar}
  2421. \index{subject}{register allocation}
  2422. In Chapter~\ref{ch:Rvar} we learned how to store variables on the
  2423. stack. In this Chapter we learn how to improve the performance of the
  2424. generated code by placing some variables into registers. The CPU can
  2425. access a register in a single cycle, whereas accessing the stack can
  2426. take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
  2427. serves as a running example. The source program is on the left and the
  2428. output of instruction selection is on the right. The program is almost
  2429. in the x86 assembly language but it still uses variables.
  2430. \begin{figure}
  2431. \begin{minipage}{0.45\textwidth}
  2432. Example \LangVar{} program:
  2433. % var_test_28.rkt
  2434. \begin{lstlisting}
  2435. (let ([v 1])
  2436. (let ([w 42])
  2437. (let ([x (+ v 7)])
  2438. (let ([y x])
  2439. (let ([z (+ x w)])
  2440. (+ z (- y)))))))
  2441. \end{lstlisting}
  2442. \end{minipage}
  2443. \begin{minipage}{0.45\textwidth}
  2444. After instruction selection:
  2445. \begin{lstlisting}
  2446. locals-types:
  2447. x : Integer, y : Integer,
  2448. z : Integer, t : Integer,
  2449. v : Integer, w : Integer
  2450. start:
  2451. movq $1, v
  2452. movq $42, w
  2453. movq v, x
  2454. addq $7, x
  2455. movq x, y
  2456. movq x, z
  2457. addq w, z
  2458. movq y, t
  2459. negq t
  2460. movq z, %rax
  2461. addq t, %rax
  2462. jmp conclusion
  2463. \end{lstlisting}
  2464. \end{minipage}
  2465. \caption{A running example for register allocation.}
  2466. \label{fig:reg-eg}
  2467. \end{figure}
  2468. The goal of register allocation is to fit as many variables into
  2469. registers as possible. Some programs have more variables than
  2470. registers so we cannot always map each variable to a different
  2471. register. Fortunately, it is common for different variables to be
  2472. needed during different periods of time during program execution, and
  2473. in such cases several variables can be mapped to the same register.
  2474. Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
  2475. After the variable \code{x} is moved to \code{z} it is no longer
  2476. needed. Variable \code{z}, on the other hand, is used only after this
  2477. point, so \code{x} and \code{z} could share the same register. The
  2478. topic of Section~\ref{sec:liveness-analysis-Rvar} is how to compute
  2479. where a variable is needed. Once we have that information, we compute
  2480. which variables are needed at the same time, i.e., which ones
  2481. \emph{interfere} with each other, and represent this relation as an
  2482. undirected graph whose vertices are variables and edges indicate when
  2483. two variables interfere (Section~\ref{sec:build-interference}). We
  2484. then model register allocation as a graph coloring problem
  2485. (Section~\ref{sec:graph-coloring}).
  2486. If we run out of registers despite these efforts, we place the
  2487. remaining variables on the stack, similar to what we did in
  2488. Chapter~\ref{ch:Rvar}. It is common to use the verb \emph{spill}
  2489. for assigning a variable to a stack location. The decision to spill a
  2490. variable is handled as part of the graph coloring process
  2491. (Section~\ref{sec:graph-coloring}).
  2492. We make the simplifying assumption that each variable is assigned to
  2493. one location (a register or stack address). A more sophisticated
  2494. approach is to assign a variable to one or more locations in different
  2495. regions of the program. For example, if a variable is used many times
  2496. in short sequence and then only used again after many other
  2497. instructions, it could be more efficient to assign the variable to a
  2498. register during the initial sequence and then move it to the stack for
  2499. the rest of its lifetime. We refer the interested reader to
  2500. \citet{Cooper:2011aa} for more information about that approach.
  2501. % discuss prioritizing variables based on how much they are used.
  2502. \section{Registers and Calling Conventions}
  2503. \label{sec:calling-conventions}
  2504. \index{subject}{calling conventions}
  2505. As we perform register allocation, we need to be aware of the
  2506. \emph{calling conventions} \index{subject}{calling conventions} that govern how
  2507. functions calls are performed in x86.
  2508. %
  2509. Even though \LangVar{} does not include programmer-defined functions,
  2510. our generated code includes a \code{main} function that is called by
  2511. the operating system and our generated code contains calls to the
  2512. \code{read\_int} function.
  2513. Function calls require coordination between two pieces of code that
  2514. may be written by different programmers or generated by different
  2515. compilers. Here we follow the System V calling conventions that are
  2516. used by the GNU C compiler on Linux and
  2517. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  2518. %
  2519. The calling conventions include rules about how functions share the
  2520. use of registers. In particular, the caller is responsible for freeing
  2521. up some registers prior to the function call for use by the callee.
  2522. These are called the \emph{caller-saved registers}
  2523. \index{subject}{caller-saved registers}
  2524. and they are
  2525. \begin{lstlisting}
  2526. rax rcx rdx rsi rdi r8 r9 r10 r11
  2527. \end{lstlisting}
  2528. On the other hand, the callee is responsible for preserving the values
  2529. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  2530. which are
  2531. \begin{lstlisting}
  2532. rsp rbp rbx r12 r13 r14 r15
  2533. \end{lstlisting}
  2534. We can think about this caller/callee convention from two points of
  2535. view, the caller view and the callee view:
  2536. \begin{itemize}
  2537. \item The caller should assume that all the caller-saved registers get
  2538. overwritten with arbitrary values by the callee. On the other hand,
  2539. the caller can safely assume that all the callee-saved registers
  2540. contain the same values after the call that they did before the
  2541. call.
  2542. \item The callee can freely use any of the caller-saved registers.
  2543. However, if the callee wants to use a callee-saved register, the
  2544. callee must arrange to put the original value back in the register
  2545. prior to returning to the caller. This can be accomplished by saving
  2546. the value to the stack in the prelude of the function and restoring
  2547. the value in the conclusion of the function.
  2548. \end{itemize}
  2549. In x86, registers are also used for passing arguments to a function
  2550. and for the return value. In particular, the first six arguments to a
  2551. function are passed in the following six registers, in this order.
  2552. \begin{lstlisting}
  2553. rdi rsi rdx rcx r8 r9
  2554. \end{lstlisting}
  2555. If there are more than six arguments, then the convention is to use
  2556. space on the frame of the caller for the rest of the
  2557. arguments. However, in Chapter~\ref{ch:Rfun} we arrange never to
  2558. need more than six arguments. For now, the only function we care about
  2559. is \code{read\_int} and it takes zero arguments.
  2560. %
  2561. The register \code{rax} is used for the return value of a function.
  2562. The next question is how these calling conventions impact register
  2563. allocation. Consider the \LangVar{} program in
  2564. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  2565. example from the caller point of view and then from the callee point
  2566. of view.
  2567. The program makes two calls to the \code{read} function. Also, the
  2568. variable \code{x} is in use during the second call to \code{read}, so
  2569. we need to make sure that the value in \code{x} does not get
  2570. accidentally wiped out by the call to \code{read}. One obvious
  2571. approach is to save all the values in caller-saved registers to the
  2572. stack prior to each function call, and restore them after each
  2573. call. That way, if the register allocator chooses to assign \code{x}
  2574. to a caller-saved register, its value will be preserved across the
  2575. call to \code{read}. However, saving and restoring to the stack is
  2576. relatively slow. If \code{x} is not used many times, it may be better
  2577. to assign \code{x} to a stack location in the first place. Or better
  2578. yet, if we can arrange for \code{x} to be placed in a callee-saved
  2579. register, then it won't need to be saved and restored during function
  2580. calls.
  2581. The approach that we recommend for variables that are in use during a
  2582. function call is to either assign them to callee-saved registers or to
  2583. spill them to the stack. On the other hand, for variables that are not
  2584. in use during a function call, we try the following alternatives in
  2585. order 1) look for an available caller-saved register (to leave room
  2586. for other variables in the callee-saved register), 2) look for a
  2587. callee-saved register, and 3) spill the variable to the stack.
  2588. It is straightforward to implement this approach in a graph coloring
  2589. register allocator. First, we know which variables are in use during
  2590. every function call because we compute that information for every
  2591. instruction (Section~\ref{sec:liveness-analysis-Rvar}). Second, when we
  2592. build the interference graph (Section~\ref{sec:build-interference}),
  2593. we can place an edge between each of these variables and the
  2594. caller-saved registers in the interference graph. This will prevent
  2595. the graph coloring algorithm from assigning those variables to
  2596. caller-saved registers.
  2597. Returning to the example in
  2598. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  2599. generated x86 code on the right-hand side, focusing on the
  2600. \code{start} block. Notice that variable \code{x} is assigned to
  2601. \code{rbx}, a callee-saved register. Thus, it is already in a safe
  2602. place during the second call to \code{read\_int}. Next, notice that
  2603. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  2604. because there are no function calls in the remainder of the block.
  2605. Next we analyze the example from the callee point of view, focusing on
  2606. the prelude and conclusion of the \code{main} function. As usual the
  2607. prelude begins with saving the \code{rbp} register to the stack and
  2608. setting the \code{rbp} to the current stack pointer. We now know why
  2609. it is necessary to save the \code{rbp}: it is a callee-saved register.
  2610. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  2611. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  2612. (\code{x}). The other callee-saved registers are not saved in the
  2613. prelude because they are not used. The prelude subtracts 8 bytes from
  2614. the \code{rsp} to make it 16-byte aligned and then jumps to the
  2615. \code{start} block. Shifting attention to the \code{conclusion}, we
  2616. see that \code{rbx} is restored from the stack with a \code{popq}
  2617. instruction. \index{subject}{prelude}\index{subject}{conclusion}
  2618. \begin{figure}[tp]
  2619. \begin{minipage}{0.45\textwidth}
  2620. Example \LangVar{} program:
  2621. %var_test_14.rkt
  2622. \begin{lstlisting}
  2623. (let ([x (read)])
  2624. (let ([y (read)])
  2625. (+ (+ x y) 42)))
  2626. \end{lstlisting}
  2627. \end{minipage}
  2628. \begin{minipage}{0.45\textwidth}
  2629. Generated x86 assembly:
  2630. \begin{lstlisting}
  2631. start:
  2632. callq read_int
  2633. movq %rax, %rbx
  2634. callq read_int
  2635. movq %rax, %rcx
  2636. addq %rcx, %rbx
  2637. movq %rbx, %rax
  2638. addq $42, %rax
  2639. jmp _conclusion
  2640. .globl main
  2641. main:
  2642. pushq %rbp
  2643. movq %rsp, %rbp
  2644. pushq %rbx
  2645. subq $8, %rsp
  2646. jmp start
  2647. conclusion:
  2648. addq $8, %rsp
  2649. popq %rbx
  2650. popq %rbp
  2651. retq
  2652. \end{lstlisting}
  2653. \end{minipage}
  2654. \caption{An example with function calls.}
  2655. \label{fig:example-calling-conventions}
  2656. \end{figure}
  2657. \clearpage
  2658. \section{Liveness Analysis}
  2659. \label{sec:liveness-analysis-Rvar}
  2660. \index{subject}{liveness analysis}
  2661. The \code{uncover-live} pass performs \emph{liveness analysis}, that
  2662. is, it discovers which variables are in-use in different regions of a
  2663. program.
  2664. %
  2665. A variable or register is \emph{live} at a program point if its
  2666. current value is used at some later point in the program. We
  2667. refer to variables and registers collectively as \emph{locations}.
  2668. %
  2669. Consider the following code fragment in which there are two writes to
  2670. \code{b}. Are \code{a} and \code{b} both live at the same time?
  2671. \begin{center}
  2672. \begin{minipage}{0.96\textwidth}
  2673. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  2674. movq $5, a
  2675. movq $30, b
  2676. movq a, c
  2677. movq $10, b
  2678. addq b, c
  2679. \end{lstlisting}
  2680. \end{minipage}
  2681. \end{center}
  2682. The answer is no because \code{a} is live from line 1 to 3 and
  2683. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  2684. line 2 is never used because it is overwritten (line 4) before the
  2685. next read (line 5).
  2686. \begin{wrapfigure}[19]{l}[0.9in]{0.55\textwidth}
  2687. \small
  2688. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  2689. A \emph{set} is an unordered collection of elements without duplicates.
  2690. \index{subject}{set}
  2691. \begin{description}
  2692. \item[$\LP\code{set}\,v\,\ldots\RP$] constructs a set containing the specified elements.
  2693. \item[$\LP\code{set-union}\,set_1\,set_2\RP$] returns the union of the two sets.
  2694. \item[$\LP\code{set-subtract}\,set_1\,set_2\RP$] returns the difference of the two sets.
  2695. \item[$\LP\code{set-member?}\,set\,v\RP$] is element $v$ in $set$?
  2696. \item[$\LP\code{set-count}\,set\RP$] how many unique elements are in $set$?
  2697. \item[$\LP\code{set->list}\,set\RP$] converts the set to a list.
  2698. \end{description}
  2699. \end{tcolorbox}
  2700. \end{wrapfigure}
  2701. The live locations can be computed by traversing the instruction
  2702. sequence back to front (i.e., backwards in execution order). Let
  2703. $I_1,\ldots, I_n$ be the instruction sequence. We write
  2704. $L_{\mathsf{after}}(k)$ for the set of live locations after
  2705. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  2706. locations before instruction $I_k$. The live locations after an
  2707. instruction are always the same as the live locations before the next
  2708. instruction. \index{subject}{live-after} \index{subject}{live-before}
  2709. \begin{equation} \label{eq:live-after-before-next}
  2710. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  2711. \end{equation}
  2712. To start things off, there are no live locations after the last
  2713. instruction, so
  2714. \begin{equation}\label{eq:live-last-empty}
  2715. L_{\mathsf{after}}(n) = \emptyset
  2716. \end{equation}
  2717. We then apply the following rule repeatedly, traversing the
  2718. instruction sequence back to front.
  2719. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  2720. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  2721. \end{equation}
  2722. where $W(k)$ are the locations written to by instruction $I_k$ and
  2723. $R(k)$ are the locations read by instruction $I_k$.
  2724. There is a special case for \code{jmp} instructions. The locations
  2725. that are live before a \code{jmp} should be the locations in
  2726. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  2727. maintaining an alist named \code{label->live} that maps each label to
  2728. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  2729. now the only \code{jmp} in a \LangXVar{} program is the one at the
  2730. end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
  2731. The conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should
  2732. map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  2733. Let us walk through the above example, applying these formulas
  2734. starting with the instruction on line 5. We collect the answers in
  2735. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  2736. \code{addq b, c} instruction is $\emptyset$ because it is the last
  2737. instruction (formula~\ref{eq:live-last-empty}). The
  2738. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  2739. because it reads from variables \code{b} and \code{c}
  2740. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  2741. \[
  2742. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  2743. \]
  2744. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  2745. the live-before set from line 5 to be the live-after set for this
  2746. instruction (formula~\ref{eq:live-after-before-next}).
  2747. \[
  2748. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  2749. \]
  2750. This move instruction writes to \code{b} and does not read from any
  2751. variables, so we have the following live-before set
  2752. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  2753. \[
  2754. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  2755. \]
  2756. The live-before for instruction \code{movq a, c}
  2757. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  2758. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  2759. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  2760. variable that is not live and does not read from a variable.
  2761. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  2762. because it writes to variable \code{a}.
  2763. \begin{figure}[tbp]
  2764. \begin{minipage}{0.45\textwidth}
  2765. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  2766. movq $5, a
  2767. movq $30, b
  2768. movq a, c
  2769. movq $10, b
  2770. addq b, c
  2771. \end{lstlisting}
  2772. \end{minipage}
  2773. \vrule\hspace{10pt}
  2774. \begin{minipage}{0.45\textwidth}
  2775. \begin{align*}
  2776. L_{\mathsf{before}}(1)= \emptyset,
  2777. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  2778. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  2779. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  2780. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  2781. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  2782. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  2783. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  2784. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  2785. L_{\mathsf{after}}(5)= \emptyset
  2786. \end{align*}
  2787. \end{minipage}
  2788. \caption{Example output of liveness analysis on a short example.}
  2789. \label{fig:liveness-example-0}
  2790. \end{figure}
  2791. \begin{exercise}\normalfont
  2792. Perform liveness analysis on the running example in
  2793. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  2794. sets for each instruction. Compare your answers to the solution
  2795. shown in Figure~\ref{fig:live-eg}.
  2796. \end{exercise}
  2797. \begin{figure}[tp]
  2798. \hspace{20pt}
  2799. \begin{minipage}{0.45\textwidth}
  2800. \begin{lstlisting}
  2801. |$\{\ttm{rsp}\}$|
  2802. movq $1, v
  2803. |$\{\ttm{v},\ttm{rsp}\}$|
  2804. movq $42, w
  2805. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  2806. movq v, x
  2807. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  2808. addq $7, x
  2809. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  2810. movq x, y
  2811. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  2812. movq x, z
  2813. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  2814. addq w, z
  2815. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  2816. movq y, t
  2817. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  2818. negq t
  2819. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  2820. movq z, %rax
  2821. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  2822. addq t, %rax
  2823. |$\{\ttm{rax},\ttm{rsp}\}$|
  2824. jmp conclusion
  2825. \end{lstlisting}
  2826. \end{minipage}
  2827. \caption{The running example annotated with live-after sets.}
  2828. \label{fig:live-eg}
  2829. \end{figure}
  2830. \begin{exercise}\normalfont
  2831. Implement the \code{uncover-live} pass. Store the sequence of
  2832. live-after sets in the $\itm{info}$ field of the \code{Block}
  2833. structure.
  2834. %
  2835. We recommend creating an auxiliary function that takes a list of
  2836. instructions and an initial live-after set (typically empty) and
  2837. returns the list of live-after sets.
  2838. %
  2839. We also recommend creating auxiliary functions to 1) compute the set
  2840. of locations that appear in an \Arg{}, 2) compute the locations read
  2841. by an instruction (the $R$ function), and 3) the locations written by
  2842. an instruction (the $W$ function). The \code{callq} instruction should
  2843. include all of the caller-saved registers in its write-set $W$ because
  2844. the calling convention says that those registers may be written to
  2845. during the function call. Likewise, the \code{callq} instruction
  2846. should include the appropriate argument-passing registers in its
  2847. read-set $R$, depending on the arity of the function being
  2848. called. (This is why the abstract syntax for \code{callq} includes the
  2849. arity.)
  2850. \end{exercise}
  2851. \clearpage
  2852. \section{Build the Interference Graph}
  2853. \label{sec:build-interference}
  2854. \begin{wrapfigure}[25]{r}[0.9in]{0.55\textwidth}
  2855. \small
  2856. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  2857. A \emph{graph} is a collection of vertices and edges where each
  2858. edge connects two vertices. A graph is \emph{directed} if each
  2859. edge points from a source to a target. Otherwise the graph is
  2860. \emph{undirected}.
  2861. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  2862. \begin{description}
  2863. %% We currently don't use directed graphs. We instead use
  2864. %% directed multi-graphs. -Jeremy
  2865. %% \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  2866. %% directed graph from a list of edges. Each edge is a list
  2867. %% containing the source and target vertex.
  2868. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  2869. undirected graph from a list of edges. Each edge is represented by
  2870. a list containing two vertices.
  2871. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  2872. inserts a vertex into the graph.
  2873. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  2874. inserts an edge between the two vertices into the graph.
  2875. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  2876. returns a sequence of all the neighbors of the given vertex.
  2877. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  2878. returns a sequence of all the vertices in the graph.
  2879. \end{description}
  2880. \end{tcolorbox}
  2881. \end{wrapfigure}
  2882. Based on the liveness analysis, we know where each location is live.
  2883. However, during register allocation, we need to answer questions of
  2884. the specific form: are locations $u$ and $v$ live at the same time?
  2885. (And therefore cannot be assigned to the same register.) To make this
  2886. question more efficient to answer, we create an explicit data
  2887. structure, an \emph{interference graph}\index{subject}{interference graph}. An
  2888. interference graph is an undirected graph that has an edge between two
  2889. locations if they are live at the same time, that is, if they
  2890. interfere with each other.
  2891. An obvious way to compute the interference graph is to look at the set
  2892. of live locations between each instruction and the next and add an edge to the graph
  2893. for every pair of variables in the same set. This approach is less
  2894. than ideal for two reasons. First, it can be expensive because it
  2895. takes $O(n^2)$ time to consider at every pair in a set of $n$ live
  2896. locations. Second, in the special case where two locations hold the
  2897. same value (because one was assigned to the other), they can be live
  2898. at the same time without interfering with each other.
  2899. A better way to compute the interference graph is to focus on
  2900. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  2901. must not overwrite something in a live location. So for each
  2902. instruction, we create an edge between the locations being written to
  2903. and the live locations. (Except that one should not create self
  2904. edges.) Note that for the \key{callq} instruction, we consider all of
  2905. the caller-saved registers as being written to, so an edge is added
  2906. between every live variable and every caller-saved register. For
  2907. \key{movq}, we deal with the above-mentioned special case by not
  2908. adding an edge between a live variable $v$ and the destination if $v$
  2909. matches the source. So we have the following two rules.
  2910. \begin{enumerate}
  2911. \item If instruction $I_k$ is a move such as \key{movq} $s$\key{,}
  2912. $d$, then add the edge $(d,v)$ for every $v \in
  2913. L_{\mathsf{after}}(k)$ unless $v = d$ or $v = s$.
  2914. \item For any other instruction $I_k$, for every $d \in W(k)$
  2915. add an edge $(d,v)$ for every $v \in L_{\mathsf{after}}(k)$ unless $v = d$.
  2916. %% \item If instruction $I_k$ is an arithmetic instruction such as
  2917. %% \code{addq} $s$\key{,} $d$, then add the edge $(d,v)$ for every $v \in
  2918. %% L_{\mathsf{after}}(k)$ unless $v = d$.
  2919. %% \item If instruction $I_k$ is of the form \key{callq}
  2920. %% $\mathit{label}$, then add an edge $(r,v)$ for every caller-saved
  2921. %% register $r$ and every variable $v \in L_{\mathsf{after}}(k)$.
  2922. \end{enumerate}
  2923. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  2924. the above rules to each instruction. We highlight a few of the
  2925. instructions. The first instruction is \lstinline{movq $1, v} and the
  2926. live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies, so \code{v}
  2927. interferes with \code{rsp}.
  2928. %
  2929. The fourth instruction is \lstinline{addq $7, x} and the live-after
  2930. set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so $\ttm{x}$
  2931. interferes with \ttm{w} and \ttm{rsp}.
  2932. %
  2933. The next instruction is \lstinline{movq x, y} and the live-after set
  2934. is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1 applies, so \ttm{y}
  2935. interferes with \ttm{w} and \ttm{rsp} but not \ttm{x} because \ttm{x}
  2936. is the source of the move and therefore \ttm{x} and \ttm{y} hold the
  2937. same value. Figure~\ref{fig:interference-results} lists the
  2938. interference results for all of the instructions and the resulting
  2939. interference graph is shown in Figure~\ref{fig:interfere}.
  2940. \begin{figure}[tbp]
  2941. \begin{quote}
  2942. \begin{tabular}{ll}
  2943. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  2944. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  2945. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  2946. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  2947. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  2948. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  2949. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  2950. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  2951. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  2952. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  2953. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  2954. \lstinline!jmp conclusion!& no interference.
  2955. \end{tabular}
  2956. \end{quote}
  2957. \caption{Interference results for the running example.}
  2958. \label{fig:interference-results}
  2959. \end{figure}
  2960. \begin{figure}[tbp]
  2961. \large
  2962. \[
  2963. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2964. \node (rax) at (0,0) {$\ttm{rax}$};
  2965. \node (rsp) at (9,2) {$\ttm{rsp}$};
  2966. \node (t1) at (0,2) {$\ttm{t}$};
  2967. \node (z) at (3,2) {$\ttm{z}$};
  2968. \node (x) at (6,2) {$\ttm{x}$};
  2969. \node (y) at (3,0) {$\ttm{y}$};
  2970. \node (w) at (6,0) {$\ttm{w}$};
  2971. \node (v) at (9,0) {$\ttm{v}$};
  2972. \draw (t1) to (rax);
  2973. \draw (t1) to (z);
  2974. \draw (z) to (y);
  2975. \draw (z) to (w);
  2976. \draw (x) to (w);
  2977. \draw (y) to (w);
  2978. \draw (v) to (w);
  2979. \draw (v) to (rsp);
  2980. \draw (w) to (rsp);
  2981. \draw (x) to (rsp);
  2982. \draw (y) to (rsp);
  2983. \path[-.,bend left=15] (z) edge node {} (rsp);
  2984. \path[-.,bend left=10] (t1) edge node {} (rsp);
  2985. \draw (rax) to (rsp);
  2986. \end{tikzpicture}
  2987. \]
  2988. \caption{The interference graph of the example program.}
  2989. \label{fig:interfere}
  2990. \end{figure}
  2991. %% Our next concern is to choose a data structure for representing the
  2992. %% interference graph. There are many choices for how to represent a
  2993. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  2994. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  2995. %% data structure is to study the algorithm that uses the data structure,
  2996. %% determine what operations need to be performed, and then choose the
  2997. %% data structure that provide the most efficient implementations of
  2998. %% those operations. Often times the choice of data structure can have an
  2999. %% effect on the time complexity of the algorithm, as it does here. If
  3000. %% you skim the next section, you will see that the register allocation
  3001. %% algorithm needs to ask the graph for all of its vertices and, given a
  3002. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  3003. %% correct choice of graph representation is that of an adjacency
  3004. %% list. There are helper functions in \code{utilities.rkt} for
  3005. %% representing graphs using the adjacency list representation:
  3006. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  3007. %% (Appendix~\ref{appendix:utilities}).
  3008. %% %
  3009. %% \margincomment{\footnotesize To do: change to use the
  3010. %% Racket graph library. \\ --Jeremy}
  3011. %% %
  3012. %% In particular, those functions use a hash table to map each vertex to
  3013. %% the set of adjacent vertices, and the sets are represented using
  3014. %% Racket's \key{set}, which is also a hash table.
  3015. \begin{exercise}\normalfont
  3016. Implement the compiler pass named \code{build-interference} according
  3017. to the algorithm suggested above. We recommend using the \code{graph}
  3018. package to create and inspect the interference graph. The output
  3019. graph of this pass should be stored in the $\itm{info}$ field of the
  3020. program, under the key \code{conflicts}.
  3021. \end{exercise}
  3022. \section{Graph Coloring via Sudoku}
  3023. \label{sec:graph-coloring}
  3024. \index{subject}{graph coloring}
  3025. \index{subject}{Sudoku}
  3026. \index{subject}{color}
  3027. We come to the main event, mapping variables to registers and stack
  3028. locations. Variables that interfere with each other must be mapped to
  3029. different locations. In terms of the interference graph, this means
  3030. that adjacent vertices must be mapped to different locations. If we
  3031. think of locations as colors, the register allocation problem becomes
  3032. the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  3033. The reader may be more familiar with the graph coloring problem than he
  3034. or she realizes; the popular game of Sudoku is an instance of the
  3035. graph coloring problem. The following describes how to build a graph
  3036. out of an initial Sudoku board.
  3037. \begin{itemize}
  3038. \item There is one vertex in the graph for each Sudoku square.
  3039. \item There is an edge between two vertices if the corresponding squares
  3040. are in the same row, in the same column, or if the squares are in
  3041. the same $3\times 3$ region.
  3042. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  3043. \item Based on the initial assignment of numbers to squares in the
  3044. Sudoku board, assign the corresponding colors to the corresponding
  3045. vertices in the graph.
  3046. \end{itemize}
  3047. If you can color the remaining vertices in the graph with the nine
  3048. colors, then you have also solved the corresponding game of Sudoku.
  3049. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  3050. the corresponding graph with colored vertices. We map the Sudoku
  3051. number 1 to blue, 2 to yellow, and 3 to red. We only show edges for a
  3052. sampling of the vertices (the colored ones) because showing edges for
  3053. all of the vertices would make the graph unreadable.
  3054. \begin{figure}[tbp]
  3055. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  3056. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph}
  3057. \caption{A Sudoku game board and the corresponding colored graph.}
  3058. \label{fig:sudoku-graph}
  3059. \end{figure}
  3060. It turns out that some techniques for playing Sudoku correspond to
  3061. heuristics used in graph coloring algorithms. For example, one of the
  3062. basic techniques for Sudoku is called Pencil Marks. The idea is to use
  3063. a process of elimination to determine what numbers are no longer
  3064. available for a square and write down those numbers in the square
  3065. (writing very small). For example, if the number $1$ is assigned to a
  3066. square, then write the pencil mark $1$ in all the squares in the same
  3067. row, column, and region.
  3068. %
  3069. The Pencil Marks technique corresponds to the notion of
  3070. \emph{saturation}\index{subject}{saturation} due to \cite{Brelaz:1979eu}. The
  3071. saturation of a vertex, in Sudoku terms, is the set of numbers that
  3072. are no longer available. In graph terminology, we have the following
  3073. definition:
  3074. \begin{equation*}
  3075. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{neighbors}(u)
  3076. \text{ and } \mathrm{color}(v) = c \}
  3077. \end{equation*}
  3078. where $\mathrm{neighbors}(u)$ is the set of vertices that share an
  3079. edge with $u$.
  3080. Using the Pencil Marks technique leads to a simple strategy for
  3081. filling in numbers: if there is a square with only one possible number
  3082. left, then choose that number! But what if there are no squares with
  3083. only one possibility left? One brute-force approach is to try them
  3084. all: choose the first one and if it ultimately leads to a solution,
  3085. great. If not, backtrack and choose the next possibility. One good
  3086. thing about Pencil Marks is that it reduces the degree of branching in
  3087. the search tree. Nevertheless, backtracking can be horribly time
  3088. consuming. One way to reduce the amount of backtracking is to use the
  3089. most-constrained-first heuristic. That is, when choosing a square,
  3090. always choose one with the fewest possibilities left (the vertex with
  3091. the highest saturation). The idea is that choosing highly constrained
  3092. squares earlier rather than later is better because later on there may
  3093. not be any possibilities left in the highly saturated squares.
  3094. However, register allocation is easier than Sudoku because the
  3095. register allocator can map variables to stack locations when the
  3096. registers run out. Thus, it makes sense to replace backtracking with
  3097. greedy search: make the best choice at the time and keep going. We
  3098. still wish to minimize the number of colors needed, so we use the
  3099. most-constrained-first heuristic in the greedy search.
  3100. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  3101. algorithm for register allocation based on saturation and the
  3102. most-constrained-first heuristic. It is roughly equivalent to the
  3103. DSATUR
  3104. algorithm~\citep{Brelaz:1979eu,Gebremedhin:1999fk,Omari:2006uq}. Just
  3105. as in Sudoku, the algorithm represents colors with integers. The
  3106. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  3107. for register allocation. The integers $k$ and larger correspond to
  3108. stack locations. The registers that are not used for register
  3109. allocation, such as \code{rax}, are assigned to negative integers. In
  3110. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  3111. %% One might wonder why we include registers at all in the liveness
  3112. %% analysis and interference graph. For example, we never allocate a
  3113. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  3114. %% leave them out. As we see in Chapter~\ref{ch:Rvec}, when we begin
  3115. %% to use register for passing arguments to functions, it will be
  3116. %% necessary for those registers to appear in the interference graph
  3117. %% because those registers will also be assigned to variables, and we
  3118. %% don't want those two uses to encroach on each other. Regarding
  3119. %% registers such as \code{rax} and \code{rsp} that are not used for
  3120. %% variables, we could omit them from the interference graph but that
  3121. %% would require adding special cases to our algorithm, which would
  3122. %% complicate the logic for little gain.
  3123. \begin{figure}[btp]
  3124. \centering
  3125. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  3126. Algorithm: DSATUR
  3127. Input: a graph |$G$|
  3128. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  3129. |$W \gets \mathrm{vertices}(G)$|
  3130. while |$W \neq \emptyset$| do
  3131. pick a vertex |$u$| from |$W$| with the highest saturation,
  3132. breaking ties randomly
  3133. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  3134. |$\mathrm{color}[u] \gets c$|
  3135. |$W \gets W - \{u\}$|
  3136. \end{lstlisting}
  3137. \caption{The saturation-based greedy graph coloring algorithm.}
  3138. \label{fig:satur-algo}
  3139. \end{figure}
  3140. With the DSATUR algorithm in hand, let us return to the running
  3141. example and consider how to color the interference graph in
  3142. Figure~\ref{fig:interfere}.
  3143. %
  3144. We start by assigning the register nodes to their own color. For
  3145. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  3146. assigned $-2$. The variables are not yet colored, so they are
  3147. annotated with a dash. We then update the saturation for vertices that
  3148. are adjacent to a register, obtaining the following annotated
  3149. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  3150. it interferes with both \code{rax} and \code{rsp}.
  3151. \[
  3152. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3153. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  3154. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  3155. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  3156. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  3157. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3158. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  3159. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  3160. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3161. \draw (t1) to (rax);
  3162. \draw (t1) to (z);
  3163. \draw (z) to (y);
  3164. \draw (z) to (w);
  3165. \draw (x) to (w);
  3166. \draw (y) to (w);
  3167. \draw (v) to (w);
  3168. \draw (v) to (rsp);
  3169. \draw (w) to (rsp);
  3170. \draw (x) to (rsp);
  3171. \draw (y) to (rsp);
  3172. \path[-.,bend left=15] (z) edge node {} (rsp);
  3173. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3174. \draw (rax) to (rsp);
  3175. \end{tikzpicture}
  3176. \]
  3177. The algorithm says to select a maximally saturated vertex. So we pick
  3178. $\ttm{t}$ and color it with the first available integer, which is
  3179. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  3180. and \ttm{rsp} because they interfere with $\ttm{t}$.
  3181. \[
  3182. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3183. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3184. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  3185. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  3186. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  3187. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3188. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  3189. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  3190. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3191. \draw (t1) to (rax);
  3192. \draw (t1) to (z);
  3193. \draw (z) to (y);
  3194. \draw (z) to (w);
  3195. \draw (x) to (w);
  3196. \draw (y) to (w);
  3197. \draw (v) to (w);
  3198. \draw (v) to (rsp);
  3199. \draw (w) to (rsp);
  3200. \draw (x) to (rsp);
  3201. \draw (y) to (rsp);
  3202. \path[-.,bend left=15] (z) edge node {} (rsp);
  3203. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3204. \draw (rax) to (rsp);
  3205. \end{tikzpicture}
  3206. \]
  3207. We repeat the process, selecting the next maximally saturated vertex,
  3208. which is \code{z}, and color it with the first available number, which
  3209. is $1$. We add $1$ to the saturation for the neighboring vertices
  3210. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  3211. \[
  3212. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3213. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3214. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  3215. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3216. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3217. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3218. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  3219. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  3220. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3221. \draw (t1) to (rax);
  3222. \draw (t1) to (z);
  3223. \draw (z) to (y);
  3224. \draw (z) to (w);
  3225. \draw (x) to (w);
  3226. \draw (y) to (w);
  3227. \draw (v) to (w);
  3228. \draw (v) to (rsp);
  3229. \draw (w) to (rsp);
  3230. \draw (x) to (rsp);
  3231. \draw (y) to (rsp);
  3232. \path[-.,bend left=15] (z) edge node {} (rsp);
  3233. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3234. \draw (rax) to (rsp);
  3235. \end{tikzpicture}
  3236. \]
  3237. The most saturated vertices are now \code{w} and \code{y}. We color
  3238. \code{w} with the first available color, which is $0$.
  3239. \[
  3240. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3241. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3242. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  3243. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3244. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3245. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3246. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  3247. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  3248. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  3249. \draw (t1) to (rax);
  3250. \draw (t1) to (z);
  3251. \draw (z) to (y);
  3252. \draw (z) to (w);
  3253. \draw (x) to (w);
  3254. \draw (y) to (w);
  3255. \draw (v) to (w);
  3256. \draw (v) to (rsp);
  3257. \draw (w) to (rsp);
  3258. \draw (x) to (rsp);
  3259. \draw (y) to (rsp);
  3260. \path[-.,bend left=15] (z) edge node {} (rsp);
  3261. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3262. \draw (rax) to (rsp);
  3263. \end{tikzpicture}
  3264. \]
  3265. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  3266. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  3267. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  3268. and \code{z}, whose colors are $0$ and $1$ respectively.
  3269. \[
  3270. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3271. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3272. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3273. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3274. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3275. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3276. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3277. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3278. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  3279. \draw (t1) to (rax);
  3280. \draw (t1) to (z);
  3281. \draw (z) to (y);
  3282. \draw (z) to (w);
  3283. \draw (x) to (w);
  3284. \draw (y) to (w);
  3285. \draw (v) to (w);
  3286. \draw (v) to (rsp);
  3287. \draw (w) to (rsp);
  3288. \draw (x) to (rsp);
  3289. \draw (y) to (rsp);
  3290. \path[-.,bend left=15] (z) edge node {} (rsp);
  3291. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3292. \draw (rax) to (rsp);
  3293. \end{tikzpicture}
  3294. \]
  3295. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  3296. \[
  3297. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3298. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3299. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3300. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3301. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3302. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3303. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3304. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3305. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  3306. \draw (t1) to (rax);
  3307. \draw (t1) to (z);
  3308. \draw (z) to (y);
  3309. \draw (z) to (w);
  3310. \draw (x) to (w);
  3311. \draw (y) to (w);
  3312. \draw (v) to (w);
  3313. \draw (v) to (rsp);
  3314. \draw (w) to (rsp);
  3315. \draw (x) to (rsp);
  3316. \draw (y) to (rsp);
  3317. \path[-.,bend left=15] (z) edge node {} (rsp);
  3318. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3319. \draw (rax) to (rsp);
  3320. \end{tikzpicture}
  3321. \]
  3322. In the last step of the algorithm, we color \code{x} with $1$.
  3323. \[
  3324. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3325. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3326. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3327. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3328. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3329. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  3330. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3331. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3332. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  3333. \draw (t1) to (rax);
  3334. \draw (t1) to (z);
  3335. \draw (z) to (y);
  3336. \draw (z) to (w);
  3337. \draw (x) to (w);
  3338. \draw (y) to (w);
  3339. \draw (v) to (w);
  3340. \draw (v) to (rsp);
  3341. \draw (w) to (rsp);
  3342. \draw (x) to (rsp);
  3343. \draw (y) to (rsp);
  3344. \path[-.,bend left=15] (z) edge node {} (rsp);
  3345. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3346. \draw (rax) to (rsp);
  3347. \end{tikzpicture}
  3348. \]
  3349. \begin{wrapfigure}[25]{r}[0.9in]{0.55\textwidth}
  3350. \small
  3351. \begin{tcolorbox}[title=Priority Queue]
  3352. A \emph{priority queue} is a collection of items in which the
  3353. removal of items is governed by priority. In a ``min'' queue,
  3354. lower priority items are removed first. An implementation is in
  3355. \code{priority\_queue.rkt} of the support code. \index{subject}{priority
  3356. queue} \index{subject}{minimum priority queue}
  3357. \begin{description}
  3358. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  3359. priority queue that uses the $\itm{cmp}$ predicate to determine
  3360. whether its first argument has lower or equal priority to its
  3361. second argument.
  3362. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  3363. items in the queue.
  3364. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  3365. the item into the queue and returns a handle for the item in the
  3366. queue.
  3367. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  3368. the lowest priority.
  3369. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  3370. notifies the queue that the priority has decreased for the item
  3371. associated with the given handle.
  3372. \end{description}
  3373. \end{tcolorbox}
  3374. \end{wrapfigure}
  3375. We recommend creating an auxiliary function named \code{color-graph}
  3376. that takes an interference graph and a list of all the variables in
  3377. the program. This function should return a mapping of variables to
  3378. their colors (represented as natural numbers). By creating this helper
  3379. function, you will be able to reuse it in Chapter~\ref{ch:Rfun}
  3380. when we add support for functions.
  3381. To prioritize the processing of highly saturated nodes inside the
  3382. \code{color-graph} function, we recommend using the priority queue
  3383. data structure (see the side bar on the right). In addition, you will
  3384. need to maintain a mapping from variables to their ``handles'' in the
  3385. priority queue so that you can notify the priority queue when their
  3386. saturation changes.
  3387. With the coloring complete, we finalize the assignment of variables to
  3388. registers and stack locations. We map the first $k$ colors to the $k$
  3389. registers and the rest of the colors to stack locations. Suppose for
  3390. the moment that we have just one register to use for register
  3391. allocation, \key{rcx}. Then we have the following map from colors to
  3392. locations.
  3393. \[
  3394. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  3395. \]
  3396. Composing this mapping with the coloring, we arrive at the following
  3397. assignment of variables to locations.
  3398. \begin{gather*}
  3399. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  3400. \ttm{w} \mapsto \key{\%rcx}, \,
  3401. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  3402. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  3403. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  3404. \ttm{t} \mapsto \key{\%rcx} \}
  3405. \end{gather*}
  3406. Adapt the code from the \code{assign-homes} pass
  3407. (Section~\ref{sec:assign-Rvar}) to replace the variables with their
  3408. assigned location. Applying the above assignment to our running
  3409. example, on the left, yields the program on the right.
  3410. % why frame size of 32? -JGS
  3411. \begin{center}
  3412. \begin{minipage}{0.3\textwidth}
  3413. \begin{lstlisting}
  3414. movq $1, v
  3415. movq $42, w
  3416. movq v, x
  3417. addq $7, x
  3418. movq x, y
  3419. movq x, z
  3420. addq w, z
  3421. movq y, t
  3422. negq t
  3423. movq z, %rax
  3424. addq t, %rax
  3425. jmp conclusion
  3426. \end{lstlisting}
  3427. \end{minipage}
  3428. $\Rightarrow\qquad$
  3429. \begin{minipage}{0.45\textwidth}
  3430. \begin{lstlisting}
  3431. movq $1, -8(%rbp)
  3432. movq $42, %rcx
  3433. movq -8(%rbp), -8(%rbp)
  3434. addq $7, -8(%rbp)
  3435. movq -8(%rbp), -16(%rbp)
  3436. movq -8(%rbp), -8(%rbp)
  3437. addq %rcx, -8(%rbp)
  3438. movq -16(%rbp), %rcx
  3439. negq %rcx
  3440. movq -8(%rbp), %rax
  3441. addq %rcx, %rax
  3442. jmp conclusion
  3443. \end{lstlisting}
  3444. \end{minipage}
  3445. \end{center}
  3446. \begin{exercise}\normalfont
  3447. %
  3448. Implement the compiler pass \code{allocate-registers}.
  3449. %
  3450. Create five programs that exercise all of the register allocation
  3451. algorithm, including spilling variables to the stack.
  3452. %
  3453. Replace \code{assign-homes} in the list of \code{passes} in the
  3454. \code{run-tests.rkt} script with the three new passes:
  3455. \code{uncover-live}, \code{build-interference}, and
  3456. \code{allocate-registers}.
  3457. %
  3458. Temporarily remove the \code{print-x86} pass from the list of passes
  3459. and the call to \code{compiler-tests}.
  3460. %
  3461. Run the script to test the register allocator.
  3462. \end{exercise}
  3463. \section{Patch Instructions}
  3464. \label{sec:patch-instructions}
  3465. The remaining step in the compilation to x86 is to ensure that the
  3466. instructions have at most one argument that is a memory access.
  3467. In the running example, the instruction \code{movq -8(\%rbp), -16(\%rbp)}
  3468. is problematic. The fix is to first move \code{-8(\%rbp)}
  3469. into \code{rax} and then move \code{rax} into \code{-16(\%rbp)}.
  3470. %
  3471. The two moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  3472. problematic, but they can be fixed by simply deleting them. In
  3473. general, we recommend deleting all the trivial moves whose source and
  3474. destination are the same location.
  3475. %
  3476. The following is the output of \code{patch-instructions} on the
  3477. running example.
  3478. \begin{center}
  3479. \begin{minipage}{0.4\textwidth}
  3480. \begin{lstlisting}
  3481. movq $1, -8(%rbp)
  3482. movq $42, %rcx
  3483. movq -8(%rbp), -8(%rbp)
  3484. addq $7, -8(%rbp)
  3485. movq -8(%rbp), -16(%rbp)
  3486. movq -8(%rbp), -8(%rbp)
  3487. addq %rcx, -8(%rbp)
  3488. movq -16(%rbp), %rcx
  3489. negq %rcx
  3490. movq -8(%rbp), %rax
  3491. addq %rcx, %rax
  3492. jmp conclusion
  3493. \end{lstlisting}
  3494. \end{minipage}
  3495. $\Rightarrow\qquad$
  3496. \begin{minipage}{0.45\textwidth}
  3497. \begin{lstlisting}
  3498. movq $1, -8(%rbp)
  3499. movq $42, %rcx
  3500. addq $7, -8(%rbp)
  3501. movq -8(%rbp), %rax
  3502. movq %rax, -16(%rbp)
  3503. addq %rcx, -8(%rbp)
  3504. movq -16(%rbp), %rcx
  3505. negq %rcx
  3506. movq -8(%rbp), %rax
  3507. addq %rcx, %rax
  3508. jmp conclusion
  3509. \end{lstlisting}
  3510. \end{minipage}
  3511. \end{center}
  3512. \begin{exercise}\normalfont
  3513. %
  3514. Implement the \code{patch-instructions} compiler pass.
  3515. %
  3516. Insert it after \code{allocate-registers} in the list of \code{passes}
  3517. in the \code{run-tests.rkt} script.
  3518. %
  3519. Run the script to test the \code{patch-instructions} pass.
  3520. \end{exercise}
  3521. \section{Print x86}
  3522. \label{sec:print-x86-reg-alloc}
  3523. \index{subject}{calling conventions}
  3524. \index{subject}{prelude}\index{subject}{conclusion}
  3525. Recall that the \code{print-x86} pass generates the prelude and
  3526. conclusion instructions to satisfy the x86 calling conventions
  3527. (Section~\ref{sec:calling-conventions}). With the addition of the
  3528. register allocator, the callee-saved registers used by the register
  3529. allocator must be saved in the prelude and restored in the conclusion.
  3530. In the \code{allocate-registers} pass, add an entry to the \itm{info}
  3531. of \code{X86Program} named \code{used-callee} that stores the set of
  3532. callee-saved registers that were assigned to variables. The
  3533. \code{print-x86} pass can then access this information to decide which
  3534. callee-saved registers need to be saved and restored.
  3535. %
  3536. When calculating the size of the frame to adjust the \code{rsp} in the
  3537. prelude, make sure to take into account the space used for saving the
  3538. callee-saved registers. Also, don't forget that the frame needs to be
  3539. a multiple of 16 bytes!
  3540. An overview of all of the passes involved in register allocation is
  3541. shown in Figure~\ref{fig:reg-alloc-passes}.
  3542. \begin{figure}[tbp]
  3543. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3544. \node (Rvar) at (0,2) {\large \LangVar{}};
  3545. \node (Rvar-2) at (3,2) {\large \LangVar{}};
  3546. \node (Rvar-3) at (6,2) {\large \LangVar{}};
  3547. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  3548. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  3549. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  3550. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  3551. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  3552. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  3553. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  3554. \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
  3555. \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
  3556. \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-1);
  3557. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  3558. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  3559. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  3560. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  3561. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  3562. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  3563. \end{tikzpicture}
  3564. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  3565. \label{fig:reg-alloc-passes}
  3566. \end{figure}
  3567. \begin{exercise}\normalfont
  3568. Update the \code{print-x86} pass as described in this section.
  3569. %
  3570. In the \code{run-tests.rkt} script, reinstate \code{print-x86} in the
  3571. list of passes and the call to \code{compiler-tests}.
  3572. %
  3573. Run the script to test the complete compiler for \LangVar{} that
  3574. performs register allocation.
  3575. \end{exercise}
  3576. \section{Challenge: Move Biasing}
  3577. \label{sec:move-biasing}
  3578. \index{subject}{move biasing}
  3579. This section describes an enhancement to the register allocator for
  3580. students looking for an extra challenge or who have a deeper interest
  3581. in register allocation.
  3582. To motivate the need for move biasing we return to the running example
  3583. but this time use all of the general purpose registers. So we have
  3584. the following mapping of color numbers to registers.
  3585. \[
  3586. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
  3587. \]
  3588. Using the same assignment of variables to color numbers that was
  3589. produced by the register allocator described in the last section, we
  3590. get the following program.
  3591. \begin{center}
  3592. \begin{minipage}{0.3\textwidth}
  3593. \begin{lstlisting}
  3594. movq $1, v
  3595. movq $42, w
  3596. movq v, x
  3597. addq $7, x
  3598. movq x, y
  3599. movq x, z
  3600. addq w, z
  3601. movq y, t
  3602. negq t
  3603. movq z, %rax
  3604. addq t, %rax
  3605. jmp conclusion
  3606. \end{lstlisting}
  3607. \end{minipage}
  3608. $\Rightarrow\qquad$
  3609. \begin{minipage}{0.45\textwidth}
  3610. \begin{lstlisting}
  3611. movq $1, %rdx
  3612. movq $42, %rcx
  3613. movq %rdx, %rdx
  3614. addq $7, %rdx
  3615. movq %rdx, %rsi
  3616. movq %rdx, %rdx
  3617. addq %rcx, %rdx
  3618. movq %rsi, %rcx
  3619. negq %rcx
  3620. movq %rdx, %rax
  3621. addq %rcx, %rax
  3622. jmp conclusion
  3623. \end{lstlisting}
  3624. \end{minipage}
  3625. \end{center}
  3626. In the above output code there are two \key{movq} instructions that
  3627. can be removed because their source and target are the same. However,
  3628. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  3629. register, we could instead remove three \key{movq} instructions. We
  3630. can accomplish this by taking into account which variables appear in
  3631. \key{movq} instructions with which other variables.
  3632. We say that two variables $p$ and $q$ are \emph{move
  3633. related}\index{subject}{move related} if they participate together in a
  3634. \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  3635. \key{movq} $q$\key{,} $p$. When the register allocator chooses a color
  3636. for a variable, it should prefer a color that has already been used
  3637. for a move-related variable (assuming that they do not interfere). Of
  3638. course, this preference should not override the preference for
  3639. registers over stack locations. This preference should be used as a
  3640. tie breaker when choosing between registers or when choosing between
  3641. stack locations.
  3642. We recommend representing the move relationships in a graph, similar
  3643. to how we represented interference. The following is the \emph{move
  3644. graph} for our running example.
  3645. \[
  3646. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3647. \node (rax) at (0,0) {$\ttm{rax}$};
  3648. \node (rsp) at (9,2) {$\ttm{rsp}$};
  3649. \node (t) at (0,2) {$\ttm{t}$};
  3650. \node (z) at (3,2) {$\ttm{z}$};
  3651. \node (x) at (6,2) {$\ttm{x}$};
  3652. \node (y) at (3,0) {$\ttm{y}$};
  3653. \node (w) at (6,0) {$\ttm{w}$};
  3654. \node (v) at (9,0) {$\ttm{v}$};
  3655. \draw (v) to (x);
  3656. \draw (x) to (y);
  3657. \draw (x) to (z);
  3658. \draw (y) to (t);
  3659. \end{tikzpicture}
  3660. \]
  3661. Now we replay the graph coloring, pausing to see the coloring of
  3662. \code{y}. Recall the following configuration. The most saturated vertices
  3663. were \code{w} and \code{y}.
  3664. \[
  3665. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3666. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3667. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3668. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3669. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3670. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3671. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  3672. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  3673. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  3674. \draw (t1) to (rax);
  3675. \draw (t1) to (z);
  3676. \draw (z) to (y);
  3677. \draw (z) to (w);
  3678. \draw (x) to (w);
  3679. \draw (y) to (w);
  3680. \draw (v) to (w);
  3681. \draw (v) to (rsp);
  3682. \draw (w) to (rsp);
  3683. \draw (x) to (rsp);
  3684. \draw (y) to (rsp);
  3685. \path[-.,bend left=15] (z) edge node {} (rsp);
  3686. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3687. \draw (rax) to (rsp);
  3688. \end{tikzpicture}
  3689. \]
  3690. %
  3691. Last time we chose to color \code{w} with $0$. But this time we see
  3692. that \code{w} is not move related to any vertex, but \code{y} is move
  3693. related to \code{t}. So we choose to color \code{y} the same color as
  3694. \code{t}, $0$.
  3695. \[
  3696. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3697. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3698. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3699. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3700. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3701. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3702. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  3703. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  3704. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  3705. \draw (t1) to (rax);
  3706. \draw (t1) to (z);
  3707. \draw (z) to (y);
  3708. \draw (z) to (w);
  3709. \draw (x) to (w);
  3710. \draw (y) to (w);
  3711. \draw (v) to (w);
  3712. \draw (v) to (rsp);
  3713. \draw (w) to (rsp);
  3714. \draw (x) to (rsp);
  3715. \draw (y) to (rsp);
  3716. \path[-.,bend left=15] (z) edge node {} (rsp);
  3717. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3718. \draw (rax) to (rsp);
  3719. \end{tikzpicture}
  3720. \]
  3721. Now \code{w} is the most saturated, so we color it $2$.
  3722. \[
  3723. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3724. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3725. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3726. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3727. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3728. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  3729. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  3730. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  3731. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  3732. \draw (t1) to (rax);
  3733. \draw (t1) to (z);
  3734. \draw (z) to (y);
  3735. \draw (z) to (w);
  3736. \draw (x) to (w);
  3737. \draw (y) to (w);
  3738. \draw (v) to (w);
  3739. \draw (v) to (rsp);
  3740. \draw (w) to (rsp);
  3741. \draw (x) to (rsp);
  3742. \draw (y) to (rsp);
  3743. \path[-.,bend left=15] (z) edge node {} (rsp);
  3744. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3745. \draw (rax) to (rsp);
  3746. \end{tikzpicture}
  3747. \]
  3748. At this point, vertices \code{x} and \code{v} are most saturated, but
  3749. \code{x} is move related to \code{y} and \code{z}, so we color
  3750. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  3751. \[
  3752. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3753. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3754. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3755. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  3756. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3757. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  3758. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  3759. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  3760. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  3761. \draw (t1) to (rax);
  3762. \draw (t) to (z);
  3763. \draw (z) to (y);
  3764. \draw (z) to (w);
  3765. \draw (x) to (w);
  3766. \draw (y) to (w);
  3767. \draw (v) to (w);
  3768. \draw (v) to (rsp);
  3769. \draw (w) to (rsp);
  3770. \draw (x) to (rsp);
  3771. \draw (y) to (rsp);
  3772. \path[-.,bend left=15] (z) edge node {} (rsp);
  3773. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3774. \draw (rax) to (rsp);
  3775. \end{tikzpicture}
  3776. \]
  3777. So we have the following assignment of variables to registers.
  3778. \begin{gather*}
  3779. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  3780. \ttm{w} \mapsto \key{\%rsi}, \,
  3781. \ttm{x} \mapsto \key{\%rcx}, \,
  3782. \ttm{y} \mapsto \key{\%rcx}, \,
  3783. \ttm{z} \mapsto \key{\%rdx}, \,
  3784. \ttm{t} \mapsto \key{\%rcx} \}
  3785. \end{gather*}
  3786. We apply this register assignment to the running example, on the left,
  3787. to obtain the code in the middle. The \code{patch-instructions} then
  3788. removes the three trivial moves to obtain the code on the right.
