book.tex 557 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410
  1. % Why direct style instead of continuation passing style?
  2. %% Student project ideas:
  3. %% * high-level optimizations like procedure inlining, etc.
  4. %% * closure optimization
  5. %% * adding letrec to the language
  6. %% (Thought: in the book and regular course, replace top-level defines
  7. %% with letrec.)
  8. %% * alternative back ends (ARM!, LLVM)
  9. %% * alternative calling convention (a la Dybvig)
  10. %% * lazy evaluation
  11. %% * continuations (frames in heap a la SML or segmented stack a la Dybvig)
  12. %% * exceptions
  13. %% * self hosting
  14. %% * I/O
  15. %% * foreign function interface
  16. %% * quasi-quote and unquote
  17. %% * macros (too difficult?)
  18. %% * alternative garbage collector
  19. %% * alternative register allocator
  20. %% * type classes
  21. %% * loop optimization (fusion, etc.)
  22. %% * deforestation
  23. %% * records with subtyping
  24. %% * object-oriented features
  25. %% - objects, object types, and structural subtyping (e.g. Abadi & Cardelli)
  26. %% - class-based objects and nominal subtyping (e.g. Featherweight Java)
  27. %% * multi-threading, fork join, futures, implicit parallelism
  28. %% * type analysis and specialization
  29. \documentclass[11pt]{book}
  30. \usepackage[T1]{fontenc}
  31. \usepackage[utf8]{inputenc}
  32. \usepackage{lmodern}
  33. \usepackage{hyperref}
  34. \usepackage{graphicx}
  35. \usepackage[english]{babel}
  36. \usepackage{listings}
  37. \usepackage{amsmath}
  38. \usepackage{amsthm}
  39. \usepackage{amssymb}
  40. \usepackage[numbers]{natbib}
  41. \usepackage{stmaryrd}
  42. \usepackage{xypic}
  43. \usepackage{semantic}
  44. \usepackage{wrapfig}
  45. \usepackage{tcolorbox}
  46. \usepackage{multirow}
  47. \usepackage{color}
  48. \usepackage{upquote}
  49. \usepackage{makeidx}
  50. \makeindex
  51. \definecolor{lightgray}{gray}{1}
  52. \newcommand{\black}[1]{{\color{black} #1}}
  53. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  54. \newcommand{\gray}[1]{{\color{gray} #1}}
  55. %% For pictures
  56. \usepackage{tikz}
  57. \usetikzlibrary{arrows.meta}
  58. \tikzset{baseline=(current bounding box.center), >/.tip={Triangle[scale=1.4]}}
  59. % Computer Modern is already the default. -Jeremy
  60. %\renewcommand{\ttdefault}{cmtt}
  61. \definecolor{comment-red}{rgb}{0.8,0,0}
  62. \if01
  63. \newcommand{\rn}[1]{{\color{comment-red}{(RRN: #1)}}}
  64. \newcommand{\margincomment}[1]{\marginpar{\color{comment-red}\tiny #1}}
  65. \else
  66. \newcommand{\rn}[1]{}
  67. \newcommand{\margincomment}[1]{}
  68. \fi
  69. \newcommand{\ocaml}[1]{{\color{blue}{#1}}}
  70. \newenvironment{ocamlx}{
  71. \begin{color}{blue}
  72. }
  73. {
  74. \end{color}
  75. }
  76. \definecolor{BLUE}{rgb}{0,0,1} % no idea why we need this
  77. \lstdefinestyle{racket}{
  78. language=Lisp,
  79. basicstyle=\ttfamily\small,
  80. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  81. deletekeywords={read,mapping,vector},
  82. escapechar=|,
  83. columns=flexible,
  84. moredelim=[is][\color{red}]{~}{~},
  85. showstringspaces=false
  86. }
  87. \lstset{style=racket}
  88. \lstdefinestyle{ocaml}{
  89. language=[Objective]Caml,
  90. basicstyle=\ttfamily\small\color{blue},
  91. columns=flexible,
  92. escapechar={},
  93. showstringspaces=false
  94. }
  95. \newtheorem{theorem}{Theorem}
  96. \newtheorem{lemma}[theorem]{Lemma}
  97. \newtheorem{corollary}[theorem]{Corollary}
  98. \newtheorem{proposition}[theorem]{Proposition}
  99. \newtheorem{constraint}[theorem]{Constraint}
  100. \newtheorem{definition}[theorem]{Definition}
  101. \newtheorem{exercise}[theorem]{Exercise}
  102. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  103. % 'dedication' environment: To add a dedication paragraph at the start of book %
  104. % Source: http://www.tug.org/pipermail/texhax/2010-June/015184.html %
  105. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  106. \newenvironment{dedication}
  107. {
  108. \cleardoublepage
  109. \thispagestyle{empty}
  110. \vspace*{\stretch{1}}
  111. \hfill\begin{minipage}[t]{0.66\textwidth}
  112. \raggedright
  113. }
  114. {
  115. \end{minipage}
  116. \vspace*{\stretch{3}}
  117. \clearpage
  118. }
  119. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  120. % Chapter quote at the start of chapter %
  121. % Source: http://tex.stackexchange.com/a/53380 %
  122. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  123. \makeatletter
  124. \renewcommand{\@chapapp}{}% Not necessary...
  125. \newenvironment{chapquote}[2][2em]
  126. {\setlength{\@tempdima}{#1}%
  127. \def\chapquote@author{#2}%
  128. \parshape 1 \@tempdima \dimexpr\textwidth-2\@tempdima\relax%
  129. \itshape}
  130. {\par\normalfont\hfill--\ \chapquote@author\hspace*{\@tempdima}\par\bigskip}
  131. \makeatother
  132. \input{defs}
  133. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  134. \title{\Huge \textbf{Essentials of Compilation} \\
  135. \huge The Incremental, Nano-Pass Approach}
  136. \author{\textsc{Jeremy G. Siek} \\
  137. %\thanks{\url{http://homes.soic.indiana.edu/jsiek/}} \\
  138. Indiana University \\
  139. \\
  140. with contributions from: \\
  141. Carl Factora \\
  142. Andre Kuhlenschmidt \\
  143. Ryan R. Newton \\
  144. Ryan Scott \\
  145. Cameron Swords \\
  146. Michael M. Vitousek \\
  147. Michael Vollmer \\
  148. \\
  149. \ocaml{OCaml version:} \\
  150. \ocaml{Andrew Tolmach} \\
  151. \ocaml{(with inspiration from a Haskell version by Ian Winter)}
  152. }
  153. \begin{document}
  154. \frontmatter
  155. \maketitle
  156. \begin{dedication}
  157. This book is dedicated to the programming language wonks at Indiana
  158. University.
  159. \end{dedication}
  160. \tableofcontents
  161. \listoffigures
  162. %\listoftables
  163. \mainmatter
  164. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  165. \chapter*{Preface}
  166. There is a magical moment when a programmer presses the ``run'' button
  167. and the software begins to execute. Somehow a program written in a
  168. high-level language is running on a computer that is only capable of
  169. shuffling bits. Here we reveal the wizardry that makes that moment
  170. possible. Beginning with the groundbreaking work of Backus and
  171. colleagues in the 1950s, computer scientists discovered techniques for
  172. constructing programs, called \emph{compilers}, that automatically
  173. translate high-level programs into machine code.
  174. We take you on a journey by constructing your own compiler for a small
  175. but powerful language. Along the way we explain the essential
  176. concepts, algorithms, and data structures that underlie compilers. We
  177. develop your understanding of how programs are mapped onto computer
  178. hardware, which is helpful when reasoning about properties at the
  179. junction between hardware and software such as execution time,
  180. software errors, and security vulnerabilities. For those interested
  181. in pursuing compiler construction, our goal is to provide a
  182. stepping-stone to advanced topics such as just-in-time compilation,
  183. program analysis, and program optimization. For those interested in
  184. designing and implementing their own programming languages, we connect
  185. language design choices to their impact on the compiler its generated
  186. code.
  187. A compiler is typically organized as a sequence of stages that
  188. progressively translates a program to code that runs on hardware. We
  189. take this approach to the extreme by partitioning our compiler into a
  190. large number of \emph{nanopasses}, each of which performs a single
  191. task. This allows us to test the output of each pass in isolation, and
  192. furthermore, allows us to focus our attention making the compiler far
  193. easier to understand.
  194. %% [TODO: easier to understand/debug for those maintaining the compiler,
  195. %% proving correctness]
  196. The most familiar approach to describing compilers is with one pass
  197. per chapter. The problem with that is it obfuscates how language
  198. features motivate design choices in a compiler. We take an
  199. \emph{incremental} approach in which we build a complete compiler in
  200. each chapter, starting with arithmetic and variables and add new
  201. features in subsequent chapters.
  202. Our choice of language features is designed to elicit the fundamental
  203. concepts and algorithms used in compilers.
  204. \begin{itemize}
  205. \item We begin with integer arithmetic and local variables in
  206. Chapters~\ref{ch:trees-recur} and \ref{ch:Rvar}, where we introduce
  207. the fundamental tools of compiler construction: \emph{abstract
  208. syntax trees} and \emph{recursive functions}.
  209. \item In Chapter~\ref{ch:register-allocation-Rvar} we apply
  210. \emph{graph coloring} to assign variables to machine registers.
  211. \item Chapter~\ref{ch:Rif} adds \code{if} expressions, which motivates
  212. an elegant recursive algorithm for mapping expressions to
  213. \emph{control-flow graphs}.
  214. \item Chapter~\ref{ch:Rvec} adds heap-allocated tuples, motivating
  215. \emph{garbage collection}.
  216. \item Chapter~\ref{ch:Rfun} adds functions that are first-class values
  217. but lack lexical scoping, similar to the C programming
  218. language~\citep{Kernighan:1988nx} except that we generate efficient
  219. tail calls. The reader learns about the procedure call stack,
  220. \emph{calling conventions}, and their interaction with register
  221. allocation and garbage collection.
  222. \item Chapter~\ref{ch:Rlam} adds anonymous functions with lexical
  223. scoping, i.e., \emph{lambda abstraction}. The reader learns about
  224. \emph{closure conversion}, in which lambdas are translated into a
  225. combination of functions and tuples.
  226. \item Chapter~\ref{ch:Rdyn} adds \emph{dynamic typing}. Prior to this
  227. point the input languages are statically typed. The reader extends
  228. the statically typed language with an \code{Any} type which serves
  229. as a target for compiling the dynamically typed language.
  230. \item Chapter~\ref{ch:Rwhile} fleshes out support for imperative
  231. programming languages with the addition of loops and mutable
  232. variables. These additions elicit the need for \emph{dataflow
  233. analysis} in the register allocator.
  234. \item Chapter~\ref{ch:Rgrad} uses the \code{Any} type of
  235. Chapter~\ref{ch:Rdyn} to implement a \emph{gradually typed language}
  236. in which different regions of a program may be static or dynamically
  237. typed. The reader implements runtime support for \emph{proxies} that
  238. allow values to safely move between regions.
  239. \item Chapter~\ref{ch:Rpoly} adds \emph{generics} with autoboxing,
  240. leveraging the \code{Any} type and type casts developed in Chapters
  241. \ref{ch:Rdyn} and \ref{ch:Rgrad}.
  242. \end{itemize}
  243. There are many language features that we do not include. Our choices
  244. weigh the incidental complexity of a feature against the fundamental
  245. concepts that it exposes. For example, we include tuples and not
  246. records because they both elicit the study of heap allocation and
  247. garbage collection but records come with more incidental complexity.
  248. Since 2016 this book has served as the textbook for the compiler
  249. course at Indiana University, a 16-week course for upper-level
  250. undergraduates and first-year graduate students.
  251. %
  252. Prior to this course, students learn to program in both imperative and
  253. functional languages, study data structures and algorithms, and take
  254. discrete mathematics.
  255. %
  256. At the beginning of the course, students form groups of 2-4 people.
  257. The groups complete one chapter every two weeks, starting with
  258. Chapter~\ref{ch:Rvar} and finishing with Chapter~\ref{ch:Rdyn}. Many
  259. chapters include a challenge problem that we assign to the graduate
  260. students. The last two weeks of the course involve a final project in
  261. which students design and implement a compiler extension of their
  262. choosing. Chapters~\ref{ch:Rwhile}, \ref{ch:Rgrad}, and
  263. \ref{ch:Rpoly} can be used in support of these projects or they can
  264. replace some of the earlier chapters. For example, a course with an
  265. emphasis on statically-typed imperative languages would skip
  266. Chapter~\ref{ch:Rdyn} in favor of
  267. Chapter~\ref{ch:Rwhile}. Figure~\ref{fig:chapter-dependences} depicts
  268. the dependencies between chapters.
  269. This book has also been used in compiler courses at California
  270. Polytechnic State University, Rose–Hulman Institute of Technology, and
  271. University of Massachusetts Lowell.
  272. \begin{figure}[tp]
  273. \begin{tikzpicture}[baseline=(current bounding box.center)]
  274. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  275. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Rvar} Variables};
  276. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Rvar} Registers};
  277. \node (C4) at (0,0) {\small Ch.~\ref{ch:Rif} Control Flow};
  278. \node (C5) at (4,0) {\small Ch.~\ref{ch:Rvec} Tuples};
  279. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  280. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Rwhile} Loops};
  281. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  282. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  283. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual};
  284. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  285. \path[->] (C1) edge [above] node {} (C2);
  286. \path[->] (C2) edge [above] node {} (C3);
  287. \path[->] (C3) edge [above] node {} (C4);
  288. \path[->] (C4) edge [above] node {} (C5);
  289. \path[->] (C5) edge [above] node {} (C6);
  290. \path[->] (C6) edge [above] node {} (C7);
  291. \path[->] (C4) edge [above] node {} (C8);
  292. \path[->] (C4) edge [above] node {} (C9);
  293. \path[->] (C8) edge [above] node {} (C10);
  294. \path[->] (C10) edge [above] node {} (C11);
  295. \end{tikzpicture}
  296. \caption{Diagram of chapter dependencies.}
  297. \label{fig:chapter-dependences}
  298. \end{figure}
  299. We use the \href{https://racket-lang.org/}{Racket} language both for
  300. the implementation of the compiler and for the input language, so the
  301. reader should be proficient with Racket or Scheme. There are many
  302. excellent resources for learning Scheme and
  303. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}. The
  304. support code for this book is in the \code{github} repository at the
  305. following URL:
  306. \begin{center}\small
  307. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  308. \end{center}
  309. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  310. is helpful but not necessary for the reader to have taken a computer
  311. systems course~\citep{Bryant:2010aa}. This book introduces the parts
  312. of x86-64 assembly language that are needed.
  313. %
  314. We follow the System V calling
  315. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  316. that we generate works with the runtime system (written in C) when it
  317. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  318. operating systems.
  319. %
  320. On the Windows operating system, \code{gcc} uses the Microsoft x64
  321. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  322. assembly code that we generate does \emph{not} work with the runtime
  323. system on Windows. One workaround is to use a virtual machine with
  324. Linux as the guest operating system.
  325. \section*{Acknowledgments}
  326. The tradition of compiler construction at Indiana University goes back
  327. to research and courses on programming languages by Daniel Friedman in
  328. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  329. Chez Scheme~\citep{Dybvig:2006aa}, a production-quality, efficient
  330. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  331. the compiler course and continued the development of Chez Scheme.
  332. %
  333. The compiler course evolved to incorporate novel pedagogical ideas
  334. while also including elements of efficient real-world compilers. One
  335. of Friedman's ideas was to split the compiler into many small
  336. passes. Another idea, called ``the game'', was to test the code
  337. generated by each pass on interpreters.
  338. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  339. developed infrastructure to support this approach and evolved the
  340. course to use even smaller
  341. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  342. design decisions in this book are inspired by the assignment
  343. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  344. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  345. organization of the course made it difficult for students to
  346. understand the rationale for the compiler design. Ghuloum proposed the
  347. incremental approach~\citep{Ghuloum:2006bh}.
  348. We thank Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph Near, Nate
  349. Nystrom, and Michael Wollowski for teaching courses based on early
  350. drafts.
  351. We thank Ronald Garcia for being Jeremy's partner when they took the
  352. compiler course in the early 2000's and especially for finding the bug
  353. that sent the garbage collector on a wild goose chase!
  354. \mbox{}\\
  355. \noindent Jeremy G. Siek \\
  356. Bloomington, Indiana
  357. %Oscar Waddell ??
  358. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  359. \chapter{Preliminaries}
  360. \label{ch:trees-recur}
  361. \begin{ocamlx}
  362. Text in blue, like this, represents additions to the original book
  363. text to support the use of OCaml rather than Racket as our compiler
  364. implementation language. The original text is never changed, so you
  365. can see both the Racket and OCaml versions in parallel. The main
  366. motivation for this is to save a lot of rote editing: the bulk of
  367. the story being told in this book is substantially the same
  368. regardless of implementation language, so most of what has been
  369. written about the Racket version applies directly to OCaml
  370. with just small mental adjustments between the syntaxes of the two
  371. languages. A secondary motivation is that it is sometimes easier to
  372. see key underlying ideas when they are expressed in more than one
  373. way.
  374. In many respects, Racket and OCaml are very similar languages: they
  375. both encourage a purely functional style of programming while also supporting
  376. imperative programming, provide higher-order functions, use
  377. garbage collection to guarantee memory safety, etc. Indeed, the
  378. ``back ends'' of Racket and OCaml implementations are nearly
  379. interchangeable. By far the most fundamental difference between them is
  380. that OCaml uses static typing, whereas Racket uses runtime typing.
  381. The latter can provide useful flexibility, but the former has the
  382. big advantage of providing compile-time feedback on type errors.
  383. This is our main motivation for using OCaml.
  384. \end{ocamlx}
  385. In this chapter we review the basic tools that are needed to implement
  386. a compiler. Programs are typically input by a programmer as text,
  387. i.e., a sequence of characters. The program-as-text representation is
  388. called \emph{concrete syntax}. We use concrete syntax to concisely
  389. write down and talk about programs. Inside the compiler, we use
  390. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  391. that efficiently supports the operations that the compiler needs to
  392. perform.\index{concrete syntax}\index{abstract syntax}\index{abstract
  393. syntax tree}\index{AST}\index{program}\index{parse} The translation
  394. from concrete syntax to abstract syntax is a process called
  395. \emph{parsing}~\citep{Aho:1986qf}. We do not cover the theory and
  396. implementation of parsing in this book. A parser is provided in the
  397. support code for translating from concrete to abstract syntax.
  398. ASTs can be represented in many different ways inside the compiler,
  399. depending on the programming language used to write the compiler.
  400. %
  401. We use Racket's
  402. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  403. feature to represent ASTs (Section~\ref{sec:ast}).
  404. \ocaml{OCaml: we use \emph{variants} (also called algebraic data types) to
  405. represent ASTs.}
  406. We use grammars to
  407. define the abstract syntax of programming languages
  408. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  409. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  410. recursive functions to construct and deconstruct ASTs
  411. (Section~\ref{sec:recursion}). This chapter provides an brief
  412. introduction to these ideas. \index{struct}
  413. \section{Abstract Syntax Trees and Racket Structures \ocaml{/ OCaml Variants}}
  414. \label{sec:ast}
  415. Compilers use abstract syntax trees to represent programs because they
  416. often need to ask questions like: for a given part of a program, what
  417. kind of language feature is it? What are its sub-parts? Consider the
  418. program on the left and its AST on the right.
  419. \begin{ocamlx}
  420. This program is
  421. itself in Racket; in addition to using Racket as the compiler implementation
  422. language, the original version of this book uses subsets of Racket as the
  423. \emph{source} languages that we compile. In the OCaml version we will be using
  424. ad-hoc source languages that look a lot like subsets of Racket, but sometimes
  425. made simpler (because there is no particular advantage to matching the messier details
  426. of Racket syntax). The code on the left will be valid in all of our source languages too.
  427. \end{ocamlx}
  428. This program is an
  429. addition operation and it has two sub-parts, a read operation and a
  430. negation. The negation has another sub-part, the integer constant
  431. \code{8}. By using a tree to represent the program, we can easily
  432. follow the links to go from one part of a program to its sub-parts.
  433. \begin{center}
  434. \begin{minipage}{0.4\textwidth}
  435. \begin{lstlisting}
  436. (+ (read) (- 8))
  437. \end{lstlisting}
  438. \end{minipage}
  439. \begin{minipage}{0.4\textwidth}
  440. \begin{equation}
  441. \begin{tikzpicture}
  442. \node[draw, circle] (plus) at (0 , 0) {\key{+}};
  443. \node[draw, circle] (read) at (-1, -1.5) {{\footnotesize\key{read}}};
  444. \node[draw, circle] (minus) at (1 , -1.5) {$\key{-}$};
  445. \node[draw, circle] (8) at (1 , -3) {\key{8}};
  446. \draw[->] (plus) to (read);
  447. \draw[->] (plus) to (minus);
  448. \draw[->] (minus) to (8);
  449. \end{tikzpicture}
  450. \label{eq:arith-prog}
  451. \end{equation}
  452. \end{minipage}
  453. \end{center}
  454. We use the standard terminology for trees to describe ASTs: each
  455. circle above is called a \emph{node}. The arrows connect a node to its
  456. \emph{children} (which are also nodes). The top-most node is the
  457. \emph{root}. Every node except for the root has a \emph{parent} (the
  458. node it is the child of). If a node has no children, it is a
  459. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  460. \index{node}
  461. \index{children}
  462. \index{root}
  463. \index{parent}
  464. \index{leaf}
  465. \index{internal node}
  466. %% Recall that an \emph{symbolic expression} (S-expression) is either
  467. %% \begin{enumerate}
  468. %% \item an atom, or
  469. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  470. %% where $e_1$ and $e_2$ are each an S-expression.
  471. %% \end{enumerate}
  472. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  473. %% null value \code{'()}, etc. We can create an S-expression in Racket
  474. %% simply by writing a backquote (called a quasi-quote in Racket)
  475. %% followed by the textual representation of the S-expression. It is
  476. %% quite common to use S-expressions to represent a list, such as $a, b
  477. %% ,c$ in the following way:
  478. %% \begin{lstlisting}
  479. %% `(a . (b . (c . ())))
  480. %% \end{lstlisting}
  481. %% Each element of the list is in the first slot of a pair, and the
  482. %% second slot is either the rest of the list or the null value, to mark
  483. %% the end of the list. Such lists are so common that Racket provides
  484. %% special notation for them that removes the need for the periods
  485. %% and so many parenthesis:
  486. %% \begin{lstlisting}
  487. %% `(a b c)
  488. %% \end{lstlisting}
  489. %% The following expression creates an S-expression that represents AST
  490. %% \eqref{eq:arith-prog}.
  491. %% \begin{lstlisting}
  492. %% `(+ (read) (- 8))
  493. %% \end{lstlisting}
  494. %% When using S-expressions to represent ASTs, the convention is to
  495. %% represent each AST node as a list and to put the operation symbol at
  496. %% the front of the list. The rest of the list contains the children. So
  497. %% in the above case, the root AST node has operation \code{`+} and its
  498. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  499. %% diagram \eqref{eq:arith-prog}.
  500. %% To build larger S-expressions one often needs to splice together
  501. %% several smaller S-expressions. Racket provides the comma operator to
  502. %% splice an S-expression into a larger one. For example, instead of
  503. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  504. %% we could have first created an S-expression for AST
  505. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  506. %% S-expression.
  507. %% \begin{lstlisting}
  508. %% (define ast1.4 `(- 8))
  509. %% (define ast1.1 `(+ (read) ,ast1.4))
  510. %% \end{lstlisting}
  511. %% In general, the Racket expression that follows the comma (splice)
  512. %% can be any expression that produces an S-expression.
  513. We define a Racket \code{struct} for each kind of node. For this
  514. chapter we require just two kinds of nodes: one for integer constants
  515. and one for primitive operations. The following is the \code{struct}
  516. definition for integer constants.
  517. \begin{lstlisting}
  518. (struct Int (value))
  519. \end{lstlisting}
  520. An integer node includes just one thing: the integer value.
  521. To create a AST node for the integer $8$, we write \code{(Int 8)}.
  522. \begin{lstlisting}
  523. (define eight (Int 8))
  524. \end{lstlisting}
  525. We say that the value created by \code{(Int 8)} is an
  526. \emph{instance} of the \code{Int} structure.
  527. The following is the \code{struct} definition for primitives operations.
  528. \begin{lstlisting}
  529. (struct Prim (op args))
  530. \end{lstlisting}
  531. A primitive operation node includes an operator symbol \code{op}
  532. and a list of children \code{args}. For example, to create
  533. an AST that negates the number $8$, we write \code{(Prim '- (list eight))}.
  534. \begin{lstlisting}
  535. (define neg-eight (Prim '- (list eight)))
  536. \end{lstlisting}
  537. Primitive operations may have zero or more children. The \code{read}
  538. operator has zero children:
  539. \begin{lstlisting}
  540. (define rd (Prim 'read '()))
  541. \end{lstlisting}
  542. whereas the addition operator has two children:
  543. \begin{lstlisting}
  544. (define ast1.1 (Prim '+ (list rd neg-eight)))
  545. \end{lstlisting}
  546. \begin{ocamlx}
  547. We define an OCaml variant type for ASTs, with a different constructor for each
  548. kind of node:
  549. \begin{lstlisting}[style=ocaml]
  550. type exp =
  551. Int of int
  552. | Prim of primop * exp list
  553. \end{lstlisting}
  554. This definition depends on the definition of another variant type that enumerates the possible primops
  555. (in place of the single-quoted symbols used in Racket):
  556. \begin{lstlisting}[style=ocaml]
  557. type primop =
  558. Read
  559. | Neg
  560. | Add
  561. \end{lstlisting}
  562. To create an AST node for the integer 8, we write \code{Int 8}.
  563. To create an AST that negates
  564. the number 8, we write \code{Prim(Neg,[Int 8])}, and so on:
  565. \begin{lstlisting}[style=ocaml]
  566. let eight = Int 8
  567. let neg_eight = Prim(Neg,[eight])
  568. let rd = Prim(Read,[])
  569. let ast1_1 = Prim(Add,[rd,neg_eight])
  570. \end{lstlisting}
  571. Note that OCaml identifiers are more restricted in form than those of Racket; we will typically replace uses of dash (\code{-}), dot (\code{.}), etc. by underscores (\code{\_}).
  572. \end{ocamlx}
  573. We have made a design choice regarding the \code{Prim} structure.
  574. Instead of using one structure for many different operations
  575. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  576. structure for each operation, as follows.
  577. \begin{lstlisting}
  578. (struct Read ())
  579. (struct Add (left right))
  580. (struct Neg (value))
  581. \end{lstlisting}
  582. The reason we choose to use just one structure is that in many parts
  583. of the compiler the code for the different primitive operators is the
  584. same, so we might as well just write that code once, which is enabled
  585. by using a single structure.
  586. \begin{ocamlx}
  587. We have made a similar design choice in OCaml. The corresponding
  588. alternative would have been to define our AST type as
  589. \begin{lstlisting}[style=ocaml]
  590. type exp =
  591. Int of int
  592. | Read
  593. | Add of exp * exp
  594. | Neg of exp
  595. \end{lstlisting}
  596. Note that one advantage of using this alternative is that it would explicitly enforce
  597. that each primitive operator is given the correct number of arguments (its \emph{arity});
  598. this restriction is not captured in the list-based version.
  599. \end{ocamlx}
  600. When compiling a program such as \eqref{eq:arith-prog}, we need to
  601. know that the operation associated with the root node is addition and
  602. we need to be able to access its two children. Racket provides pattern
  603. matching to support these kinds of queries, as we see in
  604. Section~\ref{sec:pattern-matching}. \ocaml{So does OCaml.}
  605. In this book, we often write down the concrete syntax of a program
  606. even when we really have in mind the AST because the concrete syntax
  607. is more concise. We recommend that, in your mind, you always think of
  608. programs as abstract syntax trees.
  609. \section{Grammars}
  610. \label{sec:grammar}
  611. \index{integer}
  612. \index{literal}
  613. \index{constant}
  614. A programming language can be thought of as a \emph{set} of programs.
  615. The set is typically infinite (one can always create larger and larger
  616. programs), so one cannot simply describe a language by listing all of
  617. the programs in the language. Instead we write down a set of rules, a
  618. \emph{grammar}, for building programs. Grammars are often used to
  619. define the concrete syntax of a language, but they can also be used to
  620. describe the abstract syntax. We write our rules in a variant of
  621. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  622. \index{Backus-Naur Form}\index{BNF}
  623. As an example, we describe a small language, named \LangInt{}, that consists of
  624. integers and arithmetic operations.
  625. \index{grammar}
  626. \begin{ocamlx}
  627. Using a grammar to describe abstract syntax is less useful in OCaml than in
  628. Racket, because our variant type definition for ASTs already serves to specify
  629. the legal forms of tree (except that it is overly flexible about the arity of
  630. primops, as mentioned above). So don't worry too much about the details of
  631. the AST grammar here---but do make sure you understand how the same ideas
  632. are applied to \emph{concrete} grammars, below.
  633. \end{ocamlx}
  634. The first grammar rule for the abstract syntax of \LangInt{} says that an
  635. instance of the \code{Int} structure is an expression:
  636. \begin{equation}
  637. \Exp ::= \INT{\Int} \label{eq:arith-int}
  638. \end{equation}
  639. %
  640. Each rule has a left-hand-side and a right-hand-side. The way to read
  641. a rule is that if you have an AST node that matches the
  642. right-hand-side, then you can categorize it according to the
  643. left-hand-side.
  644. %
  645. A name such as $\Exp$ that is defined by the grammar rules is a
  646. \emph{non-terminal}. \index{non-terminal}
  647. %
  648. The name $\Int$ is a also a non-terminal, but instead of defining it
  649. with a grammar rule, we define it with the following explanation. We
  650. make the simplifying design decision that all of the languages in this
  651. book only handle machine-representable integers. On most modern
  652. machines this corresponds to integers represented with 64-bits, i.e.,
  653. the in range $-2^{63}$ to $2^{63}-1$. We restrict this range further
  654. to match the Racket \texttt{fixnum} datatype, which allows 63-bit
  655. integers on a 64-bit machine. So an $\Int$ is a sequence of decimals
  656. ($0$ to $9$), possibly starting with $-$ (for negative integers), such
  657. that the sequence of decimals represent an integer in range $-2^{62}$
  658. to $2^{62}-1$.
  659. \ocaml{As it happens, OCaml's standard integer type
  660. (\code{int}) is also 63 bits on a 64-bit machine. Initially, we
  661. will adopt the corresponding convention that $\Int$ is a 63-bit integer,
  662. but soon we will move to full 64-bit integers.}
  663. The second grammar rule is the \texttt{read} operation that receives
  664. an input integer from the user of the program.
  665. \begin{equation}
  666. \Exp ::= \READ{} \label{eq:arith-read}
  667. \end{equation}
  668. The third rule says that, given an $\Exp$ node, the negation of that
  669. node is also an $\Exp$.
  670. \begin{equation}
  671. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  672. \end{equation}
  673. Symbols in typewriter font such as \key{-} and \key{read} are
  674. \emph{terminal} symbols and must literally appear in the program for
  675. the rule to be applicable.
  676. \index{terminal}
  677. We can apply these rules to categorize the ASTs that are in the
  678. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  679. \texttt{(Int 8)} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  680. following AST is an $\Exp$.
  681. \begin{center}
  682. \begin{minipage}{0.4\textwidth}
  683. \begin{lstlisting}
  684. (Prim '- (list (Int 8)))
  685. \end{lstlisting}
  686. \end{minipage}
  687. \begin{minipage}{0.25\textwidth}
  688. \begin{equation}
  689. \begin{tikzpicture}
  690. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  691. \node[draw, circle] (8) at (0, -1.2) {$8$};
  692. \draw[->] (minus) to (8);
  693. \end{tikzpicture}
  694. \label{eq:arith-neg8}
  695. \end{equation}
  696. \end{minipage}
  697. \end{center}
  698. \begin{ocamlx}
  699. The corresponding OCaml AST expression is \code{Prim(Neg,[Int 8])}.
  700. \end{ocamlx}
  701. The next grammar rule is for addition expressions:
  702. \begin{equation}
  703. \Exp ::= \ADD{\Exp}{\Exp} \label{eq:arith-add}
  704. \end{equation}
  705. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  706. \LangInt{}. We know that \lstinline{(Prim 'read '())} is an $\Exp$ by rule
  707. \eqref{eq:arith-read} and we have already categorized \code{(Prim '-
  708. (list (Int 8)))} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  709. to show that
  710. \begin{lstlisting}
  711. (Prim '+ (list (Prim 'read '()) (Prim '- (list (Int 8)))))
  712. \end{lstlisting}
  713. is an $\Exp$ in the \LangInt{} language.
  714. \ocaml{\\ OCaml: \code{Prim(Add,[Prim(Read,[]);Prim(Neg,[Int 8])])}.}
  715. If you have an AST for which the above rules do not apply, then the
  716. AST is not in \LangInt{}. For example, the program \code{(- (read) (+ 8))}
  717. is not in \LangInt{} because there are no rules for \code{+} with only one
  718. argument, nor for \key{-} with two arguments. Whenever we define a
  719. language with a grammar, the language only includes those programs
  720. that are justified by the rules.
  721. The last grammar rule for \LangInt{} states that there is a \code{Program}
  722. node to mark the top of the whole program:
  723. \[
  724. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  725. \]
  726. The \code{Program} structure is defined as follows
  727. \begin{lstlisting}
  728. (struct Program (info body))
  729. \end{lstlisting}
  730. where \code{body} is an expression. In later chapters, the \code{info}
  731. part will be used to store auxiliary information but for now it is
  732. just the empty list.
  733. \begin{ocamlx}
  734. In OCaml:
  735. \begin{lstlisting}[style=ocaml]
  736. type 'info rint_program = Program of 'info * exp
  737. \end{lstlisting}
  738. Again, we represent the structure as a variant type
  739. (\code{rint\_program}), this time just with one constructor
  740. (\code{Program)}. We \emph{parameterize} \code{program} by a
  741. \emph{type variable} \code{'info} (type variables are distinguished by having
  742. a leading tick mark). This says that \code{rint\_program} is a family of types which can
  743. be instantiated to represent programs holding a particular kind of auxiliary information.
  744. For now, we'll just instantiate \code{'info}
  745. with the \emph{unit} type, written \code{unit}, whose sole (boring)
  746. value is written \code{()}.
  747. \begin{lstlisting}[style=ocaml]
  748. let p : unit rint_program = Program () body
  749. \end{lstlisting}
  750. Here the colon (\code{:}) introduces an explicit type annotation on \code{p}; it can be read ``has type.''
  751. \end{ocamlx}
  752. It is common to have many grammar rules with the same left-hand side
  753. but different right-hand sides, such as the rules for $\Exp$ in the
  754. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  755. combine several right-hand-sides into a single rule.
  756. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  757. in Figure~\ref{fig:r0-syntax} \ocaml{along with the corresponding OCaml type definitions}.
  758. The concrete syntax for \LangInt{} is
  759. defined in Figure~\ref{fig:r0-concrete-syntax}.
  760. The \code{read-program} function provided in \code{utilities.rkt} of
  761. the support code reads a program in from a file (the sequence of
  762. characters in the concrete syntax of Racket) and parses it into an
  763. abstract syntax tree. See the description of \code{read-program} in
  764. Appendix~\ref{appendix:utilities} for more details.
  765. \begin{ocamlx}
  766. As noted above, the concrete syntaxes we will use are similar to Racket's own syntax.
  767. In particular, programs are described as \emph{S-expressions}. An S-expression can be
  768. either an atom (an integer, symbol, or quoted string) or a list of S-expressions enclosed in
  769. parentheses. You can see that the concrete syntax for \LangInt{} is written as
  770. S-expressions where the symbols used are \code{read},\code{-}, and \code{+}, and
  771. a primitive operation invocation is described by a list whose first element is
  772. the operation symbol and whose remaining elements (0 or more of them) are
  773. S-expressions representing the arguments (which can themselves be lists).
  774. All the source languages we consider in this book will be written as S-expressions in
  775. a similar style; the details of which symbols and shapes of list are allowed
  776. will vary from language to language.
  777. To handle all this neatly in OCaml, we split the parsing of concrete
  778. programs into two phases. First, the \code{parse} function provided
  779. in \code{sexpr.ml} of the support code reads text from a file and
  780. parses it into a generic S-expression data type. (This code is a
  781. bit complicated and messy, but you don't have to understand its
  782. internals in order to use it.) Then, a source-language-specific
  783. program is used to convert the S-expression into the abstract syntax
  784. of that particular language. We will see later on that OCaml's pattern
  785. matching facilities make it very easy to write such conversion
  786. routines. This is particularly true because the S-expression format
  787. we use for our concrete source languages is already very close to an
  788. abstract syntax, which means the conversion has very little work to
  789. do. For example, as you have seen, primitive operations are all
  790. written in prefix, rather than infix, notation, so there is no need
  791. to worry about issues like precedence and associativity of operators
  792. in an expression like \code{(2 * 3 + 4)}: the S-expression syntax
  793. will be either \code{(+ (* 2 3) 4)} or \code{(* 2 (+ 3 4))}, so
  794. there is no possible ambiguity. The downside is that source programs
  795. are a bit more tedious to write, and may sometimes seem to be drowning in
  796. parentheses.
  797. The OCaml representation of generic S-expressions is just another
  798. variant type:
  799. \begin{lstlisting}[style=ocaml]
  800. type sexp =
  801. | SList of sexp list
  802. (* list of expressions delimited by parentheses *)
  803. | SNum of Int64.t
  804. (* 64-bit integers *)
  805. | SSym of string
  806. (* non-digit character sequence delimited by white space *)
  807. | SString of string
  808. (* arbitrary character sequence delimited by double quotes *)
  809. \end{lstlisting}
  810. The generic S-expression parser handles (nestable) comments delimited by
  811. curly braces (\code{\{} and \code{\}}). Symbols can contain any
  812. non-digit, non-whitespace characters except parentheses, curly braces, and
  813. the back tick (\code{\`}); this last exclusion is handy when we want to
  814. generate internal names during compilation and be sure they don't clash
  815. with a user-defined symbol.
  816. \end{ocamlx}
  817. \begin{figure}[tp]
  818. \fbox{
  819. \begin{minipage}{0.96\textwidth}
  820. \[
  821. \begin{array}{rcl}
  822. \begin{array}{rcl}
  823. \Exp &::=& \Int \mid \LP\key{read}\RP \mid \LP\key{-}\;\Exp\RP \mid \LP\key{+} \; \Exp\;\Exp\RP\\
  824. \LangInt{} &::=& \Exp
  825. \end{array}
  826. \end{array}
  827. \]
  828. \end{minipage}
  829. }
  830. \caption{The concrete syntax of \LangInt{}.}
  831. \label{fig:r0-concrete-syntax}
  832. \end{figure}
  833. \begin{figure}[tp]
  834. \fbox{
  835. \begin{minipage}{0.96\textwidth}
  836. \[
  837. \begin{array}{rcl}
  838. \Exp &::=& \INT{\Int} \mid \READ{} \mid \NEG{\Exp} \\
  839. &\mid& \ADD{\Exp}{\Exp} \\
  840. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  841. \end{array}
  842. \]
  843. \end{minipage}
  844. }
  845. \begin{minipage}{0.96\textwidth}
  846. \begin{lstlisting}[style=ocaml,frame=single]
  847. type primop =
  848. Read
  849. | Neg
  850. | Add
  851. type exp =
  852. Int of int
  853. | Prim of primop * exp list
  854. type 'info rint_program = Program of 'info * exp
  855. \end{lstlisting}
  856. \end{minipage}
  857. \caption{The abstract syntax of \LangInt{}.}
  858. \label{fig:r0-syntax}
  859. \end{figure}
  860. \section{Pattern Matching}
  861. \label{sec:pattern-matching}
  862. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  863. the parts of an AST node. Racket provides the \texttt{match} form to
  864. access the parts of a structure. Consider the following example and
  865. the output on the right. \index{match} \index{pattern matching}
  866. \begin{center}
  867. \begin{minipage}{0.5\textwidth}
  868. \begin{lstlisting}
  869. (match ast1.1
  870. [(Prim op (list child1 child2))
  871. (print op)])
  872. \end{lstlisting}
  873. \end{minipage}
  874. \vrule
  875. \begin{minipage}{0.25\textwidth}
  876. \begin{lstlisting}
  877. '+
  878. \end{lstlisting}
  879. \end{minipage}
  880. \end{center}
  881. In the above example, the \texttt{match} form takes an AST
  882. \eqref{eq:arith-prog} and binds its parts to the three pattern
  883. variables \texttt{op}, \texttt{child1}, and \texttt{child2}, and then
  884. prints out the operator. In general, a match clause consists of a
  885. \emph{pattern} and a \emph{body}.\index{pattern} Patterns are
  886. recursively defined to be either a pattern variable, a structure name
  887. followed by a pattern for each of the structure's arguments, or an
  888. S-expression (symbols, lists, etc.). (See Chapter 12 of The Racket
  889. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  890. and Chapter 9 of The Racket
  891. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  892. for a complete description of \code{match}.)
  893. %
  894. The body of a match clause may contain arbitrary Racket code. The
  895. pattern variables can be used in the scope of the body, such as
  896. \code{op} in \code{(print op)}.
  897. \begin{ocamlx}
  898. Here is the OCaml version, which is quite similar:
  899. \begin{center}
  900. \begin{minipage}{0.5\textwidth}
  901. \begin{lstlisting}[style=ocaml]
  902. match ast1_1 with
  903. | Prim(op,[child1;child2]) -> op
  904. \end{lstlisting}
  905. \end{minipage}
  906. \vrule
  907. \begin{minipage}{0.25\textwidth}
  908. \begin{lstlisting}[style=ocaml]
  909. Add
  910. \end{lstlisting}
  911. \end{minipage}
  912. \end{center}
  913. \end{ocamlx}
  914. A \code{match} form may contain several clauses, as in the following
  915. function \code{leaf?} that recognizes when an \LangInt{} node is a leaf in
  916. the AST. The \code{match} proceeds through the clauses in order,
  917. checking whether the pattern can match the input AST. The body of the
  918. first clause that matches is executed.
  919. \begin{ocamlx}
  920. In fact, in OCaml, we will get a warning message about the code above, because the \code{match} only contains
  921. a clause for a {\tt Prim} with two children, not for other other possible forms of \code{exp}.
  922. Although in this particular instance, that's OK (because of the value of \code{ast1\_1}), in general
  923. it suggests a possible error. Getting warnings like this is one of the advantages of static typing.
  924. \end{ocamlx}
  925. The output of \code{leaf?} for
  926. several ASTs is shown on the right.
  927. \begin{center}
  928. \begin{minipage}{0.6\textwidth}
  929. \begin{lstlisting}
  930. (define (leaf? arith)
  931. (match arith
  932. [(Int n) #t]
  933. [(Prim 'read '()) #t]
  934. [(Prim '- (list e1)) #f]
  935. [(Prim '+ (list e1 e2)) #f]))
  936. (leaf? (Prim 'read '()))
  937. (leaf? (Prim '- (list (Int 8))))
  938. (leaf? (Int 8))
  939. \end{lstlisting}
  940. \end{minipage}
  941. \vrule
  942. \begin{minipage}{0.25\textwidth}
  943. \begin{lstlisting}
  944. #t
  945. #f
  946. #t
  947. \end{lstlisting}
  948. \end{minipage}
  949. \end{center}
  950. When writing a \code{match}, we refer to the grammar definition to
  951. identify which non-terminal we are expecting to match against, then we
  952. make sure that 1) we have one clause for each alternative of that
  953. non-terminal and 2) that the pattern in each clause corresponds to the
  954. corresponding right-hand side of a grammar rule. For the \code{match}
  955. in the \code{leaf?} function, we refer to the grammar for \LangInt{} in
  956. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  957. alternatives, so the \code{match} has 4 clauses. The pattern in each
  958. clause corresponds to the right-hand side of a grammar rule. For
  959. example, the pattern \code{(Prim '+ (list e1 e2))} corresponds to the
  960. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  961. patterns, replace non-terminals such as $\Exp$ with pattern variables
  962. of your choice (e.g. \code{e1} and \code{e2}).
  963. \begin{ocamlx}
  964. Here is the directly corresponding OCaml version.
  965. \begin{center}
  966. \begin{minipage}{0.6\textwidth}
  967. \begin{lstlisting}[style=ocaml]
  968. let is_leaf arith =
  969. match arith with
  970. | Int n -> true
  971. | Prim(Read,[]) -> true
  972. | Prim(Neg,[e1]) -> false
  973. | Prim(Add,[e1;e2]) -> false
  974. | _ -> assert false
  975. is_leaf (Prim(Read,[]))
  976. is_leaf (Prim(Neg,[Int 8]))
  977. is_leaf (Int 8)
  978. \end{lstlisting}
  979. \end{minipage}
  980. \vrule
  981. \begin{minipage}{0.25\textwidth}
  982. \begin{lstlisting}[style=ocaml]
  983. true
  984. false
  985. true
  986. \end{lstlisting}
  987. \end{minipage}
  988. \end{center}
  989. The final clause uses a wildcard pattern {\tt \_}, which matches anything of type \code{exp},
  990. to cover the (ill-formed) cases where a primop is given the wrong number of arguments;
  991. otherwise, the compiler will again issue a warning that not all cases have been considered.
  992. The \code{assert false} causes OCaml execution to halt with an uncaught exception message.
  993. In this particular case, we can use wildcards to write a more idiomatic version of
  994. \code{is\_leaf} that doesn't require a catch-all case (and is also ``future-proof''
  995. against later additions to the \code{primop} type). We also make use of the following
  996. short-cut: a function that takes an argument $arg$ and then immediately performs
  997. a \code{match} over $arg$ can be written more concisely using the \code{function} keyword.
  998. \begin{center}
  999. \begin{minipage}{0.5\textwidth}
  1000. \begin{lstlisting}[style=ocaml]
  1001. let is_leaf = function
  1002. | Int _ -> true
  1003. | Prim(_,[]) -> true
  1004. | _ -> false
  1005. \end{lstlisting}
  1006. \end{minipage}
  1007. \end{center}
  1008. \end{ocamlx}
  1009. \section{Recursive Functions}
  1010. \label{sec:recursion}
  1011. \index{recursive function}
  1012. Programs are inherently recursive. For example, an \LangInt{} expression is
  1013. often made of smaller expressions. Thus, the natural way to process an
  1014. entire program is with a recursive function. As a first example of
  1015. such a recursive function, we define \texttt{exp?} below, which takes
  1016. an arbitrary value and determines whether or not it is an \LangInt{}
  1017. expression.
  1018. %
  1019. We say that a function is defined by \emph{structural recursion} when
  1020. it is defined using a sequence of match clauses that correspond to a
  1021. grammar, and the body of each clause makes a recursive call on each
  1022. child node.\footnote{This principle of structuring code according to
  1023. the data definition is advocated in the book \emph{How to Design
  1024. Programs} \url{http://www.ccs.neu.edu/home/matthias/HtDP2e/}.}.
  1025. Below we also define a second function, named \code{Rint?}, that
  1026. determines whether an AST is an \LangInt{} program. In general we can
  1027. expect to write one recursive function to handle each non-terminal in
  1028. a grammar.\index{structural recursion}
  1029. %
  1030. \begin{center}
  1031. \begin{minipage}{0.7\textwidth}
  1032. \begin{lstlisting}
  1033. (define (exp? ast)
  1034. (match ast
  1035. [(Int n) #t]
  1036. [(Prim 'read '()) #t]
  1037. [(Prim '- (list e)) (exp? e)]
  1038. [(Prim '+ (list e1 e2))
  1039. (and (exp? e1) (exp? e2))]
  1040. [else #f]))
  1041. (define (Rint? ast)
  1042. (match ast
  1043. [(Program '() e) (exp? e)]
  1044. [else #f]))
  1045. (Rint? (Program '() ast1.1)
  1046. (Rint? (Program '()
  1047. (Prim '- (list (Prim 'read '())
  1048. (Prim '+ (list (Num 8)))))))
  1049. \end{lstlisting}
  1050. \end{minipage}
  1051. \vrule
  1052. \begin{minipage}{0.25\textwidth}
  1053. \begin{lstlisting}
  1054. #t
  1055. #f
  1056. \end{lstlisting}
  1057. \end{minipage}
  1058. \end{center}
  1059. You may be tempted to merge the two functions into one, like this:
  1060. \begin{center}
  1061. \begin{minipage}{0.5\textwidth}
  1062. \begin{lstlisting}
  1063. (define (Rint? ast)
  1064. (match ast
  1065. [(Int n) #t]
  1066. [(Prim 'read '()) #t]
  1067. [(Prim '- (list e)) (Rint? e)]
  1068. [(Prim '+ (list e1 e2)) (and (Rint? e1) (Rint? e2))]
  1069. [(Program '() e) (Rint? e)]
  1070. [else #f]))
  1071. \end{lstlisting}
  1072. \end{minipage}
  1073. \end{center}
  1074. %
  1075. Sometimes such a trick will save a few lines of code, especially when
  1076. it comes to the \code{Program} wrapper. Yet this style is generally
  1077. \emph{not} recommended because it can get you into trouble.
  1078. %
  1079. For example, the above function is subtly wrong:
  1080. \lstinline{(Rint? (Program '() (Program '() (Int 3))))}
  1081. returns true when it should return false.
  1082. \begin{ocamlx}
  1083. There is almost no point in writing OCaml analogs to \code{exp?} or \code{Rint?}, because static
  1084. typing guarantees that values claimed to be in type \code{exp} or \code{rint\_program} really are
  1085. (or the OCaml program will not pass the OCaml typechecker). However, it is still worth
  1086. writing a function to check that primops are applied to the right number of arguments.
  1087. Here is an idiomatic way to do that:
  1088. \begin{center}
  1089. \begin{minipage}{0.85\textwidth}
  1090. \begin{lstlisting}[style=ocaml]
  1091. let arity = function
  1092. | Read -> 0
  1093. | Neg -> 1
  1094. | Add -> 2
  1095. let rec check_exp = function
  1096. | Int _ -> true
  1097. | Prim(op,args) ->
  1098. List.length args = arity op && check_exps args
  1099. and check_exps = function
  1100. | [] -> true
  1101. | (exp::exps') -> check_exp exp && check_exps exps'
  1102. let check_program (Program(_,e)) = check_exp e
  1103. check_program (Program((),ast1_1))
  1104. check_program (Program((),Prim(Neg,[Prim(Read,[]);
  1105. Prim(Plus,[Int 8])])))
  1106. \end{lstlisting}
  1107. \end{minipage}
  1108. \vrule
  1109. \begin{minipage}{0.1\textwidth}
  1110. \begin{lstlisting}[style=ocaml]
  1111. true
  1112. false
  1113. \end{lstlisting}
  1114. \end{minipage}
  1115. \end{center}
  1116. In the definition of \code{check\_program}, since the argument type \code{rint\_program}
  1117. has only one constructor, we can write a pattern \code{Program(\_,e)} which matches that constructor directly in
  1118. place of an argument name; this binds the variable(s) (here \code{e}) of the pattern in the body of the function.
  1119. Note that \code{check\_exp} is declared to be recursive by using the \code{rec} keyword;
  1120. in fact, \code{check\_exp} and \code{check\_exps} are \emph{mutually} recursive because
  1121. their definitions are connected by the \code{and} keyword. \code{List.length} is a library
  1122. function that returns the length of a list. Actually, the library also has a handy higher-order
  1123. function \code{List.for\_all} that applies a specified boolean-value function to a list and returns
  1124. whether it is true on all elements. Using that, we could rewrite the \code{Prim}
  1125. clause of \code{check\_exp} as
  1126. \begin{lstlisting}[style=ocaml]
  1127. | Prim(op,args) ->
  1128. List.length args = arity op && List.for_all check_exp args
  1129. \end{lstlisting}
  1130. and dispense with \code{check\_exps} altogether. Being able to operate on entire lists
  1131. uniformly like this is one of the payoffs for using a single generic \code{Prim} constructor.
  1132. \end{ocamlx}
  1133. \section{Interpreters}
  1134. \label{sec:interp-Rint}
  1135. \index{interpreter}
  1136. In general, the intended behavior of a program is defined by the
  1137. specification of the language. For example, the Scheme language is
  1138. defined in the report by \cite{SPERBER:2009aa}. The Racket language is
  1139. defined in its reference manual~\citep{plt-tr}. In this book we use
  1140. interpreters to specify each language that we consider. An interpreter
  1141. that is designated as the definition of a language is called a
  1142. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  1143. \index{definitional interpreter} We warm up by creating a definitional
  1144. interpreter for the \LangInt{} language, which serves as a second example
  1145. of structural recursion. The \texttt{interp-Rint} function is defined in
  1146. Figure~\ref{fig:interp-Rint}. The body of the function is a match on the
  1147. input program followed by a call to the \lstinline{interp-exp} helper
  1148. function, which in turn has one match clause per grammar rule for
  1149. \LangInt{} expressions. \ocaml{The OCaml version is in Figure~\ref{fig:ocaml-interp-Rint}.}
  1150. \begin{figure}[tp]
  1151. \begin{lstlisting}
  1152. (define (interp-exp e)
  1153. (match e
  1154. [(Int n) n]
  1155. [(Prim 'read '())
  1156. (define r (read))
  1157. (cond [(fixnum? r) r]
  1158. [else (error 'interp-exp "read expected an integer" r)])]
  1159. [(Prim '- (list e))
  1160. (define v (interp-exp e))
  1161. (fx- 0 v)]
  1162. [(Prim '+ (list e1 e2))
  1163. (define v1 (interp-exp e1))
  1164. (define v2 (interp-exp e2))
  1165. (fx+ v1 v2)]))
  1166. (define (interp-Rint p)
  1167. (match p
  1168. [(Program '() e) (interp-exp e)]))
  1169. \end{lstlisting}
  1170. \caption{Interpreter for the \LangInt{} language.}
  1171. \label{fig:interp-Rint}
  1172. \end{figure}
  1173. \begin{figure}[tp]
  1174. \begin{lstlisting}[style=ocaml]
  1175. let interp_exp exp =
  1176. match exp with
  1177. | Int n -> n
  1178. | Prim(Read,[]) -> read_int()
  1179. | Prim(Neg,[e]) -> - (interp_exp e)
  1180. | Prim(Add,[e1;e2]) ->
  1181. (* must explicitly sequence evaluation order! *)
  1182. let v1 = interp_exp e1 in
  1183. let v2 = interp_exp e2 in
  1184. v1 + v2
  1185. | _ -> assert false (* arity mismatch *)
  1186. let interp_program (Program(_,e)) = interp_exp e
  1187. \end{lstlisting}
  1188. \caption{\ocaml{OCaml interpreter for the \LangInt{} language.}}
  1189. \label{fig:ocaml-interp-Rint}
  1190. \end{figure}
  1191. Let us consider the result of interpreting a few \LangInt{} programs. The
  1192. following program adds two integers.
  1193. \begin{lstlisting}
  1194. (+ 10 32)
  1195. \end{lstlisting}
  1196. The result is \key{42}, the answer to life, the universe, and
  1197. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  1198. Galaxy} by Douglas Adams.}.
  1199. %
  1200. We wrote the above program in concrete syntax whereas the parsed
  1201. abstract syntax is:
  1202. \begin{lstlisting}
  1203. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1204. \end{lstlisting}
  1205. \begin{ocamlx}
  1206. Ocaml:
  1207. \begin{lstlisting}[style=ocaml]
  1208. Program((),Prim(Add,[Int 10; Int 32]))
  1209. \end{lstlisting}
  1210. \end{ocamlx}
  1211. The next example demonstrates that expressions may be nested within
  1212. each other, in this case nesting several additions and negations.
  1213. \begin{lstlisting}
  1214. (+ 10 (- (+ 12 20)))
  1215. \end{lstlisting}
  1216. What is the result of the above program?
  1217. As mentioned previously, the \LangInt{} language does not support
  1218. arbitrarily-large integers, but only $63$-bit integers, so we
  1219. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1220. in Racket.
  1221. Suppose
  1222. \[
  1223. n = 999999999999999999
  1224. \]
  1225. which indeed fits in $63$-bits. What happens when we run the
  1226. following program in our interpreter?
  1227. \begin{lstlisting}
  1228. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1229. \end{lstlisting}
  1230. It produces an error:
  1231. \begin{lstlisting}
  1232. fx+: result is not a fixnum
  1233. \end{lstlisting}
  1234. We establish the convention that if running the definitional
  1235. interpreter on a program produces an error then the meaning of that
  1236. program is \emph{unspecified}\index{unspecified behavior}, unless the
  1237. error is a \code{trapped-error}. A compiler for the language is under
  1238. no obligations regarding programs with unspecified behavior; it does
  1239. not have to produce an executable, and if it does, that executable can
  1240. do anything. On the other hand, if the error is a
  1241. \code{trapped-error}, then the compiler must produce an executable and
  1242. it is required to report that an error occurred. To signal an error,
  1243. exit with a return code of \code{255}. The interpreters in chapters
  1244. \ref{ch:Rdyn} and \ref{ch:Rgrad} use
  1245. \code{trapped-error}.
  1246. \begin{ocamlx}
  1247. In OCaml, overflow does not cause a trap; instead values ``wrap around''
  1248. to produce results modulo $2^{63}$. The result of this program is
  1249. \key{-1223372036854775816}.
  1250. \end{ocamlx}
  1251. %% This convention applies to the languages defined in this
  1252. %% book, as a way to simplify the student's task of implementing them,
  1253. %% but this convention is not applicable to all programming languages.
  1254. %%
  1255. Moving on to the last feature of the \LangInt{} language, the \key{read}
  1256. operation prompts the user of the program for an integer. \ocaml{The \code{read\_int}
  1257. function is in the standard library.} Recall that
  1258. program \eqref{eq:arith-prog} performs a \key{read} and then subtracts
  1259. \code{8}. So if we run
  1260. \begin{lstlisting}
  1261. (interp-Rint (Program '() ast1.1))
  1262. \end{lstlisting}
  1263. and if the input is \code{50}, the result is \code{42}.
  1264. We include the \key{read} operation in \LangInt{} so a clever student
  1265. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1266. during compilation to obtain the output and then generates the trivial
  1267. code to produce the output. (Yes, a clever student did this in the
  1268. first instance of this course.)
  1269. The job of a compiler is to translate a program in one language into a
  1270. program in another language so that the output program behaves the
  1271. same way as the input program does. This idea is depicted in the
  1272. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1273. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1274. Given a compiler that translates from language $\mathcal{L}_1$ to
  1275. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1276. compiler must translate it into some program $P_2$ such that
  1277. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1278. same input $i$ yields the same output $o$.
  1279. \begin{equation} \label{eq:compile-correct}
  1280. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1281. \node (p1) at (0, 0) {$P_1$};
  1282. \node (p2) at (3, 0) {$P_2$};
  1283. \node (o) at (3, -2.5) {$o$};
  1284. \path[->] (p1) edge [above] node {compile} (p2);
  1285. \path[->] (p2) edge [right] node {interp-$\mathcal{L}_2$($i$)} (o);
  1286. \path[->] (p1) edge [left] node {interp-$\mathcal{L}_1$($i$)} (o);
  1287. \end{tikzpicture}
  1288. \end{equation}
  1289. In the next section we see our first example of a compiler.
  1290. \section{Example Compiler: a Partial Evaluator}
  1291. \label{sec:partial-evaluation}
  1292. In this section we consider a compiler that translates \LangInt{} programs
  1293. into \LangInt{} programs that may be more efficient, that is, this compiler
  1294. is an optimizer. This optimizer eagerly computes the parts of the
  1295. program that do not depend on any inputs, a process known as
  1296. \emph{partial evaluation}~\citep{Jones:1993uq}.
  1297. \index{partial evaluation}
  1298. For example, given the following program
  1299. \begin{lstlisting}
  1300. (+ (read) (- (+ 5 3)))
  1301. \end{lstlisting}
  1302. our compiler will translate it into the program
  1303. \begin{lstlisting}
  1304. (+ (read) -8)
  1305. \end{lstlisting}
  1306. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1307. evaluator for the \LangInt{} language. The output of the partial evaluator
  1308. is an \LangInt{} program. In Figure~\ref{fig:pe-arith}, the structural
  1309. recursion over $\Exp$ is captured in the \code{pe-exp} function
  1310. whereas the code for partially evaluating the negation and addition
  1311. operations is factored into two separate helper functions:
  1312. \code{pe-neg} and \code{pe-add}. The input to these helper
  1313. functions is the output of partially evaluating the children.
  1314. \begin{figure}[tp]
  1315. \begin{lstlisting}
  1316. (define (pe-neg r)
  1317. (match r
  1318. [(Int n) (Int (fx- 0 n))]
  1319. [else (Prim '- (list r))]))
  1320. (define (pe-add r1 r2)
  1321. (match* (r1 r2)
  1322. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1323. [(_ _) (Prim '+ (list r1 r2))]))
  1324. (define (pe-exp e)
  1325. (match e
  1326. [(Int n) (Int n)]
  1327. [(Prim 'read '()) (Prim 'read '())]
  1328. [(Prim '- (list e1)) (pe-neg (pe-exp e1))]
  1329. [(Prim '+ (list e1 e2)) (pe-add (pe-exp e1) (pe-exp e2))]))
  1330. (define (pe-Rint p)
  1331. (match p
  1332. [(Program '() e) (Program '() (pe-exp e))]))
  1333. \end{lstlisting}
  1334. \caption{A partial evaluator for \LangInt{}.}
  1335. \label{fig:pe-arith}
  1336. \end{figure}
  1337. The \texttt{pe-neg} and \texttt{pe-add} functions check whether their
  1338. arguments are integers and if they are, perform the appropriate
  1339. arithmetic. Otherwise, they create an AST node for the arithmetic
  1340. operation.
  1341. \begin{ocamlx}
  1342. The corresponding OCaml code is in Figure~\ref{fig:ocaml-pe-arith}. In \code{pe\_add}, note
  1343. the syntax for matching over a pair of values simultaneously.
  1344. \begin{figure}[tp]
  1345. \begin{lstlisting}[style=ocaml]
  1346. let pe_neg = function
  1347. Int n -> Int (-n)
  1348. | e -> Prim(Neg,[e])
  1349. let pe_add e1 e2 =
  1350. match e1,e2 with
  1351. Int n1,Int n2 -> Int (n1+n2)
  1352. | e1,e2 -> Prim(Add,[e1;e2])
  1353. let rec pe_exp = function
  1354. Prim(Neg,[e]) -> pe_neg (pe_exp e)
  1355. | Prim(Add,[e1;e2]) -> pe_add (pe_exp e1) (pe_exp e2)
  1356. | e -> e
  1357. let pe_program (Program(info,e)) = Program(info,pe_exp e)
  1358. \end{lstlisting}
  1359. \caption{\ocaml{An OCaml partial evaluator for \LangInt{}}.}
  1360. \label{fig:ocaml-pe-arith}
  1361. \end{figure}
  1362. \end{ocamlx}
  1363. To gain some confidence that the partial evaluator is correct, we can
  1364. test whether it produces programs that get the same result as the
  1365. input programs. That is, we can test whether it satisfies Diagram
  1366. \ref{eq:compile-correct}. The following code runs the partial
  1367. evaluator on several examples and tests the output program. The
  1368. \texttt{parse-program} and \texttt{assert} functions are defined in
  1369. Appendix~\ref{appendix:utilities}.\\
  1370. \begin{minipage}{1.0\textwidth}
  1371. \begin{lstlisting}
  1372. (define (test-pe p)
  1373. (assert "testing pe-Rint"
  1374. (equal? (interp-Rint p) (interp-Rint (pe-Rint p)))))
  1375. (test-pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1376. (test-pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1377. (test-pe (parse-program `(program () (- (+ 3 (- 5))))))
  1378. \end{lstlisting}
  1379. \end{minipage}
  1380. \begin{ocamlx}
  1381. We can perform a similar kind of test in OCaml using a utility
  1382. function called \code{interp\_from\_string} which is in the support
  1383. code for this chapter (not yet in the Appendix).
  1384. Note, however, that comparing
  1385. results like this isn't a very satisfactory way of testing programs
  1386. that use \code{Read} anyhow, because it requires us to input the
  1387. same values twice, once for each execution, or the test will fail!
  1388. A more straightforward approach is to know what result value we
  1389. expect from each test program on a given set of input, and simply check
  1390. that the partially evaluated program still produces that result.
  1391. The support code also contains a simple driver that implements this approach.
  1392. \end{ocamlx}
  1393. \begin{ocamlx}
  1394. {\bf Warmup Exercises}
  1395. 1. Extend the concrete language and implementation for \LangInt{} with an additional arity-2 primop that
  1396. performs subtraction. The concrete form for this is \code{(- $e_1$ $e_2$)} where
  1397. $e_1$ and $e_2$ are expressions. Note that there are several ways to do this: you can add
  1398. an additional primop \code{Sub} to the AST, and add new code to check and interpret it,
  1399. or you can choose to ``de-sugar'' the new form into a combination of existing primops when
  1400. converting S-expressions to ASTs. Either way, make sure that you understand why the concrete
  1401. language remains unambiguous even though (a) we already have a unary negation operaror that is also written
  1402. with \code{-}, and (b) unlike addition, subtraction is not an associative operator, i.e.
  1403. $((a-b)-c$ is not generally the same thing as $(a-(b-c))$.
  1404. 2. Make some non-trivial improvement to the partial evaluator. This task is intentionally open-ended, but here
  1405. are some suggestions, in increasing order of difficulty.
  1406. \begin{itemize}
  1407. \item
  1408. If you added a new primop for subtraction in part 1, add support for
  1409. partially evaluating subtractions involving constants, analogous to what is already there
  1410. for addition.
  1411. \item
  1412. Add support for simplifying expressions
  1413. based on simple algebraic identities, e.g. $x + 0 = x$ for all $x$.
  1414. \item Try to simplify expressions to
  1415. the point where they contain no more than one \code{Int} leaf expression (the remaining leaves should all be
  1416. \code{Read}s).
  1417. \end{itemize}
  1418. 3. Change the AST, interpreter and (improved) partial evaluator for \LangInt{} so that they
  1419. use true 64-bit integers throughout.
  1420. (Currently, these are used in S-expressions in the front end, but everything else uses 63-bit integers instead.)
  1421. This will bring our interpreter and partial evaluator in line with X86-64 machine code, our ultimate
  1422. compilation target.
  1423. The point of this exercise is to get you familiar with exploring an OCaml library, in this case \code{Int64},
  1424. which is documented at \url{https://ocaml.org/releases/4.12/api/Int64.html}.
  1425. \end{ocamlx}
  1426. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1427. \chapter{Integers and Variables}
  1428. \label{ch:Rvar}
  1429. This chapter is about compiling a subset of Racket to x86-64 assembly
  1430. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1431. integer arithmetic and local variable binding. We often refer to
  1432. x86-64 simply as x86. The chapter begins with a description of the
  1433. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1434. to of x86 assembly (Section~\ref{sec:x86}). The x86 assembly language
  1435. is large so we discuss only the instructions needed for compiling
  1436. \LangVar{}. We introduce more x86 instructions in later chapters.
  1437. After introducing \LangVar{} and x86, we reflect on their differences
  1438. and come up with a plan to break down the translation from \LangVar{}
  1439. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1440. rest of the sections in this chapter give detailed hints regarding
  1441. each step (Sections~\ref{sec:uniquify-Rvar} through \ref{sec:patch-s0}).
  1442. We hope to give enough hints that the well-prepared reader, together
  1443. with a few friends, can implement a compiler from \LangVar{} to x86 in
  1444. a couple weeks. To give the reader a feeling for the scale of this
  1445. first compiler, the instructor solution for the \LangVar{} compiler is
  1446. approximately 500 lines of code.
  1447. \section{The \LangVar{} Language}
  1448. \label{sec:s0}
  1449. \index{variable}
  1450. The \LangVar{} language extends the \LangInt{} language with variable
  1451. definitions. The concrete syntax of the \LangVar{} language is defined by
  1452. the grammar in Figure~\ref{fig:r1-concrete-syntax} and the abstract
  1453. syntax is defined in Figure~\ref{fig:r1-syntax}. The non-terminal
  1454. \Var{} may be any Racket identifier. As in \LangInt{}, \key{read} is a
  1455. nullary operator, \key{-} is a unary operator, and \key{+} is a binary
  1456. operator. Similar to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1457. \key{Program} struct to mark the top of the program.
  1458. %% The $\itm{info}$
  1459. %% field of the \key{Program} structure contains an \emph{association
  1460. %% list} (a list of key-value pairs) that is used to communicate
  1461. %% auxiliary data from one compiler pass the next.
  1462. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1463. exhibit several compilation techniques.
  1464. \begin{figure}[tp]
  1465. \centering
  1466. \fbox{
  1467. \begin{minipage}{0.96\textwidth}
  1468. \[
  1469. \begin{array}{rcl}
  1470. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp}\\
  1471. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  1472. \LangVar{} &::=& \Exp
  1473. \end{array}
  1474. \]
  1475. \end{minipage}
  1476. }
  1477. \caption{The concrete syntax of \LangVar{}.}
  1478. \label{fig:r1-concrete-syntax}
  1479. \end{figure}
  1480. \begin{figure}[tp]
  1481. \centering
  1482. \fbox{
  1483. \begin{minipage}{0.96\textwidth}
  1484. \[
  1485. \begin{array}{rcl}
  1486. \Exp &::=& \INT{\Int} \mid \READ{} \\
  1487. &\mid& \NEG{\Exp} \mid \ADD{\Exp}{\Exp} \\
  1488. &\mid& \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  1489. \LangVar{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1490. \end{array}
  1491. \]
  1492. \end{minipage}
  1493. }
  1494. \caption{The abstract syntax of \LangVar{}.}
  1495. \label{fig:r1-syntax}
  1496. \end{figure}
  1497. Let us dive further into the syntax and semantics of the \LangVar{}
  1498. language. The \key{let} feature defines a variable for use within its
  1499. body and initializes the variable with the value of an expression.
  1500. The abstract syntax for \key{let} is defined in
  1501. Figure~\ref{fig:r1-syntax}. The concrete syntax for \key{let} is
  1502. \begin{lstlisting}
  1503. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1504. \end{lstlisting}
  1505. For example, the following program initializes \code{x} to $32$ and then
  1506. evaluates the body \code{(+ 10 x)}, producing $42$.
  1507. \begin{lstlisting}
  1508. (let ([x (+ 12 20)]) (+ 10 x))
  1509. \end{lstlisting}
  1510. When there are multiple \key{let}'s for the same variable, the closest
  1511. enclosing \key{let} is used. That is, variable definitions overshadow
  1512. prior definitions. Consider the following program with two \key{let}'s
  1513. that define variables named \code{x}. Can you figure out the result?
  1514. \begin{lstlisting}
  1515. (let ([x 32]) (+ (let ([x 10]) x) x))
  1516. \end{lstlisting}
  1517. For the purposes of depicting which variable uses correspond to which
  1518. definitions, the following shows the \code{x}'s annotated with
  1519. subscripts to distinguish them. Double check that your answer for the
  1520. above is the same as your answer for this annotated version of the
  1521. program.
  1522. \begin{lstlisting}
  1523. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1524. \end{lstlisting}
  1525. The initializing expression is always evaluated before the body of the
  1526. \key{let}, so in the following, the \key{read} for \code{x} is
  1527. performed before the \key{read} for \code{y}. Given the input
  1528. $52$ then $10$, the following produces $42$ (not $-42$).
  1529. \begin{lstlisting}
  1530. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1531. \end{lstlisting}
  1532. \subsection{Extensible Interpreters via Method Overriding}
  1533. \label{sec:extensible-interp}
  1534. To prepare for discussing the interpreter for \LangVar{}, we need to
  1535. explain why we choose to implement the interpreter using
  1536. object-oriented programming, that is, as a collection of methods
  1537. inside of a class. Throughout this book we define many interpreters,
  1538. one for each of the languages that we study. Because each language
  1539. builds on the prior one, there is a lot of commonality between their
  1540. interpreters. We want to write down those common parts just once
  1541. instead of many times. A naive approach would be to have, for example,
  1542. the interpreter for \LangIf{} handle all of the new features in that
  1543. language and then have a default case that dispatches to the
  1544. interpreter for \LangVar{}. The following code sketches this idea.
  1545. \begin{center}
  1546. \begin{minipage}{0.45\textwidth}
  1547. \begin{lstlisting}
  1548. (define (interp-Rvar e)
  1549. (match e
  1550. [(Prim '- (list e))
  1551. (fx- 0 (interp-Rvar e))]
  1552. ...))