  3789. \begin{minipage}{0.25\textwidth}
  3790. \begin{lstlisting}
  3791. movq $1, v
  3792. movq $42, w
  3793. movq v, x
  3794. addq $7, x
  3795. movq x, y
  3796. movq x, z
  3797. addq w, z
  3798. movq y, t
  3799. negq t
  3800. movq z, %rax
  3801. addq t, %rax
  3802. jmp conclusion
  3803. \end{lstlisting}
  3804. \end{minipage}
  3805. $\Rightarrow\qquad$
  3806. \begin{minipage}{0.25\textwidth}
  3807. \begin{lstlisting}
  3808. movq $1, %rcx
  3809. movq $42, %rsi
  3810. movq %rcx, %rcx
  3811. addq $7, %rcx
  3812. movq %rcx, %rcx
  3813. movq %rcx, %rdx
  3814. addq %rsi, %rdx
  3815. movq %rcx, %rcx
  3816. negq %rcx
  3817. movq %rdx, %rax
  3818. addq %rcx, %rax
  3819. jmp conclusion
  3820. \end{lstlisting}
  3821. \end{minipage}
  3822. $\Rightarrow\qquad$
  3823. \begin{minipage}{0.25\textwidth}
  3824. \begin{lstlisting}
  3825. movq $1, %rcx
  3826. movq $42, %rsi
  3827. addq $7, %rcx
  3828. movq %rcx, %rdx
  3829. addq %rsi, %rdx
  3830. negq %rcx
  3831. movq %rdx, %rax
  3832. addq %rcx, %rax
  3833. jmp conclusion
  3834. \end{lstlisting}
  3835. \end{minipage}
  3836. \begin{exercise}\normalfont
  3837. Change your implementation of \code{allocate-registers} to take move
  3838. biasing into account. Create two new tests that include at least one
  3839. opportunity for move biasing and visually inspect the output x86
  3840. programs to make sure that your move biasing is working properly. Make
  3841. sure that your compiler still passes all of the tests.
  3842. \end{exercise}
  3843. %To do: another neat challenge would be to do
  3844. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  3845. %% \subsection{Output of the Running Example}
  3846. %% \label{sec:reg-alloc-output}
  3847. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  3848. the running example (Figure~\ref{fig:reg-eg}) with register allocation
  3849. and move biasing. To demonstrate both the use of registers and the
  3850. stack, we have limited the register allocator to use just two
  3851. registers: \code{rbx} and \code{rcx}. In the prelude\index{subject}{prelude}
  3852. of the \code{main} function, we push \code{rbx} onto the stack because
  3853. it is a callee-saved register and it was assigned to variable by the
  3854. register allocator. We subtract \code{8} from the \code{rsp} at the
  3855. end of the prelude to reserve space for the one spilled variable.
  3856. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  3857. Moving on the the \code{start} block, we see how the registers were
  3858. allocated. Variables \code{v}, \code{x}, and \code{y} were assigned to
  3859. \code{rbx} and variable \code{z} was assigned to \code{rcx}. Variable
  3860. \code{w} was spilled to the stack location \code{-16(\%rbp)}. Recall
  3861. that the prelude saved the callee-save register \code{rbx} onto the
  3862. stack. The spilled variables must be placed lower on the stack than
  3863. the saved callee-save registers, so in this case \code{w} is placed at
  3864. \code{-16(\%rbp)}.
  3865. In the \code{conclusion}\index{subject}{conclusion}, we undo the work that was
  3866. done in the prelude. We move the stack pointer up by \code{8} bytes
  3867. (the room for spilled variables), then we pop the old values of
  3868. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  3869. \code{retq} to return control to the operating system.
  3870. \begin{figure}[tbp]
  3871. % var_test_28.rkt
  3872. % (use-minimal-set-of-registers! #t)
  3873. % and only rbx rcx
  3874. % tmp 0 rbx
  3875. % z 1 rcx
  3876. % y 0 rbx
  3877. % w 2 16(%rbp)
  3878. % v 0 rbx
  3879. % x 0 rbx
  3880. \begin{lstlisting}
  3881. start:
  3882. movq $1, %rbx
  3883. movq $42, -16(%rbp)
  3884. addq $7, %rbx
  3885. movq %rbx, %rcx
  3886. addq -16(%rbp), %rcx
  3887. negq %rbx
  3888. movq %rcx, %rax
  3889. addq %rbx, %rax
  3890. jmp conclusion
  3891. .globl main
  3892. main:
  3893. pushq %rbp
  3894. movq %rsp, %rbp
  3895. pushq %rbx
  3896. subq $8, %rsp
  3897. jmp start
  3898. conclusion:
  3899. addq $8, %rsp
  3900. popq %rbx
  3901. popq %rbp
  3902. retq
  3903. \end{lstlisting}
  3904. \caption{The x86 output from the running example (Figure~\ref{fig:reg-eg}).}
  3905. \label{fig:running-example-x86}
  3906. \end{figure}
  3907. % challenge: prioritize variables based on execution frequencies
  3908. % and the number of uses of a variable
  3909. % challenge: enhance the coloring algorithm using Chaitin's
  3910. % approach of prioritizing high-degree variables
  3911. % by removing low-degree variables (coloring them later)
  3912. % from the interference graph
  3913. \section{Further Reading}
  3914. \label{sec:register-allocation-further-reading}
  3915. Early register allocation algorithms were developed for Fortran
  3916. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  3917. of graph coloring began in the late 1970s and early 1980s with the
  3918. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  3919. algorithm is based on the following observation of
  3920. \citet{Kempe:1879aa} from the 1870s. If a graph $G$ has a vertex $v$
  3921. with degree lower than $k$, then $G$ is $k$ colorable if the subgraph
  3922. of $G$ with $v$ removed is also $k$ colorable. Suppose that the
  3923. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  3924. different colors, but since there are less than $k$ of them, there
  3925. will be one or more colors left over to use for coloring $v$ in $G$.
  3926. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  3927. less than $k$ from the graph and recursively colors the rest of the
  3928. graph. Upon returning from the recursion, it colors $v$ with one of
  3929. the available colors and returns. \citet{Chaitin:1982vn} augments
  3930. this algorithm to handle spilling as follows. If there are no vertices
  3931. of degree lower than $k$ then pick a vertex at random, spill it,
  3932. remove it from the graph, and proceed recursively to color the rest of
  3933. the graph.
  3934. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  3935. move-related and that don't interfere with each other, a process
  3936. called \emph{coalescing}. While coalescing decreases the number of
  3937. moves, it can make the graph more difficult to
  3938. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  3939. which two variables are merged only if they have fewer than $k$
  3940. neighbors of high degree. \citet{George:1996aa} observe that
  3941. conservative coalescing is sometimes too conservative and make it more
  3942. aggressive by iterating the coalescing with the removal of low-degree
  3943. vertices.
  3944. %
  3945. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  3946. also propose \emph{biased coloring} in which a variable is assigned to
  3947. the same color as another move-related variable if possible, as
  3948. discussed in Section~\ref{sec:move-biasing}.
  3949. %
  3950. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  3951. performs coalescing, graph coloring, and spill code insertion until
  3952. all variables have been assigned a location.
  3953. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  3954. spills variables that don't have to be: a high-degree variable can be
  3955. colorable if many of its neighbors are assigned the same color.
  3956. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  3957. high-degree vertex is not immediately spilled. Instead the decision is
  3958. deferred until after the recursive call, at which point it is apparent
  3959. whether there is actually an available color or not. We observe that
  3960. this algorithm is equivalent to the smallest-last ordering
  3961. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  3962. be registers and the rest to be stack locations.
  3963. %% biased coloring
  3964. Earlier editions of the compiler course at Indiana University
  3965. \citep{Dybvig:2010aa} were based on the algorithm of
  3966. \citet{Briggs:1994kx}.
  3967. The smallest-last ordering algorithm is one of many \emph{greedy}
  3968. coloring algorithms. A greedy coloring algorithm visits all the
  3969. vertices in a particular order and assigns each one the first
  3970. available color. An \emph{offline} greedy algorithm chooses the
  3971. ordering up-front, prior to assigning colors. The algorithm of
  3972. \citet{Chaitin:1981vl} should be considered offline because the vertex
  3973. ordering does not depend on the colors assigned, so the algorithm
  3974. could be split into two phases. Other orderings are possible. For
  3975. example, \citet{Chow:1984ys} order variables according an estimate of
  3976. runtime cost.
  3977. An \emph{online} greedy coloring algorithm uses information about the
  3978. current assignment of colors to influence the order in which the
  3979. remaining vertices are colored. The saturation-based algorithm
  3980. described in this chapter is one such algorithm. We choose to use
  3981. saturation-based coloring is because it is fun to introduce graph
  3982. coloring via Sudoku.
  3983. A register allocator may choose to map each variable to just one
  3984. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  3985. variable to one or more locations. The later can be achieved by
  3986. \emph{live range splitting}, where a variable is replaced by several
  3987. variables that each handle part of its live
  3988. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  3989. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  3990. %% replacement algorithm, bottom-up local
  3991. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  3992. %% Cooper: top-down (priority bassed), bottom-up
  3993. %% top-down
  3994. %% order variables by priority (estimated cost)
  3995. %% caveat: split variables into two groups:
  3996. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  3997. %% color the constrained ones first
  3998. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  3999. %% cite J. Cocke for an algorithm that colors variables
  4000. %% in a high-degree first ordering
  4001. %Register Allocation via Usage Counts, Freiburghouse CACM
  4002. \citet{Palsberg:2007si} observe that many of the interference graphs
  4003. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  4004. that is, every cycle with four or more edges has an edge which is not
  4005. part of the cycle but which connects two vertices on the cycle. Such
  4006. graphs can be optimally colored by the greedy algorithm with a vertex
  4007. ordering determined by maximum cardinality search.
  4008. In situations where compile time is of utmost importance, such as in
  4009. just-in-time compilers, graph coloring algorithms can be too expensive
  4010. and the linear scan of \citet{Poletto:1999uq} may be more appropriate.
  4011. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4012. \chapter{Booleans and Control Flow}
  4013. \label{ch:Rif}
  4014. \index{subject}{Boolean}
  4015. \index{subject}{control flow}
  4016. \index{subject}{conditional expression}
  4017. The \LangInt{} and \LangVar{} languages only have a single kind of
  4018. value, integers. In this chapter we add a second kind of value, the
  4019. Booleans, to create the \LangIf{} language. The Boolean values
  4020. \emph{true} and \emph{false} are written \key{\#t} and \key{\#f}
  4021. respectively in Racket. The \LangIf{} language includes several
  4022. operations that involve Booleans (\key{and}, \key{not}, \key{eq?},
  4023. \key{<}, etc.) and the conditional \key{if} expression. With the
  4024. addition of \key{if}, programs can have non-trivial control flow which
  4025. impacts \code{explicate-control} and liveness analysis. Also, because
  4026. we now have two kinds of values, we need to handle programs that apply
  4027. an operation to the wrong kind of value, such as \code{(not 1)}.
  4028. There are two language design options for such situations. One option
  4029. is to signal an error and the other is to provide a wider
  4030. interpretation of the operation. The Racket language uses a mixture of
  4031. these two options, depending on the operation and the kind of
  4032. value. For example, the result of \code{(not 1)} in Racket is
  4033. \code{\#f} because Racket treats non-zero integers as if they were
  4034. \code{\#t}. On the other hand, \code{(car 1)} results in a run-time
  4035. error in Racket because \code{car} expects a pair.
  4036. Typed Racket makes similar design choices as Racket, except much of
  4037. the error detection happens at compile time instead of run time. Typed
  4038. Racket accepts and runs \code{(not 1)}, producing \code{\#f}. But in
  4039. the case of \code{(car 1)}, Typed Racket reports a compile-time error
  4040. because Typed Racket expects the type of the argument to be of the
  4041. form \code{(Listof T)} or \code{(Pairof T1 T2)}.
  4042. The \LangIf{} language performs type checking during compilation like
  4043. Typed Racket. In Chapter~\ref{ch:type-dynamic} we study the
  4044. alternative choice, that is, a dynamically typed language like Racket.
  4045. The \LangIf{} language is a subset of Typed Racket; for some
  4046. operations we are more restrictive, for example, rejecting
  4047. \code{(not 1)}.
  4048. This chapter is organized as follows. We begin by defining the syntax
  4049. and interpreter for the \LangIf{} language
  4050. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  4051. checking and build a type checker for \LangIf{}
  4052. (Section~\ref{sec:type-check-Rif}). To compile \LangIf{} we need to
  4053. enlarge the intermediate language \LangCVar{} into \LangCIf{}
  4054. (Section~\ref{sec:Cif}) and \LangXInt{} into \LangXIf{}
  4055. (Section~\ref{sec:x86-if}). The remaining sections of this chapter
  4056. discuss how our compiler passes change to accommodate Booleans and
  4057. conditional control flow. There is one new pass, named \code{shrink},
  4058. that translates some operators into others, thereby reducing the
  4059. number of operators that need to be handled in later passes. The
  4060. largest changes occur in \code{explicate-control}, to translate
  4061. \code{if} expressions into control-flow graphs
  4062. (Section~\ref{sec:explicate-control-Rif}). Regarding register
  4063. allocation, the liveness analysis now has multiple basic blocks to
  4064. process and there is the interesting question of how to handle
  4065. conditional jumps.
  4066. \section{The \LangIf{} Language}
  4067. \label{sec:lang-if}
  4068. The concrete syntax of the \LangIf{} language is defined in
  4069. Figure~\ref{fig:Rif-concrete-syntax} and the abstract syntax is defined
  4070. in Figure~\ref{fig:Rif-syntax}. The \LangIf{} language includes all of
  4071. \LangVar{} (shown in gray), the Boolean literals \code{\#t} and
  4072. \code{\#f}, and the conditional \code{if} expression. We expand the
  4073. operators to include
  4074. \begin{enumerate}
  4075. \item subtraction on integers,
  4076. \item the logical operators \key{and}, \key{or} and \key{not},
  4077. \item the \key{eq?} operation for comparing two integers or two Booleans, and
  4078. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  4079. comparing integers.
  4080. \end{enumerate}
  4081. We reorganize the abstract syntax for the primitive operations in
  4082. Figure~\ref{fig:Rif-syntax}, using only one grammar rule for all of
  4083. them. This means that the grammar no longer checks whether the arity
  4084. of an operators matches the number of arguments. That responsibility
  4085. is moved to the type checker for \LangIf{}, which we introduce in
  4086. Section~\ref{sec:type-check-Rif}.
  4087. \begin{figure}[tp]
  4088. \centering
  4089. \fbox{
  4090. \begin{minipage}{0.96\textwidth}
  4091. \[
  4092. \begin{array}{lcl}
  4093. \itm{bool} &::=& \key{\#t} \mid \key{\#f} \\
  4094. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  4095. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} } \mid \CSUB{\Exp}{\Exp} \\
  4096. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} } \\
  4097. &\mid& \itm{bool}
  4098. \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
  4099. \mid (\key{not}\;\Exp) \\
  4100. &\mid& (\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} \\
  4101. \LangIfM{} &::=& \Exp
  4102. \end{array}
  4103. \]
  4104. \end{minipage}
  4105. }
  4106. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  4107. (Figure~\ref{fig:r1-concrete-syntax}) with Booleans and conditionals.}
  4108. \label{fig:Rif-concrete-syntax}
  4109. \end{figure}
  4110. \begin{figure}[tp]
  4111. \centering
  4112. \fbox{
  4113. \begin{minipage}{0.96\textwidth}
  4114. \[
  4115. \begin{array}{lcl}
  4116. \itm{bool} &::=& \code{\#t} \mid \code{\#f} \\
  4117. \itm{cmp} &::= & \code{eq?} \mid \code{<} \mid \code{<=} \mid \code{>} \mid \code{>=} \\
  4118. \itm{op} &::= & \itm{cmp} \mid \code{read} \mid \code{+} \mid \code{-}
  4119. \mid \code{and} \mid \code{or} \mid \code{not} \\
  4120. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  4121. &\mid& \PRIM{\itm{op}}{\Exp\ldots}\\
  4122. &\mid& \BOOL{\itm{bool}} \mid \IF{\Exp}{\Exp}{\Exp} \\
  4123. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  4124. \end{array}
  4125. \]
  4126. \end{minipage}
  4127. }
  4128. \caption{The abstract syntax of \LangIf{}.}
  4129. \label{fig:Rif-syntax}
  4130. \end{figure}
  4131. Figure~\ref{fig:interp-Rif} defines the interpreter for \LangIf{},
  4132. which inherits from the interpreter for \LangVar{}
  4133. (Figure~\ref{fig:interp-Rvar}). The literals \code{\#t} and \code{\#f}
  4134. evaluate to the corresponding Boolean values. The conditional
  4135. expression $(\key{if}\, \itm{cnd}\,\itm{thn}\,\itm{els})$ evaluates
  4136. \itm{cnd} and then either evaluates \itm{thn} or \itm{els} depending
  4137. on whether \itm{cnd} produced \code{\#t} or \code{\#f}. The logical
  4138. operations \code{not} and \code{and} behave as you might expect, but
  4139. note that the \code{and} operation is short-circuiting. That is, given
  4140. the expression $(\key{and}\,e_1\,e_2)$, the expression $e_2$ is not
  4141. evaluated if $e_1$ evaluates to \code{\#f}.
  4142. With the increase in the number of primitive operations, the
  4143. interpreter would become repetitive without some care. We refactor
  4144. the case for \code{Prim}, moving the code that differs with each
  4145. operation into the \code{interp-op} method shown in in
  4146. Figure~\ref{fig:interp-op-Rif}. We handle the \code{and} operation
  4147. separately because of its short-circuiting behavior.
  4148. \begin{figure}[tbp]
  4149. \begin{lstlisting}
  4150. (define interp-Rif-class
  4151. (class interp-Rvar-class
  4152. (super-new)
  4153. (define/public (interp-op op) ...)
  4154. (define/override ((interp-exp env) e)
  4155. (define recur (interp-exp env))
  4156. (match e
  4157. [(Bool b) b]
  4158. [(If cnd thn els)
  4159. (match (recur cnd)
  4160. [#t (recur thn)]
  4161. [#f (recur els)])]
  4162. [(Prim 'and (list e1 e2))
  4163. (match (recur e1)
  4164. [#t (match (recur e2) [#t #t] [#f #f])]
  4165. [#f #f])]
  4166. [(Prim op args)
  4167. (apply (interp-op op) (for/list ([e args]) (recur e)))]
  4168. [else ((super interp-exp env) e)]))
  4169. ))
  4170. (define (interp-Rif p)
  4171. (send (new interp-Rif-class) interp-program p))
  4172. \end{lstlisting}
  4173. \caption{Interpreter for the \LangIf{} language. (See
  4174. Figure~\ref{fig:interp-op-Rif} for \code{interp-op}.)}
  4175. \label{fig:interp-Rif}
  4176. \end{figure}
  4177. \begin{figure}[tbp]
  4178. \begin{lstlisting}
  4179. (define/public (interp-op op)
  4180. (match op
  4181. ['+ fx+]
  4182. ['- fx-]
  4183. ['read read-fixnum]
  4184. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  4185. ['or (lambda (v1 v2)
  4186. (cond [(and (boolean? v1) (boolean? v2))
  4187. (or v1 v2)]))]
  4188. ['eq? (lambda (v1 v2)
  4189. (cond [(or (and (fixnum? v1) (fixnum? v2))
  4190. (and (boolean? v1) (boolean? v2))
  4191. (and (vector? v1) (vector? v2)))
  4192. (eq? v1 v2)]))]
  4193. ['< (lambda (v1 v2)
  4194. (cond [(and (fixnum? v1) (fixnum? v2))
  4195. (< v1 v2)]))]
  4196. ['<= (lambda (v1 v2)
  4197. (cond [(and (fixnum? v1) (fixnum? v2))
  4198. (<= v1 v2)]))]
  4199. ['> (lambda (v1 v2)
  4200. (cond [(and (fixnum? v1) (fixnum? v2))
  4201. (> v1 v2)]))]
  4202. ['>= (lambda (v1 v2)
  4203. (cond [(and (fixnum? v1) (fixnum? v2))
  4204. (>= v1 v2)]))]
  4205. [else (error 'interp-op "unknown operator")]))
  4206. \end{lstlisting}
  4207. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  4208. \label{fig:interp-op-Rif}
  4209. \end{figure}
  4210. \section{Type Checking \LangIf{} Programs}
  4211. \label{sec:type-check-Rif}
  4212. \index{subject}{type checking}
  4213. \index{subject}{semantic analysis}
  4214. It is helpful to think about type checking in two complementary
  4215. ways. A type checker predicts the type of value that will be produced
  4216. by each expression in the program. For \LangIf{}, we have just two types,
  4217. \key{Integer} and \key{Boolean}. So a type checker should predict that
  4218. \begin{lstlisting}
  4219. (+ 10 (- (+ 12 20)))
  4220. \end{lstlisting}
  4221. produces an \key{Integer} while
  4222. \begin{lstlisting}
  4223. (and (not #f) #t)
  4224. \end{lstlisting}
  4225. produces a \key{Boolean}.
  4226. Another way to think about type checking is that it enforces a set of
  4227. rules about which operators can be applied to which kinds of
  4228. values. For example, our type checker for \LangIf{} signals an error
  4229. for the below expression
  4230. \begin{lstlisting}
  4231. (not (+ 10 (- (+ 12 20))))
  4232. \end{lstlisting}
  4233. The subexpression \code{(+ 10 (- (+ 12 20)))} has type \key{Integer}
  4234. but the type checker enforces the rule that the argument of \code{not}
  4235. must be a \key{Boolean}.
  4236. We implement type checking using classes and methods because they
  4237. provide the open recursion needed to reuse code as we extend the type
  4238. checker in later chapters, analogous to the use of classes and methods
  4239. for the interpreters (Section~\ref{sec:extensible-interp}).
  4240. We separate the type checker for the \LangVar{} fragment into its own
  4241. class, shown in Figure~\ref{fig:type-check-Rvar}. The type checker for
  4242. \LangIf{} is shown in Figure~\ref{fig:type-check-Rif} and it inherits
  4243. from the type checker for \LangVar{}. These type checkers are in the
  4244. files \code{type-check-Rvar.rkt} and \code{type-check-Rif.rkt} of the
  4245. support code.
  4246. %
  4247. Each type checker is a structurally recursive function over the AST.
  4248. Given an input expression \code{e}, the type checker either signals an
  4249. error or returns an expression and its type (\key{Integer} or
  4250. \key{Boolean}). It returns an expression because there are situations
  4251. in which we want to change or update the expression.
  4252. Next we discuss the \code{match} cases in \code{type-check-exp} of
  4253. Figure~\ref{fig:type-check-Rvar}. The type of an integer constant is
  4254. \code{Integer}. To handle variables, the type checker uses the
  4255. environment \code{env} to map variables to types. Consider the case
  4256. for \key{let}. We type check the initializing expression to obtain
  4257. its type \key{T} and then associate type \code{T} with the variable
  4258. \code{x} in the environment used to type check the body of the
  4259. \key{let}. Thus, when the type checker encounters a use of variable
  4260. \code{x}, it can find its type in the environment. Regarding
  4261. primitive operators, we recursively analyze the arguments and then
  4262. invoke \code{type-check-op} to check whether the argument types are
  4263. allowed.
  4264. Several auxiliary methods are used in the type checker. The method
  4265. \code{operator-types} defines a dictionary that maps the operator
  4266. names to their parameter and return types. The \code{type-equal?}
  4267. method determines whether two types are equal, which for now simply
  4268. dispatches to \code{equal?} (deep equality). The
  4269. \code{check-type-equal?} method triggers an error if the two types are
  4270. not equal. The \code{type-check-op} method looks up the operator in
  4271. the \code{operator-types} dictionary and then checks whether the
  4272. argument types are equal to the parameter types. The result is the
  4273. return type of the operator.
  4274. \begin{figure}[tbp]
  4275. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  4276. (define type-check-Rvar-class
  4277. (class object%
  4278. (super-new)
  4279. (define/public (operator-types)
  4280. '((+ . ((Integer Integer) . Integer))
  4281. (- . ((Integer) . Integer))
  4282. (read . (() . Integer))))
  4283. (define/public (type-equal? t1 t2) (equal? t1 t2))
  4284. (define/public (check-type-equal? t1 t2 e)
  4285. (unless (type-equal? t1 t2)
  4286. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  4287. (define/public (type-check-op op arg-types e)
  4288. (match (dict-ref (operator-types) op)
  4289. [`(,param-types . ,return-type)
  4290. (for ([at arg-types] [pt param-types])
  4291. (check-type-equal? at pt e))
  4292. return-type]
  4293. [else (error 'type-check-op "unrecognized ~a" op)]))
  4294. (define/public (type-check-exp env)
  4295. (lambda (e)
  4296. (match e
  4297. [(Int n) (values (Int n) 'Integer)]
  4298. [(Var x) (values (Var x) (dict-ref env x))]
  4299. [(Let x e body)
  4300. (define-values (e^ Te) ((type-check-exp env) e))
  4301. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  4302. (values (Let x e^ b) Tb)]
  4303. [(Prim op es)
  4304. (define-values (new-es ts)
  4305. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  4306. (values (Prim op new-es) (type-check-op op ts e))]
  4307. [else (error 'type-check-exp "couldn't match" e)])))
  4308. (define/public (type-check-program e)
  4309. (match e
  4310. [(Program info body)
  4311. (define-values (body^ Tb) ((type-check-exp '()) body))
  4312. (check-type-equal? Tb 'Integer body)
  4313. (Program info body^)]
  4314. [else (error 'type-check-Rvar "couldn't match ~a" e)]))
  4315. ))
  4316. (define (type-check-Rvar p)
  4317. (send (new type-check-Rvar-class) type-check-program p))
  4318. \end{lstlisting}
  4319. \caption{Type checker for the \LangVar{} language.}
  4320. \label{fig:type-check-Rvar}
  4321. \end{figure}
  4322. \begin{figure}[tbp]
  4323. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  4324. (define type-check-Rif-class
  4325. (class type-check-Rvar-class
  4326. (super-new)
  4327. (inherit check-type-equal?)
  4328. (define/override (operator-types)
  4329. (append '((- . ((Integer Integer) . Integer))
  4330. (and . ((Boolean Boolean) . Boolean))
  4331. (or . ((Boolean Boolean) . Boolean))
  4332. (< . ((Integer Integer) . Boolean))
  4333. (<= . ((Integer Integer) . Boolean))
  4334. (> . ((Integer Integer) . Boolean))
  4335. (>= . ((Integer Integer) . Boolean))
  4336. (not . ((Boolean) . Boolean))
  4337. )
  4338. (super operator-types)))
  4339. (define/override (type-check-exp env)
  4340. (lambda (e)
  4341. (match e
  4342. [(Prim 'eq? (list e1 e2))
  4343. (define-values (e1^ T1) ((type-check-exp env) e1))
  4344. (define-values (e2^ T2) ((type-check-exp env) e2))
  4345. (check-type-equal? T1 T2 e)
  4346. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  4347. [(Bool b) (values (Bool b) 'Boolean)]
  4348. [(If cnd thn els)
  4349. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  4350. (define-values (thn^ Tt) ((type-check-exp env) thn))
  4351. (define-values (els^ Te) ((type-check-exp env) els))
  4352. (check-type-equal? Tc 'Boolean e)
  4353. (check-type-equal? Tt Te e)
  4354. (values (If cnd^ thn^ els^) Te)]
  4355. [else ((super type-check-exp env) e)])))
  4356. ))
  4357. (define (type-check-Rif p)
  4358. (send (new type-check-Rif-class) type-check-program p))
  4359. \end{lstlisting}
  4360. \caption{Type checker for the \LangIf{} language.}
  4361. \label{fig:type-check-Rif}
  4362. \end{figure}
  4363. Next we discuss the type checker for \LangIf{} in
  4364. Figure~\ref{fig:type-check-Rif}. The operator \code{eq?} requires the
  4365. two arguments to have the same type. The type of a Boolean constant is
  4366. \code{Boolean}. The condition of an \code{if} must be of
  4367. \code{Boolean} type and the two branches must have the same type. The
  4368. \code{operator-types} function adds dictionary entries for the other
  4369. new operators.
  4370. \begin{exercise}\normalfont
  4371. Create 10 new test programs in \LangIf{}. Half of the programs should
  4372. have a type error. For those programs, create an empty file with the
  4373. same base name but with file extension \code{.tyerr}. For example, if
  4374. the test \code{cond\_test\_14.rkt} is expected to error, then create
  4375. an empty file named \code{cond\_test\_14.tyerr}. This indicates to
  4376. \code{interp-tests} and \code{compiler-tests} that a type error is
  4377. expected. The other half of the test programs should not have type
  4378. errors.
  4379. In the \code{run-tests.rkt} script, change the second argument of
  4380. \code{interp-tests} and \code{compiler-tests} to
  4381. \code{type-check-Rif}, which causes the type checker to run prior to
  4382. the compiler passes. Temporarily change the \code{passes} to an empty
  4383. list and run the script, thereby checking that the new test programs
  4384. either type check or not as intended.
  4385. \end{exercise}
  4386. \section{The \LangCIf{} Intermediate Language}
  4387. \label{sec:Cif}
  4388. Figure~\ref{fig:c1-syntax} defines the abstract syntax of the
  4389. \LangCIf{} intermediate language. (The concrete syntax is in the
  4390. Appendix, Figure~\ref{fig:c1-concrete-syntax}.) Compared to
  4391. \LangCVar{}, the \LangCIf{} language adds logical and comparison
  4392. operators to the \Exp{} non-terminal and the literals \key{\#t} and
  4393. \key{\#f} to the \Arg{} non-terminal.
  4394. Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
  4395. statements to the \Tail{} non-terminal. The condition of an \code{if}
  4396. statement is a comparison operation and the branches are \code{goto}
  4397. statements, making it straightforward to compile \code{if} statements
  4398. to x86.
  4399. \begin{figure}[tp]
  4400. \fbox{
  4401. \begin{minipage}{0.96\textwidth}
  4402. \small
  4403. \[
  4404. \begin{array}{lcl}
  4405. \Atm &::=& \gray{\INT{\Int} \mid \VAR{\Var}} \mid \BOOL{\itm{bool}} \\
  4406. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  4407. \Exp &::= & \gray{ \Atm \mid \READ{} }\\
  4408. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  4409. &\mid& \UNIOP{\key{'not}}{\Atm}
  4410. \mid \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  4411. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
  4412. \Tail &::= & \gray{\RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} }
  4413. \mid \GOTO{\itm{label}} \\
  4414. &\mid& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
  4415. \LangCIfM{} & ::= & \gray{\CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}}
  4416. \end{array}
  4417. \]
  4418. \end{minipage}
  4419. }
  4420. \caption{The abstract syntax of \LangCIf{}, an extension of \LangCVar{}
  4421. (Figure~\ref{fig:c0-syntax}).}
  4422. \label{fig:c1-syntax}
  4423. \end{figure}
  4424. \section{The \LangXIf{} Language}
  4425. \label{sec:x86-if}
  4426. \index{subject}{x86} To implement the new logical operations, the comparison
  4427. operations, and the \key{if} expression, we need to delve further into
  4428. the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
  4429. define the concrete and abstract syntax for the \LangXIf{} subset
  4430. of x86, which includes instructions for logical operations,
  4431. comparisons, and conditional jumps.
  4432. One challenge is that x86 does not provide an instruction that
  4433. directly implements logical negation (\code{not} in \LangIf{} and
  4434. \LangCIf{}). However, the \code{xorq} instruction can be used to
  4435. encode \code{not}. The \key{xorq} instruction takes two arguments,
  4436. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  4437. bit of its arguments, and writes the results into its second argument.
  4438. Recall the truth table for exclusive-or:
  4439. \begin{center}
  4440. \begin{tabular}{l|cc}
  4441. & 0 & 1 \\ \hline
  4442. 0 & 0 & 1 \\
  4443. 1 & 1 & 0
  4444. \end{tabular}
  4445. \end{center}
  4446. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  4447. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  4448. for the bit $1$, the result is the opposite of the second bit. Thus,
  4449. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  4450. the first argument:
  4451. \[
  4452. \Var~ \key{=}~ \LP\key{not}~\Arg\RP\key{;}
  4453. \qquad\Rightarrow\qquad
  4454. \begin{array}{l}
  4455. \key{movq}~ \Arg\key{,} \Var\\
  4456. \key{xorq}~ \key{\$1,} \Var
  4457. \end{array}
  4458. \]
  4459. \begin{figure}[tp]
  4460. \fbox{
  4461. \begin{minipage}{0.96\textwidth}
  4462. \[
  4463. \begin{array}{lcl}
  4464. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  4465. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  4466. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} } \mid \key{\%}\itm{bytereg}\\
  4467. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  4468. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \mid
  4469. \key{subq} \; \Arg\key{,} \Arg \mid
  4470. \key{negq} \; \Arg \mid \key{movq} \; \Arg\key{,} \Arg \mid } \\
  4471. && \gray{ \key{callq} \; \itm{label} \mid
  4472. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} } \\
  4473. && \gray{ \itm{label}\key{:}\; \Instr }
  4474. \mid \key{xorq}~\Arg\key{,}~\Arg
  4475. \mid \key{cmpq}~\Arg\key{,}~\Arg \mid \\
  4476. && \key{set}cc~\Arg
  4477. \mid \key{movzbq}~\Arg\key{,}~\Arg
  4478. \mid \key{j}cc~\itm{label}
  4479. \\
  4480. \LangXIfM{} &::= & \gray{ \key{.globl main} }\\
  4481. & & \gray{ \key{main:} \; \Instr\ldots }
  4482. \end{array}
  4483. \]
  4484. \end{minipage}
  4485. }
  4486. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  4487. \label{fig:x86-1-concrete}
  4488. \end{figure}
  4489. \begin{figure}[tp]
  4490. \fbox{
  4491. \begin{minipage}{0.98\textwidth}
  4492. \small
  4493. \[
  4494. \begin{array}{lcl}
  4495. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  4496. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  4497. \Arg &::=& \gray{\IMM{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}}
  4498. \mid \BYTEREG{\itm{bytereg}} \\
  4499. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  4500. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  4501. \mid \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  4502. &\mid& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  4503. \mid \UNIINSTR{\code{negq}}{\Arg} } \\
  4504. &\mid& \gray{ \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  4505. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} } \\
  4506. &\mid& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  4507. \mid \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  4508. &\mid& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  4509. \mid \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  4510. &\mid& \JMPIF{\itm{cc}}{\itm{label}} \\
  4511. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  4512. \LangXIfM{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  4513. \end{array}
  4514. \]
  4515. \end{minipage}
  4516. }
  4517. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  4518. \label{fig:x86-1}
  4519. \end{figure}
  4520. Next we consider the x86 instructions that are relevant for compiling
  4521. the comparison operations. The \key{cmpq} instruction compares its two
  4522. arguments to determine whether one argument is less than, equal, or
  4523. greater than the other argument. The \key{cmpq} instruction is unusual
  4524. regarding the order of its arguments and where the result is
  4525. placed. The argument order is backwards: if you want to test whether
  4526. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  4527. \key{cmpq} is placed in the special EFLAGS register. This register
  4528. cannot be accessed directly but it can be queried by a number of
  4529. instructions, including the \key{set} instruction. The instruction
  4530. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  4531. depending on whether the comparison comes out according to the
  4532. condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
  4533. for less-or-equal, \key{g} for greater, \key{ge} for
  4534. greater-or-equal). The \key{set} instruction has an annoying quirk in
  4535. that its destination argument must be single byte register, such as
  4536. \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
  4537. are part of the \code{rax} register. Thankfully, the \key{movzbq}
  4538. instruction can be used to move from a single byte register to a
  4539. normal 64-bit register. The abstract syntax for the \code{set}
  4540. instruction differs from the concrete syntax in that it separates the
  4541. instruction name from the condition code.
  4542. The x86 instruction for conditional jump is relevant to the
  4543. compilation of \key{if} expressions. The instruction
  4544. $\key{j}\itm{cc}~\itm{label}$ updates the program counter to point to
  4545. the instruction after \itm{label} depending on whether the result in
  4546. the EFLAGS register matches the condition code \itm{cc}, otherwise the
  4547. jump instruction falls through to the next instruction. Like the
  4548. abstract syntax for \code{set}, the abstract syntax for conditional
  4549. jump separates the instruction name from the condition code. For
  4550. example, \code{(JmpIf le foo)} corresponds to \code{jle foo}. Because
  4551. the conditional jump instruction relies on the EFLAGS register, it is
  4552. common for it to be immediately preceded by a \key{cmpq} instruction
  4553. to set the EFLAGS register.
  4554. \section{Shrink the \LangIf{} Language}
  4555. \label{sec:shrink-Rif}
  4556. The \LangIf{} language includes several operators that are easily
  4557. expressible with other operators. For example, subtraction is
  4558. expressible using addition and negation.
  4559. \[
  4560. \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  4561. \]
  4562. Several of the comparison operations are expressible using less-than
  4563. and logical negation.
  4564. \[
  4565. \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  4566. \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  4567. \]
  4568. The \key{let} is needed in the above translation to ensure that
  4569. expression $e_1$ is evaluated before $e_2$.
  4570. By performing these translations in the front-end of the compiler, the
  4571. later passes of the compiler do not need to deal with these operators,
  4572. making the passes shorter.
  4573. %% On the other hand, sometimes
  4574. %% these translations make it more difficult to generate the most
  4575. %% efficient code with respect to the number of instructions. However,
  4576. %% these differences typically do not affect the number of accesses to
  4577. %% memory, which is the primary factor that determines execution time on
  4578. %% modern computer architectures.
  4579. \begin{exercise}\normalfont
  4580. Implement the pass \code{shrink} to remove subtraction, \key{and},
  4581. \key{or}, \key{<=}, \key{>}, and \key{>=} from the language by
  4582. translating them to other constructs in \LangIf{}.
  4583. %
  4584. Create six test programs that involve these operators.
  4585. %
  4586. In the \code{run-tests.rkt} script, add the following entry for
  4587. \code{shrink} to the list of passes (it should be the only pass at
  4588. this point).
  4589. \begin{lstlisting}
  4590. (list "shrink" shrink interp-Rif type-check-Rif)
  4591. \end{lstlisting}
  4592. This instructs \code{interp-tests} to run the intepreter
  4593. \code{interp-Rif} and the type checker \code{type-check-Rif} on the
  4594. output of \code{shrink}.
  4595. %
  4596. Run the script to test your compiler on all the test programs.
  4597. \end{exercise}
  4598. \section{Uniquify Variables}
  4599. \label{sec:uniquify-Rif}
  4600. Add cases to \code{uniquify-exp} to handle Boolean constants and
  4601. \code{if} expressions.
  4602. \begin{exercise}\normalfont
  4603. Update the \code{uniquify-exp} for \LangIf{} and add the following
  4604. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  4605. \begin{lstlisting}
  4606. (list "uniquify" uniquify interp-Rif type-check-Rif)
  4607. \end{lstlisting}
  4608. Run the script to test your compiler.
  4609. \end{exercise}
  4610. \section{Remove Complex Operands}
  4611. \label{sec:remove-complex-opera-Rif}
  4612. The output language for this pass is \LangIfANF{}
  4613. (Figure~\ref{fig:Rif-anf-syntax}), the administrative normal form of
  4614. \LangIf{}. The \code{Bool} form is an atomic expressions but
  4615. \code{If} is not. All three sub-expressions of an \code{If} are
  4616. allowed to be complex expressions but the operands of \code{not} and
  4617. the comparisons must be atoms.
  4618. Add cases for \code{Bool} and \code{If} to the \code{rco-exp} and
  4619. \code{rco-atom} functions according to whether the output needs to be
  4620. \Exp{} or \Atm{} as specified in the grammar for \LangIfANF{}.
  4621. Regarding \code{If}, it is particularly important to \textbf{not}
  4622. replace its condition with a temporary variable because that would
  4623. interfere with the generation of high-quality output in the
  4624. \code{explicate-control} pass.
  4625. \begin{figure}[tp]
  4626. \centering
  4627. \fbox{
  4628. \begin{minipage}{0.96\textwidth}
  4629. \[
  4630. \begin{array}{rcl}
  4631. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} } \mid \BOOL{\itm{bool}}\\
  4632. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  4633. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  4634. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  4635. &\mid& \UNIOP{\key{not}}{\Atm} \\
  4636. &\mid& \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} \\
  4637. R^{\dagger}_2 &::=& \PROGRAM{\code{()}}{\Exp}
  4638. \end{array}
  4639. \]
  4640. \end{minipage}
  4641. }
  4642. \caption{\LangIfANF{} is \LangIf{} in administrative normal form (ANF).}
  4643. \label{fig:Rif-anf-syntax}
  4644. \end{figure}
  4645. \begin{exercise}\normalfont
  4646. %
  4647. Add cases for Boolean constants and \code{if} to the \code{rco-atom}
  4648. and \code{rco-exp} functions in \code{compiler.rkt}.
  4649. %
  4650. Create three new \LangInt{} programs that exercise the interesting
  4651. code in this pass.
  4652. %
  4653. In the \code{run-tests.rkt} script, add the following entry to the
  4654. list of \code{passes} and then run the script to test your compiler.
  4655. \begin{lstlisting}
  4656. (list "remove-complex" remove-complex-opera* interp-Rif type-check-Rif)
  4657. \end{lstlisting}
  4658. \end{exercise}
  4659. \section{Explicate Control}
  4660. \label{sec:explicate-control-Rif}
  4661. Recall that the purpose of \code{explicate-control} is to make the
  4662. order of evaluation explicit in the syntax of the program. With the
  4663. addition of \key{if} this get more interesting.
  4664. As a motivating example, consider the following program that has an
  4665. \key{if} expression nested in the predicate of another \key{if}.
  4666. % cond_test_41.rkt
  4667. \begin{center}
  4668. \begin{minipage}{0.96\textwidth}
  4669. \begin{lstlisting}
  4670. (let ([x (read)])
  4671. (let ([y (read)])
  4672. (if (if (< x 1) (eq? x 0) (eq? x 2))
  4673. (+ y 2)
  4674. (+ y 10))))
  4675. \end{lstlisting}
  4676. \end{minipage}
  4677. \end{center}
  4678. %
  4679. The naive way to compile \key{if} and the comparison would be to
  4680. handle each of them in isolation, regardless of their context. Each
  4681. comparison would be translated into a \key{cmpq} instruction followed
  4682. by a couple instructions to move the result from the EFLAGS register
  4683. into a general purpose register or stack location. Each \key{if} would
  4684. be translated into a \key{cmpq} instruction followed by a conditional
  4685. jump. The generated code for the inner \key{if} in the above example
  4686. would be as follows.
  4687. \begin{center}
  4688. \begin{minipage}{0.96\textwidth}
  4689. \begin{lstlisting}
  4690. ...
  4691. cmpq $1, x ;; (< x 1)
  4692. setl %al
  4693. movzbq %al, tmp
  4694. cmpq $1, tmp ;; (if ...)
  4695. je then_branch_1
  4696. jmp else_branch_1
  4697. ...
  4698. \end{lstlisting}
  4699. \end{minipage}
  4700. \end{center}
  4701. However, if we take context into account we can do better and reduce
  4702. the use of \key{cmpq} instructions for accessing the EFLAG register.
  4703. Our goal will be compile \key{if} expressions so that the relevant
  4704. comparison instruction appears directly before the conditional jump.
  4705. For example, we want to generate the following code for the inner
  4706. \code{if}.
  4707. \begin{center}
  4708. \begin{minipage}{0.96\textwidth}
  4709. \begin{lstlisting}
  4710. ...
  4711. cmpq $1, x
  4712. je then_branch_1
  4713. jmp else_branch_1
  4714. ...
  4715. \end{lstlisting}
  4716. \end{minipage}
  4717. \end{center}
  4718. One way to achieve this is to reorganize the code at the level of
  4719. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  4720. the following code.
  4721. \begin{center}
  4722. \begin{minipage}{0.96\textwidth}
  4723. \begin{lstlisting}
  4724. (let ([x (read)])
  4725. (let ([y (read)])
  4726. (if (< x 1)
  4727. (if (eq? x 0)
  4728. (+ y 2)
  4729. (+ y 10))
  4730. (if (eq? x 2)
  4731. (+ y 2)
  4732. (+ y 10)))))
  4733. \end{lstlisting}
  4734. \end{minipage}
  4735. \end{center}
  4736. Unfortunately, this approach duplicates the two branches from the
  4737. outer \code{if} and a compiler must never duplicate code!
  4738. We need a way to perform the above transformation but without
  4739. duplicating code. That is, we need a way for different parts of a
  4740. program to refer to the same piece of code. At the level of x86
  4741. assembly this is straightforward because we can label the code for
  4742. each branch and insert jumps in all the places that need to execute
  4743. the branch. In our intermediate language, we need to move away from
  4744. abstract syntax \emph{trees} and instead use \emph{graphs}. In
  4745. particular, we use a standard program representation called a
  4746. \emph{control flow graph} (CFG), due to Frances Elizabeth
  4747. \citet{Allen:1970uq}. \index{subject}{control-flow graph} Each vertex is a
  4748. labeled sequence of code, called a \emph{basic block}, and each edge
  4749. represents a jump to another block. The \key{CProgram} construct of
  4750. \LangCVar{} and \LangCIf{} contains a control flow graph represented
  4751. as an alist mapping labels to basic blocks. Each basic block is
  4752. represented by the $\Tail$ non-terminal.
  4753. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  4754. \code{remove-complex-opera*} pass and then the
  4755. \code{explicate-control} pass on the example program. We walk through
  4756. the output program and then discuss the algorithm.
  4757. %
  4758. Following the order of evaluation in the output of
  4759. \code{remove-complex-opera*}, we first have two calls to \code{(read)}
  4760. and then the comparison \lstinline{(< x 1)} in the predicate of the
  4761. inner \key{if}. In the output of \code{explicate-control}, in the
  4762. block labeled \code{start}, is two assignment statements followed by a
  4763. \code{if} statement that branches to \code{block40} or
  4764. \code{block41}. The blocks associated with those labels contain the
  4765. translations of the code \lstinline{(eq? x 0)} and \lstinline{(eq? x 2)},
  4766. respectively. In particular, we start \code{block40} with the
  4767. comparison \lstinline{(eq? x 0)} and then branch to \code{block38} or
  4768. \code{block39}, the two branches of the outer \key{if}, i.e.,
  4769. \lstinline{(+ y 2)} and \lstinline{(+ y 10)}. The story for
  4770. \code{block41} is similar.
  4771. \begin{figure}[tbp]
  4772. \begin{tabular}{lll}
  4773. \begin{minipage}{0.4\textwidth}
  4774. % cond_test_41.rkt
  4775. \begin{lstlisting}
  4776. (let ([x (read)])
  4777. (let ([y (read)])
  4778. (if (if (< x 1)
  4779. (eq? x 0)
  4780. (eq? x 2))
  4781. (+ y 2)
  4782. (+ y 10))))
  4783. \end{lstlisting}
  4784. \hspace{40pt}$\Downarrow$
  4785. \begin{lstlisting}
  4786. (let ([x (read)])
  4787. (let ([y (read)])
  4788. (if (if (< x 1)
  4789. (eq? x 0)
  4790. (eq? x 2))
  4791. (+ y 2)
  4792. (+ y 10))))
  4793. \end{lstlisting}
  4794. \end{minipage}
  4795. &
  4796. $\Rightarrow$
  4797. &
  4798. \begin{minipage}{0.55\textwidth}
  4799. \begin{lstlisting}
  4800. start:
  4801. x = (read);
  4802. y = (read);
  4803. if (< x 1) goto block40;
  4804. else goto block41;
  4805. block40:
  4806. if (eq? x 0) goto block38;
  4807. else goto block39;
  4808. block41:
  4809. if (eq? x 2) goto block38;
  4810. else goto block39;
  4811. block38:
  4812. return (+ y 2);
  4813. block39:
  4814. return (+ y 10);
  4815. \end{lstlisting}
  4816. \end{minipage}
  4817. \end{tabular}
  4818. \caption{Translation from \LangIf{} to \LangCIf{}
  4819. via the \code{explicate-control}.}
  4820. \label{fig:explicate-control-s1-38}
  4821. \end{figure}
  4822. %% The nice thing about the output of \code{explicate-control} is that
  4823. %% there are no unnecessary comparisons and every comparison is part of a
  4824. %% conditional jump.
  4825. %% The down-side of this output is that it includes
  4826. %% trivial blocks, such as the blocks labeled \code{block92} through
  4827. %% \code{block95}, that only jump to another block. We discuss a solution
  4828. %% to this problem in Section~\ref{sec:opt-jumps}.
  4829. Recall that in Section~\ref{sec:explicate-control-Rvar} we implement
  4830. \code{explicate-control} for \LangVar{} using two mutually recursive
  4831. functions, \code{explicate-tail} and \code{explicate-assign}. The
  4832. former function translates expressions in tail position whereas the
  4833. later function translates expressions on the right-hand-side of a
  4834. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  4835. have a new kind of position to deal with: the predicate position of
  4836. the \key{if}. We need another function, \code{explicate-pred}, that
  4837. takes an \LangIf{} expression and two blocks for the then-branch and
  4838. else-branch. The output of \code{explicate-pred} is a block.
  4839. %
  4840. In the following paragraphs we discuss specific cases in the
  4841. \code{explicate-pred} function as well as additions to the
  4842. \code{explicate-tail} and \code{explicate-assign} functions.
  4843. \begin{figure}[tbp]
  4844. \begin{lstlisting}
  4845. (define (explicate-pred cnd thn els)
  4846. (match cnd
  4847. [(Var x) ___]
  4848. [(Let x rhs body) ___]
  4849. [(Prim 'not (list e)) ___]
  4850. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  4851. (IfStmt (Prim op arg*) (force (block->goto thn))
  4852. (force (block->goto els)))]
  4853. [(Bool b) (if b thn els)]
  4854. [(If cnd^ thn^ els^) ___]
  4855. [else (error "explicate-pred unhandled case" cnd)]))
  4856. \end{lstlisting}
  4857. \caption{Skeleton for the \key{explicate-pred} auxiliary function.}
  4858. \label{fig:explicate-pred}
  4859. \end{figure}
  4860. The skeleton for the \code{explicate-pred} function is given in
  4861. Figure~\ref{fig:explicate-pred}. It has a case for every expression
  4862. that can have type \code{Boolean}. We detail a few cases here and
  4863. leave the rest for the reader. The input to this function is an
  4864. expression and two blocks, \code{thn} and \code{els}, for the two
  4865. branches of the enclosing \key{if}.
  4866. %
  4867. Consider the case for Boolean constants in
  4868. Figure~\ref{fig:explicate-pred}. We perform a kind of partial
  4869. evaluation\index{subject}{partial evaluation} and output either the \code{thn}
  4870. or \code{els} branch depending on whether the constant is true or
  4871. false. This case demonstrates that we sometimes discard the \code{thn}
  4872. or \code{els} blocks that are input to \code{explicate-pred}.
  4873. The case for \key{if} in \code{explicate-pred} is particularly
  4874. illuminating because it deals with the challenges we discussed above
  4875. regarding nested \key{if} expressions
  4876. (Figure~\ref{fig:explicate-control-s1-38}). The \lstinline{thn^} and
  4877. \lstinline{els^} branches of the \key{if} inherit their context from
  4878. the current one, that is, predicate context. So you should recursively
  4879. apply \code{explicate-pred} to the \lstinline{thn^} and
  4880. \lstinline{els^} branches. For both of those recursive calls, pass
  4881. \code{thn} and \code{els} as the extra parameters. Thus, \code{thn}
  4882. and \code{els} may get used twice, once inside each recursive call. As
  4883. discussed above, to avoid duplicating code, we need to add them to the
  4884. control-flow graph so that we can instead refer to them by name and
  4885. execute them with a \key{goto}. However, as we saw in the cases above
  4886. for Boolean constants, the blocks \code{thn} and \code{els} may not
  4887. get used at all and we don't want to prematurely add them to the
  4888. control-flow graph if they end up being discarded.
  4889. The solution to this conundrum is to use \emph{lazy
  4890. evaluation}\index{subject}{lazy evaluation}\citep{Friedman:1976aa} to delay
  4891. adding the blocks to the control-flow graph until the points where we
  4892. know they will be used. Racket provides support for lazy evaluation
  4893. with the
  4894. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  4895. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  4896. \index{subject}{delay} creates a \emph{promise}\index{subject}{promise} in which the
  4897. evaluation of the expressions is postponed. When \key{(force}
  4898. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the first
  4899. time, the expressions $e_1 \ldots e_n$ are evaluated and the result of
  4900. $e_n$ is cached in the promise and returned. If \code{force} is
  4901. applied again to the same promise, then the cached result is returned.
  4902. If \code{force} is applied to an argument that is not a promise,
  4903. \code{force} simply returns the argument.
  4904. We use lazy evaluation for the input and output blocks of the
  4905. functions \code{explicate-pred} and \code{explicate-assign} and for
  4906. the output block of \code{explicate-tail}. So instead of taking and
  4907. returning blocks, they take and return promises. Furthermore, when we
  4908. come to a situation in which we a block might be used more than once,
  4909. as in the case for \code{if} in \code{explicate-pred}, we transform
  4910. the promise into a new promise that will add the block to the
  4911. control-flow graph and return a \code{goto}. The following auxiliary
  4912. function named \code{block->goto} accomplishes this task. It begins
  4913. with \code{delay} to create a promise. When forced, this promise will
  4914. force the original promise. If that returns a \code{goto} (because the
  4915. block was already added to the control-flow graph), then we return the
  4916. \code{goto}. Otherwise we add the block to the control-flow graph with
  4917. another auxiliary function named \code{add-node}. That function
  4918. returns the label for the new block, which we use to create a
  4919. \code{goto}.
  4920. \begin{lstlisting}
  4921. (define (block->goto block)
  4922. (delay
  4923. (define b (force block))
  4924. (match b
  4925. [(Goto label) (Goto label)]
  4926. [else (Goto (add-node b))])))
  4927. \end{lstlisting}
  4928. Returning to the discussion of \code{explicate-pred}
  4929. (Figure~\ref{fig:explicate-pred}), consider the case for comparison
  4930. operators. This is one of the base cases of the recursive function so
  4931. we translate the comparison to an \code{if} statement. We apply
  4932. \code{block->goto} to \code{thn} and \code{els} to obtain two promises
  4933. that will add then to the control-flow graph, which we can immediately
  4934. \code{force} to obtain the two goto's that form the branches of the
  4935. \code{if} statement.
  4936. %% Getting back to the case for \code{if} in \code{explicate-pred}, we
  4937. %% make the recursive calls to \code{explicate-pred} on the ``then'' and
  4938. %% ``else'' branches with the arguments \code{(block->goto} $B_1$\code{)}
  4939. %% and \code{(block->goto} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  4940. %% results from the two recursive calls. We complete the case for
  4941. %% \code{if} by recursively apply \code{explicate-pred} to the condition
  4942. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  4943. %% the result $B_5$.
  4944. %% \[
  4945. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  4946. %% \quad\Rightarrow\quad
  4947. %% B_5
  4948. %% \]
  4949. The \code{explicate-tail} and \code{explicate-assign} functions need
  4950. additional cases for Boolean constants and \key{if}.
  4951. %
  4952. In the cases for \code{if}, the two branches inherit the current
  4953. context, so in \code{explicate-tail} they are in tail position and in
  4954. \code{explicate-assign} they are in assignment position. The
  4955. \code{cont} parameter of \code{explicate-assign} is used in both
  4956. recursive calls, so make sure to use \code{block->goto} on it.
  4957. %% In the case for \code{if} in \code{explicate-tail}, the two branches
  4958. %% inherit the current context, so they are in tail position. Thus, the
  4959. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  4960. %% \code{explicate-tail}.
  4961. %% %
  4962. %% We need to pass $B_0$ as the accumulator argument for both of these
  4963. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  4964. %% Thus, we first apply \code{block->goto} to $B_0$ so that it gets added
  4965. %% to the control-flow graph and obtain a promised goto $G_0$.
  4966. %% %
  4967. %% Let $B_1$ be the result of \code{explicate-tail} on the ``then''
  4968. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate-tail}
  4969. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  4970. %% \code{explicate-pred} to the condition of the \key{if}, $B_1$, and
  4971. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  4972. %% \[
  4973. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  4974. %% \]
  4975. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  4976. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  4977. %% should not be confused with the labels for the blocks that appear in
  4978. %% the generated code. We initially construct unlabeled blocks; we only
  4979. %% attach labels to blocks when we add them to the control-flow graph, as
  4980. %% we see in the next case.
  4981. %% Next consider the case for \key{if} in the \code{explicate-assign}
  4982. %% function. The context of the \key{if} is an assignment to some
  4983. %% variable $x$ and then the control continues to some promised block
  4984. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  4985. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  4986. %% apply \code{block->goto} to it and obtain a promised goto $G_1$. The
  4987. %% branches of the \key{if} inherit the current context, so they are in
  4988. %% assignment positions. Let $B_2$ be the result of applying
  4989. %% \code{explicate-assign} to the ``then'' branch, variable $x$, and
  4990. %% $G_1$. Let $B_3$ be the result of applying \code{explicate-assign} to
  4991. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  4992. %% the result of applying \code{explicate-pred} to the predicate
  4993. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  4994. %% translates to the promise $B_4$.
  4995. %% \[
  4996. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  4997. %% \]
  4998. %% This completes the description of \code{explicate-control} for \LangIf{}.
  4999. The way in which the \code{shrink} pass transforms logical operations
  5000. such as \code{and} and \code{or} can impact the quality of code
  5001. generated by \code{explicate-control}. For example, consider the
  5002. following program.
  5003. % cond_test_21.rkt
  5004. \begin{lstlisting}
  5005. (if (and (eq? (read) 0) (eq? (read) 1))
  5006. 0
  5007. 42)
  5008. \end{lstlisting}
  5009. The \code{and} operation should transform into something that the
  5010. \code{explicate-pred} function can still analyze and descend through to
  5011. reach the underlying \code{eq?} conditions. Ideally, your
  5012. \code{explicate-control} pass should generate code similar to the
  5013. following for the above program.
  5014. \begin{center}
  5015. \begin{lstlisting}
  5016. start:
  5017. tmp1 = (read);
  5018. if (eq? tmp1 0) goto block40;
  5019. else goto block39;
  5020. block40:
  5021. tmp2 = (read);
  5022. if (eq? tmp2 1) goto block38;
  5023. else goto block39;
  5024. block38:
  5025. return 0;
  5026. block39:
  5027. return 42;
  5028. \end{lstlisting}
  5029. \end{center}
  5030. \begin{exercise}\normalfont
  5031. Implement the pass \code{explicate-control} by adding the cases for
  5032. Boolean constants and \key{if} to the \code{explicate-tail} and
  5033. \code{explicate-assign}. Implement the auxiliary function
  5034. \code{explicate-pred} for predicate contexts.
  5035. %
  5036. Create test cases that exercise all of the new cases in the code for
  5037. this pass.
  5038. %
  5039. Add the following entry to the list of \code{passes} in
  5040. \code{run-tests.rkt} and then run this script to test your compiler.
  5041. \begin{lstlisting}
  5042. (list "explicate-control" explicate-control interp-Cif type-check-Cif)
  5043. \end{lstlisting}
  5044. \end{exercise}
  5045. \section{Select Instructions}
  5046. \label{sec:select-Rif}
  5047. \index{subject}{instruction selection}
  5048. The \code{select-instructions} pass translate \LangCIf{} to
  5049. \LangXIfVar{}. Recall that we implement this pass using three
  5050. auxiliary functions, one for each of the non-terminals $\Atm$,
  5051. $\Stmt$, and $\Tail$.
  5052. For $\Atm$, we have new cases for the Booleans. We take the usual
  5053. approach of encoding them as integers, with true as 1 and false as 0.
  5054. \[
  5055. \key{\#t} \Rightarrow \key{1}
  5056. \qquad
  5057. \key{\#f} \Rightarrow \key{0}
  5058. \]
  5059. For $\Stmt$, we discuss a couple cases. The \code{not} operation can
  5060. be implemented in terms of \code{xorq} as we discussed at the
  5061. beginning of this section. Given an assignment
  5062. $\itm{var}$ \key{=} \key{(not} $\Atm$\key{);},
  5063. if the left-hand side $\itm{var}$ is
  5064. the same as $\Atm$, then just the \code{xorq} suffices.
  5065. \[
  5066. \Var~\key{=}~ \key{(not}\; \Var\key{);}
  5067. \quad\Rightarrow\quad
  5068. \key{xorq}~\key{\$}1\key{,}~\Var
  5069. \]
  5070. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  5071. semantics of x86. Let $\Arg$ be the result of translating $\Atm$ to
  5072. x86. Then we have
  5073. \[
  5074. \Var~\key{=}~ \key{(not}\; \Atm\key{);}
  5075. \quad\Rightarrow\quad
  5076. \begin{array}{l}
  5077. \key{movq}~\Arg\key{,}~\Var\\
  5078. \key{xorq}~\key{\$}1\key{,}~\Var
  5079. \end{array}
  5080. \]
  5081. Next consider the cases for \code{eq?} and less-than comparison.
  5082. Translating these operations to x86 is slightly involved due to the
  5083. unusual nature of the \key{cmpq} instruction discussed above. We
  5084. recommend translating an assignment from \code{eq?} into the following
  5085. sequence of three instructions. \\
  5086. \begin{tabular}{lll}
  5087. \begin{minipage}{0.4\textwidth}
  5088. \begin{lstlisting}
  5089. |$\Var$| = (eq? |$\Atm_1$| |$\Atm_2$|);
  5090. \end{lstlisting}
  5091. \end{minipage}
  5092. &
  5093. $\Rightarrow$
  5094. &
  5095. \begin{minipage}{0.4\textwidth}
  5096. \begin{lstlisting}
  5097. cmpq |$\Arg_2$|, |$\Arg_1$|
  5098. sete %al
  5099. movzbq %al, |$\Var$|
  5100. \end{lstlisting}
  5101. \end{minipage}
  5102. \end{tabular} \\
  5103. Regarding the $\Tail$ non-terminal, we have two new cases: \key{goto}
  5104. and \key{if} statements. Both are straightforward to translate to
  5105. x86. A \key{goto} becomes a jump instruction.
  5106. \[
  5107. \key{goto}\; \ell\key{;} \quad \Rightarrow \quad \key{jmp}\;\ell
  5108. \]
  5109. An \key{if} statement becomes a compare instruction followed by a
  5110. conditional jump (for the ``then'' branch) and the fall-through is to
  5111. a regular jump (for the ``else'' branch).\\
  5112. \begin{tabular}{lll}
  5113. \begin{minipage}{0.4\textwidth}
  5114. \begin{lstlisting}
  5115. if (eq? |$\Atm_1$| |$\Atm_2$|) goto |$\ell_1$|;
  5116. else goto |$\ell_2$|;
  5117. \end{lstlisting}
  5118. \end{minipage}
  5119. &
  5120. $\Rightarrow$
  5121. &
  5122. \begin{minipage}{0.4\textwidth}
  5123. \begin{lstlisting}
  5124. cmpq |$\Arg_2$|, |$\Arg_1$|
  5125. je |$\ell_1$|
  5126. jmp |$\ell_2$|
  5127. \end{lstlisting}
  5128. \end{minipage}
  5129. \end{tabular} \\
  5130. \begin{exercise}\normalfont
  5131. Expand your \code{select-instructions} pass to handle the new features
  5132. of the \LangIf{} language.
  5133. %
  5134. Add the following entry to the list of \code{passes} in
  5135. \code{run-tests.rkt}
  5136. \begin{lstlisting}
  5137. (list "select-instructions" select-instructions interp-pseudo-x86-1)
  5138. \end{lstlisting}
  5139. %
  5140. Run the script to test your compiler on all the test programs.
  5141. \end{exercise}
  5142. \section{Register Allocation}
  5143. \label{sec:register-allocation-Rif}
  5144. \index{subject}{register allocation}
  5145. The changes required for \LangIf{} affect liveness analysis, building the
  5146. interference graph, and assigning homes, but the graph coloring
  5147. algorithm itself does not change.
  5148. \subsection{Liveness Analysis}
  5149. \label{sec:liveness-analysis-Rif}
  5150. \index{subject}{liveness analysis}
  5151. Recall that for \LangVar{} we implemented liveness analysis for a single
  5152. basic block (Section~\ref{sec:liveness-analysis-Rvar}). With the
  5153. addition of \key{if} expressions to \LangIf{}, \code{explicate-control}
  5154. produces many basic blocks arranged in a control-flow graph. We
  5155. recommend that you create a new auxiliary function named
  5156. \code{uncover-live-CFG} that applies liveness analysis to a
  5157. control-flow graph.
  5158. The first question we is: what order should we process the basic
  5159. blocks in the control-flow graph? Recall that to perform liveness
  5160. analysis on a basic block we need to know its live-after set. If a
  5161. basic block has no successors (i.e. no out-edges in the control flow
  5162. graph), then it has an empty live-after set and we can immediately
  5163. apply liveness analysis to it. If a basic block has some successors,
  5164. then we need to complete liveness analysis on those blocks first. In
  5165. graph theory, a sequence of nodes is in \emph{topological
  5166. order}\index{subject}{topological order} if each vertex comes before its
  5167. successors. We need the opposite, so we can transpose the graph
  5168. before computing a topological order.
  5169. %
  5170. Use the \code{tsort} and \code{transpose} functions of the Racket
  5171. \code{graph} package to accomplish this.
  5172. %
  5173. As an aside, a topological ordering is only guaranteed to exist if the
  5174. graph does not contain any cycles. That is indeed the case for the
  5175. control-flow graphs that we generate from \LangIf{} programs.
  5176. However, in Chapter~\ref{ch:Rwhile} we add loops to \LangLoop{} and
  5177. learn how to handle cycles in the control-flow graph.
  5178. You'll need to construct a directed graph to represent the
  5179. control-flow graph. Do not use the \code{directed-graph} of the
  5180. \code{graph} package because that only allows at most one edge between
  5181. each pair of vertices, but a control-flow graph may have multiple
  5182. edges between a pair of vertices. The \code{multigraph.rkt} file in
  5183. the support code implements a graph representation that allows
  5184. multiple edges between a pair of vertices.
  5185. The next question is how to analyze jump instructions. Recall that in
  5186. Section~\ref{sec:liveness-analysis-Rvar} we maintain an alist named
  5187. \code{label->live} that maps each label to the set of live locations
  5188. at the beginning of its block. We use \code{label->live} to determine
  5189. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  5190. that we have many basic blocks, \code{label->live} needs to be updated
  5191. as we process the blocks. In particular, after performing liveness
  5192. analysis on a block, we take the live-before set of its first
  5193. instruction and associate that with the block's label in the
  5194. \code{label->live}.
  5195. In \LangXIfVar{} we also have the conditional jump
  5196. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  5197. this instruction is particularly interesting because during
  5198. compilation we do not know which way a conditional jump will go. So
  5199. we do not know whether to use the live-before set for the following
  5200. instruction or the live-before set for the $\itm{label}$. However,
  5201. there is no harm to the correctness of the compiler if we classify
  5202. more locations as live than the ones that are truly live during a
  5203. particular execution of the instruction. Thus, we can take the union
  5204. of the live-before sets from the following instruction and from the
  5205. mapping for $\itm{label}$ in \code{label->live}.
  5206. The auxiliary functions for computing the variables in an
  5207. instruction's argument and for computing the variables read-from ($R$)
  5208. or written-to ($W$) by an instruction need to be updated to handle the
  5209. new kinds of arguments and instructions in \LangXIfVar{}.
  5210. \begin{exercise}\normalfont
  5211. Update the \code{uncover-live} pass and implement the
  5212. \code{uncover-live-CFG} auxiliary function to apply liveness analysis
  5213. to the control-flow graph. Add the following entry to the list of
  5214. \code{passes} in the \code{run-tests.rkt} script.
  5215. \begin{lstlisting}
  5216. (list "uncover-live" uncover-live interp-pseudo-x86-1)
  5217. \end{lstlisting}
  5218. \end{exercise}
  5219. \subsection{Build the Interference Graph}
  5220. \label{sec:build-interference-Rif}
  5221. Many of the new instructions in \LangXIfVar{} can be handled in the
  5222. same way as the instructions in \LangXVar{}. Thus, if your code was
  5223. already quite general, it will not need to be changed to handle the
  5224. new instructions. If you code is not general enough, we recommend that
  5225. you change your code to be more general. For example, you can factor
  5226. out the computing of the the read and write sets for each kind of
  5227. instruction into two auxiliary functions.
  5228. Note that the \key{movzbq} instruction requires some special care,
  5229. similar to the \key{movq} instruction. See rule number 1 in
  5230. Section~\ref{sec:build-interference}.
  5231. \begin{exercise}\normalfont
  5232. Update the \code{build-interference} pass for \LangXIfVar{} and add the
  5233. following entries to the list of \code{passes} in the
  5234. \code{run-tests.rkt} script.
  5235. \begin{lstlisting}
  5236. (list "build-interference" build-interference interp-pseudo-x86-1)
  5237. (list "allocate-registers" allocate-registers interp-x86-1)
  5238. \end{lstlisting}
  5239. Run the script to test your compiler on all the \LangIf{} test
  5240. programs.
  5241. \end{exercise}
  5242. \section{Patch Instructions}
  5243. The second argument of the \key{cmpq} instruction must not be an
  5244. immediate value (such as an integer). So if you are comparing two
  5245. immediates, we recommend inserting a \key{movq} instruction to put the
  5246. second argument in \key{rax}. Also, recall that instructions may have
  5247. at most one memory reference.
  5248. %
  5249. The second argument of the \key{movzbq} must be a register.
  5250. %
  5251. There are no special restrictions on the jump instructions.
  5252. \begin{exercise}\normalfont
  5253. %
  5254. Update \code{patch-instructions} pass for \LangXIfVar{}.
  5255. %
  5256. Add the following entry to the list of \code{passes} in
  5257. \code{run-tests.rkt} and then run this script to test your compiler.
  5258. \begin{lstlisting}
  5259. (list "patch-instructions" patch-instructions interp-x86-1)
  5260. \end{lstlisting}
  5261. \end{exercise}
  5262. \begin{figure}[tbp]
  5263. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5264. \node (Rif) at (0,2) {\large \LangIf{}};
  5265. \node (Rif-2) at (3,2) {\large \LangIf{}};
  5266. \node (Rif-3) at (6,2) {\large \LangIf{}};
  5267. \node (Rif-4) at (9,2) {\large \LangIf{}};
  5268. \node (Rif-5) at (12,2) {\large \LangIf{}};
  5269. \node (C1-1) at (3,0) {\large \LangCIf{}};
  5270. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  5271. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  5272. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  5273. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  5274. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  5275. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  5276. \path[->,bend left=15] (Rif) edge [above] node {\ttfamily\footnotesize type-check} (Rif-2);
  5277. \path[->,bend left=15] (Rif-2) edge [above] node {\ttfamily\footnotesize shrink} (Rif-3);
  5278. \path[->,bend left=15] (Rif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Rif-4);
  5279. \path[->,bend left=15] (Rif-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rif-5);
  5280. \path[->,bend left=15] (Rif-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C1-1);
  5281. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select-instructions} (x86-2);
  5282. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  5283. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  5284. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  5285. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  5286. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86 } (x86-5);
  5287. \end{tikzpicture}
  5288. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  5289. \label{fig:Rif-passes}
  5290. \end{figure}
  5291. Figure~\ref{fig:Rif-passes} lists all the passes needed for the
  5292. compilation of \LangIf{}.
  5293. \section{An Example Translation}
  5294. Figure~\ref{fig:if-example-x86} shows a simple example program in
  5295. \LangIf{} translated to x86, showing the results of
  5296. \code{explicate-control}, \code{select-instructions}, and the final
  5297. x86 assembly code.
  5298. \begin{figure}[tbp]
  5299. \begin{tabular}{lll}
  5300. \begin{minipage}{0.4\textwidth}
  5301. % cond_test_20.rkt
  5302. \begin{lstlisting}
  5303. (if (eq? (read) 1) 42 0)
  5304. \end{lstlisting}
  5305. $\Downarrow$
  5306. \begin{lstlisting}
  5307. start:
  5308. tmp7951 = (read);
  5309. if (eq? tmp7951 1)
  5310. goto block7952;
  5311. else
  5312. goto block7953;
  5313. block7952:
  5314. return 42;
  5315. block7953:
  5316. return 0;
  5317. \end{lstlisting}
  5318. $\Downarrow$
  5319. \begin{lstlisting}
  5320. start:
  5321. callq read_int
  5322. movq %rax, tmp7951
  5323. cmpq $1, tmp7951
  5324. je block7952
  5325. jmp block7953
  5326. block7953:
  5327. movq $0, %rax
  5328. jmp conclusion
  5329. block7952:
  5330. movq $42, %rax
  5331. jmp conclusion
  5332. \end{lstlisting}
  5333. \end{minipage}
  5334. &
  5335. $\Rightarrow\qquad$
  5336. \begin{minipage}{0.4\textwidth}
  5337. \begin{lstlisting}
  5338. start:
  5339. callq read_int
  5340. movq %rax, %rcx
  5341. cmpq $1, %rcx
  5342. je block7952
  5343. jmp block7953
  5344. block7953:
  5345. movq $0, %rax
  5346. jmp conclusion
  5347. block7952:
  5348. movq $42, %rax
  5349. jmp conclusion
  5350. .globl main
  5351. main:
  5352. pushq %rbp
  5353. movq %rsp, %rbp
  5354. pushq %r13
  5355. pushq %r12
  5356. pushq %rbx
  5357. pushq %r14
  5358. subq $0, %rsp
  5359. jmp start
  5360. conclusion:
  5361. addq $0, %rsp
  5362. popq %r14
  5363. popq %rbx
  5364. popq %r12
  5365. popq %r13
  5366. popq %rbp
  5367. retq
  5368. \end{lstlisting}
  5369. \end{minipage}
  5370. \end{tabular}
  5371. \caption{Example compilation of an \key{if} expression to x86.}
  5372. \label{fig:if-example-x86}
  5373. \end{figure}
  5374. \section{Challenge: Remove Jumps}
  5375. \label{sec:opt-jumps}
  5376. %% Recall that in the example output of \code{explicate-control} in
  5377. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  5378. %% \code{block60} are trivial blocks, they do nothing but jump to another
  5379. %% block. The first goal of this challenge assignment is to remove those
  5380. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  5381. %% \code{explicate-control} on the left and shows the result of bypassing
  5382. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  5383. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  5384. %% \code{block55}. The optimized code on the right of
  5385. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  5386. %% \code{then} branch jumping directly to \code{block55}. The story is
  5387. %% similar for the \code{else} branch, as well as for the two branches in
  5388. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  5389. %% have been optimized in this way, there are no longer any jumps to
  5390. %% blocks \code{block57} through \code{block60}, so they can be removed.
  5391. %% \begin{figure}[tbp]
  5392. %% \begin{tabular}{lll}
  5393. %% \begin{minipage}{0.4\textwidth}
  5394. %% \begin{lstlisting}
  5395. %% block62:
  5396. %% tmp54 = (read);
  5397. %% if (eq? tmp54 2) then
  5398. %% goto block59;
  5399. %% else
  5400. %% goto block60;
  5401. %% block61:
  5402. %% tmp53 = (read);
  5403. %% if (eq? tmp53 0) then
  5404. %% goto block57;
  5405. %% else
  5406. %% goto block58;
  5407. %% block60:
  5408. %% goto block56;
  5409. %% block59:
  5410. %% goto block55;
  5411. %% block58:
  5412. %% goto block56;
  5413. %% block57:
  5414. %% goto block55;
  5415. %% block56:
  5416. %% return (+ 700 77);
  5417. %% block55:
  5418. %% return (+ 10 32);
  5419. %% start:
  5420. %% tmp52 = (read);
  5421. %% if (eq? tmp52 1) then
  5422. %% goto block61;
  5423. %% else
  5424. %% goto block62;
  5425. %% \end{lstlisting}
  5426. %% \end{minipage}
  5427. %% &
  5428. %% $\Rightarrow$
  5429. %% &
  5430. %% \begin{minipage}{0.55\textwidth}
  5431. %% \begin{lstlisting}
  5432. %% block62:
  5433. %% tmp54 = (read);
  5434. %% if (eq? tmp54 2) then
  5435. %% goto block55;
  5436. %% else
  5437. %% goto block56;
  5438. %% block61:
  5439. %% tmp53 = (read);
  5440. %% if (eq? tmp53 0) then
  5441. %% goto block55;
  5442. %% else
  5443. %% goto block56;
  5444. %% block56:
  5445. %% return (+ 700 77);
  5446. %% block55:
  5447. %% return (+ 10 32);
  5448. %% start:
  5449. %% tmp52 = (read);
  5450. %% if (eq? tmp52 1) then
  5451. %% goto block61;
  5452. %% else
  5453. %% goto block62;
  5454. %% \end{lstlisting}
  5455. %% \end{minipage}
  5456. %% \end{tabular}
  5457. %% \caption{Optimize jumps by removing trivial blocks.}
  5458. %% \label{fig:optimize-jumps}
  5459. %% \end{figure}
  5460. %% The name of this pass is \code{optimize-jumps}. We recommend
  5461. %% implementing this pass in two phases. The first phrase builds a hash
  5462. %% table that maps labels to possibly improved labels. The second phase
  5463. %% changes the target of each \code{goto} to use the improved label. If
  5464. %% the label is for a trivial block, then the hash table should map the
  5465. %% label to the first non-trivial block that can be reached from this
  5466. %% label by jumping through trivial blocks. If the label is for a
  5467. %% non-trivial block, then the hash table should map the label to itself;
  5468. %% we do not want to change jumps to non-trivial blocks.
  5469. %% The first phase can be accomplished by constructing an empty hash
  5470. %% table, call it \code{short-cut}, and then iterating over the control
  5471. %% flow graph. Each time you encouter a block that is just a \code{goto},
  5472. %% then update the hash table, mapping the block's source to the target
  5473. %% of the \code{goto}. Also, the hash table may already have mapped some
  5474. %% labels to the block's source, to you must iterate through the hash
  5475. %% table and update all of those so that they instead map to the target
  5476. %% of the \code{goto}.
  5477. %% For the second phase, we recommend iterating through the $\Tail$ of
  5478. %% each block in the program, updating the target of every \code{goto}
  5479. %% according to the mapping in \code{short-cut}.
  5480. %% \begin{exercise}\normalfont
  5481. %% Implement the \code{optimize-jumps} pass as a transformation from
  5482. %% \LangCIf{} to \LangCIf{}, coming after the \code{explicate-control} pass.
  5483. %% Check that \code{optimize-jumps} removes trivial blocks in a few
  5484. %% example programs. Then check that your compiler still passes all of
  5485. %% your tests.
  5486. %% \end{exercise}
  5487. There is an opportunity for optimizing jumps that is apparent in the
  5488. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  5489. ends with a jump to \code{block7953} and there are no other jumps to
  5490. \code{block7953} in the rest of the program. In this situation we can
  5491. avoid the runtime overhead of this jump by merging \code{block7953}
  5492. into the preceding block, in this case the \code{start} block.
  5493. Figure~\ref{fig:remove-jumps} shows the output of
  5494. \code{select-instructions} on the left and the result of this
  5495. optimization on the right.
  5496. \begin{figure}[tbp]
  5497. \begin{tabular}{lll}
  5498. \begin{minipage}{0.5\textwidth}
  5499. % cond_test_20.rkt
  5500. \begin{lstlisting}
  5501. start:
  5502. callq read_int
  5503. movq %rax, tmp7951
  5504. cmpq $1, tmp7951
  5505. je block7952
  5506. jmp block7953
  5507. block7953:
  5508. movq $0, %rax
  5509. jmp conclusion
  5510. block7952:
  5511. movq $42, %rax
  5512. jmp conclusion
  5513. \end{lstlisting}
  5514. \end{minipage}
  5515. &
  5516. $\Rightarrow\qquad$
  5517. \begin{minipage}{0.4\textwidth}
  5518. \begin{lstlisting}
  5519. start:
  5520. callq read_int
  5521. movq %rax, tmp7951
  5522. cmpq $1, tmp7951
  5523. je block7952
  5524. movq $0, %rax
  5525. jmp conclusion
  5526. block7952:
  5527. movq $42, %rax
  5528. jmp conclusion
  5529. \end{lstlisting}
  5530. \end{minipage}
  5531. \end{tabular}
  5532. \caption{Merging basic blocks by removing unnecessary jumps.}
  5533. \label{fig:remove-jumps}
  5534. \end{figure}
  5535. \begin{exercise}\normalfont
  5536. %
  5537. Implement a pass named \code{remove-jumps} that merges basic blocks
  5538. into their preceding basic block, when there is only one preceding
  5539. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  5540. %
  5541. In the \code{run-tests.rkt} script, add the following entry to the
  5542. list of \code{passes} between \code{allocate-registers}
  5543. and \code{patch-instructions}.
  5544. \begin{lstlisting}
  5545. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  5546. \end{lstlisting}
  5547. Run this script to test your compiler.
  5548. %
  5549. Check that \code{remove-jumps} accomplishes the goal of merging basic
  5550. blocks on several test programs.
  5551. \end{exercise}
  5552. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5553. \chapter{Tuples and Garbage Collection}
  5554. \label{ch:Rvec}
  5555. \index{subject}{tuple}
  5556. \index{subject}{vector}
  5557. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  5558. %% all the IR grammars are spelled out! \\ --Jeremy}
  5559. %% \margincomment{\scriptsize Be more explicit about how to deal with
  5560. %% the root stack. \\ --Jeremy}
  5561. In this chapter we study the implementation of mutable tuples, called
  5562. vectors in Racket. This language feature is the first to use the
  5563. computer's \emph{heap}\index{subject}{heap} because the lifetime of a Racket
  5564. tuple is indefinite, that is, a tuple lives forever from the
  5565. programmer's viewpoint. Of course, from an implementer's viewpoint, it
  5566. is important to reclaim the space associated with a tuple when it is
  5567. no longer needed, which is why we also study \emph{garbage collection}
  5568. \emph{garbage collection} techniques in this chapter.
  5569. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  5570. interpreter and type checker. The \LangVec{} language extends the \LangIf{}
  5571. language of Chapter~\ref{ch:Rif} with vectors and Racket's
  5572. \code{void} value. The reason for including the later is that the
  5573. \code{vector-set!} operation returns a value of type
  5574. \code{Void}\footnote{Racket's \code{Void} type corresponds to what is
  5575. called the \code{Unit} type in the programming languages
  5576. literature. Racket's \code{Void} type is inhabited by a single value
  5577. \code{void} which corresponds to \code{unit} or \code{()} in the
  5578. literature~\citep{Pierce:2002hj}.}.
  5579. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  5580. copying live objects back and forth between two halves of the
  5581. heap. The garbage collector requires coordination with the compiler so
  5582. that it can see all of the \emph{root} pointers, that is, pointers in
  5583. registers or on the procedure call stack.
  5584. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  5585. discuss all the necessary changes and additions to the compiler
  5586. passes, including a new compiler pass named \code{expose-allocation}.
  5587. \section{The \LangVec{} Language}
  5588. \label{sec:r3}
  5589. Figure~\ref{fig:Rvec-concrete-syntax} defines the concrete syntax for
  5590. \LangVec{} and Figure~\ref{fig:Rvec-syntax} defines the abstract syntax. The
  5591. \LangVec{} language includes three new forms: \code{vector} for creating a
  5592. tuple, \code{vector-ref} for reading an element of a tuple, and
  5593. \code{vector-set!} for writing to an element of a tuple. The program
  5594. in Figure~\ref{fig:vector-eg} shows the usage of tuples in Racket. We
  5595. create a 3-tuple \code{t} and a 1-tuple that is stored at index $2$ of
  5596. the 3-tuple, demonstrating that tuples are first-class values. The
  5597. element at index $1$ of \code{t} is \code{\#t}, so the ``then'' branch
  5598. of the \key{if} is taken. The element at index $0$ of \code{t} is
  5599. \code{40}, to which we add \code{2}, the element at index $0$ of the
  5600. 1-tuple. So the result of the program is \code{42}.
  5601. \begin{figure}[tbp]
  5602. \centering
  5603. \fbox{
  5604. \begin{minipage}{0.96\textwidth}
  5605. \[
  5606. \begin{array}{lcl}
  5607. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}}
  5608. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}\\
  5609. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  5610. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  5611. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  5612. \mid \LP\key{and}\;\Exp\;\Exp\RP
  5613. \mid \LP\key{or}\;\Exp\;\Exp\RP
  5614. \mid \LP\key{not}\;\Exp\RP } \\
  5615. &\mid& \gray{ \LP\itm{cmp}\;\Exp\;\Exp\RP
  5616. \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  5617. &\mid& \LP\key{vector}\;\Exp\ldots\RP
  5618. \mid \LP\key{vector-length}\;\Exp\RP \\
  5619. &\mid& \LP\key{vector-ref}\;\Exp\;\Int\RP
  5620. \mid \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP \\
  5621. &\mid& \LP\key{void}\RP \mid \LP\key{has-type}~\Exp~\Type\RP\\
  5622. \LangVecM{} &::=& \Exp
  5623. \end{array}
  5624. \]
  5625. \end{minipage}
  5626. }
  5627. \caption{The concrete syntax of \LangVec{}, extending \LangIf{}
  5628. (Figure~\ref{fig:Rif-concrete-syntax}).}
  5629. \label{fig:Rvec-concrete-syntax}
  5630. \end{figure}
  5631. \begin{figure}[tbp]
  5632. \begin{lstlisting}
  5633. (let ([t (vector 40 #t (vector 2))])
  5634. (if (vector-ref t 1)
  5635. (+ (vector-ref t 0)
  5636. (vector-ref (vector-ref t 2) 0))
  5637. 44))
  5638. \end{lstlisting}
  5639. \caption{Example program that creates tuples and reads from them.}
  5640. \label{fig:vector-eg}
  5641. \end{figure}
  5642. \begin{figure}[tp]
  5643. \centering
  5644. \fbox{
  5645. \begin{minipage}{0.96\textwidth}
  5646. \[
  5647. \begin{array}{lcl}
  5648. \itm{op} &::=& \ldots \mid \code{vector} \mid \code{vector-length} \\
  5649. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  5650. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots}
  5651. \mid \BOOL{\itm{bool}}
  5652. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  5653. &\mid& \VECREF{\Exp}{\INT{\Int}}\\
  5654. &\mid& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  5655. &\mid& \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP \\
  5656. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  5657. \end{array}
  5658. \]
  5659. \end{minipage}
  5660. }
  5661. \caption{The abstract syntax of \LangVec{}.}
  5662. \label{fig:Rvec-syntax}
  5663. \end{figure}
  5664. \index{subject}{allocate}
  5665. \index{subject}{heap allocate}
  5666. Tuples are our first encounter with heap-allocated data, which raises
  5667. several interesting issues. First, variable binding performs a
  5668. shallow-copy when dealing with tuples, which means that different
  5669. variables can refer to the same tuple, that is, different variables
  5670. can be \emph{aliases} for the same entity. Consider the following
  5671. example in which both \code{t1} and \code{t2} refer to the same tuple.
  5672. Thus, the mutation through \code{t2} is visible when referencing the
  5673. tuple from \code{t1}, so the result of this program is \code{42}.
  5674. \index{subject}{alias}\index{subject}{mutation}
  5675. \begin{center}
  5676. \begin{minipage}{0.96\textwidth}
  5677. \begin{lstlisting}
  5678. (let ([t1 (vector 3 7)])
  5679. (let ([t2 t1])
  5680. (let ([_ (vector-set! t2 0 42)])
  5681. (vector-ref t1 0))))
  5682. \end{lstlisting}
  5683. \end{minipage}
  5684. \end{center}
  5685. The next issue concerns the lifetime of tuples. Of course, they are
  5686. created by the \code{vector} form, but when does their lifetime end?
  5687. Notice that \LangVec{} does not include an operation for deleting
  5688. tuples. Furthermore, the lifetime of a tuple is not tied to any notion
  5689. of static scoping. For example, the following program returns
  5690. \code{42} even though the variable \code{w} goes out of scope prior to
  5691. the \code{vector-ref} that reads from the vector it was bound to.
  5692. \begin{center}
  5693. \begin{minipage}{0.96\textwidth}
  5694. \begin{lstlisting}
  5695. (let ([v (vector (vector 44))])
  5696. (let ([x (let ([w (vector 42)])
  5697. (let ([_ (vector-set! v 0 w)])
  5698. 0))])
  5699. (+ x (vector-ref (vector-ref v 0) 0))))
  5700. \end{lstlisting}
  5701. \end{minipage}
  5702. \end{center}
  5703. From the perspective of programmer-observable behavior, tuples live
  5704. forever. Of course, if they really lived forever, then many programs
  5705. would run out of memory.\footnote{The \LangVec{} language does not have
  5706. looping or recursive functions, so it is nigh impossible to write a
  5707. program in \LangVec{} that will run out of memory. However, we add
  5708. recursive functions in the next Chapter!} A Racket implementation
  5709. must therefore perform automatic garbage collection.
  5710. Figure~\ref{fig:interp-Rvec} shows the definitional interpreter for the
  5711. \LangVec{} language. We define the \code{vector}, \code{vector-length},
  5712. \code{vector-ref}, and \code{vector-set!} operations for \LangVec{} in
  5713. terms of the corresponding operations in Racket. One subtle point is
  5714. that the \code{vector-set!} operation returns the \code{\#<void>}
  5715. value. The \code{\#<void>} value can be passed around just like other
  5716. values inside an \LangVec{} program and a \code{\#<void>} value can be
  5717. compared for equality with another \code{\#<void>} value. However,
  5718. there are no other operations specific to the the \code{\#<void>}
  5719. value in \LangVec{}. In contrast, Racket defines the \code{void?} predicate
  5720. that returns \code{\#t} when applied to \code{\#<void>} and \code{\#f}
  5721. otherwise.
  5722. \begin{figure}[tbp]
  5723. \begin{lstlisting}
  5724. (define interp-Rvec-class
  5725. (class interp-Rif-class
  5726. (super-new)
  5727. (define/override (interp-op op)
  5728. (match op
  5729. ['eq? (lambda (v1 v2)
  5730. (cond [(or (and (fixnum? v1) (fixnum? v2))
  5731. (and (boolean? v1) (boolean? v2))
  5732. (and (vector? v1) (vector? v2))
  5733. (and (void? v1) (void? v2)))
  5734. (eq? v1 v2)]))]
  5735. ['vector vector]
  5736. ['vector-length vector-length]
  5737. ['vector-ref vector-ref]
  5738. ['vector-set! vector-set!]
  5739. [else (super interp-op op)]
  5740. ))
  5741. (define/override ((interp-exp env) e)
  5742. (define recur (interp-exp env))
  5743. (match e
  5744. [(HasType e t) (recur e)]
  5745. [(Void) (void)]
  5746. [else ((super interp-exp env) e)]
  5747. ))
  5748. ))
  5749. (define (interp-Rvec p)
  5750. (send (new interp-Rvec-class) interp-program p))
  5751. \end{lstlisting}
  5752. \caption{Interpreter for the \LangVec{} language.}
  5753. \label{fig:interp-Rvec}
  5754. \end{figure}
  5755. Figure~\ref{fig:type-check-Rvec} shows the type checker for \LangVec{}, which
  5756. deserves some explanation. When allocating a vector, we need to know
  5757. which elements of the vector are pointers (i.e. are also vectors). We
  5758. can obtain this information during type checking. The type checker in
  5759. Figure~\ref{fig:type-check-Rvec} not only computes the type of an
  5760. expression, it also wraps every \key{vector} creation with the form
  5761. $(\key{HasType}~e~T)$, where $T$ is the vector's type.
  5762. %
  5763. To create the s-expression for the \code{Vector} type in
  5764. Figure~\ref{fig:type-check-Rvec}, we use the
  5765. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  5766. operator} \code{,@} to insert the list \code{t*} without its usual
  5767. start and end parentheses. \index{subject}{unquote-slicing}
  5768. \begin{figure}[tp]
  5769. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  5770. (define type-check-Rvec-class
  5771. (class type-check-Rif-class
  5772. (super-new)
  5773. (inherit check-type-equal?)
  5774. (define/override (type-check-exp env)
  5775. (lambda (e)
  5776. (define recur (type-check-exp env))
  5777. (match e
  5778. [(Void) (values (Void) 'Void)]
  5779. [(Prim 'vector es)
  5780. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  5781. (define t `(Vector ,@t*))
  5782. (values (HasType (Prim 'vector e*) t) t)]
  5783. [(Prim 'vector-ref (list e1 (Int i)))
  5784. (define-values (e1^ t) (recur e1))
  5785. (match t
  5786. [`(Vector ,ts ...)
  5787. (unless (and (0 . <= . i) (i . < . (length ts)))
  5788. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  5789. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  5790. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  5791. [(Prim 'vector-set! (list e1 (Int i) arg) )
  5792. (define-values (e-vec t-vec) (recur e1))
  5793. (define-values (e-arg^ t-arg) (recur arg))
  5794. (match t-vec
  5795. [`(Vector ,ts ...)
  5796. (unless (and (0 . <= . i) (i . < . (length ts)))
  5797. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  5798. (check-type-equal? (list-ref ts i) t-arg e)
  5799. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  5800. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  5801. [(Prim 'vector-length (list e))
  5802. (define-values (e^ t) (recur e))
  5803. (match t
  5804. [`(Vector ,ts ...)
  5805. (values (Prim 'vector-length (list e^)) 'Integer)]
  5806. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  5807. [(Prim 'eq? (list arg1 arg2))
  5808. (define-values (e1 t1) (recur arg1))
  5809. (define-values (e2 t2) (recur arg2))
  5810. (match* (t1 t2)
  5811. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  5812. [(other wise) (check-type-equal? t1 t2 e)])
  5813. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  5814. [(HasType (Prim 'vector es) t)
  5815. ((type-check-exp env) (Prim 'vector es))]
  5816. [(HasType e1 t)
  5817. (define-values (e1^ t^) (recur e1))
  5818. (check-type-equal? t t^ e)
  5819. (values (HasType e1^ t) t)]
  5820. [else ((super type-check-exp env) e)]
  5821. )))
  5822. ))
  5823. (define (type-check-Rvec p)
  5824. (send (new type-check-Rvec-class) type-check-program p))
  5825. \end{lstlisting}
  5826. \caption{Type checker for the \LangVec{} language.}
  5827. \label{fig:type-check-Rvec}
  5828. \end{figure}
  5829. \section{Garbage Collection}
  5830. \label{sec:GC}
  5831. Here we study a relatively simple algorithm for garbage collection
  5832. that is the basis of state-of-the-art garbage
  5833. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  5834. particular, we describe a two-space copying
  5835. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  5836. perform the
  5837. copy~\citep{Cheney:1970aa}.
  5838. \index{subject}{copying collector}
  5839. \index{subject}{two-space copying collector}
  5840. Figure~\ref{fig:copying-collector} gives a
  5841. coarse-grained depiction of what happens in a two-space collector,
  5842. showing two time steps, prior to garbage collection (on the top) and
  5843. after garbage collection (on the bottom). In a two-space collector,
  5844. the heap is divided into two parts named the FromSpace and the
  5845. ToSpace. Initially, all allocations go to the FromSpace until there is
  5846. not enough room for the next allocation request. At that point, the
  5847. garbage collector goes to work to make more room.
  5848. \index{subject}{ToSpace}
  5849. \index{subject}{FromSpace}
  5850. The garbage collector must be careful not to reclaim tuples that will
  5851. be used by the program in the future. Of course, it is impossible in
  5852. general to predict what a program will do, but we can over approximate
  5853. the will-be-used tuples by preserving all tuples that could be
  5854. accessed by \emph{any} program given the current computer state. A
  5855. program could access any tuple whose address is in a register or on
  5856. the procedure call stack. These addresses are called the \emph{root
  5857. set}\index{subject}{root set}. In addition, a program could access any tuple that is
  5858. transitively reachable from the root set. Thus, it is safe for the
  5859. garbage collector to reclaim the tuples that are not reachable in this
  5860. way.
  5861. So the goal of the garbage collector is twofold:
  5862. \begin{enumerate}
  5863. \item preserve all tuple that are reachable from the root set via a
  5864. path of pointers, that is, the \emph{live} tuples, and
  5865. \item reclaim the memory of everything else, that is, the
  5866. \emph{garbage}.
  5867. \end{enumerate}
  5868. A copying collector accomplishes this by copying all of the live
  5869. objects from the FromSpace into the ToSpace and then performs a sleight
  5870. of hand, treating the ToSpace as the new FromSpace and the old
  5871. FromSpace as the new ToSpace. In the example of
  5872. Figure~\ref{fig:copying-collector}, there are three pointers in the
  5873. root set, one in a register and two on the stack. All of the live
  5874. objects have been copied to the ToSpace (the right-hand side of
  5875. Figure~\ref{fig:copying-collector}) in a way that preserves the
  5876. pointer relationships. For example, the pointer in the register still
  5877. points to a 2-tuple whose first element is a 3-tuple and whose second
  5878. element is a 2-tuple. There are four tuples that are not reachable
  5879. from the root set and therefore do not get copied into the ToSpace.
  5880. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  5881. created by a well-typed program in \LangVec{} because it contains a
  5882. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  5883. We design the garbage collector to deal with cycles to begin with so
  5884. we will not need to revisit this issue.
  5885. \begin{figure}[tbp]
  5886. \centering
  5887. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  5888. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  5889. \caption{A copying collector in action.}
  5890. \label{fig:copying-collector}
  5891. \end{figure}
  5892. There are many alternatives to copying collectors (and their bigger
  5893. siblings, the generational collectors) when its comes to garbage
  5894. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  5895. reference counting~\citep{Collins:1960aa}. The strengths of copying
  5896. collectors are that allocation is fast (just a comparison and pointer
  5897. increment), there is no fragmentation, cyclic garbage is collected,
  5898. and the time complexity of collection only depends on the amount of
  5899. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  5900. main disadvantages of a two-space copying collector is that it uses a
  5901. lot of space and takes a long time to perform the copy, though these
  5902. problems are ameliorated in generational collectors. Racket and
  5903. Scheme programs tend to allocate many small objects and generate a lot
  5904. of garbage, so copying and generational collectors are a good fit.
  5905. Garbage collection is an active research topic, especially concurrent
  5906. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  5907. developing new techniques and revisiting old
  5908. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  5909. meet every year at the International Symposium on Memory Management to
  5910. present these findings.
  5911. \subsection{Graph Copying via Cheney's Algorithm}
  5912. \label{sec:cheney}
  5913. \index{subject}{Cheney's algorithm}
  5914. Let us take a closer look at the copying of the live objects. The
  5915. allocated objects and pointers can be viewed as a graph and we need to
  5916. copy the part of the graph that is reachable from the root set. To
  5917. make sure we copy all of the reachable vertices in the graph, we need
  5918. an exhaustive graph traversal algorithm, such as depth-first search or
  5919. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  5920. such algorithms take into account the possibility of cycles by marking
  5921. which vertices have already been visited, so as to ensure termination
  5922. of the algorithm. These search algorithms also use a data structure
  5923. such as a stack or queue as a to-do list to keep track of the vertices
  5924. that need to be visited. We use breadth-first search and a trick
  5925. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  5926. and copying tuples into the ToSpace.
  5927. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  5928. copy progresses. The queue is represented by a chunk of contiguous
  5929. memory at the beginning of the ToSpace, using two pointers to track
  5930. the front and the back of the queue. The algorithm starts by copying
  5931. all tuples that are immediately reachable from the root set into the
  5932. ToSpace to form the initial queue. When we copy a tuple, we mark the
  5933. old tuple to indicate that it has been visited. We discuss how this
  5934. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  5935. pointers inside the copied tuples in the queue still point back to the
  5936. FromSpace. Once the initial queue has been created, the algorithm
  5937. enters a loop in which it repeatedly processes the tuple at the front
  5938. of the queue and pops it off the queue. To process a tuple, the
  5939. algorithm copies all the tuple that are directly reachable from it to
  5940. the ToSpace, placing them at the back of the queue. The algorithm then
  5941. updates the pointers in the popped tuple so they point to the newly
  5942. copied tuples.
  5943. \begin{figure}[tbp]
  5944. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  5945. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  5946. \label{fig:cheney}
  5947. \end{figure}
  5948. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  5949. tuple whose second element is $42$ to the back of the queue. The other
  5950. pointer goes to a tuple that has already been copied, so we do not
  5951. need to copy it again, but we do need to update the pointer to the new
  5952. location. This can be accomplished by storing a \emph{forwarding
  5953. pointer} to the new location in the old tuple, back when we initially
  5954. copied the tuple into the ToSpace. This completes one step of the
  5955. algorithm. The algorithm continues in this way until the front of the
  5956. queue is empty, that is, until the front catches up with the back.
  5957. \subsection{Data Representation}
  5958. \label{sec:data-rep-gc}
  5959. The garbage collector places some requirements on the data
  5960. representations used by our compiler. First, the garbage collector
  5961. needs to distinguish between pointers and other kinds of data. There
  5962. are several ways to accomplish this.
  5963. \begin{enumerate}
  5964. \item Attached a tag to each object that identifies what type of
  5965. object it is~\citep{McCarthy:1960dz}.
  5966. \item Store different types of objects in different
  5967. regions~\citep{Steele:1977ab}.
  5968. \item Use type information from the program to either generate
  5969. type-specific code for collecting or to generate tables that can
  5970. guide the
  5971. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  5972. \end{enumerate}
  5973. Dynamically typed languages, such as Lisp, need to tag objects
  5974. anyways, so option 1 is a natural choice for those languages.
  5975. However, \LangVec{} is a statically typed language, so it would be
  5976. unfortunate to require tags on every object, especially small and
  5977. pervasive objects like integers and Booleans. Option 3 is the
  5978. best-performing choice for statically typed languages, but comes with
  5979. a relatively high implementation complexity. To keep this chapter
  5980. within a 2-week time budget, we recommend a combination of options 1
  5981. and 2, using separate strategies for the stack and the heap.
  5982. Regarding the stack, we recommend using a separate stack for pointers,
  5983. which we call a \emph{root stack}\index{subject}{root stack} (a.k.a. ``shadow
  5984. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  5985. is, when a local variable needs to be spilled and is of type
  5986. \code{(Vector $\Type_1 \ldots \Type_n$)}, then we put it on the root
  5987. stack instead of the normal procedure call stack. Furthermore, we
  5988. always spill vector-typed variables if they are live during a call to
  5989. the collector, thereby ensuring that no pointers are in registers
  5990. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  5991. example from Figure~\ref{fig:copying-collector} and contrasts it with
  5992. the data layout using a root stack. The root stack contains the two
  5993. pointers from the regular stack and also the pointer in the second
  5994. register.
  5995. \begin{figure}[tbp]
  5996. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  5997. \caption{Maintaining a root stack to facilitate garbage collection.}
  5998. \label{fig:shadow-stack}
  5999. \end{figure}
  6000. The problem of distinguishing between pointers and other kinds of data
  6001. also arises inside of each tuple on the heap. We solve this problem by
  6002. attaching a tag, an extra 64-bits, to each
  6003. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  6004. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  6005. that we have drawn the bits in a big-endian way, from right-to-left,
  6006. with bit location 0 (the least significant bit) on the far right,
  6007. which corresponds to the direction of the x86 shifting instructions
  6008. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  6009. is dedicated to specifying which elements of the tuple are pointers,
  6010. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  6011. indicates there is a pointer and a 0 bit indicates some other kind of
  6012. data. The pointer mask starts at bit location 7. We have limited
  6013. tuples to a maximum size of 50 elements, so we just need 50 bits for
  6014. the pointer mask. The tag also contains two other pieces of
  6015. information. The length of the tuple (number of elements) is stored in
  6016. bits location 1 through 6. Finally, the bit at location 0 indicates
  6017. whether the tuple has yet to be copied to the ToSpace. If the bit has
  6018. value 1, then this tuple has not yet been copied. If the bit has
  6019. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  6020. of a pointer are always zero anyways because our tuples are 8-byte
  6021. aligned.)
  6022. \begin{figure}[tbp]
  6023. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  6024. \caption{Representation of tuples in the heap.}
  6025. \label{fig:tuple-rep}
  6026. \end{figure}
  6027. \subsection{Implementation of the Garbage Collector}
  6028. \label{sec:organize-gz}
  6029. \index{subject}{prelude}
  6030. An implementation of the copying collector is provided in the
  6031. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  6032. interface to the garbage collector that is used by the compiler. The
  6033. \code{initialize} function creates the FromSpace, ToSpace, and root
  6034. stack and should be called in the prelude of the \code{main}
  6035. function. The arguments of \code{initialize} are the root stack size
  6036. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  6037. good choice for both. The \code{initialize} function puts the address
  6038. of the beginning of the FromSpace into the global variable
  6039. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  6040. the address that is 1-past the last element of the FromSpace. (We use
  6041. half-open intervals to represent chunks of
  6042. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  6043. points to the first element of the root stack.
  6044. As long as there is room left in the FromSpace, your generated code
  6045. can allocate tuples simply by moving the \code{free\_ptr} forward.
  6046. %
  6047. The amount of room left in FromSpace is the difference between the
  6048. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  6049. function should be called when there is not enough room left in the
  6050. FromSpace for the next allocation. The \code{collect} function takes
  6051. a pointer to the current top of the root stack (one past the last item
  6052. that was pushed) and the number of bytes that need to be
  6053. allocated. The \code{collect} function performs the copying collection
  6054. and leaves the heap in a state such that the next allocation will
  6055. succeed.
  6056. \begin{figure}[tbp]
  6057. \begin{lstlisting}
  6058. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  6059. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  6060. int64_t* free_ptr;
  6061. int64_t* fromspace_begin;
  6062. int64_t* fromspace_end;
  6063. int64_t** rootstack_begin;
  6064. \end{lstlisting}
  6065. \caption{The compiler's interface to the garbage collector.}
  6066. \label{fig:gc-header}
  6067. \end{figure}
  6068. %% \begin{exercise}
  6069. %% In the file \code{runtime.c} you will find the implementation of
  6070. %% \code{initialize} and a partial implementation of \code{collect}.
  6071. %% The \code{collect} function calls another function, \code{cheney},
  6072. %% to perform the actual copy, and that function is left to the reader
  6073. %% to implement. The following is the prototype for \code{cheney}.
  6074. %% \begin{lstlisting}
  6075. %% static void cheney(int64_t** rootstack_ptr);
  6076. %% \end{lstlisting}
  6077. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  6078. %% rootstack (which is an array of pointers). The \code{cheney} function
  6079. %% also communicates with \code{collect} through the global
  6080. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  6081. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  6082. %% the ToSpace:
  6083. %% \begin{lstlisting}
  6084. %% static int64_t* tospace_begin;
  6085. %% static int64_t* tospace_end;
  6086. %% \end{lstlisting}
  6087. %% The job of the \code{cheney} function is to copy all the live
  6088. %% objects (reachable from the root stack) into the ToSpace, update
  6089. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  6090. %% update the root stack so that it points to the objects in the
  6091. %% ToSpace, and finally to swap the global pointers for the FromSpace
  6092. %% and ToSpace.
  6093. %% \end{exercise}
  6094. %% \section{Compiler Passes}
  6095. %% \label{sec:code-generation-gc}
  6096. The introduction of garbage collection has a non-trivial impact on our
  6097. compiler passes. We introduce a new compiler pass named
  6098. \code{expose-allocation}. We make
  6099. significant changes to \code{select-instructions},
  6100. \code{build-interference}, \code{allocate-registers}, and
  6101. \code{print-x86} and make minor changes in several more passes. The
  6102. following program will serve as our running example. It creates two
  6103. tuples, one nested inside the other. Both tuples have length one. The
  6104. program accesses the element in the inner tuple tuple via two vector
  6105. references.
  6106. % tests/s2_17.rkt
  6107. \begin{lstlisting}
  6108. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  6109. \end{lstlisting}
  6110. \section{Shrink}
  6111. \label{sec:shrink-Rvec}
  6112. Recall that the \code{shrink} pass translates the primitives operators
  6113. into a smaller set of primitives. Because this pass comes after type
  6114. checking, but before the passes that require the type information in
  6115. the \code{HasType} AST nodes, the \code{shrink} pass must be modified
  6116. to wrap \code{HasType} around each AST node that it generates.