  1553. \end{lstlisting}
  1554. \end{minipage}
  1555. \begin{minipage}{0.45\textwidth}
  1556. \begin{lstlisting}
  1557. (define (interp-Rif e)
  1558. (match e
  1559. [(If cnd thn els)
  1560. (match (interp-Rif cnd)
  1561. [#t (interp-Rif thn)]
  1562. [#f (interp-Rif els)])]
  1563. ...
  1564. [else (interp-Rvar e)]))
  1565. \end{lstlisting}
  1566. \end{minipage}
  1567. \end{center}
  1568. The problem with this approach is that it does not handle situations
  1569. in which an \LangIf{} feature, like \code{If}, is nested inside an \LangVar{}
  1570. feature, like the \code{-} operator, as in the following program.
  1571. \begin{lstlisting}
  1572. (Prim '- (list (If (Bool #t) (Int 42) (Int 0))))
  1573. \end{lstlisting}
  1574. If we invoke \code{interp-Rif} on this program, it dispatches to
  1575. \code{interp-Rvar} to handle the \code{-} operator, but then it
  1576. recurisvely calls \code{interp-Rvar} again on the argument of \code{-},
  1577. which is an \code{If}. But there is no case for \code{If} in
  1578. \code{interp-Rvar}, so we get an error!
  1579. To make our interpreters extensible we need something called
  1580. \emph{open recursion}\index{open recursion}, where the tying of the
  1581. recursive knot is delayed to when the functions are
  1582. composed. Object-oriented languages provide open recursion with the
  1583. late-binding of overridden methods\index{method overriding}. The
  1584. following code sketches this idea for interpreting \LangVar{} and
  1585. \LangIf{} using the
  1586. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1587. \index{class} feature of Racket. We define one class for each
  1588. language and define a method for interpreting expressions inside each
  1589. class. The class for \LangIf{} inherits from the class for \LangVar{}
  1590. and the method \code{interp-exp} in \LangIf{} overrides the
  1591. \code{interp-exp} in \LangVar{}. Note that the default case of
  1592. \code{interp-exp} in \LangIf{} uses \code{super} to invoke
  1593. \code{interp-exp}, and because \LangIf{} inherits from \LangVar{},
  1594. that dispatches to the \code{interp-exp} in \LangVar{}.
  1595. \begin{center}
  1596. \begin{minipage}{0.45\textwidth}
  1597. \begin{lstlisting}
  1598. (define interp-Rvar-class
  1599. (class object%
  1600. (define/public (interp-exp e)
  1601. (match e
  1602. [(Prim '- (list e))
  1603. (fx- 0 (interp-exp e))]
  1604. ...))
  1605. ...))
  1606. \end{lstlisting}
  1607. \end{minipage}
  1608. \begin{minipage}{0.45\textwidth}
  1609. \begin{lstlisting}
  1610. (define interp-Rif-class
  1611. (class interp-Rvar-class
  1612. (define/override (interp-exp e)
  1613. (match e
  1614. [(If cnd thn els)
  1615. (match (interp-exp cnd)
  1616. [#t (interp-exp thn)]
  1617. [#f (interp-exp els)])]
  1618. ...
  1619. [else (super interp-exp e)]))
  1620. ...
  1621. ))
  1622. \end{lstlisting}
  1623. \end{minipage}
  1624. \end{center}
  1625. Getting back to the troublesome example, repeated here:
  1626. \begin{lstlisting}
  1627. (define e0 (Prim '- (list (If (Bool #t) (Int 42) (Int 0)))))
  1628. \end{lstlisting}
  1629. We can invoke the \code{interp-exp} method for \LangIf{} on this
  1630. expression by creating an object of the \LangIf{} class and sending it the
  1631. \code{interp-exp} method with the argument \code{e0}.
  1632. \begin{lstlisting}
  1633. (send (new interp-Rif-class) interp-exp e0)
  1634. \end{lstlisting}
  1635. The default case of \code{interp-exp} in \LangIf{} handles it by
  1636. dispatching to the \code{interp-exp} method in \LangVar{}, which
  1637. handles the \code{-} operator. But then for the recursive method call,
  1638. it dispatches back to \code{interp-exp} in \LangIf{}, where the
  1639. \code{If} is handled correctly. Thus, method overriding gives us the
  1640. open recursion that we need to implement our interpreters in an
  1641. extensible way.
  1642. \newpage
  1643. \subsection{Definitional Interpreter for \LangVar{}}
  1644. \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
  1645. \small
  1646. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1647. An \emph{association list} (alist) is a list of key-value pairs.
  1648. For example, we can map people to their ages with an alist.
  1649. \index{alist}\index{association list}
  1650. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1651. (define ages
  1652. '((jane . 25) (sam . 24) (kate . 45)))
  1653. \end{lstlisting}
  1654. The \emph{dictionary} interface is for mapping keys to values.
  1655. Every alist implements this interface. \index{dictionary} The package
  1656. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1657. provides many functions for working with dictionaries. Here
  1658. are a few of them:
  1659. \begin{description}
  1660. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1661. returns the value associated with the given $\itm{key}$.
  1662. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1663. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1664. but otherwise is the same as $\itm{dict}$.
  1665. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1666. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1667. of keys and values in $\itm{dict}$. For example, the following
  1668. creates a new alist in which the ages are incremented.
  1669. \end{description}
  1670. \vspace{-10pt}
  1671. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  1672. (for/list ([(k v) (in-dict ages)])
  1673. (cons k (add1 v)))
  1674. \end{lstlisting}
  1675. \end{tcolorbox}
  1676. \end{wrapfigure}
  1677. Having justified the use of classes and methods to implement
  1678. interpreters, we turn to the definitional interpreter for \LangVar{}
  1679. in Figure~\ref{fig:interp-Rvar}. It is similar to the interpreter for
  1680. \LangInt{} but adds two new \key{match} cases for variables and
  1681. \key{let}. For \key{let} we need a way to communicate the value bound
  1682. to a variable to all the uses of the variable. To accomplish this, we
  1683. maintain a mapping from variables to values. Throughout the compiler
  1684. we often need to map variables to information about them. We refer to
  1685. these mappings as
  1686. \emph{environments}\index{environment}.\footnote{Another common term
  1687. for environment in the compiler literature is \emph{symbol
  1688. table}\index{symbol table}.}
  1689. %
  1690. For simplicity, we use an association list (alist) to represent the
  1691. environment. The sidebar to the right gives a brief introduction to
  1692. alists and the \code{racket/dict} package. The \code{interp-exp}
  1693. function takes the current environment, \code{env}, as an extra
  1694. parameter. When the interpreter encounters a variable, it finds the
  1695. corresponding value using the \code{dict-ref} function. When the
  1696. interpreter encounters a \key{Let}, it evaluates the initializing
  1697. expression, extends the environment with the result value bound to the
  1698. variable, using \code{dict-set}, then evaluates the body of the
  1699. \key{Let}.
  1700. \begin{figure}[tp]
  1701. \begin{lstlisting}
  1702. (define interp-Rvar-class
  1703. (class object%
  1704. (super-new)
  1705. (define/public ((interp-exp env) e)
  1706. (match e
  1707. [(Int n) n]
  1708. [(Prim 'read '())
  1709. (define r (read))
  1710. (cond [(fixnum? r) r]
  1711. [else (error 'interp-exp "expected an integer" r)])]
  1712. [(Prim '- (list e)) (fx- 0 ((interp-exp env) e))]
  1713. [(Prim '+ (list e1 e2))
  1714. (fx+ ((interp-exp env) e1) ((interp-exp env) e2))]
  1715. [(Var x) (dict-ref env x)]
  1716. [(Let x e body)
  1717. (define new-env (dict-set env x ((interp-exp env) e)))
  1718. ((interp-exp new-env) body)]))
  1719. (define/public (interp-program p)
  1720. (match p
  1721. [(Program '() e) ((interp-exp '()) e)]))
  1722. ))
  1723. (define (interp-Rvar p)
  1724. (send (new interp-Rvar-class) interp-program p))
  1725. \end{lstlisting}
  1726. \caption{Interpreter for the \LangVar{} language.}
  1727. \label{fig:interp-Rvar}
  1728. \end{figure}
  1729. The goal for this chapter is to implement a compiler that translates
  1730. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  1731. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  1732. computer as the $P_1$ program interpreted by \code{interp-Rvar}. That
  1733. is, they output the same integer $n$. We depict this correctness
  1734. criteria in the following diagram.
  1735. \[
  1736. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1737. \node (p1) at (0, 0) {$P_1$};
  1738. \node (p2) at (4, 0) {$P_2$};
  1739. \node (o) at (4, -2) {$n$};
  1740. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  1741. \path[->] (p1) edge [left] node {\footnotesize\code{interp-Rvar}} (o);
  1742. \path[->] (p2) edge [right] node {\footnotesize\code{interp-x86int}} (o);
  1743. \end{tikzpicture}
  1744. \]
  1745. In the next section we introduce the \LangXInt{} subset of x86 that
  1746. suffices for compiling \LangVar{}.
  1747. \section{The \LangXInt{} Assembly Language}
  1748. \label{sec:x86}
  1749. \index{x86}
  1750. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  1751. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  1752. assembler.
  1753. %
  1754. A program begins with a \code{main} label followed by a sequence of
  1755. instructions. The \key{globl} directive says that the \key{main}
  1756. procedure is externally visible, which is necessary so that the
  1757. operating system can call it. In the grammar, ellipses such as
  1758. $\ldots$ are used to indicate a sequence of items, e.g., $\Instr
  1759. \ldots$ is a sequence of instructions.\index{instruction}
  1760. %
  1761. An x86 program is stored in the computer's memory. For our purposes,
  1762. the computer's memory is as a mapping of 64-bit addresses to 64-bit
  1763. values. The computer has a \emph{program counter} (PC)\index{program
  1764. counter}\index{PC} stored in the \code{rip} register that points to
  1765. the address of the next instruction to be executed. For most
  1766. instructions, the program counter is incremented after the instruction
  1767. is executed, so it points to the next instruction in memory. Most x86
  1768. instructions take two operands, where each operand is either an
  1769. integer constant (called \emph{immediate value}\index{immediate
  1770. value}), a \emph{register}\index{register}, or a memory location.
  1771. \newcommand{\allregisters}{\key{rsp} \mid \key{rbp} \mid \key{rax} \mid \key{rbx} \mid \key{rcx}
  1772. \mid \key{rdx} \mid \key{rsi} \mid \key{rdi} \mid \\
  1773. && \key{r8} \mid \key{r9} \mid \key{r10}
  1774. \mid \key{r11} \mid \key{r12} \mid \key{r13}
  1775. \mid \key{r14} \mid \key{r15}}
  1776. \begin{figure}[tp]
  1777. \fbox{
  1778. \begin{minipage}{0.96\textwidth}
  1779. \[
  1780. \begin{array}{lcl}
  1781. \Reg &::=& \allregisters{} \\
  1782. \Arg &::=& \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)}\\
  1783. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \mid
  1784. \key{subq} \; \Arg\key{,} \Arg \mid
  1785. \key{negq} \; \Arg \mid \key{movq} \; \Arg\key{,} \Arg \mid \\
  1786. && \key{callq} \; \mathit{label} \mid
  1787. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} \\
  1788. && \itm{label}\key{:}\; \Instr \\
  1789. \LangXInt{} &::= & \key{.globl main}\\
  1790. & & \key{main:} \; \Instr\ldots
  1791. \end{array}
  1792. \]
  1793. \end{minipage}
  1794. }
  1795. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  1796. \label{fig:x86-int-concrete}
  1797. \end{figure}
  1798. A register is a special kind of variable. Each one holds a 64-bit
  1799. value; there are 16 general-purpose registers in the computer and
  1800. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  1801. is written with a \key{\%} followed by the register name, such as
  1802. \key{\%rax}.
  1803. An immediate value is written using the notation \key{\$}$n$ where $n$
  1804. is an integer.
  1805. %
  1806. %
  1807. An access to memory is specified using the syntax $n(\key{\%}r)$,
  1808. which obtains the address stored in register $r$ and then adds $n$
  1809. bytes to the address. The resulting address is used to load or store
  1810. to memory depending on whether it occurs as a source or destination
  1811. argument of an instruction.
  1812. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  1813. source $s$ and destination $d$, applies the arithmetic operation, then
  1814. writes the result back to the destination $d$.
  1815. %
  1816. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  1817. stores the result in $d$.
  1818. %
  1819. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  1820. specified by the label and $\key{retq}$ returns from a procedure to
  1821. its caller.
  1822. %
  1823. We discuss procedure calls in more detail later in this chapter and in
  1824. Chapter~\ref{ch:Rfun}. The instruction $\key{jmp}\,\itm{label}$
  1825. updates the program counter to the address of the instruction after
  1826. the specified label.
  1827. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  1828. all of the x86 instructions used in this book.
  1829. Figure~\ref{fig:p0-x86} depicts an x86 program that is equivalent to
  1830. \code{(+ 10 32)}. The instruction \lstinline{movq $10, %rax}
  1831. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  1832. adds $32$ to the $10$ in \key{rax} and
  1833. puts the result, $42$, back into \key{rax}.
  1834. %
  1835. The last instruction, \key{retq}, finishes the \key{main} function by
  1836. returning the integer in \key{rax} to the operating system. The
  1837. operating system interprets this integer as the program's exit
  1838. code. By convention, an exit code of 0 indicates that a program
  1839. completed successfully, and all other exit codes indicate various
  1840. errors. Nevertheless, in this book we return the result of the program
  1841. as the exit code.
  1842. \begin{figure}[tbp]
  1843. \begin{lstlisting}
  1844. .globl main
  1845. main:
  1846. movq $10, %rax
  1847. addq $32, %rax
  1848. retq
  1849. \end{lstlisting}
  1850. \caption{An x86 program equivalent to \code{(+ 10 32)}.}
  1851. \label{fig:p0-x86}
  1852. \end{figure}
  1853. The x86 assembly language varies in a couple ways depending on what
  1854. operating system it is assembled in. The code examples shown here are
  1855. correct on Linux and most Unix-like platforms, but when assembled on
  1856. Mac OS X, labels like \key{main} must be prefixed with an underscore,
  1857. as in \key{\_main}.
  1858. We exhibit the use of memory for storing intermediate results in the
  1859. next example. Figure~\ref{fig:p1-x86} lists an x86 program that is
  1860. equivalent to \code{(+ 52 (- 10))}. This program uses a region of
  1861. memory called the \emph{procedure call stack} (or \emph{stack} for
  1862. short). \index{stack}\index{procedure call stack} The stack consists
  1863. of a separate \emph{frame}\index{frame} for each procedure call. The
  1864. memory layout for an individual frame is shown in
  1865. Figure~\ref{fig:frame}. The register \key{rsp} is called the
  1866. \emph{stack pointer}\index{stack pointer} and points to the item at
  1867. the top of the stack. The stack grows downward in memory, so we
  1868. increase the size of the stack by subtracting from the stack pointer.
  1869. In the context of a procedure call, the \emph{return
  1870. address}\index{return address} is the instruction after the call
  1871. instruction on the caller side. The function call instruction,
  1872. \code{callq}, pushes the return address onto the stack prior to
  1873. jumping to the procedure. The register \key{rbp} is the \emph{base
  1874. pointer}\index{base pointer} and is used to access variables that
  1875. are stored in the frame of the current procedure call. The base
  1876. pointer of the caller is pushed onto the stack after the return
  1877. address and then the base pointer is set to the location of the old
  1878. base pointer. In Figure~\ref{fig:frame} we number the variables from
  1879. $1$ to $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$,
  1880. variable $2$ at $-16\key{(\%rbp)}$, etc.
  1881. \begin{figure}[tbp]
  1882. \begin{lstlisting}
  1883. start:
  1884. movq $10, -8(%rbp)
  1885. negq -8(%rbp)
  1886. movq -8(%rbp), %rax
  1887. addq $52, %rax
  1888. jmp conclusion
  1889. .globl main
  1890. main:
  1891. pushq %rbp
  1892. movq %rsp, %rbp
  1893. subq $16, %rsp
  1894. jmp start
  1895. conclusion:
  1896. addq $16, %rsp
  1897. popq %rbp
  1898. retq
  1899. \end{lstlisting}
  1900. \caption{An x86 program equivalent to \code{(+ 52 (- 10))}.}
  1901. \label{fig:p1-x86}
  1902. \end{figure}
  1903. \begin{figure}[tbp]
  1904. \centering
  1905. \begin{tabular}{|r|l|} \hline
  1906. Position & Contents \\ \hline
  1907. 8(\key{\%rbp}) & return address \\
  1908. 0(\key{\%rbp}) & old \key{rbp} \\
  1909. -8(\key{\%rbp}) & variable $1$ \\
  1910. -16(\key{\%rbp}) & variable $2$ \\
  1911. \ldots & \ldots \\
  1912. 0(\key{\%rsp}) & variable $n$\\ \hline
  1913. \end{tabular}
  1914. \caption{Memory layout of a frame.}
  1915. \label{fig:frame}
  1916. \end{figure}
  1917. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  1918. control is transferred from the operating system to the \code{main}
  1919. function. The operating system issues a \code{callq main} instruction
  1920. which pushes its return address on the stack and then jumps to
  1921. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  1922. by 16 bytes prior to the execution of any \code{callq} instruction, so
  1923. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  1924. alignment (because the \code{callq} pushed the return address). The
  1925. first three instructions are the typical \emph{prelude}\index{prelude}
  1926. for a procedure. The instruction \code{pushq \%rbp} saves the base
  1927. pointer for the caller onto the stack and subtracts $8$ from the stack
  1928. pointer. The second instruction \code{movq \%rsp, \%rbp} changes the
  1929. base pointer so that it points the location of the old base
  1930. pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  1931. pointer down to make enough room for storing variables. This program
  1932. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  1933. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  1934. functions. The last instruction of the prelude is \code{jmp start},
  1935. which transfers control to the instructions that were generated from
  1936. the Racket expression \code{(+ 52 (- 10))}.
  1937. The first instruction under the \code{start} label is
  1938. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  1939. %
  1940. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  1941. %
  1942. The next instruction moves the $-10$ from variable $1$ into the
  1943. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  1944. the value in \code{rax}, updating its contents to $42$.
  1945. The three instructions under the label \code{conclusion} are the
  1946. typical \emph{conclusion}\index{conclusion} of a procedure. The first
  1947. two instructions restore the \code{rsp} and \code{rbp} registers to
  1948. the state they were in at the beginning of the procedure. The
  1949. instruction \key{addq \$16, \%rsp} moves the stack pointer back to
  1950. point at the old base pointer. Then \key{popq \%rbp} returns the old
  1951. base pointer to \key{rbp} and adds $8$ to the stack pointer. The last
  1952. instruction, \key{retq}, jumps back to the procedure that called this
  1953. one and adds $8$ to the stack pointer.
  1954. The compiler needs a convenient representation for manipulating x86
  1955. programs, so we define an abstract syntax for x86 in
  1956. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  1957. \LangXInt{}. The main difference compared to the concrete syntax of
  1958. \LangXInt{} (Figure~\ref{fig:x86-int-concrete}) is that labels are not
  1959. allowed in front of every instructions. Instead instructions are
  1960. grouped into \emph{blocks}\index{block}\index{basic block} with a
  1961. label associated with every block, which is why the \key{X86Program}
  1962. struct includes an alist mapping labels to blocks. The reason for this
  1963. organization becomes apparent in Chapter~\ref{ch:Rif} when we
  1964. introduce conditional branching. The \code{Block} structure includes
  1965. an $\itm{info}$ field that is not needed for this chapter, but becomes
  1966. useful in Chapter~\ref{ch:register-allocation-Rvar}. For now, the
  1967. $\itm{info}$ field should contain an empty list. Also, regarding the
  1968. abstract syntax for \code{callq}, the \code{Callq} struct includes an
  1969. integer for representing the arity of the function, i.e., the number
  1970. of arguments, which is helpful to know during register allocation
  1971. (Chapter~\ref{ch:register-allocation-Rvar}).
  1972. \begin{figure}[tp]
  1973. \fbox{
  1974. \begin{minipage}{0.98\textwidth}
  1975. \small
  1976. \[
  1977. \begin{array}{lcl}
  1978. \Reg &::=& \allregisters{} \\
  1979. \Arg &::=& \IMM{\Int} \mid \REG{\Reg}
  1980. \mid \DEREF{\Reg}{\Int} \\
  1981. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  1982. \mid \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  1983. &\mid& \BININSTR{\code{movq}}{\Arg}{\Arg}
  1984. \mid \UNIINSTR{\code{negq}}{\Arg}\\
  1985. &\mid& \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  1986. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} \\
  1987. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  1988. \LangXInt{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  1989. \end{array}
  1990. \]
  1991. \end{minipage}
  1992. }
  1993. \caption{The abstract syntax of \LangXInt{} assembly.}
  1994. \label{fig:x86-int-ast}
  1995. \end{figure}
  1996. \section{Planning the trip to x86 via the \LangCVar{} language}
  1997. \label{sec:plan-s0-x86}
  1998. To compile one language to another it helps to focus on the
  1999. differences between the two languages because the compiler will need
  2000. to bridge those differences. What are the differences between \LangVar{}
  2001. and x86 assembly? Here are some of the most important ones:
  2002. \begin{enumerate}
  2003. \item[(a)] x86 arithmetic instructions typically have two arguments
  2004. and update the second argument in place. In contrast, \LangVar{}
  2005. arithmetic operations take two arguments and produce a new value.
  2006. An x86 instruction may have at most one memory-accessing argument.
  2007. Furthermore, some instructions place special restrictions on their
  2008. arguments.
  2009. \item[(b)] An argument of an \LangVar{} operator can be a deeply-nested
  2010. expression, whereas x86 instructions restrict their arguments to be
  2011. integers constants, registers, and memory locations.
  2012. \item[(c)] The order of execution in x86 is explicit in the syntax: a
  2013. sequence of instructions and jumps to labeled positions, whereas in
  2014. \LangVar{} the order of evaluation is a left-to-right depth-first
  2015. traversal of the abstract syntax tree.
  2016. \item[(d)] A program in \LangVar{} can have any number of variables
  2017. whereas x86 has 16 registers and the procedure calls stack.
  2018. \item[(e)] Variables in \LangVar{} can overshadow other variables with the
  2019. same name. In x86, registers have unique names and memory locations
  2020. have unique addresses.
  2021. \end{enumerate}
  2022. We ease the challenge of compiling from \LangVar{} to x86 by breaking down
  2023. the problem into several steps, dealing with the above differences one
  2024. at a time. Each of these steps is called a \emph{pass} of the
  2025. compiler.\index{pass}\index{compiler pass}
  2026. %
  2027. This terminology comes from the way each step passes over the AST of
  2028. the program.
  2029. %
  2030. We begin by sketching how we might implement each pass, and give them
  2031. names. We then figure out an ordering of the passes and the
  2032. input/output language for each pass. The very first pass has
  2033. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2034. its output language. In between we can choose whichever language is
  2035. most convenient for expressing the output of each pass, whether that
  2036. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2037. our own design. Finally, to implement each pass we write one
  2038. recursive function per non-terminal in the grammar of the input
  2039. language of the pass. \index{intermediate language}
  2040. \begin{description}
  2041. \item[\key{select-instructions}] handles the difference between
  2042. \LangVar{} operations and x86 instructions. This pass converts each
  2043. \LangVar{} operation to a short sequence of instructions that
  2044. accomplishes the same task.
  2045. \item[\key{remove-complex-opera*}] ensures that each subexpression of
  2046. a primitive operation is a variable or integer, that is, an
  2047. \emph{atomic} expression. We refer to non-atomic expressions as
  2048. \emph{complex}. This pass introduces temporary variables to hold
  2049. the results of complex subexpressions.\index{atomic
  2050. expression}\index{complex expression}%
  2051. \footnote{The subexpressions of an operation are often called
  2052. operators and operands which explains the presence of
  2053. \code{opera*} in the name of this pass.}
  2054. \item[\key{explicate-control}] makes the execution order of the
  2055. program explicit. It convert the abstract syntax tree representation
  2056. into a control-flow graph in which each node contains a sequence of
  2057. statements and the edges between nodes say which nodes contain jumps
  2058. to other nodes.
  2059. \item[\key{assign-homes}] replaces the variables in \LangVar{} with
  2060. registers or stack locations in x86.
  2061. \item[\key{uniquify}] deals with the shadowing of variables by
  2062. renaming every variable to a unique name.
  2063. \end{description}
  2064. The next question is: in what order should we apply these passes? This
  2065. question can be challenging because it is difficult to know ahead of
  2066. time which orderings will be better (easier to implement, produce more
  2067. efficient code, etc.) so oftentimes trial-and-error is
  2068. involved. Nevertheless, we can try to plan ahead and make educated
  2069. choices regarding the ordering.
  2070. What should be the ordering of \key{explicate-control} with respect to
  2071. \key{uniquify}? The \key{uniquify} pass should come first because
  2072. \key{explicate-control} changes all the \key{let}-bound variables to
  2073. become local variables whose scope is the entire program, which would
  2074. confuse variables with the same name.
  2075. %
  2076. We place \key{remove-complex-opera*} before \key{explicate-control}
  2077. because the later removes the \key{let} form, but it is convenient to
  2078. use \key{let} in the output of \key{remove-complex-opera*}.
  2079. %
  2080. The ordering of \key{uniquify} with respect to
  2081. \key{remove-complex-opera*} does not matter so we arbitrarily choose
  2082. \key{uniquify} to come first.
  2083. Last, we consider \key{select-instructions} and \key{assign-homes}.
  2084. These two passes are intertwined. In Chapter~\ref{ch:Rfun} we
  2085. learn that, in x86, registers are used for passing arguments to
  2086. functions and it is preferable to assign parameters to their
  2087. corresponding registers. On the other hand, by selecting instructions
  2088. first we may run into a dead end in \key{assign-homes}. Recall that
  2089. only one argument of an x86 instruction may be a memory access but
  2090. \key{assign-homes} might fail to assign even one of them to a
  2091. register.
  2092. %
  2093. A sophisticated approach is to iteratively repeat the two passes until
  2094. a solution is found. However, to reduce implementation complexity we
  2095. recommend a simpler approach in which \key{select-instructions} comes
  2096. first, followed by the \key{assign-homes}, then a third pass named
  2097. \key{patch-instructions} that uses a reserved register to fix
  2098. outstanding problems.
  2099. \begin{figure}[tbp]
  2100. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2101. \node (Rvar) at (0,2) {\large \LangVar{}};
  2102. \node (Rvar-2) at (3,2) {\large \LangVar{}};
  2103. \node (Rvar-3) at (6,2) {\large \LangVarANF{}};
  2104. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2105. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2106. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2107. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2108. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2109. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2110. \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
  2111. \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
  2112. \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-2);
  2113. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  2114. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign-homes} (x86-3);
  2115. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  2116. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize print-x86} (x86-5);
  2117. \end{tikzpicture}
  2118. \caption{Diagram of the passes for compiling \LangVar{}. }
  2119. \label{fig:Rvar-passes}
  2120. \end{figure}
  2121. Figure~\ref{fig:Rvar-passes} presents the ordering of the compiler
  2122. passes and identifies the input and output language of each pass. The
  2123. last pass, \key{print-x86}, converts from the abstract syntax of
  2124. \LangXInt{} to the concrete syntax. In the following two sections
  2125. we discuss the \LangCVar{} intermediate language and the \LangXVar{}
  2126. dialect of x86. The remainder of this chapter gives hints regarding
  2127. the implementation of each of the compiler passes in
  2128. Figure~\ref{fig:Rvar-passes}.
  2129. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  2130. %% are programs that are still in the \LangVar{} language, though the
  2131. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2132. %% (Section~\ref{sec:remove-complex-opera-Rvar}).
  2133. %% %
  2134. %% The output of \key{explicate-control} is in an intermediate language
  2135. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2136. %% syntax, which we introduce in the next section. The
  2137. %% \key{select-instruction} pass translates from \LangCVar{} to
  2138. %% \LangXVar{}. The \key{assign-homes} and
  2139. %% \key{patch-instructions}
  2140. %% passes input and output variants of x86 assembly.
  2141. \subsection{The \LangCVar{} Intermediate Language}
  2142. The output of \key{explicate-control} is similar to the $C$
  2143. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2144. categories for expressions and statements, so we name it \LangCVar{}. The
  2145. abstract syntax for \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2146. (The concrete syntax for \LangCVar{} is in the Appendix,
  2147. Figure~\ref{fig:c0-concrete-syntax}.)
  2148. %
  2149. The \LangCVar{} language supports the same operators as \LangVar{} but
  2150. the arguments of operators are restricted to atomic
  2151. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2152. assignment statements which can be executed in sequence using the
  2153. \key{Seq} form. A sequence of statements always ends with
  2154. \key{Return}, a guarantee that is baked into the grammar rules for
  2155. \itm{tail}. The naming of this non-terminal comes from the term
  2156. \emph{tail position}\index{tail position}, which refers to an
  2157. expression that is the last one to execute within a function.
  2158. A \LangCVar{} program consists of a control-flow graph represented as
  2159. an alist mapping labels to tails. This is more general than necessary
  2160. for the present chapter, as we do not yet introduce \key{goto} for
  2161. jumping to labels, but it saves us from having to change the syntax in
  2162. Chapter~\ref{ch:Rif}. For now there will be just one label,
  2163. \key{start}, and the whole program is its tail.
  2164. %
  2165. The $\itm{info}$ field of the \key{CProgram} form, after the
  2166. \key{explicate-control} pass, contains a mapping from the symbol
  2167. \key{locals} to a list of variables, that is, a list of all the
  2168. variables used in the program. At the start of the program, these
  2169. variables are uninitialized; they become initialized on their first
  2170. assignment.
  2171. \begin{figure}[tbp]
  2172. \fbox{
  2173. \begin{minipage}{0.96\textwidth}
  2174. \[
  2175. \begin{array}{lcl}
  2176. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  2177. \Exp &::=& \Atm \mid \READ{} \mid \NEG{\Atm} \\
  2178. &\mid& \ADD{\Atm}{\Atm}\\
  2179. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2180. \Tail &::= & \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} \\
  2181. \LangCVar{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2182. \end{array}
  2183. \]
  2184. \end{minipage}
  2185. }
  2186. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2187. \label{fig:c0-syntax}
  2188. \end{figure}
  2189. The definitional interpreter for \LangCVar{} is in the support code,
  2190. in the file \code{interp-Cvar.rkt}.
  2191. \subsection{The \LangXVar{} dialect}
  2192. The \LangXVar{} language is the output of the pass
  2193. \key{select-instructions}. It extends \LangXInt{} with an unbounded
  2194. number of program-scope variables and removes the restrictions
  2195. regarding instruction arguments.
  2196. \section{Uniquify Variables}
  2197. \label{sec:uniquify-Rvar}
  2198. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2199. programs in which every \key{let} binds a unique variable name. For
  2200. example, the \code{uniquify} pass should translate the program on the
  2201. left into the program on the right. \\
  2202. \begin{tabular}{lll}
  2203. \begin{minipage}{0.4\textwidth}
  2204. \begin{lstlisting}
  2205. (let ([x 32])
  2206. (+ (let ([x 10]) x) x))
  2207. \end{lstlisting}
  2208. \end{minipage}
  2209. &
  2210. $\Rightarrow$
  2211. &
  2212. \begin{minipage}{0.4\textwidth}
  2213. \begin{lstlisting}
  2214. (let ([x.1 32])
  2215. (+ (let ([x.2 10]) x.2) x.1))
  2216. \end{lstlisting}
  2217. \end{minipage}
  2218. \end{tabular} \\
  2219. %
  2220. The following is another example translation, this time of a program
  2221. with a \key{let} nested inside the initializing expression of another
  2222. \key{let}.\\
  2223. \begin{tabular}{lll}
  2224. \begin{minipage}{0.4\textwidth}
  2225. \begin{lstlisting}
  2226. (let ([x (let ([x 4])
  2227. (+ x 1))])
  2228. (+ x 2))
  2229. \end{lstlisting}
  2230. \end{minipage}
  2231. &
  2232. $\Rightarrow$
  2233. &
  2234. \begin{minipage}{0.4\textwidth}
  2235. \begin{lstlisting}
  2236. (let ([x.2 (let ([x.1 4])
  2237. (+ x.1 1))])
  2238. (+ x.2 2))
  2239. \end{lstlisting}
  2240. \end{minipage}
  2241. \end{tabular}
  2242. We recommend implementing \code{uniquify} by creating a structurally
  2243. recursive function named \code{uniquify-exp} that mostly just copies
  2244. an expression. However, when encountering a \key{let}, it should
  2245. generate a unique name for the variable and associate the old name
  2246. with the new name in an alist.\footnote{The Racket function
  2247. \code{gensym} is handy for generating unique variable names.} The
  2248. \code{uniquify-exp} function needs to access this alist when it gets
  2249. to a variable reference, so we add a parameter to \code{uniquify-exp}
  2250. for the alist.
  2251. The skeleton of the \code{uniquify-exp} function is shown in
  2252. Figure~\ref{fig:uniquify-Rvar}. The function is curried so that it is
  2253. convenient to partially apply it to an alist and then apply it to
  2254. different expressions, as in the last case for primitive operations in
  2255. Figure~\ref{fig:uniquify-Rvar}. The
  2256. %
  2257. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2258. %
  2259. form of Racket is useful for transforming each element of a list to
  2260. produce a new list.\index{for/list}
  2261. \begin{exercise}
  2262. \normalfont % I don't like the italics for exercises. -Jeremy
  2263. Complete the \code{uniquify} pass by filling in the blanks in
  2264. Figure~\ref{fig:uniquify-Rvar}, that is, implement the cases for
  2265. variables and for the \key{let} form in the file \code{compiler.rkt}
  2266. in the support code.
  2267. \end{exercise}
  2268. \begin{figure}[tbp]
  2269. \begin{lstlisting}
  2270. (define (uniquify-exp env)
  2271. (lambda (e)
  2272. (match e
  2273. [(Var x) ___]
  2274. [(Int n) (Int n)]
  2275. [(Let x e body) ___]
  2276. [(Prim op es)
  2277. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  2278. (define (uniquify p)
  2279. (match p
  2280. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  2281. \end{lstlisting}
  2282. \caption{Skeleton for the \key{uniquify} pass.}
  2283. \label{fig:uniquify-Rvar}
  2284. \end{figure}
  2285. \begin{exercise}
  2286. \normalfont % I don't like the italics for exercises. -Jeremy
  2287. Create five \LangVar{} programs that exercise the most interesting
  2288. parts of the \key{uniquify} pass, that is, the programs should include
  2289. \key{let} forms, variables, and variables that overshadow each other.
  2290. The five programs should be placed in the subdirectory named
  2291. \key{tests} and the file names should start with \code{var\_test\_}
  2292. followed by a unique integer and end with the file extension
  2293. \key{.rkt}.
  2294. %
  2295. The \key{run-tests.rkt} script in the support code checks whether the
  2296. output programs produce the same result as the input programs. The
  2297. script uses the \key{interp-tests} function
  2298. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2299. your \key{uniquify} pass on the example programs. The \code{passes}
  2300. parameter of \key{interp-tests} is a list that should have one entry
  2301. for each pass in your compiler. For now, define \code{passes} to
  2302. contain just one entry for \code{uniquify} as follows.
  2303. \begin{lstlisting}
  2304. (define passes
  2305. (list (list "uniquify" uniquify interp-Rvar type-check-Rvar)))
  2306. \end{lstlisting}
  2307. Run the \key{run-tests.rkt} script in the support code to check
  2308. whether the output programs produce the same result as the input
  2309. programs.
  2310. \end{exercise}
  2311. \section{Remove Complex Operands}
  2312. \label{sec:remove-complex-opera-Rvar}
  2313. The \code{remove-complex-opera*} pass compiles \LangVar{} programs
  2314. into a restricted form in which the arguments of operations are atomic
  2315. expressions. Put another way, this pass removes complex
  2316. operands\index{complex operand}, such as the expression \code{(- 10)}
  2317. in the program below. This is accomplished by introducing a new
  2318. \key{let}-bound variable, binding the complex operand to the new
  2319. variable, and then using the new variable in place of the complex
  2320. operand, as shown in the output of \code{remove-complex-opera*} on the
  2321. right.\\
  2322. \begin{tabular}{lll}
  2323. \begin{minipage}{0.4\textwidth}
  2324. % var_test_19.rkt
  2325. \begin{lstlisting}
  2326. (+ 52 (- 10))
  2327. \end{lstlisting}
  2328. \end{minipage}
  2329. &
  2330. $\Rightarrow$
  2331. &
  2332. \begin{minipage}{0.4\textwidth}
  2333. \begin{lstlisting}
  2334. (let ([tmp.1 (- 10)])
  2335. (+ 52 tmp.1))
  2336. \end{lstlisting}
  2337. \end{minipage}
  2338. \end{tabular}
  2339. \begin{figure}[tp]
  2340. \centering
  2341. \fbox{
  2342. \begin{minipage}{0.96\textwidth}
  2343. \[
  2344. \begin{array}{rcl}
  2345. \Atm &::=& \INT{\Int} \mid \VAR{\Var} \\
  2346. \Exp &::=& \Atm \mid \READ{} \\
  2347. &\mid& \NEG{\Atm} \mid \ADD{\Atm}{\Atm} \\
  2348. &\mid& \LET{\Var}{\Exp}{\Exp} \\
  2349. R^{\dagger}_1 &::=& \PROGRAM{\code{'()}}{\Exp}
  2350. \end{array}
  2351. \]
  2352. \end{minipage}
  2353. }
  2354. \caption{\LangVarANF{} is \LangVar{} in administrative normal form (ANF).}
  2355. \label{fig:r1-anf-syntax}
  2356. \end{figure}
  2357. Figure~\ref{fig:r1-anf-syntax} presents the grammar for the output of
  2358. this pass, the language \LangVarANF{}. The only difference is that
  2359. operator arguments are restricted to be atomic expressions that are
  2360. defined by the \Atm{} non-terminal. In particular, integer constants
  2361. and variables are atomic. In the literature, restricting arguments to
  2362. be atomic expressions is called \emph{administrative normal form}, or
  2363. ANF for short~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2364. \index{administrative normal form} \index{ANF}
  2365. We recommend implementing this pass with two mutually recursive
  2366. functions, \code{rco-atom} and \code{rco-exp}. The idea is to apply
  2367. \code{rco-atom} to subexpressions that need to become atomic and to
  2368. apply \code{rco-exp} to subexpressions that do not. Both functions
  2369. take an \LangVar{} expression as input. The \code{rco-exp} function
  2370. returns an expression. The \code{rco-atom} function returns two
  2371. things: an atomic expression and alist mapping temporary variables to
  2372. complex subexpressions. You can return multiple things from a function
  2373. using Racket's \key{values} form and you can receive multiple things
  2374. from a function call using the \key{define-values} form. If you are
  2375. not familiar with these features, review the Racket documentation.
  2376. Also, the
  2377. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  2378. form is useful for applying a function to each element of a list, in
  2379. the case where the function returns multiple values.
  2380. \index{for/lists}
  2381. Returning to the example program \code{(+ 52 (- 10))}, the
  2382. subexpression \code{(- 10)} should be processed using the
  2383. \code{rco-atom} function because it is an argument of the \code{+} and
  2384. therefore needs to become atomic. The output of \code{rco-atom}
  2385. applied to \code{(- 10)} is as follows.
  2386. \begin{tabular}{lll}
  2387. \begin{minipage}{0.4\textwidth}
  2388. \begin{lstlisting}
  2389. (- 10)
  2390. \end{lstlisting}
  2391. \end{minipage}
  2392. &
  2393. $\Rightarrow$
  2394. &
  2395. \begin{minipage}{0.4\textwidth}
  2396. \begin{lstlisting}
  2397. tmp.1
  2398. ((tmp.1 . (- 10)))
  2399. \end{lstlisting}
  2400. \end{minipage}
  2401. \end{tabular}
  2402. Take special care of programs such as the following one that binds a
  2403. variable to an atomic expression. You should leave such variable
  2404. bindings unchanged, as shown in to the program on the right \\
  2405. \begin{tabular}{lll}
  2406. \begin{minipage}{0.4\textwidth}
  2407. % var_test_20.rkt
  2408. \begin{lstlisting}
  2409. (let ([a 42])
  2410. (let ([b a])
  2411. b))
  2412. \end{lstlisting}
  2413. \end{minipage}
  2414. &
  2415. $\Rightarrow$
  2416. &
  2417. \begin{minipage}{0.4\textwidth}
  2418. \begin{lstlisting}
  2419. (let ([a 42])
  2420. (let ([b a])
  2421. b))
  2422. \end{lstlisting}
  2423. \end{minipage}
  2424. \end{tabular} \\
  2425. A careless implementation of \key{rco-exp} and \key{rco-atom} might
  2426. produce the following output with unnecessary temporary variables.\\
  2427. \begin{minipage}{0.4\textwidth}
  2428. \begin{lstlisting}
  2429. (let ([tmp.1 42])
  2430. (let ([a tmp.1])
  2431. (let ([tmp.2 a])
  2432. (let ([b tmp.2])
  2433. b))))
  2434. \end{lstlisting}
  2435. \end{minipage}
  2436. \begin{exercise}\normalfont
  2437. %
  2438. Implement the \code{remove-complex-opera*} function in
  2439. \code{compiler.rkt}.
  2440. %
  2441. Create three new \LangInt{} programs that exercise the interesting
  2442. code in the \code{remove-complex-opera*} pass (Following the same file
  2443. name guidelines as before.).
  2444. %
  2445. In the \code{run-tests.rkt} script, add the following entry to the
  2446. list of \code{passes} and then run the script to test your compiler.
  2447. \begin{lstlisting}
  2448. (list "remove-complex" remove-complex-opera* interp-Rvar type-check-Rvar)
  2449. \end{lstlisting}
  2450. While debugging your compiler, it is often useful to see the
  2451. intermediate programs that are output from each pass. To print the
  2452. intermeidate programs, place the following before the call to
  2453. \code{interp-tests} in \code{run-tests.rkt}.
  2454. \begin{lstlisting}
  2455. (debug-level 1)
  2456. \end{lstlisting}
  2457. \end{exercise}
  2458. \section{Explicate Control}
  2459. \label{sec:explicate-control-Rvar}
  2460. The \code{explicate-control} pass compiles \LangVar{} programs into \LangCVar{}
  2461. programs that make the order of execution explicit in their
  2462. syntax. For now this amounts to flattening \key{let} constructs into a
  2463. sequence of assignment statements. For example, consider the following
  2464. \LangVar{} program.\\
  2465. % var_test_11.rkt
  2466. \begin{minipage}{0.96\textwidth}
  2467. \begin{lstlisting}
  2468. (let ([y (let ([x 20])
  2469. (+ x (let ([x 22]) x)))])
  2470. y)
  2471. \end{lstlisting}
  2472. \end{minipage}\\
  2473. %
  2474. The output of the previous pass and of \code{explicate-control} is
  2475. shown below. Recall that the right-hand-side of a \key{let} executes
  2476. before its body, so the order of evaluation for this program is to
  2477. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  2478. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  2479. output of \code{explicate-control} makes this ordering explicit.\\
  2480. \begin{tabular}{lll}
  2481. \begin{minipage}{0.4\textwidth}
  2482. \begin{lstlisting}
  2483. (let ([y (let ([x.1 20])
  2484. (let ([x.2 22])
  2485. (+ x.1 x.2)))])
  2486. y)
  2487. \end{lstlisting}
  2488. \end{minipage}
  2489. &
  2490. $\Rightarrow$
  2491. &
  2492. \begin{minipage}{0.4\textwidth}
  2493. \begin{lstlisting}[language=C]
  2494. start:
  2495. x.1 = 20;
  2496. x.2 = 22;
  2497. y = (+ x.1 x.2);
  2498. return y;
  2499. \end{lstlisting}
  2500. \end{minipage}
  2501. \end{tabular}
  2502. \begin{figure}[tbp]
  2503. \begin{lstlisting}
  2504. (define (explicate-tail e)
  2505. (match e
  2506. [(Var x) ___]
  2507. [(Int n) (Return (Int n))]
  2508. [(Let x rhs body) ___]
  2509. [(Prim op es) ___]
  2510. [else (error "explicate-tail unhandled case" e)]))
  2511. (define (explicate-assign e x cont)
  2512. (match e
  2513. [(Var x) ___]
  2514. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  2515. [(Let y rhs body) ___]
  2516. [(Prim op es) ___]
  2517. [else (error "explicate-assign unhandled case" e)]))
  2518. (define (explicate-control p)
  2519. (match p
  2520. [(Program info body) ___]))
  2521. \end{lstlisting}
  2522. \caption{Skeleton for the \key{explicate-control} pass.}
  2523. \label{fig:explicate-control-Rvar}
  2524. \end{figure}
  2525. The organization of this pass depends on the notion of tail position
  2526. that we have alluded to earlier. Formally, \emph{tail
  2527. position}\index{tail position} in the context of \LangVar{} is
  2528. defined recursively by the following two rules.
  2529. \begin{enumerate}
  2530. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  2531. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  2532. \end{enumerate}
  2533. We recommend implementing \code{explicate-control} using two mutually
  2534. recursive functions, \code{explicate-tail} and
  2535. \code{explicate-assign}, as suggested in the skeleton code in
  2536. Figure~\ref{fig:explicate-control-Rvar}. The \code{explicate-tail}
  2537. function should be applied to expressions in tail position whereas the
  2538. \code{explicate-assign} should be applied to expressions that occur on
  2539. the right-hand-side of a \key{let}.
  2540. %
  2541. The \code{explicate-tail} function takes an \Exp{} in \LangVar{} as
  2542. input and produces a \Tail{} in \LangCVar{} (see
  2543. Figure~\ref{fig:c0-syntax}).
  2544. %
  2545. The \code{explicate-assign} function takes an \Exp{} in \LangVar{},
  2546. the variable that it is to be assigned to, and a \Tail{} in
  2547. \LangCVar{} for the code that will come after the assignment. The
  2548. \code{explicate-assign} function returns a $\Tail$ in \LangCVar{}.
  2549. The \code{explicate-assign} function is in accumulator-passing style
  2550. in that the \code{cont} parameter is used for accumulating the
  2551. output. The reader might be tempted to instead organize
  2552. \code{explicate-assign} in a more direct fashion, without the
  2553. \code{cont} parameter and perhaps using \code{append} to combine
  2554. statements. We warn against that alternative because the
  2555. accumulator-passing style is key to how we generate high-quality code
  2556. for conditional expressions in Chapter~\ref{ch:Rif}.
  2557. \begin{exercise}\normalfont
  2558. %
  2559. Implement the \code{explicate-control} function in
  2560. \code{compiler.rkt}. Create three new \LangInt{} programs that
  2561. exercise the code in \code{explicate-control}.
  2562. %
  2563. In the \code{run-tests.rkt} script, add the following entry to the
  2564. list of \code{passes} and then run the script to test your compiler.
  2565. \begin{lstlisting}
  2566. (list "explicate control" explicate-control interp-Cvar type-check-Cvar)
  2567. \end{lstlisting}
  2568. \end{exercise}
  2569. \section{Select Instructions}
  2570. \label{sec:select-Rvar}
  2571. \index{instruction selection}
  2572. In the \code{select-instructions} pass we begin the work of
  2573. translating from \LangCVar{} to \LangXVar{}. The target language of
  2574. this pass is a variant of x86 that still uses variables, so we add an
  2575. AST node of the form $\VAR{\itm{var}}$ to the \Arg{} non-terminal of
  2576. the \LangXInt{} abstract syntax (Figure~\ref{fig:x86-int-ast}). We
  2577. recommend implementing the \code{select-instructions} with
  2578. three auxiliary functions, one for each of the non-terminals of
  2579. \LangCVar{}: $\Atm$, $\Stmt$, and $\Tail$.
  2580. The cases for $\Atm$ are straightforward, variables stay
  2581. the same and integer constants are changed to immediates:
  2582. $\INT{n}$ changes to $\IMM{n}$.
  2583. Next we consider the cases for $\Stmt$, starting with arithmetic
  2584. operations. For example, consider the addition operation. We can use
  2585. the \key{addq} instruction, but it performs an in-place update. So we
  2586. could move $\itm{arg}_1$ into the left-hand side \itm{var} and then
  2587. add $\itm{arg}_2$ to \itm{var}. \\
  2588. \begin{tabular}{lll}
  2589. \begin{minipage}{0.4\textwidth}
  2590. \begin{lstlisting}
  2591. |$\itm{var}$| = (+ |$\itm{arg}_1$| |$\itm{arg}_2$|);
  2592. \end{lstlisting}
  2593. \end{minipage}
  2594. &
  2595. $\Rightarrow$
  2596. &
  2597. \begin{minipage}{0.4\textwidth}
  2598. \begin{lstlisting}
  2599. movq |$\itm{arg}_1$|, |$\itm{var}$|
  2600. addq |$\itm{arg}_2$|, |$\itm{var}$|
  2601. \end{lstlisting}
  2602. \end{minipage}
  2603. \end{tabular} \\
  2604. %
  2605. There are also cases that require special care to avoid generating
  2606. needlessly complicated code. For example, if one of the arguments of
  2607. the addition is the same variable as the left-hand side of the
  2608. assignment, then there is no need for the extra move instruction. The
  2609. assignment statement can be translated into a single \key{addq}
  2610. instruction as follows.\\
  2611. \begin{tabular}{lll}
  2612. \begin{minipage}{0.4\textwidth}
  2613. \begin{lstlisting}
  2614. |$\itm{var}$| = (+ |$\itm{arg}_1$| |$\itm{var}$|);
  2615. \end{lstlisting}
  2616. \end{minipage}
  2617. &
  2618. $\Rightarrow$
  2619. &
  2620. \begin{minipage}{0.4\textwidth}
  2621. \begin{lstlisting}
  2622. addq |$\itm{arg}_1$|, |$\itm{var}$|
  2623. \end{lstlisting}
  2624. \end{minipage}
  2625. \end{tabular}
  2626. The \key{read} operation does not have a direct counterpart in x86
  2627. assembly, so we provide this functionality with the function
  2628. \code{read\_int} in the file \code{runtime.c}, written in
  2629. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  2630. functionality in this file as the \emph{runtime system}\index{runtime
  2631. system}, or simply the \emph{runtime} for short. When compiling your
  2632. generated x86 assembly code, you need to compile \code{runtime.c} to
  2633. \code{runtime.o} (an ``object file'', using \code{gcc} option
  2634. \code{-c}) and link it into the executable. For our purposes of code
  2635. generation, all you need to do is translate an assignment of
  2636. \key{read} into a call to the \code{read\_int} function followed by a
  2637. move from \code{rax} to the left-hand-side variable. (Recall that the
  2638. return value of a function goes into \code{rax}.) \\
  2639. \begin{tabular}{lll}
  2640. \begin{minipage}{0.3\textwidth}
  2641. \begin{lstlisting}
  2642. |$\itm{var}$| = (read);
  2643. \end{lstlisting}
  2644. \end{minipage}
  2645. &
  2646. $\Rightarrow$
  2647. &
  2648. \begin{minipage}{0.3\textwidth}
  2649. \begin{lstlisting}
  2650. callq read_int
  2651. movq %rax, |$\itm{var}$|
  2652. \end{lstlisting}
  2653. \end{minipage}
  2654. \end{tabular}
  2655. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  2656. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  2657. assignment to the \key{rax} register followed by a jump to the
  2658. conclusion of the program (so the conclusion needs to be labeled).
  2659. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  2660. recursively and then append the resulting instructions.
  2661. \begin{exercise}
  2662. \normalfont Implement the \key{select-instructions} pass in
  2663. \code{compiler.rkt}. Create three new example programs that are
  2664. designed to exercise all of the interesting cases in this pass.
  2665. %
  2666. In the \code{run-tests.rkt} script, add the following entry to the
  2667. list of \code{passes} and then run the script to test your compiler.
  2668. \begin{lstlisting}
  2669. (list "instruction selection" select-instructions interp-pseudo-x86-0)
  2670. \end{lstlisting}
  2671. \end{exercise}
  2672. \section{Assign Homes}
  2673. \label{sec:assign-Rvar}
  2674. The \key{assign-homes} pass compiles \LangXVar{} programs to
  2675. \LangXVar{} programs that no longer use program variables.
  2676. Thus, the \key{assign-homes} pass is responsible for placing all of
  2677. the program variables in registers or on the stack. For runtime
  2678. efficiency, it is better to place variables in registers, but as there
  2679. are only 16 registers, some programs must necessarily resort to
  2680. placing some variables on the stack. In this chapter we focus on the
  2681. mechanics of placing variables on the stack. We study an algorithm for
  2682. placing variables in registers in
  2683. Chapter~\ref{ch:register-allocation-Rvar}.
  2684. Consider again the following \LangVar{} program from
  2685. Section~\ref{sec:remove-complex-opera-Rvar}.
  2686. % var_test_20.rkt
  2687. \begin{lstlisting}
  2688. (let ([a 42])
  2689. (let ([b a])
  2690. b))
  2691. \end{lstlisting}
  2692. The output of \code{select-instructions} is shown on the left and the
  2693. output of \code{assign-homes} on the right. In this example, we
  2694. assign variable \code{a} to stack location \code{-8(\%rbp)} and
  2695. variable \code{b} to location \code{-16(\%rbp)}.\\
  2696. \begin{tabular}{l}
  2697. \begin{minipage}{0.4\textwidth}
  2698. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  2699. locals-types:
  2700. a : Integer, b : Integer
  2701. start:
  2702. movq $42, a
  2703. movq a, b
  2704. movq b, %rax
  2705. jmp conclusion
  2706. \end{lstlisting}
  2707. \end{minipage}
  2708. {$\Rightarrow$}
  2709. \begin{minipage}{0.4\textwidth}
  2710. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  2711. stack-space: 16
  2712. start:
  2713. movq $42, -8(%rbp)
  2714. movq -8(%rbp), -16(%rbp)
  2715. movq -16(%rbp), %rax
  2716. jmp conclusion
  2717. \end{lstlisting}
  2718. \end{minipage}
  2719. \end{tabular}
  2720. The \code{locals-types} entry in the $\itm{info}$ of the
  2721. \code{X86Program} node is an alist mapping all the variables in the
  2722. program to their types (for now just \code{Integer}). The
  2723. \code{assign-homes} pass should replace all uses of those variables
  2724. with stack locations. As an aside, the \code{locals-types} entry is
  2725. computed by \code{type-check-Cvar} in the support code, which installs
  2726. it in the $\itm{info}$ field of the \code{CProgram} node, which should
  2727. be propagated to the \code{X86Program} node.
  2728. In the process of assigning variables to stack locations, it is
  2729. convenient for you to compute and store the size of the frame (in
  2730. bytes) in the $\itm{info}$ field of the \key{X86Program} node, with
  2731. the key \code{stack-space}, which is needed later to generate the
  2732. conclusion of the \code{main} procedure. The x86-64 standard requires
  2733. the frame size to be a multiple of 16 bytes.\index{frame}
  2734. \begin{exercise}\normalfont
  2735. Implement the \key{assign-homes} pass in \code{compiler.rkt}, defining
  2736. auxiliary functions for the non-terminals \Arg{}, \Instr{}, and
  2737. \Block{}. We recommend that the auxiliary functions take an extra
  2738. parameter that is an alist mapping variable names to homes (stack
  2739. locations for now).
  2740. %
  2741. In the \code{run-tests.rkt} script, add the following entry to the
  2742. list of \code{passes} and then run the script to test your compiler.
  2743. \begin{lstlisting}
  2744. (list "assign homes" assign-homes interp-x86-0)
  2745. \end{lstlisting}
  2746. \end{exercise}
  2747. \section{Patch Instructions}
  2748. \label{sec:patch-s0}
  2749. The \code{patch-instructions} pass compiles from \LangXVar{} to
  2750. \LangXInt{} by making sure that each instruction adheres to the
  2751. restriction that at most one argument of an instruction may be a
  2752. memory reference.
  2753. We return to the following example.
  2754. % var_test_20.rkt
  2755. \begin{lstlisting}
  2756. (let ([a 42])
  2757. (let ([b a])
  2758. b))
  2759. \end{lstlisting}
  2760. The \key{assign-homes} pass produces the following output
  2761. for this program. \\
  2762. \begin{minipage}{0.5\textwidth}
  2763. \begin{lstlisting}
  2764. stack-space: 16
  2765. start:
  2766. movq $42, -8(%rbp)
  2767. movq -8(%rbp), -16(%rbp)
  2768. movq -16(%rbp), %rax
  2769. jmp conclusion
  2770. \end{lstlisting}
  2771. \end{minipage}\\
  2772. The second \key{movq} instruction is problematic because both
  2773. arguments are stack locations. We suggest fixing this problem by
  2774. moving from the source location to the register \key{rax} and then
  2775. from \key{rax} to the destination location, as follows.
  2776. \begin{lstlisting}
  2777. movq -8(%rbp), %rax
  2778. movq %rax, -16(%rbp)
  2779. \end{lstlisting}
  2780. \begin{exercise}
  2781. \normalfont Implement the \key{patch-instructions} pass in
  2782. \code{compiler.rkt}. Create three new example programs that are
  2783. designed to exercise all of the interesting cases in this pass.
  2784. %
  2785. In the \code{run-tests.rkt} script, add the following entry to the
  2786. list of \code{passes} and then run the script to test your compiler.
  2787. \begin{lstlisting}
  2788. (list "patch instructions" patch-instructions interp-x86-0)
  2789. \end{lstlisting}
  2790. \end{exercise}
  2791. \section{Print x86}
  2792. \label{sec:print-x86}
  2793. The last step of the compiler from \LangVar{} to x86 is to convert the
  2794. \LangXInt{} AST (defined in Figure~\ref{fig:x86-int-ast}) to the
  2795. string representation (defined in
  2796. Figure~\ref{fig:x86-int-concrete}). The Racket \key{format} and
  2797. \key{string-append} functions are useful in this regard. The main work
  2798. that this step needs to perform is to create the \key{main} function
  2799. and the standard instructions for its prelude and conclusion, as shown
  2800. in Figure~\ref{fig:p1-x86} of Section~\ref{sec:x86}. You will need to
  2801. know the amount of space needed for the stack frame, which you can
  2802. obtain from the \code{stack-space} entry in the $\itm{info}$ field of
  2803. the \key{X86Program} node.
  2804. When running on Mac OS X, you compiler should prefix an underscore to
  2805. labels like \key{main}. The Racket call \code{(system-type 'os)} is
  2806. useful for determining which operating system the compiler is running
  2807. on. It returns \code{'macosx}, \code{'unix}, or \code{'windows}.
  2808. \begin{exercise}\normalfont
  2809. %
  2810. Implement the \key{print-x86} pass in \code{compiler.rkt}.
  2811. %
  2812. In the \code{run-tests.rkt} script, add the following entry to the
  2813. list of \code{passes} and then run the script to test your compiler.
  2814. \begin{lstlisting}
  2815. (list "print x86" print-x86 #f)
  2816. \end{lstlisting}
  2817. %
  2818. Uncomment the call to the \key{compiler-tests} function
  2819. (Appendix~\ref{appendix:utilities}), which tests your complete
  2820. compiler by executing the generated x86 code. Compile the provided
  2821. \key{runtime.c} file to \key{runtime.o} using \key{gcc}. Run the
  2822. script to test your compiler.
  2823. \end{exercise}
  2824. \section{Challenge: Partial Evaluator for \LangVar{}}
  2825. \label{sec:pe-Rvar}
  2826. \index{partial evaluation}
  2827. This section describes optional challenge exercises that involve
  2828. adapting and improving the partial evaluator for \LangInt{} that was
  2829. introduced in Section~\ref{sec:partial-evaluation}.
  2830. \begin{exercise}\label{ex:pe-Rvar}
  2831. \normalfont
  2832. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  2833. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  2834. instead of \LangInt{} programs. Recall that \LangVar{} adds \key{let} binding
  2835. and variables to the \LangInt{} language, so you will need to add cases for
  2836. them in the \code{pe-exp} function. Once complete, add the partial
  2837. evaluation pass to the front of your compiler and make sure that your
  2838. compiler still passes all of the tests.
  2839. \end{exercise}
  2840. The next exercise builds on Exercise~\ref{ex:pe-Rvar}.
  2841. \begin{exercise}
  2842. \normalfont
  2843. Improve on the partial evaluator by replacing the \code{pe-neg} and
  2844. \code{pe-add} auxiliary functions with functions that know more about
  2845. arithmetic. For example, your partial evaluator should translate
  2846. \[
  2847. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  2848. \code{(+ 2 (read))}
  2849. \]
  2850. To accomplish this, the \code{pe-exp} function should produce output
  2851. in the form of the $\itm{residual}$ non-terminal of the following
  2852. grammar. The idea is that when processing an addition expression, we
  2853. can always produce either 1) an integer constant, 2) and addition
  2854. expression with an integer constant on the left-hand side but not the
  2855. right-hand side, or 3) or an addition expression in which neither
  2856. subexpression is a constant.
  2857. \[
  2858. \begin{array}{lcl}
  2859. \itm{inert} &::=& \Var \mid \LP\key{read}\RP \mid \LP\key{-} \;\Var\RP
  2860. \mid \LP\key{-} \;\LP\key{read}\RP\RP
  2861. \mid \LP\key{+} \; \itm{inert} \; \itm{inert}\RP\\
  2862. &\mid& \LP\key{let}~\LP\LS\Var~\itm{inert}\RS\RP~ \itm{inert} \RP \\
  2863. \itm{residual} &::=& \Int \mid \LP\key{+}\; \Int\; \itm{inert}\RP \mid \itm{inert}
  2864. \end{array}
  2865. \]
  2866. The \code{pe-add} and \code{pe-neg} functions may assume that their
  2867. inputs are $\itm{residual}$ expressions and they should return
  2868. $\itm{residual}$ expressions. Once the improvements are complete,
  2869. make sure that your compiler still passes all of the tests. After
  2870. all, fast code is useless if it produces incorrect results!
  2871. \end{exercise}
  2872. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  2873. \chapter{Register Allocation}
  2874. \label{ch:register-allocation-Rvar}
  2875. \index{register allocation}
  2876. In Chapter~\ref{ch:Rvar} we learned how to store variables on the
  2877. stack. In this Chapter we learn how to improve the performance of the
  2878. generated code by placing some variables into registers. The CPU can
  2879. access a register in a single cycle, whereas accessing the stack can
  2880. take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
  2881. serves as a running example. The source program is on the left and the
  2882. output of instruction selection is on the right. The program is almost
  2883. in the x86 assembly language but it still uses variables.
  2884. \begin{figure}
  2885. \begin{minipage}{0.45\textwidth}
  2886. Example \LangVar{} program:
  2887. % var_test_28.rkt
  2888. \begin{lstlisting}
  2889. (let ([v 1])
  2890. (let ([w 42])
  2891. (let ([x (+ v 7)])
  2892. (let ([y x])
  2893. (let ([z (+ x w)])
  2894. (+ z (- y)))))))
  2895. \end{lstlisting}
  2896. \end{minipage}
  2897. \begin{minipage}{0.45\textwidth}
  2898. After instruction selection:
  2899. \begin{lstlisting}
  2900. locals-types:
  2901. x : Integer, y : Integer,
  2902. z : Integer, t : Integer,
  2903. v : Integer, w : Integer
  2904. start:
  2905. movq $1, v
  2906. movq $42, w
  2907. movq v, x
  2908. addq $7, x
  2909. movq x, y
  2910. movq x, z
  2911. addq w, z
  2912. movq y, t
  2913. negq t
  2914. movq z, %rax
  2915. addq t, %rax
  2916. jmp conclusion
  2917. \end{lstlisting}
  2918. \end{minipage}
  2919. \caption{A running example for register allocation.}
  2920. \label{fig:reg-eg}
  2921. \end{figure}
  2922. The goal of register allocation is to fit as many variables into
  2923. registers as possible. Some programs have more variables than
  2924. registers so we cannot always map each variable to a different
  2925. register. Fortunately, it is common for different variables to be
  2926. needed during different periods of time during program execution, and
  2927. in such cases several variables can be mapped to the same register.
  2928. Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
  2929. After the variable \code{x} is moved to \code{z} it is no longer
  2930. needed. Variable \code{z}, on the other hand, is used only after this
  2931. point, so \code{x} and \code{z} could share the same register. The
  2932. topic of Section~\ref{sec:liveness-analysis-Rvar} is how to compute
  2933. where a variable is needed. Once we have that information, we compute
  2934. which variables are needed at the same time, i.e., which ones
  2935. \emph{interfere} with each other, and represent this relation as an
  2936. undirected graph whose vertices are variables and edges indicate when
  2937. two variables interfere (Section~\ref{sec:build-interference}). We
  2938. then model register allocation as a graph coloring problem
  2939. (Section~\ref{sec:graph-coloring}).
  2940. If we run out of registers despite these efforts, we place the
  2941. remaining variables on the stack, similar to what we did in
  2942. Chapter~\ref{ch:Rvar}. It is common to use the verb \emph{spill}
  2943. for assigning a variable to a stack location. The decision to spill a
  2944. variable is handled as part of the graph coloring process
  2945. (Section~\ref{sec:graph-coloring}).
  2946. We make the simplifying assumption that each variable is assigned to
  2947. one location (a register or stack address). A more sophisticated
  2948. approach is to assign a variable to one or more locations in different
  2949. regions of the program. For example, if a variable is used many times
  2950. in short sequence and then only used again after many other
  2951. instructions, it could be more efficient to assign the variable to a
  2952. register during the initial sequence and then move it to the stack for
  2953. the rest of its lifetime. We refer the interested reader to
  2954. \citet{Cooper:2011aa} for more information about that approach.
  2955. % discuss prioritizing variables based on how much they are used.
  2956. \section{Registers and Calling Conventions}
  2957. \label{sec:calling-conventions}
  2958. \index{calling conventions}
  2959. As we perform register allocation, we need to be aware of the
  2960. \emph{calling conventions} \index{calling conventions} that govern how
  2961. functions calls are performed in x86.
  2962. %
  2963. Even though \LangVar{} does not include programmer-defined functions,
  2964. our generated code includes a \code{main} function that is called by
  2965. the operating system and our generated code contains calls to the
  2966. \code{read\_int} function.
  2967. Function calls require coordination between two pieces of code that
  2968. may be written by different programmers or generated by different
  2969. compilers. Here we follow the System V calling conventions that are
  2970. used by the GNU C compiler on Linux and
  2971. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  2972. %
  2973. The calling conventions include rules about how functions share the
  2974. use of registers. In particular, the caller is responsible for freeing
  2975. up some registers prior to the function call for use by the callee.
  2976. These are called the \emph{caller-saved registers}
  2977. \index{caller-saved registers}
  2978. and they are
  2979. \begin{lstlisting}
  2980. rax rcx rdx rsi rdi r8 r9 r10 r11
  2981. \end{lstlisting}
  2982. On the other hand, the callee is responsible for preserving the values
  2983. of the \emph{callee-saved registers}, \index{callee-saved registers}
  2984. which are
  2985. \begin{lstlisting}
  2986. rsp rbp rbx r12 r13 r14 r15
  2987. \end{lstlisting}
  2988. We can think about this caller/callee convention from two points of
  2989. view, the caller view and the callee view:
  2990. \begin{itemize}
  2991. \item The caller should assume that all the caller-saved registers get
  2992. overwritten with arbitrary values by the callee. On the other hand,
  2993. the caller can safely assume that all the callee-saved registers
  2994. contain the same values after the call that they did before the
  2995. call.
  2996. \item The callee can freely use any of the caller-saved registers.
  2997. However, if the callee wants to use a callee-saved register, the
  2998. callee must arrange to put the original value back in the register
  2999. prior to returning to the caller. This can be accomplished by saving
  3000. the value to the stack in the prelude of the function and restoring
  3001. the value in the conclusion of the function.
  3002. \end{itemize}
  3003. In x86, registers are also used for passing arguments to a function
  3004. and for the return value. In particular, the first six arguments to a
  3005. function are passed in the following six registers, in this order.
  3006. \begin{lstlisting}
  3007. rdi rsi rdx rcx r8 r9
  3008. \end{lstlisting}
  3009. If there are more than six arguments, then the convention is to use
  3010. space on the frame of the caller for the rest of the
  3011. arguments. However, in Chapter~\ref{ch:Rfun} we arrange never to
  3012. need more than six arguments. For now, the only function we care about
  3013. is \code{read\_int} and it takes zero arguments.
  3014. %
  3015. The register \code{rax} is used for the return value of a function.
  3016. The next question is how these calling conventions impact register
  3017. allocation. Consider the \LangVar{} program in
  3018. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3019. example from the caller point of view and then from the callee point
  3020. of view.
  3021. The program makes two calls to the \code{read} function. Also, the
  3022. variable \code{x} is in use during the second call to \code{read}, so
  3023. we need to make sure that the value in \code{x} does not get
  3024. accidentally wiped out by the call to \code{read}. One obvious
  3025. approach is to save all the values in caller-saved registers to the
  3026. stack prior to each function call, and restore them after each
  3027. call. That way, if the register allocator chooses to assign \code{x}
  3028. to a caller-saved register, its value will be preserved across the
  3029. call to \code{read}. However, saving and restoring to the stack is
  3030. relatively slow. If \code{x} is not used many times, it may be better
  3031. to assign \code{x} to a stack location in the first place. Or better
  3032. yet, if we can arrange for \code{x} to be placed in a callee-saved
  3033. register, then it won't need to be saved and restored during function
  3034. calls.
  3035. The approach that we recommend for variables that are in use during a
  3036. function call is to either assign them to callee-saved registers or to
  3037. spill them to the stack. On the other hand, for variables that are not
  3038. in use during a function call, we try the following alternatives in
  3039. order 1) look for an available caller-saved register (to leave room
  3040. for other variables in the callee-saved register), 2) look for a
  3041. callee-saved register, and 3) spill the variable to the stack.
  3042. It is straightforward to implement this approach in a graph coloring
  3043. register allocator. First, we know which variables are in use during
  3044. every function call because we compute that information for every
  3045. instruction (Section~\ref{sec:liveness-analysis-Rvar}). Second, when we
  3046. build the interference graph (Section~\ref{sec:build-interference}),
  3047. we can place an edge between each of these variables and the
  3048. caller-saved registers in the interference graph. This will prevent
  3049. the graph coloring algorithm from assigning those variables to
  3050. caller-saved registers.
  3051. Returning to the example in
  3052. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3053. generated x86 code on the right-hand side, focusing on the
  3054. \code{start} block. Notice that variable \code{x} is assigned to
  3055. \code{rbx}, a callee-saved register. Thus, it is already in a safe
  3056. place during the second call to \code{read\_int}. Next, notice that
  3057. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  3058. because there are no function calls in the remainder of the block.
  3059. Next we analyze the example from the callee point of view, focusing on
  3060. the prelude and conclusion of the \code{main} function. As usual the
  3061. prelude begins with saving the \code{rbp} register to the stack and
  3062. setting the \code{rbp} to the current stack pointer. We now know why
  3063. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3064. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3065. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3066. (\code{x}). The other callee-saved registers are not saved in the
  3067. prelude because they are not used. The prelude subtracts 8 bytes from
  3068. the \code{rsp} to make it 16-byte aligned and then jumps to the
  3069. \code{start} block. Shifting attention to the \code{conclusion}, we
  3070. see that \code{rbx} is restored from the stack with a \code{popq}
  3071. instruction. \index{prelude}\index{conclusion}
  3072. \begin{figure}[tp]
  3073. \begin{minipage}{0.45\textwidth}
  3074. Example \LangVar{} program:
  3075. %var_test_14.rkt
  3076. \begin{lstlisting}
  3077. (let ([x (read)])
  3078. (let ([y (read)])
  3079. (+ (+ x y) 42)))
  3080. \end{lstlisting}
  3081. \end{minipage}
  3082. \begin{minipage}{0.45\textwidth}
  3083. Generated x86 assembly:
  3084. \begin{lstlisting}
  3085. start:
  3086. callq read_int
  3087. movq %rax, %rbx
  3088. callq read_int
  3089. movq %rax, %rcx
  3090. addq %rcx, %rbx
  3091. movq %rbx, %rax
  3092. addq $42, %rax
  3093. jmp _conclusion
  3094. .globl main
  3095. main:
  3096. pushq %rbp
  3097. movq %rsp, %rbp
  3098. pushq %rbx
  3099. subq $8, %rsp
  3100. jmp start
  3101. conclusion:
  3102. addq $8, %rsp
  3103. popq %rbx
  3104. popq %rbp
  3105. retq
  3106. \end{lstlisting}
  3107. \end{minipage}
  3108. \caption{An example with function calls.}
  3109. \label{fig:example-calling-conventions}
  3110. \end{figure}
  3111. \clearpage
  3112. \section{Liveness Analysis}
  3113. \label{sec:liveness-analysis-Rvar}
  3114. \index{liveness analysis}
  3115. The \code{uncover-live} pass performs \emph{liveness analysis}, that
  3116. is, it discovers which variables are in-use in different regions of a
  3117. program.
  3118. %
  3119. A variable or register is \emph{live} at a program point if its
  3120. current value is used at some later point in the program. We
  3121. refer to variables and registers collectively as \emph{locations}.
  3122. %
  3123. Consider the following code fragment in which there are two writes to
  3124. \code{b}. Are \code{a} and \code{b} both live at the same time?
  3125. \begin{center}
  3126. \begin{minipage}{0.96\textwidth}
  3127. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3128. movq $5, a
  3129. movq $30, b
  3130. movq a, c
  3131. movq $10, b
  3132. addq b, c
  3133. \end{lstlisting}
  3134. \end{minipage}
  3135. \end{center}
  3136. The answer is no because \code{a} is live from line 1 to 3 and
  3137. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  3138. line 2 is never used because it is overwritten (line 4) before the
  3139. next read (line 5).
  3140. \begin{wrapfigure}[19]{l}[1.0in]{0.6\textwidth}
  3141. \small
  3142. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  3143. A \emph{set} is an unordered collection of elements without duplicates.
  3144. \index{set}
  3145. \begin{description}
  3146. \item[$\LP\code{set}\,v\,\ldots\RP$] constructs a set containing the specified elements.
  3147. \item[$\LP\code{set-union}\,set_1\,set_2\RP$] returns the union of the two sets.
  3148. \item[$\LP\code{set-subtract}\,set_1\,set_2\RP$] returns the difference of the two sets.
  3149. \item[$\LP\code{set-member?}\,set\,v\RP$] is element $v$ in $set$?
  3150. \item[$\LP\code{set-count}\,set\RP$] how many unique elements are in $set$?
  3151. \item[$\LP\code{set->list}\,set\RP$] converts the set to a list.
  3152. \end{description}
  3153. \end{tcolorbox}
  3154. \end{wrapfigure}
  3155. The live locations can be computed by traversing the instruction
  3156. sequence back to front (i.e., backwards in execution order). Let
  3157. $I_1,\ldots, I_n$ be the instruction sequence. We write
  3158. $L_{\mathsf{after}}(k)$ for the set of live locations after
  3159. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  3160. locations before instruction $I_k$. The live locations after an
  3161. instruction are always the same as the live locations before the next
  3162. instruction. \index{live-after} \index{live-before}
  3163. \begin{equation} \label{eq:live-after-before-next}
  3164. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  3165. \end{equation}
  3166. To start things off, there are no live locations after the last
  3167. instruction, so
  3168. \begin{equation}\label{eq:live-last-empty}
  3169. L_{\mathsf{after}}(n) = \emptyset
  3170. \end{equation}
  3171. We then apply the following rule repeatedly, traversing the
  3172. instruction sequence back to front.
  3173. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  3174. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  3175. \end{equation}
  3176. where $W(k)$ are the locations written to by instruction $I_k$ and
  3177. $R(k)$ are the locations read by instruction $I_k$.
  3178. There is a special case for \code{jmp} instructions. The locations
  3179. that are live before a \code{jmp} should be the locations in
  3180. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  3181. maintaining an alist named \code{label->live} that maps each label to
  3182. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  3183. now the only \code{jmp} in a \LangXVar{} program is the one at the
  3184. end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
  3185. The conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should
  3186. map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  3187. Let us walk through the above example, applying these formulas
  3188. starting with the instruction on line 5. We collect the answers in
  3189. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  3190. \code{addq b, c} instruction is $\emptyset$ because it is the last
  3191. instruction (formula~\ref{eq:live-last-empty}). The
  3192. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  3193. because it reads from variables \code{b} and \code{c}
  3194. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  3195. \[
  3196. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  3197. \]
  3198. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  3199. the live-before set from line 5 to be the live-after set for this
  3200. instruction (formula~\ref{eq:live-after-before-next}).
  3201. \[
  3202. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  3203. \]
  3204. This move instruction writes to \code{b} and does not read from any
  3205. variables, so we have the following live-before set
  3206. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  3207. \[
  3208. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  3209. \]
  3210. The live-before for instruction \code{movq a, c}
  3211. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  3212. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  3213. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  3214. variable that is not live and does not read from a variable.
  3215. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  3216. because it writes to variable \code{a}.
  3217. \begin{figure}[tbp]
  3218. \begin{minipage}{0.45\textwidth}
  3219. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3220. movq $5, a
  3221. movq $30, b
  3222. movq a, c
  3223. movq $10, b
  3224. addq b, c
  3225. \end{lstlisting}
  3226. \end{minipage}
  3227. \vrule\hspace{10pt}
  3228. \begin{minipage}{0.45\textwidth}
  3229. \begin{align*}
  3230. L_{\mathsf{before}}(1)= \emptyset,
  3231. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  3232. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  3233. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  3234. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  3235. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  3236. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  3237. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  3238. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  3239. L_{\mathsf{after}}(5)= \emptyset
  3240. \end{align*}
  3241. \end{minipage}
  3242. \caption{Example output of liveness analysis on a short example.}
  3243. \label{fig:liveness-example-0}
  3244. \end{figure}
  3245. \begin{exercise}\normalfont
  3246. Perform liveness analysis on the running example in
  3247. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  3248. sets for each instruction. Compare your answers to the solution
  3249. shown in Figure~\ref{fig:live-eg}.
  3250. \end{exercise}
  3251. \begin{figure}[tp]
  3252. \hspace{20pt}
  3253. \begin{minipage}{0.45\textwidth}
  3254. \begin{lstlisting}
  3255. |$\{\ttm{rsp}\}$|
  3256. movq $1, v
  3257. |$\{\ttm{v},\ttm{rsp}\}$|
  3258. movq $42, w
  3259. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  3260. movq v, x
  3261. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3262. addq $7, x
  3263. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3264. movq x, y
  3265. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  3266. movq x, z
  3267. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3268. addq w, z
  3269. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3270. movq y, t
  3271. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3272. negq t
  3273. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3274. movq z, %rax
  3275. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  3276. addq t, %rax
  3277. |$\{\ttm{rax},\ttm{rsp}\}$|
  3278. jmp conclusion
  3279. \end{lstlisting}
  3280. \end{minipage}
  3281. \caption{The running example annotated with live-after sets.}
  3282. \label{fig:live-eg}
  3283. \end{figure}
  3284. \begin{exercise}\normalfont
  3285. Implement the \code{uncover-live} pass. Store the sequence of
  3286. live-after sets in the $\itm{info}$ field of the \code{Block}
  3287. structure.
  3288. %
  3289. We recommend creating an auxiliary function that takes a list of
  3290. instructions and an initial live-after set (typically empty) and
  3291. returns the list of live-after sets.
  3292. %
  3293. We also recommend creating auxiliary functions to 1) compute the set
  3294. of locations that appear in an \Arg{}, 2) compute the locations read
  3295. by an instruction (the $R$ function), and 3) the locations written by
  3296. an instruction (the $W$ function). The \code{callq} instruction should
  3297. include all of the caller-saved registers in its write-set $W$ because
  3298. the calling convention says that those registers may be written to
  3299. during the function call. Likewise, the \code{callq} instruction
  3300. should include the appropriate argument-passing registers in its
  3301. read-set $R$, depending on the arity of the function being
  3302. called. (This is why the abstract syntax for \code{callq} includes the
  3303. arity.)
  3304. \end{exercise}
  3305. \clearpage
  3306. \section{Build the Interference Graph}
  3307. \label{sec:build-interference}
  3308. \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
  3309. \small
  3310. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  3311. A \emph{graph} is a collection of vertices and edges where each
  3312. edge connects two vertices. A graph is \emph{directed} if each
  3313. edge points from a source to a target. Otherwise the graph is
  3314. \emph{undirected}.
  3315. \index{graph}\index{directed graph}\index{undirected graph}
  3316. \begin{description}
  3317. %% We currently don't use directed graphs. We instead use
  3318. %% directed multi-graphs. -Jeremy
  3319. %% \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  3320. %% directed graph from a list of edges. Each edge is a list
  3321. %% containing the source and target vertex.
  3322. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  3323. undirected graph from a list of edges. Each edge is represented by
  3324. a list containing two vertices.
  3325. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  3326. inserts a vertex into the graph.
  3327. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  3328. inserts an edge between the two vertices into the graph.
  3329. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  3330. returns a sequence of all the neighbors of the given vertex.
  3331. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  3332. returns a sequence of all the vertices in the graph.
  3333. \end{description}
  3334. \end{tcolorbox}
  3335. \end{wrapfigure}
  3336. Based on the liveness analysis, we know where each location is live.
  3337. However, during register allocation, we need to answer questions of
  3338. the specific form: are locations $u$ and $v$ live at the same time?
  3339. (And therefore cannot be assigned to the same register.) To make this
  3340. question more efficient to answer, we create an explicit data
  3341. structure, an \emph{interference graph}\index{interference graph}. An
  3342. interference graph is an undirected graph that has an edge between two
  3343. locations if they are live at the same time, that is, if they
  3344. interfere with each other.
  3345. An obvious way to compute the interference graph is to look at the set
  3346. of live locations between each instruction and the next and add an edge to the graph
  3347. for every pair of variables in the same set. This approach is less
  3348. than ideal for two reasons. First, it can be expensive because it
  3349. takes $O(n^2)$ time to consider at every pair in a set of $n$ live
  3350. locations. Second, in the special case where two locations hold the
  3351. same value (because one was assigned to the other), they can be live
  3352. at the same time without interfering with each other.
  3353. A better way to compute the interference graph is to focus on
  3354. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  3355. must not overwrite something in a live location. So for each
  3356. instruction, we create an edge between the locations being written to
  3357. and the live locations. (Except that one should not create self
  3358. edges.) Note that for the \key{callq} instruction, we consider all of
  3359. the caller-saved registers as being written to, so an edge is added
  3360. between every live variable and every caller-saved register. For
  3361. \key{movq}, we deal with the above-mentioned special case by not
  3362. adding an edge between a live variable $v$ and the destination if $v$
  3363. matches the source. So we have the following two rules.
  3364. \begin{enumerate}
  3365. \item If instruction $I_k$ is a move such as \key{movq} $s$\key{,}
  3366. $d$, then add the edge $(d,v)$ for every $v \in
  3367. L_{\mathsf{after}}(k)$ unless $v = d$ or $v = s$.
  3368. \item For any other instruction $I_k$, for every $d \in W(k)$
  3369. add an edge $(d,v)$ for every $v \in L_{\mathsf{after}}(k)$ unless $v = d$.
  3370. %% \item If instruction $I_k$ is an arithmetic instruction such as
  3371. %% \code{addq} $s$\key{,} $d$, then add the edge $(d,v)$ for every $v \in
  3372. %% L_{\mathsf{after}}(k)$ unless $v = d$.
  3373. %% \item If instruction $I_k$ is of the form \key{callq}
  3374. %% $\mathit{label}$, then add an edge $(r,v)$ for every caller-saved
  3375. %% register $r$ and every variable $v \in L_{\mathsf{after}}(k)$.
  3376. \end{enumerate}
  3377. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  3378. the above rules to each instruction. We highlight a few of the
  3379. instructions. The first instruction is \lstinline{movq $1, v} and the
  3380. live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies, so \code{v}
  3381. interferes with \code{rsp}.
  3382. %
  3383. The fourth instruction is \lstinline{addq $7, x} and the live-after
  3384. set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so $\ttm{x}$
  3385. interferes with \ttm{w} and \ttm{rsp}.
  3386. %
  3387. The next instruction is \lstinline{movq x, y} and the live-after set
  3388. is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1 applies, so \ttm{y}
  3389. interferes with \ttm{w} and \ttm{rsp} but not \ttm{x} because \ttm{x}
  3390. is the source of the move and therefore \ttm{x} and \ttm{y} hold the
  3391. same value. Figure~\ref{fig:interference-results} lists the
  3392. interference results for all of the instructions and the resulting
  3393. interference graph is shown in Figure~\ref{fig:interfere}.
  3394. \begin{figure}[tbp]
  3395. \begin{quote}
  3396. \begin{tabular}{ll}
  3397. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  3398. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  3399. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  3400. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  3401. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  3402. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  3403. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  3404. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  3405. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  3406. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  3407. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  3408. \lstinline!jmp conclusion!& no interference.
  3409. \end{tabular}
  3410. \end{quote}
  3411. \caption{Interference results for the running example.}
  3412. \label{fig:interference-results}
  3413. \end{figure}
  3414. \begin{figure}[tbp]
  3415. \large
  3416. \[
  3417. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3418. \node (rax) at (0,0) {$\ttm{rax}$};
  3419. \node (rsp) at (9,2) {$\ttm{rsp}$};
  3420. \node (t1) at (0,2) {$\ttm{t}$};
  3421. \node (z) at (3,2) {$\ttm{z}$};
  3422. \node (x) at (6,2) {$\ttm{x}$};
  3423. \node (y) at (3,0) {$\ttm{y}$};
  3424. \node (w) at (6,0) {$\ttm{w}$};
  3425. \node (v) at (9,0) {$\ttm{v}$};
  3426. \draw (t1) to (rax);
  3427. \draw (t1) to (z);
  3428. \draw (z) to (y);
  3429. \draw (z) to (w);
  3430. \draw (x) to (w);
  3431. \draw (y) to (w);
  3432. \draw (v) to (w);
  3433. \draw (v) to (rsp);
  3434. \draw (w) to (rsp);
  3435. \draw (x) to (rsp);
  3436. \draw (y) to (rsp);
  3437. \path[-.,bend left=15] (z) edge node {} (rsp);
  3438. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3439. \draw (rax) to (rsp);
  3440. \end{tikzpicture}
  3441. \]
  3442. \caption{The interference graph of the example program.}
  3443. \label{fig:interfere}
  3444. \end{figure}
  3445. %% Our next concern is to choose a data structure for representing the
  3446. %% interference graph. There are many choices for how to represent a
  3447. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  3448. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  3449. %% data structure is to study the algorithm that uses the data structure,
  3450. %% determine what operations need to be performed, and then choose the
  3451. %% data structure that provide the most efficient implementations of
  3452. %% those operations. Often times the choice of data structure can have an
  3453. %% effect on the time complexity of the algorithm, as it does here. If
  3454. %% you skim the next section, you will see that the register allocation
  3455. %% algorithm needs to ask the graph for all of its vertices and, given a
  3456. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  3457. %% correct choice of graph representation is that of an adjacency
  3458. %% list. There are helper functions in \code{utilities.rkt} for
  3459. %% representing graphs using the adjacency list representation:
  3460. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  3461. %% (Appendix~\ref{appendix:utilities}).
  3462. %% %
  3463. %% \margincomment{\footnotesize To do: change to use the
  3464. %% Racket graph library. \\ --Jeremy}
  3465. %% %
  3466. %% In particular, those functions use a hash table to map each vertex to
  3467. %% the set of adjacent vertices, and the sets are represented using
  3468. %% Racket's \key{set}, which is also a hash table.
  3469. \begin{exercise}\normalfont
  3470. Implement the compiler pass named \code{build-interference} according
  3471. to the algorithm suggested above. We recommend using the \code{graph}
  3472. package to create and inspect the interference graph. The output
  3473. graph of this pass should be stored in the $\itm{info}$ field of the
  3474. program, under the key \code{conflicts}.
  3475. \end{exercise}
  3476. \section{Graph Coloring via Sudoku}
  3477. \label{sec:graph-coloring}
  3478. \index{graph coloring}
  3479. \index{Sudoku}
  3480. \index{color}
  3481. We come to the main event, mapping variables to registers and stack
  3482. locations. Variables that interfere with each other must be mapped to
  3483. different locations. In terms of the interference graph, this means
  3484. that adjacent vertices must be mapped to different locations. If we
  3485. think of locations as colors, the register allocation problem becomes
  3486. the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  3487. The reader may be more familiar with the graph coloring problem than he
  3488. or she realizes; the popular game of Sudoku is an instance of the
  3489. graph coloring problem. The following describes how to build a graph
  3490. out of an initial Sudoku board.
  3491. \begin{itemize}
  3492. \item There is one vertex in the graph for each Sudoku square.
  3493. \item There is an edge between two vertices if the corresponding squares
  3494. are in the same row, in the same column, or if the squares are in
  3495. the same $3\times 3$ region.
  3496. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  3497. \item Based on the initial assignment of numbers to squares in the
  3498. Sudoku board, assign the corresponding colors to the corresponding
  3499. vertices in the graph.
  3500. \end{itemize}
  3501. If you can color the remaining vertices in the graph with the nine
  3502. colors, then you have also solved the corresponding game of Sudoku.
  3503. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  3504. the corresponding graph with colored vertices. We map the Sudoku
  3505. number 1 to blue, 2 to yellow, and 3 to red. We only show edges for a
  3506. sampling of the vertices (the colored ones) because showing edges for
  3507. all of the vertices would make the graph unreadable.
  3508. \begin{figure}[tbp]
  3509. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  3510. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph}
  3511. \caption{A Sudoku game board and the corresponding colored graph.}
  3512. \label{fig:sudoku-graph}
  3513. \end{figure}
  3514. It turns out that some techniques for playing Sudoku correspond to
  3515. heuristics used in graph coloring algorithms. For example, one of the
  3516. basic techniques for Sudoku is called Pencil Marks. The idea is to use
  3517. a process of elimination to determine what numbers are no longer
  3518. available for a square and write down those numbers in the square
  3519. (writing very small). For example, if the number $1$ is assigned to a
  3520. square, then write the pencil mark $1$ in all the squares in the same
  3521. row, column, and region.
  3522. %
  3523. The Pencil Marks technique corresponds to the notion of
  3524. \emph{saturation}\index{saturation} due to \cite{Brelaz:1979eu}. The
  3525. saturation of a vertex, in Sudoku terms, is the set of numbers that
  3526. are no longer available. In graph terminology, we have the following
  3527. definition:
  3528. \begin{equation*}
  3529. \mathrm{saturation}(u) = \{ c \mid \exists v. v \in \mathrm{neighbors}(u)
  3530. \text{ and } \mathrm{color}(v) = c \}
  3531. \end{equation*}
  3532. where $\mathrm{neighbors}(u)$ is the set of vertices that share an
  3533. edge with $u$.
  3534. Using the Pencil Marks technique leads to a simple strategy for
  3535. filling in numbers: if there is a square with only one possible number
  3536. left, then choose that number! But what if there are no squares with
  3537. only one possibility left? One brute-force approach is to try them
  3538. all: choose the first one and if it ultimately leads to a solution,
  3539. great. If not, backtrack and choose the next possibility. One good
  3540. thing about Pencil Marks is that it reduces the degree of branching in
  3541. the search tree. Nevertheless, backtracking can be horribly time
  3542. consuming. One way to reduce the amount of backtracking is to use the
  3543. most-constrained-first heuristic. That is, when choosing a square,
  3544. always choose one with the fewest possibilities left (the vertex with
  3545. the highest saturation). The idea is that choosing highly constrained
  3546. squares earlier rather than later is better because later on there may
  3547. not be any possibilities left in the highly saturated squares.
  3548. However, register allocation is easier than Sudoku because the
  3549. register allocator can map variables to stack locations when the
  3550. registers run out. Thus, it makes sense to replace backtracking with
  3551. greedy search: make the best choice at the time and keep going. We
  3552. still wish to minimize the number of colors needed, so we use the
  3553. most-constrained-first heuristic in the greedy search.
  3554. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  3555. algorithm for register allocation based on saturation and the
  3556. most-constrained-first heuristic. It is roughly equivalent to the
  3557. DSATUR
  3558. algorithm~\citep{Brelaz:1979eu,Gebremedhin:1999fk,Omari:2006uq}. Just
  3559. as in Sudoku, the algorithm represents colors with integers. The
  3560. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  3561. for register allocation. The integers $k$ and larger correspond to
  3562. stack locations. The registers that are not used for register
  3563. allocation, such as \code{rax}, are assigned to negative integers. In
  3564. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  3565. %% One might wonder why we include registers at all in the liveness
  3566. %% analysis and interference graph. For example, we never allocate a
  3567. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  3568. %% leave them out. As we see in Chapter~\ref{ch:Rvec}, when we begin
  3569. %% to use register for passing arguments to functions, it will be
  3570. %% necessary for those registers to appear in the interference graph
  3571. %% because those registers will also be assigned to variables, and we
  3572. %% don't want those two uses to encroach on each other. Regarding
  3573. %% registers such as \code{rax} and \code{rsp} that are not used for
  3574. %% variables, we could omit them from the interference graph but that
  3575. %% would require adding special cases to our algorithm, which would
  3576. %% complicate the logic for little gain.
  3577. \begin{figure}[btp]
  3578. \centering
  3579. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  3580. Algorithm: DSATUR
  3581. Input: a graph |$G$|
  3582. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  3583. |$W \gets \mathrm{vertices}(G)$|
  3584. while |$W \neq \emptyset$| do
  3585. pick a vertex |$u$| from |$W$| with the highest saturation,
  3586. breaking ties randomly
  3587. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  3588. |$\mathrm{color}[u] \gets c$|
  3589. |$W \gets W - \{u\}$|
  3590. \end{lstlisting}
  3591. \caption{The saturation-based greedy graph coloring algorithm.}
  3592. \label{fig:satur-algo}
  3593. \end{figure}
  3594. With the DSATUR algorithm in hand, let us return to the running
  3595. example and consider how to color the interference graph in
  3596. Figure~\ref{fig:interfere}.
  3597. %
  3598. We start by assigning the register nodes to their own color. For
  3599. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  3600. assigned $-2$. The variables are not yet colored, so they are
  3601. annotated with a dash. We then update the saturation for vertices that
  3602. are adjacent to a register, obtaining the following annotated
  3603. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  3604. it interferes with both \code{rax} and \code{rsp}.
  3605. \[
  3606. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3607. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  3608. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  3609. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  3610. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  3611. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3612. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  3613. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  3614. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3615. \draw (t1) to (rax);
  3616. \draw (t1) to (z);
  3617. \draw (z) to (y);
  3618. \draw (z) to (w);
  3619. \draw (x) to (w);
  3620. \draw (y) to (w);
  3621. \draw (v) to (w);
  3622. \draw (v) to (rsp);
  3623. \draw (w) to (rsp);
  3624. \draw (x) to (rsp);
  3625. \draw (y) to (rsp);
  3626. \path[-.,bend left=15] (z) edge node {} (rsp);
  3627. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3628. \draw (rax) to (rsp);
  3629. \end{tikzpicture}
  3630. \]
  3631. The algorithm says to select a maximally saturated vertex. So we pick
  3632. $\ttm{t}$ and color it with the first available integer, which is
  3633. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  3634. and \ttm{rsp} because they interfere with $\ttm{t}$.
  3635. \[
  3636. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3637. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3638. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  3639. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  3640. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  3641. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3642. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  3643. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  3644. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3645. \draw (t1) to (rax);
  3646. \draw (t1) to (z);
  3647. \draw (z) to (y);
  3648. \draw (z) to (w);
  3649. \draw (x) to (w);
  3650. \draw (y) to (w);
  3651. \draw (v) to (w);
  3652. \draw (v) to (rsp);
  3653. \draw (w) to (rsp);
  3654. \draw (x) to (rsp);
  3655. \draw (y) to (rsp);
  3656. \path[-.,bend left=15] (z) edge node {} (rsp);
  3657. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3658. \draw (rax) to (rsp);
  3659. \end{tikzpicture}
  3660. \]
  3661. We repeat the process, selecting the next maximally saturated vertex,
  3662. which is \code{z}, and color it with the first available number, which
  3663. is $1$. We add $1$ to the saturation for the neighboring vertices
  3664. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  3665. \[
  3666. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3667. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3668. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  3669. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3670. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3671. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  3672. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  3673. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  3674. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  3675. \draw (t1) to (rax);
  3676. \draw (t1) to (z);
  3677. \draw (z) to (y);
  3678. \draw (z) to (w);
  3679. \draw (x) to (w);
  3680. \draw (y) to (w);
  3681. \draw (v) to (w);
  3682. \draw (v) to (rsp);
  3683. \draw (w) to (rsp);
  3684. \draw (x) to (rsp);
  3685. \draw (y) to (rsp);
  3686. \path[-.,bend left=15] (z) edge node {} (rsp);
  3687. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3688. \draw (rax) to (rsp);
  3689. \end{tikzpicture}
  3690. \]
  3691. The most saturated vertices are now \code{w} and \code{y}. We color
  3692. \code{w} with the first available color, which is $0$.
  3693. \[
  3694. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3695. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3696. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  3697. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3698. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  3699. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3700. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  3701. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  3702. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  3703. \draw (t1) to (rax);
  3704. \draw (t1) to (z);
  3705. \draw (z) to (y);
  3706. \draw (z) to (w);
  3707. \draw (x) to (w);
  3708. \draw (y) to (w);
  3709. \draw (v) to (w);
  3710. \draw (v) to (rsp);
  3711. \draw (w) to (rsp);
  3712. \draw (x) to (rsp);
  3713. \draw (y) to (rsp);
  3714. \path[-.,bend left=15] (z) edge node {} (rsp);
  3715. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3716. \draw (rax) to (rsp);
  3717. \end{tikzpicture}
  3718. \]
  3719. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  3720. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  3721. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  3722. and \code{z}, whose colors are $0$ and $1$ respectively.
  3723. \[
  3724. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3725. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3726. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3727. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3728. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3729. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3730. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3731. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3732. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  3733. \draw (t1) to (rax);
  3734. \draw (t1) to (z);
  3735. \draw (z) to (y);
  3736. \draw (z) to (w);
  3737. \draw (x) to (w);
  3738. \draw (y) to (w);
  3739. \draw (v) to (w);
  3740. \draw (v) to (rsp);
  3741. \draw (w) to (rsp);
  3742. \draw (x) to (rsp);
  3743. \draw (y) to (rsp);
  3744. \path[-.,bend left=15] (z) edge node {} (rsp);
  3745. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3746. \draw (rax) to (rsp);
  3747. \end{tikzpicture}
  3748. \]
  3749. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  3750. \[
  3751. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3752. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3753. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3754. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3755. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3756. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  3757. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3758. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3759. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  3760. \draw (t1) to (rax);
  3761. \draw (t1) to (z);
  3762. \draw (z) to (y);
  3763. \draw (z) to (w);
  3764. \draw (x) to (w);
  3765. \draw (y) to (w);
  3766. \draw (v) to (w);
  3767. \draw (v) to (rsp);
  3768. \draw (w) to (rsp);
  3769. \draw (x) to (rsp);
  3770. \draw (y) to (rsp);
  3771. \path[-.,bend left=15] (z) edge node {} (rsp);
  3772. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3773. \draw (rax) to (rsp);
  3774. \end{tikzpicture}
  3775. \]
  3776. In the last step of the algorithm, we color \code{x} with $1$.
  3777. \[
  3778. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3779. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  3780. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  3781. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  3782. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  3783. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  3784. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  3785. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  3786. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  3787. \draw (t1) to (rax);
  3788. \draw (t1) to (z);
  3789. \draw (z) to (y);
  3790. \draw (z) to (w);
  3791. \draw (x) to (w);
  3792. \draw (y) to (w);
  3793. \draw (v) to (w);
  3794. \draw (v) to (rsp);
  3795. \draw (w) to (rsp);
  3796. \draw (x) to (rsp);
  3797. \draw (y) to (rsp);
  3798. \path[-.,bend left=15] (z) edge node {} (rsp);
  3799. \path[-.,bend left=10] (t1) edge node {} (rsp);
  3800. \draw (rax) to (rsp);
  3801. \end{tikzpicture}
  3802. \]
  3803. \begin{wrapfigure}[25]{r}[1.0in]{0.6\textwidth}
  3804. \small
  3805. \begin{tcolorbox}[title=Priority Queue]
  3806. A \emph{priority queue} is a collection of items in which the
  3807. removal of items is governed by priority. In a ``min'' queue,
  3808. lower priority items are removed first. An implementation is in
  3809. \code{priority\_queue.rkt} of the support code. \index{priority
  3810. queue} \index{minimum priority queue}
  3811. \begin{description}
  3812. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  3813. priority queue that uses the $\itm{cmp}$ predicate to determine
  3814. whether its first argument has lower or equal priority to its
  3815. second argument.
  3816. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  3817. items in the queue.
  3818. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  3819. the item into the queue and returns a handle for the item in the
  3820. queue.
  3821. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  3822. the lowest priority.
  3823. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  3824. notifies the queue that the priority has decreased for the item
  3825. associated with the given handle.
  3826. \end{description}
  3827. \end{tcolorbox}
  3828. \end{wrapfigure}
  3829. We recommend creating an auxiliary function named \code{color-graph}
  3830. that takes an interference graph and a list of all the variables in
  3831. the program. This function should return a mapping of variables to
  3832. their colors (represented as natural numbers). By creating this helper
  3833. function, you will be able to reuse it in Chapter~\ref{ch:Rfun}
  3834. when we add support for functions.
  3835. To prioritize the processing of highly saturated nodes inside the
  3836. \code{color-graph} function, we recommend using the priority queue
  3837. data structure (see the side bar on the right). In addition, you will
  3838. need to maintain a mapping from variables to their ``handles'' in the
  3839. priority queue so that you can notify the priority queue when their
  3840. saturation changes.
  3841. With the coloring complete, we finalize the assignment of variables to
  3842. registers and stack locations. We map the first $k$ colors to the $k$
  3843. registers and the rest of the colors to stack locations. Suppose for
  3844. the moment that we have just one register to use for register
  3845. allocation, \key{rcx}. Then we have the following map from colors to
  3846. locations.
  3847. \[
  3848. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  3849. \]
  3850. Composing this mapping with the coloring, we arrive at the following
  3851. assignment of variables to locations.
  3852. \begin{gather*}
  3853. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  3854. \ttm{w} \mapsto \key{\%rcx}, \,
  3855. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  3856. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  3857. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  3858. \ttm{t} \mapsto \key{\%rcx} \}
  3859. \end{gather*}
  3860. Adapt the code from the \code{assign-homes} pass
  3861. (Section~\ref{sec:assign-Rvar}) to replace the variables with their
  3862. assigned location. Applying the above assignment to our running
  3863. example, on the left, yields the program on the right.
  3864. % why frame size of 32? -JGS
  3865. \begin{center}
  3866. \begin{minipage}{0.3\textwidth}
  3867. \begin{lstlisting}
  3868. movq $1, v
  3869. movq $42, w
  3870. movq v, x
  3871. addq $7, x
  3872. movq x, y
  3873. movq x, z
  3874. addq w, z
  3875. movq y, t
  3876. negq t
  3877. movq z, %rax
  3878. addq t, %rax
  3879. jmp conclusion
  3880. \end{lstlisting}
  3881. \end{minipage}
  3882. $\Rightarrow\qquad$
  3883. \begin{minipage}{0.45\textwidth}
  3884. \begin{lstlisting}
  3885. movq $1, -8(%rbp)
  3886. movq $42, %rcx
  3887. movq -8(%rbp), -8(%rbp)
  3888. addq $7, -8(%rbp)
  3889. movq -8(%rbp), -16(%rbp)
  3890. movq -8(%rbp), -8(%rbp)
  3891. addq %rcx, -8(%rbp)
  3892. movq -16(%rbp), %rcx
  3893. negq %rcx
  3894. movq -8(%rbp), %rax
  3895. addq %rcx, %rax
  3896. jmp conclusion
  3897. \end{lstlisting}
  3898. \end{minipage}
  3899. \end{center}
  3900. \begin{exercise}\normalfont
  3901. %
  3902. Implement the compiler pass \code{allocate-registers}.
  3903. %
  3904. Create five programs that exercise all of the register allocation
  3905. algorithm, including spilling variables to the stack.
  3906. %
  3907. Replace \code{assign-homes} in the list of \code{passes} in the
  3908. \code{run-tests.rkt} script with the three new passes:
  3909. \code{uncover-live}, \code{build-interference}, and
  3910. \code{allocate-registers}.
  3911. %
  3912. Temporarily remove the \code{print-x86} pass from the list of passes
  3913. and the call to \code{compiler-tests}.
  3914. %
  3915. Run the script to test the register allocator.
  3916. \end{exercise}
  3917. \section{Patch Instructions}
  3918. \label{sec:patch-instructions}
  3919. The remaining step in the compilation to x86 is to ensure that the
  3920. instructions have at most one argument that is a memory access.
  3921. In the running example, the instruction \code{movq -8(\%rbp), -16(\%rbp)}
  3922. is problematic. The fix is to first move \code{-8(\%rbp)}
  3923. into \code{rax} and then move \code{rax} into \code{-16(\%rbp)}.
  3924. %
  3925. The two moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  3926. problematic, but they can be fixed by simply deleting them. In
  3927. general, we recommend deleting all the trivial moves whose source and
  3928. destination are the same location.
  3929. %
  3930. The following is the output of \code{patch-instructions} on the
  3931. running example.
  3932. \begin{center}
  3933. \begin{minipage}{0.4\textwidth}
  3934. \begin{lstlisting}
  3935. movq $1, -8(%rbp)
  3936. movq $42, %rcx
  3937. movq -8(%rbp), -8(%rbp)
  3938. addq $7, -8(%rbp)
  3939. movq -8(%rbp), -16(%rbp)
  3940. movq -8(%rbp), -8(%rbp)
  3941. addq %rcx, -8(%rbp)
  3942. movq -16(%rbp), %rcx
  3943. negq %rcx
  3944. movq -8(%rbp), %rax
  3945. addq %rcx, %rax
  3946. jmp conclusion
  3947. \end{lstlisting}
  3948. \end{minipage}
  3949. $\Rightarrow\qquad$
  3950. \begin{minipage}{0.45\textwidth}
  3951. \begin{lstlisting}
  3952. movq $1, -8(%rbp)
  3953. movq $42, %rcx
  3954. addq $7, -8(%rbp)
  3955. movq -8(%rbp), %rax
  3956. movq %rax, -16(%rbp)
  3957. addq %rcx, -8(%rbp)
  3958. movq -16(%rbp), %rcx
  3959. negq %rcx
  3960. movq -8(%rbp), %rax
  3961. addq %rcx, %rax
  3962. jmp conclusion
  3963. \end{lstlisting}
  3964. \end{minipage}
  3965. \end{center}
  3966. \begin{exercise}\normalfont
  3967. %
  3968. Implement the \code{patch-instructions} compiler pass.
  3969. %
  3970. Insert it after \code{allocate-registers} in the list of \code{passes}
  3971. in the \code{run-tests.rkt} script.
  3972. %
  3973. Run the script to test the \code{patch-instructions} pass.
  3974. \end{exercise}
  3975. \section{Print x86}
  3976. \label{sec:print-x86-reg-alloc}
  3977. \index{calling conventions}
  3978. \index{prelude}\index{conclusion}
  3979. Recall that the \code{print-x86} pass generates the prelude and
  3980. conclusion instructions to satisfy the x86 calling conventions
  3981. (Section~\ref{sec:calling-conventions}). With the addition of the
  3982. register allocator, the callee-saved registers used by the register
  3983. allocator must be saved in the prelude and restored in the conclusion.
  3984. In the \code{allocate-registers} pass, add an entry to the \itm{info}
  3985. of \code{X86Program} named \code{used-callee} that stores the set of
  3986. callee-saved registers that were assigned to variables. The
  3987. \code{print-x86} pass can then access this information to decide which
  3988. callee-saved registers need to be saved and restored.
  3989. %
  3990. When calculating the size of the frame to adjust the \code{rsp} in the
  3991. prelude, make sure to take into account the space used for saving the
  3992. callee-saved registers. Also, don't forget that the frame needs to be
  3993. a multiple of 16 bytes!
  3994. An overview of all of the passes involved in register allocation is
  3995. shown in Figure~\ref{fig:reg-alloc-passes}.
  3996. \begin{figure}[tbp]
  3997. \begin{tikzpicture}[baseline=(current bounding box.center)]
  3998. \node (Rvar) at (0,2) {\large \LangVar{}};
  3999. \node (Rvar-2) at (3,2) {\large \LangVar{}};
  4000. \node (Rvar-3) at (6,2) {\large \LangVar{}};
  4001. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  4002. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  4003. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  4004. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  4005. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  4006. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  4007. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  4008. \path[->,bend left=15] (Rvar) edge [above] node {\ttfamily\footnotesize uniquify} (Rvar-2);
  4009. \path[->,bend left=15] (Rvar-2) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvar-3);
  4010. \path[->,bend left=15] (Rvar-3) edge [right] node {\ttfamily\footnotesize explicate-control} (Cvar-1);
  4011. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select-instr.} (x86-2);
  4012. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  4013. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  4014. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  4015. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  4016. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  4017. \end{tikzpicture}
  4018. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  4019. \label{fig:reg-alloc-passes}
  4020. \end{figure}
  4021. \begin{exercise}\normalfont
  4022. Update the \code{print-x86} pass as described in this section.
  4023. %
  4024. In the \code{run-tests.rkt} script, reinstate \code{print-x86} in the
  4025. list of passes and the call to \code{compiler-tests}.
  4026. %
  4027. Run the script to test the complete compiler for \LangVar{} that
  4028. performs register allocation.
  4029. \end{exercise}
  4030. \section{Challenge: Move Biasing}
  4031. \label{sec:move-biasing}
  4032. \index{move biasing}
  4033. This section describes an enhancement to the register allocator for
  4034. students looking for an extra challenge or who have a deeper interest
  4035. in register allocation.
  4036. To motivate the need for move biasing we return to the running example
  4037. but this time use all of the general purpose registers. So we have
  4038. the following mapping of color numbers to registers.
  4039. \[
  4040. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
  4041. \]
  4042. Using the same assignment of variables to color numbers that was
  4043. produced by the register allocator described in the last section, we
  4044. get the following program.
  4045. \begin{center}
  4046. \begin{minipage}{0.3\textwidth}
  4047. \begin{lstlisting}
  4048. movq $1, v
  4049. movq $42, w
  4050. movq v, x
  4051. addq $7, x
  4052. movq x, y
  4053. movq x, z
  4054. addq w, z
  4055. movq y, t
  4056. negq t
  4057. movq z, %rax
  4058. addq t, %rax
  4059. jmp conclusion
  4060. \end{lstlisting}
  4061. \end{minipage}
  4062. $\Rightarrow\qquad$
  4063. \begin{minipage}{0.45\textwidth}
  4064. \begin{lstlisting}
  4065. movq $1, %rdx
  4066. movq $42, %rcx
  4067. movq %rdx, %rdx
  4068. addq $7, %rdx
  4069. movq %rdx, %rsi
  4070. movq %rdx, %rdx
  4071. addq %rcx, %rdx
  4072. movq %rsi, %rcx
  4073. negq %rcx
  4074. movq %rdx, %rax
  4075. addq %rcx, %rax
  4076. jmp conclusion
  4077. \end{lstlisting}
  4078. \end{minipage}
  4079. \end{center}
  4080. In the above output code there are two \key{movq} instructions that
  4081. can be removed because their source and target are the same. However,
  4082. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  4083. register, we could instead remove three \key{movq} instructions. We
  4084. can accomplish this by taking into account which variables appear in
  4085. \key{movq} instructions with which other variables.
  4086. We say that two variables $p$ and $q$ are \emph{move
  4087. related}\index{move related} if they participate together in a
  4088. \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  4089. \key{movq} $q$\key{,} $p$. When the register allocator chooses a color
  4090. for a variable, it should prefer a color that has already been used
  4091. for a move-related variable (assuming that they do not interfere). Of
  4092. course, this preference should not override the preference for
  4093. registers over stack locations. This preference should be used as a
  4094. tie breaker when choosing between registers or when choosing between
  4095. stack locations.
  4096. We recommend representing the move relationships in a graph, similar
  4097. to how we represented interference. The following is the \emph{move
  4098. graph} for our running example.
  4099. \[
  4100. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4101. \node (rax) at (0,0) {$\ttm{rax}$};
  4102. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4103. \node (t) at (0,2) {$\ttm{t}$};
  4104. \node (z) at (3,2) {$\ttm{z}$};
  4105. \node (x) at (6,2) {$\ttm{x}$};
  4106. \node (y) at (3,0) {$\ttm{y}$};
  4107. \node (w) at (6,0) {$\ttm{w}$};
  4108. \node (v) at (9,0) {$\ttm{v}$};
  4109. \draw (v) to (x);
  4110. \draw (x) to (y);
  4111. \draw (x) to (z);
  4112. \draw (y) to (t);
  4113. \end{tikzpicture}
  4114. \]
  4115. Now we replay the graph coloring, pausing to see the coloring of
  4116. \code{y}. Recall the following configuration. The most saturated vertices
  4117. were \code{w} and \code{y}.
  4118. \[
  4119. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4120. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4121. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4122. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4123. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4124. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4125. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4126. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4127. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  4128. \draw (t1) to (rax);
  4129. \draw (t1) to (z);
  4130. \draw (z) to (y);
  4131. \draw (z) to (w);
  4132. \draw (x) to (w);
  4133. \draw (y) to (w);
  4134. \draw (v) to (w);
  4135. \draw (v) to (rsp);
  4136. \draw (w) to (rsp);
  4137. \draw (x) to (rsp);
  4138. \draw (y) to (rsp);
  4139. \path[-.,bend left=15] (z) edge node {} (rsp);
  4140. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4141. \draw (rax) to (rsp);
  4142. \end{tikzpicture}
  4143. \]
  4144. %
  4145. Last time we chose to color \code{w} with $0$. But this time we see
  4146. that \code{w} is not move related to any vertex, but \code{y} is move
  4147. related to \code{t}. So we choose to color \code{y} the same color as
  4148. \code{t}, $0$.
  4149. \[
  4150. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4151. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4152. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4153. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4154. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4155. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4156. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  4157. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  4158. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  4159. \draw (t1) to (rax);
  4160. \draw (t1) to (z);
  4161. \draw (z) to (y);
  4162. \draw (z) to (w);
  4163. \draw (x) to (w);
  4164. \draw (y) to (w);
  4165. \draw (v) to (w);
  4166. \draw (v) to (rsp);
  4167. \draw (w) to (rsp);
  4168. \draw (x) to (rsp);
  4169. \draw (y) to (rsp);
  4170. \path[-.,bend left=15] (z) edge node {} (rsp);
  4171. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4172. \draw (rax) to (rsp);
  4173. \end{tikzpicture}
  4174. \]
  4175. Now \code{w} is the most saturated, so we color it $2$.
  4176. \[
  4177. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4178. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4179. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4180. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4181. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4182. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  4183. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  4184. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  4185. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  4186. \draw (t1) to (rax);
  4187. \draw (t1) to (z);
  4188. \draw (z) to (y);
  4189. \draw (z) to (w);
  4190. \draw (x) to (w);
  4191. \draw (y) to (w);
  4192. \draw (v) to (w);
  4193. \draw (v) to (rsp);
  4194. \draw (w) to (rsp);
  4195. \draw (x) to (rsp);
  4196. \draw (y) to (rsp);
  4197. \path[-.,bend left=15] (z) edge node {} (rsp);
  4198. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4199. \draw (rax) to (rsp);
  4200. \end{tikzpicture}
  4201. \]
  4202. At this point, vertices \code{x} and \code{v} are most saturated, but
  4203. \code{x} is move related to \code{y} and \code{z}, so we color
  4204. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  4205. \[
  4206. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4207. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4208. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4209. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  4210. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4211. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  4212. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  4213. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  4214. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  4215. \draw (t1) to (rax);
  4216. \draw (t) to (z);
  4217. \draw (z) to (y);
  4218. \draw (z) to (w);
  4219. \draw (x) to (w);
  4220. \draw (y) to (w);
  4221. \draw (v) to (w);
  4222. \draw (v) to (rsp);
  4223. \draw (w) to (rsp);
  4224. \draw (x) to (rsp);
  4225. \draw (y) to (rsp);
  4226. \path[-.,bend left=15] (z) edge node {} (rsp);
  4227. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4228. \draw (rax) to (rsp);
  4229. \end{tikzpicture}
  4230. \]
  4231. So we have the following assignment of variables to registers.
  4232. \begin{gather*}
  4233. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  4234. \ttm{w} \mapsto \key{\%rsi}, \,
  4235. \ttm{x} \mapsto \key{\%rcx}, \,
  4236. \ttm{y} \mapsto \key{\%rcx}, \,
  4237. \ttm{z} \mapsto \key{\%rdx}, \,
  4238. \ttm{t} \mapsto \key{\%rcx} \}
  4239. \end{gather*}
  4240. We apply this register assignment to the running example, on the left,
  4241. to obtain the code in the middle. The \code{patch-instructions} then
  4242. removes the three trivial moves to obtain the code on the right.
  4243. \begin{minipage}{0.25\textwidth}
  4244. \begin{lstlisting}
  4245. movq $1, v
  4246. movq $42, w
  4247. movq v, x
  4248. addq $7, x
  4249. movq x, y
  4250. movq x, z
  4251. addq w, z
  4252. movq y, t
  4253. negq t
  4254. movq z, %rax
  4255. addq t, %rax
  4256. jmp conclusion
  4257. \end{lstlisting}
  4258. \end{minipage}
  4259. $\Rightarrow\qquad$
  4260. \begin{minipage}{0.25\textwidth}
  4261. \begin{lstlisting}
  4262. movq $1, %rcx
  4263. movq $42, %rsi
  4264. movq %rcx, %rcx
  4265. addq $7, %rcx
  4266. movq %rcx, %rcx
  4267. movq %rcx, %rdx
  4268. addq %rsi, %rdx
  4269. movq %rcx, %rcx
  4270. negq %rcx
  4271. movq %rdx, %rax
  4272. addq %rcx, %rax
  4273. jmp conclusion
  4274. \end{lstlisting}
  4275. \end{minipage}
  4276. $\Rightarrow\qquad$
  4277. \begin{minipage}{0.25\textwidth}
  4278. \begin{lstlisting}
  4279. movq $1, %rcx
  4280. movq $42, %rsi
  4281. addq $7, %rcx
  4282. movq %rcx, %rdx
  4283. addq %rsi, %rdx
  4284. negq %rcx
  4285. movq %rdx, %rax
  4286. addq %rcx, %rax
  4287. jmp conclusion
  4288. \end{lstlisting}
  4289. \end{minipage}
  4290. \begin{exercise}\normalfont
  4291. Change your implementation of \code{allocate-registers} to take move
  4292. biasing into account. Create two new tests that include at least one
  4293. opportunity for move biasing and visually inspect the output x86
  4294. programs to make sure that your move biasing is working properly. Make
  4295. sure that your compiler still passes all of the tests.
  4296. \end{exercise}
  4297. \margincomment{\footnotesize To do: another neat challenge would be to do
  4298. live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy}
  4299. %% \subsection{Output of the Running Example}
  4300. %% \label{sec:reg-alloc-output}
  4301. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  4302. the running example (Figure~\ref{fig:reg-eg}) with register allocation
  4303. and move biasing. To demonstrate both the use of registers and the
  4304. stack, we have limited the register allocator to use just two
  4305. registers: \code{rbx} and \code{rcx}. In the prelude\index{prelude}
  4306. of the \code{main} function, we push \code{rbx} onto the stack because
  4307. it is a callee-saved register and it was assigned to variable by the
  4308. register allocator. We subtract \code{8} from the \code{rsp} at the
  4309. end of the prelude to reserve space for the one spilled variable.
  4310. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  4311. Moving on the the \code{start} block, we see how the registers were
  4312. allocated. Variables \code{v}, \code{x}, and \code{y} were assigned to
  4313. \code{rbx} and variable \code{z} was assigned to \code{rcx}. Variable
  4314. \code{w} was spilled to the stack location \code{-16(\%rbp)}. Recall
  4315. that the prelude saved the callee-save register \code{rbx} onto the
  4316. stack. The spilled variables must be placed lower on the stack than
  4317. the saved callee-save registers, so in this case \code{w} is placed at
  4318. \code{-16(\%rbp)}.
  4319. In the \code{conclusion}\index{conclusion}, we undo the work that was
  4320. done in the prelude. We move the stack pointer up by \code{8} bytes
  4321. (the room for spilled variables), then we pop the old values of
  4322. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  4323. \code{retq} to return control to the operating system.
  4324. \begin{figure}[tbp]
  4325. % var_test_28.rkt
  4326. % (use-minimal-set-of-registers! #t)
  4327. % and only rbx rcx
  4328. % tmp 0 rbx
  4329. % z 1 rcx
  4330. % y 0 rbx
  4331. % w 2 16(%rbp)
  4332. % v 0 rbx
  4333. % x 0 rbx
  4334. \begin{lstlisting}
  4335. start:
  4336. movq $1, %rbx
  4337. movq $42, -16(%rbp)
  4338. addq $7, %rbx
  4339. movq %rbx, %rcx
  4340. addq -16(%rbp), %rcx
  4341. negq %rbx
  4342. movq %rcx, %rax
  4343. addq %rbx, %rax
  4344. jmp conclusion
  4345. .globl main
  4346. main:
  4347. pushq %rbp
  4348. movq %rsp, %rbp
  4349. pushq %rbx
  4350. subq $8, %rsp
  4351. jmp start
  4352. conclusion:
  4353. addq $8, %rsp
  4354. popq %rbx
  4355. popq %rbp
  4356. retq
  4357. \end{lstlisting}
  4358. \caption{The x86 output from the running example (Figure~\ref{fig:reg-eg}).}
  4359. \label{fig:running-example-x86}
  4360. \end{figure}
  4361. % challenge: prioritize variables based on execution frequencies
  4362. % and the number of uses of a variable
  4363. % challenge: enhance the coloring algorithm using Chaitin's
  4364. % approach of prioritizing high-degree variables
  4365. % by removing low-degree variables (coloring them later)
  4366. % from the interference graph
  4367. \section{Further Reading}
  4368. \label{sec:register-allocation-further-reading}
  4369. Early register allocation algorithms were developed for Fortran
  4370. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  4371. of graph coloring began in the late 1970s and early 1980s with the
  4372. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  4373. algorithm is based on the following observation of
  4374. \citet{Kempe:1879aa} from the 1870s. If a graph $G$ has a vertex $v$
  4375. with degree lower than $k$, then $G$ is $k$ colorable if the subgraph
  4376. of $G$ with $v$ removed is also $k$ colorable. Suppose that the
  4377. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  4378. different colors, but since there are less than $k$ of them, there
  4379. will be one or more colors left over to use for coloring $v$ in $G$.
  4380. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  4381. less than $k$ from the graph and recursively colors the rest of the
  4382. graph. Upon returning from the recursion, it colors $v$ with one of
  4383. the available colors and returns. \citet{Chaitin:1982vn} augments
  4384. this algorithm to handle spilling as follows. If there are no vertices
  4385. of degree lower than $k$ then pick a vertex at random, spill it,
  4386. remove it from the graph, and proceed recursively to color the rest of
  4387. the graph.
  4388. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  4389. move-related and that don't interfere with each other, a process
  4390. called \emph{coalescing}. While coalescing decreases the number of
  4391. moves, it can make the graph more difficult to
  4392. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  4393. which two variables are merged only if they have fewer than $k$
  4394. neighbors of high degree. \citet{George:1996aa} observe that
  4395. conservative coalescing is sometimes too conservative and make it more
  4396. aggressive by iterating the coalescing with the removal of low-degree
  4397. vertices.
  4398. %
  4399. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  4400. also propose \emph{biased coloring} in which a variable is assigned to
  4401. the same color as another move-related variable if possible, as
  4402. discussed in Section~\ref{sec:move-biasing}.
  4403. %
  4404. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  4405. performs coalescing, graph coloring, and spill code insertion until
  4406. all variables have been assigned a location.
  4407. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  4408. spills variables that don't have to be: a high-degree variable can be
  4409. colorable if many of its neighbors are assigned the same color.
  4410. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  4411. high-degree vertex is not immediately spilled. Instead the decision is
  4412. deferred until after the recursive call, at which point it is apparent
  4413. whether there is actually an available color or not. We observe that
  4414. this algorithm is equivalent to the smallest-last ordering
  4415. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  4416. be registers and the rest to be stack locations.
  4417. %% biased coloring
  4418. Earlier editions of the compiler course at Indiana University
  4419. \citep{Dybvig:2010aa} were based on the algorithm of
  4420. \citet{Briggs:1994kx}.
  4421. The smallest-last ordering algorithm is one of many \emph{greedy}
  4422. coloring algorithms. A greedy coloring algorithm visits all the
  4423. vertices in a particular order and assigns each one the first
  4424. available color. An \emph{offline} greedy algorithm chooses the
  4425. ordering up-front, prior to assigning colors. The algorithm of
  4426. \citet{Chaitin:1981vl} should be considered offline because the vertex
  4427. ordering does not depend on the colors assigned, so the algorithm
  4428. could be split into two phases. Other orderings are possible. For
  4429. example, \citet{Chow:1984ys} order variables according an estimate of
  4430. runtime cost.
  4431. An \emph{online} greedy coloring algorithm uses information about the
  4432. current assignment of colors to influence the order in which the
  4433. remaining vertices are colored. The saturation-based algorithm
  4434. described in this chapter is one such algorithm. We choose to use
  4435. saturation-based coloring is because it is fun to introduce graph
  4436. coloring via Sudoku.
  4437. A register allocator may choose to map each variable to just one
  4438. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  4439. variable to one or more locations. The later can be achieved by
  4440. \emph{live range splitting}, where a variable is replaced by several
  4441. variables that each handle part of its live
  4442. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  4443. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  4444. %% replacement algorithm, bottom-up local
  4445. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  4446. %% Cooper: top-down (priority bassed), bottom-up
  4447. %% top-down
  4448. %% order variables by priority (estimated cost)
  4449. %% caveat: split variables into two groups:
  4450. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  4451. %% color the constrained ones first
  4452. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  4453. %% cite J. Cocke for an algorithm that colors variables
  4454. %% in a high-degree first ordering
  4455. %Register Allocation via Usage Counts, Freiburghouse CACM
  4456. \citet{Palsberg:2007si} observe that many of the interference graphs
  4457. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  4458. that is, every cycle with four or more edges has an edge which is not
  4459. part of the cycle but which connects two vertices on the cycle. Such
  4460. graphs can be optimally colored by the greedy algorithm with a vertex
  4461. ordering determined by maximum cardinality search.
  4462. In situations where compile time is of utmost importance, such as in
  4463. just-in-time compilers, graph coloring algorithms can be too expensive
  4464. and the linear scan of \citet{Poletto:1999uq} may be more appropriate.
  4465. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4466. \chapter{Booleans and Control Flow}
  4467. \label{ch:Rif}
  4468. \index{Boolean}
  4469. \index{control flow}
  4470. \index{conditional expression}
  4471. The \LangInt{} and \LangVar{} languages only have a single kind of
  4472. value, integers. In this chapter we add a second kind of value, the
  4473. Booleans, to create the \LangIf{} language. The Boolean values
  4474. \emph{true} and \emph{false} are written \key{\#t} and \key{\#f}
  4475. respectively in Racket. The \LangIf{} language includes several
  4476. operations that involve Booleans (\key{and}, \key{not}, \key{eq?},
  4477. \key{<}, etc.) and the conditional \key{if} expression. With the
  4478. addition of \key{if}, programs can have non-trivial control flow which
  4479. impacts \code{explicate-control} and liveness analysis. Also, because
  4480. we now have two kinds of values, we need to handle programs that apply
  4481. an operation to the wrong kind of value, such as \code{(not 1)}.
  4482. There are two language design options for such situations. One option
  4483. is to signal an error and the other is to provide a wider
  4484. interpretation of the operation. The Racket language uses a mixture of
  4485. these two options, depending on the operation and the kind of
  4486. value. For example, the result of \code{(not 1)} in Racket is
  4487. \code{\#f} because Racket treats non-zero integers as if they were
  4488. \code{\#t}. On the other hand, \code{(car 1)} results in a run-time
  4489. error in Racket because \code{car} expects a pair.
  4490. Typed Racket makes similar design choices as Racket, except much of
  4491. the error detection happens at compile time instead of run time. Typed
  4492. Racket accepts and runs \code{(not 1)}, producing \code{\#f}. But in
  4493. the case of \code{(car 1)}, Typed Racket reports a compile-time error
  4494. because Typed Racket expects the type of the argument to be of the
  4495. form \code{(Listof T)} or \code{(Pairof T1 T2)}.
  4496. The \LangIf{} language performs type checking during compilation like
  4497. Typed Racket. In Chapter~\ref{ch:Rdyn} we study the
  4498. alternative choice, that is, a dynamically typed language like Racket.
  4499. The \LangIf{} language is a subset of Typed Racket; for some
  4500. operations we are more restrictive, for example, rejecting
  4501. \code{(not 1)}.
  4502. This chapter is organized as follows. We begin by defining the syntax
  4503. and interpreter for the \LangIf{} language
  4504. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  4505. checking and build a type checker for \LangIf{}
  4506. (Section~\ref{sec:type-check-Rif}). To compile \LangIf{} we need to
  4507. enlarge the intermediate language \LangCVar{} into \LangCIf{}
  4508. (Section~\ref{sec:Cif}) and \LangXInt{} into \LangXIf{}
  4509. (Section~\ref{sec:x86-if}). The remaining sections of this chapter
  4510. discuss how our compiler passes change to accommodate Booleans and
  4511. conditional control flow. There is one new pass, named \code{shrink},
  4512. that translates some operators into others, thereby reducing the
  4513. number of operators that need to be handled in later passes. The
  4514. largest changes occur in \code{explicate-control}, to translate
  4515. \code{if} expressions into control-flow graphs
  4516. (Section~\ref{sec:explicate-control-Rif}). Regarding register
  4517. allocation, the liveness analysis now has multiple basic blocks to
  4518. process and there is the interesting question of how to handle
  4519. conditional jumps.
  4520. \section{The \LangIf{} Language}
  4521. \label{sec:lang-if}
  4522. The concrete syntax of the \LangIf{} language is defined in
  4523. Figure~\ref{fig:Rif-concrete-syntax} and the abstract syntax is defined
  4524. in Figure~\ref{fig:Rif-syntax}. The \LangIf{} language includes all of
  4525. \LangVar{} (shown in gray), the Boolean literals \code{\#t} and
  4526. \code{\#f}, and the conditional \code{if} expression. We expand the
  4527. operators to include
  4528. \begin{enumerate}
  4529. \item subtraction on integers,
  4530. \item the logical operators \key{and}, \key{or} and \key{not},
  4531. \item the \key{eq?} operation for comparing two integers or two Booleans, and
  4532. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  4533. comparing integers.
  4534. \end{enumerate}
  4535. We reorganize the abstract syntax for the primitive operations in
  4536. Figure~\ref{fig:Rif-syntax}, using only one grammar rule for all of
  4537. them. This means that the grammar no longer checks whether the arity
  4538. of an operators matches the number of arguments. That responsibility
  4539. is moved to the type checker for \LangIf{}, which we introduce in
  4540. Section~\ref{sec:type-check-Rif}.
  4541. \begin{figure}[tp]
  4542. \centering
  4543. \fbox{
  4544. \begin{minipage}{0.96\textwidth}
  4545. \[
  4546. \begin{array}{lcl}
  4547. \itm{bool} &::=& \key{\#t} \mid \key{\#f} \\
  4548. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  4549. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} } \mid \CSUB{\Exp}{\Exp} \\
  4550. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} } \\
  4551. &\mid& \itm{bool}
  4552. \mid (\key{and}\;\Exp\;\Exp) \mid (\key{or}\;\Exp\;\Exp)
  4553. \mid (\key{not}\;\Exp) \\
  4554. &\mid& (\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} \\
  4555. \LangIf{} &::=& \Exp
  4556. \end{array}
  4557. \]
  4558. \end{minipage}
  4559. }
  4560. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  4561. (Figure~\ref{fig:r1-concrete-syntax}) with Booleans and conditionals.}
  4562. \label{fig:Rif-concrete-syntax}
  4563. \end{figure}
  4564. \begin{figure}[tp]
  4565. \centering
  4566. \fbox{
  4567. \begin{minipage}{0.96\textwidth}
  4568. \[
  4569. \begin{array}{lcl}
  4570. \itm{bool} &::=& \code{\#t} \mid \code{\#f} \\
  4571. \itm{cmp} &::= & \code{eq?} \mid \code{<} \mid \code{<=} \mid \code{>} \mid \code{>=} \\
  4572. \itm{op} &::= & \itm{cmp} \mid \code{read} \mid \code{+} \mid \code{-}
  4573. \mid \code{and} \mid \code{or} \mid \code{not} \\
  4574. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  4575. &\mid& \PRIM{\itm{op}}{\Exp\ldots}\\
  4576. &\mid& \BOOL{\itm{bool}} \mid \IF{\Exp}{\Exp}{\Exp} \\
  4577. \LangIf{} &::=& \PROGRAM{\code{'()}}{\Exp}
  4578. \end{array}
  4579. \]
  4580. \end{minipage}
  4581. }
  4582. \caption{The abstract syntax of \LangIf{}.}
  4583. \label{fig:Rif-syntax}
  4584. \end{figure}
  4585. Figure~\ref{fig:interp-Rif} defines the interpreter for \LangIf{},
  4586. which inherits from the interpreter for \LangVar{}
  4587. (Figure~\ref{fig:interp-Rvar}). The literals \code{\#t} and \code{\#f}
  4588. evaluate to the corresponding Boolean values. The conditional
  4589. expression $(\key{if}\, \itm{cnd}\,\itm{thn}\,\itm{els})$ evaluates
  4590. \itm{cnd} and then either evaluates \itm{thn} or \itm{els} depending
  4591. on whether \itm{cnd} produced \code{\#t} or \code{\#f}. The logical
  4592. operations \code{not} and \code{and} behave as you might expect, but
  4593. note that the \code{and} operation is short-circuiting. That is, given
  4594. the expression $(\key{and}\,e_1\,e_2)$, the expression $e_2$ is not
  4595. evaluated if $e_1$ evaluates to \code{\#f}.
  4596. With the increase in the number of primitive operations, the
  4597. interpreter would become repetitive without some care. We refactor
  4598. the case for \code{Prim}, moving the code that differs with each
  4599. operation into the \code{interp-op} method shown in in
  4600. Figure~\ref{fig:interp-op-Rif}. We handle the \code{and} operation
  4601. separately because of its short-circuiting behavior.
  4602. \begin{figure}[tbp]
  4603. \begin{lstlisting}
  4604. (define interp-Rif-class
  4605. (class interp-Rvar-class
  4606. (super-new)
  4607. (define/public (interp-op op) ...)
  4608. (define/override ((interp-exp env) e)
  4609. (define recur (interp-exp env))
  4610. (match e
  4611. [(Bool b) b]
  4612. [(If cnd thn els)
  4613. (match (recur cnd)
  4614. [#t (recur thn)]
  4615. [#f (recur els)])]
  4616. [(Prim 'and (list e1 e2))
  4617. (match (recur e1)
  4618. [#t (match (recur e2) [#t #t] [#f #f])]
  4619. [#f #f])]
  4620. [(Prim op args)
  4621. (apply (interp-op op) (for/list ([e args]) (recur e)))]
  4622. [else ((super interp-exp env) e)]))
  4623. ))
  4624. (define (interp-Rif p)
  4625. (send (new interp-Rif-class) interp-program p))
  4626. \end{lstlisting}
  4627. \caption{Interpreter for the \LangIf{} language. (See
  4628. Figure~\ref{fig:interp-op-Rif} for \code{interp-op}.)}
  4629. \label{fig:interp-Rif}
  4630. \end{figure}
  4631. \begin{figure}[tbp]
  4632. \begin{lstlisting}
  4633. (define/public (interp-op op)
  4634. (match op
  4635. ['+ fx+]
  4636. ['- fx-]
  4637. ['read read-fixnum]
  4638. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  4639. ['or (lambda (v1 v2)
  4640. (cond [(and (boolean? v1) (boolean? v2))
  4641. (or v1 v2)]))]
  4642. ['eq? (lambda (v1 v2)
  4643. (cond [(or (and (fixnum? v1) (fixnum? v2))
  4644. (and (boolean? v1) (boolean? v2))
  4645. (and (vector? v1) (vector? v2)))
  4646. (eq? v1 v2)]))]
  4647. ['< (lambda (v1 v2)
  4648. (cond [(and (fixnum? v1) (fixnum? v2))
  4649. (< v1 v2)]))]
  4650. ['<= (lambda (v1 v2)
  4651. (cond [(and (fixnum? v1) (fixnum? v2))
  4652. (<= v1 v2)]))]
  4653. ['> (lambda (v1 v2)
  4654. (cond [(and (fixnum? v1) (fixnum? v2))
  4655. (> v1 v2)]))]
  4656. ['>= (lambda (v1 v2)
  4657. (cond [(and (fixnum? v1) (fixnum? v2))
  4658. (>= v1 v2)]))]
  4659. [else (error 'interp-op "unknown operator")]))
  4660. \end{lstlisting}
  4661. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  4662. \label{fig:interp-op-Rif}
  4663. \end{figure}
  4664. \section{Type Checking \LangIf{} Programs}
  4665. \label{sec:type-check-Rif}
  4666. \index{type checking}
  4667. \index{semantic analysis}
  4668. It is helpful to think about type checking in two complementary
  4669. ways. A type checker predicts the type of value that will be produced
  4670. by each expression in the program. For \LangIf{}, we have just two types,
  4671. \key{Integer} and \key{Boolean}. So a type checker should predict that
  4672. \begin{lstlisting}
  4673. (+ 10 (- (+ 12 20)))
  4674. \end{lstlisting}
  4675. produces an \key{Integer} while
  4676. \begin{lstlisting}
  4677. (and (not #f) #t)
  4678. \end{lstlisting}
  4679. produces a \key{Boolean}.
  4680. Another way to think about type checking is that it enforces a set of
  4681. rules about which operators can be applied to which kinds of
  4682. values. For example, our type checker for \LangIf{} signals an error
  4683. for the below expression
  4684. \begin{lstlisting}
  4685. (not (+ 10 (- (+ 12 20))))
  4686. \end{lstlisting}
  4687. The subexpression \code{(+ 10 (- (+ 12 20)))} has type \key{Integer}
  4688. but the type checker enforces the rule that the argument of \code{not}
  4689. must be a \key{Boolean}.
  4690. We implement type checking using classes and methods because they
  4691. provide the open recursion needed to reuse code as we extend the type
  4692. checker in later chapters, analogous to the use of classes and methods
  4693. for the interpreters (Section~\ref{sec:extensible-interp}).
  4694. We separate the type checker for the \LangVar{} fragment into its own
  4695. class, shown in Figure~\ref{fig:type-check-Rvar}. The type checker for
  4696. \LangIf{} is shown in Figure~\ref{fig:type-check-Rif} and it inherits
  4697. from the type checker for \LangVar{}. These type checkers are in the
  4698. files \code{type-check-Rvar.rkt} and \code{type-check-Rif.rkt} of the
  4699. support code.
  4700. %
  4701. Each type checker is a structurally recursive function over the AST.
  4702. Given an input expression \code{e}, the type checker either signals an
  4703. error or returns an expression and its type (\key{Integer} or
  4704. \key{Boolean}). It returns an expression because there are situations
  4705. in which we want to change or update the expression.
  4706. Next we discuss the \code{match} cases in \code{type-check-exp} of
  4707. Figure~\ref{fig:type-check-Rvar}. The type of an integer constant is
  4708. \code{Integer}. To handle variables, the type checker uses the
  4709. environment \code{env} to map variables to types. Consider the case
  4710. for \key{let}. We type check the initializing expression to obtain
  4711. its type \key{T} and then associate type \code{T} with the variable
  4712. \code{x} in the environment used to type check the body of the
  4713. \key{let}. Thus, when the type checker encounters a use of variable
  4714. \code{x}, it can find its type in the environment. Regarding
  4715. primitive operators, we recursively analyze the arguments and then
  4716. invoke \code{type-check-op} to check whether the argument types are
  4717. allowed.
  4718. Several auxiliary methods are used in the type checker. The method
  4719. \code{operator-types} defines a dictionary that maps the operator
  4720. names to their parameter and return types. The \code{type-equal?}
  4721. method determines whether two types are equal, which for now simply
  4722. dispatches to \code{equal?} (deep equality). The
  4723. \code{check-type-equal?} method triggers an error if the two types are
  4724. not equal. The \code{type-check-op} method looks up the operator in
  4725. the \code{operator-types} dictionary and then checks whether the
  4726. argument types are equal to the parameter types. The result is the
  4727. return type of the operator.
  4728. \begin{figure}[tbp]
  4729. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  4730. (define type-check-Rvar-class
  4731. (class object%
  4732. (super-new)
  4733. (define/public (operator-types)
  4734. '((+ . ((Integer Integer) . Integer))
  4735. (- . ((Integer) . Integer))
  4736. (read . (() . Integer))))
  4737. (define/public (type-equal? t1 t2) (equal? t1 t2))
  4738. (define/public (check-type-equal? t1 t2 e)
  4739. (unless (type-equal? t1 t2)
  4740. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  4741. (define/public (type-check-op op arg-types e)
  4742. (match (dict-ref (operator-types) op)
  4743. [`(,param-types . ,return-type)
  4744. (for ([at arg-types] [pt param-types])
  4745. (check-type-equal? at pt e))
  4746. return-type]
  4747. [else (error 'type-check-op "unrecognized ~a" op)]))
  4748. (define/public (type-check-exp env)
  4749. (lambda (e)
  4750. (match e
  4751. [(Int n) (values (Int n) 'Integer)]
  4752. [(Var x) (values (Var x) (dict-ref env x))]
  4753. [(Let x e body)
  4754. (define-values (e^ Te) ((type-check-exp env) e))
  4755. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  4756. (values (Let x e^ b) Tb)]
  4757. [(Prim op es)
  4758. (define-values (new-es ts)
  4759. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  4760. (values (Prim op new-es) (type-check-op op ts e))]
  4761. [else (error 'type-check-exp "couldn't match" e)])))
  4762. (define/public (type-check-program e)
  4763. (match e
  4764. [(Program info body)
  4765. (define-values (body^ Tb) ((type-check-exp '()) body))
  4766. (check-type-equal? Tb 'Integer body)
  4767. (Program info body^)]
  4768. [else (error 'type-check-Rvar "couldn't match ~a" e)]))
  4769. ))
  4770. (define (type-check-Rvar p)
  4771. (send (new type-check-Rvar-class) type-check-program p))
  4772. \end{lstlisting}
  4773. \caption{Type checker for the \LangVar{} language.}
  4774. \label{fig:type-check-Rvar}
  4775. \end{figure}
  4776. \begin{figure}[tbp]
  4777. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  4778. (define type-check-Rif-class
  4779. (class type-check-Rvar-class
  4780. (super-new)
  4781. (inherit check-type-equal?)
  4782. (define/override (operator-types)
  4783. (append '((- . ((Integer Integer) . Integer))
  4784. (and . ((Boolean Boolean) . Boolean))
  4785. (or . ((Boolean Boolean) . Boolean))
  4786. (< . ((Integer Integer) . Boolean))
  4787. (<= . ((Integer Integer) . Boolean))
  4788. (> . ((Integer Integer) . Boolean))
  4789. (>= . ((Integer Integer) . Boolean))
  4790. (not . ((Boolean) . Boolean))
  4791. )
  4792. (super operator-types)))
  4793. (define/override (type-check-exp env)
  4794. (lambda (e)
  4795. (match e
  4796. [(Prim 'eq? (list e1 e2))
  4797. (define-values (e1^ T1) ((type-check-exp env) e1))
  4798. (define-values (e2^ T2) ((type-check-exp env) e2))
  4799. (check-type-equal? T1 T2 e)
  4800. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  4801. [(Bool b) (values (Bool b) 'Boolean)]
  4802. [(If cnd thn els)
  4803. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  4804. (define-values (thn^ Tt) ((type-check-exp env) thn))
  4805. (define-values (els^ Te) ((type-check-exp env) els))
  4806. (check-type-equal? Tc 'Boolean e)
  4807. (check-type-equal? Tt Te e)
  4808. (values (If cnd^ thn^ els^) Te)]
  4809. [else ((super type-check-exp env) e)])))
  4810. ))
  4811. (define (type-check-Rif p)
  4812. (send (new type-check-Rif-class) type-check-program p))
  4813. \end{lstlisting}
  4814. \caption{Type checker for the \LangIf{} language.}
  4815. \label{fig:type-check-Rif}
  4816. \end{figure}
  4817. Next we discuss the type checker for \LangIf{} in
  4818. Figure~\ref{fig:type-check-Rif}. The operator \code{eq?} requires the
  4819. two arguments to have the same type. The type of a Boolean constant is
  4820. \code{Boolean}. The condition of an \code{if} must be of
  4821. \code{Boolean} type and the two branches must have the same type. The
  4822. \code{operator-types} function adds dictionary entries for the other
  4823. new operators.