  6117. \section{Expose Allocation}
  6118. \label{sec:expose-allocation}
  6119. The pass \code{expose-allocation} lowers the \code{vector} creation
  6120. form into a conditional call to the collector followed by the
  6121. allocation. We choose to place the \code{expose-allocation} pass
  6122. before \code{remove-complex-opera*} because the code generated by
  6123. \code{expose-allocation} contains complex operands. We also place
  6124. \code{expose-allocation} before \code{explicate-control} because
  6125. \code{expose-allocation} introduces new variables using \code{let},
  6126. but \code{let} is gone after \code{explicate-control}.
  6127. The output of \code{expose-allocation} is a language \LangAlloc{} that
  6128. extends \LangVec{} with the three new forms that we use in the translation
  6129. of the \code{vector} form.
  6130. \[
  6131. \begin{array}{lcl}
  6132. \Exp &::=& \cdots
  6133. \mid (\key{collect} \,\itm{int})
  6134. \mid (\key{allocate} \,\itm{int}\,\itm{type})
  6135. \mid (\key{global-value} \,\itm{name})
  6136. \end{array}
  6137. \]
  6138. The $(\key{collect}\,n)$ form runs the garbage collector, requesting
  6139. $n$ bytes. It will become a call to the \code{collect} function in
  6140. \code{runtime.c} in \code{select-instructions}. The
  6141. $(\key{allocate}\,n\,T)$ form creates an tuple of $n$ elements.
  6142. \index{subject}{allocate}
  6143. The $T$ parameter is the type of the tuple: \code{(Vector $\Type_1 \ldots
  6144. \Type_n$)} where $\Type_i$ is the type of the $i$th element in the
  6145. tuple. The $(\key{global-value}\,\itm{name})$ form reads the value of
  6146. a global variable, such as \code{free\_ptr}.
  6147. In the following, we show the transformation for the \code{vector}
  6148. form into 1) a sequence of let-bindings for the initializing
  6149. expressions, 2) a conditional call to \code{collect}, 3) a call to
  6150. \code{allocate}, and 4) the initialization of the vector. In the
  6151. following, \itm{len} refers to the length of the vector and
  6152. \itm{bytes} is how many total bytes need to be allocated for the
  6153. vector, which is 8 for the tag plus \itm{len} times 8.
  6154. \begin{lstlisting}
  6155. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  6156. |$\Longrightarrow$|
  6157. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  6158. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  6159. (global-value fromspace_end))
  6160. (void)
  6161. (collect |\itm{bytes}|))])
  6162. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  6163. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  6164. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  6165. |$v$|) ... )))) ...)
  6166. \end{lstlisting}
  6167. In the above, we suppressed all of the \code{has-type} forms in the
  6168. output for the sake of readability. The placement of the initializing
  6169. expressions $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} and the
  6170. sequence of \code{vector-set!} is important, as those expressions may
  6171. trigger garbage collection and we cannot have an allocated but
  6172. uninitialized tuple on the heap during a collection.
  6173. Figure~\ref{fig:expose-alloc-output} shows the output of the
  6174. \code{expose-allocation} pass on our running example.
  6175. \begin{figure}[tbp]
  6176. % tests/s2_17.rkt
  6177. \begin{lstlisting}
  6178. (vector-ref
  6179. (vector-ref
  6180. (let ([vecinit7976
  6181. (let ([vecinit7972 42])
  6182. (let ([collectret7974
  6183. (if (< (+ (global-value free_ptr) 16)
  6184. (global-value fromspace_end))
  6185. (void)
  6186. (collect 16)
  6187. )])
  6188. (let ([alloc7971 (allocate 1 (Vector Integer))])
  6189. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  6190. alloc7971)
  6191. )
  6192. )
  6193. )
  6194. ])
  6195. (let ([collectret7978
  6196. (if (< (+ (global-value free_ptr) 16)
  6197. (global-value fromspace_end))
  6198. (void)
  6199. (collect 16)
  6200. )])
  6201. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  6202. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  6203. alloc7975)
  6204. )
  6205. )
  6206. )
  6207. 0)
  6208. 0)
  6209. \end{lstlisting}
  6210. \caption{Output of the \code{expose-allocation} pass, minus
  6211. all of the \code{has-type} forms.}
  6212. \label{fig:expose-alloc-output}
  6213. \end{figure}
  6214. \section{Remove Complex Operands}
  6215. \label{sec:remove-complex-opera-Rvec}
  6216. The new forms \code{collect}, \code{allocate}, and \code{global-value}
  6217. should all be treated as complex operands.
  6218. %% A new case for
  6219. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  6220. %% handled carefully to prevent the \code{Prim} node from being separated
  6221. %% from its enclosing \code{HasType}.
  6222. Figure~\ref{fig:Rvec-anf-syntax}
  6223. shows the grammar for the output language \LangVecANF{} of this
  6224. pass, which is \LangVec{} in administrative normal form.
  6225. \begin{figure}[tp]
  6226. \centering
  6227. \fbox{
  6228. \begin{minipage}{0.96\textwidth}
  6229. \small
  6230. \[
  6231. \begin{array}{rcl}
  6232. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }
  6233. \mid \VOID{} \\
  6234. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  6235. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  6236. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  6237. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  6238. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  6239. &\mid& \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  6240. \mid \LP\key{GlobalValue}~\Var\RP\\
  6241. % &\mid& \LP\key{HasType}~\Exp~\Type\RP \\
  6242. \LangVecANFM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  6243. \end{array}
  6244. \]
  6245. \end{minipage}
  6246. }
  6247. \caption{\LangVecANF{} is \LangVec{} in administrative normal form (ANF).}
  6248. \label{fig:Rvec-anf-syntax}
  6249. \end{figure}
  6250. \section{Explicate Control and the \LangCVec{} language}
  6251. \label{sec:explicate-control-r3}
  6252. \begin{figure}[tp]
  6253. \fbox{
  6254. \begin{minipage}{0.96\textwidth}
  6255. \small
  6256. \[
  6257. \begin{array}{lcl}
  6258. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  6259. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  6260. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  6261. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  6262. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  6263. &\mid& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  6264. &\mid& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  6265. &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
  6266. &\mid& \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP\\
  6267. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  6268. \mid \LP\key{Collect} \,\itm{int}\RP \\
  6269. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  6270. \mid \GOTO{\itm{label}} } \\
  6271. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  6272. \LangCVecM{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
  6273. \end{array}
  6274. \]
  6275. \end{minipage}
  6276. }
  6277. \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
  6278. (Figure~\ref{fig:c1-syntax}).}
  6279. \label{fig:c2-syntax}
  6280. \end{figure}
  6281. The output of \code{explicate-control} is a program in the
  6282. intermediate language \LangCVec{}, whose abstract syntax is defined in
  6283. Figure~\ref{fig:c2-syntax}. (The concrete syntax is defined in
  6284. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.) The new forms
  6285. of \LangCVec{} include the \key{allocate}, \key{vector-ref}, and
  6286. \key{vector-set!}, and \key{global-value} expressions and the
  6287. \code{collect} statement. The \code{explicate-control} pass can treat
  6288. these new forms much like the other expression forms that we've
  6289. already encoutered.
  6290. \section{Select Instructions and the \LangXGlobal{} Language}
  6291. \label{sec:select-instructions-gc}
  6292. \index{subject}{instruction selection}
  6293. %% void (rep as zero)
  6294. %% allocate
  6295. %% collect (callq collect)
  6296. %% vector-ref
  6297. %% vector-set!
  6298. %% global (postpone)
  6299. In this pass we generate x86 code for most of the new operations that
  6300. were needed to compile tuples, including \code{Allocate},
  6301. \code{Collect}, \code{vector-ref}, \code{vector-set!}, and
  6302. \code{void}. We compile \code{GlobalValue} to \code{Global} because
  6303. the later has a different concrete syntax (see
  6304. Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}).
  6305. \index{subject}{x86}
  6306. The \code{vector-ref} and \code{vector-set!} forms translate into
  6307. \code{movq} instructions. (The plus one in the offset is to get past
  6308. the tag at the beginning of the tuple representation.)
  6309. \begin{lstlisting}
  6310. |$\itm{lhs}$| = (vector-ref |$\itm{vec}$| |$n$|);
  6311. |$\Longrightarrow$|
  6312. movq |$\itm{vec}'$|, %r11
  6313. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  6314. |$\itm{lhs}$| = (vector-set! |$\itm{vec}$| |$n$| |$\itm{arg}$|);
  6315. |$\Longrightarrow$|
  6316. movq |$\itm{vec}'$|, %r11
  6317. movq |$\itm{arg}'$|, |$8(n+1)$|(%r11)
  6318. movq $0, |$\itm{lhs'}$|
  6319. \end{lstlisting}
  6320. The $\itm{lhs}'$, $\itm{vec}'$, and $\itm{arg}'$ are obtained by
  6321. translating $\itm{vec}$ and $\itm{arg}$ to x86. The move of $\itm{vec}'$ to
  6322. register \code{r11} ensures that offset expression
  6323. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  6324. removing \code{r11} from consideration by the register allocating.
  6325. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  6326. \code{rax}. Then the generated code for \code{vector-set!} would be
  6327. \begin{lstlisting}
  6328. movq |$\itm{vec}'$|, %rax
  6329. movq |$\itm{arg}'$|, |$8(n+1)$|(%rax)
  6330. movq $0, |$\itm{lhs}'$|
  6331. \end{lstlisting}
  6332. Next, suppose that $\itm{arg}'$ ends up as a stack location, so
  6333. \code{patch-instructions} would insert a move through \code{rax}
  6334. as follows.
  6335. \begin{lstlisting}
  6336. movq |$\itm{vec}'$|, %rax
  6337. movq |$\itm{arg}'$|, %rax
  6338. movq %rax, |$8(n+1)$|(%rax)
  6339. movq $0, |$\itm{lhs}'$|
  6340. \end{lstlisting}
  6341. But the above sequence of instructions does not work because we're
  6342. trying to use \code{rax} for two different values ($\itm{vec}'$ and
  6343. $\itm{arg}'$) at the same time!
  6344. We compile the \code{allocate} form to operations on the
  6345. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  6346. is the next free address in the FromSpace, so we copy it into
  6347. \code{r11} and then move it forward by enough space for the tuple
  6348. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  6349. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  6350. initialize the \itm{tag} and finally copy the address in \code{r11} to
  6351. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  6352. tag is organized. We recommend using the Racket operations
  6353. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  6354. during compilation. The type annotation in the \code{vector} form is
  6355. used to determine the pointer mask region of the tag.
  6356. \begin{lstlisting}
  6357. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  6358. |$\Longrightarrow$|
  6359. movq free_ptr(%rip), %r11
  6360. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  6361. movq $|$\itm{tag}$|, 0(%r11)
  6362. movq %r11, |$\itm{lhs}'$|
  6363. \end{lstlisting}
  6364. The \code{collect} form is compiled to a call to the \code{collect}
  6365. function in the runtime. The arguments to \code{collect} are 1) the
  6366. top of the root stack and 2) the number of bytes that need to be
  6367. allocated. We use another dedicated register, \code{r15}, to
  6368. store the pointer to the top of the root stack. So \code{r15} is not
  6369. available for use by the register allocator.
  6370. \begin{lstlisting}
  6371. (collect |$\itm{bytes}$|)
  6372. |$\Longrightarrow$|
  6373. movq %r15, %rdi
  6374. movq $|\itm{bytes}|, %rsi
  6375. callq collect
  6376. \end{lstlisting}
  6377. \begin{figure}[tp]
  6378. \fbox{
  6379. \begin{minipage}{0.96\textwidth}
  6380. \[
  6381. \begin{array}{lcl}
  6382. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)} \\
  6383. \LangXGlobalM{} &::= & \gray{ \key{.globl main} }\\
  6384. & & \gray{ \key{main:} \; \Instr\ldots }
  6385. \end{array}
  6386. \]
  6387. \end{minipage}
  6388. }
  6389. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  6390. \label{fig:x86-2-concrete}
  6391. \end{figure}
  6392. \begin{figure}[tp]
  6393. \fbox{
  6394. \begin{minipage}{0.96\textwidth}
  6395. \small
  6396. \[
  6397. \begin{array}{lcl}
  6398. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  6399. \mid \BYTEREG{\Reg}} \\
  6400. &\mid& (\key{Global}~\Var) \\
  6401. \LangXGlobalM{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  6402. \end{array}
  6403. \]
  6404. \end{minipage}
  6405. }
  6406. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  6407. \label{fig:x86-2}
  6408. \end{figure}
  6409. The concrete and abstract syntax of the \LangXGlobal{} language is
  6410. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  6411. differs from \LangXIf{} just in the addition of the form for global
  6412. variables.
  6413. %
  6414. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  6415. \code{select-instructions} pass on the running example.
  6416. \begin{figure}[tbp]
  6417. \centering
  6418. % tests/s2_17.rkt
  6419. \begin{minipage}[t]{0.5\textwidth}
  6420. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6421. block35:
  6422. movq free_ptr(%rip), alloc9024
  6423. addq $16, free_ptr(%rip)
  6424. movq alloc9024, %r11
  6425. movq $131, 0(%r11)
  6426. movq alloc9024, %r11
  6427. movq vecinit9025, 8(%r11)
  6428. movq $0, initret9026
  6429. movq alloc9024, %r11
  6430. movq 8(%r11), tmp9034
  6431. movq tmp9034, %r11
  6432. movq 8(%r11), %rax
  6433. jmp conclusion
  6434. block36:
  6435. movq $0, collectret9027
  6436. jmp block35
  6437. block38:
  6438. movq free_ptr(%rip), alloc9020
  6439. addq $16, free_ptr(%rip)
  6440. movq alloc9020, %r11
  6441. movq $3, 0(%r11)
  6442. movq alloc9020, %r11
  6443. movq vecinit9021, 8(%r11)
  6444. movq $0, initret9022
  6445. movq alloc9020, vecinit9025
  6446. movq free_ptr(%rip), tmp9031
  6447. movq tmp9031, tmp9032
  6448. addq $16, tmp9032
  6449. movq fromspace_end(%rip), tmp9033
  6450. cmpq tmp9033, tmp9032
  6451. jl block36
  6452. jmp block37
  6453. block37:
  6454. movq %r15, %rdi
  6455. movq $16, %rsi
  6456. callq 'collect
  6457. jmp block35
  6458. block39:
  6459. movq $0, collectret9023
  6460. jmp block38
  6461. \end{lstlisting}
  6462. \end{minipage}
  6463. \begin{minipage}[t]{0.45\textwidth}
  6464. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6465. start:
  6466. movq $42, vecinit9021
  6467. movq free_ptr(%rip), tmp9028
  6468. movq tmp9028, tmp9029
  6469. addq $16, tmp9029
  6470. movq fromspace_end(%rip), tmp9030
  6471. cmpq tmp9030, tmp9029
  6472. jl block39
  6473. jmp block40
  6474. block40:
  6475. movq %r15, %rdi
  6476. movq $16, %rsi
  6477. callq 'collect
  6478. jmp block38
  6479. \end{lstlisting}
  6480. \end{minipage}
  6481. \caption{Output of the \code{select-instructions} pass.}
  6482. \label{fig:select-instr-output-gc}
  6483. \end{figure}
  6484. \clearpage
  6485. \section{Register Allocation}
  6486. \label{sec:reg-alloc-gc}
  6487. \index{subject}{register allocation}
  6488. As discussed earlier in this chapter, the garbage collector needs to
  6489. access all the pointers in the root set, that is, all variables that
  6490. are vectors. It will be the responsibility of the register allocator
  6491. to make sure that:
  6492. \begin{enumerate}
  6493. \item the root stack is used for spilling vector-typed variables, and
  6494. \item if a vector-typed variable is live during a call to the
  6495. collector, it must be spilled to ensure it is visible to the
  6496. collector.
  6497. \end{enumerate}
  6498. The later responsibility can be handled during construction of the
  6499. interference graph, by adding interference edges between the call-live
  6500. vector-typed variables and all the callee-saved registers. (They
  6501. already interfere with the caller-saved registers.) The type
  6502. information for variables is in the \code{Program} form, so we
  6503. recommend adding another parameter to the \code{build-interference}
  6504. function to communicate this alist.
  6505. The spilling of vector-typed variables to the root stack can be
  6506. handled after graph coloring, when choosing how to assign the colors
  6507. (integers) to registers and stack locations. The \code{Program} output
  6508. of this pass changes to also record the number of spills to the root
  6509. stack.
  6510. % build-interference
  6511. %
  6512. % callq
  6513. % extra parameter for var->type assoc. list
  6514. % update 'program' and 'if'
  6515. % allocate-registers
  6516. % allocate spilled vectors to the rootstack
  6517. % don't change color-graph
  6518. \section{Print x86}
  6519. \label{sec:print-x86-gc}
  6520. \index{subject}{prelude}\index{subject}{conclusion}
  6521. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  6522. \code{print-x86} pass on the running example. In the prelude and
  6523. conclusion of the \code{main} function, we treat the root stack very
  6524. much like the regular stack in that we move the root stack pointer
  6525. (\code{r15}) to make room for the spills to the root stack, except
  6526. that the root stack grows up instead of down. For the running
  6527. example, there was just one spill so we increment \code{r15} by 8
  6528. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  6529. One issue that deserves special care is that there may be a call to
  6530. \code{collect} prior to the initializing assignments for all the
  6531. variables in the root stack. We do not want the garbage collector to
  6532. accidentally think that some uninitialized variable is a pointer that
  6533. needs to be followed. Thus, we zero-out all locations on the root
  6534. stack in the prelude of \code{main}. In
  6535. Figure~\ref{fig:print-x86-output-gc}, the instruction
  6536. %
  6537. \lstinline{movq $0, (%r15)}
  6538. %
  6539. accomplishes this task. The garbage collector tests each root to see
  6540. if it is null prior to dereferencing it.
  6541. \begin{figure}[htbp]
  6542. \begin{minipage}[t]{0.5\textwidth}
  6543. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6544. block35:
  6545. movq free_ptr(%rip), %rcx
  6546. addq $16, free_ptr(%rip)
  6547. movq %rcx, %r11
  6548. movq $131, 0(%r11)
  6549. movq %rcx, %r11
  6550. movq -8(%r15), %rax
  6551. movq %rax, 8(%r11)
  6552. movq $0, %rdx
  6553. movq %rcx, %r11
  6554. movq 8(%r11), %rcx
  6555. movq %rcx, %r11
  6556. movq 8(%r11), %rax
  6557. jmp conclusion
  6558. block36:
  6559. movq $0, %rcx
  6560. jmp block35
  6561. block38:
  6562. movq free_ptr(%rip), %rcx
  6563. addq $16, free_ptr(%rip)
  6564. movq %rcx, %r11
  6565. movq $3, 0(%r11)
  6566. movq %rcx, %r11
  6567. movq %rbx, 8(%r11)
  6568. movq $0, %rdx
  6569. movq %rcx, -8(%r15)
  6570. movq free_ptr(%rip), %rcx
  6571. addq $16, %rcx
  6572. movq fromspace_end(%rip), %rdx
  6573. cmpq %rdx, %rcx
  6574. jl block36
  6575. movq %r15, %rdi
  6576. movq $16, %rsi
  6577. callq collect
  6578. jmp block35
  6579. block39:
  6580. movq $0, %rcx
  6581. jmp block38
  6582. \end{lstlisting}
  6583. \end{minipage}
  6584. \begin{minipage}[t]{0.45\textwidth}
  6585. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6586. start:
  6587. movq $42, %rbx
  6588. movq free_ptr(%rip), %rdx
  6589. addq $16, %rdx
  6590. movq fromspace_end(%rip), %rcx
  6591. cmpq %rcx, %rdx
  6592. jl block39
  6593. movq %r15, %rdi
  6594. movq $16, %rsi
  6595. callq collect
  6596. jmp block38
  6597. .globl main
  6598. main:
  6599. pushq %rbp
  6600. movq %rsp, %rbp
  6601. pushq %r13
  6602. pushq %r12
  6603. pushq %rbx
  6604. pushq %r14
  6605. subq $0, %rsp
  6606. movq $16384, %rdi
  6607. movq $16384, %rsi
  6608. callq initialize
  6609. movq rootstack_begin(%rip), %r15
  6610. movq $0, (%r15)
  6611. addq $8, %r15
  6612. jmp start
  6613. conclusion:
  6614. subq $8, %r15
  6615. addq $0, %rsp
  6616. popq %r14
  6617. popq %rbx
  6618. popq %r12
  6619. popq %r13
  6620. popq %rbp
  6621. retq
  6622. \end{lstlisting}
  6623. \end{minipage}
  6624. \caption{Output of the \code{print-x86} pass.}
  6625. \label{fig:print-x86-output-gc}
  6626. \end{figure}
  6627. \begin{figure}[p]
  6628. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6629. \node (Rvec) at (0,2) {\large \LangVec{}};
  6630. \node (Rvec-2) at (3,2) {\large \LangVec{}};
  6631. \node (Rvec-3) at (6,2) {\large \LangVec{}};
  6632. \node (Rvec-4) at (9,2) {\large \LangVec{}};
  6633. \node (Rvec-5) at (12,2) {\large \LangAlloc{}};
  6634. \node (C2-4) at (3,0) {\large \LangCVec{}};
  6635. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  6636. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  6637. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  6638. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  6639. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  6640. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  6641. %\path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize type-check} (Rvec-2);
  6642. \path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize shrink} (Rvec-2);
  6643. \path[->,bend left=15] (Rvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Rvec-3);
  6644. \path[->,bend left=15] (Rvec-3) edge [above] node {\ttfamily\footnotesize expose-alloc.} (Rvec-4);
  6645. \path[->,bend left=15] (Rvec-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvec-5);
  6646. \path[->,bend left=20] (Rvec-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C2-4);
  6647. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select-instr.} (x86-2);
  6648. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  6649. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  6650. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  6651. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  6652. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  6653. \end{tikzpicture}
  6654. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  6655. \label{fig:Rvec-passes}
  6656. \end{figure}
  6657. Figure~\ref{fig:Rvec-passes} gives an overview of all the passes needed
  6658. for the compilation of \LangVec{}.
  6659. \section{Challenge: Simple Structures}
  6660. \label{sec:simple-structures}
  6661. \index{subject}{struct}
  6662. \index{subject}{structure}
  6663. Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
  6664. \LangStruct{}, which extends \LangVec{} with support for simple structures.
  6665. Recall that a \code{struct} in Typed Racket is a user-defined data
  6666. type that contains named fields and that is heap allocated, similar to
  6667. a vector. The following is an example of a structure definition, in
  6668. this case the definition of a \code{point} type.
  6669. \begin{lstlisting}
  6670. (struct point ([x : Integer] [y : Integer]) #:mutable)
  6671. \end{lstlisting}
  6672. \begin{figure}[tbp]
  6673. \centering
  6674. \fbox{
  6675. \begin{minipage}{0.96\textwidth}
  6676. \[
  6677. \begin{array}{lcl}
  6678. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  6679. \mid (\key{Vector}\;\Type \ldots) \mid \key{Void} } \mid \Var \\
  6680. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  6681. \Exp &::=& \gray{ \Int \mid (\key{read}) \mid (\key{-}\;\Exp) \mid (\key{+} \; \Exp\;\Exp) \mid (\key{-}\;\Exp\;\Exp) } \\
  6682. &\mid& \gray{ \Var \mid (\key{let}~([\Var~\Exp])~\Exp) }\\
  6683. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  6684. \mid (\key{and}\;\Exp\;\Exp)
  6685. \mid (\key{or}\;\Exp\;\Exp)
  6686. \mid (\key{not}\;\Exp) } \\
  6687. &\mid& \gray{ (\itm{cmp}\;\Exp\;\Exp)
  6688. \mid (\key{if}~\Exp~\Exp~\Exp) } \\
  6689. &\mid& \gray{ (\key{vector}\;\Exp \ldots)
  6690. \mid (\key{vector-ref}\;\Exp\;\Int) } \\
  6691. &\mid& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
  6692. &\mid& \gray{ (\key{void}) } \mid (\Var\;\Exp \ldots)\\
  6693. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  6694. \LangStruct{} &::=& \Def \ldots \; \Exp
  6695. \end{array}
  6696. \]
  6697. \end{minipage}
  6698. }
  6699. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  6700. (Figure~\ref{fig:Rvec-concrete-syntax}).}
  6701. \label{fig:r3s-concrete-syntax}
  6702. \end{figure}
  6703. An instance of a structure is created using function call syntax, with
  6704. the name of the structure in the function position:
  6705. \begin{lstlisting}
  6706. (point 7 12)
  6707. \end{lstlisting}
  6708. Function-call syntax is also used to read the value in a field of a
  6709. structure. The function name is formed by the structure name, a dash,
  6710. and the field name. The following example uses \code{point-x} and
  6711. \code{point-y} to access the \code{x} and \code{y} fields of two point
  6712. instances.
  6713. \begin{center}
  6714. \begin{lstlisting}
  6715. (let ([pt1 (point 7 12)])
  6716. (let ([pt2 (point 4 3)])
  6717. (+ (- (point-x pt1) (point-x pt2))
  6718. (- (point-y pt1) (point-y pt2)))))
  6719. \end{lstlisting}
  6720. \end{center}
  6721. Similarly, to write to a field of a structure, use its set function,
  6722. whose name starts with \code{set-}, followed by the structure name,
  6723. then a dash, then the field name, and concluded with an exclamation
  6724. mark. The following example uses \code{set-point-x!} to change the
  6725. \code{x} field from \code{7} to \code{42}.
  6726. \begin{center}
  6727. \begin{lstlisting}
  6728. (let ([pt (point 7 12)])
  6729. (let ([_ (set-point-x! pt 42)])
  6730. (point-x pt)))
  6731. \end{lstlisting}
  6732. \end{center}
  6733. \begin{exercise}\normalfont
  6734. Extend your compiler with support for simple structures, compiling
  6735. \LangStruct{} to x86 assembly code. Create five new test cases that use
  6736. structures and test your compiler.
  6737. \end{exercise}
  6738. \section{Challenge: Generational Collection}
  6739. The copying collector described in Section~\ref{sec:GC} can incur
  6740. significant runtime overhead because the call to \code{collect} takes
  6741. time proportional to all of the live data. One way to reduce this
  6742. overhead is to reduce how much data is inspected in each call to
  6743. \code{collect}. In particular, researchers have observed that recently
  6744. allocated data is more likely to become garbage then data that has
  6745. survived one or more previous calls to \code{collect}. This insight
  6746. motivated the creation of \emph{generational garbage collectors}
  6747. \index{subject}{generational garbage collector} that
  6748. 1) segregates data according to its age into two or more generations,
  6749. 2) allocates less space for younger generations, so collecting them is
  6750. faster, and more space for the older generations, and 3) performs
  6751. collection on the younger generations more frequently then for older
  6752. generations~\citep{Wilson:1992fk}.
  6753. For this challenge assignment, the goal is to adapt the copying
  6754. collector implemented in \code{runtime.c} to use two generations, one
  6755. for young data and one for old data. Each generation consists of a
  6756. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  6757. \code{collect} function to use the two generations.
  6758. \begin{enumerate}
  6759. \item Copy the young generation's FromSpace to its ToSpace then switch
  6760. the role of the ToSpace and FromSpace
  6761. \item If there is enough space for the requested number of bytes in
  6762. the young FromSpace, then return from \code{collect}.
  6763. \item If there is not enough space in the young FromSpace for the
  6764. requested bytes, then move the data from the young generation to the
  6765. old one with the following steps:
  6766. \begin{enumerate}
  6767. \item If there is enough room in the old FromSpace, copy the young
  6768. FromSpace to the old FromSpace and then return.
  6769. \item If there is not enough room in the old FromSpace, then collect
  6770. the old generation by copying the old FromSpace to the old ToSpace
  6771. and swap the roles of the old FromSpace and ToSpace.
  6772. \item If there is enough room now, copy the young FromSpace to the
  6773. old FromSpace and return. Otherwise, allocate a larger FromSpace
  6774. and ToSpace for the old generation. Copy the young FromSpace and
  6775. the old FromSpace into the larger FromSpace for the old
  6776. generation and then return.
  6777. \end{enumerate}
  6778. \end{enumerate}
  6779. We recommend that you generalize the \code{cheney} function so that it
  6780. can be used for all the copies mentioned above: between the young
  6781. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  6782. between the young FromSpace and old FromSpace. This can be
  6783. accomplished by adding parameters to \code{cheney} that replace its
  6784. use of the global variables \code{fromspace\_begin},
  6785. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  6786. Note that the collection of the young generation does not traverse the
  6787. old generation. This introduces a potential problem: there may be
  6788. young data that is only reachable through pointers in the old
  6789. generation. If these pointers are not taken into account, the
  6790. collector could throw away young data that is live! One solution,
  6791. called \emph{pointer recording}, is to maintain a set of all the
  6792. pointers from the old generation into the new generation and consider
  6793. this set as part of the root set. To maintain this set, the compiler
  6794. must insert extra instructions around every \code{vector-set!}. If the
  6795. vector being modified is in the old generation, and if the value being
  6796. written is a pointer into the new generation, than that pointer must
  6797. be added to the set. Also, if the value being overwritten was a
  6798. pointer into the new generation, then that pointer should be removed
  6799. from the set.
  6800. \begin{exercise}\normalfont
  6801. Adapt the \code{collect} function in \code{runtime.c} to implement
  6802. generational garbage collection, as outlined in this section.
  6803. Update the code generation for \code{vector-set!} to implement
  6804. pointer recording. Make sure that your new compiler and runtime
  6805. passes your test suite.
  6806. \end{exercise}
  6807. % Further Reading
  6808. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6809. \chapter{Functions}
  6810. \label{ch:Rfun}
  6811. \index{subject}{function}
  6812. This chapter studies the compilation of functions similar to those
  6813. found in the C language. This corresponds to a subset of Typed Racket
  6814. in which only top-level function definitions are allowed. This kind of
  6815. function is an important stepping stone to implementing
  6816. lexically-scoped functions, that is, \key{lambda} abstractions, which
  6817. is the topic of Chapter~\ref{ch:Rlam}.
  6818. \section{The \LangFun{} Language}
  6819. The concrete and abstract syntax for function definitions and function
  6820. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  6821. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  6822. \LangFun{} begin with zero or more function definitions. The function
  6823. names from these definitions are in-scope for the entire program,
  6824. including all other function definitions (so the ordering of function
  6825. definitions does not matter). The concrete syntax for function
  6826. application\index{subject}{function application} is $(\Exp \; \Exp \ldots)$
  6827. where the first expression must
  6828. evaluate to a function and the rest are the arguments.
  6829. The abstract syntax for function application is
  6830. $\APPLY{\Exp}{\Exp\ldots}$.
  6831. %% The syntax for function application does not include an explicit
  6832. %% keyword, which is error prone when using \code{match}. To alleviate
  6833. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  6834. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  6835. Functions are first-class in the sense that a function pointer
  6836. \index{subject}{function pointer} is data and can be stored in memory or passed
  6837. as a parameter to another function. Thus, we introduce a function
  6838. type, written
  6839. \begin{lstlisting}
  6840. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  6841. \end{lstlisting}
  6842. for a function whose $n$ parameters have the types $\Type_1$ through
  6843. $\Type_n$ and whose return type is $\Type_r$. The main limitation of
  6844. these functions (with respect to Racket functions) is that they are
  6845. not lexically scoped. That is, the only external entities that can be
  6846. referenced from inside a function body are other globally-defined
  6847. functions. The syntax of \LangFun{} prevents functions from being nested
  6848. inside each other.
  6849. \begin{figure}[tp]
  6850. \centering
  6851. \fbox{
  6852. \begin{minipage}{0.96\textwidth}
  6853. \small
  6854. \[
  6855. \begin{array}{lcl}
  6856. \Type &::=& \gray{ \key{Integer} \mid \key{Boolean}
  6857. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void} } \mid (\Type \ldots \; \key{->}\; \Type) \\
  6858. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  6859. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  6860. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  6861. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  6862. \mid (\key{and}\;\Exp\;\Exp)
  6863. \mid (\key{or}\;\Exp\;\Exp)
  6864. \mid (\key{not}\;\Exp)} \\
  6865. &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  6866. &\mid& \gray{(\key{vector}\;\Exp\ldots) \mid
  6867. (\key{vector-ref}\;\Exp\;\Int)} \\
  6868. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  6869. \mid \LP\key{has-type}~\Exp~\Type\RP } \\
  6870. &\mid& \LP\Exp \; \Exp \ldots\RP \\
  6871. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  6872. \LangFunM{} &::=& \Def \ldots \; \Exp
  6873. \end{array}
  6874. \]
  6875. \end{minipage}
  6876. }
  6877. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-concrete-syntax}).}
  6878. \label{fig:Rfun-concrete-syntax}
  6879. \end{figure}
  6880. \begin{figure}[tp]
  6881. \centering
  6882. \fbox{
  6883. \begin{minipage}{0.96\textwidth}
  6884. \small
  6885. \[
  6886. \begin{array}{lcl}
  6887. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  6888. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  6889. &\mid& \gray{ \BOOL{\itm{bool}}
  6890. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  6891. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP }
  6892. \mid \APPLY{\Exp}{\Exp\ldots}\\
  6893. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}\\
  6894. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  6895. \end{array}
  6896. \]
  6897. \end{minipage}
  6898. }
  6899. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-syntax}).}
  6900. \label{fig:Rfun-syntax}
  6901. \end{figure}
  6902. The program in Figure~\ref{fig:Rfun-function-example} is a
  6903. representative example of defining and using functions in \LangFun{}. We
  6904. define a function \code{map-vec} that applies some other function
  6905. \code{f} to both elements of a vector and returns a new
  6906. vector containing the results. We also define a function \code{add1}.
  6907. The program applies
  6908. \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
  6909. \code{(vector 1 42)}, from which we return the \code{42}.
  6910. \begin{figure}[tbp]
  6911. \begin{lstlisting}
  6912. (define (map-vec [f : (Integer -> Integer)]
  6913. [v : (Vector Integer Integer)])
  6914. : (Vector Integer Integer)
  6915. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  6916. (define (add1 [x : Integer]) : Integer
  6917. (+ x 1))
  6918. (vector-ref (map-vec add1 (vector 0 41)) 1)
  6919. \end{lstlisting}
  6920. \caption{Example of using functions in \LangFun{}.}
  6921. \label{fig:Rfun-function-example}
  6922. \end{figure}
  6923. The definitional interpreter for \LangFun{} is in
  6924. Figure~\ref{fig:interp-Rfun}. The case for the \code{ProgramDefsExp} form is
  6925. responsible for setting up the mutual recursion between the top-level
  6926. function definitions. We use the classic back-patching \index{subject}{back-patching}
  6927. approach that uses mutable variables and makes two passes over the function
  6928. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  6929. top-level environment using a mutable cons cell for each function
  6930. definition. Note that the \code{lambda} value for each function is
  6931. incomplete; it does not yet include the environment. Once the
  6932. top-level environment is constructed, we then iterate over it and
  6933. update the \code{lambda} values to use the top-level environment.
  6934. \begin{figure}[tp]
  6935. \begin{lstlisting}
  6936. (define interp-Rfun-class
  6937. (class interp-Rvec-class
  6938. (super-new)
  6939. (define/override ((interp-exp env) e)
  6940. (define recur (interp-exp env))
  6941. (match e
  6942. [(Var x) (unbox (dict-ref env x))]
  6943. [(Let x e body)
  6944. (define new-env (dict-set env x (box (recur e))))
  6945. ((interp-exp new-env) body)]
  6946. [(Apply fun args)
  6947. (define fun-val (recur fun))
  6948. (define arg-vals (for/list ([e args]) (recur e)))
  6949. (match fun-val
  6950. [`(function (,xs ...) ,body ,fun-env)
  6951. (define params-args (for/list ([x xs] [arg arg-vals])
  6952. (cons x (box arg))))
  6953. (define new-env (append params-args fun-env))
  6954. ((interp-exp new-env) body)]
  6955. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  6956. [else ((super interp-exp env) e)]
  6957. ))
  6958. (define/public (interp-def d)
  6959. (match d
  6960. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  6961. (cons f (box `(function ,xs ,body ())))]))
  6962. (define/override (interp-program p)
  6963. (match p
  6964. [(ProgramDefsExp info ds body)
  6965. (let ([top-level (for/list ([d ds]) (interp-def d))])
  6966. (for/list ([f (in-dict-values top-level)])
  6967. (set-box! f (match (unbox f)
  6968. [`(function ,xs ,body ())
  6969. `(function ,xs ,body ,top-level)])))
  6970. ((interp-exp top-level) body))]))
  6971. ))
  6972. (define (interp-Rfun p)
  6973. (send (new interp-Rfun-class) interp-program p))
  6974. \end{lstlisting}
  6975. \caption{Interpreter for the \LangFun{} language.}
  6976. \label{fig:interp-Rfun}
  6977. \end{figure}
  6978. %\margincomment{TODO: explain type checker}
  6979. The type checker for \LangFun{} is in Figure~\ref{fig:type-check-Rfun}.
  6980. \begin{figure}[tp]
  6981. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6982. (define type-check-Rfun-class
  6983. (class type-check-Rvec-class
  6984. (super-new)
  6985. (inherit check-type-equal?)
  6986. (define/public (type-check-apply env e es)
  6987. (define-values (e^ ty) ((type-check-exp env) e))
  6988. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  6989. ((type-check-exp env) e)))
  6990. (match ty
  6991. [`(,ty^* ... -> ,rt)
  6992. (for ([arg-ty ty*] [param-ty ty^*])
  6993. (check-type-equal? arg-ty param-ty (Apply e es)))
  6994. (values e^ e* rt)]))
  6995. (define/override (type-check-exp env)
  6996. (lambda (e)
  6997. (match e
  6998. [(FunRef f)
  6999. (values (FunRef f) (dict-ref env f))]
  7000. [(Apply e es)
  7001. (define-values (e^ es^ rt) (type-check-apply env e es))
  7002. (values (Apply e^ es^) rt)]
  7003. [(Call e es)
  7004. (define-values (e^ es^ rt) (type-check-apply env e es))
  7005. (values (Call e^ es^) rt)]
  7006. [else ((super type-check-exp env) e)])))
  7007. (define/public (type-check-def env)
  7008. (lambda (e)
  7009. (match e
  7010. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  7011. (define new-env (append (map cons xs ps) env))
  7012. (define-values (body^ ty^) ((type-check-exp new-env) body))
  7013. (check-type-equal? ty^ rt body)
  7014. (Def f p:t* rt info body^)])))
  7015. (define/public (fun-def-type d)
  7016. (match d
  7017. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  7018. (define/override (type-check-program e)
  7019. (match e
  7020. [(ProgramDefsExp info ds body)
  7021. (define new-env (for/list ([d ds])
  7022. (cons (Def-name d) (fun-def-type d))))
  7023. (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
  7024. (define-values (body^ ty) ((type-check-exp new-env) body))
  7025. (check-type-equal? ty 'Integer body)
  7026. (ProgramDefsExp info ds^ body^)]))))
  7027. (define (type-check-Rfun p)
  7028. (send (new type-check-Rfun-class) type-check-program p))
  7029. \end{lstlisting}
  7030. \caption{Type checker for the \LangFun{} language.}
  7031. \label{fig:type-check-Rfun}
  7032. \end{figure}
  7033. \section{Functions in x86}
  7034. \label{sec:fun-x86}
  7035. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  7036. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  7037. %% \margincomment{\tiny Talk about the return address on the
  7038. %% stack and what callq and retq does.\\ --Jeremy }
  7039. The x86 architecture provides a few features to support the
  7040. implementation of functions. We have already seen that x86 provides
  7041. labels so that one can refer to the location of an instruction, as is
  7042. needed for jump instructions. Labels can also be used to mark the
  7043. beginning of the instructions for a function. Going further, we can
  7044. obtain the address of a label by using the \key{leaq} instruction and
  7045. PC-relative addressing. For example, the following puts the
  7046. address of the \code{add1} label into the \code{rbx} register.
  7047. \begin{lstlisting}
  7048. leaq add1(%rip), %rbx
  7049. \end{lstlisting}
  7050. The instruction pointer register \key{rip} (aka. the program counter
  7051. \index{subject}{program counter}) always points to the next instruction to be
  7052. executed. When combined with an label, as in \code{add1(\%rip)}, the
  7053. linker computes the distance $d$ between the address of \code{add1}
  7054. and where the \code{rip} would be at that moment and then changes
  7055. \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
  7056. the address of \code{add1}.
  7057. In Section~\ref{sec:x86} we used of the \code{callq} instruction to
  7058. jump to a function whose location is given by a label. To support
  7059. function calls in this chapter we instead will be jumping to a
  7060. function whose location is given by an address in a register, that is,
  7061. we need to make an \emph{indirect function call}. The x86 syntax for
  7062. this is a \code{callq} instruction but with an asterisk before the
  7063. register name.\index{subject}{indirect function call}
  7064. \begin{lstlisting}
  7065. callq *%rbx
  7066. \end{lstlisting}
  7067. \subsection{Calling Conventions}
  7068. \index{subject}{calling conventions}
  7069. The \code{callq} instruction provides partial support for implementing
  7070. functions: it pushes the return address on the stack and it jumps to
  7071. the target. However, \code{callq} does not handle
  7072. \begin{enumerate}
  7073. \item parameter passing,
  7074. \item pushing frames on the procedure call stack and popping them off,
  7075. or
  7076. \item determining how registers are shared by different functions.
  7077. \end{enumerate}
  7078. Regarding (1) parameter passing, recall that the following six
  7079. registers are used to pass arguments to a function, in this order.
  7080. \begin{lstlisting}
  7081. rdi rsi rdx rcx r8 r9
  7082. \end{lstlisting}
  7083. If there are
  7084. more than six arguments, then the convention is to use space on the
  7085. frame of the caller for the rest of the arguments. However, to ease
  7086. the implementation of efficient tail calls
  7087. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  7088. arguments.
  7089. %
  7090. Also recall that the register \code{rax} is for the return value of
  7091. the function.
  7092. \index{subject}{prelude}\index{subject}{conclusion}
  7093. Regarding (2) frames \index{subject}{frame} and the procedure call stack,
  7094. \index{subject}{procedure call stack} recall from Section~\ref{sec:x86} that
  7095. the stack grows down, with each function call using a chunk of space
  7096. called a frame. The caller sets the stack pointer, register
  7097. \code{rsp}, to the last data item in its frame. The callee must not
  7098. change anything in the caller's frame, that is, anything that is at or
  7099. above the stack pointer. The callee is free to use locations that are
  7100. below the stack pointer.
  7101. Recall that we are storing variables of vector type on the root stack.
  7102. So the prelude needs to move the root stack pointer \code{r15} up and
  7103. the conclusion needs to move the root stack pointer back down. Also,
  7104. the prelude must initialize to \code{0} this frame's slots in the root
  7105. stack to signal to the garbage collector that those slots do not yet
  7106. contain a pointer to a vector. Otherwise the garbage collector will
  7107. interpret the garbage bits in those slots as memory addresses and try
  7108. to traverse them, causing serious mayhem!
  7109. Regarding (3) the sharing of registers between different functions,
  7110. recall from Section~\ref{sec:calling-conventions} that the registers
  7111. are divided into two groups, the caller-saved registers and the
  7112. callee-saved registers. The caller should assume that all the
  7113. caller-saved registers get overwritten with arbitrary values by the
  7114. callee. That is why we recommend in
  7115. Section~\ref{sec:calling-conventions} that variables that are live
  7116. during a function call should not be assigned to caller-saved
  7117. registers.
  7118. On the flip side, if the callee wants to use a callee-saved register,
  7119. the callee must save the contents of those registers on their stack
  7120. frame and then put them back prior to returning to the caller. That
  7121. is why we recommended in Section~\ref{sec:calling-conventions} that if
  7122. the register allocator assigns a variable to a callee-saved register,
  7123. then the prelude of the \code{main} function must save that register
  7124. to the stack and the conclusion of \code{main} must restore it. This
  7125. recommendation now generalizes to all functions.
  7126. Also recall that the base pointer, register \code{rbp}, is used as a
  7127. point-of-reference within a frame, so that each local variable can be
  7128. accessed at a fixed offset from the base pointer
  7129. (Section~\ref{sec:x86}).
  7130. %
  7131. Figure~\ref{fig:call-frames} shows the general layout of the caller
  7132. and callee frames.
  7133. \begin{figure}[tbp]
  7134. \centering
  7135. \begin{tabular}{r|r|l|l} \hline
  7136. Caller View & Callee View & Contents & Frame \\ \hline
  7137. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  7138. 0(\key{\%rbp}) & & old \key{rbp} \\
  7139. -8(\key{\%rbp}) & & callee-saved $1$ \\
  7140. \ldots & & \ldots \\
  7141. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  7142. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  7143. \ldots & & \ldots \\
  7144. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  7145. %% & & \\
  7146. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  7147. %% & \ldots & \ldots \\
  7148. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  7149. \hline
  7150. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  7151. & 0(\key{\%rbp}) & old \key{rbp} \\
  7152. & -8(\key{\%rbp}) & callee-saved $1$ \\
  7153. & \ldots & \ldots \\
  7154. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  7155. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  7156. & \ldots & \ldots \\
  7157. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  7158. \end{tabular}
  7159. \caption{Memory layout of caller and callee frames.}
  7160. \label{fig:call-frames}
  7161. \end{figure}
  7162. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  7163. %% local variables and for storing the values of callee-saved registers
  7164. %% (we shall refer to all of these collectively as ``locals''), and that
  7165. %% at the beginning of a function we move the stack pointer \code{rsp}
  7166. %% down to make room for them.
  7167. %% We recommend storing the local variables
  7168. %% first and then the callee-saved registers, so that the local variables
  7169. %% can be accessed using \code{rbp} the same as before the addition of
  7170. %% functions.
  7171. %% To make additional room for passing arguments, we shall
  7172. %% move the stack pointer even further down. We count how many stack
  7173. %% arguments are needed for each function call that occurs inside the
  7174. %% body of the function and find their maximum. Adding this number to the
  7175. %% number of locals gives us how much the \code{rsp} should be moved at
  7176. %% the beginning of the function. In preparation for a function call, we
  7177. %% offset from \code{rsp} to set up the stack arguments. We put the first
  7178. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  7179. %% so on.
  7180. %% Upon calling the function, the stack arguments are retrieved by the
  7181. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  7182. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  7183. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  7184. %% the layout of the caller and callee frames. Notice how important it is
  7185. %% that we correctly compute the maximum number of arguments needed for
  7186. %% function calls; if that number is too small then the arguments and
  7187. %% local variables will smash into each other!
  7188. \subsection{Efficient Tail Calls}
  7189. \label{sec:tail-call}
  7190. In general, the amount of stack space used by a program is determined
  7191. by the longest chain of nested function calls. That is, if function
  7192. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
  7193. $f_n$, then the amount of stack space is bounded by $O(n)$. The depth
  7194. $n$ can grow quite large in the case of recursive or mutually
  7195. recursive functions. However, in some cases we can arrange to use only
  7196. constant space, i.e. $O(1)$, instead of $O(n)$.
  7197. If a function call is the last action in a function body, then that
  7198. call is said to be a \emph{tail call}\index{subject}{tail call}.
  7199. For example, in the following
  7200. program, the recursive call to \code{tail-sum} is a tail call.
  7201. \begin{center}
  7202. \begin{lstlisting}
  7203. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  7204. (if (eq? n 0)
  7205. r
  7206. (tail-sum (- n 1) (+ n r))))
  7207. (+ (tail-sum 5 0) 27)
  7208. \end{lstlisting}
  7209. \end{center}
  7210. At a tail call, the frame of the caller is no longer needed, so we
  7211. can pop the caller's frame before making the tail call. With this
  7212. approach, a recursive function that only makes tail calls will only
  7213. use $O(1)$ stack space. Functional languages like Racket typically
  7214. rely heavily on recursive functions, so they typically guarantee that
  7215. all tail calls will be optimized in this way.
  7216. \index{subject}{frame}
  7217. However, some care is needed with regards to argument passing in tail
  7218. calls. As mentioned above, for arguments beyond the sixth, the
  7219. convention is to use space in the caller's frame for passing
  7220. arguments. But for a tail call we pop the caller's frame and can no
  7221. longer use it. Another alternative is to use space in the callee's
  7222. frame for passing arguments. However, this option is also problematic
  7223. because the caller and callee's frame overlap in memory. As we begin
  7224. to copy the arguments from their sources in the caller's frame, the
  7225. target locations in the callee's frame might overlap with the sources
  7226. for later arguments! We solve this problem by not using the stack for
  7227. passing more than six arguments but instead using the heap, as we
  7228. describe in the Section~\ref{sec:limit-functions-r4}.
  7229. As mentioned above, for a tail call we pop the caller's frame prior to
  7230. making the tail call. The instructions for popping a frame are the
  7231. instructions that we usually place in the conclusion of a
  7232. function. Thus, we also need to place such code immediately before
  7233. each tail call. These instructions include restoring the callee-saved
  7234. registers, so it is good that the argument passing registers are all
  7235. caller-saved registers.
  7236. One last note regarding which instruction to use to make the tail
  7237. call. When the callee is finished, it should not return to the current
  7238. function, but it should return to the function that called the current
  7239. one. Thus, the return address that is already on the stack is the
  7240. right one, and we should not use \key{callq} to make the tail call, as
  7241. that would unnecessarily overwrite the return address. Instead we can
  7242. simply use the \key{jmp} instruction. Like the indirect function call,
  7243. we write an \emph{indirect jump}\index{subject}{indirect jump} with a register
  7244. prefixed with an asterisk. We recommend using \code{rax} to hold the
  7245. jump target because the preceding conclusion overwrites just about
  7246. everything else.
  7247. \begin{lstlisting}
  7248. jmp *%rax
  7249. \end{lstlisting}
  7250. \section{Shrink \LangFun{}}
  7251. \label{sec:shrink-r4}
  7252. The \code{shrink} pass performs a minor modification to ease the
  7253. later passes. This pass introduces an explicit \code{main} function
  7254. and changes the top \code{ProgramDefsExp} form to
  7255. \code{ProgramDefs} as follows.
  7256. \begin{lstlisting}
  7257. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  7258. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  7259. \end{lstlisting}
  7260. where $\itm{mainDef}$ is
  7261. \begin{lstlisting}
  7262. (Def 'main '() 'Integer '() |$\Exp'$|)
  7263. \end{lstlisting}
  7264. \section{Reveal Functions and the \LangFunRef{} language}
  7265. \label{sec:reveal-functions-r4}
  7266. The syntax of \LangFun{} is inconvenient for purposes of compilation in one
  7267. respect: it conflates the use of function names and local
  7268. variables. This is a problem because we need to compile the use of a
  7269. function name differently than the use of a local variable; we need to
  7270. use \code{leaq} to convert the function name (a label in x86) to an
  7271. address in a register. Thus, it is a good idea to create a new pass
  7272. that changes function references from just a symbol $f$ to
  7273. $\FUNREF{f}$. This pass is named \code{reveal-functions} and the
  7274. output language, \LangFunRef{}, is defined in Figure~\ref{fig:f1-syntax}.
  7275. The concrete syntax for a function reference is $\CFUNREF{f}$.
  7276. \begin{figure}[tp]
  7277. \centering
  7278. \fbox{
  7279. \begin{minipage}{0.96\textwidth}
  7280. \[
  7281. \begin{array}{lcl}
  7282. \Exp &::=& \ldots \mid \FUNREF{\Var}\\
  7283. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  7284. \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  7285. \end{array}
  7286. \]
  7287. \end{minipage}
  7288. }
  7289. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  7290. (Figure~\ref{fig:Rfun-syntax}).}
  7291. \label{fig:f1-syntax}
  7292. \end{figure}
  7293. %% Distinguishing between calls in tail position and non-tail position
  7294. %% requires the pass to have some notion of context. We recommend using
  7295. %% two mutually recursive functions, one for processing expressions in
  7296. %% tail position and another for the rest.
  7297. Placing this pass after \code{uniquify} will make sure that there are
  7298. no local variables and functions that share the same name. On the
  7299. other hand, \code{reveal-functions} needs to come before the
  7300. \code{explicate-control} pass because that pass helps us compile
  7301. \code{FunRef} forms into assignment statements.
  7302. \section{Limit Functions}
  7303. \label{sec:limit-functions-r4}
  7304. Recall that we wish to limit the number of function parameters to six
  7305. so that we do not need to use the stack for argument passing, which
  7306. makes it easier to implement efficient tail calls. However, because
  7307. the input language \LangFun{} supports arbitrary numbers of function
  7308. arguments, we have some work to do!
  7309. This pass transforms functions and function calls that involve more
  7310. than six arguments to pass the first five arguments as usual, but it
  7311. packs the rest of the arguments into a vector and passes it as the
  7312. sixth argument.
  7313. Each function definition with too many parameters is transformed as
  7314. follows.
  7315. \begin{lstlisting}
  7316. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  7317. |$\Rightarrow$|
  7318. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  7319. \end{lstlisting}
  7320. where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
  7321. the occurrences of the later parameters with vector references.
  7322. \begin{lstlisting}
  7323. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
  7324. \end{lstlisting}
  7325. For function calls with too many arguments, the \code{limit-functions}
  7326. pass transforms them in the following way.
  7327. \begin{tabular}{lll}
  7328. \begin{minipage}{0.2\textwidth}
  7329. \begin{lstlisting}
  7330. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  7331. \end{lstlisting}
  7332. \end{minipage}
  7333. &
  7334. $\Rightarrow$
  7335. &
  7336. \begin{minipage}{0.4\textwidth}
  7337. \begin{lstlisting}
  7338. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  7339. \end{lstlisting}
  7340. \end{minipage}
  7341. \end{tabular}
  7342. \section{Remove Complex Operands}
  7343. \label{sec:rco-r4}
  7344. The primary decisions to make for this pass is whether to classify
  7345. \code{FunRef} and \code{Apply} as either atomic or complex
  7346. expressions. Recall that a simple expression will eventually end up as
  7347. just an immediate argument of an x86 instruction. Function
  7348. application will be translated to a sequence of instructions, so
  7349. \code{Apply} must be classified as complex expression.
  7350. On the other hand, the arguments of \code{Apply} should be
  7351. atomic expressions.
  7352. %
  7353. Regarding \code{FunRef}, as discussed above, the function label needs
  7354. to be converted to an address using the \code{leaq} instruction. Thus,
  7355. even though \code{FunRef} seems rather simple, it needs to be
  7356. classified as a complex expression so that we generate an assignment
  7357. statement with a left-hand side that can serve as the target of the
  7358. \code{leaq}. Figure~\ref{fig:Rfun-anf-syntax} defines the
  7359. output language \LangFunANF{} of this pass.