  4824. \begin{exercise}\normalfont
  4825. Create 10 new test programs in \LangIf{}. Half of the programs should
  4826. have a type error. For those programs, create an empty file with the
  4827. same base name but with file extension \code{.tyerr}. For example, if
  4828. the test \code{cond\_test\_14.rkt} is expected to error, then create
  4829. an empty file named \code{cond\_test\_14.tyerr}. This indicates to
  4830. \code{interp-tests} and \code{compiler-tests} that a type error is
  4831. expected. The other half of the test programs should not have type
  4832. errors.
  4833. In the \code{run-tests.rkt} script, change the second argument of
  4834. \code{interp-tests} and \code{compiler-tests} to
  4835. \code{type-check-Rif}, which causes the type checker to run prior to
  4836. the compiler passes. Temporarily change the \code{passes} to an empty
  4837. list and run the script, thereby checking that the new test programs
  4838. either type check or not as intended.
  4839. \end{exercise}
  4840. \section{The \LangCIf{} Intermediate Language}
  4841. \label{sec:Cif}
  4842. Figure~\ref{fig:c1-syntax} defines the abstract syntax of the
  4843. \LangCIf{} intermediate language. (The concrete syntax is in the
  4844. Appendix, Figure~\ref{fig:c1-concrete-syntax}.) Compared to
  4845. \LangCVar{}, the \LangCIf{} language adds logical and comparison
  4846. operators to the \Exp{} non-terminal and the literals \key{\#t} and
  4847. \key{\#f} to the \Arg{} non-terminal.
  4848. Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
  4849. statements to the \Tail{} non-terminal. The condition of an \code{if}
  4850. statement is a comparison operation and the branches are \code{goto}
  4851. statements, making it straightforward to compile \code{if} statements
  4852. to x86.
  4853. \begin{figure}[tp]
  4854. \fbox{
  4855. \begin{minipage}{0.96\textwidth}
  4856. \small
  4857. \[
  4858. \begin{array}{lcl}
  4859. \Atm &::=& \gray{\INT{\Int} \mid \VAR{\Var}} \mid \BOOL{\itm{bool}} \\
  4860. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  4861. \Exp &::= & \gray{ \Atm \mid \READ{} }\\
  4862. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  4863. &\mid& \UNIOP{\key{'not}}{\Atm}
  4864. \mid \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  4865. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
  4866. \Tail &::= & \gray{\RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail} }
  4867. \mid \GOTO{\itm{label}} \\
  4868. &\mid& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
  4869. \LangCIf{} & ::= & \gray{\CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}}
  4870. \end{array}
  4871. \]
  4872. \end{minipage}
  4873. }
  4874. \caption{The abstract syntax of \LangCIf{}, an extension of \LangCVar{}
  4875. (Figure~\ref{fig:c0-syntax}).}
  4876. \label{fig:c1-syntax}
  4877. \end{figure}
  4878. \section{The \LangXIf{} Language}
  4879. \label{sec:x86-if}
  4880. \index{x86} To implement the new logical operations, the comparison
  4881. operations, and the \key{if} expression, we need to delve further into
  4882. the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
  4883. define the concrete and abstract syntax for the \LangXIf{} subset
  4884. of x86, which includes instructions for logical operations,
  4885. comparisons, and conditional jumps.
  4886. One challenge is that x86 does not provide an instruction that
  4887. directly implements logical negation (\code{not} in \LangIf{} and
  4888. \LangCIf{}). However, the \code{xorq} instruction can be used to
  4889. encode \code{not}. The \key{xorq} instruction takes two arguments,
  4890. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  4891. bit of its arguments, and writes the results into its second argument.
  4892. Recall the truth table for exclusive-or:
  4893. \begin{center}
  4894. \begin{tabular}{l|cc}
  4895. & 0 & 1 \\ \hline
  4896. 0 & 0 & 1 \\
  4897. 1 & 1 & 0
  4898. \end{tabular}
  4899. \end{center}
  4900. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  4901. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  4902. for the bit $1$, the result is the opposite of the second bit. Thus,
  4903. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  4904. the first argument:
  4905. \[
  4906. \Var~ \key{=}~ \LP\key{not}~\Arg\RP\key{;}
  4907. \qquad\Rightarrow\qquad
  4908. \begin{array}{l}
  4909. \key{movq}~ \Arg\key{,} \Var\\
  4910. \key{xorq}~ \key{\$1,} \Var
  4911. \end{array}
  4912. \]
  4913. \begin{figure}[tp]
  4914. \fbox{
  4915. \begin{minipage}{0.96\textwidth}
  4916. \[
  4917. \begin{array}{lcl}
  4918. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  4919. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  4920. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} } \mid \key{\%}\itm{bytereg}\\
  4921. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  4922. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \mid
  4923. \key{subq} \; \Arg\key{,} \Arg \mid
  4924. \key{negq} \; \Arg \mid \key{movq} \; \Arg\key{,} \Arg \mid } \\
  4925. && \gray{ \key{callq} \; \itm{label} \mid
  4926. \key{pushq}\;\Arg \mid \key{popq}\;\Arg \mid \key{retq} \mid \key{jmp}\,\itm{label} } \\
  4927. && \gray{ \itm{label}\key{:}\; \Instr }
  4928. \mid \key{xorq}~\Arg\key{,}~\Arg
  4929. \mid \key{cmpq}~\Arg\key{,}~\Arg \mid \\
  4930. && \key{set}cc~\Arg
  4931. \mid \key{movzbq}~\Arg\key{,}~\Arg
  4932. \mid \key{j}cc~\itm{label}
  4933. \\
  4934. \LangXIf{} &::= & \gray{ \key{.globl main} }\\
  4935. & & \gray{ \key{main:} \; \Instr\ldots }
  4936. \end{array}
  4937. \]
  4938. \end{minipage}
  4939. }
  4940. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  4941. \label{fig:x86-1-concrete}
  4942. \end{figure}
  4943. \begin{figure}[tp]
  4944. \fbox{
  4945. \begin{minipage}{0.98\textwidth}
  4946. \small
  4947. \[
  4948. \begin{array}{lcl}
  4949. \itm{bytereg} &::=& \key{ah} \mid \key{al} \mid \key{bh} \mid \key{bl}
  4950. \mid \key{ch} \mid \key{cl} \mid \key{dh} \mid \key{dl} \\
  4951. \Arg &::=& \gray{\IMM{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}}
  4952. \mid \BYTEREG{\itm{bytereg}} \\
  4953. \itm{cc} & ::= & \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} \\
  4954. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  4955. \mid \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  4956. &\mid& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  4957. \mid \UNIINSTR{\code{negq}}{\Arg} } \\
  4958. &\mid& \gray{ \CALLQ{\itm{label}}{\itm{int}} \mid \RETQ{}
  4959. \mid \PUSHQ{\Arg} \mid \POPQ{\Arg} \mid \JMP{\itm{label}} } \\
  4960. &\mid& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  4961. \mid \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  4962. &\mid& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  4963. \mid \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  4964. &\mid& \JMPIF{\itm{cc}}{\itm{label}} \\
  4965. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  4966. \LangXIf{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  4967. \end{array}
  4968. \]
  4969. \end{minipage}
  4970. }
  4971. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  4972. \label{fig:x86-1}
  4973. \end{figure}
  4974. Next we consider the x86 instructions that are relevant for compiling
  4975. the comparison operations. The \key{cmpq} instruction compares its two
  4976. arguments to determine whether one argument is less than, equal, or
  4977. greater than the other argument. The \key{cmpq} instruction is unusual
  4978. regarding the order of its arguments and where the result is
  4979. placed. The argument order is backwards: if you want to test whether
  4980. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  4981. \key{cmpq} is placed in the special EFLAGS register. This register
  4982. cannot be accessed directly but it can be queried by a number of
  4983. instructions, including the \key{set} instruction. The instruction
  4984. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  4985. depending on whether the comparison comes out according to the
  4986. condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
  4987. for less-or-equal, \key{g} for greater, \key{ge} for
  4988. greater-or-equal). The \key{set} instruction has an annoying quirk in
  4989. that its destination argument must be single byte register, such as
  4990. \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
  4991. are part of the \code{rax} register. Thankfully, the \key{movzbq}
  4992. instruction can be used to move from a single byte register to a
  4993. normal 64-bit register. The abstract syntax for the \code{set}
  4994. instruction differs from the concrete syntax in that it separates the
  4995. instruction name from the condition code.
  4996. The x86 instruction for conditional jump is relevant to the
  4997. compilation of \key{if} expressions. The instruction
  4998. $\key{j}\itm{cc}~\itm{label}$ updates the program counter to point to
  4999. the instruction after \itm{label} depending on whether the result in
  5000. the EFLAGS register matches the condition code \itm{cc}, otherwise the
  5001. jump instruction falls through to the next instruction. Like the
  5002. abstract syntax for \code{set}, the abstract syntax for conditional
  5003. jump separates the instruction name from the condition code. For
  5004. example, \code{(JmpIf le foo)} corresponds to \code{jle foo}. Because
  5005. the conditional jump instruction relies on the EFLAGS register, it is
  5006. common for it to be immediately preceded by a \key{cmpq} instruction
  5007. to set the EFLAGS register.
  5008. \section{Shrink the \LangIf{} Language}
  5009. \label{sec:shrink-Rif}
  5010. The \LangIf{} language includes several operators that are easily
  5011. expressible with other operators. For example, subtraction is
  5012. expressible using addition and negation.
  5013. \[
  5014. \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  5015. \]
  5016. Several of the comparison operations are expressible using less-than
  5017. and logical negation.
  5018. \[
  5019. \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  5020. \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  5021. \]
  5022. The \key{let} is needed in the above translation to ensure that
  5023. expression $e_1$ is evaluated before $e_2$.
  5024. By performing these translations in the front-end of the compiler, the
  5025. later passes of the compiler do not need to deal with these operators,
  5026. making the passes shorter.
  5027. %% On the other hand, sometimes
  5028. %% these translations make it more difficult to generate the most
  5029. %% efficient code with respect to the number of instructions. However,
  5030. %% these differences typically do not affect the number of accesses to
  5031. %% memory, which is the primary factor that determines execution time on
  5032. %% modern computer architectures.
  5033. \begin{exercise}\normalfont
  5034. Implement the pass \code{shrink} to remove subtraction, \key{and},
  5035. \key{or}, \key{<=}, \key{>}, and \key{>=} from the language by
  5036. translating them to other constructs in \LangIf{}.
  5037. %
  5038. Create six test programs that involve these operators.
  5039. %
  5040. In the \code{run-tests.rkt} script, add the following entry for
  5041. \code{shrink} to the list of passes (it should be the only pass at
  5042. this point).
  5043. \begin{lstlisting}
  5044. (list "shrink" shrink interp-Rif type-check-Rif)
  5045. \end{lstlisting}
  5046. This instructs \code{interp-tests} to run the intepreter
  5047. \code{interp-Rif} and the type checker \code{type-check-Rif} on the
  5048. output of \code{shrink}.
  5049. %
  5050. Run the script to test your compiler on all the test programs.
  5051. \end{exercise}
  5052. \section{Uniquify Variables}
  5053. \label{sec:uniquify-Rif}
  5054. Add cases to \code{uniquify-exp} to handle Boolean constants and
  5055. \code{if} expressions.
  5056. \begin{exercise}\normalfont
  5057. Update the \code{uniquify-exp} for \LangIf{} and add the following
  5058. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  5059. \begin{lstlisting}
  5060. (list "uniquify" uniquify interp-Rif type-check-Rif)
  5061. \end{lstlisting}
  5062. Run the script to test your compiler.
  5063. \end{exercise}
  5064. \section{Remove Complex Operands}
  5065. \label{sec:remove-complex-opera-Rif}
  5066. The output language for this pass is \LangIfANF{}
  5067. (Figure~\ref{fig:Rif-anf-syntax}), the administrative normal form of
  5068. \LangIf{}. The \code{Bool} form is an atomic expressions but
  5069. \code{If} is not. All three sub-expressions of an \code{If} are
  5070. allowed to be complex expressions but the operands of \code{not} and
  5071. the comparisons must be atoms.
  5072. Add cases for \code{Bool} and \code{If} to the \code{rco-exp} and
  5073. \code{rco-atom} functions according to whether the output needs to be
  5074. \Exp{} or \Atm{} as specified in the grammar for \LangIfANF{}.
  5075. Regarding \code{If}, it is particularly important to \textbf{not}
  5076. replace its condition with a temporary variable because that would
  5077. interfere with the generation of high-quality output in the
  5078. \code{explicate-control} pass.
  5079. \begin{figure}[tp]
  5080. \centering
  5081. \fbox{
  5082. \begin{minipage}{0.96\textwidth}
  5083. \[
  5084. \begin{array}{rcl}
  5085. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} } \mid \BOOL{\itm{bool}}\\
  5086. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  5087. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  5088. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  5089. &\mid& \UNIOP{\key{not}}{\Atm} \\
  5090. &\mid& \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} \\
  5091. R^{\dagger}_2 &::=& \PROGRAM{\code{()}}{\Exp}
  5092. \end{array}
  5093. \]
  5094. \end{minipage}
  5095. }
  5096. \caption{\LangIfANF{} is \LangIf{} in administrative normal form (ANF).}
  5097. \label{fig:Rif-anf-syntax}
  5098. \end{figure}
  5099. \begin{exercise}\normalfont
  5100. %
  5101. Add cases for Boolean constants and \code{if} to the \code{rco-atom}
  5102. and \code{rco-exp} functions in \code{compiler.rkt}.
  5103. %
  5104. Create three new \LangInt{} programs that exercise the interesting
  5105. code in this pass.
  5106. %
  5107. In the \code{run-tests.rkt} script, add the following entry to the
  5108. list of \code{passes} and then run the script to test your compiler.
  5109. \begin{lstlisting}
  5110. (list "remove-complex" remove-complex-opera* interp-Rif type-check-Rif)
  5111. \end{lstlisting}
  5112. \end{exercise}
  5113. \section{Explicate Control}
  5114. \label{sec:explicate-control-Rif}
  5115. Recall that the purpose of \code{explicate-control} is to make the
  5116. order of evaluation explicit in the syntax of the program. With the
  5117. addition of \key{if} this get more interesting.
  5118. As a motivating example, consider the following program that has an
  5119. \key{if} expression nested in the predicate of another \key{if}.
  5120. % cond_test_41.rkt
  5121. \begin{center}
  5122. \begin{minipage}{0.96\textwidth}
  5123. \begin{lstlisting}
  5124. (let ([x (read)])
  5125. (let ([y (read)])
  5126. (if (if (< x 1) (eq? x 0) (eq? x 2))
  5127. (+ y 2)
  5128. (+ y 10))))
  5129. \end{lstlisting}
  5130. \end{minipage}
  5131. \end{center}
  5132. %
  5133. The naive way to compile \key{if} and the comparison would be to
  5134. handle each of them in isolation, regardless of their context. Each
  5135. comparison would be translated into a \key{cmpq} instruction followed
  5136. by a couple instructions to move the result from the EFLAGS register
  5137. into a general purpose register or stack location. Each \key{if} would
  5138. be translated into a \key{cmpq} instruction followed by a conditional
  5139. jump. The generated code for the inner \key{if} in the above example
  5140. would be as follows.
  5141. \begin{center}
  5142. \begin{minipage}{0.96\textwidth}
  5143. \begin{lstlisting}
  5144. ...
  5145. cmpq $1, x ;; (< x 1)
  5146. setl %al
  5147. movzbq %al, tmp
  5148. cmpq $1, tmp ;; (if ...)
  5149. je then_branch_1
  5150. jmp else_branch_1
  5151. ...
  5152. \end{lstlisting}
  5153. \end{minipage}
  5154. \end{center}
  5155. However, if we take context into account we can do better and reduce
  5156. the use of \key{cmpq} instructions for accessing the EFLAG register.
  5157. Our goal will be compile \key{if} expressions so that the relevant
  5158. comparison instruction appears directly before the conditional jump.
  5159. For example, we want to generate the following code for the inner
  5160. \code{if}.
  5161. \begin{center}
  5162. \begin{minipage}{0.96\textwidth}
  5163. \begin{lstlisting}
  5164. ...
  5165. cmpq $1, x
  5166. je then_branch_1
  5167. jmp else_branch_1
  5168. ...
  5169. \end{lstlisting}
  5170. \end{minipage}
  5171. \end{center}
  5172. One way to achieve this is to reorganize the code at the level of
  5173. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  5174. the following code.
  5175. \begin{center}
  5176. \begin{minipage}{0.96\textwidth}
  5177. \begin{lstlisting}
  5178. (let ([x (read)])
  5179. (let ([y (read)])
  5180. (if (< x 1)
  5181. (if (eq? x 0)
  5182. (+ y 2)
  5183. (+ y 10))
  5184. (if (eq? x 2)
  5185. (+ y 2)
  5186. (+ y 10)))))
  5187. \end{lstlisting}
  5188. \end{minipage}
  5189. \end{center}
  5190. Unfortunately, this approach duplicates the two branches from the
  5191. outer \code{if} and a compiler must never duplicate code!
  5192. We need a way to perform the above transformation but without
  5193. duplicating code. That is, we need a way for different parts of a
  5194. program to refer to the same piece of code. At the level of x86
  5195. assembly this is straightforward because we can label the code for
  5196. each branch and insert jumps in all the places that need to execute
  5197. the branch. In our intermediate language, we need to move away from
  5198. abstract syntax \emph{trees} and instead use \emph{graphs}. In
  5199. particular, we use a standard program representation called a
  5200. \emph{control flow graph} (CFG), due to Frances Elizabeth
  5201. \citet{Allen:1970uq}. \index{control-flow graph} Each vertex is a
  5202. labeled sequence of code, called a \emph{basic block}, and each edge
  5203. represents a jump to another block. The \key{CProgram} construct of
  5204. \LangCVar{} and \LangCIf{} contains a control flow graph represented
  5205. as an alist mapping labels to basic blocks. Each basic block is
  5206. represented by the $\Tail$ non-terminal.
  5207. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  5208. \code{remove-complex-opera*} pass and then the
  5209. \code{explicate-control} pass on the example program. We walk through
  5210. the output program and then discuss the algorithm.
  5211. %
  5212. Following the order of evaluation in the output of
  5213. \code{remove-complex-opera*}, we first have two calls to \code{(read)}
  5214. and then the comparison \lstinline{(< x 1)} in the predicate of the
  5215. inner \key{if}. In the output of \code{explicate-control}, in the
  5216. block labeled \code{start}, is two assignment statements followed by a
  5217. \code{if} statement that branches to \code{block40} or
  5218. \code{block41}. The blocks associated with those labels contain the
  5219. translations of the code \lstinline{(eq? x 0)} and \lstinline{(eq? x 2)},
  5220. respectively. In particular, we start \code{block40} with the
  5221. comparison \lstinline{(eq? x 0)} and then branch to \code{block38} or
  5222. \code{block39}, the two branches of the outer \key{if}, i.e.,
  5223. \lstinline{(+ y 2)} and \lstinline{(+ y 10)}. The story for
  5224. \code{block41} is similar.
  5225. \begin{figure}[tbp]
  5226. \begin{tabular}{lll}
  5227. \begin{minipage}{0.4\textwidth}
  5228. % cond_test_41.rkt
  5229. \begin{lstlisting}
  5230. (let ([x (read)])
  5231. (let ([y (read)])
  5232. (if (if (< x 1)
  5233. (eq? x 0)
  5234. (eq? x 2))
  5235. (+ y 2)
  5236. (+ y 10))))
  5237. \end{lstlisting}
  5238. \hspace{40pt}$\Downarrow$
  5239. \begin{lstlisting}
  5240. (let ([x (read)])
  5241. (let ([y (read)])
  5242. (if (if (< x 1)
  5243. (eq? x 0)
  5244. (eq? x 2))
  5245. (+ y 2)
  5246. (+ y 10))))
  5247. \end{lstlisting}
  5248. \end{minipage}
  5249. &
  5250. $\Rightarrow$
  5251. &
  5252. \begin{minipage}{0.55\textwidth}
  5253. \begin{lstlisting}
  5254. start:
  5255. x = (read);
  5256. y = (read);
  5257. if (< x 1) goto block40;
  5258. else goto block41;
  5259. block40:
  5260. if (eq? x 0) goto block38;
  5261. else goto block39;
  5262. block41:
  5263. if (eq? x 2) goto block38;
  5264. else goto block39;
  5265. block38:
  5266. return (+ y 2);
  5267. block39:
  5268. return (+ y 10);
  5269. \end{lstlisting}
  5270. \end{minipage}
  5271. \end{tabular}
  5272. \caption{Translation from \LangIf{} to \LangCIf{}
  5273. via the \code{explicate-control}.}
  5274. \label{fig:explicate-control-s1-38}
  5275. \end{figure}
  5276. %% The nice thing about the output of \code{explicate-control} is that
  5277. %% there are no unnecessary comparisons and every comparison is part of a
  5278. %% conditional jump.
  5279. %% The down-side of this output is that it includes
  5280. %% trivial blocks, such as the blocks labeled \code{block92} through
  5281. %% \code{block95}, that only jump to another block. We discuss a solution
  5282. %% to this problem in Section~\ref{sec:opt-jumps}.
  5283. Recall that in Section~\ref{sec:explicate-control-Rvar} we implement
  5284. \code{explicate-control} for \LangVar{} using two mutually recursive
  5285. functions, \code{explicate-tail} and \code{explicate-assign}. The
  5286. former function translates expressions in tail position whereas the
  5287. later function translates expressions on the right-hand-side of a
  5288. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  5289. have a new kind of position to deal with: the predicate position of
  5290. the \key{if}. We need another function, \code{explicate-pred}, that
  5291. takes an \LangIf{} expression and two blocks for the then-branch and
  5292. else-branch. The output of \code{explicate-pred} is a block.
  5293. %
  5294. In the following paragraphs we discuss specific cases in the
  5295. \code{explicate-pred} function as well as additions to the
  5296. \code{explicate-tail} and \code{explicate-assign} functions.
  5297. \begin{figure}[tbp]
  5298. \begin{lstlisting}
  5299. (define (explicate-pred cnd thn els)
  5300. (match cnd
  5301. [(Var x) ___]
  5302. [(Let x rhs body) ___]
  5303. [(Prim 'not (list e)) ___]
  5304. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  5305. (IfStmt (Prim op arg*) (force (block->goto thn))
  5306. (force (block->goto els)))]
  5307. [(Bool b) (if b thn els)]
  5308. [(If cnd^ thn^ els^) ___]
  5309. [else (error "explicate-pred unhandled case" cnd)]))
  5310. \end{lstlisting}
  5311. \caption{Skeleton for the \key{explicate-pred} auxiliary function.}
  5312. \label{fig:explicate-pred}
  5313. \end{figure}
  5314. The skeleton for the \code{explicate-pred} function is given in
  5315. Figure~\ref{fig:explicate-pred}. It has a case for every expression
  5316. that can have type \code{Boolean}. We detail a few cases here and
  5317. leave the rest for the reader. The input to this function is an
  5318. expression and two blocks, \code{thn} and \code{els}, for the two
  5319. branches of the enclosing \key{if}.
  5320. %
  5321. Consider the case for Boolean constants in
  5322. Figure~\ref{fig:explicate-pred}. We perform a kind of partial
  5323. evaluation\index{partial evaluation} and output either the \code{thn}
  5324. or \code{els} branch depending on whether the constant is true or
  5325. false. This case demonstrates that we sometimes discard the \code{thn}
  5326. or \code{els} blocks that are input to \code{explicate-pred}.
  5327. The case for \key{if} in \code{explicate-pred} is particularly
  5328. illuminating because it deals with the challenges we discussed above
  5329. regarding nested \key{if} expressions
  5330. (Figure~\ref{fig:explicate-control-s1-38}). The \lstinline{thn^} and
  5331. \lstinline{els^} branches of the \key{if} inherit their context from
  5332. the current one, that is, predicate context. So you should recursively
  5333. apply \code{explicate-pred} to the \lstinline{thn^} and
  5334. \lstinline{els^} branches. For both of those recursive calls, pass
  5335. \code{thn} and \code{els} as the extra parameters. Thus, \code{thn}
  5336. and \code{els} may get used twice, once inside each recursive call. As
  5337. discussed above, to avoid duplicating code, we need to add them to the
  5338. control-flow graph so that we can instead refer to them by name and
  5339. execute them with a \key{goto}. However, as we saw in the cases above
  5340. for Boolean constants, the blocks \code{thn} and \code{els} may not
  5341. get used at all and we don't want to prematurely add them to the
  5342. control-flow graph if they end up being discarded.
  5343. The solution to this conundrum is to use \emph{lazy
  5344. evaluation}\index{lazy evaluation}\citep{Friedman:1976aa} to delay
  5345. adding the blocks to the control-flow graph until the points where we
  5346. know they will be used. Racket provides support for lazy evaluation
  5347. with the
  5348. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  5349. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  5350. \index{delay} creates a \emph{promise}\index{promise} in which the
  5351. evaluation of the expressions is postponed. When \key{(force}
  5352. $p$\key{)}\index{force} is applied to a promise $p$ for the first
  5353. time, the expressions $e_1 \ldots e_n$ are evaluated and the result of
  5354. $e_n$ is cached in the promise and returned. If \code{force} is
  5355. applied again to the same promise, then the cached result is returned.
  5356. If \code{force} is applied to an argument that is not a promise,
  5357. \code{force} simply returns the argument.
  5358. We use lazy evaluation for the input and output blocks of the
  5359. functions \code{explicate-pred} and \code{explicate-assign} and for
  5360. the output block of \code{explicate-tail}. So instead of taking and
  5361. returning blocks, they take and return promises. Furthermore, when we
  5362. come to a situation in which we a block might be used more than once,
  5363. as in the case for \code{if} in \code{explicate-pred}, we transform
  5364. the promise into a new promise that will add the block to the
  5365. control-flow graph and return a \code{goto}. The following auxiliary
  5366. function named \code{block->goto} accomplishes this task. It begins
  5367. with \code{delay} to create a promise. When forced, this promise will
  5368. force the original promise. If that returns a \code{goto} (because the
  5369. block was already added to the control-flow graph), then we return the
  5370. \code{goto}. Otherwise we add the block to the control-flow graph with
  5371. another auxiliary function named \code{add-node}. That function
  5372. returns the label for the new block, which we use to create a
  5373. \code{goto}.
  5374. \begin{lstlisting}
  5375. (define (block->goto block)
  5376. (delay
  5377. (define b (force block))
  5378. (match b
  5379. [(Goto label) (Goto label)]
  5380. [else (Goto (add-node b))])))
  5381. \end{lstlisting}
  5382. Returning to the discussion of \code{explicate-pred}
  5383. (Figure~\ref{fig:explicate-pred}), consider the case for comparison
  5384. operators. This is one of the base cases of the recursive function so
  5385. we translate the comparison to an \code{if} statement. We apply
  5386. \code{block->goto} to \code{thn} and \code{els} to obtain two promises
  5387. that will add then to the control-flow graph, which we can immediately
  5388. \code{force} to obtain the two goto's that form the branches of the
  5389. \code{if} statement.
  5390. %% Getting back to the case for \code{if} in \code{explicate-pred}, we
  5391. %% make the recursive calls to \code{explicate-pred} on the ``then'' and
  5392. %% ``else'' branches with the arguments \code{(block->goto} $B_1$\code{)}
  5393. %% and \code{(block->goto} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  5394. %% results from the two recursive calls. We complete the case for
  5395. %% \code{if} by recursively apply \code{explicate-pred} to the condition
  5396. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  5397. %% the result $B_5$.
  5398. %% \[
  5399. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  5400. %% \quad\Rightarrow\quad
  5401. %% B_5
  5402. %% \]
  5403. The \code{explicate-tail} and \code{explicate-assign} functions need
  5404. additional cases for Boolean constants and \key{if}.
  5405. %
  5406. In the cases for \code{if}, the two branches inherit the current
  5407. context, so in \code{explicate-tail} they are in tail position and in
  5408. \code{explicate-assign} they are in assignment position. The
  5409. \code{cont} parameter of \code{explicate-assign} is used in both
  5410. recursive calls, so make sure to use \code{block->goto} on it.
  5411. %% In the case for \code{if} in \code{explicate-tail}, the two branches
  5412. %% inherit the current context, so they are in tail position. Thus, the
  5413. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  5414. %% \code{explicate-tail}.
  5415. %% %
  5416. %% We need to pass $B_0$ as the accumulator argument for both of these
  5417. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  5418. %% Thus, we first apply \code{block->goto} to $B_0$ so that it gets added
  5419. %% to the control-flow graph and obtain a promised goto $G_0$.
  5420. %% %
  5421. %% Let $B_1$ be the result of \code{explicate-tail} on the ``then''
  5422. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate-tail}
  5423. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  5424. %% \code{explicate-pred} to the condition of the \key{if}, $B_1$, and
  5425. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  5426. %% \[
  5427. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  5428. %% \]
  5429. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  5430. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  5431. %% should not be confused with the labels for the blocks that appear in
  5432. %% the generated code. We initially construct unlabeled blocks; we only
  5433. %% attach labels to blocks when we add them to the control-flow graph, as
  5434. %% we see in the next case.
  5435. %% Next consider the case for \key{if} in the \code{explicate-assign}
  5436. %% function. The context of the \key{if} is an assignment to some
  5437. %% variable $x$ and then the control continues to some promised block
  5438. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  5439. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  5440. %% apply \code{block->goto} to it and obtain a promised goto $G_1$. The
  5441. %% branches of the \key{if} inherit the current context, so they are in
  5442. %% assignment positions. Let $B_2$ be the result of applying
  5443. %% \code{explicate-assign} to the ``then'' branch, variable $x$, and
  5444. %% $G_1$. Let $B_3$ be the result of applying \code{explicate-assign} to
  5445. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  5446. %% the result of applying \code{explicate-pred} to the predicate
  5447. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  5448. %% translates to the promise $B_4$.
  5449. %% \[
  5450. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  5451. %% \]
  5452. %% This completes the description of \code{explicate-control} for \LangIf{}.
  5453. The way in which the \code{shrink} pass transforms logical operations
  5454. such as \code{and} and \code{or} can impact the quality of code
  5455. generated by \code{explicate-control}. For example, consider the
  5456. following program.
  5457. % cond_test_21.rkt
  5458. \begin{lstlisting}
  5459. (if (and (eq? (read) 0) (eq? (read) 1))
  5460. 0
  5461. 42)
  5462. \end{lstlisting}
  5463. The \code{and} operation should transform into something that the
  5464. \code{explicate-pred} function can still analyze and descend through to
  5465. reach the underlying \code{eq?} conditions. Ideally, your
  5466. \code{explicate-control} pass should generate code similar to the
  5467. following for the above program.
  5468. \begin{center}
  5469. \begin{lstlisting}
  5470. start:
  5471. tmp1 = (read);
  5472. if (eq? tmp1 0) goto block40;
  5473. else goto block39;
  5474. block40:
  5475. tmp2 = (read);
  5476. if (eq? tmp2 1) goto block38;
  5477. else goto block39;
  5478. block38:
  5479. return 0;
  5480. block39:
  5481. return 42;
  5482. \end{lstlisting}
  5483. \end{center}
  5484. \begin{exercise}\normalfont
  5485. Implement the pass \code{explicate-control} by adding the cases for
  5486. Boolean constants and \key{if} to the \code{explicate-tail} and
  5487. \code{explicate-assign}. Implement the auxiliary function
  5488. \code{explicate-pred} for predicate contexts.
  5489. %
  5490. Create test cases that exercise all of the new cases in the code for
  5491. this pass.
  5492. %
  5493. Add the following entry to the list of \code{passes} in
  5494. \code{run-tests.rkt} and then run this script to test your compiler.
  5495. \begin{lstlisting}
  5496. (list "explicate-control" explicate-control interp-Cif type-check-Cif)
  5497. \end{lstlisting}
  5498. \end{exercise}
  5499. \section{Select Instructions}
  5500. \label{sec:select-Rif}
  5501. \index{instruction selection}
  5502. The \code{select-instructions} pass translate \LangCIf{} to
  5503. \LangXIfVar{}. Recall that we implement this pass using three
  5504. auxiliary functions, one for each of the non-terminals $\Atm$,
  5505. $\Stmt$, and $\Tail$.
  5506. For $\Atm$, we have new cases for the Booleans. We take the usual
  5507. approach of encoding them as integers, with true as 1 and false as 0.
  5508. \[
  5509. \key{\#t} \Rightarrow \key{1}
  5510. \qquad
  5511. \key{\#f} \Rightarrow \key{0}
  5512. \]
  5513. For $\Stmt$, we discuss a couple cases. The \code{not} operation can
  5514. be implemented in terms of \code{xorq} as we discussed at the
  5515. beginning of this section. Given an assignment
  5516. $\itm{var}$ \key{=} \key{(not} $\Atm$\key{);},
  5517. if the left-hand side $\itm{var}$ is
  5518. the same as $\Atm$, then just the \code{xorq} suffices.
  5519. \[
  5520. \Var~\key{=}~ \key{(not}\; \Var\key{);}
  5521. \quad\Rightarrow\quad
  5522. \key{xorq}~\key{\$}1\key{,}~\Var
  5523. \]
  5524. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  5525. semantics of x86. Let $\Arg$ be the result of translating $\Atm$ to
  5526. x86. Then we have
  5527. \[
  5528. \Var~\key{=}~ \key{(not}\; \Atm\key{);}
  5529. \quad\Rightarrow\quad
  5530. \begin{array}{l}
  5531. \key{movq}~\Arg\key{,}~\Var\\
  5532. \key{xorq}~\key{\$}1\key{,}~\Var
  5533. \end{array}
  5534. \]
  5535. Next consider the cases for \code{eq?} and less-than comparison.
  5536. Translating these operations to x86 is slightly involved due to the
  5537. unusual nature of the \key{cmpq} instruction discussed above. We
  5538. recommend translating an assignment from \code{eq?} into the following
  5539. sequence of three instructions. \\
  5540. \begin{tabular}{lll}
  5541. \begin{minipage}{0.4\textwidth}
  5542. \begin{lstlisting}
  5543. |$\Var$| = (eq? |$\Atm_1$| |$\Atm_2$|);
  5544. \end{lstlisting}
  5545. \end{minipage}
  5546. &
  5547. $\Rightarrow$
  5548. &
  5549. \begin{minipage}{0.4\textwidth}
  5550. \begin{lstlisting}
  5551. cmpq |$\Arg_2$|, |$\Arg_1$|
  5552. sete %al
  5553. movzbq %al, |$\Var$|
  5554. \end{lstlisting}
  5555. \end{minipage}
  5556. \end{tabular} \\
  5557. Regarding the $\Tail$ non-terminal, we have two new cases: \key{goto}
  5558. and \key{if} statements. Both are straightforward to translate to
  5559. x86. A \key{goto} becomes a jump instruction.
  5560. \[
  5561. \key{goto}\; \ell\key{;} \quad \Rightarrow \quad \key{jmp}\;\ell
  5562. \]
  5563. An \key{if} statement becomes a compare instruction followed by a
  5564. conditional jump (for the ``then'' branch) and the fall-through is to
  5565. a regular jump (for the ``else'' branch).\\
  5566. \begin{tabular}{lll}
  5567. \begin{minipage}{0.4\textwidth}
  5568. \begin{lstlisting}
  5569. if (eq? |$\Atm_1$| |$\Atm_2$|) goto |$\ell_1$|;
  5570. else goto |$\ell_2$|;
  5571. \end{lstlisting}
  5572. \end{minipage}
  5573. &
  5574. $\Rightarrow$
  5575. &
  5576. \begin{minipage}{0.4\textwidth}
  5577. \begin{lstlisting}
  5578. cmpq |$\Arg_2$|, |$\Arg_1$|
  5579. je |$\ell_1$|
  5580. jmp |$\ell_2$|
  5581. \end{lstlisting}
  5582. \end{minipage}
  5583. \end{tabular} \\
  5584. \begin{exercise}\normalfont
  5585. Expand your \code{select-instructions} pass to handle the new features
  5586. of the \LangIf{} language.
  5587. %
  5588. Add the following entry to the list of \code{passes} in
  5589. \code{run-tests.rkt}
  5590. \begin{lstlisting}
  5591. (list "select-instructions" select-instructions interp-pseudo-x86-1)
  5592. \end{lstlisting}
  5593. %
  5594. Run the script to test your compiler on all the test programs.
  5595. \end{exercise}
  5596. \section{Register Allocation}
  5597. \label{sec:register-allocation-Rif}
  5598. \index{register allocation}
  5599. The changes required for \LangIf{} affect liveness analysis, building the
  5600. interference graph, and assigning homes, but the graph coloring
  5601. algorithm itself does not change.
  5602. \subsection{Liveness Analysis}
  5603. \label{sec:liveness-analysis-Rif}
  5604. \index{liveness analysis}
  5605. Recall that for \LangVar{} we implemented liveness analysis for a single
  5606. basic block (Section~\ref{sec:liveness-analysis-Rvar}). With the
  5607. addition of \key{if} expressions to \LangIf{}, \code{explicate-control}
  5608. produces many basic blocks arranged in a control-flow graph. We
  5609. recommend that you create a new auxiliary function named
  5610. \code{uncover-live-CFG} that applies liveness analysis to a
  5611. control-flow graph.
  5612. The first question we is: what order should we process the basic
  5613. blocks in the control-flow graph? Recall that to perform liveness
  5614. analysis on a basic block we need to know its live-after set. If a
  5615. basic block has no successors (i.e. no out-edges in the control flow
  5616. graph), then it has an empty live-after set and we can immediately
  5617. apply liveness analysis to it. If a basic block has some successors,
  5618. then we need to complete liveness analysis on those blocks first. In
  5619. graph theory, a sequence of nodes is in \emph{topological
  5620. order}\index{topological order} if each vertex comes before its
  5621. successors. We need the opposite, so we can transpose the graph
  5622. before computing a topological order.
  5623. %
  5624. Use the \code{tsort} and \code{transpose} functions of the Racket
  5625. \code{graph} package to accomplish this.
  5626. %
  5627. As an aside, a topological ordering is only guaranteed to exist if the
  5628. graph does not contain any cycles. That is indeed the case for the
  5629. control-flow graphs that we generate from \LangIf{} programs.
  5630. However, in Chapter~\ref{ch:Rwhile} we add loops to \LangLoop{} and
  5631. learn how to handle cycles in the control-flow graph.
  5632. You'll need to construct a directed graph to represent the
  5633. control-flow graph. Do not use the \code{directed-graph} of the
  5634. \code{graph} package because that only allows at most one edge between
  5635. each pair of vertices, but a control-flow graph may have multiple
  5636. edges between a pair of vertices. The \code{multigraph.rkt} file in
  5637. the support code implements a graph representation that allows
  5638. multiple edges between a pair of vertices.
  5639. The next question is how to analyze jump instructions. Recall that in
  5640. Section~\ref{sec:liveness-analysis-Rvar} we maintain an alist named
  5641. \code{label->live} that maps each label to the set of live locations
  5642. at the beginning of its block. We use \code{label->live} to determine
  5643. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  5644. that we have many basic blocks, \code{label->live} needs to be updated
  5645. as we process the blocks. In particular, after performing liveness
  5646. analysis on a block, we take the live-before set of its first
  5647. instruction and associate that with the block's label in the
  5648. \code{label->live}.
  5649. In \LangXIfVar{} we also have the conditional jump
  5650. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  5651. this instruction is particularly interesting because during
  5652. compilation we do not know which way a conditional jump will go. So
  5653. we do not know whether to use the live-before set for the following
  5654. instruction or the live-before set for the $\itm{label}$. However,
  5655. there is no harm to the correctness of the compiler if we classify
  5656. more locations as live than the ones that are truly live during a
  5657. particular execution of the instruction. Thus, we can take the union
  5658. of the live-before sets from the following instruction and from the
  5659. mapping for $\itm{label}$ in \code{label->live}.
  5660. The auxiliary functions for computing the variables in an
  5661. instruction's argument and for computing the variables read-from ($R$)
  5662. or written-to ($W$) by an instruction need to be updated to handle the
  5663. new kinds of arguments and instructions in \LangXIfVar{}.
  5664. \begin{exercise}\normalfont
  5665. Update the \code{uncover-live} pass and implement the
  5666. \code{uncover-live-CFG} auxiliary function to apply liveness analysis
  5667. to the control-flow graph. Add the following entry to the list of
  5668. \code{passes} in the \code{run-tests.rkt} script.
  5669. \begin{lstlisting}
  5670. (list "uncover-live" uncover-live interp-pseudo-x86-1)
  5671. \end{lstlisting}
  5672. \end{exercise}
  5673. \subsection{Build the Interference Graph}
  5674. \label{sec:build-interference-Rif}
  5675. Many of the new instructions in \LangXIfVar{} can be handled in the
  5676. same way as the instructions in \LangXVar{}. Thus, if your code was
  5677. already quite general, it will not need to be changed to handle the
  5678. new instructions. If you code is not general enough, we recommend that
  5679. you change your code to be more general. For example, you can factor
  5680. out the computing of the the read and write sets for each kind of
  5681. instruction into two auxiliary functions.
  5682. Note that the \key{movzbq} instruction requires some special care,
  5683. similar to the \key{movq} instruction. See rule number 1 in
  5684. Section~\ref{sec:build-interference}.
  5685. \begin{exercise}\normalfont
  5686. Update the \code{build-interference} pass for \LangXIfVar{} and add the
  5687. following entries to the list of \code{passes} in the
  5688. \code{run-tests.rkt} script.
  5689. \begin{lstlisting}
  5690. (list "build-interference" build-interference interp-pseudo-x86-1)
  5691. (list "allocate-registers" allocate-registers interp-x86-1)
  5692. \end{lstlisting}
  5693. Run the script to test your compiler on all the \LangIf{} test
  5694. programs.
  5695. \end{exercise}
  5696. \section{Patch Instructions}
  5697. The second argument of the \key{cmpq} instruction must not be an
  5698. immediate value (such as an integer). So if you are comparing two
  5699. immediates, we recommend inserting a \key{movq} instruction to put the
  5700. second argument in \key{rax}. Also, recall that instructions may have
  5701. at most one memory reference.
  5702. %
  5703. The second argument of the \key{movzbq} must be a register.
  5704. %
  5705. There are no special restrictions on the jump instructions.
  5706. \begin{exercise}\normalfont
  5707. %
  5708. Update \code{patch-instructions} pass for \LangXIfVar{}.
  5709. %
  5710. Add the following entry to the list of \code{passes} in
  5711. \code{run-tests.rkt} and then run this script to test your compiler.
  5712. \begin{lstlisting}
  5713. (list "patch-instructions" patch-instructions interp-x86-1)
  5714. \end{lstlisting}
  5715. \end{exercise}
  5716. the \begin{figure}[tbp]
  5717. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5718. \node (Rif) at (0,2) {\large \LangIf{}};
  5719. \node (Rif-2) at (3,2) {\large \LangIf{}};
  5720. \node (Rif-3) at (6,2) {\large \LangIf{}};
  5721. \node (Rif-4) at (9,2) {\large \LangIf{}};
  5722. \node (Rif-5) at (12,2) {\large \LangIf{}};
  5723. \node (C1-1) at (3,0) {\large \LangCIf{}};
  5724. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  5725. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  5726. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  5727. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  5728. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  5729. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  5730. \path[->,bend left=15] (Rif) edge [above] node {\ttfamily\footnotesize type-check} (Rif-2);
  5731. \path[->,bend left=15] (Rif-2) edge [above] node {\ttfamily\footnotesize shrink} (Rif-3);
  5732. \path[->,bend left=15] (Rif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Rif-4);
  5733. \path[->,bend left=15] (Rif-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rif-5);
  5734. \path[->,bend left=15] (Rif-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C1-1);
  5735. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select-instructions} (x86-2);
  5736. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  5737. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  5738. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  5739. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  5740. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86 } (x86-5);
  5741. \end{tikzpicture}
  5742. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  5743. \label{fig:Rif-passes}
  5744. \end{figure}
  5745. Figure~\ref{fig:Rif-passes} lists all the passes needed for the
  5746. compilation of \LangIf{}.
  5747. \section{An Example Translation}
  5748. Figure~\ref{fig:if-example-x86} shows a simple example program in
  5749. \LangIf{} translated to x86, showing the results of
  5750. \code{explicate-control}, \code{select-instructions}, and the final
  5751. x86 assembly code.
  5752. \begin{figure}[tbp]
  5753. \begin{tabular}{lll}
  5754. \begin{minipage}{0.4\textwidth}
  5755. % cond_test_20.rkt
  5756. \begin{lstlisting}
  5757. (if (eq? (read) 1) 42 0)
  5758. \end{lstlisting}
  5759. $\Downarrow$
  5760. \begin{lstlisting}
  5761. start:
  5762. tmp7951 = (read);
  5763. if (eq? tmp7951 1)
  5764. goto block7952;
  5765. else
  5766. goto block7953;
  5767. block7952:
  5768. return 42;
  5769. block7953:
  5770. return 0;
  5771. \end{lstlisting}
  5772. $\Downarrow$
  5773. \begin{lstlisting}
  5774. start:
  5775. callq read_int
  5776. movq %rax, tmp7951
  5777. cmpq $1, tmp7951
  5778. je block7952
  5779. jmp block7953
  5780. block7953:
  5781. movq $0, %rax
  5782. jmp conclusion
  5783. block7952:
  5784. movq $42, %rax
  5785. jmp conclusion
  5786. \end{lstlisting}
  5787. \end{minipage}
  5788. &
  5789. $\Rightarrow\qquad$
  5790. \begin{minipage}{0.4\textwidth}
  5791. \begin{lstlisting}
  5792. start:
  5793. callq read_int
  5794. movq %rax, %rcx
  5795. cmpq $1, %rcx
  5796. je block7952
  5797. jmp block7953
  5798. block7953:
  5799. movq $0, %rax
  5800. jmp conclusion
  5801. block7952:
  5802. movq $42, %rax
  5803. jmp conclusion
  5804. .globl main
  5805. main:
  5806. pushq %rbp
  5807. movq %rsp, %rbp
  5808. pushq %r13
  5809. pushq %r12
  5810. pushq %rbx
  5811. pushq %r14
  5812. subq $0, %rsp
  5813. jmp start
  5814. conclusion:
  5815. addq $0, %rsp
  5816. popq %r14
  5817. popq %rbx
  5818. popq %r12
  5819. popq %r13
  5820. popq %rbp
  5821. retq
  5822. \end{lstlisting}
  5823. \end{minipage}
  5824. \end{tabular}
  5825. \caption{Example compilation of an \key{if} expression to x86.}
  5826. \label{fig:if-example-x86}
  5827. \end{figure}
  5828. \section{Challenge: Remove Jumps}
  5829. \label{sec:opt-jumps}
  5830. %% Recall that in the example output of \code{explicate-control} in
  5831. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  5832. %% \code{block60} are trivial blocks, they do nothing but jump to another
  5833. %% block. The first goal of this challenge assignment is to remove those
  5834. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  5835. %% \code{explicate-control} on the left and shows the result of bypassing
  5836. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  5837. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  5838. %% \code{block55}. The optimized code on the right of
  5839. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  5840. %% \code{then} branch jumping directly to \code{block55}. The story is
  5841. %% similar for the \code{else} branch, as well as for the two branches in
  5842. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  5843. %% have been optimized in this way, there are no longer any jumps to
  5844. %% blocks \code{block57} through \code{block60}, so they can be removed.
  5845. %% \begin{figure}[tbp]
  5846. %% \begin{tabular}{lll}
  5847. %% \begin{minipage}{0.4\textwidth}
  5848. %% \begin{lstlisting}
  5849. %% block62:
  5850. %% tmp54 = (read);
  5851. %% if (eq? tmp54 2) then
  5852. %% goto block59;
  5853. %% else
  5854. %% goto block60;
  5855. %% block61:
  5856. %% tmp53 = (read);
  5857. %% if (eq? tmp53 0) then
  5858. %% goto block57;
  5859. %% else
  5860. %% goto block58;
  5861. %% block60:
  5862. %% goto block56;
  5863. %% block59:
  5864. %% goto block55;
  5865. %% block58:
  5866. %% goto block56;
  5867. %% block57:
  5868. %% goto block55;
  5869. %% block56:
  5870. %% return (+ 700 77);
  5871. %% block55:
  5872. %% return (+ 10 32);
  5873. %% start:
  5874. %% tmp52 = (read);
  5875. %% if (eq? tmp52 1) then
  5876. %% goto block61;
  5877. %% else
  5878. %% goto block62;
  5879. %% \end{lstlisting}
  5880. %% \end{minipage}
  5881. %% &
  5882. %% $\Rightarrow$
  5883. %% &
  5884. %% \begin{minipage}{0.55\textwidth}
  5885. %% \begin{lstlisting}
  5886. %% block62:
  5887. %% tmp54 = (read);
  5888. %% if (eq? tmp54 2) then
  5889. %% goto block55;
  5890. %% else
  5891. %% goto block56;
  5892. %% block61:
  5893. %% tmp53 = (read);
  5894. %% if (eq? tmp53 0) then
  5895. %% goto block55;
  5896. %% else
  5897. %% goto block56;
  5898. %% block56:
  5899. %% return (+ 700 77);
  5900. %% block55:
  5901. %% return (+ 10 32);
  5902. %% start:
  5903. %% tmp52 = (read);
  5904. %% if (eq? tmp52 1) then
  5905. %% goto block61;
  5906. %% else
  5907. %% goto block62;
  5908. %% \end{lstlisting}
  5909. %% \end{minipage}
  5910. %% \end{tabular}
  5911. %% \caption{Optimize jumps by removing trivial blocks.}
  5912. %% \label{fig:optimize-jumps}
  5913. %% \end{figure}
  5914. %% The name of this pass is \code{optimize-jumps}. We recommend
  5915. %% implementing this pass in two phases. The first phrase builds a hash
  5916. %% table that maps labels to possibly improved labels. The second phase
  5917. %% changes the target of each \code{goto} to use the improved label. If
  5918. %% the label is for a trivial block, then the hash table should map the
  5919. %% label to the first non-trivial block that can be reached from this
  5920. %% label by jumping through trivial blocks. If the label is for a
  5921. %% non-trivial block, then the hash table should map the label to itself;
  5922. %% we do not want to change jumps to non-trivial blocks.
  5923. %% The first phase can be accomplished by constructing an empty hash
  5924. %% table, call it \code{short-cut}, and then iterating over the control
  5925. %% flow graph. Each time you encouter a block that is just a \code{goto},
  5926. %% then update the hash table, mapping the block's source to the target
  5927. %% of the \code{goto}. Also, the hash table may already have mapped some
  5928. %% labels to the block's source, to you must iterate through the hash
  5929. %% table and update all of those so that they instead map to the target
  5930. %% of the \code{goto}.
  5931. %% For the second phase, we recommend iterating through the $\Tail$ of
  5932. %% each block in the program, updating the target of every \code{goto}
  5933. %% according to the mapping in \code{short-cut}.
  5934. %% \begin{exercise}\normalfont
  5935. %% Implement the \code{optimize-jumps} pass as a transformation from
  5936. %% \LangCIf{} to \LangCIf{}, coming after the \code{explicate-control} pass.
  5937. %% Check that \code{optimize-jumps} removes trivial blocks in a few
  5938. %% example programs. Then check that your compiler still passes all of
  5939. %% your tests.
  5940. %% \end{exercise}
  5941. There is an opportunity for optimizing jumps that is apparent in the
  5942. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  5943. ends with a jump to \code{block7953} and there are no other jumps to
  5944. \code{block7953} in the rest of the program. In this situation we can
  5945. avoid the runtime overhead of this jump by merging \code{block7953}
  5946. into the preceding block, in this case the \code{start} block.
  5947. Figure~\ref{fig:remove-jumps} shows the output of
  5948. \code{select-instructions} on the left and the result of this
  5949. optimization on the right.
  5950. \begin{figure}[tbp]
  5951. \begin{tabular}{lll}
  5952. \begin{minipage}{0.5\textwidth}
  5953. % cond_test_20.rkt
  5954. \begin{lstlisting}
  5955. start:
  5956. callq read_int
  5957. movq %rax, tmp7951
  5958. cmpq $1, tmp7951
  5959. je block7952
  5960. jmp block7953
  5961. block7953:
  5962. movq $0, %rax
  5963. jmp conclusion
  5964. block7952:
  5965. movq $42, %rax
  5966. jmp conclusion
  5967. \end{lstlisting}
  5968. \end{minipage}
  5969. &
  5970. $\Rightarrow\qquad$
  5971. \begin{minipage}{0.4\textwidth}
  5972. \begin{lstlisting}
  5973. start:
  5974. callq read_int
  5975. movq %rax, tmp7951
  5976. cmpq $1, tmp7951
  5977. je block7952
  5978. movq $0, %rax
  5979. jmp conclusion
  5980. block7952:
  5981. movq $42, %rax
  5982. jmp conclusion
  5983. \end{lstlisting}
  5984. \end{minipage}
  5985. \end{tabular}
  5986. \caption{Merging basic blocks by removing unnecessary jumps.}
  5987. \label{fig:remove-jumps}
  5988. \end{figure}
  5989. \begin{exercise}\normalfont
  5990. %
  5991. Implement a pass named \code{remove-jumps} that merges basic blocks
  5992. into their preceding basic block, when there is only one preceding
  5993. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  5994. %
  5995. In the \code{run-tests.rkt} script, add the following entry to the
  5996. list of \code{passes} between \code{allocate-registers}
  5997. and \code{patch-instructions}.
  5998. \begin{lstlisting}
  5999. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  6000. \end{lstlisting}
  6001. Run this script to test your compiler.
  6002. %
  6003. Check that \code{remove-jumps} accomplishes the goal of merging basic
  6004. blocks on several test programs.
  6005. \end{exercise}
  6006. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6007. \chapter{Tuples and Garbage Collection}
  6008. \label{ch:Rvec}
  6009. \index{tuple}
  6010. \index{vector}
  6011. \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  6012. all the IR grammars are spelled out! \\ --Jeremy}
  6013. \margincomment{\scriptsize Be more explicit about how to deal with
  6014. the root stack. \\ --Jeremy}
  6015. In this chapter we study the implementation of mutable tuples, called
  6016. vectors in Racket. This language feature is the first to use the
  6017. computer's \emph{heap}\index{heap} because the lifetime of a Racket
  6018. tuple is indefinite, that is, a tuple lives forever from the
  6019. programmer's viewpoint. Of course, from an implementer's viewpoint, it
  6020. is important to reclaim the space associated with a tuple when it is
  6021. no longer needed, which is why we also study \emph{garbage collection}
  6022. \emph{garbage collection} techniques in this chapter.
  6023. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  6024. interpreter and type checker. The \LangVec{} language extends the \LangIf{}
  6025. language of Chapter~\ref{ch:Rif} with vectors and Racket's
  6026. \code{void} value. The reason for including the later is that the
  6027. \code{vector-set!} operation returns a value of type
  6028. \code{Void}\footnote{Racket's \code{Void} type corresponds to what is
  6029. called the \code{Unit} type in the programming languages
  6030. literature. Racket's \code{Void} type is inhabited by a single value
  6031. \code{void} which corresponds to \code{unit} or \code{()} in the
  6032. literature~\citep{Pierce:2002hj}.}.
  6033. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  6034. copying live objects back and forth between two halves of the
  6035. heap. The garbage collector requires coordination with the compiler so
  6036. that it can see all of the \emph{root} pointers, that is, pointers in
  6037. registers or on the procedure call stack.
  6038. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  6039. discuss all the necessary changes and additions to the compiler
  6040. passes, including a new compiler pass named \code{expose-allocation}.
  6041. \section{The \LangVec{} Language}
  6042. \label{sec:r3}
  6043. Figure~\ref{fig:Rvec-concrete-syntax} defines the concrete syntax for
  6044. \LangVec{} and Figure~\ref{fig:Rvec-syntax} defines the abstract syntax. The
  6045. \LangVec{} language includes three new forms: \code{vector} for creating a
  6046. tuple, \code{vector-ref} for reading an element of a tuple, and
  6047. \code{vector-set!} for writing to an element of a tuple. The program
  6048. in Figure~\ref{fig:vector-eg} shows the usage of tuples in Racket. We
  6049. create a 3-tuple \code{t} and a 1-tuple that is stored at index $2$ of
  6050. the 3-tuple, demonstrating that tuples are first-class values. The
  6051. element at index $1$ of \code{t} is \code{\#t}, so the ``then'' branch
  6052. of the \key{if} is taken. The element at index $0$ of \code{t} is
  6053. \code{40}, to which we add \code{2}, the element at index $0$ of the
  6054. 1-tuple. So the result of the program is \code{42}.
  6055. \begin{figure}[tbp]
  6056. \centering
  6057. \fbox{
  6058. \begin{minipage}{0.96\textwidth}
  6059. \[
  6060. \begin{array}{lcl}
  6061. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}}
  6062. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}\\
  6063. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  6064. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  6065. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  6066. \mid \LP\key{and}\;\Exp\;\Exp\RP
  6067. \mid \LP\key{or}\;\Exp\;\Exp\RP
  6068. \mid \LP\key{not}\;\Exp\RP } \\
  6069. &\mid& \gray{ \LP\itm{cmp}\;\Exp\;\Exp\RP
  6070. \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  6071. &\mid& \LP\key{vector}\;\Exp\ldots\RP
  6072. \mid \LP\key{vector-length}\;\Exp\RP \\
  6073. &\mid& \LP\key{vector-ref}\;\Exp\;\Int\RP
  6074. \mid \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP \\
  6075. &\mid& \LP\key{void}\RP \mid \LP\key{has-type}~\Exp~\Type\RP\\
  6076. \LangVec{} &::=& \Exp
  6077. \end{array}
  6078. \]
  6079. \end{minipage}
  6080. }
  6081. \caption{The concrete syntax of \LangVec{}, extending \LangIf{}
  6082. (Figure~\ref{fig:Rif-concrete-syntax}).}
  6083. \label{fig:Rvec-concrete-syntax}
  6084. \end{figure}
  6085. \begin{figure}[tbp]
  6086. \begin{lstlisting}
  6087. (let ([t (vector 40 #t (vector 2))])
  6088. (if (vector-ref t 1)
  6089. (+ (vector-ref t 0)
  6090. (vector-ref (vector-ref t 2) 0))
  6091. 44))
  6092. \end{lstlisting}
  6093. \caption{Example program that creates tuples and reads from them.}
  6094. \label{fig:vector-eg}
  6095. \end{figure}
  6096. \begin{figure}[tp]
  6097. \centering
  6098. \fbox{
  6099. \begin{minipage}{0.96\textwidth}
  6100. \[
  6101. \begin{array}{lcl}
  6102. \itm{op} &::=& \ldots \mid \code{vector} \mid \code{vector-length} \\
  6103. \Exp &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  6104. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots}
  6105. \mid \BOOL{\itm{bool}}
  6106. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  6107. &\mid& \VECREF{\Exp}{\INT{\Int}}\\
  6108. &\mid& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  6109. &\mid& \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP \\
  6110. \LangVec{} &::=& \PROGRAM{\key{'()}}{\Exp}
  6111. \end{array}
  6112. \]
  6113. \end{minipage}
  6114. }
  6115. \caption{The abstract syntax of \LangVec{}.}
  6116. \label{fig:Rvec-syntax}
  6117. \end{figure}
  6118. \index{allocate}
  6119. \index{heap allocate}
  6120. Tuples are our first encounter with heap-allocated data, which raises
  6121. several interesting issues. First, variable binding performs a
  6122. shallow-copy when dealing with tuples, which means that different
  6123. variables can refer to the same tuple, that is, different variables
  6124. can be \emph{aliases} for the same entity. Consider the following
  6125. example in which both \code{t1} and \code{t2} refer to the same tuple.
  6126. Thus, the mutation through \code{t2} is visible when referencing the
  6127. tuple from \code{t1}, so the result of this program is \code{42}.
  6128. \index{alias}\index{mutation}
  6129. \begin{center}
  6130. \begin{minipage}{0.96\textwidth}
  6131. \begin{lstlisting}
  6132. (let ([t1 (vector 3 7)])
  6133. (let ([t2 t1])
  6134. (let ([_ (vector-set! t2 0 42)])
  6135. (vector-ref t1 0))))
  6136. \end{lstlisting}
  6137. \end{minipage}
  6138. \end{center}
  6139. The next issue concerns the lifetime of tuples. Of course, they are
  6140. created by the \code{vector} form, but when does their lifetime end?
  6141. Notice that \LangVec{} does not include an operation for deleting
  6142. tuples. Furthermore, the lifetime of a tuple is not tied to any notion
  6143. of static scoping. For example, the following program returns
  6144. \code{42} even though the variable \code{w} goes out of scope prior to
  6145. the \code{vector-ref} that reads from the vector it was bound to.
  6146. \begin{center}
  6147. \begin{minipage}{0.96\textwidth}
  6148. \begin{lstlisting}
  6149. (let ([v (vector (vector 44))])
  6150. (let ([x (let ([w (vector 42)])
  6151. (let ([_ (vector-set! v 0 w)])
  6152. 0))])
  6153. (+ x (vector-ref (vector-ref v 0) 0))))
  6154. \end{lstlisting}
  6155. \end{minipage}
  6156. \end{center}
  6157. From the perspective of programmer-observable behavior, tuples live
  6158. forever. Of course, if they really lived forever, then many programs
  6159. would run out of memory.\footnote{The \LangVec{} language does not have
  6160. looping or recursive functions, so it is nigh impossible to write a
  6161. program in \LangVec{} that will run out of memory. However, we add
  6162. recursive functions in the next Chapter!} A Racket implementation
  6163. must therefore perform automatic garbage collection.
  6164. Figure~\ref{fig:interp-Rvec} shows the definitional interpreter for the
  6165. \LangVec{} language. We define the \code{vector}, \code{vector-length},
  6166. \code{vector-ref}, and \code{vector-set!} operations for \LangVec{} in
  6167. terms of the corresponding operations in Racket. One subtle point is
  6168. that the \code{vector-set!} operation returns the \code{\#<void>}
  6169. value. The \code{\#<void>} value can be passed around just like other
  6170. values inside an \LangVec{} program and a \code{\#<void>} value can be
  6171. compared for equality with another \code{\#<void>} value. However,
  6172. there are no other operations specific to the the \code{\#<void>}
  6173. value in \LangVec{}. In contrast, Racket defines the \code{void?} predicate
  6174. that returns \code{\#t} when applied to \code{\#<void>} and \code{\#f}
  6175. otherwise.
  6176. \begin{figure}[tbp]
  6177. \begin{lstlisting}
  6178. (define interp-Rvec-class
  6179. (class interp-Rif-class
  6180. (super-new)
  6181. (define/override (interp-op op)
  6182. (match op
  6183. ['eq? (lambda (v1 v2)
  6184. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6185. (and (boolean? v1) (boolean? v2))
  6186. (and (vector? v1) (vector? v2))
  6187. (and (void? v1) (void? v2)))
  6188. (eq? v1 v2)]))]
  6189. ['vector vector]
  6190. ['vector-length vector-length]
  6191. ['vector-ref vector-ref]
  6192. ['vector-set! vector-set!]
  6193. [else (super interp-op op)]
  6194. ))
  6195. (define/override ((interp-exp env) e)
  6196. (define recur (interp-exp env))
  6197. (match e
  6198. [(HasType e t) (recur e)]
  6199. [(Void) (void)]
  6200. [else ((super interp-exp env) e)]
  6201. ))
  6202. ))
  6203. (define (interp-Rvec p)
  6204. (send (new interp-Rvec-class) interp-program p))
  6205. \end{lstlisting}
  6206. \caption{Interpreter for the \LangVec{} language.}
  6207. \label{fig:interp-Rvec}
  6208. \end{figure}
  6209. Figure~\ref{fig:type-check-Rvec} shows the type checker for \LangVec{}, which
  6210. deserves some explanation. When allocating a vector, we need to know
  6211. which elements of the vector are pointers (i.e. are also vectors). We
  6212. can obtain this information during type checking. The type checker in
  6213. Figure~\ref{fig:type-check-Rvec} not only computes the type of an
  6214. expression, it also wraps every \key{vector} creation with the form
  6215. $(\key{HasType}~e~T)$, where $T$ is the vector's type.
  6216. %
  6217. To create the s-expression for the \code{Vector} type in
  6218. Figure~\ref{fig:type-check-Rvec}, we use the
  6219. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  6220. operator} \code{,@} to insert the list \code{t*} without its usual
  6221. start and end parentheses. \index{unquote-slicing}
  6222. \begin{figure}[tp]
  6223. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6224. (define type-check-Rvec-class
  6225. (class type-check-Rif-class
  6226. (super-new)
  6227. (inherit check-type-equal?)
  6228. (define/override (type-check-exp env)
  6229. (lambda (e)
  6230. (define recur (type-check-exp env))
  6231. (match e
  6232. [(Void) (values (Void) 'Void)]
  6233. [(Prim 'vector es)
  6234. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  6235. (define t `(Vector ,@t*))
  6236. (values (HasType (Prim 'vector e*) t) t)]
  6237. [(Prim 'vector-ref (list e1 (Int i)))
  6238. (define-values (e1^ t) (recur e1))
  6239. (match t
  6240. [`(Vector ,ts ...)
  6241. (unless (and (0 . <= . i) (i . < . (length ts)))
  6242. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  6243. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  6244. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  6245. [(Prim 'vector-set! (list e1 (Int i) arg) )
  6246. (define-values (e-vec t-vec) (recur e1))
  6247. (define-values (e-arg^ t-arg) (recur arg))
  6248. (match t-vec
  6249. [`(Vector ,ts ...)
  6250. (unless (and (0 . <= . i) (i . < . (length ts)))
  6251. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  6252. (check-type-equal? (list-ref ts i) t-arg e)
  6253. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  6254. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  6255. [(Prim 'vector-length (list e))
  6256. (define-values (e^ t) (recur e))
  6257. (match t
  6258. [`(Vector ,ts ...)
  6259. (values (Prim 'vector-length (list e^)) 'Integer)]
  6260. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  6261. [(Prim 'eq? (list arg1 arg2))
  6262. (define-values (e1 t1) (recur arg1))
  6263. (define-values (e2 t2) (recur arg2))
  6264. (match* (t1 t2)
  6265. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  6266. [(other wise) (check-type-equal? t1 t2 e)])
  6267. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  6268. [(HasType (Prim 'vector es) t)
  6269. ((type-check-exp env) (Prim 'vector es))]
  6270. [(HasType e1 t)
  6271. (define-values (e1^ t^) (recur e1))
  6272. (check-type-equal? t t^ e)
  6273. (values (HasType e1^ t) t)]
  6274. [else ((super type-check-exp env) e)]
  6275. )))
  6276. ))
  6277. (define (type-check-Rvec p)
  6278. (send (new type-check-Rvec-class) type-check-program p))
  6279. \end{lstlisting}
  6280. \caption{Type checker for the \LangVec{} language.}
  6281. \label{fig:type-check-Rvec}
  6282. \end{figure}
  6283. \section{Garbage Collection}
  6284. \label{sec:GC}
  6285. Here we study a relatively simple algorithm for garbage collection
  6286. that is the basis of state-of-the-art garbage
  6287. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  6288. particular, we describe a two-space copying
  6289. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  6290. perform the
  6291. copy~\citep{Cheney:1970aa}.
  6292. \index{copying collector}
  6293. \index{two-space copying collector}
  6294. Figure~\ref{fig:copying-collector} gives a
  6295. coarse-grained depiction of what happens in a two-space collector,
  6296. showing two time steps, prior to garbage collection (on the top) and
  6297. after garbage collection (on the bottom). In a two-space collector,
  6298. the heap is divided into two parts named the FromSpace and the
  6299. ToSpace. Initially, all allocations go to the FromSpace until there is
  6300. not enough room for the next allocation request. At that point, the
  6301. garbage collector goes to work to make more room.
  6302. \index{ToSpace}
  6303. \index{FromSpace}
  6304. The garbage collector must be careful not to reclaim tuples that will
  6305. be used by the program in the future. Of course, it is impossible in
  6306. general to predict what a program will do, but we can over approximate
  6307. the will-be-used tuples by preserving all tuples that could be
  6308. accessed by \emph{any} program given the current computer state. A
  6309. program could access any tuple whose address is in a register or on
  6310. the procedure call stack. These addresses are called the \emph{root
  6311. set}\index{root set}. In addition, a program could access any tuple that is
  6312. transitively reachable from the root set. Thus, it is safe for the
  6313. garbage collector to reclaim the tuples that are not reachable in this
  6314. way.
  6315. So the goal of the garbage collector is twofold:
  6316. \begin{enumerate}
  6317. \item preserve all tuple that are reachable from the root set via a
  6318. path of pointers, that is, the \emph{live} tuples, and
  6319. \item reclaim the memory of everything else, that is, the
  6320. \emph{garbage}.
  6321. \end{enumerate}
  6322. A copying collector accomplishes this by copying all of the live
  6323. objects from the FromSpace into the ToSpace and then performs a sleight
  6324. of hand, treating the ToSpace as the new FromSpace and the old
  6325. FromSpace as the new ToSpace. In the example of
  6326. Figure~\ref{fig:copying-collector}, there are three pointers in the
  6327. root set, one in a register and two on the stack. All of the live
  6328. objects have been copied to the ToSpace (the right-hand side of
  6329. Figure~\ref{fig:copying-collector}) in a way that preserves the
  6330. pointer relationships. For example, the pointer in the register still
  6331. points to a 2-tuple whose first element is a 3-tuple and whose second
  6332. element is a 2-tuple. There are four tuples that are not reachable
  6333. from the root set and therefore do not get copied into the ToSpace.
  6334. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  6335. created by a well-typed program in \LangVec{} because it contains a
  6336. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  6337. We design the garbage collector to deal with cycles to begin with so
  6338. we will not need to revisit this issue.
  6339. \begin{figure}[tbp]
  6340. \centering
  6341. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  6342. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  6343. \caption{A copying collector in action.}
  6344. \label{fig:copying-collector}
  6345. \end{figure}
  6346. There are many alternatives to copying collectors (and their bigger
  6347. siblings, the generational collectors) when its comes to garbage
  6348. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  6349. reference counting~\citep{Collins:1960aa}. The strengths of copying
  6350. collectors are that allocation is fast (just a comparison and pointer
  6351. increment), there is no fragmentation, cyclic garbage is collected,
  6352. and the time complexity of collection only depends on the amount of
  6353. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  6354. main disadvantages of a two-space copying collector is that it uses a
  6355. lot of space and takes a long time to perform the copy, though these
  6356. problems are ameliorated in generational collectors. Racket and
  6357. Scheme programs tend to allocate many small objects and generate a lot
  6358. of garbage, so copying and generational collectors are a good fit.
  6359. Garbage collection is an active research topic, especially concurrent
  6360. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  6361. developing new techniques and revisiting old
  6362. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  6363. meet every year at the International Symposium on Memory Management to
  6364. present these findings.
  6365. \subsection{Graph Copying via Cheney's Algorithm}
  6366. \label{sec:cheney}
  6367. \index{Cheney's algorithm}
  6368. Let us take a closer look at the copying of the live objects. The
  6369. allocated objects and pointers can be viewed as a graph and we need to
  6370. copy the part of the graph that is reachable from the root set. To
  6371. make sure we copy all of the reachable vertices in the graph, we need
  6372. an exhaustive graph traversal algorithm, such as depth-first search or
  6373. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  6374. such algorithms take into account the possibility of cycles by marking
  6375. which vertices have already been visited, so as to ensure termination
  6376. of the algorithm. These search algorithms also use a data structure
  6377. such as a stack or queue as a to-do list to keep track of the vertices
  6378. that need to be visited. We use breadth-first search and a trick
  6379. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  6380. and copying tuples into the ToSpace.