  7360. \begin{figure}[tp]
  7361. \centering
  7362. \fbox{
  7363. \begin{minipage}{0.96\textwidth}
  7364. \small
  7365. \[
  7366. \begin{array}{rcl}
  7367. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  7368. \mid \VOID{} } \\
  7369. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  7370. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  7371. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  7372. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  7373. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  7374. &\mid& \gray{ \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  7375. \mid \LP\key{GlobalValue}~\Var\RP }\\
  7376. &\mid& \FUNREF{\Var} \mid \APPLY{\Atm}{\Atm\ldots}\\
  7377. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  7378. R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  7379. \end{array}
  7380. \]
  7381. \end{minipage}
  7382. }
  7383. \caption{\LangFunANF{} is \LangFun{} in administrative normal form (ANF).}
  7384. \label{fig:Rfun-anf-syntax}
  7385. \end{figure}
  7386. \section{Explicate Control and the \LangCFun{} language}
  7387. \label{sec:explicate-control-r4}
  7388. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  7389. output of \key{explicate-control}. (The concrete syntax is given in
  7390. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
  7391. functions for assignment and tail contexts should be updated with
  7392. cases for \code{Apply} and \code{FunRef} and the function for
  7393. predicate context should be updated for \code{Apply} but not
  7394. \code{FunRef}. (A \code{FunRef} can't be a Boolean.) In assignment
  7395. and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
  7396. tail position \code{Apply} becomes \code{TailCall}. We recommend
  7397. defining a new auxiliary function for processing function definitions.
  7398. This code is similar to the case for \code{Program} in \LangVec{}. The
  7399. top-level \code{explicate-control} function that handles the
  7400. \code{ProgramDefs} form of \LangFun{} can then apply this new function to
  7401. all the function definitions.
  7402. \begin{figure}[tp]
  7403. \fbox{
  7404. \begin{minipage}{0.96\textwidth}
  7405. \small
  7406. \[
  7407. \begin{array}{lcl}
  7408. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  7409. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  7410. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  7411. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  7412. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  7413. &\mid& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  7414. &\mid& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  7415. &\mid& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  7416. &\mid& \gray{ \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP }\\
  7417. &\mid& \FUNREF{\itm{label}} \mid \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  7418. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  7419. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  7420. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  7421. \mid \GOTO{\itm{label}} } \\
  7422. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  7423. &\mid& \TAILCALL{\Atm}{\Atm\ldots} \\
  7424. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  7425. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  7426. \end{array}
  7427. \]
  7428. \end{minipage}
  7429. }
  7430. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  7431. \label{fig:c3-syntax}
  7432. \end{figure}
  7433. \section{Select Instructions and the \LangXIndCall{} Language}
  7434. \label{sec:select-r4}
  7435. \index{subject}{instruction selection}
  7436. The output of select instructions is a program in the \LangXIndCall{}
  7437. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  7438. \index{subject}{x86}
  7439. \begin{figure}[tp]
  7440. \fbox{
  7441. \begin{minipage}{0.96\textwidth}
  7442. \small
  7443. \[
  7444. \begin{array}{lcl}
  7445. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)}
  7446. \mid \LP\key{fun-ref}\; \itm{label}\RP\\
  7447. \itm{cc} & ::= & \gray{ \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} } \\
  7448. \Instr &::=& \ldots
  7449. \mid \key{callq}\;\key{*}\Arg \mid \key{tailjmp}\;\Arg
  7450. \mid \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  7451. \Block &::= & \Instr\ldots \\
  7452. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  7453. \LangXIndCallM{} &::= & \Def\ldots
  7454. \end{array}
  7455. \]
  7456. \end{minipage}
  7457. }
  7458. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  7459. \label{fig:x86-3-concrete}
  7460. \end{figure}
  7461. \begin{figure}[tp]
  7462. \fbox{
  7463. \begin{minipage}{0.96\textwidth}
  7464. \small
  7465. \[
  7466. \begin{array}{lcl}
  7467. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  7468. \mid \BYTEREG{\Reg} } \\
  7469. &\mid& \gray{ (\key{Global}~\Var) } \mid \FUNREF{\itm{label}} \\
  7470. \Instr &::=& \ldots \mid \INDCALLQ{\Arg}{\itm{int}}
  7471. \mid \TAILJMP{\Arg}{\itm{int}}\\
  7472. &\mid& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  7473. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  7474. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  7475. \LangXIndCallM{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  7476. \end{array}
  7477. \]
  7478. \end{minipage}
  7479. }
  7480. \caption{The abstract syntax of \LangXIndCall{} (extends
  7481. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  7482. \label{fig:x86-3}
  7483. \end{figure}
  7484. An assignment of a function reference to a variable becomes a
  7485. load-effective-address instruction as follows: \\
  7486. \begin{tabular}{lcl}
  7487. \begin{minipage}{0.35\textwidth}
  7488. \begin{lstlisting}
  7489. |$\itm{lhs}$| = (fun-ref |$f$|);
  7490. \end{lstlisting}
  7491. \end{minipage}
  7492. &
  7493. $\Rightarrow$\qquad\qquad
  7494. &
  7495. \begin{minipage}{0.3\textwidth}
  7496. \begin{lstlisting}
  7497. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  7498. \end{lstlisting}
  7499. \end{minipage}
  7500. \end{tabular} \\
  7501. Regarding function definitions, we need to remove the parameters and
  7502. instead perform parameter passing using the conventions discussed in
  7503. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  7504. registers. We recommend turning the parameters into local variables
  7505. and generating instructions at the beginning of the function to move
  7506. from the argument passing registers to these local variables.
  7507. \begin{lstlisting}
  7508. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
  7509. |$\Rightarrow$|
  7510. (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
  7511. \end{lstlisting}
  7512. The $G'$ control-flow graph is the same as $G$ except that the
  7513. \code{start} block is modified to add the instructions for moving from
  7514. the argument registers to the parameter variables. So the \code{start}
  7515. block of $G$ shown on the left is changed to the code on the right.
  7516. \begin{center}
  7517. \begin{minipage}{0.3\textwidth}
  7518. \begin{lstlisting}
  7519. start:
  7520. |$\itm{instr}_1$|
  7521. |$\vdots$|
  7522. |$\itm{instr}_n$|
  7523. \end{lstlisting}
  7524. \end{minipage}
  7525. $\Rightarrow$
  7526. \begin{minipage}{0.3\textwidth}
  7527. \begin{lstlisting}
  7528. start:
  7529. movq %rdi, |$x_1$|
  7530. movq %rsi, |$x_2$|
  7531. |$\vdots$|
  7532. |$\itm{instr}_1$|
  7533. |$\vdots$|
  7534. |$\itm{instr}_n$|
  7535. \end{lstlisting}
  7536. \end{minipage}
  7537. \end{center}
  7538. By changing the parameters to local variables, we are giving the
  7539. register allocator control over which registers or stack locations to
  7540. use for them. If you implemented the move-biasing challenge
  7541. (Section~\ref{sec:move-biasing}), the register allocator will try to
  7542. assign the parameter variables to the corresponding argument register,
  7543. in which case the \code{patch-instructions} pass will remove the
  7544. \code{movq} instruction. This happens in the example translation in
  7545. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  7546. the \code{add} function.
  7547. %
  7548. Also, note that the register allocator will perform liveness analysis
  7549. on this sequence of move instructions and build the interference
  7550. graph. So, for example, $x_1$ will be marked as interfering with
  7551. \code{rsi} and that will prevent the assignment of $x_1$ to
  7552. \code{rsi}, which is good, because that would overwrite the argument
  7553. that needs to move into $x_2$.
  7554. Next, consider the compilation of function calls. In the mirror image
  7555. of handling the parameters of function definitions, the arguments need
  7556. to be moved to the argument passing registers. The function call
  7557. itself is performed with an indirect function call. The return value
  7558. from the function is stored in \code{rax}, so it needs to be moved
  7559. into the \itm{lhs}.
  7560. \begin{lstlisting}
  7561. |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
  7562. |$\Rightarrow$|
  7563. movq |$\itm{arg}_1$|, %rdi
  7564. movq |$\itm{arg}_2$|, %rsi
  7565. |$\vdots$|
  7566. callq *|\itm{fun}|
  7567. movq %rax, |\itm{lhs}|
  7568. \end{lstlisting}
  7569. The \code{IndirectCallq} AST node includes an integer for the arity of
  7570. the function, i.e., the number of parameters. That information is
  7571. useful in the \code{uncover-live} pass for determining which
  7572. argument-passing registers are potentially read during the call.
  7573. For tail calls, the parameter passing is the same as non-tail calls:
  7574. generate instructions to move the arguments into to the argument
  7575. passing registers. After that we need to pop the frame from the
  7576. procedure call stack. However, we do not yet know how big the frame
  7577. is; that gets determined during register allocation. So instead of
  7578. generating those instructions here, we invent a new instruction that
  7579. means ``pop the frame and then do an indirect jump'', which we name
  7580. \code{TailJmp}. The abstract syntax for this instruction includes an
  7581. argument that specifies where to jump and an integer that represents
  7582. the arity of the function being called.
  7583. Recall that in Section~\ref{sec:explicate-control-Rvar} we recommended
  7584. using the label \code{start} for the initial block of a program, and
  7585. in Section~\ref{sec:select-Rvar} we recommended labeling the conclusion
  7586. of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
  7587. can be compiled to an assignment to \code{rax} followed by a jump to
  7588. \code{conclusion}. With the addition of function definitions, we will
  7589. have a starting block and conclusion for each function, but their
  7590. labels need to be unique. We recommend prepending the function's name
  7591. to \code{start} and \code{conclusion}, respectively, to obtain unique
  7592. labels. (Alternatively, one could \code{gensym} labels for the start
  7593. and conclusion and store them in the $\itm{info}$ field of the
  7594. function definition.)
  7595. \section{Register Allocation}
  7596. \label{sec:register-allocation-r4}
  7597. \subsection{Liveness Analysis}
  7598. \label{sec:liveness-analysis-r4}
  7599. \index{subject}{liveness analysis}
  7600. %% The rest of the passes need only minor modifications to handle the new
  7601. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  7602. %% \code{leaq}.
  7603. The \code{IndirectCallq} instruction should be treated like
  7604. \code{Callq} regarding its written locations $W$, in that they should
  7605. include all the caller-saved registers. Recall that the reason for
  7606. that is to force call-live variables to be assigned to callee-saved
  7607. registers or to be spilled to the stack.
  7608. Regarding the set of read locations $R$ the arity field of
  7609. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  7610. argument-passing registers should be considered as read by those
  7611. instructions.
  7612. \subsection{Build Interference Graph}
  7613. \label{sec:build-interference-r4}
  7614. With the addition of function definitions, we compute an interference
  7615. graph for each function (not just one for the whole program).
  7616. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  7617. spill vector-typed variables that are live during a call to the
  7618. \code{collect}. With the addition of functions to our language, we
  7619. need to revisit this issue. Many functions perform allocation and
  7620. therefore have calls to the collector inside of them. Thus, we should
  7621. not only spill a vector-typed variable when it is live during a call
  7622. to \code{collect}, but we should spill the variable if it is live
  7623. during any function call. Thus, in the \code{build-interference} pass,
  7624. we recommend adding interference edges between call-live vector-typed
  7625. variables and the callee-saved registers (in addition to the usual
  7626. addition of edges between call-live variables and the caller-saved
  7627. registers).
  7628. \subsection{Allocate Registers}
  7629. The primary change to the \code{allocate-registers} pass is adding an
  7630. auxiliary function for handling definitions (the \Def{} non-terminal
  7631. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  7632. logic is the same as described in
  7633. Chapter~\ref{ch:register-allocation-Rvar}, except now register
  7634. allocation is performed many times, once for each function definition,
  7635. instead of just once for the whole program.
  7636. \section{Patch Instructions}
  7637. In \code{patch-instructions}, you should deal with the x86
  7638. idiosyncrasy that the destination argument of \code{leaq} must be a
  7639. register. Additionally, you should ensure that the argument of
  7640. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  7641. code generation more convenient, because we trample many registers
  7642. before the tail call (as explained in the next section).
  7643. \section{Print x86}
  7644. For the \code{print-x86} pass, the cases for \code{FunRef} and
  7645. \code{IndirectCallq} are straightforward: output their concrete
  7646. syntax.
  7647. \begin{lstlisting}
  7648. (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  7649. (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  7650. \end{lstlisting}
  7651. The \code{TailJmp} node requires a bit work. A straightforward
  7652. translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
  7653. before the jump we need to pop the current frame. This sequence of
  7654. instructions is the same as the code for the conclusion of a function,
  7655. except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  7656. Regarding function definitions, you will need to generate a prelude
  7657. and conclusion for each one. This code is similar to the prelude and
  7658. conclusion that you generated for the \code{main} function in
  7659. Chapter~\ref{ch:Rvec}. To review, the prelude of every function
  7660. should carry out the following steps.
  7661. \begin{enumerate}
  7662. \item Start with \code{.global} and \code{.align} directives followed
  7663. by the label for the function. (See Figure~\ref{fig:add-fun} for an
  7664. example.)
  7665. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  7666. pointer.
  7667. \item Push to the stack all of the callee-saved registers that were
  7668. used for register allocation.
  7669. \item Move the stack pointer \code{rsp} down by the size of the stack
  7670. frame for this function, which depends on the number of regular
  7671. spills. (Aligned to 16 bytes.)
  7672. \item Move the root stack pointer \code{r15} up by the size of the
  7673. root-stack frame for this function, which depends on the number of
  7674. spilled vectors. \label{root-stack-init}
  7675. \item Initialize to zero all of the entries in the root-stack frame.
  7676. \item Jump to the start block.
  7677. \end{enumerate}
  7678. The prelude of the \code{main} function has one additional task: call
  7679. the \code{initialize} function to set up the garbage collector and
  7680. move the value of the global \code{rootstack\_begin} in
  7681. \code{r15}. This should happen before step \ref{root-stack-init}
  7682. above, which depends on \code{r15}.
  7683. The conclusion of every function should do the following.
  7684. \begin{enumerate}
  7685. \item Move the stack pointer back up by the size of the stack frame
  7686. for this function.
  7687. \item Restore the callee-saved registers by popping them from the
  7688. stack.
  7689. \item Move the root stack pointer back down by the size of the
  7690. root-stack frame for this function.
  7691. \item Restore \code{rbp} by popping it from the stack.
  7692. \item Return to the caller with the \code{retq} instruction.
  7693. \end{enumerate}
  7694. \begin{exercise}\normalfont
  7695. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  7696. Create 5 new programs that use functions, including examples that pass
  7697. functions and return functions from other functions, recursive
  7698. functions, functions that create vectors, and functions that make tail
  7699. calls. Test your compiler on these new programs and all of your
  7700. previously created test programs.
  7701. \end{exercise}
  7702. \begin{figure}[tbp]
  7703. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7704. \node (Rfun) at (0,2) {\large \LangFun{}};
  7705. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  7706. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  7707. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  7708. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  7709. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  7710. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  7711. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  7712. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  7713. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  7714. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  7715. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  7716. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  7717. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  7718. \path[->,bend left=15] (Rfun) edge [above] node
  7719. {\ttfamily\footnotesize shrink} (Rfun-1);
  7720. \path[->,bend left=15] (Rfun-1) edge [above] node
  7721. {\ttfamily\footnotesize uniquify} (Rfun-2);
  7722. \path[->,bend left=15] (Rfun-2) edge [right] node
  7723. {\ttfamily\footnotesize ~~reveal-functions} (F1-1);
  7724. \path[->,bend left=15] (F1-1) edge [below] node
  7725. {\ttfamily\footnotesize limit-functions} (F1-2);
  7726. \path[->,bend right=15] (F1-2) edge [above] node
  7727. {\ttfamily\footnotesize expose-alloc.} (F1-3);
  7728. \path[->,bend right=15] (F1-3) edge [above] node
  7729. {\ttfamily\footnotesize remove-complex.} (F1-4);
  7730. \path[->,bend left=15] (F1-4) edge [right] node
  7731. {\ttfamily\footnotesize explicate-control} (C3-2);
  7732. \path[->,bend right=15] (C3-2) edge [left] node
  7733. {\ttfamily\footnotesize select-instr.} (x86-2);
  7734. \path[->,bend left=15] (x86-2) edge [left] node
  7735. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  7736. \path[->,bend right=15] (x86-2-1) edge [below] node
  7737. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  7738. \path[->,bend right=15] (x86-2-2) edge [left] node
  7739. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  7740. \path[->,bend left=15] (x86-3) edge [above] node
  7741. {\ttfamily\footnotesize patch-instr.} (x86-4);
  7742. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  7743. \end{tikzpicture}
  7744. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  7745. \label{fig:Rfun-passes}
  7746. \end{figure}
  7747. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  7748. compiling \LangFun{} to x86.
  7749. \section{An Example Translation}
  7750. \label{sec:functions-example}
  7751. Figure~\ref{fig:add-fun} shows an example translation of a simple
  7752. function in \LangFun{} to x86. The figure also includes the results of the
  7753. \code{explicate-control} and \code{select-instructions} passes.
  7754. \begin{figure}[htbp]
  7755. \begin{tabular}{ll}
  7756. \begin{minipage}{0.5\textwidth}
  7757. % s3_2.rkt
  7758. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7759. (define (add [x : Integer] [y : Integer])
  7760. : Integer
  7761. (+ x y))
  7762. (add 40 2)
  7763. \end{lstlisting}
  7764. $\Downarrow$
  7765. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7766. (define (add86 [x87 : Integer]
  7767. [y88 : Integer]) : Integer
  7768. add86start:
  7769. return (+ x87 y88);
  7770. )
  7771. (define (main) : Integer ()
  7772. mainstart:
  7773. tmp89 = (fun-ref add86);
  7774. (tail-call tmp89 40 2)
  7775. )
  7776. \end{lstlisting}
  7777. \end{minipage}
  7778. &
  7779. $\Rightarrow$
  7780. \begin{minipage}{0.5\textwidth}
  7781. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7782. (define (add86) : Integer
  7783. add86start:
  7784. movq %rdi, x87
  7785. movq %rsi, y88
  7786. movq x87, %rax
  7787. addq y88, %rax
  7788. jmp add11389conclusion
  7789. )
  7790. (define (main) : Integer
  7791. mainstart:
  7792. leaq (fun-ref add86), tmp89
  7793. movq $40, %rdi
  7794. movq $2, %rsi
  7795. tail-jmp tmp89
  7796. )
  7797. \end{lstlisting}
  7798. $\Downarrow$
  7799. \end{minipage}
  7800. \end{tabular}
  7801. \begin{tabular}{ll}
  7802. \begin{minipage}{0.3\textwidth}
  7803. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7804. .globl add86
  7805. .align 16
  7806. add86:
  7807. pushq %rbp
  7808. movq %rsp, %rbp
  7809. jmp add86start
  7810. add86start:
  7811. movq %rdi, %rax
  7812. addq %rsi, %rax
  7813. jmp add86conclusion
  7814. add86conclusion:
  7815. popq %rbp
  7816. retq
  7817. \end{lstlisting}
  7818. \end{minipage}
  7819. &
  7820. \begin{minipage}{0.5\textwidth}
  7821. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7822. .globl main
  7823. .align 16
  7824. main:
  7825. pushq %rbp
  7826. movq %rsp, %rbp
  7827. movq $16384, %rdi
  7828. movq $16384, %rsi
  7829. callq initialize
  7830. movq rootstack_begin(%rip), %r15
  7831. jmp mainstart
  7832. mainstart:
  7833. leaq add86(%rip), %rcx
  7834. movq $40, %rdi
  7835. movq $2, %rsi
  7836. movq %rcx, %rax
  7837. popq %rbp
  7838. jmp *%rax
  7839. mainconclusion:
  7840. popq %rbp
  7841. retq
  7842. \end{lstlisting}
  7843. \end{minipage}
  7844. \end{tabular}
  7845. \caption{Example compilation of a simple function to x86.}
  7846. \label{fig:add-fun}
  7847. \end{figure}
  7848. % Challenge idea: inlining! (simple version)
  7849. % Further Reading
  7850. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7851. \chapter{Lexically Scoped Functions}
  7852. \label{ch:Rlam}
  7853. \index{subject}{lambda}
  7854. \index{subject}{lexical scoping}
  7855. This chapter studies lexically scoped functions as they appear in
  7856. functional languages such as Racket. By lexical scoping we mean that a
  7857. function's body may refer to variables whose binding site is outside
  7858. of the function, in an enclosing scope.
  7859. %
  7860. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  7861. \LangLam{}, which extends \LangFun{} with anonymous functions using the
  7862. \key{lambda} form. The body of the \key{lambda}, refers to three
  7863. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  7864. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  7865. \code{y} is bound by the enclosing \key{let} and \code{x} is a
  7866. parameter of function \code{f}. The \key{lambda} is returned from the
  7867. function \code{f}. The main expression of the program includes two
  7868. calls to \code{f} with different arguments for \code{x}, first
  7869. \code{5} then \code{3}. The functions returned from \code{f} are bound
  7870. to variables \code{g} and \code{h}. Even though these two functions
  7871. were created by the same \code{lambda}, they are really different
  7872. functions because they use different values for \code{x}. Applying
  7873. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  7874. \code{15} produces \code{22}. The result of this program is \code{42}.
  7875. \begin{figure}[btp]
  7876. % s4_6.rkt
  7877. \begin{lstlisting}
  7878. (define (f [x : Integer]) : (Integer -> Integer)
  7879. (let ([y 4])
  7880. (lambda: ([z : Integer]) : Integer
  7881. (+ x (+ y z)))))
  7882. (let ([g (f 5)])
  7883. (let ([h (f 3)])
  7884. (+ (g 11) (h 15))))
  7885. \end{lstlisting}
  7886. \caption{Example of a lexically scoped function.}
  7887. \label{fig:lexical-scoping}
  7888. \end{figure}
  7889. The approach that we take for implementing lexically scoped
  7890. functions is to compile them into top-level function definitions,
  7891. translating from \LangLam{} into \LangFun{}. However, the compiler will need to
  7892. provide special treatment for variable occurrences such as \code{x}
  7893. and \code{y} in the body of the \code{lambda} of
  7894. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function may not
  7895. refer to variables defined outside of it. To identify such variable
  7896. occurrences, we review the standard notion of free variable.
  7897. \begin{definition}
  7898. A variable is \emph{free in expression} $e$ if the variable occurs
  7899. inside $e$ but does not have an enclosing binding in $e$.\index{subject}{free
  7900. variable}
  7901. \end{definition}
  7902. For example, in the expression \code{(+ x (+ y z))} the variables
  7903. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  7904. only \code{x} and \code{y} are free in the following expression
  7905. because \code{z} is bound by the \code{lambda}.
  7906. \begin{lstlisting}
  7907. (lambda: ([z : Integer]) : Integer
  7908. (+ x (+ y z)))
  7909. \end{lstlisting}
  7910. So the free variables of a \code{lambda} are the ones that will need
  7911. special treatment. We need to arrange for some way to transport, at
  7912. runtime, the values of those variables from the point where the
  7913. \code{lambda} was created to the point where the \code{lambda} is
  7914. applied. An efficient solution to the problem, due to
  7915. \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
  7916. free variables together with the function pointer for the lambda's
  7917. code, an arrangement called a \emph{flat closure} (which we shorten to
  7918. just ``closure''). \index{subject}{closure}\index{subject}{flat closure} Fortunately,
  7919. we have all the ingredients to make closures, Chapter~\ref{ch:Rvec}
  7920. gave us vectors and Chapter~\ref{ch:Rfun} gave us function
  7921. pointers. The function pointer resides at index $0$ and the
  7922. values for the free variables will fill in the rest of the vector.
  7923. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  7924. how closures work. It's a three-step dance. The program first calls
  7925. function \code{f}, which creates a closure for the \code{lambda}. The
  7926. closure is a vector whose first element is a pointer to the top-level
  7927. function that we will generate for the \code{lambda}, the second
  7928. element is the value of \code{x}, which is \code{5}, and the third
  7929. element is \code{4}, the value of \code{y}. The closure does not
  7930. contain an element for \code{z} because \code{z} is not a free
  7931. variable of the \code{lambda}. Creating the closure is step 1 of the
  7932. dance. The closure is returned from \code{f} and bound to \code{g}, as
  7933. shown in Figure~\ref{fig:closures}.
  7934. %
  7935. The second call to \code{f} creates another closure, this time with
  7936. \code{3} in the second slot (for \code{x}). This closure is also
  7937. returned from \code{f} but bound to \code{h}, which is also shown in
  7938. Figure~\ref{fig:closures}.
  7939. \begin{figure}[tbp]
  7940. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  7941. \caption{Example closure representation for the \key{lambda}'s
  7942. in Figure~\ref{fig:lexical-scoping}.}
  7943. \label{fig:closures}
  7944. \end{figure}
  7945. Continuing with the example, consider the application of \code{g} to
  7946. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  7947. obtain the function pointer in the first element of the closure and
  7948. call it, passing in the closure itself and then the regular arguments,
  7949. in this case \code{11}. This technique for applying a closure is step
  7950. 2 of the dance.
  7951. %
  7952. But doesn't this \code{lambda} only take 1 argument, for parameter
  7953. \code{z}? The third and final step of the dance is generating a
  7954. top-level function for a \code{lambda}. We add an additional
  7955. parameter for the closure and we insert a \code{let} at the beginning
  7956. of the function for each free variable, to bind those variables to the
  7957. appropriate elements from the closure parameter.
  7958. %
  7959. This three-step dance is known as \emph{closure conversion}. We
  7960. discuss the details of closure conversion in
  7961. Section~\ref{sec:closure-conversion} and the code generated from the
  7962. example in Section~\ref{sec:example-lambda}. But first we define the
  7963. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  7964. \section{The \LangLam{} Language}
  7965. \label{sec:r5}
  7966. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  7967. functions and lexical scoping, is defined in
  7968. Figures~\ref{fig:Rlam-concrete-syntax} and ~\ref{fig:Rlam-syntax}. It adds
  7969. the \key{lambda} form to the grammar for \LangFun{}, which already has
  7970. syntax for function application.
  7971. \begin{figure}[tp]
  7972. \centering
  7973. \fbox{
  7974. \begin{minipage}{0.96\textwidth}
  7975. \small
  7976. \[
  7977. \begin{array}{lcl}
  7978. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  7979. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void}
  7980. \mid (\Type\ldots \; \key{->}\; \Type)} \\
  7981. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  7982. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  7983. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  7984. &\mid& \gray{\key{\#t} \mid \key{\#f}
  7985. \mid (\key{and}\;\Exp\;\Exp)
  7986. \mid (\key{or}\;\Exp\;\Exp)
  7987. \mid (\key{not}\;\Exp) } \\
  7988. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  7989. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  7990. (\key{vector-ref}\;\Exp\;\Int)} \\
  7991. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  7992. \mid (\Exp \; \Exp\ldots) } \\
  7993. &\mid& \LP \key{procedure-arity}~\Exp\RP \\
  7994. &\mid& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  7995. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  7996. \LangLamM{} &::=& \gray{\Def\ldots \; \Exp}
  7997. \end{array}
  7998. \]
  7999. \end{minipage}
  8000. }
  8001. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  8002. with \key{lambda}.}
  8003. \label{fig:Rlam-concrete-syntax}
  8004. \end{figure}
  8005. \begin{figure}[tp]
  8006. \centering
  8007. \fbox{
  8008. \begin{minipage}{0.96\textwidth}
  8009. \small
  8010. \[
  8011. \begin{array}{lcl}
  8012. \itm{op} &::=& \ldots \mid \code{procedure-arity} \\
  8013. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  8014. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  8015. &\mid& \gray{ \BOOL{\itm{bool}}
  8016. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  8017. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  8018. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  8019. &\mid& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  8020. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  8021. \LangLamM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  8022. \end{array}
  8023. \]
  8024. \end{minipage}
  8025. }
  8026. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  8027. \label{fig:Rlam-syntax}
  8028. \end{figure}
  8029. \index{subject}{interpreter}
  8030. \label{sec:interp-Rlambda}
  8031. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  8032. \LangLam{}. The case for \key{lambda} saves the current environment
  8033. inside the returned \key{lambda}. Then the case for \key{Apply} uses
  8034. the environment from the \key{lambda}, the \code{lam-env}, when
  8035. interpreting the body of the \key{lambda}. The \code{lam-env}
  8036. environment is extended with the mapping of parameters to argument
  8037. values.
  8038. \begin{figure}[tbp]
  8039. \begin{lstlisting}
  8040. (define interp-Rlambda-class
  8041. (class interp-Rfun-class
  8042. (super-new)
  8043. (define/override (interp-op op)
  8044. (match op
  8045. ['procedure-arity
  8046. (lambda (v)
  8047. (match v
  8048. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  8049. [else (error 'interp-op "expected a function, not ~a" v)]))]
  8050. [else (super interp-op op)]))
  8051. (define/override ((interp-exp env) e)
  8052. (define recur (interp-exp env))
  8053. (match e
  8054. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  8055. `(function ,xs ,body ,env)]
  8056. [else ((super interp-exp env) e)]))
  8057. ))
  8058. (define (interp-Rlambda p)
  8059. (send (new interp-Rlambda-class) interp-program p))
  8060. \end{lstlisting}
  8061. \caption{Interpreter for \LangLam{}.}
  8062. \label{fig:interp-Rlambda}
  8063. \end{figure}
  8064. \label{sec:type-check-r5}
  8065. \index{subject}{type checking}
  8066. Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
  8067. \key{lambda} form. The body of the \key{lambda} is checked in an
  8068. environment that includes the current environment (because it is
  8069. lexically scoped) and also includes the \key{lambda}'s parameters. We
  8070. require the body's type to match the declared return type.
  8071. \begin{figure}[tbp]
  8072. \begin{lstlisting}
  8073. (define (type-check-Rlambda env)
  8074. (lambda (e)
  8075. (match e
  8076. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  8077. (define-values (new-body bodyT)
  8078. ((type-check-exp (append (map cons xs Ts) env)) body))
  8079. (define ty `(,@Ts -> ,rT))
  8080. (cond
  8081. [(equal? rT bodyT)
  8082. (values (HasType (Lambda params rT new-body) ty) ty)]
  8083. [else
  8084. (error "mismatch in return type" bodyT rT)])]
  8085. ...
  8086. )))
  8087. \end{lstlisting}
  8088. \caption{Type checking the \key{lambda}'s in \LangLam{}.}
  8089. \label{fig:type-check-Rlambda}
  8090. \end{figure}
  8091. \section{Reveal Functions and the $F_2$ language}
  8092. \label{sec:reveal-functions-r5}
  8093. To support the \code{procedure-arity} operator we need to communicate
  8094. the arity of a function to the point of closure creation. We can
  8095. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  8096. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  8097. output of this pass is the language $F_2$, whose syntax is defined in
  8098. Figure~\ref{fig:f2-syntax}.
  8099. \begin{figure}[tp]
  8100. \centering
  8101. \fbox{
  8102. \begin{minipage}{0.96\textwidth}
  8103. \[
  8104. \begin{array}{lcl}
  8105. \Exp &::=& \ldots \mid \FUNREFARITY{\Var}{\Int}\\
  8106. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  8107. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  8108. \end{array}
  8109. \]
  8110. \end{minipage}
  8111. }
  8112. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  8113. (Figure~\ref{fig:Rlam-syntax}).}
  8114. \label{fig:f2-syntax}
  8115. \end{figure}
  8116. \section{Closure Conversion}
  8117. \label{sec:closure-conversion}
  8118. \index{subject}{closure conversion}
  8119. The compiling of lexically-scoped functions into top-level function
  8120. definitions is accomplished in the pass \code{convert-to-closures}
  8121. that comes after \code{reveal-functions} and before
  8122. \code{limit-functions}.
  8123. As usual, we implement the pass as a recursive function over the
  8124. AST. All of the action is in the cases for \key{Lambda} and
  8125. \key{Apply}. We transform a \key{Lambda} expression into an expression
  8126. that creates a closure, that is, a vector whose first element is a
  8127. function pointer and the rest of the elements are the free variables
  8128. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  8129. using \code{vector} so that we can distinguish closures from vectors
  8130. in Section~\ref{sec:optimize-closures} and to record the arity. In
  8131. the generated code below, the \itm{name} is a unique symbol generated
  8132. to identify the function and the \itm{arity} is the number of
  8133. parameters (the length of \itm{ps}).
  8134. \begin{lstlisting}
  8135. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  8136. |$\Rightarrow$|
  8137. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  8138. \end{lstlisting}
  8139. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  8140. create a top-level function definition for each \key{Lambda}, as
  8141. shown below.\\
  8142. \begin{minipage}{0.8\textwidth}
  8143. \begin{lstlisting}
  8144. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  8145. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  8146. ...
  8147. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  8148. |\itm{body'}|)...))
  8149. \end{lstlisting}
  8150. \end{minipage}\\
  8151. The \code{clos} parameter refers to the closure. Translate the type
  8152. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  8153. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  8154. $\itm{fvts}$ are the types of the free variables in the lambda and the
  8155. underscore \code{\_} is a dummy type that we use because it is rather
  8156. difficult to give a type to the function in the closure's
  8157. type.\footnote{To give an accurate type to a closure, we would need to
  8158. add existential types to the type checker~\citep{Minamide:1996ys}.}
  8159. The dummy type is considered to be equal to any other type during type
  8160. checking. The sequence of \key{Let} forms bind the free variables to
  8161. their values obtained from the closure.
  8162. Closure conversion turns functions into vectors, so the type
  8163. annotations in the program must also be translated. We recommend
  8164. defining a auxiliary recursive function for this purpose. Function
  8165. types should be translated as follows.
  8166. \begin{lstlisting}
  8167. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  8168. |$\Rightarrow$|
  8169. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  8170. \end{lstlisting}
  8171. The above type says that the first thing in the vector is a function
  8172. pointer. The first parameter of the function pointer is a vector (a
  8173. closure) and the rest of the parameters are the ones from the original
  8174. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  8175. the closure omits the types of the free variables because 1) those
  8176. types are not available in this context and 2) we do not need them in
  8177. the code that is generated for function application.
  8178. We transform function application into code that retrieves the
  8179. function pointer from the closure and then calls the function, passing
  8180. in the closure as the first argument. We bind $e'$ to a temporary
  8181. variable to avoid code duplication.
  8182. \begin{lstlisting}
  8183. (Apply |$e$| |\itm{es}|)
  8184. |$\Rightarrow$|
  8185. (Let |\itm{tmp}| |$e'$|
  8186. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  8187. \end{lstlisting}
  8188. There is also the question of what to do with references top-level
  8189. function definitions. To maintain a uniform translation of function
  8190. application, we turn function references into closures.
  8191. \begin{tabular}{lll}
  8192. \begin{minipage}{0.3\textwidth}
  8193. \begin{lstlisting}
  8194. (FunRefArity |$f$| |$n$|)
  8195. \end{lstlisting}
  8196. \end{minipage}
  8197. &
  8198. $\Rightarrow$
  8199. &
  8200. \begin{minipage}{0.5\textwidth}
  8201. \begin{lstlisting}
  8202. (Closure |$n$| (FunRef |$f$|) '())
  8203. \end{lstlisting}
  8204. \end{minipage}
  8205. \end{tabular} \\
  8206. %
  8207. The top-level function definitions need to be updated as well to take
  8208. an extra closure parameter.
  8209. \section{An Example Translation}
  8210. \label{sec:example-lambda}
  8211. Figure~\ref{fig:lexical-functions-example} shows the result of
  8212. \code{reveal-functions} and \code{convert-to-closures} for the example
  8213. program demonstrating lexical scoping that we discussed at the
  8214. beginning of this chapter.
  8215. \begin{figure}[tbp]
  8216. \begin{minipage}{0.8\textwidth}
  8217. % tests/lambda_test_6.rkt
  8218. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8219. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  8220. (let ([y8 4])
  8221. (lambda: ([z9 : Integer]) : Integer
  8222. (+ x7 (+ y8 z9)))))
  8223. (define (main) : Integer
  8224. (let ([g0 ((fun-ref-arity f6 1) 5)])
  8225. (let ([h1 ((fun-ref-arity f6 1) 3)])
  8226. (+ (g0 11) (h1 15)))))
  8227. \end{lstlisting}
  8228. $\Rightarrow$
  8229. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8230. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  8231. (let ([y8 4])
  8232. (closure 1 (list (fun-ref lambda2) x7 y8))))
  8233. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  8234. (let ([x7 (vector-ref fvs3 1)])
  8235. (let ([y8 (vector-ref fvs3 2)])
  8236. (+ x7 (+ y8 z9)))))
  8237. (define (main) : Integer
  8238. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  8239. ((vector-ref clos5 0) clos5 5))])
  8240. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  8241. ((vector-ref clos6 0) clos6 3))])
  8242. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  8243. \end{lstlisting}
  8244. \end{minipage}
  8245. \caption{Example of closure conversion.}
  8246. \label{fig:lexical-functions-example}
  8247. \end{figure}
  8248. \begin{exercise}\normalfont
  8249. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  8250. Create 5 new programs that use \key{lambda} functions and make use of
  8251. lexical scoping. Test your compiler on these new programs and all of
  8252. your previously created test programs.
  8253. \end{exercise}
  8254. \section{Expose Allocation}
  8255. \label{sec:expose-allocation-r5}
  8256. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  8257. that allocates and initializes a vector, similar to the translation of
  8258. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  8259. The only difference is replacing the use of
  8260. \ALLOC{\itm{len}}{\itm{type}} with
  8261. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  8262. \section{Explicate Control and \LangCLam{}}
  8263. \label{sec:explicate-r5}
  8264. The output language of \code{explicate-control} is \LangCLam{} whose
  8265. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  8266. difference with respect to \LangCFun{} is the addition of the
  8267. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  8268. of \code{AllocateClosure} in the \code{explicate-control} pass is
  8269. similar to the handling of other expressions such as primitive
  8270. operators.
  8271. \begin{figure}[tp]
  8272. \fbox{
  8273. \begin{minipage}{0.96\textwidth}
  8274. \small
  8275. \[
  8276. \begin{array}{lcl}
  8277. \Exp &::= & \ldots
  8278. \mid \ALLOCCLOS{\Int}{\Type}{\Int} \\
  8279. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  8280. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  8281. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  8282. \mid \GOTO{\itm{label}} } \\
  8283. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  8284. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  8285. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  8286. \LangCLamM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  8287. \end{array}
  8288. \]
  8289. \end{minipage}
  8290. }
  8291. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  8292. \label{fig:c4-syntax}
  8293. \end{figure}
  8294. \section{Select Instructions}
  8295. \label{sec:select-instructions-Rlambda}
  8296. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  8297. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  8298. (Section~\ref{sec:select-instructions-gc}). The only difference is
  8299. that you should place the \itm{arity} in the tag that is stored at
  8300. position $0$ of the vector. Recall that in
  8301. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  8302. was not used. We store the arity in the $5$ bits starting at position
  8303. $58$.
  8304. Compile the \code{procedure-arity} operator into a sequence of
  8305. instructions that access the tag from position $0$ of the vector and
  8306. extract the $5$-bits starting at position $58$ from the tag.
  8307. \begin{figure}[p]
  8308. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8309. \node (Rfun) at (0,2) {\large \LangFun{}};
  8310. \node (Rfun-2) at (3,2) {\large \LangFun{}};
  8311. \node (Rfun-3) at (6,2) {\large \LangFun{}};
  8312. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  8313. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  8314. \node (F1-3) at (6,0) {\large $F_1$};
  8315. \node (F1-4) at (3,0) {\large $F_1$};
  8316. \node (F1-5) at (0,0) {\large $F_1$};
  8317. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  8318. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  8319. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  8320. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  8321. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  8322. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  8323. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  8324. \path[->,bend left=15] (Rfun) edge [above] node
  8325. {\ttfamily\footnotesize shrink} (Rfun-2);
  8326. \path[->,bend left=15] (Rfun-2) edge [above] node
  8327. {\ttfamily\footnotesize uniquify} (Rfun-3);
  8328. \path[->,bend left=15] (Rfun-3) edge [right] node
  8329. {\ttfamily\footnotesize reveal-functions} (F1-1);
  8330. \path[->,bend left=15] (F1-1) edge [below] node
  8331. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  8332. \path[->,bend right=15] (F1-2) edge [above] node
  8333. {\ttfamily\footnotesize limit-fun.} (F1-3);
  8334. \path[->,bend right=15] (F1-3) edge [above] node
  8335. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  8336. \path[->,bend right=15] (F1-4) edge [above] node
  8337. {\ttfamily\footnotesize remove-complex.} (F1-5);
  8338. \path[->,bend right=15] (F1-5) edge [right] node
  8339. {\ttfamily\footnotesize explicate-control} (C3-2);
  8340. \path[->,bend left=15] (C3-2) edge [left] node
  8341. {\ttfamily\footnotesize select-instr.} (x86-2);
  8342. \path[->,bend right=15] (x86-2) edge [left] node
  8343. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  8344. \path[->,bend right=15] (x86-2-1) edge [below] node
  8345. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  8346. \path[->,bend right=15] (x86-2-2) edge [left] node
  8347. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  8348. \path[->,bend left=15] (x86-3) edge [above] node
  8349. {\ttfamily\footnotesize patch-instr.} (x86-4);
  8350. \path[->,bend left=15] (x86-4) edge [right] node
  8351. {\ttfamily\footnotesize print-x86} (x86-5);
  8352. \end{tikzpicture}
  8353. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  8354. functions.}
  8355. \label{fig:Rlambda-passes}
  8356. \end{figure}
  8357. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  8358. for the compilation of \LangLam{}.
  8359. \clearpage
  8360. \section{Challenge: Optimize Closures}
  8361. \label{sec:optimize-closures}
  8362. In this chapter we compiled lexically-scoped functions into a
  8363. relatively efficient representation: flat closures. However, even this
  8364. representation comes with some overhead. For example, consider the
  8365. following program with a function \code{tail-sum} that does not have
  8366. any free variables and where all the uses of \code{tail-sum} are in
  8367. applications where we know that only \code{tail-sum} is being applied
  8368. (and not any other functions).
  8369. \begin{center}
  8370. \begin{minipage}{0.95\textwidth}
  8371. \begin{lstlisting}
  8372. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  8373. (if (eq? n 0)
  8374. r
  8375. (tail-sum (- n 1) (+ n r))))
  8376. (+ (tail-sum 5 0) 27)
  8377. \end{lstlisting}
  8378. \end{minipage}
  8379. \end{center}
  8380. As described in this chapter, we uniformly apply closure conversion to
  8381. all functions, obtaining the following output for this program.
  8382. \begin{center}
  8383. \begin{minipage}{0.95\textwidth}
  8384. \begin{lstlisting}
  8385. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  8386. (if (eq? n2 0)
  8387. r3
  8388. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  8389. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  8390. (define (main) : Integer
  8391. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  8392. ((vector-ref clos6 0) clos6 5 0)) 27))
  8393. \end{lstlisting}
  8394. \end{minipage}
  8395. \end{center}
  8396. In the previous Chapter, there would be no allocation in the program
  8397. and the calls to \code{tail-sum} would be direct calls. In contrast,
  8398. the above program allocates memory for each \code{closure} and the
  8399. calls to \code{tail-sum} are indirect. These two differences incur
  8400. considerable overhead in a program such as this one, where the
  8401. allocations and indirect calls occur inside a tight loop.
  8402. One might think that this problem is trivial to solve: can't we just
  8403. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  8404. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  8405. e'_n$)} instead of treating it like a call to a closure? We would
  8406. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  8407. %
  8408. However, this problem is not so trivial because a global function may
  8409. ``escape'' and become involved in applications that also involve
  8410. closures. Consider the following example in which the application
  8411. \code{(f 41)} needs to be compiled into a closure application, because
  8412. the \code{lambda} may get bound to \code{f}, but the \code{add1}
  8413. function might also get bound to \code{f}.
  8414. \begin{lstlisting}
  8415. (define (add1 [x : Integer]) : Integer
  8416. (+ x 1))
  8417. (let ([y (read)])
  8418. (let ([f (if (eq? (read) 0)
  8419. add1
  8420. (lambda: ([x : Integer]) : Integer (- x y)))])
  8421. (f 41)))
  8422. \end{lstlisting}
  8423. If a global function name is used in any way other than as the
  8424. operator in a direct call, then we say that the function
  8425. \emph{escapes}. If a global function does not escape, then we do not
  8426. need to perform closure conversion on the function.
  8427. \begin{exercise}\normalfont
  8428. Implement an auxiliary function for detecting which global
  8429. functions escape. Using that function, implement an improved version
  8430. of closure conversion that does not apply closure conversion to
  8431. global functions that do not escape but instead compiles them as
  8432. regular functions. Create several new test cases that check whether
  8433. you properly detect whether global functions escape or not.
  8434. \end{exercise}
  8435. So far we have reduced the overhead of calling global functions, but
  8436. it would also be nice to reduce the overhead of calling a
  8437. \code{lambda} when we can determine at compile time which
  8438. \code{lambda} will be called. We refer to such calls as \emph{known
  8439. calls}. Consider the following example in which a \code{lambda} is
  8440. bound to \code{f} and then applied.
  8441. \begin{lstlisting}
  8442. (let ([y (read)])
  8443. (let ([f (lambda: ([x : Integer]) : Integer
  8444. (+ x y))])
  8445. (f 21)))
  8446. \end{lstlisting}
  8447. Closure conversion compiles \code{(f 21)} into an indirect call:
  8448. \begin{lstlisting}
  8449. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  8450. (let ([y2 (vector-ref fvs6 1)])
  8451. (+ x3 y2)))
  8452. (define (main) : Integer
  8453. (let ([y2 (read)])
  8454. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  8455. ((vector-ref f4 0) f4 21))))
  8456. \end{lstlisting}
  8457. but we can instead compile the application \code{(f 21)} into a direct call
  8458. to \code{lambda5}:
  8459. \begin{lstlisting}
  8460. (define (main) : Integer
  8461. (let ([y2 (read)])
  8462. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  8463. ((fun-ref lambda5) f4 21))))
  8464. \end{lstlisting}
  8465. The problem of determining which lambda will be called from a
  8466. particular application is quite challenging in general and the topic
  8467. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  8468. following exercise we recommend that you compile an application to a
  8469. direct call when the operator is a variable and the variable is
  8470. \code{let}-bound to a closure. This can be accomplished by maintaining
  8471. an environment mapping \code{let}-bound variables to function names.
  8472. Extend the environment whenever you encounter a closure on the
  8473. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  8474. to the name of the global function for the closure. This pass should
  8475. come after closure conversion.
  8476. \begin{exercise}\normalfont
  8477. Implement a compiler pass, named \code{optimize-known-calls}, that
  8478. compiles known calls into direct calls. Verify that your compiler is
  8479. successful in this regard on several example programs.
  8480. \end{exercise}
  8481. These exercises only scratches the surface of optimizing of
  8482. closures. A good next step for the interested reader is to look at the
  8483. work of \citet{Keep:2012ab}.
  8484. \section{Further Reading}
  8485. The notion of lexically scoped anonymous functions predates modern
  8486. computers by about a decade. They were invented by
  8487. \citet{Church:1932aa}, who proposed the $\lambda$ calculus as a
  8488. foundation for logic. Anonymous functions were included in the
  8489. LISP~\citep{McCarthy:1960dz} programming language but were initially
  8490. dynamically scoped. The Scheme dialect of LISP adopted lexical scoping
  8491. and \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently
  8492. compile Scheme programs. However, environments were represented as
  8493. linked lists, so variable lookup was linear in the size of the
  8494. environment. In this chapter we represent environments using flat
  8495. closures, which were invented by
  8496. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  8497. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  8498. closures, variable lookup is constant time but the time to create a
  8499. closure is proportional to the number of its free variables. Flat
  8500. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  8501. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  8502. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8503. \chapter{Dynamic Typing}
  8504. \label{ch:Rdyn}
  8505. \index{subject}{dynamic typing}
  8506. In this chapter we discuss the compilation of \LangDyn{}, a dynamically
  8507. typed language that is a subset of Racket. This is in contrast to the
  8508. previous chapters, which have studied the compilation of Typed
  8509. Racket. In dynamically typed languages such as \LangDyn{}, a given
  8510. expression may produce a value of a different type each time it is
  8511. executed. Consider the following example with a conditional \code{if}
  8512. expression that may return a Boolean or an integer depending on the
  8513. input to the program.
  8514. % part of dynamic_test_25.rkt
  8515. \begin{lstlisting}
  8516. (not (if (eq? (read) 1) #f 0))
  8517. \end{lstlisting}
  8518. Languages that allow expressions to produce different kinds of values
  8519. are called \emph{polymorphic}, a word composed of the Greek roots
  8520. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  8521. are several kinds of polymorphism in programming languages, such as
  8522. subtype polymorphism and parametric
  8523. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  8524. study in this chapter does not have a special name but it is the kind
  8525. that arises in dynamically typed languages.
  8526. Another characteristic of dynamically typed languages is that
  8527. primitive operations, such as \code{not}, are often defined to operate
  8528. on many different types of values. In fact, in Racket, the \code{not}
  8529. operator produces a result for any kind of value: given \code{\#f} it
  8530. returns \code{\#t} and given anything else it returns \code{\#f}.
  8531. Furthermore, even when primitive operations restrict their inputs to
  8532. values of a certain type, this restriction is enforced at runtime
  8533. instead of during compilation. For example, the following vector
  8534. reference results in a run-time contract violation because the index
  8535. must be in integer, not a Boolean such as \code{\#t}.
  8536. \begin{lstlisting}
  8537. (vector-ref (vector 42) #t)
  8538. \end{lstlisting}
  8539. \begin{figure}[tp]
  8540. \centering
  8541. \fbox{
  8542. \begin{minipage}{0.97\textwidth}
  8543. \[
  8544. \begin{array}{rcl}
  8545. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  8546. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp}
  8547. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} \\
  8548. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  8549. &\mid& \key{\#t} \mid \key{\#f}
  8550. \mid \CBINOP{\key{and}}{\Exp}{\Exp}
  8551. \mid \CBINOP{\key{or}}{\Exp}{\Exp}
  8552. \mid \CUNIOP{\key{not}}{\Exp} \\
  8553. &\mid& \LP\itm{cmp}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} \\
  8554. &\mid& \LP\key{vector}\;\Exp\ldots\RP \mid
  8555. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  8556. &\mid& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \mid \LP\key{void}\RP \\
  8557. &\mid& \LP\Exp \; \Exp\ldots\RP
  8558. \mid \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  8559. & \mid & \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP\\
  8560. & \mid & \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \mid \LP\key{void?}\;\Exp\RP \\
  8561. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  8562. \LangDynM{} &::=& \Def\ldots\; \Exp
  8563. \end{array}
  8564. \]
  8565. \end{minipage}
  8566. }
  8567. \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
  8568. \label{fig:r7-concrete-syntax}
  8569. \end{figure}
  8570. \begin{figure}[tp]
  8571. \centering
  8572. \fbox{
  8573. \begin{minipage}{0.96\textwidth}
  8574. \small
  8575. \[
  8576. \begin{array}{lcl}
  8577. \Exp &::=& \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  8578. &\mid& \PRIM{\itm{op}}{\Exp\ldots} \\
  8579. &\mid& \BOOL{\itm{bool}}
  8580. \mid \IF{\Exp}{\Exp}{\Exp} \\
  8581. &\mid& \VOID{} \mid \APPLY{\Exp}{\Exp\ldots} \\
  8582. &\mid& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  8583. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  8584. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  8585. \end{array}
  8586. \]
  8587. \end{minipage}
  8588. }
  8589. \caption{The abstract syntax of \LangDyn{}.}
  8590. \label{fig:r7-syntax}
  8591. \end{figure}
  8592. The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
  8593. defined in Figures~\ref{fig:r7-concrete-syntax} and
  8594. \ref{fig:r7-syntax}.
  8595. %
  8596. There is no type checker for \LangDyn{} because it is not a statically
  8597. typed language (it's dynamically typed!).
  8598. The definitional interpreter for \LangDyn{} is presented in
  8599. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined i
  8600. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
  8601. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  8602. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Rvar}), the
  8603. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  8604. value} that combines an underlying value with a tag that identifies
  8605. what kind of value it is. We define the following struct
  8606. to represented tagged values.
  8607. \begin{lstlisting}
  8608. (struct Tagged (value tag) #:transparent)
  8609. \end{lstlisting}
  8610. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  8611. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  8612. but don't always capture all the information that a type does. For
  8613. example, a vector of type \code{(Vector Any Any)} is tagged with
  8614. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  8615. is tagged with \code{Procedure}.
  8616. Next consider the match case for \code{vector-ref}. The
  8617. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  8618. is used to ensure that the first argument is a vector and the second
  8619. is an integer. If they are not, a \code{trapped-error} is raised.
  8620. Recall from Section~\ref{sec:interp-Rint} that when a definition
  8621. interpreter raises a \code{trapped-error} error, the compiled code
  8622. must also signal an error by exiting with return code \code{255}. A
  8623. \code{trapped-error} is also raised if the index is not less than
  8624. length of the vector.
  8625. \begin{figure}[tbp]
  8626. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8627. (define ((interp-Rdyn-exp env) ast)
  8628. (define recur (interp-Rdyn-exp env))
  8629. (match ast
  8630. [(Var x) (lookup x env)]
  8631. [(Int n) (Tagged n 'Integer)]
  8632. [(Bool b) (Tagged b 'Boolean)]
  8633. [(Lambda xs rt body)
  8634. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  8635. [(Prim 'vector es)
  8636. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  8637. [(Prim 'vector-ref (list e1 e2))
  8638. (define vec (recur e1)) (define i (recur e2))
  8639. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  8640. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  8641. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  8642. (vector-ref (Tagged-value vec) (Tagged-value i))]
  8643. [(Prim 'vector-set! (list e1 e2 e3))
  8644. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  8645. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  8646. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  8647. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  8648. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  8649. (Tagged (void) 'Void)]
  8650. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  8651. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  8652. [(Prim 'or (list e1 e2))
  8653. (define v1 (recur e1))
  8654. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  8655. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  8656. [(Prim op (list e1))
  8657. #:when (set-member? type-predicates op)
  8658. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  8659. [(Prim op es)
  8660. (define args (map recur es))
  8661. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  8662. (unless (for/or ([expected-tags (op-tags op)])
  8663. (equal? expected-tags tags))
  8664. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  8665. (tag-value
  8666. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  8667. [(If q t f)
  8668. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  8669. [(Apply f es)
  8670. (define new-f (recur f)) (define args (map recur es))
  8671. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  8672. (match f-val
  8673. [`(function ,xs ,body ,lam-env)
  8674. (unless (eq? (length xs) (length args))
  8675. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  8676. (define new-env (append (map cons xs args) lam-env))
  8677. ((interp-Rdyn-exp new-env) body)]
  8678. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  8679. \end{lstlisting}
  8680. \caption{Interpreter for the \LangDyn{} language.}
  8681. \label{fig:interp-Rdyn}
  8682. \end{figure}
  8683. \begin{figure}[tbp]
  8684. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8685. (define (interp-op op)
  8686. (match op
  8687. ['+ fx+]
  8688. ['- fx-]
  8689. ['read read-fixnum]
  8690. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  8691. ['< (lambda (v1 v2)
  8692. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  8693. ['<= (lambda (v1 v2)
  8694. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  8695. ['> (lambda (v1 v2)
  8696. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  8697. ['>= (lambda (v1 v2)
  8698. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  8699. ['boolean? boolean?]
  8700. ['integer? fixnum?]
  8701. ['void? void?]
  8702. ['vector? vector?]
  8703. ['vector-length vector-length]
  8704. ['procedure? (match-lambda
  8705. [`(functions ,xs ,body ,env) #t] [else #f])]
  8706. [else (error 'interp-op "unknown operator" op)]))
  8707. (define (op-tags op)
  8708. (match op
  8709. ['+ '((Integer Integer))]
  8710. ['- '((Integer Integer) (Integer))]
  8711. ['read '(())]
  8712. ['not '((Boolean))]
  8713. ['< '((Integer Integer))]
  8714. ['<= '((Integer Integer))]
  8715. ['> '((Integer Integer))]
  8716. ['>= '((Integer Integer))]
  8717. ['vector-length '((Vector))]))
  8718. (define type-predicates
  8719. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  8720. (define (tag-value v)
  8721. (cond [(boolean? v) (Tagged v 'Boolean)]
  8722. [(fixnum? v) (Tagged v 'Integer)]
  8723. [(procedure? v) (Tagged v 'Procedure)]
  8724. [(vector? v) (Tagged v 'Vector)]
  8725. [(void? v) (Tagged v 'Void)]
  8726. [else (error 'tag-value "unidentified value ~a" v)]))
  8727. (define (check-tag val expected ast)
  8728. (define tag (Tagged-tag val))
  8729. (unless (eq? tag expected)
  8730. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  8731. \end{lstlisting}
  8732. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  8733. \label{fig:interp-Rdyn-aux}
  8734. \end{figure}
  8735. \clearpage
  8736. \section{Representation of Tagged Values}
  8737. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  8738. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  8739. values at the bit level. Because almost every operation in \LangDyn{}
  8740. involves manipulating tagged values, the representation must be
  8741. efficient. Recall that all of our values are 64 bits. We shall steal
  8742. the 3 right-most bits to encode the tag. We use $001$ to identify
  8743. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  8744. and $101$ for the void value. We define the following auxiliary
  8745. function for mapping types to tag codes.
  8746. \begin{align*}
  8747. \itm{tagof}(\key{Integer}) &= 001 \\
  8748. \itm{tagof}(\key{Boolean}) &= 100 \\
  8749. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  8750. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  8751. \itm{tagof}(\key{Void}) &= 101
  8752. \end{align*}
  8753. This stealing of 3 bits comes at some price: our integers are reduced
  8754. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  8755. affect vectors and procedures because those values are addresses, and
  8756. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  8757. they are always $000$. Thus, we do not lose information by overwriting
  8758. the rightmost 3 bits with the tag and we can simply zero-out the tag
  8759. to recover the original address.
  8760. To make tagged values into first-class entities, we can give them a
  8761. type, called \code{Any}, and define operations such as \code{Inject}
  8762. and \code{Project} for creating and using them, yielding the \LangAny{}
  8763. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  8764. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  8765. in greater detail.
  8766. \section{The \LangAny{} Language}
  8767. \label{sec:Rany-lang}
  8768. \begin{figure}[tp]
  8769. \centering
  8770. \fbox{
  8771. \begin{minipage}{0.96\textwidth}
  8772. \small
  8773. \[
  8774. \begin{array}{lcl}
  8775. \Type &::= & \ldots \mid \key{Any} \\
  8776. \itm{op} &::= & \ldots \mid \code{any-vector-length}
  8777. \mid \code{any-vector-ref} \mid \code{any-vector-set!}\\
  8778. &\mid& \code{boolean?} \mid \code{integer?} \mid \code{vector?}
  8779. \mid \code{procedure?} \mid \code{void?} \\
  8780. \Exp &::=& \ldots
  8781. \mid \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  8782. &\mid& \INJECT{\Exp}{\FType} \mid \PROJECT{\Exp}{\FType} \\
  8783. \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  8784. \LangAnyM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  8785. \end{array}
  8786. \]
  8787. \end{minipage}
  8788. }
  8789. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  8790. \label{fig:Rany-syntax}
  8791. \end{figure}
  8792. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  8793. (The concrete syntax of \LangAny{} is in the Appendix,
  8794. Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
  8795. converts the value produced by expression $e$ of type $T$ into a
  8796. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  8797. produced by expression $e$ into a value of type $T$ or else halts the
  8798. program if the type tag is not equivalent to $T$.
  8799. %
  8800. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  8801. restricted to a flat type $\FType$, which simplifies the
  8802. implementation and corresponds with what is needed for compiling \LangDyn{}.
  8803. The \code{any-vector} operators adapt the vector operations so that
  8804. they can be applied to a value of type \code{Any}. They also
  8805. generalize the vector operations in that the index is not restricted
  8806. to be a literal integer in the grammar but is allowed to be any
  8807. expression.
  8808. The type predicates such as \key{boolean?} expect their argument to
  8809. produce a tagged value; they return \key{\#t} if the tag corresponds
  8810. to the predicate and they return \key{\#f} otherwise.
  8811. The type checker for \LangAny{} is shown in
  8812. Figures~\ref{fig:type-check-Rany-part-1} and
  8813. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  8814. Figure~\ref{fig:type-check-Rany-aux}.
  8815. %
  8816. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  8817. auxiliary functions \code{apply-inject} and \code{apply-project} are
  8818. in Figure~\ref{fig:apply-project}.
  8819. \begin{figure}[btp]
  8820. \begin{lstlisting}[basicstyle=\ttfamily\small]
  8821. (define type-check-Rany-class
  8822. (class type-check-Rlambda-class
  8823. (super-new)
  8824. (inherit check-type-equal?)
  8825. (define/override (type-check-exp env)
  8826. (lambda (e)
  8827. (define recur (type-check-exp env))
  8828. (match e
  8829. [(Inject e1 ty)
  8830. (unless (flat-ty? ty)
  8831. (error 'type-check "may only inject from flat type, not ~a" ty))
  8832. (define-values (new-e1 e-ty) (recur e1))
  8833. (check-type-equal? e-ty ty e)
  8834. (values (Inject new-e1 ty) 'Any)]
  8835. [(Project e1 ty)
  8836. (unless (flat-ty? ty)
  8837. (error 'type-check "may only project to flat type, not ~a" ty))
  8838. (define-values (new-e1 e-ty) (recur e1))
  8839. (check-type-equal? e-ty 'Any e)
  8840. (values (Project new-e1 ty) ty)]
  8841. [(Prim 'any-vector-length (list e1))
  8842. (define-values (e1^ t1) (recur e1))
  8843. (check-type-equal? t1 'Any e)
  8844. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  8845. [(Prim 'any-vector-ref (list e1 e2))
  8846. (define-values (e1^ t1) (recur e1))
  8847. (define-values (e2^ t2) (recur e2))
  8848. (check-type-equal? t1 'Any e)
  8849. (check-type-equal? t2 'Integer e)
  8850. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  8851. [(Prim 'any-vector-set! (list e1 e2 e3))
  8852. (define-values (e1^ t1) (recur e1))
  8853. (define-values (e2^ t2) (recur e2))
  8854. (define-values (e3^ t3) (recur e3))
  8855. (check-type-equal? t1 'Any e)
  8856. (check-type-equal? t2 'Integer e)
  8857. (check-type-equal? t3 'Any e)
  8858. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  8859. \end{lstlisting}
  8860. \caption{Type checker for the \LangAny{} language, part 1.}
  8861. \label{fig:type-check-Rany-part-1}
  8862. \end{figure}
  8863. \begin{figure}[btp]
  8864. \begin{lstlisting}[basicstyle=\ttfamily\small]
  8865. [(ValueOf e ty)
  8866. (define-values (new-e e-ty) (recur e))
  8867. (values (ValueOf new-e ty) ty)]
  8868. [(Prim pred (list e1))
  8869. #:when (set-member? (type-predicates) pred)
  8870. (define-values (new-e1 e-ty) (recur e1))
  8871. (check-type-equal? e-ty 'Any e)
  8872. (values (Prim pred (list new-e1)) 'Boolean)]
  8873. [(If cnd thn els)
  8874. (define-values (cnd^ Tc) (recur cnd))
  8875. (define-values (thn^ Tt) (recur thn))
  8876. (define-values (els^ Te) (recur els))
  8877. (check-type-equal? Tc 'Boolean cnd)
  8878. (check-type-equal? Tt Te e)
  8879. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  8880. [(Exit) (values (Exit) '_)]
  8881. [(Prim 'eq? (list arg1 arg2))
  8882. (define-values (e1 t1) (recur arg1))
  8883. (define-values (e2 t2) (recur arg2))
  8884. (match* (t1 t2)
  8885. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  8886. [(other wise) (check-type-equal? t1 t2 e)])
  8887. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  8888. [else ((super type-check-exp env) e)])))
  8889. ))
  8890. \end{lstlisting}
  8891. \caption{Type checker for the \LangAny{} language, part 2.}
  8892. \label{fig:type-check-Rany-part-2}
  8893. \end{figure}
  8894. \begin{figure}[tbp]
  8895. \begin{lstlisting}
  8896. (define/override (operator-types)
  8897. (append
  8898. '((integer? . ((Any) . Boolean))
  8899. (vector? . ((Any) . Boolean))
  8900. (procedure? . ((Any) . Boolean))
  8901. (void? . ((Any) . Boolean))
  8902. (tag-of-any . ((Any) . Integer))
  8903. (make-any . ((_ Integer) . Any))
  8904. )
  8905. (super operator-types)))
  8906. (define/public (type-predicates)
  8907. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  8908. (define/public (combine-types t1 t2)
  8909. (match (list t1 t2)
  8910. [(list '_ t2) t2]
  8911. [(list t1 '_) t1]
  8912. [(list `(Vector ,ts1 ...)
  8913. `(Vector ,ts2 ...))
  8914. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  8915. (combine-types t1 t2)))]
  8916. [(list `(,ts1 ... -> ,rt1)
  8917. `(,ts2 ... -> ,rt2))
  8918. `(,@(for/list ([t1 ts1] [t2 ts2])
  8919. (combine-types t1 t2))
  8920. -> ,(combine-types rt1 rt2))]
  8921. [else t1]))
  8922. (define/public (flat-ty? ty)
  8923. (match ty
  8924. [(or `Integer `Boolean '_ `Void) #t]
  8925. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  8926. [`(,ts ... -> ,rt)
  8927. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  8928. [else #f]))
  8929. \end{lstlisting}
  8930. \caption{Auxiliary methods for type checking \LangAny{}.}
  8931. \label{fig:type-check-Rany-aux}
  8932. \end{figure}
  8933. \begin{figure}[btp]
  8934. \begin{lstlisting}
  8935. (define interp-Rany-class
  8936. (class interp-Rlambda-class
  8937. (super-new)
  8938. (define/override (interp-op op)
  8939. (match op
  8940. ['boolean? (match-lambda
  8941. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  8942. [else #f])]
  8943. ['integer? (match-lambda
  8944. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  8945. [else #f])]
  8946. ['vector? (match-lambda
  8947. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  8948. [else #f])]
  8949. ['procedure? (match-lambda
  8950. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  8951. [else #f])]
  8952. ['eq? (match-lambda*
  8953. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  8954. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  8955. [ls (apply (super interp-op op) ls)])]
  8956. ['any-vector-ref (lambda (v i)
  8957. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  8958. ['any-vector-set! (lambda (v i a)
  8959. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  8960. ['any-vector-length (lambda (v)
  8961. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  8962. [else (super interp-op op)]))
  8963. (define/override ((interp-exp env) e)
  8964. (define recur (interp-exp env))
  8965. (match e
  8966. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  8967. [(Project e ty2) (apply-project (recur e) ty2)]
  8968. [else ((super interp-exp env) e)]))
  8969. ))
  8970. (define (interp-Rany p)
  8971. (send (new interp-Rany-class) interp-program p))
  8972. \end{lstlisting}
  8973. \caption{Interpreter for \LangAny{}.}
  8974. \label{fig:interp-Rany}
  8975. \end{figure}
  8976. \begin{figure}[tbp]
  8977. \begin{lstlisting}
  8978. (define/public (apply-inject v tg) (Tagged v tg))
  8979. (define/public (apply-project v ty2)
  8980. (define tag2 (any-tag ty2))
  8981. (match v
  8982. [(Tagged v1 tag1)
  8983. (cond
  8984. [(eq? tag1 tag2)
  8985. (match ty2
  8986. [`(Vector ,ts ...)
  8987. (define l1 ((interp-op 'vector-length) v1))
  8988. (cond
  8989. [(eq? l1 (length ts)) v1]
  8990. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  8991. l1 (length ts))])]
  8992. [`(,ts ... -> ,rt)
  8993. (match v1
  8994. [`(function ,xs ,body ,env)
  8995. (cond [(eq? (length xs) (length ts)) v1]
  8996. [else
  8997. (error 'apply-project "arity mismatch ~a != ~a"
  8998. (length xs) (length ts))])]
  8999. [else (error 'apply-project "expected function not ~a" v1)])]
  9000. [else v1])]
  9001. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  9002. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  9003. \end{lstlisting}
  9004. \caption{Auxiliary functions for injection and projection.}
  9005. \label{fig:apply-project}
  9006. \end{figure}
  9007. \clearpage
  9008. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  9009. \label{sec:compile-r7}
  9010. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  9011. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  9012. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  9013. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  9014. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  9015. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  9016. the Boolean \code{\#t}, which must be injected to produce an
  9017. expression of type \key{Any}.
  9018. %
  9019. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  9020. addition, is representative of compilation for many primitive
  9021. operations: the arguments have type \key{Any} and must be projected to
  9022. \key{Integer} before the addition can be performed.
  9023. The compilation of \key{lambda} (third row of
  9024. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  9025. produce type annotations: we simply use \key{Any}.
  9026. %
  9027. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  9028. has to account for some differences in behavior between \LangDyn{} and
  9029. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  9030. kind of values can be used in various places. For example, the
  9031. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  9032. the arguments need not be of the same type (in that case the
  9033. result is \code{\#f}).
  9034. \begin{figure}[btp]
  9035. \centering
  9036. \begin{tabular}{|lll|} \hline
  9037. \begin{minipage}{0.27\textwidth}
  9038. \begin{lstlisting}
  9039. #t
  9040. \end{lstlisting}
  9041. \end{minipage}
  9042. &
  9043. $\Rightarrow$
  9044. &
  9045. \begin{minipage}{0.65\textwidth}
  9046. \begin{lstlisting}
  9047. (inject #t Boolean)
  9048. \end{lstlisting}
  9049. \end{minipage}
  9050. \\[2ex]\hline
  9051. \begin{minipage}{0.27\textwidth}
  9052. \begin{lstlisting}
  9053. (+ |$e_1$| |$e_2$|)
  9054. \end{lstlisting}
  9055. \end{minipage}
  9056. &
  9057. $\Rightarrow$
  9058. &
  9059. \begin{minipage}{0.65\textwidth}
  9060. \begin{lstlisting}
  9061. (inject
  9062. (+ (project |$e'_1$| Integer)
  9063. (project |$e'_2$| Integer))
  9064. Integer)
  9065. \end{lstlisting}
  9066. \end{minipage}
  9067. \\[2ex]\hline
  9068. \begin{minipage}{0.27\textwidth}
  9069. \begin{lstlisting}
  9070. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  9071. \end{lstlisting}
  9072. \end{minipage}
  9073. &
  9074. $\Rightarrow$
  9075. &
  9076. \begin{minipage}{0.65\textwidth}
  9077. \begin{lstlisting}
  9078. (inject
  9079. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  9080. (Any|$\ldots$|Any -> Any))
  9081. \end{lstlisting}
  9082. \end{minipage}
  9083. \\[2ex]\hline
  9084. \begin{minipage}{0.27\textwidth}
  9085. \begin{lstlisting}
  9086. (|$e_0$| |$e_1 \ldots e_n$|)
  9087. \end{lstlisting}
  9088. \end{minipage}
  9089. &
  9090. $\Rightarrow$
  9091. &
  9092. \begin{minipage}{0.65\textwidth}
  9093. \begin{lstlisting}
  9094. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  9095. \end{lstlisting}
  9096. \end{minipage}
  9097. \\[2ex]\hline
  9098. \begin{minipage}{0.27\textwidth}
  9099. \begin{lstlisting}
  9100. (vector-ref |$e_1$| |$e_2$|)
  9101. \end{lstlisting}
  9102. \end{minipage}
  9103. &
  9104. $\Rightarrow$
  9105. &
  9106. \begin{minipage}{0.65\textwidth}
  9107. \begin{lstlisting}
  9108. (any-vector-ref |$e_1'$| |$e_2'$|)
  9109. \end{lstlisting}
  9110. \end{minipage}
  9111. \\[2ex]\hline
  9112. \begin{minipage}{0.27\textwidth}
  9113. \begin{lstlisting}
  9114. (if |$e_1$| |$e_2$| |$e_3$|)
  9115. \end{lstlisting}
  9116. \end{minipage}
  9117. &
  9118. $\Rightarrow$
  9119. &
  9120. \begin{minipage}{0.65\textwidth}
  9121. \begin{lstlisting}
  9122. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  9123. \end{lstlisting}
  9124. \end{minipage}
  9125. \\[2ex]\hline
  9126. \begin{minipage}{0.27\textwidth}
  9127. \begin{lstlisting}
  9128. (eq? |$e_1$| |$e_2$|)
  9129. \end{lstlisting}
  9130. \end{minipage}
  9131. &
  9132. $\Rightarrow$
  9133. &
  9134. \begin{minipage}{0.65\textwidth}
  9135. \begin{lstlisting}
  9136. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  9137. \end{lstlisting}
  9138. \end{minipage}
  9139. \\[2ex]\hline
  9140. \begin{minipage}{0.27\textwidth}
  9141. \begin{lstlisting}
  9142. (not |$e_1$|)
  9143. \end{lstlisting}
  9144. \end{minipage}
  9145. &
  9146. $\Rightarrow$
  9147. &
  9148. \begin{minipage}{0.65\textwidth}
  9149. \begin{lstlisting}
  9150. (if (eq? |$e'_1$| (inject #f Boolean))
  9151. (inject #t Boolean) (inject #f Boolean))
  9152. \end{lstlisting}
  9153. \end{minipage}
  9154. \\[2ex]\hline
  9155. \end{tabular}
  9156. \caption{Cast Insertion}
  9157. \label{fig:compile-r7-Rany}
  9158. \end{figure}
  9159. \section{Reveal Casts}
  9160. \label{sec:reveal-casts-Rany}
  9161. % TODO: define R'_6
  9162. In the \code{reveal-casts} pass we recommend compiling \code{project}
  9163. into an \code{if} expression that checks whether the value's tag
  9164. matches the target type; if it does, the value is converted to a value
  9165. of the target type by removing the tag; if it does not, the program
  9166. exits. To perform these actions we need a new primitive operation,
  9167. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  9168. The \code{tag-of-any} operation retrieves the type tag from a tagged
  9169. value of type \code{Any}. The \code{ValueOf} form retrieves the
  9170. underlying value from a tagged value. The \code{ValueOf} form
  9171. includes the type for the underlying value which is used by the type
  9172. checker. Finally, the \code{Exit} form ends the execution of the
  9173. program.
  9174. If the target type of the projection is \code{Boolean} or
  9175. \code{Integer}, then \code{Project} can be translated as follows.
  9176. \begin{center}
  9177. \begin{minipage}{1.0\textwidth}
  9178. \begin{lstlisting}
  9179. (Project |$e$| |$\FType$|)
  9180. |$\Rightarrow$|
  9181. (Let |$\itm{tmp}$| |$e'$|
  9182. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  9183. (Int |$\itm{tagof}(\FType)$|)))
  9184. (ValueOf |$\itm{tmp}$| |$\FType$|)
  9185. (Exit)))
  9186. \end{lstlisting}
  9187. \end{minipage}
  9188. \end{center}
  9189. If the target type of the projection is a vector or function type,
  9190. then there is a bit more work to do. For vectors, check that the
  9191. length of the vector type matches the length of the vector (using the
  9192. \code{vector-length} primitive). For functions, check that the number
  9193. of parameters in the function type matches the function's arity (using
  9194. \code{procedure-arity}).
  9195. Regarding \code{inject}, we recommend compiling it to a slightly
  9196. lower-level primitive operation named \code{make-any}. This operation
  9197. takes a tag instead of a type.
  9198. \begin{center}
  9199. \begin{minipage}{1.0\textwidth}
  9200. \begin{lstlisting}
  9201. (Inject |$e$| |$\FType$|)
  9202. |$\Rightarrow$|
  9203. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  9204. \end{lstlisting}
  9205. \end{minipage}
  9206. \end{center}
  9207. The type predicates (\code{boolean?}, etc.) can be translated into
  9208. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  9209. translation of \code{Project}.
  9210. The \code{any-vector-ref} and \code{any-vector-set!} operations
  9211. combine the projection action with the vector operation. Also, the
  9212. read and write operations allow arbitrary expressions for the index so
  9213. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  9214. cannot guarantee that the index is within bounds. Thus, we insert code
  9215. to perform bounds checking at runtime. The translation for
  9216. \code{any-vector-ref} is as follows and the other two operations are
  9217. translated in a similar way.
  9218. \begin{lstlisting}
  9219. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  9220. |$\Rightarrow$|
  9221. (Let |$v$| |$e'_1$|
  9222. (Let |$i$| |$e'_2$|
  9223. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  9224. (If (Prim '< (list (Var |$i$|)
  9225. (Prim 'any-vector-length (list (Var |$v$|)))))
  9226. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  9227. (Exit))))
  9228. \end{lstlisting}
  9229. \section{Remove Complex Operands}
  9230. \label{sec:rco-Rany}
  9231. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  9232. The subexpression of \code{ValueOf} must be atomic.
  9233. \section{Explicate Control and \LangCAny{}}
  9234. \label{sec:explicate-Rany}
  9235. The output of \code{explicate-control} is the \LangCAny{} language whose
  9236. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  9237. form that we added to \LangAny{} remains an expression and the \code{Exit}
  9238. expression becomes a $\Tail$. Also, note that the index argument of
  9239. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  9240. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  9241. \begin{figure}[tp]
  9242. \fbox{
  9243. \begin{minipage}{0.96\textwidth}
  9244. \small
  9245. \[
  9246. \begin{array}{lcl}
  9247. \Exp &::= & \ldots
  9248. \mid \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  9249. &\mid& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  9250. &\mid& \VALUEOF{\Exp}{\FType} \\
  9251. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  9252. \mid \LP\key{Collect} \,\itm{int}\RP }\\
  9253. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  9254. \mid \GOTO{\itm{label}} } \\
  9255. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  9256. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  9257. \mid \LP\key{Exit}\RP \\
  9258. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  9259. \LangCAnyM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  9260. \end{array}
  9261. \]
  9262. \end{minipage}
  9263. }
  9264. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  9265. \label{fig:c5-syntax}
  9266. \end{figure}
  9267. \section{Select Instructions}
  9268. \label{sec:select-Rany}
  9269. In the \code{select-instructions} pass we translate the primitive
  9270. operations on the \code{Any} type to x86 instructions that involve
  9271. manipulating the 3 tag bits of the tagged value.
  9272. \paragraph{Make-any}
  9273. We recommend compiling the \key{make-any} primitive as follows if the
  9274. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  9275. shifts the destination to the left by the number of bits specified its
  9276. source argument (in this case $3$, the length of the tag) and it
  9277. preserves the sign of the integer. We use the \key{orq} instruction to
  9278. combine the tag and the value to form the tagged value. \\
  9279. \begin{lstlisting}
  9280. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  9281. |$\Rightarrow$|
  9282. movq |$e'$|, |\itm{lhs'}|
  9283. salq $3, |\itm{lhs'}|
  9284. orq $|$\itm{tag}$|, |\itm{lhs'}|
  9285. \end{lstlisting}
  9286. The instruction selection for vectors and procedures is different
  9287. because their is no need to shift them to the left. The rightmost 3
  9288. bits are already zeros as described at the beginning of this
  9289. chapter. So we just combine the value and the tag using \key{orq}. \\
  9290. \begin{lstlisting}
  9291. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  9292. |$\Rightarrow$|
  9293. movq |$e'$|, |\itm{lhs'}|
  9294. orq $|$\itm{tag}$|, |\itm{lhs'}|
  9295. \end{lstlisting}
  9296. \paragraph{Tag-of-any}
  9297. Recall that the \code{tag-of-any} operation extracts the type tag from
  9298. a value of type \code{Any}. The type tag is the bottom three bits, so
  9299. we obtain the tag by taking the bitwise-and of the value with $111$
  9300. ($7$ in decimal).
  9301. \begin{lstlisting}
  9302. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  9303. |$\Rightarrow$|
  9304. movq |$e'$|, |\itm{lhs'}|
  9305. andq $7, |\itm{lhs'}|
  9306. \end{lstlisting}
  9307. \paragraph{ValueOf}
  9308. Like \key{make-any}, the instructions for \key{ValueOf} are different
  9309. depending on whether the type $T$ is a pointer (vector or procedure)
  9310. or not (Integer or Boolean). The following shows the instruction
  9311. selection for Integer and Boolean. We produce an untagged value by
  9312. shifting it to the right by 3 bits.
  9313. \begin{lstlisting}
  9314. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  9315. |$\Rightarrow$|
  9316. movq |$e'$|, |\itm{lhs'}|
  9317. sarq $3, |\itm{lhs'}|
  9318. \end{lstlisting}
  9319. %
  9320. In the case for vectors and procedures, there is no need to
  9321. shift. Instead we just need to zero-out the rightmost 3 bits. We
  9322. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  9323. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  9324. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  9325. then apply \code{andq} with the tagged value to get the desired
  9326. result. \\
  9327. \begin{lstlisting}
  9328. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  9329. |$\Rightarrow$|
  9330. movq $|$-8$|, |\itm{lhs'}|
  9331. andq |$e'$|, |\itm{lhs'}|
  9332. \end{lstlisting}
  9333. %% \paragraph{Type Predicates} We leave it to the reader to
  9334. %% devise a sequence of instructions to implement the type predicates
  9335. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  9336. \paragraph{Any-vector-length}
  9337. \begin{lstlisting}
  9338. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  9339. |$\Longrightarrow$|
  9340. movq |$\neg 111$|, %r11
  9341. andq |$a_1'$|, %r11
  9342. movq 0(%r11), %r11
  9343. andq $126, %r11
  9344. sarq $1, %r11
  9345. movq %r11, |$\itm{lhs'}$|
  9346. \end{lstlisting}
  9347. \paragraph{Any-vector-ref}
  9348. The index may be an arbitrary atom so instead of computing the offset
  9349. at compile time, instructions need to be generated to compute the
  9350. offset at runtime as follows. Note the use of the new instruction
  9351. \code{imulq}.
  9352. \begin{center}
  9353. \begin{minipage}{0.96\textwidth}
  9354. \begin{lstlisting}
  9355. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  9356. |$\Longrightarrow$|
  9357. movq |$\neg 111$|, %r11
  9358. andq |$a_1'$|, %r11
  9359. movq |$a_2'$|, %rax
  9360. addq $1, %rax
  9361. imulq $8, %rax
  9362. addq %rax, %r11
  9363. movq 0(%r11) |$\itm{lhs'}$|
  9364. \end{lstlisting}
  9365. \end{minipage}
  9366. \end{center}
  9367. \paragraph{Any-vector-set!}
  9368. The code generation for \code{any-vector-set!} is similar to the other
  9369. \code{any-vector} operations.
  9370. \section{Register Allocation for \LangAny{}}
  9371. \label{sec:register-allocation-Rany}
  9372. \index{subject}{register allocation}
  9373. There is an interesting interaction between tagged values and garbage
  9374. collection that has an impact on register allocation. A variable of
  9375. type \code{Any} might refer to a vector and therefore it might be a
  9376. root that needs to be inspected and copied during garbage
  9377. collection. Thus, we need to treat variables of type \code{Any} in a
  9378. similar way to variables of type \code{Vector} for purposes of
  9379. register allocation. In particular,
  9380. \begin{itemize}
  9381. \item If a variable of type \code{Any} is live during a function call,
  9382. then it must be spilled. This can be accomplished by changing
  9383. \code{build-interference} to mark all variables of type \code{Any}
  9384. that are live after a \code{callq} as interfering with all the
  9385. registers.
  9386. \item If a variable of type \code{Any} is spilled, it must be spilled
  9387. to the root stack instead of the normal procedure call stack.
  9388. \end{itemize}
  9389. Another concern regarding the root stack is that the garbage collector
  9390. needs to differentiate between (1) plain old pointers to tuples, (2) a
  9391. tagged value that points to a tuple, and (3) a tagged value that is
  9392. not a tuple. We enable this differentiation by choosing not to use the
  9393. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  9394. reserved for identifying plain old pointers to tuples. That way, if
  9395. one of the first three bits is set, then we have a tagged value and
  9396. inspecting the tag can differentiation between vectors ($010$) and the
  9397. other kinds of values.
  9398. \begin{exercise}\normalfont
  9399. Expand your compiler to handle \LangAny{} as discussed in the last few
  9400. sections. Create 5 new programs that use the \code{Any} type and the
  9401. new operations (\code{inject}, \code{project}, \code{boolean?},
  9402. etc.). Test your compiler on these new programs and all of your
  9403. previously created test programs.
  9404. \end{exercise}
  9405. \begin{exercise}\normalfont
  9406. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  9407. Create tests for \LangDyn{} by adapting ten of your previous test programs
  9408. by removing type annotations. Add 5 more tests programs that
  9409. specifically rely on the language being dynamically typed. That is,
  9410. they should not be legal programs in a statically typed language, but
  9411. nevertheless, they should be valid \LangDyn{} programs that run to
  9412. completion without error.
  9413. \end{exercise}
  9414. \begin{figure}[p]
  9415. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9416. \node (Rfun) at (0,4) {\large \LangDyn{}};
  9417. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  9418. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  9419. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  9420. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  9421. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  9422. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  9423. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  9424. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  9425. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  9426. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  9427. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  9428. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  9429. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  9430. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  9431. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  9432. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  9433. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  9434. \path[->,bend left=15] (Rfun) edge [above] node
  9435. {\ttfamily\footnotesize shrink} (Rfun-2);
  9436. \path[->,bend left=15] (Rfun-2) edge [above] node
  9437. {\ttfamily\footnotesize uniquify} (Rfun-3);
  9438. \path[->,bend left=15] (Rfun-3) edge [above] node
  9439. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  9440. \path[->,bend right=15] (Rfun-4) edge [left] node
  9441. {\ttfamily\footnotesize cast-insert} (Rfun-5);
  9442. \path[->,bend left=15] (Rfun-5) edge [above] node
  9443. {\ttfamily\footnotesize check-bounds} (Rfun-6);
  9444. \path[->,bend left=15] (Rfun-6) edge [left] node
  9445. {\ttfamily\footnotesize reveal-casts} (Rfun-7);
  9446. \path[->,bend left=15] (Rfun-7) edge [below] node
  9447. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  9448. \path[->,bend right=15] (F1-2) edge [above] node
  9449. {\ttfamily\footnotesize limit-fun.} (F1-3);
  9450. \path[->,bend right=15] (F1-3) edge [above] node
  9451. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9452. \path[->,bend right=15] (F1-4) edge [above] node
  9453. {\ttfamily\footnotesize remove-complex.} (F1-5);
  9454. \path[->,bend right=15] (F1-5) edge [right] node
  9455. {\ttfamily\footnotesize explicate-control} (C3-2);
  9456. \path[->,bend left=15] (C3-2) edge [left] node
  9457. {\ttfamily\footnotesize select-instr.} (x86-2);
  9458. \path[->,bend right=15] (x86-2) edge [left] node
  9459. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  9460. \path[->,bend right=15] (x86-2-1) edge [below] node
  9461. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  9462. \path[->,bend right=15] (x86-2-2) edge [left] node
  9463. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  9464. \path[->,bend left=15] (x86-3) edge [above] node
  9465. {\ttfamily\footnotesize patch-instr.} (x86-4);
  9466. \path[->,bend left=15] (x86-4) edge [right] node
  9467. {\ttfamily\footnotesize print-x86} (x86-5);
  9468. \end{tikzpicture}
  9469. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  9470. \label{fig:Rdyn-passes}
  9471. \end{figure}
  9472. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  9473. for the compilation of \LangDyn{}.
  9474. % Further Reading
  9475. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9476. \chapter{Loops and Assignment}
  9477. \label{ch:Rwhile}
  9478. % TODO: define R'_8
  9479. % TODO: multi-graph
  9480. In this chapter we study two features that are the hallmarks of
  9481. imperative programming languages: loops and assignments to local
  9482. variables. The following example demonstrates these new features by
  9483. computing the sum of the first five positive integers.
  9484. % similar to loop_test_1.rkt
  9485. \begin{lstlisting}
  9486. (let ([sum 0])
  9487. (let ([i 5])
  9488. (begin
  9489. (while (> i 0)
  9490. (begin
  9491. (set! sum (+ sum i))
  9492. (set! i (- i 1))))
  9493. sum)))
  9494. \end{lstlisting}
  9495. The \code{while} loop consists of a condition and a body.
  9496. %
  9497. The \code{set!} consists of a variable and a right-hand-side expression.
  9498. %
  9499. The primary purpose of both the \code{while} loop and \code{set!} is
  9500. to cause side effects, so it is convenient to also include in a
  9501. language feature for sequencing side effects: the \code{begin}
  9502. expression. It consists of one or more subexpressions that are
  9503. evaluated left-to-right.
  9504. \section{The \LangLoop{} Language}
  9505. \begin{figure}[tp]
  9506. \centering
  9507. \fbox{
  9508. \begin{minipage}{0.96\textwidth}
  9509. \small
  9510. \[
  9511. \begin{array}{lcl}
  9512. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  9513. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  9514. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  9515. &\mid& \gray{\key{\#t} \mid \key{\#f}
  9516. \mid (\key{and}\;\Exp\;\Exp)
  9517. \mid (\key{or}\;\Exp\;\Exp)
  9518. \mid (\key{not}\;\Exp) } \\
  9519. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  9520. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  9521. (\key{vector-ref}\;\Exp\;\Int)} \\
  9522. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  9523. \mid (\Exp \; \Exp\ldots) } \\
  9524. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
  9525. \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  9526. &\mid& \CSETBANG{\Var}{\Exp}
  9527. \mid \CBEGIN{\Exp\ldots}{\Exp}
  9528. \mid \CWHILE{\Exp}{\Exp} \\
  9529. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  9530. \LangLoopM{} &::=& \gray{\Def\ldots \; \Exp}
  9531. \end{array}
  9532. \]
  9533. \end{minipage}
  9534. }
  9535. \caption{The concrete syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-concrete-syntax}).}
  9536. \label{fig:Rwhile-concrete-syntax}
  9537. \end{figure}
  9538. \begin{figure}[tp]
  9539. \centering
  9540. \fbox{
  9541. \begin{minipage}{0.96\textwidth}
  9542. \small
  9543. \[
  9544. \begin{array}{lcl}
  9545. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  9546. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  9547. &\mid& \gray{ \BOOL{\itm{bool}}
  9548. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  9549. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  9550. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  9551. &\mid& \gray{ \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp} }\\
  9552. &\mid& \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  9553. \mid \WHILE{\Exp}{\Exp} \\
  9554. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  9555. \LangLoopM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  9556. \end{array}
  9557. \]
  9558. \end{minipage}
  9559. }
  9560. \caption{The abstract syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-syntax}).}
  9561. \label{fig:Rwhile-syntax}
  9562. \end{figure}
  9563. The concrete syntax of \LangLoop{} is defined in
  9564. Figure~\ref{fig:Rwhile-concrete-syntax} and its abstract syntax is defined
  9565. in Figure~\ref{fig:Rwhile-syntax}.
  9566. %
  9567. The definitional interpreter for \LangLoop{} is shown in
  9568. Figure~\ref{fig:interp-Rwhile}. We add three new cases for \code{SetBang},
  9569. \code{WhileLoop}, and \code{Begin} and we make changes to the cases
  9570. for \code{Var}, \code{Let}, and \code{Apply} regarding variables. To
  9571. support assignment to variables and to make their lifetimes indefinite
  9572. (see the second example in Section~\ref{sec:assignment-scoping}), we
  9573. box the value that is bound to each variable (in \code{Let}) and
  9574. function parameter (in \code{Apply}). The case for \code{Var} unboxes
  9575. the value.
  9576. %
  9577. Now to discuss the new cases. For \code{SetBang}, we lookup the
  9578. variable in the environment to obtain a boxed value and then we change
  9579. it using \code{set-box!} to the result of evaluating the right-hand
  9580. side. The result value of a \code{SetBang} is \code{void}.
  9581. %
  9582. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  9583. if the result is true, 2) evaluate the body.
  9584. The result value of a \code{while} loop is also \code{void}.
  9585. %
  9586. Finally, the $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  9587. subexpressions \itm{es} for their effects and then evaluates
  9588. and returns the result from \itm{body}.
  9589. \begin{figure}[tbp]
  9590. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9591. (define interp-Rwhile-class
  9592. (class interp-Rany-class
  9593. (super-new)
  9594. (define/override ((interp-exp env) e)
  9595. (define recur (interp-exp env))
  9596. (match e
  9597. [(SetBang x rhs)
  9598. (set-box! (lookup x env) (recur rhs))]
  9599. [(WhileLoop cnd body)
  9600. (define (loop)
  9601. (cond [(recur cnd) (recur body) (loop)]
  9602. [else (void)]))
  9603. (loop)]
  9604. [(Begin es body)
  9605. (for ([e es]) (recur e))
  9606. (recur body)]
  9607. [else ((super interp-exp env) e)]))
  9608. ))
  9609. (define (interp-Rwhile p)
  9610. (send (new interp-Rwhile-class) interp-program p))
  9611. \end{lstlisting}
  9612. \caption{Interpreter for \LangLoop{}.}
  9613. \label{fig:interp-Rwhile}
  9614. \end{figure}
  9615. The type checker for \LangLoop{} is define in
  9616. Figure~\ref{fig:type-check-Rwhile}. For \code{SetBang}, the type of the
  9617. variable and the right-hand-side must agree. The result type is
  9618. \code{Void}. For the \code{WhileLoop}, the condition must be a
  9619. \code{Boolean}. The result type is also \code{Void}. For
  9620. \code{Begin}, the result type is the type of its last subexpression.
  9621. \begin{figure}[tbp]
  9622. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9623. (define type-check-Rwhile-class
  9624. (class type-check-Rany-class
  9625. (super-new)
  9626. (inherit check-type-equal?)
  9627. (define/override (type-check-exp env)
  9628. (lambda (e)
  9629. (define recur (type-check-exp env))
  9630. (match e
  9631. [(SetBang x rhs)
  9632. (define-values (rhs^ rhsT) (recur rhs))
  9633. (define varT (dict-ref env x))
  9634. (check-type-equal? rhsT varT e)
  9635. (values (SetBang x rhs^) 'Void)]
  9636. [(WhileLoop cnd body)
  9637. (define-values (cnd^ Tc) (recur cnd))
  9638. (check-type-equal? Tc 'Boolean e)
  9639. (define-values (body^ Tbody) ((type-check-exp env) body))
  9640. (values (WhileLoop cnd^ body^) 'Void)]
  9641. [(Begin es body)
  9642. (define-values (es^ ts)
  9643. (for/lists (l1 l2) ([e es]) (recur e)))
  9644. (define-values (body^ Tbody) (recur body))
  9645. (values (Begin es^ body^) Tbody)]
  9646. [else ((super type-check-exp env) e)])))
  9647. ))
  9648. (define (type-check-Rwhile p)
  9649. (send (new type-check-Rwhile-class) type-check-program p))
  9650. \end{lstlisting}
  9651. \caption{Type checking \key{SetBang}, \key{WhileLoop},
  9652. and \code{Begin} in \LangLoop{}.}
  9653. \label{fig:type-check-Rwhile}
  9654. \end{figure}
  9655. At first glance, the translation of these language features to x86
  9656. seems straightforward because the \LangCFun{} intermediate language already
  9657. supports all of the ingredients that we need: assignment, \code{goto},
  9658. conditional branching, and sequencing. However, there are two
  9659. complications that arise which we discuss in the next two
  9660. sections. After that we introduce one new compiler pass and the
  9661. changes necessary to the existing passes.
  9662. \section{Assignment and Lexically Scoped Functions}
  9663. \label{sec:assignment-scoping}
  9664. The addition of assignment raises a problem with our approach to
  9665. implementing lexically-scoped functions. Consider the following
  9666. example in which function \code{f} has a free variable \code{x} that
  9667. is changed after \code{f} is created but before the call to \code{f}.
  9668. % loop_test_11.rkt
  9669. \begin{lstlisting}
  9670. (let ([x 0])
  9671. (let ([y 0])
  9672. (let ([z 20])
  9673. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  9674. (begin
  9675. (set! x 10)
  9676. (set! y 12)
  9677. (f y))))))
  9678. \end{lstlisting}
  9679. The correct output for this example is \code{42} because the call to
  9680. \code{f} is required to use the current value of \code{x} (which is
  9681. \code{10}). Unfortunately, the closure conversion pass
  9682. (Section~\ref{sec:closure-conversion}) generates code for the
  9683. \code{lambda} that copies the old value of \code{x} into a
  9684. closure. Thus, if we naively add support for assignment to our current
  9685. compiler, the output of this program would be \code{32}.
  9686. A first attempt at solving this problem would be to save a pointer to
  9687. \code{x} in the closure and change the occurrences of \code{x} inside
  9688. the lambda to dereference the pointer. Of course, this would require
  9689. assigning \code{x} to the stack and not to a register. However, the
  9690. problem goes a bit deeper. Consider the following example in which we
  9691. create a counter abstraction by creating a pair of functions that
  9692. share the free variable \code{x}.
  9693. % similar to loop_test_10.rkt
  9694. \begin{lstlisting}
  9695. (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  9696. (vector
  9697. (lambda: () : Integer x)
  9698. (lambda: () : Void (set! x (+ 1 x)))))
  9699. (let ([counter (f 0)])
  9700. (let ([get (vector-ref counter 0)])
  9701. (let ([inc (vector-ref counter 1)])
  9702. (begin
  9703. (inc)
  9704. (get)))))
  9705. \end{lstlisting}
  9706. In this example, the lifetime of \code{x} extends beyond the lifetime
  9707. of the call to \code{f}. Thus, if we were to store \code{x} on the
  9708. stack frame for the call to \code{f}, it would be gone by the time we
  9709. call \code{inc} and \code{get}, leaving us with dangling pointers for
  9710. \code{x}. This example demonstrates that when a variable occurs free
  9711. inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
  9712. value of the variable needs to live on the heap. The verb ``box'' is
  9713. often used for allocating a single value on the heap, producing a
  9714. pointer, and ``unbox'' for dereferencing the pointer.
  9715. We recommend solving these problems by ``boxing'' the local variables
  9716. that are in the intersection of 1) variables that appear on the
  9717. left-hand-side of a \code{set!} and 2) variables that occur free
  9718. inside a \code{lambda}. We shall introduce a new pass named
  9719. \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
  9720. perform this translation. But before diving into the compiler passes,
  9721. we one more problem to discuss.
  9722. \section{Cyclic Control Flow and Dataflow Analysis}
  9723. \label{sec:dataflow-analysis}
  9724. Up until this point the control-flow graphs generated in
  9725. \code{explicate-control} were guaranteed to be acyclic. However, each
  9726. \code{while} loop introduces a cycle in the control-flow graph.
  9727. But does that matter?
  9728. %
  9729. Indeed it does. Recall that for register allocation, the compiler
  9730. performs liveness analysis to determine which variables can share the
  9731. same register. In Section~\ref{sec:liveness-analysis-Rif} we analyze
  9732. the control-flow graph in reverse topological order, but topological
  9733. order is only well-defined for acyclic graphs.
  9734. Let us return to the example of computing the sum of the first five
  9735. positive integers. Here is the program after instruction selection but
  9736. before register allocation.
  9737. \begin{center}
  9738. \begin{minipage}{0.45\textwidth}
  9739. \begin{lstlisting}
  9740. (define (main) : Integer
  9741. mainstart:
  9742. movq $0, sum1
  9743. movq $5, i2
  9744. jmp block5
  9745. block5:
  9746. movq i2, tmp3
  9747. cmpq tmp3, $0
  9748. jl block7
  9749. jmp block8
  9750. \end{lstlisting}
  9751. \end{minipage}
  9752. \begin{minipage}{0.45\textwidth}
  9753. \begin{lstlisting}
  9754. block7:
  9755. addq i2, sum1
  9756. movq $1, tmp4
  9757. negq tmp4
  9758. addq tmp4, i2
  9759. jmp block5
  9760. block8:
  9761. movq $27, %rax
  9762. addq sum1, %rax
  9763. jmp mainconclusion
  9764. )
  9765. \end{lstlisting}
  9766. \end{minipage}
  9767. \end{center}
  9768. Recall that liveness analysis works backwards, starting at the end
  9769. of each function. For this example we could start with \code{block8}
  9770. because we know what is live at the beginning of the conclusion,
  9771. just \code{rax} and \code{rsp}. So the live-before set
  9772. for \code{block8} is $\{\ttm{rsp},\ttm{sum1}\}$.
  9773. %
  9774. Next we might try to analyze \code{block5} or \code{block7}, but
  9775. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  9776. we are stuck.
  9777. The way out of this impasse comes from the realization that one can
  9778. perform liveness analysis starting with an empty live-after set to
  9779. compute an under-approximation of the live-before set. By
  9780. \emph{under-approximation}, we mean that the set only contains
  9781. variables that are really live, but it may be missing some. Next, the
  9782. under-approximations for each block can be improved by 1) updating the
  9783. live-after set for each block using the approximate live-before sets
  9784. from the other blocks and 2) perform liveness analysis again on each
  9785. block. In fact, by iterating this process, the under-approximations
  9786. eventually become the correct solutions!
  9787. %
  9788. This approach of iteratively analyzing a control-flow graph is
  9789. applicable to many static analysis problems and goes by the name
  9790. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  9791. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  9792. Washington.
  9793. Let us apply this approach to the above example. We use the empty set
  9794. for the initial live-before set for each block. Let $m_0$ be the
  9795. following mapping from label names to sets of locations (variables and
  9796. registers).
  9797. \begin{center}
  9798. \begin{lstlisting}
  9799. mainstart: {}
  9800. block5: {}
  9801. block7: {}
  9802. block8: {}
  9803. \end{lstlisting}
  9804. \end{center}
  9805. Using the above live-before approximations, we determine the
  9806. live-after for each block and then apply liveness analysis to each
  9807. block. This produces our next approximation $m_1$ of the live-before
  9808. sets.
  9809. \begin{center}
  9810. \begin{lstlisting}
  9811. mainstart: {}
  9812. block5: {i2}
  9813. block7: {i2, sum1}
  9814. block8: {rsp, sum1}
  9815. \end{lstlisting}
  9816. \end{center}
  9817. For the second round, the live-after for \code{mainstart} is the
  9818. current live-before for \code{block5}, which is \code{\{i2\}}. So the
  9819. liveness analysis for \code{mainstart} computes the empty set. The
  9820. live-after for \code{block5} is the union of the live-before sets for
  9821. \code{block7} and \code{block8}, which is \code{\{i2 , rsp, sum1\}}.
  9822. So the liveness analysis for \code{block5} computes \code{\{i2 , rsp,
  9823. sum1\}}. The live-after for \code{block7} is the live-before for
  9824. \code{block5} (from the previous iteration), which is \code{\{i2\}}.
  9825. So the liveness analysis for \code{block7} remains \code{\{i2,
  9826. sum1\}}. Together these yield the following approximation $m_2$ of
  9827. the live-before sets.
  9828. \begin{center}
  9829. \begin{lstlisting}
  9830. mainstart: {}
  9831. block5: {i2, rsp, sum1}
  9832. block7: {i2, sum1}
  9833. block8: {rsp, sum1}
  9834. \end{lstlisting}
  9835. \end{center}
  9836. In the preceding iteration, only \code{block5} changed, so we can
  9837. limit our attention to \code{mainstart} and \code{block7}, the two
  9838. blocks that jump to \code{block5}. As a result, the live-before sets
  9839. for \code{mainstart} and \code{block7} are updated to include
  9840. \code{rsp}, yielding the following approximation $m_3$.
  9841. \begin{center}
  9842. \begin{lstlisting}
  9843. mainstart: {rsp}
  9844. block5: {i2, rsp, sum1}
  9845. block7: {i2, rsp, sum1}
  9846. block8: {rsp, sum1}
  9847. \end{lstlisting}
  9848. \end{center}
  9849. Because \code{block7} changed, we analyze \code{block5} once more, but
  9850. its live-before set remains \code{\{ i2, rsp, sum1 \}}. At this point
  9851. our approximations have converged, so $m_3$ is the solution.
  9852. This iteration process is guaranteed to converge to a solution by the
  9853. Kleene Fixed-Point Theorem, a general theorem about functions on
  9854. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  9855. any collection that comes with a partial ordering $\sqsubseteq$ on its
  9856. elements, a least element $\bot$ (pronounced bottom), and a join
  9857. operator $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{partial
  9858. ordering}\index{subject}{join}\footnote{Technically speaking, we will be
  9859. working with join semi-lattices.} When two elements are ordered $m_i
  9860. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  9861. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  9862. approximation than $m_i$. The bottom element $\bot$ represents the
  9863. complete lack of information, i.e., the worst approximation. The join
  9864. operator takes two lattice elements and combines their information,
  9865. i.e., it produces the least upper bound of the two.\index{subject}{least upper
  9866. bound}
  9867. A dataflow analysis typically involves two lattices: one lattice to
  9868. represent abstract states and another lattice that aggregates the
  9869. abstract states of all the blocks in the control-flow graph. For
  9870. liveness analysis, an abstract state is a set of locations. We form
  9871. the lattice $L$ by taking its elements to be sets of locations, the
  9872. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  9873. set, and the join operator to be set union.
  9874. %
  9875. We form a second lattice $M$ by taking its elements to be mappings
  9876. from the block labels to sets of locations (elements of $L$). We
  9877. order the mappings point-wise, using the ordering of $L$. So given any
  9878. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  9879. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  9880. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  9881. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  9882. We can think of one iteration of liveness analysis as being a function
  9883. $f$ on the lattice $M$. It takes a mapping as input and computes a new
  9884. mapping.
  9885. \[
  9886. f(m_i) = m_{i+1}
  9887. \]
  9888. Next let us think for a moment about what a final solution $m_s$
  9889. should look like. If we perform liveness analysis using the solution
  9890. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  9891. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  9892. \[
  9893. f(m_s) = m_s
  9894. \]
  9895. Furthermore, the solution should only include locations that are
  9896. forced to be there by performing liveness analysis on the program, so
  9897. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  9898. The Kleene Fixed-Point Theorem states that if a function $f$ is
  9899. monotone (better inputs produce better outputs), then the least fixed
  9900. point of $f$ is the least upper bound of the \emph{ascending Kleene
  9901. chain} obtained by starting at $\bot$ and iterating $f$ as
  9902. follows.\index{subject}{Kleene Fixed-Point Theorem}
  9903. \[
  9904. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9905. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  9906. \]
  9907. When a lattice contains only finitely-long ascending chains, then
  9908. every Kleene chain tops out at some fixed point after a number of
  9909. iterations of $f$. So that fixed point is also a least upper
  9910. bound of the chain.
  9911. \[
  9912. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9913. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  9914. \]
  9915. The liveness analysis is indeed a monotone function and the lattice
  9916. $M$ only has finitely-long ascending chains because there are only a
  9917. finite number of variables and blocks in the program. Thus we are
  9918. guaranteed that iteratively applying liveness analysis to all blocks
  9919. in the program will eventually produce the least fixed point solution.
  9920. Next let us consider dataflow analysis in general and discuss the
  9921. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  9922. %
  9923. The algorithm has four parameters: the control-flow graph \code{G}, a
  9924. function \code{transfer} that applies the analysis to one block, the
  9925. \code{bottom} and \code{join} operator for the lattice of abstract
  9926. states. The algorithm begins by creating the bottom mapping,
  9927. represented by a hash table. It then pushes all of the nodes in the
  9928. control-flow graph onto the work list (a queue). The algorithm repeats
  9929. the \code{while} loop as long as there are items in the work list. In
  9930. each iteration, a node is popped from the work list and processed. The
  9931. \code{input} for the node is computed by taking the join of the
  9932. abstract states of all the predecessor nodes. The \code{transfer}
  9933. function is then applied to obtain the \code{output} abstract
  9934. state. If the output differs from the previous state for this block,
  9935. the mapping for this block is updated and its successor nodes are
  9936. pushed onto the work list.
  9937. \begin{figure}[tb]
  9938. \begin{lstlisting}
  9939. (define (analyze-dataflow G transfer bottom join)
  9940. (define mapping (make-hash))
  9941. (for ([v (in-vertices G)])
  9942. (dict-set! mapping v bottom))
  9943. (define worklist (make-queue))
  9944. (for ([v (in-vertices G)])
  9945. (enqueue! worklist v))
  9946. (define trans-G (transpose G))
  9947. (while (not (queue-empty? worklist))
  9948. (define node (dequeue! worklist))
  9949. (define input (for/fold ([state bottom])
  9950. ([pred (in-neighbors trans-G node)])
  9951. (join state (dict-ref mapping pred))))
  9952. (define output (transfer node input))
  9953. (cond [(not (equal? output (dict-ref mapping node)))
  9954. (dict-set! mapping node output)
  9955. (for ([v (in-neighbors G node)])
  9956. (enqueue! worklist v))]))
  9957. mapping)
  9958. \end{lstlisting}
  9959. \caption{Generic work list algorithm for dataflow analysis}
  9960. \label{fig:generic-dataflow}
  9961. \end{figure}
  9962. Having discussed the two complications that arise from adding support
  9963. for assignment and loops, we turn to discussing the one new compiler
  9964. pass and the significant changes to existing passes.