  6381. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  6382. copy progresses. The queue is represented by a chunk of contiguous
  6383. memory at the beginning of the ToSpace, using two pointers to track
  6384. the front and the back of the queue. The algorithm starts by copying
  6385. all tuples that are immediately reachable from the root set into the
  6386. ToSpace to form the initial queue. When we copy a tuple, we mark the
  6387. old tuple to indicate that it has been visited. We discuss how this
  6388. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  6389. pointers inside the copied tuples in the queue still point back to the
  6390. FromSpace. Once the initial queue has been created, the algorithm
  6391. enters a loop in which it repeatedly processes the tuple at the front
  6392. of the queue and pops it off the queue. To process a tuple, the
  6393. algorithm copies all the tuple that are directly reachable from it to
  6394. the ToSpace, placing them at the back of the queue. The algorithm then
  6395. updates the pointers in the popped tuple so they point to the newly
  6396. copied tuples.
  6397. \begin{figure}[tbp]
  6398. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  6399. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  6400. \label{fig:cheney}
  6401. \end{figure}
  6402. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  6403. tuple whose second element is $42$ to the back of the queue. The other
  6404. pointer goes to a tuple that has already been copied, so we do not
  6405. need to copy it again, but we do need to update the pointer to the new
  6406. location. This can be accomplished by storing a \emph{forwarding
  6407. pointer} to the new location in the old tuple, back when we initially
  6408. copied the tuple into the ToSpace. This completes one step of the
  6409. algorithm. The algorithm continues in this way until the front of the
  6410. queue is empty, that is, until the front catches up with the back.
  6411. \subsection{Data Representation}
  6412. \label{sec:data-rep-gc}
  6413. The garbage collector places some requirements on the data
  6414. representations used by our compiler. First, the garbage collector
  6415. needs to distinguish between pointers and other kinds of data. There
  6416. are several ways to accomplish this.
  6417. \begin{enumerate}
  6418. \item Attached a tag to each object that identifies what type of
  6419. object it is~\citep{McCarthy:1960dz}.
  6420. \item Store different types of objects in different
  6421. regions~\citep{Steele:1977ab}.
  6422. \item Use type information from the program to either generate
  6423. type-specific code for collecting or to generate tables that can
  6424. guide the
  6425. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  6426. \end{enumerate}
  6427. Dynamically typed languages, such as Lisp, need to tag objects
  6428. anyways, so option 1 is a natural choice for those languages.
  6429. However, \LangVec{} is a statically typed language, so it would be
  6430. unfortunate to require tags on every object, especially small and
  6431. pervasive objects like integers and Booleans. Option 3 is the
  6432. best-performing choice for statically typed languages, but comes with
  6433. a relatively high implementation complexity. To keep this chapter
  6434. within a 2-week time budget, we recommend a combination of options 1
  6435. and 2, using separate strategies for the stack and the heap.
  6436. Regarding the stack, we recommend using a separate stack for pointers,
  6437. which we call a \emph{root stack}\index{root stack} (a.k.a. ``shadow
  6438. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  6439. is, when a local variable needs to be spilled and is of type
  6440. \code{(Vector $\Type_1 \ldots \Type_n$)}, then we put it on the root
  6441. stack instead of the normal procedure call stack. Furthermore, we
  6442. always spill vector-typed variables if they are live during a call to
  6443. the collector, thereby ensuring that no pointers are in registers
  6444. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  6445. example from Figure~\ref{fig:copying-collector} and contrasts it with
  6446. the data layout using a root stack. The root stack contains the two
  6447. pointers from the regular stack and also the pointer in the second
  6448. register.
  6449. \begin{figure}[tbp]
  6450. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  6451. \caption{Maintaining a root stack to facilitate garbage collection.}
  6452. \label{fig:shadow-stack}
  6453. \end{figure}
  6454. The problem of distinguishing between pointers and other kinds of data
  6455. also arises inside of each tuple on the heap. We solve this problem by
  6456. attaching a tag, an extra 64-bits, to each
  6457. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  6458. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  6459. that we have drawn the bits in a big-endian way, from right-to-left,
  6460. with bit location 0 (the least significant bit) on the far right,
  6461. which corresponds to the direction of the x86 shifting instructions
  6462. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  6463. is dedicated to specifying which elements of the tuple are pointers,
  6464. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  6465. indicates there is a pointer and a 0 bit indicates some other kind of
  6466. data. The pointer mask starts at bit location 7. We have limited
  6467. tuples to a maximum size of 50 elements, so we just need 50 bits for
  6468. the pointer mask. The tag also contains two other pieces of
  6469. information. The length of the tuple (number of elements) is stored in
  6470. bits location 1 through 6. Finally, the bit at location 0 indicates
  6471. whether the tuple has yet to be copied to the ToSpace. If the bit has
  6472. value 1, then this tuple has not yet been copied. If the bit has
  6473. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  6474. of a pointer are always zero anyways because our tuples are 8-byte
  6475. aligned.)
  6476. \begin{figure}[tbp]
  6477. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  6478. \caption{Representation of tuples in the heap.}
  6479. \label{fig:tuple-rep}
  6480. \end{figure}
  6481. \subsection{Implementation of the Garbage Collector}
  6482. \label{sec:organize-gz}
  6483. \index{prelude}
  6484. An implementation of the copying collector is provided in the
  6485. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  6486. interface to the garbage collector that is used by the compiler. The
  6487. \code{initialize} function creates the FromSpace, ToSpace, and root
  6488. stack and should be called in the prelude of the \code{main}
  6489. function. The arguments of \code{initialize} are the root stack size
  6490. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  6491. good choice for both. The \code{initialize} function puts the address
  6492. of the beginning of the FromSpace into the global variable
  6493. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  6494. the address that is 1-past the last element of the FromSpace. (We use
  6495. half-open intervals to represent chunks of
  6496. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  6497. points to the first element of the root stack.
  6498. As long as there is room left in the FromSpace, your generated code
  6499. can allocate tuples simply by moving the \code{free\_ptr} forward.
  6500. %
  6501. The amount of room left in FromSpace is the difference between the
  6502. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  6503. function should be called when there is not enough room left in the
  6504. FromSpace for the next allocation. The \code{collect} function takes
  6505. a pointer to the current top of the root stack (one past the last item
  6506. that was pushed) and the number of bytes that need to be
  6507. allocated. The \code{collect} function performs the copying collection
  6508. and leaves the heap in a state such that the next allocation will
  6509. succeed.
  6510. \begin{figure}[tbp]
  6511. \begin{lstlisting}
  6512. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  6513. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  6514. int64_t* free_ptr;
  6515. int64_t* fromspace_begin;
  6516. int64_t* fromspace_end;
  6517. int64_t** rootstack_begin;
  6518. \end{lstlisting}
  6519. \caption{The compiler's interface to the garbage collector.}
  6520. \label{fig:gc-header}
  6521. \end{figure}
  6522. %% \begin{exercise}
  6523. %% In the file \code{runtime.c} you will find the implementation of
  6524. %% \code{initialize} and a partial implementation of \code{collect}.
  6525. %% The \code{collect} function calls another function, \code{cheney},
  6526. %% to perform the actual copy, and that function is left to the reader
  6527. %% to implement. The following is the prototype for \code{cheney}.
  6528. %% \begin{lstlisting}
  6529. %% static void cheney(int64_t** rootstack_ptr);
  6530. %% \end{lstlisting}
  6531. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  6532. %% rootstack (which is an array of pointers). The \code{cheney} function
  6533. %% also communicates with \code{collect} through the global
  6534. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  6535. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  6536. %% the ToSpace:
  6537. %% \begin{lstlisting}
  6538. %% static int64_t* tospace_begin;
  6539. %% static int64_t* tospace_end;
  6540. %% \end{lstlisting}
  6541. %% The job of the \code{cheney} function is to copy all the live
  6542. %% objects (reachable from the root stack) into the ToSpace, update
  6543. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  6544. %% update the root stack so that it points to the objects in the
  6545. %% ToSpace, and finally to swap the global pointers for the FromSpace
  6546. %% and ToSpace.
  6547. %% \end{exercise}
  6548. %% \section{Compiler Passes}
  6549. %% \label{sec:code-generation-gc}
  6550. The introduction of garbage collection has a non-trivial impact on our
  6551. compiler passes. We introduce a new compiler pass named
  6552. \code{expose-allocation}. We make
  6553. significant changes to \code{select-instructions},
  6554. \code{build-interference}, \code{allocate-registers}, and
  6555. \code{print-x86} and make minor changes in several more passes. The
  6556. following program will serve as our running example. It creates two
  6557. tuples, one nested inside the other. Both tuples have length one. The
  6558. program accesses the element in the inner tuple tuple via two vector
  6559. references.
  6560. % tests/s2_17.rkt
  6561. \begin{lstlisting}
  6562. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  6563. \end{lstlisting}
  6564. \section{Shrink}
  6565. \label{sec:shrink-Rvec}
  6566. Recall that the \code{shrink} pass translates the primitives operators
  6567. into a smaller set of primitives. Because this pass comes after type
  6568. checking, but before the passes that require the type information in
  6569. the \code{HasType} AST nodes, the \code{shrink} pass must be modified
  6570. to wrap \code{HasType} around each AST node that it generates.
  6571. \section{Expose Allocation}
  6572. \label{sec:expose-allocation}
  6573. The pass \code{expose-allocation} lowers the \code{vector} creation
  6574. form into a conditional call to the collector followed by the
  6575. allocation. We choose to place the \code{expose-allocation} pass
  6576. before \code{remove-complex-opera*} because the code generated by
  6577. \code{expose-allocation} contains complex operands. We also place
  6578. \code{expose-allocation} before \code{explicate-control} because
  6579. \code{expose-allocation} introduces new variables using \code{let},
  6580. but \code{let} is gone after \code{explicate-control}.
  6581. The output of \code{expose-allocation} is a language \LangAlloc{} that
  6582. extends \LangVec{} with the three new forms that we use in the translation
  6583. of the \code{vector} form.
  6584. \[
  6585. \begin{array}{lcl}
  6586. \Exp &::=& \cdots
  6587. \mid (\key{collect} \,\itm{int})
  6588. \mid (\key{allocate} \,\itm{int}\,\itm{type})
  6589. \mid (\key{global-value} \,\itm{name})
  6590. \end{array}
  6591. \]
  6592. The $(\key{collect}\,n)$ form runs the garbage collector, requesting
  6593. $n$ bytes. It will become a call to the \code{collect} function in
  6594. \code{runtime.c} in \code{select-instructions}. The
  6595. $(\key{allocate}\,n\,T)$ form creates an tuple of $n$ elements.
  6596. \index{allocate}
  6597. The $T$ parameter is the type of the tuple: \code{(Vector $\Type_1 \ldots
  6598. \Type_n$)} where $\Type_i$ is the type of the $i$th element in the
  6599. tuple. The $(\key{global-value}\,\itm{name})$ form reads the value of
  6600. a global variable, such as \code{free\_ptr}.
  6601. In the following, we show the transformation for the \code{vector}
  6602. form into 1) a sequence of let-bindings for the initializing
  6603. expressions, 2) a conditional call to \code{collect}, 3) a call to
  6604. \code{allocate}, and 4) the initialization of the vector. In the
  6605. following, \itm{len} refers to the length of the vector and
  6606. \itm{bytes} is how many total bytes need to be allocated for the
  6607. vector, which is 8 for the tag plus \itm{len} times 8.
  6608. \begin{lstlisting}
  6609. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  6610. |$\Longrightarrow$|
  6611. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  6612. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  6613. (global-value fromspace_end))
  6614. (void)
  6615. (collect |\itm{bytes}|))])
  6616. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  6617. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  6618. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  6619. |$v$|) ... )))) ...)
  6620. \end{lstlisting}
  6621. In the above, we suppressed all of the \code{has-type} forms in the
  6622. output for the sake of readability. The placement of the initializing
  6623. expressions $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} and the
  6624. sequence of \code{vector-set!} is important, as those expressions may
  6625. trigger garbage collection and we cannot have an allocated but
  6626. uninitialized tuple on the heap during a collection.
  6627. Figure~\ref{fig:expose-alloc-output} shows the output of the
  6628. \code{expose-allocation} pass on our running example.
  6629. \begin{figure}[tbp]
  6630. % tests/s2_17.rkt
  6631. \begin{lstlisting}
  6632. (vector-ref
  6633. (vector-ref
  6634. (let ([vecinit7976
  6635. (let ([vecinit7972 42])
  6636. (let ([collectret7974
  6637. (if (< (+ (global-value free_ptr) 16)
  6638. (global-value fromspace_end))
  6639. (void)
  6640. (collect 16)
  6641. )])
  6642. (let ([alloc7971 (allocate 1 (Vector Integer))])
  6643. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  6644. alloc7971)
  6645. )
  6646. )
  6647. )
  6648. ])
  6649. (let ([collectret7978
  6650. (if (< (+ (global-value free_ptr) 16)
  6651. (global-value fromspace_end))
  6652. (void)
  6653. (collect 16)
  6654. )])
  6655. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  6656. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  6657. alloc7975)
  6658. )
  6659. )
  6660. )
  6661. 0)
  6662. 0)
  6663. \end{lstlisting}
  6664. \caption{Output of the \code{expose-allocation} pass, minus
  6665. all of the \code{has-type} forms.}
  6666. \label{fig:expose-alloc-output}
  6667. \end{figure}
  6668. \section{Remove Complex Operands}
  6669. \label{sec:remove-complex-opera-Rvec}
  6670. The new forms \code{collect}, \code{allocate}, and \code{global-value}
  6671. should all be treated as complex operands.
  6672. %% A new case for
  6673. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  6674. %% handled carefully to prevent the \code{Prim} node from being separated
  6675. %% from its enclosing \code{HasType}.
  6676. Figure~\ref{fig:Rvec-anf-syntax}
  6677. shows the grammar for the output language \LangVecANF{} of this
  6678. pass, which is \LangVec{} in administrative normal form.
  6679. \begin{figure}[tp]
  6680. \centering
  6681. \fbox{
  6682. \begin{minipage}{0.96\textwidth}
  6683. \small
  6684. \[
  6685. \begin{array}{rcl}
  6686. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }
  6687. \mid \VOID{} \\
  6688. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  6689. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  6690. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  6691. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  6692. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  6693. &\mid& \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  6694. \mid \LP\key{GlobalValue}~\Var\RP\\
  6695. % &\mid& \LP\key{HasType}~\Exp~\Type\RP \\
  6696. R^{\dagger}_3 &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  6697. \end{array}
  6698. \]
  6699. \end{minipage}
  6700. }
  6701. \caption{\LangVecANF{} is \LangVec{} in administrative normal form (ANF).}
  6702. \label{fig:Rvec-anf-syntax}
  6703. \end{figure}
  6704. \section{Explicate Control and the \LangCVec{} language}
  6705. \label{sec:explicate-control-r3}
  6706. \begin{figure}[tp]
  6707. \fbox{
  6708. \begin{minipage}{0.96\textwidth}
  6709. \small
  6710. \[
  6711. \begin{array}{lcl}
  6712. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  6713. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  6714. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  6715. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  6716. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  6717. &\mid& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  6718. &\mid& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  6719. &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
  6720. &\mid& \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP\\
  6721. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  6722. \mid \LP\key{Collect} \,\itm{int}\RP \\
  6723. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  6724. \mid \GOTO{\itm{label}} } \\
  6725. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  6726. \LangCVec{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
  6727. \end{array}
  6728. \]
  6729. \end{minipage}
  6730. }
  6731. \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
  6732. (Figure~\ref{fig:c1-syntax}).}
  6733. \label{fig:c2-syntax}
  6734. \end{figure}
  6735. The output of \code{explicate-control} is a program in the
  6736. intermediate language \LangCVec{}, whose abstract syntax is defined in
  6737. Figure~\ref{fig:c2-syntax}. (The concrete syntax is defined in
  6738. Figure~\ref{fig:c2-concrete-syntax} of the Appendix.) The new forms
  6739. of \LangCVec{} include the \key{allocate}, \key{vector-ref}, and
  6740. \key{vector-set!}, and \key{global-value} expressions and the
  6741. \code{collect} statement. The \code{explicate-control} pass can treat
  6742. these new forms much like the other expression forms that we've
  6743. already encoutered.
  6744. \section{Select Instructions and the \LangXGlobal{} Language}
  6745. \label{sec:select-instructions-gc}
  6746. \index{instruction selection}
  6747. %% void (rep as zero)
  6748. %% allocate
  6749. %% collect (callq collect)
  6750. %% vector-ref
  6751. %% vector-set!
  6752. %% global (postpone)
  6753. In this pass we generate x86 code for most of the new operations that
  6754. were needed to compile tuples, including \code{Allocate},
  6755. \code{Collect}, \code{vector-ref}, \code{vector-set!}, and
  6756. \code{void}. We compile \code{GlobalValue} to \code{Global} because
  6757. the later has a different concrete syntax (see
  6758. Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}).
  6759. \index{x86}
  6760. The \code{vector-ref} and \code{vector-set!} forms translate into
  6761. \code{movq} instructions. (The plus one in the offset is to get past
  6762. the tag at the beginning of the tuple representation.)
  6763. \begin{lstlisting}
  6764. |$\itm{lhs}$| = (vector-ref |$\itm{vec}$| |$n$|);
  6765. |$\Longrightarrow$|
  6766. movq |$\itm{vec}'$|, %r11
  6767. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  6768. |$\itm{lhs}$| = (vector-set! |$\itm{vec}$| |$n$| |$\itm{arg}$|);
  6769. |$\Longrightarrow$|
  6770. movq |$\itm{vec}'$|, %r11
  6771. movq |$\itm{arg}'$|, |$8(n+1)$|(%r11)
  6772. movq $0, |$\itm{lhs'}$|
  6773. \end{lstlisting}
  6774. The $\itm{lhs}'$, $\itm{vec}'$, and $\itm{arg}'$ are obtained by
  6775. translating $\itm{vec}$ and $\itm{arg}$ to x86. The move of $\itm{vec}'$ to
  6776. register \code{r11} ensures that offset expression
  6777. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  6778. removing \code{r11} from consideration by the register allocating.
  6779. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  6780. \code{rax}. Then the generated code for \code{vector-set!} would be
  6781. \begin{lstlisting}
  6782. movq |$\itm{vec}'$|, %rax
  6783. movq |$\itm{arg}'$|, |$8(n+1)$|(%rax)
  6784. movq $0, |$\itm{lhs}'$|
  6785. \end{lstlisting}
  6786. Next, suppose that $\itm{arg}'$ ends up as a stack location, so
  6787. \code{patch-instructions} would insert a move through \code{rax}
  6788. as follows.
  6789. \begin{lstlisting}
  6790. movq |$\itm{vec}'$|, %rax
  6791. movq |$\itm{arg}'$|, %rax
  6792. movq %rax, |$8(n+1)$|(%rax)
  6793. movq $0, |$\itm{lhs}'$|
  6794. \end{lstlisting}
  6795. But the above sequence of instructions does not work because we're
  6796. trying to use \code{rax} for two different values ($\itm{vec}'$ and
  6797. $\itm{arg}'$) at the same time!
  6798. We compile the \code{allocate} form to operations on the
  6799. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  6800. is the next free address in the FromSpace, so we copy it into
  6801. \code{r11} and then move it forward by enough space for the tuple
  6802. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  6803. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  6804. initialize the \itm{tag} and finally copy the address in \code{r11} to
  6805. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  6806. tag is organized. We recommend using the Racket operations
  6807. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  6808. during compilation. The type annotation in the \code{vector} form is
  6809. used to determine the pointer mask region of the tag.
  6810. \begin{lstlisting}
  6811. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  6812. |$\Longrightarrow$|
  6813. movq free_ptr(%rip), %r11
  6814. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  6815. movq $|$\itm{tag}$|, 0(%r11)
  6816. movq %r11, |$\itm{lhs}'$|
  6817. \end{lstlisting}
  6818. The \code{collect} form is compiled to a call to the \code{collect}
  6819. function in the runtime. The arguments to \code{collect} are 1) the
  6820. top of the root stack and 2) the number of bytes that need to be
  6821. allocated. We use another dedicated register, \code{r15}, to
  6822. store the pointer to the top of the root stack. So \code{r15} is not
  6823. available for use by the register allocator.
  6824. \begin{lstlisting}
  6825. (collect |$\itm{bytes}$|)
  6826. |$\Longrightarrow$|
  6827. movq %r15, %rdi
  6828. movq $|\itm{bytes}|, %rsi
  6829. callq collect
  6830. \end{lstlisting}
  6831. \begin{figure}[tp]
  6832. \fbox{
  6833. \begin{minipage}{0.96\textwidth}
  6834. \[
  6835. \begin{array}{lcl}
  6836. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)} \\
  6837. \LangXGlobal{} &::= & \gray{ \key{.globl main} }\\
  6838. & & \gray{ \key{main:} \; \Instr\ldots }
  6839. \end{array}
  6840. \]
  6841. \end{minipage}
  6842. }
  6843. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  6844. \label{fig:x86-2-concrete}
  6845. \end{figure}
  6846. \begin{figure}[tp]
  6847. \fbox{
  6848. \begin{minipage}{0.96\textwidth}
  6849. \small
  6850. \[
  6851. \begin{array}{lcl}
  6852. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  6853. \mid \BYTEREG{\Reg}} \\
  6854. &\mid& (\key{Global}~\Var) \\
  6855. \LangXGlobal{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  6856. \end{array}
  6857. \]
  6858. \end{minipage}
  6859. }
  6860. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  6861. \label{fig:x86-2}
  6862. \end{figure}
  6863. The concrete and abstract syntax of the \LangXGlobal{} language is
  6864. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  6865. differs from \LangXIf{} just in the addition of the form for global
  6866. variables.
  6867. %
  6868. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  6869. \code{select-instructions} pass on the running example.
  6870. \begin{figure}[tbp]
  6871. \centering
  6872. % tests/s2_17.rkt
  6873. \begin{minipage}[t]{0.5\textwidth}
  6874. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6875. block35:
  6876. movq free_ptr(%rip), alloc9024
  6877. addq $16, free_ptr(%rip)
  6878. movq alloc9024, %r11
  6879. movq $131, 0(%r11)
  6880. movq alloc9024, %r11
  6881. movq vecinit9025, 8(%r11)
  6882. movq $0, initret9026
  6883. movq alloc9024, %r11
  6884. movq 8(%r11), tmp9034
  6885. movq tmp9034, %r11
  6886. movq 8(%r11), %rax
  6887. jmp conclusion
  6888. block36:
  6889. movq $0, collectret9027
  6890. jmp block35
  6891. block38:
  6892. movq free_ptr(%rip), alloc9020
  6893. addq $16, free_ptr(%rip)
  6894. movq alloc9020, %r11
  6895. movq $3, 0(%r11)
  6896. movq alloc9020, %r11
  6897. movq vecinit9021, 8(%r11)
  6898. movq $0, initret9022
  6899. movq alloc9020, vecinit9025
  6900. movq free_ptr(%rip), tmp9031
  6901. movq tmp9031, tmp9032
  6902. addq $16, tmp9032
  6903. movq fromspace_end(%rip), tmp9033
  6904. cmpq tmp9033, tmp9032
  6905. jl block36
  6906. jmp block37
  6907. block37:
  6908. movq %r15, %rdi
  6909. movq $16, %rsi
  6910. callq 'collect
  6911. jmp block35
  6912. block39:
  6913. movq $0, collectret9023
  6914. jmp block38
  6915. \end{lstlisting}
  6916. \end{minipage}
  6917. \begin{minipage}[t]{0.45\textwidth}
  6918. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6919. start:
  6920. movq $42, vecinit9021
  6921. movq free_ptr(%rip), tmp9028
  6922. movq tmp9028, tmp9029
  6923. addq $16, tmp9029
  6924. movq fromspace_end(%rip), tmp9030
  6925. cmpq tmp9030, tmp9029
  6926. jl block39
  6927. jmp block40
  6928. block40:
  6929. movq %r15, %rdi
  6930. movq $16, %rsi
  6931. callq 'collect
  6932. jmp block38
  6933. \end{lstlisting}
  6934. \end{minipage}
  6935. \caption{Output of the \code{select-instructions} pass.}
  6936. \label{fig:select-instr-output-gc}
  6937. \end{figure}
  6938. \clearpage
  6939. \section{Register Allocation}
  6940. \label{sec:reg-alloc-gc}
  6941. \index{register allocation}
  6942. As discussed earlier in this chapter, the garbage collector needs to
  6943. access all the pointers in the root set, that is, all variables that
  6944. are vectors. It will be the responsibility of the register allocator
  6945. to make sure that:
  6946. \begin{enumerate}
  6947. \item the root stack is used for spilling vector-typed variables, and
  6948. \item if a vector-typed variable is live during a call to the
  6949. collector, it must be spilled to ensure it is visible to the
  6950. collector.
  6951. \end{enumerate}
  6952. The later responsibility can be handled during construction of the
  6953. interference graph, by adding interference edges between the call-live
  6954. vector-typed variables and all the callee-saved registers. (They
  6955. already interfere with the caller-saved registers.) The type
  6956. information for variables is in the \code{Program} form, so we
  6957. recommend adding another parameter to the \code{build-interference}
  6958. function to communicate this alist.
  6959. The spilling of vector-typed variables to the root stack can be
  6960. handled after graph coloring, when choosing how to assign the colors
  6961. (integers) to registers and stack locations. The \code{Program} output
  6962. of this pass changes to also record the number of spills to the root
  6963. stack.
  6964. % build-interference
  6965. %
  6966. % callq
  6967. % extra parameter for var->type assoc. list
  6968. % update 'program' and 'if'
  6969. % allocate-registers
  6970. % allocate spilled vectors to the rootstack
  6971. % don't change color-graph
  6972. \section{Print x86}
  6973. \label{sec:print-x86-gc}
  6974. \index{prelude}\index{conclusion}
  6975. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  6976. \code{print-x86} pass on the running example. In the prelude and
  6977. conclusion of the \code{main} function, we treat the root stack very
  6978. much like the regular stack in that we move the root stack pointer
  6979. (\code{r15}) to make room for the spills to the root stack, except
  6980. that the root stack grows up instead of down. For the running
  6981. example, there was just one spill so we increment \code{r15} by 8
  6982. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  6983. One issue that deserves special care is that there may be a call to
  6984. \code{collect} prior to the initializing assignments for all the
  6985. variables in the root stack. We do not want the garbage collector to
  6986. accidentally think that some uninitialized variable is a pointer that
  6987. needs to be followed. Thus, we zero-out all locations on the root
  6988. stack in the prelude of \code{main}. In
  6989. Figure~\ref{fig:print-x86-output-gc}, the instruction
  6990. %
  6991. \lstinline{movq $0, (%r15)}
  6992. %
  6993. accomplishes this task. The garbage collector tests each root to see
  6994. if it is null prior to dereferencing it.
  6995. \begin{figure}[htbp]
  6996. \begin{minipage}[t]{0.5\textwidth}
  6997. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  6998. block35:
  6999. movq free_ptr(%rip), %rcx
  7000. addq $16, free_ptr(%rip)
  7001. movq %rcx, %r11
  7002. movq $131, 0(%r11)
  7003. movq %rcx, %r11
  7004. movq -8(%r15), %rax
  7005. movq %rax, 8(%r11)
  7006. movq $0, %rdx
  7007. movq %rcx, %r11
  7008. movq 8(%r11), %rcx
  7009. movq %rcx, %r11
  7010. movq 8(%r11), %rax
  7011. jmp conclusion
  7012. block36:
  7013. movq $0, %rcx
  7014. jmp block35
  7015. block38:
  7016. movq free_ptr(%rip), %rcx
  7017. addq $16, free_ptr(%rip)
  7018. movq %rcx, %r11
  7019. movq $3, 0(%r11)
  7020. movq %rcx, %r11
  7021. movq %rbx, 8(%r11)
  7022. movq $0, %rdx
  7023. movq %rcx, -8(%r15)
  7024. movq free_ptr(%rip), %rcx
  7025. addq $16, %rcx
  7026. movq fromspace_end(%rip), %rdx
  7027. cmpq %rdx, %rcx
  7028. jl block36
  7029. movq %r15, %rdi
  7030. movq $16, %rsi
  7031. callq collect
  7032. jmp block35
  7033. block39:
  7034. movq $0, %rcx
  7035. jmp block38
  7036. \end{lstlisting}
  7037. \end{minipage}
  7038. \begin{minipage}[t]{0.45\textwidth}
  7039. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  7040. start:
  7041. movq $42, %rbx
  7042. movq free_ptr(%rip), %rdx
  7043. addq $16, %rdx
  7044. movq fromspace_end(%rip), %rcx
  7045. cmpq %rcx, %rdx
  7046. jl block39
  7047. movq %r15, %rdi
  7048. movq $16, %rsi
  7049. callq collect
  7050. jmp block38
  7051. .globl main
  7052. main:
  7053. pushq %rbp
  7054. movq %rsp, %rbp
  7055. pushq %r13
  7056. pushq %r12
  7057. pushq %rbx
  7058. pushq %r14
  7059. subq $0, %rsp
  7060. movq $16384, %rdi
  7061. movq $16384, %rsi
  7062. callq initialize
  7063. movq rootstack_begin(%rip), %r15
  7064. movq $0, (%r15)
  7065. addq $8, %r15
  7066. jmp start
  7067. conclusion:
  7068. subq $8, %r15
  7069. addq $0, %rsp
  7070. popq %r14
  7071. popq %rbx
  7072. popq %r12
  7073. popq %r13
  7074. popq %rbp
  7075. retq
  7076. \end{lstlisting}
  7077. \end{minipage}
  7078. \caption{Output of the \code{print-x86} pass.}
  7079. \label{fig:print-x86-output-gc}
  7080. \end{figure}
  7081. \begin{figure}[p]
  7082. \begin{tikzpicture}[baseline=(current bounding box.center)]
  7083. \node (Rvec) at (0,2) {\large \LangVec{}};
  7084. \node (Rvec-2) at (3,2) {\large \LangVec{}};
  7085. \node (Rvec-3) at (6,2) {\large \LangVec{}};
  7086. \node (Rvec-4) at (9,2) {\large \LangVec{}};
  7087. \node (Rvec-5) at (12,2) {\large \LangAlloc{}};
  7088. \node (C2-4) at (3,0) {\large \LangCVec{}};
  7089. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  7090. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  7091. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  7092. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  7093. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  7094. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  7095. %\path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize type-check} (Rvec-2);
  7096. \path[->,bend left=15] (Rvec) edge [above] node {\ttfamily\footnotesize shrink} (Rvec-2);
  7097. \path[->,bend left=15] (Rvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Rvec-3);
  7098. \path[->,bend left=15] (Rvec-3) edge [above] node {\ttfamily\footnotesize expose-alloc.} (Rvec-4);
  7099. \path[->,bend left=15] (Rvec-4) edge [above] node {\ttfamily\footnotesize remove-complex.} (Rvec-5);
  7100. \path[->,bend left=20] (Rvec-5) edge [left] node {\ttfamily\footnotesize explicate-control} (C2-4);
  7101. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select-instr.} (x86-2);
  7102. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover-live} (x86-2-1);
  7103. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build-inter.} (x86-2-2);
  7104. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate-reg.} (x86-3);
  7105. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch-instr.} (x86-4);
  7106. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  7107. \end{tikzpicture}
  7108. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  7109. \label{fig:Rvec-passes}
  7110. \end{figure}
  7111. Figure~\ref{fig:Rvec-passes} gives an overview of all the passes needed
  7112. for the compilation of \LangVec{}.
  7113. \section{Challenge: Simple Structures}
  7114. \label{sec:simple-structures}
  7115. \index{struct}
  7116. \index{structure}
  7117. Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
  7118. \LangStruct{}, which extends \LangVec{} with support for simple structures.
  7119. Recall that a \code{struct} in Typed Racket is a user-defined data
  7120. type that contains named fields and that is heap allocated, similar to
  7121. a vector. The following is an example of a structure definition, in
  7122. this case the definition of a \code{point} type.
  7123. \begin{lstlisting}
  7124. (struct point ([x : Integer] [y : Integer]) #:mutable)
  7125. \end{lstlisting}
  7126. \begin{figure}[tbp]
  7127. \centering
  7128. \fbox{
  7129. \begin{minipage}{0.96\textwidth}
  7130. \[
  7131. \begin{array}{lcl}
  7132. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  7133. \mid (\key{Vector}\;\Type \ldots) \mid \key{Void} } \mid \Var \\
  7134. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  7135. \Exp &::=& \gray{ \Int \mid (\key{read}) \mid (\key{-}\;\Exp) \mid (\key{+} \; \Exp\;\Exp) \mid (\key{-}\;\Exp\;\Exp) } \\
  7136. &\mid& \gray{ \Var \mid (\key{let}~([\Var~\Exp])~\Exp) }\\
  7137. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  7138. \mid (\key{and}\;\Exp\;\Exp)
  7139. \mid (\key{or}\;\Exp\;\Exp)
  7140. \mid (\key{not}\;\Exp) } \\
  7141. &\mid& \gray{ (\itm{cmp}\;\Exp\;\Exp)
  7142. \mid (\key{if}~\Exp~\Exp~\Exp) } \\
  7143. &\mid& \gray{ (\key{vector}\;\Exp \ldots)
  7144. \mid (\key{vector-ref}\;\Exp\;\Int) } \\
  7145. &\mid& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
  7146. &\mid& \gray{ (\key{void}) } \mid (\Var\;\Exp \ldots)\\
  7147. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  7148. \LangStruct{} &::=& \Def \ldots \; \Exp
  7149. \end{array}
  7150. \]
  7151. \end{minipage}
  7152. }
  7153. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  7154. (Figure~\ref{fig:Rvec-concrete-syntax}).}
  7155. \label{fig:r3s-concrete-syntax}
  7156. \end{figure}
  7157. An instance of a structure is created using function call syntax, with
  7158. the name of the structure in the function position:
  7159. \begin{lstlisting}
  7160. (point 7 12)
  7161. \end{lstlisting}
  7162. Function-call syntax is also used to read the value in a field of a
  7163. structure. The function name is formed by the structure name, a dash,
  7164. and the field name. The following example uses \code{point-x} and
  7165. \code{point-y} to access the \code{x} and \code{y} fields of two point
  7166. instances.
  7167. \begin{center}
  7168. \begin{lstlisting}
  7169. (let ([pt1 (point 7 12)])
  7170. (let ([pt2 (point 4 3)])
  7171. (+ (- (point-x pt1) (point-x pt2))
  7172. (- (point-y pt1) (point-y pt2)))))
  7173. \end{lstlisting}
  7174. \end{center}
  7175. Similarly, to write to a field of a structure, use its set function,
  7176. whose name starts with \code{set-}, followed by the structure name,
  7177. then a dash, then the field name, and concluded with an exclamation
  7178. mark. The following example uses \code{set-point-x!} to change the
  7179. \code{x} field from \code{7} to \code{42}.
  7180. \begin{center}
  7181. \begin{lstlisting}
  7182. (let ([pt (point 7 12)])
  7183. (let ([_ (set-point-x! pt 42)])
  7184. (point-x pt)))
  7185. \end{lstlisting}
  7186. \end{center}
  7187. \begin{exercise}\normalfont
  7188. Extend your compiler with support for simple structures, compiling
  7189. \LangStruct{} to x86 assembly code. Create five new test cases that use
  7190. structures and test your compiler.
  7191. \end{exercise}
  7192. \section{Challenge: Generational Collection}
  7193. The copying collector described in Section~\ref{sec:GC} can incur
  7194. significant runtime overhead because the call to \code{collect} takes
  7195. time proportional to all of the live data. One way to reduce this
  7196. overhead is to reduce how much data is inspected in each call to
  7197. \code{collect}. In particular, researchers have observed that recently
  7198. allocated data is more likely to become garbage then data that has
  7199. survived one or more previous calls to \code{collect}. This insight
  7200. motivated the creation of \emph{generational garbage collectors}
  7201. \index{generational garbage collector} that
  7202. 1) segregates data according to its age into two or more generations,
  7203. 2) allocates less space for younger generations, so collecting them is
  7204. faster, and more space for the older generations, and 3) performs
  7205. collection on the younger generations more frequently then for older
  7206. generations~\citep{Wilson:1992fk}.
  7207. For this challenge assignment, the goal is to adapt the copying
  7208. collector implemented in \code{runtime.c} to use two generations, one
  7209. for young data and one for old data. Each generation consists of a
  7210. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  7211. \code{collect} function to use the two generations.
  7212. \begin{enumerate}
  7213. \item Copy the young generation's FromSpace to its ToSpace then switch
  7214. the role of the ToSpace and FromSpace
  7215. \item If there is enough space for the requested number of bytes in
  7216. the young FromSpace, then return from \code{collect}.
  7217. \item If there is not enough space in the young FromSpace for the
  7218. requested bytes, then move the data from the young generation to the
  7219. old one with the following steps:
  7220. \begin{enumerate}
  7221. \item If there is enough room in the old FromSpace, copy the young
  7222. FromSpace to the old FromSpace and then return.
  7223. \item If there is not enough room in the old FromSpace, then collect
  7224. the old generation by copying the old FromSpace to the old ToSpace
  7225. and swap the roles of the old FromSpace and ToSpace.
  7226. \item If there is enough room now, copy the young FromSpace to the
  7227. old FromSpace and return. Otherwise, allocate a larger FromSpace
  7228. and ToSpace for the old generation. Copy the young FromSpace and
  7229. the old FromSpace into the larger FromSpace for the old
  7230. generation and then return.
  7231. \end{enumerate}
  7232. \end{enumerate}
  7233. We recommend that you generalize the \code{cheney} function so that it
  7234. can be used for all the copies mentioned above: between the young
  7235. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  7236. between the young FromSpace and old FromSpace. This can be
  7237. accomplished by adding parameters to \code{cheney} that replace its
  7238. use of the global variables \code{fromspace\_begin},
  7239. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  7240. Note that the collection of the young generation does not traverse the
  7241. old generation. This introduces a potential problem: there may be
  7242. young data that is only reachable through pointers in the old
  7243. generation. If these pointers are not taken into account, the
  7244. collector could throw away young data that is live! One solution,
  7245. called \emph{pointer recording}, is to maintain a set of all the
  7246. pointers from the old generation into the new generation and consider
  7247. this set as part of the root set. To maintain this set, the compiler
  7248. must insert extra instructions around every \code{vector-set!}. If the
  7249. vector being modified is in the old generation, and if the value being
  7250. written is a pointer into the new generation, than that pointer must
  7251. be added to the set. Also, if the value being overwritten was a
  7252. pointer into the new generation, then that pointer should be removed
  7253. from the set.
  7254. \begin{exercise}\normalfont
  7255. Adapt the \code{collect} function in \code{runtime.c} to implement
  7256. generational garbage collection, as outlined in this section.
  7257. Update the code generation for \code{vector-set!} to implement
  7258. pointer recording. Make sure that your new compiler and runtime
  7259. passes your test suite.
  7260. \end{exercise}
  7261. % Further Reading
  7262. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7263. \chapter{Functions}
  7264. \label{ch:Rfun}
  7265. \index{function}
  7266. This chapter studies the compilation of functions similar to those
  7267. found in the C language. This corresponds to a subset of Typed Racket
  7268. in which only top-level function definitions are allowed. This kind of
  7269. function is an important stepping stone to implementing
  7270. lexically-scoped functions, that is, \key{lambda} abstractions, which
  7271. is the topic of Chapter~\ref{ch:Rlam}.
  7272. \section{The \LangFun{} Language}
  7273. The concrete and abstract syntax for function definitions and function
  7274. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  7275. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  7276. \LangFun{} begin with zero or more function definitions. The function
  7277. names from these definitions are in-scope for the entire program,
  7278. including all other function definitions (so the ordering of function
  7279. definitions does not matter). The concrete syntax for function
  7280. application\index{function application} is $(\Exp \; \Exp \ldots)$
  7281. where the first expression must
  7282. evaluate to a function and the rest are the arguments.
  7283. The abstract syntax for function application is
  7284. $\APPLY{\Exp}{\Exp\ldots}$.
  7285. %% The syntax for function application does not include an explicit
  7286. %% keyword, which is error prone when using \code{match}. To alleviate
  7287. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  7288. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  7289. Functions are first-class in the sense that a function pointer
  7290. \index{function pointer} is data and can be stored in memory or passed
  7291. as a parameter to another function. Thus, we introduce a function
  7292. type, written
  7293. \begin{lstlisting}
  7294. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  7295. \end{lstlisting}
  7296. for a function whose $n$ parameters have the types $\Type_1$ through
  7297. $\Type_n$ and whose return type is $\Type_r$. The main limitation of
  7298. these functions (with respect to Racket functions) is that they are
  7299. not lexically scoped. That is, the only external entities that can be
  7300. referenced from inside a function body are other globally-defined
  7301. functions. The syntax of \LangFun{} prevents functions from being nested
  7302. inside each other.
  7303. \begin{figure}[tp]
  7304. \centering
  7305. \fbox{
  7306. \begin{minipage}{0.96\textwidth}
  7307. \small
  7308. \[
  7309. \begin{array}{lcl}
  7310. \Type &::=& \gray{ \key{Integer} \mid \key{Boolean}
  7311. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void} } \mid (\Type \ldots \; \key{->}\; \Type) \\
  7312. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} } \\
  7313. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp} \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  7314. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  7315. &\mid& \gray{ \key{\#t} \mid \key{\#f}
  7316. \mid (\key{and}\;\Exp\;\Exp)
  7317. \mid (\key{or}\;\Exp\;\Exp)
  7318. \mid (\key{not}\;\Exp)} \\
  7319. &\mid& \gray{(\itm{cmp}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  7320. &\mid& \gray{(\key{vector}\;\Exp\ldots) \mid
  7321. (\key{vector-ref}\;\Exp\;\Int)} \\
  7322. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  7323. \mid \LP\key{has-type}~\Exp~\Type\RP } \\
  7324. &\mid& \LP\Exp \; \Exp \ldots\RP \\
  7325. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  7326. \LangFun{} &::=& \Def \ldots \; \Exp
  7327. \end{array}
  7328. \]
  7329. \end{minipage}
  7330. }
  7331. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-concrete-syntax}).}
  7332. \label{fig:Rfun-concrete-syntax}
  7333. \end{figure}
  7334. \begin{figure}[tp]
  7335. \centering
  7336. \fbox{
  7337. \begin{minipage}{0.96\textwidth}
  7338. \small
  7339. \[
  7340. \begin{array}{lcl}
  7341. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  7342. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  7343. &\mid& \gray{ \BOOL{\itm{bool}}
  7344. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  7345. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP }
  7346. \mid \APPLY{\Exp}{\Exp\ldots}\\
  7347. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}\\
  7348. \LangFun{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  7349. \end{array}
  7350. \]
  7351. \end{minipage}
  7352. }
  7353. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Rvec-syntax}).}
  7354. \label{fig:Rfun-syntax}
  7355. \end{figure}
  7356. The program in Figure~\ref{fig:Rfun-function-example} is a
  7357. representative example of defining and using functions in \LangFun{}. We
  7358. define a function \code{map-vec} that applies some other function
  7359. \code{f} to both elements of a vector and returns a new
  7360. vector containing the results. We also define a function \code{add1}.
  7361. The program applies
  7362. \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
  7363. \code{(vector 1 42)}, from which we return the \code{42}.
  7364. \begin{figure}[tbp]
  7365. \begin{lstlisting}
  7366. (define (map-vec [f : (Integer -> Integer)]
  7367. [v : (Vector Integer Integer)])
  7368. : (Vector Integer Integer)
  7369. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  7370. (define (add1 [x : Integer]) : Integer
  7371. (+ x 1))
  7372. (vector-ref (map-vec add1 (vector 0 41)) 1)
  7373. \end{lstlisting}
  7374. \caption{Example of using functions in \LangFun{}.}
  7375. \label{fig:Rfun-function-example}
  7376. \end{figure}
  7377. The definitional interpreter for \LangFun{} is in
  7378. Figure~\ref{fig:interp-Rfun}. The case for the \code{ProgramDefsExp} form is
  7379. responsible for setting up the mutual recursion between the top-level
  7380. function definitions. We use the classic back-patching \index{back-patching}
  7381. approach that uses mutable variables and makes two passes over the function
  7382. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  7383. top-level environment using a mutable cons cell for each function
  7384. definition. Note that the \code{lambda} value for each function is
  7385. incomplete; it does not yet include the environment. Once the
  7386. top-level environment is constructed, we then iterate over it and
  7387. update the \code{lambda} values to use the top-level environment.
  7388. \begin{figure}[tp]
  7389. \begin{lstlisting}
  7390. (define interp-Rfun-class
  7391. (class interp-Rvec-class
  7392. (super-new)
  7393. (define/override ((interp-exp env) e)
  7394. (define recur (interp-exp env))
  7395. (match e
  7396. [(Var x) (unbox (dict-ref env x))]
  7397. [(Let x e body)
  7398. (define new-env (dict-set env x (box (recur e))))
  7399. ((interp-exp new-env) body)]
  7400. [(Apply fun args)
  7401. (define fun-val (recur fun))
  7402. (define arg-vals (for/list ([e args]) (recur e)))
  7403. (match fun-val
  7404. [`(function (,xs ...) ,body ,fun-env)
  7405. (define params-args (for/list ([x xs] [arg arg-vals])
  7406. (cons x (box arg))))
  7407. (define new-env (append params-args fun-env))
  7408. ((interp-exp new-env) body)]
  7409. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  7410. [else ((super interp-exp env) e)]
  7411. ))
  7412. (define/public (interp-def d)
  7413. (match d
  7414. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  7415. (cons f (box `(function ,xs ,body ())))]))
  7416. (define/override (interp-program p)
  7417. (match p
  7418. [(ProgramDefsExp info ds body)
  7419. (let ([top-level (for/list ([d ds]) (interp-def d))])
  7420. (for/list ([f (in-dict-values top-level)])
  7421. (set-box! f (match (unbox f)
  7422. [`(function ,xs ,body ())
  7423. `(function ,xs ,body ,top-level)])))
  7424. ((interp-exp top-level) body))]))
  7425. ))
  7426. (define (interp-Rfun p)
  7427. (send (new interp-Rfun-class) interp-program p))
  7428. \end{lstlisting}
  7429. \caption{Interpreter for the \LangFun{} language.}
  7430. \label{fig:interp-Rfun}
  7431. \end{figure}
  7432. \margincomment{TODO: explain type checker}
  7433. The type checker for \LangFun{} is is in Figure~\ref{fig:type-check-Rfun}.
  7434. \begin{figure}[tp]
  7435. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7436. (define type-check-Rfun-class
  7437. (class type-check-Rvec-class
  7438. (super-new)
  7439. (inherit check-type-equal?)
  7440. (define/public (type-check-apply env e es)
  7441. (define-values (e^ ty) ((type-check-exp env) e))
  7442. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  7443. ((type-check-exp env) e)))
  7444. (match ty
  7445. [`(,ty^* ... -> ,rt)
  7446. (for ([arg-ty ty*] [param-ty ty^*])
  7447. (check-type-equal? arg-ty param-ty (Apply e es)))
  7448. (values e^ e* rt)]))
  7449. (define/override (type-check-exp env)
  7450. (lambda (e)
  7451. (match e
  7452. [(FunRef f)
  7453. (values (FunRef f) (dict-ref env f))]
  7454. [(Apply e es)
  7455. (define-values (e^ es^ rt) (type-check-apply env e es))
  7456. (values (Apply e^ es^) rt)]
  7457. [(Call e es)
  7458. (define-values (e^ es^ rt) (type-check-apply env e es))
  7459. (values (Call e^ es^) rt)]
  7460. [else ((super type-check-exp env) e)])))
  7461. (define/public (type-check-def env)
  7462. (lambda (e)
  7463. (match e
  7464. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  7465. (define new-env (append (map cons xs ps) env))
  7466. (define-values (body^ ty^) ((type-check-exp new-env) body))
  7467. (check-type-equal? ty^ rt body)
  7468. (Def f p:t* rt info body^)])))
  7469. (define/public (fun-def-type d)
  7470. (match d
  7471. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  7472. (define/override (type-check-program e)
  7473. (match e
  7474. [(ProgramDefsExp info ds body)
  7475. (define new-env (for/list ([d ds])
  7476. (cons (Def-name d) (fun-def-type d))))
  7477. (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
  7478. (define-values (body^ ty) ((type-check-exp new-env) body))
  7479. (check-type-equal? ty 'Integer body)
  7480. (ProgramDefsExp info ds^ body^)]))))
  7481. (define (type-check-Rfun p)
  7482. (send (new type-check-Rfun-class) type-check-program p))
  7483. \end{lstlisting}
  7484. \caption{Type checker for the \LangFun{} language.}
  7485. \label{fig:type-check-Rfun}
  7486. \end{figure}
  7487. \section{Functions in x86}
  7488. \label{sec:fun-x86}
  7489. \margincomment{\tiny Make sure callee-saved registers are discussed
  7490. in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  7491. \margincomment{\tiny Talk about the return address on the
  7492. stack and what callq and retq does.\\ --Jeremy }
  7493. The x86 architecture provides a few features to support the
  7494. implementation of functions. We have already seen that x86 provides
  7495. labels so that one can refer to the location of an instruction, as is
  7496. needed for jump instructions. Labels can also be used to mark the
  7497. beginning of the instructions for a function. Going further, we can
  7498. obtain the address of a label by using the \key{leaq} instruction and
  7499. PC-relative addressing. For example, the following puts the
  7500. address of the \code{add1} label into the \code{rbx} register.
  7501. \begin{lstlisting}
  7502. leaq add1(%rip), %rbx
  7503. \end{lstlisting}
  7504. The instruction pointer register \key{rip} (aka. the program counter
  7505. \index{program counter}) always points to the next instruction to be
  7506. executed. When combined with an label, as in \code{add1(\%rip)}, the
  7507. linker computes the distance $d$ between the address of \code{add1}
  7508. and where the \code{rip} would be at that moment and then changes
  7509. \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
  7510. the address of \code{add1}.
  7511. In Section~\ref{sec:x86} we used of the \code{callq} instruction to
  7512. jump to a function whose location is given by a label. To support
  7513. function calls in this chapter we instead will be jumping to a
  7514. function whose location is given by an address in a register, that is,
  7515. we need to make an \emph{indirect function call}. The x86 syntax for
  7516. this is a \code{callq} instruction but with an asterisk before the
  7517. register name.\index{indirect function call}
  7518. \begin{lstlisting}
  7519. callq *%rbx
  7520. \end{lstlisting}
  7521. \subsection{Calling Conventions}
  7522. \index{calling conventions}
  7523. The \code{callq} instruction provides partial support for implementing
  7524. functions: it pushes the return address on the stack and it jumps to
  7525. the target. However, \code{callq} does not handle
  7526. \begin{enumerate}
  7527. \item parameter passing,
  7528. \item pushing frames on the procedure call stack and popping them off,
  7529. or
  7530. \item determining how registers are shared by different functions.
  7531. \end{enumerate}
  7532. Regarding (1) parameter passing, recall that the following six
  7533. registers are used to pass arguments to a function, in this order.
  7534. \begin{lstlisting}
  7535. rdi rsi rdx rcx r8 r9
  7536. \end{lstlisting}
  7537. If there are
  7538. more than six arguments, then the convention is to use space on the
  7539. frame of the caller for the rest of the arguments. However, to ease
  7540. the implementation of efficient tail calls
  7541. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  7542. arguments.
  7543. %
  7544. Also recall that the register \code{rax} is for the return value of
  7545. the function.
  7546. \index{prelude}\index{conclusion}
  7547. Regarding (2) frames \index{frame} and the procedure call stack,
  7548. \index{procedure call stack} recall from Section~\ref{sec:x86} that
  7549. the stack grows down, with each function call using a chunk of space
  7550. called a frame. The caller sets the stack pointer, register
  7551. \code{rsp}, to the last data item in its frame. The callee must not
  7552. change anything in the caller's frame, that is, anything that is at or
  7553. above the stack pointer. The callee is free to use locations that are
  7554. below the stack pointer.
  7555. Recall that we are storing variables of vector type on the root stack.
  7556. So the prelude needs to move the root stack pointer \code{r15} up and
  7557. the conclusion needs to move the root stack pointer back down. Also,
  7558. the prelude must initialize to \code{0} this frame's slots in the root
  7559. stack to signal to the garbage collector that those slots do not yet
  7560. contain a pointer to a vector. Otherwise the garbage collector will
  7561. interpret the garbage bits in those slots as memory addresses and try
  7562. to traverse them, causing serious mayhem!
  7563. Regarding (3) the sharing of registers between different functions,
  7564. recall from Section~\ref{sec:calling-conventions} that the registers
  7565. are divided into two groups, the caller-saved registers and the
  7566. callee-saved registers. The caller should assume that all the
  7567. caller-saved registers get overwritten with arbitrary values by the
  7568. callee. That is why we recommend in
  7569. Section~\ref{sec:calling-conventions} that variables that are live
  7570. during a function call should not be assigned to caller-saved
  7571. registers.
  7572. On the flip side, if the callee wants to use a callee-saved register,
  7573. the callee must save the contents of those registers on their stack
  7574. frame and then put them back prior to returning to the caller. That
  7575. is why we recommended in Section~\ref{sec:calling-conventions} that if
  7576. the register allocator assigns a variable to a callee-saved register,
  7577. then the prelude of the \code{main} function must save that register
  7578. to the stack and the conclusion of \code{main} must restore it. This
  7579. recommendation now generalizes to all functions.
  7580. Also recall that the base pointer, register \code{rbp}, is used as a
  7581. point-of-reference within a frame, so that each local variable can be
  7582. accessed at a fixed offset from the base pointer
  7583. (Section~\ref{sec:x86}).
  7584. %
  7585. Figure~\ref{fig:call-frames} shows the general layout of the caller
  7586. and callee frames.
  7587. \begin{figure}[tbp]
  7588. \centering
  7589. \begin{tabular}{r|r|l|l} \hline
  7590. Caller View & Callee View & Contents & Frame \\ \hline
  7591. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  7592. 0(\key{\%rbp}) & & old \key{rbp} \\
  7593. -8(\key{\%rbp}) & & callee-saved $1$ \\
  7594. \ldots & & \ldots \\
  7595. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  7596. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  7597. \ldots & & \ldots \\
  7598. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  7599. %% & & \\
  7600. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  7601. %% & \ldots & \ldots \\
  7602. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  7603. \hline
  7604. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  7605. & 0(\key{\%rbp}) & old \key{rbp} \\
  7606. & -8(\key{\%rbp}) & callee-saved $1$ \\
  7607. & \ldots & \ldots \\
  7608. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  7609. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  7610. & \ldots & \ldots \\
  7611. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  7612. \end{tabular}
  7613. \caption{Memory layout of caller and callee frames.}
  7614. \label{fig:call-frames}
  7615. \end{figure}
  7616. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  7617. %% local variables and for storing the values of callee-saved registers
  7618. %% (we shall refer to all of these collectively as ``locals''), and that
  7619. %% at the beginning of a function we move the stack pointer \code{rsp}
  7620. %% down to make room for them.
  7621. %% We recommend storing the local variables
  7622. %% first and then the callee-saved registers, so that the local variables
  7623. %% can be accessed using \code{rbp} the same as before the addition of
  7624. %% functions.
  7625. %% To make additional room for passing arguments, we shall
  7626. %% move the stack pointer even further down. We count how many stack
  7627. %% arguments are needed for each function call that occurs inside the
  7628. %% body of the function and find their maximum. Adding this number to the
  7629. %% number of locals gives us how much the \code{rsp} should be moved at
  7630. %% the beginning of the function. In preparation for a function call, we
  7631. %% offset from \code{rsp} to set up the stack arguments. We put the first
  7632. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  7633. %% so on.
  7634. %% Upon calling the function, the stack arguments are retrieved by the
  7635. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  7636. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  7637. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  7638. %% the layout of the caller and callee frames. Notice how important it is
  7639. %% that we correctly compute the maximum number of arguments needed for
  7640. %% function calls; if that number is too small then the arguments and
  7641. %% local variables will smash into each other!
  7642. \subsection{Efficient Tail Calls}
  7643. \label{sec:tail-call}
  7644. In general, the amount of stack space used by a program is determined
  7645. by the longest chain of nested function calls. That is, if function
  7646. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
  7647. $f_n$, then the amount of stack space is bounded by $O(n)$. The depth
  7648. $n$ can grow quite large in the case of recursive or mutually
  7649. recursive functions. However, in some cases we can arrange to use only
  7650. constant space, i.e. $O(1)$, instead of $O(n)$.
  7651. If a function call is the last action in a function body, then that
  7652. call is said to be a \emph{tail call}\index{tail call}.
  7653. For example, in the following
  7654. program, the recursive call to \code{tail-sum} is a tail call.
  7655. \begin{center}
  7656. \begin{lstlisting}
  7657. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  7658. (if (eq? n 0)
  7659. r
  7660. (tail-sum (- n 1) (+ n r))))
  7661. (+ (tail-sum 5 0) 27)
  7662. \end{lstlisting}
  7663. \end{center}
  7664. At a tail call, the frame of the caller is no longer needed, so we
  7665. can pop the caller's frame before making the tail call. With this
  7666. approach, a recursive function that only makes tail calls will only
  7667. use $O(1)$ stack space. Functional languages like Racket typically
  7668. rely heavily on recursive functions, so they typically guarantee that
  7669. all tail calls will be optimized in this way.
  7670. \index{frame}
  7671. However, some care is needed with regards to argument passing in tail
  7672. calls. As mentioned above, for arguments beyond the sixth, the
  7673. convention is to use space in the caller's frame for passing
  7674. arguments. But for a tail call we pop the caller's frame and can no
  7675. longer use it. Another alternative is to use space in the callee's
  7676. frame for passing arguments. However, this option is also problematic
  7677. because the caller and callee's frame overlap in memory. As we begin
  7678. to copy the arguments from their sources in the caller's frame, the
  7679. target locations in the callee's frame might overlap with the sources
  7680. for later arguments! We solve this problem by not using the stack for
  7681. passing more than six arguments but instead using the heap, as we
  7682. describe in the Section~\ref{sec:limit-functions-r4}.
  7683. As mentioned above, for a tail call we pop the caller's frame prior to
  7684. making the tail call. The instructions for popping a frame are the
  7685. instructions that we usually place in the conclusion of a
  7686. function. Thus, we also need to place such code immediately before
  7687. each tail call. These instructions include restoring the callee-saved
  7688. registers, so it is good that the argument passing registers are all
  7689. caller-saved registers.
  7690. One last note regarding which instruction to use to make the tail
  7691. call. When the callee is finished, it should not return to the current
  7692. function, but it should return to the function that called the current
  7693. one. Thus, the return address that is already on the stack is the
  7694. right one, and we should not use \key{callq} to make the tail call, as
  7695. that would unnecessarily overwrite the return address. Instead we can
  7696. simply use the \key{jmp} instruction. Like the indirect function call,
  7697. we write an \emph{indirect jump}\index{indirect jump} with a register
  7698. prefixed with an asterisk. We recommend using \code{rax} to hold the
  7699. jump target because the preceding conclusion overwrites just about
  7700. everything else.
  7701. \begin{lstlisting}
  7702. jmp *%rax
  7703. \end{lstlisting}
  7704. \section{Shrink \LangFun{}}
  7705. \label{sec:shrink-r4}
  7706. The \code{shrink} pass performs a minor modification to ease the
  7707. later passes. This pass introduces an explicit \code{main} function
  7708. and changes the top \code{ProgramDefsExp} form to
  7709. \code{ProgramDefs} as follows.
  7710. \begin{lstlisting}
  7711. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  7712. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  7713. \end{lstlisting}
  7714. where $\itm{mainDef}$ is
  7715. \begin{lstlisting}
  7716. (Def 'main '() 'Integer '() |$\Exp'$|)
  7717. \end{lstlisting}
  7718. \section{Reveal Functions and the \LangFunRef{} language}
  7719. \label{sec:reveal-functions-r4}
  7720. The syntax of \LangFun{} is inconvenient for purposes of compilation in one
  7721. respect: it conflates the use of function names and local
  7722. variables. This is a problem because we need to compile the use of a
  7723. function name differently than the use of a local variable; we need to
  7724. use \code{leaq} to convert the function name (a label in x86) to an
  7725. address in a register. Thus, it is a good idea to create a new pass
  7726. that changes function references from just a symbol $f$ to
  7727. $\FUNREF{f}$. This pass is named \code{reveal-functions} and the
  7728. output language, \LangFunRef{}, is defined in Figure~\ref{fig:f1-syntax}.
  7729. The concrete syntax for a function reference is $\CFUNREF{f}$.
  7730. \begin{figure}[tp]
  7731. \centering
  7732. \fbox{
  7733. \begin{minipage}{0.96\textwidth}
  7734. \[
  7735. \begin{array}{lcl}
  7736. \Exp &::=& \ldots \mid \FUNREF{\Var}\\
  7737. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  7738. \LangFunRef{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  7739. \end{array}
  7740. \]
  7741. \end{minipage}
  7742. }
  7743. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  7744. (Figure~\ref{fig:Rfun-syntax}).}
  7745. \label{fig:f1-syntax}
  7746. \end{figure}
  7747. %% Distinguishing between calls in tail position and non-tail position
  7748. %% requires the pass to have some notion of context. We recommend using
  7749. %% two mutually recursive functions, one for processing expressions in
  7750. %% tail position and another for the rest.
  7751. Placing this pass after \code{uniquify} will make sure that there are
  7752. no local variables and functions that share the same name. On the
  7753. other hand, \code{reveal-functions} needs to come before the
  7754. \code{explicate-control} pass because that pass helps us compile
  7755. \code{FunRef} forms into assignment statements.
  7756. \section{Limit Functions}
  7757. \label{sec:limit-functions-r4}
  7758. Recall that we wish to limit the number of function parameters to six
  7759. so that we do not need to use the stack for argument passing, which
  7760. makes it easier to implement efficient tail calls. However, because
  7761. the input language \LangFun{} supports arbitrary numbers of function
  7762. arguments, we have some work to do!
  7763. This pass transforms functions and function calls that involve more
  7764. than six arguments to pass the first five arguments as usual, but it
  7765. packs the rest of the arguments into a vector and passes it as the
  7766. sixth argument.
  7767. Each function definition with too many parameters is transformed as
  7768. follows.
  7769. \begin{lstlisting}
  7770. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  7771. |$\Rightarrow$|
  7772. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  7773. \end{lstlisting}
  7774. where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
  7775. the occurrences of the later parameters with vector references.
  7776. \begin{lstlisting}
  7777. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
  7778. \end{lstlisting}
  7779. For function calls with too many arguments, the \code{limit-functions}
  7780. pass transforms them in the following way.
  7781. \begin{tabular}{lll}
  7782. \begin{minipage}{0.2\textwidth}
  7783. \begin{lstlisting}
  7784. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  7785. \end{lstlisting}
  7786. \end{minipage}
  7787. &
  7788. $\Rightarrow$
  7789. &
  7790. \begin{minipage}{0.4\textwidth}
  7791. \begin{lstlisting}
  7792. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  7793. \end{lstlisting}
  7794. \end{minipage}
  7795. \end{tabular}
  7796. \section{Remove Complex Operands}
  7797. \label{sec:rco-r4}
  7798. The primary decisions to make for this pass is whether to classify
  7799. \code{FunRef} and \code{Apply} as either atomic or complex
  7800. expressions. Recall that a simple expression will eventually end up as
  7801. just an immediate argument of an x86 instruction. Function
  7802. application will be translated to a sequence of instructions, so
  7803. \code{Apply} must be classified as complex expression.
  7804. On the other hand, the arguments of \code{Apply} should be
  7805. atomic expressions.
  7806. %
  7807. Regarding \code{FunRef}, as discussed above, the function label needs
  7808. to be converted to an address using the \code{leaq} instruction. Thus,
  7809. even though \code{FunRef} seems rather simple, it needs to be
  7810. classified as a complex expression so that we generate an assignment
  7811. statement with a left-hand side that can serve as the target of the
  7812. \code{leaq}. Figure~\ref{fig:Rfun-anf-syntax} defines the
  7813. output language \LangFunANF{} of this pass.
  7814. \begin{figure}[tp]
  7815. \centering
  7816. \fbox{
  7817. \begin{minipage}{0.96\textwidth}
  7818. \small
  7819. \[
  7820. \begin{array}{rcl}
  7821. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  7822. \mid \VOID{} } \\
  7823. \Exp &::=& \gray{ \Atm \mid \READ{} } \\
  7824. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} } \\
  7825. &\mid& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  7826. &\mid& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  7827. &\mid& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \mid \IF{\Exp}{\Exp}{\Exp} }\\
  7828. &\mid& \gray{ \LP\key{Collect}~\Int\RP \mid \LP\key{Allocate}~\Int~\Type\RP
  7829. \mid \LP\key{GlobalValue}~\Var\RP }\\
  7830. &\mid& \FUNREF{\Var} \mid \APPLY{\Atm}{\Atm\ldots}\\
  7831. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  7832. R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  7833. \end{array}
  7834. \]
  7835. \end{minipage}
  7836. }
  7837. \caption{\LangFunANF{} is \LangFun{} in administrative normal form (ANF).}
  7838. \label{fig:Rfun-anf-syntax}
  7839. \end{figure}
  7840. \section{Explicate Control and the \LangCFun{} language}
  7841. \label{sec:explicate-control-r4}
  7842. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  7843. output of \key{explicate-control}. (The concrete syntax is given in
  7844. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
  7845. functions for assignment and tail contexts should be updated with
  7846. cases for \code{Apply} and \code{FunRef} and the function for
  7847. predicate context should be updated for \code{Apply} but not
  7848. \code{FunRef}. (A \code{FunRef} can't be a Boolean.) In assignment
  7849. and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
  7850. tail position \code{Apply} becomes \code{TailCall}. We recommend
  7851. defining a new auxiliary function for processing function definitions.
  7852. This code is similar to the case for \code{Program} in \LangVec{}. The
  7853. top-level \code{explicate-control} function that handles the
  7854. \code{ProgramDefs} form of \LangFun{} can then apply this new function to
  7855. all the function definitions.
  7856. \begin{figure}[tp]
  7857. \fbox{
  7858. \begin{minipage}{0.96\textwidth}
  7859. \small
  7860. \[
  7861. \begin{array}{lcl}
  7862. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}} }\\
  7863. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  7864. \Exp &::= & \gray{ \Atm \mid \READ{} } \\
  7865. &\mid& \gray{ \NEG{\Atm} \mid \ADD{\Atm}{\Atm} }\\
  7866. &\mid& \gray{ \UNIOP{\key{not}}{\Atm} \mid \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  7867. &\mid& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  7868. &\mid& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  7869. &\mid& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  7870. &\mid& \gray{ \LP\key{GlobalValue} \,\Var\RP \mid \LP\key{Void}\RP }\\
  7871. &\mid& \FUNREF{\itm{label}} \mid \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  7872. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  7873. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  7874. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  7875. \mid \GOTO{\itm{label}} } \\
  7876. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  7877. &\mid& \TAILCALL{\Atm}{\Atm\ldots} \\
  7878. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  7879. \LangCFun{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  7880. \end{array}
  7881. \]
  7882. \end{minipage}
  7883. }
  7884. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  7885. \label{fig:c3-syntax}
  7886. \end{figure}
  7887. \section{Select Instructions and the \LangXIndCall{} Language}
  7888. \label{sec:select-r4}
  7889. \index{instruction selection}
  7890. The output of select instructions is a program in the \LangXIndCall{}
  7891. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  7892. \index{x86}
  7893. \begin{figure}[tp]
  7894. \fbox{
  7895. \begin{minipage}{0.96\textwidth}
  7896. \small
  7897. \[
  7898. \begin{array}{lcl}
  7899. \Arg &::=& \gray{ \key{\$}\Int \mid \key{\%}\Reg \mid \Int\key{(}\key{\%}\Reg\key{)} \mid \key{\%}\itm{bytereg} } \mid \Var \key{(\%rip)}
  7900. \mid \LP\key{fun-ref}\; \itm{label}\RP\\
  7901. \itm{cc} & ::= & \gray{ \key{e} \mid \key{l} \mid \key{le} \mid \key{g} \mid \key{ge} } \\
  7902. \Instr &::=& \ldots
  7903. \mid \key{callq}\;\key{*}\Arg \mid \key{tailjmp}\;\Arg
  7904. \mid \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  7905. \Block &::= & \Instr\ldots \\
  7906. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  7907. \LangXIndCall{} &::= & \Def\ldots
  7908. \end{array}
  7909. \]
  7910. \end{minipage}
  7911. }
  7912. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  7913. \label{fig:x86-3-concrete}
  7914. \end{figure}
  7915. \begin{figure}[tp]
  7916. \fbox{
  7917. \begin{minipage}{0.96\textwidth}
  7918. \small
  7919. \[
  7920. \begin{array}{lcl}
  7921. \Arg &::=& \gray{ \INT{\Int} \mid \REG{\Reg} \mid \DEREF{\Reg}{\Int}
  7922. \mid \BYTEREG{\Reg} } \\
  7923. &\mid& \gray{ (\key{Global}~\Var) } \mid \FUNREF{\itm{label}} \\
  7924. \Instr &::=& \ldots \mid \INDCALLQ{\Arg}{\itm{int}}
  7925. \mid \TAILJMP{\Arg}{\itm{int}}\\
  7926. &\mid& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  7927. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  7928. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  7929. \LangXIndCall{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  7930. \end{array}
  7931. \]
  7932. \end{minipage}
  7933. }
  7934. \caption{The abstract syntax of \LangXIndCall{} (extends
  7935. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  7936. \label{fig:x86-3}
  7937. \end{figure}
  7938. An assignment of a function reference to a variable becomes a
  7939. load-effective-address instruction as follows: \\
  7940. \begin{tabular}{lcl}
  7941. \begin{minipage}{0.35\textwidth}
  7942. \begin{lstlisting}
  7943. |$\itm{lhs}$| = (fun-ref |$f$|);
  7944. \end{lstlisting}
  7945. \end{minipage}
  7946. &
  7947. $\Rightarrow$\qquad\qquad
  7948. &
  7949. \begin{minipage}{0.3\textwidth}
  7950. \begin{lstlisting}
  7951. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  7952. \end{lstlisting}
  7953. \end{minipage}
  7954. \end{tabular} \\
  7955. Regarding function definitions, we need to remove the parameters and
  7956. instead perform parameter passing using the conventions discussed in
  7957. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  7958. registers. We recommend turning the parameters into local variables
  7959. and generating instructions at the beginning of the function to move
  7960. from the argument passing registers to these local variables.
  7961. \begin{lstlisting}
  7962. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
  7963. |$\Rightarrow$|
  7964. (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
  7965. \end{lstlisting}
  7966. The $G'$ control-flow graph is the same as $G$ except that the
  7967. \code{start} block is modified to add the instructions for moving from
  7968. the argument registers to the parameter variables. So the \code{start}
  7969. block of $G$ shown on the left is changed to the code on the right.
  7970. \begin{center}
  7971. \begin{minipage}{0.3\textwidth}
  7972. \begin{lstlisting}
  7973. start:
  7974. |$\itm{instr}_1$|
  7975. |$\vdots$|
  7976. |$\itm{instr}_n$|
  7977. \end{lstlisting}
  7978. \end{minipage}
  7979. $\Rightarrow$
  7980. \begin{minipage}{0.3\textwidth}
  7981. \begin{lstlisting}
  7982. start:
  7983. movq %rdi, |$x_1$|
  7984. movq %rsi, |$x_2$|
  7985. |$\vdots$|
  7986. |$\itm{instr}_1$|
  7987. |$\vdots$|
  7988. |$\itm{instr}_n$|
  7989. \end{lstlisting}
  7990. \end{minipage}
  7991. \end{center}
  7992. By changing the parameters to local variables, we are giving the
  7993. register allocator control over which registers or stack locations to
  7994. use for them. If you implemented the move-biasing challenge
  7995. (Section~\ref{sec:move-biasing}), the register allocator will try to
  7996. assign the parameter variables to the corresponding argument register,
  7997. in which case the \code{patch-instructions} pass will remove the
  7998. \code{movq} instruction. This happens in the example translation in
  7999. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  8000. the \code{add} function.
  8001. %
  8002. Also, note that the register allocator will perform liveness analysis
  8003. on this sequence of move instructions and build the interference
  8004. graph. So, for example, $x_1$ will be marked as interfering with
  8005. \code{rsi} and that will prevent the assignment of $x_1$ to
  8006. \code{rsi}, which is good, because that would overwrite the argument
  8007. that needs to move into $x_2$.
  8008. Next, consider the compilation of function calls. In the mirror image
  8009. of handling the parameters of function definitions, the arguments need
  8010. to be moved to the argument passing registers. The function call
  8011. itself is performed with an indirect function call. The return value
  8012. from the function is stored in \code{rax}, so it needs to be moved
  8013. into the \itm{lhs}.
  8014. \begin{lstlisting}
  8015. |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
  8016. |$\Rightarrow$|
  8017. movq |$\itm{arg}_1$|, %rdi
  8018. movq |$\itm{arg}_2$|, %rsi
  8019. |$\vdots$|
  8020. callq *|\itm{fun}|
  8021. movq %rax, |\itm{lhs}|
  8022. \end{lstlisting}
  8023. The \code{IndirectCallq} AST node includes an integer for the arity of
  8024. the function, i.e., the number of parameters. That information is
  8025. useful in the \code{uncover-live} pass for determining which
  8026. argument-passing registers are potentially read during the call.
  8027. For tail calls, the parameter passing is the same as non-tail calls:
  8028. generate instructions to move the arguments into to the argument
  8029. passing registers. After that we need to pop the frame from the
  8030. procedure call stack. However, we do not yet know how big the frame
  8031. is; that gets determined during register allocation. So instead of
  8032. generating those instructions here, we invent a new instruction that
  8033. means ``pop the frame and then do an indirect jump'', which we name
  8034. \code{TailJmp}. The abstract syntax for this instruction includes an
  8035. argument that specifies where to jump and an integer that represents
  8036. the arity of the function being called.
  8037. Recall that in Section~\ref{sec:explicate-control-Rvar} we recommended
  8038. using the label \code{start} for the initial block of a program, and
  8039. in Section~\ref{sec:select-Rvar} we recommended labeling the conclusion
  8040. of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
  8041. can be compiled to an assignment to \code{rax} followed by a jump to
  8042. \code{conclusion}. With the addition of function definitions, we will
  8043. have a starting block and conclusion for each function, but their
  8044. labels need to be unique. We recommend prepending the function's name
  8045. to \code{start} and \code{conclusion}, respectively, to obtain unique
  8046. labels. (Alternatively, one could \code{gensym} labels for the start
  8047. and conclusion and store them in the $\itm{info}$ field of the
  8048. function definition.)
  8049. \section{Register Allocation}
  8050. \label{sec:register-allocation-r4}
  8051. \subsection{Liveness Analysis}
  8052. \label{sec:liveness-analysis-r4}
  8053. \index{liveness analysis}
  8054. %% The rest of the passes need only minor modifications to handle the new
  8055. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  8056. %% \code{leaq}.
  8057. The \code{IndirectCallq} instruction should be treated like
  8058. \code{Callq} regarding its written locations $W$, in that they should
  8059. include all the caller-saved registers. Recall that the reason for
  8060. that is to force call-live variables to be assigned to callee-saved
  8061. registers or to be spilled to the stack.
  8062. Regarding the set of read locations $R$ the arity field of
  8063. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  8064. argument-passing registers should be considered as read by those
  8065. instructions.
  8066. \subsection{Build Interference Graph}
  8067. \label{sec:build-interference-r4}
  8068. With the addition of function definitions, we compute an interference
  8069. graph for each function (not just one for the whole program).
  8070. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  8071. spill vector-typed variables that are live during a call to the
  8072. \code{collect}. With the addition of functions to our language, we
  8073. need to revisit this issue. Many functions perform allocation and
  8074. therefore have calls to the collector inside of them. Thus, we should
  8075. not only spill a vector-typed variable when it is live during a call
  8076. to \code{collect}, but we should spill the variable if it is live
  8077. during any function call. Thus, in the \code{build-interference} pass,
  8078. we recommend adding interference edges between call-live vector-typed
  8079. variables and the callee-saved registers (in addition to the usual
  8080. addition of edges between call-live variables and the caller-saved
  8081. registers).
  8082. \subsection{Allocate Registers}
  8083. The primary change to the \code{allocate-registers} pass is adding an
  8084. auxiliary function for handling definitions (the \Def{} non-terminal
  8085. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  8086. logic is the same as described in
  8087. Chapter~\ref{ch:register-allocation-Rvar}, except now register
  8088. allocation is performed many times, once for each function definition,
  8089. instead of just once for the whole program.
  8090. \section{Patch Instructions}
  8091. In \code{patch-instructions}, you should deal with the x86
  8092. idiosyncrasy that the destination argument of \code{leaq} must be a
  8093. register. Additionally, you should ensure that the argument of
  8094. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  8095. code generation more convenient, because we trample many registers
  8096. before the tail call (as explained in the next section).
  8097. \section{Print x86}
  8098. For the \code{print-x86} pass, the cases for \code{FunRef} and
  8099. \code{IndirectCallq} are straightforward: output their concrete
  8100. syntax.
  8101. \begin{lstlisting}
  8102. (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  8103. (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  8104. \end{lstlisting}
  8105. The \code{TailJmp} node requires a bit work. A straightforward
  8106. translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
  8107. before the jump we need to pop the current frame. This sequence of
  8108. instructions is the same as the code for the conclusion of a function,
  8109. except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  8110. Regarding function definitions, you will need to generate a prelude
  8111. and conclusion for each one. This code is similar to the prelude and
  8112. conclusion that you generated for the \code{main} function in
  8113. Chapter~\ref{ch:Rvec}. To review, the prelude of every function
  8114. should carry out the following steps.
  8115. \begin{enumerate}
  8116. \item Start with \code{.global} and \code{.align} directives followed
  8117. by the label for the function. (See Figure~\ref{fig:add-fun} for an
  8118. example.)
  8119. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  8120. pointer.
  8121. \item Push to the stack all of the callee-saved registers that were
  8122. used for register allocation.
  8123. \item Move the stack pointer \code{rsp} down by the size of the stack
  8124. frame for this function, which depends on the number of regular
  8125. spills. (Aligned to 16 bytes.)
  8126. \item Move the root stack pointer \code{r15} up by the size of the
  8127. root-stack frame for this function, which depends on the number of
  8128. spilled vectors. \label{root-stack-init}
  8129. \item Initialize to zero all of the entries in the root-stack frame.
  8130. \item Jump to the start block.
  8131. \end{enumerate}
  8132. The prelude of the \code{main} function has one additional task: call
  8133. the \code{initialize} function to set up the garbage collector and
  8134. move the value of the global \code{rootstack\_begin} in
  8135. \code{r15}. This should happen before step \ref{root-stack-init}
  8136. above, which depends on \code{r15}.
  8137. The conclusion of every function should do the following.
  8138. \begin{enumerate}
  8139. \item Move the stack pointer back up by the size of the stack frame
  8140. for this function.
  8141. \item Restore the callee-saved registers by popping them from the
  8142. stack.
  8143. \item Move the root stack pointer back down by the size of the
  8144. root-stack frame for this function.
  8145. \item Restore \code{rbp} by popping it from the stack.
  8146. \item Return to the caller with the \code{retq} instruction.
  8147. \end{enumerate}
  8148. \begin{exercise}\normalfont
  8149. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  8150. Create 5 new programs that use functions, including examples that pass
  8151. functions and return functions from other functions, recursive
  8152. functions, functions that create vectors, and functions that make tail
  8153. calls. Test your compiler on these new programs and all of your
  8154. previously created test programs.
  8155. \end{exercise}
  8156. \begin{figure}[tbp]
  8157. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8158. \node (Rfun) at (0,2) {\large \LangFun{}};
  8159. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  8160. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  8161. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  8162. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  8163. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  8164. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  8165. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  8166. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  8167. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  8168. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  8169. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  8170. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  8171. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  8172. \path[->,bend left=15] (Rfun) edge [above] node
  8173. {\ttfamily\footnotesize shrink} (Rfun-1);
  8174. \path[->,bend left=15] (Rfun-1) edge [above] node
  8175. {\ttfamily\footnotesize uniquify} (Rfun-2);
  8176. \path[->,bend left=15] (Rfun-2) edge [right] node
  8177. {\ttfamily\footnotesize ~~reveal-functions} (F1-1);
  8178. \path[->,bend left=15] (F1-1) edge [below] node
  8179. {\ttfamily\footnotesize limit-functions} (F1-2);
  8180. \path[->,bend right=15] (F1-2) edge [above] node
  8181. {\ttfamily\footnotesize expose-alloc.} (F1-3);
  8182. \path[->,bend right=15] (F1-3) edge [above] node
  8183. {\ttfamily\footnotesize remove-complex.} (F1-4);
  8184. \path[->,bend left=15] (F1-4) edge [right] node
  8185. {\ttfamily\footnotesize explicate-control} (C3-2);
  8186. \path[->,bend right=15] (C3-2) edge [left] node
  8187. {\ttfamily\footnotesize select-instr.} (x86-2);
  8188. \path[->,bend left=15] (x86-2) edge [left] node
  8189. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  8190. \path[->,bend right=15] (x86-2-1) edge [below] node
  8191. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  8192. \path[->,bend right=15] (x86-2-2) edge [left] node
  8193. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  8194. \path[->,bend left=15] (x86-3) edge [above] node
  8195. {\ttfamily\footnotesize patch-instr.} (x86-4);
  8196. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  8197. \end{tikzpicture}
  8198. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  8199. \label{fig:Rfun-passes}
  8200. \end{figure}
  8201. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  8202. compiling \LangFun{} to x86.
  8203. \section{An Example Translation}
  8204. \label{sec:functions-example}
  8205. Figure~\ref{fig:add-fun} shows an example translation of a simple
  8206. function in \LangFun{} to x86. The figure also includes the results of the
  8207. \code{explicate-control} and \code{select-instructions} passes.
  8208. \begin{figure}[htbp]
  8209. \begin{tabular}{ll}
  8210. \begin{minipage}{0.5\textwidth}
  8211. % s3_2.rkt
  8212. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  8213. (define (add [x : Integer] [y : Integer])
  8214. : Integer
  8215. (+ x y))
  8216. (add 40 2)
  8217. \end{lstlisting}
  8218. $\Downarrow$
  8219. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  8220. (define (add86 [x87 : Integer]
  8221. [y88 : Integer]) : Integer
  8222. add86start:
  8223. return (+ x87 y88);
  8224. )
  8225. (define (main) : Integer ()
  8226. mainstart:
  8227. tmp89 = (fun-ref add86);
  8228. (tail-call tmp89 40 2)
  8229. )
  8230. \end{lstlisting}
  8231. \end{minipage}
  8232. &
  8233. $\Rightarrow$
  8234. \begin{minipage}{0.5\textwidth}
  8235. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  8236. (define (add86) : Integer
  8237. add86start:
  8238. movq %rdi, x87
  8239. movq %rsi, y88
  8240. movq x87, %rax
  8241. addq y88, %rax
  8242. jmp add11389conclusion
  8243. )
  8244. (define (main) : Integer
  8245. mainstart:
  8246. leaq (fun-ref add86), tmp89
  8247. movq $40, %rdi
  8248. movq $2, %rsi
  8249. tail-jmp tmp89
  8250. )
  8251. \end{lstlisting}
  8252. $\Downarrow$
  8253. \end{minipage}
  8254. \end{tabular}
  8255. \begin{tabular}{ll}
  8256. \begin{minipage}{0.3\textwidth}
  8257. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  8258. .globl add86
  8259. .align 16
  8260. add86:
  8261. pushq %rbp
  8262. movq %rsp, %rbp
  8263. jmp add86start
  8264. add86start:
  8265. movq %rdi, %rax
  8266. addq %rsi, %rax
  8267. jmp add86conclusion
  8268. add86conclusion:
  8269. popq %rbp
  8270. retq
  8271. \end{lstlisting}
  8272. \end{minipage}
  8273. &
  8274. \begin{minipage}{0.5\textwidth}
  8275. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  8276. .globl main
  8277. .align 16
  8278. main:
  8279. pushq %rbp
  8280. movq %rsp, %rbp
  8281. movq $16384, %rdi
  8282. movq $16384, %rsi
  8283. callq initialize
  8284. movq rootstack_begin(%rip), %r15
  8285. jmp mainstart
  8286. mainstart:
  8287. leaq add86(%rip), %rcx
  8288. movq $40, %rdi
  8289. movq $2, %rsi
  8290. movq %rcx, %rax
  8291. popq %rbp
  8292. jmp *%rax
  8293. mainconclusion:
  8294. popq %rbp
  8295. retq
  8296. \end{lstlisting}
  8297. \end{minipage}
  8298. \end{tabular}
  8299. \caption{Example compilation of a simple function to x86.}
  8300. \label{fig:add-fun}
  8301. \end{figure}
  8302. % Challenge idea: inlining! (simple version)
  8303. % Further Reading
  8304. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8305. \chapter{Lexically Scoped Functions}
  8306. \label{ch:Rlam}
  8307. \index{lambda}
  8308. \index{lexical scoping}
  8309. This chapter studies lexically scoped functions as they appear in
  8310. functional languages such as Racket. By lexical scoping we mean that a
  8311. function's body may refer to variables whose binding site is outside
  8312. of the function, in an enclosing scope.
  8313. %
  8314. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  8315. \LangLam{}, which extends \LangFun{} with anonymous functions using the
  8316. \key{lambda} form. The body of the \key{lambda}, refers to three
  8317. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  8318. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  8319. \code{y} is bound by the enclosing \key{let} and \code{x} is a
  8320. parameter of function \code{f}. The \key{lambda} is returned from the
  8321. function \code{f}. The main expression of the program includes two
  8322. calls to \code{f} with different arguments for \code{x}, first
  8323. \code{5} then \code{3}. The functions returned from \code{f} are bound
  8324. to variables \code{g} and \code{h}. Even though these two functions
  8325. were created by the same \code{lambda}, they are really different
  8326. functions because they use different values for \code{x}. Applying
  8327. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  8328. \code{15} produces \code{22}. The result of this program is \code{42}.
  8329. \begin{figure}[btp]
  8330. % s4_6.rkt
  8331. \begin{lstlisting}
  8332. (define (f [x : Integer]) : (Integer -> Integer)
  8333. (let ([y 4])
  8334. (lambda: ([z : Integer]) : Integer
  8335. (+ x (+ y z)))))
  8336. (let ([g (f 5)])
  8337. (let ([h (f 3)])
  8338. (+ (g 11) (h 15))))
  8339. \end{lstlisting}
  8340. \caption{Example of a lexically scoped function.}
  8341. \label{fig:lexical-scoping}
  8342. \end{figure}
  8343. The approach that we take for implementing lexically scoped
  8344. functions is to compile them into top-level function definitions,
  8345. translating from \LangLam{} into \LangFun{}. However, the compiler will need to
  8346. provide special treatment for variable occurrences such as \code{x}
  8347. and \code{y} in the body of the \code{lambda} of
  8348. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function may not
  8349. refer to variables defined outside of it. To identify such variable
  8350. occurrences, we review the standard notion of free variable.
  8351. \begin{definition}
  8352. A variable is \emph{free in expression} $e$ if the variable occurs
  8353. inside $e$ but does not have an enclosing binding in $e$.\index{free
  8354. variable}
  8355. \end{definition}
  8356. For example, in the expression \code{(+ x (+ y z))} the variables
  8357. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  8358. only \code{x} and \code{y} are free in the following expression
  8359. because \code{z} is bound by the \code{lambda}.
  8360. \begin{lstlisting}
  8361. (lambda: ([z : Integer]) : Integer
  8362. (+ x (+ y z)))
  8363. \end{lstlisting}
  8364. So the free variables of a \code{lambda} are the ones that will need
  8365. special treatment. We need to arrange for some way to transport, at
  8366. runtime, the values of those variables from the point where the
  8367. \code{lambda} was created to the point where the \code{lambda} is
  8368. applied. An efficient solution to the problem, due to
  8369. \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
  8370. free variables together with the function pointer for the lambda's
  8371. code, an arrangement called a \emph{flat closure} (which we shorten to
  8372. just ``closure''). \index{closure}\index{flat closure} Fortunately,
  8373. we have all the ingredients to make closures, Chapter~\ref{ch:Rvec}
  8374. gave us vectors and Chapter~\ref{ch:Rfun} gave us function
  8375. pointers. The function pointer resides at index $0$ and the
  8376. values for the free variables will fill in the rest of the vector.
  8377. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  8378. how closures work. It's a three-step dance. The program first calls
  8379. function \code{f}, which creates a closure for the \code{lambda}. The
  8380. closure is a vector whose first element is a pointer to the top-level
  8381. function that we will generate for the \code{lambda}, the second
  8382. element is the value of \code{x}, which is \code{5}, and the third
  8383. element is \code{4}, the value of \code{y}. The closure does not
  8384. contain an element for \code{z} because \code{z} is not a free
  8385. variable of the \code{lambda}. Creating the closure is step 1 of the
  8386. dance. The closure is returned from \code{f} and bound to \code{g}, as
  8387. shown in Figure~\ref{fig:closures}.
  8388. %
  8389. The second call to \code{f} creates another closure, this time with
  8390. \code{3} in the second slot (for \code{x}). This closure is also
  8391. returned from \code{f} but bound to \code{h}, which is also shown in
  8392. Figure~\ref{fig:closures}.
  8393. \begin{figure}[tbp]
  8394. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  8395. \caption{Example closure representation for the \key{lambda}'s
  8396. in Figure~\ref{fig:lexical-scoping}.}
  8397. \label{fig:closures}
  8398. \end{figure}
  8399. Continuing with the example, consider the application of \code{g} to
  8400. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  8401. obtain the function pointer in the first element of the closure and
  8402. call it, passing in the closure itself and then the regular arguments,
  8403. in this case \code{11}. This technique for applying a closure is step
  8404. 2 of the dance.
  8405. %
  8406. But doesn't this \code{lambda} only take 1 argument, for parameter
  8407. \code{z}? The third and final step of the dance is generating a
  8408. top-level function for a \code{lambda}. We add an additional
  8409. parameter for the closure and we insert a \code{let} at the beginning
  8410. of the function for each free variable, to bind those variables to the
  8411. appropriate elements from the closure parameter.
  8412. %
  8413. This three-step dance is known as \emph{closure conversion}. We
  8414. discuss the details of closure conversion in
  8415. Section~\ref{sec:closure-conversion} and the code generated from the
  8416. example in Section~\ref{sec:example-lambda}. But first we define the
  8417. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  8418. \section{The \LangLam{} Language}
  8419. \label{sec:r5}
  8420. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  8421. functions and lexical scoping, is defined in
  8422. Figures~\ref{fig:Rlam-concrete-syntax} and ~\ref{fig:Rlam-syntax}. It adds
  8423. the \key{lambda} form to the grammar for \LangFun{}, which already has
  8424. syntax for function application.
  8425. \begin{figure}[tp]
  8426. \centering
  8427. \fbox{
  8428. \begin{minipage}{0.96\textwidth}
  8429. \small
  8430. \[
  8431. \begin{array}{lcl}
  8432. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  8433. \mid (\key{Vector}\;\Type\ldots) \mid \key{Void}
  8434. \mid (\Type\ldots \; \key{->}\; \Type)} \\
  8435. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  8436. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  8437. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  8438. &\mid& \gray{\key{\#t} \mid \key{\#f}
  8439. \mid (\key{and}\;\Exp\;\Exp)
  8440. \mid (\key{or}\;\Exp\;\Exp)
  8441. \mid (\key{not}\;\Exp) } \\
  8442. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  8443. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  8444. (\key{vector-ref}\;\Exp\;\Int)} \\
  8445. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  8446. \mid (\Exp \; \Exp\ldots) } \\
  8447. &\mid& \LP \key{procedure-arity}~\Exp\RP \\
  8448. &\mid& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  8449. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  8450. \LangLam{} &::=& \gray{\Def\ldots \; \Exp}
  8451. \end{array}
  8452. \]
  8453. \end{minipage}
  8454. }
  8455. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  8456. with \key{lambda}.}
  8457. \label{fig:Rlam-concrete-syntax}
  8458. \end{figure}
  8459. \begin{figure}[tp]
  8460. \centering
  8461. \fbox{
  8462. \begin{minipage}{0.96\textwidth}
  8463. \small
  8464. \[
  8465. \begin{array}{lcl}
  8466. \itm{op} &::=& \ldots \mid \code{procedure-arity} \\
  8467. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  8468. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  8469. &\mid& \gray{ \BOOL{\itm{bool}}
  8470. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  8471. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  8472. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  8473. &\mid& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  8474. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  8475. \LangLam{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  8476. \end{array}
  8477. \]
  8478. \end{minipage}
  8479. }
  8480. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  8481. \label{fig:Rlam-syntax}
  8482. \end{figure}
  8483. \index{interpreter}
  8484. \label{sec:interp-Rlambda}
  8485. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  8486. \LangLam{}. The case for \key{lambda} saves the current environment
  8487. inside the returned \key{lambda}. Then the case for \key{Apply} uses
  8488. the environment from the \key{lambda}, the \code{lam-env}, when
  8489. interpreting the body of the \key{lambda}. The \code{lam-env}
  8490. environment is extended with the mapping of parameters to argument
  8491. values.
  8492. \begin{figure}[tbp]
  8493. \begin{lstlisting}
  8494. (define interp-Rlambda-class
  8495. (class interp-Rfun-class
  8496. (super-new)
  8497. (define/override (interp-op op)
  8498. (match op
  8499. ['procedure-arity
  8500. (lambda (v)
  8501. (match v
  8502. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  8503. [else (error 'interp-op "expected a function, not ~a" v)]))]
  8504. [else (super interp-op op)]))
  8505. (define/override ((interp-exp env) e)
  8506. (define recur (interp-exp env))
  8507. (match e
  8508. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  8509. `(function ,xs ,body ,env)]
  8510. [else ((super interp-exp env) e)]))
  8511. ))
  8512. (define (interp-Rlambda p)
  8513. (send (new interp-Rlambda-class) interp-program p))
  8514. \end{lstlisting}
  8515. \caption{Interpreter for \LangLam{}.}
  8516. \label{fig:interp-Rlambda}
  8517. \end{figure}
  8518. \label{sec:type-check-r5}
  8519. \index{type checking}
  8520. Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
  8521. \key{lambda} form. The body of the \key{lambda} is checked in an
  8522. environment that includes the current environment (because it is
  8523. lexically scoped) and also includes the \key{lambda}'s parameters. We
  8524. require the body's type to match the declared return type.
  8525. \begin{figure}[tbp]
  8526. \begin{lstlisting}
  8527. (define (type-check-Rlambda env)
  8528. (lambda (e)
  8529. (match e
  8530. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  8531. (define-values (new-body bodyT)
  8532. ((type-check-exp (append (map cons xs Ts) env)) body))
  8533. (define ty `(,@Ts -> ,rT))
  8534. (cond
  8535. [(equal? rT bodyT)
  8536. (values (HasType (Lambda params rT new-body) ty) ty)]
  8537. [else
  8538. (error "mismatch in return type" bodyT rT)])]
  8539. ...
  8540. )))
  8541. \end{lstlisting}
  8542. \caption{Type checking the \key{lambda}'s in \LangLam{}.}
  8543. \label{fig:type-check-Rlambda}
  8544. \end{figure}
  8545. \section{Reveal Functions and the $F_2$ language}
  8546. \label{sec:reveal-functions-r5}
  8547. To support the \code{procedure-arity} operator we need to communicate
  8548. the arity of a function to the point of closure creation. We can
  8549. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  8550. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  8551. output of this pass is the language $F_2$, whose syntax is defined in
  8552. Figure~\ref{fig:f2-syntax}.
  8553. \begin{figure}[tp]
  8554. \centering
  8555. \fbox{
  8556. \begin{minipage}{0.96\textwidth}
  8557. \[
  8558. \begin{array}{lcl}
  8559. \Exp &::=& \ldots \mid \FUNREFARITY{\Var}{\Int}\\
  8560. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  8561. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  8562. \end{array}
  8563. \]
  8564. \end{minipage}
  8565. }
  8566. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  8567. (Figure~\ref{fig:Rlam-syntax}).}
  8568. \label{fig:f2-syntax}
  8569. \end{figure}
  8570. \section{Closure Conversion}
  8571. \label{sec:closure-conversion}
  8572. \index{closure conversion}
  8573. The compiling of lexically-scoped functions into top-level function
  8574. definitions is accomplished in the pass \code{convert-to-closures}
  8575. that comes after \code{reveal-functions} and before
  8576. \code{limit-functions}.
  8577. As usual, we implement the pass as a recursive function over the
  8578. AST. All of the action is in the cases for \key{Lambda} and
  8579. \key{Apply}. We transform a \key{Lambda} expression into an expression
  8580. that creates a closure, that is, a vector whose first element is a
  8581. function pointer and the rest of the elements are the free variables
  8582. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  8583. using \code{vector} so that we can distinguish closures from vectors
  8584. in Section~\ref{sec:optimize-closures} and to record the arity. In
  8585. the generated code below, the \itm{name} is a unique symbol generated
  8586. to identify the function and the \itm{arity} is the number of
  8587. parameters (the length of \itm{ps}).
  8588. \begin{lstlisting}
  8589. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  8590. |$\Rightarrow$|
  8591. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  8592. \end{lstlisting}
  8593. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  8594. create a top-level function definition for each \key{Lambda}, as
  8595. shown below.\\
  8596. \begin{minipage}{0.8\textwidth}
  8597. \begin{lstlisting}
  8598. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  8599. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  8600. ...
  8601. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  8602. |\itm{body'}|)...))
  8603. \end{lstlisting}
  8604. \end{minipage}\\
  8605. The \code{clos} parameter refers to the closure. Translate the type
  8606. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  8607. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  8608. $\itm{fvts}$ are the types of the free variables in the lambda and the
  8609. underscore \code{\_} is a dummy type that we use because it is rather
  8610. difficult to give a type to the function in the closure's
  8611. type.\footnote{To give an accurate type to a closure, we would need to
  8612. add existential types to the type checker~\citep{Minamide:1996ys}.}
  8613. The dummy type is considered to be equal to any other type during type
  8614. checking. The sequence of \key{Let} forms bind the free variables to
  8615. their values obtained from the closure.
  8616. Closure conversion turns functions into vectors, so the type
  8617. annotations in the program must also be translated. We recommend
  8618. defining a auxiliary recursive function for this purpose. Function
  8619. types should be translated as follows.
  8620. \begin{lstlisting}
  8621. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  8622. |$\Rightarrow$|
  8623. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  8624. \end{lstlisting}
  8625. The above type says that the first thing in the vector is a function
  8626. pointer. The first parameter of the function pointer is a vector (a
  8627. closure) and the rest of the parameters are the ones from the original
  8628. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  8629. the closure omits the types of the free variables because 1) those
  8630. types are not available in this context and 2) we do not need them in
  8631. the code that is generated for function application.
  8632. We transform function application into code that retrieves the
  8633. function pointer from the closure and then calls the function, passing
  8634. in the closure as the first argument. We bind $e'$ to a temporary
  8635. variable to avoid code duplication.
  8636. \begin{lstlisting}
  8637. (Apply |$e$| |\itm{es}|)
  8638. |$\Rightarrow$|
  8639. (Let |\itm{tmp}| |$e'$|
  8640. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  8641. \end{lstlisting}
  8642. There is also the question of what to do with references top-level
  8643. function definitions. To maintain a uniform translation of function
  8644. application, we turn function references into closures.
  8645. \begin{tabular}{lll}
  8646. \begin{minipage}{0.3\textwidth}
  8647. \begin{lstlisting}
  8648. (FunRefArity |$f$| |$n$|)
  8649. \end{lstlisting}
  8650. \end{minipage}
  8651. &
  8652. $\Rightarrow$
  8653. &
  8654. \begin{minipage}{0.5\textwidth}
  8655. \begin{lstlisting}
  8656. (Closure |$n$| (FunRef |$f$|) '())
  8657. \end{lstlisting}
  8658. \end{minipage}
  8659. \end{tabular} \\
  8660. %
  8661. The top-level function definitions need to be updated as well to take
  8662. an extra closure parameter.
  8663. \section{An Example Translation}
  8664. \label{sec:example-lambda}
  8665. Figure~\ref{fig:lexical-functions-example} shows the result of
  8666. \code{reveal-functions} and \code{convert-to-closures} for the example
  8667. program demonstrating lexical scoping that we discussed at the
  8668. beginning of this chapter.
  8669. \begin{figure}[tbp]
  8670. \begin{minipage}{0.8\textwidth}
  8671. % tests/lambda_test_6.rkt
  8672. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8673. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  8674. (let ([y8 4])
  8675. (lambda: ([z9 : Integer]) : Integer
  8676. (+ x7 (+ y8 z9)))))
  8677. (define (main) : Integer
  8678. (let ([g0 ((fun-ref-arity f6 1) 5)])
  8679. (let ([h1 ((fun-ref-arity f6 1) 3)])
  8680. (+ (g0 11) (h1 15)))))
  8681. \end{lstlisting}
  8682. $\Rightarrow$
  8683. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8684. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  8685. (let ([y8 4])
  8686. (closure 1 (list (fun-ref lambda2) x7 y8))))
  8687. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  8688. (let ([x7 (vector-ref fvs3 1)])
  8689. (let ([y8 (vector-ref fvs3 2)])
  8690. (+ x7 (+ y8 z9)))))
  8691. (define (main) : Integer
  8692. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  8693. ((vector-ref clos5 0) clos5 5))])
  8694. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  8695. ((vector-ref clos6 0) clos6 3))])
  8696. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  8697. \end{lstlisting}
  8698. \end{minipage}
  8699. \caption{Example of closure conversion.}
  8700. \label{fig:lexical-functions-example}
  8701. \end{figure}
  8702. \begin{exercise}\normalfont
  8703. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  8704. Create 5 new programs that use \key{lambda} functions and make use of
  8705. lexical scoping. Test your compiler on these new programs and all of
  8706. your previously created test programs.
  8707. \end{exercise}
  8708. \section{Expose Allocation}
  8709. \label{sec:expose-allocation-r5}
  8710. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  8711. that allocates and initializes a vector, similar to the translation of
  8712. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  8713. The only difference is replacing the use of
  8714. \ALLOC{\itm{len}}{\itm{type}} with
  8715. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  8716. \section{Explicate Control and \LangCLam{}}
  8717. \label{sec:explicate-r5}
  8718. The output language of \code{explicate-control} is \LangCLam{} whose
  8719. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  8720. difference with respect to \LangCFun{} is the addition of the
  8721. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  8722. of \code{AllocateClosure} in the \code{explicate-control} pass is
  8723. similar to the handling of other expressions such as primitive
  8724. operators.
  8725. \begin{figure}[tp]
  8726. \fbox{
  8727. \begin{minipage}{0.96\textwidth}
  8728. \small
  8729. \[
  8730. \begin{array}{lcl}
  8731. \Exp &::= & \ldots
  8732. \mid \ALLOCCLOS{\Int}{\Type}{\Int} \\
  8733. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  8734. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  8735. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  8736. \mid \GOTO{\itm{label}} } \\
  8737. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  8738. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  8739. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  8740. \LangCLam{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  8741. \end{array}
  8742. \]
  8743. \end{minipage}
  8744. }
  8745. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  8746. \label{fig:c4-syntax}
  8747. \end{figure}
  8748. \section{Select Instructions}
  8749. \label{sec:select-instructions-Rlambda}
  8750. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  8751. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  8752. (Section~\ref{sec:select-instructions-gc}). The only difference is
  8753. that you should place the \itm{arity} in the tag that is stored at
  8754. position $0$ of the vector. Recall that in
  8755. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  8756. was not used. We store the arity in the $5$ bits starting at position
  8757. $58$.
  8758. Compile the \code{procedure-arity} operator into a sequence of
  8759. instructions that access the tag from position $0$ of the vector and
  8760. extract the $5$-bits starting at position $58$ from the tag.
  8761. \begin{figure}[p]
  8762. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8763. \node (Rfun) at (0,2) {\large \LangFun{}};
  8764. \node (Rfun-2) at (3,2) {\large \LangFun{}};
  8765. \node (Rfun-3) at (6,2) {\large \LangFun{}};
  8766. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  8767. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  8768. \node (F1-3) at (6,0) {\large $F_1$};
  8769. \node (F1-4) at (3,0) {\large $F_1$};
  8770. \node (F1-5) at (0,0) {\large $F_1$};
  8771. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  8772. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  8773. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  8774. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  8775. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  8776. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  8777. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  8778. \path[->,bend left=15] (Rfun) edge [above] node
  8779. {\ttfamily\footnotesize shrink} (Rfun-2);
  8780. \path[->,bend left=15] (Rfun-2) edge [above] node
  8781. {\ttfamily\footnotesize uniquify} (Rfun-3);
  8782. \path[->,bend left=15] (Rfun-3) edge [right] node
  8783. {\ttfamily\footnotesize reveal-functions} (F1-1);
  8784. \path[->,bend left=15] (F1-1) edge [below] node
  8785. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  8786. \path[->,bend right=15] (F1-2) edge [above] node
  8787. {\ttfamily\footnotesize limit-fun.} (F1-3);
  8788. \path[->,bend right=15] (F1-3) edge [above] node
  8789. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  8790. \path[->,bend right=15] (F1-4) edge [above] node
  8791. {\ttfamily\footnotesize remove-complex.} (F1-5);
  8792. \path[->,bend right=15] (F1-5) edge [right] node
  8793. {\ttfamily\footnotesize explicate-control} (C3-2);
  8794. \path[->,bend left=15] (C3-2) edge [left] node
  8795. {\ttfamily\footnotesize select-instr.} (x86-2);
  8796. \path[->,bend right=15] (x86-2) edge [left] node
  8797. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  8798. \path[->,bend right=15] (x86-2-1) edge [below] node
  8799. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  8800. \path[->,bend right=15] (x86-2-2) edge [left] node
  8801. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  8802. \path[->,bend left=15] (x86-3) edge [above] node
  8803. {\ttfamily\footnotesize patch-instr.} (x86-4);
  8804. \path[->,bend left=15] (x86-4) edge [right] node
  8805. {\ttfamily\footnotesize print-x86} (x86-5);
  8806. \end{tikzpicture}
  8807. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  8808. functions.}
  8809. \label{fig:Rlambda-passes}
  8810. \end{figure}
  8811. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  8812. for the compilation of \LangLam{}.
  8813. \clearpage
  8814. \section{Challenge: Optimize Closures}
  8815. \label{sec:optimize-closures}
  8816. In this chapter we compiled lexically-scoped functions into a
  8817. relatively efficient representation: flat closures. However, even this
  8818. representation comes with some overhead. For example, consider the
  8819. following program with a function \code{tail-sum} that does not have
  8820. any free variables and where all the uses of \code{tail-sum} are in
  8821. applications where we know that only \code{tail-sum} is being applied
  8822. (and not any other functions).
  8823. \begin{center}
  8824. \begin{minipage}{0.95\textwidth}
  8825. \begin{lstlisting}
  8826. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  8827. (if (eq? n 0)
  8828. r
  8829. (tail-sum (- n 1) (+ n r))))
  8830. (+ (tail-sum 5 0) 27)
  8831. \end{lstlisting}
  8832. \end{minipage}
  8833. \end{center}
  8834. As described in this chapter, we uniformly apply closure conversion to
  8835. all functions, obtaining the following output for this program.
  8836. \begin{center}
  8837. \begin{minipage}{0.95\textwidth}
  8838. \begin{lstlisting}
  8839. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  8840. (if (eq? n2 0)
  8841. r3
  8842. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  8843. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  8844. (define (main) : Integer
  8845. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  8846. ((vector-ref clos6 0) clos6 5 0)) 27))
  8847. \end{lstlisting}
  8848. \end{minipage}
  8849. \end{center}
  8850. In the previous Chapter, there would be no allocation in the program
  8851. and the calls to \code{tail-sum} would be direct calls. In contrast,
  8852. the above program allocates memory for each \code{closure} and the
  8853. calls to \code{tail-sum} are indirect. These two differences incur
  8854. considerable overhead in a program such as this one, where the
  8855. allocations and indirect calls occur inside a tight loop.
  8856. One might think that this problem is trivial to solve: can't we just
  8857. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  8858. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  8859. e'_n$)} instead of treating it like a call to a closure? We would
  8860. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  8861. %
  8862. However, this problem is not so trivial because a global function may
  8863. ``escape'' and become involved in applications that also involve
  8864. closures. Consider the following example in which the application
  8865. \code{(f 41)} needs to be compiled into a closure application, because
  8866. the \code{lambda} may get bound to \code{f}, but the \code{add1}
  8867. function might also get bound to \code{f}.
  8868. \begin{lstlisting}
  8869. (define (add1 [x : Integer]) : Integer
  8870. (+ x 1))
  8871. (let ([y (read)])
  8872. (let ([f (if (eq? (read) 0)
  8873. add1
  8874. (lambda: ([x : Integer]) : Integer (- x y)))])
  8875. (f 41)))
  8876. \end{lstlisting}
  8877. If a global function name is used in any way other than as the
  8878. operator in a direct call, then we say that the function
  8879. \emph{escapes}. If a global function does not escape, then we do not
  8880. need to perform closure conversion on the function.
  8881. \begin{exercise}\normalfont
  8882. Implement an auxiliary function for detecting which global
  8883. functions escape. Using that function, implement an improved version
  8884. of closure conversion that does not apply closure conversion to
  8885. global functions that do not escape but instead compiles them as
  8886. regular functions. Create several new test cases that check whether
  8887. you properly detect whether global functions escape or not.
  8888. \end{exercise}
  8889. So far we have reduced the overhead of calling global functions, but
  8890. it would also be nice to reduce the overhead of calling a
  8891. \code{lambda} when we can determine at compile time which
  8892. \code{lambda} will be called. We refer to such calls as \emph{known
  8893. calls}. Consider the following example in which a \code{lambda} is
  8894. bound to \code{f} and then applied.
  8895. \begin{lstlisting}
  8896. (let ([y (read)])
  8897. (let ([f (lambda: ([x : Integer]) : Integer
  8898. (+ x y))])
  8899. (f 21)))
  8900. \end{lstlisting}
  8901. Closure conversion compiles \code{(f 21)} into an indirect call:
  8902. \begin{lstlisting}
  8903. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  8904. (let ([y2 (vector-ref fvs6 1)])
  8905. (+ x3 y2)))
  8906. (define (main) : Integer
  8907. (let ([y2 (read)])
  8908. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  8909. ((vector-ref f4 0) f4 21))))
  8910. \end{lstlisting}
  8911. but we can instead compile the application \code{(f 21)} into a direct call
  8912. to \code{lambda5}:
  8913. \begin{lstlisting}
  8914. (define (main) : Integer
  8915. (let ([y2 (read)])
  8916. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  8917. ((fun-ref lambda5) f4 21))))
  8918. \end{lstlisting}
  8919. The problem of determining which lambda will be called from a
  8920. particular application is quite challenging in general and the topic
  8921. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  8922. following exercise we recommend that you compile an application to a
  8923. direct call when the operator is a variable and the variable is
  8924. \code{let}-bound to a closure. This can be accomplished by maintaining
  8925. an environment mapping \code{let}-bound variables to function names.
  8926. Extend the environment whenever you encounter a closure on the
  8927. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  8928. to the name of the global function for the closure. This pass should
  8929. come after closure conversion.
  8930. \begin{exercise}\normalfont
  8931. Implement a compiler pass, named \code{optimize-known-calls}, that
  8932. compiles known calls into direct calls. Verify that your compiler is
  8933. successful in this regard on several example programs.
  8934. \end{exercise}
  8935. These exercises only scratches the surface of optimizing of
  8936. closures. A good next step for the interested reader is to look at the
  8937. work of \citet{Keep:2012ab}.
  8938. \section{Further Reading}
  8939. The notion of lexically scoped anonymous functions predates modern
  8940. computers by about a decade. They were invented by
  8941. \citet{Church:1932aa}, who proposed the $\lambda$ calculus as a
  8942. foundation for logic. Anonymous functions were included in the
  8943. LISP~\citep{McCarthy:1960dz} programming language but were initially
  8944. dynamically scoped. The Scheme dialect of LISP adopted lexical scoping
  8945. and \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently
  8946. compile Scheme programs. However, environments were represented as
  8947. linked lists, so variable lookup was linear in the size of the
  8948. environment. In this chapter we represent environments using flat
  8949. closures, which were invented by
  8950. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  8951. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  8952. closures, variable lookup is constant time but the time to create a
  8953. closure is proportional to the number of its free variables. Flat
  8954. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  8955. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  8956. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8957. \chapter{Dynamic Typing}
  8958. \label{ch:Rdyn}
  8959. \index{dynamic typing}
  8960. In this chapter we discuss the compilation of \LangDyn{}, a dynamically
  8961. typed language that is a subset of Racket. This is in contrast to the
  8962. previous chapters, which have studied the compilation of Typed
  8963. Racket. In dynamically typed languages such as \LangDyn{}, a given
  8964. expression may produce a value of a different type each time it is
  8965. executed. Consider the following example with a conditional \code{if}
  8966. expression that may return a Boolean or an integer depending on the
  8967. input to the program.
  8968. % part of dynamic_test_25.rkt
  8969. \begin{lstlisting}
  8970. (not (if (eq? (read) 1) #f 0))
  8971. \end{lstlisting}
  8972. Languages that allow expressions to produce different kinds of values
  8973. are called \emph{polymorphic}, a word composed of the Greek roots
  8974. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  8975. are several kinds of polymorphism in programming languages, such as
  8976. subtype polymorphism and parametric
  8977. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  8978. study in this chapter does not have a special name but it is the kind
  8979. that arises in dynamically typed languages.
  8980. Another characteristic of dynamically typed languages is that
  8981. primitive operations, such as \code{not}, are often defined to operate
  8982. on many different types of values. In fact, in Racket, the \code{not}
  8983. operator produces a result for any kind of value: given \code{\#f} it
  8984. returns \code{\#t} and given anything else it returns \code{\#f}.
  8985. Furthermore, even when primitive operations restrict their inputs to
  8986. values of a certain type, this restriction is enforced at runtime
  8987. instead of during compilation. For example, the following vector
  8988. reference results in a run-time contract violation because the index
  8989. must be in integer, not a Boolean such as \code{\#t}.
  8990. \begin{lstlisting}
  8991. (vector-ref (vector 42) #t)
  8992. \end{lstlisting}
  8993. \begin{figure}[tp]
  8994. \centering
  8995. \fbox{
  8996. \begin{minipage}{0.97\textwidth}
  8997. \[
  8998. \begin{array}{rcl}
  8999. \itm{cmp} &::= & \key{eq?} \mid \key{<} \mid \key{<=} \mid \key{>} \mid \key{>=} \\
  9000. \Exp &::=& \Int \mid \CREAD{} \mid \CNEG{\Exp}
  9001. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} \\
  9002. &\mid& \Var \mid \CLET{\Var}{\Exp}{\Exp} \\
  9003. &\mid& \key{\#t} \mid \key{\#f}
  9004. \mid \CBINOP{\key{and}}{\Exp}{\Exp}
  9005. \mid \CBINOP{\key{or}}{\Exp}{\Exp}
  9006. \mid \CUNIOP{\key{not}}{\Exp} \\
  9007. &\mid& \LP\itm{cmp}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} \\
  9008. &\mid& \LP\key{vector}\;\Exp\ldots\RP \mid
  9009. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  9010. &\mid& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \mid \LP\key{void}\RP \\
  9011. &\mid& \LP\Exp \; \Exp\ldots\RP
  9012. \mid \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  9013. & \mid & \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP\\
  9014. & \mid & \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \mid \LP\key{void?}\;\Exp\RP \\
  9015. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  9016. \LangDyn{} &::=& \Def\ldots\; \Exp
  9017. \end{array}
  9018. \]
  9019. \end{minipage}
  9020. }
  9021. \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
  9022. \label{fig:r7-concrete-syntax}
  9023. \end{figure}
  9024. \begin{figure}[tp]
  9025. \centering
  9026. \fbox{
  9027. \begin{minipage}{0.96\textwidth}
  9028. \small
  9029. \[
  9030. \begin{array}{lcl}
  9031. \Exp &::=& \INT{\Int} \mid \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} \\
  9032. &\mid& \PRIM{\itm{op}}{\Exp\ldots} \\
  9033. &\mid& \BOOL{\itm{bool}}
  9034. \mid \IF{\Exp}{\Exp}{\Exp} \\
  9035. &\mid& \VOID{} \mid \APPLY{\Exp}{\Exp\ldots} \\
  9036. &\mid& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  9037. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  9038. \LangDyn{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  9039. \end{array}
  9040. \]
  9041. \end{minipage}
  9042. }
  9043. \caption{The abstract syntax of \LangDyn{}.}
  9044. \label{fig:r7-syntax}
  9045. \end{figure}
  9046. The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
  9047. defined in Figures~\ref{fig:r7-concrete-syntax} and
  9048. \ref{fig:r7-syntax}.
  9049. %
  9050. There is no type checker for \LangDyn{} because it is not a statically
  9051. typed language (it's dynamically typed!).
  9052. The definitional interpreter for \LangDyn{} is presented in
  9053. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined i
  9054. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
  9055. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  9056. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Rvar}), the
  9057. interpreter for \LangDyn{} creates a \emph{tagged value}\index{tagged
  9058. value} that combines an underlying value with a tag that identifies
  9059. what kind of value it is. We define the following struct
  9060. to represented tagged values.
  9061. \begin{lstlisting}
  9062. (struct Tagged (value tag) #:transparent)
  9063. \end{lstlisting}
  9064. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  9065. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  9066. but don't always capture all the information that a type does. For
  9067. example, a vector of type \code{(Vector Any Any)} is tagged with
  9068. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  9069. is tagged with \code{Procedure}.
  9070. Next consider the match case for \code{vector-ref}. The
  9071. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  9072. is used to ensure that the first argument is a vector and the second
  9073. is an integer. If they are not, a \code{trapped-error} is raised.
  9074. Recall from Section~\ref{sec:interp-Rint} that when a definition
  9075. interpreter raises a \code{trapped-error} error, the compiled code
  9076. must also signal an error by exiting with return code \code{255}. A
  9077. \code{trapped-error} is also raised if the index is not less than
  9078. length of the vector.
  9079. \begin{figure}[tbp]
  9080. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9081. (define ((interp-Rdyn-exp env) ast)
  9082. (define recur (interp-Rdyn-exp env))
  9083. (match ast
  9084. [(Var x) (lookup x env)]
  9085. [(Int n) (Tagged n 'Integer)]
  9086. [(Bool b) (Tagged b 'Boolean)]
  9087. [(Lambda xs rt body)
  9088. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  9089. [(Prim 'vector es)
  9090. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  9091. [(Prim 'vector-ref (list e1 e2))
  9092. (define vec (recur e1)) (define i (recur e2))
  9093. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  9094. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  9095. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  9096. (vector-ref (Tagged-value vec) (Tagged-value i))]
  9097. [(Prim 'vector-set! (list e1 e2 e3))
  9098. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  9099. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  9100. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  9101. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  9102. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  9103. (Tagged (void) 'Void)]
  9104. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  9105. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  9106. [(Prim 'or (list e1 e2))
  9107. (define v1 (recur e1))
  9108. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  9109. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  9110. [(Prim op (list e1))
  9111. #:when (set-member? type-predicates op)
  9112. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  9113. [(Prim op es)
  9114. (define args (map recur es))
  9115. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  9116. (unless (for/or ([expected-tags (op-tags op)])
  9117. (equal? expected-tags tags))
  9118. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  9119. (tag-value
  9120. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  9121. [(If q t f)
  9122. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  9123. [(Apply f es)
  9124. (define new-f (recur f)) (define args (map recur es))
  9125. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  9126. (match f-val
  9127. [`(function ,xs ,body ,lam-env)
  9128. (unless (eq? (length xs) (length args))
  9129. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  9130. (define new-env (append (map cons xs args) lam-env))
  9131. ((interp-Rdyn-exp new-env) body)]
  9132. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  9133. \end{lstlisting}
  9134. \caption{Interpreter for the \LangDyn{} language.}
  9135. \label{fig:interp-Rdyn}
  9136. \end{figure}
  9137. \begin{figure}[tbp]
  9138. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  9139. (define (interp-op op)
  9140. (match op
  9141. ['+ fx+]
  9142. ['- fx-]
  9143. ['read read-fixnum]
  9144. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  9145. ['< (lambda (v1 v2)
  9146. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  9147. ['<= (lambda (v1 v2)
  9148. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  9149. ['> (lambda (v1 v2)
  9150. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  9151. ['>= (lambda (v1 v2)
  9152. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  9153. ['boolean? boolean?]
  9154. ['integer? fixnum?]
  9155. ['void? void?]
  9156. ['vector? vector?]
  9157. ['vector-length vector-length]
  9158. ['procedure? (match-lambda
  9159. [`(functions ,xs ,body ,env) #t] [else #f])]
  9160. [else (error 'interp-op "unknown operator" op)]))
  9161. (define (op-tags op)
  9162. (match op
  9163. ['+ '((Integer Integer))]
  9164. ['- '((Integer Integer) (Integer))]
  9165. ['read '(())]
  9166. ['not '((Boolean))]
  9167. ['< '((Integer Integer))]
  9168. ['<= '((Integer Integer))]
  9169. ['> '((Integer Integer))]
  9170. ['>= '((Integer Integer))]
  9171. ['vector-length '((Vector))]))
  9172. (define type-predicates
  9173. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  9174. (define (tag-value v)
  9175. (cond [(boolean? v) (Tagged v 'Boolean)]
  9176. [(fixnum? v) (Tagged v 'Integer)]
  9177. [(procedure? v) (Tagged v 'Procedure)]
  9178. [(vector? v) (Tagged v 'Vector)]
  9179. [(void? v) (Tagged v 'Void)]
  9180. [else (error 'tag-value "unidentified value ~a" v)]))
  9181. (define (check-tag val expected ast)
  9182. (define tag (Tagged-tag val))
  9183. (unless (eq? tag expected)
  9184. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  9185. \end{lstlisting}
  9186. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  9187. \label{fig:interp-Rdyn-aux}
  9188. \end{figure}
  9189. \clearpage
  9190. \section{Representation of Tagged Values}
  9191. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  9192. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  9193. values at the bit level. Because almost every operation in \LangDyn{}
  9194. involves manipulating tagged values, the representation must be
  9195. efficient. Recall that all of our values are 64 bits. We shall steal
  9196. the 3 right-most bits to encode the tag. We use $001$ to identify
  9197. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  9198. and $101$ for the void value. We define the following auxiliary
  9199. function for mapping types to tag codes.
  9200. \begin{align*}
  9201. \itm{tagof}(\key{Integer}) &= 001 \\
  9202. \itm{tagof}(\key{Boolean}) &= 100 \\
  9203. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  9204. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  9205. \itm{tagof}(\key{Void}) &= 101
  9206. \end{align*}
  9207. This stealing of 3 bits comes at some price: our integers are reduced
  9208. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  9209. affect vectors and procedures because those values are addresses, and
  9210. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  9211. they are always $000$. Thus, we do not lose information by overwriting
  9212. the rightmost 3 bits with the tag and we can simply zero-out the tag
  9213. to recover the original address.
  9214. To make tagged values into first-class entities, we can give them a
  9215. type, called \code{Any}, and define operations such as \code{Inject}
  9216. and \code{Project} for creating and using them, yielding the \LangAny{}
  9217. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  9218. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  9219. in greater detail.
  9220. \section{The \LangAny{} Language}
  9221. \label{sec:Rany-lang}
  9222. \begin{figure}[tp]
  9223. \centering
  9224. \fbox{
  9225. \begin{minipage}{0.96\textwidth}
  9226. \small
  9227. \[
  9228. \begin{array}{lcl}
  9229. \Type &::= & \ldots \mid \key{Any} \\
  9230. \itm{op} &::= & \ldots \mid \code{any-vector-length}
  9231. \mid \code{any-vector-ref} \mid \code{any-vector-set!}\\
  9232. &\mid& \code{boolean?} \mid \code{integer?} \mid \code{vector?}
  9233. \mid \code{procedure?} \mid \code{void?} \\
  9234. \Exp &::=& \ldots
  9235. \mid \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  9236. &\mid& \INJECT{\Exp}{\FType} \mid \PROJECT{\Exp}{\FType} \\
  9237. \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  9238. \LangAny{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  9239. \end{array}
  9240. \]
  9241. \end{minipage}
  9242. }
  9243. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  9244. \label{fig:Rany-syntax}
  9245. \end{figure}
  9246. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  9247. (The concrete syntax of \LangAny{} is in the Appendix,
  9248. Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
  9249. converts the value produced by expression $e$ of type $T$ into a
  9250. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  9251. produced by expression $e$ into a value of type $T$ or else halts the
  9252. program if the type tag is not equivalent to $T$.
  9253. %
  9254. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  9255. restricted to a flat type $\FType$, which simplifies the
  9256. implementation and corresponds with what is needed for compiling \LangDyn{}.
  9257. The \code{any-vector} operators adapt the vector operations so that
  9258. they can be applied to a value of type \code{Any}. They also
  9259. generalize the vector operations in that the index is not restricted
  9260. to be a literal integer in the grammar but is allowed to be any
  9261. expression.
  9262. The type predicates such as \key{boolean?} expect their argument to
  9263. produce a tagged value; they return \key{\#t} if the tag corresponds
  9264. to the predicate and they return \key{\#f} otherwise.
  9265. The type checker for \LangAny{} is shown in
  9266. Figures~\ref{fig:type-check-Rany-part-1} and
  9267. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  9268. Figure~\ref{fig:type-check-Rany-aux}.
  9269. %
  9270. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  9271. auxiliary functions \code{apply-inject} and \code{apply-project} are
  9272. in Figure~\ref{fig:apply-project}.
  9273. \begin{figure}[btp]
  9274. \begin{lstlisting}[basicstyle=\ttfamily\small]
  9275. (define type-check-Rany-class
  9276. (class type-check-Rlambda-class
  9277. (super-new)
  9278. (inherit check-type-equal?)
  9279. (define/override (type-check-exp env)
  9280. (lambda (e)
  9281. (define recur (type-check-exp env))
  9282. (match e
  9283. [(Inject e1 ty)
  9284. (unless (flat-ty? ty)
  9285. (error 'type-check "may only inject from flat type, not ~a" ty))
  9286. (define-values (new-e1 e-ty) (recur e1))
  9287. (check-type-equal? e-ty ty e)
  9288. (values (Inject new-e1 ty) 'Any)]
  9289. [(Project e1 ty)
  9290. (unless (flat-ty? ty)
  9291. (error 'type-check "may only project to flat type, not ~a" ty))
  9292. (define-values (new-e1 e-ty) (recur e1))
  9293. (check-type-equal? e-ty 'Any e)
  9294. (values (Project new-e1 ty) ty)]
  9295. [(Prim 'any-vector-length (list e1))
  9296. (define-values (e1^ t1) (recur e1))
  9297. (check-type-equal? t1 'Any e)
  9298. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  9299. [(Prim 'any-vector-ref (list e1 e2))
  9300. (define-values (e1^ t1) (recur e1))
  9301. (define-values (e2^ t2) (recur e2))
  9302. (check-type-equal? t1 'Any e)
  9303. (check-type-equal? t2 'Integer e)
  9304. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  9305. [(Prim 'any-vector-set! (list e1 e2 e3))
  9306. (define-values (e1^ t1) (recur e1))
  9307. (define-values (e2^ t2) (recur e2))
  9308. (define-values (e3^ t3) (recur e3))
  9309. (check-type-equal? t1 'Any e)
  9310. (check-type-equal? t2 'Integer e)
  9311. (check-type-equal? t3 'Any e)
  9312. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  9313. \end{lstlisting}
  9314. \caption{Type checker for the \LangAny{} language, part 1.}
  9315. \label{fig:type-check-Rany-part-1}
  9316. \end{figure}
  9317. \begin{figure}[btp]
  9318. \begin{lstlisting}[basicstyle=\ttfamily\small]
  9319. [(ValueOf e ty)
  9320. (define-values (new-e e-ty) (recur e))
  9321. (values (ValueOf new-e ty) ty)]
  9322. [(Prim pred (list e1))
  9323. #:when (set-member? (type-predicates) pred)
  9324. (define-values (new-e1 e-ty) (recur e1))
  9325. (check-type-equal? e-ty 'Any e)
  9326. (values (Prim pred (list new-e1)) 'Boolean)]
  9327. [(If cnd thn els)
  9328. (define-values (cnd^ Tc) (recur cnd))
  9329. (define-values (thn^ Tt) (recur thn))
  9330. (define-values (els^ Te) (recur els))
  9331. (check-type-equal? Tc 'Boolean cnd)
  9332. (check-type-equal? Tt Te e)
  9333. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  9334. [(Exit) (values (Exit) '_)]
  9335. [(Prim 'eq? (list arg1 arg2))
  9336. (define-values (e1 t1) (recur arg1))
  9337. (define-values (e2 t2) (recur arg2))
  9338. (match* (t1 t2)
  9339. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  9340. [(other wise) (check-type-equal? t1 t2 e)])
  9341. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  9342. [else ((super type-check-exp env) e)])))
  9343. ))
  9344. \end{lstlisting}
  9345. \caption{Type checker for the \LangAny{} language, part 2.}
  9346. \label{fig:type-check-Rany-part-2}
  9347. \end{figure}
  9348. \begin{figure}[tbp]
  9349. \begin{lstlisting}
  9350. (define/override (operator-types)
  9351. (append
  9352. '((integer? . ((Any) . Boolean))
  9353. (vector? . ((Any) . Boolean))
  9354. (procedure? . ((Any) . Boolean))
  9355. (void? . ((Any) . Boolean))
  9356. (tag-of-any . ((Any) . Integer))
  9357. (make-any . ((_ Integer) . Any))
  9358. )
  9359. (super operator-types)))
  9360. (define/public (type-predicates)
  9361. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  9362. (define/public (combine-types t1 t2)
  9363. (match (list t1 t2)
  9364. [(list '_ t2) t2]
  9365. [(list t1 '_) t1]
  9366. [(list `(Vector ,ts1 ...)
  9367. `(Vector ,ts2 ...))
  9368. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  9369. (combine-types t1 t2)))]
  9370. [(list `(,ts1 ... -> ,rt1)
  9371. `(,ts2 ... -> ,rt2))
  9372. `(,@(for/list ([t1 ts1] [t2 ts2])
  9373. (combine-types t1 t2))
  9374. -> ,(combine-types rt1 rt2))]
  9375. [else t1]))
  9376. (define/public (flat-ty? ty)
  9377. (match ty
  9378. [(or `Integer `Boolean '_ `Void) #t]
  9379. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  9380. [`(,ts ... -> ,rt)
  9381. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  9382. [else #f]))
  9383. \end{lstlisting}
  9384. \caption{Auxiliary methods for type checking \LangAny{}.}
  9385. \label{fig:type-check-Rany-aux}
  9386. \end{figure}
  9387. \begin{figure}[btp]
  9388. \begin{lstlisting}
  9389. (define interp-Rany-class
  9390. (class interp-Rlambda-class
  9391. (super-new)
  9392. (define/override (interp-op op)
  9393. (match op
  9394. ['boolean? (match-lambda
  9395. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  9396. [else #f])]
  9397. ['integer? (match-lambda
  9398. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  9399. [else #f])]
  9400. ['vector? (match-lambda
  9401. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  9402. [else #f])]
  9403. ['procedure? (match-lambda
  9404. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  9405. [else #f])]
  9406. ['eq? (match-lambda*
  9407. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  9408. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  9409. [ls (apply (super interp-op op) ls)])]
  9410. ['any-vector-ref (lambda (v i)
  9411. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  9412. ['any-vector-set! (lambda (v i a)
  9413. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  9414. ['any-vector-length (lambda (v)
  9415. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  9416. [else (super interp-op op)]))
  9417. (define/override ((interp-exp env) e)
  9418. (define recur (interp-exp env))
  9419. (match e
  9420. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  9421. [(Project e ty2) (apply-project (recur e) ty2)]
  9422. [else ((super interp-exp env) e)]))
  9423. ))
  9424. (define (interp-Rany p)
  9425. (send (new interp-Rany-class) interp-program p))
  9426. \end{lstlisting}
  9427. \caption{Interpreter for \LangAny{}.}
  9428. \label{fig:interp-Rany}
  9429. \end{figure}
  9430. \begin{figure}[tbp]
  9431. \begin{lstlisting}
  9432. (define/public (apply-inject v tg) (Tagged v tg))
  9433. (define/public (apply-project v ty2)
  9434. (define tag2 (any-tag ty2))
  9435. (match v
  9436. [(Tagged v1 tag1)
  9437. (cond
  9438. [(eq? tag1 tag2)
  9439. (match ty2
  9440. [`(Vector ,ts ...)
  9441. (define l1 ((interp-op 'vector-length) v1))
  9442. (cond
  9443. [(eq? l1 (length ts)) v1]
  9444. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  9445. l1 (length ts))])]
  9446. [`(,ts ... -> ,rt)
  9447. (match v1
  9448. [`(function ,xs ,body ,env)
  9449. (cond [(eq? (length xs) (length ts)) v1]
  9450. [else
  9451. (error 'apply-project "arity mismatch ~a != ~a"
  9452. (length xs) (length ts))])]
  9453. [else (error 'apply-project "expected function not ~a" v1)])]
  9454. [else v1])]
  9455. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  9456. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  9457. \end{lstlisting}
  9458. \caption{Auxiliary functions for injection and projection.}
  9459. \label{fig:apply-project}
  9460. \end{figure}
  9461. \clearpage
  9462. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  9463. \label{sec:compile-r7}
  9464. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  9465. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  9466. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  9467. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  9468. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  9469. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  9470. the Boolean \code{\#t}, which must be injected to produce an
  9471. expression of type \key{Any}.
  9472. %
  9473. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  9474. addition, is representative of compilation for many primitive
  9475. operations: the arguments have type \key{Any} and must be projected to
  9476. \key{Integer} before the addition can be performed.
  9477. The compilation of \key{lambda} (third row of
  9478. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  9479. produce type annotations: we simply use \key{Any}.
  9480. %
  9481. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  9482. has to account for some differences in behavior between \LangDyn{} and
  9483. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  9484. kind of values can be used in various places. For example, the
  9485. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  9486. the arguments need not be of the same type (in that case the
  9487. result is \code{\#f}).
  9488. \begin{figure}[btp]
  9489. \centering
  9490. \begin{tabular}{|lll|} \hline
  9491. \begin{minipage}{0.27\textwidth}
  9492. \begin{lstlisting}
  9493. #t
  9494. \end{lstlisting}
  9495. \end{minipage}
  9496. &
  9497. $\Rightarrow$
  9498. &
  9499. \begin{minipage}{0.65\textwidth}
  9500. \begin{lstlisting}
  9501. (inject #t Boolean)
  9502. \end{lstlisting}
  9503. \end{minipage}
  9504. \\[2ex]\hline
  9505. \begin{minipage}{0.27\textwidth}
  9506. \begin{lstlisting}
  9507. (+ |$e_1$| |$e_2$|)
  9508. \end{lstlisting}
  9509. \end{minipage}
  9510. &
  9511. $\Rightarrow$
  9512. &
  9513. \begin{minipage}{0.65\textwidth}
  9514. \begin{lstlisting}
  9515. (inject
  9516. (+ (project |$e'_1$| Integer)
  9517. (project |$e'_2$| Integer))
  9518. Integer)
  9519. \end{lstlisting}
  9520. \end{minipage}
  9521. \\[2ex]\hline
  9522. \begin{minipage}{0.27\textwidth}
  9523. \begin{lstlisting}
  9524. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  9525. \end{lstlisting}
  9526. \end{minipage}
  9527. &
  9528. $\Rightarrow$
  9529. &
  9530. \begin{minipage}{0.65\textwidth}
  9531. \begin{lstlisting}
  9532. (inject
  9533. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  9534. (Any|$\ldots$|Any -> Any))
  9535. \end{lstlisting}
  9536. \end{minipage}
  9537. \\[2ex]\hline
  9538. \begin{minipage}{0.27\textwidth}
  9539. \begin{lstlisting}
  9540. (|$e_0$| |$e_1 \ldots e_n$|)
  9541. \end{lstlisting}
  9542. \end{minipage}
  9543. &
  9544. $\Rightarrow$
  9545. &
  9546. \begin{minipage}{0.65\textwidth}
  9547. \begin{lstlisting}
  9548. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  9549. \end{lstlisting}
  9550. \end{minipage}
  9551. \\[2ex]\hline
  9552. \begin{minipage}{0.27\textwidth}
  9553. \begin{lstlisting}
  9554. (vector-ref |$e_1$| |$e_2$|)
  9555. \end{lstlisting}
  9556. \end{minipage}
  9557. &
  9558. $\Rightarrow$
  9559. &
  9560. \begin{minipage}{0.65\textwidth}
  9561. \begin{lstlisting}
  9562. (any-vector-ref |$e_1'$| |$e_2'$|)
  9563. \end{lstlisting}
  9564. \end{minipage}
  9565. \\[2ex]\hline
  9566. \begin{minipage}{0.27\textwidth}
  9567. \begin{lstlisting}
  9568. (if |$e_1$| |$e_2$| |$e_3$|)
  9569. \end{lstlisting}
  9570. \end{minipage}
  9571. &
  9572. $\Rightarrow$
  9573. &
  9574. \begin{minipage}{0.65\textwidth}
  9575. \begin{lstlisting}
  9576. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  9577. \end{lstlisting}
  9578. \end{minipage}
  9579. \\[2ex]\hline
  9580. \begin{minipage}{0.27\textwidth}
  9581. \begin{lstlisting}
  9582. (eq? |$e_1$| |$e_2$|)
  9583. \end{lstlisting}
  9584. \end{minipage}
  9585. &
  9586. $\Rightarrow$
  9587. &
  9588. \begin{minipage}{0.65\textwidth}
  9589. \begin{lstlisting}
  9590. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  9591. \end{lstlisting}
  9592. \end{minipage}
  9593. \\[2ex]\hline
  9594. \begin{minipage}{0.27\textwidth}
  9595. \begin{lstlisting}
  9596. (not |$e_1$|)
  9597. \end{lstlisting}
  9598. \end{minipage}
  9599. &
  9600. $\Rightarrow$
  9601. &
  9602. \begin{minipage}{0.65\textwidth}
  9603. \begin{lstlisting}
  9604. (if (eq? |$e'_1$| (inject #f Boolean))
  9605. (inject #t Boolean) (inject #f Boolean))
  9606. \end{lstlisting}
  9607. \end{minipage}
  9608. \\[2ex]\hline
  9609. \end{tabular}
  9610. \caption{Cast Insertion}
  9611. \label{fig:compile-r7-Rany}
  9612. \end{figure}
  9613. \section{Reveal Casts}
  9614. \label{sec:reveal-casts-Rany}
  9615. % TODO: define R'_6
  9616. In the \code{reveal-casts} pass we recommend compiling \code{project}
  9617. into an \code{if} expression that checks whether the value's tag
  9618. matches the target type; if it does, the value is converted to a value
  9619. of the target type by removing the tag; if it does not, the program
  9620. exits. To perform these actions we need a new primitive operation,
  9621. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  9622. The \code{tag-of-any} operation retrieves the type tag from a tagged
  9623. value of type \code{Any}. The \code{ValueOf} form retrieves the
  9624. underlying value from a tagged value. The \code{ValueOf} form
  9625. includes the type for the underlying value which is used by the type
  9626. checker. Finally, the \code{Exit} form ends the execution of the
  9627. program.
  9628. If the target type of the projection is \code{Boolean} or
  9629. \code{Integer}, then \code{Project} can be translated as follows.
  9630. \begin{center}
  9631. \begin{minipage}{1.0\textwidth}
  9632. \begin{lstlisting}
  9633. (Project |$e$| |$\FType$|)
  9634. |$\Rightarrow$|
  9635. (Let |$\itm{tmp}$| |$e'$|
  9636. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  9637. (Int |$\itm{tagof}(\FType)$|)))
  9638. (ValueOf |$\itm{tmp}$| |$\FType$|)
  9639. (Exit)))
  9640. \end{lstlisting}
  9641. \end{minipage}
  9642. \end{center}
  9643. If the target type of the projection is a vector or function type,
  9644. then there is a bit more work to do. For vectors, check that the
  9645. length of the vector type matches the length of the vector (using the
  9646. \code{vector-length} primitive). For functions, check that the number
  9647. of parameters in the function type matches the function's arity (using
  9648. \code{procedure-arity}).
  9649. Regarding \code{inject}, we recommend compiling it to a slightly
  9650. lower-level primitive operation named \code{make-any}. This operation
  9651. takes a tag instead of a type.
  9652. \begin{center}
  9653. \begin{minipage}{1.0\textwidth}
  9654. \begin{lstlisting}
  9655. (Inject |$e$| |$\FType$|)
  9656. |$\Rightarrow$|
  9657. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  9658. \end{lstlisting}
  9659. \end{minipage}
  9660. \end{center}
  9661. The type predicates (\code{boolean?}, etc.) can be translated into
  9662. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  9663. translation of \code{Project}.
  9664. The \code{any-vector-ref} and \code{any-vector-set!} operations
  9665. combine the projection action with the vector operation. Also, the
  9666. read and write operations allow arbitrary expressions for the index so
  9667. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  9668. cannot guarantee that the index is within bounds. Thus, we insert code
  9669. to perform bounds checking at runtime. The translation for
  9670. \code{any-vector-ref} is as follows and the other two operations are
  9671. translated in a similar way.
  9672. \begin{lstlisting}
  9673. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  9674. |$\Rightarrow$|
  9675. (Let |$v$| |$e'_1$|
  9676. (Let |$i$| |$e'_2$|
  9677. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  9678. (If (Prim '< (list (Var |$i$|)
  9679. (Prim 'any-vector-length (list (Var |$v$|)))))
  9680. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  9681. (Exit))))
  9682. \end{lstlisting}
  9683. \section{Remove Complex Operands}
  9684. \label{sec:rco-Rany}
  9685. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  9686. The subexpression of \code{ValueOf} must be atomic.
  9687. \section{Explicate Control and \LangCAny{}}
  9688. \label{sec:explicate-Rany}
  9689. The output of \code{explicate-control} is the \LangCAny{} language whose
  9690. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  9691. form that we added to \LangAny{} remains an expression and the \code{Exit}
  9692. expression becomes a $\Tail$. Also, note that the index argument of
  9693. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  9694. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  9695. \begin{figure}[tp]
  9696. \fbox{
  9697. \begin{minipage}{0.96\textwidth}
  9698. \small
  9699. \[
  9700. \begin{array}{lcl}
  9701. \Exp &::= & \ldots
  9702. \mid \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  9703. &\mid& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  9704. &\mid& \VALUEOF{\Exp}{\FType} \\
  9705. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  9706. \mid \LP\key{Collect} \,\itm{int}\RP }\\
  9707. \Tail &::= & \gray{ \RETURN{\Exp} \mid \SEQ{\Stmt}{\Tail}
  9708. \mid \GOTO{\itm{label}} } \\
  9709. &\mid& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  9710. &\mid& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  9711. \mid \LP\key{Exit}\RP \\
  9712. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  9713. \LangCLam{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  9714. \end{array}
  9715. \]
  9716. \end{minipage}
  9717. }
  9718. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  9719. \label{fig:c5-syntax}
  9720. \end{figure}
  9721. \section{Select Instructions}
  9722. \label{sec:select-Rany}
  9723. In the \code{select-instructions} pass we translate the primitive
  9724. operations on the \code{Any} type to x86 instructions that involve
  9725. manipulating the 3 tag bits of the tagged value.
  9726. \paragraph{Make-any}
  9727. We recommend compiling the \key{make-any} primitive as follows if the
  9728. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  9729. shifts the destination to the left by the number of bits specified its
  9730. source argument (in this case $3$, the length of the tag) and it
  9731. preserves the sign of the integer. We use the \key{orq} instruction to
  9732. combine the tag and the value to form the tagged value. \\
  9733. \begin{lstlisting}
  9734. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  9735. |$\Rightarrow$|
  9736. movq |$e'$|, |\itm{lhs'}|
  9737. salq $3, |\itm{lhs'}|
  9738. orq $|$\itm{tag}$|, |\itm{lhs'}|
  9739. \end{lstlisting}
  9740. The instruction selection for vectors and procedures is different
  9741. because their is no need to shift them to the left. The rightmost 3
  9742. bits are already zeros as described at the beginning of this
  9743. chapter. So we just combine the value and the tag using \key{orq}. \\
  9744. \begin{lstlisting}
  9745. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  9746. |$\Rightarrow$|
  9747. movq |$e'$|, |\itm{lhs'}|
  9748. orq $|$\itm{tag}$|, |\itm{lhs'}|
  9749. \end{lstlisting}
  9750. \paragraph{Tag-of-any}
  9751. Recall that the \code{tag-of-any} operation extracts the type tag from
  9752. a value of type \code{Any}. The type tag is the bottom three bits, so
  9753. we obtain the tag by taking the bitwise-and of the value with $111$
  9754. ($7$ in decimal).