  9965. \section{Convert Assignments}
  9966. \label{sec:convert-assignments}
  9967. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  9968. the combination of assignments and lexically-scoped functions requires
  9969. that we box those variables that are both assigned-to and that appear
  9970. free inside a \code{lambda}. The purpose of the
  9971. \code{convert-assignments} pass is to carry out that transformation.
  9972. We recommend placing this pass after \code{uniquify} but before
  9973. \code{reveal-functions}.
  9974. Consider again the first example from
  9975. Section~\ref{sec:assignment-scoping}:
  9976. \begin{lstlisting}
  9977. (let ([x 0])
  9978. (let ([y 0])
  9979. (let ([z 20])
  9980. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  9981. (begin
  9982. (set! x 10)
  9983. (set! y 12)
  9984. (f y))))))
  9985. \end{lstlisting}
  9986. The variables \code{x} and \code{y} are assigned-to. The variables
  9987. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  9988. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  9989. The boxing of \code{x} consists of three transformations: initialize
  9990. \code{x} with a vector, replace reads from \code{x} with
  9991. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  9992. \code{vector-set!}. The output of \code{convert-assignments} for this
  9993. example is as follows.
  9994. \begin{lstlisting}
  9995. (define (main) : Integer
  9996. (let ([x0 (vector 0)])
  9997. (let ([y1 0])
  9998. (let ([z2 20])
  9999. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  10000. (+ a3 (+ (vector-ref x0 0) z2)))])
  10001. (begin
  10002. (vector-set! x0 0 10)
  10003. (set! y1 12)
  10004. (f4 y1)))))))
  10005. \end{lstlisting}
  10006. \paragraph{Assigned \& Free}
  10007. We recommend defining an auxiliary function named
  10008. \code{assigned\&free} that takes an expression and simultaneously
  10009. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  10010. that occur free within lambda's, and 3) a new version of the
  10011. expression that records which bound variables occurred in the
  10012. intersection of $A$ and $F$. You can use the struct
  10013. \code{AssignedFree} to do this. Consider the case for
  10014. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  10015. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  10016. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  10017. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  10018. \begin{lstlisting}
  10019. (Let |$x$| |$rhs$| |$body$|)
  10020. |$\Rightarrow$|
  10021. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  10022. \end{lstlisting}
  10023. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  10024. The set of assigned variables for this \code{Let} is
  10025. $A_r \cup (A_b - \{x\})$
  10026. and the set of variables free in lambda's is
  10027. $F_r \cup (F_b - \{x\})$.
  10028. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  10029. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  10030. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  10031. and $F_r$.
  10032. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  10033. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  10034. recursively processing \itm{body}. Wrap each of parameter that occurs
  10035. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  10036. Let $P$ be the set of parameter names in \itm{params}. The result is
  10037. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  10038. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  10039. variables of an expression (see Chapter~\ref{ch:Rlam}).
  10040. \paragraph{Convert Assignments}
  10041. Next we discuss the \code{convert-assignment} pass with its auxiliary
  10042. functions for expressions and definitions. The function for
  10043. expressions, \code{cnvt-assign-exp}, should take an expression and a
  10044. set of assigned-and-free variables (obtained from the result of
  10045. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  10046. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  10047. \code{vector-ref}.
  10048. \begin{lstlisting}
  10049. (Var |$x$|)
  10050. |$\Rightarrow$|
  10051. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  10052. \end{lstlisting}
  10053. %
  10054. In the case for $\LET{\LP\code{AssignedFree}\,
  10055. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  10056. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  10057. \itm{body'} but with $x$ added to the set of assigned-and-free
  10058. variables. Translate the let-expression as follows to bind $x$ to a
  10059. boxed value.
  10060. \begin{lstlisting}
  10061. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  10062. |$\Rightarrow$|
  10063. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  10064. \end{lstlisting}
  10065. %
  10066. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  10067. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  10068. variables, translate the \code{set!} into a \code{vector-set!}
  10069. as follows.
  10070. \begin{lstlisting}
  10071. (SetBang |$x$| |$\itm{rhs}$|)
  10072. |$\Rightarrow$|
  10073. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  10074. \end{lstlisting}
  10075. %
  10076. The case for \code{Lambda} is non-trivial, but it is similar to the
  10077. case for function definitions, which we discuss next.
  10078. The auxiliary function for definitions, \code{cnvt-assign-def},
  10079. applies assignment conversion to function definitions.
  10080. We translate a function definition as follows.
  10081. \begin{lstlisting}
  10082. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  10083. |$\Rightarrow$|
  10084. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  10085. \end{lstlisting}
  10086. So it remains to explain \itm{params'} and $\itm{body}_4$.
  10087. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  10088. \code{assigned\&free} on $\itm{body_1}$.
  10089. Let $P$ be the parameter names in \itm{params}.
  10090. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  10091. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  10092. as the set of assigned-and-free variables.
  10093. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  10094. in a sequence of let-expressions that box the parameters
  10095. that are in $A_b \cap F_b$.
  10096. %
  10097. Regarding \itm{params'}, change the names of the parameters that are
  10098. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  10099. variables can retain the original names). Recall the second example in
  10100. Section~\ref{sec:assignment-scoping} involving a counter
  10101. abstraction. The following is the output of assignment version for
  10102. function \code{f}.
  10103. \begin{lstlisting}
  10104. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  10105. (vector
  10106. (lambda: () : Integer x1)
  10107. (lambda: () : Void (set! x1 (+ 1 x1)))))
  10108. |$\Rightarrow$|
  10109. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  10110. (let ([x1 (vector param_x1)])
  10111. (vector (lambda: () : Integer (vector-ref x1 0))
  10112. (lambda: () : Void
  10113. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  10114. \end{lstlisting}
  10115. \section{Remove Complex Operands}
  10116. \label{sec:rco-loop}
  10117. The three new language forms, \code{while}, \code{set!}, and
  10118. \code{begin} are all complex expressions and their subexpressions are
  10119. allowed to be complex. Figure~\ref{fig:Rfun-anf-syntax} defines the
  10120. output language \LangFunANF{} of this pass.
  10121. \begin{figure}[tp]
  10122. \centering
  10123. \fbox{
  10124. \begin{minipage}{0.96\textwidth}
  10125. \small
  10126. \[
  10127. \begin{array}{rcl}
  10128. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  10129. \mid \VOID{} } \\
  10130. \Exp &::=& \ldots \mid \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  10131. &\mid& \WHILE{\Exp}{\Exp} \mid \SETBANG{\Var}{\Exp}
  10132. \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  10133. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  10134. R^{\dagger}_8 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  10135. \end{array}
  10136. \]
  10137. \end{minipage}
  10138. }
  10139. \caption{\LangLoopANF{} is \LangLoop{} in administrative normal form (ANF).}
  10140. \label{fig:Rwhile-anf-syntax}
  10141. \end{figure}
  10142. As usual, when a complex expression appears in a grammar position that
  10143. needs to be atomic, such as the argument of a primitive operator, we
  10144. must introduce a temporary variable and bind it to the complex
  10145. expression. This approach applies, unchanged, to handle the new
  10146. language forms. For example, in the following code there are two
  10147. \code{begin} expressions appearing as arguments to \code{+}. The
  10148. output of \code{rco-exp} is shown below, in which the \code{begin}
  10149. expressions have been bound to temporary variables. Recall that
  10150. \code{let} expressions in \LangLoopANF{} are allowed to have
  10151. arbitrary expressions in their right-hand-side expression, so it is
  10152. fine to place \code{begin} there.
  10153. \begin{lstlisting}
  10154. (let ([x0 10])
  10155. (let ([y1 0])
  10156. (+ (+ (begin (set! y1 (read)) x0)
  10157. (begin (set! x0 (read)) y1))
  10158. x0)))
  10159. |$\Rightarrow$|
  10160. (let ([x0 10])
  10161. (let ([y1 0])
  10162. (let ([tmp2 (begin (set! y1 (read)) x0)])
  10163. (let ([tmp3 (begin (set! x0 (read)) y1)])
  10164. (let ([tmp4 (+ tmp2 tmp3)])
  10165. (+ tmp4 x0))))))
  10166. \end{lstlisting}
  10167. \section{Explicate Control and \LangCLoop{}}
  10168. \label{sec:explicate-loop}
  10169. Recall that in the \code{explicate-control} pass we define one helper
  10170. function for each kind of position in the program. For the \LangVar{}
  10171. language of integers and variables we needed kinds of positions:
  10172. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  10173. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  10174. yet another kind of position: effect position. Except for the last
  10175. subexpression, the subexpressions inside a \code{begin} are evaluated
  10176. only for their effect. Their result values are discarded. We can
  10177. generate better code by taking this fact into account.
  10178. The output language of \code{explicate-control} is \LangCLoop{}
  10179. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  10180. \LangCLam{}. The only syntactic difference is that \code{Call},
  10181. \code{vector-set!}, and \code{read} may also appear as statements.
  10182. The most significant difference between \LangCLam{} and \LangCLoop{}
  10183. is that the control-flow graphs of the later may contain cycles.
  10184. \begin{figure}[tp]
  10185. \fbox{
  10186. \begin{minipage}{0.96\textwidth}
  10187. \small
  10188. \[
  10189. \begin{array}{lcl}
  10190. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  10191. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  10192. &\mid& \CALL{\Atm}{\LP\Atm\ldots\RP} \mid \READ{}\\
  10193. &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
  10194. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  10195. \LangCLoopM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  10196. \end{array}
  10197. \]
  10198. \end{minipage}
  10199. }
  10200. \caption{The abstract syntax of \LangCLoop{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  10201. \label{fig:c7-syntax}
  10202. \end{figure}
  10203. The new auxiliary function \code{explicate-effect} takes an expression
  10204. (in an effect position) and a promise of a continuation block. The
  10205. function returns a promise for a $\Tail$ that includes the generated
  10206. code for the input expression followed by the continuation block. If
  10207. the expression is obviously pure, that is, never causes side effects,
  10208. then the expression can be removed, so the result is just the
  10209. continuation block.
  10210. %
  10211. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  10212. case. First, you will need a fresh label $\itm{loop}$ for the top of
  10213. the loop. Recursively process the \itm{body} (in effect position)
  10214. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  10215. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  10216. \itm{body'} as the then-branch and the continuation block as the
  10217. else-branch. The result should be added to the control-flow graph with
  10218. the label \itm{loop}. The result for the whole \code{while} loop is a
  10219. \code{goto} to the \itm{loop} label. Note that the loop should only be
  10220. added to the control-flow graph if the loop is indeed used, which can
  10221. be accomplished using \code{delay}.
  10222. The auxiliary functions for tail, assignment, and predicate positions
  10223. need to be updated. The three new language forms, \code{while},
  10224. \code{set!}, and \code{begin}, can appear in assignment and tail
  10225. positions. Only \code{begin} may appear in predicate positions; the
  10226. other two have result type \code{Void}.
  10227. \section{Select Instructions}
  10228. \label{sec:select-instructions-loop}
  10229. Only three small additions are needed in the
  10230. \code{select-instructions} pass to handle the changes to \LangCLoop{}. That
  10231. is, \code{Call}, \code{read}, and \code{vector-set!} may now appear as
  10232. stand-alone statements instead of only appearing on the right-hand
  10233. side of an assignment statement. The code generation is nearly
  10234. identical; just leave off the instruction for moving the result into
  10235. the left-hand side.
  10236. \section{Register Allocation}
  10237. \label{sec:register-allocation-loop}
  10238. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  10239. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  10240. which complicates the liveness analysis needed for register
  10241. allocation.
  10242. \subsection{Liveness Analysis}
  10243. \label{sec:liveness-analysis-r8}
  10244. We recommend using the generic \code{analyze-dataflow} function that
  10245. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  10246. perform liveness analysis, replacing the code in
  10247. \code{uncover-live-CFG} that processed the basic blocks in topological
  10248. order (Section~\ref{sec:liveness-analysis-Rif}).
  10249. The \code{analyze-dataflow} function has four parameters.
  10250. \begin{enumerate}
  10251. \item The first parameter \code{G} should be a directed graph from the
  10252. \code{racket/graph} package (see the sidebar in
  10253. Section~\ref{sec:build-interference}) that represents the
  10254. control-flow graph.
  10255. \item The second parameter \code{transfer} is a function that applies
  10256. liveness analysis to a basic block. It takes two parameters: the
  10257. label for the block to analyze and the live-after set for that
  10258. block. The transfer function should return the live-before set for
  10259. the block. Also, as a side-effect, it should update the block's
  10260. $\itm{info}$ with the liveness information for each instruction. To
  10261. implement the \code{transfer} function, you should be able to reuse
  10262. the code you already have for analyzing basic blocks.
  10263. \item The third and fourth parameters of \code{analyze-dataflow} are
  10264. \code{bottom} and \code{join} for the lattice of abstract states,
  10265. i.e. sets of locations. The bottom of the lattice is the empty set
  10266. \code{(set)} and the join operator is \code{set-union}.
  10267. \end{enumerate}
  10268. \begin{figure}[p]
  10269. \begin{tikzpicture}[baseline=(current bounding box.center)]
  10270. \node (Rfun) at (0,2) {\large \LangLoop{}};
  10271. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  10272. \node (Rfun-3) at (6,2) {\large \LangLoop{}};
  10273. \node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  10274. \node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  10275. \node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  10276. \node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  10277. \node (F1-4) at (3,0) {\large \LangLoopAlloc{}};
  10278. \node (F1-5) at (0,0) {\large \LangLoopAlloc{}};
  10279. \node (C3-2) at (3,-2) {\large \LangCLoop{}};
  10280. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  10281. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  10282. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  10283. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  10284. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  10285. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  10286. %% \path[->,bend left=15] (Rfun) edge [above] node
  10287. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  10288. \path[->,bend left=15] (Rfun) edge [above] node
  10289. {\ttfamily\footnotesize shrink} (Rfun-2);
  10290. \path[->,bend left=15] (Rfun-2) edge [above] node
  10291. {\ttfamily\footnotesize uniquify} (Rfun-3);
  10292. \path[->,bend left=15] (Rfun-3) edge [above] node
  10293. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  10294. \path[->,bend left=15] (Rfun-4) edge [right] node
  10295. {\ttfamily\footnotesize convert-assignments} (F1-1);
  10296. \path[->,bend left=15] (F1-1) edge [below] node
  10297. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  10298. \path[->,bend right=15] (F1-2) edge [above] node
  10299. {\ttfamily\footnotesize limit-fun.} (F1-3);
  10300. \path[->,bend right=15] (F1-3) edge [above] node
  10301. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  10302. \path[->,bend right=15] (F1-4) edge [above] node
  10303. {\ttfamily\footnotesize remove-complex.} (F1-5);
  10304. \path[->,bend right=15] (F1-5) edge [right] node
  10305. {\ttfamily\footnotesize explicate-control} (C3-2);
  10306. \path[->,bend left=15] (C3-2) edge [left] node
  10307. {\ttfamily\footnotesize select-instr.} (x86-2);
  10308. \path[->,bend right=15] (x86-2) edge [left] node
  10309. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  10310. \path[->,bend right=15] (x86-2-1) edge [below] node
  10311. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  10312. \path[->,bend right=15] (x86-2-2) edge [left] node
  10313. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  10314. \path[->,bend left=15] (x86-3) edge [above] node
  10315. {\ttfamily\footnotesize patch-instr.} (x86-4);
  10316. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  10317. \end{tikzpicture}
  10318. \caption{Diagram of the passes for \LangLoop{} (loops and assignment).}
  10319. \label{fig:Rwhile-passes}
  10320. \end{figure}
  10321. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  10322. for the compilation of \LangLoop{}.
  10323. \section{Challenge: Arrays}
  10324. \label{sec:arrays}
  10325. In Chapter~\ref{ch:Rvec} we studied tuples, that is, sequences of
  10326. elements whose length is determined at compile-time and where each
  10327. element of a tuple may have a different type (they are
  10328. heterogeous). This challenge is also about sequences, but this time
  10329. the length is determined at run-time and all the elements have the same
  10330. type (they are homogeneous). We use the term ``array'' for this later
  10331. kind of sequence.
  10332. The Racket language does not distinguish between tuples and arrays,
  10333. they are both represented by vectors. However, Typed Racket
  10334. distinguishes between tuples and arrays: the \code{Vector} type is for
  10335. tuples and the \code{Vectorof} type is for arrays.
  10336. %
  10337. Figure~\ref{fig:Rvecof-concrete-syntax} defines the concrete syntax
  10338. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  10339. and the \code{make-vector} primitive operator for creating an array,
  10340. whose arguments are the length of the array and an initial value for
  10341. all the elements in the array. The \code{vector-length},
  10342. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  10343. for tuples become overloaded for use with arrays.
  10344. %
  10345. We also include integer multiplication in \LangArray{}, as it is
  10346. useful in many examples involving arrays such as computing the
  10347. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  10348. \begin{figure}[tp]
  10349. \centering
  10350. \fbox{
  10351. \begin{minipage}{0.96\textwidth}
  10352. \small
  10353. \[
  10354. \begin{array}{lcl}
  10355. \Type &::=& \ldots \mid \LP \key{Vectorof}~\Type \RP \\
  10356. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  10357. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \mid \CMUL{\Exp}{\Exp}\\
  10358. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  10359. &\mid& \gray{\key{\#t} \mid \key{\#f}
  10360. \mid \LP\key{and}\;\Exp\;\Exp\RP
  10361. \mid \LP\key{or}\;\Exp\;\Exp\RP
  10362. \mid \LP\key{not}\;\Exp\RP } \\
  10363. &\mid& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  10364. &\mid& \gray{ \LP\key{vector}\;\Exp\ldots\RP \mid
  10365. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  10366. &\mid& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\mid \LP\key{void}\RP
  10367. \mid \LP\Exp \; \Exp\ldots\RP } \\
  10368. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
  10369. \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  10370. &\mid& \gray{ \CSETBANG{\Var}{\Exp}
  10371. \mid \CBEGIN{\Exp\ldots}{\Exp}
  10372. \mid \CWHILE{\Exp}{\Exp} } \\
  10373. &\mid& \CMAKEVEC{\Exp}{\Exp} \\
  10374. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  10375. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  10376. \end{array}
  10377. \]
  10378. \end{minipage}
  10379. }
  10380. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  10381. \label{fig:Rvecof-concrete-syntax}
  10382. \end{figure}
  10383. \begin{figure}[tp]
  10384. \begin{lstlisting}
  10385. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  10386. [n : Integer]) : Integer
  10387. (let ([i 0])
  10388. (let ([prod 0])
  10389. (begin
  10390. (while (< i n)
  10391. (begin
  10392. (set! prod (+ prod (* (vector-ref A i)
  10393. (vector-ref B i))))
  10394. (set! i (+ i 1))
  10395. ))
  10396. prod))))
  10397. (let ([A (make-vector 2 2)])
  10398. (let ([B (make-vector 2 3)])
  10399. (+ (inner-product A B 2)
  10400. 30)))
  10401. \end{lstlisting}
  10402. \caption{Example program that computes the inner-product.}
  10403. \label{fig:inner-product}
  10404. \end{figure}
  10405. The type checker for \LangArray{} is define in
  10406. Figure~\ref{fig:type-check-Rvecof}. The result type of
  10407. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  10408. of the intializing expression. The length expression is required to
  10409. have type \code{Integer}. The type checking of the operators
  10410. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  10411. updated to handle the situation where the vector has type
  10412. \code{Vectorof}. In these cases we translate the operators to their
  10413. \code{vectorof} form so that later passes can easily distinguish
  10414. between operations on tuples versus arrays. We override the
  10415. \code{operator-types} method to provide the type signature for
  10416. multiplication: it takes two integers and returns an integer. To
  10417. support injection and projection of arrays to the \code{Any} type
  10418. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  10419. predicate.
  10420. \begin{figure}[tbp]
  10421. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10422. (define type-check-Rvecof-class
  10423. (class type-check-Rwhile-class
  10424. (super-new)
  10425. (inherit check-type-equal?)
  10426. (define/override (flat-ty? ty)
  10427. (match ty
  10428. ['(Vectorof Any) #t]
  10429. [else (super flat-ty? ty)]))
  10430. (define/override (operator-types)
  10431. (append '((* . ((Integer Integer) . Integer)))
  10432. (super operator-types)))
  10433. (define/override (type-check-exp env)
  10434. (lambda (e)
  10435. (define recur (type-check-exp env))
  10436. (match e
  10437. [(Prim 'make-vector (list e1 e2))
  10438. (define-values (e1^ t1) (recur e1))
  10439. (define-values (e2^ elt-type) (recur e2))
  10440. (define vec-type `(Vectorof ,elt-type))
  10441. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  10442. vec-type)]
  10443. [(Prim 'vector-ref (list e1 e2))
  10444. (define-values (e1^ t1) (recur e1))
  10445. (define-values (e2^ t2) (recur e2))
  10446. (match* (t1 t2)
  10447. [(`(Vectorof ,elt-type) 'Integer)
  10448. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  10449. [(other wise) ((super type-check-exp env) e)])]
  10450. [(Prim 'vector-set! (list e1 e2 e3) )
  10451. (define-values (e-vec t-vec) (recur e1))
  10452. (define-values (e2^ t2) (recur e2))
  10453. (define-values (e-arg^ t-arg) (recur e3))
  10454. (match t-vec
  10455. [`(Vectorof ,elt-type)
  10456. (check-type-equal? elt-type t-arg e)
  10457. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  10458. [else ((super type-check-exp env) e)])]
  10459. [(Prim 'vector-length (list e1))
  10460. (define-values (e1^ t1) (recur e1))
  10461. (match t1
  10462. [`(Vectorof ,t)
  10463. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  10464. [else ((super type-check-exp env) e)])]
  10465. [else ((super type-check-exp env) e)])))
  10466. ))
  10467. (define (type-check-Rvecof p)
  10468. (send (new type-check-Rvecof-class) type-check-program p))
  10469. \end{lstlisting}
  10470. \caption{Type checker for the \LangArray{} language.}
  10471. \label{fig:type-check-Rvecof}
  10472. \end{figure}
  10473. The interpreter for \LangArray{} is defined in
  10474. Figure~\ref{fig:interp-Rvecof}. The \code{make-vector} operator is
  10475. implemented with Racket's \code{make-vector} function and
  10476. multiplication is \code{fx*}, multiplication for \code{fixnum}
  10477. integers.
  10478. \begin{figure}[tbp]
  10479. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10480. (define interp-Rvecof-class
  10481. (class interp-Rwhile-class
  10482. (super-new)
  10483. (define/override (interp-op op)
  10484. (verbose "Rvecof/interp-op" op)
  10485. (match op
  10486. ['make-vector make-vector]
  10487. ['* fx*]
  10488. [else (super interp-op op)]))
  10489. ))
  10490. (define (interp-Rvecof p)
  10491. (send (new interp-Rvecof-class) interp-program p))
  10492. \end{lstlisting}
  10493. \caption{Interpreter for \LangArray{}.}
  10494. \label{fig:interp-Rvecof}
  10495. \end{figure}
  10496. \subsection{Data Representation}
  10497. \label{sec:array-rep}
  10498. Just like tuples, we store arrays on the heap which means that the
  10499. garbage collector will need to inspect arrays. An immediate thought is
  10500. to use the same representation for arrays that we use for tuples.
  10501. However, we limit tuples to a length of $50$ so that their length and
  10502. pointer mask can fit into the 64-bit tag at the beginning of each
  10503. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  10504. millions of elements, so we need more bits to store the length.
  10505. However, because arrays are homogeneous, we only need $1$ bit for the
  10506. pointer mask instead of one bit per array elements. Finally, the
  10507. garbage collector will need to be able to distinguish between tuples
  10508. and arrays, so we need to reserve $1$ bit for that purpose. So we
  10509. arrive at the following layout for the 64-bit tag at the beginning of
  10510. an array:
  10511. \begin{itemize}
  10512. \item The right-most bit is the forwarding bit, just like in a tuple.
  10513. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  10514. it is not.
  10515. \item The next bit to the left is the pointer mask. A $0$ indicates
  10516. that none of the elements are pointers to the heap and a $1$
  10517. indicates that all of the elements are pointers.
  10518. \item The next $61$ bits store the length of the array.
  10519. \item The left-most bit distinguishes between a tuple ($0$) versus an
  10520. array ($1$).
  10521. \end{itemize}
  10522. Recall that in Chapter~\ref{ch:Rdyn}, we use a $3$-bit tag to
  10523. differentiate the kinds of values that have been injected into the
  10524. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  10525. to indicate that the value is an array.
  10526. In the following subsections we provide hints regarding how to update
  10527. the passes to handle arrays.
  10528. \subsection{Reveal Casts}
  10529. The array-access operators \code{vectorof-ref} and
  10530. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  10531. \code{any-vector-set!} operators of Chapter~\ref{ch:Rdyn} in
  10532. that the type checker cannot tell whether the index will be in bounds,
  10533. so the bounds check must be performed at run time. Recall that the
  10534. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  10535. an \code{If} arround a vector reference for update to check whether
  10536. the index is less than the length. You should do the same for
  10537. \code{vectorof-ref} and \code{vectorof-set!} .
  10538. In addition, the handling of the \code{any-vector} operators in
  10539. \code{reveal-casts} needs to be updated to account for arrays that are
  10540. injected to \code{Any}. For the \code{any-vector-length} operator, the
  10541. generated code should test whether the tag is for tuples (\code{010})
  10542. or arrays (\code{110}) and then dispatch to either
  10543. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  10544. we add a case in \code{select-instructions} to generate the
  10545. appropriate instructions for accessing the array length from the
  10546. header of an array.
  10547. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  10548. the generated code needs to check that the index is less than the
  10549. vector length, so like the code for \code{any-vector-length}, check
  10550. the tag to determine whether to use \code{any-vector-length} or
  10551. \code{any-vectorof-length} for this purpose. Once the bounds checking
  10552. is complete, the generated code can use \code{any-vector-ref} and
  10553. \code{any-vector-set!} for both tuples and arrays because the
  10554. instructions used for those operators do not look at the tag at the
  10555. front of the tuple or array.
  10556. \subsection{Expose Allocation}
  10557. This pass should translate the \code{make-vector} operator into
  10558. lower-level operations. In particular, the new AST node
  10559. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  10560. length specified by the $\Exp$, but does not initialize the elements
  10561. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  10562. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  10563. element type for the array. Regarding the initialization of the array,
  10564. we recommend generated a \code{while} loop that uses
  10565. \code{vector-set!} to put the initializing value into every element of
  10566. the array.
  10567. \subsection{Remove Complex Operands}
  10568. Add cases in the \code{rco-atom} and \code{rco-exp} for
  10569. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  10570. complex and its subexpression must be atomic.
  10571. \subsection{Explicate Control}
  10572. Add cases for \code{AllocateArray} to \code{explicate-tail} and
  10573. \code{explicate-assign}.
  10574. \subsection{Select Instructions}
  10575. Generate instructions for \code{AllocateArray} similar to those for
  10576. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  10577. that the tag at the front of the array should instead use the
  10578. representation discussed in Section~\ref{sec:array-rep}.
  10579. Regarding \code{vectorof-length}, extract the length from the tag
  10580. according to the representation discussed in
  10581. Section~\ref{sec:array-rep}.
  10582. The instructions generated for \code{vectorof-ref} differ from those
  10583. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  10584. that the index is not a constant so the offset must be computed at
  10585. runtime, similar to the instructions generated for
  10586. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). The same is
  10587. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  10588. appear in an assignment and as a stand-alone statement, so make sure
  10589. to handle both situations in this pass.
  10590. Finally, the instructions for \code{any-vectorof-length} should be
  10591. similar to those for \code{vectorof-length}, except that one must
  10592. first project the array by writing zeroes into the $3$-bit tag
  10593. \begin{exercise}\normalfont
  10594. Implement a compiler for the \LangArray{} language by extending your
  10595. compiler for \LangLoop{}. Test your compiler on a half dozen new
  10596. programs, including the one in Figure~\ref{fig:inner-product} and also
  10597. a program that multiplies two matrices. Note that matrices are
  10598. 2-dimensional arrays, but those can be encoded into 1-dimensional
  10599. arrays by laying out each row in the array, one after the next.
  10600. \end{exercise}
  10601. % Further Reading: dataflow analysis
  10602. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10603. \chapter{Gradual Typing}
  10604. \label{ch:Rgrad}
  10605. \index{subject}{gradual typing}
  10606. This chapter studies a language, \LangGrad{}, in which the programmer
  10607. can choose between static and dynamic type checking in different parts
  10608. of a program, thereby mixing the statically typed \LangLoop{} language
  10609. with the dynamically typed \LangDyn{}. There are several approaches to
  10610. mixing static and dynamic typing, including multi-language
  10611. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  10612. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  10613. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  10614. programmer controls the amount of static versus dynamic checking by
  10615. adding or removing type annotations on parameters and
  10616. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  10617. %
  10618. The concrete syntax of \LangGrad{} is defined in
  10619. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  10620. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  10621. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  10622. non-terminals that make type annotations optional. The return types
  10623. are not optional in the abstract syntax; the parser fills in
  10624. \code{Any} when the return type is not specified in the concrete
  10625. syntax.
  10626. \begin{figure}[tp]
  10627. \centering
  10628. \fbox{
  10629. \begin{minipage}{0.96\textwidth}
  10630. \small
  10631. \[
  10632. \begin{array}{lcl}
  10633. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  10634. \itm{ret} &::=& \epsilon \mid \key{:} \Type \\
  10635. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  10636. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  10637. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  10638. &\mid& \gray{\key{\#t} \mid \key{\#f}
  10639. \mid (\key{and}\;\Exp\;\Exp)
  10640. \mid (\key{or}\;\Exp\;\Exp)
  10641. \mid (\key{not}\;\Exp) } \\
  10642. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  10643. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  10644. (\key{vector-ref}\;\Exp\;\Int)} \\
  10645. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  10646. \mid (\Exp \; \Exp\ldots) } \\
  10647. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  10648. \mid \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  10649. &\mid& \gray{ \CSETBANG{\Var}{\Exp}
  10650. \mid \CBEGIN{\Exp\ldots}{\Exp}
  10651. \mid \CWHILE{\Exp}{\Exp} } \\
  10652. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  10653. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  10654. \end{array}
  10655. \]
  10656. \end{minipage}
  10657. }
  10658. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  10659. \label{fig:Rgrad-concrete-syntax}
  10660. \end{figure}
  10661. \begin{figure}[tp]
  10662. \centering
  10663. \fbox{
  10664. \begin{minipage}{0.96\textwidth}
  10665. \small
  10666. \[
  10667. \begin{array}{lcl}
  10668. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  10669. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  10670. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  10671. &\mid& \gray{ \BOOL{\itm{bool}}
  10672. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  10673. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  10674. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  10675. &\mid& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  10676. &\mid& \gray{ \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  10677. &\mid& \gray{ \WHILE{\Exp}{\Exp} } \\
  10678. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  10679. \LangGradM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  10680. \end{array}
  10681. \]
  10682. \end{minipage}
  10683. }
  10684. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  10685. \label{fig:Rgrad-syntax}
  10686. \end{figure}
  10687. Both the type checker and the interpreter for \LangGrad{} require some
  10688. interesting changes to enable gradual typing, which we discuss in the
  10689. next two sections in the context of the \code{map-vec} example from
  10690. Chapter~\ref{ch:Rfun}. In Figure~\ref{fig:gradual-map-vec} we
  10691. revised the \code{map-vec} example, omitting the type annotations from
  10692. the \code{add1} function.
  10693. \begin{figure}[btp]
  10694. % gradual_test_9.rkt
  10695. \begin{lstlisting}
  10696. (define (map-vec [f : (Integer -> Integer)]
  10697. [v : (Vector Integer Integer)])
  10698. : (Vector Integer Integer)
  10699. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10700. (define (add1 x) (+ x 1))
  10701. (vector-ref (map-vec add1 (vector 0 41)) 1)
  10702. \end{lstlisting}
  10703. \caption{A partially-typed version of the \code{map-vec} example.}
  10704. \label{fig:gradual-map-vec}
  10705. \end{figure}
  10706. \section{Type Checking \LangGrad{}, Casts, and \LangCast{}}
  10707. \label{sec:gradual-type-check}
  10708. The type checker for \LangGrad{} uses the \code{Any} type for missing
  10709. parameter and return types. For example, the \code{x} parameter of
  10710. \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
  10711. \code{Any} and the return type of \code{add1} is \code{Any}. Next
  10712. consider the \code{+} operator inside \code{add1}. It expects both
  10713. arguments to have type \code{Integer}, but its first argument \code{x}
  10714. has type \code{Any}. In a gradually typed language, such differences
  10715. are allowed so long as the types are \emph{consistent}, that is, they
  10716. are equal except in places where there is an \code{Any} type. The type
  10717. \code{Any} is consistent with every other type.
  10718. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  10719. \begin{figure}[tbp]
  10720. \begin{lstlisting}
  10721. (define/public (consistent? t1 t2)
  10722. (match* (t1 t2)
  10723. [('Integer 'Integer) #t]
  10724. [('Boolean 'Boolean) #t]
  10725. [('Void 'Void) #t]
  10726. [('Any t2) #t]
  10727. [(t1 'Any) #t]
  10728. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  10729. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  10730. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  10731. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  10732. (consistent? rt1 rt2))]
  10733. [(other wise) #f]))
  10734. \end{lstlisting}
  10735. \caption{The consistency predicate on types.}
  10736. \label{fig:consistent}
  10737. \end{figure}
  10738. Returning to the \code{map-vec} example of
  10739. Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
  10740. \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
  10741. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  10742. because the two types are consistent. In particular, \code{->} is
  10743. equal to \code{->} and because \code{Any} is consistent with
  10744. \code{Integer}.
  10745. Next consider a program with an error, such as applying the
  10746. \code{map-vec} to a function that sometimes returns a Boolean, as
  10747. shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
  10748. \LangGrad{} accepts this program because the type of \code{maybe-add1} is
  10749. consistent with the type of parameter \code{f} of \code{map-vec}, that
  10750. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  10751. Integer)}. One might say that a gradual type checker is optimistic
  10752. in that it accepts programs that might execute without a runtime type
  10753. error.
  10754. %
  10755. Unfortunately, running this program with input \code{1} triggers an
  10756. error when the \code{maybe-add1} function returns \code{\#t}. \LangGrad{}
  10757. performs checking at runtime to ensure the integrity of the static
  10758. types, such as the \code{(Integer -> Integer)} annotation on parameter
  10759. \code{f} of \code{map-vec}. This runtime checking is carried out by a
  10760. new \code{Cast} form that is inserted by the type checker. Thus, the
  10761. output of the type checker is a program in the \LangCast{} language, which
  10762. adds \code{Cast} to \LangLoop{}, as shown in
  10763. Figure~\ref{fig:Rgrad-prime-syntax}.
  10764. \begin{figure}[tp]
  10765. \centering
  10766. \fbox{
  10767. \begin{minipage}{0.96\textwidth}
  10768. \small
  10769. \[
  10770. \begin{array}{lcl}
  10771. \Exp &::=& \ldots \mid \CAST{\Exp}{\Type}{\Type} \\
  10772. \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  10773. \end{array}
  10774. \]
  10775. \end{minipage}
  10776. }
  10777. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  10778. \label{fig:Rgrad-prime-syntax}
  10779. \end{figure}
  10780. \begin{figure}[tbp]
  10781. \begin{lstlisting}
  10782. (define (map-vec [f : (Integer -> Integer)]
  10783. [v : (Vector Integer Integer)])
  10784. : (Vector Integer Integer)
  10785. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10786. (define (add1 x) (+ x 1))
  10787. (define (true) #t)
  10788. (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
  10789. (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
  10790. \end{lstlisting}
  10791. \caption{A variant of the \code{map-vec} example with an error.}
  10792. \label{fig:map-vec-maybe-add1}
  10793. \end{figure}
  10794. Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
  10795. \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
  10796. inserted every time the type checker sees two types that are
  10797. consistent but not equal. In the \code{add1} function, \code{x} is
  10798. cast to \code{Integer} and the result of the \code{+} is cast to
  10799. \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
  10800. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  10801. \begin{figure}[btp]
  10802. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10803. (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  10804. : (Vector Integer Integer)
  10805. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  10806. (define (add1 [x : Any]) : Any
  10807. (cast (+ (cast x Any Integer) 1) Integer Any))
  10808. (define (true) : Any (cast #t Boolean Any))
  10809. (define (maybe-add1 [x : Any]) : Any
  10810. (if (eq? 0 (read)) (add1 x) (true)))
  10811. (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
  10812. (vector 0 41)) 0)
  10813. \end{lstlisting}
  10814. \caption{Output of type checking \code{map-vec}
  10815. and \code{maybe-add1}.}
  10816. \label{fig:map-vec-cast}
  10817. \end{figure}
  10818. The type checker for \LangGrad{} is defined in
  10819. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  10820. and \ref{fig:type-check-Rgradual-3}.
  10821. \begin{figure}[tbp]
  10822. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10823. (define type-check-gradual-class
  10824. (class type-check-Rwhile-class
  10825. (super-new)
  10826. (inherit operator-types type-predicates)
  10827. (define/override (type-check-exp env)
  10828. (lambda (e)
  10829. (define recur (type-check-exp env))
  10830. (match e
  10831. [(Prim 'vector-length (list e1))
  10832. (define-values (e1^ t) (recur e1))
  10833. (match t
  10834. [`(Vector ,ts ...)
  10835. (values (Prim 'vector-length (list e1^)) 'Integer)]
  10836. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  10837. [(Prim 'vector-ref (list e1 e2))
  10838. (define-values (e1^ t1) (recur e1))
  10839. (define-values (e2^ t2) (recur e2))
  10840. (check-consistent? t2 'Integer e)
  10841. (match t1
  10842. [`(Vector ,ts ...)
  10843. (match e2^
  10844. [(Int i)
  10845. (unless (and (0 . <= . i) (i . < . (length ts)))
  10846. (error 'type-check "invalid index ~a in ~a" i e))
  10847. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  10848. [else (define e1^^ (make-cast e1^ t1 'Any))
  10849. (define e2^^ (make-cast e2^ t2 'Integer))
  10850. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  10851. ['Any
  10852. (define e2^^ (make-cast e2^ t2 'Integer))
  10853. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  10854. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  10855. [(Prim 'vector-set! (list e1 e2 e3) )
  10856. (define-values (e1^ t1) (recur e1))
  10857. (define-values (e2^ t2) (recur e2))
  10858. (define-values (e3^ t3) (recur e3))
  10859. (check-consistent? t2 'Integer e)
  10860. (match t1
  10861. [`(Vector ,ts ...)
  10862. (match e2^
  10863. [(Int i)
  10864. (unless (and (0 . <= . i) (i . < . (length ts)))
  10865. (error 'type-check "invalid index ~a in ~a" i e))
  10866. (check-consistent? (list-ref ts i) t3 e)
  10867. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  10868. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  10869. [else
  10870. (define e1^^ (make-cast e1^ t1 'Any))
  10871. (define e2^^ (make-cast e2^ t2 'Integer))
  10872. (define e3^^ (make-cast e3^ t3 'Any))
  10873. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  10874. ['Any
  10875. (define e2^^ (make-cast e2^ t2 'Integer))
  10876. (define e3^^ (make-cast e3^ t3 'Any))
  10877. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  10878. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  10879. \end{lstlisting}
  10880. \caption{Type checker for the \LangGrad{} language, part 1.}
  10881. \label{fig:type-check-Rgradual-1}
  10882. \end{figure}
  10883. \begin{figure}[tbp]
  10884. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10885. [(Prim 'eq? (list e1 e2))
  10886. (define-values (e1^ t1) (recur e1))
  10887. (define-values (e2^ t2) (recur e2))
  10888. (check-consistent? t1 t2 e)
  10889. (define T (meet t1 t2))
  10890. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  10891. 'Boolean)]
  10892. [(Prim 'not (list e1))
  10893. (define-values (e1^ t1) (recur e1))
  10894. (match t1
  10895. ['Any
  10896. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  10897. (Bool #t) (Bool #f)))]
  10898. [else
  10899. (define-values (t-ret new-es^)
  10900. (type-check-op 'not (list t1) (list e1^) e))
  10901. (values (Prim 'not new-es^) t-ret)])]
  10902. [(Prim 'and (list e1 e2))
  10903. (recur (If e1 e2 (Bool #f)))]
  10904. [(Prim 'or (list e1 e2))
  10905. (define tmp (gensym 'tmp))
  10906. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  10907. [(Prim op es)
  10908. #:when (not (set-member? explicit-prim-ops op))
  10909. (define-values (new-es ts)
  10910. (for/lists (exprs types) ([e es])
  10911. (recur e)))
  10912. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  10913. (values (Prim op new-es^) t-ret)]
  10914. [(If e1 e2 e3)
  10915. (define-values (e1^ T1) (recur e1))
  10916. (define-values (e2^ T2) (recur e2))
  10917. (define-values (e3^ T3) (recur e3))
  10918. (check-consistent? T2 T3 e)
  10919. (match T1
  10920. ['Boolean
  10921. (define Tif (join T2 T3))
  10922. (values (If e1^ (make-cast e2^ T2 Tif)
  10923. (make-cast e3^ T3 Tif)) Tif)]
  10924. ['Any
  10925. (define Tif (meet T2 T3))
  10926. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  10927. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  10928. Tif)]
  10929. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  10930. [(HasType e1 T)
  10931. (define-values (e1^ T1) (recur e1))
  10932. (check-consistent? T1 T)
  10933. (values (make-cast e1^ T1 T) T)]
  10934. [(SetBang x e1)
  10935. (define-values (e1^ T1) (recur e1))
  10936. (define varT (dict-ref env x))
  10937. (check-consistent? T1 varT e)
  10938. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  10939. [(WhileLoop e1 e2)
  10940. (define-values (e1^ T1) (recur e1))
  10941. (check-consistent? T1 'Boolean e)
  10942. (define-values (e2^ T2) ((type-check-exp env) e2))
  10943. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  10944. \end{lstlisting}
  10945. \caption{Type checker for the \LangGrad{} language, part 2.}
  10946. \label{fig:type-check-Rgradual-2}
  10947. \end{figure}
  10948. \begin{figure}[tbp]
  10949. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10950. [(Apply e1 e2s)
  10951. (define-values (e1^ T1) (recur e1))
  10952. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  10953. (match T1
  10954. [`(,T1ps ... -> ,T1rt)
  10955. (for ([T2 T2s] [Tp T1ps])
  10956. (check-consistent? T2 Tp e))
  10957. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  10958. (make-cast e2 src tgt)))
  10959. (values (Apply e1^ e2s^^) T1rt)]
  10960. [`Any
  10961. (define e1^^ (make-cast e1^ 'Any
  10962. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  10963. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  10964. (make-cast e2 src 'Any)))
  10965. (values (Apply e1^^ e2s^^) 'Any)]
  10966. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  10967. [(Lambda params Tr e1)
  10968. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  10969. (match p
  10970. [`[,x : ,T] (values x T)]
  10971. [(? symbol? x) (values x 'Any)])))
  10972. (define-values (e1^ T1)
  10973. ((type-check-exp (append (map cons xs Ts) env)) e1))
  10974. (check-consistent? Tr T1 e)
  10975. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  10976. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  10977. [else ((super type-check-exp env) e)]
  10978. )))
  10979. \end{lstlisting}
  10980. \caption{Type checker for the \LangGrad{} language, part 3.}
  10981. \label{fig:type-check-Rgradual-3}
  10982. \end{figure}
  10983. \begin{figure}[tbp]
  10984. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10985. (define/public (join t1 t2)
  10986. (match* (t1 t2)
  10987. [('Integer 'Integer) 'Integer]
  10988. [('Boolean 'Boolean) 'Boolean]
  10989. [('Void 'Void) 'Void]
  10990. [('Any t2) t2]
  10991. [(t1 'Any) t1]
  10992. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  10993. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  10994. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  10995. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  10996. -> ,(join rt1 rt2))]))
  10997. (define/public (meet t1 t2)
  10998. (match* (t1 t2)
  10999. [('Integer 'Integer) 'Integer]
  11000. [('Boolean 'Boolean) 'Boolean]
  11001. [('Void 'Void) 'Void]
  11002. [('Any t2) 'Any]
  11003. [(t1 'Any) 'Any]
  11004. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  11005. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  11006. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  11007. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  11008. -> ,(meet rt1 rt2))]))
  11009. (define/public (make-cast e src tgt)
  11010. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  11011. (define/public (check-consistent? t1 t2 e)
  11012. (unless (consistent? t1 t2)
  11013. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  11014. (define/override (type-check-op op arg-types args e)
  11015. (match (dict-ref (operator-types) op)
  11016. [`(,param-types . ,return-type)
  11017. (for ([at arg-types] [pt param-types])
  11018. (check-consistent? at pt e))
  11019. (values return-type
  11020. (for/list ([e args] [s arg-types] [t param-types])
  11021. (make-cast e s t)))]
  11022. [else (error 'type-check-op "unrecognized ~a" op)]))
  11023. (define explicit-prim-ops
  11024. (set-union
  11025. (type-predicates)
  11026. (set 'procedure-arity 'eq?
  11027. 'vector 'vector-length 'vector-ref 'vector-set!
  11028. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  11029. (define/override (fun-def-type d)
  11030. (match d
  11031. [(Def f params rt info body)
  11032. (define ps
  11033. (for/list ([p params])
  11034. (match p
  11035. [`[,x : ,T] T]
  11036. [(? symbol?) 'Any]
  11037. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  11038. `(,@ps -> ,rt)]
  11039. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  11040. \end{lstlisting}
  11041. \caption{Auxiliary functions for type checking \LangGrad{}.}
  11042. \label{fig:type-check-Rgradual-aux}
  11043. \end{figure}
  11044. \clearpage
  11045. \section{Interpreting \LangCast{}}
  11046. \label{sec:interp-casts}
  11047. The runtime behavior of first-order casts is straightforward, that is,
  11048. casts involving simple types such as \code{Integer} and
  11049. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  11050. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  11051. puts the integer into a tagged value
  11052. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  11053. \code{Integer} is accomplished with the \code{Project} operator, that
  11054. is, by checking the value's tag and either retrieving the underlying
  11055. integer or signaling an error if it the tag is not the one for
  11056. integers (Figure~\ref{fig:apply-project}).
  11057. %
  11058. Things get more interesting for higher-order casts, that is, casts
  11059. involving function or vector types.
  11060. Consider the cast of the function \code{maybe-add1} from \code{(Any ->
  11061. Any)} to \code{(Integer -> Integer)}. When a function flows through
  11062. this cast at runtime, we can't know in general whether the function
  11063. will always return an integer.\footnote{Predicting the return value of
  11064. a function is equivalent to the halting problem, which is
  11065. undecidable.} The \LangCast{} interpreter therefore delays the checking
  11066. of the cast until the function is applied. This is accomplished by
  11067. wrapping \code{maybe-add1} in a new function that casts its parameter
  11068. from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
  11069. casts the return value from \code{Any} to \code{Integer}.
  11070. Turning our attention to casts involving vector types, we consider the
  11071. example in Figure~\ref{fig:map-vec-bang} that defines a
  11072. partially-typed version of \code{map-vec} whose parameter \code{v} has
  11073. type \code{(Vector Any Any)} and that updates \code{v} in place
  11074. instead of returning a new vector. So we name this function
  11075. \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
  11076. the type checker inserts a cast from \code{(Vector Integer Integer)}
  11077. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  11078. cast between vector types would be a build a new vector whose elements
  11079. are the result of casting each of the original elements to the
  11080. appropriate target type. However, this approach is only valid for
  11081. immutable vectors; and our vectors are mutable. In the example of
  11082. Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
  11083. the updates inside of \code{map-vec!} would happen to the new vector
  11084. and not the original one.
  11085. \begin{figure}[tbp]
  11086. % gradual_test_11.rkt
  11087. \begin{lstlisting}
  11088. (define (map-vec! [f : (Any -> Any)]
  11089. [v : (Vector Any Any)]) : Void
  11090. (begin
  11091. (vector-set! v 0 (f (vector-ref v 0)))
  11092. (vector-set! v 1 (f (vector-ref v 1)))))
  11093. (define (add1 x) (+ x 1))
  11094. (let ([v (vector 0 41)])
  11095. (begin (map-vec! add1 v) (vector-ref v 1)))
  11096. \end{lstlisting}
  11097. \caption{An example involving casts on vectors.}
  11098. \label{fig:map-vec-bang}
  11099. \end{figure}
  11100. Instead the interpreter needs to create a new kind of value, a
  11101. \emph{vector proxy}, that intercepts every vector operation. On a
  11102. read, the proxy reads from the underlying vector and then applies a
  11103. cast to the resulting value. On a write, the proxy casts the argument
  11104. value and then performs the write to the underlying vector. For the
  11105. first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
  11106. \code{0} from \code{Integer} to \code{Any}. For the first
  11107. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  11108. to \code{Integer}.
  11109. The final category of cast that we need to consider are casts between
  11110. the \code{Any} type and either a function or a vector
  11111. type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
  11112. in which parameter \code{v} does not have a type annotation, so it is
  11113. given type \code{Any}. In the call to \code{map-vec!}, the vector has
  11114. type \code{(Vector Integer Integer)} so the type checker inserts a
  11115. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  11116. thought is to use \code{Inject}, but that doesn't work because
  11117. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  11118. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  11119. to \code{Any}.
  11120. \begin{figure}[tbp]
  11121. \begin{lstlisting}
  11122. (define (map-vec! [f : (Any -> Any)] v) : Void
  11123. (begin
  11124. (vector-set! v 0 (f (vector-ref v 0)))
  11125. (vector-set! v 1 (f (vector-ref v 1)))))
  11126. (define (add1 x) (+ x 1))
  11127. (let ([v (vector 0 41)])
  11128. (begin (map-vec! add1 v) (vector-ref v 1)))
  11129. \end{lstlisting}
  11130. \caption{Casting a vector to \code{Any}.}
  11131. \label{fig:map-vec-any}
  11132. \end{figure}
  11133. The \LangCast{} interpreter uses an auxiliary function named
  11134. \code{apply-cast} to cast a value from a source type to a target type,
  11135. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  11136. of the kinds of casts that we've discussed in this section.
  11137. \begin{figure}[tbp]
  11138. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11139. (define/public (apply-cast v s t)
  11140. (match* (s t)
  11141. [(t1 t2) #:when (equal? t1 t2) v]
  11142. [('Any t2)
  11143. (match t2
  11144. [`(,ts ... -> ,rt)
  11145. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  11146. (define v^ (apply-project v any->any))
  11147. (apply-cast v^ any->any `(,@ts -> ,rt))]
  11148. [`(Vector ,ts ...)
  11149. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  11150. (define v^ (apply-project v vec-any))
  11151. (apply-cast v^ vec-any `(Vector ,@ts))]
  11152. [else (apply-project v t2)])]
  11153. [(t1 'Any)
  11154. (match t1
  11155. [`(,ts ... -> ,rt)
  11156. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  11157. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  11158. (apply-inject v^ (any-tag any->any))]
  11159. [`(Vector ,ts ...)
  11160. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  11161. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  11162. (apply-inject v^ (any-tag vec-any))]
  11163. [else (apply-inject v (any-tag t1))])]
  11164. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  11165. (define x (gensym 'x))
  11166. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  11167. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  11168. (define cast-writes
  11169. (for/list ([t1 ts1] [t2 ts2])
  11170. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  11171. `(vector-proxy ,(vector v (apply vector cast-reads)
  11172. (apply vector cast-writes)))]
  11173. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  11174. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  11175. `(function ,xs ,(Cast
  11176. (Apply (Value v)
  11177. (for/list ([x xs][t1 ts1][t2 ts2])
  11178. (Cast (Var x) t2 t1)))
  11179. rt1 rt2) ())]
  11180. ))
  11181. \end{lstlisting}
  11182. \caption{The \code{apply-cast} auxiliary method.}
  11183. \label{fig:apply-cast}
  11184. \end{figure}
  11185. The interpreter for \LangCast{} is defined in
  11186. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  11187. dispatching to \code{apply-cast}. To handle the addition of vector
  11188. proxies, we update the vector primitives in \code{interp-op} using the
  11189. functions in Figure~\ref{fig:guarded-vector}.
  11190. \begin{figure}[tbp]
  11191. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11192. (define interp-Rcast-class
  11193. (class interp-Rwhile-class
  11194. (super-new)
  11195. (inherit apply-fun apply-inject apply-project)
  11196. (define/override (interp-op op)
  11197. (match op
  11198. ['vector-length guarded-vector-length]
  11199. ['vector-ref guarded-vector-ref]
  11200. ['vector-set! guarded-vector-set!]
  11201. ['any-vector-ref (lambda (v i)
  11202. (match v [`(tagged ,v^ ,tg)
  11203. (guarded-vector-ref v^ i)]))]
  11204. ['any-vector-set! (lambda (v i a)
  11205. (match v [`(tagged ,v^ ,tg)
  11206. (guarded-vector-set! v^ i a)]))]
  11207. ['any-vector-length (lambda (v)
  11208. (match v [`(tagged ,v^ ,tg)
  11209. (guarded-vector-length v^)]))]
  11210. [else (super interp-op op)]
  11211. ))
  11212. (define/override ((interp-exp env) e)
  11213. (define (recur e) ((interp-exp env) e))
  11214. (match e
  11215. [(Value v) v]
  11216. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  11217. [else ((super interp-exp env) e)]))
  11218. ))
  11219. (define (interp-Rcast p)
  11220. (send (new interp-Rcast-class) interp-program p))
  11221. \end{lstlisting}
  11222. \caption{The interpreter for \LangCast{}.}
  11223. \label{fig:interp-Rcast}
  11224. \end{figure}
  11225. \begin{figure}[tbp]
  11226. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11227. (define (guarded-vector-ref vec i)
  11228. (match vec
  11229. [`(vector-proxy ,proxy)
  11230. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  11231. (define rd (vector-ref (vector-ref proxy 1) i))
  11232. (apply-fun rd (list val) 'guarded-vector-ref)]
  11233. [else (vector-ref vec i)]))
  11234. (define (guarded-vector-set! vec i arg)
  11235. (match vec
  11236. [`(vector-proxy ,proxy)
  11237. (define wr (vector-ref (vector-ref proxy 2) i))
  11238. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  11239. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  11240. [else (vector-set! vec i arg)]))
  11241. (define (guarded-vector-length vec)
  11242. (match vec
  11243. [`(vector-proxy ,proxy)
  11244. (guarded-vector-length (vector-ref proxy 0))]
  11245. [else (vector-length vec)]))
  11246. \end{lstlisting}
  11247. \caption{The guarded-vector auxiliary functions.}
  11248. \label{fig:guarded-vector}
  11249. \end{figure}
  11250. \section{Lower Casts}
  11251. \label{sec:lower-casts}
  11252. The next step in the journey towards x86 is the \code{lower-casts}
  11253. pass that translates the casts in \LangCast{} to the lower-level
  11254. \code{Inject} and \code{Project} operators and a new operator for
  11255. creating vector proxies, extending the \LangLoop{} language to create
  11256. \LangProxy{}. We recommend creating an auxiliary function named
  11257. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  11258. and a target type, and translates it to expression in \LangProxy{} that has
  11259. the same behavior as casting the expression from the source to the
  11260. target type in the interpreter.