  9755. \begin{lstlisting}
  9756. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  9757. |$\Rightarrow$|
  9758. movq |$e'$|, |\itm{lhs'}|
  9759. andq $7, |\itm{lhs'}|
  9760. \end{lstlisting}
  9761. \paragraph{ValueOf}
  9762. Like \key{make-any}, the instructions for \key{ValueOf} are different
  9763. depending on whether the type $T$ is a pointer (vector or procedure)
  9764. or not (Integer or Boolean). The following shows the instruction
  9765. selection for Integer and Boolean. We produce an untagged value by
  9766. shifting it to the right by 3 bits.
  9767. \begin{lstlisting}
  9768. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  9769. |$\Rightarrow$|
  9770. movq |$e'$|, |\itm{lhs'}|
  9771. sarq $3, |\itm{lhs'}|
  9772. \end{lstlisting}
  9773. %
  9774. In the case for vectors and procedures, there is no need to
  9775. shift. Instead we just need to zero-out the rightmost 3 bits. We
  9776. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  9777. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  9778. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  9779. then apply \code{andq} with the tagged value to get the desired
  9780. result. \\
  9781. \begin{lstlisting}
  9782. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  9783. |$\Rightarrow$|
  9784. movq $|$-8$|, |\itm{lhs'}|
  9785. andq |$e'$|, |\itm{lhs'}|
  9786. \end{lstlisting}
  9787. %% \paragraph{Type Predicates} We leave it to the reader to
  9788. %% devise a sequence of instructions to implement the type predicates
  9789. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  9790. \paragraph{Any-vector-length}
  9791. \begin{lstlisting}
  9792. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  9793. |$\Longrightarrow$|
  9794. movq |$\neg 111$|, %r11
  9795. andq |$a_1'$|, %r11
  9796. movq 0(%r11), %r11
  9797. andq $126, %r11
  9798. sarq $1, %r11
  9799. movq %r11, |$\itm{lhs'}$|
  9800. \end{lstlisting}
  9801. \paragraph{Any-vector-ref}
  9802. The index may be an arbitrary atom so instead of computing the offset
  9803. at compile time, instructions need to be generated to compute the
  9804. offset at runtime as follows. Note the use of the new instruction
  9805. \code{imulq}.
  9806. \begin{center}
  9807. \begin{minipage}{0.96\textwidth}
  9808. \begin{lstlisting}
  9809. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  9810. |$\Longrightarrow$|
  9811. movq |$\neg 111$|, %r11
  9812. andq |$a_1'$|, %r11
  9813. movq |$a_2'$|, %rax
  9814. addq $1, %rax
  9815. imulq $8, %rax
  9816. addq %rax, %r11
  9817. movq 0(%r11) |$\itm{lhs'}$|
  9818. \end{lstlisting}
  9819. \end{minipage}
  9820. \end{center}
  9821. \paragraph{Any-vector-set!}
  9822. The code generation for \code{any-vector-set!} is similar to the other
  9823. \code{any-vector} operations.
  9824. \section{Register Allocation for \LangAny{}}
  9825. \label{sec:register-allocation-Rany}
  9826. \index{register allocation}
  9827. There is an interesting interaction between tagged values and garbage
  9828. collection that has an impact on register allocation. A variable of
  9829. type \code{Any} might refer to a vector and therefore it might be a
  9830. root that needs to be inspected and copied during garbage
  9831. collection. Thus, we need to treat variables of type \code{Any} in a
  9832. similar way to variables of type \code{Vector} for purposes of
  9833. register allocation. In particular,
  9834. \begin{itemize}
  9835. \item If a variable of type \code{Any} is live during a function call,
  9836. then it must be spilled. This can be accomplished by changing
  9837. \code{build-interference} to mark all variables of type \code{Any}
  9838. that are live after a \code{callq} as interfering with all the
  9839. registers.
  9840. \item If a variable of type \code{Any} is spilled, it must be spilled
  9841. to the root stack instead of the normal procedure call stack.
  9842. \end{itemize}
  9843. Another concern regarding the root stack is that the garbage collector
  9844. needs to differentiate between (1) plain old pointers to tuples, (2) a
  9845. tagged value that points to a tuple, and (3) a tagged value that is
  9846. not a tuple. We enable this differentiation by choosing not to use the
  9847. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  9848. reserved for identifying plain old pointers to tuples. That way, if
  9849. one of the first three bits is set, then we have a tagged value and
  9850. inspecting the tag can differentiation between vectors ($010$) and the
  9851. other kinds of values.
  9852. \begin{exercise}\normalfont
  9853. Expand your compiler to handle \LangAny{} as discussed in the last few
  9854. sections. Create 5 new programs that use the \code{Any} type and the
  9855. new operations (\code{inject}, \code{project}, \code{boolean?},
  9856. etc.). Test your compiler on these new programs and all of your
  9857. previously created test programs.
  9858. \end{exercise}
  9859. \begin{exercise}\normalfont
  9860. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  9861. Create tests for \LangDyn{} by adapting ten of your previous test programs
  9862. by removing type annotations. Add 5 more tests programs that
  9863. specifically rely on the language being dynamically typed. That is,
  9864. they should not be legal programs in a statically typed language, but
  9865. nevertheless, they should be valid \LangDyn{} programs that run to
  9866. completion without error.
  9867. \end{exercise}
  9868. \begin{figure}[p]
  9869. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9870. \node (Rfun) at (0,4) {\large \LangDyn{}};
  9871. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  9872. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  9873. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  9874. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  9875. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  9876. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  9877. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  9878. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  9879. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  9880. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  9881. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  9882. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  9883. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  9884. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  9885. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  9886. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  9887. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  9888. \path[->,bend left=15] (Rfun) edge [above] node
  9889. {\ttfamily\footnotesize shrink} (Rfun-2);
  9890. \path[->,bend left=15] (Rfun-2) edge [above] node
  9891. {\ttfamily\footnotesize uniquify} (Rfun-3);
  9892. \path[->,bend left=15] (Rfun-3) edge [above] node
  9893. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  9894. \path[->,bend right=15] (Rfun-4) edge [left] node
  9895. {\ttfamily\footnotesize cast-insert} (Rfun-5);
  9896. \path[->,bend left=15] (Rfun-5) edge [above] node
  9897. {\ttfamily\footnotesize check-bounds} (Rfun-6);
  9898. \path[->,bend left=15] (Rfun-6) edge [left] node
  9899. {\ttfamily\footnotesize reveal-casts} (Rfun-7);
  9900. \path[->,bend left=15] (Rfun-7) edge [below] node
  9901. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  9902. \path[->,bend right=15] (F1-2) edge [above] node
  9903. {\ttfamily\footnotesize limit-fun.} (F1-3);
  9904. \path[->,bend right=15] (F1-3) edge [above] node
  9905. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9906. \path[->,bend right=15] (F1-4) edge [above] node
  9907. {\ttfamily\footnotesize remove-complex.} (F1-5);
  9908. \path[->,bend right=15] (F1-5) edge [right] node
  9909. {\ttfamily\footnotesize explicate-control} (C3-2);
  9910. \path[->,bend left=15] (C3-2) edge [left] node
  9911. {\ttfamily\footnotesize select-instr.} (x86-2);
  9912. \path[->,bend right=15] (x86-2) edge [left] node
  9913. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  9914. \path[->,bend right=15] (x86-2-1) edge [below] node
  9915. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  9916. \path[->,bend right=15] (x86-2-2) edge [left] node
  9917. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  9918. \path[->,bend left=15] (x86-3) edge [above] node
  9919. {\ttfamily\footnotesize patch-instr.} (x86-4);
  9920. \path[->,bend left=15] (x86-4) edge [right] node
  9921. {\ttfamily\footnotesize print-x86} (x86-5);
  9922. \end{tikzpicture}
  9923. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  9924. \label{fig:Rdyn-passes}
  9925. \end{figure}
  9926. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  9927. for the compilation of \LangDyn{}.
  9928. % Further Reading
  9929. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9930. \chapter{Loops and Assignment}
  9931. \label{ch:Rwhile}
  9932. % TODO: define R'_8
  9933. % TODO: multi-graph
  9934. In this chapter we study two features that are the hallmarks of
  9935. imperative programming languages: loops and assignments to local
  9936. variables. The following example demonstrates these new features by
  9937. computing the sum of the first five positive integers.
  9938. % similar to loop_test_1.rkt
  9939. \begin{lstlisting}
  9940. (let ([sum 0])
  9941. (let ([i 5])
  9942. (begin
  9943. (while (> i 0)
  9944. (begin
  9945. (set! sum (+ sum i))
  9946. (set! i (- i 1))))
  9947. sum)))
  9948. \end{lstlisting}
  9949. The \code{while} loop consists of a condition and a body.
  9950. %
  9951. The \code{set!} consists of a variable and a right-hand-side expression.
  9952. %
  9953. The primary purpose of both the \code{while} loop and \code{set!} is
  9954. to cause side effects, so it is convenient to also include in a
  9955. language feature for sequencing side effects: the \code{begin}
  9956. expression. It consists of one or more subexpressions that are
  9957. evaluated left-to-right.
  9958. \section{The \LangLoop{} Language}
  9959. \begin{figure}[tp]
  9960. \centering
  9961. \fbox{
  9962. \begin{minipage}{0.96\textwidth}
  9963. \small
  9964. \[
  9965. \begin{array}{lcl}
  9966. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  9967. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  9968. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  9969. &\mid& \gray{\key{\#t} \mid \key{\#f}
  9970. \mid (\key{and}\;\Exp\;\Exp)
  9971. \mid (\key{or}\;\Exp\;\Exp)
  9972. \mid (\key{not}\;\Exp) } \\
  9973. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  9974. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  9975. (\key{vector-ref}\;\Exp\;\Int)} \\
  9976. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  9977. \mid (\Exp \; \Exp\ldots) } \\
  9978. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
  9979. \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  9980. &\mid& \CSETBANG{\Var}{\Exp}
  9981. \mid \CBEGIN{\Exp\ldots}{\Exp}
  9982. \mid \CWHILE{\Exp}{\Exp} \\
  9983. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  9984. \LangLoop{} &::=& \gray{\Def\ldots \; \Exp}
  9985. \end{array}
  9986. \]
  9987. \end{minipage}
  9988. }
  9989. \caption{The concrete syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-concrete-syntax}).}
  9990. \label{fig:Rwhile-concrete-syntax}
  9991. \end{figure}
  9992. \begin{figure}[tp]
  9993. \centering
  9994. \fbox{
  9995. \begin{minipage}{0.96\textwidth}
  9996. \small
  9997. \[
  9998. \begin{array}{lcl}
  9999. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  10000. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  10001. &\mid& \gray{ \BOOL{\itm{bool}}
  10002. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  10003. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  10004. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  10005. &\mid& \gray{ \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp} }\\
  10006. &\mid& \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  10007. \mid \WHILE{\Exp}{\Exp} \\
  10008. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  10009. \LangLoop{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  10010. \end{array}
  10011. \]
  10012. \end{minipage}
  10013. }
  10014. \caption{The abstract syntax of \LangLoop{}, extending \LangAny{} (Figure~\ref{fig:Rany-syntax}).}
  10015. \label{fig:Rwhile-syntax}
  10016. \end{figure}
  10017. The concrete syntax of \LangLoop{} is defined in
  10018. Figure~\ref{fig:Rwhile-concrete-syntax} and its abstract syntax is defined
  10019. in Figure~\ref{fig:Rwhile-syntax}.
  10020. %
  10021. The definitional interpreter for \LangLoop{} is shown in
  10022. Figure~\ref{fig:interp-Rwhile}. We add three new cases for \code{SetBang},
  10023. \code{WhileLoop}, and \code{Begin} and we make changes to the cases
  10024. for \code{Var}, \code{Let}, and \code{Apply} regarding variables. To
  10025. support assignment to variables and to make their lifetimes indefinite
  10026. (see the second example in Section~\ref{sec:assignment-scoping}), we
  10027. box the value that is bound to each variable (in \code{Let}) and
  10028. function parameter (in \code{Apply}). The case for \code{Var} unboxes
  10029. the value.
  10030. %
  10031. Now to discuss the new cases. For \code{SetBang}, we lookup the
  10032. variable in the environment to obtain a boxed value and then we change
  10033. it using \code{set-box!} to the result of evaluating the right-hand
  10034. side. The result value of a \code{SetBang} is \code{void}.
  10035. %
  10036. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  10037. if the result is true, 2) evaluate the body.
  10038. The result value of a \code{while} loop is also \code{void}.
  10039. %
  10040. Finally, the $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  10041. subexpressions \itm{es} for their effects and then evaluates
  10042. and returns the result from \itm{body}.
  10043. \begin{figure}[tbp]
  10044. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10045. (define interp-Rwhile-class
  10046. (class interp-Rany-class
  10047. (super-new)
  10048. (define/override ((interp-exp env) e)
  10049. (define recur (interp-exp env))
  10050. (match e
  10051. [(SetBang x rhs)
  10052. (set-box! (lookup x env) (recur rhs))]
  10053. [(WhileLoop cnd body)
  10054. (define (loop)
  10055. (cond [(recur cnd) (recur body) (loop)]
  10056. [else (void)]))
  10057. (loop)]
  10058. [(Begin es body)
  10059. (for ([e es]) (recur e))
  10060. (recur body)]
  10061. [else ((super interp-exp env) e)]))
  10062. ))
  10063. (define (interp-Rwhile p)
  10064. (send (new interp-Rwhile-class) interp-program p))
  10065. \end{lstlisting}
  10066. \caption{Interpreter for \LangLoop{}.}
  10067. \label{fig:interp-Rwhile}
  10068. \end{figure}
  10069. The type checker for \LangLoop{} is define in
  10070. Figure~\ref{fig:type-check-Rwhile}. For \code{SetBang}, the type of the
  10071. variable and the right-hand-side must agree. The result type is
  10072. \code{Void}. For the \code{WhileLoop}, the condition must be a
  10073. \code{Boolean}. The result type is also \code{Void}. For
  10074. \code{Begin}, the result type is the type of its last subexpression.
  10075. \begin{figure}[tbp]
  10076. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10077. (define type-check-Rwhile-class
  10078. (class type-check-Rany-class
  10079. (super-new)
  10080. (inherit check-type-equal?)
  10081. (define/override (type-check-exp env)
  10082. (lambda (e)
  10083. (define recur (type-check-exp env))
  10084. (match e
  10085. [(SetBang x rhs)
  10086. (define-values (rhs^ rhsT) (recur rhs))
  10087. (define varT (dict-ref env x))
  10088. (check-type-equal? rhsT varT e)
  10089. (values (SetBang x rhs^) 'Void)]
  10090. [(WhileLoop cnd body)
  10091. (define-values (cnd^ Tc) (recur cnd))
  10092. (check-type-equal? Tc 'Boolean e)
  10093. (define-values (body^ Tbody) ((type-check-exp env) body))
  10094. (values (WhileLoop cnd^ body^) 'Void)]
  10095. [(Begin es body)
  10096. (define-values (es^ ts)
  10097. (for/lists (l1 l2) ([e es]) (recur e)))
  10098. (define-values (body^ Tbody) (recur body))
  10099. (values (Begin es^ body^) Tbody)]
  10100. [else ((super type-check-exp env) e)])))
  10101. ))
  10102. (define (type-check-Rwhile p)
  10103. (send (new type-check-Rwhile-class) type-check-program p))
  10104. \end{lstlisting}
  10105. \caption{Type checking \key{SetBang}, \key{WhileLoop},
  10106. and \code{Begin} in \LangLoop{}.}
  10107. \label{fig:type-check-Rwhile}
  10108. \end{figure}
  10109. At first glance, the translation of these language features to x86
  10110. seems straightforward because the \LangCFun{} intermediate language already
  10111. supports all of the ingredients that we need: assignment, \code{goto},
  10112. conditional branching, and sequencing. However, there are two
  10113. complications that arise which we discuss in the next two
  10114. sections. After that we introduce one new compiler pass and the
  10115. changes necessary to the existing passes.
  10116. \section{Assignment and Lexically Scoped Functions}
  10117. \label{sec:assignment-scoping}
  10118. The addition of assignment raises a problem with our approach to
  10119. implementing lexically-scoped functions. Consider the following
  10120. example in which function \code{f} has a free variable \code{x} that
  10121. is changed after \code{f} is created but before the call to \code{f}.
  10122. % loop_test_11.rkt
  10123. \begin{lstlisting}
  10124. (let ([x 0])
  10125. (let ([y 0])
  10126. (let ([z 20])
  10127. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  10128. (begin
  10129. (set! x 10)
  10130. (set! y 12)
  10131. (f y))))))
  10132. \end{lstlisting}
  10133. The correct output for this example is \code{42} because the call to
  10134. \code{f} is required to use the current value of \code{x} (which is
  10135. \code{10}). Unfortunately, the closure conversion pass
  10136. (Section~\ref{sec:closure-conversion}) generates code for the
  10137. \code{lambda} that copies the old value of \code{x} into a
  10138. closure. Thus, if we naively add support for assignment to our current
  10139. compiler, the output of this program would be \code{32}.
  10140. A first attempt at solving this problem would be to save a pointer to
  10141. \code{x} in the closure and change the occurrences of \code{x} inside
  10142. the lambda to dereference the pointer. Of course, this would require
  10143. assigning \code{x} to the stack and not to a register. However, the
  10144. problem goes a bit deeper. Consider the following example in which we
  10145. create a counter abstraction by creating a pair of functions that
  10146. share the free variable \code{x}.
  10147. % similar to loop_test_10.rkt
  10148. \begin{lstlisting}
  10149. (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  10150. (vector
  10151. (lambda: () : Integer x)
  10152. (lambda: () : Void (set! x (+ 1 x)))))
  10153. (let ([counter (f 0)])
  10154. (let ([get (vector-ref counter 0)])
  10155. (let ([inc (vector-ref counter 1)])
  10156. (begin
  10157. (inc)
  10158. (get)))))
  10159. \end{lstlisting}
  10160. In this example, the lifetime of \code{x} extends beyond the lifetime
  10161. of the call to \code{f}. Thus, if we were to store \code{x} on the
  10162. stack frame for the call to \code{f}, it would be gone by the time we
  10163. call \code{inc} and \code{get}, leaving us with dangling pointers for
  10164. \code{x}. This example demonstrates that when a variable occurs free
  10165. inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
  10166. value of the variable needs to live on the heap. The verb ``box'' is
  10167. often used for allocating a single value on the heap, producing a
  10168. pointer, and ``unbox'' for dereferencing the pointer.
  10169. We recommend solving these problems by ``boxing'' the local variables
  10170. that are in the intersection of 1) variables that appear on the
  10171. left-hand-side of a \code{set!} and 2) variables that occur free
  10172. inside a \code{lambda}. We shall introduce a new pass named
  10173. \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
  10174. perform this translation. But before diving into the compiler passes,
  10175. we one more problem to discuss.
  10176. \section{Cyclic Control Flow and Dataflow Analysis}
  10177. \label{sec:dataflow-analysis}
  10178. Up until this point the control-flow graphs generated in
  10179. \code{explicate-control} were guaranteed to be acyclic. However, each
  10180. \code{while} loop introduces a cycle in the control-flow graph.
  10181. But does that matter?
  10182. %
  10183. Indeed it does. Recall that for register allocation, the compiler
  10184. performs liveness analysis to determine which variables can share the
  10185. same register. In Section~\ref{sec:liveness-analysis-Rif} we analyze
  10186. the control-flow graph in reverse topological order, but topological
  10187. order is only well-defined for acyclic graphs.
  10188. Let us return to the example of computing the sum of the first five
  10189. positive integers. Here is the program after instruction selection but
  10190. before register allocation.
  10191. \begin{center}
  10192. \begin{minipage}{0.45\textwidth}
  10193. \begin{lstlisting}
  10194. (define (main) : Integer
  10195. mainstart:
  10196. movq $0, sum1
  10197. movq $5, i2
  10198. jmp block5
  10199. block5:
  10200. movq i2, tmp3
  10201. cmpq tmp3, $0
  10202. jl block7
  10203. jmp block8
  10204. \end{lstlisting}
  10205. \end{minipage}
  10206. \begin{minipage}{0.45\textwidth}
  10207. \begin{lstlisting}
  10208. block7:
  10209. addq i2, sum1
  10210. movq $1, tmp4
  10211. negq tmp4
  10212. addq tmp4, i2
  10213. jmp block5
  10214. block8:
  10215. movq $27, %rax
  10216. addq sum1, %rax
  10217. jmp mainconclusion
  10218. )
  10219. \end{lstlisting}
  10220. \end{minipage}
  10221. \end{center}
  10222. Recall that liveness analysis works backwards, starting at the end
  10223. of each function. For this example we could start with \code{block8}
  10224. because we know what is live at the beginning of the conclusion,
  10225. just \code{rax} and \code{rsp}. So the live-before set
  10226. for \code{block8} is $\{\ttm{rsp},\ttm{sum1}\}$.
  10227. %
  10228. Next we might try to analyze \code{block5} or \code{block7}, but
  10229. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  10230. we are stuck.
  10231. The way out of this impasse comes from the realization that one can
  10232. perform liveness analysis starting with an empty live-after set to
  10233. compute an under-approximation of the live-before set. By
  10234. \emph{under-approximation}, we mean that the set only contains
  10235. variables that are really live, but it may be missing some. Next, the
  10236. under-approximations for each block can be improved by 1) updating the
  10237. live-after set for each block using the approximate live-before sets
  10238. from the other blocks and 2) perform liveness analysis again on each
  10239. block. In fact, by iterating this process, the under-approximations
  10240. eventually become the correct solutions!
  10241. %
  10242. This approach of iteratively analyzing a control-flow graph is
  10243. applicable to many static analysis problems and goes by the name
  10244. \emph{dataflow analysis}\index{dataflow analysis}. It was invented by
  10245. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  10246. Washington.
  10247. Let us apply this approach to the above example. We use the empty set
  10248. for the initial live-before set for each block. Let $m_0$ be the
  10249. following mapping from label names to sets of locations (variables and
  10250. registers).
  10251. \begin{center}
  10252. \begin{lstlisting}
  10253. mainstart: {}
  10254. block5: {}
  10255. block7: {}
  10256. block8: {}
  10257. \end{lstlisting}
  10258. \end{center}
  10259. Using the above live-before approximations, we determine the
  10260. live-after for each block and then apply liveness analysis to each
  10261. block. This produces our next approximation $m_1$ of the live-before
  10262. sets.
  10263. \begin{center}
  10264. \begin{lstlisting}
  10265. mainstart: {}
  10266. block5: {i2}
  10267. block7: {i2, sum1}
  10268. block8: {rsp, sum1}
  10269. \end{lstlisting}
  10270. \end{center}
  10271. For the second round, the live-after for \code{mainstart} is the
  10272. current live-before for \code{block5}, which is \code{\{i2\}}. So the
  10273. liveness analysis for \code{mainstart} computes the empty set. The
  10274. live-after for \code{block5} is the union of the live-before sets for
  10275. \code{block7} and \code{block8}, which is \code{\{i2 , rsp, sum1\}}.
  10276. So the liveness analysis for \code{block5} computes \code{\{i2 , rsp,
  10277. sum1\}}. The live-after for \code{block7} is the live-before for
  10278. \code{block5} (from the previous iteration), which is \code{\{i2\}}.
  10279. So the liveness analysis for \code{block7} remains \code{\{i2,
  10280. sum1\}}. Together these yield the following approximation $m_2$ of
  10281. the live-before sets.
  10282. \begin{center}
  10283. \begin{lstlisting}
  10284. mainstart: {}
  10285. block5: {i2, rsp, sum1}
  10286. block7: {i2, sum1}
  10287. block8: {rsp, sum1}
  10288. \end{lstlisting}
  10289. \end{center}
  10290. In the preceding iteration, only \code{block5} changed, so we can
  10291. limit our attention to \code{mainstart} and \code{block7}, the two
  10292. blocks that jump to \code{block5}. As a result, the live-before sets
  10293. for \code{mainstart} and \code{block7} are updated to include
  10294. \code{rsp}, yielding the following approximation $m_3$.
  10295. \begin{center}
  10296. \begin{lstlisting}
  10297. mainstart: {rsp}
  10298. block5: {i2, rsp, sum1}
  10299. block7: {i2, rsp, sum1}
  10300. block8: {rsp, sum1}
  10301. \end{lstlisting}
  10302. \end{center}
  10303. Because \code{block7} changed, we analyze \code{block5} once more, but
  10304. its live-before set remains \code{\{ i2, rsp, sum1 \}}. At this point
  10305. our approximations have converged, so $m_3$ is the solution.
  10306. This iteration process is guaranteed to converge to a solution by the
  10307. Kleene Fixed-Point Theorem, a general theorem about functions on
  10308. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  10309. any collection that comes with a partial ordering $\sqsubseteq$ on its
  10310. elements, a least element $\bot$ (pronounced bottom), and a join
  10311. operator $\sqcup$.\index{lattice}\index{bottom}\index{partial
  10312. ordering}\index{join}\footnote{Technically speaking, we will be
  10313. working with join semi-lattices.} When two elements are ordered $m_i
  10314. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  10315. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  10316. approximation than $m_i$. The bottom element $\bot$ represents the
  10317. complete lack of information, i.e., the worst approximation. The join
  10318. operator takes two lattice elements and combines their information,
  10319. i.e., it produces the least upper bound of the two.\index{least upper
  10320. bound}
  10321. A dataflow analysis typically involves two lattices: one lattice to
  10322. represent abstract states and another lattice that aggregates the
  10323. abstract states of all the blocks in the control-flow graph. For
  10324. liveness analysis, an abstract state is a set of locations. We form
  10325. the lattice $L$ by taking its elements to be sets of locations, the
  10326. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  10327. set, and the join operator to be set union.
  10328. %
  10329. We form a second lattice $M$ by taking its elements to be mappings
  10330. from the block labels to sets of locations (elements of $L$). We
  10331. order the mappings point-wise, using the ordering of $L$. So given any
  10332. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  10333. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  10334. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  10335. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  10336. We can think of one iteration of liveness analysis as being a function
  10337. $f$ on the lattice $M$. It takes a mapping as input and computes a new
  10338. mapping.
  10339. \[
  10340. f(m_i) = m_{i+1}
  10341. \]
  10342. Next let us think for a moment about what a final solution $m_s$
  10343. should look like. If we perform liveness analysis using the solution
  10344. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  10345. solution should be a \emph{fixed point} of the function $f$.\index{fixed point}
  10346. \[
  10347. f(m_s) = m_s
  10348. \]
  10349. Furthermore, the solution should only include locations that are
  10350. forced to be there by performing liveness analysis on the program, so
  10351. the solution should be the \emph{least} fixed point.\index{least fixed point}
  10352. The Kleene Fixed-Point Theorem states that if a function $f$ is
  10353. monotone (better inputs produce better outputs), then the least fixed
  10354. point of $f$ is the least upper bound of the \emph{ascending Kleene
  10355. chain} obtained by starting at $\bot$ and iterating $f$ as
  10356. follows.\index{Kleene Fixed-Point Theorem}
  10357. \[
  10358. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10359. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  10360. \]
  10361. When a lattice contains only finitely-long ascending chains, then
  10362. every Kleene chain tops out at some fixed point after a number of
  10363. iterations of $f$. So that fixed point is also a least upper
  10364. bound of the chain.
  10365. \[
  10366. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10367. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  10368. \]
  10369. The liveness analysis is indeed a monotone function and the lattice
  10370. $M$ only has finitely-long ascending chains because there are only a
  10371. finite number of variables and blocks in the program. Thus we are
  10372. guaranteed that iteratively applying liveness analysis to all blocks
  10373. in the program will eventually produce the least fixed point solution.
  10374. Next let us consider dataflow analysis in general and discuss the
  10375. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  10376. %
  10377. The algorithm has four parameters: the control-flow graph \code{G}, a
  10378. function \code{transfer} that applies the analysis to one block, the
  10379. \code{bottom} and \code{join} operator for the lattice of abstract
  10380. states. The algorithm begins by creating the bottom mapping,
  10381. represented by a hash table. It then pushes all of the nodes in the
  10382. control-flow graph onto the work list (a queue). The algorithm repeats
  10383. the \code{while} loop as long as there are items in the work list. In
  10384. each iteration, a node is popped from the work list and processed. The
  10385. \code{input} for the node is computed by taking the join of the
  10386. abstract states of all the predecessor nodes. The \code{transfer}
  10387. function is then applied to obtain the \code{output} abstract
  10388. state. If the output differs from the previous state for this block,
  10389. the mapping for this block is updated and its successor nodes are
  10390. pushed onto the work list.
  10391. \begin{figure}[tb]
  10392. \begin{lstlisting}
  10393. (define (analyze-dataflow G transfer bottom join)
  10394. (define mapping (make-hash))
  10395. (for ([v (in-vertices G)])
  10396. (dict-set! mapping v bottom))
  10397. (define worklist (make-queue))
  10398. (for ([v (in-vertices G)])
  10399. (enqueue! worklist v))
  10400. (define trans-G (transpose G))
  10401. (while (not (queue-empty? worklist))
  10402. (define node (dequeue! worklist))
  10403. (define input (for/fold ([state bottom])
  10404. ([pred (in-neighbors trans-G node)])
  10405. (join state (dict-ref mapping pred))))
  10406. (define output (transfer node input))
  10407. (cond [(not (equal? output (dict-ref mapping node)))
  10408. (dict-set! mapping node output)
  10409. (for ([v (in-neighbors G node)])
  10410. (enqueue! worklist v))]))
  10411. mapping)
  10412. \end{lstlisting}
  10413. \caption{Generic work list algorithm for dataflow analysis}
  10414. \label{fig:generic-dataflow}
  10415. \end{figure}
  10416. Having discussed the two complications that arise from adding support
  10417. for assignment and loops, we turn to discussing the one new compiler
  10418. pass and the significant changes to existing passes.
  10419. \section{Convert Assignments}
  10420. \label{sec:convert-assignments}
  10421. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  10422. the combination of assignments and lexically-scoped functions requires
  10423. that we box those variables that are both assigned-to and that appear
  10424. free inside a \code{lambda}. The purpose of the
  10425. \code{convert-assignments} pass is to carry out that transformation.
  10426. We recommend placing this pass after \code{uniquify} but before
  10427. \code{reveal-functions}.
  10428. Consider again the first example from
  10429. Section~\ref{sec:assignment-scoping}:
  10430. \begin{lstlisting}
  10431. (let ([x 0])
  10432. (let ([y 0])
  10433. (let ([z 20])
  10434. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  10435. (begin
  10436. (set! x 10)
  10437. (set! y 12)
  10438. (f y))))))
  10439. \end{lstlisting}
  10440. The variables \code{x} and \code{y} are assigned-to. The variables
  10441. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  10442. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  10443. The boxing of \code{x} consists of three transformations: initialize
  10444. \code{x} with a vector, replace reads from \code{x} with
  10445. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  10446. \code{vector-set!}. The output of \code{convert-assignments} for this
  10447. example is as follows.
  10448. \begin{lstlisting}
  10449. (define (main) : Integer
  10450. (let ([x0 (vector 0)])
  10451. (let ([y1 0])
  10452. (let ([z2 20])
  10453. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  10454. (+ a3 (+ (vector-ref x0 0) z2)))])
  10455. (begin
  10456. (vector-set! x0 0 10)
  10457. (set! y1 12)
  10458. (f4 y1)))))))
  10459. \end{lstlisting}
  10460. \paragraph{Assigned \& Free}
  10461. We recommend defining an auxiliary function named
  10462. \code{assigned\&free} that takes an expression and simultaneously
  10463. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  10464. that occur free within lambda's, and 3) a new version of the
  10465. expression that records which bound variables occurred in the
  10466. intersection of $A$ and $F$. You can use the struct
  10467. \code{AssignedFree} to do this. Consider the case for
  10468. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  10469. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  10470. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  10471. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  10472. \begin{lstlisting}
  10473. (Let |$x$| |$rhs$| |$body$|)
  10474. |$\Rightarrow$|
  10475. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  10476. \end{lstlisting}
  10477. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  10478. The set of assigned variables for this \code{Let} is
  10479. $A_r \cup (A_b - \{x\})$
  10480. and the set of variables free in lambda's is
  10481. $F_r \cup (F_b - \{x\})$.
  10482. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  10483. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  10484. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  10485. and $F_r$.
  10486. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  10487. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  10488. recursively processing \itm{body}. Wrap each of parameter that occurs
  10489. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  10490. Let $P$ be the set of parameter names in \itm{params}. The result is
  10491. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  10492. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  10493. variables of an expression (see Chapter~\ref{ch:Rlam}).
  10494. \paragraph{Convert Assignments}
  10495. Next we discuss the \code{convert-assignment} pass with its auxiliary
  10496. functions for expressions and definitions. The function for
  10497. expressions, \code{cnvt-assign-exp}, should take an expression and a
  10498. set of assigned-and-free variables (obtained from the result of
  10499. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  10500. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  10501. \code{vector-ref}.
  10502. \begin{lstlisting}
  10503. (Var |$x$|)
  10504. |$\Rightarrow$|
  10505. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  10506. \end{lstlisting}
  10507. %
  10508. In the case for $\LET{\LP\code{AssignedFree}\,
  10509. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  10510. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  10511. \itm{body'} but with $x$ added to the set of assigned-and-free
  10512. variables. Translate the let-expression as follows to bind $x$ to a
  10513. boxed value.
  10514. \begin{lstlisting}
  10515. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  10516. |$\Rightarrow$|
  10517. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  10518. \end{lstlisting}
  10519. %
  10520. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  10521. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  10522. variables, translate the \code{set!} into a \code{vector-set!}
  10523. as follows.
  10524. \begin{lstlisting}
  10525. (SetBang |$x$| |$\itm{rhs}$|)
  10526. |$\Rightarrow$|
  10527. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  10528. \end{lstlisting}
  10529. %
  10530. The case for \code{Lambda} is non-trivial, but it is similar to the
  10531. case for function definitions, which we discuss next.
  10532. The auxiliary function for definitions, \code{cnvt-assign-def},
  10533. applies assignment conversion to function definitions.
  10534. We translate a function definition as follows.
  10535. \begin{lstlisting}
  10536. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  10537. |$\Rightarrow$|
  10538. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  10539. \end{lstlisting}
  10540. So it remains to explain \itm{params'} and $\itm{body}_4$.
  10541. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  10542. \code{assigned\&free} on $\itm{body_1}$.
  10543. Let $P$ be the parameter names in \itm{params}.
  10544. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  10545. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  10546. as the set of assigned-and-free variables.
  10547. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  10548. in a sequence of let-expressions that box the parameters
  10549. that are in $A_b \cap F_b$.
  10550. %
  10551. Regarding \itm{params'}, change the names of the parameters that are
  10552. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  10553. variables can retain the original names). Recall the second example in
  10554. Section~\ref{sec:assignment-scoping} involving a counter
  10555. abstraction. The following is the output of assignment version for
  10556. function \code{f}.
  10557. \begin{lstlisting}
  10558. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  10559. (vector
  10560. (lambda: () : Integer x1)
  10561. (lambda: () : Void (set! x1 (+ 1 x1)))))
  10562. |$\Rightarrow$|
  10563. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  10564. (let ([x1 (vector param_x1)])
  10565. (vector (lambda: () : Integer (vector-ref x1 0))
  10566. (lambda: () : Void
  10567. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  10568. \end{lstlisting}
  10569. \section{Remove Complex Operands}
  10570. \label{sec:rco-loop}
  10571. The three new language forms, \code{while}, \code{set!}, and
  10572. \code{begin} are all complex expressions and their subexpressions are
  10573. allowed to be complex. Figure~\ref{fig:Rfun-anf-syntax} defines the
  10574. output language \LangFunANF{} of this pass.
  10575. \begin{figure}[tp]
  10576. \centering
  10577. \fbox{
  10578. \begin{minipage}{0.96\textwidth}
  10579. \small
  10580. \[
  10581. \begin{array}{rcl}
  10582. \Atm &::=& \gray{ \INT{\Int} \mid \VAR{\Var} \mid \BOOL{\itm{bool}}
  10583. \mid \VOID{} } \\
  10584. \Exp &::=& \ldots \mid \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  10585. &\mid& \WHILE{\Exp}{\Exp} \mid \SETBANG{\Var}{\Exp}
  10586. \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  10587. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  10588. R^{\dagger}_8 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  10589. \end{array}
  10590. \]
  10591. \end{minipage}
  10592. }
  10593. \caption{\LangLoopANF{} is \LangLoop{} in administrative normal form (ANF).}
  10594. \label{fig:Rwhile-anf-syntax}
  10595. \end{figure}
  10596. As usual, when a complex expression appears in a grammar position that
  10597. needs to be atomic, such as the argument of a primitive operator, we
  10598. must introduce a temporary variable and bind it to the complex
  10599. expression. This approach applies, unchanged, to handle the new
  10600. language forms. For example, in the following code there are two
  10601. \code{begin} expressions appearing as arguments to \code{+}. The
  10602. output of \code{rco-exp} is shown below, in which the \code{begin}
  10603. expressions have been bound to temporary variables. Recall that
  10604. \code{let} expressions in \LangLoopANF{} are allowed to have
  10605. arbitrary expressions in their right-hand-side expression, so it is
  10606. fine to place \code{begin} there.
  10607. \begin{lstlisting}
  10608. (let ([x0 10])
  10609. (let ([y1 0])
  10610. (+ (+ (begin (set! y1 (read)) x0)
  10611. (begin (set! x0 (read)) y1))
  10612. x0)))
  10613. |$\Rightarrow$|
  10614. (let ([x0 10])
  10615. (let ([y1 0])
  10616. (let ([tmp2 (begin (set! y1 (read)) x0)])
  10617. (let ([tmp3 (begin (set! x0 (read)) y1)])
  10618. (let ([tmp4 (+ tmp2 tmp3)])
  10619. (+ tmp4 x0))))))
  10620. \end{lstlisting}
  10621. \section{Explicate Control and \LangCLoop{}}
  10622. \label{sec:explicate-loop}
  10623. Recall that in the \code{explicate-control} pass we define one helper
  10624. function for each kind of position in the program. For the \LangVar{}
  10625. language of integers and variables we needed kinds of positions:
  10626. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  10627. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  10628. yet another kind of position: effect position. Except for the last
  10629. subexpression, the subexpressions inside a \code{begin} are evaluated
  10630. only for their effect. Their result values are discarded. We can
  10631. generate better code by taking this fact into account.
  10632. The output language of \code{explicate-control} is \LangCLoop{}
  10633. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  10634. \LangCLam{}. The only syntactic difference is that \code{Call},
  10635. \code{vector-set!}, and \code{read} may also appear as statements.
  10636. The most significant difference between \LangCLam{} and \LangCLoop{}
  10637. is that the control-flow graphs of the later may contain cycles.
  10638. \begin{figure}[tp]
  10639. \fbox{
  10640. \begin{minipage}{0.96\textwidth}
  10641. \small
  10642. \[
  10643. \begin{array}{lcl}
  10644. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  10645. \mid \LP\key{Collect} \,\itm{int}\RP } \\
  10646. &\mid& \CALL{\Atm}{\LP\Atm\ldots\RP} \mid \READ{}\\
  10647. &\mid& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
  10648. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  10649. \LangCLoop{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  10650. \end{array}
  10651. \]
  10652. \end{minipage}
  10653. }
  10654. \caption{The abstract syntax of \LangCLoop{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  10655. \label{fig:c7-syntax}
  10656. \end{figure}
  10657. The new auxiliary function \code{explicate-effect} takes an expression
  10658. (in an effect position) and a promise of a continuation block. The
  10659. function returns a promise for a $\Tail$ that includes the generated
  10660. code for the input expression followed by the continuation block. If
  10661. the expression is obviously pure, that is, never causes side effects,
  10662. then the expression can be removed, so the result is just the
  10663. continuation block.
  10664. %
  10665. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  10666. case. First, you will need a fresh label $\itm{loop}$ for the top of
  10667. the loop. Recursively process the \itm{body} (in effect position)
  10668. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  10669. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  10670. \itm{body'} as the then-branch and the continuation block as the
  10671. else-branch. The result should be added to the control-flow graph with
  10672. the label \itm{loop}. The result for the whole \code{while} loop is a
  10673. \code{goto} to the \itm{loop} label. Note that the loop should only be
  10674. added to the control-flow graph if the loop is indeed used, which can
  10675. be accomplished using \code{delay}.
  10676. The auxiliary functions for tail, assignment, and predicate positions
  10677. need to be updated. The three new language forms, \code{while},
  10678. \code{set!}, and \code{begin}, can appear in assignment and tail
  10679. positions. Only \code{begin} may appear in predicate positions; the
  10680. other two have result type \code{Void}.
  10681. \section{Select Instructions}
  10682. \label{sec:select-instructions-loop}
  10683. Only three small additions are needed in the
  10684. \code{select-instructions} pass to handle the changes to \LangCLoop{}. That
  10685. is, \code{Call}, \code{read}, and \code{vector-set!} may now appear as
  10686. stand-alone statements instead of only appearing on the right-hand
  10687. side of an assignment statement. The code generation is nearly
  10688. identical; just leave off the instruction for moving the result into
  10689. the left-hand side.
  10690. \section{Register Allocation}
  10691. \label{sec:register-allocation-loop}
  10692. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  10693. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  10694. which complicates the liveness analysis needed for register
  10695. allocation.
  10696. \subsection{Liveness Analysis}
  10697. \label{sec:liveness-analysis-r8}
  10698. We recommend using the generic \code{analyze-dataflow} function that
  10699. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  10700. perform liveness analysis, replacing the code in
  10701. \code{uncover-live-CFG} that processed the basic blocks in topological
  10702. order (Section~\ref{sec:liveness-analysis-Rif}).
  10703. The \code{analyze-dataflow} function has four parameters.
  10704. \begin{enumerate}
  10705. \item The first parameter \code{G} should be a directed graph from the
  10706. \code{racket/graph} package (see the sidebar in
  10707. Section~\ref{sec:build-interference}) that represents the
  10708. control-flow graph.
  10709. \item The second parameter \code{transfer} is a function that applies
  10710. liveness analysis to a basic block. It takes two parameters: the
  10711. label for the block to analyze and the live-after set for that
  10712. block. The transfer function should return the live-before set for
  10713. the block. Also, as a side-effect, it should update the block's
  10714. $\itm{info}$ with the liveness information for each instruction. To
  10715. implement the \code{transfer} function, you should be able to reuse
  10716. the code you already have for analyzing basic blocks.
  10717. \item The third and fourth parameters of \code{analyze-dataflow} are
  10718. \code{bottom} and \code{join} for the lattice of abstract states,
  10719. i.e. sets of locations. The bottom of the lattice is the empty set
  10720. \code{(set)} and the join operator is \code{set-union}.
  10721. \end{enumerate}
  10722. \begin{figure}[p]
  10723. \begin{tikzpicture}[baseline=(current bounding box.center)]
  10724. \node (Rfun) at (0,2) {\large \LangLoop{}};
  10725. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  10726. \node (Rfun-3) at (6,2) {\large \LangLoop{}};
  10727. \node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  10728. \node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  10729. \node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  10730. \node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  10731. \node (F1-4) at (3,0) {\large \LangLoopAlloc{}};
  10732. \node (F1-5) at (0,0) {\large \LangLoopAlloc{}};
  10733. \node (C3-2) at (3,-2) {\large \LangCLoop{}};
  10734. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  10735. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  10736. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  10737. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  10738. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  10739. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  10740. %% \path[->,bend left=15] (Rfun) edge [above] node
  10741. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  10742. \path[->,bend left=15] (Rfun) edge [above] node
  10743. {\ttfamily\footnotesize shrink} (Rfun-2);
  10744. \path[->,bend left=15] (Rfun-2) edge [above] node
  10745. {\ttfamily\footnotesize uniquify} (Rfun-3);
  10746. \path[->,bend left=15] (Rfun-3) edge [above] node
  10747. {\ttfamily\footnotesize reveal-functions} (Rfun-4);
  10748. \path[->,bend left=15] (Rfun-4) edge [right] node
  10749. {\ttfamily\footnotesize convert-assignments} (F1-1);
  10750. \path[->,bend left=15] (F1-1) edge [below] node
  10751. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  10752. \path[->,bend right=15] (F1-2) edge [above] node
  10753. {\ttfamily\footnotesize limit-fun.} (F1-3);
  10754. \path[->,bend right=15] (F1-3) edge [above] node
  10755. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  10756. \path[->,bend right=15] (F1-4) edge [above] node
  10757. {\ttfamily\footnotesize remove-complex.} (F1-5);
  10758. \path[->,bend right=15] (F1-5) edge [right] node
  10759. {\ttfamily\footnotesize explicate-control} (C3-2);
  10760. \path[->,bend left=15] (C3-2) edge [left] node
  10761. {\ttfamily\footnotesize select-instr.} (x86-2);
  10762. \path[->,bend right=15] (x86-2) edge [left] node
  10763. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  10764. \path[->,bend right=15] (x86-2-1) edge [below] node
  10765. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  10766. \path[->,bend right=15] (x86-2-2) edge [left] node
  10767. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  10768. \path[->,bend left=15] (x86-3) edge [above] node
  10769. {\ttfamily\footnotesize patch-instr.} (x86-4);
  10770. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  10771. \end{tikzpicture}
  10772. \caption{Diagram of the passes for \LangLoop{} (loops and assignment).}
  10773. \label{fig:Rwhile-passes}
  10774. \end{figure}
  10775. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  10776. for the compilation of \LangLoop{}.
  10777. \section{Challenge: Arrays}
  10778. \label{sec:arrays}
  10779. In Chapter~\ref{ch:Rvec} we studied tuples, that is, sequences of
  10780. elements whose length is determined at compile-time and where each
  10781. element of a tuple may have a different type (they are
  10782. heterogeous). This challenge is also about sequences, but this time
  10783. the length is determined at run-time and all the elements have the same
  10784. type (they are homogeneous). We use the term ``array'' for this later
  10785. kind of sequence.
  10786. The Racket language does not distinguish between tuples and arrays,
  10787. they are both represented by vectors. However, Typed Racket
  10788. distinguishes between tuples and arrays: the \code{Vector} type is for
  10789. tuples and the \code{Vectorof} type is for arrays.
  10790. %
  10791. Figure~\ref{fig:Rvecof-concrete-syntax} defines the concrete syntax
  10792. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  10793. and the \code{make-vector} primitive operator for creating an array,
  10794. whose arguments are the length of the array and an initial value for
  10795. all the elements in the array. The \code{vector-length},
  10796. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  10797. for tuples become overloaded for use with arrays.
  10798. %
  10799. We also include integer multiplication in \LangArray{}, as it is
  10800. useful in many examples involving arrays such as computing the
  10801. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  10802. \begin{figure}[tp]
  10803. \centering
  10804. \fbox{
  10805. \begin{minipage}{0.96\textwidth}
  10806. \small
  10807. \[
  10808. \begin{array}{lcl}
  10809. \Type &::=& \ldots \mid \LP \key{Vectorof}~\Type \RP \\
  10810. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  10811. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \mid \CMUL{\Exp}{\Exp}\\
  10812. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  10813. &\mid& \gray{\key{\#t} \mid \key{\#f}
  10814. \mid \LP\key{and}\;\Exp\;\Exp\RP
  10815. \mid \LP\key{or}\;\Exp\;\Exp\RP
  10816. \mid \LP\key{not}\;\Exp\RP } \\
  10817. &\mid& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  10818. &\mid& \gray{ \LP\key{vector}\;\Exp\ldots\RP \mid
  10819. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  10820. &\mid& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\mid \LP\key{void}\RP
  10821. \mid \LP\Exp \; \Exp\ldots\RP } \\
  10822. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP
  10823. \mid \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  10824. &\mid& \gray{ \CSETBANG{\Var}{\Exp}
  10825. \mid \CBEGIN{\Exp\ldots}{\Exp}
  10826. \mid \CWHILE{\Exp}{\Exp} } \\
  10827. &\mid& \CMAKEVEC{\Exp}{\Exp} \\
  10828. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  10829. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  10830. \end{array}
  10831. \]
  10832. \end{minipage}
  10833. }
  10834. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  10835. \label{fig:Rvecof-concrete-syntax}
  10836. \end{figure}
  10837. \begin{figure}[tp]
  10838. \begin{lstlisting}
  10839. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  10840. [n : Integer]) : Integer
  10841. (let ([i 0])
  10842. (let ([prod 0])
  10843. (begin
  10844. (while (< i n)
  10845. (begin
  10846. (set! prod (+ prod (* (vector-ref A i)
  10847. (vector-ref B i))))
  10848. (set! i (+ i 1))
  10849. ))
  10850. prod))))
  10851. (let ([A (make-vector 2 2)])
  10852. (let ([B (make-vector 2 3)])
  10853. (+ (inner-product A B 2)
  10854. 30)))
  10855. \end{lstlisting}
  10856. \caption{Example program that computes the inner-product.}
  10857. \label{fig:inner-product}
  10858. \end{figure}
  10859. The type checker for \LangArray{} is define in
  10860. Figure~\ref{fig:type-check-Rvecof}. The result type of
  10861. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  10862. of the intializing expression. The length expression is required to
  10863. have type \code{Integer}. The type checking of the operators
  10864. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  10865. updated to handle the situation where the vector has type
  10866. \code{Vectorof}. In these cases we translate the operators to their
  10867. \code{vectorof} form so that later passes can easily distinguish
  10868. between operations on tuples versus arrays. We override the
  10869. \code{operator-types} method to provide the type signature for
  10870. multiplication: it takes two integers and returns an integer. To
  10871. support injection and projection of arrays to the \code{Any} type
  10872. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  10873. predicate.
  10874. \begin{figure}[tbp]
  10875. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10876. (define type-check-Rvecof-class
  10877. (class type-check-Rwhile-class
  10878. (super-new)
  10879. (inherit check-type-equal?)
  10880. (define/override (flat-ty? ty)
  10881. (match ty
  10882. ['(Vectorof Any) #t]
  10883. [else (super flat-ty? ty)]))
  10884. (define/override (operator-types)
  10885. (append '((* . ((Integer Integer) . Integer)))
  10886. (super operator-types)))
  10887. (define/override (type-check-exp env)
  10888. (lambda (e)
  10889. (define recur (type-check-exp env))
  10890. (match e
  10891. [(Prim 'make-vector (list e1 e2))
  10892. (define-values (e1^ t1) (recur e1))
  10893. (define-values (e2^ elt-type) (recur e2))
  10894. (define vec-type `(Vectorof ,elt-type))
  10895. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  10896. vec-type)]
  10897. [(Prim 'vector-ref (list e1 e2))
  10898. (define-values (e1^ t1) (recur e1))
  10899. (define-values (e2^ t2) (recur e2))
  10900. (match* (t1 t2)
  10901. [(`(Vectorof ,elt-type) 'Integer)
  10902. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  10903. [(other wise) ((super type-check-exp env) e)])]
  10904. [(Prim 'vector-set! (list e1 e2 e3) )
  10905. (define-values (e-vec t-vec) (recur e1))
  10906. (define-values (e2^ t2) (recur e2))
  10907. (define-values (e-arg^ t-arg) (recur e3))
  10908. (match t-vec
  10909. [`(Vectorof ,elt-type)
  10910. (check-type-equal? elt-type t-arg e)
  10911. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  10912. [else ((super type-check-exp env) e)])]
  10913. [(Prim 'vector-length (list e1))
  10914. (define-values (e1^ t1) (recur e1))
  10915. (match t1
  10916. [`(Vectorof ,t)
  10917. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  10918. [else ((super type-check-exp env) e)])]
  10919. [else ((super type-check-exp env) e)])))
  10920. ))
  10921. (define (type-check-Rvecof p)
  10922. (send (new type-check-Rvecof-class) type-check-program p))
  10923. \end{lstlisting}
  10924. \caption{Type checker for the \LangArray{} language.}
  10925. \label{fig:type-check-Rvecof}
  10926. \end{figure}
  10927. The interpreter for \LangArray{} is defined in
  10928. Figure~\ref{fig:interp-Rvecof}. The \code{make-vector} operator is
  10929. implemented with Racket's \code{make-vector} function and
  10930. multiplication is \code{fx*}, multiplication for \code{fixnum}
  10931. integers.
  10932. \begin{figure}[tbp]
  10933. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10934. (define interp-Rvecof-class
  10935. (class interp-Rwhile-class
  10936. (super-new)
  10937. (define/override (interp-op op)
  10938. (verbose "Rvecof/interp-op" op)
  10939. (match op
  10940. ['make-vector make-vector]
  10941. ['* fx*]
  10942. [else (super interp-op op)]))
  10943. ))
  10944. (define (interp-Rvecof p)
  10945. (send (new interp-Rvecof-class) interp-program p))
  10946. \end{lstlisting}
  10947. \caption{Interpreter for \LangArray{}.}
  10948. \label{fig:interp-Rvecof}
  10949. \end{figure}
  10950. \subsection{Data Representation}
  10951. \label{sec:array-rep}
  10952. Just like tuples, we store arrays on the heap which means that the
  10953. garbage collector will need to inspect arrays. An immediate thought is
  10954. to use the same representation for arrays that we use for tuples.
  10955. However, we limit tuples to a length of $50$ so that their length and
  10956. pointer mask can fit into the 64-bit tag at the beginning of each
  10957. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  10958. millions of elements, so we need more bits to store the length.
  10959. However, because arrays are homogeneous, we only need $1$ bit for the
  10960. pointer mask instead of one bit per array elements. Finally, the
  10961. garbage collector will need to be able to distinguish between tuples
  10962. and arrays, so we need to reserve $1$ bit for that purpose. So we
  10963. arrive at the following layout for the 64-bit tag at the beginning of
  10964. an array:
  10965. \begin{itemize}
  10966. \item The right-most bit is the forwarding bit, just like in a tuple.
  10967. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  10968. it is not.
  10969. \item The next bit to the left is the pointer mask. A $0$ indicates
  10970. that none of the elements are pointers to the heap and a $1$
  10971. indicates that all of the elements are pointers.
  10972. \item The next $61$ bits store the length of the array.
  10973. \item The left-most bit distinguishes between a tuple ($0$) versus an
  10974. array ($1$).
  10975. \end{itemize}
  10976. Recall that in Chapter~\ref{ch:Rdyn}, we use a $3$-bit tag to
  10977. differentiate the kinds of values that have been injected into the
  10978. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  10979. to indicate that the value is an array.
  10980. In the following subsections we provide hints regarding how to update
  10981. the passes to handle arrays.
  10982. \subsection{Reveal Casts}
  10983. The array-access operators \code{vectorof-ref} and
  10984. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  10985. \code{any-vector-set!} operators of Chapter~\ref{ch:Rdyn} in
  10986. that the type checker cannot tell whether the index will be in bounds,
  10987. so the bounds check must be performed at run time. Recall that the
  10988. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  10989. an \code{If} arround a vector reference for update to check whether
  10990. the index is less than the length. You should do the same for
  10991. \code{vectorof-ref} and \code{vectorof-set!} .
  10992. In addition, the handling of the \code{any-vector} operators in
  10993. \code{reveal-casts} needs to be updated to account for arrays that are
  10994. injected to \code{Any}. For the \code{any-vector-length} operator, the
  10995. generated code should test whether the tag is for tuples (\code{010})
  10996. or arrays (\code{110}) and then dispatch to either
  10997. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  10998. we add a case in \code{select-instructions} to generate the
  10999. appropriate instructions for accessing the array length from the
  11000. header of an array.
  11001. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  11002. the generated code needs to check that the index is less than the
  11003. vector length, so like the code for \code{any-vector-length}, check
  11004. the tag to determine whether to use \code{any-vector-length} or
  11005. \code{any-vectorof-length} for this purpose. Once the bounds checking
  11006. is complete, the generated code can use \code{any-vector-ref} and
  11007. \code{any-vector-set!} for both tuples and arrays because the
  11008. instructions used for those operators do not look at the tag at the
  11009. front of the tuple or array.
  11010. \subsection{Expose Allocation}
  11011. This pass should translate the \code{make-vector} operator into
  11012. lower-level operations. In particular, the new AST node
  11013. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  11014. length specified by the $\Exp$, but does not initialize the elements
  11015. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  11016. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  11017. element type for the array. Regarding the initialization of the array,
  11018. we recommend generated a \code{while} loop that uses
  11019. \code{vector-set!} to put the initializing value into every element of
  11020. the array.
  11021. \subsection{Remove Complex Operands}
  11022. Add cases in the \code{rco-atom} and \code{rco-exp} for
  11023. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  11024. complex and its subexpression must be atomic.
  11025. \subsection{Explicate Control}
  11026. Add cases for \code{AllocateArray} to \code{explicate-tail} and
  11027. \code{explicate-assign}.
  11028. \subsection{Select Instructions}
  11029. Generate instructions for \code{AllocateArray} similar to those for
  11030. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  11031. that the tag at the front of the array should instead use the
  11032. representation discussed in Section~\ref{sec:array-rep}.
  11033. Regarding \code{vectorof-length}, extract the length from the tag
  11034. according to the representation discussed in
  11035. Section~\ref{sec:array-rep}.
  11036. The instructions generated for \code{vectorof-ref} differ from those
  11037. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  11038. that the index is not a constant so the offset must be computed at
  11039. runtime, similar to the instructions generated for
  11040. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). The same is
  11041. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  11042. appear in an assignment and as a stand-alone statement, so make sure
  11043. to handle both situations in this pass.
  11044. Finally, the instructions for \code{any-vectorof-length} should be
  11045. similar to those for \code{vectorof-length}, except that one must
  11046. first project the array by writing zeroes into the $3$-bit tag
  11047. \begin{exercise}\normalfont
  11048. Implement a compiler for the \LangArray{} language by extending your
  11049. compiler for \LangLoop{}. Test your compiler on a half dozen new
  11050. programs, including the one in Figure~\ref{fig:inner-product} and also
  11051. a program that multiplies two matrices. Note that matrices are
  11052. 2-dimensional arrays, but those can be encoded into 1-dimensional
  11053. arrays by laying out each row in the array, one after the next.
  11054. \end{exercise}
  11055. % Further Reading: dataflow analysis
  11056. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11057. \chapter{Gradual Typing}
  11058. \label{ch:Rgrad}
  11059. \index{gradual typing}
  11060. This chapter studies a language, \LangGrad{}, in which the programmer
  11061. can choose between static and dynamic type checking in different parts
  11062. of a program, thereby mixing the statically typed \LangLoop{} language
  11063. with the dynamically typed \LangDyn{}. There are several approaches to
  11064. mixing static and dynamic typing, including multi-language
  11065. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  11066. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  11067. we focus on \emph{gradual typing}\index{gradual typing}, in which the
  11068. programmer controls the amount of static versus dynamic checking by
  11069. adding or removing type annotations on parameters and
  11070. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  11071. %
  11072. The concrete syntax of \LangGrad{} is defined in
  11073. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  11074. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  11075. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  11076. non-terminals that make type annotations optional. The return types
  11077. are not optional in the abstract syntax; the parser fills in
  11078. \code{Any} when the return type is not specified in the concrete
  11079. syntax.
  11080. \begin{figure}[tp]
  11081. \centering
  11082. \fbox{
  11083. \begin{minipage}{0.96\textwidth}
  11084. \small
  11085. \[
  11086. \begin{array}{lcl}
  11087. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  11088. \itm{ret} &::=& \epsilon \mid \key{:} \Type \\
  11089. \Exp &::=& \gray{ \Int \mid \CREAD{} \mid \CNEG{\Exp}
  11090. \mid \CADD{\Exp}{\Exp} \mid \CSUB{\Exp}{\Exp} } \\
  11091. &\mid& \gray{ \Var \mid \CLET{\Var}{\Exp}{\Exp} }\\
  11092. &\mid& \gray{\key{\#t} \mid \key{\#f}
  11093. \mid (\key{and}\;\Exp\;\Exp)
  11094. \mid (\key{or}\;\Exp\;\Exp)
  11095. \mid (\key{not}\;\Exp) } \\
  11096. &\mid& \gray{ (\key{eq?}\;\Exp\;\Exp) \mid \CIF{\Exp}{\Exp}{\Exp} } \\
  11097. &\mid& \gray{ (\key{vector}\;\Exp\ldots) \mid
  11098. (\key{vector-ref}\;\Exp\;\Int)} \\
  11099. &\mid& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\mid (\key{void})
  11100. \mid (\Exp \; \Exp\ldots) } \\
  11101. &\mid& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  11102. \mid \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  11103. &\mid& \gray{ \CSETBANG{\Var}{\Exp}
  11104. \mid \CBEGIN{\Exp\ldots}{\Exp}
  11105. \mid \CWHILE{\Exp}{\Exp} } \\
  11106. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  11107. \LangGrad{} &::=& \gray{\Def\ldots \; \Exp}
  11108. \end{array}
  11109. \]
  11110. \end{minipage}
  11111. }
  11112. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  11113. \label{fig:Rgrad-concrete-syntax}
  11114. \end{figure}
  11115. \begin{figure}[tp]
  11116. \centering
  11117. \fbox{
  11118. \begin{minipage}{0.96\textwidth}
  11119. \small
  11120. \[
  11121. \begin{array}{lcl}
  11122. \itm{param} &::=& \Var \mid \LS\Var \key{:} \Type\RS \\
  11123. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \mid \LET{\Var}{\Exp}{\Exp} } \\
  11124. &\mid& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  11125. &\mid& \gray{ \BOOL{\itm{bool}}
  11126. \mid \IF{\Exp}{\Exp}{\Exp} } \\
  11127. &\mid& \gray{ \VOID{} \mid \LP\key{HasType}~\Exp~\Type \RP
  11128. \mid \APPLY{\Exp}{\Exp\ldots} }\\
  11129. &\mid& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  11130. &\mid& \gray{ \SETBANG{\Var}{\Exp} \mid \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  11131. &\mid& \gray{ \WHILE{\Exp}{\Exp} } \\
  11132. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  11133. \LangGrad{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11134. \end{array}
  11135. \]
  11136. \end{minipage}
  11137. }
  11138. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  11139. \label{fig:Rgrad-syntax}
  11140. \end{figure}
  11141. Both the type checker and the interpreter for \LangGrad{} require some
  11142. interesting changes to enable gradual typing, which we discuss in the
  11143. next two sections in the context of the \code{map-vec} example from
  11144. Chapter~\ref{ch:Rfun}. In Figure~\ref{fig:gradual-map-vec} we
  11145. revised the \code{map-vec} example, omitting the type annotations from
  11146. the \code{add1} function.
  11147. \begin{figure}[btp]
  11148. % gradual_test_9.rkt
  11149. \begin{lstlisting}
  11150. (define (map-vec [f : (Integer -> Integer)]
  11151. [v : (Vector Integer Integer)])
  11152. : (Vector Integer Integer)
  11153. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11154. (define (add1 x) (+ x 1))
  11155. (vector-ref (map-vec add1 (vector 0 41)) 1)
  11156. \end{lstlisting}
  11157. \caption{A partially-typed version of the \code{map-vec} example.}
  11158. \label{fig:gradual-map-vec}
  11159. \end{figure}
  11160. \section{Type Checking \LangGrad{}, Casts, and \LangCast{}}
  11161. \label{sec:gradual-type-check}
  11162. The type checker for \LangGrad{} uses the \code{Any} type for missing
  11163. parameter and return types. For example, the \code{x} parameter of
  11164. \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
  11165. \code{Any} and the return type of \code{add1} is \code{Any}. Next
  11166. consider the \code{+} operator inside \code{add1}. It expects both
  11167. arguments to have type \code{Integer}, but its first argument \code{x}
  11168. has type \code{Any}. In a gradually typed language, such differences
  11169. are allowed so long as the types are \emph{consistent}, that is, they
  11170. are equal except in places where there is an \code{Any} type. The type
  11171. \code{Any} is consistent with every other type.
  11172. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  11173. \begin{figure}[tbp]
  11174. \begin{lstlisting}
  11175. (define/public (consistent? t1 t2)
  11176. (match* (t1 t2)
  11177. [('Integer 'Integer) #t]
  11178. [('Boolean 'Boolean) #t]
  11179. [('Void 'Void) #t]
  11180. [('Any t2) #t]
  11181. [(t1 'Any) #t]
  11182. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  11183. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  11184. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  11185. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  11186. (consistent? rt1 rt2))]
  11187. [(other wise) #f]))
  11188. \end{lstlisting}
  11189. \caption{The consistency predicate on types.}
  11190. \label{fig:consistent}
  11191. \end{figure}
  11192. Returning to the \code{map-vec} example of
  11193. Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
  11194. \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
  11195. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  11196. because the two types are consistent. In particular, \code{->} is
  11197. equal to \code{->} and because \code{Any} is consistent with
  11198. \code{Integer}.
  11199. Next consider a program with an error, such as applying the
  11200. \code{map-vec} to a function that sometimes returns a Boolean, as
  11201. shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
  11202. \LangGrad{} accepts this program because the type of \code{maybe-add1} is
  11203. consistent with the type of parameter \code{f} of \code{map-vec}, that
  11204. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  11205. Integer)}. One might say that a gradual type checker is optimistic
  11206. in that it accepts programs that might execute without a runtime type
  11207. error.
  11208. %
  11209. Unfortunately, running this program with input \code{1} triggers an
  11210. error when the \code{maybe-add1} function returns \code{\#t}. \LangGrad{}
  11211. performs checking at runtime to ensure the integrity of the static
  11212. types, such as the \code{(Integer -> Integer)} annotation on parameter
  11213. \code{f} of \code{map-vec}. This runtime checking is carried out by a
  11214. new \code{Cast} form that is inserted by the type checker. Thus, the
  11215. output of the type checker is a program in the \LangCast{} language, which
  11216. adds \code{Cast} to \LangLoop{}, as shown in
  11217. Figure~\ref{fig:Rgrad-prime-syntax}.
  11218. \begin{figure}[tp]
  11219. \centering
  11220. \fbox{
  11221. \begin{minipage}{0.96\textwidth}
  11222. \small
  11223. \[
  11224. \begin{array}{lcl}
  11225. \Exp &::=& \ldots \mid \CAST{\Exp}{\Type}{\Type} \\
  11226. \LangCast{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  11227. \end{array}
  11228. \]
  11229. \end{minipage}
  11230. }
  11231. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Rwhile-syntax}).}
  11232. \label{fig:Rgrad-prime-syntax}
  11233. \end{figure}
  11234. \begin{figure}[tbp]
  11235. \begin{lstlisting}
  11236. (define (map-vec [f : (Integer -> Integer)]
  11237. [v : (Vector Integer Integer)])
  11238. : (Vector Integer Integer)
  11239. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11240. (define (add1 x) (+ x 1))
  11241. (define (true) #t)
  11242. (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
  11243. (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
  11244. \end{lstlisting}
  11245. \caption{A variant of the \code{map-vec} example with an error.}
  11246. \label{fig:map-vec-maybe-add1}
  11247. \end{figure}
  11248. Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
  11249. \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
  11250. inserted every time the type checker sees two types that are
  11251. consistent but not equal. In the \code{add1} function, \code{x} is
  11252. cast to \code{Integer} and the result of the \code{+} is cast to
  11253. \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
  11254. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  11255. \begin{figure}[btp]
  11256. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11257. (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  11258. : (Vector Integer Integer)
  11259. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11260. (define (add1 [x : Any]) : Any
  11261. (cast (+ (cast x Any Integer) 1) Integer Any))
  11262. (define (true) : Any (cast #t Boolean Any))
  11263. (define (maybe-add1 [x : Any]) : Any
  11264. (if (eq? 0 (read)) (add1 x) (true)))
  11265. (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
  11266. (vector 0 41)) 0)
  11267. \end{lstlisting}
  11268. \caption{Output of type checking \code{map-vec}
  11269. and \code{maybe-add1}.}
  11270. \label{fig:map-vec-cast}
  11271. \end{figure}
  11272. The type checker for \LangGrad{} is defined in
  11273. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  11274. and \ref{fig:type-check-Rgradual-3}.
  11275. \begin{figure}[tbp]
  11276. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11277. (define type-check-gradual-class
  11278. (class type-check-Rwhile-class
  11279. (super-new)
  11280. (inherit operator-types type-predicates)
  11281. (define/override (type-check-exp env)
  11282. (lambda (e)
  11283. (define recur (type-check-exp env))
  11284. (match e
  11285. [(Prim 'vector-length (list e1))
  11286. (define-values (e1^ t) (recur e1))
  11287. (match t
  11288. [`(Vector ,ts ...)
  11289. (values (Prim 'vector-length (list e1^)) 'Integer)]
  11290. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  11291. [(Prim 'vector-ref (list e1 e2))
  11292. (define-values (e1^ t1) (recur e1))
  11293. (define-values (e2^ t2) (recur e2))
  11294. (check-consistent? t2 'Integer e)
  11295. (match t1
  11296. [`(Vector ,ts ...)
  11297. (match e2^
  11298. [(Int i)
  11299. (unless (and (0 . <= . i) (i . < . (length ts)))
  11300. (error 'type-check "invalid index ~a in ~a" i e))
  11301. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  11302. [else (define e1^^ (make-cast e1^ t1 'Any))
  11303. (define e2^^ (make-cast e2^ t2 'Integer))
  11304. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  11305. ['Any
  11306. (define e2^^ (make-cast e2^ t2 'Integer))
  11307. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  11308. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  11309. [(Prim 'vector-set! (list e1 e2 e3) )
  11310. (define-values (e1^ t1) (recur e1))
  11311. (define-values (e2^ t2) (recur e2))
  11312. (define-values (e3^ t3) (recur e3))
  11313. (check-consistent? t2 'Integer e)
  11314. (match t1
  11315. [`(Vector ,ts ...)
  11316. (match e2^
  11317. [(Int i)
  11318. (unless (and (0 . <= . i) (i . < . (length ts)))
  11319. (error 'type-check "invalid index ~a in ~a" i e))
  11320. (check-consistent? (list-ref ts i) t3 e)
  11321. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  11322. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  11323. [else
  11324. (define e1^^ (make-cast e1^ t1 'Any))
  11325. (define e2^^ (make-cast e2^ t2 'Integer))
  11326. (define e3^^ (make-cast e3^ t3 'Any))
  11327. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  11328. ['Any
  11329. (define e2^^ (make-cast e2^ t2 'Integer))
  11330. (define e3^^ (make-cast e3^ t3 'Any))
  11331. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  11332. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  11333. \end{lstlisting}
  11334. \caption{Type checker for the \LangGrad{} language, part 1.}
  11335. \label{fig:type-check-Rgradual-1}
  11336. \end{figure}
  11337. \begin{figure}[tbp]
  11338. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11339. [(Prim 'eq? (list e1 e2))
  11340. (define-values (e1^ t1) (recur e1))
  11341. (define-values (e2^ t2) (recur e2))
  11342. (check-consistent? t1 t2 e)
  11343. (define T (meet t1 t2))
  11344. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  11345. 'Boolean)]
  11346. [(Prim 'not (list e1))
  11347. (define-values (e1^ t1) (recur e1))
  11348. (match t1
  11349. ['Any
  11350. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  11351. (Bool #t) (Bool #f)))]
  11352. [else
  11353. (define-values (t-ret new-es^)
  11354. (type-check-op 'not (list t1) (list e1^) e))
  11355. (values (Prim 'not new-es^) t-ret)])]
  11356. [(Prim 'and (list e1 e2))
  11357. (recur (If e1 e2 (Bool #f)))]
  11358. [(Prim 'or (list e1 e2))
  11359. (define tmp (gensym 'tmp))
  11360. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  11361. [(Prim op es)
  11362. #:when (not (set-member? explicit-prim-ops op))
  11363. (define-values (new-es ts)
  11364. (for/lists (exprs types) ([e es])
  11365. (recur e)))
  11366. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  11367. (values (Prim op new-es^) t-ret)]
  11368. [(If e1 e2 e3)
  11369. (define-values (e1^ T1) (recur e1))
  11370. (define-values (e2^ T2) (recur e2))
  11371. (define-values (e3^ T3) (recur e3))
  11372. (check-consistent? T2 T3 e)
  11373. (match T1
  11374. ['Boolean
  11375. (define Tif (join T2 T3))
  11376. (values (If e1^ (make-cast e2^ T2 Tif)
  11377. (make-cast e3^ T3 Tif)) Tif)]
  11378. ['Any
  11379. (define Tif (meet T2 T3))
  11380. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  11381. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  11382. Tif)]
  11383. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  11384. [(HasType e1 T)
  11385. (define-values (e1^ T1) (recur e1))
  11386. (check-consistent? T1 T)
  11387. (values (make-cast e1^ T1 T) T)]
  11388. [(SetBang x e1)
  11389. (define-values (e1^ T1) (recur e1))
  11390. (define varT (dict-ref env x))
  11391. (check-consistent? T1 varT e)
  11392. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  11393. [(WhileLoop e1 e2)
  11394. (define-values (e1^ T1) (recur e1))
  11395. (check-consistent? T1 'Boolean e)
  11396. (define-values (e2^ T2) ((type-check-exp env) e2))
  11397. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  11398. \end{lstlisting}
  11399. \caption{Type checker for the \LangGrad{} language, part 2.}
  11400. \label{fig:type-check-Rgradual-2}
  11401. \end{figure}
  11402. \begin{figure}[tbp]
  11403. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11404. [(Apply e1 e2s)
  11405. (define-values (e1^ T1) (recur e1))
  11406. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  11407. (match T1
  11408. [`(,T1ps ... -> ,T1rt)
  11409. (for ([T2 T2s] [Tp T1ps])
  11410. (check-consistent? T2 Tp e))
  11411. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  11412. (make-cast e2 src tgt)))
  11413. (values (Apply e1^ e2s^^) T1rt)]
  11414. [`Any
  11415. (define e1^^ (make-cast e1^ 'Any
  11416. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  11417. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  11418. (make-cast e2 src 'Any)))
  11419. (values (Apply e1^^ e2s^^) 'Any)]
  11420. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  11421. [(Lambda params Tr e1)
  11422. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  11423. (match p
  11424. [`[,x : ,T] (values x T)]
  11425. [(? symbol? x) (values x 'Any)])))
  11426. (define-values (e1^ T1)
  11427. ((type-check-exp (append (map cons xs Ts) env)) e1))
  11428. (check-consistent? Tr T1 e)
  11429. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  11430. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  11431. [else ((super type-check-exp env) e)]
  11432. )))
  11433. \end{lstlisting}
  11434. \caption{Type checker for the \LangGrad{} language, part 3.}
  11435. \label{fig:type-check-Rgradual-3}
  11436. \end{figure}
  11437. \begin{figure}[tbp]
  11438. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11439. (define/public (join t1 t2)
  11440. (match* (t1 t2)
  11441. [('Integer 'Integer) 'Integer]
  11442. [('Boolean 'Boolean) 'Boolean]
  11443. [('Void 'Void) 'Void]
  11444. [('Any t2) t2]
  11445. [(t1 'Any) t1]
  11446. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  11447. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  11448. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  11449. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  11450. -> ,(join rt1 rt2))]))
  11451. (define/public (meet t1 t2)
  11452. (match* (t1 t2)
  11453. [('Integer 'Integer) 'Integer]
  11454. [('Boolean 'Boolean) 'Boolean]
  11455. [('Void 'Void) 'Void]
  11456. [('Any t2) 'Any]
  11457. [(t1 'Any) 'Any]
  11458. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  11459. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  11460. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  11461. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  11462. -> ,(meet rt1 rt2))]))
  11463. (define/public (make-cast e src tgt)
  11464. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  11465. (define/public (check-consistent? t1 t2 e)
  11466. (unless (consistent? t1 t2)
  11467. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  11468. (define/override (type-check-op op arg-types args e)
  11469. (match (dict-ref (operator-types) op)
  11470. [`(,param-types . ,return-type)
  11471. (for ([at arg-types] [pt param-types])
  11472. (check-consistent? at pt e))
  11473. (values return-type
  11474. (for/list ([e args] [s arg-types] [t param-types])
  11475. (make-cast e s t)))]
  11476. [else (error 'type-check-op "unrecognized ~a" op)]))
  11477. (define explicit-prim-ops
  11478. (set-union
  11479. (type-predicates)
  11480. (set 'procedure-arity 'eq?
  11481. 'vector 'vector-length 'vector-ref 'vector-set!
  11482. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  11483. (define/override (fun-def-type d)
  11484. (match d
  11485. [(Def f params rt info body)
  11486. (define ps
  11487. (for/list ([p params])
  11488. (match p
  11489. [`[,x : ,T] T]
  11490. [(? symbol?) 'Any]
  11491. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  11492. `(,@ps -> ,rt)]
  11493. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  11494. \end{lstlisting}
  11495. \caption{Auxiliary functions for type checking \LangGrad{}.}
  11496. \label{fig:type-check-Rgradual-aux}
  11497. \end{figure}
  11498. \clearpage
  11499. \section{Interpreting \LangCast{}}
  11500. \label{sec:interp-casts}
  11501. The runtime behavior of first-order casts is straightforward, that is,
  11502. casts involving simple types such as \code{Integer} and
  11503. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  11504. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  11505. puts the integer into a tagged value
  11506. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  11507. \code{Integer} is accomplished with the \code{Project} operator, that
  11508. is, by checking the value's tag and either retrieving the underlying
  11509. integer or signaling an error if it the tag is not the one for
  11510. integers (Figure~\ref{fig:apply-project}).
  11511. %
  11512. Things get more interesting for higher-order casts, that is, casts
  11513. involving function or vector types.
  11514. Consider the cast of the function \code{maybe-add1} from \code{(Any ->
  11515. Any)} to \code{(Integer -> Integer)}. When a function flows through
  11516. this cast at runtime, we can't know in general whether the function
  11517. will always return an integer.\footnote{Predicting the return value of
  11518. a function is equivalent to the halting problem, which is
  11519. undecidable.} The \LangCast{} interpreter therefore delays the checking
  11520. of the cast until the function is applied. This is accomplished by
  11521. wrapping \code{maybe-add1} in a new function that casts its parameter
  11522. from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
  11523. casts the return value from \code{Any} to \code{Integer}.
  11524. Turning our attention to casts involving vector types, we consider the
  11525. example in Figure~\ref{fig:map-vec-bang} that defines a
  11526. partially-typed version of \code{map-vec} whose parameter \code{v} has
  11527. type \code{(Vector Any Any)} and that updates \code{v} in place
  11528. instead of returning a new vector. So we name this function
  11529. \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
  11530. the type checker inserts a cast from \code{(Vector Integer Integer)}
  11531. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  11532. cast between vector types would be a build a new vector whose elements
  11533. are the result of casting each of the original elements to the
  11534. appropriate target type. However, this approach is only valid for
  11535. immutable vectors; and our vectors are mutable. In the example of
  11536. Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
  11537. the updates inside of \code{map-vec!} would happen to the new vector
  11538. and not the original one.
  11539. \begin{figure}[tbp]
  11540. % gradual_test_11.rkt
  11541. \begin{lstlisting}
  11542. (define (map-vec! [f : (Any -> Any)]
  11543. [v : (Vector Any Any)]) : Void
  11544. (begin
  11545. (vector-set! v 0 (f (vector-ref v 0)))
  11546. (vector-set! v 1 (f (vector-ref v 1)))))
  11547. (define (add1 x) (+ x 1))
  11548. (let ([v (vector 0 41)])
  11549. (begin (map-vec! add1 v) (vector-ref v 1)))
  11550. \end{lstlisting}
  11551. \caption{An example involving casts on vectors.}
  11552. \label{fig:map-vec-bang}
  11553. \end{figure}
  11554. Instead the interpreter needs to create a new kind of value, a
  11555. \emph{vector proxy}, that intercepts every vector operation. On a
  11556. read, the proxy reads from the underlying vector and then applies a
  11557. cast to the resulting value. On a write, the proxy casts the argument
  11558. value and then performs the write to the underlying vector. For the
  11559. first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
  11560. \code{0} from \code{Integer} to \code{Any}. For the first
  11561. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  11562. to \code{Integer}.
  11563. The final category of cast that we need to consider are casts between
  11564. the \code{Any} type and either a function or a vector
  11565. type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
  11566. in which parameter \code{v} does not have a type annotation, so it is
  11567. given type \code{Any}. In the call to \code{map-vec!}, the vector has
  11568. type \code{(Vector Integer Integer)} so the type checker inserts a
  11569. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  11570. thought is to use \code{Inject}, but that doesn't work because
  11571. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  11572. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  11573. to \code{Any}.
  11574. \begin{figure}[tbp]
  11575. \begin{lstlisting}
  11576. (define (map-vec! [f : (Any -> Any)] v) : Void
  11577. (begin
  11578. (vector-set! v 0 (f (vector-ref v 0)))
  11579. (vector-set! v 1 (f (vector-ref v 1)))))
  11580. (define (add1 x) (+ x 1))
  11581. (let ([v (vector 0 41)])
  11582. (begin (map-vec! add1 v) (vector-ref v 1)))
  11583. \end{lstlisting}
  11584. \caption{Casting a vector to \code{Any}.}
  11585. \label{fig:map-vec-any}
  11586. \end{figure}
  11587. The \LangCast{} interpreter uses an auxiliary function named
  11588. \code{apply-cast} to cast a value from a source type to a target type,
  11589. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  11590. of the kinds of casts that we've discussed in this section.
  11591. \begin{figure}[tbp]
  11592. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11593. (define/public (apply-cast v s t)
  11594. (match* (s t)
  11595. [(t1 t2) #:when (equal? t1 t2) v]
  11596. [('Any t2)
  11597. (match t2
  11598. [`(,ts ... -> ,rt)
  11599. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  11600. (define v^ (apply-project v any->any))
  11601. (apply-cast v^ any->any `(,@ts -> ,rt))]
  11602. [`(Vector ,ts ...)
  11603. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  11604. (define v^ (apply-project v vec-any))
  11605. (apply-cast v^ vec-any `(Vector ,@ts))]
  11606. [else (apply-project v t2)])]
  11607. [(t1 'Any)
  11608. (match t1
  11609. [`(,ts ... -> ,rt)
  11610. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  11611. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  11612. (apply-inject v^ (any-tag any->any))]
  11613. [`(Vector ,ts ...)
  11614. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  11615. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  11616. (apply-inject v^ (any-tag vec-any))]
  11617. [else (apply-inject v (any-tag t1))])]
  11618. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  11619. (define x (gensym 'x))
  11620. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  11621. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  11622. (define cast-writes
  11623. (for/list ([t1 ts1] [t2 ts2])
  11624. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  11625. `(vector-proxy ,(vector v (apply vector cast-reads)
  11626. (apply vector cast-writes)))]
  11627. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  11628. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  11629. `(function ,xs ,(Cast
  11630. (Apply (Value v)
  11631. (for/list ([x xs][t1 ts1][t2 ts2])
  11632. (Cast (Var x) t2 t1)))
  11633. rt1 rt2) ())]
  11634. ))
  11635. \end{lstlisting}
  11636. \caption{The \code{apply-cast} auxiliary method.}
  11637. \label{fig:apply-cast}
  11638. \end{figure}
  11639. The interpreter for \LangCast{} is defined in
  11640. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  11641. dispatching to \code{apply-cast}. To handle the addition of vector
  11642. proxies, we update the vector primitives in \code{interp-op} using the
  11643. functions in Figure~\ref{fig:guarded-vector}.
  11644. \begin{figure}[tbp]
  11645. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11646. (define interp-Rcast-class
  11647. (class interp-Rwhile-class
  11648. (super-new)
  11649. (inherit apply-fun apply-inject apply-project)
  11650. (define/override (interp-op op)
  11651. (match op
  11652. ['vector-length guarded-vector-length]
  11653. ['vector-ref guarded-vector-ref]
  11654. ['vector-set! guarded-vector-set!]
  11655. ['any-vector-ref (lambda (v i)
  11656. (match v [`(tagged ,v^ ,tg)
  11657. (guarded-vector-ref v^ i)]))]
  11658. ['any-vector-set! (lambda (v i a)
  11659. (match v [`(tagged ,v^ ,tg)
  11660. (guarded-vector-set! v^ i a)]))]
  11661. ['any-vector-length (lambda (v)
  11662. (match v [`(tagged ,v^ ,tg)
  11663. (guarded-vector-length v^)]))]
  11664. [else (super interp-op op)]
  11665. ))
  11666. (define/override ((interp-exp env) e)
  11667. (define (recur e) ((interp-exp env) e))
  11668. (match e
  11669. [(Value v) v]
  11670. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  11671. [else ((super interp-exp env) e)]))
  11672. ))
  11673. (define (interp-Rcast p)
  11674. (send (new interp-Rcast-class) interp-program p))
  11675. \end{lstlisting}
  11676. \caption{The interpreter for \LangCast{}.}
  11677. \label{fig:interp-Rcast}
  11678. \end{figure}
  11679. \begin{figure}[tbp]
  11680. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11681. (define (guarded-vector-ref vec i)
  11682. (match vec
  11683. [`(vector-proxy ,proxy)
  11684. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  11685. (define rd (vector-ref (vector-ref proxy 1) i))
  11686. (apply-fun rd (list val) 'guarded-vector-ref)]
  11687. [else (vector-ref vec i)]))
  11688. (define (guarded-vector-set! vec i arg)
  11689. (match vec
  11690. [`(vector-proxy ,proxy)
  11691. (define wr (vector-ref (vector-ref proxy 2) i))
  11692. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  11693. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  11694. [else (vector-set! vec i arg)]))
  11695. (define (guarded-vector-length vec)
  11696. (match vec
  11697. [`(vector-proxy ,proxy)
  11698. (guarded-vector-length (vector-ref proxy 0))]
  11699. [else (vector-length vec)]))
  11700. \end{lstlisting}
  11701. \caption{The guarded-vector auxiliary functions.}
  11702. \label{fig:guarded-vector}
  11703. \end{figure}
  11704. \section{Lower Casts}
  11705. \label{sec:lower-casts}
  11706. The next step in the journey towards x86 is the \code{lower-casts}
  11707. pass that translates the casts in \LangCast{} to the lower-level
  11708. \code{Inject} and \code{Project} operators and a new operator for
  11709. creating vector proxies, extending the \LangLoop{} language to create
  11710. \LangProxy{}. We recommend creating an auxiliary function named
  11711. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  11712. and a target type, and translates it to expression in \LangProxy{} that has
  11713. the same behavior as casting the expression from the source to the
  11714. target type in the interpreter.
  11715. The \code{lower-cast} function can follow a code structure similar to
  11716. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  11717. the interpreter for \LangCast{} because it must handle the same cases as
  11718. \code{apply-cast} and it needs to mimic the behavior of
  11719. \code{apply-cast}. The most interesting cases are those concerning the
  11720. casts between two vector types and between two function types.
  11721. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  11722. type to another vector type is accomplished by creating a proxy that
  11723. intercepts the operations on the underlying vector. Here we make the
  11724. creation of the proxy explicit with the \code{vector-proxy} primitive
  11725. operation. It takes three arguments, the first is an expression for
  11726. the vector, the second is a vector of functions for casting an element
  11727. that is being read from the vector, and the third is a vector of
  11728. functions for casting an element that is being written to the vector.
  11729. You can create the functions using \code{Lambda}. Also, as we shall
  11730. see in the next section, we need to differentiate these vectors from
  11731. the user-created ones, so we recommend using a new primitive operator
  11732. named \code{raw-vector} instead of \code{vector} to create these
  11733. vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
  11734. the output of \code{lower-casts} on the example in
  11735. Figure~\ref{fig:map-vec-bang} that involved casting a vector of
  11736. integers to a vector of \code{Any}.
  11737. \begin{figure}[tbp]
  11738. \begin{lstlisting}
  11739. (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  11740. (begin
  11741. (vector-set! v 0 (f (vector-ref v 0)))
  11742. (vector-set! v 1 (f (vector-ref v 1)))))
  11743. (define (add1 [x : Any]) : Any
  11744. (inject (+ (project x Integer) 1) Integer))
  11745. (let ([v (vector 0 41)])
  11746. (begin
  11747. (map-vec! add1 (vector-proxy v
  11748. (raw-vector (lambda: ([x9 : Integer]) : Any
  11749. (inject x9 Integer))
  11750. (lambda: ([x9 : Integer]) : Any
  11751. (inject x9 Integer)))
  11752. (raw-vector (lambda: ([x9 : Any]) : Integer
  11753. (project x9 Integer))
  11754. (lambda: ([x9 : Any]) : Integer
  11755. (project x9 Integer)))))
  11756. (vector-ref v 1)))
  11757. \end{lstlisting}
  11758. \caption{Output of \code{lower-casts} on the example in
  11759. Figure~\ref{fig:map-vec-bang}.}
  11760. \label{fig:map-vec-bang-lower-cast}
  11761. \end{figure}
  11762. A cast from one function type to another function type is accomplished
  11763. by generating a \code{Lambda} whose parameter and return types match
  11764. the target function type. The body of the \code{Lambda} should cast
  11765. the parameters from the target type to the source type (yes,
  11766. backwards! functions are contravariant\index{contravariant} in the
  11767. parameters), then call the underlying function, and finally cast the
  11768. result from the source return type to the target return type.
  11769. Figure~\ref{fig:map-vec-lower-cast} shows the output of the
  11770. \code{lower-casts} pass on the \code{map-vec} example in
  11771. Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
  11772. in the call to \code{map-vec} is wrapped in a \code{lambda}.
  11773. \begin{figure}[tbp]
  11774. \begin{lstlisting}
  11775. (define (map-vec [f : (Integer -> Integer)]
  11776. [v : (Vector Integer Integer)])
  11777. : (Vector Integer Integer)
  11778. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11779. (define (add1 [x : Any]) : Any
  11780. (inject (+ (project x Integer) 1) Integer))
  11781. (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
  11782. (project (add1 (inject x9 Integer)) Integer))
  11783. (vector 0 41)) 1)
  11784. \end{lstlisting}
  11785. \caption{Output of \code{lower-casts} on the example in
  11786. Figure~\ref{fig:gradual-map-vec}.}
  11787. \label{fig:map-vec-lower-cast}
  11788. \end{figure}
  11789. \section{Differentiate Proxies}
  11790. \label{sec:differentiate-proxies}
  11791. So far the job of differentiating vectors and vector proxies has been
  11792. the job of the interpreter. For example, the interpreter for \LangCast{}
  11793. implements \code{vector-ref} using the \code{guarded-vector-ref}
  11794. function in Figure~\ref{fig:guarded-vector}. In the
  11795. \code{differentiate-proxies} pass we shift this responsibility to the
  11796. generated code.
  11797. We begin by designing the output language $R^p_8$. In
  11798. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  11799. proxies. In $R^p_8$ we return the \code{Vector} type to
  11800. its original meaning, as the type of real vectors, and we introduce a
  11801. new type, \code{PVector}, whose values can be either real vectors or
  11802. vector proxies. This new type comes with a suite of new primitive
  11803. operations for creating and using values of type \code{PVector}. We
  11804. don't need to introduce a new type to represent vector proxies. A
  11805. proxy is represented by a vector containing three things: 1) the
  11806. underlying vector, 2) a vector of functions for casting elements that
  11807. are read from the vector, and 3) a vector of functions for casting
  11808. values to be written to the vector. So we define the following
  11809. abbreviation for the type of a vector proxy:
  11810. \[
  11811. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  11812. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  11813. \to (\key{PVector}~ T' \ldots)
  11814. \]
  11815. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  11816. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  11817. %
  11818. Next we describe each of the new primitive operations.
  11819. \begin{description}
  11820. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  11821. (\key{PVector} $T \ldots$)]\ \\
  11822. %
  11823. This operation brands a vector as a value of the \code{PVector} type.
  11824. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  11825. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  11826. %
  11827. This operation brands a vector proxy as value of the \code{PVector} type.
  11828. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  11829. \code{Boolean}] \ \\
  11830. %
  11831. returns true if the value is a vector proxy and false if it is a
  11832. real vector.
  11833. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  11834. (\key{Vector} $T \ldots$)]\ \\
  11835. %
  11836. Assuming that the input is a vector (and not a proxy), this
  11837. operation returns the vector.
  11838. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  11839. $\to$ \code{Boolean}]\ \\
  11840. %
  11841. Given a vector proxy, this operation returns the length of the
  11842. underlying vector.
  11843. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  11844. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  11845. %
  11846. Given a vector proxy, this operation returns the $i$th element of
  11847. the underlying vector.
  11848. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  11849. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  11850. proxy, this operation writes a value to the $i$th element of the
  11851. underlying vector.
  11852. \end{description}
  11853. Now to discuss the translation that differentiates vectors from
  11854. proxies. First, every type annotation in the program must be
  11855. translated (recursively) to replace \code{Vector} with \code{PVector}.
  11856. Next, we must insert uses of \code{PVector} operations in the
  11857. appropriate places. For example, we wrap every vector creation with an
  11858. \code{inject-vector}.
  11859. \begin{lstlisting}
  11860. (vector |$e_1 \ldots e_n$|)
  11861. |$\Rightarrow$|
  11862. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  11863. \end{lstlisting}
  11864. The \code{raw-vector} operator that we introduced in the previous
  11865. section does not get injected.
  11866. \begin{lstlisting}
  11867. (raw-vector |$e_1 \ldots e_n$|)
  11868. |$\Rightarrow$|
  11869. (vector |$e'_1 \ldots e'_n$|)
  11870. \end{lstlisting}
  11871. The \code{vector-proxy} primitive translates as follows.
  11872. \begin{lstlisting}
  11873. (vector-proxy |$e_1~e_2~e_3$|)
  11874. |$\Rightarrow$|
  11875. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  11876. \end{lstlisting}
  11877. We translate the vector operations into conditional expressions that
  11878. check whether the value is a proxy and then dispatch to either the
  11879. appropriate proxy vector operation or the regular vector operation.
  11880. For example, the following is the translation for \code{vector-ref}.
  11881. \begin{lstlisting}
  11882. (vector-ref |$e_1$| |$i$|)
  11883. |$\Rightarrow$|
  11884. (let ([|$v~e_1$|])
  11885. (if (proxy? |$v$|)
  11886. (proxy-vector-ref |$v$| |$i$|)
  11887. (vector-ref (project-vector |$v$|) |$i$|)
  11888. \end{lstlisting}
  11889. Note in the case of a real vector, we must apply \code{project-vector}
  11890. before the \code{vector-ref}.
  11891. \section{Reveal Casts}
  11892. \label{sec:reveal-casts-gradual}
  11893. Recall that the \code{reveal-casts} pass
  11894. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  11895. \code{Inject} and \code{Project} into lower-level operations. In
  11896. particular, \code{Project} turns into a conditional expression that
  11897. inspects the tag and retrieves the underlying value. Here we need to
  11898. augment the translation of \code{Project} to handle the situation when
  11899. the target type is \code{PVector}. Instead of using
  11900. \code{vector-length} we need to use \code{proxy-vector-length}.
  11901. \begin{lstlisting}
  11902. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  11903. |$\Rightarrow$|
  11904. (let |$\itm{tmp}$| |$e'$|
  11905. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  11906. (let |$\itm{vec}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  11907. (if (eq? (proxy-vector-length |$\itm{vec}$|) |$n$|) |$\itm{vec}$| (exit)))
  11908. (exit)))
  11909. \end{lstlisting}
  11910. \section{Closure Conversion}
  11911. \label{sec:closure-conversion-gradual}
  11912. The closure conversion pass only requires one minor adjustment. The
  11913. auxiliary function that translates type annotations needs to be
  11914. updated to handle the \code{PVector} type.
  11915. \section{Explicate Control}
  11916. \label{sec:explicate-control-gradual}
  11917. Update the \code{explicate-control} pass to handle the new primitive
  11918. operations on the \code{PVector} type.
  11919. \section{Select Instructions}
  11920. \label{sec:select-instructions-gradual}
  11921. Recall that the \code{select-instructions} pass is responsible for
  11922. lowering the primitive operations into x86 instructions. So we need
  11923. to translate the new \code{PVector} operations to x86. To do so, the
  11924. first question we need to answer is how will we differentiate the two
  11925. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  11926. We need just one bit to accomplish this, and use the bit in position
  11927. $57$ of the 64-bit tag at the front of every vector (see
  11928. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  11929. for \code{inject-vector} we leave it that way.
  11930. \begin{lstlisting}
  11931. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  11932. |$\Rightarrow$|
  11933. movq |$e'_1$|, |$\itm{lhs'}$|
  11934. \end{lstlisting}
  11935. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  11936. \begin{lstlisting}
  11937. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  11938. |$\Rightarrow$|
  11939. movq |$e'_1$|, %r11
  11940. movq |$(1 << 57)$|, %rax
  11941. orq 0(%r11), %rax
  11942. movq %rax, 0(%r11)
  11943. movq %r11, |$\itm{lhs'}$|
  11944. \end{lstlisting}
  11945. The \code{proxy?} operation consumes the information so carefully
  11946. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  11947. isolates the $57$th bit to tell whether the value is a real vector or
  11948. a proxy.
  11949. \begin{lstlisting}
  11950. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  11951. |$\Rightarrow$|
  11952. movq |$e_1'$|, %r11
  11953. movq 0(%r11), %rax
  11954. sarq $57, %rax
  11955. andq $1, %rax
  11956. movq %rax, |$\itm{lhs'}$|
  11957. \end{lstlisting}
  11958. The \code{project-vector} operation is straightforward to translate,
  11959. so we leave it up to the reader.
  11960. Regarding the \code{proxy-vector} operations, the runtime provides
  11961. procedures that implement them (they are recursive functions!) so
  11962. here we simply need to translate these vector operations into the
  11963. appropriate function call. For example, here is the translation for
  11964. \code{proxy-vector-ref}.
  11965. \begin{lstlisting}
  11966. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  11967. |$\Rightarrow$|
  11968. movq |$e_1'$|, %rdi
  11969. movq |$e_2'$|, %rsi
  11970. callq proxy_vector_ref
  11971. movq %rax, |$\itm{lhs'}$|
  11972. \end{lstlisting}
  11973. We have another batch of vector operations to deal with, those for the
  11974. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  11975. \code{any-vector-ref} when there is a \code{vector-ref} on something
  11976. of type \code{Any}, and similarly for \code{any-vector-set!} and
  11977. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  11978. Section~\ref{sec:select-Rany} we selected instructions for these
  11979. operations based on the idea that the underlying value was a real
  11980. vector. But in the current setting, the underlying value is of type
  11981. \code{PVector}. So \code{any-vector-ref} can be translates to
  11982. pseudo-x86 as follows. We begin by projecting the underlying value out
  11983. of the tagged value and then call the \code{proxy\_vector\_ref}
  11984. procedure in the runtime.
  11985. \begin{lstlisting}
  11986. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  11987. movq |$\neg 111$|, %rdi
  11988. andq |$e_1'$|, %rdi
  11989. movq |$e_2'$|, %rsi
  11990. callq proxy_vector_ref
  11991. movq %rax, |$\itm{lhs'}$|
  11992. \end{lstlisting}
  11993. The \code{any-vector-set!} and \code{any-vector-length} operators can
  11994. be translated in a similar way.
  11995. \begin{exercise}\normalfont
  11996. Implement a compiler for the gradually-typed \LangGrad{} language by
  11997. extending and adapting your compiler for \LangLoop{}. Create 10 new
  11998. partially-typed test programs. In addition to testing with these
  11999. new programs, also test your compiler on all the tests for \LangLoop{}
  12000. and tests for \LangDyn{}. Sometimes you may get a type checking error
  12001. on the \LangDyn{} programs but you can adapt them by inserting
  12002. a cast to the \code{Any} type around each subexpression
  12003. causing a type error. While \LangDyn{} doesn't have explicit casts,
  12004. you can induce one by wrapping the subexpression \code{e}
  12005. with a call to an un-annotated identity function, like this:
  12006. \code{((lambda (x) x) e)}.
  12007. \end{exercise}
  12008. \begin{figure}[p]
  12009. \begin{tikzpicture}[baseline=(current bounding box.center)]
  12010. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  12011. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  12012. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  12013. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  12014. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  12015. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  12016. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  12017. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  12018. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  12019. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  12020. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  12021. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  12022. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  12023. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  12024. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  12025. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  12026. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  12027. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  12028. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  12029. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  12030. \path[->,bend right=15] (Rgradual) edge [above] node
  12031. {\ttfamily\footnotesize type-check} (Rgradualp);
  12032. \path[->,bend right=15] (Rgradualp) edge [above] node
  12033. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  12034. \path[->,bend right=15] (Rwhilepp) edge [right] node
  12035. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  12036. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  12037. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  12038. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  12039. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  12040. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  12041. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  12042. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  12043. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  12044. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  12045. {\ttfamily\footnotesize convert-assignments} (F1-1);
  12046. \path[->,bend left=15] (F1-1) edge [below] node
  12047. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  12048. \path[->,bend right=15] (F1-2) edge [above] node
  12049. {\ttfamily\footnotesize limit-fun.} (F1-3);
  12050. \path[->,bend right=15] (F1-3) edge [above] node
  12051. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  12052. \path[->,bend right=15] (F1-4) edge [above] node
  12053. {\ttfamily\footnotesize remove-complex.} (F1-5);
  12054. \path[->,bend right=15] (F1-5) edge [right] node
  12055. {\ttfamily\footnotesize explicate-control} (C3-2);
  12056. \path[->,bend left=15] (C3-2) edge [left] node
  12057. {\ttfamily\footnotesize select-instr.} (x86-2);
  12058. \path[->,bend right=15] (x86-2) edge [left] node
  12059. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  12060. \path[->,bend right=15] (x86-2-1) edge [below] node
  12061. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  12062. \path[->,bend right=15] (x86-2-2) edge [left] node
  12063. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  12064. \path[->,bend left=15] (x86-3) edge [above] node
  12065. {\ttfamily\footnotesize patch-instr.} (x86-4);
  12066. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  12067. \end{tikzpicture}
  12068. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  12069. \label{fig:Rgradual-passes}
  12070. \end{figure}
  12071. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  12072. for the compilation of \LangGrad{}.
  12073. \section{Further Reading}
  12074. This chapter just scratches the surface of gradual typing. The basic
  12075. approach described here is missing two key ingredients that one would
  12076. want in a implementation of gradual typing: blame
  12077. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  12078. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  12079. problem addressed by blame tracking is that when a cast on a
  12080. higher-order value fails, it often does so at a point in the program
  12081. that is far removed from the original cast. Blame tracking is a
  12082. technique for propagating extra information through casts and proxies
  12083. so that when a cast fails, the error message can point back to the
  12084. original location of the cast in the source program.
  12085. The problem addressed by space-efficient casts also relates to
  12086. higher-order casts. It turns out that in partially typed programs, a
  12087. function or vector can flow through very-many casts at runtime. With
  12088. the approach described in this chapter, each cast adds another
  12089. \code{lambda} wrapper or a vector proxy. Not only does this take up
  12090. considerable space, but it also makes the function calls and vector
  12091. operations slow. For example, a partially-typed version of quicksort
  12092. could, in the worst case, build a chain of proxies of length $O(n)$
  12093. around the vector, changing the overall time complexity of the
  12094. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  12095. solution to this problem by representing casts using the coercion
  12096. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  12097. long chains of proxies by compressing them into a concise normal
  12098. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  12099. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  12100. the Grift compiler.
  12101. \begin{center}
  12102. \url{https://github.com/Gradual-Typing/Grift}
  12103. \end{center}
  12104. There are also interesting interactions between gradual typing and
  12105. other language features, such as parametetric polymorphism,
  12106. information-flow types, and type inference, to name a few. We
  12107. recommend the reader to the online gradual typing bibliography:
  12108. \begin{center}
  12109. \url{http://samth.github.io/gradual-typing-bib/}
  12110. \end{center}
  12111. % TODO: challenge problem:
  12112. % type analysis and type specialization?
  12113. % coercions?
  12114. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12115. \chapter{Parametric Polymorphism}
  12116. \label{ch:Rpoly}
  12117. \index{parametric polymorphism}
  12118. \index{generics}
  12119. This chapter studies the compilation of parametric
  12120. polymorphism\index{parametric polymorphism}
  12121. (aka. generics\index{generics}) in the subset \LangPoly{} of Typed
  12122. Racket. Parametric polymorphism enables improved code reuse by
  12123. parameterizing functions and data structures with respect to the types
  12124. that they operate on. For example, Figure~\ref{fig:map-vec-poly}
  12125. revisits the \code{map-vec} example but this time gives it a more
  12126. fitting type. This \code{map-vec} function is parameterized with
  12127. respect to the element type of the vector. The type of \code{map-vec}
  12128. is the following polymorphic type as specified by the \code{All} and
  12129. the type parameter \code{a}.
  12130. \begin{lstlisting}
  12131. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  12132. \end{lstlisting}
  12133. The idea is that \code{map-vec} can be used at \emph{all} choices of a
  12134. type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
  12135. \code{map-vec} to a vector of integers, a choice of \code{Integer} for
  12136. \code{a}, but we could have just as well applied \code{map-vec} to a
  12137. vector of Booleans (and a function on Booleans).
  12138. \begin{figure}[tbp]
  12139. % poly_test_2.rkt
  12140. \begin{lstlisting}
  12141. (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  12142. (define (map-vec f v)
  12143. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12144. (define (add1 [x : Integer]) : Integer (+ x 1))
  12145. (vector-ref (map-vec add1 (vector 0 41)) 1)
  12146. \end{lstlisting}
  12147. \caption{The \code{map-vec} example using parametric polymorphism.}
  12148. \label{fig:map-vec-poly}
  12149. \end{figure}
  12150. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  12151. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  12152. syntax. We add a second form for function definitions in which a type
  12153. declaration comes before the \code{define}. In the abstract syntax,
  12154. the return type in the \code{Def} is \code{Any}, but that should be
  12155. ignored in favor of the return type in the type declaration. (The
  12156. \code{Any} comes from using the same parser as in
  12157. Chapter~\ref{ch:Rdyn}.) The presence of a type declaration
  12158. enables the use of an \code{All} type for a function, thereby making
  12159. it polymorphic. The grammar for types is extended to include
  12160. polymorphic types and type variables.
  12161. \begin{figure}[tp]
  12162. \centering
  12163. \fbox{
  12164. \begin{minipage}{0.96\textwidth}
  12165. \small
  12166. \[
  12167. \begin{array}{lcl}
  12168. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  12169. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  12170. &\mid& \LP\key{:}~\Var~\Type\RP \\
  12171. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  12172. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  12173. \end{array}
  12174. \]
  12175. \end{minipage}
  12176. }
  12177. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  12178. (Figure~\ref{fig:Rwhile-concrete-syntax}).}
  12179. \label{fig:Rpoly-concrete-syntax}
  12180. \end{figure}
  12181. \begin{figure}[tp]
  12182. \centering
  12183. \fbox{
  12184. \begin{minipage}{0.96\textwidth}
  12185. \small
  12186. \[
  12187. \begin{array}{lcl}
  12188. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  12189. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  12190. &\mid& \DECL{\Var}{\Type} \\
  12191. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  12192. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  12193. \end{array}
  12194. \]
  12195. \end{minipage}
  12196. }
  12197. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  12198. (Figure~\ref{fig:Rwhile-syntax}).}
  12199. \label{fig:Rpoly-syntax}
  12200. \end{figure}
  12201. By including polymorphic types in the $\Type$ non-terminal we choose
  12202. to make them first-class which has interesting repercussions on the
  12203. compiler. Many languages with polymorphism, such as
  12204. C++~\citep{stroustrup88:_param_types} and Standard
  12205. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  12206. it is useful to see an example of first-class polymorphism. In
  12207. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  12208. whose parameter is a polymorphic function. The occurrence of a
  12209. polymorphic type underneath a function type is enabled by the normal
  12210. recursive structure of the grammar for $\Type$ and the categorization
  12211. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  12212. applies the polymorphic function to a Boolean and to an integer.
  12213. \begin{figure}[tbp]
  12214. \begin{lstlisting}
  12215. (: apply-twice ((All (b) (b -> b)) -> Integer))
  12216. (define (apply-twice f)
  12217. (if (f #t) (f 42) (f 777)))
  12218. (: id (All (a) (a -> a)))
  12219. (define (id x) x)
  12220. (apply-twice id)
  12221. \end{lstlisting}
  12222. \caption{An example illustrating first-class polymorphism.}
  12223. \label{fig:apply-twice}
  12224. \end{figure}
  12225. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Rvar0} has
  12226. three new responsibilities (compared to \LangLoop{}). The type checking of
  12227. function application is extended to handle the case where the operator
  12228. expression is a polymorphic function. In that case the type arguments
  12229. are deduced by matching the type of the parameters with the types of
  12230. the arguments.
  12231. %
  12232. The \code{match-types} auxiliary function carries out this deduction
  12233. by recursively descending through a parameter type \code{pt} and the
  12234. corresponding argument type \code{at}, making sure that they are equal
  12235. except when there is a type parameter on the left (in the parameter
  12236. type). If it's the first time that the type parameter has been
  12237. encountered, then the algorithm deduces an association of the type
  12238. parameter to the corresponding type on the right (in the argument
  12239. type). If it's not the first time that the type parameter has been
  12240. encountered, the algorithm looks up its deduced type and makes sure
  12241. that it is equal to the type on the right.
  12242. %
  12243. Once the type arguments are deduced, the operator expression is
  12244. wrapped in an \code{Inst} AST node (for instantiate) that records the
  12245. type of the operator, but more importantly, records the deduced type
  12246. arguments. The return type of the application is the return type of
  12247. the polymorphic function, but with the type parameters replaced by the
  12248. deduced type arguments, using the \code{subst-type} function.
  12249. The second responsibility of the type checker is extending the
  12250. function \code{type-equal?} to handle the \code{All} type. This is
  12251. not quite a simple as equal on other types, such as function and
  12252. vector types, because two polymorphic types can be syntactically
  12253. different even though they are equivalent types. For example,
  12254. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  12255. Two polymorphic types should be considered equal if they differ only
  12256. in the choice of the names of the type parameters. The
  12257. \code{type-equal?} function in Figure~\ref{fig:type-check-Rvar0-aux}
  12258. renames the type parameters of the first type to match the type
  12259. parameters of the second type.
  12260. The third responsibility of the type checker is making sure that only
  12261. defined type variables appear in type annotations. The
  12262. \code{check-well-formed} function defined in
  12263. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  12264. sure that each type variable has been defined.
  12265. The output language of the type checker is \LangInst{}, defined in
  12266. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  12267. declaration and polymorphic function into a single definition, using
  12268. the \code{Poly} form, to make polymorphic functions more convenient to
  12269. process in next pass of the compiler.
  12270. \begin{figure}[tp]
  12271. \centering
  12272. \fbox{
  12273. \begin{minipage}{0.96\textwidth}
  12274. \small
  12275. \[
  12276. \begin{array}{lcl}
  12277. \Type &::=& \ldots \mid \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \mid \Var \\
  12278. \Exp &::=& \ldots \mid \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  12279. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  12280. &\mid& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  12281. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  12282. \end{array}
  12283. \]
  12284. \end{minipage}
  12285. }
  12286. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  12287. (Figure~\ref{fig:Rwhile-syntax}).}
  12288. \label{fig:Rpoly-prime-syntax}
  12289. \end{figure}
  12290. The output of the type checker on the polymorphic \code{map-vec}
  12291. example is listed in Figure~\ref{fig:map-vec-type-check}.
  12292. \begin{figure}[tbp]
  12293. % poly_test_2.rkt
  12294. \begin{lstlisting}
  12295. (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  12296. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  12297. (define (add1 [x : Integer]) : Integer (+ x 1))
  12298. (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  12299. (Integer))
  12300. add1 (vector 0 41)) 1)
  12301. \end{lstlisting}
  12302. \caption{Output of the type checker on the \code{map-vec} example.}
  12303. \label{fig:map-vec-type-check}
  12304. \end{figure}
  12305. \begin{figure}[tbp]
  12306. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12307. (define type-check-poly-class
  12308. (class type-check-Rwhile-class
  12309. (super-new)
  12310. (inherit check-type-equal?)
  12311. (define/override (type-check-apply env e1 es)
  12312. (define-values (e^ ty) ((type-check-exp env) e1))
  12313. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  12314. ((type-check-exp env) e)))
  12315. (match ty
  12316. [`(,ty^* ... -> ,rt)
  12317. (for ([arg-ty ty*] [param-ty ty^*])
  12318. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  12319. (values e^ es^ rt)]
  12320. [`(All ,xs (,tys ... -> ,rt))
  12321. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  12322. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  12323. (match-types env^^ param-ty arg-ty)))
  12324. (define targs
  12325. (for/list ([x xs])
  12326. (match (dict-ref env^^ x (lambda () #f))
  12327. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  12328. x (Apply e1 es))]
  12329. [ty ty])))
  12330. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  12331. [else (error 'type-check "expected a function, not ~a" ty)]))
  12332. (define/override ((type-check-exp env) e)
  12333. (match e
  12334. [(Lambda `([,xs : ,Ts] ...) rT body)
  12335. (for ([T Ts]) ((check-well-formed env) T))
  12336. ((check-well-formed env) rT)
  12337. ((super type-check-exp env) e)]
  12338. [(HasType e1 ty)
  12339. ((check-well-formed env) ty)
  12340. ((super type-check-exp env) e)]
  12341. [else ((super type-check-exp env) e)]))
  12342. (define/override ((type-check-def env) d)
  12343. (verbose 'type-check "poly/def" d)
  12344. (match d
  12345. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  12346. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  12347. (for ([p ps]) ((check-well-formed ts-env) p))
  12348. ((check-well-formed ts-env) rt)
  12349. (define new-env (append ts-env (map cons xs ps) env))
  12350. (define-values (body^ ty^) ((type-check-exp new-env) body))
  12351. (check-type-equal? ty^ rt body)
  12352. (Generic ts (Def f p:t* rt info body^))]
  12353. [else ((super type-check-def env) d)]))
  12354. (define/override (type-check-program p)
  12355. (match p
  12356. [(Program info body)
  12357. (type-check-program (ProgramDefsExp info '() body))]
  12358. [(ProgramDefsExp info ds body)
  12359. (define ds^ (combine-decls-defs ds))
  12360. (define new-env (for/list ([d ds^])
  12361. (cons (def-name d) (fun-def-type d))))
  12362. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  12363. (define-values (body^ ty) ((type-check-exp new-env) body))
  12364. (check-type-equal? ty 'Integer body)
  12365. (ProgramDefsExp info ds^^ body^)]))
  12366. ))
  12367. \end{lstlisting}
  12368. \caption{Type checker for the \LangPoly{} language.}
  12369. \label{fig:type-check-Rvar0}
  12370. \end{figure}
  12371. \begin{figure}[tbp]
  12372. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12373. (define/override (type-equal? t1 t2)
  12374. (match* (t1 t2)
  12375. [(`(All ,xs ,T1) `(All ,ys ,T2))
  12376. (define env (map cons xs ys))
  12377. (type-equal? (subst-type env T1) T2)]
  12378. [(other wise)
  12379. (super type-equal? t1 t2)]))
  12380. (define/public (match-types env pt at)
  12381. (match* (pt at)
  12382. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  12383. [('Void 'Void) env] [('Any 'Any) env]
  12384. [(`(Vector ,pts ...) `(Vector ,ats ...))
  12385. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  12386. (match-types env^ pt1 at1))]
  12387. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  12388. (define env^ (match-types env prt art))
  12389. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  12390. (match-types env^^ pt1 at1))]
  12391. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  12392. (define env^ (append (map cons pxs axs) env))
  12393. (match-types env^ pt1 at1)]
  12394. [((? symbol? x) at)
  12395. (match (dict-ref env x (lambda () #f))
  12396. [#f (error 'type-check "undefined type variable ~a" x)]
  12397. ['Type (cons (cons x at) env)]
  12398. [t^ (check-type-equal? at t^ 'matching) env])]
  12399. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  12400. (define/public (subst-type env pt)
  12401. (match pt
  12402. ['Integer 'Integer] ['Boolean 'Boolean]
  12403. ['Void 'Void] ['Any 'Any]
  12404. [`(Vector ,ts ...)
  12405. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  12406. [`(,ts ... -> ,rt)
  12407. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  12408. [`(All ,xs ,t)
  12409. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  12410. [(? symbol? x) (dict-ref env x)]
  12411. [else (error 'type-check "expected a type not ~a" pt)]))
  12412. (define/public (combine-decls-defs ds)
  12413. (match ds
  12414. ['() '()]
  12415. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  12416. (unless (equal? name f)
  12417. (error 'type-check "name mismatch, ~a != ~a" name f))
  12418. (match type
  12419. [`(All ,xs (,ps ... -> ,rt))
  12420. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  12421. (cons (Generic xs (Def name params^ rt info body))
  12422. (combine-decls-defs ds^))]
  12423. [`(,ps ... -> ,rt)
  12424. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  12425. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  12426. [else (error 'type-check "expected a function type, not ~a" type) ])]
  12427. [`(,(Def f params rt info body) . ,ds^)
  12428. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  12429. \end{lstlisting}
  12430. \caption{Auxiliary functions for type checking \LangPoly{}.}
  12431. \label{fig:type-check-Rvar0-aux}
  12432. \end{figure}
  12433. \begin{figure}[tbp]
  12434. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  12435. (define/public ((check-well-formed env) ty)
  12436. (match ty
  12437. ['Integer (void)]
  12438. ['Boolean (void)]
  12439. ['Void (void)]
  12440. [(? symbol? a)
  12441. (match (dict-ref env a (lambda () #f))
  12442. ['Type (void)]
  12443. [else (error 'type-check "undefined type variable ~a" a)])]
  12444. [`(Vector ,ts ...)
  12445. (for ([t ts]) ((check-well-formed env) t))]
  12446. [`(,ts ... -> ,t)
  12447. (for ([t ts]) ((check-well-formed env) t))
  12448. ((check-well-formed env) t)]
  12449. [`(All ,xs ,t)
  12450. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  12451. ((check-well-formed env^) t)]
  12452. [else (error 'type-check "unrecognized type ~a" ty)]))
  12453. \end{lstlisting}
  12454. \caption{Well-formed types.}
  12455. \label{fig:well-formed-types}
  12456. \end{figure}
  12457. % TODO: interpreter for R'_10
  12458. \section{Compiling Polymorphism}
  12459. \label{sec:compiling-poly}
  12460. Broadly speaking, there are four approaches to compiling parametric
  12461. polymorphism, which we describe below.
  12462. \begin{description}
  12463. \item[Monomorphization] generates a different version of a polymorphic
  12464. function for each set of type arguments that it is used with,
  12465. producing type-specialized code. This approach results in the most
  12466. efficient code but requires whole-program compilation (no separate
  12467. compilation) and increases code size. For our current purposes
  12468. monomorphization is a non-starter because, with first-class
  12469. polymorphism, it is sometimes not possible to determine which
  12470. generic functions are used with which type arguments during
  12471. compilation. (It can be done at runtime, with just-in-time
  12472. compilation.) This approach is used to compile C++
  12473. templates~\citep{stroustrup88:_param_types} and polymorphic
  12474. functions in NESL~\citep{Blelloch:1993aa} and
  12475. ML~\citep{Weeks:2006aa}.
  12476. \item[Uniform representation] generates one version of each
  12477. polymorphic function but requires all values have a common ``boxed''
  12478. format, such as the tagged values of type \code{Any} in
  12479. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  12480. similarly to code in a dynamically typed language (like \LangDyn{}),
  12481. in which primitive operators require their arguments to be projected
  12482. from \code{Any} and their results are injected into \code{Any}. (In
  12483. object-oriented languages, the projection is accomplished via
  12484. virtual method dispatch.) The uniform representation approach is
  12485. compatible with separate compilation and with first-class
  12486. polymorphism. However, it produces the least-efficient code because
  12487. it introduces overhead in the entire program, including
  12488. non-polymorphic code. This approach is used in implementations of
  12489. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  12490. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  12491. Java~\citep{Bracha:1998fk}.
  12492. \item[Mixed representation] generates one version of each polymorphic
  12493. function, using a boxed representation for type
  12494. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  12495. and conversions are performed at the boundaries between monomorphic
  12496. and polymorphic (e.g. when a polymorphic function is instantiated
  12497. and called). This approach is compatible with separate compilation
  12498. and first-class polymorphism and maintains the efficiency of
  12499. monomorphic code. The tradeoff is increased overhead at the boundary
  12500. between monomorphic and polymorphic code. This approach is used in
  12501. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  12502. Java 5 with the addition of autoboxing.
  12503. \item[Type passing] uses the unboxed representation in both
  12504. monomorphic and polymorphic code. Each polymorphic function is
  12505. compiled to a single function with extra parameters that describe
  12506. the type arguments. The type information is used by the generated
  12507. code to know how to access the unboxed values at runtime. This
  12508. approach is used in implementation of the Napier88
  12509. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  12510. passing is compatible with separate compilation and first-class
  12511. polymorphism and maintains the efficiency for monomorphic
  12512. code. There is runtime overhead in polymorphic code from dispatching
  12513. on type information.
  12514. \end{description}
  12515. In this chapter we use the mixed representation approach, partly
  12516. because of its favorable attributes, and partly because it is
  12517. straightforward to implement using the tools that we have already
  12518. built to support gradual typing. To compile polymorphic functions, we
  12519. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  12520. \LangCast{}.
  12521. \section{Erase Types}
  12522. \label{sec:erase-types}
  12523. We use the \code{Any} type from Chapter~\ref{ch:Rdyn} to
  12524. represent type variables. For example, Figure~\ref{fig:map-vec-erase}
  12525. shows the output of the \code{erase-types} pass on the polymorphic
  12526. \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
  12527. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  12528. \code{All} types are removed from the type of \code{map-vec}.
  12529. \begin{figure}[tbp]
  12530. \begin{lstlisting}
  12531. (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
  12532. : (Vector Any Any)
  12533. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  12534. (define (add1 [x : Integer]) : Integer (+ x 1))
  12535. (vector-ref ((cast map-vec
  12536. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  12537. ((Integer -> Integer) (Vector Integer Integer)
  12538. -> (Vector Integer Integer)))
  12539. add1 (vector 0 41)) 1)
  12540. \end{lstlisting}
  12541. \caption{The polymorphic \code{map-vec} example after type erasure.}
  12542. \label{fig:map-vec-erase}
  12543. \end{figure}
  12544. This process of type erasure creates a challenge at points of
  12545. instantiation. For example, consider the instantiation of
  12546. \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
  12547. The type of \code{map-vec} is
  12548. \begin{lstlisting}
  12549. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  12550. \end{lstlisting}
  12551. and it is instantiated to
  12552. \begin{lstlisting}
  12553. ((Integer -> Integer) (Vector Integer Integer)
  12554. -> (Vector Integer Integer))
  12555. \end{lstlisting}
  12556. After erasure, the type of \code{map-vec} is
  12557. \begin{lstlisting}
  12558. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  12559. \end{lstlisting}
  12560. but we need to convert it to the instantiated type. This is easy to
  12561. do in the target language \LangCast{} with a single \code{cast}. In
  12562. Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
  12563. has been compiled to a \code{cast} from the type of \code{map-vec} to
  12564. the instantiated type. The source and target type of a cast must be
  12565. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  12566. because both the source and target are obtained from the same
  12567. polymorphic type of \code{map-vec}, replacing the type parameters with
  12568. \code{Any} in the former and with the deduced type arguments in the
  12569. later. (Recall that the \code{Any} type is consistent with any type.)
  12570. To implement the \code{erase-types} pass, we recommend defining a
  12571. recursive auxiliary function named \code{erase-type} that applies the
  12572. following two transformations. It replaces type variables with
  12573. \code{Any}
  12574. \begin{lstlisting}
  12575. |$x$|
  12576. |$\Rightarrow$|
  12577. Any
  12578. \end{lstlisting}
  12579. and it removes the polymorphic \code{All} types.
  12580. \begin{lstlisting}
  12581. (All |$xs$| |$T_1$|)
  12582. |$\Rightarrow$|
  12583. |$T'_1$|
  12584. \end{lstlisting}
  12585. Apply the \code{erase-type} function to all of the type annotations in
  12586. the program.
  12587. Regarding the translation of expressions, the case for \code{Inst} is
  12588. the interesting one. We translate it into a \code{Cast}, as shown
  12589. below. The type of the subexpression $e$ is the polymorphic type
  12590. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  12591. $T$, the type $T'$. The target type $T''$ is the result of
  12592. substituting the arguments types $ts$ for the type parameters $xs$ in
  12593. $T$ followed by doing type erasure.
  12594. \begin{lstlisting}
  12595. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  12596. |$\Rightarrow$|
  12597. (Cast |$e'$| |$T'$| |$T''$|)
  12598. \end{lstlisting}
  12599. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  12600. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  12601. Finally, each polymorphic function is translated to a regular
  12602. functions in which type erasure has been applied to all the type
  12603. annotations and the body.
  12604. \begin{lstlisting}
  12605. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  12606. |$\Rightarrow$|
  12607. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  12608. \end{lstlisting}
  12609. \begin{exercise}\normalfont
  12610. Implement a compiler for the polymorphic language \LangPoly{} by
  12611. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  12612. programs that use polymorphic functions. Some of them should make
  12613. use of first-class polymorphism.
  12614. \end{exercise}
  12615. \begin{figure}[p]
  12616. \begin{tikzpicture}[baseline=(current bounding box.center)]
  12617. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  12618. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  12619. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  12620. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  12621. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  12622. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  12623. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  12624. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  12625. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  12626. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  12627. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  12628. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  12629. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  12630. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  12631. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  12632. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  12633. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  12634. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  12635. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  12636. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  12637. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  12638. \path[->,bend right=15] (Rpoly) edge [above] node
  12639. {\ttfamily\footnotesize type-check} (Rpolyp);
  12640. \path[->,bend right=15] (Rpolyp) edge [above] node
  12641. {\ttfamily\footnotesize erase-types} (Rgradualp);
  12642. \path[->,bend right=15] (Rgradualp) edge [above] node
  12643. {\ttfamily\footnotesize lower-casts} (Rwhilepp);
  12644. \path[->,bend right=15] (Rwhilepp) edge [right] node
  12645. {\ttfamily\footnotesize differentiate-proxies} (Rwhileproxy);
  12646. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  12647. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  12648. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  12649. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  12650. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  12651. {\ttfamily\footnotesize reveal-functions} (Rwhileproxy-4);
  12652. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  12653. {\ttfamily\footnotesize reveal-casts} (Rwhileproxy-5);
  12654. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  12655. {\ttfamily\footnotesize convert-assignments} (F1-1);
  12656. \path[->,bend left=15] (F1-1) edge [below] node
  12657. {\ttfamily\footnotesize convert-to-clos.} (F1-2);
  12658. \path[->,bend right=15] (F1-2) edge [above] node
  12659. {\ttfamily\footnotesize limit-fun.} (F1-3);
  12660. \path[->,bend right=15] (F1-3) edge [above] node
  12661. {\ttfamily\footnotesize expose-alloc.} (F1-4);
  12662. \path[->,bend right=15] (F1-4) edge [above] node
  12663. {\ttfamily\footnotesize remove-complex.} (F1-5);
  12664. \path[->,bend right=15] (F1-5) edge [right] node
  12665. {\ttfamily\footnotesize explicate-control} (C3-2);
  12666. \path[->,bend left=15] (C3-2) edge [left] node
  12667. {\ttfamily\footnotesize select-instr.} (x86-2);
  12668. \path[->,bend right=15] (x86-2) edge [left] node
  12669. {\ttfamily\footnotesize uncover-live} (x86-2-1);
  12670. \path[->,bend right=15] (x86-2-1) edge [below] node
  12671. {\ttfamily\footnotesize build-inter.} (x86-2-2);
  12672. \path[->,bend right=15] (x86-2-2) edge [left] node
  12673. {\ttfamily\footnotesize allocate-reg.} (x86-3);
  12674. \path[->,bend left=15] (x86-3) edge [above] node
  12675. {\ttfamily\footnotesize patch-instr.} (x86-4);
  12676. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  12677. \end{tikzpicture}
  12678. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  12679. \label{fig:Rpoly-passes}
  12680. \end{figure}
  12681. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  12682. for the compilation of \LangPoly{}.
  12683. % TODO: challenge problem: specialization of instantiations
  12684. % Further Reading
  12685. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12686. \chapter{Appendix}
  12687. \section{Interpreters}
  12688. \label{appendix:interp}
  12689. \index{interpreter}
  12690. We provide interpreters for each of the source languages \LangInt{},
  12691. \LangVar{}, $\ldots$ in the files \code{interp-Rint.rkt},
  12692. \code{interp-Rvar.rkt}, etc. The interpreters for the intermediate
  12693. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  12694. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  12695. and x86 are in the \key{interp.rkt} file.
  12696. \section{Utility Functions}
  12697. \label{appendix:utilities}
  12698. The utility functions described in this section are in the
  12699. \key{utilities.rkt} file of the support code.
  12700. \paragraph{\code{interp-tests}}
  12701. The \key{interp-tests} function runs the compiler passes and the
  12702. interpreters on each of the specified tests to check whether each pass
  12703. is correct. The \key{interp-tests} function has the following
  12704. parameters:
  12705. \begin{description}
  12706. \item[name (a string)] a name to identify the compiler,
  12707. \item[typechecker] a function of exactly one argument that either
  12708. raises an error using the \code{error} function when it encounters a
  12709. type error, or returns \code{\#f} when it encounters a type
  12710. error. If there is no type error, the type checker returns the
  12711. program.
  12712. \item[passes] a list with one entry per pass. An entry is a list with
  12713. four things:
  12714. \begin{enumerate}
  12715. \item a string giving the name of the pass,
  12716. \item the function that implements the pass (a translator from AST
  12717. to AST),
  12718. \item a function that implements the interpreter (a function from
  12719. AST to result value) for the output language,
  12720. \item and a type checker for the output language. Type checkers for
  12721. the $R$ and $C$ languages are provided in the support code. For
  12722. example, the type checkers for \LangVar{} and \LangCVar{} are in
  12723. \code{type-check-Rvar.rkt} and \code{type-check-Cvar.rkt}. The
  12724. type checker entry is optional. The support code does not provide
  12725. type checkers for the x86 languages.
  12726. \end{enumerate}
  12727. \item[source-interp] an interpreter for the source language. The
  12728. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  12729. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  12730. \item[tests] a list of test numbers that specifies which tests to
  12731. run. (see below)
  12732. \end{description}
  12733. %
  12734. The \key{interp-tests} function assumes that the subdirectory
  12735. \key{tests} has a collection of Racket programs whose names all start
  12736. with the family name, followed by an underscore and then the test
  12737. number, ending with the file extension \key{.rkt}. Also, for each test
  12738. program that calls \code{read} one or more times, there is a file with
  12739. the same name except that the file extension is \key{.in} that
  12740. provides the input for the Racket program. If the test program is
  12741. expected to fail type checking, then there should be an empty file of
  12742. the same name but with extension \key{.tyerr}.
  12743. \paragraph{\code{compiler-tests}}
  12744. runs the compiler passes to generate x86 (a \key{.s} file) and then
  12745. runs the GNU C compiler (gcc) to generate machine code. It runs the
  12746. machine code and checks that the output is $42$. The parameters to the
  12747. \code{compiler-tests} function are similar to those of the
  12748. \code{interp-tests} function, and consist of
  12749. \begin{itemize}
  12750. \item a compiler name (a string),
  12751. \item a type checker,
  12752. \item description of the passes,
  12753. \item name of a test-family, and
  12754. \item a list of test numbers.
  12755. \end{itemize}
  12756. \paragraph{\code{compile-file}}
  12757. takes a description of the compiler passes (see the comment for
  12758. \key{interp-tests}) and returns a function that, given a program file
  12759. name (a string ending in \key{.rkt}), applies all of the passes and
  12760. writes the output to a file whose name is the same as the program file
  12761. name but with \key{.rkt} replaced with \key{.s}.
  12762. \paragraph{\code{read-program}}
  12763. takes a file path and parses that file (it must be a Racket program)
  12764. into an abstract syntax tree.
  12765. \paragraph{\code{parse-program}}
  12766. takes an S-expression representation of an abstract syntax tree and converts it into
  12767. the struct-based representation.
  12768. \paragraph{\code{assert}}
  12769. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  12770. and displays the message \key{msg} if the Boolean \key{bool} is false.
  12771. \paragraph{\code{lookup}}
  12772. % remove discussion of lookup? -Jeremy
  12773. takes a key and an alist, and returns the first value that is
  12774. associated with the given key, if there is one. If not, an error is
  12775. triggered. The alist may contain both immutable pairs (built with
  12776. \key{cons}) and mutable pairs (built with \key{mcons}).
  12777. %The \key{map2} function ...
  12778. \section{x86 Instruction Set Quick-Reference}
  12779. \label{sec:x86-quick-reference}
  12780. \index{x86}
  12781. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  12782. do. We write $A \to B$ to mean that the value of $A$ is written into
  12783. location $B$. Address offsets are given in bytes. The instruction
  12784. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  12785. registers (such as \code{\%rax}), or memory references (such as
  12786. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  12787. reference per instruction. Other operands must be immediates or
  12788. registers.
  12789. \begin{table}[tbp]
  12790. \centering
  12791. \begin{tabular}{l|l}
  12792. \textbf{Instruction} & \textbf{Operation} \\ \hline
  12793. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  12794. \texttt{negq} $A$ & $- A \to A$ \\
  12795. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  12796. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  12797. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  12798. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  12799. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  12800. \texttt{retq} & Pops the return address and jumps to it \\
  12801. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  12802. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  12803. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  12804. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  12805. be an immediate) \\
  12806. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  12807. matches the condition code of the instruction, otherwise go to the
  12808. next instructions. The condition codes are \key{e} for ``equal'',
  12809. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  12810. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  12811. \texttt{jl} $L$ & \\
  12812. \texttt{jle} $L$ & \\
  12813. \texttt{jg} $L$ & \\
  12814. \texttt{jge} $L$ & \\
  12815. \texttt{jmp} $L$ & Jump to label $L$ \\
  12816. \texttt{movq} $A$, $B$ & $A \to B$ \\
  12817. \texttt{movzbq} $A$, $B$ &
  12818. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  12819. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  12820. and the extra bytes of $B$ are set to zero.} \\
  12821. & \\
  12822. & \\
  12823. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  12824. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  12825. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  12826. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  12827. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  12828. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  12829. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  12830. description of the condition codes. $A$ must be a single byte register
  12831. (e.g., \texttt{al} or \texttt{cl}).} \\
  12832. \texttt{setl} $A$ & \\
  12833. \texttt{setle} $A$ & \\
  12834. \texttt{setg} $A$ & \\
  12835. \texttt{setge} $A$ &
  12836. \end{tabular}
  12837. \vspace{5pt}
  12838. \caption{Quick-reference for the x86 instructions used in this book.}
  12839. \label{tab:x86-instr}
  12840. \end{table}
  12841. \cleardoublepage
  12842. \section{Concrete Syntax for Intermediate Languages}
  12843. The concrete syntax of \LangAny{} is defined in
  12844. Figure~\ref{fig:Rany-concrete-syntax}.
  12845. \begin{figure}[tp]
  12846. \centering
  12847. \fbox{
  12848. \begin{minipage}{0.97\textwidth}\small
  12849. \[
  12850. \begin{array}{lcl}
  12851. \Type &::=& \gray{\key{Integer} \mid \key{Boolean}
  12852. \mid \LP\key{Vector}\;\Type\ldots\RP \mid \key{Void}} \\
  12853. &\mid& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \mid \key{Any} \\
  12854. \FType &::=& \key{Integer} \mid \key{Boolean} \mid \key{Void}
  12855. \mid \LP\key{Vector}\; \key{Any}\ldots\RP \\
  12856. &\mid& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  12857. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \mid \CPROJECT{\Exp}{\FType}\\
  12858. &\mid& \LP\key{any-vector-length}\;\Exp\RP
  12859. \mid \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  12860. &\mid& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  12861. &\mid& \LP\key{boolean?}\;\Exp\RP \mid \LP\key{integer?}\;\Exp\RP
  12862. \mid \LP\key{void?}\;\Exp\RP \\
  12863. &\mid& \LP\key{vector?}\;\Exp\RP \mid \LP\key{procedure?}\;\Exp\RP \\
  12864. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  12865. \LangAny{} &::=& \gray{\Def\ldots \; \Exp}
  12866. \end{array}
  12867. \]
  12868. \end{minipage}
  12869. }
  12870. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  12871. (Figure~\ref{fig:Rlam-syntax}).}
  12872. \label{fig:Rany-concrete-syntax}
  12873. \end{figure}
  12874. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  12875. defined in Figures~\ref{fig:c0-concrete-syntax},
  12876. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  12877. and \ref{fig:c3-concrete-syntax}, respectively.
  12878. \begin{figure}[tbp]
  12879. \fbox{
  12880. \begin{minipage}{0.96\textwidth}
  12881. \[
  12882. \begin{array}{lcl}
  12883. \Atm &::=& \Int \mid \Var \\
  12884. \Exp &::=& \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)}\\
  12885. \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
  12886. \Tail &::= & \key{return}~\Exp\key{;} \mid \Stmt~\Tail \\
  12887. \LangCVar{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  12888. \end{array}
  12889. \]
  12890. \end{minipage}
  12891. }
  12892. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  12893. \label{fig:c0-concrete-syntax}
  12894. \end{figure}
  12895. \begin{figure}[tbp]
  12896. \fbox{
  12897. \begin{minipage}{0.96\textwidth}
  12898. \small
  12899. \[
  12900. \begin{array}{lcl}
  12901. \Atm &::=& \gray{ \Int \mid \Var } \mid \itm{bool} \\
  12902. \itm{cmp} &::= & \key{eq?} \mid \key{<} \\
  12903. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  12904. &\mid& \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP \\
  12905. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
  12906. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  12907. \mid \key{goto}~\itm{label}\key{;}\\
  12908. &\mid& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
  12909. \LangCIf{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  12910. \end{array}
  12911. \]
  12912. \end{minipage}
  12913. }
  12914. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  12915. \label{fig:c1-concrete-syntax}
  12916. \end{figure}
  12917. \begin{figure}[tbp]
  12918. \fbox{
  12919. \begin{minipage}{0.96\textwidth}
  12920. \small
  12921. \[
  12922. \begin{array}{lcl}
  12923. \Atm &::=& \gray{ \Int \mid \Var \mid \itm{bool} } \\
  12924. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  12925. \Exp &::=& \gray{ \Atm \mid \key{(read)} \mid \key{(-}~\Atm\key{)} \mid \key{(+}~\Atm~\Atm\key{)} } \\
  12926. &\mid& \gray{ \LP \key{not}~\Atm \RP \mid \LP \itm{cmp}~\Atm~\Atm\RP } \\
  12927. &\mid& \LP \key{allocate}~\Int~\Type \RP \\
  12928. &\mid& (\key{vector-ref}\;\Atm\;\Int) \mid (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  12929. &\mid& \LP \key{global-value}~\Var \RP \mid \LP \key{void} \RP \\
  12930. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \mid \LP\key{collect}~\Int \RP\\
  12931. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \mid \Stmt~\Tail }
  12932. \mid \gray{ \key{goto}~\itm{label}\key{;} }\\
  12933. &\mid& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  12934. \LangCVec{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  12935. \end{array}
  12936. \]
  12937. \end{minipage}
  12938. }
  12939. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  12940. \label{fig:c2-concrete-syntax}
  12941. \end{figure}
  12942. \begin{figure}[tp]
  12943. \fbox{
  12944. \begin{minipage}{0.96\textwidth}
  12945. \small
  12946. \[
  12947. \begin{array}{lcl}
  12948. \Atm &::=& \gray{ \Int \mid \Var \mid \key{\#t} \mid \key{\#f} }
  12949. \\
  12950. \itm{cmp} &::= & \gray{ \key{eq?} \mid \key{<} } \\
  12951. \Exp &::= & \gray{ \Atm \mid \LP\key{read}\RP \mid \LP\key{-}\;\Atm\RP \mid \LP\key{+} \; \Atm\;\Atm\RP
  12952. \mid \LP\key{not}\;\Atm\RP \mid \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  12953. &\mid& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  12954. \mid \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  12955. &\mid& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \mid \LP\key{global-value} \,\itm{name}\RP \mid \LP\key{void}\RP } \\
  12956. &\mid& \LP\key{fun-ref}~\itm{label}\RP \mid \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  12957. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \mid \RETURN{\Exp}
  12958. \mid \LP\key{collect} \,\itm{int}\RP }\\
  12959. \Tail &::= & \gray{\RETURN{\Exp} \mid \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  12960. &\mid& \gray{\LP\key{goto}\,\itm{label}\RP
  12961. \mid \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  12962. &\mid& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  12963. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  12964. \LangCFun{} & ::= & \Def\ldots
  12965. \end{array}
  12966. \]
  12967. \end{minipage}
  12968. }
  12969. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  12970. \label{fig:c3-concrete-syntax}
  12971. \end{figure}
  12972. \cleardoublepage
  12973. \addcontentsline{toc}{chapter}{Index}
  12974. \printindex
  12975. \cleardoublepage
  12976. \bibliographystyle{plainnat}
  12977. \bibliography{all}
  12978. \addcontentsline{toc}{chapter}{Bibliography}
  12979. \end{document}
  12980. %% LocalWords: Dybvig Waddell Abdulaziz Ghuloum Dipanwita Sussman
  12981. %% LocalWords: Sarkar lcl Matz aa representable Chez Ph Dan's nano
  12982. %% LocalWords: fk bh Siek plt uq Felleisen Bor Yuh ASTs AST Naur eq
  12983. %% LocalWords: BNF fixnum datatype arith prog backquote quasiquote
  12984. %% LocalWords: ast Reynold's reynolds interp cond fx evaluator jane
  12985. %% LocalWords: quasiquotes pe nullary unary rcl env lookup gcc rax
  12986. %% LocalWords: addq movq callq rsp rbp rbx rcx rdx rsi rdi subq nx
  12987. %% LocalWords: negq pushq popq retq globl Kernighan uniquify lll ve
  12988. %% LocalWords: allocator gensym env subdirectory scm rkt tmp lhs Tt
  12989. %% LocalWords: runtime Liveness liveness undirected Balakrishnan je
  12990. %% LocalWords: Rosen DSATUR SDO Gebremedhin Omari morekeywords cnd
  12991. %% LocalWords: fullflexible vertices Booleans Listof Pairof thn els
  12992. %% LocalWords: boolean type-check notq cmpq sete movzbq jmp al xorq
  12993. %% LocalWords: EFLAGS thns elss elselabel endlabel Tuples tuples os
  12994. %% LocalWords: tuple args lexically leaq Polymorphism msg bool nums
  12995. %% LocalWords: macosx unix Cormen vec callee xs maxStack numParams
  12996. %% LocalWords: arg bitwise XOR'd thenlabel immediates optimizations
  12997. %% LocalWords: deallocating Ungar Detlefs Tene kx FromSpace ToSpace
  12998. %% LocalWords: Appel Diwan Siebert ptr fromspace rootstack typedef
  12999. %% LocalWords: len prev rootlen heaplen setl lt Kohlbecker dk multi
  13000. % LocalWords: Bloomington Wollowski definitional whitespace deref JM
  13001. % LocalWords: subexpression subexpressions iteratively ANF Danvy rco
  13002. % LocalWords: goto stmt JS ly cmp ty le ge jle goto's EFLAG CFG pred
  13003. % LocalWords: acyclic worklist Aho qf tsort implementer's hj Shidal
  13004. % LocalWords: nonnegative Shahriyar endian salq sarq uint cheney ior
  13005. % LocalWords: tospace vecinit collectret alloc initret decrement jl
  13006. % LocalWords: dereferencing GC di vals ps mcons ds mcdr callee's th
  13007. % LocalWords: mainDef tailcall prepending mainstart num params rT qb
  13008. % LocalWords: mainconclusion Cardelli bodyT fvs clos fvts subtype uj
  13009. % LocalWords: polymorphism untyped elts tys tagof Vectorof tyeq orq
  13010. % LocalWords: andq untagged Shao inlining ebp jge setle setg setge
  13011. % LocalWords: struct Friedman's MacOS Nystrom alist sam kate
  13012. % LocalWords: alists arity github unordered pqueue exprs ret param
  13013. % LocalWords: tyerr bytereg dh dl JmpIf HasType Osterlund Jacek TODO
  13014. % LocalWords: Gamari GlobalValue ProgramDefsExp prm ProgramDefs vn
  13015. % LocalWords: FunRef TailCall tailjmp IndirectCallq TailJmp Gilray
  13016. % LocalWords: dereference unbox Dataflow versa dataflow Kildall rhs
  13017. % LocalWords: Kleene enqueue dequeue AssignedFree FV cnvt SetBang tg
  13018. % LocalWords: ValueOf typechecker