  11261. The \code{lower-cast} function can follow a code structure similar to
  11262. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  11263. the interpreter for \LangCast{} because it must handle the same cases as
  11264. \code{apply-cast} and it needs to mimic the behavior of
  11265. \code{apply-cast}. The most interesting cases are those concerning the
  11266. casts between two vector types and between two function types.
  11267. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  11268. type to another vector type is accomplished by creating a proxy that
  11269. intercepts the operations on the underlying vector. Here we make the
  11270. creation of the proxy explicit with the \code{vector-proxy} primitive
  11271. operation. It takes three arguments, the first is an expression for
  11272. the vector, the second is a vector of functions for casting an element
  11273. that is being read from the vector, and the third is a vector of
  11274. functions for casting an element that is being written to the vector.
  11275. You can create the functions using \code{Lambda}. Also, as we shall
  11276. see in the next section, we need to differentiate these vectors from
  11277. the user-created ones, so we recommend using a new primitive operator
  11278. named \code{raw-vector} instead of \code{vector} to create these
  11279. vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
  11280. the output of \code{lower-casts} on the example in
  11281. Figure~\ref{fig:map-vec-bang} that involved casting a vector of
  11282. integers to a vector of \code{Any}.
  11283. \begin{figure}[tbp]
  11284. \begin{lstlisting}
  11285. (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  11286. (begin
  11287. (vector-set! v 0 (f (vector-ref v 0)))
  11288. (vector-set! v 1 (f (vector-ref v 1)))))
  11289. (define (add1 [x : Any]) : Any
  11290. (inject (+ (project x Integer) 1) Integer))
  11291. (let ([v (vector 0 41)])
  11292. (begin
  11293. (map-vec! add1 (vector-proxy v
  11294. (raw-vector (lambda: ([x9 : Integer]) : Any
  11295. (inject x9 Integer))
  11296. (lambda: ([x9 : Integer]) : Any
  11297. (inject x9 Integer)))
  11298. (raw-vector (lambda: ([x9 : Any]) : Integer
  11299. (project x9 Integer))
  11300. (lambda: ([x9 : Any]) : Integer
  11301. (project x9 Integer)))))
  11302. (vector-ref v 1)))
  11303. \end{lstlisting}
  11304. \caption{Output of \code{lower-casts} on the example in
  11305. Figure~\ref{fig:map-vec-bang}.}
  11306. \label{fig:map-vec-bang-lower-cast}
  11307. \end{figure}
  11308. A cast from one function type to another function type is accomplished
  11309. by generating a \code{Lambda} whose parameter and return types match
  11310. the target function type. The body of the \code{Lambda} should cast
  11311. the parameters from the target type to the source type (yes,
  11312. backwards! functions are contravariant\index{subject}{contravariant} in the
  11313. parameters), then call the underlying function, and finally cast the
  11314. result from the source return type to the target return type.
  11315. Figure~\ref{fig:map-vec-lower-cast} shows the output of the
  11316. \code{lower-casts} pass on the \code{map-vec} example in
  11317. Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
  11318. in the call to \code{map-vec} is wrapped in a \code{lambda}.
  11319. \begin{figure}[tbp]
  11320. \begin{lstlisting}
  11321. (define (map-vec [f : (Integer -> Integer)]
  11322. [v : (Vector Integer Integer)])
  11323. : (Vector Integer Integer)
  11324. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11325. (define (add1 [x : Any]) : Any
  11326. (inject (+ (project x Integer) 1) Integer))
  11327. (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
  11328. (project (add1 (inject x9 Integer)) Integer))
  11329. (vector 0 41)) 1)
  11330. \end{lstlisting}
  11331. \caption{Output of \code{lower-casts} on the example in
  11332. Figure~\ref{fig:gradual-map-vec}.}
  11333. \label{fig:map-vec-lower-cast}
  11334. \end{figure}
  11335. \section{Differentiate Proxies}
  11336. \label{sec:differentiate-proxies}
  11337. So far the job of differentiating vectors and vector proxies has been
  11338. the job of the interpreter. For example, the interpreter for \LangCast{}
  11339. implements \code{vector-ref} using the \code{guarded-vector-ref}
  11340. function in Figure~\ref{fig:guarded-vector}. In the
  11341. \code{differentiate-proxies} pass we shift this responsibility to the
  11342. generated code.
  11343. We begin by designing the output language $R^p_8$. In
  11344. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  11345. proxies. In $R^p_8$ we return the \code{Vector} type to
  11346. its original meaning, as the type of real vectors, and we introduce a
  11347. new type, \code{PVector}, whose values can be either real vectors or
  11348. vector proxies. This new type comes with a suite of new primitive
  11349. operations for creating and using values of type \code{PVector}. We
  11350. don't need to introduce a new type to represent vector proxies. A
  11351. proxy is represented by a vector containing three things: 1) the
  11352. underlying vector, 2) a vector of functions for casting elements that
  11353. are read from the vector, and 3) a vector of functions for casting
  11354. values to be written to the vector. So we define the following
  11355. abbreviation for the type of a vector proxy:
  11356. \[
  11357. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  11358. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  11359. \to (\key{PVector}~ T' \ldots)
  11360. \]
  11361. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  11362. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  11363. %
  11364. Next we describe each of the new primitive operations.
  11365. \begin{description}
  11366. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  11367. (\key{PVector} $T \ldots$)]\ \\
  11368. %
  11369. This operation brands a vector as a value of the \code{PVector} type.
  11370. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  11371. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  11372. %
  11373. This operation brands a vector proxy as value of the \code{PVector} type.
  11374. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  11375. \code{Boolean}] \ \\
  11376. %
  11377. returns true if the value is a vector proxy and false if it is a
  11378. real vector.
  11379. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  11380. (\key{Vector} $T \ldots$)]\ \\
  11381. %
  11382. Assuming that the input is a vector (and not a proxy), this
  11383. operation returns the vector.
  11384. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  11385. $\to$ \code{Boolean}]\ \\
  11386. %
  11387. Given a vector proxy, this operation returns the length of the
  11388. underlying vector.
  11389. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  11390. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  11391. %
  11392. Given a vector proxy, this operation returns the $i$th element of
  11393. the underlying vector.
  11394. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  11395. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  11396. proxy, this operation writes a value to the $i$th element of the
  11397. underlying vector.
  11398. \end{description}
  11399. Now to discuss the translation that differentiates vectors from
  11400. proxies. First, every type annotation in the program must be
  11401. translated (recursively) to replace \code{Vector} with \code{PVector}.
  11402. Next, we must insert uses of \code{PVector} operations in the
  11403. appropriate places. For example, we wrap every vector creation with an
  11404. \code{inject-vector}.
  11405. \begin{lstlisting}
  11406. (vector |$e_1 \ldots e_n$|)
  11407. |$\Rightarrow$|
  11408. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  11409. \end{lstlisting}
  11410. The \code{raw-vector} operator that we introduced in the previous
  11411. section does not get injected.
  11412. \begin{lstlisting}
  11413. (raw-vector |$e_1 \ldots e_n$|)
  11414. |$\Rightarrow$|
  11415. (vector |$e'_1 \ldots e'_n$|)
  11416. \end{lstlisting}
  11417. The \code{vector-proxy} primitive translates as follows.
  11418. \begin{lstlisting}
  11419. (vector-proxy |$e_1~e_2~e_3$|)
  11420. |$\Rightarrow$|
  11421. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  11422. \end{lstlisting}
  11423. We translate the vector operations into conditional expressions that
  11424. check whether the value is a proxy and then dispatch to either the
  11425. appropriate proxy vector operation or the regular vector operation.
  11426. For example, the following is the translation for \code{vector-ref}.
  11427. \begin{lstlisting}
  11428. (vector-ref |$e_1$| |$i$|)
  11429. |$\Rightarrow$|
  11430. (let ([|$v~e_1$|])
  11431. (if (proxy? |$v$|)
  11432. (proxy-vector-ref |$v$| |$i$|)
  11433. (vector-ref (project-vector |$v$|) |$i$|)
  11434. \end{lstlisting}
  11435. Note in the case of a real vector, we must apply \code{project-vector}
  11436. before the \code{vector-ref}.
  11437. \section{Reveal Casts}
  11438. \label{sec:reveal-casts-gradual}
  11439. Recall that the \code{reveal-casts} pass
  11440. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  11441. \code{Inject} and \code{Project} into lower-level operations. In
  11442. particular, \code{Project} turns into a conditional expression that
  11443. inspects the tag and retrieves the underlying value. Here we need to
  11444. augment the translation of \code{Project} to handle the situation when
  11445. the target type is \code{PVector}. Instead of using
  11446. \code{vector-length} we need to use \code{proxy-vector-length}.
  11447. \begin{lstlisting}
  11448. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  11449. |$\Rightarrow$|
  11450. (let |$\itm{tmp}$| |$e'$|
  11451. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  11452. (let |$\itm{vec}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  11453. (if (eq? (proxy-vector-length |$\itm{vec}$|) |$n$|) |$\itm{vec}$| (exit)))
  11454. (exit)))
  11455. \end{lstlisting}
  11456. \section{Closure Conversion}
  11457. \label{sec:closure-conversion-gradual}
  11458. The closure conversion pass only requires one minor adjustment. The
  11459. auxiliary function that translates type annotations needs to be
  11460. updated to handle the \code{PVector} type.
  11461. \section{Explicate Control}
  11462. \label{sec:explicate-control-gradual}
  11463. Update the \code{explicate-control} pass to handle the new primitive
  11464. operations on the \code{PVector} type.
  11465. \section{Select Instructions}
  11466. \label{sec:select-instructions-gradual}
  11467. Recall that the \code{select-instructions} pass is responsible for
  11468. lowering the primitive operations into x86 instructions. So we need
  11469. to translate the new \code{PVector} operations to x86. To do so, the
  11470. first question we need to answer is how will we differentiate the two
  11471. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  11472. We need just one bit to accomplish this, and use the bit in position
  11473. $57$ of the 64-bit tag at the front of every vector (see
  11474. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  11475. for \code{inject-vector} we leave it that way.
  11476. \begin{lstlisting}
  11477. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  11478. |$\Rightarrow$|
  11479. movq |$e'_1$|, |$\itm{lhs'}$|
  11480. \end{lstlisting}
  11481. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  11482. \begin{lstlisting}
  11483. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  11484. |$\Rightarrow$|
  11485. movq |$e'_1$|, %r11
  11486. movq |$(1 << 57)$|, %rax
  11487. orq 0(%r11), %rax
  11488. movq %rax, 0(%r11)
  11489. movq %r11, |$\itm{lhs'}$|
  11490. \end{lstlisting}
  11491. The \code{proxy?} operation consumes the information so carefully
  11492. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  11493. isolates the $57$th bit to tell whether the value is a real vector or
  11494. a proxy.
  11495. \begin{lstlisting}
  11496. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  11497. |$\Rightarrow$|
  11498. movq |$e_1'$|, %r11
  11499. movq 0(%r11), %rax
  11500. sarq $57, %rax
  11501. andq $1, %rax
  11502. movq %rax, |$\itm{lhs'}$|
  11503. \end{lstlisting}
  11504. The \code{project-vector} operation is straightforward to translate,
  11505. so we leave it up to the reader.
  11506. Regarding the \code{proxy-vector} operations, the runtime provides
  11507. procedures that implement them (they are recursive functions!) so
  11508. here we simply need to translate these vector operations into the
  11509. appropriate function call. For example, here is the translation for
  11510. \code{proxy-vector-ref}.
  11511. \begin{lstlisting}
  11512. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  11513. |$\Rightarrow$|
  11514. movq |$e_1'$|, %rdi
  11515. movq |$e_2'$|, %rsi
  11516. callq proxy_vector_ref
  11517. movq %rax, |$\itm{lhs'}$|
  11518. \end{lstlisting}
  11519. We have another batch of vector operations to deal with, those for the
  11520. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  11521. \code{any-vector-ref} when there is a \code{vector-ref} on something
  11522. of type \code{Any}, and similarly for \code{any-vector-set!} and
  11523. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  11524. Section~\ref{sec:select-Rany} we selected instructions for these
  11525. operations based on the idea that the underlying value was a real
  11526. vector. But in the current setting, the underlying value is of type
  11527. \code{PVector}. So \code{any-vector-ref} can be translates to
  11528. pseudo-x86 as follows. We begin by projecting the underlying value out
  11529. of the tagged value and then call the \code{proxy\_vector\_ref}
  11530. procedure in the runtime.
  11531. \begin{lstlisting}
  11532. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  11533. movq |$\neg 111$|, %rdi
  11534. andq |$e_1'$|, %rdi
  11535. movq |$e_2'$|, %rsi
  11536. callq proxy_vector_ref
  11537. movq %rax, |$\itm{lhs'}$|
  11538. \end{lstlisting}
  11539. The \code{any-vector-set!} and \code{any-vector-length} operators can
  11540. be translated in a similar way.
  11541. \begin{exercise}\normalfont
  11542. Implement a compiler for the gradually-typed \LangGrad{} language by
  11543. extending and adapting your compiler for \LangLoop{}. Create 10 new
  11544. partially-typed test programs. In addition to testing with these
  11545. new programs, also test your compiler on all the tests for \LangLoop{}
  11546. and tests for \LangDyn{}. Sometimes you may get a type checking error
  11547. on the \LangDyn{} programs but you can adapt them by inserting
  11548. a cast to the \code{Any} type around each subexpression
  11549. causing a type error. While \LangDyn{} doesn't have explicit casts,
  11550. you can induce one by wrapping the subexpression \code{e}
  11551. with a call to an un-annotated identity function, like this:
  11552. \code{((lambda (x) x) e)}.
  11553. \end{exercise}
  11554. \begin{figure}[p]
  11555. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11556. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  11557. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  11558. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  11559. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  11560. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  11561. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  11562. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  11563. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  11564. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  11565. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  11566. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  11567. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  11568. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  11569. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  11570. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  11571. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  11572. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  11573. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  11574. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  11575. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  11576. \path[->,bend right=15] (Rgradual) edge [above] node
  11577. {\ttfamily\footnotesize type-check} (Rgradualp);
  11578. \path[->,bend right=15] (Rgradualp) edge [above] node
  11579. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  11580. \path[->,bend right=15] (Rwhilepp) edge [right] node
  11581. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  11582. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  11583. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  11584. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  11585. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  11586. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  11587. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  11588. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  11589. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  11590. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  11591. {\ttfamily\footnotesize convert-assignments} (F1-1);
  11592. \path[->,bend left=15] (F1-1) edge [below] node
  11593. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  11594. \path[->,bend right=15] (F1-2) edge [above] node
  11595. {\ttfamily\footnotesize limit-fun.} (F1-3);
  11596. \path[->,bend right=15] (F1-3) edge [above] node
  11597. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  11598. \path[->,bend right=15] (F1-4) edge [above] node
  11599. {\ttfamily\footnotesize remove-complex.} (F1-5);
  11600. \path[->,bend right=15] (F1-5) edge [right] node
  11601. {\ttfamily\footnotesize explicate-control} (C3-2);
  11602. \path[->,bend left=15] (C3-2) edge [left] node
  11603. {\ttfamily\footnotesize select-instr.} (x86-2);
  11604. \path[->,bend right=15] (x86-2) edge [left] node
  11605. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  11606. \path[->,bend right=15] (x86-2-1) edge [below] node
  11607. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  11608. \path[->,bend right=15] (x86-2-2) edge [left] node
  11609. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  11610. \path[->,bend left=15] (x86-3) edge [above] node
  11611. {\ttfamily\footnotesize patch-instr.} (x86-4);
  11612. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  11613. \end{tikzpicture}
  11614. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  11615. \label{fig:Rgradual-passes}
  11616. \end{figure}
  11617. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  11618. for the compilation of \LangGrad{}.
  11619. \section{Further Reading}
  11620. This chapter just scratches the surface of gradual typing. The basic
  11621. approach described here is missing two key ingredients that one would
  11622. want in a implementation of gradual typing: blame
  11623. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  11624. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  11625. problem addressed by blame tracking is that when a cast on a
  11626. higher-order value fails, it often does so at a point in the program
  11627. that is far removed from the original cast. Blame tracking is a
  11628. technique for propagating extra information through casts and proxies
  11629. so that when a cast fails, the error message can point back to the
  11630. original location of the cast in the source program.
  11631. The problem addressed by space-efficient casts also relates to
  11632. higher-order casts. It turns out that in partially typed programs, a
  11633. function or vector can flow through very-many casts at runtime. With
  11634. the approach described in this chapter, each cast adds another
  11635. \code{lambda} wrapper or a vector proxy. Not only does this take up
  11636. considerable space, but it also makes the function calls and vector
  11637. operations slow. For example, a partially-typed version of quicksort
  11638. could, in the worst case, build a chain of proxies of length $O(n)$
  11639. around the vector, changing the overall time complexity of the
  11640. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  11641. solution to this problem by representing casts using the coercion
  11642. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  11643. long chains of proxies by compressing them into a concise normal
  11644. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  11645. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  11646. the Grift compiler.
  11647. \begin{center}
  11648. \url{https://github.com/Gradual-Typing/Grift}
  11649. \end{center}
  11650. There are also interesting interactions between gradual typing and
  11651. other language features, such as parametetric polymorphism,
  11652. information-flow types, and type inference, to name a few. We
  11653. recommend the reader to the online gradual typing bibliography:
  11654. \begin{center}
  11655. \url{http://samth.github.io/gradual-typing-bib/}
  11656. \end{center}
  11657. % TODO: challenge problem:
  11658. % type analysis and type specialization?
  11659. % coercions?
  11660. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11661. \chapter{Parametric Polymorphism}
  11662. \label{ch:Rpoly}
  11663. \index{subject}{parametric polymorphism}
  11664. \index{subject}{generics}
  11665. This chapter studies the compilation of parametric
  11666. polymorphism\index{subject}{parametric polymorphism}
  11667. (aka. generics\index{subject}{generics}) in the subset \LangPoly{} of Typed
  11668. Racket. Parametric polymorphism enables improved code reuse by
  11669. parameterizing functions and data structures with respect to the types
  11670. that they operate on. For example, Figure~\ref{fig:map-vec-poly}
  11671. revisits the \code{map-vec} example but this time gives it a more
  11672. fitting type. This \code{map-vec} function is parameterized with
  11673. respect to the element type of the vector. The type of \code{map-vec}
  11674. is the following polymorphic type as specified by the \code{All} and
  11675. the type parameter \code{a}.
  11676. \begin{lstlisting}
  11677. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  11678. \end{lstlisting}
  11679. The idea is that \code{map-vec} can be used at \emph{all} choices of a
  11680. type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
  11681. \code{map-vec} to a vector of integers, a choice of \code{Integer} for
  11682. \code{a}, but we could have just as well applied \code{map-vec} to a
  11683. vector of Booleans (and a function on Booleans).
  11684. \begin{figure}[tbp]
  11685. % poly_test_2.rkt
  11686. \begin{lstlisting}
  11687. (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  11688. (define (map-vec f v)
  11689. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11690. (define (add1 [x : Integer]) : Integer (+ x 1))
  11691. (vector-ref (map-vec add1 (vector 0 41)) 1)
  11692. \end{lstlisting}
  11693. \caption{The \code{map-vec} example using parametric polymorphism.}
  11694. \label{fig:map-vec-poly}
  11695. \end{figure}
  11696. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  11697. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  11698. syntax. We add a second form for function definitions in which a type
  11699. declaration comes before the \code{define}. In the abstract syntax,
  11700. the return type in the \code{Def} is \code{Any}, but that should be
  11701. ignored in favor of the return type in the type declaration. (The
  11702. \code{Any} comes from using the same parser as in
  11703. Chapter~\ref{ch:Rdyn}.) The presence of a type declaration
  11704. enables the use of an \code{All} type for a function, thereby making
  11705. it polymorphic. The grammar for types is extended to include
  11706. polymorphic types and type variables.
  11707. \begin{figure}[tp]
  11708. \centering
  11709. \fbox{
  11710. \begin{minipage}{0.96\textwidth}
  11711. \small
  11712. \[
  11713. \begin{array}{lcl}
  11714. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  11715. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  11716. &\mid& \LP\key{:}~\Var~\Type\RP \\
  11717. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  11718. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  11719. \end{array}
  11720. \]
  11721. \end{minipage}
  11722. }
  11723. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  11724. (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  11725. \label{fig:Rpoly-concrete-syntax}
  11726. \end{figure}
  11727. \begin{figure}[tp]
  11728. \centering
  11729. \fbox{
  11730. \begin{minipage}{0.96\textwidth}
  11731. \small
  11732. \[
  11733. \begin{array}{lcl}
  11734. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  11735. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  11736. &\mid& \DECL{\Var}{\Type} \\
  11737. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  11738. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11739. \end{array}
  11740. \]
  11741. \end{minipage}
  11742. }
  11743. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  11744. (Figure~\ref{fig:Rwhile-syntax}).}
  11745. \label{fig:Rpoly-syntax}
  11746. \end{figure}
  11747. By including polymorphic types in the $\Type$ non-terminal we choose
  11748. to make them first-class which has interesting repercussions on the
  11749. compiler. Many languages with polymorphism, such as
  11750. C++~\citep{stroustrup88:_param_types} and Standard
  11751. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  11752. it is useful to see an example of first-class polymorphism. In
  11753. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  11754. whose parameter is a polymorphic function. The occurrence of a
  11755. polymorphic type underneath a function type is enabled by the normal
  11756. recursive structure of the grammar for $\Type$ and the categorization
  11757. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  11758. applies the polymorphic function to a Boolean and to an integer.
  11759. \begin{figure}[tbp]
  11760. \begin{lstlisting}
  11761. (: apply-twice ((All (b) (b -> b)) -> Integer))
  11762. (define (apply-twice f)
  11763. (if (f #t) (f 42) (f 777)))
  11764. (: id (All (a) (a -> a)))
  11765. (define (id x) x)
  11766. (apply-twice id)
  11767. \end{lstlisting}
  11768. \caption{An example illustrating first-class polymorphism.}
  11769. \label{fig:apply-twice}
  11770. \end{figure}
  11771. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Rvar0} has
  11772. three new responsibilities (compared to \LangLoop{}). The type checking of
  11773. function application is extended to handle the case where the operator
  11774. expression is a polymorphic function. In that case the type arguments
  11775. are deduced by matching the type of the parameters with the types of
  11776. the arguments.
  11777. %
  11778. The \code{match-types} auxiliary function carries out this deduction
  11779. by recursively descending through a parameter type \code{pt} and the
  11780. corresponding argument type \code{at}, making sure that they are equal
  11781. except when there is a type parameter on the left (in the parameter
  11782. type). If it's the first time that the type parameter has been
  11783. encountered, then the algorithm deduces an association of the type
  11784. parameter to the corresponding type on the right (in the argument
  11785. type). If it's not the first time that the type parameter has been
  11786. encountered, the algorithm looks up its deduced type and makes sure
  11787. that it is equal to the type on the right.
  11788. %
  11789. Once the type arguments are deduced, the operator expression is
  11790. wrapped in an \code{Inst} AST node (for instantiate) that records the
  11791. type of the operator, but more importantly, records the deduced type
  11792. arguments. The return type of the application is the return type of
  11793. the polymorphic function, but with the type parameters replaced by the
  11794. deduced type arguments, using the \code{subst-type} function.
  11795. The second responsibility of the type checker is extending the
  11796. function \code{type-equal?} to handle the \code{All} type. This is
  11797. not quite a simple as equal on other types, such as function and
  11798. vector types, because two polymorphic types can be syntactically
  11799. different even though they are equivalent types. For example,
  11800. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  11801. Two polymorphic types should be considered equal if they differ only
  11802. in the choice of the names of the type parameters. The
  11803. \code{type-equal?} function in Figure~\ref{fig:type-check-Rvar0-aux}
  11804. renames the type parameters of the first type to match the type
  11805. parameters of the second type.
  11806. The third responsibility of the type checker is making sure that only
  11807. defined type variables appear in type annotations. The
  11808. \code{check-well-formed} function defined in
  11809. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  11810. sure that each type variable has been defined.
  11811. The output language of the type checker is \LangInst{}, defined in
  11812. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  11813. declaration and polymorphic function into a single definition, using
  11814. the \code{Poly} form, to make polymorphic functions more convenient to
  11815. process in next pass of the compiler.
  11816. \begin{figure}[tp]
  11817. \centering
  11818. \fbox{
  11819. \begin{minipage}{0.96\textwidth}
  11820. \small
  11821. \[
  11822. \begin{array}{lcl}
  11823. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  11824. \Exp &::=& \ldots \mid \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  11825. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  11826. &\mid& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  11827. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11828. \end{array}
  11829. \]
  11830. \end{minipage}
  11831. }
  11832. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  11833. (Figure~\ref{fig:Rwhile-syntax}).}
  11834. \label{fig:Rpoly-prime-syntax}
  11835. \end{figure}
  11836. The output of the type checker on the polymorphic \code{map-vec}
  11837. example is listed in Figure~\ref{fig:map-vec-type-check}.
  11838. \begin{figure}[tbp]
  11839. % poly_test_2.rkt
  11840. \begin{lstlisting}
  11841. (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  11842. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  11843. (define (add1 [x : Integer]) : Integer (+ x 1))
  11844. (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  11845. (Integer))
  11846. add1 (vector 0 41)) 1)
  11847. \end{lstlisting}
  11848. \caption{Output of the type checker on the \code{map-vec} example.}
  11849. \label{fig:map-vec-type-check}
  11850. \end{figure}
  11851. \begin{figure}[tbp]
  11852. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11853. (define type-check-poly-class
  11854. (class type-check-Rwhile-class
  11855. (super-new)
  11856. (inherit check-type-equal?)
  11857. (define/override (type-check-apply env e1 es)
  11858. (define-values (e^ ty) ((type-check-exp env) e1))
  11859. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  11860. ((type-check-exp env) e)))
  11861. (match ty
  11862. [`(,ty^* ... -> ,rt)
  11863. (for ([arg-ty ty*] [param-ty ty^*])
  11864. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  11865. (values e^ es^ rt)]
  11866. [`(All ,xs (,tys ... -> ,rt))
  11867. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  11868. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  11869. (match-types env^^ param-ty arg-ty)))
  11870. (define targs
  11871. (for/list ([x xs])
  11872. (match (dict-ref env^^ x (lambda () #f))
  11873. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  11874. x (Apply e1 es))]
  11875. [ty ty])))
  11876. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  11877. [else (error 'type-check "expected a function, not ~a" ty)]))
  11878. (define/override ((type-check-exp env) e)
  11879. (match e
  11880. [(Lambda `([,xs : ,Ts] ...) rT body)
  11881. (for ([T Ts]) ((check-well-formed env) T))
  11882. ((check-well-formed env) rT)
  11883. ((super type-check-exp env) e)]
  11884. [(HasType e1 ty)
  11885. ((check-well-formed env) ty)
  11886. ((super type-check-exp env) e)]
  11887. [else ((super type-check-exp env) e)]))
  11888. (define/override ((type-check-def env) d)
  11889. (verbose 'type-check "poly/def" d)
  11890. (match d
  11891. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  11892. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  11893. (for ([p ps]) ((check-well-formed ts-env) p))
  11894. ((check-well-formed ts-env) rt)
  11895. (define new-env (append ts-env (map cons xs ps) env))
  11896. (define-values (body^ ty^) ((type-check-exp new-env) body))
  11897. (check-type-equal? ty^ rt body)
  11898. (Generic ts (Def f p:t* rt info body^))]
  11899. [else ((super type-check-def env) d)]))
  11900. (define/override (type-check-program p)
  11901. (match p
  11902. [(Program info body)
  11903. (type-check-program (ProgramDefsExp info '() body))]
  11904. [(ProgramDefsExp info ds body)
  11905. (define ds^ (combine-decls-defs ds))
  11906. (define new-env (for/list ([d ds^])
  11907. (cons (def-name d) (fun-def-type d))))
  11908. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  11909. (define-values (body^ ty) ((type-check-exp new-env) body))
  11910. (check-type-equal? ty 'Integer body)
  11911. (ProgramDefsExp info ds^^ body^)]))
  11912. ))
  11913. \end{lstlisting}
  11914. \caption{Type checker for the \LangPoly{} language.}
  11915. \label{fig:type-check-Rvar0}
  11916. \end{figure}
  11917. \begin{figure}[tbp]
  11918. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11919. (define/override (type-equal? t1 t2)
  11920. (match* (t1 t2)
  11921. [(`(All ,xs ,T1) `(All ,ys ,T2))
  11922. (define env (map cons xs ys))
  11923. (type-equal? (subst-type env T1) T2)]
  11924. [(other wise)
  11925. (super type-equal? t1 t2)]))
  11926. (define/public (match-types env pt at)
  11927. (match* (pt at)
  11928. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  11929. [('Void 'Void) env] [('Any 'Any) env]
  11930. [(`(Vector ,pts ...) `(Vector ,ats ...))
  11931. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  11932. (match-types env^ pt1 at1))]
  11933. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  11934. (define env^ (match-types env prt art))
  11935. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  11936. (match-types env^^ pt1 at1))]
  11937. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  11938. (define env^ (append (map cons pxs axs) env))
  11939. (match-types env^ pt1 at1)]
  11940. [((? symbol? x) at)
  11941. (match (dict-ref env x (lambda () #f))
  11942. [#f (error 'type-check "undefined type variable ~a" x)]
  11943. ['Type (cons (cons x at) env)]
  11944. [t^ (check-type-equal? at t^ 'matching) env])]
  11945. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  11946. (define/public (subst-type env pt)
  11947. (match pt
  11948. ['Integer 'Integer] ['Boolean 'Boolean]
  11949. ['Void 'Void] ['Any 'Any]
  11950. [`(Vector ,ts ...)
  11951. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  11952. [`(,ts ... -> ,rt)
  11953. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  11954. [`(All ,xs ,t)
  11955. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  11956. [(? symbol? x) (dict-ref env x)]
  11957. [else (error 'type-check "expected a type not ~a" pt)]))
  11958. (define/public (combine-decls-defs ds)
  11959. (match ds
  11960. ['() '()]
  11961. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  11962. (unless (equal? name f)
  11963. (error 'type-check "name mismatch, ~a != ~a" name f))
  11964. (match type
  11965. [`(All ,xs (,ps ... -> ,rt))
  11966. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  11967. (cons (Generic xs (Def name params^ rt info body))
  11968. (combine-decls-defs ds^))]
  11969. [`(,ps ... -> ,rt)
  11970. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  11971. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  11972. [else (error 'type-check "expected a function type, not ~a" type) ])]
  11973. [`(,(Def f params rt info body) . ,ds^)
  11974. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  11975. \end{lstlisting}
  11976. \caption{Auxiliary functions for type checking \LangPoly{}.}
  11977. \label{fig:type-check-Rvar0-aux}
  11978. \end{figure}
  11979. \begin{figure}[tbp]
  11980. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  11981. (define/public ((check-well-formed env) ty)
  11982. (match ty
  11983. ['Integer (void)]
  11984. ['Boolean (void)]
  11985. ['Void (void)]
  11986. [(? symbol? a)
  11987. (match (dict-ref env a (lambda () #f))
  11988. ['Type (void)]
  11989. [else (error 'type-check "undefined type variable ~a" a)])]
  11990. [`(Vector ,ts ...)
  11991. (for ([t ts]) ((check-well-formed env) t))]
  11992. [`(,ts ... -> ,t)
  11993. (for ([t ts]) ((check-well-formed env) t))
  11994. ((check-well-formed env) t)]
  11995. [`(All ,xs ,t)
  11996. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  11997. ((check-well-formed env^) t)]
  11998. [else (error 'type-check "unrecognized type ~a" ty)]))
  11999. \end{lstlisting}
  12000. \caption{Well-formed types.}
  12001. \label{fig:well-formed-types}
  12002. \end{figure}
  12003. % TODO: interpreter for R'_10
  12004. \section{Compiling Polymorphism}
  12005. \label{sec:compiling-poly}
  12006. Broadly speaking, there are four approaches to compiling parametric
  12007. polymorphism, which we describe below.
  12008. \begin{description}
  12009. \item[Monomorphization] generates a different version of a polymorphic
  12010. function for each set of type arguments that it is used with,
  12011. producing type-specialized code. This approach results in the most
  12012. efficient code but requires whole-program compilation (no separate
  12013. compilation) and increases code size. For our current purposes
  12014. monomorphization is a non-starter because, with first-class
  12015. polymorphism, it is sometimes not possible to determine which
  12016. generic functions are used with which type arguments during
  12017. compilation. (It can be done at runtime, with just-in-time
  12018. compilation.) This approach is used to compile C++
  12019. templates~\citep{stroustrup88:_param_types} and polymorphic
  12020. functions in NESL~\citep{Blelloch:1993aa} and
  12021. ML~\citep{Weeks:2006aa}.
  12022. \item[Uniform representation] generates one version of each
  12023. polymorphic function but requires all values have a common ``boxed''
  12024. format, such as the tagged values of type \code{Any} in
  12025. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  12026. similarly to code in a dynamically typed language (like \LangDyn{}),
  12027. in which primitive operators require their arguments to be projected
  12028. from \code{Any} and their results are injected into \code{Any}. (In
  12029. object-oriented languages, the projection is accomplished via
  12030. virtual method dispatch.) The uniform representation approach is
  12031. compatible with separate compilation and with first-class
  12032. polymorphism. However, it produces the least-efficient code because
  12033. it introduces overhead in the entire program, including
  12034. non-polymorphic code. This approach is used in implementations of
  12035. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  12036. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  12037. Java~\citep{Bracha:1998fk}.
  12038. \item[Mixed representation] generates one version of each polymorphic
  12039. function, using a boxed representation for type
  12040. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  12041. and conversions are performed at the boundaries between monomorphic
  12042. and polymorphic (e.g. when a polymorphic function is instantiated
  12043. and called). This approach is compatible with separate compilation
  12044. and first-class polymorphism and maintains the efficiency of
  12045. monomorphic code. The tradeoff is increased overhead at the boundary
  12046. between monomorphic and polymorphic code. This approach is used in
  12047. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  12048. Java 5 with the addition of autoboxing.
  12049. \item[Type passing] uses the unboxed representation in both
  12050. monomorphic and polymorphic code. Each polymorphic function is
  12051. compiled to a single function with extra parameters that describe
  12052. the type arguments. The type information is used by the generated
  12053. code to know how to access the unboxed values at runtime. This
  12054. approach is used in implementation of the Napier88
  12055. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  12056. passing is compatible with separate compilation and first-class
  12057. polymorphism and maintains the efficiency for monomorphic
  12058. code. There is runtime overhead in polymorphic code from dispatching
  12059. on type information.
  12060. \end{description}
  12061. In this chapter we use the mixed representation approach, partly
  12062. because of its favorable attributes, and partly because it is
  12063. straightforward to implement using the tools that we have already
  12064. built to support gradual typing. To compile polymorphic functions, we
  12065. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  12066. \LangCast{}.
  12067. \section{Erase Types}
  12068. \label{sec:erase-types}
  12069. We use the \code{Any} type from Chapter~\ref{ch:Rdyn} to
  12070. represent type variables. For example, Figure~\ref{fig:map-vec-erase}
  12071. shows the output of the \code{erase-types} pass on the polymorphic
  12072. \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
  12073. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  12074. \code{All} types are removed from the type of \code{map-vec}.
  12075. \begin{figure}[tbp]
  12076. \begin{lstlisting}
  12077. (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
  12078. : (Vector Any Any)
  12079. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12080. (define (add1 [x : Integer]) : Integer (+ x 1))
  12081. (vector-ref ((cast map-vec
  12082. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  12083. ((Integer -> Integer) (Vector Integer Integer)
  12084. -> (Vector Integer Integer)))
  12085. add1 (vector 0 41)) 1)
  12086. \end{lstlisting}
  12087. \caption{The polymorphic \code{map-vec} example after type erasure.}
  12088. \label{fig:map-vec-erase}
  12089. \end{figure}
  12090. This process of type erasure creates a challenge at points of
  12091. instantiation. For example, consider the instantiation of
  12092. \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
  12093. The type of \code{map-vec} is
  12094. \begin{lstlisting}
  12095. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  12096. \end{lstlisting}
  12097. and it is instantiated to
  12098. \begin{lstlisting}
  12099. ((Integer -> Integer) (Vector Integer Integer)
  12100. -> (Vector Integer Integer))
  12101. \end{lstlisting}
  12102. After erasure, the type of \code{map-vec} is
  12103. \begin{lstlisting}
  12104. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  12105. \end{lstlisting}
  12106. but we need to convert it to the instantiated type. This is easy to
  12107. do in the target language \LangCast{} with a single \code{cast}. In
  12108. Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
  12109. has been compiled to a \code{cast} from the type of \code{map-vec} to
  12110. the instantiated type. The source and target type of a cast must be
  12111. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  12112. because both the source and target are obtained from the same
  12113. polymorphic type of \code{map-vec}, replacing the type parameters with
  12114. \code{Any} in the former and with the deduced type arguments in the
  12115. later. (Recall that the \code{Any} type is consistent with any type.)
  12116. To implement the \code{erase-types} pass, we recommend defining a
  12117. recursive auxiliary function named \code{erase-type} that applies the
  12118. following two transformations. It replaces type variables with
  12119. \code{Any}
  12120. \begin{lstlisting}
  12121. |$x$|
  12122. |$\Rightarrow$|
  12123. Any
  12124. \end{lstlisting}
  12125. and it removes the polymorphic \code{All} types.
  12126. \begin{lstlisting}
  12127. (All |$xs$| |$T_1$|)
  12128. |$\Rightarrow$|
  12129. |$T'_1$|
  12130. \end{lstlisting}
  12131. Apply the \code{erase-type} function to all of the type annotations in
  12132. the program.
  12133. Regarding the translation of expressions, the case for \code{Inst} is
  12134. the interesting one. We translate it into a \code{Cast}, as shown
  12135. below. The type of the subexpression $e$ is the polymorphic type
  12136. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  12137. $T$, the type $T'$. The target type $T''$ is the result of
  12138. substituting the arguments types $ts$ for the type parameters $xs$ in
  12139. $T$ followed by doing type erasure.
  12140. \begin{lstlisting}
  12141. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  12142. |$\Rightarrow$|
  12143. (Cast |$e'$| |$T'$| |$T''$|)
  12144. \end{lstlisting}
  12145. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  12146. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  12147. Finally, each polymorphic function is translated to a regular
  12148. functions in which type erasure has been applied to all the type
  12149. annotations and the body.
  12150. \begin{lstlisting}
  12151. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  12152. |$\Rightarrow$|
  12153. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  12154. \end{lstlisting}
  12155. \begin{exercise}\normalfont
  12156. Implement a compiler for the polymorphic language \LangPoly{} by
  12157. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  12158. programs that use polymorphic functions. Some of them should make
  12159. use of first-class polymorphism.
  12160. \end{exercise}
  12161. \begin{figure}[p]
  12162. \begin{tikzpicture}[baseline=(current bounding box.center)]
  12163. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  12164. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  12165. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  12166. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  12167. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  12168. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  12169. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  12170. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  12171. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  12172. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  12173. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  12174. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  12175. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  12176. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  12177. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  12178. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  12179. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  12180. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  12181. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  12182. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  12183. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  12184. \path[->,bend right=15] (Rpoly) edge [above] node
  12185. {\ttfamily\footnotesize type-check} (Rpolyp);
  12186. \path[->,bend right=15] (Rpolyp) edge [above] node
  12187. {\ttfamily\footnotesize erase-types} (Rgradualp);
  12188. \path[->,bend right=15] (Rgradualp) edge [above] node
  12189. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  12190. \path[->,bend right=15] (Rwhilepp) edge [right] node
  12191. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  12192. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  12193. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  12194. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  12195. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  12196. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  12197. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  12198. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  12199. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  12200. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  12201. {\ttfamily\footnotesize convert-assignments} (F1-1);
  12202. \path[->,bend left=15] (F1-1) edge [below] node
  12203. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  12204. \path[->,bend right=15] (F1-2) edge [above] node
  12205. {\ttfamily\footnotesize limit-fun.} (F1-3);
  12206. \path[->,bend right=15] (F1-3) edge [above] node
  12207. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  12208. \path[->,bend right=15] (F1-4) edge [above] node
  12209. {\ttfamily\footnotesize remove-complex.} (F1-5);
  12210. \path[->,bend right=15] (F1-5) edge [right] node
  12211. {\ttfamily\footnotesize explicate-control} (C3-2);
  12212. \path[->,bend left=15] (C3-2) edge [left] node
  12213. {\ttfamily\footnotesize select-instr.} (x86-2);
  12214. \path[->,bend right=15] (x86-2) edge [left] node
  12215. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  12216. \path[->,bend right=15] (x86-2-1) edge [below] node
  12217. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  12218. \path[->,bend right=15] (x86-2-2) edge [left] node
  12219. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  12220. \path[->,bend left=15] (x86-3) edge [above] node
  12221. {\ttfamily\footnotesize patch-instr.} (x86-4);
  12222. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  12223. \end{tikzpicture}
  12224. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  12225. \label{fig:Rpoly-passes}
  12226. \end{figure}
  12227. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  12228. for the compilation of \LangPoly{}.
  12229. % TODO: challenge problem: specialization of instantiations
  12230. % Further Reading
  12231. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12232. \begin{chapappendix}[Appendix]
  12233. \section{Interpreters}
  12234. \label{appendix:interp}
  12235. \index{subject}{interpreter}
  12236. We provide interpreters for each of the source languages \LangInt{},
  12237. \LangVar{}, $\ldots$ in the files \code{interp-Rint.rkt},
  12238. \code{interp-Rvar.rkt}, etc. The interpreters for the intermediate
  12239. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  12240. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  12241. and x86 are in the \key{interp.rkt} file.
  12242. \section{Utility Functions}
  12243. \label{appendix:utilities}
  12244. The utility functions described in this section are in the
  12245. \key{utilities.rkt} file of the support code.
  12246. \paragraph{\code{interp-tests}}
  12247. The \key{interp-tests} function runs the compiler passes and the
  12248. interpreters on each of the specified tests to check whether each pass
  12249. is correct. The \key{interp-tests} function has the following
  12250. parameters:
  12251. \begin{description}
  12252. \item[name (a string)] a name to identify the compiler,
  12253. \item[typechecker] a function of exactly one argument that either
  12254. raises an error using the \code{error} function when it encounters a
  12255. type error, or returns \code{\#f} when it encounters a type
  12256. error. If there is no type error, the type checker returns the
  12257. program.
  12258. \item[passes] a list with one entry per pass. An entry is a list with
  12259. four things:
  12260. \begin{enumerate}
  12261. \item a string giving the name of the pass,
  12262. \item the function that implements the pass (a translator from AST
  12263. to AST),
  12264. \item a function that implements the interpreter (a function from
  12265. AST to result value) for the output language,
  12266. \item and a type checker for the output language. Type checkers for
  12267. the $R$ and $C$ languages are provided in the support code. For
  12268. example, the type checkers for \LangVar{} and \LangCVar{} are in
  12269. \code{type-check-Rvar.rkt} and \code{type-check-Cvar.rkt}. The
  12270. type checker entry is optional. The support code does not provide
  12271. type checkers for the x86 languages.
  12272. \end{enumerate}
  12273. \item[source-interp] an interpreter for the source language. The
  12274. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  12275. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  12276. \item[tests] a list of test numbers that specifies which tests to
  12277. run. (see below)
  12278. \end{description}
  12279. %
  12280. The \key{interp-tests} function assumes that the subdirectory
  12281. \key{tests} has a collection of Racket programs whose names all start
  12282. with the family name, followed by an underscore and then the test
  12283. number, ending with the file extension \key{.rkt}. Also, for each test
  12284. program that calls \code{read} one or more times, there is a file with
  12285. the same name except that the file extension is \key{.in} that
  12286. provides the input for the Racket program. If the test program is
  12287. expected to fail type checking, then there should be an empty file of
  12288. the same name but with extension \key{.tyerr}.
  12289. \paragraph{\code{compiler-tests}}
  12290. runs the compiler passes to generate x86 (a \key{.s} file) and then
  12291. runs the GNU C compiler (gcc) to generate machine code. It runs the
  12292. machine code and checks that the output is $42$. The parameters to the
  12293. \code{compiler-tests} function are similar to those of the
  12294. \code{interp-tests} function, and consist of
  12295. \begin{itemize}
  12296. \item a compiler name (a string),
  12297. \item a type checker,
  12298. \item description of the passes,
  12299. \item name of a test-family, and
  12300. \item a list of test numbers.
  12301. \end{itemize}
  12302. \paragraph{\code{compile-file}}
  12303. takes a description of the compiler passes (see the comment for
  12304. \key{interp-tests}) and returns a function that, given a program file
  12305. name (a string ending in \key{.rkt}), applies all of the passes and
  12306. writes the output to a file whose name is the same as the program file
  12307. name but with \key{.rkt} replaced with \key{.s}.
  12308. \paragraph{\code{read-program}}
  12309. takes a file path and parses that file (it must be a Racket program)
  12310. into an abstract syntax tree.
  12311. \paragraph{\code{parse-program}}
  12312. takes an S-expression representation of an abstract syntax tree and converts it into
  12313. the struct-based representation.
  12314. \paragraph{\code{assert}}
  12315. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  12316. and displays the message \key{msg} if the Boolean \key{bool} is false.
  12317. \paragraph{\code{lookup}}
  12318. % remove discussion of lookup? -Jeremy
  12319. takes a key and an alist, and returns the first value that is
  12320. associated with the given key, if there is one. If not, an error is
  12321. triggered. The alist may contain both immutable pairs (built with
  12322. \key{cons}) and mutable pairs (built with \key{mcons}).
  12323. %The \key{map2} function ...
  12324. \section{x86 Instruction Set Quick-Reference}
  12325. \label{sec:x86-quick-reference}
  12326. \index{subject}{x86}
  12327. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  12328. do. We write $A \to B$ to mean that the value of $A$ is written into
  12329. location $B$. Address offsets are given in bytes. The instruction
  12330. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  12331. registers (such as \code{\%rax}), or memory references (such as
  12332. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  12333. reference per instruction. Other operands must be immediates or
  12334. registers.
  12335. \begin{table}[tbp]
  12336. \centering
  12337. \begin{tabular}{l|l}
  12338. \textbf{Instruction} & \textbf{Operation} \\ \hline
  12339. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  12340. \texttt{negq} $A$ & $- A \to A$ \\
  12341. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  12342. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  12343. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  12344. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  12345. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  12346. \texttt{retq} & Pops the return address and jumps to it \\
  12347. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  12348. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  12349. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  12350. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  12351. be an immediate) \\
  12352. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  12353. matches the condition code of the instruction, otherwise go to the
  12354. next instructions. The condition codes are \key{e} for ``equal'',
  12355. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  12356. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  12357. \texttt{jl} $L$ & \\
  12358. \texttt{jle} $L$ & \\
  12359. \texttt{jg} $L$ & \\
  12360. \texttt{jge} $L$ & \\
  12361. \texttt{jmp} $L$ & Jump to label $L$ \\
  12362. \texttt{movq} $A$, $B$ & $A \to B$ \\
  12363. \texttt{movzbq} $A$, $B$ &
  12364. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  12365. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  12366. and the extra bytes of $B$ are set to zero.} \\
  12367. & \\
  12368. & \\
  12369. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  12370. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  12371. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  12372. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  12373. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  12374. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  12375. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  12376. description of the condition codes. $A$ must be a single byte register
  12377. (e.g., \texttt{al} or \texttt{cl}).} \\
  12378. \texttt{setl} $A$ & \\
  12379. \texttt{setle} $A$ & \\
  12380. \texttt{setg} $A$ & \\
  12381. \texttt{setge} $A$ &
  12382. \end{tabular}
  12383. \vspace{5pt}
  12384. \caption{Quick-reference for the x86 instructions used in this book.}
  12385. \label{tab:x86-instr}
  12386. \end{table}
  12387. \cleardoublepage
  12388. \section{Concrete Syntax for Intermediate Languages}
  12389. The concrete syntax of \LangAny{} is defined in
  12390. Figure~\ref{fig:Rany-concrete-syntax}.
  12391. \begin{figure}[tp]
  12392. \centering
  12393. \fbox{
  12394. \begin{minipage}{0.97\textwidth}\small
  12395. \[
  12396. \begin{array}{lcl}
  12397. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  12398. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}} \\
  12399. &\mid& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \mid \key{Any} \\
  12400. \FType &::=& \key{Integer} \mid \key{Boolean} \mid \key{Void}
  12401. \mid \LP\key{Vector}\; \key{Any}\ldots\RP \\
  12402. &\mid& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  12403. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \mid \CPROJECT{\Exp}{\FType}\\
  12404. &\mid& \LP\key{any-vector-length}\;\Exp\RP
  12405. \mid \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  12406. &\mid& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  12407. &\mid& \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP
  12408. \mid \LP\key{void?}\;\Exp\RP \\
  12409. &\mid& \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \\
  12410. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  12411. \LangAnyM{} &::=& \gray{\Def\ldots \; \Exp}
  12412. \end{array}
  12413. \]
  12414. \end{minipage}
  12415. }
  12416. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  12417. (Figure~\ref{fig:Rlam-syntax}).}
  12418. \label{fig:Rany-concrete-syntax}
  12419. \end{figure}
  12420. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  12421. defined in Figures~\ref{fig:c0-concrete-syntax},
  12422. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  12423. and \ref{fig:c3-concrete-syntax}, respectively.
  12424. \begin{figure}[tbp]
  12425. \fbox{
  12426. \begin{minipage}{0.96\textwidth}
  12427. \[
  12428. \begin{array}{lcl}
  12429. \Atm &::=& \Int \mid \Var \\
  12430. \Exp &::=& \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)}\\
  12431. \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
  12432. \Tail &::= & \key{return}~\Exp\key{;} \mid \Stmt~\Tail \\
  12433. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  12434. \end{array}
  12435. \]
  12436. \end{minipage}
  12437. }
  12438. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  12439. \label{fig:c0-concrete-syntax}
  12440. \end{figure}
  12441. \begin{figure}[tbp]
  12442. \fbox{
  12443. \begin{minipage}{0.96\textwidth}
  12444. \small
  12445. \[
  12446. \begin{array}{lcl}
  12447. \Atm &::=& \gray{ \Int \mid \Var } \mid \itm{bool} \\
  12448. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  12449. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  12450. &\mid& \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP \\
  12451. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
  12452. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  12453. \mid \key{goto}~\itm{label}\key{;}\\
  12454. &\mid& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
  12455. \LangCIfM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  12456. \end{array}
  12457. \]
  12458. \end{minipage}
  12459. }
  12460. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  12461. \label{fig:c1-concrete-syntax}
  12462. \end{figure}
  12463. \begin{figure}[tbp]
  12464. \fbox{
  12465. \begin{minipage}{0.96\textwidth}
  12466. \small
  12467. \[
  12468. \begin{array}{lcl}
  12469. \Atm &::=& \gray{ \Int \mid \Var \mid \itm{bool} } \\
  12470. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  12471. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  12472. &\mid& \gray{ \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP } \\
  12473. &\mid& \LP \key{allocate}~\Int~\Type \RP \\
  12474. &\mid& (\key{vector-ref}\;\Atm\;\Int) \mid (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  12475. &\mid& \LP \key{global-value}~\Var \RP \mid \LP \key{void} \RP \\
  12476. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \mid \LP\key{collect}~\Int \RP\\
  12477. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  12478. \mid \gray{ \key{goto}~\itm{label}\key{;} }\\
  12479. &\mid& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  12480. \LangCVecM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  12481. \end{array}
  12482. \]
  12483. \end{minipage}
  12484. }
  12485. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  12486. \label{fig:c2-concrete-syntax}
  12487. \end{figure}
  12488. \begin{figure}[tp]
  12489. \fbox{
  12490. \begin{minipage}{0.96\textwidth}
  12491. \small
  12492. \[
  12493. \begin{array}{lcl}
  12494. \Atm &::=& \gray{ \Int \mid \Var \mid \key{\#t} \mid \key{\#f} }
  12495. \\
  12496. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  12497. \Exp &::= & \gray{ \Atm \mid \LP\key{read}\RP \mid \LP\key{-}\;\Atm\RP \mid \LP\key{+} \; \Atm\;\Atm\RP
  12498. \mid \LP\key{not}\;\Atm\RP \mid \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  12499. &\mid& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  12500. \mid \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  12501. &\mid& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \mid \LP\key{global-value} \,\itm{name}\RP \mid \LP\key{void}\RP } \\
  12502. &\mid& \LP\key{fun-ref}~\itm{label}\RP \mid \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  12503. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \mid \RETURN{\Exp}
  12504. \mid \LP\key{collect} \,\itm{int}\RP }\\
  12505. \Tail &::= & \gray{\RETURN{\Exp} \mid \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  12506. &\mid& \gray{\LP\key{goto}\,\itm{label}\RP
  12507. \mid \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  12508. &\mid& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  12509. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  12510. \LangCFunM{} & ::= & \Def\ldots
  12511. \end{array}
  12512. \]
  12513. \end{minipage}
  12514. }
  12515. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  12516. \label{fig:c3-concrete-syntax}
  12517. \end{figure}
  12518. \end{chapappendix}
  12519. %\setcounter{chapter}{2}
  12520. \clearpage
  12521. \appendix
  12522. \backmatter
  12523. %% \addtocontents{toc}{\vspace{11pt}}
  12524. %% \nocite{*} is a way to get all the entries in the .bib file to print in the bibliography:
  12525. \nocite{*}\let\bibname\refname
  12526. \addcontentsline{toc}{fmbm}{\refname}
  12527. \printbibliography
  12528. \printindex{authors}{Author Index}
  12529. \printindex{subject}{Subject Index}
  12530. \end{document}